AP - 111

OW-14 INVESTIGATION REPORT (2)

2019

Michelle Lujan Grisham Governor

Howie C. Morales
Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

James C. Kenney
Cabinet Secretary

Jennifer J. Pruett
Deputy Secretary

November 15, 2019

John Moore Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: RESPONSE TO APPROVAL WITH MODIFICATIONS
REVISED INVESTIGATION REPORT OW-14 SOURCE AREA
WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY
EPA ID # NMD000333211

HWB-WRG-19-002

Dear Mr. Moore:

The New Mexico Environment Department (NMED) has reviewed the *Response to Approval with Modifications Revised Investigation Report OW-14 Source Area* (Response), dated October 24, 2019 and submitted on behalf of Marathon Petroleum Company dba Western Refining Southwest Inc., Gallup Refinery (the Permittee). The Permittee must address the following comments.

Comment 1

In the response to NMED's *Approval with Modifications* Comment 7, the Permittee states, "Figures 6 and 9 are revised to extend cross section C-C' to OW-14 and a separate new cross section is enclosed that extends to STP-1." NMED's *Approval with Modifications* Comment 7 stated, "[s]ubmit a figure that depicts the likely subsurface conditions between Tank 570 to OW-14 and STP-1." Figure 9 (Cross Section C-C') depicts the subsurface conditions between RW-1 and OW-14, rather than the subsurface conditions between TK 570-1 and OW-14. In addition, the referenced separate new cross section extending to STP-1 is not included in the Response. Provide these figures.

Mr. Moore November 15, 2019 Page 2

Comment 2

In the response to NMED's *Approval with Modifications* Comment 10, the Permittee states, "[t]here is a detailed discussion on the soil types present in Section 4.3.1, which is not repeated in the Conclusions Section. This discussion is provided below and as shown both intervals consist of sand with clayey sand in the 16 feet to 18 feet bgl interval and silty sand in the 24 feet to 26 feet bgl interval." To clarify, the direction of NMED's Comment 10 was to include the discussion regarding the correlation between the level of contamination associated with organic constituents and soil types where elevated contaminant concentrations were detected and further develop a discussion of potential contaminant pathways, rather than to repeat Section 4.3.1 in the Conclusion Section. No revision required.

Comment 3

In the response to NMED's *Approval with Modifications* Comment 11, the Permittee states, "[t]he requested figure is enclosed. This is Figure 22 from the Investigation Report North Drainage Ditch and OW-29 & OW-30 Areas, which is reported on separately as previously directed by NMED." The Permittee provided a figure that depicts wells downgradient from OW-14 but the figure does not depict any wells upgradient from OW-14, which was referenced in the Permittee's statement. All referenced upgradient wells from OW-14 (TK-568-1, TK 568-2, OW-58) and downgradient wells (OW-55 and OW-30) should have been depicted in the figure. NMED's Comment 11 also stated, "[p]rovide a figure that includes the other downgradient wells identified in this comment to provide further context to the MTBE plume migration." The Response does not include further context to the MTBE migration. Provide the appropriate figure.

The Permittee must address all comments more accurately in all future correspondence. Provide the figures discussed in Comment 1 and Comment 3 no later than **December 31, 2019**.

Mr. Moore November 15, 2019 Page 3

If you have questions regarding this letter, please contact Kristen Van Horn of my staff at 505-476-6046.

Sincerely,

Dave Cobrain Program Manager

Hazardous Waste Bureau

cc: K. Van Horn, NMED HWB

M. Suzuki, NMED HWB

C. Chavez, OCD

L. King, EPA Region 6 (6LCRRC)

B. Moore, WRG

File: Reading File and WRG 2019 File

HWB-WRG-19-002

INVESTIGATION REPORT OW-14 Source Area

Gallup Refinery **Marathon Petroleum Company** Gallup, New Mexico

EPA ID# NMD000333211

January 2019

(Revised July 2019)

Scott Crouch, P.G DiSorbo Consulting, LLC

Table of Contents

	=	ns	
Execut	ive Sum	mary	i
Section	n 1 Intro	duction	1-1
Section	n 2 Back	ground	2-1
Section	n 3 Scop	e of Activities	3-1
3.1	Soil E	Boring, Temporary Monitoring Well Installation and Sample Collection	3-1
	3.1.1	Site Investigation	3-1
3.2	Collec	ction and Management of Investigation Derived Waste	3-2
3.3	Surve	eys	3-3
Section	n 4 Field	Investigation Results	4-1
4.1	Surfa	ce Conditions	4-1
4.2	Subsurface Conditions		4-1
	4.2.1	Geology	4-2
	4.2.2	Hydrogeology	4-3
4.3	Exploratory Drilling Investigations, Soil Sampling and Boring Abandonment		4-4
	4.3.1	Soil Investigation	4-5
4.4	Monit	tor Well Construction and Groundwater Sampling	4-17
	4.4.1	Groundwater Investigation	4-17
Section	n 5 Regu	ılatory Criteria	5-1
Section	n 6 Site	Impacts	6-1
6.1	Soil A	nalytical Results	6-1
6.2	Groundwater Analytical Results6		6-3
6.3	Gene	ral Groundwater Chemistry	6-8
Section	n 7 Cond	elusions and Recommendations	7-1
7.1	Concl	usions	7-1
7.2	Reco	mmendations	7-2
Section	n & Refe	rances	8-1

Table of Contents (Continued)

List of Tables

Table 1	RW-1 Recovery Volumes
Table 2	OW-14 Source Area Wells Groundwater Analytical Data
Table 3	Vapor Screening Results
Table 4	Groundwater Field Measurements
Table 5	Soil Screening Levels
Table 6	Groundwater Screening Levels
Table 7	Soil Analytical Results Summary
Table 8	Groundwater Analytical Results Summary

List of Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Location of Soil Borings and Wells
Figure 4	Topographic Map
Figure 5	Geologic Map of New Mexico
Figure 6	Cross Section Location Map
Figure 7	Cross Section A-A' West to East
Figure 8	Cross Section B-B' South to North
Figure 9	Cross Section C-C' North to South
Figure 10	Cross Section D-D' West to East
Figure 11	Isopach Map Saturated Sand and Gravel above Chinle Group
Figure 12	Paleotopography Top of Chinle Group
Figure 13	September 2016 Potentiometric Surface Map
Figure 13A	August 2018 Potentiometric Surface Map

Table of Contents (Continued)

Figure 14	Benzene Soils Concentration Map
Figure 15	Ethylbenzene Soils Concentration Map
Figure 16	Gasoline Range Organics Soil Concentration Map
Figure 17	Diesel Range Organics Soil Concentration Map
Figure 18	Arsenic, Barium, Iron and Manganese Groundwater Concentration Map
Figure 19	1,2,4-Trimethylbenzene, 1,3,5-Trimethlybenzene, 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene Groundwater Concentration Map
Figure 20	Benzene, Ethylbenzene, Toluene, Total Xylenes and MTBE Groundwater Concentration Map
Figure 21	Underground Pipelines

Appendices

Appendix A Historical Boring Logs

Appendix B Fluid Level Measurements

Appendix C Waste Manifests

Appendix D Survey Data

Appendix E Field Methods

Appendix F Soil Boring/Well Logs

Appendix G Permeability and Hydraulic Conductivity Evaluations

Appendix H Analytical Data Reports

Appendix I Quality Assurance/Quality Control Review

Appendix J Tank Inspection Records

List of Acronyms

API American Petroleum Institute

AOCs areas of concern

BTEX benzene, toluene, ethylbenzene, and xylene

bgl below ground level (bgl) btoc below top of casing

CFR Code of Federal Regulations

DRO diesel range organics
DAF dilution/attenuation factor
EPA Environmental Protection Agency

gpm gallons per minute HI hazard index HSA hollow-stem auger

IDW investigation derived waste LPG liquefied petroleum gas LTU Land Treatment Unit

MADEP Massachusetts Department of Environmental Protection

MCL maximum contaminant level

msl mean sea level MW monitoring well

NMAC New Mexico Administrative Code
NMED New Mexico Environment Department
RCRA Resource Conservation and Recovery Act

PID photoionization detector

PVC polyvinyl chloride

SPH separate phase hydrocarbon
SVOC semi-volatile organic compound
SWMUs Solid Waste Management Units
TPH total petroleum hydrocarbon
TVOC total volatile organic content

TCLP toxicity characteristic leaching procedure

USCS unified soil classification system VOC volatile organic compound

WQCC Water Quality Control Commission

Executive Summary

The Gallup Refinery, which is located 17 miles east of Gallup, New Mexico, has been in operation since the 1950s. Past inspections by State [New Mexico Environment Department (NMED)] and federal environmental inspectors have identified locations where releases to the environment may have occurred. These locations are generally referred to as Solid Waste Management Units (SWMUs) or Areas of Concern (AOCs). Pursuant to the terms and conditions of the facility's Resource Conservation and Recovery Act (RCRA) Post-Closure Care Permit and 20.4.1.500 New Mexico Administrative Code (NMAC), this environmental site investigation was completed for the area generally up-gradient of monitor well OW-14, which includes the eastern portion of the Refinery Tank Farm (SWMU No. 6).

The activities completed include sampling and analysis of soils and groundwater in the vicinity of storage Tanks 568, 569, and 570 and along the northern boundary (east end) of the Tank Farm. The current investigation began on September 21, 2016 and continued through October 5, 2016. This included the completion of six soil borings and two permanent monitoring wells with 25 soil samples (excluding additional quality assurance samples) collected for analysis of potential site-related constituents (e.g., volatile and semi-volatile organics, total petroleum hydrocarbons, and metals). Temporary well completions were installed in all six soil borings. Eight groundwater samples (excluding additional quality assurance samples) were collected for analysis of potential site-related constituents (e.g., volatile and semi-volatile organics, total petroleum hydrocarbons (TPH), metals, and inorganic/general water quality parameters).

Manganese was detected at concentrations above the non-residential soil screening level in five soil samples. Five soil samples have reported concentrations of gasoline range organics (GRO) above the residential soil screening level and one of these samples has a concentration above the non-residential soil screening level. One soil sample has a reported concentration of diesel range organics (DRO) above the residential soil screening level. Benzene and ethylbenzene were reported at concentrations above their respective residential direct contact screening levels in one soil sample.

Seven inorganic constituents (arsenic, barium, beryllium, cobalt, iron, lead, manganese, and vanadium) were detected at concentrations (totals analyses) above residential/tap water screening levels in groundwater samples collected from permanent and temporary well completions.

At least one of these exceedances of screening levels for inorganic constituents occurred in every groundwater sample analyzed with the exception of the groundwater samples collected from TK 568-1. Arsenic, barium, iron, and manganese were detected at concentrations above screening levels in the dissolved analyses.

The following thirteen organic constituents were detected at concentrations above screening levels in at least one of the eight groundwater samples collected from the permanent/temporary well completions:

- 1,2,4-Trimethlybenzene;
- 1,2-Dibromoethane (EDB);
- 1,2-Dichloropopane;
- 1,3,5-Trimethylbenzene;
- 1-Methylnaphthalene;
- 2-Methylnaphthalene;
- Benzene;
- Ethylbenzene;
- MTBE;
- Naphthalene;
- Toluene;
- Total Xylenes; and
- Bis (2-ethylhexyl) phthalate.

Section 1 Introduction

The Gallup Refinery is located approximately 17 miles east of Gallup, New Mexico along the north side of Interstate Highway I-40 in McKinley County. The physical address is I-40, Exit #39 Jamestown, New Mexico 87347. The Gallup Refinery property covers approximately 810 acres. Figure 1 presents the refinery location and the regional vicinity, which is characterized as high desert plain comprised primarily of public lands used for grazing by cattle and sheep.

The Gallup Refinery generally processes crude oil from the Four Corners area transported to the facility by pipeline or tanker truck. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, alkylation, isomerization, sulfur recovery, merox treater, and hydrotreating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, and residual fuel.

The area of investigation that is the subject of this report is shown on Figure 2 and includes the eastern portion of the Tank Farm, which is generally up-gradient of monitor well OW-14. The purpose of the site investigation is to determine the source of the increasing concentrations of primarily benzene that have been observed in OW-14. The investigation activities were conducted in accordance with 20.4.1.500 NMAC incorporating 40 Code of Federal Regulations (CFR) Section 264.101, Section IV.H.5 of the Post-Closure Care Permit and the *Investigation Work Plan OW-14 Source Area* dated April 2016 (approved with modifications May 12, 2016).

Section 2 presents background information for the area near OW-14, including a review of historical waste management activities to help identity the types of waste handled, sources of releases, and previously known impacts to the environment. Section 3 describes the scope of work completed during the site investigation, including completion of soil borings, installation of temporary monitoring wells, installation of permanent monitoring wells, and sample collection. Section 4 of the report explains the results of the field investigation, including the general surface and subsurface conditions and detailed site-specific information acquired during subsurface investigations. Section 5 explains the regulatory standards that are used for comparison to the analytical results and Section 6 presents the analytical results of soil and groundwater samples analyzed for volatile and semi-volatile organic compounds, TPH, metals, and inorganic/general chemistry constituents. The

Section 2 Background

This section presents background information for the area up-gradient of monitor well OW-14, which includes the eastern portion of the Tank Farm (SWMU No. 6), including a review of historical waste management activities to identity the following:

- Type and characteristics of waste and contaminants handled in the SWMU;
- Known and possible sources of impacts;
- History of releases; and
- Known extent of impacts prior to the current investigation.

Monitor well OW-14 is located immediately north of the main refinery tank farm, which was built in the late 1950s. The *Inventory of Solid Waste Management Units* prepared in June 1985 identified six product storage tanks that contained leaded gasoline (Geoscience Consultants, Ltd., 1985). These six, as well as, additional tanks were subsequently identified as SWMU No. 6 due to the historic practice of disposing of leaded tank bottoms within the tank berms. The practice of cleaning the tanks and burying the leaded tank bottoms was reported to have occurred every five years and was terminated after November 19, 1980.

The three leaded gasoline storage tanks (TK-568, TK-569, and TK-570) closest to OW-14 were investigated as part of SWMU No. 6 in the early to mid-1990s. Tanks TK-569 and TK-570 are still used to store gasoline, while TK-568 was switched to store MTBE sometime after 1996 and later switched to ammonium thiosulfate in 1986. Impacts to soil and the presence of separate-phase hydrocarbon (SPH) on groundwater was found within the alluvium overlying the Chinle Group. Boring BG-4, which was later identified as OW-27 and RW-1, was drilled east of TK-569 to a depth of 48.5 feet (Figure 2). A water-bearing sand layer was logged at approximately 30 feet with a strong hydrocarbon odor and an elevated PID reading. Subsequently a 4-inch well screen was installed in the boring from 40.0 to 25.0 feet below ground level (bgl). The water level was initially measured at a depth of 28' 7" with an accumulation of 8" of SPH. A second soil boring B-2, which was later identified as OW-28 and RW-2, was drilled southwest of TK-576 to a depth of 38 feet. Saturation was first encountered in a sand layer at a depth of 23.6 feet with additional deeper water-bearing sand/gravel layers extending to top of the Chinle Group at a depth of 32.9 feet. The well screen was

set from 36.1 feet to 26.1 feet bgl. The water level initially was measured at 24' 3" with 2" of SPH. These historical boring logs are included in Appendix A.

A possible leak from a seam in an unidentified storage tank located adjacent to Tank 569 was reported to have been repaired in 1995 (Giant, 1997). A review of historical tank inspection files identified an email in 1990's that indicated a concern of a possible leak at Tank 568, which is located just east of Tank 569 (Appendix J). This email also indicates former usage of the tank to store MTBE, which was not previously identified as a material stored in this tank. It is likely that Tank 568, while it was in service to store leaded gasoline, contributed to the observed presence of SPH instead of the burial of leaded tank bottoms.

Subsequent to preparation of the 2016 Investigation Work Plan, DiSorbo obtained copies of recent tank inspection reports for Tanks 568, 569, and 570. The inspection of Tank 568 took place in December 2014 and was limited to an external inspection. This report notes that a new internal coating was completed in February 2006, but no description of any problems that may have required the repairs is included. The external inspection did not identify any problems that would indicate recent leaks from the Tank 568. The last internal inspection of Tank 569 was completed in January 2010. There were no indications of leaks through inspections of both the shell and floor. Four locations in the floor were found to have a wall thickness below the recommended minimum thickness per API 653 and were repaired. The most recent inspection of Tank 570 was conducted in March 2015. During the internal inspection, two ¼" diameter through holes were found in the floor. It was noted in the report that these holes were apparently in the same areas that were drilled and repaired with epoxy back in August of 1994. Based on these inspection reports, it appears that recent leaks have been occurring through the bottom of Tank 570 and may have been present in the past with earlier repairs dating back to 1994.

The estimated annual volumes of SPH recovered at RW-1 from 2005 through 2018 are shown in Table 1. The recovery volumes declined significant after the first two years (2005 and 2006) and stabilized in the 0.5 to 4 gallons per year range. In 2016 the recovery increased to 8.5 gallons and further increased to 10.5 gallons in 2017. The recovery dropped back to 1.0 gallons in 2018. Included as Appendix B is a table that summarizes the historical fluid levels for wells installed before the investigation and for wells installed during the investigation. The measured thickness of SPH in RW-1 has generally fluctuated between 3 feet to 5 feet from 2013 through early 2017, when the measured thickness began to decrease. The measured thickness of SPH was less than 1 foot in 2018.

Beginning in 2011 groundwater samples have been collected annually from RW-1 and RW-2 and analyzed for dissolved-phase organic constituents and metals. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE have been reported for samples collected at both recovery wells. The concentrations of BTEX are significantly higher at the recovery wells than observed in down-gradient well OW-14, but concentrations are increasing at OW-14. MTBE is also detected at higher concentrations in the up-gradient recovery wells, but the difference is less than what is observed for BTEX.

Table 2 includes the dissolved-phase concentrations reported from groundwater samples collected from the following wells:

- OW-13:
- OW-14;
- RW-1;
- RW-2;
- RW-5;
- RW-6;
- OW-57; and
- OW-58.

Recovery wells RW-5 and RW-6 are included in Table 2 as they are located within the refinery main tank farm; however, these wells are over 800 feet southwest of well OW-14 and are unlikely to represent a possible source for the constituents detected at OW-14. BTEX concentrations are less in groundwater samples collected at RW-5 and RW-6 than those collected at RW-1, RW-2, and OW-14.

Monitor wells OW-57 and OW-58 are permanent wells that were installed during this investigation in 2016. Additional groundwater samples were collected from OW-57 and OW-58 after the completion of the 2016 investigation, as part of the routine facility-wide groundwater sampling effort.

Section 3 Scope of Activities

3.1 Soil Boring, Temporary Monitoring Well Installation and Sample Collection

Pursuant to the approved Investigation Work Plan, an investigation of soils and groundwater was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings, temporary monitoring wells and permanent monitoring wells were installed (Figure 3).

3.1.1 Site Investigation

The scope of work focused on identifying the source of increasing concentrations of primarily benzene, also other constituents that have been detected in groundwater at monitoring well OW-14. Well OW-14 is located to the north and down-gradient of the eastern portion of the Tank Farm. Two new permanent monitoring wells were proposed along the northern boundary of the refinery tank farm to monitor the groundwater quality as it flows to the north. Both of these wells (OW-57 and OW-58) were installed as proposed in the work plan.

The other area of investigation was proposed to focus in the general area of RW-1, which is located further up-gradient within the tank farm. This included six soil borings with temporary well completions to be drilled near Tanks 568, 569, and 570. All of these borings were completed as proposed. Groundwater was encountered at each of these locations and temporary wells were installed in each of the six soil borings (TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, and TK 570-1). The groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), TPH, dissolved and total metals, and water quality parameters.

Discrete soil samples were proposed in the work plan to be retained for laboratory analysis from within the following intervals at each of the six soil borings:

- From the interval in each soil boring with the greatest apparent degree of contamination in the vadose zone, based on field observations and field screening;
- From the bottom of each borehole:

- From the 0.5 foot interval at the top of saturation; and
- Any additional intervals as determined based on field screening results.

The objectives were met at each soil boring with discussions below detailing the exact sample collection interval at each soil boring. In addition, soil samples were also collected from similar intervals during drilling of the two permanent monitoring wells. The soil samples were analyzed for VOCs, SVOCs, TPH, and metals.

The following list provides a summary of the soil borings advanced using hollow stem augers:

- TK 568-1; advanced to 49 feet bgl; temporary well installed;
- TK 568-2; advanced to 37 feet bgl; temporary well installed;
- TK 569-1; advanced to 42 feet bgl; temporary well installed;
- TK 569-2; advanced to 38 feet bgl; temporary well installed;
- TK 569-3; advanced to 39 feet bgl; temporary well installed;
- TK 570-1; advanced to 45 feet bgl; temporary well installed;
- OW-57; advanced to 27 feet bgl; permanent well installed; and
- OW-58; advanced to 48.5 feet bgl; permanent installed.

Groundwater samples were collected from six temporary well completions (TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, and TK 570-1) and two permanent monitoring wells (OW-57 and OW-58). The groundwater samples were analyzed for volatile and semi-volatile organics, TPH (GRO, DRO, and MRO), Skinner List metals, cyanide, iron, manganese, chloride, fluoride, and sulfate.

3.2 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and decontamination fluids, and all other investigation derived waste (IDW) associated with soil borings were contained and characterized using methods based on the boring locations and type of contaminants suspected or encountered. All drill cuttings generated during the OW-14 Source Area investigation were collected and put into 55-gallon drums.

The soils in the 23 drums were not sampled. Using a generator waste profile sheet, the drums were shipped off-site to Advanced Chemical Treatment Facility for disposal on March 13, 2017.

Copies of the waste characterization form and the waste manifest are included in Appendix C. All purge water and decontamination water were disposed in the refinery wastewater system upstream of the API Separator.

3.3 Surveys

A global positioning system receiver was used to record the coordinates of each soil boring. These coordinates were recorded on the field boring logs. Surveys were completed by a registered land surveyor for permanent wells OW-57 and OW-58 to include geographic position and land surface elevation. In the area of Tanks TK 568, TK 569 and TK 570 land surface elevations were surveyed. The survey is included in Appendix D.

Section 4 Field Investigation Results

This section provides a summary of the surface and subsurface conditions at the refinery, including the area near the refinery tank farm and in the area of OW-14. A discussion is included on the installation of soil borings, field screening of soils, and collection of soil samples for analysis. This is followed by a description of the installation of temporary and permanent well completions and the collection of groundwater samples.

4.1 Surface Conditions

A topographic map of the area near the monitoring well OW-14 and the refinery main tank farm is included as Figure 4. Site topographic features include high ground in the southeast gradually decreasing to a lowland fluvial plain to the northwest. Elevations on the refinery property range from 6,860 feet to 7,040 feet. The area of the site near OW-14 is at an approximate elevation of 6,934 feet above mean sea level (msl).

The soils in the vicinity of OW-14 include two soil types. Surface soils within most of the area of investigation are primarily Rehobeth silty clay loam. To the north are the bordering Simitarq-Celavar sandy loams. Rehobeth soil properties include a pH ranging from 8 to 9 standard units and salinity (naturally occurring and typically measuring up to approximately 8 mmhos/cm). The Simitarq-Celavar soils are well drained with a conservative permeability of 0.20 inches/hour and minimal salinity. Simitarq soils have nearly neutral pH values ranging from 7.2 to 7.4 standard units.

Regional surface water features include the refinery evaporation ponds and a number of small ponds (one cattle water pond and two small unnamed spring fed ponds). The site is located in the Puerco River Valley, north of the Zuni Uplift with overland flows directed northward to the tributaries of the Puerco River. The Puerco River continues to the west to the confluence with the Little Colorado River. The South Fork of the Puerco River is intermittent and retains flow only during and immediately following precipitation events.

4.2 Subsurface Conditions

Underground pipelines were detected during clearance of utilities in the area of the tank farm and the rail loading rack (Figure 21).

4.2.1 Geology

The shallow subsurface soils consist of fluvial and alluvial deposits comprised of clay and silt with minor inter-bedded sand layers. The diverse properties and complex, irregular stratigraphy of the surface soils across the site cause a wide range of hydraulic conductivity ranging from less than 10^{-2} cm/sec for gravely sands immediately overlying the Petrified Forest Formation to 10^{-8} cm/sec in the clay soils located near the surface (Western Refining, 2009). Generally, shallow groundwater at the refinery follows the upper contact of the Chinle Group with prevailing flow from the southeast to the northwest, with some flow potentially to the northeast on the northeastern portion of the refinery property.

The Quaternary alluvium, which occurs at the land surface in the area of the refinery is mapped regionally as a narrow band trending west-northwest and running just north of I-40 (Figure 5). The Quaternary alluvium is thought to be the parent material of the Simitarq-Celavar and Rehobeth soils discussed above in Section 4.1. Four cross sections of the shallow subsurface in the immediate vicinity of the tank farm and the area up-gradient of OW-14 (Figures 7 thru 10). Figure 6 shows the location of the cross sections. As shown on the four cross sections, the predominant lithology is sandy clay/clayey sands.

An isopach map of the thickness of potentially transmissive materials (e.g., sand, sandy gravel, clayey gravel, clayey sand, etc.) that are below the water table is included as Figure 11. The thickness of the transmissive materials is highly variable according to NMED.

A second map (Figure 12) was prepared to show the current elevation on top of the bedrock (Chinle Group). This surface is probably reflective of the land surface present when the Quaternary alluvium was deposited. There is a prominent feature on the southern portion of this map, where the surface appears to peak near TK569-2 and TK568-2 at approximately 6916 feet msl. A sharp decline in the elevation on the top of the Chinle Group extends northeastward from soil boring TK 568-2 towards soil boring TK 568-1. The elevation drops from 6916 feet MSL at TK568-3 to 6903 feet MSL at Tank 568-1. A decrease of 13 feet over an approximate distance of 100 feet. Southwest of the peak, the top of the bedrock slopes gradual to the southwest with the elevations ranging from 6912 feet MSL to 6914 feet MSL. Further to the north, an apparent trough on the bedrock surface trends north/northeast through the location of OW-58 and appears to extend north towards OW-30. To the northwest of the area of investigation, there is a prominent high on the bedrock surface near OW-13, which is likely to influence migration of contaminants away from OW-14.

Subcropping beneath the Quaternary alluvium is the Triassic Chinle Group (Figure 5). The stratigraphy of the Chinle Group was described in detail for the nearby Fort Wingate quadrangle by Lucas *et al.*, 1997. The Painted Desert Member of the Petrified Forest Formation is the uppermost member of the Chinle Group present in the area of the refinery. The Painted Desert Member is described as reddish-brown and grayish red mudstone with minor beds of resistant, laminated or crossbedded, litharenite. This is consistent with the bedrock encountered at the refinery, as depicted on cross sections A-A', B-B', C-C' and D-D' (Figures 7 through 10). Beneath the Painted Desert Member is the Sonsela Member, which is described by Lucas *et al.* (1997) as gray to yellowish-brown, fine-grained to conglomeratic, crossbedded sandstone. The base of the Sonsela Member is recognized as a basin wide unconformity, which was termed the Tr-4 unconformity (Heckert and Lucas, 1996). The Blue Mesa Member, which underlies the Sonsela Member, is the lowest member of the Petrified Forest Formation. The Blue Mesa Member is described as mostly purple and greenish-gray mudstone.

4.2.2 Hydrogeology

Figure 13 presents the potentiometric surface during field work activities conducted during the month of September 2016. A second potentiometric surface map (Figure 13A) is included using measurements collected in August 2018. The groundwater flow direction is to the north-northeast. The groundwater elevation in monitor well OW-57 was comparable to the groundwater elevations found in wells RW-5 and RW-6. The potentiometric surface appears to gradually decrease towards the northeast. There is a steep easterly groundwater gradient between OW-57 and RW-2, which coincides with an 11 foot elevation change of the top of the Chinle as seen on the paleography map presented as Figure 12. Moving further to the east, the groundwater elevations in RW-2 and OW-58 were similar in September 2016 (0.84 feet higher at OW-58) but the gradient increased to 1.59 feet in August 2018 with the flow direction to the southwest from OW-58 towards RW-2. This is in contrast to the elevation change of the top of the Chinle, which is 8 feet higher at RW-2 than OW-58. Generally, the shallow groundwater potentiometric surface reflects the topography of the top of the Chinle Formation, but not in this particular location.

In the area of Tanks 569 and 570 the groundwater elevations measured from the temporary wells ranged in difference of 1 to 2 feet between the wells. There is a groundwater elevation change of approximately 3 feet between the locations TK569-2 / TK568-2 and location TK568-1. This increase in the gradient coincides with the elevation change of the top of the Chinle as seen on Figure 12.

The diverse properties and complex, irregular stratigraphy of the Quaternary alluvium across the refinery cause a wide range of hydraulic conductivity ranging from less than 10^{-2} cm/sec for gravel like sands immediately overlying the Painted Desert Member to 10^{-8} cm/sec in the clay soils located near the surface (Western Refining, 2009). Permeability tests performed on the Quaternary alluvium beneath the nearby Land Treatment Unit (LTU) indicated an average permeability of 1.9E-05 cm/sec (Appendix G). Permeability tests performed on soils in the area of the firewater pond indicated an average permeability of 1.1E-07 cm/sec (Appendix G).

As described above, the bedrock (i.e., Petrified Forest Formation) is mainly composed of low permeability materials (e.g., mudstone) with the exception of the Sonsela Member and some thinner sandstones within the overlying Painted Desert Member. Yield tests, including slug tests and pumping tests have been performed at the refinery to estimate the hydraulic conductivity of the Painted Desert Member (Appendix G). A slug test performed on July 3, 1984 in well OW-4 indicated a hydraulic conductivity of 4.0E-7 cm/sec. A pump test was performed in well OW-24 on February 20, 1985 and it yielded a hydraulic conductivity of 2.5E-7 cm/sec. The Painted Desert Member appears to be a competent aquitard capable of reducing the potential for downward migration of contaminants from groundwater that may occur within the overlying Quaternary alluvium.

The Sonsela Member is identified as the uppermost aquifer for RCRA monitoring purposes at the LTU because the overlying groundwater bearing units are not capable of supplying sufficient quantities of groundwater to meet the definitions of an aquifer. Wells completed in a thinner permeable sandstone layer within the Painted Desert Member are also monitored near the LTU as a potential early warning network. The Sonsela's highest point occurs southeast of the site and slopes downward to the northwest as it passes under the refinery. The Sonsela Member forms a water-bearing reservoir with artesian conditions throughout the central and western portions of the refinery property (Western, 2009). Aquifer test of the Sonsela Member conducted northeast of Prewitt indicated a transmissivity of greater than 100 ft²/day (Stone and others, 1983). Yield tests conducted at the site have shown a much lower hydraulic conductivity of 0.34 ft/day (1.2E-04 cm/sec) (Appendix G).

4.3 Exploratory Drilling Investigations, Soil Sampling and Boring Abandonment

This subsection provides a detailed description of subsurface investigations to delineate impacts to subsurface soils and the underlying groundwater in the eastern portion of the refinery tank farm. This includes soil field screening results, soil sampling intervals and methods for detection of

subsurface impacts in soils. For completeness, the following discussion includes the field work completed in September and October 2016 in accordance with the April 2016 *Investigation Work Plan OW-14 Source Area* (DiSorbo, 2016).

Discrete soil samples for laboratory analyses were scheduled for collection at the following intervals:

- From the interval in each soil boring with the greatest apparent degree of contamination in the vadose zone, based on field observations and field screening;
- From the bottom of each borehole;
- From the 0.5 foot interval at the top of saturation; and
- Any additional intervals as determined based on field screening results.

A description of the field screening and soil sampling procedures are presented in Appendix E – Field Methods. Copies of the boring/well logs are provided in Appendix F. In addition to being included on the soil boring logs, the soil vapor (i.e., headspace) screening results are summarized in Table 3. The locations of the soil borings/wells appear on Figure 3.

4.3.1 Soil Investigation

Eight soil borings, including two completed as permanent wells, were advanced using the hollow-stem auger (HSA) method to bedrock (claystone). The drilling equipment was decontaminated between each borehole, as described in Appendix E. Detailed soil boring logs are included in Appendix F. The soil boring logs describe the subsurface lithology, the presence of saturation, the field screening results, soil sample collection intervals, and any temporary or permanent well construction details. The installation of soil borings and collection of soil samples are discussed below in numerical order.

Tanks T-568, T-569 and T-570 are located in the eastern portion of the tank farm. Each tank is located within a separate tank dike system. Tank T-568 is the easternmost tank. The floor inside of the dike system has an elevation of approximately 6949.5 feet msl. Tank T-569 is located approximately 150 feet west-southwest of Tank T-568. The floor of the dike system for Tank T-569 has an elevation of approximately 6950.5 feet msl. Tank T-570 is located approximately 190 feet south of Tank T-569. The floor inside of the dike system for Tank T-570 has an elevation of approximately 6957.5 feet msl.

TK 568-1

On September 23, 2016 the drilling rig was set up on location TK 568-1. TK 568-1 was located inside the tank dike for Tank T-568 and is approximately 31 feet north of Tank T-568. It is noted that all such references to measurements from tanks are taken from the closest edge of the subject tank. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Three soil samples were collected for laboratory analysis from the following intervals:

- 12 feet bgl 14 feet bgl: PID reading 1,957 ppm, odor and oily;
- 30 feet bgl 32 feet bgl: Interval immediately above saturation-PID reading 1,308 ppm, black discoloration; and
- 48 feet bgl 49 feet bgl: Bottom of borehole, PID reading 41 ppm.

- Sandy Silty Clay: 0 10 feet bgl (low plasticity, soft, damp, brown, no odor from 0 to 6 feet bgl, odor from 6 feet bgl to 10 feet bgl);
- Silty Clay: 10 feet bgl 14 feet bgl (low plasticity, firm, damp, brown, odor, oily from 12 feet bgl to 14 feet bgl, trace of very fine grain sand);
- Clayey Sandy Silt: 14 feet bgl 16 feet bgl (very fine grain, low plasticity, soft, damp to moist, brown, odor);
- Sandy Clayey Silt: 16 feet bgl 22 feet bgl (very fine grain, low plasticity, soft, moist in sand seams, odor);
- Clayey Sandy Silt: 22 feet bgl 24 feet bgl (very fine grain sand, soft, damp to moist, brown, odor);
- Silty Sandy Clay: 24 feet bgl 32 feet bgl (low plasticity, soft to firm, damp, brown, odor, black discoloration in sand at base of interval, very moist at base);
- Clayey Sand: 32 feet bgl 33 feet bgl (fine grain sand, loose, saturated, black, odor);
- Silty Clay: 33 feet bgl 34 feet bgl (low plasticity, firm, damp, brown, odor);
- Silty Sandy Clay: 34 feet bgl 36 feet bgl (low plasticity, soft, damp, brown, odor, black discoloration);
- Silty Sand: 36 feet bgl 38 feet bgl (fine grain sand, loose, saturated, grey, odor);
- Sandy Clay: 38 feet bgl 44 feet bgl (low plasticity, firm, damp to moist, brown, odor, sheen observed on core sample, white clay at base);

- Clay: 44 feet bgl 48 feet bgl (low plasticity, dense/crumbly, dry dark reddish brown/grey, no odor); and
- Sandy Shale (Chinle Group Painted Desert Member): 48 feet bgl 49 feet bgl (very dense, grey, dry, no odor).

The sampling was terminated at 49 feet bgl. Activities at this location were then shut down due to a rain storm. The augers were left in the borehole. On September 26, 2016 a temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 23 feet bgl to 38 feet bgl. The top of the screen was set approximately 9 feet above the uppermost saturated interval (clayey sand – 32 feet bgl to 33 feet bgl). The screen was extended to a depth of 38 feet bgl which allowed for the screening across another saturated interval encountered (silty sand – 36 feet bgl to 38 feet bgl). The screen was not placed deeper since saturation was not encountered below 38 feet bgl. The screen did not intercept the top of the bedrock (claystone – 48 feet bgl to 49 feet bgl).

On October 1, 2016 the well was gauged and developed. No phase-separated hydrocarbon was detected during the gauging event. The water sample was collected on October 2, 2016. On October 3, 2016 the well casing and screen were removed and the borehole was grouted.

TK 568-2

On September 27, 2016 the drilling rig was set up on location TK 568-2. TK 568-2 was located inside the tank dike for Tank T-568 and approximately 42 feet southwest of Tank T-568. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Three soil samples were collected for laboratory analysis from the following intervals:

- 22 feet bgl 24 feet bgl: PID reading 82 ppm, odor;
- 28 feet bgl 30 feet bgl: Interval immediately above saturation-PID reading 2,803 ppm;
 and
- 36 feet bgl 37 feet bgl: Bottom of borehole, PID reading 21 ppm.

- Silty Clay: 0 6 feet bgl (low plasticity, firm, damp, brown, no odor, faint odor from 4 feet bgl to 6 feet bgl);
- Silty Clay: 6 feet bgl 10 feet bgl (low plasticity, soft, damp, brown, no odor);

- Sandy Clay: 10 feet bgl 22 feet bgl (low plasticity, soft, damp, brown, no odor to faint odor from 14 feet bgl to 22 feet bgl, trace gravel);
- Clayey Sand: 22 feet bgl 32 feet bgl (fine grain sand, loose, damp, brown, trace gravel, odor, white sandstone lenses throughout, moist to saturated from 28 feet bgl to 32 feet bgl);
- Gravelly Sand: 32 feet bgl 34 feet bgl (fine to medium grain sand, compact, saturated, brown, odor, gravel 0.25 inch to 0.5 inch, sheen on sampler);
- Sandy Gravel: 34 feet bgl 35 feet bgl (well rounded, loose, saturated, odor); and
- Claystone (Chinle Group Painted Desert Member): 35 feet bgl 37 feet bgl (very hard/dense, dry, dark reddish brown, shaley at base).

The sampling was terminated at 37 feet bgl. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 26 feet bgl to 36 feet bgl. The top of the screen was set approximately 2 feet above the uppermost saturated interval (clayey sand – 30 feet bgl to 32 feet bgl). The screen was extended to a depth of 38 feet bgl which allowed for the screening across additional saturated intervals encountered (gravelly sand – 32 feet bgl to 34 feet bgl and sandy gravel – 34 feet bgl to 35 feet bgl). The screen extended to 36 feet bgl which was approximately one foot into the bedrock (claystone – 35 feet bgl to 36 feet bgl).

On October 1, 2016 the well was gauged and developed. No phase-separated hydrocarbon was detected during the gauging event. The water sample was collected on October 2, 2016. On October 3, 2016 the well casing and screen were removed and the borehole was grouted.

TK 569-1

On October 4, 2016 the drilling rig was set up on location TK 569-1. TK 569-1 was located inside the tank dike for Tank T-569 and approximately 15 feet northwest of Tank T-569. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Four soil samples were collected for laboratory analysis from the following intervals:

- 18 feet bgl 20 feet bgl: PID reading 152 ppm, odor;
- 24 feet bgl 26 feet bgl: Interval immediately above saturation PID reading 2,158 ppm;
- 36 feet bgl 38 feet bgl: PID reading 1,649 ppm, odor; and
- 40 feet bgl 42 feet bgl: Bottom of borehole, PID reading 95.6 ppm.

The lithology encountered consisted of the following:

- Silty Clay: 0 14 feet bgl (low plasticity, firm, damp, brown, no odor, trace very fine grain sand at base);
- Sandy Clay: 14 feet bgl 20 feet bgl (low plasticity, firm to soft, damp, brown, very fine grain sand throughout, odor);
- Clayey Silty Sand: 20 feet bgl 26 feet bgl (fine to coarse grain sand, compact, becomes more silty with depth, gravel present, damp, moist to saturated in silty sand seams, odor);
- Sandy Clay: 26 feet bgl 28 feet bgl (very fine grain sand, increase in clay content, moist to saturated in silty sand seams, brown, odor, trace gravel at base);
- Gravelly Silty Sand: 28 feet bgl 30 feet bgl (medium to coarse grain, compact, damp to moist in seams, odor, brown, sandstone gravel present);
- Clayey Sandy Gravel: 30 feet bgl 31.5 feet bgl (0.125 inch to 0.5 inch gravel with medium to coarse grain sand, compact to loose, saturated, brown, odor);
- Silty Clay: 31.5 feet bgl 36 feet bgl (low plasticity, firm, damp, brown, odor, gravel at base);
- Clayey Gravel: 36 feet bgl 38 feet bgl (very hard, sandstone present, odor, damp);
- Clay: 38 feet bgl 40 feet bgl (high plasticity, firm, damp, reddish brown/grey, trace gravel, odor, damp; and
- Claystone (Chinle Group Painted Desert Member): 40 feet bgl 42 feet bgl (very dense, light reddish purple/grey, odor).

The sampling was terminated at 42 feet bgl. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 23 feet bgl to 38 feet bgl. The top of the screen was set approximately 1 foot above the occurrence of moist to saturated sand seams within a clayey silty sand (24 feet bgl to 26 feet bgl). The screen was extended to a depth of 38 feet bgl which allowed for the screening across additional saturated intervals encountered (sandy clay – 26 feet bgl to 28 feet bgl, gravelly silty sand – 28 feet bgl to 30 feet bgl and clayey sandy gravel - 30 feet bgl to 31.5 feet bgl). The screen extended to 38 feet bgl which was approximately one foot into a damp clayey gravel. The screen did not intercept the top of the bedrock (claystone – 40 feet bgl to 42 feet bgl).

On October 5, 2016 the well was gauged and developed. Phase-separated hydrocarbon was detected during the gauging event, but was not detected after the well was developed. The water

sample was collected on October 5, 2016. On October 6, 2016 the well casing and screen were removed and the borehole was grouted.

TK 569-2

On October 4, 2016 the drilling rig was set up on location TK 569-2. TK 569-2 was located inside the tank dike for Tank T-569 and approximately 17 feet northeast of Tank T-569. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Three soil samples were collected for laboratory analysis from the following intervals:

- 16 feet bgl 18 feet bgl: PID reading 2,332 ppm, odor;
- 29 feet bgl 31 feet bgl: Interval immediately above saturation PID reading 1,684 ppm/1,420 ppm; and
- 36 feet bgl 38 feet bgl: Bottom of borehole, PID reading 405 ppm.

- Silty Clay: 0 4 feet bgl (low plasticity, firm, damp, brown, no odor);
- Silty Sand: 4 feet bgl 8 feet bgl (fine grain, compact, damp, brown, no odor);
- Silty Clay: 8 feet bgl 14 feet bgl (low plasticity, soft, damp, brown, no odor to faint odor at base);
- Clayey Sand: 14 feet bgl 18 feet bgl (very fine grain sand, compact, damp, brown, odor);
- Clayey Sand/Sandy Clay: 18 feet bgl 20 feet bgl (very fine grain, compact, damp, brown, odor);
- Clayey Sand: 20 feet bgl 22 feet bgl (very fine grain, compact, brown, Sand/Gravel lens from 21 feet bgl to 21.5 feet bgl – damp, grey, loose);
- Silty Sand: 22 feet bgl 23.5 feet bgl (fine grain, loose, damp, brown, odor);
- Sandy Gravel: 23.5 feet bgl 30 feet bgl (grey sandstone gravel with fine to coarse grain sand, damp, odor, white sandstone present, trace clay present);
- Silty Clay: 30 feet bgl 32 feet bgl (low plasticity, firm to soft, damp, dark brown, moist to saturated, silty sand seams throughout, odor);
- Clay: 32 feet bgl 34 feet bgl (high plasticity, stiff, damp, brown, odor);
- Clayey Gravel; 34 feet bgl 36 feet bgl (very hard with 4 to 6 inch sandstone (grey) at base, odor); and

Claystone (Chinle Group - Painted Desert Member): 36 feet bgl – 38 feet bgl (very hard, dry, reddish purple and grey, odor).

The sampling was terminated at 38 feet bgl. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 26 feet bgl to 36 feet bgl. The top of the screen was set approximately 4 feet above the occurrence of moist to saturated silty sand seams within a silty clay (30 feet bgl to 32 feet bgl). The screen was extended to a depth of 36 feet bgl which corresponded to the top of the bedrock (claystone – 36 feet bgl to 38 feet bgl).

On October 5, 2016 the well was gauged and developed. Separate phase hydrocarbon was detected during the gauging event and after the well development. The water sample was collected from beneath the SPH on October 5, 2016. On October 6, 2016 the well casing and screen were removed and the borehole was grouted.

TK 569-3

On September 28, 2016 the drilling rig was set up on location TK 569-3. TK 569-3 was located inside the tank dike for Tank T-569 and approximately 19 feet south of Tank T-569. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Three soil samples were collected for laboratory analysis from the following intervals:

- 16 feet bgl 18 feet bgl: PID reading 377 ppm, odor;
- 24 feet bgl 26 feet bgl: Interval immediately above saturation-PID reading 955 ppm, phase separated hydrocarbon present; and
- 38 feet bgl 39 feet bgl: Bottom of borehole, PID reading 258 ppm.

- Silty Clay: 0 14 feet bgl (low plasticity, firm, damp, brown, no odor, odor detected from 10 feet bgl to 14 feet bgl, trace very fine grain sand from 12 feet bgl to 14 feet bgl);
- Clayey Sand: 14 feet bgl 18 feet bgl (very fine grain, compact, damp, brown, odor);
- Clayey Sand/Sandy Clay: 18 feet bgl 20 feet bgl (very fine grain, compact, damp, brown, odor);
- Sandy Clay: 20 feet bgl 24 feet bgl (low plasticity, firm, damp, brown, odor);

- Silty Sand: 24 feet bgl 27 feet bgl (fine grain, loose, very moist, brown, odor, phase separated hydrocarbon present, saturated from 26 feet bgl to 27 feet bgl);
- Sandy Gravel: 27 feet bgl 28 feet bgl (compact, 0.5 inch to 1 inch gravel, medium to coarse grain sand, saturated, phase separated hydrocarbon present, odor);
- Sandy Clayey Gravel: 28 feet bgl 31.5 feet bgl (compact, 0.5 inch to 1 inch gravel, medium to coarse grain sand, clay present, very moist to saturated in seams/pockets, white sandstone present, strong odor, greenish gray sandstone at 30 feet bgl, very dense);
- Silty Clay: 31.5 feet bgl 34 feet bgl (low to moderate plasticity, firm, damp, brown, odor, grey streaks present);
- Sandy Gravel: 34 feet bgl 36 feet bgl (compact, 0.25 inch to 0.5 inch gravel, coarse sand, saturated, odor);
- Sandy Clayey Gravel: 36 feet bgl 38 feet bgl (very hard 0.25 inch gravel with clay and sand, damp, grey and brown, odor); and
- Claystone (Chinle Group Painted Desert Member): 38 feet bgl 39 feet bgl (very hard, dry, reddish purple and grey, odor).

The sampling was terminated at 39 feet bgl. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 22 feet bgl to 37 feet bgl. The top of the screen was set approximately 4 feet above the occurrence of saturation within a silty sand (26 feet bgl to 27 feet bgl). The screen was extended to a depth of 37 feet bgl which allowed for the screening across additional saturated intervals encountered (sandy gravel – 27 feet bgl to 28 feet bgl, sandy clayey gravel – 28 feet bgl to 31.5 feet bgl and sandy gravel - 34 feet bgl to 36 feet bgl). The screen extended to 37 feet bgl which was approximately one foot into a damp sandy clayey gravel. The screen did not intercept the top of the bedrock (claystone – 38 feet bgl to 39 feet bgl).

On October 1, 2016 the well was gauged and developed. Phase-separated hydrocarbon was detected during the gauging event, but was not detected after the well was developed. The water sample was collected on October 2, 2016. On October 6, 2016 the well casing and screen were removed and the borehole was grouted.

TK 570-1

On September 27, 2016 the drilling rig was set up on location TK 570-1. TK 570-1 was located inside the tank dike for Tank T-570 and approximately 20 feet north of Tank T-570. Sample

collection was accomplished using the HSA drilling method and split spoon samplers. Three soil samples were collected for laboratory analysis from the following intervals:

- 10 feet bgl 12 feet bgl: PID reading 3,445 ppm, odor;
- 32 feet bgl 34 feet bgl: Interval immediately above saturation, PID reading 804 ppm; and
- 44 feet bgl 45 feet bgl: Bottom of borehole, PID reading 165 ppm.

- Fill: 0 6 feet bgl (silt/gravel, damp, brown, no odor to faint odor from 2 feet bgl to 6 feet bgl);
- Gravelly Sand: 6 feet bgl 8 feet bgl (medium to coarse grain, loose, damp, odor);
- Clayey Gravel: 8 feet bgl 10 feet bgl (0.25 inch to 0.5 inch gravel in low plasticity clay, brown, damp, odor);
- Sandy Silt: 10 feet bgl 14 feet bgl (low plasticity, very soft, damp, dark brown, odor);
- Sandy Clay: 14 feet bgl 16 feet bgl (low plasticity, firm to soft, damp, brown, odor, sandy at base);
- Silty Clay: 16 feet bgl 21 feet bgl (low plasticity, firm, damp, brown, odor, occasional sandy clay lenses):
- Clayey Sand: 21 feet bgl 26 feet bgl (fine grain, compact to loose, damp, brown, odor, decrease in clay content with depth);
- Silty Sand: 26 feet bgl 28 feet bgl (very fine grain, soft/compact, damp, brown, odor);
- Clayey Sand: 28 feet bgl 30 feet bgl (very fine grain, compact, damp, brown, odor);
- Silty Sand: 30 feet bgl 33 feet bgl (very fine grain, soft/loose, damp, brown, odor);
- Gravelly Sand: 33 feet bgl 34 feet bgl (medium to coarse grain, loose, very moist to saturated, grey, odor);
- Sandy Gravel: 34 feet bgl 37 feet bgl (0.5 inch to 1 inch gravel with sand, fine to coarse grain, brown, saturated, odor);
- Clay: 37 feet bgl 41 feet bgl (high plasticity, firm to stiff, brown, odor, sandstone present);
- Clayey Sandy Gravel: 41 feet bgl 42 feet bgl (compact, moist to very moist, brown, odor);
- Gravelly Clay: 42 feet bgl 44 feet bgl (low plasticity, stiff, damp to dry, reddish brown, odor); and
- Claystone (Chinle Group Painted Desert Member): 44 feet bgl 45 feet bgl (very stiff, dry, odor, purple/reddish brown, odor).

The sampling was terminated at 45 feet bgl. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 28 feet bgl to 43 feet bgl. The top of the screen was set approximately 5 feet above the occurrence of saturation within a gravelly sand (33 feet bgl to 34 feet bgl). The screen was extended to a depth of 43 feet bgl which allowed for the screening across additional saturated intervals encountered (sandy gravel – 34 feet bgl to 37 feet bgl, and clayey sandy gravel – 41 feet bgl to 42 feet bgl). The screen extended to 43 feet bgl which was approximately one foot into a damp to dry gravelly clay. The screen did not intercept the top of the bedrock (claystone – 44 feet bgl to 45 feet bgl).

On September 30, 2016 the well was gauged and developed. Phase-separated hydrocarbon was detected during the gauging event and after the well was developed. The water sample was collected from beneath the SPH on September 30, 2016. On October 3, 2016 the well casing and screen were removed and the borehole was grouted.

OW-57

On September 21, 2016 the drilling rig was set up on location OW-57. OW-57 is located in the tank dike for Tank T-574 and is approximately 59 feet northwest of Tank T-574. The floor of the dike system for Tank T-574 has an elevation of approximately 6,930 feet msl. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Two soil samples were collected for laboratory analysis from the following intervals:

- 16 feet bgl 18 feet bgl: PID reading 205 ppm, Interval immediately above saturation; and
- 25 feet bgl 27 feet bgl: Bottom of borehole, PID reading 44 ppm/39ppm.

- Silty Clay: 0 10 feet bgl (moderate plasticity, firm, damp, brown to darker brown, no odor to odor from 8 feet bgl to 10 feet bgl);
- Sandy Clay: 10 feet bgl 14 feet bgl (low plasticity, soft, damp, brown with brown/tan silt at base, odor);
- Clayey Silt: 14 feet bgl 16 feet bgl (very fine grain, soft, damp, brown and tan, odor);
- Silty Clay: 16 feet bgl 18 feet bgl (low plasticity, firm, tan and brown, damp, odor);
- Gravelly Clay: 18 feet bgl 20 feet bgl (low plasticity, soft, damp to slightly moist to saturated, sandstone gravel, sandy, odor);

- Sandstone/Sand: 20 feet bgl 22 feet bgl (fine grain, dense, light greenish white, very moist to saturated);
- Gravelly Sandy Clay: 22 feet bgl 25 feet bgl (low plasticity, soft, very moist to saturated, gray, green sandstone, calcareous, odor); and
- Claystone (Chinle Group Painted Desert Member): 25 feet bgl 27 feet bgl (very dense, dry, purple, faint odor, grey at base).

The sampling was terminated at 27 feet bgl. A permanent monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 15 feet bgl to 25 feet bgl. The top of the screen was set approximately 3 feet above the occurrence of saturation within a gravelly clay (18 feet bgl to 20 feet bgl). The screen was extended to a depth of 25 feet bgl which allowed for the screening across additional saturated intervals encountered (sandstone/sand – 20 feet bgl to 22 feet bgl, and gravelly sandy clay – 22 feet bgl to 25 feet bgl). The screen extended to 25 feet bgl which was approximately at the base of the gravelly sandy clay. The screen did not intercept the top of the bedrock (claystone – 25 feet bgl to 27 feet bgl).

Filter pack sand was installed to a depth of 12 feet bgl. A bentonite seal was installed to 8 feet bgl. The annular seal (bentonite grout) was installed on September 21, 2016. On September 30, 2016 the well was gauged and developed. Phase-separated hydrocarbon was not detected during the gauging event. The water sample was collected on October 1, 2016. The surface completion and bollards were installed on October 5, 2016.

OW-58

On September 22, 2016 the drilling rig was set up on location OW-58. OW-58 is located outside of the tank farm at the northern end of the access road for the rail loading rack. OW-58 is located approximately 205 feet northeast from Tank T-576. The elevation at the northern end of the access road in this area is approximately 6,932 feet msl. Sample collection was accomplished using the HSA drilling method and split spoon samplers. Four soil samples were collected for laboratory analysis from the following intervals:

- 10 feet bgl 12 feet bgl: PID reading 37 ppm, black discoloration, odor, sticky;
- 22 feet bgl 24 feet bgl: PID reading 2,020 ppm, odor;

- 28 feet bgl 29 feet bgl: Interval immediately above saturation, PID reading 2,784 ppm;
 and
- 48 feet bgl 48.50 feet bgl: Bottom of borehole, PID reading 250 ppm.

- Asphalt/Base: 0 0.75 feet bgl;
- Silty Clay: 0.75 feet bgl 6 feet bgl (moderate plasticity, firm to stiff, damp, brown, odor);
- Silty Clay: 6 feet bgl 14 feet bgl (low plasticity, soft, damp, brown, faint odor; from 10 feet bgl to 14 feet bgl black discoloration, odor, sticky);
- Silty Clay: 14 feet bgl 16 feet bgl (low plasticity, stiff, damp, brown with black discoloration, faint odor);
- Sandy Clay: 16 feet bgl 22 feet bgl (low plasticity, stiff, damp, brown, very fine grain sand, odor);
- Silty Clay: 22 feet bgl 24 feet bgl (low plasticity, very stiff, damp, brown, odor, tan silt pockets/seams present);
- Silty Clay: 24 feet bgl 29 feet bgl (low plasticity, firm to soft/crumbly, damp, brown, strong odor, phase-separated hydrocarbon present; firm to stiff from 26 feet bgl to 29 feet bgl; damp to moist from 28 feet bgl to 29 feet bgl);
- Sandy Clay/Clayey Sand: 29 feet bgl 30 feet bgl (low plasticity, soft, very moist to saturated, dark brown, odor);
- Sandy Silty Clay: 30 feet bgl 32 feet bgl (low plasticity, firm, damp, gray/brown, odor, saturated sand at base);
- Silty Sand: 32 feet bgl 33.5 feet bgl (fine grain, loose, saturated, gray/brown, odor);
- Silty Clay: 33.5 feet bgl 36 feet bgl (low plasticity, soft, damp to very moist, grayish brown, odor);
- Silty Clay: 36 feet bgl 40 feet bgl (low plasticity, firm, damp, grayish brown to brown, odor);
- Clay: 40 feet bgl 44 feet bgl (high plasticity, firm, damp, brown, odor);
- Silty Clay: 44 feet bgl 47 feet bgl (low to moderate plasticity, firm, damp, brown, odor, occasional gravel);
- Sandy Gravel: 47 feet bgl 48 feet bgl (medium to coarse grain sand with 0.25 inch to 0.5 inch gravel, very moist to saturated, odor, brown, traces of silt and clay); and

• Shale (Chinle Group - Painted Desert Member): 48 feet bgl – 48.5 feet bgl (very dense/hard, dark grey, dry, odor);

The sampling was terminated at 48.5 feet bgl. A permanent monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 38 feet bgl to 48 feet bgl. The top of the screen was set approximately 9 feet above the occurrence of saturation within a sandy gravel (47 feet bgl to 48 feet bgl). The screen extended to 48 feet bgl which was approximately at the base of the sandy gravel. The screen did not intercept the top of the bedrock (shale – 48 feet bgl to 48.5 feet bgl).

Filter pack sand was installed to a depth of 35 feet bgl. A bentonite seal was installed to 32 feet bgl. On September 30, 2016 the well was gauged and developed. Phase-separated hydrocarbon was detected during the gauging event, but was not detected after the well was developed. The water sample was collected on September 30, 2016. The annular seal (bentonite grout) was installed on October 3, 2016.

4.4 Monitor Well Construction and Groundwater Sampling

Groundwater samples were collected from six temporary well completions and two permanent well completions during the September and October 2016 field activities. The following list provides a brief summary of the well development and groundwater sample collection activities:

- TK 568-1; developed and sampled; yielded enough water for a full analytical suite;
- TK 568-2; developed and sampled; yielded enough water for a full analytical suite;
- TK 569-1; developed and sampled; yielded enough water for a full analytical suite;
- TK 569-2; developed and sampled; yielded enough water for a full analytical suite;
- TK 569-3; developed and sampled; yielded enough water for a full analytical suite;
- TK 570-1; developed and sampled; yielded enough water for a full analytical suite;
- OW-57; developed and sampled; yielded enough water for a full analytical suite; and
- OW-58; developed and sampled; yielded enough water for a full analytical suite;

4.4.1 Groundwater Investigation

The drilling equipment was decontaminated between each borehole, as described in Appendix E. The well development and purging are also discussed in Appendix E. The installation of the temporary and permanent wells and the collection of groundwater samples are discussed below in

numerical order. The fluid level measurements discussed below are provided in Table 4 with the field water quality measurements.

TK568-1

On September 23, 2016 the drilling rig was set up on location TK 568-1. The boring was installed using the HSA drilling method. Groundwater was encountered in a clayey sand (32 feet bgl to 33 feet). The sampling was terminated at 49 feet bgl. Activities at this location were then shut down due to a rain storm. The augers were left in the borehole.

On September 26, 2016 a temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 23 feet bgl to 38 feet bgl. The top of the screen was set approximately 9 feet above the uppermost saturated interval (clayey sand – 32 feet bgl to 33 feet bgl). The screen was extended to a depth of 38 feet bgl which allowed for screening across another saturated interval encountered (silty sand – 36 feet bgl to 38 feet bgl). The screen was not placed deeper since saturation was not encountered below 38 feet bgl.

A sand filter pack was installed to approximately 21 feet bgl. A bentonite seal was installed to approximately 17.5 feet bgl. The top of casing was approximately 2 feet above ground level.

On October 1, 2016 the well was gauged. Phase-separated hydrocarbon was not detected. The depth to water was 30.88 feet below top of casing (btoc) (28.88 feet bgl). Approximately 1.5 gallons of groundwater were developed/purged from the well using a new bailer and rope. The well was bailed dry. The purge water was silty/muddy and exhibited a hydrocarbon odor.

On October 2, 2016 the well was gauged. Phase-separated hydrocarbon was not detected. The depth to water was 31.13 btoc (29.13 feet bgl). The well was sampled on October 2, 2016 and yielded enough water to collect samples for a full analytical suite.

All development/purge water was disposed at the bundle cleaning pad. On October 3, 2016 the well casing and screen were removed and the borehole was grouted.

TK568-2

On September 27, 2016 the drilling rig was set up on location TK 568-2. The boring was installed using the HSA drilling method. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from

26 feet bgl to 36 feet bgl. The top of the screen was set approximately 2 feet above the uppermost saturated interval (clayey sand – 30 feet bgl to 32 feet bgl). The screen was extended to a depth of 38 feet bgl which allowed for the screening across additional saturated intervals encountered (gravelly sand – 32 feet bgl to 34 feet bgl and sandy gravel – 34 feet bgl to 35 feet bgl). The screen extended to 36 feet bgl which was approximately one foot into the bedrock (claystone – 35 feet bgl to 36 feet bgl).

A sand filter pack was installed to approximately 23.5 feet bgl. A bentonite seal was installed to approximately 20 feet bgl. The top of casing was approximately 2 feet above ground level.

On October 1, 2016 the well was gauged. Phase-separated hydrocarbon was not detected. The depth to water was 28.03 feet btoc (26.03 feet bgl). Approximately 2 gallons of groundwater were developed/purged from the well using a new bailer and rope. The well was bailed dry. The purge water was turbid and exhibited a hydrocarbon odor.

On October 2, 2016 the well was gauged. Phase-separated hydrocarbon was not detected. The depth to water was 29.01 feet btoc (27.01 feet bgl). The well was sampled on October 2, 2016 and yielded enough water to collect samples for a full analytical suite.

All development/purge water was disposed at the bundle cleaning pad. On October 3, 2016 the well casing and screen were removed and the borehole was grouted.

TK 569-1

On October 4, 2016 the drilling rig was set up on location TK 569-1. The boring was installed using the HSA drilling method. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 23 feet bgl to 38 feet bgl. The top of the screen was set approximately 1 foot above the occurrence of moist to saturated sand seams within a clayey silty sand (24 feet bgl to 26 feet bgl). The screen was extended to a depth of 38 feet bgl which allowed for the screening across additional saturated intervals encountered (sandy clay – 26 feet bgl to 28 feet bgl, gravelly silty sand – 28 feet bgl to 30 feet bgl and clayey sandy gravel - 30 feet bgl to 31.5 feet bgl). The screen extended to 38 feet bgl which was approximately one foot into a damp clayey gravel. The screen did not intercept the top of the bedrock (claystone – 40 feet bgl to 42 feet bgl).

A sand filter pack was installed to approximately 19.5 feet bgl. A bentonite seal was installed to approximately 16 feet bgl. The top of casing was approximately 2.5 feet above ground level.

On October 5, 2016 the well was gauged. Phase-separated hydrocarbon was detected at a depth of 28.95 feet btoc (26.45 feet bgl). The depth to water was 29.97 feet btoc (27.47 feet bgl). Approximately 25 gallons of groundwater and phase-separated hydrocarbons were developed/purged from the well using a new bailer and rope. The purged fluids was a mixture of groundwater and phase-separated hydrocarbons and exhibited a hydrocarbon odor.

The well was allowed to recharge for 3 hours and was gauged. Phase-separated hydrocarbon was not detected. The depth to water was 29.34 feet btoc (26.84 feet bgl). The well was sampled on October 5, 2016 and yielded enough water to collect samples for a full analytical suite.

All development/purge water was disposed at the bundle cleaning pad. On October 6, 2016 the well casing and screen were removed and the borehole was grouted.

TK 569-2

On October 4, 2016 the drilling rig was set up on location TK 569-2. The boring was installed using the HSA drilling method. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 26 feet bgl to 36 feet bgl. The top of the screen was set approximately 4 feet above the occurrence of moist to saturated silty sand seams within a silty clay (30 feet bgl to 32 feet bgl). The screen was extended to a depth of 36 feet bgl which corresponded to the top of the bedrock (claystone – 36 feet bgl to 38 feet bgl).

A sand filter pack was installed to approximately 23 feet bgl. A bentonite seal was installed to approximately 19 feet bgl. The top of casing was approximately 2 feet above ground level.

On October 5, 2016 the well was gauged. Phase-separated hydrocarbon was detected at a depth of 29.65 feet btoc (27.65 feet bgl). The depth to water was 29.95 feet btoc (27.95 feet bgl). Approximately 7.5 gallons of groundwater and phase-separated hydrocarbons were developed/purged from the well using a new bailer and rope. The purged fluids was a mixture of groundwater and phase-separated hydrocarbons and exhibited a hydrocarbon odor.

The well was allowed to recharge for 5 hours and was gauged. Phase-separated hydrocarbon was detected at a depth of 29.65 feet btoc (27.65 feet bgl). The depth to water was 29.72 feet btoc (27.72 feet bgl). The well was sampled on October 5, 2016 and yielded enough water to collect samples for a full analytical suite.

All development/purge water was disposed at the bundle cleaning pad. On October 6, 2016 the well casing and screen were removed and the borehole was grouted.

TK 569-3

On September 28, 2016 the drilling rig was set up on location TK 569-3. The boring was installed using the HSA drilling method. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 22 feet bgl to 37 feet bgl. The top of the screen was set approximately 4 feet above the occurrence of saturation within a silty sand (26 feet bgl to 27 feet bgl). The screen was extended to a depth of 37 feet bgl which allowed for the screening across additional saturated intervals encountered (sandy gravel – 27 feet bgl to 28 feet bgl, sandy clayey gravel – 28 feet bgl to 31.5 feet bgl and sandy gravel - 34 feet bgl to 36 feet bgl). The screen extended to 37 feet bgl which was approximately one foot into a damp sandy clayey gravel. The screen did not intercept the top of the bedrock (claystone – 38 feet bgl to 39 feet bgl).

A sand filter pack was installed to approximately 19.5 feet bgl. A bentonite seal was installed to approximately 16 feet bgl. The top of casing was approximately 2.25 feet above ground level.

On October 1, 2016 the well was gauged. Phase-separated hydrocarbon was detected at a depth of 28.35 feet btoc (26.10 feet bgl). The depth to water was 28.36 feet btoc (26.11 feet bgl). Approximately 2 gallons of groundwater and phase-separated hydrocarbons were developed/purged from the well using a new bailer and rope. The well was bailed dry at 2 gallons. The purged fluids was a mixture of groundwater and phase-separated hydrocarbons and exhibited a hydrocarbon odor.

October 2, 2016 the well was gauged prior to sampling. Phase-separated hydrocarbon was not detected. The depth to water was 28.60 feet btoc (26.35 feet bgl). The well was sampled on October 2, 2016 and yielded enough water to collect samples for a full analytical suite.

All development/purge water was disposed at the bundle cleaning pad. On October 6, 2016 the well casing and screen were removed and the borehole was grouted.

TK 570-1

On September 27, 2016 the drilling rig was set up on location TK 570-1. The boring was installed using the HSA drilling method. A temporary monitor well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from

28 feet bgl to 43 feet bgl. The top of the screen was set approximately 5 feet above the occurrence of saturation within a gravelly sand (33 feet bgl to 34 feet bgl). The screen was extended to a depth of 43 feet bgl which allowed for the screening across additional saturated intervals encountered (sandy gravel – 34 feet bgl to 37 feet bgl, and clayey sandy gravel – 41 feet bgl to 42 feet bgl). The screen extended to 43 feet bgl which was approximately one foot into a damp to dry gravelly clay. The screen did not intercept the top of the bedrock (claystone – 44 feet bgl to 45 feet bgl).

A sand filter pack was installed to approximately 25 feet bgl. A bentonite seal was installed to approximately 22.5 feet bgl. The top of casing was approximately 2 feet above ground level.

On September 30, 2016 the well was gauged. Phase-separated hydrocarbon was detected at a depth of 33.75 feet btoc (31.75 feet bgl). The depth to water was 35.63 feet btoc (33.63 feet bgl). Approximately 20 gallons of groundwater and phase-separated hydrocarbons were developed/purged from the well using a new bailer and rope. The purged fluids was a mixture of groundwater and phase-separated hydrocarbons and exhibited a hydrocarbon odor.

The well was gauged prior to sampling. Phase-separated hydrocarbon was detected at a depth of 34.60 feet btoc (32.60 feet bgl). The depth to water was 34.89 feet btoc (32.89 feet bgl). The well was sampled on September 30, 2016 and yielded enough water to collect samples for a full analytical suite.

All development/purge water was disposed at the bundle cleaning pad. On October 3, 2016 the well casing and screen were removed and the borehole was grouted.

OW-57

On September 21, 2016 the drilling rig was set up on location OW-57. The boring was installed using the HSA drilling method. A permanent monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 15 feet bgl to 25 feet bgl. The top of the screen was set approximately 3 feet above the occurrence of saturation within a gravelly clay (18 feet bgl to 20 feet bgl). The screen was extended to a depth of 25 feet bgl which allowed for the screening across additional saturated intervals encountered (sandstone/sand – 20 feet bgl to 22 feet bgl, and gravelly sandy clay – 22 feet bgl to 25 feet bgl). The screen extended to 25 feet bgl which was approximately at the base of the gravelly sandy clay. The screen did not intercept the top of the bedrock (claystone – 25 feet bgl to 27 feet bgl).

Filter pack sand was installed to a depth of 12 feet bgl. A bentonite seal was installed to 8 feet bgl. The annular seal (bentonite grout) was installed on September 21, 2016. The top of casing was approximately 3 feet above ground level.

On September 30, 2016 the well was gauged. Phase-separated hydrocarbon was not detected. The depth to water was 21.62 feet btoc (18.62 feet bgl). Approximately 2.5 gallons of groundwater was developed/purged from the well using a new bailer and rope. The well purged dry at 2.5 gallons. The developed/purged fluid was clear and exhibited a hydrocarbon odor.

On October 1, 2016, the well was gauged prior to sampling. Phase-separated hydrocarbon was not detected. The depth to water was 21.72 feet btoc (18.72 feet bgl). The well was sampled and yielded enough water to collect samples for a full analytical suite. All development/purge water was disposed at the bundle cleaning pad.

The surface completion consists of a stickup completion, which included a protective steel cover secured in a concrete pad. The protective steel cover is equipped with a lid that is locked. Bollards were installed around the concrete pad. The surface completion and bollards were installed on October 5, 2016.

0W-58

On September 22, 2016 the drilling rig was set up on location OW-58. The boring was installed using the HSA drilling method. A permanent monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 38 feet bgl to 48 feet bgl. The top of the screen was set approximately 9 feet above the occurrence of saturation within a sandy gravel (47 feet bgl to 48 feet bgl). The screen extended to 48 feet bgl which was approximately at the base of the sandy gravel. The screen did not intercept the top of the bedrock (shale – 48 feet bgl to 48.5 feet bgl).

Filter pack sand was installed to a depth of 35 feet bgl. A bentonite seal was installed to 32 feet bgl. The top of casing was approximately 1.66 feet above ground level.

On September 30, 2016 the well was gauged. Phase-separated hydrocarbon was detected at a depth of 27.60 feet btoc (25.94 feet bgl). The depth to water was 28.58 feet btoc (26.92 feet bgl). Approximately 50 gallons of groundwater and phase-separated hydrocarbons were developed/purged from the well using a submersible pump. The pump was decontaminated prior to

development. New tubing was used. The purged fluids was a mixture of groundwater and phaseseparated hydrocarbons and exhibited a hydrocarbon odor.

On September 30, 2016, the well was gauged prior to sampling. Phase-separated hydrocarbon was not detected. The depth to water was 28.98 feet btoc (27.32 feet bgl). The well was sampled and yielded enough water to collect samples for a full analytical suite. All development/purge water was disposed at the bundle cleaning pad.

The annular seal (bentonite grout) was installed on October 3, 2016. OW-58 is located in the access road at the rail loading rack and so it was required to cut the well casing flush to ground level and install a flush mount completion. The well casing is affixed with a lockable well cap and lock. The surface completion was installed on October 3, 2016.

Section 5 Regulatory Criteria

The applicable screening and potential cleanup levels are specified in NMED's *Risk Assessment Guidance for Site Investigations and Remediation* dated March 2017 and in the Environmental Protection Agency's (EPA) Regional Screening Levels dated June 2017.

For non-residential properties (e.g., the Gallup Refinery), the soil screening levels must be protective of commercial/industrial workers throughout the upper one foot of surface soils and construction workers throughout the upper ten feet based on NMED criteria. NMED residential soil screening levels are applied to the upper ten feet and soil screening levels for protection of groundwater apply throughout the vadose zone. EPA soil screening levels for direct contact exposure apply to the upper two feet of the vadose zone. To achieve closure as "corrective action complete without controls," the affected media must meet residential screening levels, which are presented in Table 5. Table 5 also provides a list of the available NMED and EPA soil screening levels for non-residential properties. While Table 5 indicates the various depths to which the individual soil screening levels are applicable, Table 7 discussed below does not include this level of detail.

The groundwater cleanup levels are based on New Mexico Water Quality Control Commission (WQCC) standards (20.6.2.7 WW NMAC, 20.6.2.3103, and 20.6.2.4103) unless there is a federal maximum contaminant level (MCL), in which case the lower of the two values is selected as the cleanup level. If neither a WCQQ standard nor an MCL is available, then the cleanup level is based on a NMED Tap Water Screening Level. If a NMED Tap Water Screening Level is not available for a constituent, then an EPA Regional Screening Level is used. If an EPA Regional Screening Level is for a carcinogenic compound, then the screening level is multiplied by 10 to bring the risk level to 1E-05 to be consistent with the NMED screening levels. Table 6 presents the groundwater cleanup levels, with the applicable cleanup level bolded.

The aforementioned Table 5 has soil screening levels for the soil-to-groundwater pathway that are based on a dilution/attenuation factor (DAF) of 1.0, which is NMED's most conservative screening level for this pathway. The soil-to-groundwater soil screening level is not applicable to the specific conditions observed in the OW-14 Source Investigation Area. NMED recently provided guidance to address this situation in Comment No. 2 in the June 14, 2018 Disapproval Investigation Report

SWMU 10 Sludge Pits. NMED stated, "... since groundwater contamination beneath the Sludge Pits originates from various upgradient sources, and contamination is already present in the aquifer, the use of a site-specific DAF is not applicable. DAF is used to determine if contaminants in soil can migrate to groundwater, and in this case, groundwater is contaminated in the area." The current data shows widespread groundwater impacts throughout the area of investigation and beyond.

The screening levels that are compared to individual soil sample results are presented in Table 7. The screening levels included in Table 7 are based on residential and non-residential land use. For the non-residential screening levels, the lower of the construction worker scenario and commercial/industrial scenario screening levels for each constituent is included in the data tables if NMED screening levels are available. If NMED soil screening levels are not available for a particular constituent, then EPA soils screening levels are used. If an EPA soil screening level is for a carcinogenic compound, then the screening level is multiplied by 10 to bring the risk level to 1E-05 to be consistent with the NMED screening levels. The screening levels in Table 7 have not been segregated based on depth of the soil sample as discussed above for Table 5. The screening levels that are compared to individual groundwater sample results are presented in Table 8.

A review of the NMED guidelines for TPH indicates that the TPH screening levels were developed based on screening levels and compositional assumptions developed by the Massachusetts Department of Environmental Protection (MADEP). The analytical results, as presented in Table 7, are reported for gasoline range organics (C6-C10), diesel range organics (>C10-C28), and motor oil range organics (>C28-C35). The applicable TPH screening levels for comparison to the individual soil samples are selected from Table 6-2 of the NMED guidance (NMED, 2017).

As there could have been a variety of petroleum types (e.g., various refined products) placed in potential source areas [e.g., the Refinery Tank Farm (SWMU No. 6)], the screening level for "unknown oil" was selected for comparison to the gasoline range, diesel range and motor oil range soil analytical results.

The motor oil range analytical results are compared to the "unknown oil" screening level as directed by NMED. However, it is noted that the laboratory analyses for motor oil range organics only reports results for the >C28 to C35 hydrocarbon range, while the "unknown oil" screening level is based on a hydrocarbon mixture assumed to include only C11-C22 aromatics.

Some of the individual constituents reported by the laboratory do not have screening levels but were all non-detect with respect to soil, except 4-isopropyltoluene and 3+4-methylphenol. With respect to groundwater, there were also detections of constituents that do not have screening levels. The constituents detected in groundwater that do not have screening levels include, 2-hexanone, 4-isopropyltoluene, 4-methyl-2-pentanone, n-butylbenzene, n-propylbenzene, sec-butylbenzene, and carbazole. None of these constituents are classified as a known carcinogen.

Section 6 Site Impacts

This section discusses the chemical analyses performed and presents the analytical results that were obtained through the analysis of soil and groundwater samples. The results for soils and groundwater analyses are compared to applicable screening levels, as described in Section 5.0.

6.1 Soil Analytical Results

Soil samples were analyzed by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico using the following methods for organic constituents:

- SW-846 Method 8260/5035 volatile organic compounds;
- SW-846 Method 8270C semi-volatile organic compounds; and
- SW-846 Method 8015D gasoline, diesel, and motor oil range petroleum hydrocarbons.

Soil samples were analyzed for the following metals using the indicated analytical methods, respectively.

Analyte	Analytical Method
Antimony	SW-846 Method 6010B
Arsenic	SW-846 Method 6010B
Barium	SW-846 Method 6010B
Beryllium	SW-846 Method 6010B
Cadmium	SW-846 Method 6010B
Chromium	SW-846 Method 6010B
Cobalt	SW-846 Method 6010B
Cyanide	SW-846 Method 9012B
Iron	SW-846 Method 6010B
Lead	SW-846 Method 6010B
Mercury	SW-846 Method 7471
Manganese	SW-846 Method 6010B
Nickel	SW-846 Method 6010B

Analyte	Analytical Method
Selenium	SW-846 Method 6010B
Silver	SW-846 Method 6010B
Vanadium	SW-846 Method 6010B
Zinc	SW-846 Method 6010B

The analytical results for soil samples are summarized in Table 7. The individual results that exceed the applicable cleanup levels are highlighted, as noted in the table footnotes. Maps showing the distribution of constituents detected in soils above the lowest applicable screening levels are included as Figures 14 through 17. The concentrations shown on figures that exceed the screening levels in Table 7 are underlined on the figures. The laboratory analytical reports are included in Appendix H and the data validation of the results, which includes the analytical results for the associated QA/QC samples, is included in Appendix I. The constituents that have concentrations in soils above screening levels are discussed below.

Benzene was detected at a concentration (44 mg/kg) above the residential soil screening level of 17.7 mg/kg in sample TK569-3 (24-26'). This sample was collected at a depth below 10 feet and thus the residential screening level does not apply. The detected concentrations range from 0.0054 to 44 mg/kg. The concentrations are plotted on Figure 14.

All ethylbenzene sample results are less than the residential soil screening level of 74.5 mg/kg with the exception of TK 569-3 (24-26'), which has a reported concentration of 88 mg/kg. This sample was collected at a depth below 10 feet and thus the residential screening level does not apply. The detected concentrations range from 0.0004 mg/kg to 88 mg/kg. The concentrations are plotted on Figure 15.

Gasoline Range Organics were detected at concentrations above the residential soil screening level of 1,000 mg/kg in soil samples TK-568-1 (12-14'), TK 569-3 (24-26'), TK 570-1 (32-34'), OW-58 (22-24') and OW-58 (48-48.5') at concentrations of 2,700 mg/kg, 13,000 mg/kg, 2,500 mg/kg, 1,500 mg/kg, and 1,700 mg/kg, respectively. These detections were in samples collected from below 10 feet and thus the residential screening level does not apply to these samples. The concentration detected in the sample TK 569-3 (24-26') exceeded the non-residential soil screening level of 3,800 mg/kg. The detected concentrations range from 1.3 mg/kg to 13,000 mg/kg. The concentrations are plotted on Figure 16.

Diesel Range Organics were detected at a concentration (1,500 mg/kg) above the residential soil screening level of 1,000 mg/kg in one soil sample [TK 569-3 (24-26')] as indicated with highlighting in Table 7. This detection was in a sample collected from below 10 feet and thus the residential screening level does not apply to this sample. The detected concentrations range from 1.7 mg/kg to 1,500 mg/kg. The concentrations are plotted on Figure 17.

6.2 Groundwater Analytical Results

The groundwater samples were analyzed for organic constituents by the following methods:

- SW-846 Method 8260 volatile organic compounds;
- SW-846 Method 8270 semi-volatile organic compounds;
- SW-846 Method 8015D gasoline range organics; and
- SW-846 Method 8015M/D diesel and motor oil range organics.

Groundwater samples were analyzed for the following total and dissolved metals using the indicated analytical methods.

Analyte	Analytical Method
Antimony	SW-846 Method 200.8
Arsenic	SW-846 Method 200.8
Barium	SW-846 Method 200.7
Beryllium	SW-846 Method 200.7
Cadmium	SW-846 Method 200.7
Chromium	SW-846 Method 200.7
Cobalt	SW-846 Method 200.7
Iron	SW-846 Method 200.7
Lead	SW-846 Method 200.8
Manganese	SW-846 Method 200.7
Nickel	SW-846 Method 200.7
Selenium	SW-846 Method 200.8

Analyte	Analytical Method
Silver	SW-846 Method 200.7
Vanadium	SW-846 Method 200.7
Zinc	SW-846 Method 200.7

Groundwater samples were also analyzed for the following total metals using the indicated analytical methods.

Analyte	Analytical Method
Cyanide	SW-846 Method 9012B
Mercury	SW-846 Method 245.1

In addition, groundwater samples were analyzed for chloride, fluoride, and sulfate using EPA method 300.

The analytical results and the applicable cleanup levels are presented in Table 8. The individual results that exceed the applicable cleanup levels are bolded. Maps depicting the distribution of the various constituents detected in groundwater samples above the screening levels are provided in Figures 18 through 20, with the concentrations that exceed the screening levels underlined. The results for the associated QA/QC samples and the data validation are provided in Appendix I. The laboratory analytical reports are included in Appendix H. The constituents with reported concentrations that exceed screening levels are discussed below. In addition to the groundwater samples collected pursuant to the Work Plan, the chemical analyses for the groundwater sample collected at down-gradient well OW-14 and recovery wells RW-1 and RW-2 during the third quarterly sampling event in 2016 are included in Table 8 and included in the discussion below.

Total arsenic was detected above the screening level of 10 micrograms per liter (ug/l) in two samples collected at TK 569-1 and TK 570-1 with both reported at 16 ug/l. The detected total arsenic concentrations range from 4.9 ug/l to 16 ug/l. One sample (TK 569-1) has a dissolved arsenic concentration above the screening level at 14 ug/l, with dissolved detections running from 2.9 ug/l to 14 ug/l. The dissolved analyses are shown on Figure 18.

For the total analyses, barium was detected above the screening level of 2,000 ug/l in seven of the eight samples collected, including TK 568-2, TK 569-1, TK 569-2, TK 569-3, TK 570-1, OW-57, and

OW-58. The total barium analyses results range from 2,000 ug/l to 8,700 ug/l. For the dissolved analyses, barium was detected above the screening level of 1,000 ug/l in all eight of the samples collected with concentrations ranging from 1,800 ug/l to 6,300 ug/l. The samples collected at OW-14 also contained total and dissolved results above the screening level at 2,100 ug/l and 2,200 ug/l, respectively. The dissolved barium results are plotted on Figure 18.

Beryllium (total analyses only) was detected above the screening level of 4 ug/l in one groundwater sample collected at TK 570-1 at a concentration of 6.4 ug/l. None of the samples from the dissolved analyses detected the presence of beryllium above the detection limits, which are all less than the screening level. The detected total analyses range from 0.43 ug/l to 6.4 ug/l.

Cobalt (total analyses) was detected at concentrations above the screening level (6 ug/l) in five of the groundwater samples collected (TK 569-1, TK 569-2, TK 570-1, OW-57, and OW-58). The total cobalt analyses range from 4.4 ug/l to 20 ug/l. The dissolved analyses for cobalt range from 1.4 ug/l to 7.4 ug/l. These concentrations did not exceed the screening level of 50 ug/l.

Iron was detected above the screening level in samples analyzed for total (four exceedances at TK 569-1, TK 569-2, TK 570-1, and OW-58) and dissolved analyses (five exceedances at TK 568-1, TK 569-1, TK 569-3, TK 570-1, and OW-58). The total iron analyses range from 3,500 ug/l to 36,000 ug/l in comparison to a screening level of 13,800 ug/l. The dissolved analyses range from 550 ug/l to 7,900 ug/l vs. a screening level of 1,000 ug/l. The dissolved analyses results are shown on Figure 18.

Lead (total analyses) was detected at concentrations above the screening level (15 ug/l) in three of the groundwater samples collected (TK 569-1, TK 570-1, and OW-58). The total lead analyses range from 0.31 ug/l to 64 ug/l. None of the dissolved analyses exceed the screening level of 15 ug/l, with the dissolved analyses for lead ranging from 0.41 ug/l to 1.2 ug/l.

Manganese was detected above the screening levels in both total and dissolved analyses. The total concentration screening level of 2,020 ug/l was exceeded in five locations in groundwater samples collected at temporary wells TK 569-1, TK 569-2, and TK 570-1 and permanent wells OW-57 and OW-58. The total analyses results range from 1,800 ug/l to 7,200 ug/l. Dissolved manganese concentrations exceeded the screening level of 200 ug/l in eight locations (TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, TK 570-1, OW-57, and OW-58). The dissolved manganese concentrations range from 1,600 ug/l to 3,100 ug/l. Samples collected at OW-14 have also shown

exceedances of the screening levels with a concentration of 2,200 ug/l for both total and dissolved analyses. The dissolved analyses results are shown on Figure 18.

One groundwater sample collected at temporary well TK 570-1, had a concentration of total vanadium (65 ug/l) that exceeds the screening level of 63.1 ug/l. The detected results for the total vanadium analyses ranged from 3.8 ug/l to 65 ug/l. The detected results for dissolved analyses range from 1.7 ug/l to 7.8 ug/l and do not exceed the screening level.

1,2,4-Trimethylbenzene was detected above the screening level of 56 ug/l at seven of the eight locations where groundwater samples were collected, including TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, TK 570-1, and OW-58. The detected concentrations range from 7.3 ug/l to 1,500 ug/l and are shown on Figure 19. Concentrations of 7.1 ug/l and 210 ug/l were detected in the samples collected at OW-14 and RW-2, respectively.

One groundwater sample collected at TK 568-1 contained 1,2-dichloropropane at a concentration of 32 ug/l, which exceeds the screening level of 5 ug/l. This was the only sample to have this constituent detected.

1,3,5-Trimethylbenzene was detected above the screening level of 60 ug/l at seven of the eight locations where groundwater samples were collected, including TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, TK 570-1, and 0W-58. The detected concentrations range from 190 ug/l to 430 ug/l and are shown on Figure 19. Concentrations of 0.82 ug/l and 44 ug/l were detected in the samples collected at 0W-14 and RW-2, respectively.

1-Methylnaphthalene was detected above the screening level of 1.1 ug/l in all eight groundwater samples collected with concentrations ranging from 24 ug/l to 150 ug/l. It has also been detected at OW-14 and RW-2 at 34 ug/l and 88 ug/l, respectively. The detected concentrations are shown on Figure 19.

2-Methylnaphthalene was detected above the screening level of 36 ug/l in the groundwater samples collected at TK 568-1, TK 568-2, TK 569-1, OW-57 and OW-58. The detected concentrations range from 28 ug/l to 140 ug/l and are shown on Figure 19.

Naphthalene was detected above the screening level of 1.65 ug/l in all eight groundwater samples collected with detected concentrations of ranging from 82 ug/l to 320 ug/l. Naphthalene has also

recently been detected at OW-14 and RW-2 at 18 ug/l and 140 ug/l, respectively. The detected concentrations are shown on Figure 19.

The screening level for benzene (5 ug/l) was exceeded in the groundwater samples collected at all eight locations with results ranging between 11,000 ug/l and 34,000 ug/l. Benzene has also been detected at OW-14 and RW-2 with a concentration of 8,100 ug/l and 38,000 ug/l, respectively. The results are shown on Figure 20.

The screening level for ethylbenzene was exceeded in the groundwater samples collected at seven of the eight locations with only the sample collected at OW-57 having a concentration below the screening level of 700 ug/l. The detected concentrations range from 570 ug/l to 2,700 ug/l and are shown on Figure 20. Ethylbenzene was detected at concentrations of 250 ug/l and 1,200 ug/l at OW-14 and RW-2, respectively.

Methyl tert-butyl ether (MTBE) was detected above the screening level of 143 ug/l in six groundwater samples, which were collected at TK 568-1, TK 569-1, TK 569-2, TK 569-3, OW-57, and OW-58 at concentrations of 10,000 ug/l, 1,100 ug/l, 1,000 ug/l, 700 ug/l, 180 ug/l, and 3,300 ug/l, respectively. The detected concentrations range from 74 ug/l to 10,000 ug/l. In addition, MTBE has been detected at OW-14 and RW-2 at concentrations of 580 ug/l and 1,600 ug/l. The MTBE concentrations are plotted on Figure 20.

Toluene was detected above the screening level of 750 ug/l at seven of the eight locations with only the sample collected at OW-57 having a concentration (54 ug/l) below the screening level. The detected concentrations range from 54 ug/l to 41,000 ug/l. Toluene was also detected at OW-14 and RW-2 at concentrations of 2.9 ug/l and 3,800 ug/l. The results are shown on Figure 20.

Xylenes (total) was detected above the screening level of 620 ug/l in seven of the eight groundwater samples collected with only the groundwater sample collected at OW-57 having a concentration (140 ug/l) less than the screening level. The detected concentrations range from 140 ug/l to 15,000 ug/l and are shown on Figure 20. Xylenes were also detected at OW-14 and RW-2 at concentrations of 8 ug/l and 3,100 ug/l, respectively.

The semivolatile constituents that were detected above the screening levels included the following constituents with the respective wells:

- 1-Methylnaphthalene TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, TK 570-1, OW-57, and OW-58 (concentrations range from 59 ug/l to 120 ug/l vs. a screening level of 1.1 ug/l);
- 2-Methynaphthalene TK 568-1, TK 568-2, TK 569-1, OW-57, and OW-58 (concentrations range from 49 ug/l to 110 ug/l vs. a screening level of 36 ug/l);
- Bis(2-ethylhexyl)phthalate TK 569-1, TK 569-2, TK 569-3, and TK 570-1 (detected concentrations range from 2.8J ug/l to 66 ug/l vs a screening level of 6 ug/l); and
- Naphthalene TK 568-1, TK 568-2, TK 569-1, TK 569-2, TK 569-3, TK 570-1, OW-57, and
 OW-58 (concentrations range from 47 ug/l to 220 ug/l vs. screening level of 1.65 ug/l).

Gasoline Range Organics were detected above the screening level (0.0398 mg/l) in all eight groundwater samples. The concentrations range from 46 mg/L to 260 mg/L.

Diesel Range Organics were detected above the screening level (0.0398 mg/l) in all eight groundwater samples. The concentrations range from 5.6 mg/L to 170 mg/L.

6.3 General Groundwater Chemistry

The measurement of field purging parameters included measurement of groundwater pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, and temperature. The results of the measurements are included in Table 4.

Section 7 Conclusions and Recommendations

This section summarizes and provides an evaluation of the potential impacts as shown in field screening data and analytical data. This is followed by recommendations for any future actions.

7.1 Conclusions

Soils

As noted above in Section 6.1, all of the detections of constituents in soils at concentrations above soil screening levels occur in soil samples that were collected below the depth to which the soil screening levels would normally apply (e.g., 10 feet for residential receptors). It is also noted that no soil samples were collected for analysis from depths within the upper 10 feet and thus there is no recent analytical data to indicate the presence or absence of contamination in the upper 10 feet. The presence of soil samples with elevated concentrations of constituents does help to better understand potential transport pathways. The greatest number of detections of organic constituents with the highest concentrations occurred in the soil sample collected at a depth of 24 feet to 26 feet bgl in boring TK 569-3. This boring is located up-gradient of Tank 569 and down-gradient of Tank 570. There were much lower concentrations of organic constituents detected in a shallower (16 feet to 18 feet bgl) soil sample in the same boring, potentially indicating the deeper impacts are the result of lateral transport to this location.

Groundwater

In the area of the September 2016 investigation, groundwater was encountered in all eight of the soil borings/temporary wells and permanent wells. Separated phase hydrocarbon was detected in monitor well OW-58 and temporary wells TK 569-1, TK 569-2, TK 569-3, and TK 570-1. The groundwater samples collected from the wells were reported to have seven metals and fourteen organic constituents in concentrations above the screening levels. The highest benzene, ethylbenzene, toluene and xylene concentrations were found in the groundwater sample from TK 569-1. Temporary well TK 569-1 is located on the northwest side of Tank 569 and may be crossgradient to Tank 569, while being down-gradient of Tank 570.

The highest MTBE concentration was found in a groundwater sample from TK 568-1 (10,000 ug/L), which is located north (downgradient) of Tank 568. The groundwater sample collected from the temporary well TK 568-2, which is up-gradient of Tank 568, was reported to have a MTBE concentration of 140 ug/L. The second highest MTBE concentration was found in groundwater collected from OW-58 (3,300 ug/L), which is located approximately 560 feet north (down-gradient) of TK 568-1.

It appears that at least one source of the hydrocarbon is Tank 570, which was recently discovered to have two small holes in the floor of the tank. Currently, there is not a well on the up-gradient side (south) of Tank 570, so other possible up-gradient sources cannot be eliminated. Tank 569 was suspected to be a source based on investigations conducted in the 1990s, but the current data cannot confirm or eliminate it as a current source. Recent tank inspections do not indicate recent leaks from Tank 569. The MTBE appears to have been sourced from Tank 568, but it was repaired and is no longer used to store petroleum products or additives.

7.2 Recommendations

An additional monitoring well is recommended to the south of Tank 570 to determine if there are any additional up-gradient sources. A well west of Tanks 569 and 570 could also provide better coverage to define impacts observed near these two tanks. Several wells could be completed northeast of RW-1 and OW-58 to evaluate the potential for contamination to migrate to the east/northeast. NMED has already requested another Investigation Work Plan for this area and further details will be provided in the Work Plan.

Section 8 References

- DiSorbo, 2016, Investigation Work Plan OW-14 Source Area dated April 2016 (approved with modifications May 12, 2016).
- EPA, 1987, RCRA Facility Assessment Report Giant Ciniza Refinery, Gallup New, Mexico, p.76.
- Giant Refining Company, 1991, RCRA Facility Investigation Phase II Giant Refining Company, Gallup New Mexico, pp. 4.1 4.117.
- Giant Refining Company, 1994, Report on Additional RFI Sampling, Ciniza Refinery, Gallup New Mexico.
- Giant Refining Company, 1997, Comprehensive Facility Investigation Work Plan, p.7.
- Heckert, A.B. and Lucas, S.G., 1996, Stratigraphic description of the Tr-4 unconformity in west-central New Mexico and eastern Arizona: New Mexico Geology, Vol. 18, No. 3, pp. 61-70.
- Lucas, S. G., Heckert, A.B., and Anderson, O. J., 1997, *Triassic Stratigraphy and Paleontology on the Fort Wingate quadrangle, west-central New Mexico*, New Mexico Geology, Vol. 19, No. 2. pp 33 42.
- NMED, 2015, *Risk Assessment Guidance for Site Investigations and Remediation*, New Mexico Environment Department, p.91.
- Practical Environmental Services, Inc., 1998, SWMU #10 Summary Report, Sludge Pits, Ciniza Refinery, McKinley County, New Mexico, p. 5.
- Precision Engineering, 1996, LTA Subsurface Conditions, p. 4.
- Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizel, N.H., and Padgett, E.T., 1983, *Hydrogeology and Water Resources of San Juan Basin, New Mexico*; Hydrogeologic Report 6, New Mexico Bureau of Mines and Mineral Resources, p. 70.
- USDA, 2005, Soil Survey of McKinley County Area, New Mexico, McKinley County and Parts of Cibola and San Juan Counties, p. 683.

Tables

Table 1	RW-1 Recovery Volumes
Table 2	OW-14 Source Area Wells Groundwater Analytical Data
Table 3	Vapor Screening Results
Table 4	Groundwater Field Measurements
Table 5	Soil Screening Levels
Table 6	Groundwater Screening Levels
Table 7	Soil Analytical Results Summary
Table 8	Groundwater Analytical Results Summary

Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Location of Soil Borings and Wells
Figure 4	Topographic Map
Figure 5	Geologic Map of New Mexico
Figure 6	Cross Section Location Map
Figure 7	Cross Section A-A' West to East
Figure 8	Cross Section B-B' South to North
Figure 9	Cross Section C-C' North to South
Figure 10	Cross Section D-D' West to East
Figure 11	Isopach Map Saturated Sand and Gravel above Chinle Group
Figure 12	Paleotopography Top of Chinle Group
Figure 13	September 2016 Potentiometric Surface Map
Figure 13A	August 2018 Potentiometric Surface Map
Figure 14	Benzene Soils Concentration Map
Figure 15	Ethylbenzene Soils Concentration Map
Figure 16	Gasoline Range Organics Soil Concentration Map
Figure 17	Diesel Range Organics Soil Concentration Map
Figure 18	Arsenic, Barium, Iron and Manganese Groundwater Concentration Map
Figure 19	1,2,4-Trimethylbenzene, 1,3,5-Trimethlybenzene, 1-Methylnaphthalene, 2 Methylnaphthalene, and Naphthalene Groundwater Concentration Map
Figure 20	Benzene, Ethylbenzene, Toluene, Total Xylenes and MTBE Groundwater Concentration Map
Figure 21	Underground Pipelines

Appendix A Historical Boring Logs

Appendix B Fluid Level Measurements

Appendix C Waste Manifests

Appendix D Survey Data

Appendix E Field Methods

Field Methods

Pursuant to the Investigation Work Plan for the OW-14 Source Area Investigation, an investigation of soils and groundwater was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and temporary monitoring wells were installed at the tank farm and adjacent to the rail loading rack. The field methods are described below and individual discussions are presented for the following activities:

- Drilling procedures;
- Soil screening;
- Decontamination procedures;
- Monitoring well development;
- Fluid level measurements;
- Purging of temporary monitoring wells/groundwater sample collection;
- Sample collection and handling procedures;
- Vadose zone vapor sampling;
- Equipment calibration; and
- Management of investigation derived waste.

Drilling Procedures

The soil borings were drilled using the hollow-stem auger (HSA) method. Soil samples were collected continuously and logged by a qualified geologist in accordance with the Unified Soil Classification System (USCS) nomenclature. As shown on the boring logs, the data recorded included the lithologic interval, symbol, percent recovery, field screening results, and a sample description of the cuttings and core samples.

Soil Screening

Samples obtained from the borings were screened in the field on 2-foot intervals for evidence of contaminants. Field screening results were recorded on the soil boring logs. Field screening results were used to aid in the selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds.

Visual screening included examining the soil samples for evidence of staining caused by petroleum-related compounds or other substances that may have caused staining of soils such as elemental sulfur or cyanide compounds. Headspace vapor screening was conducted and involved placing a soil sample in a plastic sealable bag allowing space for ambient air. The bag was sealed, labeled and then shaken gently to expose the soil to the air trapped in the container. The sealed bag was allowed to rest for a minimum of 5 minutes while the vapors equilibrated. Vapors present within the sample bag's headspace were then measured by inserting the probe of a MiniRae 3000 portable volatile organic constituent (VOC) monitor in a small opening in the bag. The maximum value and the ambient air temperature were recorded on the field boring log for each sample. Field screening results and any conditions that were considered to be capable of influencing the results of the field screening were recorded on the field logs.

Decontamination Procedures

The drilling equipment (e.g., hollow-stem augers) was decontaminated between each borehole using a high pressure potable water wash. The sampling equipment coming in direct contact with the samples (e.g., hand augers and split-spoon samplers) were decontaminated using a brush, as necessary, to remove larger particulate matter followed by a rinse with potable water, wash with non-phosphate detergent, rinse with potable water, and double rinse with deionized water.

Fluid Level Measurements

The depth to separate phase hydrocarbon, if present, and groundwater was measured prior to purging the wells of potentially stagnant groundwater. A Geotech Interface Probe was used to measure fluid levels to 0.01 foot.

Well Development/Purging

The following wells were developed/purged using a new disposable bailer attached to the end of the clean rope.

- Temporary Wells TK 568-1, TK 568-2, TK 569-1, TK-569-2, TK569-3, TK570-1; and
- Permanent Well OW-57.

The following wells were developed/purged using a pump. The pump was decontaminated between wells. New tubing was used at each well.

Permanent Wells - OW-58.

The groundwater and sediment removed from the wells were transported to the bundle cleaning pad in sealed 5-gallon buckets.

The purge volumes are calculated as follows:

Volume (gallons) = water column thickness (ft) x 3.14 x radius of well casing² (ft) x 7.48 (gals/ft). The calculated purge volumes and actual volumes removed from each well are presented below.

Well (Date)	Water Column Thickness (ft)	Calculated Purge Volume (gallons) – 3 well volumes	Actual Purge Volume (gallons)
TK 568-1 (10-1-16)	5.87	3.00	Bailed dry at 1.5
TK 568-2 (10-1-16)	10.34	5.25	Bailed dry at 2
TK 569-1 (10-5-16)	12.15	6.21	25
TK 569-2 (10-5-16)	8.75	4.47	Bailed dry at 7.5
TK 569-3 (10-5-16)	9.79	4.98	Bailed dry at 2
TK 570-1 (9-30-16)	8.72	4.44	20
OW-57 (9-30-16)	6.72	3.42	Bailed dry at 2.5
OW-58 (9-30-16)	18.82	9.60	50

NA - not applicable

Field measurements of groundwater stabilization parameters included pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, and temperature and the readings are presented in Table 4.

Sample Collection and Handling Procedures

Soil samples were collected using split-spoon samplers or directly from the auger bucket for borings completed with a hand auger. The selected portion of the sample interval was placed in pre-cleaned, laboratory-prepared sample containers for laboratory chemical analysis. Three soil samples were collected for VOC analysis in the following manner:

- Two sample aliquots were collected using a syringe for low-level VOC analysis pursuant to EPA method 5035. For these "Terracore" kits, 4- 5 grams (4cc) of soil was injected into each vial using the syringe. The syringes were disposed after soil collection.
- Two sample aliquots were collected using a syringe for preservation with methanol. For the
 methanol preserved kits, 10 grams (10 cc) of soil was injected into each methanol vial using
 the syringe. The syringes were disposed after soil collection.

 The third sample aliquot was placed in an 8-ounce glass jar, which was filled to the top to minimize any head space.

Two additional soil samples were collected in 8-ounce glass jars for semivolatile and metals analyses.

Groundwater samples were collected using disposable bailers and clean rope. The water was immediately poured directly into clean laboratory supplied sample containers with the exception of samples collected for dissolved metals analyses. Samples specified for dissolved metals analyses were filtered in the field using a disposable 0.45 micron filter. A new filter and syringe were used for each sample. All samples were immediately placed into an ice chest with ice. The samples were maintained in the custody of the sampler until the chain-of-custody form was completed and the ice chest was sealed for delivery to the laboratory.

Equipment Calibration

Soil vapor screening was conducted using a MiniRae 3000 portable VOC monitor. The instrument was calibrated at the beginning of each work day to a concentration of 100 ppm isobutylene.

The instruments used to measure groundwater stabilization parameters included an YSI Professional Series Data Logger and YSI Quatro Sonde. The calibration solutions used at the beginning of each day are as follows:

- pH solution;
- 7.0 pH solution;
- 10.0 pH solution; and
- 1.413 mS/cm conductivity solution.

Management of Investigation Derived Waste

The drilling rig and drilling equipment were decontaminated on the bundle cleaning pad. The water is diverted to the Refinery's wastewater treatment system up-stream of the API Separator. The decontamination water generated from sampling equipment was collected in buckets and disposed at the bundle cleaning pad at the end of each day of sampling. All development/purge water was collected in five gallon buckets and disposed at the bundle cleaning pad.

il cuttings were placed into open top 55-gallon drums and were sealed when not in use. Eac	h
um of soils was labeled and temporarily stored in a concrete curbed area pending waste	
aracterization and disposal.	

Appendix F Soil Boring/Well Logs

Appendix G Permeability and Hydraulic Conductivity Evaluations

Appendix H **Analytical Data Reports**

Appendix I
Quality Assurance/Quality Control Review

Appendix J Tank Inspection Records

HO TKpr OTP 문 0 TKpd Qep OTS Tst Geg QTsf Sedimentary QTg Toa 00 F g 2 do Tus 0 Qoa Tps Oa F QUATERNARY CRETACEOUS TERTIARY TERTIARY

DESCRIPTION OF MAP UNITS

QUATERNARY

- Qa Alluvium (Holocene to upper Pleistocene)
- Qi Landslide deposits and colluvium (Holocene to Pleistocene) Landslide deposits on western flanks of Socorro Mountains not shown for clarity
- Qpi Lacustrineand playa deposits (Holocene) Indudes associated alluvial and eolian deposits of major lake basins
- Op deposits of higher gradient tributaries bordering major stream valleys, alluvial veneers of the piedmont slope, and alluvial fans. May locally include uppermost Pliocene deposits
- Qe Eolian deposits (Holocene to middle Pleistocene)
- Geg Gypsiferous eolian deposits (Holocene to middle Pleistocene)
- Eolian and piedmont deposits (Holocene to middle Pleistocene)—
 Interlayedeolian sandsand piedmont—slope deposits along the eastern flank of the Pecos Rivervalley, primarily between Roswell and Carlsbad.

 Typically capped by thin eolian deposits
- Qd Glacial deposits; till and outwash (upper to middle Pleistocene)

- Oder alluvial deposits of upland plains and piedmont areas, and calcic soils and eolian cover sediments of High Plains region (middle tolower Pleistocene)—Includes scattered lacustrine, playa, and alluvial deposits of the Tahoka, Double Tanks, Tule, Bladswater Draw, and Caturia Formations, the latter of which may be Piocene at base, outcops, however, are basically of Quaternary deposits
- Ob south of Grants and west of Camizozo are Holocene, Indudes minorvent deposits
- Basaltic tephra and lavas nearvents (upper to middle Peistocene)—Tuff
 ings, maars, cirder cones, and minor proximal lavas. Includes maars at
 Kilbourne Hole and Zuni Salt Lake
- Qbo Basaltictoandesitic lava flows (middle to lower Pleistocene)—Includes vent deposits
- Ring-fracture rhyolite lava domes of the Valles caldera (uppermost to lower Pleistocene)—Upper members of the Valles Rhyolite in Jemez Mountains. Includes 60-ka Banco Bonito and El Cajete Members on south margin of caldera
- Older rhyolite lavas and early volcaniclastic sedimentary fill deposits of the Valles caldera (lower Pleistocene). Units are associated with resurgent doming or predated oming of the caldera core. Includes minor middle Pleistocene tuffs of the upper Valles Rhyolite on north side of caldera
- dot Bandelier Tuff (lower Pleistocene) Includes large blocks of older and esite in caldera collapse brecda facies locally exposed on resurgent dome of the Valles caldera

QUATERNARY and TERTIARY

- OTt Travertine (Holocene to Pliocene)—Includes some pedogenic carbonate south of Sierra Ladrones
- Older piedmont alluvial deposits and shallow basin fill (middle Pleistocene to uppermost Pliocene) insludes Quemodo Formation and in northeast, high-level pedment gravels
- OTS UpperSonto FeGroup (middle Pleistocene to uppermost Miocene)—
 Indudes Camp Rice, Fort Hancock, Palomas, Siena Ladrones, Arroyo
 Ojito, Ancha, Puye, and Alamosa Formations
- Offgocene)—Basin fill of the Rio Grande rift. Locally represents upper Miocene formations of the middle Santa Fe Group in the northern Albuquerque Basin
- GTg Gila Group, Formation, or Conglomerate (middle Pleistocene to uppermostOligocene?) IncludesMimbresFormationandseveralinformal units in southwestern basins
- ATD Basaltic to andesitic lava flows (upper Pleistocene to lower Pliocene)—Includes minor vent deposits

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

60J. NO:Marathon DATE: 4/16/19 FILE:Mathon-dB148
FIGURE 5
LEGEND SHEET 1 OF 8
GEOLOGIC MAP OF NEW MEXICO
GALLUP REFINERY

TERTIARY

gneous

Lipper Tertiary sedimentary units (Pliocene to upper Oligocene)—
Includes Bidahochi Formation (Pliocene to upper Miocene), Picuris
Formation, (Miocene to Oligocene), Las Feveras Formation (Piocene),
lower Gila Group units in the southwest, and unnamed Pliocene unit in northwestern Socorro County

To Ogallala Formation (lower Pilocene to middle Miocene) — Alluvial and eoliandeposits, and petrocalcic sols of the southern High Plains. Locally includes Qoa

Fence Lake Formation (Miocene) — Conglomerate and conglomeratic sandstone, coarse fluxial volcaniclastic sediments, minor eolan facies, and pedogenic carbonates of the southern Colorado Plateau region

LowerSantaFeGroup (upper Microenetouppermost Olgocone) —Includes
Hayner Ranch, Rincon Valley, Popotosa, Cochiti, Tesuque, Chamita,
Abiquiu, Zia, and other formations

TIP Los Pinos Formation of lower Santa Fe Group (Miocene and upper Oligocene)—Includes Carson Conglomerate (Dane and Bachman, 1965) in Tusas Mountains-San Luis Basin area

Chuska Sandstone (middle to upper Oligocene) – Restricted to Chuska Mountains

CRETACEOUS

TERTIARY

Z

TKav

TKa

Tpb Basaltic to and estic lava flows (Piocene) — Includes minor vent deposits and small shield volcances. Flows are commonly interbedded in the Santa Fe and Gila Groups

Basaltic to andestic lava flows (Mooene) —Includes minor vent deposits.

Flows are commonly interbedded in the Santa Fe and Gila Groups

The Basaltic to and estitic lava flows (Neogene)—Includes minor vert deposits.

Flows are commonly interbedded in the Santa Fe and Gila Groups.

The Silicic to intermediate volcanic rocks (Neogene, mostly Miocene)—
Ryofteandedreflowswithassociatedminortuffs Commonly interbedded with Santa Fe or Gla Group sedimentary units. Dacitic lavas in northern Jemez Mountains are Pliocene

Thy dactic stratovolcances, Includes rhyolite lavas and tuffs in the Jemez Mountains. Volcanoes in Jemez Mountains and eastern Colfax County are upper Mocene. Mount Taylor and composite volcanoes in the Taos Plateau volcanic field are Pirocene.

The Hinsdale Basalt (Mocene and upper Oligocene)—Northern Taos and eastern Rio Amiba Counties; basalt flows interbedded with Los Pinos Formation

Upper middle Tertiary basaltic andesites and andesites of the Mogollon Group (lower Mocere and uppermost Olgocene, 22-26 Ma)—Includes Bearvallow Mountain Andesite and basaltic andesite of Mangas Mountain; also near vent basaltic lavas and shallow intrusions in the Chuska Mountains

Lower-upper middle Tertiary basaltic andesites and andesites of the Mogollon Group (upper Oligocene, 26-29 Ma)—Includes La Jara Reak Basaltic Andesite, Lvas Basaltic Andesite, basalticandesites of Poverty Creek and Twin Peaks, Squired Springs Canyon Andesite, Razorback Basalt, Bear Springs Basalt, flows of Gila Flat, Salt Creek Formation, Middle Mountain Formation, and the Alum Mountain Group. Pre-Amolo Lift Boosin the Questo coldera are dominionally silicat and essites and doctres; elsewhere silicated assage a minor component of Tod.

Middle Tertiary volcaniclastic sedimentary units (Oligocene to upper Eccene) – Mostly syneruptive volcaniclastic sedimentary aprons. Lower units dominantly derived from volcanic highlands of and estitic odacitic composition. Locally includes minor lavas and tuffs. Younger units (above and intertongued with Mogollon Group tuffs, Turp) include upper Bell Top Formation, South Crosby Peak Formation, and upper Spears Group units near Quemado. Older units (below and intertongued with Datil Group tuffs, Tirp) include Palm Park, lower Bell Top, Espiraso and Pueblo Creek Formations and lower Spears Group formations such as Rincon Windmill, Chavez Canyon, and Dog Springs

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

NO.:Marathon DATE: 4/16/19 FILE:Mathon—dB148
FIGURE 5
LEGEND SHEET 2 OF 8
GEOLOGIC MAP OF NEW MEXICO
GALLUP REFINERY

- Turf Lipper middle Tertiary rhyolitic lavas and local tuffs (upper Oligocene, 24-29Ma)—Includes Taylor Creck Rhyolite, Farney Rhyolite, rhyoliteof Rocky Caryon, rhyoliteof Hardy Robe, and upper myolite members of the Lus Lopez and Sawmill Canyon formations.
- Lowermiddle Tertiary rhyolitic lavas and local tuffs (lower Olgocene to upper Eccene, 36-31 Ma)—Includes Mimbres Peak Formation, rhyolite of Cedar Hills, and other units in the Bootheel region
- Lipper middle Tertiary rhyditic pyrodastic rocks of the Mogollon Graup, ash-flowtuffs (uper Ofgocere, 24-30Ma)—Regional ash-flowtuffs include the La. Jencia, Vicks Rex, Lemitar, South Caryon, Boodgood Caryon, Shally Resk, Davis Caryon, Park, Rhyoite Caryon, Apache Spring, and Amela Tuffs, the tuffs of Horseshoe Caryon, Diamond Creek, Garcia Camp, Caronita Caryon, Turkey Springs, and Lttle Mineral Creek, and the Jordan Caryon Formation. Includes some body enquediance and the Jordan Caryon Formation. Includes some body enquediance and the Jordan Caryon Formation. Includes some body enquediance and the Jordan Caryon Formation. Includes some body enquediance and the Jordan Caryon Formation includes and the Jordan Caryon Formation includes and the Jordan Caryon Formation includes and the Jordan Caryon.
- Lower midde Tertiary rhyolitic to dadtic pyrodastic rocks of the Datil Group, ash-flow tuffs (lower Oligocene to upper Eocene, 31–36 Ma)—Regional ash-flow tuffs include Hels Mesa, Kneeling Nun, Caballo Blanco, Datil Well, Lebya Well, Rock House Canyon, Blue Canyon, Sugarlump, Oak Oreek, Bluff Creek, Gilespie, Box Canyon, Cooney, and Oriquito Peak Tuffs; the tuffs of Steins Mountain, Black Bill Canyon, Woodhaul Canyon, and Farr Randh; tuffs of the Organical kind conservation who can be a factor of the conservation and conservation includes some locally enupted lavas and tuffs within trick intracaldera units includes minor volcandastic sedimentary units and lavas between thin outflow sheets.
- Lower middle Tertiary andesitic to dactic lavas and pyrodastic flow broozis (uppertormidde Econe, 33–43Ma)—Includes Rubio Peak Formation, Orejon-Andesite, andesite of Dry Leggett Caryon, andesite of Telephone Caryon, and other units insouthwestern, central, and northern New Mexico. Localynduces minormafichas. Ancentends debods of Madea Linestone, as much as one michorg, occur within Rubio Peak lavas in the central Black Range, west of Winston.
- Tuv Olgocene, younger than 30 Ma)—Mostly a combination of basaltic andesite lavas and rhyolitic ash-flow tuffs of the Mogollon Group (Tuau + Tual + Turp), het des locally erupted lavas and tuffs in some calderas
- Lower middle Tertiary volcanic rocks (lower Oligocene to upper Eccene, older than 31 Ma)—Mostly intermediate lavas of the lower Datil Group and intermediate volcaniclastic sediments of the lower Spears Group (Tla + Tvs). Locally includes as h-flow tuffs of the upper Datil Group (Tlp). Includes intermediate volcanidastic sedimentary rocks of the Conejos Formation in northern New Mexico.
- Tv Middle Tertiary volcanic rocks, undifferentiated (lower Miocene to upper Ecoere) includes the predominantly and esticated and many smaller outliers.

- Tertiary intrusive rocks of intermedate to silicic composition (Plocene to Goore) Induces margonic toganic plutors, stocks, booths, and population dikes in deeply ended magmatic centers; and and estic, dartic, or myoltic plugs and dikes reare authorisor stratovolcances, in the Latified, fine-grained myoltic disescommonly out coarse-grained grantic plutors. Includes allafine booths, plugs, and dikes in Coffax County. North-trending dises rear Capitan include some mafic diabase dikes
- Tertiarymaficintusiverocks (Rioceneto upper Eccene)—Includesmany long basaltic andesite diless of Oligocene agenear Re Town, Acoma, Riley, Chupadera, Truthor Consequences, Roswell, Raton, and Duloc, and several elongate or shoestring-like sils of basalt or basaltic andesite. Also includes basaltic necks of Riocene age that dot the landscape northeast of Mount Taylor. Where dikes extend into Quaternary alluvium the contact is an unconformity
- Tps Paleogene sedimentary units—Includes Baca, Galisteo, El Rito, Blanco Basin, Horr Milhe, Love Ranch, Lobo, Sanders Canyon, Skunk Ranch, Timberlake, and Cut Mountain Fornations
- Tsj San Jose Formation (Eocene) San Juan Basin
- Tn Nacimiento Formation (Paleocene) San Juan Basin
- Toa Ojo Alamo Formation (Paleocene) San Juan Basin
- TERTIARY and CRETACEOUS
- TKpc congomeratesandsandstones inwestern Raton Beargereally advigored beds, Cretaceous beds mostly restricted to subsurface
- Raton Formation (Paleocene and Upper Cretaceous) Distal sandstones, mudstones, and coalbods in eastern Raton Basin Middle barren zone laterally equivalent to Poson Caryon Formation K/Thoundary discontinuously exposed about 100 m above basal conglomerate in area southwest of Raton
- TKpr Boadyintertorguingonglomeraticsindstones, sandstones and mudstones, milinor coal beds
- TKa Animas Formation (Paleocene and Upper Cretaceous)—Volcanidastic sedimentary rocks of intermediate composition innorthern San Lan Basin
- Tertiary-Cretaceous andesitic to dacitic lavas and pyroclastic breccias

 (Paleocene and Upper Cretaceous) includes many remnants of eruptive centers in Grant and Hidago Counties and Upper Cretaceous andesitic lavas in Sierra County
- Tetiary-Oretaceous nitusive rocks (Paleocene and Upper Cretaceous)—
 Toucks gandoritetoquatz morzonitestock and plutons at Hanver, Feno,
 Tyrone, Lordsburg, and the 73-Maquatz morzonite porphyystock at Copper
 Fatsin Sena County, Asoin to dismany northeset-trending morzonite porphyy
 dikes in the Silver City region

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

M. NO::Marathon DATE: 4/16/19 FILE:Mathon-dB148
FIGURE 5
LEGEND SHEET 3 OF 8
GEOLOGIC MAP OF NEW MEXICO
GALLUP REFINERY

CRETACEOUS

Cretaceous rocks, undivided

(Maastrichtian to Cenomanian for most part, although Beartooth and northern Hidalgo County, Ringbone Formation in Hidalgo, Luna, and Luna and Grant Grant Counties, Beartooth and Sarten Formations in Counties, Mancos Shale in Silver City area 3

Kmc

Vermejo Formation and Trinidad Sandstone (Maastrichitan X

in the Fruitland 茶

Kirtland and Fruitland Formations (Campanian)—Coal-bearing, primarily

Upper Cretaceous rocks of southwestern New Mexico, undivided Sarten Formations are in part Albian) - Includes Virden Formation in

McRae Formation (Maastrichtian)-Engle Bosin-Cutter sag area

Campanian

Pictured Cliffs Sandstone (Campanian)-Prominent, cliff-forming marine sandstone Kpc

Pescado Tongue of the Mancos Shale and Gallup Sandstone Turonian)—In Žuni Basin only; Pescado is chronostratigraphic equivalent of Juana Lopez Member of Mancos Shale Kpg

Tres Hermanos Formation (Turanian) -Formerly designated as lower Moreno Hill Formation and Atarque Sandstone (Turonian) - In Salt Gallup Sandstone in the Zuni Basin Kma 新

Mancos Shale (Cenomanian to Campanian)-Divided into upper and lower parts by Gallup Sandstone 至

Lake coal field and extreme southern Zuni Basın

Mancos Shale, upper part (Campanian to Contactan) Kmu

Mancos Shale, lower part [Turonian and Cenomanian] Kml

Dakota Sandstone (Cenamanian) and Rio Salado Tongue of the Mancos Shale—In northwest Socorro County locally includes overlying Tres Hermanos Formation Kd

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

rathon DATE: 4/16/19 FILE: Mathon-dB148 FIGURE 5 LEGEND SHEET 4 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

Lewis Shale (Campanian) - Marine shale and mudstone KIS

to Coniacian) Pierre Shale and Niobrara Formation (Campanian Kpn Fort Hays Limestone Member of Niobrara Formation (Conjudian Knf Mesaverde Group (Campanian to Turanian) - Includes Cliff House Sandstone, Menefee Formation and Point Lookout Sandstone.

marine sandstone Cliff House Sandstone (Campanian)—Transgressive Kch

La Ventana Tongue of the Cliff House Sandstone (Turanian) X

Menefee Formation (Campanian to Santonian I-Mudstone, shale, and sandstone; coal-bearing Zmt

main body by the Regressive marine sandstone in McKinley and Sandoval Counties; the lower, Hosto Tongue, of Point Lookout is transgressive, and is separated from Point Lookout Sandstone (Companian to Santonian) Saton Tongue of Mancos Shale 호

Satan Tongue of Mancos Shale (Santonian) Kms

Hosta Tongue of Point Lookout Sandstone (Santonian) - Transgressive marine sandstone Koh

Mulatto Tongue of Mancos Shale (Santonian to Contactan) Kmm

Crevasse Canyon Formation (Santonian to Conjacian) - Coal-bearing units are Dilco and Gibson Coal Members, other members are Barrlett Barren, Dalton Sandstone, and Borrego Pass Sandstone (or Lentil) Koc

marine sandstone Gallup Sandstone |Turanian | - Generally regressive S B

of the Mancos Gallup Sandstone and underlying D-Cross Tongue Shale Turonian) Kgm

Rio Salado Tongue of the Mancos Shale (Turonian) - Overlies Twowells Tongue of Dakata Sandstone, mapped only where Tres Hermanos Formation or the Atarque Sandstone is present, mapped as Kdr in parts of Socomo County Kmr

	JZ	
	1	976
	Jmsn	Je
m/	<u>u</u>	
	7	
UPPER	MIDDLE	

San Rafael Group (Middle Jurassia) - Consists of Entrada Sandstone, and locally Zun Todilto and Summerville Formations, Bluff Sandstone, Sandstone for only Acoma Tongue of Zunif JSL

Greenhorn Formation and Carlile Shale, undivided (Turanian to Cenomanian | Locally includes Graneros Shale Kgc

Carlile Shale (Turonian) - Limited to northeastern area 8 Greenhorn Formation and Graneros Shale (Turonian and Cenamanian) Limited to northeastern area Kag

into western area where it is commonly shown as a bed-rank unit in area; the upper member (Bridge Creek Limestone Member) can be traced Greenhorn Formation (Turanian to Cenamarilan)-Limited to northeastern Mancos Shale on detailed maps Kg

Graneros Shale |Cenomanian|-Lmited to northeastern area Kgr

New Mexico (Cenomanian) - Includes the Whitewater Arroyo Tongue Intertongued Mancos Shale and Dakota Sandstone of west-central of Mancos Shale and the Twawells Tongue of the Dakota Kmd

Dakota Sandstone (Ceramanian)-Includes Oak Canyon, Cubera, and Paguate Tongues; includes Clay Mesa Tongue of Mancos Shale 昱

Upper and Lower Cretaceous rocks of east-central and northeast New Mexico - Consists of Dakota Group, which includes Romeroville Sandstone (Cenomanian), Pajarito Shale, and Mesa Rica Sandstone (Albian); the underlying Tucumaari Shale (Albian) in Tucumaari area; and Glencaim Formation (Albian) in Union County Kdg

Mancos Shale Cenomarian and Beartooth and Sarten Formations (Albian)—Mancos includes what was formerly referred to as Colorado Shale, which in turn may include equivalents of Tres Hermanos Formation Kmb

Lower Cretaceous, undivided-In northern Lea and Roosewell Counties includes equivalents of Tucumoari Shale, in Cornuclas Mountains includes Campagrande and Cox Formations and Washita Group; al Cerro de Cristo Rey includes several formations of the Fredericksburg and Washita Graups, and the Bogullas Formation (Cenomanian); in the southwest, includes Mojado, U-Bar (Aptian), and Hell-to-Finish Formations, which are equivalent to Bisbee Graup of Arizona V

To compare this map nomenclature to the USGS nomenclature, see the diagram included on this sheet (at right)

Upper and Middle Jurassic rocks, undivided. In southwest includes the basalt-bearing Broken Jug Formation

Morrison Formation - Upper Jurassic nonmarine rocks E

Morrison Formation and upper San Rafael Group | Owermost Cretaceous?-upper Jurassic Jmsu

Summerville Formation and Bluff Sandstone; restricted to Zuni Bosh area Zuni Sandstone (Callovian) - Consists of undivided equivalents of the 2

Zuni and Entrada Sandstones, undivided Jze

Entrada Sandstone (Middle Jurassic) Je

TRIASSIC

Chinle Formation of previous workers (e.g., Stewart et al., 1972) used here as Chinle Group, following Lucas (1993)

,v

Triassic rocks, undivided—Continental red beds μ Rock Point Formation of Chinle Group (Upper Triassic |- May locally include Wingate Sandstone (Triassic) Frp

Chinle Group (Upper Triassic)—Map unit includes Maenkapi Formation (Middle Triassic) at base in many areas; in eastern part of state the following five tormations are mapped Fic

Redonda Formation (Upper Triassic 声

Bull Canyon Formation (Norian) Rb

Trujillo Formation (Morian Ħ Garita Creek Formation (Carnian) Fig Santa Rosa Formation (Cornian)—Indudes Moenkopi Formation (Middle Triassic) at base in most areas RS

Upper Chinle Group, Garita Creek through Redonda Formations, undivided Hou

Moenkopi Formation (Middle Triassic) FIL

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

4/16/19 FILE: Mathon—dB148 FIGURE 5 LEGEND SHEET 5 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY rathon DATE:

PALEOZOIC

Paleozoic rocks, undivided

Permian rocks, undivided ۵

Quartermaster Formation (Upper Permian) -Red sandstone and sitistone Pgm

Quartermaster and Rustler Formations (Upper Permian Par

sandstone, and Rustler Formation (Upper Permian)—Silistone, gypsum, dolomite à

nce, dominantly Salado Formation (Upper Permian) - Evaporite seque Ps

Castile Formation (Upper Permian)-Dominantly anhydrite sequence Pe

Artesia Group (Guadalupian)-Shelf focies forming broad south-southeast trending cutcrop from Glorieta to Artesia area; includes Tansill, Yares, Seven Rivers, Queen and Grayburg Formations (Guadalupian). May locally include Moenkopi Formation (Triassic) at top Pat

Tansill and Yates Formations |Guadalupian|-Sandstone, silistone, Imestone, dolomite, and anhydrite F

anhydrite, salt, Seven Rivers Formation (Guadalupton - Gypsum, dolomite, and siltstone Psr

Queen and Grayburg Formations (Guadalupian) - Sandstone, gypsum, anhydrite, dolomite, and red mudstone Pag

Capitan Formation (Guadalupian)—Limestone Ireef facies Pop Bell Canyon Formation (Guadalupian) - Basin factes - sandstone, limestone, and shale Pbc

Cherry Canyon Formation (Guadalupian) - Basin facies - sandstone, limestone, and shale Pop

Son Andres Formation (Guadalupian in south, in part Leonardian to north) - Umestone and dolomite with minor shale Psa

Glorieta Sandstone (Leonardian |-Texturally and mineralogically mature, high-silloa quartz sandstone Pg

San Andres Limestone and Glorieta Sandstone Guadolupian and Leonardian Psg

Cutoff Shale (Leonardian) - In Brokeoff Mountains only Pco Victorio Peak Limestone (Leonardan)—In Brokeoff Mountains only Pvp

Yeso Formation (Leonardian)—Sandsianes, silistones, anhydrite, gypsum, halite, and dolomite à

more mature above; may include Imestone beds of Pennsylvanian age Abo Formation (Welfcampian)—Red beds, arlossic at base, finer and (Virgilian) in Zuni Mountains; in Robledo Mountains the Abo may be considered a member of the Flueco Formation Pa

Upper part of Abo Formation (Wolfcampian) Paul

Lower part of Abo Formation (locally Virgilian to Upper Pennsylvanian.) Pa

San Andres, Glorieta, and Yeso Formations, undivided Psy

Yeso and Abo Formations, undivided (Lower Permian) Pya Cutter Formation (Wolfcampian to Upper Pennsylvanian, - Used in northern areas and Chama embayment only Pct

to south-central area. Pendejo Tongue of Hueco Formation divides Abo Hueco Formation or Group (Wolfcampian)—Limestone unit restricted Formation into upper and lower parts in Sacramento Mountains F

Bursum Formation (lowermost Permian to uppermost Pennsylvanian) -Shale, arkose, and Ilmestone Pb

Scherrer, Colina, Epitaph, and Earp Formations (Permian) and Horquilla Permian and Pennsylvanian rocks, undivided – Includes Concha Limestone (Permian to Pennsylvanian)

Sangre de Cristo Formation (Wolfcampion to Desmoinescan) -In Sangre de Cristo Mountains PIPSC

elsewhere may include BarB, Nakaye, Red House, Oswaldo, and Syrena Pennsylvanian rocks, undivided—In Sangre de Cristo Mountains may indude Sandia, Madera, La Pasada, Alamitos, and Flechado Formations; 0

Tanks, Atrasado, Gray Mesa Formations; in Sacramento Mountains Madera Group (Pennsylvanian)—In Manzana Mountains includes Wild includes the non-Madera Holder, Beeman, and Gobbler Formations. Cow Formation and Los Mayos Limestone; in Lucero Mesa includes Red May include strata lumped as Magdalena Group in a few areas Pm

Sandia Formation (Atokan)—Predominantly clastic unit (commonly arkosic) with minor black shales, and limestone in lower part, map unit locally includes Morrowan Osha Canyon Formation in Sierra Nacimiento Ps

Panther Seep Formation (Vigilian)—In Organ, Franklin, and San Andres Mountains Pps

Lead Camp Formation (Atokan to Missourian) — In San Andres and Organ Mountains Pic

Cristo Mountains, Sierra Nacimiento, San Pedro Mountains, and Sandia Mississippian rocks, undivided—Arroyo Periasca Group in Sangre de Mountains; take Valley Limestone in south-central New Mexico 2

Mississippianl; Percha Shale, Contadero, Sly Gap, and Orate Formations Las Cruces, Lake Valley, and Caballero Formations and Escabrosa Group of south-central New Mexico, and Canutillo Formation of northern Franklin Mississippian and Devonian rocks, undivided—Includes Helms, Rancheria, Mountains and Bishaps Cap area (Devonian) QW

Limestone (Mississippian); Devonian rocks, undivided; El Paso Formation Mississippian through Cambrian rocks, undivided Includes Lake Valley and Montaya Group or Formation (Ordovician); and Bliss Sandstone (Ordevictan and Cambrian) ME

Devonian rocks undivided-Includes Percha Shale, Oriate, and Sly Gap Formations O

Silurian and Ordovician rocks, undivided 8

Silurian through Cambrian rocks, undivided SOC Ordovician and Cambrian rocks, undivided - Includes Montoya Formation for Group!, El Paso Formation, and Bliss Sandstone 90

Ordovician and Cambrian plutonic rocks of Florida Mountains O-Cp

MARATHON PETROLEUM COMPANY GALLUP REFINERY

4/16/19 FILE: Mathon—dB148 FIGURE 5 LEGEND SHEET 6 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY rathon DATE:

8501 N. MoPac Expy. Suite 300 Austin, Texas 78759 DiSorbo

YXp 49 Xpc Xg N/ 5 Xps 75 Xq Xs XVM PALEOPROTEROZOIC MESOPROTEROZOIC NEOPROTEROZOIC

PROTEROZOIC.

Neoproterozoic mafic dikes - Exposed in Taos Range

Mesoproterozoic mafic dikes, diabase, metadiabase, metadiorite Mainly in Burro Mountains; age not well constrained ⋝

Mesoproterozoic sedimentary rocks-Exposed in Sacramento Mountains, present in subsurface in southeastern New Mexico as De Baca Group Ys

Mesoproterozoic granitic plutonic rocks—Mainly 1,45-1,35 Ga megacrystic granites, generally weakly foliated except locally at their margins Yg

Mesoproterozoic and Paleoproterozoic plutonic rocks, undivided YXp

Paleoproterozoic granific plutonic rocks—Variably foliated granifes and granific gneisses; 1,71-1,65 Ga in northern New Mexico; 7,66-1,65 Ga in central and southern New Mexico Xg

Paleoproterozoic pelitic schist—Indudes Rinconada Formation in northern New Mexico and Blue Springs Schist in Manzano Mountains xps

Xq

Ortega Quartzite and equivalents in northern New Mexico and ~1.67 Ga quartzites in central Paleoproterozoic quartzite—Includes ~1.70 Ga New Mexico

MAP SYMBOLS

Intrusive

Supracrustal

Contact

Nomenclature change

miniminimini Gradational facies boundary

---- Fault-Dashed where approximately located, dotted where concealed

Tertiony dikes

Proterozoic dikes

Proterozoic ductile shear zone

Playa

Paleoproterozoic metasedimentary rocks-Pelliic schist, quartz-muscovite schist, immature quartzile, and subordinate amphibolite; includes parts of Vadito Group in northern New Mexica, immature metasedimentary rocks of central New Mexico, and Bullard Peak Series mixed supracrustal rocks in Burro Mountains Xs

Paleoproterozoic rhyolite and felsic volcanic schist-Indudes 1.70 Ga Vadita Group in northern New Mexico and ~1.68 Ga Sevilleta Metarhyolite in central New Mexico Xvf

Paleoproterozoic calcalkaline plutonic rocks—Granodiorite, diorite, and gabbro complexes; 1.78–1.71 Ga; interpreted to be intuisive part of juvenile volcanic arc basement Xpc

metavolcanic rocks-Includes the 1,78-1,72 Ga Moppin (Tusas Mountains), Gold Hill Taos Rangel, and Pecos (Sangre de Cristo Paleoproterozoic mafic metavolcanic rocks with subordinate felsic Mountains! complexes; interpreted to be supracrustal part of juvenile volcanic are basement Xvm

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

30J. NO.:Marathon DATE: 4/16/19 FILE:Mathon—dB148 FIGURE 5 LEGEND SHEET 7 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

Jackpile	Brushy Basin Member	Westwater Canyon Member	Recapture	Salt Wash Member	Tidwell	Wanakah Bedabio Member Manakah Member Formation Todillo Limestone Member	Upper sandstone member	Rehoboth	lyanbito	Navajo	Kayenta Formation*	Wingate
		Morrison	Formation			Cow Springs Sandstone		Entrada Sandstone		1	Canyon	Group
-		рег	ďΩ			əlbi	oiM.				ewo.	7

Anton Chico Cooper Santa Rosa Sandstone Sandstone Formation Tecovas Formation Formation Redonda Trujillo Eastern New Mexico Group Dockum Sandstone Petrified Forest Member Central New Mexico Salitral Shale Agua Zarca Sandstone Member Tongue Poleo Sandstone Lentil Sillstone Chinle Formation Correo Sandstone Member Sonsela Sandstone Member Monitor Butte Member Rock Point Member Owl Rock Member Shinarump Member Western New Mexico Moenkopi Formation Chinle Formation Upper **AlbbiM** Triassic

Formal stratigraphic terminology of Triassic and Jurassic rocks in New Mexico, as used in the National Geologic Map Database * of the U.S. Geological Survey. This terminology differs significantly from the Triassic and Jurassic stratigraphy represented on this map.

* http://ngmdb.usgs.gov/geolex_gs.html

8501 N. MoPac Expy. Suite 300 Austin, Texas 78759 DiSorbo

Table 1 - RW-1 Recovery Volumes

Marathon Petroleum Company - Gallup Refinery

Gallup, New Mexico

Year	Product Recovered (gallons)	Water Recovered (gallons)
2005	431.5	1,210.5
2006	23.52	1,107.0
2007	1.715	148.5
2008	3.99	152.0
2009	1.78	338.0
2010	0.66	128.0
2011	0.42	165.0
2012	0.97	137.0
2013	2.328	86.0
2014	2.37	83.0
2015	2	54.0
2016	8.5	53.0
2017	10.5	50.0
2018	1	0.0
TOTAL	491	3,712

Recovery volumes are field estimates for RW-1

Table 2 - OW-14 Source Area Wells Groundwater Analytical Data Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

Sec- butylbenz ene (mg/L)	NE NE	NE	NE	2		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Acetone (mg/L)	N	NE	14.1	14		<0.010	0.0045	0.0011	0.0012	0.0036	<0.01	0.0036	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA	NA	NA	NA	NA	NA:	NA
2,4- Dimethylphenol (mg/L)	JN	NE	0.354	098.0		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	<0.01	NA	NA	NA	NA:	V Δ	AN AN	NA V	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA
n- Propylben zene (mg/L)	N.	Ŋ	JN	99'0		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
n- Butylbenz ene (mg/L)	N N	Ŋ	JN	1		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.00	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Isopropyl benzene (mg/L)	Ŋ	Ŋ	0.447	0.450		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1- Dichloroet hane (mg/L)	0.025	Ŋ	0.0275	0.0028		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.004	<0.001	<0.001	<0.001	<0.001	<0.004	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2- Methylnapht halene (mg/L)	NE NE	N N	NE	0.036		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.00	<0.004	<0.004	<0.004	NA	NA	NA	NA	NA	NA	AN :	NA
1-Methyl naphthale ne (mg/L)	NE	NE	NE	0.0011		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.00	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Naphthalene (mg/L)	NE	NE	0.00165	0.00017		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	200°0>	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-Dichloro ethane (EDC) (mg/L)	0.01	0.005	0.0017	0.00017		<0.001	0.00076	0.00081	0.00077	0.00087	0.00077	0.00084	0.00085	0.00076	0.00079	0.00075	0.0008	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,3,5- Trimethyl benzene (mg/L)	NE NE	Ŋ	NE	090'0		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	NA	NA	NA	NA	NA	NA	NA :	NA
1,2,4- Trimethyl benzene (mg/L)	NE NE	Ŋ	NE	0.056		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MTBE (mg/L)	NE	Ŋ	0.143	0.014		0.062	0.075	0.068	0.058	0.056	0.056	0.058	0.053	0.044	0.038	0.036	0.035	0.035	0.031	0.025	0.026	0.027	0.023	0.02	0.023	0.017	0.014	0.015	0.011	0.0092	0.0079	0.0082	0.0065	0.0062	0.0048	0.0040	0.0038	0.0031	0.0027	0.0023
Total Xylenes (mg/L)	0.62	10	0.193	0.190		<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.0016	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015
Ethyl Benzene (mg/L)	0.75	0.7	0.0149	0.0015		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene (mg/L)	0.75	1.0	1.1	1.1		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Benzene (mg/L)	0.01	0.005	0.00455	0.00046		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	WQCC 20NMAC 6.2.3103	40 CFR 141.62 MCL	NMED Tap Water (MARCH 2017)	EPA RSL for Tap Water (Nov. 2018)	DATE SAMPLED	11/06/18	11/	15/	02/28/18	12/11/17	/90	05/31/17	02/27/17	11/15/16	08/31/16	06/06/16	04,	27,	11/	06/01/15	/60,	11/10/14	09/15/14	06/03/14	/10	11/11/13	9/4/2013	06/13/13	27/2	/23/	06/14/12	03/21/12	12/13/11	10/25/11	06/20/11	02/24/11	/80,	09/22/10	/10	03/25/10
	×		NMEC	EPA RS	Well ID																		OW-13) H																

Table 2 - OW-14 Source Area Wells Groundwater Analytical Data Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

Benzene (mg/L)	F ~	<u>m</u>	×	MTBE (mg/L)	hyl L)	hyl L)	t,2-Dichloro ethane (EDC) (mg/L)	Naphthalene (mg/L)	hyl ale 7/L)	2- Methylnapht halene (mg/L)	1,1- Dichloroet hane (mg/L)	pyl ne L)	enz L)	oen (2,4- Dimethylphenol (mg/L)	ne L)	Sec- butylbenz ene (mg/L)
0.75	+	0.75	0.62	핑	IJ	y H	0.01	N H	묏 묏	N I	0.025	묏 묏	및 및	핑 I	W W	묏 묏	핑 W
0.00455 1.1 0	0	0.0149	0.193	0.143	빌	y y	0.0017	0.00165	y y	빌	0.0275	0.447			0.354	14.1	
1.1	Ö.	0.0015	_	0.014	0.056	090'0	0.00017	0.00017	0.0011	0.036	0.0028	0.450	1	99.0	0.360	14	2
<0.05		0.64	<0.075	09.0	<0.05	<0.05	<0.05	<0.1	<0.2	<0.2	<0.05	<0.05	<0.15	<0.05	NA	<0.5	<0.05
<0.05		99.0	0.042	0.74	<0.05	<0.05	<0.05	0.027	0.026	<0.2	<0.05	0.017	<0.15	<0.05	NA	<0.5	<0.05
0.0088		0.71	<0.15	0.67	<0.1	<0.1	<0.1	0.017	<0.4	<0.4	<0.04	0.014	<0.3	0.027	NA	<1	<0.1
0.0065		0.61	<0.15	99'0	<0.1	<0.1	<0.1	0.044	0.059	<0.4	<0.1	0.012	<0.3	0.032	NA	<1	<0.1
0.013	_	0.64	0.052	0.63	0.013	0.0021	<0.01	0.037	0.033	<0.040	<0.01	0.016	0.003	0.028	NA	<0.1	0.0032
0.0091		0.54	0.033	99.0	0.012	0.0016	<0.005	0.038	0.038	0.0017	<0.005	0.014	0.0021	0.025	NA	0.013	0.0027
0.004		0.47	0.02	0.70	0.011	<0.05	<0.05	0.028	0.037	<0.2	<0.05	0.014	<0.15	0.021	NA	<0.5	<0.05
0.0062		0.39	<0.075	0.81	0.0074	<0.05	<0.05	0.024	0.035	<0.2	<0.05	0.0083	<0.15	0.014	NA	<0.5	<0.05
0.0057		0.3	0.013	0.50	0.0084	0.0015	0.0034	0.02	0.03	<0.04	<0.01	0.01	0.0034	0.013	NA	<0.1	0.0041
0.0029		0.25	0.008	0.58	0.0071	0.00082	<0.005	0.018	0.034	<0.020	<0.005	0.0085	0.0013	0.011	NA	<0.05	0.0022
0.0026		0.23	0.012	0.62	0.008	0.0017	<0.01	0.019	0.033	0.0033	0.0033	0.0096	<0.03	0.011	NA	<0.1	0.0031
		23	<0.075	0.68	<0.05	<0.05	<0.05	0.017	0.03	<0.2	<0.05	<0.05	<0.15	<0.05	NA	<0.5	<0.05
<0.02		15	<0.03	0.57	<0.02	<0.02	<0.02	<0.04	<0.08	<0.08	<0.02	<0.02	>0.06	<0.02	NA	<0.2	<0.02
<0.01		16	<0.015	0.78	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.04	<0.01	<0.03	<0.01	NA	<0.1	<0.01
<0.02		16	<0.03	0.74	<0.02	<0.02	<0.02	<0.04	<0.08	<0.08	<0.02	<0.02	>0.06	<0.02	NA	<0.2	<0.02
		16	<0.03	0.76	<0.02	<0.02	<0.02	<0.04	<0.08	<0.08	<0.02	<0.02	>0.06	<0.02	NA	<0.2	<0.02
0.015		17	<0.015	0.81	<0.01	<0.01	<0.01	<0.02	0.044	<0.04	<0.01	<0.01	<0.03	<0.01	NA	<0.1	<0.01
		16	<0.03	0.82	<0.02	<0.02	<0.02	<0.04	0.016	<0.08	<0.02	<0.02	>0.06	<0.02	<0.01	<0.2	<0.02
<0.02		12	<0.03	0.93	<0.02	<0.02	<0.02	<0.04	<0.08	<0.08	<0.08	<0.02	>0.06	<0.02	NA	<0.2	<0.02
0.026		0.14	0.032	1.1	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.04	<0.01	-	<0.01	AN :	<0.1	<0.01
0.046	-	0.T3	0.019	T.T	\$00.00 \$00.00	\$00.00 \$00.00	<0.005	<0.01	0.027	<0.02	<0.005	0.000	<0.015	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	Y S	<0.05	\$0.00 \$0.00
		0.073	<0.015	1.3	<0.01	<0.003	<0.003	<0.02 <0.02	40.04	<0.02	<0.00	<0.01	<0.03	<0.01	X X	<0.03 <0.1	<0.00
<0.01		0.065	<0.015	1.3	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.01	<0.01	<0.03	<0.01	NA	<0.1	<0.01
<0.01		0.056	<0.015	1.4	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.01	<0.01	<0.03	<0.01	NA	<0.1	<0.01
<0.01		0.037	<0.015	1.6	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.01	<0.01	<0.03	<0.01	NA	<0.1	<0.01
<0.01		0.053	<0.015	1.2	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.01	<0.01	<0.01	<0.01	NA	<0.1	<0.01
<0.01		0.051	<0.015	1.4	<0.01	<0.01	<0.01	<0.02	<0.04	<0.04	<0.01	<0.01		<0.01	NA	<0.1	<0.01
		0.036	<0.0075	1.3	<0.005	NA	<0.005	<0.01	0.021	NA	<0.005	0.007	<0.005	<0.005	NA	NA	<0.005
<0.005		0.045		1.4	<0.005	NA	<0.005	<0.01	0.022	NA	<0.005	0.008		<0.005	NA	NA	<0.005
0.0015		0.0610	-	1.6	0.001	NA	0.002	0.002	0.020	NA	0.001	0.007	<0.001	0.002	NA	NA	0.002
1.3 0.0019	9	0.0420	_	1.4	0.001	NA	0.002	<0.002	0.019	NA	<0.001	0.005	<0.001	0.001	NA	NA	0.003
0.63 <0.001	1	0.0180		1.3	0.001	NA	0.002	<0.002	0.022	NA	<0.001	0.004		<0.001	NA	NA	0.003
	1	0.0083	\vdash	1.4	<0.001	NA	0.002	<0.002	0.022	NA	<0.001	0.003		<0.001	NA	NA	0.003
0.0018	\dashv	0.0085		1.4	0.001	NA	0.002	<0.002	0.020	NA	<0.001	0.003	+	<0.001	NA	NA	0.002
0.25 <0.005 0	$\overline{}$	0.0100	<0.0075	1.5	<0.005	<0.005	<0.005	<0.01	<0.02	<0.005	<0.005	<0.005	<0.005	<0.005	AN A	AN	<0.005

Table 2 - OW-14 Source Area Wells Groundwater Analytical Data Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

Sec- butylbenz ene (mg/L)	N	및 및	٦.	ı	NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	<1.0	N N	NS	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.05	<0.05	<0.010	<0.5 <0.1	<0.1	<0.1	NA	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	0.0083	0.0071	0.0075	0.0079	0.01	<0.01	<0.005 0.01	<0.01	0.013	NA
Acetone (mg/L)	ЫN	NE	14	-	NS-SPH	NS-SPH	NS-SPH	NS-SPH	<10	<10	N N	NS	<1	<2	<1	<1	<1	0.13	, ,	<2>	<2	<0.5	<0.5	<0.1	, \ \ \	\ - 1	<1	NA	NS-SPH	NS-SPH	HQC-CN HQC-CN	NS-SPH	NS-SPH	NS-SPH	0.0067	<0.05	<0.05	<0.1	<0.05	<0.1	<0.05 <0.1	<0.1	<0.1	NA
2,4- Dimethylphenol (mg/L)	٩N	NE 0.354	0.360		HdS-SN	NS-SPH	NS-SPH	HdS-SN	0.037	0.087	<0.1	NS	ΑN	NA	NA	NA	NA	ΨZ Z	AN S	NA:	Y :	Y :	NA	V Z	0.084	0.15	0.22	0.16	HdS-SN	NS-SPH	HQC-CN HQC-CN	NS-SPH	NS-SPH	HdS-SN	NA	NA	NA	NA	NA	₹ Z	NA <0.01	<0.01	<0.01	<0.01
n- Propylben zene (mg/L)	N N	JN L	0.66	3	NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	<1.0	0.4	SN	0.056	0.042	0.059	0.042	0.037	0.043	0.044	0.063	0.056	0.045	0.045	0.046	<0.0	<0.1	<0.1	0.036	HdS-SN	HdS-SN	HdS-SN	HdS-SN	NS-SPH	NS-SPH	90.0	0.043	0.037	0.026	0.032	0.027	c0.039	0.031	890'0	0.04
n- Butylbenz ene (mg/L)	NE	NE	145	1	NS-SPH	NS-SPH	NS-SPH	HdS-SN	<3.0	<3.0 <3.0	NA	SN	<0.3	9.0>	0.014	<0.3	<0.3	<0.3	<0.3	9.0>	9.0>	<0.05	<0.150	<0.03	<0.0>	<0.3	<0.3	NA	HdS-SN	HdS-SN	HdS-SN	HAS-SN	NS-SPH	HdS-SN	0.013	0.012	0.012	0.016	0.014	<0.03	<0.03 <0.03	<0.03	<0.03	NA
Isopropyl benzene (mg/L)	NE	NE 0.447	0.450		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	<1.0	<0.01	NS	0.024	0.013	0.019	0.019	0.018	0.021	0.025	<0.2	0.03	<0.5	0.011	0.02	<0.2	<0.1	<0.1	<0.01	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	0.025	0.02	0.016	0.01	0.012	<0.01	<0.005 0.012	<0.01	<0.01	0.01
1,1- Dichloroet hane (mg/L)	0.025	NE 0.0275	0.0028		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	<1.0	NA	SN	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.01	<0.05	<0.01	<0.2	<0.1	<0.1	NA	HdS-SN	HAS-SN	HQC-CN	NS-SPH	NS-SPH	NS-SPH	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.01	<0.01	NA
2- Methylnapht halene (mg/L)	JN.	N H	0.036		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<4.0	<4.0	0.15	NS	<0.4	<0.8	0.053	<0.4	<0.4	0.042	0.11	<0.8	<0.8	<2.0	0.028	<0.04	<0.0	<0.4	<0.4	<0.04	NS-SPH	NS-SPH	HQC-CN	NS-SPH	NS-SPH	NS-SPH	0.12	0.12	0.12	0.15	0.12	0.13	0.000 0.11	0.13	0.17	0.16
1-Methyl naphthale ne (mg/L)	N	IJ	0.0011		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<4.0	<4.0	0.15	SN	0.04	<0.8	0.076	0.021	0.055	0.063	0.13	0.13	0.088	0.17	690.0	0.075	<0.0 40.4	<0.4	<0.4	0.054	HdS-SN	NS-SPH	HQC-CN HQC-CN	NS-SPH	NS-SPH	NS-SPH	0.12	0.12	0.097	0.13	0.11	0.11	0.067	0.097	0.11	0.11
Naphthalene (mg/L)	NE	NE 0.00165	0.00017		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<2.0	<2.0	<u>0.6</u>	NS	0.1	0.095	0.14	0.069	0.11	0.11	0.15	0.15	0.14	0.18	0.1	0.14	<0.4 <0.2	<0.2	<0.2	0.057	HdS-SN	NS-SPH	NS-SPH NS-SPH	NS-SPH	NS-SPH	NS-SPH	0.14	0.14	0.13	0.13	0.12	0.17	0.065	0.12	0.11	0.17
1,2-Dichloro ethane (EDC) (mg/L)	0.01	0.005	0.00017		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	<1.0	N AN	NS	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.01	<0.05	<0.01	<0.7	<0.1	<0.1	NA	HdS-SN	NS-SPH	HQS-SN	NS-SPH	NS-SPH	NS-SPH	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.01	<0.01	NA
1,3,5- 1 Trimethyl benzene (mg/L)	N N	밀	0.060		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	<1.0	86.0	NS	0.043	0.031	0.038	0.026	0.046	0.058	0.04	0.049	0.044	0.12	0.028	0.031	<0.7	<0.1	<0.1	0.024	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	0.011	0.014	0.013	0.017	0.013	0.015	0.012	0.022	0.016	0.046
1,2,4- Trimethyl benzene (mg/L)	N N	NE P	0.056		NS-SPH	NS-SPH	NS-SPH	NS-SPH	<1.0	1.3	2.8	SN	0.31	0.34	0.32	0.28	0.27	0.28	0.2	0.5	0.21	0.23	0.18	0.18	0.45	0.13	<0.1	0.098	NS-SPH	NS-SPH	HQC-CN HQC-CN	NS-SPH	NS-SPH	NS-SPH	0.033	0.062	0.049	0.046	0.041	0.048	0.041	60.0 60.0	0.054	0.13
MTBE (mg/L)	N	NE 0.143	0.014	-	NS-SPH	NS-SPH	NS-SPH	NS-SPH	1.2	2.2	2.9	NS	1.1	1.2	1.2	1.3	1.3	1.7	1.6	1.7	1.6	1.7	1.9	1.7	1.0	2.8	3.3	3.7	HdS-SN	NS-SPH	HQC-CN HQC-CN	NS-SPH	NS-SPH	NS-SPH	0.0077	0.0012	<0.005	0.0042	0.0026	<0.01	<0.005	<0.01	0.032	0.095
Total Xylenes (mg/L)	0.62	10	0.190		NS-SPH	NS-SPH	NS-SPH	NS-SPH	10	13	23	NS	3.8	4.2	3.8	3.6	4	4.6	3.1	3.2	3.1	3.1	3.5	2.8	2.5	2.3	1.7	1.5	HdS-SN	NS-SPH	HQS-SN	NS-SPH	NS-SPH	NS-SPH	0.094	0.13	0.12	0.11	0.086	0.095	0.07	0.089	0.091	0.26
Ethyl Benzene (mg/L)	0.75	0.7	0.0015		NS-SPH	NS-SPH	NS-SPH	NS-SPH	1.8	2.4	3.7	SN	1.5	1.5	1.5	1.5	1.2	1.4	1.3	1.2	1.2	1.1	1.2	1.0	0.86	0.87	0.59	0.57	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	0.41	0.34	0.26	0.15	0.15	0.13	0.037	0.11	0.26	0.21
Toluene (mg/L)	0.75	1.0	1.1	1	NS-SPH	NS-SPH	NS-SPH	NS-SPH	35.0	35	37	SN	4	2	3.7	2.9	6.7	6	2.3	3.4	3.8	2.9	4.1	4.6	4.5	3.4	2.6	5.3	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	0.0028	0.0035	0.0035	0.0038	0.0024	<0.01	<0.005	<0.01	<0.01	<0.01
Benzene (mg/L)	0.01	0.005	0.00046		HdS-SN	NS-SPH	NS-SPH	HdS-SN	37	54 45	51	SN	48	46	42	38	37	47	37	38	38	36	46	41	40	48	42	39	HdS-SN	HdS-SN	HdS-SN	HdS-SN	NS-SPH	HdS-SN	0.64	0.72	0.57	0.54	0.39	0.5	0.43	0.37	0.19	0.56
	WQCC 20NMAC 6.2.3103	40 CFR 141.62 MCL	FPA RSI for Tap Water (Nov. 2018)	DATE SAMPLED	2018	2017	2016	2015	/18/	09/16/13	10/03/11	4th Quarter 2018	08/28/18	/80	02/20/18	12/06/17	09/19/17	20/	03/16/17	11/16/16	09/13/16	06/08/16	03/07/16	10/29/15	09/23/13	16/	08/23/12	10/03/11	4th Quarter 2018	3rd Quarter 2018	Znd Qdarter 2018 1st Onarter 2018	4th Ouarter 2017	3rd Quarter 2017	2nd Quarter 2017	03/16/17	11/16/16	09/13/16	06/07/16	/0/	10/29/15	09/18/14	16/	08/23/12	10/03/11
	ÓΜ	NMED.	FPA RSI	Well ID			1	7 /// 2	+									ı	'	RW 2																Z W	7							

Table 2 - OW-14 Source Area Wells Groundwater Analytical Data Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

			Ethyl	Total	L		-	1,2-Dichloro	100	1-Methyl	2-	_	Isopropyl	-U -H	-U	2,4-		Sec-
	senzene (mg/L)	(mg/L)	Benzene (mg/L)	Xylenes (mg/L)	(mg/L)	benzene (mg/L)	benzene (mg/L)	etnane (EDC) (mg/L)	Napntnalene (mg/L)	naphthale ne (mg/L)	Metnylnapnt halene (mg/L)	hane (mg/L)		butylbenz ene (mg/L)	Propylben zene (mg/L)	Dimethylphenol (mg/L)	Acetone L (mg/L)	ene (mg/L)
_	0.01	0.75	0.75	0.62	NE	NE	NE	0.01	Ŋ	NE	NE	0.025	N	NE	NE	NE	N	NE
	0.005	1.0	0.7	10	NE	N	NE	0.005	NE	NE	NE	핑	N	NE	NE	NE	NE	N
	0.00455	1.1	0.0149	0.193	0.143	N	N	0.0017	0.00165	N	NE	0.0275	0.447	NE	NE	0.354	14.1	N
	0.00046	1.1	0.0015	0.190	0.014	0.056	090'0	0.00017	0.00017	0.0011	0.036	0.0028	0.450	1	99'0	098'0	14	2
	HdS-SN	NS-SPH	NS-SPH	HAS-SN	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HdS-SN	HdS-SN	NS-SPH	NS-SPH	NS-SPH	HdS-SN	HdS-SN	HdS-SN	NS-SPH	NS-SPH
	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH
	NS-SPH	NS-SPH	NS-SPH	HAS-SN	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HdS-SN	HdS-SN	NS-SPH	NS-SPH	NS-SPH	HdS-SN	HdS-SN	HdS-SN	NS-SPH	NS-SPH
	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HAS-SN	HdS-SN	NS-SPH	NS-SPH	NS-SPH	HdS-SN	NS-SPH	HdS-SN	NS-SPH	NS-SPH
	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HAS-SN	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HdS-SN	HdS-SN	HdS-SN		NS-SPH
	HAS-SN	NS-SPH	NS-SPH	HAS-SN	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HdS-SN	HdS-SN	NS-SPH	NS-SPH	HAS-SN	HdS-SN	HdS-SN	HdS-SN		NS-SPH
	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH		NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	NS-SPH	HdS-SN	NS-SPH	NS-SPH
	0.28	0.28	0.63	1.4	0.025	0.061	0.13	<0.01	0.59	0.27	0.29	<0.01	0.044	0.022	960.0	NA	<0.1	0.012
	0.27	0.12	0.29	0.78	0.014	90.0	0.1	<0.01	0.61	0.33	0.35	<0.01	0.024	0.015	0.048	NA	<0.1	0.0088
	0.28	0.11	0.29	0.81	0.017	0.064	0.12	<0.01	0.55	0.28	0.37	<0.01	0.028	0.02	0.055	NA	<0.1	0.011
	0.3	0.085	0.25	69.0	0.025	0.074	0.12	<0.01	0.54	0.31	0.38	<0.01	0.025	0.029	0.054	NA	<0.1	0.01
	0.39	0.19	0.51	0.086	0.021	0.075	0.13	<0.01	0.59	0.28	0.33	<0.01	0.012	0.014	0.032	NA	0.035	0.012
	0.34	0.11	0.28	0.85	0.043	60.0	0.1	<0.01	0.68	0.32	0.41	<0.01	0.025	<0.03	0.044	NA	<0.1	<0.01
	0.36	0.071	0.093	0.67	0.05	0.095	0.11	<0.01	0.41	0.22	0.29	<0.01	<0.01	<0.03	0.012	NA	<0.1	<0.01
	0.47	0.23	0.45	1.3	0.046	0.17	0.17	<0.01	0.57	0.19	0.28	<0.01	0.045	<0.03	0.11	<0.01	<0.1	<0.01
	0.68	<0.05	0.18	1.1	<0.05	0.28	0.14	<0.05	0.48	0.2	0.27	<0.05	<0.05	<0.15	<0.05	<0.01	<0.5	<0.05
	0.74	0.052	0.4	1.6	0.073	0.38	0.17	<0.05	0.58	0.22	0.36	<0.05	<0.05	<0.15	0.074	<0.01	<0.5	<0.05
	0.87	0.029	0.33	<0.015	<0.01	0.42	0.16	NA	0.52	0.21	0.31	NA	0.043	NA	0.078	<0.1	NA	NA
	11	0.061	0.51	0.11	0.10	<0.02	<0.02	<0.02	0.12	0.082	0.024	<0.02	0.014	90'0>	0.040	<0.01	<0.2	<0.02
	12	0.041	0.57	0.12	0.12	<0.02	<0.02	<0.02	0.12	0.086	0.022	<0.02	0.015	0.0062	0.045	<0.010	0.085	<0.02
	12	0.030	0.56	0.110	0.12	<0.1	<0.1	<0.1	0.11	0.12	<0.4	<0.1	0.011	<0.3	0.031	<0.010	<1	<0.1
	12	0.035	0.58	0.110	0.12	<0.05	<0.05	<0.05	0.12	60.0	0.033	<0.05	0.015	0.0076	0.045	<0.010	0.097	<0.05
	11	0.024	0.52	0.083	0.098	<0.1	<0.1	<0.1	0.045	0.045	<0.4	<0.1	0.012	<0.3	0.029	<0.010	<1	<0.1
	9.4	0.025	0.46	960.0	0.12	<0.05	<0.05	<0.05	0.096	60.0	0.02	<0.05	0.014	<0.15	0.033	<0.050	<0.5	<0.05
	14	0.03	0.54	0.11	0.15	<0.05	<0.05	<0.05	0.11	0.076	0.03	<0.05	0.015	<0.15	0.034	<0.010	<0.5	<0.05
	8.6	0.024	0.38	0.1	0.1	<0.05	<0.05	<0.05	0.13	880'0	0.061	<0.05	0.020	<0.15	0.045	<0.010	<0.5	<0.05
	32	0.11	1.2	0.19	2.5	0.015	<0.05	<0.05	0.16	090'0	0.042	<0.05	0:030	<0.15	260.0	<0.100	<0.5	<0.05
	38	0.097	1.2	0.19	2.9	0.028	<0.05	<0.05	0.15	0.059	0.045	<0.05	0.032	<0.15	0.098	<0.010	<0.5	<0.05
	38	0.084	1.2	0.18	2.8	0.03	<0.1	<0.1	0.17	0.100	0.054	<0.1	0.032	08'0>	0.1	<0.010	<1	<0.1
	33	0.053	1.2	0.13	2.9	0.023	<0.1	<0.1	0.17	0.065	0.073	<0.1	0.029	0.016	0.095	<0.010	<1	<0.1
	32	0.04	1.2	0.12	2.9	0.024	<0.1	<0.1	0.11	0.038	<0.4	<0.1	0.033	<0.3	0.089	<0.010	<1	<0.1
	29	0.22	1.1	0.37	3.1	0.11	0.039	<0.1	0.15	0.082	0.057	<0.1	0.036	<0.3	0.092	<0.010	<1	<0.1
	38	0.16	1.2	0.36	3.7	0.1	0.038	<0.1	0.15	0.085	0.068	<0.1	0.038	0.016	0.098	<0.010	~ 1	<0.1
	31	0.83	1.10	0.97	3.0	0.17	0.04	<0.1	0.18	0.07	90.0	<0.1	0.03	<0.3	0.09	<0.010	<1	<0.1

All values expressed in milligrams per liter

DEFINITIONS

NE = Not analyzed

Bold and highlighted values represent values above the applicable standards

Bold screening level is applicable screening under RCRA Permit

STANDARDS
WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/l TDS Concentration or Less.
a) Human Health Standards; b) Other Standards for Domestic Water
40 CFR 141.62 Maximum Contaminant Levels
EPA Regional Screening Level (RSL) Summary Table (November 2018)
NMED Tap Water (March 2017)

Table 3 - Vapor Screening Results Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

		•						
Sample								
Interval Depth	TK 568-1	TK 568-2	TK 569-1	TK 569-2	TK 569-3	TK 570-1	0W-57	0W-58
(ftbgl)	(mdd)	(ppm)	(mdd)	(mdd)	(bpm)	(mdd)	(mdd)	(mdd)
0 - 2	0.8	0.2	2.3	0.3	8.9	5.3	9.0	110
2 - 4	3.1	0.5	9.9	0.1	10.4	14.9	9.0	40
4 - 6	15.9	4.3	4.1	0.0	12.4	15.8	2.6	11.2
8 - 9	6.99	4.6	0.5	0.0	31.8	24.1	6.2	2.2
8 - 10	309	5.3	0.5	9.0	27.6	1775	23.7	5.3
10 - 12	2214	30.8	2.3	7.2	50.9	3445	118	37
12 - 14	1957	34.5	4.2	36.5	63.9	2408	85	42
14 - 16	926	16.0	13.6	668	303	2350	197	25
16 - 18	1243	NR - NR	32.6	2332	37.7	1139	205	226
18 - 20	1731	36.5	152	702	250	1250	58	240
20 - 22	1780	29.6	41.6	833	387	1460	243	200
22 - 24	1125	82	92.2	398	405	399	846	2020
24 - 26	1119	NR - NR	2158	190	955	969	44	1980
26 - 28	965	NR - NR	1147	1973	SAT NR	952	39	973
28 - 30	970	2803	1060	1684	SAT NR	1441	TD@27 ftbgl	2784
30 - 32	1308	SAT NR	1353	1420	1620	896		2350
32 - 34	1680 / 733	SAT NR	1622	1390	1950	804		1775
34 - 36	1695	SAT NR / 53	1292	1210	239	SAT NR		575
36 - 38	1282	21	1649	405	258	9/9		227
38 - 40	1078	TD@37 ftbgl	1621	TD@38 ftbgl	TD@39 ftbgl	1392		545
40 - 42	383		92.6			1117		531
42 - 44	476		TD@42 ftbgl			555		288
44 - 46	144					165		357
46 - 48	80					TD@45 ftbgl		204
48 - 50	41							250
50 - 52	TD@49 ftbgl							TD@48.5ftbgl
fthal - feet helow ground level	level burns	adillim serts ber mad	acilli					

ftbgl - feet below ground level ppm - parts per million NR - NR - No sample recovery. No reading was collected.

SAT. - NR - Interval was saturated. No reading was collected.

Table 4 - Groundwater Field Measurements

Marathon Petroleum Company - Gallup Refinery

Gallup, New Mexico

Well ID	Date	Depth to Groundwater (ft - BTOC) ¹	Depth to Groundwater (ft - BTOC) ²	Depth to SPH (ft - BTOC) ¹	Depth to SPH (ft - BTOC) ²	Maximum Observed SPH (ft)	Casing Stickup ft- ABGL	Screened Interval (ft - BTOC)
TK 568-1	10/02/16	30.88	31.13	ND	ND	ND	2.00	25 - 40
TK 568-2	10/02/16	28.03	29.01	ND	ND	ND	2.00	28 - 38
TK 569-1	10/05/16	29.97	29.34	28.95	ND	1.02	2.50	25.5 - 40.5
TK 569-2	10/05/16	29.95	29.72	29.65	29.65	0.30	2.00	28 - 38
TK 569-3	10/02/16	28.36	28.60	28.35	ND	0.01	2.25	24.25 - 39.25
TK 570-1	09/30/16	35.63	34.89	33.75	34.6	1.88	2.00	30 - 45
OW-57	10/01/16	21.62	21.72	ND	ND	ND	3.00	18 - 28
OW-58	09/30/16	28.58	28.98	27.6	ND	0.98	1.67	39.67 - 49.67

Well	Date	Temperature	Specific Conductivity	Dissolved Oxygen	рН	Oxygen Reduction
ID		°C	(uS/cm)	(mg/L)		Potential
TK 568-1	10/02/16	13.4	1452	1.86	7.20	-103.9
TK 568-2	10/02/16	13.3	1644	2.51	7.03	-65.6
TK 569-1	10/05/16	14.7	1668	2.09	6.89	-105.9
TK 569-2	10/05/16	15.0	1741	4.48	7.03	-28.0
TK 569-3	10/02/16	13.5	1590	1.70	6.97	-110.1
TK 570-1	09/30/16	Hydrocarbon	was detected. W	ater quality meas	urements were	not collected.
OW-57	10/01/16	14.7	1810	1.57	7.20	-38.8
0W-58	09/30/16	15.2	1907	1.95	7.02	-122.9

^{1 -} Depth to groundwater and SPH taken prior to purge for sampling

^{2 -} Depth to groundwater and SPH taken after well purged for sampling

ft - BTOC - feet below top of casing

ft - ABGL - feet above group level

	NMED Residential (0-10')	endpoint	EPA Residential (0-2')	endpoint	NMED IndOccSoil (0-1')	NMED IndOccSoil Endpoint	NMED ConsWork Soil (0-10')	NMED ConsWork Soil_ Endpoint	EPA Industrial Soil (0-2')	EPA IndSoil_key	NMED DAF1 SoilGW	EPA GW_Risk- based SSL_ SoilGW	EPA GW_MCL- based SSL_ SoilGW
Metals (mg/kg)													
Antimony	3.13E+01	u	3.10E+01	n	5.19E+02	u	1.42E+02	n	4.70E+02	u	2.71E-01	3.50E-01	2.70E-01
Arsenic	7.07E+00	0	6.80E-01	*3	3.59E+01	၁	4.12E+01	u	3.00E+00	၁	2.92E-01	1.50E-03	2.90E-01
Barium	1.56E+04	u	1.50E+04	n	2.55E+05	Iu	4.39E+03	n	2.20E+05	uu	8.23E+01	1.60E+02	8.20E+01
Beryllium	1.56E+02	u	1.60E+02	n	2.58E+03	n	1.48E+02	n	2.30E+03	u	3.16E+00	1.90E+01	3.20E+00
Cadmium	7.05E+01	u	7.10E+01	n	1.11E+03	u	7.21E+01	u	9.80E+02	u	3.76E-01	6.90E-01	3.80E-01
Chromium	9.66E+01	Э			5.05E+02	С	1.34E+02	n			1.80E+05		1.80E+05
Cobalt	2.34E+01	u	2.30E+01	n	3.88E+02	n	3.67E+01	n	3.50E+02	n	2.70E-01	2.70E-01	1
Cyanide	1.11E+01	u	2.70E+00	n	6.28E+01	n	1.20E+01	n	1.20E+01	u	3.56E-02	1.50E-02	2.00E+00
Iron	5.48E+04	u	5.50E+04	n	9.08E+05	n	2.48E+05	n	8.20E+05	n	3.48E+02	3.50E+02	
Lead	-	-	-	-	-	-	-	IEUBK	8.00E+02	nL	2.60E-03	-	1.40E+01
Manganese	1.05E+04	u	1.80E+03	n	1.60E+05	n	4.64E+02	n	2.60E+04	n	1.31E+02	2.80E+01	
Mercury	2.36E+01	u	9.40E+00	n	1.11E+02	n	2.05E+01	n	4.00E+01	ns	1.04E-01	3.30E-02	1.00E-01
Nickel	1.56E+03	u	8.40E+02	С	2.57E+04	n	7.53E+02	n	1.20E+04	С	2.42E+01		-
Selenium	3.91E+02	u	3.90E+02	n	6.49E+03	n	1.75E+03	n	5.80E+03	n	2.59E-01	5.20E-01	2.60E-01
Silver	3.91E+02	u	3.90E+02	n	6.49E+03	n	1.77E+03	n	5.80E+03	n	6.88E-01	8.00E-01	-
Vanadium	3.94E+02	u	3.90E+02	n	6.53E+03	n	6.14E+02	n	5.80E+03	n	6.31E+01	8.60E+01	-
Zinc	2.35E+04	u	2.30E+04	n	3.89E+05	n	1.06E+05	n	3.50E+05	uu	3.71E+02	3.70E+02	-
Volatiles (mg/kg)					,								
1,1,1,2-Tetrachloroethane	2.78E+01	O	2.00E+00	С	1.36E+02	С	6.53E+02	С	8.80E+00	SO	1.80E-03	2.20E-04	1
1,1,1-Trichloroethane	1.43E+04	C	8.10E+03	ns	7.19E+04	C	1.35E+04	n	3.60E+04	ns	6.38E-02	2.80E+00	7.00E-02
1,1,2,2-Tetrachloroethane	7.93E+00	O	6.00E-01	С	3.91E+01	O	1.95E+02	С	2.70E+00	O	2.40E-04	2.80E-05	1
1,1,2-Trichloroethane	2.59E+00	Ľ	1.10E+00	С	1.23E+01	C	2.28E+00	u	5.00E+00	O	1.34E-03	8.90E-05	1.60E-03
1,1-Dichloroethane	7.79E+01	O	3.60E+00	С	3.80E+02	C	1.80E+03	С	1.60E+01	O	6.80E-03	7.80E-04	ı
1,1-Dichloroethene	4.36E+02	u	2.30E+02	n	2.24E+03	n	4.20E+02	n	1.00E+03	П	2.40E-03	1.00E-01	2.50E-03
1,1-Dichloropropene	-	1	-	-	1	1	-	-	-	1	1	1	ı
1,2,3-Trichlorobenzene		ı	6.30E+01	n	ı	1	-	-	9.30E+02	Ľ	1	2.10E-02	ı
1,2,3-Trichloropropane	5.10E-02	O O	5.10E-03	C	1.21E+00	O	6.26E+00	n	1.10E-01	၁	2.91E-06	3.20E-07	1
1,2,4-Trichlorobenzene	8.22E+01	u	2.40E+01	n	4.19E+02	П	7.84E+01	u	1.10E+02	NS	1.55E-01	3.30E-03	2.00E-01
1,2,4-Trimethylbenzene	-	1	5.80E+01	u	ı	ı	-	-	2.40E+02	ns	-	2.10E-02	1
1,2-Dibromo-3-chloropropane	8.51E-02	O	5.30E-03	С	1.17E+00	C	5.48E+00	С	6.40E-02	O	6.95E-05	1.44E-07	8.60E-05
1,2-Dibromoethane (EDB)	6.68E-01	O	3.60E-02	С	3.28E+00	C	1.62E+01	С	1.60E-01	O	1.18E-05	2.10E-06	1.40E-05
1,2-Dichlorobenzene	2.14E+03	۵	1.80E+03	ns	1.29E+04	L	2.47E+03	u	9.30E+03	ns	4.54E-01	3.00E-01	5.80E-01
1,2-Dichloroethane (EDC)	8.25E+00	O	4.60E-01	С	4.03E+01	C	5.34E+01	n	2.00E+00	O	1.19E-03	4.80E-05	1.40E-03
1,2-Dichloropropane	1.76E+01	၁	1.00E+00	C*	8.61E+01	С	2.52E+01	n	4.70E+00	c *	1.39E-03	1.50E-04	1.70E-03
1,3,5-Trimethylbenzene	•	1	7.80E+02	n	ı	ı	-	-	1.20E+04	u	-	1.70E-01	ı
1,3-Dichlorobenzene		1	1	-	ı	1	-	-	1	1	1	1	1
1,3-Dichloropropane	•	1	1.60E+03	n	1		-	-	2.30E+04	ns		1.30E-01	1

Table 5 - Soil Screening Levels Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

												EPA	Š
	NMED Residential	endpoint	Re	endpoint	NMED IndOccSoil	NMED IndOccSoil	NMED ConsWork	ConsWork	EPA Industrial	EPA IndSoil kev	NMED DAF1	GW_Risk- based	GW_MCL-
	(0-10,)		(0-2')		(0-1')	Endpoint	Soil (0-10')	Endpoint	Soil (0-2')		SoilGW	SSL_ SoilGW	SoilGW
1,4-Dichlorobenzene	1.29E+03	ပ	2.60E+00	0	6.73E+03	0	2.48E+04	၁	1.10E+01	Э	5.61E-02	4.60E-04	7.20E-02
1-Methylnaphthalene	1.72E+02	၁	1.80E+01	С	8.13E+02	С	6.06E+03	Э	7.30E+01	С	4.47E-02	5.80E-03	1
2,2-Dichloropropane	1	-	-	'		1	-	,	-	-	-	-	
2-Butanone	3.73E+04	и	2.70E+04	ns	4.09E+05	n	9.12E+04	u	1.90E+05	nms	1.00E+00	1.20E+00	1
2-Chlorotoluene	1.56E+03	п	1.60E+03	ns	2.60E+04	n	7.08E+03	u	2.30E+04	ns	1.78E-01	2.30E-01	-
2-Hexanone	1	-	2.00E+02	-	•	-	-	•	1.30E+03	-	-	8.80E-03	1
2-Methylnaphthalene	2.32E+02	u	2.40E+02	u	3.37E+03	n	1.00E+03	u	3.00E+03	ns	1.38E-01	1.90E-01	1
4-Chlorotoluene	1	-	1.60E+03	ns	-	1	-	1	2.30E+04	ns	-	2.40E-01	
4-Isopropyltoluene		-				1	-	,	-	-	-	-	1
4-Methyl-2-pentanone	5.81E+03	u	,	-	8.15E+04	n	2.02E+04	u	-	-	2.40E-01	-	1
Acetone	6.63E+04	u	6.10E+04	n	9.59E+05	n	2.41E+05	u	6.70E+05	nms	2.49E+00	2.90E+00	1
Benzene	1.77E+01	၁	1.20E+00	C*	8.65E+01	С	1.41E+02	u	5.10E+00	C*	2.09E-03	2.30E-04	2.60E-03
Bromobenzene	1	-	2.90E+02	n	,	1	-	1	1.80E+03	n	•	4.20E-02	1
Bromodichloromethane	6.14E+00	၁	2.90E-01	С	2.99E+01	С	1.41E+02	Э	1.30E+00	С	3.10E-04	3.60E-05	1
Bromoform	6.74E+02	C	1.90E+01	C*	1.75E+03	С	5.38E+03	u	8.60E+01	C*	7.34E-03	8.70E-04	1
Bromomethane	1.76E+01	u	6.80E+00	n	9.37E+01	n	1.77E+01	u	3.00E+01	n	1.71E-03	1.90E-03	1
Carbon disulfide	1.54E+03	u	7.70E+02	ns	8.47E+03	n	1.61E+03	u	3.50E+03	ns	2.21E-01	2.40E-01	1
Carbon tetrachloride	1.06E+01	၁	6.50E-01	С	5.21E+01	С	2.00E+02	u	2.90E+00	С	1.84E-03	1.80E-04	1.90E-03
Chlorobenzene	3.76E+02	и	2.80E+02	u	2.14E+03	n	4.08E+02	u	1.30E+03	ns	5.39E-02	5.30E-02	6.80E-02
Chloroethane	1.88E+04	С	1.40E+04	ns	8.87E+04	u	1.65E+04	u	5.70E+04	ns	5.37E+00	5.90E+00	1
Chloroform	5.85E+00	ပ	3.20E-01	О	2.84E+01	С	1.33E+02	O	1.40E+00	С	5.46E-04	6.10E-05	1
Chloromethane	4.08E+01	ပ	1.10E+02	u	1.99E+02	О	2.33E+02	u	4.60E+02	u	4.76E-03	4.90E-02	1
cis-1,2-DCE	1.56E+02	L	1.60E+02	u	2.60E+03	u	7.08E+02	u	2.30E+03	ns	1.76E-02	1.10E-02	2.10E-02
cis-1,3-Dichloropropene	2.91E+01	ပ	1.80E+00	°*2	1.46E+02	О	1.29E+02	u	8.20E+00	°*	1.40E-03	1.70E-04	1
Dibromochloromethane	1.38E+01	ပ	7.50E-01	O	6.69E+01	O	3.38E+02	O	3.30E+00	С	3.77E-04	4.50E-05	2.10E-02
Dibromomethane	5.74E+01	ပ	2.30E+01	u	2.86E+02	C	5.34E+01	ပ	9.80E+01	ns	1.68E-03	2.00E-03	1
Dichlorodifluoromethane	1.80E+02	۷	8.70E+01	L	8.57E+02	u	1.59E+02	L	3.70E+02	u	3.61E-01	3.00E-01	,
Ethylbenzene	7.45E+01	ပ	5.80E+00	O	3.65E+02	C	1.76E+03	ပ	2.50E+01	С	6.15E-01	1.70E-03	7.80E-01
Hexachlorobutadiene	6.16E+01	ᄕ	1.20E+00	* * O	5.17E+01	C	2.69E+02	u	5.30E+00	°*	2.07E-03	2.60E-04	1
Isopropylbenzene	2.35E+03	۵	1.90E+03	ns	1.41E+04	u	2.71E+03	u	9.90E+03	ns	5.69E-01	7.40E-01	1
Methyl tert-butyl ether (MTBE)	9.68E+02	ပ	4.70E+01	O	4.78E+03	О	2.40E+04	O	2.10E+02	С	2.77E-02	3.20E-03	1
Methylene chloride	4.09E+02	٦	5.70E+01	O	5.11E+03	u	1.20E+03	u	1.00E+03	С	1.11E-03	2.91E-03	1.30E-03
Naphthalene	1.16E+03	۵	3.80E+00	°*	1.68E+04	u	5.02E+03	L	1.70E+01	°,	4.11E-03	5.40E-04	1
n-Butylbenzene	1	1	3.90E+03	ns		1	-	ı	5.80E+04	ns	-	3.20E+00	1
n-Propylbenzene	ı	1	3.80E+03	ns		ı	-	'	2.40E+04	ns	,	1.20E+00	1
sec-Butylbenzene	1	1	7.80E+03	ns	1	1	1	ı	1.20E+05	nms	'	5.90E+00	1
Styrene	7.23E+03	ᄕ	6.00E+03	ns	5.09E+04	n	1.01E+04	u	3.50E+04	ns	8.55E-02	1.30E+00	1.10E-01
tert-Butylbenzene	ı	٠	7.80E+03	ns	'	1	,	,	1.20E+05	nms	'	1.60E+00	1

Table 5 - Soil Screening Levels Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	NMED Residential (0-10')	endpoint	EPA Residential (0-2')	endpoint	NMED IndOccSoil (0-1')	NMED IndOccSoil Endpoint	NMED ConsWork Soil (0-10')	NMED ConsWork Soil_ Endpoint	EPA Industrial Soil (0-2')	EPA IndSoil_key	NMED DAF1 SoilGW	EPA GW_Risk- based SSL_ SoilGW	EPA GW_MCL- based SSL_ SoilGW
Tetrachloroethene (PCE)	1.10E+02	C	2.40E+01	* * °	6.24E+02	U	1.19E+02	C	1.00E+02	* * O	1.99E-03	5.10E-03	2.30E-03
Toluene	5.22E+03	u	4.90E+03	NS	6.11E+04	L	1.40E+04	u	4.70E+04	SU	5.55E-01	7.60E-01	6.90E-01
trans-1,2-DCE	2.93E+02	u	1.60E+03	u	1.60E+03	ns	3.03E+02	u	2.30E+04	ns	2.52E-02	1.10E-01	3.10E-02
trans-1,3-Dichloropropene	2.91E+01	၁	1.80E+00	*3	1.46E+02	O	1.29E+02	u	8.20E+00	*0	1.40E-03	1.70E-04	ı
Trichloroethene (TCE)	6.72E+00	n	9.40E-01	**3	3.61E+01	n	6.84E+00	n	6.00E+00	C**	1.55E-03	1.80E-04	1.80E-03
Trichlorofluoromethane	1.22E+03	n	7.30E+02	n	5.98E+03	n	1.12E+03	n	3.10E+03	SU	7.84E-01	7.30E-01	1
Vinyl chloride	7.41E-01	С	5.90E-02	C	2.83E+01	С	1.60E+02	С	1.70E+00	Э	6.70E-04	6.50E-06	6.90E-04
Xylenes, Total	8.63E+02	n	5.50E+02	SU	4.24E+03	u	7.91E+02	n	2.40E+03	SU	7.72E+00	1.90E-01	
Semi-volatiles (mg/kg)													
1,2,4-Trichlorobenzene	8.22E+01	ч	2.40E+01	* * * 0	4.19E+02	u	7.84E+01	ч	1.10E+02	* * *	1.55E-01	3.30E-03	2.00E-01
1,2-Dichlorobenzene	2.14E+03	u	1.80E+03	NS	1.29E+04	u	2.47E+03	u	9.30E+03	SU	4.54E-01	3.00E-01	5.80E-01
1,3-Dichlorobenzene		-	-	'	,		1	,	,	,	'	,	1
1,4-Dichlorobenzene	1.29E+03	С	2.60E+00	О	6.73E+03	С	2.48E+04	n	1.10E+01	С	5.61E-02	4.60E-04	7.20E-02
1-Methylnaphthalene	1.72E+02	С	1.80E+01	C	8.13E+02	С	6.06E+03	С	7.30E+01	С	4.47E-02	5.80E-03	1
2,4,5-Trichlorophenol	6.16E+03	n	6.30E+03	n	9.16E+04	n	2.69E+04	n	8.20E+04	n	3.31E+00	4.40E+00	1
2,4,6-Trichlorophenol	6.16E+01	n	4.90E+01	C**	9.16E+02	n	2.69E+02	n	2.10E+02	C**	3.37E-02	1.50E-02	1
2,4-Dichlorophenol	1.85E+02	n	1.90E+02	n	2.75E+03	n	8.07E+02	n	2.50E+03	n	4.13E-02	5.40E-02	1
2,4-Dimethylphenol	1.23E+03	n	1.30E+03	n	1.83E+04	n	5.38E+03	n	1.60E+04	n	3.22E-01	4.20E-01	1
2,4-Dinitrophenol	1.23E+02	u	1.30E+02	u	1.83E+03	u	5.38E+02	u	1.60E+03	u	3.34E-02	4.40E-02	ı
2,4-Dinitrotoluene	1.71E+01	C	1.70E+00	C *	8.23E+01	О	5.36E+02	n	7.40E+00	O	2.46E-03	3.20E-04	1
2,6-Dinitrotoluene	3.56E+00	C	3.60E-01	*0	1.72E+01	О	8.09E+01	u	1.50E+00	O	5.12E-04	6.70E-05	ı
2-Chloronaphthalene	6.26E+03	u	4.80E+03	u	1.04E+05	u	2.83E+04	u	6.00E+04	u	2.85E+00	3.80E+00	1
2-Chlorophenol	3.91E+02	n	3.90E+02	u	6.49E+03	u	1.77E+03	n	5.80E+03	u	5.76E-02	7.40E-02	1
2-Methylnaphthalene	2.32E+02	u	2.40E+02	u	3.37E+03	u	1.00E+03	u	3.00E+03	u	1.38E-01	1.90E-01	1
'2-Methylphenol (cresol,o-)	ı	-	3.20E+03	u	1		,	-	4.10E+04	u	'	7.50E-01	1
2-Nitroaniline	-	-	6.30E+02	u	1	,	1	'	8.00E+03	u	'	8.00E-02	ı
2-Nitrophenol	ı	-		ı			,	,	1	ı	'	,	1
3,3´-Dichlorobenzidine	1.18E+01	С	1.20E+00	O	5.70E+01	О	4.10E+02	С	5.10E+00	O	6.21E-03	8.10E-04	ı
3+4-Methylphenol	ı	-	1	,		,	,	'	ı	ı	'	'	ı
3-Nitroaniline	ı	-	-	1	1	1	1	'	ı	1	'	,	1
4,6-Dinitro-2-methylphenol	4.93E+00	n	-	'	7.33E+01	u	2.15E+01	n	'	'	1.99E-03	'	1
4-Bromophenyl phenyl ether	-	-	1	,	1	ı	,	'	ı	,		1	1
4-Chloro-3-methylphenol	ı	-	1	,		,	,	'	ı	ı	'	'	ı
4-Chloroaniline	ı	-	2.70E+00	*2	1	1	1	'	1.10E+01	O	1	1.60E-04	1
4-Chlorophenyl phenyl ether	1	-	1	1	ı	-		'	1	,	'	'	ı
4-Nitroaniline	1	-	2.70E+01	* * C	'	'	'	'	1.10E+02	C*	'	1.60E-03	1
4-Nitrophenol	1	-	1	'	1	ı	'	'	1	'	'	'	1
Acenaphthene	3.48E+03	С	3.60E+03	u	5.05E+04	u	1.51E+04	С	4.50E+04	u	1.54E-03	5.50E+00	

Table 5 - Soil Screening Levels Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	NMED Residential (0-10')	endpoint	EPA Residential (0-2')	endpoint	NMED IndOccSoil (0-1')	NMED IndOccSoil Endpoint	NMED ConsWork Soil (0-10')	NMED ConsWork Soil_ Endpoint	EPA Industrial Soil (0-2')	EPA IndSoil_key	NMED DAF1 SoilGW	EPA GW_Risk- based SSL_ SoilGW	EPA GW_MCL- based SSL_ SoilGW
Acenaphthylene	-	•	,	ı		ı	,	,	-	,	•	,	1
Aniline	-	-	9.50E+01	C**		1	-	1	4.00E+02	*2	-	4.60E-03	,
Anthracene	1.74E+04	u	1.80E+04	n	2.53E+05	lu	7.53E+04	u	2.30E+05	nm	4.25E+01	5.80E+01	•
Azobenzene		-	5.60E+00	С	-	1	-		2.60E+01	С	-	9.20E+04	•
Benz(a)anthracene	1.53E+00	С	1.60E-01	С	3.23E+01	С	2.40E+02	C	2.90E+00	С	3.18E-02	4.30E-03	•
Benzo(a)pyrene	1.12E+00	Э	1.60E-02	С	2.36E+01	С	1.06E+02	Э	2.90E-01	С	1.76E-01	4.00E-03	2.40E-01
Benzo(b)fluoranthene	1.53E+00	Э	1.60E-01	С	3.23E+01	С	2.40E+02	Э	2.90E+00	С	3.09E-01	4.10E-02	
Benzo(g,h,i)perylene	-	-	-		-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	1.53E+01	Э	1.60E+00	С	3.23E+02	С	2.31E+03	Э	2.90E+01	С	3.02E+00	4.00E-01	•
Benzoic acid	-	-	2.50E+05	uu	-	-	-	-	3.30E+06	nm	-	1.80E+01	•
Benzyl alcohol	-	-	6.30E+03	n	-	-	-	-	8.20E+04	nm	-	4.80E-01	•
Bis(2-chloroethoxy)methane	-	-	1.90E+02	u	-	1	-	1	2.50E+03	u	-	1.30E-02	1
Bis(2-chloroethyl)ether	3.10E+00	Э	2.30E-01	С	1.56E+01	С	1.93E+00	Э	1.00E+00	С	3.03E-05	3.60E-06	•
Bis(2-chloroisopropyl)ether	9.93E+01	၁	-	1	5.19E+02	С	3.54E+03	Э	-	-	2.38E-03	-	-
Bis(2-ethylhexyl)phthalate	3.80E+02	Э	3.90E+01	c*	1.83E+03	С	5.38E+03	u	1.60E+02	С	1.08E+00	1.30E+00	1.40E+00
Butyl benzyl phthalate	-	-	2.90E+02	c*	-	-	-	-	1.20E+03	С	-	2.30E-01	-
Carbazole	-	-	,	1		1	-	-	-	-	•	-	
Chrysene	1.53E+02	Э	1.60E+01	О	3.23E+03	Э	2.31E+04	Э	2.90E+02	0	9.30E+00	1.20E+00	1
Dibenz(a,h)anthracene	1.53E-01	Э	1.60E-02	С	3.23E+00	С	2.40E+01	O	2.90E-01	С	9.84E-02	1.30E-02	•
Dibenzofuran	-	-	-	-	-	-	-	-	-	-	-	-	-
Diethyl phthalate	4.93E+04	u	5.10E+04	n	7.33E+05	n	2.15E+05	u	6.60E+05	nm	4.89E+00	6.10E+00	•
Dimethyl phthalate	6.16E+04	n	-	,	9.16E+05	n	2.69E+05	u	-	-	1.78E-01	-	-
Di-n-butyl phthalate	6.16E+03	n	-	1	9.16E+04	n	2.69E+04	u	-	-	1.69E+00	-	-
Di-n-octyl phthalate	-	1	'	,	'	1	,	ı	'	'	'	,	,
Fluoranthene	2.32E+03	u	2.40E+03	u	3.37E+04	u	1.00E+04	ᄕ	3.00E+04	u	6.69E+01	8.90E+01	
Fluorene	2.32E+03	n	2.40E+03	u	3.37E+04	u	1.00E+04	L	3.00E+04	u	4.00E+00	5.40E+00	
Hexachlorobenzene	3.33E+00	O	2.10E-01	O	1.60E+01	С	1.17E+02	O	9.60E-01	O	9.47E-03	1.20E-04	1.30E-02
Hexachlorobutadiene	6.16E+01	n	1.20E+00	c*	5.17E+01	С	2.69E+02	L	5.30E+00	O	2.07E-03	2.60E-04	,
Hexachlorocyclopentadiene	2.28E+00	n	1.80E+00	u	5.49E+03	u	8.67E+02	L	7.50E+00	u	1.20E-01	1.30E-03	1.60E-01
Hexachloroethane	4.31E+01	u	1.80E+00	°*	6.41E+02	u	1.88E+02	Ľ	8.00E+00	*0	1.60E-03	2.00E-04	
Indeno(1,2,3-cd)pyrene	1.53E+00	O	1.60E-01	O	3.23E+01	С	2.40E+02	O	2.90E+00	O	1.00E+00	1.30E-01	,
Isophorone	5.61E+03	Э			2.70E+04	C	5.37E+04	Ľ			2.12E-01		
Naphthalene	1.16E+03	n	3.80E+00	c*	1.68E+04	n	5.02E+03	Ц	1.70E+01	C*	4.11E-03	5.40E-04	-
Nitrobenzene	5.99E+01	С	5.10E+00	C*	2.91E+02	С	3.51E+02	u	2.20E+01	C*	7.20E-04	9.20E-05	•
N-Nitrosodi-n-propylamine	,	-	7.80E-02	O	'	1	'	1	3.30E-01	O	-	8.10E-06	'
N-Nitrosodiphenylamine	1.09E+03	Э	1.10E+02	Э	5.24E+03	O	3.79E+04	Э	4.70E+02	O	5.02E-01	6.60E-02	,
Pentachlorophenol	9.85E+00	C	1.00E+00	O	4.45E+01	O	3.46E+02	၁	4.00E+00	O	7.61E-03	4.00E-04	1.00E-02
Phenanthrene	1.74E+03	u	'		2.53E+04	u	7.53E+03	С	-	•	4.30E+00	'	

	NMED Residential (0-10')	endpoint	EPA endpoint Residential (0-2')	endpoint	NMED IndOccSoil (0-1')	NMED IndOccSoil Endpoint	NMED ConsWork Soil (0-10')	NMED ConsWork Soil_ Endpoint	EPA Industrial Soil (0-2')	EPA IndSoil_key	NMED DAF1 SoilGW	EPA GW_Risk- based SSL_ SoilGW	EPA GW_MCL- based SSL_ SoilGW
Phenol	1.85E+04	u	1.90E+04	u	2.75E+05	u	7.74E+04	ч	2.50E+05	nm	2.62E+00 3.30E+00	3.30E+00	1
Pyrene	1.74E+03	u	1.80E+03	u	2.53E+04	u	7.53E+03	u	2.30E+04	n	9.59E+00 1.30E+01	1.30E+01	1
Pyridine	-	•	7.80E+01	u	-	-	1	-	1.20E+03	n	-	6.80E-03	1
Total Petroleum Hydrocarbons (mg/kg)	g/kg)												
Gasoline Range Organics (GRO)	1.00E+03	-	-	•	3.80E+03	-		-	-	-	-	-	1
Diesel Range Organics (DRO)	1.00E+03	-		•	3.80E+03	-		-	-	-	-	-	1
Motor Oil Range Organics (MRO)	1.00E+03	,	-	1	3.80E+03	-	,	,	-	-	-		1

- No screening level or analytical result available NMED - New Mexico Environment Department Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

EPA - Environmental Protection Agency Regional Screening Levels (June 2017) NMED TPH Soil Screening Levels "unknown oil"

c -carcinogen

cs - carcinogenic, SSL may exceed saturation c* - where: n SL < 100X c SL c** - where n SL < 10X c SL

n - noncarcinogenic

ns - noncarcinogenic, SSL may exceed saturation nl - noncarcinogenic, SSL may exceed ceiling limit nm - concentration may exceed ceiling limit

				EPA		
	New Mexico	NMED Tap	NMED	Screening	EPA	
	WQCC	Water	TapW_key	Levels.Tap	TapW_key	MCL
	Standards			Water		
Metals (ug/l) TOTAL						
Antimony	-	7.26	n	7.80	n	6
Arsenic	100	0.86	С	0.05	С	10
Barium	-	3280	n	3800	n	2000
Beryllium	-	12.40	n	25	n	4
Cadmium	-	6.24	n	9.20	n	5
Chromium	50	5.70	С	22000	n	-
Cobalt	-	-	-	6.00	n	-
Cyanide	200	1.46	n	1.50	n	200
Iron		13800	n	14000	n	-
Lead	50	-	-	15	L	15
Manganese		2020	n	430	n	-
Mercury	2	0.63	n	0.63	n	2
Nickel	-	372	n	200	n	-
Selenium	50	98.7	n	100	n	50
Silver	50	81.2	n	94	n	-
Vanadium	-	63.1	n	86	n	-
Zinc	10000	5960	n	6000	n	-
Chloride	250000	-	-	-	-	-
Fluoride	1600	1180	n	800	n	4000
Sulfate	600000	-	-	-	-	-
Metals (ug/l) DISSOLVED						
Antimony (D)	_	7.26	n	7.80	n	6
Arsenic (D)	100	0.86	С	0.05	С	10
Barium (D)	1000	3280.00	n	3800	n	2000
Beryllium (D)	-	12.40	n	25	n	4
Cadmium (D)	10	6.24	n	9.20	n	5
Chromium (D)	50	5.70	С	22000	n	
Cobalt (D)	50	-	-	6	n	_
Cyanide (D)	200	1.46	n	1.50	n	200
Iron (D)	1000	13800.00	n	15	L	
Lead (D)	50	-	-	430	n	15
Manganese (D)	200	2020.00	n	200	n	-
Nickel (D)	-	372	n	100	n	_
Selenium (D)	50	98.7	n	94	n	50
Silver (D)	50	81.2	n	86	n	-
Vanadium (D)	-	63.1	n	6000	n	_
Zinc (D)	10000	5960	n		n	_
Volatiles (ug/l)						
1,1,1,2-Tetrachloroethane	_	5.74	С	0.57	С	_
1,1,1-Trichloroethane	60	8003	n	8000	n	200
1,1,2,2-Tetrachloroethane	10	0.76	C	0.076	C	-
1,1,2-Trichloroethane	10	0.41	С	0.070	C**	5
1,1-Dichloroethane	25	27.5	С	2.80	С	<u></u>
1,1-Dichloroethene	5	284	n	280	n	7
1,1-Dichloropropene	-	-	-	-	-	-
1,2,3-Trichlorobenzene	-	-	-	7	n -	<u>-</u>
1,2,3-Trichloropenzene		0.01		0.00075	C	-
1,2,3-monoropropane	-		С	1.20	C**	70
1,2,4-Trichlorobenzene (V)	-	3.98	С	1 7 7 1 1	$\wedge x x$	// \

	New Mexico			EPA		
	WQCC Standards	NMED Tap Water	NMED TapW_key	Screening Levels.Tap Water	EPA TapW_key	MCL
1,2-Dibromo-3-chloropropane	-	0.00	С	0.00033	С	0.2
1,2-Dibromoethane (EDB)	0.1	0.07	С	0.0075	С	0.05
1,2-Dichlorobenzene (V)	-	302	n	300	n	600
1,2-Dichloroethane (EDC)	10	1.71	С	0.17	C*	5
1,2-Dichloropropane	-	4.38	С	0.85	С*	5
1,3,5-Trimethylbenzene	-	-	-	60	n	-
1,3-Dichlorobenzene (V)	-	-	-	-	-	-
1,3-Dichloropropane	-	-	-	370	n	-
1,4-Dichlorobenzene (V)	-	4.82	С	0.48	С	75
1-Methylnaphthalene (V)	-	_	-	1.10	С	-
2,2-Dichloropropane	-	_	_	_	_	-
2-Butanone	-	5565	n	5600	n	-
2-Chlorotoluene	-	-	-	240	n	-
2-Hexanone	+ -	_	_	38	-	_
2-Methylnaphthalene (V)	<u> </u>	_	_	36	n	_
4-Chlorotoluene	-	_	_	250	n	_
4-Isopropyltoluene	_	_	_		-	_
4-Methyl-2-pentanone	 -	_	_	_	-	_
Acetone	_	14100	n	14000	n	
Benzene	10	4.55	С	0.46	C*	5
Bromobenzene	-		-	62	n	
Bromodichloromethane	-	1.34	С	0.13	C	
Bromoform	-	1.54	-	3.30	C*	<u>-</u>
Bromomethane		7.54	n	7.50	n	
Carbon disulfide	-	810		810	n	-
	10	4.55	n	0.46		<u>-</u> 5
Carbon Tetrachloride			C	78.00	С	100
Chlorobenzene Chloroethane	-	77.6 20857	n -	-	n -	100
Chloroform		2.29		0.22	C	-
	100		С	190.00		-
Chloromethane	-	20.3	С	36	n	70
cis-1,2-DCE	-	36.5	n		n	70
cis-1,3-Dichloropropene	-	4.71	С	0.47	С	-
Dibromochloromethane	-	1.68	С	0.87	С	-
Dibromomethane	-	- 407	-	8.30	n	-
Dichlorodifluoromethane	- 750	197	n	200	n	- 700
Ethylbenzene	750	15.0	С	1.50	C	700
Hexachlorobutadiene (V)	-	1.39	С	0.14	C*	-
Isopropylbenzene	-	447	n	450	n	-
Methyl tert-butyl ether (MTBE)	-	143	С	14	С	<u>-</u>
Methylene Chloride	100	106	С	11	C**	5
Naphthalene (V)	-	1.65	С	0.17	C*	-
n-Butylbenzene	-	-	-	1000	-	-
n-Propylbenzene	-	-	-	660	-	-
sec-Butylbenzene	-	-	-	2000	-	-
Styrene	-	1205	n	1200	n	100
tert-Butylbenzene	-	-	-	-	-	-
Tetrachloroethene (PCE)	20	40.3	С	11	C**	5
Toluene	750	1093.2	n	1100	n	1000
trans-1,2-DCE	-	93.2	n	360	n	100
trans-1,3-Dichloropropene	-	4.71	С	0.47	C*	-
Trichloroethene (TCE)	100	2.59	С	0.49	C**	5

			Г	ī		
	New Mexico			EPA		
	WQCC	NMED Tap	NMED	Screening	EPA	MCL
	Standards	Water	TapW_key	Levels.Tap Water	TapW_key	
Trichlorofluoromethane	-	1137	n	5200	n	-
Vinyl chloride	1	0.32	С	0.019	С	2
Xylenes, Total	620	193	n	190	n	10000
Semi-volatiles (ug/l)						
1,2,4-Trichlorobenzene	-	4.0	С	1.2	С	70
1,2-Dichlorobenzene	-	302	n	300	n	600
1,3-Dichlorobenzene	-	-	-	-	-	-
1,4-Dichlorobenzene	-	4.82	С	0.48	С	75
1-Methylnaphthalene	-	-	-	1.10	С	-
2,4,5-Trichlorophenol	-	1166	n	1200	n	-
2,4,6-Trichlorophenol	-	11.9	n	4.10	C**	-
2,4-Dichlorophenol	-	45.3	n	46	n	-
2,4-Dimethylphenol	-	353.9	n	360	n	-
2,4-Dinitrophenol	-	38.7	n	39	n	-
2,4-Dinitrotoluene	-	2.37	С	0.24	С	-
2,6-Dinitrotoluene	-	0.49	С	0.049	С	-
2-Chloronaphthalene	-	733	n	750	n	-
2-Chlorophenol	-	91.0	n	91	n	-
2-Methylnaphthalene	-	-	-	36	n	-
2-Methylphenol	-	-	_	930	n	-
2-Nitroaniline	-	-	-	190	n	-
2-Nitrophenol	-	-	-	-	-	-
3,3´-Dichlorobenzidine	-	1.25	С	0.13	С	-
3+4-Methylphenol	-	_	_	930	n	-
3-Nitroaniline	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol	-	1.52	n	-	-	-
4-Bromophenyl phenyl ether	-	-	-	-	-	-
4-Chloro-3-methylphenol	-	-	-	-	-	-
4-Chloroaniline	-	-	-	0.37	С	-
4-Chlorophenyl phenyl ether	-	-	-	-	-	-
4-Nitroaniline	-	-	-	3.80	c*	-
4-Nitrophenol	-	-	-	-	-	-
Acenaphthene	-	535	n	530	n	-
Acenaphthylene	-	-	-	-	-	-
Aniline	-	-	-	13	C*	-
Anthracene	-	1721	n	1800	n	-
Azobenzene	-	-	-	0.12	С	-
Benz(a)anthracene	-	0.12	С	0.03	С	-
Benzo(a)pyrene	0.7	0.25	С	0.025	С	0.2
Benzo(b)fluoranthene	-	0.34	С	0.25	С	-
Benzo(g,h,i)perylene	-	-	-	-	-	-
Benzo(k)fluoranthene	-	3.43	С	2.50	С	-
Benzoic acid	-	-	-	75000	n	-
Benzyl alcohol	-	-	-	2000	n	-
Bis(2-chloroethoxy)methane	-	-	-	59	n	-
Bis(2-chloroethyl)ether	-	0.14	С	0.014	С	-
Bis(2-chloroisopropyl)ether	-	9.81	С	-	-	-
Bis(2-ethylhexyl)phthalate	-	55.6	С	5.60	C*	6
Butyl benzyl phthalate	-	-	-	16	С	-
Carbazole	-	-	-	-	-	-
Chrysene	-	34.3	С	25.00	С	-

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL
Dibenz(a,h)anthracene	-	0.03	С	0.025	С	-
Dibenzofuran	-	-	-	7.90	-	-
Diethyl phthalate	-	14801	n	15000	n	-
Dimethyl phthalate	-	-	-	-	-	-
Di-n-butyl phthalate	-	885	n	-	-	-
Di-n-octyl phthalate	-	-	-	-	-	-
Fluoranthene	-	802	n	800	n	-
Fluorene	-	288	n	290	n	-
Hexachlorobenzene	-	0.10	С	0.0098	С	1
Hexachlorobutadiene	-	1.39	С	0.14	C*	-
Hexachlorocyclopentadiene	-	0.41	n	0.41	n	50
Hexachloroethane	-	3.28	С	0.33	C**	-
Indeno(1,2,3-cd)pyrene	-	0.34	С	0.25	С	-
Isophorone	-	781	С	78.00	С	-
Naphthalene	-	1.65	С	0.17	C*	-
Nitrobenzene	-	1.40	n	0.14	С	-
N-Nitrosodimethylamine	-	0.0017	С	0.00011	С	-
N-Nitrosodi-n-propylamine	-	-	-	0.011	С	-
N-Nitrosodiphenylamine	-	0.0049	С	12.00	С	-
Phenanthrene	-	170	n	-	-	-
Pentachlorophenol	-	0.41	С	0.041	С	1
Phenol	-	5761	n	5800	n	-
Pyrene	-	117	n	120	n	-
Pyridine	-	-	-	20	n	-
TPH (mg/l)						
Gasoline Range Organics (GRO)	-	0.0398	-	-	-	-
Diesel Range Organics (DRO)	-	0.0398	-	-	-	-
Motor Oil Range Organics (MRO)	-	0.0398	-	•	-	-

- No screening level available

Bolded value represents applicable screening level for comparison to site concentrations NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

NMED Tap Water Screening Level - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

1609G64-007 9/27/2016	2.2 J 2.1 J 300 v 1.1 v < 0.0624 u		300 v < 0.0006 u 9 v < 1.7897 u < 0.0616 u 13 v	< 0.0064 u < 0.0041 u < 0.0108 u < 0.0078 u < 0.0038 u	 < 0.0218 u < 0.0053 u < 0.01 u < 0.0115 u < 0.0071 u 	2.4 v < 0.0204 u < 0.0047 u < 0.0058 u < 0.0174 u < 0.0056 u	 < 0.0055 u < 0.0056 u < 0.0076 u < 0.0082 u < 0.023 u < 0.023 u < 0.038 u 	 < 0.0049 u < 0.0362 u < 0.045 J < 0.0059 u < 0.17 v < 0.0194 u < 0.0194 u 		0.0054 0.0053 0.0059 0.0061 0.006 0.0068 0.0068 0.0058
1609G64-006 9/27/2016	 < 1.0019 u 1.6 J 180 v 0.64 v < 0.0631 u 		200 v 0.0021 J 5.5 v < 1.8115 u < 0.0623 u 13 v	< 0.1195 u < 0.0762 u < 0.2023 u < 0.1471 u < 0.0675 u	 < 0.4089 u < 0.099 u < 0.1868 u < 0.2159 u < 0.21335 u 	35 3824 0888 .109 3255 1047	0.1024 0.1417 0.1547 0.049 0.0715 0.7134	 < 0.0921 u < 0.6793 u 1.1 J < 0.1104 u 1.5 v < 0.3638 u < 1.6153 u 		0.1016 0.2492 0.0942 0.1111 0.0726 0.1151 0.1128 0.1081 0.3863
1609G64-005 9/27/2016	 < 0.9961 u 1.7 J 440 v 0.57 v 0.57 v 0.052 u 		390 v 0.0033 J 4.6 v <1.8011 u <0.062 u 14 v	< 0.0445 u < 0.0284 u < 0.0753 u < 0.0548 u < 0.0548 u < 0.0548 u	< 0.1522 u< 0.0369 u< 0.0695 u< 0.0804 u< 0.0497 u	.9 11423 .033 0405 11211 .039	81 27 76 66 66 55	 < 0.0343 u < 0.2528 u 1.6 J < 0.0411 u 0.22 J < 0.1354 u < 0.6044 u 	0.0305 0.0305 0.0374 0.0566 0.1711 0.1534	0.0378 0.0351 0.0351 0.0414 0.0428 0.0428 0.0402 0.0402
38-39) 38-39 569-3 1609G64-010 9/28/2016	 < 1.0114 u 2.2 J 340 v 0.9 v < 0.0637 u 		130 v < 0.0006 u 11 v < 1.8287 u < 0.0629 u 25 v 20 v	< 0.003 u< 0.0019 u< 0.0051 u< 0.0037 u< 0.0017 u	 < 0.0104 u < 0.0025 u < 0.0047 u < 0.0055 u < 0.0054 u 	v co.0037 v co.0097 u co.00023 u co.00028 u co.00083 u co.00083 u co.00087 u co.00083 u	0.0026 0.0026 0.0039 0.0071 0.0018	 < 0.0023 u < 0.0173 u < 0.0068 u < 0.0028 u < 0.0028 u < 0.001 J < 0.0092 u 	(0 00 00 10 10 10	0.0026 0.0028 0.0028 0.0029 0.0029 0.0027 0.0086
1609G64-009 9/28/2016	 < 1.0059 u 1.8 J 300 v 0.52 v < 0.0634 u 		300 v 0.002 J 4.7 v < 1.8187 u < 0.0626 u 13 v 9.9 v	< 0.5838 u< 0.3722 u< 0.9885 u< 0.7189 u< 0.3297 u	 < 1.9977 < 0.4838 < 0.9126 < 1.055 < 0.6524 u 	140 v < 1.8683 u < 0.4339 u < 0.5323 u < 1.5904 u < 0.5116 u	002 021 021 193 193 856	 < 0.45 u < 3.319 u < 1.3065 u < 0.5395 u 8.5 v < 1.7775 u < 7.8917 u 	44 0.4917 0.3554 0.7429 2.0138 0.4005	0.4966 0.4966 0.4602 0.5429 0.3547 0.5624 0.5511 0.5284 1.8873
1609G64-008 9/28/2016	1 J 1.3 J 320 v 0.58 v < 0.0631 u	6.6 v 3.2 v < 0.283 u 11000 v 2.8 v	230 v 0.0019 J 5.7 v < 1.8104 u < 0.0623 u 13 v 9.3 v	< 0.0031 u< 0.002 u< 0.0053 u< 0.0039 u< 0.0018 u	 < 0.0107 < 0.0026 < 0.0049 < 0.0057 < 0.0035 	0.012 u < 0.011 u < 0.0023 u < 0.0029 u < 0.0029 u < 0.0085 u < 0.0085 u < 0.0027 u	0.0027 0.0027 0.0037 0.004 0.0073 0.0019 0.00187	 < 0.0024 u < 0.0178 u < 0.0075 u < 0.0029 u < 0.0029 u < 0.0029 u 	0.014 0.0026 0.0026 0.0019 0.0108 0.0108	0.0027 0.0025 0.0025 0.0019 0.003 0.0028 0.0027
1610238-003 10/4/2016	 < 0.9847 u 2.7 v 300 v 0.58 v < 0.0621 u 		450 v < 0.0006 u 6.1 v < 1.7804 u < 0.0613 u 3.5 v	<pre><0.0019 u <0.0019 u <0.0019 u <0.0019 u <0.0019 u</pre>	<0.0003<0.0019<0.0019<0.0019<0.0006	0.0055 v <0.0002 u <0.00019 u <0.00019 u <0.00019 u <0.00019 u <0.0019 u <0.0019 u <0.0019 v <0.0019 u	 C.0023 C.0003 C.00019 C.00019 C.00004 C.00002 C.00009 D.00009 	 <0.0003 <0.0005 <0.0005 <0.0005 <0.0003 <0.0004 <0.0037 <0.0037 	0.0134 v c0.0002 u c0.0019 u c0.0019 u c0.00019 u c0.0003 u c0.0007 u c0.0007 u c0.00019 u	 <0.0002 <0.0003 <0.0003 <0.0019
1610238-002 10/4/2016	 < 1.0069 u 1.3 J 170 v 0.45 v < 0.0635 u 		370 v 0.002 J 4.5 v <1.8205 u <0.0626 u 10 v 8.5 v	< 0.0121 u< 0.0077 u< 0.0204 u< 0.0148 u< 0.0068 u	 < 0.0412 u < 0.01 u < 0.0188 u < 0.0218 u < 0.0218 u 	8.5 v c 0.0386 u c c 0.009 u c c 0.011 u c c 0.0328 u c c 0.0106 u c c 0.0106 u c c c c c c c c c c c c c c c c c c		 < 0.0093 u < 0.0685 u 0.46 J < 0.0111 u 0.049 J < 0.0367 u < 0.0367 u 	6.3 v 6.1025 6.3 v 6.00101 u c 0.0073 u c 0.00153 u c 0.00464 u c 0.00416 u c 0.00416 u c 0.0083 u c 0.0083 u c 0.0083	 < 0.0103 < 0.0103 < 0.0112 < 0.0112 < 0.0116 < 0.0116 < 0.0114 < 0.0114 < 0.0119 < 0.0109 < 4.8 < 4.8
1610238-001 10/4/2016	 < 0.9951 u 1.6 J 200 v 0.64 v < 0.0627 u 	710	210 v 0.0042 J 5.5 v <1.7993 u <0.0619 u 12 v 9.6 v	< 0.0056u< 0.0035u< 0.0094u< 0.0068u< 0.0031	 < 0.019 < 0.0046 < 0.0087 < 0.01 < 0.01 < 0.00 	2.2 v < 0.0178 u < 0.0041 u < 0.0051 u < 0.0051 u < 0.0151 u < 0.0049 u < 0.0049 u	+++++	 < 0.0043 u < 0.0316 u < 0.031 u < 0.0051 u < 0.003 u < 0.0169 u < 0.0169 u 	0.0067 0.0047 0.0034 0.0071 0.0214 0.0192	0.0047 0.0044 0.0052 0.0034 0.0054 0.0052 0.0052 0.0052
1610238-007 10/4/2016	 < 2.0134 u 3.3 J 380 v 0.26 J < 0.1269 u 	3 1.2 < 0.156 4400 1.1	1500		< 0.0107< 0.0026< 0.0049< 0.0056< 0.0056< 0.0035		 0.0027 0.0027 0.0037 0.004 0.0073 0.0019 0.0186 	 < 0.0024 < 0.0177 < 0.0092 < 0.0029 < 0.0029 < 0.0029 < 0.0095 	 0.0422 0.026 0.0026 0.0026 0.0019 0.0108 0.0108 0.0021 	 < 0.0027 < 0.0025 < 0.0026 < 0.0029 < 0.003 < 0.0028
38 36-3 1610238-006 10/4/2016	< 1.0132 u 2.4 J 1500 v 0.26 v < 0.0639 u	3.6 2.2 < 0.28 7900 1.2	710 v 0.0042 J 3.2 v < 1.8319 u < 0.063 u 14 v 7.6 v	< 0.009 u < 0.0057 u < 0.0153 u < 0.0111 u < 0.0051 u	< 0.0308< 0.0075< 0.0141< 0.0163< 0.0101	3.8 v < 0.0288 u < 0.0067 u < 0.0082 u < 0.0082 u < 0.0245 u < 0.0079 u < 1.3 v < 1.3 v	 C.0077 C.00107 C.0117 C.0117 C.0054 C.00538 	 < 0.0069 u < 0.0512 u 0.3 J < 0.0083 u 0.035 J < 0.035 u 	0.12 0.12 0.02 0.035 0.0055 0.0347 0.0341 0.0062	 < 0.0077 < 0.0188 < 0.0084 < 0.0055 < 0.0087 < 0.0085 < 0.0085 < 0.0085 < 0.0085 < 0.0082 < 0.0082 < 0.0081
1610238-005 10/4/2016	 < 0.9825 u 1.6 J 410 v 0.57 v < 0.0619 u 		190 v 0.0015 J 5 v < 1.7765 u < 0.0611 u 10 v 8.3 v	< 0.0025 u< 0.0016 u< 0.0043 u< 0.0031 u< 0.0014 u	 < 0.0086 < 0.0021 < 0.0039 < 0.0045 < 0.0028 	2.6		 < 0.0019 u < 0.0143 u 0.041 J < 0.0023 u 0.12 v < 0.0077 u 	 0.29 0.29 0.29 0.002 0.002 0.0021 0.0015 0.0032 0.0037 0.0087 0.0007 	0.0021 0.0052 0.0023 0.0024 0.0024 0.0023 0.0023 0.0081
1610238-004 10/4/2016	 < 0.9919 u 1.4 J 120 v 0.69 v < 0.0625 u 	 	190 v 0.0019 J 5.4 v < 1.7934 u < 0.0617 u 9.8 v	<0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u	<pre><0.0003 u <0.0017 u <0.0004 u <0.0017 u <0.0017 u <0.0005 u</pre>	<pre><0.0003 u <0.0002 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u</pre>		<pre><0.00034 u </pre> <0.0004 u <0.0004 u <0.0003 u <0.0003 u <0.0034 u <0.0034 u	0.0172 v 0.0172 v 0.0172 v 0.0002 v 0.00017 v 0.00017 v 0.00003 v 0.00006 v 0.00017 v 0.00006 v 0.00017 v	082422
75-35-37 1609G64-003 9/27/2016	1.4 J 2.1 J 130 v 0.74 v < 0.0633 u	8.3 2.4 < 0.225 14000 1.6	330 v < 0.0006 u 5.7 v < 1.8162 u < 0.0625 u 6.4 v 9 v		<pre><0.0003 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0005 u</pre>	0.0006 u <0.0002 u <0.0017 u <0.00017 u				

	Residential & Soil	Non- Residential	urce	(12-1 4 ')	(36-92)	(,67-84)	(22-24)		(108-82) 2	(128-36)	(,54-56')	r(3e-38 _i)	r(40-45 ₁)	5(16-18')	5(29-31,)	(36-38')	('81-91) 8	(.97-72)	('98-38') 8	(170-15)	(32-341)	(,G t-44)]
		Screening Level		TK-568-1										Z-699XI				TK 269-3	E-699 XI		TK 570-1	TK 670-1
				1609E26-008	8 1609 9/23)09 1609E26 16 9/23/20	3-010 1609G(016 9/27/	64-001 16090/ /2016 9/27	364-002 1609G 72016 9/27	364-003 161023 72016 10/4/3	38-004 161023. 72016 10/4/2	8-005 1610238 2016 10/4/20	3-006 1610238-C	007 1610238-0 16 10/4/201	001 1610238-00 6 10/4/2010	002 1610238-003 16 10/4/2016	3 1609G64-008 3 9/28/2016	8 1609G64-009 9/28/2016	1609G64-010 9/28/2016	1609G64-005 9/27/2016	1609G64-006 9/27/2016	1609G64-00 9/27/2016
Hexachlorobutadiene	6.16E+01 (1)	5.17E+01		< 0.1533	n < 0.0	> 	э	v ה	95 u	ם	n < 0.	u < 0.01	u < 0.0	\ \ \ \	154	u <0.0004	.004	.7459	0.0039	.0568	.1527	< 0.0081 u
opropylbenzene		2.71E+03		0.94	¬ =	¬ ;	т п -	л - - с		n >	ر ت	> 0.08	0.00	+		0.001	< 0.0028	23	0.02	0.64	_	0.32
ethylene chloride	4.09E+02 (1)	1.20E+03	(2)	< 0.3614	7 × 0.0867	600.0 > u	ם ר	17 u < 0.18	24 7 n	17 u <0.0017	, v , v	u < 0.027	1 u < 0.0094	u < 0.0168	u < 0.0363	+-	u < 0.0094	u < 1.7587 u	< 0.0091 u	< 0.134 u	n 98.0 >	< 0.0203
aphthalene		5.02E+03		3	>	>	ס	n 2	>	n _	o n	J 0.32	>	J		<0.0019	< 0.0051	1.2	< 0.005	2.8		0.079
Butylbenzene	3.90E+03 (2)	5.80E+04		1.3	¬ ;	¬ ;		D :	7000.0> L 7	n :	n :	>	¬ ;	¬ :	v 0.35	0.0005	< 0.0029	9.6				0.24
Propylbenzene		2.40E+04		5.2	> -	> -	D :	э :	> -	л :	л :	> ;	> -	> -	> :	0.0016	0.0025	33	0.048	> -		0.53
ec-Butylbenzene	7.23F+03 (2)	1.20E+05 1.01F+04	(2)	0.49	¬ =	¬ =	D =	D =	¬ =	n =) V	0.076	\	¬ =	V 0.T		0.0045	u 11 v	0.017	0.42 J	T.8 V	0.19 < 0.0059
rt-Butylbenzene		1.20E+05		< 0.1039	5 3	ם ב	5 3	v 5 D	0> n 68	5 3	, o	, v	5 D	y 5 D	· V	<0.0003	< 0.0027	< 0.5057			-	< 0.0055
strachloroethene (PCE)		1.19E+02		< 0.104	u < 0.0249	ם	ם	v n	n 68	ח	> n	v n	÷	n	< 0.01	u <0.0002	0.0027	< 0.5059		< 0.0385 u	0.1035	< 0.0055
oluene		40E		92	>	>	n	J 2	>	_	ſ	>	>	>	v 32		111	310				2.3
ans-1,2-DCE		3.03E+02		< 0.3509	n	ם	ם	n	n	n	0 > n	v n	n	v n	u < 0.0352	u <0.0002	o.	u < 1.7074 u	n 6800.0 >	< 0.13 u	< 0.3495 u	< 0.0186
ans-1,3-Dichloropropene		1.29E+02		< 0.1835	ם	ס	D .	У Э	Э	ם	0 v	v n	ם ס	v Э	u < 0.0184		0.0048	< 0.8927	0.0046	0.068	0.1827	< 0.0097
richloroethene (TCE)	6.72E+00 (1)	6.84E+00	(5)	< 0.1344	u < 0.0322	5 :	3 u <0.0017	> \ > :	л :	5 :	0 \ v		5 :		<u> </u>	<0.0019	< 0.0035	u < 0.6539 u		< 0.0498 u	_	< 0.0071
inyl chloride		2.83E+01		< 0.1025	5 3	5 5	3 3	/ V 3 3	5 5	5 0) v	, v p p	5 3	/ V	u < 0.0034	_	0.0027	0.4988	0.0024 u0.0026 u	0.038	< 0.0933 u < 0.1021 u	< 0.0054
ylenes, Total		7.91E+02		120	5 >	5 >	5 5	5 ¬			ם ס	5 >	5 >	5 >	+	0.019	0.015	200	0.5		110	9
emi-volatiles (mg/kg)						ŀ	-					ŀ	-		•	•	•		•	•		-
2,4-Trichlorobenzene	8.22E+01 (1)	7.84E+01	(2)	< 1.0571	ס	ם ס	v ,	у , П	ב ס	у [']	n (у , Э	u < 0.1	_D	V	< 0.1088	< 0.1074	< 1.0818	< 0.1081	0.1087	0.1071	< 0.1075
2-Dichlorobenzene 3-Dichlorobenzene		2.47E+03		< 0.7485	u < 0.0762	v v = =	0.076 n < 0.076	67 u < 0.0764	v v ===================================	53 u < 0.0759	0 V V	12 u < 0.0761	1 u < 0.0762 3 u < 0.0769	>	u < 0.0744	0 //0.0 > n	9767	u < 0.766 u	V V	n 69/0.0 >	n 66/0.0 >	< 0.0768
4-Dichlorobenzene	1.29F+03 (1)	6 73F+03	(4)	< 0.8262	3 =	′ ∨ s =	3 =	' V	, v	' V) C / V	, v 3 =	′ ∨ 3 =	, v	′ ∨	, , , , , , , , , , , , , , , , , , ,	0.0.0	< 0.455	< 0.07	0.0849	0.037	0.01 300.084
Methylnaphthalene		8.13E+02		1.5	3 7	' V 3 3	3 3	, D D	′ ∨ 5 >	' V	0 '	' v	, 3 3	, D D	/ V	< 0.1011	< 0.0998	< 1.0049	< 0.0045		1.3	n 6660.0 >
4,5-Trichlorophenol		2.69E+04		< 0.978	ם	0 ×	ח	> n	v n	v л	0 > n	v п	0 v	v л	u < 0.0972	< 0.1007	< 0.0994	< 1.0008	< 0.1	< 0.1005 u		0.0995
4,6-Trichlorophenol		2.69E+02		< 0.8108	ח	n	v n	23 u <	> n 2	v n	0 > n	v n	v n	v n	o.0806		3824	u < 0.8297 u	٧	< 0.0833 u	< 0.0822 u	< 0.0825
4-Dichlorophenol	1.85E+02 (1)	8.07E+02	(2)	< 0.9116	_	<u>э</u>	n :	у у п :	ם כ	> \ \))	n :	n :	n :		< 0.0938	< 0.0926	< 0.9329	< 0.0932	< 0.0937 u	< 0.0924 u	< 0.0927
4-Dinitrophenol	1.23E+03 (±)	5.38E+03		< 1.0013 < 0.6482	3 =	v v n =	1	78 u < 0.1087	y y n =	552 11 < 0.0658) V D =	v v n =	9 U < 0.108	0 × 0.1081	u < 0.1055	760T.0 > n	10 / 8 2658	u < 1.080 u	/	n 1601.0 >	0.27	< 0.0659
4-Dinitrotoluene	71E+01	8.23E+01		< 0.8727		v 5 D	5 3	v 5 = ==================================	V 7	v 5	0 v	0 v	V 5 D	٧	<u> </u>	< 0.0898	< 0.0887	< 0.8931	< 0.0892	4	0.0885	< 0.0888
6-Dinitrotoluene		1.72E+01		< 1.034	u < 0.1053	У Э	9 u < 0.105	v л)55 u < 0.104	v n	0 > n	У Э	ב	u < 0.1054	u < 0.1028		\vdash	u < 1.0582 u	V	< 0.1063 u	< 0.1048 u	< 0.1052
Chloronaphthalene	6.26E+03 (1)	2.83E+04		< 0.7693	-	ע י	_D	1 C	v ⁻	74 u <	0 v	> ·	У ¹	> ·		< 0.0792	< 0.0782	< 0.7873	< 0.0787	0.0791	0.078	< 0.0783
Uniorophenoi Mathylpaphthalope	3.91E+02 (I)	1.77E+03	(2)	< 0.7704		o v v	_) V	y \ 	> n = 99	n =	y \ =	v \	y 	u < 0.0766	< 0.0793	-	< 0.7883 7 1 1967	0.07880.1188	< 0.0792 u	81	< 0.0784
Methylphenol (cresol.o-)		4.10E+04		> 3.3	7 =	/ V 5 =	3 =	70 u T.3	> -	21 n		5 =	0.0831 c	u < 0.0832	V \ U.1133	0 < 0.0841			u Collino >	0.31	v 8.3 v 0.0828	< 0.0831
Vitroaniline	.30E+02	8.00E+03		< 1.0533	5 3	v 5 D	× 5 D	v 5 n	75 u < 0.	> n 69	0 > n	n < 0.	٧	٧	u < 0.1047	u < 0.1084		< 1.0779	< 0.1077	< 0.1083 u	0.1068	< 0.1071
Nitrophenol		-		< 0.9695	n	v n	v n	v n	v n	v n	0 > n	v n	s u < 0.0987	n < 0.0988	u < 0.0964		3885	u <0.9922 u	V	n 9660.0 >	o 0.0983	> 0.0986
3 '-Dichlorobenzidine	1.18E+01 (1)	5.70E+01	(4)	< 0.7195	э :	э :	D :	v э :	J -	u < 0.0	73 u < 0	5 :	у ` э :		u < 0.0715	0.0741	< 0.0731	< 0.7363	< 0.0736	< 0.074 u		< 0.0732
F4-Metrlylphenol			. ,	< 0.7075	3 =	v v n =	y v n =	CT:0 n ST	v v n =	/0.0 v	0 \ 1 = 0 \ \ 0 \	v v n =	0 < 0.072 0 < 0.0877	0 < 0.0878	u 0.14		07 TS	0 < 0.724 U	/	0.11	v 0.44 v	< 0.0876
6-Dinitro-2-methylphenol	4.93E+00 (1)	2.15E+01	(2)	< 0.5909	5 3	y 5 5	5 0	y 5 D	y 5 5	5 3	0 v 5 n	5 5	y 5 3	5 0	u < 0.0588	< 0.0608	> 0.06	< 0.6047	< 0.0604	0.0607	0.0599	< 0.0601
Bromophenyl phenyl ether				< 0.9343	п	v n	> n 2	v л	v כ	v n	0 > n	י ס	۷ ٦	0 > n	u < 0.0929	< 0.0962	< 0.0949	< 0.9561			0.0947	< 0.095
Chloro-3-methylphenol		, C	. 6	< 1.1659	э :)))	: □ :	у , п :	у \ ъ :	v v	3 n :	y \	л :	л :	u < 0.1159	< 0.12	< 0.1184	< 1.1931	< 0.1192	0.1198	0.1182	< 0.1186
Chlorophenyl phenyl ether	10-	T.TOE+02		< 1.0024 < 1.1165	3 =	v v n =	y y n =	79 u < 0.1084 34 < 0.114	y v n =		0 > 0 = 82		v v n =) V D	u < 0.1056	< 0.1093	< 0.1079	< 1.0872 < 1.1426	< 0.1080 < 0.1141	< 0.1092 u	0.10// 0.1132	< 0.1081 < 0.1136
Nitroaniline	2.70E+02 (3)	1.10E+03	(7)	689.0 >	u < 0.0702	3 3	, D	, v	703 u < 0.0693	0.0 ×	y 5	0.0 > n	y y	, v	u < 0.0685		< 0.07	u < 0.7051 u	' V	0.0708 u	n 8690.0 >	< 0.0701
Nitrophenol		-		< 0.7444	ם	v n	2 u < 0.07	> n 99	v n	v n	0 > n	0 > n	V	u < 0.	u < 0.074	> 0.0766	< 0.0756	< 0.7618	< 0.0761	-	0.0755	
senaphthene	3.48E+03 (1)	1.51E+04	(c) '	< 0.8379	D =	v v ===================================	× 0.08	y	v л =	v v э =) V D) V V	у у В =	y	u < 0.0833	< 0.0862	< 0.0851	< 0.85/5	< 0.0857	0.0861	0.0849	\circ
niline	9.50E+02 (3)	4.00E+03		< 0.9233	3 3	0 0 0	0.0 > n	, A	y 5 5	' V 3 3	0 > n 2	, o	, v 3 3).O >	u < 0.0918	+	0.0038	u < 0.9449 u	<u> </u>	< 0.0949 u	n 9260.0 >	< 0.0939
ıthracene		7.53E+04	(2)	< 0.6487	1		\vdash			\vdash	m	י ס	ľ	u < 0.	u < 0.0645	< 0.0668	< 0.0659	< 0.6638	< 0.0663	0.0667	< 0.0657 u	> 0.066
obenzene		2.60E+02		< 1.1908	ס	0 v	0 V	v п	v л	>) > n	u < 0.	1 u < 0.1212	0 V	u < 0.1184		0.121	< 1.2186		_	0.1207	< 0.1211
enz(a)anthracene	1.53E+00 (1) 1.12E+00 (1)	3.23E+01		< 0.8412	5 =	0 V 7 =) V V	y y ===================================	y v n =	>	D 0 0	v v ===================================	o u < 0.0856	v v ===================================	u < 0.0836	0.0866 0.00762	0.0855	u < 0.8609 u	< 0.086 u	< 0.0865 u		< 0.0856
enzo(b)fluoranthene	1.53E+00 (1)	3.23E+01		< 0.8826	3 3) (′ V 3 ⊃	, ^ 2 2	, , ,	' V 3 3	0	, o , v	8680.0 > n '	; ; ; ;	u < 0.0877	u < 0.0908	0.0897	< 0.9032	< 0.0902 u	_	o 0.0895 u	> 0.0898
enzo(g,h,i)perylene				< 0.8617	n	0 > n	0 > n	> n 2	> n 6	v n	4 u <0	u < 0.	3 u < 0.0877	n < 0.	u < 0.0857	u < 0.0887	0.0875	< 0.8818	3881	< 0.0886 u	0.0873	< 0.0877
enzo(k)fluoranthene	1.53E+01 (1)	3.23E+02		< 0.8609	Ъ	n < 0.	> n	> n	v n	v n	0 > n 8	n < 0.	5 u < 0.0876	n < 0.	u < 0.0856	u < 0.0886	u < 0.0875	u <0.881 u	o 0.088 u	o 0.0885 u	< 0.0873 u	< 0.0876
enzoic acid		3.30E+06		2.1	¬ :	> \ = :	> \ = :	v v	у \ л :	> \ > :	n :	\ \ \ \tag{1}	1 u < 0.0825	\ ت د	. < 0.0805	u < 0.0834	u < 0.0823 u	u 2 70 70 70 11	< 0.0828 u	0.17	< 0.0821 u	0.13
enzyr arconol is(2-chloroethoxy)methane	1.90E+02 (2)	8.20E+04 2.50E+03	(9)	< 0.765	3 3	u < 0.1086	/ V 5 5	/	/ V n n	/ V 5 5	0 0	n n	s u < 0.1079) / v	u < 0.00761 u < 0.1054	u < 0.1091	u < 0.1077	u < 0.7828 u u < 1.0851 u	< 0.1084 u	< 0.109 u	< 0.0775 u < 0.1075 u	< 0.1079
is(2-chloroethyl)ether		1.93E+00		< 0.718	Э	v n	v n	v n 6	> n	v n	3 u < 0	n	v n	v n	u < 0.0714	u < 0.0739	0.0729	u < 0.7348 u	< 0.0734 u	< 0.0738 u	< 0.0728 u	< 0.073
s(2-chloroisopropyl)ether	9.93E+01 (1)	5.19E+02		< 0.8725	5	v л -	у [°]	v л :	у	о ^с	n -		v л-	0 V	u < 0.0867	n < 0.0898	0.0886		< 0.0892 u	< 0.0897 u	< 0.0884 u	< 0.0888
S(2-etnylhexyl)phthalate		1.83E+03		< 0.7962	5 =	¬ =	v v ¬ =	n =	¬ =	¬ =	0 V 7 =	э =	¬ =	¬ =) 0.1 			J < 0.8148 u	0.12 J	0.11	0.14	0.12
arbazole		,		< 0.6599	5 3	y 5 D	, v 5 ⊃	5 3	, v 5 D	2 2	0 V D	, v 5 D	y > = = = = = = = = = = = = = = = = = =	790.0 > n	<u> </u>	< 0.0679	< 0.067	< 0.6753	< 0.0675	0.0678	6990.0	< 0.0671
rysene	1.53E+02 (1)	3.23E+03	(4)	< 0.8321	n	v n	n	v n	v n		0 > n	o >	۷ ت	v n	V	< 0.0856	< 0.0845	< 0.8516	V	ш	0.0843	< 0.0846

1.5 1.5	1.53E-01 4.93E+04 6.16E+03 6.16E+03 7.32E+03 2.32E+03 3.33E+00 6.16E+01	(1) (1) (1) (1) (2) (3) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Soil Screening Level Level 3.23E+00 3.23E+05 2.69E+05 2.69E+04 1.00E+04 1.00E+04 1.60E+01 5.17E+01		609E26-008 9/23/2016 0.7307 0.8945 0.8945 0.7705 1.1012		010	9 0 0 0 0 0 0 0 0			100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38-005 38-005 38-005 38-005 10 n n n n n n n n n n n n n n n n n n n	610238-00 10/4/2016 0.0804 0.0972 0.0972 0.087 0.087 0.087 0.087 0.0972 0.0972	610238-00 10/4/2016 0.0804 0.0973 0.0973 0.0973 0.0573 0.0784 0.0784	610238-00 10/4/2016 0.0805 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974 0.0974	1610238-00 10/4/2016 < 0.0977 < 0.095 < 0.0829 < 0.0889 < 0.0889 < 0.0766 < 0.0766 < 0.0766	10/4/2016 < 0.0813 < 0.0984 < 0.0988 < 0.0	ТК 1609664-00 9/28/2016 9/28/2016 0.0998 0.0971 0.022 0.0972 0.0909 0.0572 0.0909 0.0572 0.0909 0.0572	1609G64-00 9/28/2016 9/28/2016 9/28/2016 0.08086 0.07478 0.07478 0.078231 0.0576 0.0576 0.07885 0.0788	1609G64-01 1609G64-01 9/28/2016 < 0.0808 < 0.0977 < 0.0977 < 0.0975 < 0.0914 < 0.0914 < 0.0918	E	9/27/2016 0.0801 0.0969 0.0969 0.0969 0.0969 0.0969 0.0969 0.0969 0.0969	1609G64-007 1609G64-007 9/27/2016 < 0.0804 u < 0.0972 u
SEF-03 (1) 5.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1) 6.02e-03 (1)	2.28E+00 4.31E+01 1.53E+00 5.61E+03	(1) (1) (1)	8.67E+02 1.88E+02 3.23E+01 2.70E+04			<u> </u>	y y y y 3 3 3 3	V	v v v v = = = = =	v v v v = = = = = =	D D D D	D D D	0.1136 0.0854 0.0776 0.1099	0.0855 0.0777 0.011	0.0855 0.0778 0.1101	< 0.1111< 0.0835< 0.0759< 0.1074	0.1150.08640.07850.1112	< 0.1135< 0.0853< 0.0775< 0.1098	< 1.1433< 0.8591< 0.7809< 1.1056	< 0.1142< 0.0858< 0.078< 0.1104	< 0.1148< 0.0863< 0.0784< 0.111	0.0851 0.0773 0.1095	0.11370.08540.07760.1099
5524E+03 (4) C.0.09543 u C.0.0638 u C.0.0634 u C.0.0644 u	1.16E+03 5.99E+01 7.80E-01	(1) (1) (3)	5.02E+03 2.91E+02 3.30E+00		4.2 1.0084 0.9391	V V V	VVV) O O	> 3 3	y y y 3 3 3	3 3 3	D D D	0.0954	0.0955	0.1028	0.12 < 0.1003 < 0.0934	< 0.0966 < 0.1038 < 0.0967	0.09530.10240.0954	1.2 < 1.032 < 0.9611	< 0.0959 < 0.1031 < 0.096	0.52 < 0.1036 < 0.0965	3.6 0.1022 0.0952	0.095
44-63 4 6.06638 6 6.06638 6 6.06638 6 0.06678 0 0.06678 0 0.06759 0 0.06759 0 0.06759 0 0.06759 0 0.06759 0 0.06759 0 0.06759 0 0.06759 0 0.0759 0	1.09E+03 9.85E+00	(1)	5.24E+03 4.45E+01		++	 V V	v v	y v 5	V V	v v 5	y y	0.0946 u 0.0622 u	0.0639	0.0971	0.0972	< 0.0949	< 0.0982 < 0.0646	< 0.0969	< 0.9766 < 0.6427	< 0.0976 < 0.0642	< 0.0981	0.0967	0.097
44-6-03 (3) 5.535+03 (5) (-5)	1.74E+03 1.85E+04	(1)	7.53E+03 7.74E+04				V V	ם ס	~	V V D D	у у э э	29 u	0.0675	0.0676		< 0.066	< 0.0683	< 0.0674 < 0.0748	< 0.6793 < 0.7532	< 0.0679	< 0.0682	0.0673	
(8) 3.80E+03 (8) 2700 v 1.3 J < 0.6286 u 140 v	1.74E+03 7.80E+01	(1)	7.53E+03 1.20E+03		+	 V V	у Э Э	V V D D	V V D D	V V D D	3 3	32 u 68 u	0.0751	0.0752	+	< 0.0734	< 0.076 < 0.0797	< 0.075	< 0.7557 < 0.7927	< 0.0755	< 0.0759	0.0748	0.075
1.00E+03 (8) 3.80E+03 (8) 3.80E+03 (8) 3.80E+03 (8) 4.4 1 4.4 1 4.4 1 4.4 1 4.4 1 4.4 1 4.4 1 4.4 1 5.2 1 15.0 0 5.3 1 5.2 0 350 0	s (mg/kg))) 1.00E+03	(8)	3.80E+03	(8)				-	>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	┨					450	_		13000	27	540		170
	<u> </u>	(8)	3.80E+03	(8)			\vdash	ח	>	_	-					13		1.7		5.3	25		23

- No screening level or analytical result available NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

EPA - Regional Screening Levels (June 2017)

(1) NMED Residential Screening Level

(2) EPA Residential Screening Level

(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic

(4) NMED Industrial Occupational Screening Level
(5) NMED Construction Worker Screening Level
(6) EPA Industrial - Screening Levels
(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(8) NMED Table 6-2 TPH Soil Screening Levels "unknown oil" with DAF = 1.0 - see report Section 5 for use of screening levels

Bold represents value above Residential Soil Screening Level

Yellow highlight represents value above Non-Residential Soil Screening Level

Bold with yellow highlight value exceeds Residential Soil Screening Level and Non-Residential Soil Screening Level

v = reportable detection above the Practical quantitation limit (PQL)u - result is not detected at method detection limit (MDL)j - estimated result at concentration above MDL but less than PQL

Control Cont		Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source			72-22) 72-WO	77-0T) 89-MO		OM-28 (SS-S4.	6Z-8Z) 8G-MO		.84-84) 83-WO	
March Colone Co						26-0		26-	9 5		609E26-005		9-006	6	20
Third Barrier Third Barrie	xachlorohutadiene	6 16F±01	(1)	5 17E+01	(4)	307	% V	21/2010	` ~) 			1 010	0193	o =
Marke	ppropylbenzene	2.35E+03	(1)	2.71E+03	(2)	< 0.0027	0.0 v			5 D		0.82	5 >	6	<u>, </u>
1,150.002 2, 20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	tert-butyl ether	9.68E+02	(1)	4.78E+03	(4)		Ö			n	0.2174 U	0.39	\neg	< 0.0497	л
1806.00 10	ene	4.09E+02	(1)	1.20E+03	(2)		0			\ _	0.1995 L	< 0.153	л П	< 0.0456	ח
3585-20 20 20 20 20 20 20 20	aphthalene	1.16E+03	(1)	5.02E+03	(2)		·0>			n	3 ^	3.6	^		_
National Street	ıty	3.90E+03	(2)	5.80E+04	(6)	< 0.0028		n 5000	<u> </u>	n	1.4 J	1.3	ſ		_
		3.80E+03	(2)	2.40E+04	(6)	< 0.0025		n E000	< 0.002	n	3.4		^		>
125-100 20 10 10 10 10 10 10		7.80E+03	(2)	1.20E+05	(9)	< 0.0044		n E000	< 0.0035	n	0.43	0.48	_		_
1,000,000 1,00	yrene	7.23E+03	(1)	1.01E+04	(5)	< 0.0029		0002 u	< 0.0023	v n	0.0618 L	< 0.047	л 2		л
1,10,10,10, 1,10,10,10,	۵.	7.80E+03	(2)	1.20E+05	(9)	< 0.0026		n E000	< 0.0021	v n	0.0574 L	ا < 0.044	1 u	< 0.0131	ח
1,12,12,12,13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	chloroethene	1.10E+02	(1)	1.19E+02	(5)	< 0.0027	u <0.0	0002 u	< 0.0021	> n	0.0574 L	< 0.044	Д П	< 0.0131	n
March Marc	\approx	5.22E+03	(1)	1.40E+04	(5)	< 0.0019	n <0.0	0002 u	< 0.0015	n	۷5 ۸	, 77	>	1.1	>
Column C	ns-1,2-DCE	2.93E+02	(1)	3.03E+02	(5)	< 0.0089	u <0.0	0002 u	< 0.0071	<u> </u>	0.1937 L	o.			ם
1,12,12,12, 1,12,12,12, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	ns-1,3-Dichloropropene	2.91E+01	(1)	1.29E+02	(5)	< 0.0047	u <0.0	0002 u	< 0.0037	V	0.1013 L	77	-	< 0.0232	n
Table	chloroethene (TCE)	6.72E+00	(1)	6.84E+00	(5)				< 0.0027		_	<u> </u>	_		ח
Marie Mari	chlorofluoromethane	1.22E+03	(1)	1.12E+03	(5)	0.0024			< 0.0019	<u> </u>		٧			ח
Control Cont	ıyl chloride 	7.41E-01	(1)	2.83E+01	(4)	0.0026			< 0.0021	<u> </u>		V	_		ח
1,224-6.0 1, 10, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	lenes, Iotal	8.63E+02	(T)	7.91E+02	(2)	0.0061			0.0063	_	22	92	>	3.1	>
1,124-03 11 1,124-03 1,12	mi-volatiles (mg/kg)	L	(5)	1	(5)		,		, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0		7	\vdash		000	Γ
1,256-102 1,256-103 1, 2,215-104 1, 2,100-1	2,4-1 richlorobenzene	8.22E+01	(T) (E)	7.84E+01	(5)		ν \ •		< 0.1074	y \ D =	0.TU/8	-	n :	× 0.1088	5 5
1256-03 13 1256-03 14 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1200-04 1 1 1 1 1 1 1 1 1	2-Dichlorobenzene	7. T4E+03	ĵ ·	Z:47 E+03	(2)		/ V		79700 >	<u> </u>	20700	+	n =	7.000	3 =
1, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	FDichlorobenzene	1.29F+03	(1)	6.73F+03	(4)		,	_	< 0.039		0.0843		3 =		3 =
1286-03 11 2866-04 10 2666-04 10 2606	Methylnaphthalene	1.72E+02	(1)	8.13E+02	(7)		<u> </u>		2000.0 >	_		+	_	< 0.101	5 J
1286-02 14 2066-02 15 2066-02 16 200835 16	1,5-Trichlorophenol	6.16E+03	(1)	2.69E+04	(5)		<u> </u>		< 0.0993		0.0998	٧	ס	< 0.1006	ם
1256-0.0 11 1256-0.0 12 1256-0.0 13 1256-0.0 14 1256-0.0 15 1256-0.0 15 1256-0.0 15 1256-0.0 14 1256-0.0 15 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0 1256-0.0	I,6-Trichlorophenol	6.16E+01	(1)	2.69E+02	(5)				< 0.0823		0.0827	<u> </u>	ס	< 0.0834	л
128E-02 11 238E-03 13 4.01066 4 0.01067 6 0.00667 1 0.00667	Dichlorophenol	1.85E+02	(1)	8.07E+02	(2)		<u> </u>		< 0.0926	_	0.093	V	ח	< 0.0938	л
17.250.02 11 17.250.02 13 17.250.02 14 17.250.02 15 17.250.02 17.250.02 18 17.250.02 19 17.250.02	Dimethylphenol	1.23E+03	(1)	5.38E+03	(2)		V		< 0.1078	V	0.1082		٦	< 0.1092	n
118 118	t-Dinitrophenol	1.23E+02	(1)	5.38E+02	(5)	0.0666	V		< 0.0658	٧	0.0661		ח	< 0.0667	ח
6.000-10.00 1.1 T72E-0.0 (4) 6.000-10.00 0.000-10.00	4-Dinitrotoluene	1.71E+01	(1)	8.23E+01	(4)	0.0896	<u> </u>		< 0.0886	<u> </u>	680.0	<u> </u>	ם	< 0.0898	ъ
Sizzeroz (1) 1777F-103 10 10 10 10 10 10 10	3-Dinitrotoluene	3.56E+00	(1)	1.72E+01	(4)	0.1062	٧		< 0.105	<u> </u>	0.1055	<u> </u>	D	< 0.1064	ח
Section Sect	Shloronaphthalene	6.26E+03	(1)	2.83E+04	(2)		0 0		< 0.0781	V .	0.0785	V .	ס	< 0.0792	ъ
March Marc	inlorophenol	3.91E+02	(T)	1.77E+03	(5)		\ \ \ \ \		< 0.0782	٧	0.0786	٧	5 :	< 0.0793	5 :
Processor Proc	Methylinaphunalene	2.32E+U2	(±)	1.00E+03	(6)) (0 +	< 0.117.0 >	+	0.0833	4	> -	V 0 087	5 =
Company Comp	Methylphenol (cresol, c-)	8.20E+03	(5)	4.TUE+04	(6)) / V	Ια	< 0.003	<u> </u>	0.0033	\ 	+	\ 0.004	3 =
thirdiversidation	litronhenol	0.30ETUZ	<u></u>	0.00 -	(2)) / V	0 4	~ 0.10/ ~ 0.0985	/ \ \	0.1074	/ V	+	V 0.1004	3 =
Profite Prof	.'-Dichlorobenzidine	1.18F+01	(1)	5.70F+01	(4)) C	103	< 0.0333		0.0333	′ V	+	< 0.0337	3 =
Procession Pro	4-Methylphenol	1 ,	: .	1 -			<u> </u>		< 0.0718	<u> </u>	0.0722	_	+	< 0.0728	5 3
intro-2-methylphenol 4,33E+00 (1) 2,15E+01 (3) < 0,00507 u < 0,00503 u < 0,0	Vitroaniline	1			1		\ \ \		< 0.0875		0.0879	٧	_	> 0.0886	5 7
Objectively phenicly ether	3-Dinitro-2-methylphenol	4.93E+00	(1)	2.15E+01	(2)		+		> 0.06	<u> </u>	0.0603	\ <u>\</u>	-	< 0.0608	л
o-Samethylghenol 2.70E+01 (3) 1.10E+02 (7) < 0.1197 u < 0.1189 u < 0.1093 u < 0.1093 u < 0.1093 u < 0.1049 u < 0.1189 u < 0.1049 u < 0.1149 u < 0.1049 u < 0.1	sromophenyl phenyl ether	,		1			\ <u>\</u>		< 0.0949	\ <u>'</u>	0.0953	٧	_	< 0.0961	n
opinion 2.70E+01 (3) 1.10E+02 (7) < 0.1094 I < 0.10794 I < 0.10794 I < 0.10794 I < 0.10793 I < 0.1099 I < 0.1139 I < 0.1149 ophenyl phenyl ether 2.70E+02 (3) 1.10E+02 (7) < 0.0777	thloro-3-methylphenol	-		-	-		V		< 0.1184	٧	0.1189	٧	n	< 0.12	л
ophenyl priemy C 0.1146 L 0.0132 L 0.0133 L 0.0133 L 0.0133 L 0.0133 L 0.0130	thoroaniline	2.70E+01	(3)	1.10E+02	(7)		V		< 0.1079	V	0.1084	V	n	< 0.1093	n
Particle	thorophenyl phenyl ether	1			ı		V		< 0.1134		0.1139			< 0.1149	n
hthrene 3.48E+03 (1) 1.51E+04 (5) < 0.07664 u < 0.07565 u < 0.07556 u < 0.07559 u < 0.07659 u < 0.07665 u < 0.07659 u < 0.07659 u < 0.07659 u < 0.07669 u < 0.07665 u < 0.07659 u < 0.07665 u < 0.0766 u < 0.0767 u < 0.0766 u < 0.0766 u < 0.0767 u < 0.0766 u < 0.0766 u < 0.0767 u < 0.0766 u < 0.0767 u < 0.0777 u < 0.0767 u < 0.0777 u < 0.0767 u < 0.0777 u < 0.	litroaniline	2.70E+02	(3)	1.10E+03	(7)				< 0.07	V	0.0703	<u> </u>	_	< 0.0709	ח
withere 3.48E+03 (3) 4.00E+04 (5) 4.00E40 u 4.00E40	Vitrophenol	•	1 3		· į	_	T t		< 0.0756	V	0.0759	<u> </u>	+	< 0.0766	ח
Secretary Secr	enaphthene	3.48E+03	(I)	1.51E+04	(S)	-	\neg		< 0.0851	<u> </u>	0.0855	_	+	< 0.0862	5
Sinceriol	enapntnylene	, CO	· (6)		- (2)		_		× 0.0808	<u> </u>	+	+	+	V 0.06E	5 :
The control of the co		9.50E+0Z	(c) (E)	4.00E+03	(5)		+	_	\ 0.0950 \ \ 0.0850	4		+	+	7 0 0 6 7	3 =
Thracene (1.35E+00) (1.4) (1.30E+0.1) (1.4	hanzana	T. / 4E+04	(3)	7 BOE+02	(2)		+	\perp		+	+	+	+	V 0.000 V	3 =
System (1) 2.36E+01 (4) < 0.076 u < 0.0751 u < 0.0751 u < 0.0751 u < 0.0751 u < 0.0754 u < 0.0761 Influoranthene 1.53E+00 (1) 3.23E+01 (4) < 0.0885	nz(a)anthracene	1.53F+00	(1)	3.23E+01	(4)		+		< 0.1203 < 0.0854	+	╁	+	+	× 0.12223	3 =
fluoranthene 1.53E+00 (1) 3.23E+01 (4) < 0.0906 u < 0.0896 u < 0.0896 u < 0.0896 u < 0.0875 u < 0.0977 u < 0.0987 u < 0.09887 Inoranthene 1.53E+01 (1) 3.23E+02 (4) < 0.0884	nzo(a)pyrene	1.12E+00	(1)	2.36E+01	(4)		+		< 0.0751	<u> </u>	+	+	-	< 0.0761	5 3
nijperylene 1.53E+01 (1) 3.23E+02 (4) < 0.0885 u < 0.0875 u < 0.0879 u < 0.0887 u < 0.0886 fluoranthene 1.53E+01 (1) 3.23E+02 (4) < 0.0884	nzo(b)fluoranthene	1.53E+00	(1)	3.23E+01	(4)		+ -	Ļ	< 0.0896	-		+	+	< 0.0908	л
fluoranthene 1.53E+01 (1) 3.23E+02 (4) < 0.0884 u < 0.0865 u < 0.0874 u < 0.0878 u < 0.0836 u < 0.0876 u < 0.0836 u < 0.0737 u < 0.0738 u < 0.0787 u < 0.0737 u < 0.0783 u < 0.0733 u < 0.0733<	nzo(g,h,i)perylene							_	< 0.0875	+	-	+	+	< 0.0887	
cid 2.50E+05 (2) 3.30E+06 (6) < 0.0832 u < 0.0814 u < 0.0823 u < 0.0814 u < 0.0823 u < 0.0844 u < 0.0823 u < 0.0768 u < 0.0826 u < 0.0783 u < 0.0777 u < 0.0777 u < 0.0783 u < 0.0787 u < 0.0783 u < 0.0787 u < 0.0783 u < 0.0733 u < 0.0783 u < 0.0733 u < 0.0839	nzo(k)fluoranthene	1.53E+01	(1)	3.23E+02	(4)		1		< 0.0874	-		-	\vdash	< 0.0886	л
cohol C. O. O. T. S. D. C.	nzoic acid	2.50E+05	(2)	3.30E+06	(9)			_	< 0.0823	Ľ				< 0.0834	n
rooethoxy/methane 1.90E+02 (2) 2.50E+03 (6) < 0.1089 u < 0.1065 u < 0.1077 u < 0.1082 u < 0.1081 u < 0.1073 u < 0.1033 u < 0.0033 u < 0.0043 u < 0.	nzyl alcohol	6.30E+03	(2)	8.20E+04	(9)				< 0.0777						ח
brosethyl)ether 3.10E+00 (1) 1.93E+00 (5) < 0.0737 u < 0.0721 u < 0.0729 u < 0.0732 u < 0.0732 u < 0.0739 u < 0.0732 u < 0.0739 u < 0.0732 u < 0.0739 u < 0.0739 u < 0.0839 u < 0.08	(2-chloroethoxy)methane	1.90E+02	(2)	2.50E+03	(9)				< 0.1077	_		٧	-	< 0.1091	ח
Droisopropyl)ether 9:93E+01 (1) 5.19E+02 (4) < 0.0896 u < 0.08877 u < 0.0886 u < 0.0889 u < 0.0899 u < 0.0879 u < 0.0882 u < 0.0869 u < 0.0879 u < 0.0882 u < 0.0899 u < 0.0879 u < 0.0879 u < 0.0873 u < 0.0879 u < 0.0873 u < 0.0679 u < 0.0673 u < 0.0679 u < 0.0673 u < 0.0679 u < 0.0679 u < 0.0679 u < 0.0679 u < 0.0673 u < 0.0679 u <	(2-chloroethyl)ether	3.10E+00	(1)	1.93E+00	(5)		÷	_	< 0.0729	$\dot{\dashv}$		٧		< 0.0739	ח
yilhexyl)phthalate 3.80E+02 (1) 1.83E+03 (4) 0.13 1 0.11 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.12 1 0.08 0 0.08 0 0.08 0 0.08 0 0.08 0 0.08 0 0 0.08 0	(2-chloroisopropyl)ether	9.93E+01	(1)	5.19E+02	(4)		Ť		< 0.0886	_		٧	_	< 0.0898	ח
zyl phthalate 2:90E+03 (3) 1.20E+04 (7) < 0.0888 u < 0.0869 u < 0.0879 u < 0.0882 u < 0.0882 u < 0.0899 u < 0.0879 u < 0.	s(2-ethylhexyl)phthalate	3.80E+02	(1)	1.83E+03	(4)	_					0.12	_	_	0.12	_
e co.0679 u co.0673 u co.0673 u co.0673 u co.0673 u co.0673 u co.0673 u co.0679	tyl benzyl phthalate	2.90E+03	(3)	1.20E+04	(7)		٧			٧	0.0882	V		< 0.089	ח
	rbazole	ı			i		V		< 0.067	٧	0.0673	٧		< 0.0679	=

	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	0M-57 (16-18')	0W-57 (25-27')	()	OW-58 (10-12)		0M-58 (22-24')		0M-28 (28-29)		('8.84-84) 82-WO	
					1609E26-001	1 1609E26-002	6-002	1609E26-004	94	1609E26-005	۳	1609E26-006	90	1609E26-007	20
					9/21/2016	9/21/:	/2016	9/22/2016	9	9/22/2016	_	9/22/2016	<i>(</i> 0	9/22/2016	ဖ
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	< 0.0811	u < 0.0794	4 n	< 0.0802	n	> 0.0806	n	< 0.0805	v n	0.0813	n
Dibenzofuran	1		ı	ı	< 0.1009	n < 0.0987	n /	< 0.0998	n	< 0.1002	n	< 0.1002	v n	0.1011	n
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(2)	0.14	J 0.17		0.12	_	0.14	_	0.21	^	0.16	٦
Dimethyl phthalate	6.16E+04	(1)	2.69E+05	(2)	< 0.0982	960'0 > n	n e	< 0.0971	n	< 0.0975	n	< 0.0974	> n	0.0983	n
Di-n-butyl phthalate	6.16E+03	(1)	2.69E+04	(2)	0.16	0.15	ſ	0.14	ſ	0.15	ſ	0.25	ſ	0.15	J
Di-n-octyl phthalate	1		ı	ı	< 0.0856	u < 0.0837	n 2	< 0.0847	n	< 0.085	n	< 0.085	v n	0.0858	n
Fluoranthene	2.32E+03	(1)	1.00E+04	(2)	< 0.0578	u < 0.0565	2 n	< 0.0572	n	< 0.0574	n	< 0.0574	> n	0.0579	n
Fluorene	2.32E+03	(1)	1.00E+04	(2)	< 0.0918	n < 0.0899	n 6	< 0.0908	n	< 0.0912	n	0.12	ſ	< 0.092	n
Hexachlorobenzene	3.33E+00	(1)	1.60E+01	(4)	< 0.0791	u < 0.0774	4 u	< 0.0783	n	< 0.0786	n	< 0.0785	> n	0.0793	n
Hexachlorobutadiene	6.16E+01	(1)	5.17E+01	(4)	< 0.1131	u < 0.1106	n 9	< 0.1118	n	< 0.1123	n	< 0.1122	v n	0.1133	n
Hexachlorocyclopentadiene	2.28E+00	(1)	8.67E+02	(2)	< 0.1147	u < 0.1122	2 u	< 0.1135	n	< 0.114	n	< 0.1139	> n	0.1149	n
Hexachloroethane	4.31E+01	(1)	1.88E+02	(2)		u < 0.0843	n S	< 0.0853	n	< 0.0856	n	< 0.0856	> n	0.0864	n
Indeno(1,2,3-cd)pyrene	1.53E+00	(1)	3.23E+01	(4)	< 0.0784	u < 0.0767	n 2	< 0.0775	n	< 0.0778	n	< 0.0778	> n	0.0785	n
Isophorone	5.61E+03	(1)	2.70E+04		< 0.1109	u < 0.1085	,5 u	< 0.1097	n	< 0.1102	n	< 0.1101	> n	0.1112	n
Naphthalene	1.16E+03	(1)	5.02E+03	(2)	< 0.0963	u < 0.0942	.2 u	< 0.0953	n	0.11	_	1.3	>	0.0965	n
Nitrobenzene	5.99E+01	(1)	2.91E+02	(4)	< 0.1035	u < 0.1013	.3 u	< 0.1024	n	< 0.1029	n	< 0.1028	v n	0.1038	n
N-Nitrosodi-n-propylamine	7.80E-01	(3)	3.30E+00	(2)	< 0.0964	u < 0.0943	n S	< 0.0954	n	< 0.0958	n	< 0.0957	> n	0.0966	n
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	> 0.098	n < 0.0959	n 6	< 0.0969	n	< 0.0973	n	< 0.0973	v n	0.0982	n
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	< 0.0645	u < 0.0631	1 u	< 0.0638	n	< 0.0641	n	< 0.064	> n	0.0646	n
Phenanthrene	1.74E+03	(1)	7.53E+03	(2)	< 0.0682	n < 0.0667	n /	< 0.0674	n	< 0.0677	n	0.27	>	0.0683	n
Phenol	1.85E+04	(1)	7.74E+04	(2)	< 0.0756	u < 0.0739	n 6	< 0.0747	n	< 0.0751	n	0.31	>	0.0757	n
Pyrene	1.74E+03	(1)	7.53E+03	(2)	< 0.0758	u < 0.0742	.2 u	< 0.075	n	< 0.0753	n	< 0.0753	n	> 0.076	n
Pyridine	7.80E+01	(2)	1.20E+03	(9)	< 0.0795	u < 0.0778	n 8	< 0.0787	n	< 0.079	n	< 0.079	> n	0.0797	n
Total Petroleum Hydrocarbons (mg/kg)	ıg/kg)														
Gasoline Range Organics (GRO)	1.00E+03	(8)	3.80E+03	(8)	< 0.4812	n < 0.5599	n 6	3.2	^	1500	^	1700	^	130	^
Diesel Range Organics (DRO)	1.00E+03	(8)	3.80E+03	(8)	< 1.7306	n 5.9	ſ	< 1.713	n	22	^	320	^	33	^
Motor Oil Range Organics (MRO)	1.00E+03	(8)	3.80E+03	(8)	< 47	u < 48	n	< 46	n	< 48	n	< 49	n	< 47	ח

- No screening level or analytical result available

NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

EPA - Regional Screening Levels (June 2017)

(1) NMED Residential Screening Levels

(2) EPA Residential Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic

(4) NMED Industrial Occupational Screening Level

(5) NMED Construction Worker Screening Level

(6) EPA Industrial - Screening Levels

(7) EPA Industrial - Screening Levels

(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic

(8) NMED Table 6-2 TPH Soil Screening Levels "unknown oil" with DAF = 1.0 - see report Section 5 for use of screening levels

Bold represents value above Residential Soil Screening Level
Yellow highlight represents value above Non-Residential Soil Screening Level
Bold with yellow highlight value exceeds Residential Soil Screening Level
Residential Soil Screening Level

v = reportable detection above the Practical quantitation limit (PQL)u - result is not detected at method detection limit (MDL)j - estimated result at concentration above MDL but less than PQL

6 of 6

		I		J	ا ر	7	1	ח	וכ		T ►	ıl¬	7	1	1	>	n		>	Ī	ı	1]	1	>	7	T =	5 =	; 	1	ם	7		<u>-1</u>	<u>ה</u>	T >	1	ח	n	n	ח	ם	<u> </u>	ъĪ	ם ב	D :	n >	<u> </u>	ם
₽T-MO	1609076-001	8/31/2016		1		2100			<2.656	'	4900					14	<1.548	-	15	•	•	,				2200		<1.754		,	~	2200	. !		16/.7>	28		<0.557	<0.457	<0.641	<0.637	<0.54	<0.536	<0.666	<0.564	<1.01	<0.0604 7.1	<1.172	<0.559
S-WA	1609783-001	9/13/2016		1	1					1	•	,	,			-	-	-	1	•	•	1				1				1	1	1				,		<22.3 u		<25.6 u		<21.6 u				<40.4 u	210	v 512 v 46.9	
OM-58	1610091-006	9/30/2016		<0.47 u		0		∞		13 ×	2 00026		4100 Z		35 v		<2.75 u	43 J		160000 v	250 v	1200 v	T	<0.47 u	Ì			<1.75 u				0			46.75 U	· Γ Θ: ε		<5.57 u						<6.66 u		<10.1 u		<11.72 u	
ZG-WO	1610091-005	10/1/2016		<0.47 u			0.51 J				9100				84		<2.75 u	17 J	17 v	180000 v	220 v	6200 v		<0.47 u				< 2.75 u				0		7.8.5		5.3		<5.57 u						<6.66 u		<10.1 u	<0.04 U 7 3 L		u <5.59
TK 570-1-GW	4	4		<0.47 u		7 0058	6.4 Z				36000		7200 Z		100 Z		<2.75 u	۸ (29	v 64	94000 v	<250 u	4100 v	T	_			<0.31 u <0.75	<1.75 u						J. 7. 7.	n C/.7>	10 ×		<5.57 u	<4.57 u	<6.41 u							46.64 u	<11.72 u	
TK 569-3-GW	1610091-003	10/2/2016		<0.47 u			-0.36 u				2 OUC8		1900 Z				<2.75 u	7.4 J	13 v	140000 v	440 v	3100 v	T	_		3200 2		<1.75 u							48.75 U	9.5		<5.57 u				<5.4 u					46.64 U	<11.72 u	
TK-569-2-GW	1610355-002	_		<0.47 u			0.43				17000 7		3400 Z		> 54		<2.75 u	8.6	15 v	170000 v	<250 u	Г 096		<0.47 u			1	< 2.75 u		2 055	П			11)	44.75 U	6.9		<5.57 u	<4.57 u					<6.66 u		<10.1 u		<11.72 u	
ТК-569-1-GW	1610355-001	10/5/2016		<2.36 u		8700		∞	14 ×		28000	21 Z	0				<2.75 u	31		140000 v	<250 u) O66		7		6300 2		<1.75 u			[3		50 ×		4.8 L	22 ×		<5.57 u	<4.57 u							<10.1 u		<11.72 u	
TK 568-2-GW	7			<0.47 u			<0.36 u		<2.66 u		3500		1800 Z		^ 0 <i>Z</i>		<2.75 u			150000 v	370 v	2800 ^	1			3600 2		<1.75 u			[3	1700 Z			47.75 U			<5.57 u			<6.37 u					<10.1 u		<11.72 u	
TK 568-1-GW	1610091-001	10	-	<0.47 u	7.7			Σ			10000		1800 Z			13 v	<2.75 u		30 v	130000 v	240 v	35000 v		7			0.31 0.75	<1.75 u							1 7 1			<2.23 u	<1.83 u			<2.16 u				×4.04 u	1300 v	× 4.69	۷ / 22
Source	П			(2)	(2)	(2)	(2)	(2)	(3)	(1)	(5)	(2)	(4)	(3)	(4)	(3)	(3)	(4)	(3)	(3)	(3)	(3)		(2)	(2)	(3)	(2)	(3)	(3)	(3)	(2)	(3)	(4)	(3)	(3)	(3)		(4)	(3)	(3)	(2)	(3)	(3)		(1)	(4)	(2)	(2)	(2)
Screening Levels				9	10	2000	4	2	50	9	13800	15	2020	2	372	20	20	63.1	10000	250000	1600	000009		9	10	1000	t c	20	50	1000	15	200	372	20	50	10000		5.74	09	10	5	25	5	. 1	7	0.01	70	0.2	0.05
	Tab ID	Sample Date	Metals (ug/I) TOTAL	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Vanadium	Zinc	Chloride	Fluoride	Sulfate	Metals (ug/l) DISSOLVED	Antimony (D)	Arsenic (D)	Barium (D)	Berymun (D)	Chromium (D)	Cobalt (D)	Iron (D)	Lead (D)	Manganese (D)	Nickel (D)	Selenium (D)	Silver (D)	Zinc (D)	Volatiles (ug/l)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-1 ricniorobenzene (V) 1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane (EDB)

	Source	TK 568-1-GW	TK 568-2-GW	TK-569-1-GV	TK-569-2-GV	V5-69-3-GW	TK 570-1-GW	78-WO	89-MO	Z-WA	ቱፒ-MO
	+	1610091-001	1610091-002	02 1610355-001	1 1610355-002	1610091-003	\vdash	1610091-005	1	1	1609076-001
	\vdash	10/2/2016	10/2/2016	10	10	10/2/2016	6	10/1/2016	9/30/2016	9/13/2016	8/31/2016
(5)	\dashv				<20	<20	<20	<20	<20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<2
(Z)	\top	22.3 20	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(2)./5 (1)./5	<55.75	< 20.75	<5.75 7.75	<5.75 /F 40	, 23 , 23	<0.575
(A) (E)	\top	350 ×		v <3.49	300 v			55.77			, O.548
	\top			╧	200 27 16	212 <7.16		.3.1.7 7.1.6	2.T.2 <7.16	9 % C >	<0.02 <0.716
(1)	+	<3.11 u	67:7> L	07:7> n	67.7>	62.7>	62.7>	62.7>	97:7>	<31.1	67.0>
(2)	T				<7.13	<7.13	<7.13	<7.13	<7.13	<28.5	<0.713
(1)	T				26	24	24	150	88	88	34
	Н	<3.33 u		ľ	×		<8.33		<8.33	<33.3	<0.833
(4)	\dashv		٧		740	V	110	<36.85	<36.85	<147.4	
(1)	\dashv				<20	<20	<20	<20	<20	08>	
$\mathbb{E}\left[\mathbb{E}\right]$	\dashv	<16.8 - u	/ <41.99	u <41.99	u <41.99 u	<41.99 u	<41.99 u	<41.99 u	<41.99	<168	<4.199
Ξ	\top	((_		\$ 41 141	<6.41			
	T				26	21	47	<7.03	15	<28.1	<0.703
	\vdash	48.55 u		u 200	160	<21.38 u	240	<21.38	Ÿ	<85.5	<2.138
(4)	H		Ů	u 1500	v 770 v	<245.44 u		<245.44 u	u <245.44 u	<981.7	<24.544
(2)	H	16000		v 34000			23000 v	11000 v	32000	38000	8100
£ 3	\dashv		. <4.89	u <4.89	<4.89	<4.89	<4.89	<4.89	<4.89	<19.5	<0.489
(4)	+			_		00.90 7.00 7.00 7.00 7.00	00.00 00.00 00.00	\ 6.99 7.		\$2, 730,7	<0.699
<u>5</u>	+	<2.04uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu<td>73.57 - 38.99</td><td>17.6\ 10.38.99</td><td>n TT:C> n TT</td><td>n 17.6></td><td>n TT:6></td><td>n 17.6></td><td>73.45 438,99</td><td>4.05/10</td><td>\0.911 \3.899</td>	73.57 - 38.99	17.6\ 10.38.99	n TT:C> n TT	n 17.6>	n TT:6>	n 17.6>	73.45 438,99	4.05/10	\0.911 \3.899
(4)	+				<29.87	<29.87		<29.87	<29.87	<119.5	<2.987
(2)	П		ı <5.41	u <5.41	<5.41	<5.41	<5.41	<5.41	<5.41	<21.6	<0.541
(2)		<2.29 u		u <5.72	<5.72			<5.72	<5.72	<22.9	<0.572
(4)	-				<9.55	<9.55	<9.55	<9.55	<9.55	<38.2	<0.955
(જે) (જે)	\top	U 8/.T>	. <4.44 . <10.64	u <4.44	U <4.44 U	×4.44	<4.44 <10.64	<4.44 <10.64		U <17.8 U	<0.444
(2)	\top	2.48 u		u <6.21	<6.21				<6.21	<442.9 <24.8	<t:00+< td=""></t:00+<>
<u>4</u>	T				<5.33	<5.33	<5.33	<5.33	<5.33	<21.3	<0.533
(4)					<4.34	<4.34	<4.34	<4.34	<4.34	<17.3	
£)		<2.38 u	7 <5.96	u <5.96	n <5.96 u	<5.96	<5.96	<5.96	<5.96	ı <23.8 u	<0.596
4 5		<7.15 u		u <17.87						<71.5 1200	
3 (4)					<9.93	20.6 >		6.65	20.6 >	<39.7	253 <0.993
(4)					160	140		22	72	30	8.5
(4)		10000		۷ 1100	v 1000 v	^ 002	74 v	180		/ 1600 \	580
(2)		.0	v	Ů	<u> </u>	<u> </u>	٧	<9.37	<9.37	v	<0.937
(4)				۷ 320	88	82			240	140	18
(1)	\dagger				757	17			2.1	1 <32.1 U	1.3
5		7 8 2	140	130	> - 90 - 90 - 1		7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0	, 40 , 76 , 17		30 >24 6	7.7
6				<55.5	۸ در در	ľ	1,0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CC>	<0.55
			Ľ	ľ	<5.75	<5.75	1.,	<5.75	<5.75	<23	<0.575
(2)					<7.6	<7.6	<7.6	<7.6	<7.6	<30.4	<0.76
(3)		0	<u> </u>	4	25000	7	25000 v	54 ^		3800	2.9
(2)					<20 7-46	<20 , 7, 4,	<20 7.7.	<20 7.46	<20 , 7, 4,	<80	
4) (2)		<2.07 U	55.16 - <8.75	u <5.16	u <5.16 u	<55.16 u	<55.16 u	<55.16 u	. <8.75 L	1 <20.7 u	<0.516 <0.875
4			Ľ								
			77.0T> n	v v v	u <10.22 u	<10.22 u	<10.22 u	<10.22 u	u <10.22 u	u <40.9 u	<1.022

	Screening Levels	Source	IK 268-1-GW	TK 568-2-GW	IK-269-1-GW	TK-569-2-GW	TK 569-3-GW	TK 570-1-GW	∠g-MO	OM-28	S-WA	ታፒ-MO
Lab ID			1610091-001	1610091-002	1610355-001	1 1610355-002	2 1610091-003	3 1610091-004	1 1610091-005	1610091-006	1609783-001	1609076-001
Sample Date			10/2/2016	10/2/2016	10/5/2016	10/5/2016	10/2/2016	9/30/2016	10/1/2016	9/30/2016	9/13/2016	8/31/2016
Diethyl phthalate	14800	(4)	<2.71	u <2.71 u	ı <2.71	u <2.71	u 3.4	J <27.15 U	u <2.71 u	u <2.71 u	-	
Dimethyl phthalate	-			Э	1 26				u <2.43 u		-	1
Di-n-butyl phthalate	885	(4)	<2.44	u <2.44 u	V	u <2.44	u <2.44	u <24.44	u <2.44 u	u <2.44 u	-	
Di-n-octyl phthalate	-		2	J <1.98 u	8.9 r	J 6.8	ا <1.98 ا	u <19.83 u	u <1.98 u	u <1.98 u	-	-
Fluoranthene	802	(4)	<2.61	u <2.61 u	s <2.61	u <2.61	u <2.61 L	u <26.07 u	u <2.61 u	u <2.61 u	-	-
Fluorene	288	(4)	<2.72	u 3.1 J	/2.72	u <2.72	u <2.72 L	u <27.24 u	u 7.2 J	3.8	-	-
Hexachlorobenzene	0.0976	(4)	<2.63	u <2.63 u	r <2.63	u <2.63	u <2.63	u <26.33 u	u <2.63 u	ı <2.63 u	-	-
Hexachlorobutadiene	1.387	(4)		u <2.18 u	ı <2.18	u <2.18	u <2.18	u <21.84 u	u <2.18 u		-	1
Hexachlorocyclopentadiene	50	(4)	<2.28	u <2.28 u	ı <2.28	u <2.28	u <2.28	u <22.84 u	u <2.28 u	ı <2.28 u	-	1
Hexachloroethane	3.28	(4)	<2.37	u <2.37 u	r <2.37	u <2.37	u <2.37	u <23.68 u	u <2.37 u	ı <2.37 u	-	-
Indeno(1,2,3-cd)pyrene	0.343	(4)	<2.96	u <2.96 u		u <2.96		u <29.64 u	u <2.96 u	u <2.96 u	-	-
Isophorone	781	(4)	<2.62	u <2.62 u	r <2.62	u <2.62	u <2.62 L	u <26.15 u	u <2.62 u	u <2.62 u	-	-
Naphthalene	1.65	(4)	210	v 130 v		v 47		220	v 140 v	/ 160	-	-
Nitrobenzene	1.4	(4)	2	u <2.75 u	s <2.75	u <2.75	u <2.75 L	u <27.53 u	u <2.75 u	v	-	-
N-Nitrosodimethylamine	0.0017	(4)	<2.16	u <2.16 u		u <2.16	u <2.16	u <21.58 u	u <2.16 u	ı <2.16 u	-	-
N-Nitrosodi-n-propylamine	0.011	(2)	<2.39	u <2.39 u	ı <2.39	u <2.39	u <2.39	u <23.89 u	u <2.39 u	ı <2.39 u	-	1
N-Nitrosodiphenylamine	0.0049	(4)	<2.32	u <2.32 u	ı <2.32	u <2.32	u <2.32	u <23.2 u	u <2.32 u	ı <2.32 u	-	•
Phenanthrene	170	(4)	<2.59	u <2.59 u	ı <2.59	u <2.59	u <2.59	u <25.87 u	u 7.6 J	2.9	-	•
Pentachlorophenol	1	(4)	<2.34	u <2.34 u	ı <2.34	u <2.34	4	u <23.42 u	u <2.34 u	ı <2.34 u	-	•
Phenol	5760	(4)	160	۸ 69 ۸	69 /	y 96 v	۸ 98 ۷	v 120 v	v 88 v	/ 51 v	-	1
Pyrene	117	(4)	<3.09	u <3.09 u	r <3.09	u <3.09	n <3.09	u <30.94 u	u <3.09 u	u <3.09 u	-	•
Pyridine	20	(1)	<2.16	u <2.16 u	r <2.16	u <2.16	u <2.16	u <21.61 u	u <2.16 u	ı <2.16 u	-	•
TPH (mg/l)												
Gasoline Range Organics (GRO	3.98E-02	(9)	140	v 140 v		v 160	۷ 170 ۷	v 240 v	v 46 v	/ 150 \	140000 v	31000 v
Diesel Range Organics (DRO)	3.98E-02	(9)		v 12 v		v 14	v 21 \	v 170 v	v 9.3 v	5.	14000	4100
Motor Oil Range Organics (MRC	3.98E-02	(9)	< 5	n <5 u				u < 50 u	u <5 u	n <5 u	<5000 u	<5000 u

No screening level or analytical result available

450 - bolded value exceeds screening level

(1) EPA - Regional Screening Levels (November 2018) - Tap Water
(2) EPA - Regional Screening Levels (November 2018) - MCL
(3) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
(4) NMED Tap Water Screening Level - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
(5) EPA Screening Level - Tap Water x 10 for carcinogenic compounds
(6) NMED groundwater screening level for unknown oil
v = reportable detection above the Practical quantitation limit (PQL)
u - result is not detected at method detection limit (MDL)
j - estimated result at concentration above MDL but less than PQL
z - concentration exceeds MCL

September 7, 2019

Mr. John E. Kieling, Chief New Mexico Environmental Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, NM 87SOS-6303

RE: Investigation Work Plan No. 2 OW-14 Source Area

Marathon Petroleum Company LP, Gallup Refinery

(dba Western Refining Southwest, Inc.)

EPA ID# NMD000333211

Dear Mr. Kieling:

Marathon Petroleum Company LP (dba Western Refining Southwest, Inc.) Gallup Refinery is submitting the enclosed Investigation Work Plan pursuant to your Comments No. 9 and 21 (dated April 2, 2019) on the OW-14 Source Area Investigation Report. If there are any questions, please call Brian Moore at 505-726-9745.

Certification

Icertify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Marathon Petroleum Company LP, Gallup Refinery

Robert S. Hanks

Refinery General Manager

Robert S. Hanks

Enclosure

cc K. Van Horn NMED

C. Chavez NMOCD

B. Moore Marathon Gallup Refinery

RESPONSE TO COMMENTS April 2, 2019 Comments on OW-14 Source Area Investigation Report (Jan. 2019)

NMED Comment 9:

In Section 4.2.1, Geology, page 4-2, the Permittee states, "[f]our cross sections of the shallow subsurface in the immediate vicinity of the tank farm and the area up-gradient of OW-14 (Figures 7 thru 10). Figure 6 shows the location of the cross sections." Figure 7, Cross Section A-A' and Figure 10, Cross Section D-D' indicate that the potentiometric surface is higher to the west and lower to the east. Figure 13, September 2016 Potentiometric Surface Map presents potentiometric contours in the area and the groundwater flow direction appears to be consistent with the interpretation depicted in Figures 7 and 10. If groundwater flows eastward from the suspected source area, the SPH plume may have expanded east of well RW-1. In order to delineate the extent of dissolved phase contaminant plumes, the Permittee proposed to install a monitoring well northeast of OW-30 in the Work Plan 2015 Annual Groundwater Report Comments, dated October 2018; however, the proposed well will not delineate the eastern extent of the SPH plume. Propose to submit a work plan to install groundwater monitoring wells to define the eastern extent of the SPH plume.

MPC Response 9:

A new well is proposed to the east of RW-1.

NMED Comment 21:

In Section 7.2, Recommendations, page 7-2, the Permittee states, "[a]n additional monitoring well is recommended to the south of Tank 570 to determine if there are any additional up gradient sources. A well west of Tanks 569 and 570 could also provide better coverage to define impacts observed near these two tanks." NMED concurs with installation of additional monitoring wells south of Tank 570 and west of Tanks 569 and 570. Propose to submit a work plan to install the wells.

MPC Response 21:

A new well is proposed to the south of Tank 570. As we already have recently installed two wells (OW-61 and OW-65) west of Tanks 569 and 570 that contain SPH, we are looking at conducting additional subsurface investigation near Tanks 569 and 570 using laser inducted fluorescence (LIF) technology. We propose to conduct the LIF investigation before installing any additional wells to the west of Tank 569 and 570.

Investigation Work Plan No. 2 OW-14 Source Area

Gallup Refinery
Western Refining Southwest, Inc.
Gallup, New Mexico

EPA ID# NMD000333211

SEPTEMBER 2019

Scott Crouch Senior Geologist

Table of Contents

List of Acronyms		i
Section 1 Introduction.		1-1
Section 2 Background.		2-1
Section 3 Site Condition	าร	3-1
3.1 Surface Cond	itions	3-1
3.2 Subsurface Co	onditions	3-1
Section 4 Scope of Sen	vices	4-1
4.1 Investigation.		4-1
4.1.1	Soil Sample Field Screening and Logging	4-1
4.1.2	Drilling Activities	4-2
4.1.3	Groundwater Sample Collection	4-3
4.1.4	Sample Handling	4-4
4.1.5	Collection and Management of Investigation Derived Waste	4-5
4.1.6	Documentation of Field Activities	4-6
4.1.7	Chemical Analyses	4-6
4.1.8	Data Quality Objectives	4-8
Section 5 References		5-1
List of Tables		
Table 1	RW-1 Recovery Volumes	
Table 2	Groundwater Analyses	
Table 3	Fluid Level Measurements	
List of Figures		
Figure 1	Site Location Map	
Figure 2	Site Map	
Figure 3	Topographic Map	
Figure 4	August 2018 Potentiometric Surface Map	

Table of Contents (Continued)

Appendices

Appendix A Boring Logs

Appendix B Investigation Derived Waste Management Plan

Appendix C 2016 Site Investigation

Appendix D 2019 Site Investigation

List of Acronyms

benzene, toluene, ethylbenzene, and xylene (BTEX)

Code of Federal Regulations (CFR)

Contract Laboratory Program (CLP)

data quality objective (DQO)

diesel range organics (DRO)

dilution attenuation factor (DAF)

Environmental Protection Agency (EPA)

investigation derived waste (IDW)

Maximum Contaminant Level (MCL)

mean sea level (msl)

monitoring well (MW)

motor oil range organics (MRO)

methyl tert butyl ether (MTBE)

New Mexico Administrative Code (NMAC)

New Mexico Environment Department (NMED)

New Mexico Oil Conservation Division (NMOCD)

photoionization detector (PID)

polynuclear aromatic hydrocarbon (PAH)

polyvinyl chloride (PVC)

quality assurance/quality control (QA/QC)

Resource Conservation and Recovery Act (RCRA)

separate-phase hydrocarbon (SPH)

semi-volatile organic compound (SVOC)

Solid Waste Management Unit (SWMU)

total petroleum hydrocarbon (TPH)

toxicity characteristic leaching procedure (TCLP)

volatile organic compound (VOC)

Executive Summary

The Gallup Refinery, which is located 17 miles east of Gallup, New Mexico, has been in operation since the 1950s. Pursuant to the terms and conditions of the facility Resource Conservation and Recovery Act (RCRA) Post-Closure Care Permit and 20.4.1.500 New Mexico Administrative Code, this Investigation Work Plan has been prepared for the area up-gradient of monitoring well OW-14.

Groundwater samples collected from monitoring well OW-14 have indicated increasing concentrations of benzene and ethylbenzene since 2009, although the concentrations of ethylbenzene remain below screening levels. Methyl tert butyl ether (MTBE) has been detected at concentrations above the screening level since 2008 and 1-methylnaphthalene has sporadically been reported at concentrations above the screening level. OW-14 is located down-gradient of recovery wells RW-1 (OW-27) and RW-2 (OW-28), which were installed in near Tanks 569 and 576 in 1995 to address the presence of separate-phase hydrocarbon (SPH). The initial investigation effort near Tanks 569 and 576 was conducted as part of the investigation of Solid Waste Management Unit (SWMU) No. 6. In 2016, two permanent monitoring wells (OW-57 and OW-58) were installed between Tank 569 and monitoring well OW-14 and six soil borings/temporary wells were drilled near Tanks 568, 569, and 570. This investigation confirmed high concentrations of petroleum hydrocarbons and MTBE in subsurface soils and groundwater near these three tanks.

This investigation will add two additional permanent monitoring wells. One well will be located to the south and up-gradient of Tank 570 to help determine if there are up-gradient sources of the observed hydrocarbons. A second new well will be installed to the east and potentially downgradient of RW-1 to help define the extent of SPH and dissolved-phase constituents.

Section 1 Introduction

The Gallup Refinery is located approximately 17 miles east of Gallup, New Mexico along the north side of Interstate Highway I-40 in McKinley County. The physical address is I-40, Exit #39 Jamestown, New Mexico 87347. The Gallup Refinery is located on 810 acres. Figure 1 presents the refinery location and the regional vicinity.

The Gallup Refinery generally processes crude oil from the Four Corners area transported to the facility by pipeline or tanker truck. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, alkylation, sulfur recovery, merox treater, and hydrotreating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, and residual fuel.

This investigation work plan addresses the area up-gradient of monitoring well OW-14 in the eastern portion of the refinery tank farm (Figure 2). The purpose of this investigation is to determine if contaminants in groundwater are migrating into the area of Tank 570 from any potential up-gradient sources and to define the extent of SPH and dissolved phase contaminants to the east of RW-1. The investigation activities will be conducted in accordance with Section IV.H.5 of the Post-Closure Care Permit.

Section 2 Background

This section presents background information for the area of the refinery property up-gradient of monitoring well OW-14, including a review of historical waste management activities to identity the following:

- Type and characteristics of all waste and all contaminants handled in the subject areas;
- Known and possible sources of contamination;
- History of operations; and
- Prior investigations.

Monitoring well OW-14 is located immediately north of the main refinery tank farm, which was built in the late 1950s. The *Inventory of Solid Waste Management Units* prepared in June 1985 identified six product storage tanks that contained leaded gasoline (Geoscience Consultants, Ltd., 1985). These six, as well as, additional tanks were subsequently identified as SWMU No. 6 due to the historic practice of disposing of leaded tank bottoms within the tank berms. The practice of cleaning the tanks and burying the leaded tank bottoms was reported to have occurred every five years and was terminated after November 19, 1980.

The three leaded gasoline storage tanks (TK-568, TK-569, and TK-570) closest to OW-14 were investigated as part of SWMU No. 6 in the early to mid 1990s. Impacts to soil and the presence of separate-phase hydrocarbon (SPH) on groundwater was found within the alluvium overlying the Chinle Group. Boring BG-4, which was later identified as OW-27 and RW-1, was drilled east of TK-569 to a depth of 48.5 feet (Figure 2). A water-bearing sand layer was logged at approximately 30 feet with a strong hydrocarbon odor and an elevated PID reading. Subsequently 4-inch well screen was installed in the boring from 40.0 to 25.0 feet. The water level was initially measured at a depth of 28' 7" with an accumulation of 8" of SPH. A second soil boring B-2, which was later identified as OW-28 and RW-2, was drilled southwest of TK-576 to a depth of 38 feet. Saturation was first encountered in a sand layer at a depth of 23.6 feet with additional deeper water-bearing sand/gravel layers extending to top of the Chinle Group at a depth of 32.9 feet. The well screen was set from

36.1 feet to 26.1 feet below ground surface. The water level initially was measured at 24' 3" with 2" of SPH. The boring logs are included in Appendix A.

A possible leak from a seam in an unidentified storage tank located adjacent to Tank 569 was reported to have been repaired in 1995 (Giant, 1997). Two small holes were identified in the bottom of Tank 570 during an internal tank inspection conducted in 2015 (Sentinel, 2015).

RW-1 had an estimated 1.00 gallon of SPH recovered in 2018 using a bailer, while no SPH has been observed in RW-2 since before 2005 (Western, 2018). The estimated annual volumes of SPH recovered at RW-1 from 2005 through 2018 are shown in Table 1.

Beginning in 2011 groundwater samples have been collected annually from RW-1 and RW-2 and analyzed for dissolved-phase organic constituents and metals. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE have been reported for samples collected at both recovery wells. The concentrations of BTEX are significantly higher at the recovery wells than observed in down-gradient well OW-14, although concentrations continue to increase down-gradient at OW-14. MTBE is also detected at higher concentrations in the up-gradient recovery wells, but the difference is less than what is observed for BTEX. The dissolved-phase concentrations are included in Table 2.

The most recent investigation of soil and groundwater in the eastern portion of the Tank Farm began on September 21, 2016 and continued through October 5, 2016 (DiSorbo, 2019). The activities included sampling and analysis of soils and groundwater in the vicinity of storage Tanks 568, 569, and 570 and along the northern boundary (east end) of the Tank Farm. This included the completion of six soil borings and two permanent monitoring wells with 25 soil samples (excluding additional quality assurance samples) collected for analysis of potential site-related constituents [e.g., volatile and semi-volatile organics, total petroleum hydrocarbons (TPH), and metals]. Temporary well completions were installed in all six soil borings. Eight groundwater samples (excluding additional quality assurance samples) were collected for analysis of potential site-related constituents (e.g., volatile and semi-volatile organics, TPH, metals, and inorganic/general water quality parameters).

Manganese was detected at concentrations above the non-residential soil screening level in five soil samples (NMED, 2019). Five soil samples have reported concentrations of gasoline range organics (GRO) above the residential soil screening level and one of these samples has a concentration above

the non-residential soil screening level. One soil sample has a reported concentration of diesel range organics (DRO) above the residential soil screening level. Benzene and ethylbenzene were reported at concentrations above their respective residential direct contact screening levels in one soil sample.

Eight inorganic constituents (arsenic, barium, beryllium, cobalt, iron, lead, manganese, and vanadium) were detected at concentrations (totals analyses) above residential/tap water screening levels in groundwater samples collected from the permanent and temporary well completions.

Arsenic, barium, iron, and manganese were detected at concentrations above screening levels in the dissolved analyses.

Thirteen organic constituents [1,2,4-Trimethlybenzene, 1,2-Dibromoethane (EDB), 1,2-Dichloropropane, 1,3,5-Trimethylbenzene, 1-Methylnaphthalene, 2-Methylnaphthalene, Benzene, Ethylbenzene, MTBE, Naphthalene, Toluene, Total Xylenes, and Bis (2-ethylhexyl) phthalate] were detected at concentrations above screening levels in at least one of the eight groundwater samples collected from the permanent/temporary well completions. A map showing the sample locations, summary tables for the soil and groundwater analyses, and boring/well completions logs are provided in Appendix C.

In August 2019, four more temporary wells (TK 570-2, TK 570-3, TK 570-4, and TK 570-5) were drilled around the perimeter of Tank 570 to evaluate a potential release from the tank based on fluid level measurements taken inside the tank that indicated a potential leak from the tank. Fluid levels were measured after the temporary wells were developed, with SPH identified on the north, west and east sides of Tank 570. The locations of the four new temporary wells are shown on Figure 2. The boring/well completion logs and a table summarizing the fluid level measurements are provided in Appendix D.

Section 3 Site Conditions

3.1 Surface Conditions

A topographic map of the area near the eastern portion of main tank farm is included as Figure 3. Site topographic features include high ground in the southeast gradually decreasing to a lowland fluvial plain to the northwest. Elevations on the refinery property range from 7,040 feet to 6,860 feet. The area of the site near Tank 570 is at an approximate elevation of 6,960 feet above mean sea level (msl).

The soils in the vicinity of the tank farm include two soil types. Surface soils within most of the area of investigation are primarily Rehobeth silty clay loam. To the north are the bordering Simitarq-Celavar sandy loams. Rehobeth soil properties include a pH ranging from 8 to 9 standard units and salinity (naturally occurring and typically measuring up to approximately 8 mmhos/cm). The Simitarq-Celavar soils are well drained with a conservative permeability of 0.20 inches/hour and minimal salinity. Simitarq soils have nearly neutral pH values ranging from 7.2 to 7.4 standard units.

Regional surface water features include the refinery evaporation ponds and a number of small ponds (one cattle water pond and two small unnamed spring fed ponds). The site is located in the Puerco River Valley, north of the Zuni Uplift with overland flows directed northward to the tributaries of the Puerco River. The Puerco River continues to the east to the confluence with the Rio Grande. The South Fork of the Puerco River is intermittent and retains flow only during and immediately following precipitation events.

3.2 Subsurface Conditions

The shallow subsurface soils consist of fluvial and alluvial deposits comprised of clay and silt with minor inter-bedded sand layers. Very low permeability bedrock (e.g., claystones and siltstones) underlie the surface soils and effectively form an aquitard. The Chinle Group, which is Upper Triassic, crops out over a large area on the southern margin of the San Juan Basin. The uppermost recognized local Formation is the Petrified Forest Formation and the Sonsela Sandstone Bed is the uppermost recognized regional aquifer. Aquifer test of the Sonsela Bed northeast of Prewitt indicated a transmissivity of greater than 100 ft²/day (Stone and others, 1983). The Sonsela Sandstone's highest point occurs southeast of the site and slopes downward to the northwest as it

passes under the refinery. The Sonsela Sandstone forms a water-bearing reservoir with artesian conditions throughout the central and western portions of the refinery property.

The diverse properties and complex, irregular stratigraphy of the surface soils across the site cause a wide range of hydraulic conductivity ranging from less than 10-2 cm/sec for gravel like sands immediately overlying the Petrified Forest Formation to 10-8 cm/sec in the clay soils located near the surface (Western, 2009). Generally, shallow groundwater at the refinery follows the upper contact of the Petrified Forest Formation with prevailing flow from the southeast to the northwest, although localized areas may have varying flow directions (Figure 4). Fluid level measurements for wells near Tank 570 are included in Table 3. Fluid levels in these wells indicate an apparent upward trend based on the data dating back to 2014.

Section 4 Scope of Services

The site investigation of soils and groundwater will be conducted to determine if contaminated groundwater is flowing into the area of Tank 570 from a potential up-gradient source and to help define the extent of SPH and dissolved-phase impacts in groundwater east of RW-1. The investigation will commence upon approval of this investigation work plan by NMED.

4.1 Investigation

Two new permanent monitoring wells are proposed, one to the south of Tank 570 and one east of RW-1 (Figure 2). The borings will be advanced to the top of bedrock, anticipated to be the Petrified Forest Formation.

4.1.1 Soil Sample Field Screening and Logging

All soil borings will be drilled to the alluvium/Chinle Group contact and continuously logged and samples field screened. Samples obtained from the soil borings will be screened in the field on 2.0 foot intervals for evidence of contaminants. Field screening results will be recorded on the exploratory boring logs. Field screening results will be used to aid in selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds. Additional screening for site- or release-specific characteristics such as pH or for specific compounds using field test kits may be conducted where appropriate.

Visual screening includes examination of soil samples for evidence of staining caused by petroleum-related compounds or other substances that may cause staining of natural soils such as elemental sulfur or cyanide compounds. Headspace vapor screening targets volatile organic compounds and involves placing a soil sample in a plastic sample bag or a foil sealed container allowing space for ambient air. The container will be sealed and then shaken gently to expose the soil to the air trapped in the container. The sealed container will be allowed to rest for a minimum of 5 minutes while vapors equilibrate. Vapors present within the sample bag's headspace will then be measured by inserting the probe of the instrument in a small opening in the bag or through the foil. The maximum value and the ambient air temperature will be recorded on the field boring or test pit log for each sample.

The monitoring instruments will be calibrated each day to the manufacturer's standard for instrument operation. A photoionization detector (PID) equipped with a 10.6 or higher electron volt (eV) lamp or a combustible gas indicator will be used for VOC field screening. Field screening results may be site- and boring-specific and the results may vary with instrument type, the media screened, weather conditions, moisture content, soil type, and type of contaminant, therefore, all conditions capable of influencing the results of field screening will be recorded on the field logs.

Discrete soil samples will be retained for laboratory analysis from within the following intervals:

- From the interval in each soil boring with the greatest apparent degree of contamination in the vadose zone, based on field observations and field screening;
- From the bottom of each borehole:
- From the 0.5 foot interval at the top of saturation; and
- Any additional intervals as determined based on field screening results.

The physical characteristics of the samples (such as mineralogy, ASTM soil classification, moisture content, texture, color, presence of stains or odors, and/or field screening results), depth where each sample was obtained, method of sample collection, and other observations will be recorded in the field log by a qualified geologist or engineer. Detailed logs of each boring will be completed in the field by a qualified engineer or geologist. Additional information, such as the presence of water-bearing zones and any unusual or noticeable conditions encountered during drilling, will be recorded on the logs.

Quality Assurance/Quality Control (QA/QC) samples will be collected to monitor the validity of the soil sample collection procedures as follows:

- Field duplicates will be collected at a rate of 10 percent; and
- Equipment blanks will be collected from all sampling apparatus at a frequency of one per day.

4.1.2 Drilling Activities

Soil borings will be drilled using hollow-stem augers. The drilling equipment will be properly decontaminated before drilling each boring. The NMED will be notified as early as practicable if conditions arise or are encountered that do not allow the advancement of borings to the specified depths or at planned sampling locations. Appropriate actions (e.g., installation of protective surface

casing or relocation of borings to a less threatening location) will be taken to minimize any negative impacts from investigative borings. Slotted (0.01 inch) PVC well screen will be placed at the bottom of the borings and will extend for 20 feet to ensure that the well is screened across the water table, where water table conditions exist, and to the extent possible the entire saturated zone is open to the well. A 10/20 sand filter pack will be installed to two feet over the top of the well screen.

4.1.3 Groundwater Sample Collection

Groundwater samples shall initially be obtained from newly installed monitoring wells between ten and 30 days after completion of well development. Well development and purging prior to sample collection will be in accordance with procedures described in Appendix E. Prior to collection of groundwater samples for laboratory analyses, the fluid levels and the total depths of each well will be measured. Groundwater samples will be collected if SPH is not present within 24 hours of the completion of well purging using disposal bailers. Alternatively, well sampling may also be conducted in accordance with the NMED's Position Paper *Use of Low-Flow and other Non-Traditional Sampling Techniques for RCRA Compliant Groundwater Monitoring* (October 30, 2001, as updated). Sample collection methods will be documented in the field monitoring reports. The samples will be transferred to the appropriate, clean, laboratory-prepared containers provided by the analytical laboratory. Sample handling and chain-of-custody procedures will be in accordance with the procedures presented below in Section 4.1.4.

Groundwater samples intended for metals analysis will be submitted to the laboratory as both total and dissolved metals samples. QA/QC samples will be collected to monitor the validity of the groundwater sample collection procedures as follows:

- Field duplicate water samples will be obtained at a frequency of ten percent, with a minimum, of one duplicate sample per sampling event;
- Equipment rinsate blanks will be obtained for chemical analysis at the rate of ten percent or a
 minimum of one rinsate blank per sampling day. Equipment rinsate blanks will be collected
 at a rate of one per sampling day if disposable sampling equipment is used. Rinsate samples
 will be generated by rinsing deionized water through unused or decontaminated sampling
 equipment. The rinsate sample will be placed in the appropriate sample container and
 submitted with the groundwater samples to the analytical laboratory for the appropriate
 analyses; and

• Trip blanks will accompany laboratory sample bottles and shipping and storage containers intended for VOC analyses. Trip blanks will consist of a sample of analyte-free deionized water prepared by the laboratory and placed in an appropriate sample container. The trip blank will be prepared by the analytical laboratory prior to the sampling event and will be kept with the shipping containers and placed with other water samples obtained from the site each day. Trip blanks will be analyzed at a frequency of one for each shipping container of groundwater samples to be analyzed for VOCs.

4.1.4 Sample Handling

At a minimum, the following procedures will be used at all times when collecting samples during investigation, corrective action, and monitoring activities:

- Neoprene, nitrile, or other protective gloves will be worn when collecting samples. New disposable gloves will be used to collect each sample;
- 2. All samples collected of each medium for chemical analysis will be transferred into clean sample containers supplied by the project analytical laboratory with the exception of soil, rock, and sediment samples obtained in Encore® samplers. Sample container volumes and preservation methods will be in accordance with the most recent standard EPA and industry accepted practices for use by accredited analytical laboratories. Sufficient sample volume will be obtained for the laboratory to complete the method-specific QC analyses on a laboratory-batch basis; and
- 3. Sample labels and documentation will be completed for each sample following procedures discussed below. Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard chain-of-custody procedures, as described below, will be followed for all samples collected. All samples will be submitted to the laboratory soon enough to allow the laboratory to conduct the analyses within the method holding times.

Chain-of-custody and shipment procedures will include the following:

- 1. Chain-of-custody forms will be completed at the end of each sampling day, prior to the transfer of samples off site.
- 2. Individual sample containers will be packed to prevent breakage and transported in a sealed cooler with ice or other suitable coolant or other EPA or industry-wide accepted

method. The drainage hole at the bottom of the cooler will be sealed and secured in case of sample container leakage. Temperature blanks will be included with each shipping container.

- 3. Each cooler or other container will be delivered directly to the analytical laboratory.
- 4. Glass bottles will be separated in the shipping container by cushioning material to prevent breakage.
- 5. Plastic containers will be protected from possible puncture during shipping using cushioning material.
- 6. The chain-of-custody form and sample request form will be shipped inside the sealed storage container to be delivered to the laboratory.
- 7. Chain-of-custody seals will be used to seal the sample-shipping container in conformance with EPA protocol.
- 8. Signed and dated chain-of-custody seals will be applied to each cooler prior to transport of samples from the site.
- 9. Upon receipt of the samples at the laboratory, the custody seals will be broken, the chain-of-custody form will be signed as received by the laboratory, and the conditions of the samples will be recorded on the form. The original chain-of-custody form will remain with the laboratory and copies will be returned to the relinquishing party.
- 10. Copies of all chain-of-custody forms generated as part of sampling activities will be maintained on-site.

4.1.5 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and decontamination fluids, and all other investigation derived waste (IDW) associated with soil borings will be contained and characterized using methods based on the boring location, boring depth, drilling method, and type of contaminants suspected or encountered. All purged groundwater and decontamination water will be characterized prior to disposal unless it is disposed in the refinery wastewater treatment system upstream of the API Separator. An IDW management plan is included as Appendix B.

Field equipment requiring calibration will be calibrated to known standards, in accordance with the manufacturers' recommended schedules and procedures. At a minimum, calibration checks will be conducted daily, or at other intervals approved by the Department, and the instruments will be recalibrated, if necessary. Calibration measurements will be recorded in the daily field logs. If field

equipment becomes inoperable, its use will be discontinued until the necessary repairs are made. In the interim, a properly calibrated replacement instrument will be used.

4.1.6 Documentation of Field Activities

Daily field activities, including observations and field procedures, will be recorded in a field log book. Copies of the completed forms will be maintained in a bound and sequentially numbered field file for reference during field activities. Indelible ink will be used to record all field activities. Photographic documentation of field activities will be performed, as appropriate. The daily record of field activities will include the following:

- Site or unit designation;
- 2. Date;
- 3. Time of arrival and departure;
- 4. Field investigation team members including subcontractors and visitors;
- 5. Weather conditions;
- 6. Daily activities and times conducted;
- 7. Observations:
- 8. Record of samples collected with sample designations and locations specified;
- 9. Photographic log, as appropriate;
- 10. Field monitoring data, including health and safety monitoring;
- 11. Equipment used and calibration records, if appropriate;
- 12. List of additional data sheets and maps completed;
- 13. An inventory of the waste generated and the method of storage or disposal; and
- 14. Signature of personnel completing the field record.

4.1.7 Chemical Analyses

All samples collected for laboratory analysis will be submitted to an accredited laboratory. The laboratory will use the most recent standard EPA and industry-accepted analytical methods for target analytes as the testing methods for each medium sampled. Chemical analyses will be performed in accordance with the most recent EPA standard analytical methodologies and extraction methods.

Groundwater and soil samples will be analyzed by the following methods:

- SW-846 Method 8260 for Skinner List volatile organic compounds;
- SW-846 Method 8270 for Skinner List semi-volatile organic compounds; and

 SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.

Groundwater and soil samples will also be analyzed for the following Skinner List inorganics and iron, and manganese using the indicated analytical methods shown. The groundwater samples collected for metals analysis will be analyzed for total and dissolved concentrations. Groundwater samples will also be analyzed for chloride, fluoride, nitrate, nitrite, and sulfate.

Inorganic Analytical Methods

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020
Chloride	EPA method 300.0
Fluoride	EPA method 300.0
Sulfate	EPA method 300.0
Nitrite	EPA method 300.0
Nitrate	EPA method 300.0

Groundwater field measurements will be obtained for pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, turbidity, and temperature.

4.1.8 Data Quality Objectives

The Data Quality Objectives (DQOs) were developed to ensure that newly collected data are of sufficient quality and quantity to address the project goals, including Quality Assurance/Quality Control (QA/QC) issues (EPA, 2006). The project goals are established to determine and evaluate the presence, nature, and extent of releases of contaminants at specified SWMUs. The type of data required to meet the project goals includes chemical analyses of soil and groundwater to determine if there has been a release of contaminants.

The quantity of data is location specific and is based on the historical operations at individual locations. Method detection limits should be 20% or less of the applicable background levels, cleanup standards and screening levels.

Additional DQOs include precision, accuracy, representativeness, completeness, and comparability. Precision is a measurement of the reproducibility of measurements under a given set of circumstances and is commonly stated in terms of standard deviation or coefficient of variation (EPA, 1987). Precision is also specific to sampling activities and analytical performance. Sampling precision will be evaluated through the analyses of duplicate field samples and laboratory replicates will be utilized to assess laboratory precision.

Accuracy is a measurement in the bias of a measurement system and may include many sources of potential error, including the sampling process, field contamination, preservation, handling, sample matrix, sample preparation, and analysis techniques (EPA, 1987). An evaluation of the accuracy will be performed by reviewing the results of field/trip blanks, matrix spikes, and laboratory QC samples.

Representativeness is an expression of the degree to which the data accurately and precisely represent the true environmental conditions. Sample locations and the number of samples have been selected to ensure the data is representative of actual environmental conditions. Based on SWMU specific conditions, this may include either biased (i.e., judgmental) locations/depths or unbiased (systematic grid samples) locations. In addition, sample collection techniques (e.g., field monitoring and decontamination of sampling equipment) will be utilized to help ensure representative results.

Completeness is defined as the percentage of measurements taken that are actually valid measurements, considering field QA and laboratory QC problems. EPA Contract Laboratory Program (CLP) data has been found to be 80-85% complete on a nationwide basis and this has been

extrapolated to indicate that Level III, IV, and V analytical techniques will generate data that are approximately 80% complete (EPA, 1987). As an overall project goal, the completeness goal is 85%; however, some samples may be critical based on location or field screening results and thus a sample-by-sample evaluation will be performed to determine if the completeness goals have been obtained.

Comparability is a qualitative parameter, which expresses the confidence with which one data set can be compared to another. Industry standard sample collection techniques and routine EPA analytical methods will be utilized to help ensure data are comparable to historical and future data. Analytical results will be reported in appropriate units for comparison to historical data and cleanup levels.

Section 5 References

DiSorbo, 2019, Investigation Report OW-14 Source Area, Gallup Refinery - Marathon Petroleum Company, Gallup, New Mexico, p. 46.

EPA, 1987, Data Quality Objectives for Remedial Response Activities; United States Environmental Protection Agency, Office of Emergency and Remedial Response and Office of Waste Programs Enforcement, OSWER Directive 9355.0-7B, 85p.

EPA, 2006, Guidance on Systematic Planning Using the Data Quality Objectives Process, United States Environmental Protection Agency, Office of Environmental Information; EPA/240/B-06/001, p. 111.

Geoscience Consultants, Ltd, 1985, Inventory of Solid Waste Management Units, June 14, 1985, p. 22.

Giant Refining Company, 1997, Comprehensive Facility Investigation Work Plan (Stage 1 Abatement Plan), June 30, 1997, p. 7.

NMED, 2019, Risk Assessment Guidance for Site Investigation and Remediation, New Mexico Environment Department.

Sentinel, 2015, 83 Unleaded Gasoline Storage Tank TK-570 Internal/External Inspection, Western Refining Gallup New Mexico, p. 29.

Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizel, N.H., and Padgett, E.T., 1983, Hydrogeology and Water Resources of San Juan Basin, New Mexico; Hydrogeologic Report 6, New Mexico Bureau of Mines and Mineral Resources, p. 70.

Western, 2009, Facility-wide Groundwater Monitoring Plan: Gallup Refinery, p. 97.

Tables

Table 1 RW-1 Recovery Volum	es
-----------------------------	----

 Table 2
 Groundwater Analyses

 Table 3
 Fluid Level Measurements

Table 1 - RW-1 Recovery Volumes Western Refining Southwest, Inc. - Gallup Refinery

Year	Product Recovered (gallons)	Water Recovered (gallons)
2005	431.5	1,210.5
2006	23.52	1,107.0
2007	1.72	148.5
2008	3.99	152.0
2009	1.78	338.0
2010	0.66	128.0
2011	0.42	165.0
2012	0.97	137.0
2013	2.328	86.0
2014	2.37	83.0
2015	2	54.0
2016	8.5	53.0
2017	11	42.0
2018	1	1.5
total	491.758	3,705.5

recovery volumes are field estimates for RW-1

Table 2 - Groundwater Analyses Western Refining Southwest, Inc. - Gallup Refinery

		_																																									
	Sec- butylbenzene	(mg/L)	NE	NE	NE	2		<0.05	<0.05	<0.1	<0.1	0.0032	0.0027	<0.05	<0.05	0.0041	0.0022	0.0031	<0.05	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.002	0.003	0.003	0.003	0.002	<0.005
	n-Propylbenzene	(III <i>B</i> / L)	NE	NE	NE	99.0		<0.05	0.03	0.027	0.032	0.028	0.025	0.021	0.014	0.013	0.011	0.011	<0.05	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.002	0.001	<0.001	<0.001	<0.001	<0.005
	1-Methyl naphthalene	(mg/L)	NE	NE	0.0114	0.0011		<0.2	0.026	<4.0	0.059	0.033	0.038	0.037	0.035	0.03	0.034	0.033	0.03	<0.08	<0.04	<0.08	<0.08	0.044	0.016	<0.08	<0.04	0.027	0.024	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.021	0.022	0.020	0.019	0.022	0.022	0.020	<0.02
	Naphthalene	(IIIB/ L)	0.03	NE	0.00165	0.00017		<0.1	0.027	0.017	0.044	0.037	0.038	0.028	0.024	0.02	0.018	0.019	0.017	<0.04	<0.02	<0.04	<0.04	<0.02	<0.04	<0.04	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.01	0.002	<0.002	<0.002	<0.002	<0.002	<0.01
135-	Trimethylbe	(mg/L)	NE	NE	NE	090'0		<0.05	<0.05	<0.1	<0.1	0.0021	0.0016	<0.05	<0.05	0.0015	0.00082	0.0017	NA	AN	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	AN	NA	NA	AN	NA	<0.005
124- 135-	Trimethyl	(mg/L)	NE	NE	NE	0.056		<0.05	<0.05	<0.1	<0.1	0.013	0.012	0.011	0.0074	0.0084	0.0071	0.008	<0.05	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.001	0.001	0.001	<0.001	0.001	<0.005
	MTBE (mg/l)	(IIIB/ L)	0.1	NE	0.143	0.014		9.0	0.74	0.67	99.0	0.63	99.0	0.7	0.81	0.5	0.58	0.62	0.68	0.57	0.78	0.74	0.76	0.81	0.82	0.93	1.1	1.1	0.94	1.3	1.3	1.4	1.6	1.2	1.4	1.3	1.4	1.6	1.4	1.3	1.4	1.4	1.5
9	Total Xylenes	(mg/L)	0.62	10	0.193	0.19		<0.05	0.042	<0.15	<0.15	0.052	0.033	0.02	<0.075	0.013	0.008	0.012	<0.075	<0.03	<0.015	<0.03	<0.03	<0.015	<0.03	<0.03	0.032	0.019	<0.0075	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.0075	<0.0075	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0075
	Ethyl Benzene	(mg/L)	0.7	0.7	0.0149	0.0015		0.64	99.0	0.71	0.61	0.64	0.54	0.47	0.39	0.3	0.25	0.23	0.23	0.15	0.16	0.16	0.16	0.17	0.16	0.12	0.14	0.13	0.063	0.073	0.065	0.056	0.037	0.053		0.036	0.045	0.0610	0.0420	0.0180			0.0100
	Toluene	(III.B/ L/)	1	1.0	1.09	1.1		<0.05	<0.05	0.0088	0.0065	0.013	0.0091	0.004	0.0062	0.0057	0.0029	0.0026	<0.05	<0.02	<0.01	<0.02	<0.02	0.015	<0.02	<0.02	0.026	0.046	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.0015	0.0019	<0.001		0.0018	<0.005
	Benzene	(IIIB/ L)	0.005	0.005	0.00455	0.00046		13	17	15	14	13	12	13	12	8.7	8.1	7.8	6.5	6.2	5.4	4.6	3.9	3.6	3.8	3.7	4.0	3.3	2.6	3.4	2.8	2.7	2.1	2.6	2.3	1.5	1.4	1.8	1.3	0.63	0.47	0.33	0.25
			C 20NMAC 6.2.3103 (Dec. 2018)	40 CFR 141.62 MCL	NMED Tap Water (March 2019)	EPA RSL for Tap Water (Nov 2018)	DATE SAMPLED	11/09/18	09/11/18	05/15/18	02/27/18	12/11/17	09/06/17	05/30/17	02/27/17	11/15/16	08/31/16	06/06/16	03/04/16	10/27/15	08/10/15	6/1/2015	3/9/2015	11/10/2014	9/15/2014	6/3/2014	3/7/2014	11/11/2013	9/4/2013 ²	6/13/2013	3/19/2013	11/27/2012	8/23/2012	6/14/2012	3/21/2012	12/13/2011	10/24/2011	6/20/2011	2/24/2011	11/8/2010	9/22/2010	6/7/2010	3/24/2010
			WQCC 20	•	NMEC	EPA RS	Well ID																			0W-14																	

2 of 2

Table 2 - Groundwater Analyses Western Refining Southwest, Inc. - Gallup Refinery

					(555		- 1	(dd				
		Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)	1,2,4- Trimethyl benzene (mg/L)	1,3,5- Trimethylbe nzene (mg/L)	Naphthalene (mg/L)	1-Methyl naphthalene (mg/L)	n-Propylbenzene (mg/L)	Sec- butylbenzene (mg/L)
WQCC 20N	SC 20NMAC 6.2.3103 (Dec. 2018)	0.005	1	0.7	0.62	0.1	NE	NE	0.03	NE	NE	NE
4	40 CFR 141.62 MCL	0.005	1.0	0.7	10	NE	NE	NE	NE	NE	NE	NE NE
NMED	NMED Tap Water (March 2019)	0.00455	1.09	0.0149	0.193	0.143	NE	NE	0.00165	0.0114	NE	NE NE
EPA RSL	EPA RSL for Tap Water (Nov 2018)	0.00046	1.1	0.0015	0.19	0.014	0.056	090.0	0.00017	0.0011	99.0	2
Well ID	DATE SAMPLED											
	9/18/2014	37	35.0	1.8	10	1.2	<1.0	<1.0	<2.0	<4.0	<1.0	<1.0
DW 1	9/16/2013	54	32	2.4	13	2.2	1.3	<1.0	<2.0	<4.0	<1.0	<1.0
	8/23/2012	45	82	4.9	31	3.1	2.8	<1.0	<2.0	<4.0	<0.01	NA
	10/3/2011	51	28	3.7	23	2.9	5.8	86.0	9'0	0.15	0.4	NA
	08/28/18	48	4	1.5	3.8	1.1	0.31	0.043	0.1	0.04	0.056	NA
	05/08/18	46	2	1.5	4.2	1.2	0.34	0.031	960.0	<0.8	0.042	NA
	02/20/18	42	3.7	1.5	3.8	1.2	0.32	0.038	0.14	0.076	0.059	NA
	12/06/17	38	2.9	1.5	3.6	1.3	0.28	0.026	690'0	0.021	0.042	NA
	09/19/17	37	6.7	1.2	4	1.3	0.27	0.046	0.11	0.055	0.037	NA
	06/20/17	47	6	1.4	4.6	1.7	0.28	0.058	0.11	0.063	0.043	NA
	03/16/17	37	2.3	1.3	3.1	1.6	0.2	0.04	0.15	0.13	0.044	NA
C /\\d	11/16/16	38	3.4	1.2	3.2	1.7	0.2	0.049	0.15	0.13	0.063	NA
	09/13/16	38	3.8	1.2	3.1	1.6	0.21	0.044	0.14	0.088	0.056	NA
	06/08/16	36	2.9	1.1	3.1	1.7	0.23	0.12	0.18	0.17	0.071	NA
	03/07/16	46	4.1	1.2	3.5	1.9	0.18	0.028	0.1	0.069	0.045	NA
	08/23/15	42	6'9	1.1	3.7	1.8	0.21	<0.2	<0.4	<0.8	9:0>	NA
	9/18/2014	40	4.5	98'0	2.5	1.9	0.15	<0.1	<0.2	<0.4	<0.1	NA
	9/16/2013	48	3.4	0.87	2.3	2.8	0.13	<0.1	<0.2	<0.4	<0.1	NA
	8/23/2012	42	2.6	0.59	1.7	3.3	<0.1	<0.1	<0.2	<0.4	<0.1	NA
	10/3/2011	39	2.3	0.57	1.5	3.7	0.098	0.024	0.057	0.054	0.036	NA
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											

All values expressed in milligrams per liter

DEFINITIONS

NE = Not established

NA = Not analyzed

Bold and highlighted values represent values above the applicable standards

Bold screening level is applicable screening under RCRA Permit

STANDARDS

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/I TDS Concentration or Less.

a) Human Health Standards; b) Other Standards for Domestic Water

40 CFR 141.62 Maximum Contaminant Levels (MCL)

EPA Regional Screening Level (RSL) Summary Table

TABLE 3 FLUID LEVEL MEASUREMENTS

Total Well Depth to Depth to Depth to Depth to SPH Thickness (ft) Column SPH Thickness (ft) Depth to Column (water It) 46.52 ND NA 24.12 46.52 ND NA 24.15 46.52 ND NA 24.25 46.52 ND NA 23.88 46.52 ND NA 23.88 46.52 ND NA 23.88 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA <th>9 -</th> <th></th> <th></th> <th>Ground Level Ground Level (Inch) (ft) (ft) (Inch) (ft) (ft) (Inch) (ft) (ft) 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6</th>	9 -			Ground Level Ground Level (Inch) (ft) (ft) (Inch) (ft) (ft) (Inch) (ft) (ft) 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6
46.52 ND NA 24.12 46.52 ND NA 24.15 46.52 ND NA 24.40 46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.88 46.52 ND NA 23.88 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.26 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.95 <th></th> <th>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 24.15 46.52 ND NA 24.40 46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.96 46.52 ND NA 23.96 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.95 46.52 ND NA 21.95 46.52 ND NA 21.95 46.78 ND NA 21.95 46.75 ND NA 21.95 <th></th> <th>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 24.40 46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.88 46.52 ND NA 23.69 46.52 ND NA 23.69 46.52 ND NA 23.69 46.52 ND NA 23.69 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 46.75 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.96 46.52 ND NA 23.88 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.82 46.52 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.95 46.52 ND NA 23.88 46.52 ND NA 23.89 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.95 46.52 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.53 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.88 46.52 ND NA 23.96 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.38 46.52 ND NA 22.80 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.82 46.52 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.96 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.85 46.52 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04 <td></td> <td> 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.80 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.85 46.75 ND NA 21.82 46.74 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.20 46.52 ND NA 23.18 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.36 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.78 ND NA 21.95 46.78 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.18 46.52 ND NA 23.50 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.56 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.82 46.78 ND NA 21.95 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.50 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.36 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.75 ND NA 21.95 46.78 ND NA 21.95 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 23.18 46.52 ND NA 22.56 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.78 ND NA 21.95 46.78 ND NA 21.95 46.52 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52NDNA22.8346.52NDNA23.1846.52NDNA22.5646.52NDNA21.8046.52NDNA21.8046.75NDNA21.7546.78NDNA21.9546.52NDNA21.8246.52NDNA21.8243.0428.055.0133.0643.0428.154.8933.04		6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.18 46.52 ND NA 22.56 46.52 ND NA 22.20 46.52 ND NA 21.80 46.75 ND NA 21.80 46.78 ND NA 21.95 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40	6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65
46.52NDNA22.5646.52NDNA22.2046.52NDNA21.8046.75NDNA21.7546.78NDNA21.9546.52NDNA21.8243.0428.113.5431.6543.0428.055.0133.0643.0428.154.8933.04		6,924.40	6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65
46.52 ND NA 22.20 46.52 ND NA 21.80 46.75 ND NA 21.75 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		07 7 7 0 9	6,926.65	6,926.65
46.52 ND NA 21.80 46.75 ND NA 21.75 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		0,324.40	6,926.65	6,926.65
46.75 ND NA 21.75 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40	1000	33 300 3
46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.31 NA NA 43.04 28.15 4.89 33.04		6,924.40	6,926.65	0,920.05
46.52NDNA21.8243.0428.113.5431.6543.0428.055.0133.0643.0428.31NANA43.0428.154.8933.04		6,924.40		6,926.65
43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.31 NA NA 43.04 28.15 4.89 33.04	2.10 6,880.13	6,924.40	6,926.65 6,924.40	
43.04 28.05 5.01 33.06 43.04 28.31 NA NA 43.04 28.15 4.89 33.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04 28.31 NA NA NA 43.04 28.15 4.89 33.04		6,941.25		6,946.06
43.04 28.15 4.89 33.04		6,941.25		6,946.06
	3.20 6,903.02	6,941.25		6,946.06
43.04 28.10 4.70 32.80	3.20 6,903.02	6,941.25	6,946.06 6,941.25	6,946.06
03.02 43.04 27.70 4.40 32.10 6,913.96	3.20 6,903.02	6,941.25		
03.02 43.04 28.08 1.94 30.02 6,916.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04 28.05 2.50	3.20 6,903.02	6,941.25	6,946.06 6,941.25	6,946.06
43.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
03.02 43.04 27.90 4.14 32.04 6,914.02	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04 27.80 3.10 30.90		6,941.25		6,946.06
43.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
03.02 43.04 26.77 1.65 28.42 6,917.64	3.20 6,903.02	6,941.25	6,946.06 6,941.25	6,946.06
03.02 43.04 26.52 1.08 27.60 6,918.46	3.20 6.903.02	6,941.25	6,946.06 6,941.25	

FLUID LEVEL MEASUREMENTS TABLE 3

p = do		((0	36.1	5.1	36.1	36.1	5.1	36.1	36.1	36.1	36.1	36.1	5.1	36.1	36.1	36.1	36.1	36.1	36.1	5.1	5.1
Screened Interval Depth Top to Bottom (ft)	25 - 40	25 - 40	25 - 40	25 - 40	26.1 - 36	26.1 - 36.1	26.1 - 36	26.1 - 36	26.1 - 36.1	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36.1	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36.1	26.1 - 36.1
Corrected Water Table ¹ Elevation (ft)	6,919.36	6,919.06	6,919.07	6,918.57	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN
Ground water Elevation (ft)	6,918.56	6,918.84	6,918.85	6,918.36	6,903.94	6,904.74	6,904.58	6,904.63	6,905.01	6,905.51	6,905.16	6,905.73	80.906,9	6,906.22	90.906,9	6,906.31	88.906'9	6,907.34	6,907.82	6,908.19	6,908.53	05'806'9	6,908.43
Depth to Water (ft)	27.50	27.22	27.21	27.70	24.59	23.79	23.95	23.90	23.52	23.02	23.37	22.80	22.45	22.31	22.47	22.22	21.65	21.19	20.71	20.34	20.00	20.03	20.10
SPH Column Thickness (ft)	1.00	0.28	0.27	0.26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN
Depth to SPH (ft)	26.50	26.94	26.94	27.44	ΠN	ΠN	ND	ND	ND	ND	ΠN	ΠN	ΠN	ΠN	ND	ΠN	ΠN	ΩN	ΠN	ND	ND	ΩN	ND
Total Well Depth (ft)	43.04	43.04	43.35	43.45	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	40.00	40.00	39.99	40.00
Well Casing Bottom Elevation (ft)	6,903.02	6,903.02	6,903.02	6,903.02	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73
Stick-up length (ft)	3.20	3.20	3.20	3.20	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
2011 Survey ¹ Ground Elevation Inside Steel Sleeve (ft)	6,941.25	6,941.25	6,941.25	6,941.25	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02
Well Casing Rim Elevation (ft)	6,946.06	6,946.06	6,946.06	6,946.06	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53
Ground Level Elevation (ft)	6,942.86	6,942.86	6,942.86	6,942.86	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40
Casing Diameter (Inch)	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Inspection or Sample Date	12/12/17	02/13/18	04/25/18	08/16/18	03/11/14	06/09/14	09/18/14	11/13/14	03/23/15	06/09/15	08/23/15	10/59/15	03/04/16	06/08/16	09/13/16	11/16/16	03/16/17	06/20/17	21/61/60	12/05/17	02/19/18	04/25/18	08/16/18
Well ID Number					RW-2																		
Date of Installation					03/29/95																		

DEFINITIONS:DTB - Depth to Bottom DTW - Depth to Water

SPH = Separate Phase Hydrocarbons

ND = Not Detected

NA = Not Applicable

Negative number in Stick up Length column indicates well is flushmount and located at or below ground level. Depth to Water Column - if 0.00 is indicated - means water is at top of casing (full) under artesian flow conditions.

NOTES:

1. Corrected Water Table Elevation applies only if SPH thickness column measurement exists. (0.8 X SPH thickness + Groundwater Elevation)

Figures

Figure 1 Site Location Map

Figure 2 Site Map

Figure 3 Topographic Map

Figure 4 August 2018 Potentiometric Surface Map

Appendix A Boring Logs

 i_{ζ}

ZE AND TYPE OF BORING: 4'-1/4" HSA

FILE #:

95-018

LOGGED BY: WHK

					- -
PROJECT:	Tank 569			ELEVATION:	6943.7
LOCATION:	See Boring	Pla	n	LOG OF TEST BORINGS TOTAL DEPTH:	48.5
				LOGGED BY:	WHK
			s	DATE:	3-28-95
	ĺ	s	A	STATIC WATER:	28.0
	P	ic	м	BORING ID:	BG4
	L	A	P		1
	- 0	:	L	MATERIAL CHARACTERISTICS	PID
DEPTH	T	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(ppm)
0.0-0.3	******		-	Sand, fine, dry, brown, loose	1 APPARA
0.3-0.4			-	Asphalt Cement Concrete	11.0
0.4-5.0	///***///	:		Clay, sandy, wet, brown, firm, (fill), odor below 3.9', water saturated @ 4.8'	>1438
014-310	///***///	:	:	bottom of fill is at 4.8'	1
	///***///	!	:	bottom of fiff is at 4.6.	1
	•	,	C	 	
	///***///	:	C		!
	///***///	•	C		ļ
	///***///	•	c		!
	///***///		l c		
5.0-11.8	•		•	Clay, silty, blocky, wet, brown, firm, scattered carbonate filaments, some	0.0
	///+///	•	C	nodules, native, no odor, redder >10'	
	///+///		C		
	///+///		C		
	///+///	ĺ	C		
	///+///		c		
	///+///	1	C		
	1///+///		C		
	///+///	İ	c		ĺ
	///+///	ĺ	c		İ
	1///+///	İ	c		İ
	///+///	İ	c		İ
	///+///	11	c		į
	1///+///	i	c		<u> </u>
11.8-13.0	///***///	12	С	Clay, sandy, very fine, wet, red brown to brown, soft	0.0
	1//***///	i	С		İ
13.0-14.1	////+++//	13	C	Clay, stiff, fissured, wet, brown, some carbonate nodules	0.0
	////+++//		c		i
14.1-14.6	******		С	Sand, fine, clean, damp, white, loose	0.0
14.6-15.0	///**0*//			Clay, sandy, slightly gravelly, wet, brown, very stiff to hard	0.0
15.0-16.9	///**///	:	:	Clay, very fine sandy, laminar bedded, wet, brown, soft	0.0
	///**////	!	c		
	///**////		C	 	i
	1//**///	•	l c	 	! !
6.9-18.1		-		Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm	0.0
	\///*///// \///*/////		C		i 0.0
		:	C]]
8.1-19.8	///*////	: -			
8.1-19.8	****//***	!	!	Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft	0.0
0 0 21 2	1000+++000	-	:	interbedded with finer soil	
9.8-21.3	000***000	:	:	Gravel, sandy, moist, light grey to white, dense, subrounded	0.0
	000***000	!	C		[
	iooc				ŀ
	000+++000	:	C	i	i
11 2 22 2	000+++000	21	С		<u> </u>
	000***000	21	c C	Clay, sandy, wet, brown, soft	
21.3-21.8	000***000	21 22	c c	Gravel, slightly sandy, some clay as binder, moist, grey to brown, dense	
	000***000	21	c C		20 @ 22.

FILE #:

95-018

PROJECT: Tank 569 6943.7 ELEVATION: LOCATION: See Boring Plan LOG OF TEST BORINGS TOTAL DEPTH: 48.5 LOGGED BY: WHK

				LOGGED BY:	WHK
	!	ļ	S	DATE:	3-28-95
	!	s	A	STATIC WATER:	28.0
	P	С	М	BORING ID:	BG4
	- L	A	P	PAGE:	2
	. •	L	L	MATERIAL CHARACTERISTICS	PID
DEPTH	T	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(ppm)
	000++/000		С	continued from page 1	
	000++/000	24	c		I
	000**/000		C		160 @ 24.
	000++/000	25	c		
25.5-29.4			c	Sand, fine, clean of silt and clay, moist, brown, loose	45.0
	*******	26	c		
		ĺ	C		}
	******	ĺ	С		İ
		i	c		İ
		i	ĺс		i
		i	c		i
	******	29	c	; 	i
29.4-30.5			!	Sand as above but very weakly water bearing @ 29.4', grey to black, strong odor	1100
20.4 30.0	*****	30	c	Sand as above but your wearly saver bearing & 2552, 920, to brack, butting out	
30.5-31.2	///***///		:	Clay, sandy, wet, brown, soft, odor	770
30.331.1	///***///	!	l c	CLEY, Balley, Wee, Stown, Bott, Oddi	,,,
31.2-34.0	1///+++///			Clay, blocky, wet, very stiff, numerous carbonate filaments, brown, slightly	770
31.2-34.0	!	!	:	 	1 //0
	1///+++///		:	fissured, odor	1
	///+++///	!	C		i
	///+++///	!	C		!
	///+++///	:	С		
34.0-35.0	*****	!	:	Sand, silty, very fine, does not appear water bearing, but sample covered with	700
	*****	•	:	water from above, very dark brown to black, soft, strong odor	
35.0-37.3	***///***	!	!	Sand, very fine, clayey, saturated, water bearing zones2" thick, gradational to	1000
	///	!	:	clay below, brown, strong odor	1
	///	!	С		!
	///		C		!
	///	37	c		ļ
37.3-39.2	///+++///		C	Clay, wet, brown, stiff, carbonate filaments, soft to firm, not blocky or fissured	320
	///+++///		c		
	///+++///	1	C		1
	1//+++///	39	i c		1
39.2-40.9	000++/000		,	Gravel, sandy, slightly clayey, water bearing, brown, dense, rounded to subrounded	800
	000++/000	i	•	odor	j
	000++/000	:	С		<u> </u>
40.9-45.0	*	:	С	CHINLE FORMATION	
		i	:	Shale, slightly sandy, fissle, fissured, slightly blocky, moist, red brown, hard	2.0
		i	c	some grey green banding, no odor	Ì
	*	i	c		
		1	l c] 	
	1	l l	!		1
	1		C	 	1
	*	¦			1
			C		i
45.0.0.=	+		c		<u> </u>
45.0-48.5		45	<u>с</u> с		
45.0-48.5		45	c c c	Shale, sandy, fissle, moist to damp, hard, water from above runs into fissle partings (dry on interior of sample) difficult to obtain uncontaminated sample dark red brown, suspect samples taken may be contaminated by water from above	

ZE AND TYPE OF BORING: 4'-1/4" HSA

FILE #:

95-018

PROJECT: Tank 569 ELEVATION: 6943.7 LOCATION: See Boring Plan LOG OF TEST BORINGS TOTAL DEPTH: 48.5 LOGGED BY: WHK | s | DATE: 3-28-95 STATIC WATER: 28'-7" S A CM BORING ID: BG4 PAGE: A P PID LLL MATERIAL CHARACTERISTICS DEPTH (MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.) (mgg) ----* | C | continued from page 2 ----++---|<u>47</u> | C | 23 @ 47.0 ----++---| c | ----++---|48 | C | 12 @ 48.5 stop drilling 11:05a | water € 18.8' € 11:30a -- 8" of hydrocarbon on water € 2:00p water level € 28'-7" completed 4" well, acreened from 25' to 40' (see attached completion diagram)

LOGGED BY: WHK

INSTALLATION DATE: 03 2895 INSTALLATION DIAGRAM MONITORING WELL NO. B6-4 TOP OF PROTECTIVE WELL COVER: FΤ INNER WELL CUP MEKSUREMENT NOTOH TOP OF PVC CONCRETE PAD-(HT43a) BOTTOM OF COVENT: 2 FT. PROTECTIVE WELL COVER: FT BOTTON OF CENENT: 2.0 FT CROUT: 12 FT. TOP OF BENTONITE SENT: 14.0 FT BENTONITE SEN: 2.5 FT. TOP OF SWED PLACK: 16.5 ध 25.0 TOP OF SCREEN: FT SCREENS SAND PACK: 15 FT. 26.5 FT. FT BOTTON OF SCREEN: 40.0 40.3 PIEZONETER TIP: FΤ Bentonite Plug BOTTON OF BORING: 43.0 FT 🕏 MARCHALE DULLTER 8- 5/8 HOHES WATERWLS USED: Bottom Cap Used? YES SUND TYPE AND QUANTITY: 20-40

BENTONITE PELLETS (5-CULON BUCKETS): 1 Screen Lengths: 15'
BAGS OF CROUT: 1
AMOUNT OF CELLENT: 8-94# Bags+75#Gel
AMOUNT OF WATER USED: 8 gal.

OTHER:

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Director OTHER:

Well Size: 4 " Dia.

J-Plug Used? YES Flush Mount Vault Avove Ground Vault VES Bollards, No. & Size:

TASK: Tank 569

CECLOCIST/ENGNEER: WHK

FILE #: ELEVATION: 95-018

				PRECISION ENGINEERING, INC. FILE #:	95-018
PROJECT:				ELEVATION:	6927.3
LOCATION:	See Boring	Plar	ı	LOG OF TEST BORINGS TOTAL DEPTE:	38.0
	Tank 576			LOGGED BY:	WHK
			s	DATE:	3-29-95
	1	s	A	STATIC WATER:	24'-3"
	P	С	м	BORING ID:	B2
	_ L	A	P	PAGE:	1
	0	L	L	MATERIAL CHARACTERISTICS	PID
DEPTH	Ī	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(mqq)
0.0-5.0	1///-+////	i	С	start at 10:00a	I
	1///-+////	:	c	Clay, slightly silty, little sand, wet, brown, soft to firm, no odor	0.0
	1//-+////	į,	c		j
	1//-+////		c		1
	1//-+////	i '	c		i
	///-+////	•	С		i
	///-+////	: .	c		i
	///-+////	:	c		i
	1//-*///	:	c	 	i
	1//-+///		1	! 	i
	1///-*////		l c	1 1	1
	•	•	:	 	1
	1///-+////	:	C		1
	1///-*////	:	C		1
	1//-+///	•	C	 	
	///-+////	:	C		<u> </u>
	1//-+////				
3.4-10.6	///***///	: :		Clay, fine sandy, gradational fine above and to below, wet, brown, firm, no odor	0.0
	///***///	: :	С		
	///***///	:	С		!
	///***///		<u> </u>		
0.6-12.0	*****	: :	:	Sand, silty, fine, moist, light red brown, loose, no odor	0.0
	******	: :	С	:	
	*****		C		
2.0-12.5	***000***			Sand, very gravelly, to 2°, moist, light red brown, dense, slightly rounded rock	0.0
2.5-13.1	*****	,		Sand, silty, moist, light red brown, loose, no odor	0.0
3.1-15.0	///**//	•	C	Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
	///**//		C		
	///++//	•	C		1
	///**//	,	C		
5.0-16.8	+++///+++	15	c	Sand, clayey, fine, moist, red brown, moderately dense, no odor	0.0
	///		С		1
	+++///+++	1	С		1
	///		С		
	,	• ,	c	Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor	0.0
.8-19.1	//*++-///			carbonate filaments common	İ
5.8-19.1	//*++-/// //*++-///		С	•	:
6.8-19.1			c c		İ
5.8-19.1	//+++-///				
6.8-19.1	//*++-/// //*++-///		C C		
	//+++-/// //+++-/// //+++-///	19	c c c	Clay, silty, large gravel present (2"), wet, dark brown, hard, no odor	0.0
	//*++-// //*++-// //*++-// //00++/	19	с с с	Clay, silty, large gravel present (2"), wet, dark brown, hard, no odor numerous carbonate filaments	0.0
9.1-20.0	//*++-/// //*++-/// //*++-/// //00++/	19	c c c	numerous carbonate filaments	<u> </u>
9.1-20.0 0.0-23.6	//*++-/// //*++-/// //*++-/// //00++/ //++///	19	C C C C	! 	0.0
9.1-20.0	//*++-/// //*++-/// //*++-/// //00++/ //++///	19	C C C C	numerous carbonate filaments	<u> </u>
9.1-20.0	//*++-/// //*++-/// //*++-/// //00++/ //++/// //++///	19	C C C C C C	numerous carbonate filaments	
9.1-20.0	//*++-/// //*++-/// //*++-/// //*// //// //+/// //+///	19	0 0 0 0 0 0 0 0	numerous carbonate filaments	0.0
9.1-20.0	//*++-/// //*++-/// //*++-/// //00++/ //++/// //++///	19	C C C C C C	numerous carbonate filaments	<u> </u>

IZE AND TYPE OF BORING: 4'-1/4" HSA

FILE #:

95-018

LOGGED BY: WHK

PROJECT: Tank 569

LOCATION: See Boring Plan

LOG OF TEST BORINGS

LOGGED BY: WHK

S A BORING ID: B2	PID (ppm) 1000 1060 610
P C M BORING ID: B2	PID (ppm) 1000
L A P	PID (ppm) 1000
DEPTH	(ppm) 1000 1060
DEPTH T E E E (MOISTURE,CONDITION,COLOR,GRAINSIZE,ETC.) 23.6-24.2 ****OO****	1000
23.6-24.2	1000
24.2-25.5	
25.5-27.1	610
// C	
/// C	
27.1-28.5	
	····
/////// 28 C	
28.5-30.9	
//***/// c //***/// c //***/// c	60
///***/// C	30
///***/// c	
///***/// c	
	1020
· · · · · · · · · · · · · · · · · · ·	1030
000*+0000 C	
000++0000 C	
000**0000 C	
32.9-35.0	
C Shale, weathered, wet to moist, some green mottling, red brown overall, stiff	20
C weak odor	
35.0-38.0 + 35 C Shale, as above, slightly more sand, blocky, dark red brown, wet to moist	57
C suspect contamination by water flowing from gravel abovegravel produces more	
* C water at this location than previous drilling	
* c	
* C	
* C	
+ 38 C	
TD stop drilling 11:25a	
completed 4" well - see attached well completion diagram	
24'-3" to water	
2° product on water	
i i i i	

ZE AND TYPE OF BORING: 4'-1/4" HSA

INSTALLATION DATE: 032995 INSTALLATION DIAGRAM HEIGHT TOP OF PROTECTIVE WELL COVER: FT INNER WELL CUP WELSUREMENT NOTOH-TOP OF PVC (DEPTH) (FT) BOTTOM OF PROTECTIVE WELL COVER: CEVENT: 2 FT. FT FT BOTTON OF CENENT: 2 CROUT: 14.9 FT. TOP OF BENTONITE SELL: 16.9 FT SEN: 4.7 FT. TOP OF SAND PACK: 21.6 FT TOP OF SCREEN: 26.1 FΤ SCREEN 10 FT. BOTTOM OF SCREEN: 36,1 FT 36.4 FT PIEZOMETER TIP: Bentonite Plug. BOTTONI OF BORING: 38.0 FΤ BOREHOLE DUNETURS " FIX NOISE

MATERIALS USED: SAND TYPE AND QUANTITY: 20-40

MONITORING WELL NO.

CONCRETE PAD-

BENTONITE

SAND PACK: 16,4 FT.

BENTONITE PELLETS (5-CULON BUCKETS): 2 Screen Lengths: 10'
BACS OF CROUT: 8-94# 8a 95+75# Riser Used: 30'
AMOUNT OF CENENT: 8-94# 8a 95+75#
COLTOP Cap Used?

OTHER:

Well Size: 4" 0:= OTHER:

Bottom Cap Used? VES Well Size: 4 " Pia.

J-Plug Used? <u>YE 5</u> Flush Mount Vault_ Avove Ground Vault VE5 Bollards, No.& Size:

TASK: Tank 569

GEOLOGIST/ENGNEER: WHK

Appendix B
Investigation Derived Waste Management Plan
investigation between waste management i ian

Investigation Derived Waste (IDW) Management Plan

All IDW will be properly characterized and disposed of in accordance with all federal, State, and local rules and regulations for storage, labeling, handling, transport, and disposal of waste. The IDW may be characterized for disposal based on the known or suspected contaminants potentially present in the waste.

A dedicated decontamination area will be setup prior to any sample collection activities. The decontamination pad will be constructed so as to capture and contain all decontamination fluids (e.g., wash water and rinse water) and foreign materials washed off the sampling equipment. The fluids will be pumped directly into suitable storage containers (e.g., labeled 55-gallon drums), which will be located at satellite accumulation areas until the fluids are disposed in the refinery wastewater treatment system upstream of the API separator. The solids captured in the decontamination pad will be shoveled into 55-gallon drums and stored at the designated satellite accumulation area pending proper waste characterization for off-site disposal.

Drill cuttings generated during installation of soil borings will be placed directly into 55-gallon drums and staged in the satellite accumulation area pending results of the waste characterization sampling. The portion of soil cores, which are not retained for analytical testing, will be placed into the same 55-gallon drums used to store the associated drill cuttings.

The solids (e.g., drill cuttings and used soil cores) will be characterized by testing to determine if there are any hazardous characteristics in accordance with 40 Code of Federal Regulations (CFR) Part 261. This includes tests for ignitability, corrosivity, reactivity, and toxicity. If the materials are not characteristically hazardous, then further testing will be performed pursuant to the requirements of the facility to which the materials will be transported. Depending upon the results of analyses for individual investigation soil samples, additional analyses may include VOCs, TPH and polynuclear aromatic hydrocarbons (PAHs).

Appendix C 2016 Site Investigation

	1609G64-007 9/27/2016		J 2.1 J		< 0.0624	> > >			v 4.7 v	v 300 v		V \	× 13 × ×	, 22 v	u < 0.0064 u		V	u 8 0.00 > u	< 0.0218	< 0.0053	u < 0.01 u	u < 0.0071 u		u < 0.0204 u	n < 0.0058		u < 0.0056 u	< 0.0055	u < 0.0076 u	+	< 0.0038		u < 0.00499 u	+ +	u < 0.0059 u	٧	u < 0.0861 u	v 0.23 v		< 0.0081	u < 0.0245 u	< 0.0044	H	< 0.0133	n 0.0059	< 0.0039		u < 0.0058 u	+ +	
TK 570-1 (32-34')	1609G64-006 9/27/2016	-	1.6		31	8.9	T			200 \		< 1.8115 L	13	10 \	-	< 0.0762		< 0.14/1 L	-	660.0			35	< 0.3824	< 0.109	< 0.3255	0.1047	0.1024		0.49	0.0715	0.7134	. 0.6793	1.1	< 0.1104 U	0.3638	153	< 0.1006	+	0.1521	_	0.082				-		_	< 0.3863 U	
(17-01) T-075	1609G64-005 9/27/2016	< 0.9961	1.7		ω	> 6.4	+	+	3.4 v	390 v	4.6 v	< 1.8011 u	14 ×	11 v	< 0.0445 u	0.0284	0.0753	< 0.0548 u < 0.0251 u	0.1522	n 6980.0 >	< 0.0695 u			< 0.1423 u	< 0.0405 u	0.1211	0.0395.8	< 0.0381 u	< 0.0527 u	_	+	_	< 0.0343 u < 0.2528 u	+	< 0.0411 u		6011	< 0.0374 u	0.0271	0.0566	< 0.1/11 u < 0.1534 u	0.0305		927	< 0.0351 u < 0.0414 u	0.027	< 0.0428 u	< 0.042 u < 0.0402 u	c 0.1437 u6.6 v	-
TK 569-3 (38-39')	1609G64-010 9/28/2016	< 1.0114 11			37	و د د	v 4.3 v > 0.284 u	7500	< 0.1747 u	130 v < 0.00006 u		< 1.8287 u	25 v 25	ш	< 0.003 u	, o		< 0.0037 u < 0.0017 u	0.0104	-	0.0047	334	0.23	v 760000 >			0.0027	0.0026	v 0.0036 u	0.0071	0.0018	0.0181	< 0.0023 u < 0.0173 u	0.0068	< 0.0028 u	< 0.0092 u		0.000.0026u	+	0.0039	< 0.0117 u < 0.0105 u	0.0021	0.0026	.0063	< 0.0024 u < 0.0028 u	0.0018	0029	< 0.0029 u < 0.0027 u	v 0.086 u v 0.086	_
	1609G64-009 9/28/2016	< 1,0059 11			34	> 7.4	3.20.269u	+	2.3 v	300 v	4.7	< 1.8187 u	13	7 6.6	< 0.5838 u	0.3722	0.9885	c 0.7189 u		0.4838	0.9126 u1.055 u	c 0.6524 u	140 v	1.8683 u	0.5323 u		5116 u 51 v	< 0.5002 u	c 0.6921 u		0.3493	(C)	< 0.45 u < 3.319 u	\vdash	< 0.5395 u		< 7.8917 u	44 v0.4917 u	0.3554		< 2.24/ u < 2.0138 u	0.4005	c 0.4966 u	2174	0.4602 u0.5429 u	0.3547		0.5511 u	1.8873 u 88 v	
1K 269-3 (16-18')	39G64-008 728/2016	Ē	1.3 J			> > >		+	2.8	230 v	5.7 v	Ľ	3 >	9.3	0.0031 u	5 D			0.0107 u	0.0026 u		0.0035	₩	< 0.01 u <	-	0.0085 u	0.0027 u 0.0026 J	0.0027 u	0.0037 u	0.0073 u	0.0019 u	0.0187 u ·	0.0024 u 0.0178 u	J.0075 J	0.0029 u	0.0095 u	0.0423 u	0.0026 u	0.0019 u	0.004 u	0.012 u	0.0021 u	0.0027	0.0065	0.0029 0.0029	0.0019 u	0.003 u	0.0028 u <	0.0027	4
	1610238-003 160 10/4/2016 9	0.9847	+		\vdash) v v v	+		1.1 v	450 v 0.0000	5 >	4 6	3.5 v 3.5	۸ <u>۷</u>	> n 6100	0019	0019	<pre>< 0.0019 u < 0.0019 u <</pre>	n EC	<0.0019 u <	1 c n	n 900	0055 v	<0.0002 u	> n E000:	.0019 u <	<0.0019 u < 0.0029 v 0	ם	> 0019 u >		ם	¬ :	<0.0005 u <0.0005	ם	<0.0003 u < 0.0004 J	ם ,	o.0044 J <	> ¬	<0.0019 u <	n O	v v	v 5 n	<0.0002 u <	у V л =	/ V 5 5	y 5 D	D =	y v n n	< 0.0011< 0.0041< < < < < < < < < < < < < < < < < <	
	1610238-002 16 10/4/2016 10	=	$\bot \bot$	> >	> n 2E9	> >	V	>	>	370 v 370 0.000	>	V \	/ 5 >	>	1 n	0.0077 u <0.	4 n	0.0148 u <0.	5 5	1 u	J =	5 7	>	5	3 3	-	J >	 	5 =	5 ¬	ח	э :	0.0685 u <0	<u> </u>	11 n	n 2	л ;	> 1	0.0073 u <0	л О ,	э э + (0	5 D	03 n	D =	0.0112 u <0	5 0	5 :	5 5	(0.039 u <0.4.8 v 0.039	
(38-001 2016	=	; ¬ >	> >	> n 2	> >	> <u>¬</u>	>	>	> -	h >	> \ D =	/ 5 >	>	v n	V	v n	20 E	5 5		v v ===================================	22 u <	>	у \ Э :	ם ס	v n	0.0049 u < 0. 0.69 v 2	v ה	v v э =	7 >	י ס	y \ 	v v 5 5	>	> n - r	> n 69	v э :	>	٧	ע י	v v 5 5	v 5 D	V	v v	/ V 5 5	y >	> \ > =	v v 5 5	c.0018d. v. 0.41v. 4v. 4	
	38-007 161023 /2016 10/4/	=		> ¬	n	v 5.4 6.4	> ⊐	>	>	0 v 210	5 >	> n E	' > S	<u> </u>	7	y 5 D	> n	38 u ×	o n 20	V	y ====================================	.0035 u < 0.006	>	у \ Э :	/ V	n	∨ ⊐ >	ov D	> v	/ 3	ם	5 :	.77 u < 0.0316	$\overline{}$	v п п	> 	22 u <	> ¬	v 	ע ס	v v 5 5	v 5 D	> n 2	05 u =	n n 62	19 n	n =	n n	2 n >	
	8-006 161023 2016 10/4/2	=	- >		v n	> >		>	>	v 1500	>	_	/ 5 >	>	9 u < 0.0031	> n 2	0 > n E	1 u < 0	0.0 > n	0 × n	0 C V V	0 v n	>	5 :	5 5	ח	ס >	n 2	n =	ס ה	ם	э :	0.0024 0.0024 0.00277	_	33 u < 0.0029	> 	v Э;	> ¬	ם	ם ס	1/ u < 0.012 11 u < 0.0108	y 5 D	v л	y v	/ V 3 3	y n	→ ¬	0 0	v 0.086	-
TK569-1(36-38')	38-005 1610238-006 '2016 10/4/2016	=			> 	3.6			v 1.2	v 710	v 3.2		, c.0,	۸ 7.6	600.0 > n) > 5	v n	. u < 0.011	y ====================================		v v = =	5 5	>	у \ э :	u < 0.0082	v n	∨ ⊐ >	ם	>	/ ¬	ם	5 :	u < 0.0069	-	v 0.035	> 	v э;	>	u < 0.0055	v T	v v 5 5	v 5 D		у v э =	/ V 5 5	y 5 D	y v 5 =	v v 5 5	<u> </u>	
	16102;	1 < 0.9825			٧	> > 			۷ 3.2	v 190	2 >	V \	, c.co.	۷ 8.3	u < 0.0025	<u> </u>	<u> </u>	u < 0.0031 u < 0.0014	<u> </u>	<u> </u>	u < 0.0039	u < 0.0028		u < 0.008	u < 0.0023 u < 0.0023		u < 0.0022 u 0.6		u < 0.003	_	u < 0.0015	<u> </u>	u < 0.0019 u < 0.0143	u 0.041	u < 0.0023 u 0.12	\ <u>\</u>	J < 0.034	v 0.23 u < 0.0021	\ <u>\</u>	<u> </u>	0.0097 u > 0.0087	<u> </u>	×	<u> </u>	u < 0.0023 u < 0.0023	· V	V \	u < 0.0024 u < 0.0023	u < 0.0081 J 0.73	-
	1610238-004 10/4/2016	0.9919	1.7		×	2.9	u 0.24	-	v 2.7	v 190		V V	8.6	8.6	u <0.0017	u <0.0017		u <0.0017	\ <u>\</u>	<u> </u>	u <0.0004	u <0.0005	J <0.0003	u <0.0002	u <0.0002	-+	u <0.0017 u <0.0003	\vdash	u <0.0017	+	+	u 0.002	u <0.0003 u <0.0004	u <0.0004	u <0.0003	+	0.0046	v 0.01/2 u <0.0002	u <0.0017	-	u <0.0003		u <0.0002		u <0.0017 u <0.0004		\vdash	u <0.001/ u <0.0017	u <0.001 J 0.0004	
TK 568-2 (36-37')	1609G64-003 9/27/2016		2.1	\perp	⊢ ` ⊦	8.3		+		330	5.7	< 1.8162	6.4		<0.0017	+	0	<0.0017	0	<0.00	+	<0.0005	0.0006	<0.0002	<0.0002	<0.0017	<0.0017	H	-	+	+	-	<0.0003 <0.0004	<0.0004	<0.0003	+	_	<0.0002	<0.0017	-	<0.0003				<0.001/ <0.0004	+			<0.001	-
TK 568-2 (28-30')	1609G64-002 9/27/2016	1 9266 0 >			56	5.6		9100	1.8	200 v	4.7	17	10 7	9.3	< 0.0622 u	0.0397	0.1054	< 0.0766 u < 0.0351 u	0.2129	< 0.0516 u	2 2 2	o 2690.0 >	18 v	< 0.1991 u	0.04620.0567u	< 0.1695 u	< 0.0545 u 5.6 v	0.0533	< 0.0738 u	0.86	+		< 0.048 u < 0.3537 u		< 0.0575 u	< 0.1894 u	< 0.841 u	>.2 v > 0.0524 u	< 0.0379 u	0.0792	0.2395 u0.2146 u	0.0427	29	1297	0.04900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000<th>0.0378</th><th></th><th>\circ</th><th>0.2011</th><th></th>	0.0378		\circ	0.2011	
TK 568-2 (22-24')	1609G64-001 9/27/2016	10.0348	< 8.8622 u	53	< 0.6324 u	2.5	< 0.254 u	4900	5.9	2300 v	3.1 J	34	28 4	6.3	<0.0017 u	<0.0017 u		<0.001/ u <0.0017 u	-	<0.0017 u		<0.0005 u	0.0003	<0.0002 u	<0.0002 u	-	<0.0017 u <0.0003 u	\vdash	<0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.001	+	++	_	<0.0003 u <0.0004 u	+	40.0003 u constant		0.0085 v	v.00034 v <0.0002 u	<0.0017 u	_	v > 0.0003 u v > 0.0006 u		<0.0002 u	_	<0.001/ <0.0004 u	+	\vdash		<0.001<0.0002u	-
	1609E26-010 9/23/2016	> 1 0019	\perp	> >	⊣	× × ×			0.54 v	120 v 00089	8.6 v	1.8115 u <	ál	27 v	0.003 u	5 7	.0051 u	0.0037 u 0.0017 u	ם ס	ח	5 =	5 5	_	D :	0.0027 u	ח	ם ח	ח	D =	ם ס	ם	э :	< 0.0023 u < 0.017 u	ם	0.0028 u	ם	0404	> 5	+	э -	7 0	5 7	.0025 u	.0062 u	0.0024 u	0018 u	0029 u	0028 u 0027 u	0.0097 u 0.0026	-
	09E26-009 16 /23/2016 9	> 1 8086.0 >	· ¬ >	> >	> 	> >	> =	>	>	290 v	>	33 u = 7	14 ×	>	7	٧	v n	v v ===================================	y =	<u> </u>	>	5 3	>	∨ \ ⊃ =	/ V 3 3	v n	0.0252 u < 0 1.9 v 0	ע ס	>	/ V 5 ¬	ע ס	э :	ם ס	-	v v	V	v э;	> =	V л	۷ ع	0.0993 u 8011.0	v 5 = ==================================	0.0245 u <	v v	/ V 5 5	y 5 D	v v	v v 5 5	< 0.0931 u < 0.0931 u < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0	
	1609E26-008 16C 9/23/2016 9/	Ξ	¬ >	> >	D	> >	> ⊐	5 >	>	> ¬	, n >	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14 ×	>	n	V	v n	n =	5 5	Э	5 =	5 7	>	У \ Э =	/ V 5 5	v n	∨ ⊐ >	v ה	y v ====================================	/ p ¬	ס	э :	5 5		y v n =	> 	v э;	> =	v n	ע ס	v v 5 5	٧	У Э		3 3	5 D	5 =	5 5	3 3 >	
Source	1609	(5) (6)		(5) 0.82	V	(5) 8.9				(5) 220 (5) 0.0045		V V	(5) 1.0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	(5) < 0.14 <i>f</i> (7) (6) (7) (7)		< 0.0994				(4) < 0.3	(5) < 0.1094	+	(5) < 0.1 (6) 1.3	- < 0.1028	(6) < 0.1			(5) < 0.7	(e) < 0.6821 (b) < 0.6821	$\dagger \dagger$	(6) < 0.1109 - < 0.1125	(5) < 0.3653	(5) < 1.6				V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v	V V					(5) < 0.3878 (4) 19	<u> </u>
Non- Residential Soil Screening Level		1.42E+02	3.59E+01			1.34E+02 3 67E+01				4.64E+02 2.05E+01			6.14E+02			1.35E+04						7.84E+01		1.17E+00			2.52E+01 1.50E+03		2.30E+04 6.73E+03			_	7.08E+03 1.30E+03	\coprod	2.30E+04		+05		2.99E+01		1.77E+01 1.61E+03		4.08E+02		_	7.08E+02			1.59E+02 3.65E+02	-
Source			(1)			(1)				(1)			(1)					(T) (T)			(7)	<u> </u>		(1)			(1)		(2)				(Z)	$\dagger \dagger$	(5)	(1)											(1)		(1)	-
Residential Soil Screening Level		3.13E+01	7.07E+00	1.56E+02	7.05E+01	9.66E+01	2.34E+01 1.11E+01	5.48E+04		1.05E+04 2.36E+01	1.56E+03	3.91E+02	3.94E+02	2.35E+04	2.78E+01	1.43E+04	7.93E+00	2.59E+00 7.79E+01	4.36E+02		6.30E+01 5.10F-02	8.22E+01	3.00E+02	8.51E-02	2.14E+03	8.25E+00	1.76E+01 2.70E+02		1.60E+03	1.72E+02		3.73E+04	1.56E+03 2.00E+02	2.32E+02	1.60E+03	5.81E+03	6.63E+04	2.90E+02	6.14E+00	6.74E+02	1.76E+01 1.54E+03	1.06E+01	3.76E+02	1.88E+04	5.85E+00 4.08E+01	1.56E+02	2.91E+01	1.38E+01 5.74E+01	1.80E+02 7.45E+01	
		Metals (mg/kg) Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cyanide	Iron	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	1.1.1.2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-I richloroethane 1.1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-I richloropenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane (EDC)	1,2-Dichloropropane 1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1-Methylnaphthalene	2,2-Dichloropropane	2-Butanone	z-Uniorotoluene 2-Hexanone	2-Methylnaphthalene	4-Chlorotoluene	4-Methyl-2-pentanone	Acetone	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	cis-1,2-DCE	cis-1,3-Dichloropropene	Dibromocnlorometriane Dibromomethane	Dichlorodifluoromethane Ethylbenzene	,

	Residential Soil	Non- Residential	e nuce	[(12-14,)	(30-32°)	(,67-87)]	(22-24)	5 (28-30,)	(,18-98) 7	T(18-20 ₁)	T(24-26')	r(3e-38 _i)	T(4O-45 ₁)	(18-18)	5(29-31,)	(.86-38')	(,81-91) 8	3 (24-26')	('65-85) 8	('\21-01)	[(35-34 ₁)	(,97-44) 1
	-	Screening Level		L-893-XT								TK269-1		Z-699XI	Z-699XI	Z-699XI	TK 269-3	TK 269-3		TK 670-1		TK 670-1
				1609E26-008 9/23/2016	8 1609E26-0 9/23/201	1609E26-	-010 1609G6 016 9/27/2	54-001 1609G(2016 9/27/	64-002 1609G6 /2016 9/27/2	34-003 1610238 2016 10/4/20	3-004 1610238-C	005 1610238-00 16 10/4/2016	06 1610238-00 ⁻ 6 10/4/2016	3 10/4/2016	1 1610238-002 10/4/2016	1610238-003	1609G64-008 9/28/2016	1609G64-009 9/28/2016	1609G64-010 9/28/2016	1609G64-005 9/27/2016	1609G64-006 9/27/2016	1609G64-007 9/27/2016
Hexachlorobutadiene	6.16E+01 (1)	5.17E+01		< 0.1533	u < 0.0368	У 	э	u < 0.07	95 u	n <0.000	n < 0.	u <0.0115	u < 0.004	u < 0.0071	154		.004	.7459	0.0039	.0568	.1527	< 0.0081 u
opropylbenzene		2.71E+03		0.94	_	∨ ¬ ;	+	n -	~ - - - -	л : С	n :	× 0.08	0.0031	0.071	0.21	0.001	0.0028	23		0.64	+	0.32
letiiji tert-butyi etriei (MTBE) lethylene chloride	4.09E+02 (1)	4.78E+U3 1.20E+03	(5)	< 0.3614	u < 0.0867	> 3	ם ר	> n 2	2 4 V	> ¬) () / V	u v 0.0 ×			u < 0.0363	u <0.0019 u	O	< 1.7587 u	< 0.0091 u	< 0.134 u	u c282.0 > 0.36 u	< 0.0209 u < 0.0192 u
aphthalene		5.02E+03		3		>	n	n 2	>	n 2	O n	J 0.32	< 0.0051	0.58	0.75	<0.0019	0.0051			2.8		0.079
Butylbenzene	3.90E+03 (2)	5.80E+04		1.3	J 0.37	_		4 (7000'0> ſ ,	-	n	^	0.013	J 0.23		0.0005	< 0.0029 u	9.6 0.6	0.019	v 1.4	2.6	v 0.24 v
Propylbenzene		2.40E+04		5.2	0.83	> -	D :	э :	> -	л :	л :	> ;	0.037	0.34	× - ×	-	0.0025		0.048	> -		0.53
ec-Butylbenzene tvrene	7.23F+03 (2)	1.20E+05 1.01F+04	(2)	0.49		¬ =) =	y n =	¬ =	n =) V	0.076		_	V 0.1 J	-	: c	LT V	0.01/ 0.000 >	0.42 J	T.8 V	
rt-Butylbenzene		1.20E+05		< 0.1039	-	ם ב	5 3	v 5 D	0> n 68	5 3	, o	, v	< 0.0027	< 0.0048	< 0.0104	<0.0003	0.0027				-	10
etrachloroethene (PCE)		1.19E+02		< 0.104	u < 0.0249	ם	ם	2 u < 0.05	n 68	ח	> n	v n	< 0.0027	< 0.0048	< 0.0104	u <0.0002 u	0.0027	o 0.5059 u	ם	< 0.0385 u	0.1035	< 0.0055 u
oluene		1.40E+04		92		>	n	7	>	_	ſ	>		v 0.7			111					2.3
ans-1,2-DCE		3.03E+02		< 0.3509	H	ם	ם	n	n	n	0 > n	v n	u < 0.0091	u < 0.0163	u < 0.0352	l <0.0002 u	o.	< 1.7074 u	n	< 0.13 u	< 0.3495 u	< 0.0186 u
ans-1,3-Dichloropropene	2.91E+01 (1)	1.29E+02		< 0.1835		ס	D .	У Э	Э	ם	0 v	v n		u < 0.0085			0.0048		0.0046 u	0.068	0.1827	o 7600.0 >
richloroethene (TCE)	6.72E+00 (1)	6.84E+00		< 0.1344		5 :	5 :	> \ > :	л :	5 :	0 \ v	> ·	0.0035	< 0.0062	< 0.0135	<0.0019	0.0035	< 0.6539 u	л :	< 0.0498 u	0.1338	< 0.0071 u
inyl chloride		2.83E+01	(4)	< 0.1025	u < 0.0228	5 0	0.0002 u <0.0004	/ V 5 3	5 0	5 0) v	y 3 3	< 0.0024	u < 0.0048	0.0103		< 0.0024 u	0.4988	0.0026 u	0.038	< 0.1021 u	< 0.0054 u
ylenes, Total		7.91E+02		120	+	5 >	5 5	5 ¬			ם ס	5 >	0.51	2.5	30	0.019	0.015	500	0.5 v		110	9
emi-volatiles (mg/kg)		•			-	ŀ	-					ŀ	•		-		•	•	•	•	•	•
2,4-Trichlorobenzene	8.22E+01 (1)	7.84E+01		< 1.0571		ם	v n	v ¹	<u>ס</u>	> ·	0 V	ע י	< 0.1076	< 0.1077	< 0.1051	< 0.1088	\pm	1.0818	0.1081 u	0.1087	0.1071	0.1075
.2-Dichlorobenzene	2.14E+03 (1)	2.47E+03	(c) -	< 0.7485	u < 0.0762	v v n =	0.076 n < 0.076	6 u < 0.0764	v v = =	3 u < 0.0756	0 V V	19/0.0 > n	79/0.0 > n	2	u < 0.0744 u	u //0.0 > u	0 9/0.0 > 0 0/0.0 >	0.768 u	5 =	n 69/0.0 >	n 6670.0 >	0.0761 u
4-Dichlorohenzene	1 29F+03 (1)	6.73E+03	(4)	08267.0		′ ∨ s =	3 =	' V	, v	' V) C / V	, v 3 =	< 0.0163	< 0.0842	< 0.03	, , , , , , , , , , , , , , , , , , ,	2839	3455	3 =	0.0849	0.037	0.07.00
Methylnaphthalene		8.13E+02		1.5		' V 3 3	3 3	, D D	′ ∨ 5 >	' V 5 5	0 '	' v	, 0.004	0.13	< 0.0976	< 0.1011		-			1.3	
4,5-Trichlorophenol		2.69E+04		< 0.978	9660.0 > n	י ס	> n	> n	۷ ٦	v n	0 > n	v л				٧	1994	< 1.0008 u	ס	< 0.1005 u	< 0.0991 u	< 0.0995 u
4,6-Trichlorophenol		2.69E+02		< 0.8108	— 	o ח	v Э	v п	> n 2	v л	0 v	n × 0.	< 0.0825	< 0.0826	< 0.0806	< 0.0834	3824	0.8297	0.0829 u	_	0.0822	0.0825
4-Dichlorophenol	1.85E+02 (1)	8.07E+02	(5)	< 0.9116	u < 0.0928	э :) V V) D :	٠,	5 :	0 V N		< 0.0928	< 0.0929	< 0.0906 \ 0.4066	< 0.0938	3926	_	-	< 0.0937 u	< 0.0924 u	< 0.0927 u
4-Dinitrophenol		5.38E+02		< 1.0013 < 0.6482	090TO > n	/ V 5 5	/ V 5 5	0.1083 0 < 0.0663	/ V n n	/ V 5 5) () / V) / v	990.0 > u	1901.0 > u	0.0644	u 5001.0 > u	O.107 aO.0658	u 080.T >	n coot.0	n T60T.0 >	0.27 J	< 0.0659 u
4-Dinitrotoluene	71E+01	8.23E+01		< 0.8727	+	v n	n	v n	1 u <	> n	0 > n	0 > n	< 0.0888	< 0.0889	< 0.0868	< 0.0898	7887	0.8931	כ		0.0885	0.0888
6-Dinitrotoluene		1.72E+01		< 1.034	u < 0.1053	v n	ס	v n	n	v n	0 > n	v n	\vdash	0.1054	\vdash	u < 0.1064 u	< 0.105 u	< 1.0582 u	n	< 0.1063 u	< 0.1048 u	< 0.1052 u
Chloronaphthalene	6.26E+03 (1)	2.83E+04		< 0.7693	-	у , п	ם	D \	у , П	۷ '	n 0	у ,	< 0.0783	< 0.0784	0.0765	< 0.0792	< 0.0782 u	0.7873	0.0787 u	0.0791	0.078	< 0.0783 u
Chlorophenol	3.91E+02 (1)	1.77E+03	(2)	< 0.7704) V V) V	v \	٧ <i>١</i>	0 V V V	> \ = =	< 0.0784	V	0 0	۷۱		0.7883 u1.1867 ::	л :	< 0.0792 u	81	< 0.0784 u
Methylphenol (cresol.o-)		4.10E+04		>0.8169	1 < 0.0832	/ V 5 =	3 =	3 u 0.14	> -	0.082) (/ v	5 =	0.0831	u < 0.0832	0.13	0 < 0.1133 u	0.083 u		n COTTO >	0.31 0.13	v 8.3 v > 0.0828 u	< 0.0831 U
Vitroaniline	.30E+02	8.00E+03		< 1.0533	+	v 5 D	× 5 D	v 5 n	75 u < 0.	٧	0 >	n < 0.	< 0.1072	٧	247	u < 0.1084 u	-			< 0.1083 u	0.1068	< 0.1071 u
Vitrophenol		•		< 0.9695	u < 0.0987	v n	v n	v n	v n	v n	0 > n	v n	u < 0.0987	n < 0.0988	u < 0.0964	n 8660.0 > n	< 0.0985 u	< 0.9922 u	< 0.0991 u	n 9660.0 >	< 0.0983 u	o 0.0986
3 '-Dichlorobenzidine	1.18E+01 (1)	5.70E+01	(4)	< 0.7195	-	э :	5 :	v э :	J -	u < 0.07	0 V V	5 :	< 0.0732		10	0.0741		0.7363	0.0736	< 0.074 u		32
Nitroaniline		. .		< 0.8615	u < 0.0877	/ V 5 5	/ V 5 5	0.13 0.13	/ V	36 u < 0.0874) () / v	/ V 5 D	2/0.0 > n	u < 0.0878	u < 0.0856	u < 0.0887 u	0.07130.0875	< 0.8816 u	3 D	< 0.0885 u	< 0.0873 u	<pre></pre>
6-Dinitro-2-methylphenol	4.93E+00 (1)	2.15E+01	(5)	< 0.5909		v n	n	v n	v n	n	>	v n	< 0.0602	< 0.0602	0.0588	< 0.0608	90'	0.6047	0.0604 u	0.0607	0.0599	0.0601
Bromophenyl phenyl ether				< 0.9343	u < 0.0951	n < 0.	v n	n < 0.09	v n	v n	0 > n	n		u < 0.0952		u < 0.0962 u	< 0.0949 u	< 0.9561 u	< 0.0955 u	n 960.0 >	< 0.0947 u	o 0.095
-Chloroaniline	2.70F+01 (3)	1.10F+02	(7)	< 1.1659	u < 0.1187 < 0.1082	5 =	1 u < 0.1184	u < 0.1	5 =	% - 0.1183	3 u < 0.1155 3 u < 0.1155	u < 0.1186 < 0.108	u < 0.1187 u	u < 0.1188	u < 0.1159 u u < 0.1056 u	u < 0.12 u	< 0.1184 u < 0.1079 u	< 1.1931 u < 1.0872 !!	< 0.1192 u < 0.1086 u <	< 0.1198 u < 0.1092 u		< 0.1186 u
Chlorophenyl phenyl ether		 - -		< 1.1165	+	0 v	y 5 = 3	5 3	v 5 = 3	v 5 =	0 ×	v 5 = 3	< 0.1137	0 ×		< 0.1149	0.1134	1.1426	5 D	0.1148	32	_
-Nitroaniline	2.70E+02 (3)	1.10E+03	(7)	< 0.689	\vdash	ゝ	D .	n < 0.0	> n	v л	0 v	v э	< 0.0701	< 0.07	385	< 0.0709	< 0.07	Ш		\vdash	0.0698	< 0.0701 u
Nitrophenol	3 48F+03 (1)	- 1.51F+04	· (5)	< 0.7444	u < 0.0758	v v ===================================	2 u < 0.075	56 u < 0.076	76 u < 0.074 55 u < 0.084	.9 u < 0.0755 .3 < 0.085	0 V	v v ===================================		u < 0.0759		u > 0.0766 u	< 0.0756 u < 0.0851 u	< 0.7618 u < 0.8575 u	< 0.0761 u < 0.0857 1	< 0.0765 u < 0.0861 u	< 0.0755 u < 0.0849 u	< 0.0757 u < 0.0852 u
senaphthylene				< 0.7952		0 > n	u < 0.08	> n 8	n	n < 0.	0 > n '	0 > n	< 0.0809	0 >		< 0.0818	0.0808		5		0.0806	0.0809
illine	9.50E+02 (3)	4.00E+03		< 0.9233	-	0 v	v э	v л	v л	v Э	0 V	n < 0.		Ö		u < 0.095 u	0.0938		0.0944 u	0.0949	0.0936	< 0.0939 u
nthracene		7.53E+04	(2)	< 0.6487	u < 0.0661	u < 0.0664	>	v v	>	y y	3 u < 0.0643	> v = =	u < 0.066 u	u < 0.0661	u < 0.0645 u	0.0668 u	< 0.0659 u	< 0.6638 u	< 0.0663 u <	< 0.0667 u < 0.1224 u	< 0.0657 u < 0.1207 u	< 0.066 u
enz(a)anthracene	1.53E+00 (1)	3.23E+01		< 0.8412	+	0 v	0 v	y 5 D	y 5 D	y 5 D	(n 0 ×	u < 0.0856	0	0.0836 u		0.0855		980	_	0.0853	< 0.0856 u
enzo(a)pyrene	1.12E+00 (1)	2.36E+01		< 0.74	+	0 > n	v 5 D	v 5 n	v 5 D	v 5 D	1 u < 0.0733	n < 0.	u < 0.0753	u < 0.0754	u < 0.0736	< 0.0762	0.0752		0756	\perp		< 0.0753 u
enzo(b)fluoranthene	1.53E+00 (1)	3.23E+01		< 0.8826		0 × 0	0 > n	n (C)	o n	n ·	5 u < 0.0875	u < 0.	u < 0.0898	u < 0.0899	u < 0.0877	n < 0.0908 u	7680.0				0.0895	< 0.0898 u
enzo(g,h,ı)perylene		-	· (4)	< 0.861/		v \ =	0.087 0.087	v \	y \	y \ =	t c 0.0854	v \	//80.0 > u	0.08/8	0.085 / L	n /880.0 v	0.08750.0875	0.8818 u0.8818 u	0.0881 u0.0881 u	0.0886 u	< 0.0873 u	u //80.0 >
enzoic acid	2.50E+05 (2)	3.30E+06		2.1	J < 0.0825) / >	0.082 n	/ V 5 5	/ V	/ V 3 3	0.081	, o	u < 0.0825	0.11	0.0805	0.0834 u	< 0.0873 u	2 200.0	< 0.0828 u	0.17	< 0.0821 u	0.13
enzyl alcohol	6.30E+03 (2)	8.20E+04		< 0.765	u < 0.0779	u < 0.0783	3 u < 0.0777	77 u < 0.0781	81 u < 0.0769	39 u < 0.0776	s u < 0.0758	n < 0.	u < 0.0779	u < 0.0779	u < 0.0761	ı < 0.0787 u	< 0.07777 u	< 0.7828 u	< 0.0782 u	< 0.0786 u	< 0.0775 u	< 0.0778 u
is(2-chloroethoxy)methane		2.50E+03		< 1.0604	-	ע ס	ע ס	v п	у л	0 °	0 v	n 0 0	u < 0.1079	u < 0.108	u < 0.1054 u	- < 0.1091 u	0.1077		0.1084 u	0.109	0.1075	< 0.1079 u
is(2-chloroethyl)ether		1.93E+00 F 10E+02		< 0.718	-	v \ =	У \ Э =	v \ = =	у \ л =	v \ э =	0 0	y \ 	u < 0.0731	u < 0.0732		<u> </u>	_		л =		_	< 0.073 u
s(z-criiol olsopilopyi)etriel s(2-ethylhexyl)phthalate	3.80E+02 (1)	3.13E+02 1.83E+03		< 0.7962	u > 0.0000	/ p ¬	/ V 5 ¬	/ n n	/ p ¬) / n ¬	0 / v n ¬	ם ס	J 0.14	$^{\circ}$		0.0960 U	0.11	< 0.8329 u < 0.8148 u	0.12 J	0.11 J	0.00040.14J	0.12 J
utyl benzyl phthalate		1.20E+04		< 0.8651	+ +	v n	v n	v n	ם	v n	0 v) V	0.0881		u < 0.086	H	o 0.0879 u	0.8853	0.0884 u	n 6880.0 >	< 0.0877 u	< 0.088 u
ırbazole		'		< 0.6599	u < 0.0672	v n	D .	ם	74 u < 0.066	л V	0 v	ם ס		01 (0.0656	< 0.0679	0.067		5	0.0678	0.0669	< 0.0671 u
nysene	1.53E+02 (1)	3.23E+03		< 0.8321	-	v n	v D	У Э	v n	v n	0 V	0 > n	u < 0.0847	0.084	_	u < 0.0856 u	< 0.0845 u	< 0.8516 u	0.0851 u	< 0.0855 u	< 0.0843 u	< 0.0846 Lu

No screening level or analytical result available
NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
EPA - Regional Screening Levels (June 2017)
(1) NMED Residential Screening Level
(2) EPA Residential Screening Level
(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(4) NMED Industrial Occupational Screening Level
(5) NMED Construction Worker Screening Levels
(6) EPA Industrial - Screening Levels
(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(8) NMED Table 6-2 TPH Soil Screening levels
report Section 5 for use of screening levels

Bold represents value above Residential Soil Screening Level
Yellow highlight represents value above Non-Residential Soil Screening Level
Bold with yellow highlight value exceeds Residential Soil Screening Level
Residential Soil Screening Level

v = reportable detection above the Practical quantitation limit (PQL)u - result is not detected at method detection limit (MDL)j - estimated result at concentration above MDL but less than PQL

	1	1 -	_											_				T T												1													T T			Г					
(2.2. 2.) 22	26-007		ා − න	>	>	n 23	> >	+		>	> -	> t		ວ > ດ	>		n 7 / C		ے د وو و		n 22		4 0			ာ =			> =	5 D					n –	, u	7	n 1				n n		<u>4</u> 0				n n		n :	5 >
(48-48.5")	1609E2 9/22/:		< 1.004 1 8	45	0.58	< 0.063	7.3	< 0.25	11000	1.5	97	6.1	\Box	> 0.062 14	17		7600.0 >	< 0.0256	< 0.018	< 0.0518	< 0.0125	< 0.023	< 0.0274 < 0.0169	1.4	< 0.0485	< 0.0113 < 0.0138	< 0.041	< 0.0133	0.5	< 0.017	< 0.0196	0.083	< 0.0904	< 0.011	< 0.0861	< 0.01	0.048	< 0.204	0.077	< 0.012	< 0.008	< 0.058	< 0.052	< 0.010 < 0.012	< 0.031	< 0.011	< 0.014	< 0.003 < 0.014	< 0.0143	< 0.013	0.51
	26-006		D >	> >	>	л 10	> >	>	>	>	> -	>		5 >			2 2			5 D			n =	+ +	_	∞ -			> =	-		_ =		_	л > 0	-		1 4 2 2	\vdash	_	_	ם ס		⊐ =				n n	$oxed{oxed}$		>
0W-58 (28-29')	1609E26 9/22/2		< 0.992	360	0.66	< 0.062	4.9	< 0.25	14000	3.8	180	7.1	< 1.7936	21	19	0000	< 0.032	< 0.0862	< 0.062	< 0.1743	< 0.0422	< 0.0796	< 0.092	30	< 0.163	< 0.0378	< 0.1387	< 0.0446	9.9	< 0.0604	< 0.0659	1.6	< 0.3042	0 0	3.7	< 0.0471	0.27	< 0.6884		< 0.0429	< 0.031 < 0.0648	< 0.196	< 0.175	< 0.0348	< 0.1062	< 0.040	< 0.0474	< 0.049	< 0.0481	< 0.0462	15
	26-005 2016		n –	>	>	n	> >	• n	>	^	> -	>		5 >	ightarrow	-	5 5	\vdash	ם ב		n		D =	+ +		D		n	> =			> =			D >			3 3	₩			ם ס	-	=				3 3			>
OW-58 (22-24')	1609E26- 9/22/20		< 0.9768	160	1.1	< 0.0616	13	< 0.25	18000	2.6	280	9.2	< 1.7661	19	16	099007	< 0.0422	< 0.1121	< 0.0815	< 0.2266	< 0.0549	< 0.1035	< 0.074 < 0.074		< 0.2119	< 0.0492	< 0.1804	< 0.058	7.7	< 0.0785	< 0.0857	2.8	< 0.3953	910	< 0.3765	< 0.0612		< 0.8951	7.3	< 0.0558	< 0.0403	< 0.2549	< 0.2284	< 0.0454 < 0.0563	< 0.1381	< 0.0522	< 0.0616	< 0.0638	< 0.0625	< 0.0599	9.3
	26-004]	л — 9	>	>	ב _	> >	> ⊃	5 >	>	> -	>		5 >			3 3 + (0		_	3 3			n =			J =	_	\vdash	л =		-	ם ב	+		D 16	-		⊃ > +				3 3		э =				3 3			ם כ
(21-01) 83-WO	1609E26 9/22/20		<u> </u>	320	0.88	< 0.0641	10	< 0.25	15000	2.8	270	7.6	< 1.8398	18	13	/6000/	< 0.0024	< 0.0041	< 0.003	< 0.0084	< 0.002	< 0.0038	< 0.0044	< 0.0019	< 0.0078	< 0.0018	7300.0 >	< 0.0021	< 0.0019	002	< 0.0032	< 0.005 / < 0.0015	0.055	8 8	< 0.0139	< 0.0023	< 0.0023	0.65	0.068	< 0.0021	3T00.0 >	7600:0 >	7800'0 >	< 0.0017	< 0.0051	< 0.0019	0.0085	7200'0 >	< 0.0023	< 0.0022	< 0.0021
	26-002		n >	> >	>	n	> >) 1	N	^	> -	>		n >		L	n n			ם ס			n =	\perp		D =	n	n	n =	5 0	n -	^ =	5 _	n :	D =			n >	>			ם מ		ם ב				ם מ			ם מ
('YS-2S) 78-WO	1609E26 9/21/20		< 0.985 2 8 6	1200	0.83	< 0.0621	4.6	< 0.25	15000	2.8	1700	7.9	< 1.781	23	9.6	0,000	<0.0019	<0.0019	<0.0019	<0.0003	<0.0019	<0.0005	<0.0006 <0.0006	<0.0003	<0.0002	<0.0019	<0.0019	<0.0019	<0.0003	<0.0019	<0.0004	0.0003	0.0023	<0.0003	<0.0005	<0.0003	<0.0004	0.0191	0.0147	<0.0002	<0.0019	<0.003	<0.0007	<0.0019	<0.0003	<0.0019	<0.0005	<0.0019	<0.0019	<0.0019	<0.0003
	3-001 016		5 –	h >	>		> >	• ⊃	5 >	>	> -	>	5	5 >	>		5 5			3 3			D			5 =			5 =			5 5			> =			3 3				5 ¬		5 =				3 3			ם ס
('81-81) 73-WO	1609E26-001 9/21/2016		< 0.9801 1 8	180	0.52	< 0.0618	%. %.	< 0.25	12000	2.8	510 0.0055	6.3	< 1.7721	17	15	7000	< 0.003	< 0.0052	< 0.0038	< 0.0105	< 0.0025	< 0.0048	< 0.0034	< 0.0024	< 0.0098	< 0.0023	< 0.0083	< 0.0027	< 0.0023	< 0.0036	< 0.004	< 0.0071	< 0.0183	< 0.0024	< 0.01/4 < 0.0068	< 0.0028	< 0.0029	< 0.0414	0.076	< 0.0026	< 0.0019 < 0.0039	0.016	< 0.0106	< 0.0021	< 0.0064	< 0.0024	< 0.0028	< 0.0029	< 0.0029	< 0.0028	< 0.0026
Source		(i)	(5)	(2)	(5)	(5)	(2)	(2)	(5)	(9)	(5)	(5)	(5)	(2)	(5)	(4)	(5)	(4)	(5) (4)	(2)		(6)	(5)	(9)	(4)	(5)	(4)	(5)	(9)	(9)	(4)	(/)	(5)	(2)	(6)	(9)	(ج)	(5)	(4)	(9)	(4)	(5)	(5)	(5)	(5)	(4)	(4)	(5)	(4)	(5)	(4)
Non- Residential Soil Screening Level			3.59F+01	4.39E+03	1.48E+02	7.21E+01	1.34E+02 3 67E+01	1.20E+01	2.48E+05	8.00E+02	4.64E+02	7.53E+02	1.75E+03	6.14E+02	1.06E+05	1 265±02	1.35E+04	3.91E+01	2.28E+00	4.20E+02	1	9.30E+02	7.84E+01	1.80E+03	1.17E+00	3.28E+00	4.03E+01	2.52E+01	1.50E+03	2.30E+04	6.73E+03	8.13E+02 -	9.12E+04	7.08E+03	1.30E+03	2.30E+04	- 100	2.41E+05	8.65E+01	1.80E+03	2.99E+01 1.75F+03	1.77E+01	1.61E+03	5.21E+01 4.08F+02	1.65E+04	2.84E+01	1.99E+02	1.29E+02	6.69E+01	5.34E+01	3.65E+02
Source		(7)	(T)	(1)	(1)	(1)	(T)	(1)	(1)	(2)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(T)	(1)	1	(2)	(T)	(2)	(1)	(1)	(1)	(1)	(2)	(2)	(1)	(T) -	(1)	(1)	(7)	(2)	- (5)	(1)	(1)	(2)	(T)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Residential Soil Screening Level			3.13E+01 7.07F+00	1.56E+04	1.56E+02	7.05E+01	9.66E+01	1.11E+01	5.48E+04	-	1.05E+04	1.56E+03	3.91E+02	3.94E+02	2.35E+04	2 705+01	1.43E+04	7.93E+00	2.59E+00	4.36E+02		6.30E+01	5.10E-02 8.22E+01	3.00E+02	8.51E-02	6.68E-01 2.14E+03	8.25E+00	1.76E+01	2.70E+02	1.60E+03	1.29E+03	1.72E+02	3.73E+04	1.56E+03	2.00E+02	1.60E+03	- 7. CO.	5.61E+03 6.63E+04	1.77E+01	2.90E+02	6.14E+00 6.74F+02	1.76E+01	1.54E+03	1.06E+01	1.88E+04	5.85E+00	4.08E+01	1.36E+02 2.91E+01	1.38E+01	5.74E+01	7.45E+01
		als (mg/kg)	mony	Œ.	llium	mium	mium -	ide			ganese	le le	nium	dium	(F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	Volatiles (mg/kg)	L-Z-Tetracilioroetrialie L-Trichloroethane	1,1,2,2-Tetrachloroethane	2-Trichloroethane	Dichloroethene	Dichloropropene	3-Trichlorobenzene	3-Trichlorobenzene	1,2,4-Trimethylbenzene	Dibromo-3-chloropropane	Dibromoethane (EDB)	-Dichloroethane (EDC)	2-Dichloropropane	5-Trimethylbenzene Dichlorobenzene	-Dichloropropane	Dichlorobenzene	1-Methylnaphthalene 2.2-Dichloropropane	tanone	Chlorotoluene	Hexanone Methylnanhthalene	Chlorotoluene	Isopropyltoluene	etone	ene	nobenzene	Bromoform	nomethane	Carbon disulfide	on tetrachloride	roethane	roform	romethane	,3-Dichloropropene	omochloromethane	omomethane	benzene
		Metals (m	Antimony	Barium	Beryllium	Cadmium	Chromium	Cyanide	Iron	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	Volatiles (1,1,1-Trichl	1,1,2,2-Tet	1,1,2-Trichl	1,1-Dichlor	1,1-Dichlor	1,2,3-Trichl	1,2,3-Irichi 1,2,4-Trichi	1,2,4-Trime	1,2-Dibrom	1,2-Dibrom	1,2-Dichlor	1,2-Dichlor	1,3,5-Trime		1,4-Dichlor	1-Methylna 2.2-Dichlor			2-Hexanone 2-Methylnar		4-Isopropyl:	4-ivietriyi-2- Acetone	Benzene	Bromobenzene	Bromoform	Bromometh	Carbon dist	Carbon tetrachi	Chloroethane	Chloroform	Chlorometh	CIS-T,Z-DOE	cis-1,3-Dich	cis-1,3-Dich Dibromochl	cis-1,3-Dichloropropene Dibromochloromethane Dichlorodifluoromethane

Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source			OW-57 (05)	1609E26-004		1609E26-005	OW-58 (28	
ξ			(1)	16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	01(1	<u> </u>	16	9/22/2016	9/22/201
(T)	-	5.1/E+01 2.71E+03	(5)	< 0.0039	7 V n n	<0.0002 u	< 0.0031	u < 0.0846 u 0.57	240 u	0.82	u 60.0 v
(1)		4.78E+03	(4)		┢		< 0.008	٧		0.39	< 0.0497
(I)	_	1.20E+03	(2)	< 0.0092 < 0.005) V	<0.0019 u	0.01) < 0.1995	n 266	< 0.1534	u < 0.0456 u
(2)		5.80E+04	(9)		+	-	< 0.0023	П		1.3	0.11
(2)		2.40E+04	(9)	< 0.0025			< 0.002		>	4.7	v 0.28 v
(2)	+	1.20E+05	(9)	< 0.0044	-	-	< 0.0035	,		0.48	0.091
(F)	+	1.01E+04 1.20E+05	(c) (9)	0.00290.0026	y	<0.0002 u <0.0003 u	< 0.0023 < 0.0021	u < 0.0618 u < 0.0574	518 u 574 u	< 0.0475	u < 0.0141 u u < 0.0131 u
(1)	+	1.19E+02	(5)	< 0.0027	+	1	< 0.0021	٧		< 0.0441	< 0.0131
(1)	+	1.40E+04	(5)	< 0.0019			< 0.0015			77	1.1
(T) (T)	+	3.03E+02 1.29E+02	(2)	< 0.0089	y	<0.0002 u <0.0002 u	< 0.0071 < 0.0037	u < 0.1937 u < 0.1013	37 u 13 u	< 0.1489	u < 0.0443 u u < 0.0232 u
(1)	+	6.84E+00	(5)	< 0.0034			< 0.0027	' V	-	< 0.057	< 0.017
(1)		1.12E+03	(2)	< 0.0024			< 0.0019	٧	\vdash	< 0.0398	< 0.0118
(1)		2.83E+01 7.91E+02	(5)	< 0.0026 < 0.0061	y	<0.0005 u <0.0007 u	< 0.0021 0.0063	u < 0.0566 J 55	n ^	< 0.0435	u < 0.0129 u v 3.1 v
(1)	J L	1 1 2 2	(5)	₄ ∟			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	l -	l -	0 7 0 7	7
(£)	_	7.84E+UI 7.47E+O3	(2)	< 0.0769) v	0.1062 u	< 0.1074	u < 0.10783	n 877	< 0.10783	u 80.1.088 u
-		7.47.5+03) '		/ V		< 0.0767		_	< 0.077	< 0.0777
(1)		6.73E+03	(4)	< 0.0848	\ <u>\</u>		< 0.0839	Ť	8	< 0.0842	< 0.085
		8.13E+02	(7)	< 0.1008	٧	<u></u>	< 0.0997		1	1.2	< 0.101
(1)		2.69E+04	(5)		٧		< 0.0993			< 0.0997	< 0.1006
(T)		2.69E+02	(5)	+	۷ '		< 0.0823	<u>`</u>	+	< 0.0826	< 0.0834
		8.07E+02 5.38E+03	(2)	< 0.0936	y y	0.0916 u	< 0.0926	u < 0.093	n = 1	< 0.0929	u < 0.0938 u
(1)		5.38E+02	(2)	(0	· V		< 0.0658			< 0.0661	0.0667
		8.23E+01	(4)		٧		< 0.0886	V		< 0.089	< 0.0898
		1.72E+01	(4)	\sim	٧		< 0.105	٧		< 0.1054	< 0.1064
(1)		2.83E+04	(5)	< 0.079) \ \ \ \	0.0773 u	< 0.0781	u < 0.0785	. 85 u	< 0.0784	u < 0.0792 u
(T) (E)		1.7 / E+03 1.00E+03	(2)	_	V V		< 0.0782	/	-	< 0.0785	
(2)		4.10E+04	(9)		٧		< 0.083	٧	+	0.26	< 0.084
(2)		8.00E+03	(9)		٧		< 0.107			< 0.1074	u < 0.1084 u
1 3	-		, (-	٧		< 0.0985	٧	68	< 0.0988	< 0.0997
(1)	-	5.70E+01	(4)	< 0.0739	<u> </u>	_	< 0.0731	V	34	< 0.0733	< 0.074
				_) \ V \	0.0/11 u	< 0.0718	u < 0.0722	22 n	0.26	v < 0.0728 u
(1)	+	, n	(5)	_	/ \		0.000	<u> </u>	-	0.0010	× 0.0860 × 0.0860
(1)	+	Z.TSE+0.T	(c) -	+_	/		< 0.00	/	-	< 0.0002	< 0.0008 < 0.0961
	+		ı	+	V		< 0.1184	V	+	< 0.1188	< 0.12
(3)		1.10E+02	(7)	< 0.1091) > n	0.1067 u	< 0.1079	u < 0.1084)84 u	< 0.1083	u < 0.1093 u
			1	-	٧		< 0.1134	v	+	< 0.1138	< 0.1149
(3)		1.10E+03	(7)	-	<u> </u>		< 0.07	V	-	< 0.0702	< 0.0709
- (£)		, L	ر	< 0.0764) v v	0.0748 u	< 0.0756 \ 0.0654	u < 0.0759	n :	< 0.0759	n 00/0/00 v
ĵ ·		10.1	ì	_	/ V		× 0.0808	/ V	+	< 0.0811	< 0.0802
(3)	_	4.00E+03	(7)	00	<u> </u>		< 0.0938	٧	-	< 0.0941	< 0.095
(1)	_	7.53E+04	(2)	> 0.0666) v	0.0652 u	< 0.0659	u < 0.0662	362 u	< 0.0661	u < 0.0667 u
(3)		2.60E+02	(2)	< 0.1223) > n	0.1196 u	< 0.1209	u < 0.1215	15 u	< 0.1214	u < 0.1225 u
(1)		3.23E+01	(4)	< 0.0864) > n	0.0845 u	< 0.0854	u < 0.0858	358 u	< 0.0857	u < 0.0865 u
(1)		2.36E+01	(4)	< 0.076) > n	0.0743 u	< 0.0751	u < 0.0755	,55 u	< 0.0754	u <0.0761 u
(1)		3.23E+01	(4)	> 0.0906) > n	0.0887 u	> 0.0896	o:0 > n	n 60	< 0.09	n < 0.0908 u
,	1 '		,	< 0.0885) > n	0.0866 u	< 0.0875	u < 0.0879	n 628	< 0.0878	u < 0.0887 u
(1)	<u>—</u>	3.23E+02	(4)	< 0.0884) > n	0.0865 u	< 0.0874	u < 0.0878	378 u	< 0.0877	u < 0.0886 u
(2)	₩	3.30E+06	(9)	< 0.0832) > n	0.0814 u	< 0.0823	u < 0.0826	326 u	< 0.0826	u < 0.0834 u
(2)		8.20E+04	(9)	< 0.0785) > n	0.0768 u	< 0.0777	u < 0.078	n 82	< 0.078	u < 0.0787 u
(2)		2.50E+03	(9)	< 0.1089	٧		0.107	u < 0.1082	82	< 0.1081	< 0.1091
(1)	+	1.93E+00	(5)	< 0.0737	٧	0.0721 u	< 0.0729	V	32	< 0.0732	< 0.0739
(1)	-+	5.19E+02	(4)	> 0.0896) v	n 2780.0	> 0.0886	u < 0.089	$\overline{}$	< 0.0889	u < 0.0898 u
(T)	+	1.83E+03	(4)	0.13	+		0.12			0.14	0.12
ĵ '	十	1.20E+04	<u> </u>	< 0.0888	y v	0.0869 0.0863	6/80.0 >	+		< 0.0882	< 0.089
. 5	+	1 I	1	< 0.0010 >	V						
	•	000	(¥.	L (()	+		70.00	00.0 > n	1/3 U	< 0.0673	n 6/90.0 > n

	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	('81-31) 72-WO	('7S-22')	((ST-01) 89-WO		OM-28 (22-24,)		0M-58 (28-29°)		('8-48.5')	
					1609E26-001	. 1609E26-002	6-002	1609E26-004	904	1609E26-005	2	1609E26-006		1609E26-007	200
					9/21/2016	9/21/	/2016	9/22/2016	97	9/22/2016		9/22/2016		9/22/2016	91
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	< 0.0811 u	< 0.0794	14 u	< 0.0802	n	< 0.0806	n	า 5080:0 >	> n	0.0813	n
Dibenzofuran	ı	ı	1		< 0.1009 u	< 0.0987	n 2	< 0.0998	n	< 0.1002	n	< 0.1002 L	> n	0.1011	n
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(2)	0.14	0.17	ſ	0.12	ſ	0.14		0.21	^	0.16	ſ
Dimethyl phthalate	6.16E+04	(1)	2.69E+05	(2)	< 0.0982 u	960'0 >	n g	< 0.0971	n	< 0.0975	n	< 0.0974	> n	0.0983	n
Di-n-butyl phthalate	6.16E+03	(1)	2.69E+04	(2)	0.16	0.15	ſ	0.14	_	0.15		0.25	_	0.15	J
Di-n-octyl phthalate	-	1	-	-	n 9580.0 >	< 0.0837	n 2	< 0.0847	n	< 0.085	n	า 580:0 >	> n	0.0858	n
Fluoranthene	2.32E+03	(1)	1.00E+04	(2)	o 0.0578 u	ا < 0.0565	.5 u	< 0.0572	n	< 0.0574	n	< 0.0574 ר	> n	0.0579	n
Fluorene	2.32E+03	(1)	1.00E+04	(2)	< 0.0918 u	ا < 0.0899	n 6	< 0.0908	n	< 0.0912	n	0.12	<u> </u>	0.092	n
Hexachlorobenzene	3.33E+00	(1)	1.60E+01	(4)	< 0.0791 u	< 0.0774	.4 u	< 0.0783	n	< 0.0786	n	< 0.0785 ר	> n	0.0793	n
Hexachlorobutadiene	6.16E+01	(1)	5.17E+01	(4)	< 0.1131 u	< 0.1106	n 9	< 0.1118	n	< 0.1123	n	< 0.1122 L	> n	0.1133	n
Hexachlorocyclopentadiene	2.28E+00	(1)	8.67E+02	(2)	< 0.1147 u	< 0.1122	.2 n	< 0.1135	n	< 0.114	n	< 0.1139	> n	0.1149	n
Hexachloroethane	4.31E+01	(1)	1.88E+02	(2)	< 0.0862 u	< 0.0843	.3 n	< 0.0853	n	< 0.0856	n	า 9580:0>	> n	0.0864	n
Indeno(1,2,3-cd)pyrene	1.53E+00	(1)	3.23E+01	(4)	< 0.0784 u	< 0.0767	n 2	< 0.0775	n	< 0.0778	n	< 0.0778	> n	0.0785	n
Isophorone	5.61E+03	(1)	2.70E+04		< 0.1109 u	< 0.1085	12 n	< 0.1097	n	< 0.1102	n	< 0.1101 u	> n	0.1112	n
Naphthalene	1.16E+03	(1)	5.02E+03	(2)	n E960'0 >	< 0.0942	.2 u	< 0.0953	n	0.11		1.3	>	0.0965	n
Nitrobenzene	5.99E+01	(1)	2.91E+02	(4)	< 0.1035 u	< 0.1013	.3 u	< 0.1024	n	< 0.1029	n	< 0.1028	> n	0.1038	n
N-Nitrosodi-n-propylamine	7.80E-01	(3)	3.30E+00	(7)	< 0.0964 u	ا < 0.0943	S. U	< 0.0954	n	< 0.0958	n	< 0.0957	v n	0.0966	u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	o 0.098	ا < 0.0959	n 6	< 0.0969	n	< 0.0973	n	< 0.0973	> n	0.0982	n
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	< 0.0645 u	< 0.0631	1 n	< 0.0638	n	< 0.0641	n	< 0.064 L	> n	0.0646	n
Phenanthrene	1.74E+03	(1)	7.53E+03	(2)	< 0.0682 u	٧	n 2	< 0.0674	n	< 0.0677	n		>	0.0683	n
Phenol	1.85E+04	(1)	7.74E+04	(2)	< 0.0756 u	ا < 0.0739	n 6	< 0.0747	n	< 0.0751	n	0.31	>	0.0757	n
Pyrene	1.74E+03	(1)	7.53E+03	(2)	< 0.0758 u	< 0.0742	.2 u	< 0.075	n	< 0.0753	n	< 0.0753	> n	0.076	n
Pyridine	7.80E+01	(2)	1.20E+03	(9)	n 36/0.0 >	< 0.0778	n 8.	< 0.0787	n	< 0.079	n	< 0.079 L	> n	0.0797	n
Total Petroleum Hydrocarbons (mg/kg)	g/kg)														
Gasoline Range Organics (GRO)	1.00E+03	(8)	3.80E+03	(8)	< 0.4812 u	ا < 0.5599	n 6	3.2	^	1500	^	1700	^	130	۸
Diesel Range Organics (DRO)	1.00E+03	(8)	3.80E+03	(8)	< 1.7306 u	1 5.9	ſ	< 1.713	n	22	^	320	^	33	۸
Motor Oil Range Organics (MRO)	1.00E+03	(8)	3.80E+03	(8)	< 47 u	۱ < 48	n	< 46	n	< 48	n	< 49 L	n	< 47	n

No screening level or analytical result available
NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
(1) NMED Residential Screening Levels (June 2017)
(2) EPA Residential Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(4) NMED Industrial - Screening Levels
(5) NMED Construction Worker Screening Level
(6) EPA Industrial - Screening Levels
(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(8) NMED Table 6-2 TPH Soil Screening Levels "unknown oil" with DAF = 1.0 - see report Section 5 for use of screening levels

Bold represents value above Residential Soil Screening Level
Yellow highlight represents value above Non-Residential Soil Screening Level
Bold with yellow highlight value exceeds Residential Soil Screening Level
Residential Soil Screening Level

v = reportable detection above the Practical quantitation limit (PQL)u - result is not detected at method detection limit (MDL)j - estimated result at concentration above MDL but less than PQL

₽T-MO	1609076-001	8/31/2016			J.6	2100 Z	1		<2.656 u	-	7						<1.548 u		15 ^	-			1	8.6	2200 Z		<0.746 u		 		2200 Z			<2.751 u	28		<0.557 u				<0.536 u			<1.01 u	4	7.1	(1)
Z-WA	1609783-001	9/13/2016			•	-	-	-	-	-						1	•	-	•	•	•	'			-	-	•		<u> </u>	•		-	-	1	<u> </u>		<22.3 u				<21.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0			<40.4 u		210 v	
89-MO	1610091-006	9/30/2016		<0.47 u		5200 Z	3.7	<1.48 u		13	7 00076		4100 Z		35 ^		<2.75 u			o O	7 220	> 000	<0.47		3000 Z		<0.75 u		5.2		2100 Z			<2.75 u	ς <u>Γ</u>		n 25.57				<5.36 II					^ 069	
73-WO	1610091-005	10/1/2016		<0.47 u		3000 Z	0.51	<1.48 u			01100 d				84	13 v	<2.75 u			o	^ 520 027	>	<0.47		2100 Z		<0.75 u		7 740		2100 Z		8.2 J	<2.75 u	5.3		u <5.57				<5.36 u				4	7.3 J	
TK 670-1-GV	1610091-004	9/30/2016		<0.47 u		Z 0058	6.4 Z	8			2 OUV		7200 Z		100 Z		<2.75 u				4400 u))	<0.47		3100 Z		<0.75 u		7600 7		3100 Z			<2.75 u	10 \		u <5.57				<5.36 II					1400	
ир-£-695 ут	1610091-003	10/2/2016		<0.47 u		4200 Z	o.36	<1.48 u	(0)		0T>		1900 Z		82 ^	10 v	<2.75 u			0	V 2	> 00 To	<0.47		3200 Z		<0.75 u		3900		1600 Z			<2.75 u			<5.57 u				<5.36 II			<10.1 u		930 ^	
TK-569-2-GW	1610355-002	_		<0.47 u		Z 006 7	0.43				v C.11		3400 Z		v 54		<2.75 u				n 052>	000	<0.47	10 Z	5100 Z	7	<0.75 u		550 ×		3100 Z			<2.75 u	6.9			<4.57 u			<5.36 II		<5.64 u	<10.1		1000	
TK-569-1-GW	1610355-001	10/5/2016		<2.36 u	16 Z	Z 0018		8			n OT>		4200 Z		57 v		<2.75 u			0	n - 000		<0.47		Z 0089		<0.75 u		5.5	က	Z600 Z		9.7 J		22 ×			<4.57 u			<5.36 II		<5.64 u	<10.1 u		1500	
TK 568-2-GW	1610091-002	-		<0.47 u		3800 Z	o 98.0>		<2.66 u		2500 a		1800 Z		^ 0 <i>L</i>		<2.75 u		1		3/0	>	<0.47		3600 Z		<0.75 u		920 7	13	1700 Z			<2.75 u	9.3		<5.57 u				<5.36 = 1			<10.1 u		850 ^	
TK 568-1-GW	1610091-001			<0.47 u		Z000 Z	0.71				10000 a		1800 Z			13 v	<2.75 u			0	240	200000	<0.47		1800 v		<0.75 u		4700 7		1600 Z			<2.75 u				<1.83 u			<2.10 u		<2.26 u			1300	
Source	H			(2)	(2)	(2)	(2)	(2)	(3)	(1)	(c)	(2)	() (4)	(3)	(4)	(3)	(3)	(4)	(3)	(3)	(3)	(5)	(2)	(2)	(3)	(2)	(2)	(3)	(3)	(2)	(3)	(4)	(3)	(3)	(3)	,	(4)	(3)	(3)	(V)	(3)		(1)	(4)	(2)	(1)	
Screening Levels				9	10	2000	4	5	50	9 000	13800	15	2020	2	372	50	50	63.1	10000	250000	1600	000000	9	10	1000	4	2	20	1000	15	200	372	50	50	10000		5.74	09	10	ս է	C7 43) 1	7	0.01	70	26	
	Lab ID	Sample Date	Metals (ug/I) TOTAL	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Cyallide	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Vanadium	Zinc	Chloride	Fluoride	Matals (119/1) DISSOI I/FD	Antimony (D)	Arsenic (D)	Barium (D)	Beryllium (D)	Cadmium (D)	Chromium (D)	Cobail (D)	Lead (D)	Manganese (D)	Nickel (D)	Selenium (D)	Silver (D)	Zinc (D)	Volatiles (ug/l)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-I etrachloroethane	1,1,2-Iricnioroetnane	L, L-Dichloroethane	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene (V)	1,2,4-Trimethylbenzene	

_	Source	TK 568-1-GW	TK 568-2-GW	1K-569-1-G/	TK-569-2-G	TK 569-3-G/	TK 570-1-G	73-WO	0M-28	Z-WA	₽T-MO
16100	٠,	1610091-001	1610091-002	1610355-001	1610355-002	1610091-0	03 1610091-004	1610091-005	1	1609783-001	1609076-001
	2	10/2/2016	10/2/2016	10/5/2016	10	10/2/201	/6	10	/6	9/13/2016	8/31/2016
1	∞ Γ							<20	<20	08>	<2> <2
(2) <2.3	ر اگراگ	n >	<55.75 C5.49	V <5.75	u <5.75	u <5.75	U <5.75	<5.75	<5.75	n <233 u	<0.575 U
	3 2	> >	T		300	┖		<5.77	210	44	0.82
	.86	n	1 0	Ĺ		Ľ	ľ	<7.16	<7.16	<28.6	Ľ
(1) <3.11	3.11							<7.79			
(2) <2.85	3.85	n	٤.	u <7.13	u <7.13	u <7.13	u <7.13	~	3	u <28.5 u	
(1) 40	ဍ	¬ :						150	88	88	34
<3.33	3.33	э -	<8.33 L	<8.33	v <8.33	U <8.33	u <8.33	- <8.33 - <36.85	<8.33 /36.85	u <33.3 u	<0.833
(1) (2)	- 0,	ם ה				> ⊐					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8.9	5	6	u <41.99	u <41.99	> 	u <41.99	<41.99	<41.99	<168	<4.199
(1) 59	29	ſ		ا 82	J 31	ſ	J 33	140			
(1) <2.56	.56	n	<6.41	u <6.41	u <6.41	u <6.41	u <6.41	u <6.41	u <6.41	u <25.6 u	<0.641 u
4.9	4.	_) 21		<7.03	15	<28.1	<0.703
× × × × × × × × × × × × × × × × × × ×	2.55 	n -	1	7 200) T60		240	<21.38	<21.38 /245.44	<85.5 7084 7	<2.138 U
(4) I40		<u> ۲</u>	28000	0007 n	000000 ^	v <243.44	03000	+		n /.Toe> n	
	95	> ⊐	+			> =	v 23000	<4.89	<4.89	<19.5	
	2.8	n	T	n <6.99				66.9>	66.9>	<28	
	.04	n				n		<5.11	<5.11	<20.4	<0.511
	.5.6	n			n <38.99	n	n <38.99	<38.99			
	1.95	ח				ם	u <29.87	<29.87	u <29.87	<119.5	
	2.16	n	<5.41		u <5.41		u <5.41	<5.41	<5.41	<21.6	<0.541
(2) <2.29	62.7	D :		U <5.72	7.02/2	D =	U <5.72	U <5.72	<55.72	n = 0.000 / 0.	
	78	3 3	T	┖	L			<4.44	×4.44	<17.8	<0.333
(4) <4.26	1.26	ס	<u> </u>	Ľ	Ľ	Э	Ĺ	<10.64	<10.64		<1.064
	48	n				n		<6.21	<6.21	<24.8	
	2.13	n	<5.33	u <5.33	u <5.33	u <5.33	u <5.33	u <5.33	u <5.33	u <21.3 u	
	.73	л :				D :		<4.34 7.00	<4.34 7.00	<17.3	<0.434
(1) <2.30) () () ()	3 =	<17.87	1 <3.30	u <3.30	73.30	u <5.36	1 <3.30	73.30	. \22.0 u	<0.396 u
						5 >		570	1500	1200	250
(4) <3.97	3.97							<9.93	<9.93	<39.7	<0.993
	43							22	72	30	
	ၜၟ႞							180	3300	1600	580
	3.75	D		<u> </u>	V	V	u <9.37	<9.37	<9.37	<37.5	Ÿ
	ဥ္တု	> -		320	88 G > -		92	220	240	140	
(1) I4	14 0	^ >	140	7,00	780) T/	74/	3.F	J 750	J <522.1 U	L.3
(1)	3 0	> -			767		v -	L.			
	; C	, =	10	7 T V	ľ	ľ) (5) (5) (5)) S. S.	ر ال	CC>	V
	2.3	5 0		Ĺ	Ļ	Ľ	Ľ	<5.75	<5.75	<23	Ľ
	0.0							>7.6	9.7>	<30.4	<0.76
(3) 10000	8			v 41000		H	^ 25000	54	0099	3800	2.9
	$\overset{\wedge}{\infty}$					ם		<20	<20	<80	
(4) <2.07	Ö		<5.16	u <5.16	u <5.16		u <5.16	<5.16	<5.16	<20.7	<0.516
(4)	S. S.	n :			c/.o> n	n	0 <0.73		c/.o>	<33	
	3		<10.22	<10.22	<10.22	< 10.22	10.22	10.22	<10.22	u <40.9	<1.022

	Screening Levels	Source	TK 568-1-GW	TK 568-2-GW	W5-1-698-YT	W5-S-698-YT	WD-8-995 XT	TK 570-1-GW	78-WO	89-WO	S-WA	₽T-MO
Tab ID			1610091-001	1610091-002	1610355-001	1610355-002	1610091-003	1610091-004	1610091-005	1610091-006	1609783-001	1609076-001
Sample Date			10/2/2016	10/2/2016	-	10/5/2016	10/2/2016	9/30/2016	_		9/13/2016	8/31/2016
Xylenes, Total	620	(3)	10000	v 5900 v	v 15000 v	10000 v	9200	11000	140 v	4400 ×	3100 v	8
Semi-volatiles (ug/l)												
1,2,4-Trichlorobenzene	70	(2)	<2.62 ∟		u <2.62 u		<2.62 u	<26.2 u	<2.62 u	<2.62 u	-	-
1,2-Dichlorobenzene	009	(2)	<2.29	<2.29	<2.29	<2.29	<2.29 u	<22.85 u	<2.29 u	<2.29 u	-	1
.,3-Dichlorobenzene	-		<2.26 ∟	<2.26	<2.26	<2.26	<2.26 u	<22.57 u			-	1
1,4-Dichlorobenzene	75	(2)		<2.39	<2.39	<2.39	<2.39 u	<23.88 u	<2.39	<2.39	-	•
1-Methylnaphthalene	1.1	(5)		80	71	59			110	65	1	
2,4,5-Trichlorophenol	1166	(4)		<2.18	<2.18	<2.18		_	Ľ	<2.18		
2,4,6-Trichlorophenol	11.9	(4)		<2.45	<2.45	<2.45					-	1
2,4-Dichlorophenol	45.3	(4)		<2.33	u <2.33 u		<2.33 u	3		V	1	1
2,4-Dimethylphenol	353.9	(4)		34			۸ 26	52 J			1	•
2,4-Dinitrophenol	38.7	(4)	<2.75	<2.75	<2.75	<2.75	<2.75 u		<2.75	<2.75	1	1
2,4-Dinitrotoluene	2.37	(4)		<3.13	<3.13	<3.13		1	<3.13	<3.13		
2,6-Dinitrotoluene	0.485	(4)			u <2.73 u			<27.34 u	<2.73	<2.73	-	
2-Chloronaphthalene	733	(4)		<2.25	<2.25	<2.25			<2.25	<2.25		'
Z-Cnioropnenoi	- 6	(4)	\$7.78	\$2.18		\$2.18	n ::	42.04 U	\$2.18	\$2.18 71		
Z-Metnylnaphthalene	30	(L) (2		9	9)	68.7%		1	88			•
Z-ivietnyiphenoi	930	(T) £	00 00	V 23 V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V 08 37 C/	> = 36	V OTZ	0 42.54 U	2.0		•
2-Nitrophenol	2			, 2.73 , 2.73	72.70 %2.73	,2.70 ,2.38		+	, 2.70 , 2.38	2.73 2.73	, ,	, ,
3,3'-Dichlorobenzidine	1.25	(4)		<2:35 4:25	42.5°	<2.4			<2.4	<2.4		
3+4-Methylphenol	930	(1)		26	110	130		200 v	<2.3	7.9		
3-Nitroaniline	1		<2.95 ∟	u <2.95	u <2.95 u	Ū	<2.95 u	<29.48 u	<2.95 u	<2.95 u	1	-
4,6-Dinitro-2-methylphenol	1.52	(4)		<1.8	u <1.8 u	<1.8	<1.8 u		<1.8 u		1	1
4-Bromophenyl phenyl ether	ı			<2.64	<2.64	<2.64				<2.64	-	1
4-Chloro-3-methylphenol	- 0	į		<2.56	<2.56	<2.56			<2.56	<2.56		
4-Chloroaniline	0.37	(c)	4.2.71 7.2.6	<2./1	u <2./1	<2.71 u	<22./1 u	V27.12 U	<2./1	<2./1		
4-Cnlorophenyi phenyi ether	- oc	(E)		<2.56 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<2.56 7.0 F.6	<2.56 \2.56			<2.56 \2.56	<2.56 \2.56		1
4-Introannine	2.0	(c)						n 62.22>	< 2.50 / 2 FE			•
4-Intropriend	535	(4)		< 2.33 < 7.55		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	' '	
Acenaphthylene			<2.36		<2.36	<2.36 u	<2.36 u	<23.57 u	<2.36	<2.36		1
Aniline	13	(5)		<2.44	<2.44	<2.44			<2.44	<2.44		1
Anthracene	1720	(4)		<2.49	u <2.49 u	<2.49	<2.49 u	<24.86 u	<2.49 u	<2.49 u	1	1
Azobenzene	0.12	(5)		<2.67	<2.67	<2.67			<2.67	<2.67	-	1
Benz(a)anthracene	0.12	(4)	<2.64	<2.64	<2.64	<2.64 u	<2.64 u	<26.39 u	<2.64	<2.64		1
Benzo(a)pyrene	0.2	(2)		<2.72 <2.02	27.72	<27.72		+	<2.72	27.72		•
Benzo(a h i)nervlene	0.343	(4)			u		u 06.27	u 0.057				
Denzo(g, n, n)per yrene Renzo(k)fluoranthene	3 43	(4)		, 4.04 4.04	4.04	, k.o.			, 4.0 ,	, 4.04 , 4.04		' '
Benzoic acid	75000	£ £			£ 43 × ×			450 ×	32	16		
Benzyl alcohol	2000	(1)	1	<3.01	<3.01	<3.01	4	2	<3.01	<3.01		1
Bis(2-chloroethoxy)methane	59	(1)		u <2.81 u	<2.81	<2.81	<2.81 u	<28.14 u	<2.81 u	<2.81 u	,	
Bis(2-chloroethyl)ether	0.137	(4)		<2.67	<2.67	<2.67				<2.67	1	•
Bis(2-chloroisopropyl)ether	9.81	(4)	91	<1.91	u <1.91 u	<1.91 u	<1.91 u	<19.09 u	<1.91 u	V		•
Bis(2-ethylhexyl)phthalate	9	(2)		<2.62	12	7.1			4.2	2.8	ı	1
Butyl benzyl phthalate	16	(2)	<2.48 L	φ	u <2.48 u		T	<24.78 u	<2.48	<2.48		-
Chrysene	34.3	(4)		2 2 78	62.23	<2.29	u 62.23				1 1	· •
Dibenz(a,h)anthracene	0.0343	(4)			u <2.66				<2.66	<2.66		
Dibenzofuran	7.9	(1)	<2.49	<2.49	<2.49	<2.49		<24.93 u	<2.49	<2.49		

	Screening Levels	Source	TK 568-1-GW	TK 568-2-GW	ТК-569-1-GW	TK-569-2-GW	TK 569-3-GW	ТК 570-1-GW	TB-WO	OM-58	S-WA	₽T-MO
Lab ID			1610091-001	1610091-002	1610355-001	1610355-002	1610091-003	1610091-004	1 1610091-005	1610091-006	1609783-001	1609076-001
Sample Date			10/2/2016	10/2/2016	10/5/2016	10/5/2016	3 10/2/2016	5 9/30/2016	10/1/2016	9/30/2016	9/13/2016	8/31/2016
Diethyl phthalate	14800	(4)	4	u <2.71 L	u <2.71	u <2.71	u 3.4	J <27.15	u <2.71 u	<2.71 u	•	
Dimethyl phthalate	1		3.1	က	J 26	۷ 18	۷ 31	v <24.29	u <2.43 u	<2.43 u	-	1
Di-n-butyl phthalate	885	(4)	4	<2.44	u <2.44	u <2.44	u <2.44	u <24.44	u <2.44 u			1
Di-n-octyl phthalate	ı		2	J <1.98	n 6.8	Э 6.8	J <1.98	u <19.83	u <1.98 u	<1.98 u	1	1
Fluoranthene	802	(4)	<2.61	u <2.61 L	u <2.61	u <2.61	u <2.61	u <26.07	u <2.61 u	<2.61 u	-	•
Fluorene	288	(4)	<2.72	u 3.1	J <2.72	u <2.72	u <2.72	u <27.24	u 7.2 U	3.8	-	-
Hexachlorobenzene	0.0976	(4)	<2.63	u <2.63 เ	u <2.63	u <2.63	u <2.63	u <26.33	u <2.63 u	<2.63 u	1	•
Hexachlorobutadiene	1.387	(4)	<2.18	u <2.18 L	u <2.18	u <2.18	u <2.18	u <21.84	u <2.18 u	<2.18 u	-	-
Hexachlorocyclopentadiene	50	(4)	<2.28	u <2.28 เ	u <2.28	u <2.28	u <2.28	u <22.84	u <2.28 u	<2.28 u	1	•
Hexachloroethane	3.28	(4)	<2.37	u <2.37 เ	u <2.37	u <2.37	u <2.37	u <23.68	u <2.37 u	<2.37 u	-	-
Indeno(1,2,3-cd)pyrene	0.343	(4)			u <2.96	u <2.96	u <2.96		u <2.96 u	<2.96 u	-	1
Isophorone	781	(4)	<2.62	u <2.62 L	u <2.62	u <2.62	u <2.62	u <26.15	u <2.62 u	<2.62 u	-	-
Naphthalene	1.65	(4)			v 210	v 47	۸ / 88	v 220	v 140 v		-	-
Nitrobenzene	1.4	(4)	2	u <2.75 เ	u <2.75	u <2.75	u <2.75	u <27.53	u <2.75 u	<2.75 u	-	-
N-Nitrosodimethylamine	0.0017	(4)			u <2.16	u <2.16	u <2.16	u <21.58	u <2.16 u	<2.16 u	-	-
N-Nitrosodi-n-propylamine	0.011	(2)	<2.39	u <2.39 เ	u <2.39	u <2.39	u <2.39	u <23.89	u <2.39 u	<2.39 u	1	1
N-Nitrosodiphenylamine	0.0049	(4)	<2.32	u <2.32	u <2.32	u <2.32	u <2.32	u <23.2	u <2.32 u	<2.32 u	•	1
Phenanthrene	170	(4)	<2.59	u <2.59 เ	u <2.59	u <2.59	u <2.59	u <25.87	u 7.6 J	2.9	1	1
Pentachlorophenol	1	(4)	<2.34	u <2.34	u <2.34	u <2.34	u <2.34	u <23.42	u <2.34 u	<2.34 u	1	•
Phenol	5760	(4)	160		۸ 69	۸ 96	۸ 98	v 120	v 88 v	51 v	-	-
Pyrene	117	(4)	<3.09	n <3.09 ר	n <3.09	u <3.09	u <3.09	u <30.94	u <3.09 u	u <3.09	1	1
Pyridine	20	(1)	<2.16	u <2.16 L	u <2.16	u <2.16	u <2.16	u <21.61	u <2.16 u	<2.16 u	•	
TPH (mg/l)												
Gasoline Range Organics (GRO	3.98E-02	(9)	140		۷ 260	v 160	۷ 170	v 240	v 46 v	150 v	140000	31000 v
Diesel Range Organics (DRO)	3.98E-02	(9)		v 12 v	۷ 22	۷ 14	۷ 21	v 170 v	> 9.3	5.	14000 v	4100 v
Motor Oil Range Organics (MRC	3.98E-02	(9)	< 5		n < 5	n < 5	n < 5	u < 50	n <5 u	< 5 u	<5000 u	<5000 u

No screening level or analytical result available

450 - bolded value exceeds screening level

(1) EPA - Regional Screening Levels (November 2018) - Tap Water
(2) EPA - Regional Screening Levels (November 2018) - MCL
(3) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
(4) NMED Tap Water Screening Level - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
(5) EPA Screening Level - Tap Water x 10 for carcinogenic compounds
(6) NMED groundwater screening level for unknown oil
v = reportable detection above the Practical quantitation limit (PQL)
u - result is not detected at method detection limit (MDL)
j - estimated result at concentration above MDL but less than PQL
z - concentration exceeds MCL

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.493' / W 108° 25.501'

Total Depth : 27'
Ground Water : 18'
Start Date : 09/21/2016
Finish Date : 09/21/2016

WELL NO. OW-57

(Sheet 1 of 2)

Elev., TOC (ft.msl): 6933.10 Elev., PAD (ft. msl): 6930.64

Elev., GL (ft. msl) : Site Coordinates :

N : N 163475.52 E : E 2546961.79

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.493' / W 108° 25.501'

Total Depth : 27'
Ground Water : 18'
Start Date : 09/21/2016
Finish Date : 09/21/2016

WELL NO. OW-57

(Sheet 2 of 2)

Elev., TOC (ft.msl): 6933.10 Elev., PAD (ft. msl): 6930.64

Elev., GL (ft. msl) : Site Coordinates :

N : N 163475.52 E : E 2546961.79

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5" Sampling Method: 2' Split Spoon - 2" Diameter Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5' **Ground Water** : 29' Start Date : 09/22/2016 Einich Data . 00/22/2016

WELL NO. OW-58

(Sheet 1 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

: N 1634800.15 · F 2547414 91

						Finish Date : 09/22/2016	E : E 2547414.91
Depth (ft.)	PID (ppm)	Saturation Lithology	nscs	Recovery (%)	Sample	Saturation Saturation Saturation DESCRIPTION	Completion Results OW-58
-1 —					I	1	
_							Flush Mount
0-			AR	100		ASPHALT/BASE,	Concrete Pad - 4'x4'x4"
-			An	100		SILTY CLAY, moderate, firm to stiff, damp,	
1-	110		CL	100		brown, odor,	
3-	40		CL	100		SILTY CLAY, SIMILAR TO ABOVE (STA),	
5— 	11.2		CL	100		SILTY CLAY, STA, moist, faint odor,	—Grout
6 — - - 7 — - -	2.2		CL	90		SILTY CLAY, low, soft, damp, brown, faint odor,	2" Sch 40 PVC w/Threaded Joints
8 — - 9 — -	5.3		CL	60		SILTY CLAY, STA, no odor,	
10-	37		CL	80		SILTY CLAY, STA, sticky, black discoloration, odor,	
12— - - 13—	42		CL			SILTY CLAY, STA,	

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5'
Ground Water : 29'
Start Date : 09/22/2016
Finish Date : 09/22/2016

WELL NO. OW-58

(Sheet 2 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

N : N 1634800.15 E : E 2547414.91

						Finish Date : 09/22/2016	E : E 254/414.91
Depth (ft.)	PID (ppm)	Saturation Lithology	nscs	Recovery (%)	Sample	Saturation ▼ Saturation ∇ Saturation DESCRIPTION	Completion Results OW-58
		% <u>=</u>	Š	ď	Š	DESCRIPTION	
13- - -	42		CL	70			
14 — - - 15 — - -	25		CL	60		SILTY CLAY, low, stiff, damp, brown with black discoloration, faint odor,	
16 — - - 17 — -	226		CL	60		SANDY CLAY, low, stiff, very fine grain sand, damp, brown, odor,	
18- - - - 19- -	240		CL	50		SANDY CLAY, STA, odor,	——————————————————————————————————————
20 — - - - 21 — - -	200		CL	60		SANDY CLAY, STA, odor,	2" Sch 40 PVC w/Threaded Joints
22 - - 23 -	2020		CL	90		SILTY CLAY, low, very stiff, damp, brown, tan silt pockets/seams present, odor,	
24 — - - 25 — -	1980		CL	90		SILTY CLAY, low, firm, soft/ crumbly, damp, brown, strong odor, outside of core is oily/phase separated hydrocarbon (PSH),	
26 – - - - 27 –	973		CL			SILTY CLAY, STA, firm to stiff, odor, outside of core is oily/PSH,	

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5'
Ground Water : 29'
Start Date : 09/22/2016
Finish Date : 09/22/2016

WELL NO. OW-58

(Sheet 3 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

N : N 1634800.15 E : E 2547414.91

						Finish Date : 09/22/2016	E : E 2547414.91
ft.)	Œ	no Y		ry (%)		Saturation Saturation Saturation	Completion Results OW-58
Depth (ft.)	PID (ppm)	Saturation	nscs	Recovery (%)	Sample	DESCRIPTION	
27-	973		CL	90			\$100 \$100 \$100 \$100 \$100 \$100 \$100 \$100
28-	0704		CL	90		SILTY CLAY, STA, damp to moist, odor,	— Grout
1	2784		CL/SC	90		SANDY CLAY/CLAYEY SAND, low, soft, very moist to saturated, dark brown, odor,	
30	2350		CL	90		SANDY SILTY CLAY, low, firm, damp, saturated sand at base, grey/brown, odor,	
32-	1775		SM	90		SILTY SAND, fine, loose, saturated, grey/brown, odor,	— 2" Sch 40 PVC w/Threaded Joints — Bentonite Pellets
34			CL	90		SILTY CLAY, low, soft, damp, greyish brown, odor, SILTY CLAY, STA, damp to very moist, odor,	
35-	575		CL	90		SILTY GLAY, STA, damp to very moist, oddi,	
36 -	227		CL	80		SILTY CLAY, low, firm, damp, greyish brown, odor,	— 10/20 Sieve Sand Filter Pack
38-	545		CL	50		SILTY CLAY, STA, brown, odor,	2" Sch 40 PVC Slotted 0.01"
40 -	531		CH			CLAY, high, firm, damp, brown, odor,	Screen w/Threaded Joints

C:\Users\cholmes\Documents\M-Tech\samples\Western Refinery\OW-14 Source Area\OW-58.bor

07-25-2018

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5'
Ground Water : 29'
Start Date : 09/22/2016
Finish Date : 09/22/2016

WELL NO. OW-58

(Sheet 4 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

N : N 1634800.15 E : E 2547414.91

C:\Users\cholmes\Documents\M-Tech\samples\Western Refinery\OW-14 Source Area\OW-58.bor

07-25-2018

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 49'

Ground Water : 32' BGL
Start Date : 9/23/2016
Finish Date : 9/23/2016

WELL NO. TK 568-1

(Sheet 1 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6950.66

Site Coordinates

N : N 35° 29.412' E : W 108° 25.430

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan Drilling Rig

: CME 75

: Hollow-Stem Auger Drilling Method Sampling Method : 2" Split Spoon - 2" Diameter Comments : Hand Augered to 6 Feet

Total Depth : 49' **Ground Water** : 32' BGL

Start Date : 9/23/2016 Finish Date : 9/23/2016

WELL NO. TK 568-1

(Sheet 2 of 3)

Elev., TOC (ft.msl) Elev., PAD (ft. msl)

Elev., GL (ft. msl) : 6950.66

Site Coordinates

: N 35° 29.412' Ε : W 108° 25.430

							Finish Date : 9/23/2016	E . W 106* 25.430
					(%)		Saturation ▼ Saturation ✓ Saturation	Temporary Well
(ft.)	(mdc	ation	ббс	(0	Recovery (%)	e		Temporary Well No. TK 568-1
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recov	Sample	DESCRIPTION	
17-	1243			ML	90			Open Borehole
18						$\ \cdot\ $	SANDY CLAYEY SILT, STA, odor,	
19	1731			ML	90			—Bentonite Pellets
20							SANDY CLAYEY SILT, STA, odor,	
21 -	1780			ML	90			
22							CLAYEY SANDY SILT, very fine grain sand,	2" Sch 40 PVC w/Threaded Joints
23	1125			ML	90		soft, damp to moist, brown, odor,	
24							SILTY SANDY CLAY, low, soft to firm, damp, brown, odor,	
25	1119			CL	90		blown, odol,	
26-							SILTY SANDY CLAY, STA, odor,	
27	965			CL	90			
28-							SILTY SANDY CLAY, STA, odor,	—
29	970			CL	90			2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
30-							SILTY SANDY CLAY, STA, black discoloration in sand at base, very moist, odor,	Screen w/ Infredued Joints
31 –	1308			CL	90	$\ \wedge \ $	·	
32	1680			SC	90		CLAYEY SAND, fine grain, loose, saturated, black, odor,	
33-	733			CL	90		SILTY CLAY, low, firm, damp, brown, odor,	
34-	1605			CI	90		SILTY SANDY CLAY, low, soft, black discoloration, damp, brown, odor,	
35	1695	∇		CL	90			
36 — 37 —	1282			SM			SILTY SAND, fine, loose, saturated, grey, odor, poor recovery,	
3,								

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan Drilling Rig

: CME 75

: Hollow-Stem Auger

: 2" Split Spoon - 2" Diameter : Hand Augered to 6 Feet

Comments Total Depth : 49' **Ground Water**

Drilling Method

Sampling Method

: 32' BGL Start Date : 9/23/2016 Finish Date : 9/23/2016

WELL NO. TK 568-1

(Sheet 3 of 3)

Elev., TOC (ft.msl) Elev., PAD (ft. msl)

Elev., GL (ft. msl) : 6950.66

Site Coordinates

: N 35° 29.412' Ε : W 108° 25.430

							1 IIIISII Date . 9/23/2010	. ** 100 25.400
							Saturation Saturation	Tamana wa wa Mali
							✓ Saturation	Temporary Well
(;	Ê	LC	>		Recovery (%)			Temporary Well No. TK 568-1
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	cover	Sample		_
		Sat	圭	Sn	Re	Saı	DESCRIPTION	
37-	1282			SM	10			2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
38-							SANDY CLAY, low, firm, damp to moist,	2" Flush Threaded Sch 40 PVC Cap
39-	1078			CL	80		brown, odor, sheen on core,	Sch 40 PVC Cap
40								
]							SANDY CLAY, STA, damp, odor,	
41 —	383			CL	20			
42							SANDY CLAY, STA, white clay at base, odor,	— 10/20 Sieve Sand Filter Pack
43	476			CL	20			10/20 Gieve Gand Filter Fack
44								
45-	144			CL	50		CLAY, low, dense/crumbly, dry, dark reddish brown/grey, no odor,	
]	144			CL	50			
46-							CLAY, STA,	
47	80			CL	20			
48			///				SANDY SHALE, very dense, dry, grey, no	
49	41			SH	20	<u>IX</u>	odor.	
]								
50-								
51								
52								
53 -								
54 —								
]								
55								
56								
57								

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Comments : Hand Auger
Total Depth : 37'
Ground Water : 30'

Start Date : 9/27/2016 Finish Date : 9/27/2016

WELL NO. TK 568-2

(Sheet 1 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6950.66

Site Coordinates

N : N 35° 29.396' E : W 108° 25.435'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Total Depth : 37'
Ground Water : 30'
Start Date : 9/27/2016
Finish Date : 9/27/2016

WELL NO. TK 568-2

(Sheet 2 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6950.66

Site Coordinates

N : N 35° 29.396' E : W 108° 25.435'

							Finish Date : 9/27/2016		. W 106° 25.435
							Saturation		
							_▼ Saturation	Т	emporary Well
		_			(%)			Temporary '	Well No. TK 568-2
Depth (ft.)	PID (ppm)	Saturation	Lithology	S	Recovery (%)	eldi			
	PID	Satı	Litho	nscs	Reo	Sample	DESCRIPTION		
17-						 		 	
18	-				-		SANDY CLAY, STA, faint odor,	_ -o _i	oen Borehole
19 19	36.5			CL	40		JANUT GEAT, STA, Idilit GGGI,		
]									
20							SANDY CLAY, STA, trace gravel, faint odor,		
21 -	29.6			CL	40				
22							CLAYEY SAND, fine grain, loose, trace	Be	entonite Pellets
23	82			SC	60	$\ \mathbf{y} \ $	gravel, damp, brown, odor,		Sch 40 PVC
24									Threaded Joints
]							No Recovery - white sandstone lodged in shoe		
25	-				-				
26							No Recovery - very dense hard sandstone in		
27	-				-		shoe		
28									
]						\mathbb{N}/\mathbb{I}	CLAYEY SAND, very fine to fine, compact, moist to saturated at 30', brown, odor,		
29	2803			SC	90	$\ \dot{\Lambda}\ $			
30-		\blacksquare					CLAYEY SAND, STA, white sandstone	⊣ - 10	1/20 Sieve Sand Filter Pack
31 -	-	H	///	SC	90		lenses present, trace gravel, odor,		Sch 40 PVC Slotted 0.01" creen w/Threaded Joints
32							ODANELLY CAND (reen w/ mieaded Joints
33				SP	90		GRAVELLY SAND, fine to medium, compact, gravel 1/4 to 1/2", saturated, brown, odor,		
]	-			3P	90		sheen on sampler,		
34-	_			GP	90		SANDY GRAVEL, well rounded, loose,		
35	5 0					$\ - \ $	saturated, odor, CLAYSTONE, very hard/dense, dry, dark		
36	53			CLST	90		reddish brown,		Fluid Throaded
37	21			CLST	50	X	CLAYSTONE, STA, shaley at base.		Flush Threaded ch 40 PVC Cap
3/									

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet
Total Depth : 42'
Ground Water : 24-26'

Start Date : 10/4/2016 Finish Date : 10/4/2016 WELL NO. TK 569-1

(Sheet 1 of 3)

Elev., TOC (ft.msl) ::
Elev., PAD (ft. msl) ::

Elev., GL (ft. msl) : 6952.00

Site Coordinates :

N : N 35° 29.403' E : W 108° 25.469'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter Comments : Hand Augered to 6 Feet

Total Depth : 42'
Ground Water : 24-26'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-1

(Sheet 2 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.469'

							Finish Date : 10/4/2016	E : W 108° 25.469'
							Saturation	
							_ ▼ Saturation	Temporary Well
					<u>@</u>		<u></u> ✓ Saturation	Tampayaw Wall No. TV FCO 1
ig:	Ē	on	≥		Recovery (%)			Temporary Well No. TK 569-1
Depth (ft.)	PID (ppm)	Saturation	ôolo		ove	Sample		_
	PD	Satı	Lithology	uscs	Rec	Sar	DESCRIPTION	
15-				1 1		 	1	
	13.6		///	CL	70			Open Borehole
16			-/-				SANDY CLAY, STA, odor,	
,	32.6		///	CL	60			
17-	32.0			CL	60			
18						Щ		—Bentonite Pellets
]			///			IN /I	SANDY CLAY, STA, odor,	
19-	152		///	CL	70	X		—2" Sch 40 PVC w/Threaded Joints
= =						IV V		W/Threaded Joints
20-							CLAYEY SILTY SAND, fine to medium grain,	
21	41.6			SC/SM	90		compact, becomes more silty with depth, gravel at base, damp, odor,	
22						$H \rightarrow$	CLAYEY SILTY SAND, STA, medium to	
							coarse sand, occasional gravel, damp,	
23	92.2			SC/SM	90			
24		lacksquare				Щ		
-						IN /I	CLAYEY SILTY SAND, very fine grain, compact, moist to saturated in silty sand	
25	2158			SC/SM	90	X	seams, brown, odor,	
						/ \		
26-							SANDY CLAY, STA with greater clay content,	10/20 Sieve Sand Filter Pack
27	1147		///	CL	20		brown trace gravel at base, moist to saturated in silty sand seams,	
''	+/				20		January Sand Souries,	
28						$\parallel \parallel$	GRAVELLY SILTY SAND, medium to coarse	2" Sch 40 PVC Slotted 0.01"
							grain, compact, damp to moist in seams-not	Screen w/Threaded Joints
29-	1060			SM	50		saturated throughtout core, brown, odor, sandstone gravel present,	
[danasiono gravor prodont,	
30-			0 0 0				CLAYEY SANDY GRAVEL, 1/8" to 1/2" gravel	
31	1353			GW	60		with medium to coarse grain sand, compact to loose, saturated, brown, odor,	
		🛮	, , , , ,	CI	60	$\ \ \ $	SILTY CLAY, low, firm, damp, brown, odor,	
32			///	CL	00	$\parallel \parallel$	SILTY CLAY, low, firm, damp, brown, odor, SILTY CLAY, STA, odor,	
	1622		///	CL			5.2.1. 5271, 577, 5351,	
33		ı k		ı I		'' '	1	I I B H

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet
Total Depth : 42'

Ground Water : 24-26'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-1

(Sheet 3 of 3)

Elev., TOC (ft.msl)

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.469'

Geologist : Tracy Payne

: Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 38'

Ground Water : 31'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-2

(Sheet 1 of 3)

Elev., TOC (ft.msl)
Elev., PAD (ft. msl)

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.451'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 38'

Ground Water : 31'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-2

(Sheet 2 of 3)

Elev., TOC (ft.msl) :
Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.451'

							Finish Date : 10/4/2016	E : W 108° 25.451'
							Saturation	
							▼ Saturation	Temporary Well
$\overline{}$	<u>_</u>	L			Recovery (%)			Temporary Well No. TK 569-2
Depth (ft.)	PID (ppm)	Saturation	Lithology	SS	over	Sample		
Dec		Sat	Lith	nscs	Rec	Sar	DESCRIPTION	
13	36.5			CL	10			
14	36.5			CL	10			_
]							CLAYEY SAND, very fine grain, compact, damp, brown, odor,	
15	899			SC	70			
16						Щ		Open Borehole
]						$ \setminus / $	CLAYEY SAND, STA, odor,	
17	2332			SC	70	$\ \lambda\ $		
18						$ \Delta $		_
=							CLAYEY SAND/SANDY CLAY, STA, odor,	
19	702			SC/CL	90			
20								
=							CLAYEY SAND, STA, sand/gravel lense from 21-21.5', loose, damp, grey,	
21	833			SC	60			—Bentonite Pellets
22								
				SM			SILTY SAND, fine grain, loose, damp, brown, odor,	
23	398			Sivi	90			
24			.00	GW		Щ	SANDY GRAVEL, grey sandstone gravel with fine to coarse grain sand, damp, odor,	2" Sch 40 PVC w/Threaded Joints
=							SANDY GRAVEL, STA, white sandstone	
25	190		0 0 0	GW	10		present,	
26			0.000			Ш		- 10/20 Sieve Sand Filter Pack
·			0000				SANDY GRAVEL, STA, white sandstone present,	
27	1973		0 0 0	GW	10			
28			0 0 0					2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
	1684		0 0 0	GW			SANDY GRAVEL, STA, poor recovery, very hard, trace clay, damp,	
29			0 . 0 . 0	 				

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Total Depth : 38'
Ground Water : 31'

Start Date : 10/4/2016 Finish Date : 10/4/2016

WELL NO. TK 569-2

(Sheet 3 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.451'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan
Drilling Rig : CME 75

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter Comments : Hand Augered to 6 Feet

Total Depth : 39'
Ground Water : 26'
Start Date : 9/28/2016
Finish Date : 9/28/2016

WELL NO. TK 569-3

(Sheet 1 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.390' E : W 108° 25.459'

						Finish Date : 9/28/2016	E : W 108° 25.459'
Depth (ft.) PID (ppm)	Saturation	Lithology	SS	Recovery (%)	Sample	Saturation ▼ Saturation ∇ Saturation	Temporary Well Temporary Well No. TK 569-3
Dep	Satı	Ë	nscs	Rec	San	DESCRIPTION	
-3 - -2 - -1 -							Top of Casing 2.25' Above Ground Level
0 - 8.9			CL	100		SILTY CLAY, low, firm, damp, brown, no odor,	
3 10.4			CL	100		SILTY CLAY, SIMILAR TO ABOVE (STA),	
5 — 12.4 6 —			CL	100		SILTY CLAY, STA,	
7 31.8 8			CL	60		SILTY CLAY, STA,	— Open Borehole
9 27.6			CL	50		SILTY CLAY, STA, soft,	2" Sch 40 PVC w/Threaded Joints
11 = 50.9			CL	70		SILTY CLAY, low, firm, damp, brown, odor,	
12 - 63.9			CL	60		SILTY CLAY, STA, trace very fine grain sand, odor,	
14 - 303			sc	70		CLAYEY SAND, very fine, compact, damp, brown, odor,	
16 - 377			sc	70		CLAYEY SAND, STA, odor,	— Bentonite Pellets
18 — 250 19 —			SC/CL			CLAYEY SAND/SANDY CLAY, STA, odor,	

Geologist : Tracy Payne
Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Total Depth : 39'
Ground Water : 26'
Start Date : 9/28/2016
Finish Date : 9/28/2016

WELL NO. TK 569-3

(Sheet 2 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.390' E : W 108° 25.459'

Geologist : Tracy Payne

: Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet

Total Depth : 45'
Ground Water : 33' BGL

Start Date : 9/27/2016 Finish Date : 9/27/2016

WELL NO. TK 570-1

(Sheet 1 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6958.88

Site Coordinates

N : N 35° 29.377' E : W 108° 25.459'

Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	Saturation Saturation DESCRIPTION	Te	Temporary Well mporary Well No. TK 570-1
		Sa	Ë	n	Ä	S	DESCRIPTION		
-3 -2 -1 -1								_	Top of Casing 2' Above Ground Level
1-2-	5.3			FILL	100		FILL-SILT/GRAVEL, damp, brown, no odor,		
	14.9			FILL	100		FILL-SILT/GRAVEL, SIMILAR TO ABOVE (STA), faint odor,		
	15.8			FILL	100		FILL-SILT/GRAVEL, STA, faint odor,		2" Sch 40 PVC w/Threaded Joints
7- 2	24.1			SW	90		GRAVELLY SAND, medium to coarse, loose, damp, odor,		— Open Borehole
	1775			GM	90		CLAYEY GRAVEL, 1/4" to 1/2" gravel in low plastic, brown, damp clay, odor,		
	3445			ML	10		SANDY SILT, low, very soft, damp, dark brown, odor,		
12-	2408			ML			SANDY SILT, STA, odor,		

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet

Total Depth : 45' Ground Water : 33' BGL

Start Date : 9/27/2016 Finish Date : 9/27/2016 WELL NO. TK 570-1

(Sheet 2 of 3)

Elev., TOC (ft.msl) ::
Elev., PAD (ft. msl) ::

Elev., GL (ft. msl) : 6958.88

Site Coordinates

N : N 35° 29.377' E : W 108° 25.459'

							Finish Date : 9/27/2016		. W 106° 25.459
							Saturation		
							<u>▼</u> Saturation		Temporary Well
	=	ے			(%)				Temporary Well No. TK 570-1
Depth (ft.)	PID (ppm)	Saturation	Lithology	တ္သ	Recovery (%)	Sample			
Deb	PID	Satu	Lithc	nscs	Rec	San	DESCRIPTION		
13-							1		1111
14-	2408			ML	10				
'							SANDY CLAY, low, firm to soft, damp, sandy at base, brown, odor,		
15	2350			CL	90				
10									
16-							SILTY CLAY, low, firm, damp, ocassional sandy clay lenses, brown, odor,		
17	1139			CL	90				
									Open Borehole
18-							SILTY CLAY, STA, odor,		
19-	1250			CL	90				
20-	1460			CL	90		SILTY CLAY, STA, odor,		2" Sch 40 PVC
21 –	1400			<u> </u>	50	\square	OLAVEY CAND fire and the least design		w/Threaded Joints
				SC	90		CLAYEY SAND, fine, compact to loose, damp, brown, odor,		
22-							CLAYEY SAND, STA, decrease in clay with		
23-	399			SC	90		depth, odor,		
									—Bentonite Pellets
24-							CLAYEY SAND, STA, odor,		Dentonite i citeta
25	695			SC	100				
			///	- -					
26						$\ - \ $	SILTY SAND, very fine, soft/compact, damp,	\dashv	
27-	952			SM	90		brown, odor,		
21 -	332			OIVI	30				-10/20 Sieve Sand Filter Pack
28						$ $ $ $	CLAYEY SAND, very fine, compact, damp,	\dashv	
	1441			SC			brown, odor,		2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
29 –					•		•		,

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 45'

Ground Water : 33' BGL
Start Date : 9/27/2016
Finish Date : 9/27/2016

WELL NO. TK 570-1

(Sheet 3 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6958.88

Site Coordinates

N : N 35° 29.377' E : W 108° 25.459'

Appendix D 2019 Site Investigation

Tank 570 WELLS FLUID LEVEL MEASUREMENTS MARATHON - GALLUP REFINERY

Gallup, New Mexico

	Data	DTP	DTW	PSH thickness	Total Depth	Screen Interval	Stickup
Well ID	Date	(ft-btoc)	(ft-btoc)	(ft)	(ft-btoc)	(ft-bgl)	(ft)
TK570-1	9/30/2016	33.75	35.63	1.88	44.35	28 - 43	2.0
TK570-2	8/13/2019	33.52	33.53	0.01	45.39	24 - 44	3.0
TK570-3	8/13/2019	33.65	33.96	0.31	47.34	24 - 44	3.0
TK570-4	8/13/2019	ND	29.45	0	45.03	24 - 44	3.0
TK570-5	8/13/2019	33.92	34.38	0.46	47.32	24 - 44	3.0
RW-1	8/9/2019	27.46	28.12	0.66	NM	25 - 40	3.2

btoc - below top of casing

bgl - below ground level

ft - feet

PSH - phase-separated hydrocarbon

ND - not detected

NM - not measured

DTP - depth to product

DTW - depth to water

Geologist : Tracy Payne
Driller Company : Enviro-Drill, Inc.
Driller : Cohagan

Driller : Cohagan
Drilling Rig : CME 75

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" Diam.

Total Depth : 48'
Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 Finish Date/Time : 7-31-19 / 17:00 WELL NO. TK 570-2

(Sheet 1 of 4)

N : N35° 29' 22.6" E : W108° 25' 27.7" Comments : Hand augered to 6' BGL

Air Temp. (F) : High 87, Low 80

Geologist : Tracy Payne **Driller Company**

: Enviro-Drill, Inc. Driller : Cohagan Drilling Rig : CME 75

: Hollow-Stem Augers Drilling Method Sampling Method : 2' Split Spoon - 2" Diam.

Total Depth : 48' Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 Finish Date/Time : 7-31-19 / 17:00 WELL NO. TK 570-2

(Sheet 2 of 4)

Ν : N35° 29' 22.6" : W108° 25' 27.7" Ε : Hand augered to 6' BGL Comments

Air Temp. (F) : High 87, Low 80

							Saturation	
					_		▼ Saturation	Completion Results
(ft.)	(mdi	ation) day		Recovery (%)	<u>_0</u>		TK 570-2
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recov	Sample	DESCRIPTION	
11-	15,000			CL	90			
12-							SANDY SILTY CLAY - low, soft, damp, brown, trace fine grain sand.	— Open Borehole
13-	15,000			CL	90			
14 -							SANDY SILTY CLAY - STA.	
15-	15,000			CL	90			—Bentonite Pellets
16 - - - - - 17 -	15,000			SC	90		CLAYEY SAND - very fine grain, compact, dark brown, moist to very moist, brown.	
				СН	90		CLAY - high, firm, damp, brown.	
18 – 18 – 18 – 18 – 18 – 18 – 18 – 18 –							CLAYEY SAND / SANDY CLAY - soft, low plasticity, damp, brown.	
Phase 3/TK	15,000			SC/CL	90			—10/20 Sieve Sand Filter Pack —2" Sch 40 PVC w/Threaded Joints
30 – 20 – 3 – 3 – 3 – 3 – 3 – 3 – 3 – 3 – 3 –	-						SILTY CLAY - low, firm, damp, brown.	
21 – 21 – .	15,000			CL	90			
22 – 22 –							CLAYEY SAND - fine, soft/compact, damp, light brown to brown.	
23 –	15,000			SC	90			
09-09-2019 C:Box SynckSheftall, AllielProjects for others/Crouch\WEST19038\Phase 3\TK 570-2.bor	15,000			sc			CLAYEY SAND - STA.	2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
25 –							DiSorbo Consulting, LLC	
1001 Lo Housto 713-95	ouisiana S n, Texas 7 5-1230			250			DISOIDO CONSUMING, ELC	8501 N. MoPac Expy, Suite 300 Austin, Texas 78759 512-693-4190
ŏ								

Geologist : Tracy Payne
Driller Company : Enviro-Drill, Inc.

Driller : Cohagan
Drilling Rig : CME 75

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" Diam.

Total Depth : 48'
Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 Finish Date/Time : 7-31-19 / 17:00

WELL NO. TK 570-2

(Sheet 3 of 4)

N : N35° 29' 22.6" E : W108° 25' 27.7" Comments : Hand augered to 6' BGL

Air Temp. (F) : High 87, Low 80

Geologist : Tracy Payne **Driller Company** : Enviro-Drill, Inc.

Driller : Cohagan Drilling Rig : CME 75

Drilling Method : Hollow-Stem Augers : 2' Split Spoon - 2" Diam. Sampling Method

Total Depth Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 : 7-31-19 / 17:00 Finish Date/Time

WELL NO. TK 570-2

(Sheet 4 of 4)

Ν : N35° 29' 22.6" Ε : W108° 25' 27.7" Comments : Hand augered to 6' BGL

Air Temp. (F) : High 87, Low 80

52

53

09-09-2019

Geologist Drilling Company

Drilling Company
Driller
Drilling Rig

Drilling Method Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: CME 75

: Enviro-Drill, Inc. : Cohagan

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 48' : 33.5' BGL : 8-1-2019 / 14:30 : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 1 of 4)

N : N35° 29' 22.2" E : W108° 25' 28.1"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 86, Low 70

Saturation Saturation Completion Results Recovery (%) TK 570-3 Saturation Depth (ft.) (mdd) OIc Lithology Sample **DESCRIPTION** -3 -2 Top of Casing 3' above Ground Level -1 0 FILL - SILT/SAND/GRAVEL, dry to damp, brown, no odor. (Respirator donned - no olfactory observations.) 15,000 Fill 100 2 SANDY CLAY - low, firm, damp, brown, calcareous, very fine grain sand. CL 15,000 80 3 2" Sch 40 PVC 4 SANDY CLAY - Similar to above (STA), damp. w/Threaded Joints CL 70 5 15,000 Open Borehole 6 SANDY CLAY - STA, damp. 7 15,000 CL 60 8 SANDY CLAY - STA, damp. CL 70 15,000 9 SM 70 SILTY SAND - fine, angular, compact, damp 10 brown. 15,000 CL SANDY CLAY - low, firm, damp, brown. 11

Geologist Drilling Company

Driller
Drilling Rig
Drilling Method

Drilling Method
Sampling Method
Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: CME 75

: 48'

: Enviro-Drill, Inc. : Cohagan

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 33.5' BGL : 8-1-2019 / 14:30 : 8-5-2019 / 17:20 WELL NO. TK 570-3

(Sheet 2 of 4)

N : N35° 29' 22.2" E : W108° 25' 28.1" Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 86, Low 70

Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	Saturation Saturation DESCRIPTION	Completion Results TK 570-3
11-								J
12-	15,000			CL	70		SILTY CLAY - high, soft, damp, brown, trace	-
13-	15,000			СН	80		very fine grain sand.	
14— - - 15—	15,000			CL	80		SANDY SILTY CLAY - low to moderate, soft, damp, brown, very fine grain sand.	— Bentonite Pellets
- -	15,000			SM	40		SILTY SAND - fine to medium, subangular, loose, damp, brown, trace gravel.	2" Sch 40 PVC w/Threaded Joints
18— - 19— - 20—	15,000			CL	50		SANDY SILTY CLAY - low to moderate, firm to soft, damp, brown.	— 10/20 Sieve Sand Filter Pack
21-	15,000			CL	90		SILTY CLAY - low, firm, damp, brown.	
-	15,000			CL	90		SANDY SILTY CLAY - low, firm, damp, brown, very fine grain sand.	
24 — - - 25 —	15,000			CL			SANDY SILTY CLAY - STA, damp.	2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints

Geologist Drilling Company

Driller
Drilling Rig

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" diamet.

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

Total Depth : 48'
Saturation Depth : 33.5' BGL
Start Date/Time : 8-1-2019 / 14:30
Finish Date/Time : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 3 of 4)

N : N35° 29' 22.2" E : W108° 25' 28.1" Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 86, Low 70

							Saturation	
					_		▼ Saturation	Completion Results
£ (t)	E E	nc	^		Recovery (%)			TK 570-3
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	cover	Sample		_
	믭	Sat	Lif	SN	Rec	Sar	DESCRIPTION	
25-	45.000							
26-	15,000			CL	90	Ш		
							SANDY SILTY CLAY - STA, sand lenses throughout, damp.	
27	15,000			CL	90			
-								
28-							SANDY SILTY CLAY - low, firm, damp,	
29-	15,000			CL	90		brown.	
-	10,000			OL				
30-						\blacksquare	SILTY CLAY - moderate to low, firm to soft,	
-							damp, brown.	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
31-	15,000			CL	100			10/20 Sieve Salid Filler Fack
32-								2" Sch 40 PVC Slotted 0.01"
-						\mathbb{N}	SILTY CLAY - STA.	Screen w/Threaded Joints
33-	15,000			CL	100	$\ \lambda\ $		
-	15,000	1		SM	100	\mathbb{H}	SILTY SAND - fine to medium, loose, very	
34	10,000			OW	100	H	moist, brown. SAND - medium, loose, saturated, brown.	
35-	15,000		OWOWOWO OWOWOWO OWOWOWO	SP	100		o, and inicalant, toose, saturated, stemm	
35-	15,000		0740740740 0740740740 0740740740	SF	100			
36-							SAND - STA.	
-			L 40 40 40 40 0 4 0 4 0 4 0 4 0 0 4 0 4 0				JANU - STA.	
37	15,000			SP	100			
38-	15,000			SP	100		SAND - STA.	
39-]							

Geologist **Drilling Company**

Driller Drilling Rig

Drilling Method Sampling Method

Total Depth Saturation Depth Start Date/Time

: Tracy Payne : Enviro-Drill, Inc. : Cohagan

: CME 75

: 48'

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 33.5' BGL : 8-1-2019 / 14:30 : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 4 of 4)

Ν : N35° 29' 22.2" Ε : W108° 25' 28.1" Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 86, Low 70

DiSorbo Consulting, LLC

53

Geologist
Drilling Company

Drilling Company
Driller
Drilling Rig

Drilling Method
Sampling Method
Total Doub

Total Depth
Saturation Depth

Start Date/Time

Finish Date/Time

: Tracy Payne : Enviro-Drill, Inc. : Cohagen

> : Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 48'

: CME 75

: 26' and 42' BGL : 8-7-2019 / 19:50 : 8-7-2019 / 13:00 WELL NO. TK 570-4

(Sheet 1 of 4)

N : N35° 29' 21.7" E : W108° 25' 27.5"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 75, Low 72

Geologist **Drilling Company**

Driller Drilling Rig

Drilling Method Sampling Method

Total Depth Saturation Depth

: 26' and 42' BGL Start Date/Time : 8-7-2019 / 19:50 Finish Date/Time : 8-7-2019 / 13:00

: Tracy Payne

: Cohagen

: CME 75

: Enviro-Drill, Inc.

: Hollow-Stem Augers

: 2' Split Spoon - 2" diamet.

WELL NO. TK 570-4

(Sheet 2 of 4)

Ν : N35° 29' 21.7" : W108° 25' 27.5" Ε

: Hand Augered to 6' BGL Comments Air Temp. (F) : High 75, Low 72

							1 IIIISII Date/ IIIIIe . 0-7-2019 / 13.00	
							Saturation	
							_ ▼ Saturation	Completion Results
<u></u>	<u></u>	n	,		Recovery (%)			TK 570-4
Depth (ft.)	PID (ppm)	Saturation	Lithology	ပ္သ	over	Sample		<u> </u>
Dep	PID	Satı	Lith	nscs	Rec	San	DESCRIPTION	
10-	 						SILTY CLAY - low, very soft, damp, greyish	
-							brown.	
11-	15,000			CL	25			
-								Open Borehole
12-							SILTY CLAY - STA, damp.	7
-	45.000				0.5			
13-	15,000			CL	25			
14-								
'							SILTY SANDY CLAY - low, very soft, damp, brown - sand in matrix and in lenses.	─ Bentonite Seal
15-	15,000			CL	90			Bontonite Goal
-	.,,,,,,,,							
16-						Ш		
-				CL	90		SILTY SANDY CLAY - STA, damper than above.	2" Sch 40 PVC
17-	15,000					$\ \ \ $	CLAY - high, very stiff, damp, brown.	w/Threaded Joints
-				СН	90		CLAT - High, very still, damp, brown.	40/00 0: 0 15% 5
18-						$\ \cdot\ $	SILTY CLAY - low, very soft, damp, brown.	— 10/20 Sieve Sand Filter Pack
-							Carr Carr Con, 101, 101, 201, 2011, 2011, 2011	
19-	15,000			CL	90			
-								
20-						$\ \cdot \ $	SILTY CLAY - low, firm to soft, damp, brown,	
-							trace very fine grain sand.	
21-	15,000			CL	90	$\ \ $		
22-	45.55			6:			SILTY SANDY CLAY - low, soft/crumbly, damp, fine grain sand, calcareous at base.	
-	15,000			CL			damp, line grain sand, calcareous at base.	
23-	1			•	•	• • •	•	i isotelitetel

Geologist

Drilling Company Driller Drilling Rig

Drilling Method Sampling Method

Saturation Depth

Start Date/Time

Finish Date/Time

Total Depth

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 26' and 42' BGL : 8-7-2019 / 19:50 : 8-7-2019 / 13:00

: Tracy Payne

: Cohagen

: CME 75

: Enviro-Drill, Inc.

WELL NO. TK 570-4

(Sheet 3 of 4)

Ν : N35° 29' 21.7" : W108° 25' 27.5" Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 75, Low 72

Geologist
Drilling Company

Driller
Drilling Rig

Drilling Method Sampling Method Total Depth

Saturation Depth
Start Date/Time

Start Date/Time : 8-7-2019 / 19:50 Finish Date/Time : 8-7-2019 / 13:00

: Tracy Payne

: Cohagen

: CME 75

: Enviro-Drill, Inc.

: 26' and 42' BGL

: Hollow-Stem Augers

: 2' Split Spoon - 2" diamet.

WELL NO. TK 570-4

(Sheet 4 of 4)

N : N35° 29' 21.7" E : W108° 25' 27.5"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 75, Low 72

Geologist
Drilling Company

Drilling Company
Driller
Drilling Rig

Drilling Method
Sampling Method
Total Depth

Saturation Depth
Start Date/Time

Start Date/Time : 8-8-2019 / 10:30 Finish Date/Time : 8-8-2019 / 14:20

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

: Hollow-Stem Augers

: 32', 36', & 40' BGL

: 2' Split Spoon - 2" diamet.

WELL NO. TK 570-5

(Sheet 1 of 4)

N : N35° 29' 22.0" E : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

Geologist Drilling Company

Driller
Drilling Rig

Drilling Method
Sampling Method

Total Depth
Saturation Depth
Start Date/Time

Finish Date/Time

: 32', 36', & 40' BGL : 8-8-2019 / 10:30 : 8-8-2019 / 14:20

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

: Hollow-Stem Augers

: 2' Split Spoon - 2" diamet.

WELL NO. TK 570-5

(Sheet 2 of 4)

N : N35° 29' 22.0" E : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

							1 IIIISTI Date/11IIIe : 0-0-2019 / 14.20	
							Saturation	
							_ ▼ Saturation	Completion Results
		_			(%)			TK 570-5
) (ft.)) (mdc	atior	ogy		very	<u>e</u>		
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	DESCRIPTION	
9-	ш			ا ا	LE.	0)		
				SC/CL	70			
	1			SC/CL	70			
10-							SILTY SANDY CLAY - low, soft/crumbly, dry	7
							to damp, brown, fine to medium grain sand.	
11-	98.5			CL	70			Open Borehole
-								
12-								_
							SILTY CLAY - low, soft, damp, brown, trace fine grain sand.	
1	004			01	40			2" Sch 40 PVC
13-	324			CL	40			w/Threaded Joints
14-						H	SILTY CLAY - STA, dark brown, damper than	
-							above.	—Bentonite Seal
15-	855			CL	80			
16-								
'0 -						IN /	SILTY CLAY - high, stiff, damp, dark brown.	
						$ \setminus / $		
17-	1515			СН	90			
						$ / \setminus $		
18-						Щ	SILTY CLAY - STA.	
]				СН	90		SILTY GEAT - GTA.	10/20 Sieve Sand Filter Pack
19-	1285							
	00			N/1	90		CLAYEY SILT - low, soft, moist, brown, trace fine grain sand.	
				ML	90			
20-							SILTY CLAY - high, stiff, damp, brown, sandy	
	5210			СН			at base.	
21			////					

Geologist

Saturation Depth

Drilling Company
Driller
Drilling Rig

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" diamet.

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

: 32', 36', & 40' BGL

Total Depth : 46

Start Date/Time : 8-8-2019 / 10:30 Finish Date/Time : 8-8-2019 / 14:20

WELL NO. TK 570-5

(Sheet 3 of 4)

N : N35° 29' 22.0" E : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

C:\Box Sync\Sheftall, Allie\Projects for others\Crouch\WEST19038\Phase 3\TK 570-5.bor

09-09-2019

Geologist

Drilling Company Driller Drilling Rig

Drilling Method Sampling Method

Total Depth Saturation Depth

Start Date/Time Finish Date/Time : Tracy Payne : Enviro-Drill, Inc. : Cohagan

: CME 75

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 32', 36', & 40' BGL

: 8-8-2019 / 10:30 : 8-8-2019 / 14:20

WELL NO. TK 570-5

(Sheet 4 of 4)

Ν : N35° 29' 22.0" : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

09-09-2019

Appendix E
Well Development and Purging Procedures

Well Development

All monitoring wells will be developed to create an effective filter pack around the well screen, correct damage to the formation caused by drilling, remove fine particles from the formation near the borehole, and assist in restoring the natural water quality of the aquifer in the vicinity of the well. Newly installed monitoring wells will not be developed for at least 48 hours after the surface pad and outer protective casing are installed. This will allow sufficient time for the well materials to cure before the development procedures are initiated. A new monitoring well will be developed until the column of water in the well is free of visible sediment, and the pH, temperature, turbidity, and specific conductivity have stabilized. In most cases, the above requirements can be satisfied. However, in some cases, the pH, temperature, and specific conductivity may stabilize but the water remains turbid. In this case, continuous flushing may be necessary to complete the well development. If the well is pumped dry, the water level will be allowed to sufficiently recover before the next development period is initiated. The common methods used for developing wells include:

- (1) pumping and over-pumping;
- (2) backwashing;
- (3) surging (with a surge block);
- (4) bailing;
- (5) jetting; and
- (6) airlift pumping.

These development procedures will be used, either individually or in combination, to achieve the most effective well development. However, the most favorable well development methods include pumping, over-pumping, bailing, surging, or a combination of these methods. Well development methods and equipment that alter the chemical composition of the groundwater will not be used.

Development methods that involve adding water or other fluids to the well or borehole, or that use air to accomplish well development will be avoided, if possible. Approval will be obtained from the NMED prior to introducing air, water, or other fluids into the well for the purpose of well development. If water is introduced to a borehole during well drilling and completion, then the same or greater volume of water will be removed from the well during development. In addition, the volume of water withdrawn from a well during development will be recorded, and best efforts will be used to avoid pumping wells dry during development activities.

Well Purging

All zones in each monitoring well will be purged by removing groundwater prior to sampling and in order to ensure that formation water is being sampled. Purge volumes will be determined by monitoring, at a minimum, groundwater pH, specific conductance, dissolved oxygen concentrations, turbidity, redox potential, and temperature during purging of volumes and at measurement intervals of not less than ½ the pre-purge well volume. The groundwater quality parameters and fluid levels will be measured using a YSI Professional Plus Multiparameter Meter, YSI Water Quality Sonde, Hach Portable Turbidimeter, and a Geotech Interface Meter. The volume of groundwater purged, the instruments used, and the readings obtained at each interval will be recorded on the field monitoring log. In general, water samples may be obtained from the well after the measured parameters of the purge water have stabilized to within ten percent for three consecutive measurements. Well purging

may also be conducted in accordance with the NMED's Position Paper "Use of Low-Flow and other Non-Traditional Sampling Techniques for RCRA Compliant Groundwater Monitoring" (October 30, 2001). If necessary, a written request for a variance from the described methods of well purging for individual wells may be submitted to NMED no later than 90 days prior to scheduled sampling activities.

Table 1 - RW-1 Recovery Volumes Western Refining Southwest, Inc. - Gallup Refinery

Year	Product Recovered (gallons)	Water Recovered (gallons)
2005	431.5	1,210.5
2006	23.52	1,107.0
2007	1.72	148.5
2008	3.99	152.0
2009	1.78	338.0
2010	0.66	128.0
2011	0.42	165.0
2012	0.97	137.0
2013	2.328	86.0
2014	2.37	83.0
2015	2	54.0
2016	8.5	53.0
2017	11	42.0
2018	1	1.5
total	491.758	3,705.5

recovery volumes are field estimates for RW-1

Table 2 - Groundwater Analyses Western Refining Southwest, Inc. - Gallup Refinery

		_																																									
	Sec- butylbenzene	(mg/L)	NE	NE	NE	2		<0.05	<0.05	<0.1	<0.1	0.0032	0.0027	<0.05	<0.05	0.0041	0.0022	0.0031	<0.05	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.002	0.003	0.003	0.003	0.002	<0.005
	n-Propylbenzene	(III <i>B</i> / L)	NE	NE	NE	99.0		<0.05	0.03	0.027	0.032	0.028	0.025	0.021	0.014	0.013	0.011	0.011	<0.05	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.002	0.001	<0.001	<0.001	<0.001	<0.005
	1-Methyl naphthalene	(mg/L)	NE	NE	0.0114	0.0011		<0.2	0.026	<4.0	0.059	0.033	0.038	0.037	0.035	0.03	0.034	0.033	0.03	<0.08	<0.04	<0.08	<0.08	0.044	0.016	<0.08	<0.04	0.027	0.024	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.021	0.022	0.020	0.019	0.022	0.022	0.020	<0.02
	Naphthalene	(IIIB/ L)	0.03	NE	0.00165	0.00017		<0.1	0.027	0.017	0.044	0.037	0.038	0.028	0.024	0.02	0.018	0.019	0.017	<0.04	<0.02	<0.04	<0.04	<0.02	<0.04	<0.04	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.01	0.002	<0.002	<0.002	<0.002	<0.002	<0.01
135	Trimethylbe	(mg/L)	NE	NE	NE	090'0		<0.05	<0.05	<0.1	<0.1	0.0021	0.0016	<0.05	<0.05	0.0015	0.00082	0.0017	NA	AN	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	AN	NA	NA	AN	NA	<0.005
124- 135-	Trimethyl	(mg/L)	NE	NE	NE	0.056		<0.05	<0.05	<0.1	<0.1	0.013	0.012	0.011	0.0074	0.0084	0.0071	0.008	<0.05	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.001	0.001	0.001	<0.001	0.001	<0.005
	MTBE (mg/l)	(IIIB/ L)	0.1	NE	0.143	0.014		9.0	0.74	0.67	99.0	0.63	99.0	0.7	0.81	0.5	0.58	0.62	0.68	0.57	0.78	0.74	0.76	0.81	0.82	0.93	1.1	1.1	0.94	1.3	1.3	1.4	1.6	1.2	1.4	1.3	1.4	1.6	1.4	1.3	1.4	1.4	1.5
9	Total Xylenes	(mg/L)	0.62	10	0.193	0.19		<0.05	0.042	<0.15	<0.15	0.052	0.033	0.02	<0.075	0.013	0.008	0.012	<0.075	<0.03	<0.015	<0.03	<0.03	<0.015	<0.03	<0.03	0.032	0.019	<0.0075	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.0075	<0.0075	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0075
	Ethyl Benzene	(mg/L)	0.7	0.7	0.0149	0.0015		0.64	99.0	0.71	0.61	0.64	0.54	0.47	0.39	0.3	0.25	0.23	0.23	0.15	0.16	0.16	0.16	0.17	0.16	0.12	0.14	0.13	0.063	0.073	0.065	0.056	0.037	0.053		0.036	0.045	0.0610	0.0420	0.0180			0.0100
	Toluene	(III.B/ L/)	1	1.0	1.09	1.1		<0.05	<0.05	0.0088	0.0065	0.013	0.0091	0.004	0.0062	0.0057	0.0029	0.0026	<0.05	<0.02	<0.01	<0.02	<0.02	0.015	<0.02	<0.02	0.026	0.046	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	0.0015	0.0019	<0.001		0.0018	<0.005
	Benzene	(IIIB/ L)	0.005	0.005	0.00455	0.00046		13	17	15	14	13	12	13	12	8.7	8.1	7.8	6.5	6.2	5.4	4.6	3.9	3.6	3.8	3.7	4.0	3.3	2.6	3.4	2.8	2.7	2.1	2.6	2.3	1.5	1.4	1.8	1.3	0.63	0.47	0.33	0.25
			C 20NMAC 6.2.3103 (Dec. 2018)	40 CFR 141.62 MCL	NMED Tap Water (March 2019)	EPA RSL for Tap Water (Nov 2018)	DATE SAMPLED	11/09/18	09/11/18	05/15/18	02/27/18	12/11/17	09/06/17	05/30/17	02/27/17	11/15/16	08/31/16	06/06/16	03/04/16	10/27/15	08/10/15	6/1/2015	3/9/2015	11/10/2014	9/15/2014	6/3/2014	3/7/2014	11/11/2013	9/4/2013 ²	6/13/2013	3/19/2013	11/27/2012	8/23/2012	6/14/2012	3/21/2012	12/13/2011	10/24/2011	6/20/2011	2/24/2011	11/8/2010	9/22/2010	6/7/2010	3/24/2010
			WQCC 20	•	NMEC	EPA RS	Well ID																			0W-14																	

2 of 2

Table 2 - Groundwater Analyses Western Refining Southwest, Inc. - Gallup Refinery

					(555		- 1	(dd				
		Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)	1,2,4- Trimethyl benzene (mg/L)	1,3,5- Trimethylbe nzene (mg/L)	Naphthalene (mg/L)	1-Methyl naphthalene (mg/L)	n-Propylbenzene (mg/L)	Sec- butylbenzene (mg/L)
WQCC 20N	SC 20NMAC 6.2.3103 (Dec. 2018)	0.005	1	0.7	0.62	0.1	NE	NE	0.03	NE	NE	NE
4	40 CFR 141.62 MCL	0.005	1.0	0.7	10	NE	NE	NE	NE	NE	NE	NE.
NMED	NMED Tap Water (March 2019)	0.00455	1.09	0.0149	0.193	0.143	NE	NE	0.00165	0.0114	NE	NE.
EPA RSL	EPA RSL for Tap Water (Nov 2018)	0.00046	1.1	0.0015	0.19	0.014	0.056	090.0	0.00017	0.0011	99.0	2
Well ID	DATE SAMPLED											
	9/18/2014	37	35.0	1.8	10	1.2	<1.0	<1.0	<2.0	<4.0	<1.0	<1.0
DW 1	9/16/2013	54	32	2.4	13	2.2	1.3	<1.0	<2.0	<4.0	<1.0	<1.0
	8/23/2012	45	82	4.9	31	3.1	2.8	<1.0	<2.0	<4.0	<0.01	NA
	10/3/2011	51	28	3.7	23	2.9	5.8	86.0	9'0	0.15	0.4	NA
	08/28/18	48	4	1.5	3.8	1.1	0.31	0.043	0.1	0.04	0.056	NA
	05/08/18	46	2	1.5	4.2	1.2	0.34	0.031	960.0	<0.8	0.042	NA
	02/20/18	42	3.7	1.5	3.8	1.2	0.32	0.038	0.14	0.076	0.059	NA
	12/06/17	38	2.9	1.5	3.6	1.3	0.28	0.026	690'0	0.021	0.042	NA
	09/19/17	37	6.7	1.2	4	1.3	0.27	0.046	0.11	0.055	0.037	NA
	06/20/17	47	6	1.4	4.6	1.7	0.28	0.058	0.11	0.063	0.043	NA
	03/16/17	37	2.3	1.3	3.1	1.6	0.2	0.04	0.15	0.13	0.044	NA
C /\\d	11/16/16	38	3.4	1.2	3.2	1.7	0.2	0.049	0.15	0.13	0.063	NA
	09/13/16	38	3.8	1.2	3.1	1.6	0.21	0.044	0.14	0.088	0.056	NA
	06/08/16	36	2.9	1.1	3.1	1.7	0.23	0.12	0.18	0.17	0.071	NA
	03/07/16	46	4.1	1.2	3.5	1.9	0.18	0.028	0.1	0.069	0.045	NA
	08/23/15	42	6'9	1.1	3.7	1.8	0.21	<0.2	<0.4	<0.8	9:0>	NA
	9/18/2014	40	4.5	98'0	2.5	1.9	0.15	<0.1	<0.2	<0.4	<0.1	NA
	9/16/2013	48	3.4	0.87	2.3	2.8	0.13	<0.1	<0.2	<0.4	<0.1	NA
	8/23/2012	42	2.6	0.59	1.7	3.3	<0.1	<0.1	<0.2	<0.4	<0.1	NA
	10/3/2011	39	2.3	0.57	1.5	3.7	0.098	0.024	0.057	0.054	0.036	NA
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											

All values expressed in milligrams per liter

DEFINITIONS

NE = Not established

NA = Not analyzed

Bold and highlighted values represent values above the applicable standards

Bold screening level is applicable screening under RCRA Permit

STANDARDS

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/I TDS Concentration or Less.

a) Human Health Standards; b) Other Standards for Domestic Water

40 CFR 141.62 Maximum Contaminant Levels (MCL)

EPA Regional Screening Level (RSL) Summary Table

TABLE 3 FLUID LEVEL MEASUREMENTS

Total Well Depth to Depth to Depth to Depth to SPH Thickness (ft) Column SPH Thickness (ft) Depth to Column (water It) 46.52 ND NA 24.12 46.52 ND NA 24.15 46.52 ND NA 24.25 46.52 ND NA 23.88 46.52 ND NA 23.88 46.52 ND NA 23.88 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA <th>9 -</th> <th></th> <th></th> <th>Ground Level Ground Level (Inch) (ft) (ft) (Inch) (ft) (ft) (Inch) (ft) (ft) 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6</th>	9 -			Ground Level Ground Level (Inch) (ft) (ft) (Inch) (ft) (ft) (Inch) (ft) (ft) 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6 4.00 6,924.55 6
46.52 ND NA 24.12 46.52 ND NA 24.15 46.52 ND NA 24.40 46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.88 46.52 ND NA 23.88 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.26 46.52 ND NA 22.26 46.52 ND NA 22.26 46.52 ND NA 22.26 46.52 ND NA 22.26 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.95 <th></th> <th>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 24.15 46.52 ND NA 24.40 46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.96 46.52 ND NA 23.96 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.95 46.52 ND NA 21.95 46.52 ND NA 21.95 46.78 ND NA 21.95 46.75 ND NA 21.95 <th></th> <th>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th> <th>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</th>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 24.40 46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.88 46.52 ND NA 23.69 46.52 ND NA 23.69 46.52 ND NA 23.69 46.52 ND NA 23.69 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 46.75 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 24.25 46.52 ND NA 23.95 46.52 ND NA 23.96 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 22.26 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.82 46.52 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.95 46.52 ND NA 23.88 46.52 ND NA 23.89 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.95 46.52 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.53 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.88 46.52 ND NA 23.96 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.80 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 <td></td> <td>6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.96 46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.85 46.52 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04 <td></td> <td> 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td> <td>6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65</td>		 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.69 46.52 ND NA 23.20 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.80 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.85 46.75 ND NA 21.85 46.75 ND NA 21.82 46.75 ND NA 21.82 46.75 ND NA 21.82 46.75 ND NA 21.82 46.74 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.20 46.52 ND NA 23.18 46.52 ND NA 23.28 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.36 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.52 ND NA 21.80 46.78 ND NA 21.95 46.78 ND NA 21.95 46.78 ND NA 21.82 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.18 46.52 ND NA 23.50 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.83 46.52 ND NA 22.56 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.82 46.78 ND NA 21.95 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 46.52 ND NA 21.82 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.50 46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 22.36 46.52 ND NA 22.20 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.75 ND NA 21.95 46.78 ND NA 21.95 46.78 ND NA 21.82 46.52 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.04 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.28 46.52 ND NA 22.83 46.52 ND NA 23.18 46.52 ND NA 22.56 46.52 ND NA 22.20 46.52 ND NA 21.80 46.52 ND NA 21.80 46.78 ND NA 21.95 46.78 ND NA 21.95 46.52 ND NA 21.82 46.78 ND NA 21.82 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40 6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52NDNA22.8346.52NDNA23.1846.52NDNA22.5646.52NDNA21.8046.52NDNA21.8046.75NDNA21.7546.78NDNA21.9546.52NDNA21.8246.52NDNA21.8243.0428.055.0133.0643.0428.154.8933.04		6,924.40 6,924.40 6,924.40	6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65 6,926.65
46.52 ND NA 23.18 46.52 ND NA 22.56 46.52 ND NA 22.20 46.52 ND NA 21.80 46.75 ND NA 21.80 46.78 ND NA 21.95 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		6,924.40	6,926.65 6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65 6,926.65
46.52NDNA22.5646.52NDNA22.2046.52NDNA21.8046.75NDNA21.7546.78NDNA21.9546.52NDNA21.8243.0428.113.5431.6543.0428.055.0133.0643.0428.154.8933.04		6,924.40	6,926.65 6,926.65 6,926.65	6,926.65 6,926.65 6,926.65
46.52 ND NA 22.20 46.52 ND NA 21.80 46.75 ND NA 21.75 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		07 7 7 0 9	6,926.65	6,926.65
46.52 ND NA 21.80 46.75 ND NA 21.75 46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.15 4.89 33.04		0,324.40	6,926.65	6,926.65
46.75NDNA21.7546.78NDNA21.9546.52NDNA21.8243.0428.113.5431.6543.0428.055.0133.0643.0428.154.8933.04		6,924.40	1000	33 300 3
46.78 ND NA 21.95 46.52 ND NA 21.82 43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.31 NA NA 43.04 28.15 4.89 33.04		6,924.40	6,926.65	0,920.05
46.52NDNA21.8243.0428.113.5431.6543.0428.055.0133.0643.0428.154.8933.04		6,924.40		6,926.65
43.04 28.11 3.54 31.65 43.04 28.05 5.01 33.06 43.04 28.31 NA NA 43.04 28.15 4.89 33.04	2.10 6,880.13	6,924.40	6,926.65 6,924.40	
43.04 28.05 5.01 33.06 43.04 28.31 NA NA 43.04 28.15 4.89 33.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04 28.31 NA NA NA 43.04 28.15 4.89 33.04		6,941.25		6,946.06
43.04 28.15 4.89 33.04		6,941.25		6,946.06
	3.20 6,903.02	6,941.25		6,946.06
43.04 28.10 4.70 32.80	3.20 6,903.02	6,941.25	6,946.06 6,941.25	6,946.06
03.02 43.04 27.70 4.40 32.10 6,913.96	3.20 6,903.02	6,941.25		
03.02 43.04 28.08 1.94 30.02 6,916.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04 28.05 2.50	3.20 6,903.02	6,941.25	6,946.06 6,941.25	6,946.06
43.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
03.02 43.04 27.90 4.14 32.04 6,914.02	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
43.04 27.80 3.10 30.90		6,941.25		6,946.06
43.04	3.20 6,903.02	6,941.25	6,946.06 6,941.25	
03.02 43.04 26.77 1.65 28.42 6,917.64	3.20 6,903.02	6,941.25	6,946.06 6,941.25	6,946.06
03.02 43.04 26.52 1.08 27.60 6,918.46	3.20 6.903.02	6,941.25	6,946.06 6,941.25	

FLUID LEVEL MEASUREMENTS TABLE 3

p = do		((0	36.1	5.1	36.1	36.1	5.1	36.1	36.1	36.1	36.1	36.1	5.1	36.1	36.1	36.1	36.1	36.1	36.1	5.1	5.1
Screened Interval Depth Top to Bottom (ft)	25 - 40	25 - 40	25 - 40	25 - 40	26.1 - 36	26.1 - 36.1	26.1 - 36	26.1 - 36	26.1 - 36.1	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36.1	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36	26.1 - 36.1	26.1 - 36.1
Corrected Water Table ¹ Elevation (ft)	6,919.36	6,919.06	6,919.07	6,918.57	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN
Ground water Elevation (ft)	6,918.56	6,918.84	6,918.85	6,918.36	6,903.94	6,904.74	6,904.58	6,904.63	6,905.01	6,905.51	6,905.16	6,905.73	80.906,9	6,906.22	90.906,9	6,906.31	88.906,9	6,907.34	6,907.82	6,908.19	6,908.53	05'806'9	6,908.43
Depth to Water (ft)	27.50	27.22	27.21	27.70	24.59	23.79	23.95	23.90	23.52	23.02	23.37	22.80	22.45	22.31	22.47	22.22	21.65	21.19	20.71	20.34	20.00	20.03	20.10
SPH Column Thickness (ft)	1.00	0.28	0.27	0.26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN
Depth to SPH (ft)	26.50	26.94	26.94	27.44	ΠN	ΠN	ND	ND	ND	ND	ΠN	ΠN	ΠN	ΠN	ND	ΠN	ΠN	ΩN	ΠN	ND	ND	ΩN	ND
Total Well Depth (ft)	43.04	43.04	43.35	43.45	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	40.00	40.00	39.99	40.00
Well Casing Bottom Elevation (ft)	6,903.02	6,903.02	6,903.02	6,903.02	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73	6,888.73
Stick-up length (ft)	3.20	3.20	3.20	3.20	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
2011 Survey ¹ Ground Elevation Inside Steel Sleeve (ft)	6,941.25	6,941.25	6,941.25	6,941.25	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02	6,925.02
Well Casing Rim Elevation (ft)	6,946.06	6,946.06	6,946.06	6,946.06	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53	6,928.53
Ground Level Elevation (ft)	6,942.86	6,942.86	6,942.86	6,942.86	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40	6,926.40
Casing Diameter (Inch)	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Inspection or Sample Date	12/12/17	02/13/18	04/25/18	08/16/18	03/11/14	06/09/14	09/18/14	11/13/14	03/23/15	06/09/15	08/23/15	10/59/15	03/04/16	06/08/16	09/13/16	11/16/16	03/16/17	06/20/17	21/61/60	12/05/17	02/19/18	04/25/18	08/16/18
Well ID Number					RW-2																		
Date of Installation					03/29/95																		

DEFINITIONS:DTB - Depth to Bottom DTW - Depth to Water

SPH = Separate Phase Hydrocarbons

ND = Not Detected

NA = Not Applicable

Negative number in Stick up Length column indicates well is flushmount and located at or below ground level. Depth to Water Column - if 0.00 is indicated - means water is at top of casing (full) under artesian flow conditions.

NOTES:

1. Corrected Water Table Elevation applies only if SPH thickness column measurement exists. (0.8 X SPH thickness + Groundwater Elevation)

 i_{ζ}

ZE AND TYPE OF BORING: 4'-1/4" HSA

FILE #:

95-018

LOGGED BY: WHK

					- -
PROJECT:	Tank 569			ELEVATION:	6943.7
LOCATION:	See Boring	Pla	n	LOG OF TEST BORINGS TOTAL DEPTH:	48.5
				LOGGED BY:	WHK
			s	DATE:	3-28-95
	ĺ	s	A	STATIC WATER:	28.0
	P	ic	м	BORING ID:	BG4
	L	A	P		1
	- 0	:	L	MATERIAL CHARACTERISTICS	PID
DEPTH	T	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(ppm)
0.0-0.3	******		-	Sand, fine, dry, brown, loose	1 APPARA
0.3-0.4			-	Asphalt Cement Concrete	11.0
0.4-5.0	///***///	:		Clay, sandy, wet, brown, firm, (fill), odor below 3.9', water saturated @ 4.8'	>1438
014-310	///***///	:	:	bottom of fill is at 4.8'	1
	///***///	!	:	bottom of fiff is at 4.6.	! !
	•	,	C	 	
	///***///	:	C		!
	///***///	•	C		ļ
	///***///	•	c		!
	///***///		l c		
5.0-11.8	•		•	Clay, silty, blocky, wet, brown, firm, scattered carbonate filaments, some	0.0
	///+///	•	C	nodules, native, no odor, redder >10'	
	///+///		c		
	///+///		C		
	///+///	ĺ	C		
	///+///		c		
	///+///	1	C		
	1///+///		C		
	///+///	İ	c		ĺ
	///+///	ĺ	c		İ
	1///+///	İ	c		İ
	///+///	İ	c		İ
	///+///	11	c		į
	1///+///	i	c		<u> </u>
11.8-13.0	///***///	12	С	Clay, sandy, very fine, wet, red brown to brown, soft	0.0
	1//***///	i	С		İ
13.0-14.1	////+++//	13	C	Clay, stiff, fissured, wet, brown, some carbonate nodules	0.0
	////+++//		c		i
14.1-14.6	******		С	Sand, fine, clean, damp, white, loose	0.0
14.6-15.0	///**0*//			Clay, sandy, slightly gravelly, wet, brown, very stiff to hard	0.0
15.0-16.9	///**///	:	:	Clay, very fine sandy, laminar bedded, wet, brown, soft	0.0
	///**////	!	c		
	///**////		C	 	i
	1//**///	•	l c	 	! !
6.9-18.1		-		Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm	0.0
	\///*///// \///*/////		C		i 0.0
		:	C]]
8.1-19.8	///*////	: -			
8.1-19.8	****//***	!	!	Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft	0.0
0 0 21 2	1000+++000	-	:	interbedded with finer soil	
9.8-21.3	000***000	:	:	Gravel, sandy, moist, light grey to white, dense, subrounded	0.0
	000***000	!	C		[
	iooc				ŀ
	000+++000	:	C	i	i
11 2 22 2	000+++000	21	С		<u> </u>
	000***000	21	c C	Clay, sandy, wet, brown, soft	
21.3-21.8	000***000	21 22	c c	Gravel, slightly sandy, some clay as binder, moist, grey to brown, dense	
	000***000	21	c C		20 @ 22.

FILE #:

95-018

PROJECT: Tank 569 6943.7 ELEVATION: LOCATION: See Boring Plan LOG OF TEST BORINGS TOTAL DEPTH: 48.5 LOGGED BY: WHK

				LOGGED BY:	WHK
	!	ļ	S	DATE:	3-28-95
	!	s	A	STATIC WATER:	28.0
	P	С	М	BORING ID:	BG4
	- L	A	P	PAGE:	2
	. •	L	L	MATERIAL CHARACTERISTICS	PID
DEPTH	T	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(ppm)
	000++/000		C	continued from page 1	
	000++/000	24	c		I
	000**/000		C		160 @ 24.
	000++/000	25	c		
25.5-29.4			c	Sand, fine, clean of silt and clay, moist, brown, loose	45.0
	*******	26	c		
		ĺ	C		}
	******	ĺ	c		İ
		i	c		İ
		i	ĺс		i
		i	c		i
	******	29	c	; 	i
29.4-30.5			!	Sand as above but very weakly water bearing @ 29.4', grey to black, strong odor	1100
20.4 30.0	*****	30	c	Sand as above but your wearly saver bearing & 2552, 920, to brack, butting out	
30.5-31.2	///***///		:	Clay, sandy, wet, brown, soft, odor	770
30.331.1	///***///	!	l c	CLEY, Balley, Wee, Stown, Bott, Odol	,,,
31.2-34.0	1///+++///			Clay, blocky, wet, very stiff, numerous carbonate filaments, brown, slightly	770
31.2-34.0	!	!	:	 	1 //0
	1///+++///		:	fissured, odor	1
	///+++///	!	C		i
	///+++///	!	C		!
	///+++///	:	С		
34.0-35.0	*****	!	:	Sand, silty, very fine, does not appear water bearing, but sample covered with	700
	*****	•	:	water from above, very dark brown to black, soft, strong odor	
35.0-37.3	***///***	!	!	Sand, very fine, clayey, saturated, water bearing zones2" thick, gradational to	1000
	///	!	:	clay below, brown, strong odor	1
	///	!	С		!
	///		C		!
	///	37	c		ļ
37.3-39.2	///+++///		C	Clay, wet, brown, stiff, carbonate filaments, soft to firm, not blocky or fissured	320
	///+++///		c		
	///+++///	1	C		1
	1//+++///	39	i c		1
39.2-40.9	000++/000		,	Gravel, sandy, slightly clayey, water bearing, brown, dense, rounded to subrounded	800
	000++/000	i	•	odor	j
	000++/000	:	С		<u> </u>
40.9-45.0	*	:	С	CHINLE FORMATION	
		i	:	Shale, slightly sandy, fissle, fissured, slightly blocky, moist, red brown, hard	2.0
		i	c	some grey green banding, no odor	Ì
	*	i	c		
		1	l c] 	
	1	l l	!		1
	1		C	 	1
	*	¦			1
			C		i
45.0.0.=	+		c		<u> </u>
45.0-48.5		45	<u>с</u> с		
45.0-48.5		45	c c c	Shale, sandy, fissle, moist to damp, hard, water from above runs into fissle partings (dry on interior of sample) difficult to obtain uncontaminated sample dark red brown, suspect samples taken may be contaminated by water from above	

ZE AND TYPE OF BORING: 4'-1/4" HSA

FILE #:

95-018

PROJECT: Tank 569 ELEVATION: 6943.7 LOCATION: See Boring Plan LOG OF TEST BORINGS TOTAL DEPTH: 48.5 LOGGED BY: WHK | s | DATE: 3-28-95 STATIC WATER: 28'-7" S A CM BORING ID: BG4 PAGE: A P PID LLL MATERIAL CHARACTERISTICS DEPTH (MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.) (mgg) ----* | C | continued from page 2 ----++---|<u>47</u> | C | 23 @ 47.0 ----++---| c | ----++---|48 | C | 12 @ 48.5 stop drilling 11:05a | water € 18.8' € 11:30a -- 8" of hydrocarbon on water € 2:00p water level € 28'-7" completed 4" well, acreened from 25' to 40' (see attached completion diagram)

LOGGED BY: WHK

INSTALLATION DATE: 03 2895 INSTALLATION DIAGRAM MONITORING WELL NO. B6-4 TOP OF PROTECTIVE WELL COVER: FΤ INNER WELL CUP MEKSUREMENT NOTOH TOP OF PVC CONCRETE PAD-(HT43a) BOTTOM OF COVENT: 2 FT. PROTECTIVE WELL COVER: FT BOTTON OF CENENT: 2.0 FT CROUT: 12 FT. TOP OF BENTONITE SENT: 14.0 FT BENTONITE SEN: 2.5 FT. TOP OF SWED PLACK: 16.5 ध 25.0 TOP OF SCREEN: FT SCREENS SAND PACK: 15 FT. 26.5 FT. FT BOTTON OF SCREEN: 40.0 40.3 PIEZONETER TIP: FΤ Bentonite Plug BOTTON OF BORING: 43.0 FT 🕏 MARCHALE DULLTER 8- 5/8 HOHES WATERWLS USED: Bottom Cap Used? YES SUND TYPE AND QUANTITY: 20-40

BENTONITE PELLETS (5-CULON BUCKETS): 1 Screen Lengths: 15'
BAGS OF CROUT: 1
AMOUNT OF CELLENT: 8-94# Bags+75#Gel
AMOUNT OF WATER USED: 8 gal.

OTHER:

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Directory

Well Size: 44" Director OTHER:

Well Size: 4 " Dia.

J-Plug Used? YES Flush Mount Vault Avove Ground Vault VES Bollards, No. & Size:

TASK: Tank 569

CECLOCIST/ENGNEER: WHK

FILE #: ELEVATION: 95-018

				PRECISION ENGINEERING, INC. FILE #:	95-018
PROJECT:				ELEVATION:	6927.3
LOCATION:	See Boring	Plar	n	LOG OF TEST BORINGS TOTAL DEPTH:	38.0
	Tank 576			LOGGED BY:	WHK
	1		s	DATE:	3-29-95
	1	s	A	STATIC WATER:	24'-3"
	P	С	м	BORING ID:	B2
	_ r	A	P	PAGE:	1
	0	L	L	MATERIAL CHARACTERISTICS	PID
DEPTH	T	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(mqq)
0.0-5.0	1//-+////	i	C	start at 10:00a	I
	1//-+////	:	j c	Clay, slightly silty, little sand, wet, brown, soft to firm, no odor	0.0
	1//-+////	į,	C		j
	1//-+////	i	c		1
	1//-+////		c	<u> </u>	İ
	///-+////	•	c		i
	1//-+////	: .	C		i
	///-*///	:	c		i
	1//-+///		c	 	
	1//-+///	•	1	1 	
	1//-+///		c	{ 	
	1//-+///		:	 	
	1//-+///		C	 	1
	!	•	C		1
	1//-+///	•	C		
	///-+////	•	C		<u> </u>
	1//-+///		-		
8.4-10.6	///***///	:	:	Clay, fine sandy, gradational fine above and to below, wet, brown, firm, no odor	0.0
	1///***///	: :	C		ļ
	///***///	:	C		-
	///***///				
0.6-12.0	******	: :	:	Sand, silty, fine, moist, light red brown, loose, no odor	0.0
	******	:	С		
	*****		c		
2.0-12.5	+++000+++	12	С	Sand, very gravelly, to 2°, moist, light red brown, dense, slightly rounded rock	0.0
2.5-13.1	***000***	12	c c	Sand, silty, moist, light red brown, loose, no odor	0.0
	000 ****** ///**//	12 13	c c	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	
2.5-13.1	***000*** ****** ///**//	12	c c c	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1	***000*** ****** //**// //**//	12 13	C C C	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1 3.1-15.0	***000*** ****** ///**// ///**//	13	c c c c	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1	***000*** ***** ///**// ///**// ***///***	12 13 15	C C C C	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1 3.1-15.0	**************************************	13	C C C C C C C C C C	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1 3.1-15.0	**************************************	12 13 15	C C C C C C	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1 3.1-15.0 5.0-16.8	**************************************	13	C C C C C C	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8	**************************************	13	C C C C C C	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
2.5-13.1 3.1-15.0 5.0-16.8	**************************************	12 13 15 17	c c c c c c c	Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8	**************************************	12 13 15 17		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor	0.0
2.5-13.1 3.1-15.0	**************************************	13		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	12 13 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8	**************************************	12 13 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	12 13 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor carbonate filaments common Clay, silty, large gravel present (2*), wet, dark brown, hard, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	12 13 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor carbonate filaments common Clay, silty, large gravel present (2*), wet, dark brown, hard, no odor	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	12 13 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor carbonate filaments common Clay, silty, large gravel present (2*), wet, dark brown, hard, no odor numerous carbonate filaments	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	12 13 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor carbonate filaments common Clay, silty, large gravel present (2*), wet, dark brown, hard, no odor numerous carbonate filaments	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	15 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor carbonate filaments common Clay, silty, large gravel present (2*), wet, dark brown, hard, no odor numerous carbonate filaments	0.0
2.5-13.1 3.1-15.0 5.0-16.8 6.8-19.1	**************************************	15 15 17 19		Sand, silty, moist, light red brown, loose, no odor Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments Sand, clayey, fine, moist, red brown, moderately dense, no odor Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor carbonate filaments common Clay, silty, large gravel present (2*), wet, dark brown, hard, no odor numerous carbonate filaments	0.0

IZE AND TYPE OF BORING: 4'-1/4" HSA

FILE #:

95-018

LOGGED BY: WHK

PROJECT: Tank 569

LOCATION: See Boring Plan

LOG OF TEST BORINGS

LOGGED BY: WHK

S A BORING ID: B2	PID (ppm) 1000 1060 610
P C M BORING ID: B2	PID (ppm) 1000
L A P	(ppm) 1000 1060
DEPTH T E E (MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(ppm) 1000 1060
DEPTH T E E E (MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.) 23.6-24.2 ***00****	1000
23.6-24.2	1000
24.2-25.5	
25.5-27.1	610
// C	
/// C	
27.1-28.5	
////// C saturated but not water bearing	
/////// 28	
28.5-30.9	
//***///	60
//***/// c //***/// c //***/// c	•••
//***/// c	
///***/// c	
	1020
· · · · · · · · · · · · · · · · · · ·	1030
000*+0000 C	
000++0000 C	
000**0000 C	
32.9-35.0	
C Shale, weathered, wet to moist, some green mottling, red brown overall, stiff	20
C weak odor	
35.0-38.0 + 35 C Shale, as above, slightly more sand, blocky, dark red brown, wet to moist	57
+ C suspect contamination by water flowing from gravel abovegravel produces more	
* C water at this location than previous drilling	
* C	
* C	
* C	
	
TD stop drilling 11:25a	
completed 4" well - see attached well completion diagram	
24'-3" to water	
2" product on water	
i i i i	
i i i i	

ZE AND TYPE OF BORING: 4'-1/4" HSA

INSTALLATION DATE: 032995 INSTALLATION DIAGRAM HEIGHT TOP OF PROTECTIVE WELL COVER: FT INNER WELL CUP WELSUREMENT NOTOH-TOP OF PVC (DEPTH) (FT) BOTTOM OF PROTECTIVE WELL COVER: CEVENT: 2 FT. FT FT BOTTON OF CENENT: 2 CROUT: 14.9 FT. TOP OF BENTONITE SELL: 16.9 FT SEN: 4.7 FT. TOP OF SAND PACK: 21.6 FT TOP OF SCREEN: 26.1 FΤ SCREEN 10 FT. BOTTOM OF SCREEN: 36,/ FT 36.4 FT PIEZOMETER TIP: Bentonite Plug. BOTTONI OF BORING: 38.0 FΤ BOREHOLE DUNETURS " FIX NOISE

MATERIALS USED: SAND TYPE AND QUANTITY: 20-40

MONITORING WELL NO.

CONCRETE PAD-

BENTONITE

SAND PACK: 16,4 FT.

BENTONITE PELLETS (5-CULON BUCKETS): 2 Screen Lengths: 10'
BACS OF CROUT: 8-94# 8a 95+75# Riser Used: 30'
AMOUNT OF CENENT: 8-94# 8a 95+75#
COLTOP Cap Used?

OTHER:

Well Size: 4" 0:= OTHER:

Bottom Cap Used? VES Well Size: 4 " Pia.

J-Plug Used? <u>YE</u>5 Flush Mount Vault_ Avove Ground Vault VE5 Bollards, No.& Size:

TASK: Tank 569

GEOLOGIST/ENGNEER: WHK

Investigation Derived Waste (IDW) Management Plan

All IDW will be properly characterized and disposed of in accordance with all federal, State, and local rules and regulations for storage, labeling, handling, transport, and disposal of waste. The IDW may be characterized for disposal based on the known or suspected contaminants potentially present in the waste.

A dedicated decontamination area will be setup prior to any sample collection activities. The decontamination pad will be constructed so as to capture and contain all decontamination fluids (e.g., wash water and rinse water) and foreign materials washed off the sampling equipment. The fluids will be pumped directly into suitable storage containers (e.g., labeled 55-gallon drums), which will be located at satellite accumulation areas until the fluids are disposed in the refinery wastewater treatment system upstream of the API separator. The solids captured in the decontamination pad will be shoveled into 55-gallon drums and stored at the designated satellite accumulation area pending proper waste characterization for off-site disposal.

Drill cuttings generated during installation of soil borings will be placed directly into 55-gallon drums and staged in the satellite accumulation area pending results of the waste characterization sampling. The portion of soil cores, which are not retained for analytical testing, will be placed into the same 55-gallon drums used to store the associated drill cuttings.

The solids (e.g., drill cuttings and used soil cores) will be characterized by testing to determine if there are any hazardous characteristics in accordance with 40 Code of Federal Regulations (CFR) Part 261. This includes tests for ignitability, corrosivity, reactivity, and toxicity. If the materials are not characteristically hazardous, then further testing will be performed pursuant to the requirements of the facility to which the materials will be transported. Depending upon the results of analyses for individual investigation soil samples, additional analyses may include VOCs, TPH and polynuclear aromatic hydrocarbons (PAHs).

	1609G64-007 9/27/2016		J 2.1 J		< 0.0624	> > >			v 4.7 v	v 300 v		V \	× 13 × ×	, 22 v	u < 0.0064 u		V	u 8 0.00 > u	< 0.0218	< 0.0053	u < 0.01 u	u < 0.0071 u		u < 0.0204 u	n < 0.0058		u < 0.0056 u	< 0.0055	u < 0.0076 u	+	< 0.0038		u < 0.0049 u	+ +	u < 0.0059 u	٧	u < 0.0861 u	v 0.23 v		< 0.0081	u < 0.0245 u	< 0.0044	H	< 0.0133	n 0.0059	< 0.0039		u < 0.0058 u	+ +	
TK 570-1 (32-34')	1609G64-006 9/27/2016	-	1.6		31	8.9	T			200 \		< 1.8115 L	13	10 \	-	< 0.0762		< 0.14/1 L	-	660.0			35	< 0.3824	< 0.109	< 0.3255	0.1047	0.1024		0.49	0.0715	0.7134	. 0.6793	1.1	< 0.1104 L	0.3638	153	< 0.1006	+	0.1521	_	0.082				-		_	< 0.3863 U	
(17-01) T-075	1609G64-005 9/27/2016	< 0.9961	1.7		ω	> 6.4	+	+	3.4 v	390 v	4.6 v	< 1.8011 u	14 ×	11 v	< 0.0445 u	0.0284	0.0753	< 0.0548 u < 0.0251 u	0.1522	n 6980.0 >	< 0.0695 u			< 0.1423 u	< 0.0405 u	0.1211	0.0395.8	< 0.0381 u	< 0.0527 u	_	+	_	< 0.0343 u < 0.2528 u	+	< 0.0411 u		6011	< 0.0374 u	0.0271	0.0566	< 0.1/11 u < 0.1534 u	0.0305		927	< 0.0351 u < 0.0414 u	0.027	< 0.0428 u	< 0.042 u < 0.0402 u	c 0.1437 u6.6 v	-
TK 569-3 (38-39')	1609G64-010 9/28/2016	< 1.0114 11			37	و د د	v 4.3 v > 0.284 u	7500	< 0.1747 u	130 v < 0.00006 u		< 1.8287 u	25 v 25	ш	< 0.003 u	, o		< 0.0037 u < 0.0017 u	0.0104	-	0.0047	334	0.23	o 00007			0.0027	0.0026	v 0.0036 u	0.0071	0.0018	0.0181	< 0.0023 u < 0.0173 u	0.0068	< 0.0028 u	< 0.0092 u		0.000.0026u	+	0.0039	< 0.0117 u < 0.0105 u	0.0021	0.0026	.0063	< 0.0024 u < 0.0028 u	0.0018	0029	< 0.0029 u < 0.0027 u	v 0.086 u v 0.086	_
	1609G64-009 9/28/2016	< 1,0059 11			34	> 7.4	3.20.269u	+	2.3 v	300 v	4.7	< 1.8187 u	13	7 6.6	< 0.5838 u	0.3722	0.9885	c 0.7189 u		0.4838	0.9126 u1.055 u	c 0.6524 u	140 v	1.8683 u	0.5323 u		5116 u 51 v	< 0.5002 u	c 0.6921 u		0.3493	(C)	< 0.45 u < 3.319 u	\vdash	< 0.5395 u		< 7.8917 u	44 v0.4917 u	0.3554		< 2.24/ u < 2.0138 u	0.4005	c 0.4966 u	2174	0.4602 u0.5429 u	0.3547		0.5511 u	1.8873 u 88 v	
1K 269-3 (16-18')	39G64-008 728/2016	Ē	1.3 J			> > >		+	2.8	230 v	5.7 v	Ľ	3 >	9.3	0.0031 u	5 D			0.0107 u	0.0026 u		0.0035	₩	< 0.01 u <	-	0.0085 u	0.0027 u 0.0026 J	0.0027 u	0.0037 u	0.0073 u	0.0019 u	0.0187 u ·	0.0024 u 0.0178 u	J.0075 J	0.0029 u	0.0095 u	0.0423 u	0.0026 u	0.0019 u	0.004 u	0.012 u	0.0021 u	0.0027	0.0065	0.0029 0.0029	0.0019 u	0.003 u	0.0028 u <	0.0027	4
	1610238-003 160 10/4/2016 9	0.9847	+		\vdash) v v v	+		1.1 v	450 v 0.0000	5 >	4 6	3.5 v 3.5	۸ <u>۷</u>	> n 6100	0019	0019	<pre>< 0.0019 u < 0.0019 u <</pre>	n ec	<0.0019 u <	1 c n	n 900	0055 v	<0.0002 u	> n E000:	.0019 u <	<0.0019 u < 0.0029 v 0	ם	> 0019 u >		ם	¬ :	<0.0005 u <0.0005	ם	<0.0003 u < 0.0004 J	ם ,	o.0044 J <	> ¬	<0.0019 u <	n O	v v	v 5 n	<0.0002 u <	у V л =	/ V 5 5	y 5 D	D =	y v n n	< 0.0011< 0.0041< < < < < < < < < < < < < < < < < <	
	1610238-002 16 10/4/2016 10	=	$\bot \bot$	> >	> n 2E9	> >	V	>	>	370 v 370 0.000	>	V \	/ 5 >	>	1 0	0.0077 u <0.	4 n	0.0148 u <0.	5 5	1 u	J =	5 J	>	5	3 3	-	J >	 	5 =	5 ¬	ח	э :	0.0685 u <0	<u> </u>	11 n	n 2	л ;	> 1	0.0073 u <0	л О ,	э э + (0	5 D	03 n	D =	0.0112 u <0	5 0	5 :	5 5	(0.039 u <0.4.8 v 0.0.9	
(38-001 2016	=	; ¬ >	> >	> n 2	> >	> <u>¬</u>	>	>	> -	h >	> \ D =	/ 5 >	>	v n	V	v n	20 E	5 5		v v ===================================	22 u <	>	у \ Э :	ם ס	v n	0.0049 u < 0. 0.69 v 2	v ה	v v э =	7 >	י ס	y \ 	v v 5 5	>	> n - r	> n 69	v э :	>	٧	ע י	v v 5 5	v 5 D	V	v v	/ V 5 5	y >	> \ > =	v v 5 5	c.0018d. v. 0.41v. 4v. 4	
	38-007 161023 /2016 10/4/	=		> ¬	n	v 5.4 6.4	> ⊐	>	>	0 v 210	5 >	> n E	' > S	<u> </u>	7	y 5 D	> n	38 u ×	o n 20	V	y ====================================	.0035 u < 0.006	>	у \ Э :	/ V	n	∨ ⊐ >	ov D	> v = =	/ 3	ם	5 :	.77 u < 0.0316	$\overline{}$	v п п	> 	22 u <	> ¬	v 	ע ס	v v 5 5	v 5 D	> n 2	05 u =	n n 62	19 n	n =	n n	2 n >	
	8-006 161023 2016 10/4/2	=	- >		v n	> >		>	>	v 1500	>	_	/ 5 >	>	9 u < 0.0031	> n 2	0 > n E	1 u < 0	0.0 > n	0 × n	0 C V V	0 v	>	5 :	5 5	ח	ס >	n 2	n =	ס ה	ם	э :	0.0024 0.0024 0.00277	_	33 u < 0.0029	> 	v Э;	> ¬	ם	ם י	1/ u < 0.012 11 u < 0.0108	y 5 D	v л	v v	/ V 3 3	y n	→ ¬	0 0	v 0.086	-
TK569-1(36-38')	38-005 1610238-006 '2016 10/4/2016	=			> 	3.6	Ļ		v 1.2	v 710	v 3.2		, c.0,	۸ 7.6	600.0 > n) > 5	v n	. u < 0.011	y ====================================		v v = =	5 5	>	у \ э :	u < 0.0082	v n	∨ ⊐ >	ם	>	/ ¬	ם	5 :	u < 0.0069	-	v 0.035	> 	v э;	>	u < 0.0055	v T	v v 5 5	v 5 D		у v э =	/ V 5 5	y 5 D	y v 5 =	v v 5 5	<u> </u>	
	16102;	1 < 0.9825			٧	> > 			۷ 3.2	v 190	2 >	V \	, c.co.	۷ 8.3	u < 0.0025	<u> </u>	<u> </u>	u < 0.0031 u < 0.0014	<u> </u>	<u> </u>	u < 0.0039	u < 0.0028		u < 0.008	u < 0.0023 u < 0.0023		u < 0.0022 u 0.6		u < 0.003	_	u < 0.0015	<u> </u>	u < 0.0019 u < 0.0143	u 0.041	u < 0.0023 u 0.12	\ <u>\</u>	J < 0.034	v 0.23 u < 0.0021	\ <u>\</u>	<u> </u>	0.0097 u > 0.0087	<u> </u>	×	<u> </u>	u < 0.0023 u < 0.0023	· V	V \	u < 0.0024 u < 0.0023	u < 0.0081 J 0.73	-
	1610238-004 10/4/2016	0.9919	1.7		×	2.9	u 0.24	-	v 2.7	v 190		V V	8.6	8.6	u <0.0017	u <0.0017		u <0.0017	\ <u>\</u>	<u> </u>	u <0.0004	u <0.0005	J <0.0003	u <0.0002	u <0.0002	-	u <0.0017 u <0.0003	\vdash	u <0.0017	+	+	u 0.002	u <0.0003 u <0.0004	u <0.0004	u <0.0003	+	0.0046	v 0.01/2 u <0.0002	u <0.0017	-	u <0.0003		u <0.0002		u <0.0017 u <0.0004		\vdash	u <0.001/ u <0.0017	u <0.001 J 0.0004	
TK 568-2 (36-37')	1609G64-003 9/27/2016		2.1	\perp	<u> </u>	8.3		+		330	5.7	< 1.8162	6.4		<0.0017	+	0	<0.0017	0	<0.00	+	<0.0005	0.0006	<0.0002	<0.0002	<0.0017	<0.0017	H	-	+	+	-	<0.0003 <0.0004	<0.0004	<0.0003	+	_	<0.0002	<0.0017	-	<0.0003				<0.001/ <0.0004	+			<0.001	-
TK 568-2 (28-30')	1609G64-002 9/27/2016	1 9266 0 >			56	5.6		9100	1.8	200 v	4.7	17	10 7	9.3	< 0.0622 u	0.0397	0.1054	< 0.0766 u < 0.0351 u	0.2129	< 0.0516 u	2 2 2	o 0.0695 u	18 v	< 0.1991 u	0.04620.0567u	< 0.1695 u	< 0.0545 u 5.6 v	0.0533	< 0.0738 u	0.86	+		< 0.048 u < 0.3537 u		< 0.0575 u	< 0.1894 u	< 0.841 u	>.2 v > 0.0524 u	< 0.0379 u	0.0792	0.2395 u0.2146 u	0.0427	29	1297	0.04900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000<th>0.0378</th><th></th><th>\circ</th><th>0.2011</th><th></th>	0.0378		\circ	0.2011	
TK 568-2 (22-24')	1609G64-001 9/27/2016	10.0348	< 8.8622 u	53	< 0.6324 u	2.5	< 0.254 u	4900	5.9	2300 v	3.1 J	34	28 4	6.3	<0.0017 u	<0.0017 u		<0.001/ u <0.0017 u	-	<0.0017 u		<0.0005 u	0.0003	<0.0002 u	<0.0002 u	-	<0.0017 u <0.0003 u	\vdash	<0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.0017 u <0.001	+	++	_	<0.0003 u <0.0004 u	+	40.0003 u constant		0.0085 v	v.00034 v <0.0002 u	<0.0017 u	_	v > 0.0003 u v > 0.0006 u		<0.0002 u	_	<0.001/ <0.0004 u	+	\vdash		<0.001<0.0002u	-
	1609E26-010 9/23/2016	> 1 6100	\perp	> >	⊣	× × ×			0.54 v	120 v 00089	8.6 v	1.8115 u <	ál	27 v	0.003 u	5 7	.0051 u	0.0037 u 0.0017 u	ם ס	ח	5 =	5 5	_	D :	0.0027 u	ח	ם ח	ח	D =	ם ס	ם	э :	< 0.0023 u < 0.017 u	ם	0.0028 u	ם	0404	> 5	+	э -	7 0	5 7	.0025 u	.0062 u	0.0024 u	0018 u	0029 u	0028 u 0027 u	0.0097 u 0.0026	-
	09E26-009 16 /23/2016 9	> 1 8086.0 >	· ¬ >	> >	> 	> >	> =	>	>	290 v	>	33 u = 7	14 ×	>	7	٧	v n	v v ===================================	y =	<u> </u>	>	5 3	>	∨ \ ⊃ :	/ V 3 3	v n	0.0252 u < 0 1.9 v 0	ע ס	>	/ V 5 ¬	ע ס	э :	ם ס	-	v v	V	v э:	> =	V п	۷ ع	0.0993 u 8011.0	v 5 = ==================================	0.0245 u <	v v	/ V 5 5	y 5 D	v v	v v 5 5	< 0.0931 u < 0.0931 u < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0.0931 v < 0	
	1609E26-008 16C 9/23/2016 9/	Ξ	¬ >	> >	D	> >	> ⊐	5 >	>	> ¬	, n >	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14 ×	>	n	V	v n	n =	5 5	Э	5 =	5 7	>	У \ Э =	/ V 5 5	v n	∨ ⊐ >	v ה	y v ====================================	/ p ¬	ס	э :	5 5		y v n =	> 	v э;	> =	v n	ע ס	v v 5 5	٧	У Э		3 3	5 D	5 =	5 5	> ס	
Source	1609	(5) (6)		(5) 0.82	V	(5) 8.9				(5) 220 (5) 0.0045		V V	(5) 1.0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	(5) < 0.14 <i>f</i> (7) (6) (7) (7)		< 0.0994				(4) < 0.3	(5) < 0.1094	+	(5) < 0.1 (6) 1.3	- < 0.1028	(6) < 0.1			(5) < 0.7	(e) < 0.6821 (b) < 0.6821	$\dagger \dagger$	(6) < 0.1109 - < 0.1125	(5) < 0.3653	(5) < 1.6				V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v	V V					(5) < 0.3878 (4) 19	<u> </u>
Non- Residential Soil Screening Level		1.42E+02	3.59E+01			1.34E+02 3 67E+01				4.64E+02 2.05E+01			6.14E+02			1.35E+04						7.84E+01		1.17E+00			2.52E+01 1.50E+03		2.30E+04 6.73E+03			_	7.08E+03 1.30E+03	\coprod	2.30E+04		+05		2.99E+01		1.77E+01 1.61E+03		4.08E+02		_	7.08E+02			1.59E+02 3.65E+02	-
Source			(1)			(1)				(1)			(1)					(T) (T)			(7)	<u> </u>		(1)			(1)		(2)				(Z)	$\dagger \dagger$	(5)	(1)											(1)		(1)	-
Residential Soil Screening Level		3.13E+01	7.07E+00	1.56E+02	7.05E+01	9.66E+01	2.34E+01 1.11E+01	5.48E+04		1.05E+04 2.36E+01	1.56E+03	3.91E+02	3.94E+02	2.35E+04	2.78E+01	1.43E+04	7.93E+00	2.59E+00 7.79E+01	4.36E+02		6.30E+01 5.10F-02	8.22E+01	3.00E+02	8.51E-02	2.14E+03	8.25E+00	1.76E+01 2.70E+02		1.60E+03	1.72E+02		3.73E+04	1.56E+03 2.00E+02	2.32E+02	1.60E+03	5.81E+03	6.63E+04	2.90E+02	6.14E+00	6.74E+02	1.76E+01 1.54E+03	1.06E+01	3.76E+02	1.88E+04	5.85E+00 4.08E+01	1.56E+02	2.91E+01	1.38E+01 5.74E+01	1.80E+02 7.45E+01	
		Metals (mg/kg) Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cyanide	Iron	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	1.1.1.2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-I richloroethane 1.1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-I richlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane (EDC)	1,2-Dichloropropane 1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1-Methylnaphthalene	2,2-Dichloropropane	2-Butanone	z-Uniorotoluene 2-Hexanone	2-Methylnaphthalene	4-Chlorotoluene	4-Methyl-2-pentanone	Acetone	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	cis-1,2-DCE	cis-1,3-Dichloropropene	Dibromocnlorometriane Dibromomethane	Dichlorodifluoromethane Ethylbenzene	,

	Residential Soil	Non- Residential	enrce	[(12-14,)	(30-32°)	(,67-87)]	(22-24)	5 (28-30,)	(,18-98) 7	T(18-20 ₁)	T(24-26')	r(3e-38 _i)	T(4O-45 ₁)	(18-18)	5(29-31,)	(.86-38')	(,81-91) 8	3 (24-26')	('65-85) 8	('\21-01)	[(35-34 ₁)	(,97-44) 1
	-	Screening Level		L-893-XT								TK269-1		Z-699XI	Z-699XI	Z-699XI	TK 269-3	TK 269-3		TK 670-1		TK 670-1
				1609E26-008 9/23/2016	8 1609E26-0 9/23/201	1609E26-	-010 1609G6 016 9/27/2	54-001 1609G(2016 9/27/	64-002 1609G6 /2016 9/27/2	34-003 1610238 2016 10/4/20	3-004 1610238-C	005 1610238-00 16 10/4/2016	06 1610238-00 ⁻ 6 10/4/2016	37 1610238-003 3 10/4/2016	1 1610238-002 10/4/2016	1610238-003	1609G64-008 9/28/2016	1609G64-009 9/28/2016	1609G64-010 9/28/2016	1609G64-005 9/27/2016	1609G64-006 9/27/2016	1609G64-007 9/27/2016
Hexachlorobutadiene	6.16E+01 (1)	5.17E+01		< 0.1533	u < 0.0368	У 	э	u < 0.07	95 u	n <0.000	n < 0.	u <0.0115	u < 0.004	u < 0.0071	154		.004	.7459	0.0039	.0568	.1527	< 0.0081 u
opropylbenzene		2.71E+03		0.94	_	∨ ¬ ;	+	n -	~ - - - -	л : С	n :	× 0.08	0.0031	0.071	0.21	0.001	0.0028	23		0.64	+	0.32
letiiji tert-butyi etriei (MTBE) lethylene chloride	4.09E+02 (1)	4.78E+U3 1.20E+03	(5)	< 0.3614	u < 0.0867	> 3	ם ר	> n 2	2 4 V	> 7) () / V	u v 0.0 ×			u < 0.0363	u <0.0019 u	O	< 1.7587 u	< 0.0091 u	< 0.134 u	u c282.0 > 0.36 u	< 0.0209 u < 0.0192 u
aphthalene		5.02E+03		3		>	n	n 2	>	n 2	O n	J 0.32	< 0.0051	0.58	0.75	<0.0019	0.0051			2.8		0.079
Butylbenzene	3.90E+03 (2)	5.80E+04		1.3	J 0.37	_		4 (7000'0> ſ ,	-	n	^	0.013	J 0.23		0.0005	< 0.0029 u	9.6 0.6	0.019	v 1.4	2.6	v 0.24 v
Propylbenzene		2.40E+04		5.2	0.83	> -	D :	э : 2	> -	л :	л :	> ;	0.037	0.34	× - ×	-	0.0025		0.048	> -		0.53
ec-Butylbenzene tvrene	7.23F+03 (2)	1.20E+05	(2)	0.49		¬ =) =	y n =	¬ =	n =) V	0.076		_	V 0.1 J	-	: c	LT V	0.01/ 0.000 >	0.42 J	T.8 V	
rt-Butylbenzene		1.20E+05		< 0.1039	-	ם ב	5 3	v 5 D	0> n 68	5 3	, o	, v	< 0.0027	< 0.0048	< 0.0104	<0.0003	0.0027				-	10
etrachloroethene (PCE)		1.19E+02		< 0.104	u < 0.0249	ם	ם	2 u < 0.05	n 68	ח	> n	v n	< 0.0027	< 0.0048	< 0.0104	u <0.0002 u	0.0027	o 0.5059 u	ם	< 0.0385 u	0.1035	< 0.0055 u
oluene		1.40E+04		92		>	n	7	>	_	ſ	>		v 0.7			111					2.3
ans-1,2-DCE		3.03E+02		< 0.3509	H	ם	ם	n	n	n	0 > n	v n	u < 0.0091	u < 0.0163	u < 0.0352	l <0.0002 u	o.	< 1.7074 u	n	< 0.13 u	< 0.3495 u	< 0.0186 u
ans-1,3-Dichloropropene	2.91E+01 (1)	1.29E+02		< 0.1835		ס	D .	У Э	Э	ם	0 v	v n		u < 0.0085			0.0048		0.0046 u	0.068	0.1827	o 7600.0 >
richloroethene (TCE)	6.72E+00 (1)	6.84E+00		< 0.1344		5 :	5 :	> \ > :	л :	5 :	0 \ v	> ·	0.0035	< 0.0062	< 0.0135	<0.0019	0.0035	< 0.6539 u	л :	< 0.0498 u	0.1338	< 0.0071 u
inyl chloride		2.83E+01	(4)	< 0.1025	u < 0.0228	5 0	0.0002 u <0.0004	/ V 5 5	5 0	5 0) v	y 3 3	< 0.0024	u < 0.0048	0.0103		< 0.0024 u	0.4988	0.0026 u	0.038	< 0.1021 u	< 0.0054 u
ylenes, Total		7.91E+02		120	+	5 >	5 5	5 ¬			ם ס	5 >	0.51	2.5	30	0.019	0.015	500	0.5 v		110	9
emi-volatiles (mg/kg)		•			-	ŀ	-					ŀ	•		-		•	•	•	•	•	•
2,4-Trichlorobenzene	8.22E+01 (1)	7.84E+01		< 1.0571		ם	v n	v ¹	<u>ס</u>	> ·	0 V	ע י	< 0.1076	< 0.1077	< 0.1051	< 0.1088	\pm	1.0818	0.1081 u	0.1087	0.1071	0.1075
.2-Dichlorobenzene	2.14E+03 (1)	2.47E+03	(c) -	< 0.7485	u < 0.0762	v v n =	0.076 n < 0.076	6 u < 0.0764	v v = =	3 u < 0.0756	0 V V	19/0.0 > n	79/0.0 > n	2	u < 0.0744 u	u //0.0 > u	0 9/0.0 > 0 0/0.0 >	0.768 u	5 =	n 69/0.0 >	n 6670.0 >	0.0761 u
4-Dichlorohenzene	1 29F+03 (1)	6.73E+03	(4)	08267.0		′ ∨ s =	3 =	' V	, v	' V) C / V	, v 3 =	< 0.0163	< 0.0842	< 0.03	, , , , , , , , , , , , , , , , , , ,	2839	3455	3 =	0.0849	0.037	0.07.00
Methylnaphthalene		8.13E+02		1.5		' V 3 3	3 3	, D D	′ ∨ 5 >	' V 5 5	0 '	' v	, 0.004	0.13	< 0.0976	< 0.1011		-			1.3	
4,5-Trichlorophenol		2.69E+04		< 0.978	9660.0 > n	י ס	> n	> n	۷ ٦	> n	0 > n	v л				٧	1994	< 1.0008 u	ס	< 0.1005 u	< 0.0991 u	< 0.0995 u
4,6-Trichlorophenol		2.69E+02		< 0.8108	— 	o ח	v Э	v п	> n 2	v л	0 v	n × 0.	< 0.0825	< 0.0826	< 0.0806	< 0.0834	3824	0.8297	0.0829 u	_	0.0822	0.0825
4-Dichlorophenol	1.85E+02 (1)	8.07E+02	(5)	< 0.9116	u < 0.0928	э :) V V) D :	٠,	5 :	0 V N		< 0.0928	< 0.0929	< 0.0906 \ 0.4066	< 0.0938	3926	_	-	< 0.0937 u	< 0.0924 u	< 0.0927 u
4-Dinitrophenol		5.38E+02		< 1.0013 < 0.6482	090TO > n	/ V 5 5	/ V 5 5	0.1083 0 < 0.0663	/ V n n	/ V 5 5	0 0 0) / v	990.0 > u	1901.0 > n	0.0644	u 5001.0 > u	O.107 8O.0658	u 080.T >	n coot.0	n T60T.0 >	0.27 J	< 0.0659 u
4-Dinitrotoluene	71E+01	8.23E+01		< 0.8727	+	v n	n	v n	1 u <	> n	0 > n	0 > n	< 0.0888	< 0.0889	< 0.0868	< 0.0898	7887	0.8931	כ		0.0885	0.0888
6-Dinitrotoluene		1.72E+01		< 1.034	u < 0.1053	v n	J	v n	n	v n	0 > n	v n	\vdash	0.1054	\vdash	u < 0.1064 u	< 0.105 u	< 1.0582 u	n	< 0.1063 u	< 0.1048 u	< 0.1052 u
Chloronaphthalene	6.26E+03 (1)	2.83E+04		< 0.7693	-	у , п	ם	D \	у , П	۷ '	n 0	у ,	< 0.0783	< 0.0784	0.0765	< 0.0792	< 0.0782 u	0.7873	0.0787 u	0.0791	0.078	< 0.0783 u
Chlorophenol	3.91E+02 (1)	1.77E+03	(2)	< 0.7704) V V	_) V	v \	۷ \	0 V V V	> \ = =	< 0.0784	V	0 0	۷۱		0.7883 u1.1867 ::	л :	< 0.0792 u	81	< 0.0784 u
Methylphenol (cresol.o-)		4.10E+04		> 0.8169	1 < 0.0832	/ V 5 =	3 =	3 u 0.14	> -	0.082) (V) =	5 =	0.0831	u < 0.0832	0.13	0 < 0.1133 u	0.083 u		n COTTO >	0.31 0.13	v 8.3 v > 0.0828 u	< 0.0831 U
Vitroaniline	.30E+02	8.00E+03		< 1.0533	+	v 5 D	× 5 D	v 5 n	75 u < 0.	٧	0 >	n < 0.	< 0.1072	٧	247	u < 0.1084 u	-			< 0.1083 u	0.1068	< 0.1071 u
Vitrophenol		•		< 0.9695	u < 0.0987	v n	v n	v n	v n	v n	0 > n	v n	u < 0.0987	n < 0.0988	u < 0.0964	n 8660.0 > n	< 0.0985 u	< 0.9922 u	< 0.0991 u	n 9660.0 >	< 0.0983 u	o 0.0986
3 '-Dichlorobenzidine	1.18E+01 (1)	5.70E+01	(4)	< 0.7195	-	э :	5 :	v э :	J -	u < 0.07	0 V V	5 :	< 0.0732		10	0.0741		0.7363	0.0736	< 0.074 u		32
Nitroaniline		. .		< 0.8615	u < 0.0877	/ V 5 5	/ V 5 5	0.13 0.13	/ V	36 u < 0.0874) () / v	/ V 5 D	2/0.0 > n	u < 0.0878	u < 0.0856	u < 0.0887 u	0.07130.0875	< 0.8816 u	3 D	< 0.0885 u	< 0.0873 u	<pre></pre>
6-Dinitro-2-methylphenol	4.93E+00 (1)	2.15E+01	(5)	< 0.5909		v n	n	v n	v n	n	>	v n	< 0.0602	< 0.0602	0.0588	< 0.0608	90'	0.6047	0.0604 u	0.0607	0.0599	0.0601
Bromophenyl phenyl ether				< 0.9343	u < 0.0951	n < 0.	v n	n < 0.09	v n	v n	0 > n	n		u < 0.0952		u < 0.0962 u	< 0.0949 u	< 0.9561 u	< 0.0955 u	n 960.0 >	< 0.0947 u	o 0.095
-Chloroaniline	2.70F+01 (3)	1.10F+02	(7)	< 1.1659	u < 0.1187 < 0.1082	5 =	0.1184 1 < 0.1079	u < 0.1	5 =	% - 0.1183	3 u < 0.1155 3 u < 0.1155	u < 0.1186 < 0.108	u < 0.1187 u	u < 0.1188	u < 0.1159 u u < 0.1056 u	u < 0.12 u	< 0.1184 u < 0.1079 u	< 1.1931 u < 1.0872 u	< 0.1192 u < 0.1086 u <	< 0.1198 u < 0.1092 u		< 0.1186 u
Chlorophenyl phenyl ether		 - -		< 1.1165	+	0 v	y 5 = 3	5 3	v 5 = 3	v 5 =	0 ×	v 5 = 3	< 0.1137	0 ×		< 0.1149	0.1134	1.1426	5 D	0.1148	32	_
-Nitroaniline	2.70E+02 (3)	1.10E+03	(7)	< 0.689	\vdash	ゝ	ם	n < 0.0	> n	v л	0 v	v э	< 0.0701	< 0.07	385	< 0.0709	< 0.07	Ш		\vdash	0.0698	< 0.0701 u
Nitrophenol	3 48F+03 (1)	- 1.51F+04	· (5)	< 0.7444	u < 0.0758	v v ===================================	2 u < 0.075	56 u < 0.076	76 u < 0.074	.9 u < 0.0755 .3 < 0.085	0 V	v v ===================================		u < 0.0759		u > 0.0766 u	< 0.0756 u < 0.0851 u	< 0.7618 u < 0.8575 u	< 0.0761 u < 0.0857 1	< 0.0765 u < 0.0861 u	< 0.0755 u < 0.0849 u	< 0.0757 u < 0.0852 u
senaphthylene				< 0.7952		0 > n	u < 0.08	> n 8	n	n < 0.	0 > n '	0 > n	< 0.0809	0 >		< 0.0818	0.0808		5		0.0806	0.0809
illine	9.50E+02 (3)	4.00E+03		< 0.9233		0 v	v э	v л	v л	v Э	0 V	n < 0.		Ö		u < 0.095 u	0.0938		0.0944 u	0.0949	0.0936	< 0.0939 u
nthracene		7.53E+04	(2)	< 0.6487	u < 0.0661	u < 0.0664	>	v v	>	y y	3 u < 0.0643	> v = =	u < 0.066 u	u < 0.0661	u < 0.0645 u	0.0668 u	< 0.0659 u	< 0.6638 u	< 0.0663 u <	< 0.0667 u < 0.1224 u	< 0.0657 u < 0.1207 u	< 0.066 u
enz(a)anthracene	1.53E+00 (1)	3.23E+01		< 0.8412	+	0 v	0 v	y 5 D	y 5 D	y 5 D	(n 0 ×	u < 0.0856	0	0.0836 u		0.0855		980	_	0.0853	< 0.0856 u
enzo(a)pyrene	1.12E+00 (1)	2.36E+01		< 0.74	+	0 > n	v 5 D	v 5 n	v 5 D	v 5 D	1 u < 0.0733	n < 0.	u < 0.0753	u < 0.0754	u < 0.0736	< 0.0762	0.0752		0756	\perp		< 0.0753 u
enzo(b)fluoranthene	1.53E+00 (1)	3.23E+01		< 0.8826		0 × 0	0 > n	n (C)	o n	n ·	5 u < 0.0875	u < 0.	u < 0.0898	u < 0.0899	u < 0.0877	n < 0.0908 u	7680.0				0.0895	< 0.0898 u
enzo(g,h,ı)perylene		-	· (4)	< 0.861/		v \ ====================================	0.087 0.087	v \	y \	y \ =	t c 0.0854	v \	//80.0 > u	0.08/8	0.085 / L	n /880.0 v	0.08750.0875	0.8818 u0.8818 u	0.0881 u0.0881 u	0.0886 u	< 0.0873 u	0.08//
enzoic acid	2.50E+05 (2)	3.30E+06		2.1	J < 0.0825) / >	0.08 0.082	/ V 5 5	/ V	/ V 3 3	0.081	, o	u < 0.0825	0.11	0.0805	0.0834 u	< 0.0873 u	2 200.0	< 0.0828 u	0.17	< 0.0821 u	0.13
enzyl alcohol	6.30E+03 (2)	8.20E+04		< 0.765	u < 0.0779	u < 0.0783	3 u < 0.0777	77 u < 0.0781	81 u < 0.0769	39 u < 0.0776	s u < 0.0758	n < 0.	u < 0.0779	u < 0.0779	u < 0.0761	ı < 0.0787 u	< 0.07777 u	< 0.7828 u	< 0.0782 u	< 0.0786 u	< 0.0775 u	< 0.0778 u
is(2-chloroethoxy)methane		2.50E+03		< 1.0604	-	ע ס	ע ס	v п	у л	0 °	0 v	n 0 0	u < 0.1079	u < 0.108	u < 0.1054 u	- < 0.1091 u	0.1077		0.1084 u	0.109	0.1075	< 0.1079 u
is(2-chloroethyl)ether		1.93E+00 F 10E+02		< 0.718	-	v \ =	У \ Э =	v \ = =	у \ л =	v \ э =	0 0	y \ 	u < 0.0731	u < 0.0732		<u> </u>	_		л =		_	< 0.073 u
s(z-criiol olsopilopyi)etriel s(2-ethylhexyl)phthalate	3.80E+02 (1)	3.13E+02 1.83E+03		< 0.7962	u > 0.0000	/ p ¬	/ V 5 ¬	/ n n	/ p ¬) / n ¬	0 / v n ¬	ם ס	J 0.14	$^{\circ}$		0.0960 U	0.11	< 0.8329 u < 0.8148 u	0.12 J	0.11 J	0.00040.14J	0.12 J
utyl benzyl phthalate		1.20E+04		< 0.8651	+ +	v n	v n	v n	ם	v n	0 v) V	0.0881		u < 0.086	H	o 0.0879 u	0.8853	0.0884 u	n 6880.0 >	< 0.0877 u	< 0.088 u
ırbazole		'		< 0.6599	u < 0.0672	v n	D .	ם	74 u < 0.066	л \	0 v	ם ס		01 (0.0656	< 0.0679	0.067		5	0.0678	0.0669	< 0.0671 u
nysene	1.53E+02 (1)	3.23E+03		< 0.8321	-	v n	v D	У Э	v n	v n	0 V	0 > n	u < 0.0847	0.084	_	u < 0.0856 u	< 0.0845 u	< 0.8516 u	0.0851 u	< 0.0855 u	< 0.0843 u	< 0.0846 Lu

No screening level or analytical result available
NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
EPA - Regional Screening Levels (June 2017)
(1) NMED Residential Screening Level
(2) EPA Residential Screening Level
(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(4) NMED Industrial Occupational Screening Level
(5) NMED Construction Worker Screening Levels
(6) EPA Industrial - Screening Levels
(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(8) NMED Table 6-2 TPH Soil Screening levels
report Section 5 for use of screening levels

Bold represents value above Residential Soil Screening Level
Yellow highlight represents value above Non-Residential Soil Screening Level
Bold with yellow highlight value exceeds Residential Soil Screening Level
Residential Soil Screening Level

v = reportable detection above the Practical quantitation limit (PQL)u - result is not detected at method detection limit (MDL)j - estimated result at concentration above MDL but less than PQL

	1	1 -	_											_				T T												1													T T			Г					
(2.2. 2.) 22	26-007		ා − න	>	>	n 23	> >	+		>	> -	> t		ວ > ດ	>		n 7 / C		ے د وو و		n 22		4 0			ာ =			> =	5 D					n –	, u	7	n 1				n n		<u>4</u> 0				n n		n :	5 >
(48-48.5")	1609E2 9/22/:		< 1.004 1 8	45	0.58	< 0.063	7.3	< 0.25	11000	1.5	97	6.1	\Box	> 0.062 14	17		7600.0 >	< 0.0256	< 0.018	< 0.0518	< 0.0125	< 0.023	< 0.0274 < 0.0169	1.4	< 0.0485	< 0.0113 < 0.0138	< 0.041	< 0.0133	0.5	< 0.017	< 0.0196	0.083	< 0.0904	< 0.011	< 0.0861	< 0.01	0.048	< 0.204	0.077	< 0.012	< 0.008	< 0.058	< 0.052	< 0.010 < 0.012	< 0.031	< 0.011	< 0.014	< 0.003 < 0.014	< 0.0143	< 0.013	0.51
	26-006		D >	> >	>	л 10	> >	>	>	>	> -	>		5 >			2 2			5 D			n =	+ +	_	∞ -			> =	-		_ =		_	л > 0	-		1 4 2 2	\vdash	_	_	ם ס		⊐ =				n n	$oxed{oxed}$		>
0W-58 (28-29')	1609E26 9/22/2		< 0.992	360	0.66	< 0.062	4.9	< 0.25	14000	3.8	180	7.1	< 1.7936	21	19	0000	< 0.032	< 0.0862	< 0.062	< 0.1743	< 0.0422	< 0.0796	< 0.092	30	< 0.163	< 0.0378	< 0.1387	< 0.0446	9.9	< 0.0604	< 0.0659	1.6	< 0.3042	0 0	3.7	< 0.0471	0.27	< 0.6884		< 0.0429	< 0.031 < 0.0648	< 0.196	< 0.175	< 0.0348	< 0.1062	< 0.040	< 0.0474	< 0.049	< 0.0481	< 0.0462	15
	26-005 2016		n –	>	>	n	> >	• n	>	^	> -	>		5 >	ightarrow	-	5 5	\vdash	ם ב		n		D =	+ +		D		n	> =			> =			D >			3 3	₩			ם ס	-	=				3 3			>
OW-58 (22-24')	1609E26- 9/22/20		< 0.9768	160	1.1	< 0.0616	13	< 0.25	18000	2.6	280	9.2	< 1.7661	19	16	099007	< 0.0422	< 0.1121	< 0.0815	< 0.2266	< 0.0549	< 0.1035	< 0.074 < 0.074		< 0.2119	< 0.0492	< 0.1804	< 0.058	7.7	< 0.0785	< 0.0857	2.8	< 0.3953	910	< 0.3765	< 0.0612		< 0.8951	7.3	< 0.0558	< 0.0403	< 0.2549	< 0.2284	< 0.0454 < 0.0563	< 0.1381	< 0.0522	< 0.0616	< 0.0638	< 0.0625	< 0.0599	9.3
	26-004]	л — 9	>	>	ב _	> >	> ⊃	5 >	>	> -	>		5 >			3 3 + (0		_	3 3			n =			J =	_	\vdash	л =		-	ם ב	+		D 16	-		⊃ > +				3 3		э =				3 3			ם כ
(21-01) 83-WO	1609E26 9/22/20		<u> </u>	320	0.88	< 0.0641	10	< 0.25	15000	2.8	270	7.6	< 1.8398	18	13	/6000/	< 0.0024	< 0.0041	< 0.003	< 0.0084	< 0.002	< 0.0038	< 0.0044	< 0.0019	< 0.0078	< 0.0018	7300.0 >	< 0.0021	< 0.0019	002	< 0.0032	< 0.005 / < 0.0015	0.055	8 8	< 0.0139	< 0.0023	< 0.0023	0.65	0.068	< 0.0021	3T00.0 >	7600:0 >	7800'0 >	< 0.0017	< 0.0051	< 0.0019	0.0085	7200'0 >	< 0.0023	< 0.0022	< 0.0021
	26-002		n >	> >	>	n	> >) 1	N	^	> -	>		n >		L	n n			ם ס			n =	\perp		D =	n	n	n =	5 0	n -	^ =	5 _	n :	D =			n >	>			ם מ		ם ב				ם מ			ם מ
('YS-2S) 78-WO	1609E26 9/21/20		< 0.985 2 8 6	1200	0.83	< 0.0621	4.6	< 0.25	15000	2.8	1700	7.9	< 1.781	23	9.6	0,000	<0.0019	<0.0019	<0.0019	<0.0003	<0.0019	<0.0005	<0.0006 <0.0006	<0.0003	<0.0002	<0.0019	<0.0019	<0.0019	<0.0003	<0.0019	<0.0004	0.0003	0.0023	<0.0003	<0.0005	<0.0003	<0.0004	0.0191	0.0147	<0.0002	<0.0019	<0.003	<0.0007	<0.0019	<0.0003	<0.0019	<0.0005	<0.0019	<0.0019	<0.0019	<0.0003
	3-001 016		5 –	h >	>		> >	• ⊃	5 >	>	> -	>	5	5 >	>		5 5			3 3			D			5 =			5 =			5 5			> =			3 3				5 ¬		5 =				3 3			ם ס
('81-81) 73-WO	1609E26-001 9/21/2016		< 0.9801 1 8	180	0.52	< 0.0618	%. %.	< 0.25	12000	2.8	510 0.0055	6.3	< 1.7721	17	15	7000	< 0.003	< 0.0052	< 0.0038	< 0.0105	< 0.0025	< 0.0048	< 0.0034	< 0.0024	< 0.0098	< 0.0023	< 0.0083	< 0.0027	< 0.0023	< 0.0036	< 0.004	< 0.0071	< 0.0183	< 0.0024	< 0.01/4 < 0.0068	< 0.0028	< 0.0029	< 0.0414	0.076	< 0.0026	< 0.0019 < 0.0039	0.016	< 0.0106	< 0.0021	< 0.0064	< 0.0024	< 0.0028	< 0.0029	< 0.0029	< 0.0028	< 0.0026
Source		(i)	(5)	(2)	(5)	(5)	(2)	(2)	(5)	(9)	(5)	(5)	(5)	(2)	(5)	(4)	(5)	(4)	(5) (4)	(2)		(6)	(5)	(9)	(4)	(5)	(4)	(5)	(9)	(9)	(4)	(/)	(5)	(2)	(6)	(9)	(ج)	(5)	(4)	(9)	(4)	(5)	(5)	(5)	(5)	(4)	(4)	(5)	(4)	(5)	(4)
Non- Residential Soil Screening Level			3.59F+01	4.39E+03	1.48E+02	7.21E+01	1.34E+02 3 67E+01	1.20E+01	2.48E+05	8.00E+02	4.64E+02	7.53E+02	1.75E+03	6.14E+02	1.06E+05	1 265±02	1.35E+04	3.91E+01	2.28E+00	4.20E+02	1	9.30E+02	7.84E+01	1.80E+03	1.17E+00	3.28E+00	4.03E+01	2.52E+01	1.50E+03	2.30E+04	6.73E+03	8.13E+02 -	9.12E+04	7.08E+03	1.30E+03	2.30E+04	- 100	2.41E+05	8.65E+01	1.80E+03	2.99E+01 1.75F+03	1.77E+01	1.61E+03	5.21E+01 4.08F+02	1.65E+04	2.84E+01	1.99E+02	1.29E+02	6.69E+01	5.34E+01	3.65E+02
Source		(7)	(T)	(1)	(1)	(1)	(T)	(1)	(1)	(2)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(T)	(1)	1	(2)	(T)	(2)	(1)	(1)	(1)	(1)	(2)	(2)	(1)	(T) -	(1)	(1)	(7)	(2)	- (5)	(1)	(1)	(2)	(T)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Residential Soil Screening Level			3.13E+01 7.07F+00	1.56E+04	1.56E+02	7.05E+01	9.66E+01	1.11E+01	5.48E+04	-	1.05E+04	1.56E+03	3.91E+02	3.94E+02	2.35E+04	2 705+01	1.43E+04	7.93E+00	2.59E+00	4.36E+02		6.30E+01	5.10E-02 8.22E+01	3.00E+02	8.51E-02	6.68E-01 2.14E+03	8.25E+00	1.76E+01	2.70E+02	1.60E+03	1.29E+03	1.72E+02	3.73E+04	1.56E+03	2.00E+02	1.60E+03	- 7. CO.	5.61E+03 6.63E+04	1.77E+01	2.90E+02	6.14E+00 6.74F+02	1.76E+01	1.54E+03	1.06E+01	1.88E+04	5.85E+00	4.08E+01	1.36E+02 2.91E+01	1.38E+01	5.74E+01	7.45E+01
		als (mg/kg)	mony	Œ.	llium	mium	mium -	ide			ganese	le le	nium	dium	(F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	Volatiles (mg/kg)	L-Z-Tetracilioroetrialie L-Trichloroethane	1,1,2,2-Tetrachloroethane	2-Trichloroethane	Dichloroethene	Dichloropropene	3-Trichlorobenzene	3-Trichlorobenzene	1,2,4-Trimethylbenzene	Dibromo-3-chloropropane	Dibromoethane (EDB)	-Dichloroethane (EDC)	2-Dichloropropane	5-Trimethylbenzene Dichlorobenzene	-Dichloropropane	Dichlorobenzene	1-Methylnaphthalene 2.2-Dichloropropane	tanone	Chlorotoluene	Hexanone Methylnanhthalene	Chlorotoluene	Isopropyltoluene	etone	ene	nobenzene	Bromoform	nomethane	Carbon disulfide	on tetrachloride	roethane	roform	romethane	,3-Dichloropropene	omochloromethane	omomethane	benzene
		Metals (m	Antimony	Barium	Beryllium	Cadmium	Chromium	Cyanide	Iron	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	Volatiles (1,1,1-Trichl	1,1,2,2-Tet	1,1,2-Trichl	1,1-Dichlor	1,1-Dichlor	1,2,3-Trichl	1,2,3-Irichi 1,2,4-Trichi	1,2,4-Trime	1,2-Dibrom	1,2-Dibrom	1,2-Dichlor	1,2-Dichlor	1,3,5-Trime		1,4-Dichlor	1-Methylna 2.2-Dichlor			2-Hexanone 2-Methylnar		4-Isopropyl:	4-ivietriyi-2- Acetone	Benzene	Bromobenzene	Bromoform	Bromometh	Carbon dist	Carbon tetrachi	Chloroethane	Chloroform	Chlorometh	CIS-T,Z-DOE	cis-1,3-Dich	cis-1,3-Dich Dibromochl	cis-1,3-Dichloropropene Dibromochloromethane Dichlorodifluoromethane

Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source			OW-57 (05)	1609E26-004		1609E26-005	OW-58 (28	
ξ			(1)	16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	01(1	<u> </u>	16	9/22/2016	9/22/201
(T)	-	5.1/E+01 2.71E+03	(5)	< 0.0039	7 V n n	<0.0002 u	< 0.0031	u < 0.0846 u 0.57	240 u	0.82	u 60.0 v
(1)		4.78E+03	(4)		┢		< 0.008	٧		0.39	< 0.0497
(I)	_	1.20E+03	(2)	< 0.0092 < 0.005) V	<0.0019 u	0.01) < 0.1995	n 266	< 0.1534	u < 0.0456 u
(2)		5.80E+04	(9)		+	-	< 0.0023	П		1.3	0.11
(2)		2.40E+04	(9)	< 0.0025			< 0.002		>	4.7	v 0.28 v
(2)	+	1.20E+05	(9)	< 0.0044	-	-	< 0.0035	,		0.48	0.091
(F)	+	1.01E+04 1.20E+05	(c) (9)	0.00290.0026	y	<0.0002 u <0.0003 u	< 0.0023 < 0.0021	u < 0.0618 u < 0.0574	518 u 574 u	< 0.0475	u < 0.0141 u u < 0.0131 u
(1)	+	1.19E+02	(5)	< 0.0027	+	1	< 0.0021	٧		< 0.0441	< 0.0131
(1)	+	1.40E+04	(5)	< 0.0019			< 0.0015			77	1.1
(T) (T)	+	3.03E+02 1.29E+02	(2)	< 0.0089	y	<0.0002 u <0.0002 u	< 0.0071 < 0.0037	u < 0.1937 u < 0.1013	37 u 13 u	< 0.1489	u < 0.0443 u u < 0.0232 u
(1)	+	6.84E+00	(5)	< 0.0034			< 0.0027	' V	-	< 0.057	< 0.017
(1)		1.12E+03	(2)	< 0.0024			< 0.0019	٧	\vdash	< 0.0398	< 0.0118
(1)		2.83E+01 7.91E+02	(5)	< 0.0026 < 0.0061	y	<0.0005 u <0.0007 u	< 0.0021 0.0063	u < 0.0566 J 55	n ^	< 0.0435	u < 0.0129 u v 3.1 v
(1)	J L	1 1 2 2	(5)	₄ ∟			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	l -	l -	0 7 0 7	7
(£)	_	7.84E+UI 7.47E+O3	(2)	< 0.0769) v	0.1062 u	< 0.1074	u < 0.10783	n 877	< 0.10783	u 80.1.088 u
-		7.47.5+03) '		/ V		< 0.0767		_	< 0.077	< 0.0777
(1)		6.73E+03	(4)	< 0.0848	\ <u>\</u>		< 0.0839	Ť	8	< 0.0842	< 0.085
		8.13E+02	(7)	< 0.1008	٧	<u></u>	< 0.0997		1	1.2	< 0.101
(1)		2.69E+04	(5)		٧		< 0.0993			< 0.0997	< 0.1006
(T)		2.69E+02	(5)	+	۷ '		< 0.0823	<u>`</u>	+	< 0.0826	< 0.0834
		8.07E+02 5.38E+03	(2)	< 0.0936	y y	0.0916 u	< 0.0926	u < 0.093	n = 1	< 0.0929	u < 0.0938 u
(1)		5.38E+02	(2)	(0	· V		< 0.0658			< 0.0661	0.0667
		8.23E+01	(4)		٧		< 0.0886	V		< 0.089	< 0.0898
		1.72E+01	(4)	\sim	٧		< 0.105	٧		< 0.1054	< 0.1064
(1)		2.83E+04	(5)	< 0.079) \ \ \ \	0.0773 u	< 0.0781	u < 0.0785	. 85 u	< 0.0784	u < 0.0792 u
(T) (E)		1.7 / E+03 1.00E+03	(2)	_	V V		< 0.0782	/	-	< 0.0785	
(2)		4.10E+04	(9)		٧		< 0.083	٧	+	0.26	< 0.084
(2)		8.00E+03	(9)		٧		< 0.107			< 0.1074	u < 0.1084 u
1 3	-		, (-	٧		< 0.0985	٧	68	< 0.0988	< 0.0997
(1)	-	5.70E+01	(4)	< 0.0739	<u> </u>	_	< 0.0731	V	34	< 0.0733	< 0.074
				_) \ V \	0.0/11 u	< 0.0718	u < 0.0722	22 n	0.26	v < 0.0728 u
(1)	+	, n	(5)	_	/ \		0.000	<u> </u>	-	0.0010	× 0.0860 × 0.0860
(1)	+	Z.TSE+0.T	(c) -	+_	/		< 0.00	/	-	< 0.0002	< 0.0008 < 0.0961
	+		ı	+	V		< 0.1184	V	+	< 0.1188	< 0.12
(3)		1.10E+02	(7)	< 0.1091) > n	0.1067 u	< 0.1079	u < 0.1084)84 u	< 0.1083	u < 0.1093 u
			1	-	٧		< 0.1134	v	+	< 0.1138	< 0.1149
(3)		1.10E+03	(7)	-	<u> </u>		< 0.07	V	-	< 0.0702	< 0.0709
- (£)		, L	ر	< 0.0764) v v	0.0748 u	< 0.0756 \ 0.0654	u < 0.0759	n :	< 0.0759	n 00/0/00 v
ĵ ·		10.1	ì	_	/ V		× 0.0808	/ V	+	< 0.0811	< 0.0802
(3)	_	4.00E+03	(7)	00	<u> </u>		< 0.0938	٧	-	< 0.0941	< 0.095
(1)	_	7.53E+04	(2)	> 0.0666) v	0.0652 u	< 0.0659	u < 0.0662	362 u	< 0.0661	u < 0.0667 u
(3)		2.60E+02	(2)	< 0.1223) > n	0.1196 u	< 0.1209	u < 0.1215	15 u	< 0.1214	u < 0.1225 u
(1)		3.23E+01	(4)	< 0.0864) > n	0.0845 u	< 0.0854	u < 0.0858	358 u	< 0.0857	u < 0.0865 u
(1)		2.36E+01	(4)	< 0.076) > n	0.0743 u	< 0.0751	u < 0.0755	,55 u	< 0.0754	u <0.0761 u
(1)		3.23E+01	(4)	> 0.0906) > n	0.0887 u	> 0.0896	o:0 > n	n 60	< 0.09	n < 0.0908 u
,	1 '		,	< 0.0885) > n	0.0866 u	< 0.0875	u < 0.0879	n 628	< 0.0878	u < 0.0887 u
(1)	<u>—</u>	3.23E+02	(4)	< 0.0884) > n	0.0865 u	< 0.0874	u < 0.0878	378 u	< 0.0877	u < 0.0886 u
(2)	₩	3.30E+06	(9)	< 0.0832) > n	0.0814 u	< 0.0823	u < 0.0826	326 u	< 0.0826	u < 0.0834 u
(2)		8.20E+04	(9)	< 0.0785) > n	0.0768 u	< 0.0777	u < 0.078	n 82	< 0.078	u < 0.0787 u
(2)		2.50E+03	(9)	< 0.1089	٧		0.107	u < 0.1082	82	< 0.1081	< 0.1091
(1)	+	1.93E+00	(5)	< 0.0737	٧	0.0721 u	< 0.0729	V	32	< 0.0732	< 0.0739
(1)	-+	5.19E+02	(4)	> 0.0896) v	n 2780.0	> 0.0886	u < 0.089	$\overline{}$	< 0.0889	u < 0.0898 u
(T)	+	1.83E+03	(4)	0.13	+		0.12			0.14	0.12
ĵ '	十	1.20E+04	<u> </u>	< 0.0888	y v	0.0869 0.0863	6/80.0 >	+		< 0.0882	< 0.089
. 5	+	1 I	1	< 0.0010 >	V						
	•	000	(¥.	L (()	+		70.00	00.0 > n	1/3 U	< 0.0673	n 6/90.0 > n

	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	('81-31) 72-WO	('7S-22')	((ST-01) 89-WO		OM-28 (22-24,)		0M-58 (28-29°)		('8-48.5')	
					1609E26-001	. 1609E26-002	6-002	1609E26-004	904	1609E26-005	2	1609E26-006		1609E26-007	200
					9/21/2016	9/21/	/2016	9/22/2016	97	9/22/2016		9/22/2016		9/22/2016	91
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	< 0.0811 u	< 0.0794	14 u	< 0.0802	n	< 0.0806	n	า 5080:0 >	> n	0.0813	n
Dibenzofuran	ı	ı	1		< 0.1009 u	< 0.0987	n 2	< 0.0998	n	< 0.1002	n	< 0.1002 L	> n	0.1011	n
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(2)	0.14	0.17	ſ	0.12	ſ	0.14		0.21	^	0.16	ſ
Dimethyl phthalate	6.16E+04	(1)	2.69E+05	(2)	< 0.0982 u	960'0 >	n g	< 0.0971	n	< 0.0975	n	< 0.0974	> n	0.0983	n
Di-n-butyl phthalate	6.16E+03	(1)	2.69E+04	(2)	0.16	0.15	ſ	0.14	_	0.15		0.25	_	0.15	J
Di-n-octyl phthalate	-	1	-	-	n 9580.0 >	< 0.0837	n 2	< 0.0847	n	< 0.085	n	า 580:0 >	> n	0.0858	n
Fluoranthene	2.32E+03	(1)	1.00E+04	(2)	o 0.0578 u	ا < 0.0565	.5 u	< 0.0572	n	< 0.0574	n	< 0.0574 ר	> n	0.0579	n
Fluorene	2.32E+03	(1)	1.00E+04	(2)	< 0.0918 u	ا < 0.0899	n 6	< 0.0908	n	< 0.0912	n	0.12	<u> </u>	0.092	n
Hexachlorobenzene	3.33E+00	(1)	1.60E+01	(4)	< 0.0791 u	< 0.0774	.4 u	< 0.0783	n	< 0.0786	n	< 0.0785 ר	> n	0.0793	n
Hexachlorobutadiene	6.16E+01	(1)	5.17E+01	(4)	< 0.1131 u	< 0.1106	n 9	< 0.1118	n	< 0.1123	n	< 0.1122 L	> n	0.1133	n
Hexachlorocyclopentadiene	2.28E+00	(1)	8.67E+02	(2)	< 0.1147 u	< 0.1122	.2 n	< 0.1135	n	< 0.114	n	< 0.1139	> n	0.1149	n
Hexachloroethane	4.31E+01	(1)	1.88E+02	(2)	< 0.0862 u	< 0.0843	.3 n	< 0.0853	n	< 0.0856	n	า 9580:0>	> n	0.0864	n
Indeno(1,2,3-cd)pyrene	1.53E+00	(1)	3.23E+01	(4)	< 0.0784 u	< 0.0767	n 2	< 0.0775	n	< 0.0778	n	< 0.0778	> n	0.0785	n
Isophorone	5.61E+03	(1)	2.70E+04		< 0.1109 u	< 0.1085	12 n	< 0.1097	n	< 0.1102	n	< 0.1101 u	> n	0.1112	n
Naphthalene	1.16E+03	(1)	5.02E+03	(2)	n E960'0 >	< 0.0942	.2 u	< 0.0953	n	0.11		1.3	>	0.0965	n
Nitrobenzene	5.99E+01	(1)	2.91E+02	(4)	< 0.1035 u	< 0.1013	.3 u	< 0.1024	n	< 0.1029	n	< 0.1028	> n	0.1038	n
N-Nitrosodi-n-propylamine	7.80E-01	(3)	3.30E+00	(7)	< 0.0964 u	ا < 0.0943	S. U	< 0.0954	n	< 0.0958	n	< 0.0957	v n	0.0966	u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	o 0.098	ا < 0.0959	n 6	< 0.0969	n	< 0.0973	n	< 0.0973	> n	0.0982	n
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	< 0.0645 u	< 0.0631	1 n	< 0.0638	n	< 0.0641	n	< 0.064 L	> n	0.0646	n
Phenanthrene	1.74E+03	(1)	7.53E+03	(2)	< 0.0682 u	٧	n 2	< 0.0674	n	< 0.0677	n		>	0.0683	n
Phenol	1.85E+04	(1)	7.74E+04	(2)	< 0.0756 u	ا < 0.0739	n 6	< 0.0747	n	< 0.0751	n	0.31	>	0.0757	n
Pyrene	1.74E+03	(1)	7.53E+03	(2)	< 0.0758 u	< 0.0742	.2 u	< 0.075	n	< 0.0753	n	< 0.0753	> n	0.076	n
Pyridine	7.80E+01	(2)	1.20E+03	(9)	n 36/0.0 >	< 0.0778	n 8.	< 0.0787	n	< 0.079	n	< 0.079 L	> n	0.0797	n
Total Petroleum Hydrocarbons (mg/kg)	g/kg)														
Gasoline Range Organics (GRO)	1.00E+03	(8)	3.80E+03	(8)	< 0.4812 u	ا < 0.5599	n 6	3.2	^	1500	^	1700	^	130	۸
Diesel Range Organics (DRO)	1.00E+03	(8)	3.80E+03	(8)	< 1.7306 u	1 5.9	ſ	< 1.713	n	22	^	320	^	33	۸
Motor Oil Range Organics (MRO)	1.00E+03	(8)	3.80E+03	(8)	< 47 u	۱ < 48	n	< 46	n	< 48	n	< 49 L	n	< 47	n

No screening level or analytical result available
NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
(1) NMED Residential Screening Levels (June 2017)
(2) EPA Residential Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(4) NMED Industrial - Screening Levels
(5) NMED Construction Worker Screening Level
(6) EPA Industrial - Screening Levels
(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(8) NMED Table 6-2 TPH Soil Screening Levels "unknown oil" with DAF = 1.0 - see report Section 5 for use of screening levels

Bold represents value above Residential Soil Screening Level
Yellow highlight represents value above Non-Residential Soil Screening Level
Bold with yellow highlight value exceeds Residential Soil Screening Level
Residential Soil Screening Level

v = reportable detection above the Practical quantitation limit (PQL)u - result is not detected at method detection limit (MDL)j - estimated result at concentration above MDL but less than PQL

₽T-MO	1609076-001	8/31/2016			J.6	2100 Z	1		<2.656 u	-	7						<1.548 u		15 ^	-			1	8.6	2200 Z		<0.746 u		 		2200 Z			<2.751 u	28		<0.557 u				<0.536 u			<1.01 u	4	7.1	(1)
Z-WA	1609783-001	9/13/2016			•	-	-	-	-	-						1	•	-	•	•	•	'			-	-	•		<u> </u>	•		-	-	1	<u> </u>		<22.3 u				<21.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0			<40.4 u		210 v	
89-MO	1610091-006	9/30/2016		<0.47 u		5200 Z	3.7	<1.48 u		13	7 00076		4100 Z		35 ^		<2.75 u			o O	7 220	> 000	<0.47		3000 Z		<0.75 u		5.2		2100 Z			<2.75 u	ς <u>Γ</u>		n 25.57				<5.36 II					^ 069	
73-WO	1610091-005	10/1/2016		<0.47 u		3000 Z	0.51	<1.48 u			01100 d				84	13 v	<2.75 u			o	^ 520 027	>	<0.47		2100 Z		<0.75 u		7 740		2100 Z		8.2 J	<2.75 u	5.3		u <5.57				<5.36 u				4	7.3 J	
TK 670-1-GV	1610091-004	9/30/2016		<0.47 u		Z 0058	6.4 Z	8			2 OUV		7200 Z		100 Z		<2.75 u				4400 u))	<0.47		3100 Z		<0.75 u		7600 7		3100 Z			<2.75 u	10 \		u <5.57				<5.36 II					1400	
ир-£-695 ут	1610091-003	10/2/2016		<0.47 u		4200 Z	o.36	<1.48 u	(0)		0T>		1900 Z		82 ^	10 v	<2.75 u			0	V 2	> 00 To	<0.47		3200 Z		<0.75 u		3900		1600 Z			<2.75 u			<5.57 u				<5.36 II			<10.1 u		930 ^	
TK-569-2-GW	1610355-002	_		<0.47 u		Z 006 7	0.43				v C.11		3400 Z		v 54		<2.75 u				n 052>	000	<0.47	10 Z	5100 Z	7	<0.75 u		550 ×		3100 Z			<2.75 u	6.9			<4.57 u			<5.36 II		<5.64 u	<10.1		1000	
TK-569-1-GW	1610355-001	10/5/2016		<2.36 u	16 Z	Z 0018		8			n OT>		4200 Z		57 v		<2.75 u			0	n - 000		<0.47		Z 0089		<0.75 u		5.5	က	Z600 Z		9.7 J		22 ×			<4.57 u			<5.36 II		<5.64 u	<10.1 u		1500	
TK 568-2-GW	1610091-002	-		<0.47 u		3800 Z	o 98.0>		<2.66 u		2500 a		1800 Z		^ 0 <i>L</i>		<2.75 u		1		3/0	>	<0.47		3600 Z		<0.75 u		920 7	13	1700 Z			<2.75 u	9.3		<5.57 u				<5.36 = 1			<10.1 u		850 ^	
TK 568-1-GW	1610091-001			<0.47 u		Z000 Z	0.71				10000 a		1800 Z			13 v	<2.75 u			0	240	200000	<0.47		1800 v		<0.75 u		4700 7		1600 Z			<2.75 u				<1.83 u			<2.10 u		<2.26 u			1300	
Source	H			(2)	(2)	(2)	(2)	(2)	(3)	(1)	(c)	(2)	() (4)	(3)	(4)	(3)	(3)	(4)	(3)	(3)	(3)	(5)	(2)	(2)	(3)	(2)	(2)	(3)	(3)	(2)	(3)	(4)	(3)	(3)	(3)	,	(4)	(3)	(3)	(V)	(3)		(1)	(4)	(2)	(1)	
Screening Levels				9	10	2000	4	5	50	9 000	13800	15	2020	2	372	50	50	63.1	10000	250000	1600	000000	9	10	1000	4	2	20	1000	15	200	372	50	50	10000		5.74	09	10	ս է	C7 43) 1	7	0.01	70	26	
	Lab ID	Sample Date	Metals (ug/I) TOTAL	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Cyallide	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Vanadium	Zinc	Chloride	Fluoride	Matals (119/1) DISSOI I/FD	Antimony (D)	Arsenic (D)	Barium (D)	Beryllium (D)	Cadmium (D)	Chromium (D)	Cobail (D)	Lead (D)	Manganese (D)	Nickel (D)	Selenium (D)	Silver (D)	Zinc (D)	Volatiles (ug/l)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-I etrachloroethane	1,1,2-Iricnioroetnane	L, L-Dichloroethane	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene (V)	1,2,4-Trimethylbenzene	

_	Source	TK 568-1-GW	TK 568-2-GW	1K-569-1-G/	TK-569-2-G	TK 569-3-G/	TK 570-1-G	73-WO	0M-28	Z-WA	₽T-MO
16100	٠,	1610091-001	1610091-002	1610355-001	1610355-002	1610091-0	03 1610091-004	1610091-005	1	1609783-001	1609076-001
	2	10/2/2016	10/2/2016	10/5/2016	10	10/2/201	/6	10	/6	9/13/2016	8/31/2016
1	∞ Γ							<20	<20	08>	<2> <2
(2) <2.3	ر اگراگ	n >	<55.75 C5.49	V <5.75	u <5.75	u <5.75	U <5.75	<5.75	<5.75	n <233 u	<0.575 U
	3 2	> >	T		300	┖		<5.77	210	44	0.82
	.86	n	1 0	Ĺ		Ľ	ľ	<7.16	<7.16	<28.6	Ľ
(1) <3.11	3.11							<7.79			
(2) <2.85	3.85	n	٤.	u <7.13	u <7.13	u <7.13	u <7.13	~	3	u <28.5 u	
(1) 40	ဍ	¬ :						150	88	88	34
<3.33	3.33	э -	<8.33 L	<8.33	v <8.33	U <8.33	u <8.33	- <8.33 - <36.85	<8.33 /36.85	u <33.3 u	<0.833
(1) (2)	- 0,	ם ה				> ⊐					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8.9	5	6	u <41.99	u <41.99	> 	u <41.99	<41.99	<41.99	<168	<4.199
(1) 59	29	ſ		ا 82	J 31	ſ	J 33	140			
(1) <2.56	.56	n	<6.41	u <6.41	u <6.41	u <6.41	u <6.41	u <6.41	u <6.41	u <25.6 u	<0.641 u
4.9	4.	_) 21		<7.03	15	<28.1	<0.703
× × × × × × × × × × × × × × × × × × ×	2.55 	n -	1	7 200) T60		240	<21.38	<21.38 /245.44	<85.5 7084 7	<2.138 U
(4) I40		<u> ۲</u>	28000	0007 n	000000 ^	v <243.44	03000	+		n /.Toe> n	
	95	> ⊐	+			> =	v 23000	<4.89	<4.89	<19.5	
	2.8	n	T	n <6.99				66.9>	66.9>	<28	
	.04	n				n		<5.11	<5.11	<20.4	<0.511
	.5.6	n			n <38.99	n	n <38.99	<38.99			
	1.95	ח				ם	u <29.87	<29.87	u <29.87	<119.5	
	2.16	n	<5.41		u <5.41		u <5.41	<5.41	<5.41	<21.6	<0.541
(2) <2.29	62.7	D :		U <5.72	7.02/2	D =	U <5.72	U <5.72	<55.72	n = 0.000 / 0.	
	78	3 3	T	┖	L			<4.44	×4.44	<17.8	<0.333
(4) <4.26	1.26	ס	<u> </u>	Ľ	Ľ	Э	Ĺ	<10.64	<10.64		<1.064
	48	n				n		<6.21	<6.21	<24.8	
	2.13	n	<5.33	u <5.33	u <5.33	u <5.33	u <5.33	u <5.33	u <5.33	u <21.3 u	
	.73	л :				D :		<4.34 7.00	<4.34 7.00	<17.3	<0.434
(1) <2.30) () () ()	3 =	<17.87	1 <3.30	u <3.30	73.30	u <5.36	1 <3.30	73.30	. \22.0 u	<0.396 u
						5 >		570	1500	1200	250
(4) <3.97	3.97							<9.93	<9.93	<39.7	<0.993
	43							22	72	30	
	ၜၟ႞							180	3300	1600	580
	3.75	D		<u> </u>	V	V	u <9.37	<9.37	<9.37	<37.5	Ÿ
	ဥ္တု	> -		320	88 G > -		92	220	240	140	
(1) I4	14 0	^ >	140	7,00	780) T/	74/	3.F	J 750	J <522.1 U	L.3
(1)	3 0	> -			767		v -	L.			
	; C	, =	10	7 T V	ľ	ľ) (5) (5) (5)) S. S.	ر ال	CC>	V
	2.3	5 0		Ĺ	Ļ	Ľ	Ľ	<5.75	<5.75	<23	Ľ
	0.0							>7.6	9.7>	<30.4	<0.76
(3) 10000	8			v 41000		H	^ 25000	54	0099	3800	2.9
	$\overset{\wedge}{\infty}$					ם		<20	<20	<80	
(4) <2.07	Ö		<5.16	u <5.16	u <5.16		u <5.16	<5.16	<5.16	<20.7	<0.516
(4)	S. S.	n :			c/.o> n	n	0 <0.73		c/.o>	<33	
	3		<10.22	<10.22	<10.22	< 10.22	10.22	10.22	<10.22	u <40.9	<1.022

	Screening Levels	Source	TK 568-1-GW	TK 568-2-GW	W5-1-698-YT	W5-S-698-YT	WD-8-995 XT	TK 570-1-GW	78-WO	89-WO	S-WA	₽T-MO
Tab ID			1610091-001	1610091-002	1610355-001	1610355-002	1610091-003	1610091-004	1610091-005	1610091-006	1609783-001	1609076-001
Sample Date			10/2/2016	10/2/2016	-	10/5/2016	10/2/2016	9/30/2016	_		9/13/2016	8/31/2016
Xylenes, Total	620	(3)	10000	v 5900 v	v 15000 v	10000 v	9200	11000	140 v	4400 ×	3100 v	8
Semi-volatiles (ug/l)												
1,2,4-Trichlorobenzene	70	(2)	<2.62 ∟		u <2.62 u		<2.62 u	<26.2 u	<2.62 u	<2.62 u	-	-
1,2-Dichlorobenzene	009	(2)	<2.29	<2.29	<2.29	<2.29	<2.29 u	<22.85 u	<2.29 u	<2.29 u	-	1
.,3-Dichlorobenzene	-		<2.26 ∟	<2.26	<2.26	<2.26	<2.26 u	<22.57 u			-	1
1,4-Dichlorobenzene	75	(2)		<2.39	<2.39	<2.39	<2.39 u	<23.88 u	<2.39	<2.39	-	•
1-Methylnaphthalene	1.1	(5)		80	71	59			110	65	1	
2,4,5-Trichlorophenol	1166	(4)		<2.18	<2.18	<2.18		_	Ľ	<2.18		
2,4,6-Trichlorophenol	11.9	(4)		<2.45	<2.45	<2.45					-	1
2,4-Dichlorophenol	45.3	(4)		<2.33	u <2.33 u		<2.33 u	3		V	1	1
2,4-Dimethylphenol	353.9	(4)		34			۸ 26	52 J			1	•
2,4-Dinitrophenol	38.7	(4)	<2.75	<2.75	<2.75	<2.75	<2.75 u		<2.75	<2.75	1	1
2,4-Dinitrotoluene	2.37	(4)		<3.13	<3.13	<3.13		1	<3.13	<3.13		
2,6-Dinitrotoluene	0.485	(4)			u <2.73 u			<27.34 u	<2.73	<2.73	-	
2-Chloronaphthalene	733	(4)		<2.25	<2.25	<2.25			<2.25	<2.25		'
Z-Cnioropnenoi	- 6	(4)	\$7.78	\$2.18		\$2.18	n ::	42.04 U	\$2.18	\$2.18 71		
Z-Metnylnaphthalene	30	(L) (2		9	9)	68.7%		1	88			•
Z-ivietnyiphenoi	930	(T) £	00 00	V 23 V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V 08 37 C/	> = 36	V OTZ	0 42.54 U	2.0		•
2-Nitrophenol	2			, 2.73 , 2.73	72.70 %2.73	,2.70 ,2.38		+	, 2.70 , 2.38	2.73 2.73	, ,	, ,
3,3'-Dichlorobenzidine	1.25	(4)		<2:35 4:25	42.5°	<2.4			<2.4	<2.4		
3+4-Methylphenol	930	(1)		26	110	130		200 v	<2.3	7.9		
3-Nitroaniline	1		<2.95 ∟	u <2.95	u <2.95 u	Ū	<2.95 u	<29.48 u	<2.95 u	<2.95 u	1	-
4,6-Dinitro-2-methylphenol	1.52	(4)		<1.8	u <1.8 u	<1.8	<1.8 u		<1.8 u		1	1
4-Bromophenyl phenyl ether	ı			<2.64	<2.64	<2.64				<2.64	-	1
4-Chloro-3-methylphenol	- 0	į		<2.56	<2.56	<2.56			<2.56	<2.56		
4-Chloroaniline	0.37	(c)	4.2.71 7.2.6	<2./1	u <2./1	<2.71 u	<22./1 u	V27.12 U	<2./1	<2./1		
4-Cnlorophenyi phenyi ether	- oc	(E)		<2.56 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<2.56 7.0 F.6	<2.56 \2.56			<2.56 \2.56	<2.56 \2.56		1
4-Introannine	2.0	(c)						n 62.22>	< 2.50 / 2 FE			•
4-Intropriend	535	(4)		< 2.33 < 7.55		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	' '	
Acenaphthylene			<2.36		<2.36	<2.36 u	<2.36 u	<23.57 u	<2.36	<2.36		1
Aniline	13	(5)		<2.44	<2.44	<2.44			<2.44	<2.44		1
Anthracene	1720	(4)		<2.49	u <2.49 u	<2.49	<2.49 u	<24.86 u	<2.49 u	<2.49 u	1	1
Azobenzene	0.12	(5)		<2.67	<2.67	<2.67			<2.67	<2.67	-	1
Benz(a)anthracene	0.12	(4)	<2.64	<2.64	<2.64	<2.64 u	<2.64 u	<26.39 u	<2.64	<2.64		1
Benzo(a)pyrene	0.2	(2)		<2.72 <2.02	27.72	<27.72		+	<2.72	27.72		•
Benzo(a h i)nervlene	0.343	(4)			u		u 06.27	u 0.057				
Denzo(g, n, n)per yrene Renzo(k)fluoranthene	3 43	(4)		, 4.04 4.04	4.04	, k.o.			, 4.0 ,	, 4.04 , 4.04		' '
Benzoic acid	75000	£ £			£ 43 × ×			450 ×	32	16		
Benzyl alcohol	2000	(1)	1	<3.01	<3.01	<3.01	4	2	<3.01	<3.01		1
Bis(2-chloroethoxy)methane	59	(1)		u <2.81 u	<2.81	<2.81	<2.81 u	<28.14 u	<2.81 u	<2.81 u	,	
Bis(2-chloroethyl)ether	0.137	(4)		<2.67	<2.67	<2.67				<2.67	1	•
Bis(2-chloroisopropyl)ether	9.81	(4)	91	<1.91	u <1.91 u	<1.91 u	<1.91 u	<19.09 u	<1.91 u	V		•
Bis(2-ethylhexyl)phthalate	9	(2)		<2.62	12	7.1			4.2	2.8	ı	1
Butyl benzyl phthalate	16	(2)	<2.48 L	φ	u <2.48 u		T	<24.78 u	<2.48	<2.48		-
Chrysene	34.3	(4)		2 2 78	62.23	<2.29	u 62.23				1 1	· •
Dibenz(a,h)anthracene	0.0343	(4)			u <2.66				<2.66	<2.66		
Dibenzofuran	7.9	(1)	<2.49	<2.49	<2.49	<2.49		<24.93 u	<2.49	<2.49		

	Screening Levels	Source	TK 568-1-GW	TK 568-2-GW	ТК-569-1-GW	TK-569-2-GW	TK 569-3-GW	ТК 570-1-GW	TB-WO	OM-58	S-WA	₽T-MO
Lab ID			1610091-001	1610091-002	1610355-001	1610355-002	1610091-003	1610091-004	1 1610091-005	1610091-006	1609783-001	1609076-001
Sample Date			10/2/2016	10/2/2016	10/5/2016	10/5/2016	3 10/2/2016	5 9/30/2016	10/1/2016	9/30/2016	9/13/2016	8/31/2016
Diethyl phthalate	14800	(4)	4	u <2.71 L	u <2.71	u <2.71	u 3.4	J <27.15	u <2.71 u	<2.71 u	•	
Dimethyl phthalate	1		3.1	က	J 26	۷ 18	۷ 31	v <24.29	u <2.43 u	<2.43 u	-	1
Di-n-butyl phthalate	885	(4)	4	<2.44	u <2.44	u <2.44	u <2.44	u <24.44	u <2.44 u			1
Di-n-octyl phthalate	ı		2	J <1.98	n 6.8	Э 6.8	J <1.98	u <19.83	u <1.98 u	<1.98 u	1	1
Fluoranthene	802	(4)	<2.61	u <2.61 L	u <2.61	u <2.61	u <2.61	u <26.07	u <2.61 u	<2.61 u	-	•
Fluorene	288	(4)	<2.72	u 3.1	J <2.72	u <2.72	u <2.72	u <27.24	u 7.2 U	3.8	-	-
Hexachlorobenzene	0.0976	(4)	<2.63	u <2.63 เ	u <2.63	u <2.63	u <2.63	u <26.33	u <2.63 u	<2.63 u	1	•
Hexachlorobutadiene	1.387	(4)	<2.18	u <2.18 L	u <2.18	u <2.18	u <2.18	u <21.84	u <2.18 u	<2.18 u	-	-
Hexachlorocyclopentadiene	50	(4)	<2.28	u <2.28 เ	u <2.28	u <2.28	u <2.28	u <22.84	u <2.28 u	<2.28 u	1	•
Hexachloroethane	3.28	(4)	<2.37	u <2.37 เ	u <2.37	u <2.37	u <2.37	u <23.68	u <2.37 u	<2.37 u	-	-
Indeno(1,2,3-cd)pyrene	0.343	(4)			u <2.96	u <2.96	u <2.96		u <2.96 u	<2.96 u	-	1
Isophorone	781	(4)	<2.62	u <2.62 L	u <2.62	u <2.62	u <2.62	u <26.15	u <2.62 u	<2.62 u	-	-
Naphthalene	1.65	(4)			v 210	v 47	۸ / 88	v 220	v 140 v		-	-
Nitrobenzene	1.4	(4)	2	u <2.75 เ	u <2.75	u <2.75	u <2.75	u <27.53	u <2.75 u	<2.75 u	-	-
N-Nitrosodimethylamine	0.0017	(4)			u <2.16	u <2.16	u <2.16	u <21.58	u <2.16 u	<2.16 u	-	-
N-Nitrosodi-n-propylamine	0.011	(2)	<2.39	u <2.39 เ	u <2.39	u <2.39	u <2.39	u <23.89	u <2.39 u	<2.39 u	1	1
N-Nitrosodiphenylamine	0.0049	(4)	<2.32	u <2.32	u <2.32	u <2.32	u <2.32	u <23.2	u <2.32 u	<2.32 u	•	1
Phenanthrene	170	(4)	<2.59	u <2.59 เ	u <2.59	u <2.59	u <2.59	u <25.87	u 7.6 J	2.9	1	1
Pentachlorophenol	1	(4)	<2.34	u <2.34	u <2.34	u <2.34	u <2.34	u <23.42	u <2.34 u	<2.34 u	1	•
Phenol	5760	(4)	160		۸ 69	۸ 96	۸ 98	v 120	v 88 v	51 v	-	-
Pyrene	117	(4)	<3.09	n <3.09 ר	n <3.09	u <3.09	u <3.09	u <30.94	u <3.09 u	u <3.09	1	1
Pyridine	20	(1)	<2.16	u <2.16 L	u <2.16	u <2.16	u <2.16	u <21.61	u <2.16 u	<2.16 u	•	
TPH (mg/l)												
Gasoline Range Organics (GRO	3.98E-02	(9)	140		۷ 260	v 160	۷ 170	v 240	v 46 v	150 v	140000	31000 v
Diesel Range Organics (DRO)	3.98E-02	(9)		v 12 v	۷ 22	۷ 14	۷ 21	v 170 v	> 9.3	5.	14000 v	4100 v
Motor Oil Range Organics (MRC	3.98E-02	(9)	< 5		n < 5	n < 5	n < 5	u < 50	n <5 u	< 5 u	<5000 u	<5000 u

No screening level or analytical result available

450 - bolded value exceeds screening level

(1) EPA - Regional Screening Levels (November 2018) - Tap Water
(2) EPA - Regional Screening Levels (November 2018) - MCL
(3) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
(4) NMED Tap Water Screening Level - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
(5) EPA Screening Level - Tap Water x 10 for carcinogenic compounds
(6) NMED groundwater screening level for unknown oil
v = reportable detection above the Practical quantitation limit (PQL)
u - result is not detected at method detection limit (MDL)
j - estimated result at concentration above MDL but less than PQL
z - concentration exceeds MCL

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.493' / W 108° 25.501'

Total Depth : 27'
Ground Water : 18'
Start Date : 09/21/2016
Finish Date : 09/21/2016

WELL NO. OW-57

(Sheet 1 of 2)

Elev., TOC (ft.msl): 6933.10 Elev., PAD (ft. msl): 6930.64

Elev., GL (ft. msl) : Site Coordinates :

N : N 163475.52 E : E 2546961.79

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.493' / W 108° 25.501'

Total Depth : 27'
Ground Water : 18'
Start Date : 09/21/2016
Finish Date : 09/21/2016

WELL NO. OW-57

(Sheet 2 of 2)

Elev., TOC (ft.msl): 6933.10 Elev., PAD (ft. msl): 6930.64

Elev., GL (ft. msl) : Site Coordinates :

N : N 163475.52 E : E 2546961.79

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5" Sampling Method: 2' Split Spoon - 2" Diameter Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5' **Ground Water** : 29' Start Date : 09/22/2016 Einich Data . 00/22/2016

WELL NO. OW-58

(Sheet 1 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

: N 1634800.15 · F 2547414 91

						Finish Date : 09/22/2016	E : E 2547414.91
Depth (ft.)	PID (ppm)	Saturation Lithology	nscs	Recovery (%)	Sample	Saturation Saturation Saturation DESCRIPTION	Completion Results OW-58
-1 —					I	1	
_							Flush Mount
0-			AR	100		ASPHALT/BASE,	Concrete Pad - 4'x4'x4"
-			An	100		SILTY CLAY, moderate, firm to stiff, damp,	
1-	110		CL	100		brown, odor,	
3-	40		CL	100		SILTY CLAY, SIMILAR TO ABOVE (STA),	
5— 	11.2		CL	100		SILTY CLAY, STA, moist, faint odor,	—Grout
6 — - - 7 — - -	2.2		CL	90		SILTY CLAY, low, soft, damp, brown, faint odor,	2" Sch 40 PVC w/Threaded Joints
8 — - 9 — -	5.3		CL	60		SILTY CLAY, STA, no odor,	
10-	37		CL	80		SILTY CLAY, STA, sticky, black discoloration, odor,	
12— - - 13—	42		CL			SILTY CLAY, STA,	

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5'
Ground Water : 29'
Start Date : 09/22/2016
Finish Date : 09/22/2016

WELL NO. OW-58

(Sheet 2 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

N : N 1634800.15 E : E 2547414.91

						Finish Date : 09/22/2016	E : E 254/414.91
Depth (ft.)	PID (ppm)	Saturation Lithology	nscs	Recovery (%)	Sample	Saturation ▼ Saturation ∇ Saturation DESCRIPTION	Completion Results OW-58
		% <u>=</u>	Š	ď	Š	DESCRIPTION	
13- - -	42		CL	70			
14 — - - 15 — - -	25		CL	60		SILTY CLAY, low, stiff, damp, brown with black discoloration, faint odor,	
16 — - - 17 — -	226		CL	60		SANDY CLAY, low, stiff, very fine grain sand, damp, brown, odor,	
18- - - - 19- -	240		CL	50		SANDY CLAY, STA, odor,	——————————————————————————————————————
20 — - - - 21 — - -	200		CL	60		SANDY CLAY, STA, odor,	2" Sch 40 PVC w/Threaded Joints
22 - - 23 -	2020		CL	90		SILTY CLAY, low, very stiff, damp, brown, tan silt pockets/seams present, odor,	
24 — - - 25 — -	1980		CL	90		SILTY CLAY, low, firm, soft/ crumbly, damp, brown, strong odor, outside of core is oily/phase separated hydrocarbon (PSH),	
26 – - - - 27 –	973		CL			SILTY CLAY, STA, firm to stiff, odor, outside of core is oily/PSH,	

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5'
Ground Water : 29'
Start Date : 09/22/2016
Finish Date : 09/22/2016

WELL NO. OW-58

(Sheet 3 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

N : N 1634800.15 E : E 2547414.91

						Finish Date : 09/22/2016	E : E 2547414.91
ft.)	Œ	no Y		ry (%)		Saturation Saturation Saturation	Completion Results OW-58
Depth (ft.)	PID (ppm)	Saturation	nscs	Recovery (%)	Sample	DESCRIPTION	
27-	973		CL	90			\$100 \$100 \$100 \$100 \$100 \$100 \$100 \$100
28-	0704		CL	90		SILTY CLAY, STA, damp to moist, odor,	— Grout
1	2784		CL/SC	90		SANDY CLAY/CLAYEY SAND, low, soft, very moist to saturated, dark brown, odor,	
30	2350		CL	90		SANDY SILTY CLAY, low, firm, damp, saturated sand at base, grey/brown, odor,	
32-	1775		SM	90		SILTY SAND, fine, loose, saturated, grey/brown, odor,	— 2" Sch 40 PVC w/Threaded Joints — Bentonite Pellets
34			CL	90		SILTY CLAY, low, soft, damp, greyish brown, odor, SILTY CLAY, STA, damp to very moist, odor,	
35-	575		CL	90		SILTY GLAY, STA, damp to very moist, oddi,	
36 -	227		CL	80		SILTY CLAY, low, firm, damp, greyish brown, odor,	— 10/20 Sieve Sand Filter Pack
38-	545		CL	50		SILTY CLAY, STA, brown, odor,	2" Sch 40 PVC Slotted 0.01"
40 -	531		CH			CLAY, high, firm, damp, brown, odor,	Screen w/Threaded Joints

C:\Users\cholmes\Documents\M-Tech\samples\Western Refinery\OW-14 Source Area\OW-58.bor

07-25-2018

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc. / Cohagan

Drilling Rig : CME 75

Drilling Method : Hollw Stem Auger 7.5"

Sampling Method : 2' Split Spoon - 2" Diameter

Comments : N 35° 29.500' / W 108° 28.410'

Total Depth : 48.5'
Ground Water : 29'
Start Date : 09/22/2016
Finish Date : 09/22/2016

WELL NO. OW-58

(Sheet 4 of 4)

Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71

Elev., GL (ft. msl) : Site Coordinates :

N : N 1634800.15 E : E 2547414.91

C:\Users\cholmes\Documents\M-Tech\samples\Western Refinery\OW-14 Source Area\OW-58.bor

07-25-2018

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 49'

Ground Water : 32' BGL
Start Date : 9/23/2016
Finish Date : 9/23/2016

WELL NO. TK 568-1

(Sheet 1 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6950.66

Site Coordinates

N : N 35° 29.412' E : W 108° 25.430

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan Drilling Rig

: CME 75

: Hollow-Stem Auger Drilling Method Sampling Method : 2" Split Spoon - 2" Diameter Comments : Hand Augered to 6 Feet

Total Depth : 49' **Ground Water** : 32' BGL

Start Date : 9/23/2016 Finish Date : 9/23/2016

WELL NO. TK 568-1

(Sheet 2 of 3)

Elev., TOC (ft.msl) Elev., PAD (ft. msl)

Elev., GL (ft. msl) : 6950.66

Site Coordinates

: N 35° 29.412' Ε : W 108° 25.430

							Finish Date : 9/23/2016	E . W 106* 25.430
					(%)		Saturation ▼ Saturation ✓ Saturation	Temporary Well
(ft.)	(mdc	ation	ббс	(0	Recovery (%)	e		Temporary Well No. TK 568-1
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recov	Sample	DESCRIPTION	
17-	1243			ML	90			Open Borehole
18						$\ \cdot\ $	SANDY CLAYEY SILT, STA, odor,	
19	1731			ML	90			—Bentonite Pellets
20							SANDY CLAYEY SILT, STA, odor,	
21 -	1780			ML	90			
22							CLAYEY SANDY SILT, very fine grain sand,	2" Sch 40 PVC w/Threaded Joints
23	1125			ML	90		soft, damp to moist, brown, odor,	
24							SILTY SANDY CLAY, low, soft to firm, damp, brown, odor,	
25	1119			CL	90		blown, odol,	
26-							SILTY SANDY CLAY, STA, odor,	
27	965			CL	90			
28-							SILTY SANDY CLAY, STA, odor,	—
29	970			CL	90			2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
30-							SILTY SANDY CLAY, STA, black discoloration in sand at base, very moist, odor,	Screen w/ Infredued Joints
31 –	1308			CL	90	$\ \wedge \ $	·	
32	1680			SC	90		CLAYEY SAND, fine grain, loose, saturated, black, odor,	
33-	733			CL	90		SILTY CLAY, low, firm, damp, brown, odor,	
34-	1605			CI	90		SILTY SANDY CLAY, low, soft, black discoloration, damp, brown, odor,	
35	1695	∇		CL	90			
36 — 37 —	1282			SM			SILTY SAND, fine, loose, saturated, grey, odor, poor recovery,	
3,								

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan Drilling Rig

: CME 75

: Hollow-Stem Auger

: 2" Split Spoon - 2" Diameter : Hand Augered to 6 Feet

Comments Total Depth : 49' **Ground Water**

Drilling Method

Sampling Method

: 32' BGL Start Date : 9/23/2016 Finish Date : 9/23/2016

WELL NO. TK 568-1

(Sheet 3 of 3)

Elev., TOC (ft.msl) Elev., PAD (ft. msl)

Elev., GL (ft. msl) : 6950.66

Site Coordinates

: N 35° 29.412' Ε : W 108° 25.430

							1 IIIISII Date . 9/23/2010	. ** 100 25.400
							Saturation Saturation	Tamana wa wa Mali
							✓ Saturation	Temporary Well
(;	Ê	LC	>		Recovery (%)			Temporary Well No. TK 568-1
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	cover	Sample		_
		Sat	圭	Sn	Re	Saı	DESCRIPTION	
37-	1282			SM	10			2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
38-							SANDY CLAY, low, firm, damp to moist,	2" Flush Threaded Sch 40 PVC Cap
39-	1078			CL	80		brown, odor, sheen on core,	Sch 40 PVC Cap
40								
]							SANDY CLAY, STA, damp, odor,	
41 —	383			CL	20			
42							SANDY CLAY, STA, white clay at base, odor,	— 10/20 Sieve Sand Filter Pack
43	476			CL	20			10/20 Gieve Gand Filter Fack
44								
45-	144			CL	50		CLAY, low, dense/crumbly, dry, dark reddish brown/grey, no odor,	
]	144			CL	50			
46-							CLAY, STA,	
47	80			CL	20			
48			///				SANDY SHALE, very dense, dry, grey, no	
49	41			SH	20	<u>IX</u>	odor.	
]								
50-								
51								
52								
53 -								
54 —								
]								
55								
56								
57								

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Comments : Hand Auger
Total Depth : 37'
Ground Water : 30'

Start Date : 9/27/2016 Finish Date : 9/27/2016

WELL NO. TK 568-2

(Sheet 1 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6950.66

Site Coordinates

N : N 35° 29.396' E : W 108° 25.435'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Total Depth : 37'
Ground Water : 30'
Start Date : 9/27/2016
Finish Date : 9/27/2016

WELL NO. TK 568-2

(Sheet 2 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6950.66

Site Coordinates

N : N 35° 29.396' E : W 108° 25.435'

							Finish Date : 9/27/2016		. W 106° 25.435
							Saturation		
							_▼ Saturation	Т	emporary Well
		_			(%)			Temporary '	Well No. TK 568-2
Depth (ft.)	PID (ppm)	Saturation	Lithology	S	Recovery (%)	eldi			
	PID	Satı	Litho	nscs	Reo	Sample	DESCRIPTION		
17-						 		 	
18	-				-		SANDY CLAY, STA, faint odor,	_ -o _i	oen Borehole
19 19	36.5			CL	40		JANUT GEAT, STA, Idilit GGGI,		
]									
20							SANDY CLAY, STA, trace gravel, faint odor,		
21 -	29.6			CL	40				
22							CLAYEY SAND, fine grain, loose, trace	Be	entonite Pellets
23	82			SC	60	$\ \mathbf{y} \ $	gravel, damp, brown, odor,		Sch 40 PVC
24									Threaded Joints
]							No Recovery - white sandstone lodged in shoe		
25	-				-				
26							No Recovery - very dense hard sandstone in		
27	-				-		shoe		
28									
]						\mathbb{N}/\mathbb{I}	CLAYEY SAND, very fine to fine, compact, moist to saturated at 30', brown, odor,		
29	2803			SC	90	$\ \dot{\Lambda}\ $			
30-		\blacksquare					CLAYEY SAND, STA, white sandstone	⊣ - 10	1/20 Sieve Sand Filter Pack
31 -	-	H	///	SC	90		lenses present, trace gravel, odor,		Sch 40 PVC Slotted 0.01" creen w/Threaded Joints
32							ODANELLY CAND (reen w/ mieaded Joints
33				SP	90		GRAVELLY SAND, fine to medium, compact, gravel 1/4 to 1/2", saturated, brown, odor,		
]	-			3P	90		sheen on sampler,		
34-	_			GP	90		SANDY GRAVEL, well rounded, loose,		
35	5 0					$\ - \ $	saturated, odor, CLAYSTONE, very hard/dense, dry, dark		
36	53			CLST	90		reddish brown,		Fluid Throaded
37	21			CLST	50	X	CLAYSTONE, STA, shaley at base.		Flush Threaded ch 40 PVC Cap
3/									

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet
Total Depth : 42'
Ground Water : 24-26'

Start Date : 10/4/2016 Finish Date : 10/4/2016 WELL NO. TK 569-1

(Sheet 1 of 3)

Elev., TOC (ft.msl) ::
Elev., PAD (ft. msl) ::

Elev., GL (ft. msl) : 6952.00

Site Coordinates :

N : N 35° 29.403' E : W 108° 25.469'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter Comments : Hand Augered to 6 Feet

Total Depth : 42'
Ground Water : 24-26'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-1

(Sheet 2 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.469'

							Finish Date : 10/4/2016	E : W 108° 25.469'
							Saturation	
							_ ▼ Saturation	Temporary Well
					<u>@</u>		<u></u> ✓ Saturation	Tampayaw Wall No. TV FCO 1
ig:	Ē	on	≥		Recovery (%)			Temporary Well No. TK 569-1
Depth (ft.)	PID (ppm)	Saturation	ôolo		ove	Sample		_
	PD	Satı	Lithology	uscs	Rec	Sar	DESCRIPTION	
15-				1 1		 	1	
	13.6		///	CL	70			Open Borehole
16			-/-				SANDY CLAY, STA, odor,	
,	32.6		///	CL	60			
17-	32.0			CL	60			
18						Щ		—Bentonite Pellets
]			///			IN /I	SANDY CLAY, STA, odor,	
19-	152		///	CL	70	X		—2" Sch 40 PVC w/Threaded Joints
= =						IV V		W/Threaded Joints
20-							CLAYEY SILTY SAND, fine to medium grain,	
21	41.6			SC/SM	90		compact, becomes more silty with depth, gravel at base, damp, odor,	
22						$H \rightarrow$	CLAYEY SILTY SAND, STA, medium to	
							coarse sand, occasional gravel, damp,	
23	92.2			SC/SM	90			
24		lacksquare				Щ		
-						IN /I	CLAYEY SILTY SAND, very fine grain, compact, moist to saturated in silty sand	
25	2158			SC/SM	90	X	seams, brown, odor,	
						/ \		
26-							SANDY CLAY, STA with greater clay content,	10/20 Sieve Sand Filter Pack
27	1147		///	CL	20		brown trace gravel at base, moist to saturated in silty sand seams,	
''	+/				20		January Sand Souries,	
28						$\parallel \parallel$	GRAVELLY SILTY SAND, medium to coarse	2" Sch 40 PVC Slotted 0.01"
							grain, compact, damp to moist in seams-not	Screen w/Threaded Joints
29-	1060			SM	50		saturated throughtout core, brown, odor, sandstone gravel present,	
[danasiono gravor prodont,	
30-			0 0 0				CLAYEY SANDY GRAVEL, 1/8" to 1/2" gravel	
31	1353			GW	60		with medium to coarse grain sand, compact to loose, saturated, brown, odor,	
		🛮	, , , , ,	CI	60	$\ \ \ $	SILTY CLAY, low, firm, damp, brown, odor,	
32			///	CL	00	$\parallel \parallel$	SILTY CLAY, low, firm, damp, brown, odor, SILTY CLAY, STA, odor,	
	1622		///	CL			5.2.1. 5271, 577, 5351,	
33		ı k		ı I		'' '	1	I I B H

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet
Total Depth : 42'

Ground Water : 24-26'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-1

(Sheet 3 of 3)

Elev., TOC (ft.msl)

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.469'

Geologist : Tracy Payne

: Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 38'

Ground Water : 31'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-2

(Sheet 1 of 3)

Elev., TOC (ft.msl)
Elev., PAD (ft. msl)

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.451'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 38'

Ground Water : 31'
Start Date : 10/4/2016
Finish Date : 10/4/2016

WELL NO. TK 569-2

(Sheet 2 of 3)

Elev., TOC (ft.msl) :
Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.451'

							Finish Date : 10/4/2016	E : W 108° 25.451'
							Saturation	
							▼ Saturation	Temporary Well
$\overline{}$	<u>_</u>	L			Recovery (%)			Temporary Well No. TK 569-2
Depth (ft.)	PID (ppm)	Saturation	Lithology	SS	over	Sample		
Dec		Sat	Lith	nscs	Rec	Sar	DESCRIPTION	
13	36.5			CL	10			
14	36.5			CL	10			_
]							CLAYEY SAND, very fine grain, compact, damp, brown, odor,	
15	899			SC	70			
16						Щ		Open Borehole
]						$ \setminus / $	CLAYEY SAND, STA, odor,	
17	2332			SC	70	$\ \lambda\ $		
18						$ \Delta $		_
=							CLAYEY SAND/SANDY CLAY, STA, odor,	
19	702			SC/CL	90			
20								
=							CLAYEY SAND, STA, sand/gravel lense from 21-21.5', loose, damp, grey,	
21	833			SC	60			—Bentonite Pellets
22								
				SM			SILTY SAND, fine grain, loose, damp, brown, odor,	
23	398			Sivi	90			
24			.00	GW		Щ	SANDY GRAVEL, grey sandstone gravel with fine to coarse grain sand, damp, odor,	2" Sch 40 PVC w/Threaded Joints
=							SANDY GRAVEL, STA, white sandstone	
25	190		0 0 0	GW	10		present,	
26			0.000			Ш		- 10/20 Sieve Sand Filter Pack
·			0000				SANDY GRAVEL, STA, white sandstone present,	
27	1973		0 0 0	GW	10			
28			0 0 0					2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
	1684		0 0 0	GW			SANDY GRAVEL, STA, poor recovery, very hard, trace clay, damp,	
29			0 . 0 . 0	 				

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Total Depth : 38'
Ground Water : 31'

Start Date : 10/4/2016 Finish Date : 10/4/2016

WELL NO. TK 569-2

(Sheet 3 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.403' E : W 108° 25.451'

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan
Drilling Rig : CME 75

Drilling Rig : CME 75
Drilling Method : Hollow-Stem Auger

Sampling Method : 2" Split Spoon - 2" Diameter Comments : Hand Augered to 6 Feet

Total Depth : 39'
Ground Water : 26'
Start Date : 9/28/2016
Finish Date : 9/28/2016

WELL NO. TK 569-3

(Sheet 1 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.390' E : W 108° 25.459'

						Finish Date : 9/28/2016	E : W 108° 25.459'
Depth (ft.) PID (ppm)	Saturation	Lithology	SS	Recovery (%)	Sample	Saturation ▼ Saturation ∇ Saturation	Temporary Well Temporary Well No. TK 569-3
Dep	Satı	Ë	nscs	Rec	San	DESCRIPTION	
-3 - -2 - -1 -							Top of Casing 2.25' Above Ground Level
0 - 8.9			CL	100		SILTY CLAY, low, firm, damp, brown, no odor,	
3 10.4			CL	100		SILTY CLAY, SIMILAR TO ABOVE (STA),	
5 — 12.4 6 —			CL	100		SILTY CLAY, STA,	
7 31.8 8			CL	60		SILTY CLAY, STA,	— Open Borehole
9 27.6			CL	50		SILTY CLAY, STA, soft,	2" Sch 40 PVC w/Threaded Joints
11 = 50.9			CL	70		SILTY CLAY, low, firm, damp, brown, odor,	
12 - 63.9			CL	60		SILTY CLAY, STA, trace very fine grain sand, odor,	
14 - 303			sc	70		CLAYEY SAND, very fine, compact, damp, brown, odor,	
16 - 377			sc	70		CLAYEY SAND, STA, odor,	— Bentonite Pellets
18 — 250 19 —			SC/CL			CLAYEY SAND/SANDY CLAY, STA, odor,	

Geologist : Tracy Payne
Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter
Comments : Hand Augered to 6 Feet

Total Depth : 39'
Ground Water : 26'
Start Date : 9/28/2016
Finish Date : 9/28/2016

WELL NO. TK 569-3

(Sheet 2 of 2)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6952.00

Site Coordinates

N : N 35° 29.390' E : W 108° 25.459'

Geologist : Tracy Payne

: Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet

Total Depth : 45'
Ground Water : 33' BGL

Start Date : 9/27/2016 Finish Date : 9/27/2016

WELL NO. TK 570-1

(Sheet 1 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6958.88

Site Coordinates

N : N 35° 29.377' E : W 108° 25.459'

Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	Saturation Saturation DESCRIPTION	Te	Temporary Well mporary Well No. TK 570-1
		Sa	Ë	n	Ä	S	DESCRIPTION		
-3 -2 -1 -1								_	Top of Casing 2' Above Ground Level
1-2-	5.3			FILL	100		FILL-SILT/GRAVEL, damp, brown, no odor,		
	14.9			FILL	100		FILL-SILT/GRAVEL, SIMILAR TO ABOVE (STA), faint odor,		
	15.8			FILL	100		FILL-SILT/GRAVEL, STA, faint odor,		2" Sch 40 PVC w/Threaded Joints
7- 2	24.1			SW	90		GRAVELLY SAND, medium to coarse, loose, damp, odor,		— Open Borehole
	1775			GM	90		CLAYEY GRAVEL, 1/4" to 1/2" gravel in low plastic, brown, damp clay, odor,		
	3445			ML	10		SANDY SILT, low, very soft, damp, dark brown, odor,		
12-	2408			ML			SANDY SILT, STA, odor,		

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet

Total Depth : 45' Ground Water : 33' BGL

Start Date : 9/27/2016 Finish Date : 9/27/2016 WELL NO. TK 570-1

(Sheet 2 of 3)

Elev., TOC (ft.msl) ::
Elev., PAD (ft. msl) ::

Elev., GL (ft. msl) : 6958.88

Site Coordinates

N : N 35° 29.377' E : W 108° 25.459'

							Finish Date : 9/27/2016		. W 106° 25.459
							Saturation		
							<u>▼</u> Saturation		Temporary Well
	=	ے			(%)				Temporary Well No. TK 570-1
Depth (ft.)	PID (ppm)	Saturation	Lithology	တ္သ	Recovery (%)	Sample			
Deb	PID	Satu	Lithc	nscs	Rec	San	DESCRIPTION		
13-							1		1111
14-	2408			ML	10				
'							SANDY CLAY, low, firm to soft, damp, sandy at base, brown, odor,		
15	2350			CL	90				
10									
16-							SILTY CLAY, low, firm, damp, ocassional sandy clay lenses, brown, odor,		
17	1139			CL	90				
									Open Borehole
18-							SILTY CLAY, STA, odor,		
19-	1250			CL	90				
20-	1460			CL	90		SILTY CLAY, STA, odor,		2" Sch 40 PVC
21 –	1400			<u> </u>	50	\square	OLAVEY CAND fire and the least design		w/Threaded Joints
				SC	90		CLAYEY SAND, fine, compact to loose, damp, brown, odor,		
22-							CLAYEY SAND, STA, decrease in clay with		
23-	399			SC	90		depth, odor,		
									—Bentonite Pellets
24-							CLAYEY SAND, STA, odor,		Dentonite i citeta
25	695			SC	100				
			///	- -					
26						$\ - \ $	SILTY SAND, very fine, soft/compact, damp,	\dashv	
27-	952			SM	90		brown, odor,		
21 -	332			OIVI	30				-10/20 Sieve Sand Filter Pack
28						$ $ $ $	CLAYEY SAND, very fine, compact, damp,	\dashv	
	1441			SC			brown, odor,		2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
29 –					•		•		,

Geologist : Tracy Payne

Driller : Enviro-Drill, Inc./Cohagan

Drilling Rig : CME 75

Drilling Method : Hollow-Stem Auger
Sampling Method : 2" Split Spoon - 2" Diameter

Comments : Hand Augered to 6 Feet Total Depth : 45'

Ground Water : 33' BGL
Start Date : 9/27/2016
Finish Date : 9/27/2016

WELL NO. TK 570-1

(Sheet 3 of 3)

Elev., TOC (ft.msl) : Elev., PAD (ft. msl) :

Elev., GL (ft. msl) : 6958.88

Site Coordinates

N : N 35° 29.377' E : W 108° 25.459'

Tank 570 WELLS FLUID LEVEL MEASUREMENTS MARATHON - GALLUP REFINERY

Gallup, New Mexico

	Data	DTP	DTW	PSH thickness	Total Depth	Screen Interval	Stickup
Well ID	Date	(ft-btoc)	(ft-btoc)	(ft)	(ft-btoc)	(ft-bgl)	(ft)
TK570-1	9/30/2016	33.75	35.63	1.88	44.35	28 - 43	2.0
TK570-2	8/13/2019	33.52	33.53	0.01	45.39	24 - 44	3.0
TK570-3	8/13/2019	33.65	33.96	0.31	47.34	24 - 44	3.0
TK570-4	8/13/2019	ND	29.45	0	45.03	24 - 44	3.0
TK570-5	8/13/2019	33.92	34.38	0.46	47.32	24 - 44	3.0
RW-1	8/9/2019	27.46	28.12	0.66	NM	25 - 40	3.2

btoc - below top of casing

bgl - below ground level

ft - feet

PSH - phase-separated hydrocarbon

ND - not detected

NM - not measured

DTP - depth to product

DTW - depth to water

Geologist : Tracy Payne
Driller Company : Enviro-Drill, Inc.
Driller : Cohagan

Driller : Cohagan
Drilling Rig : CME 75

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" Diam.

Total Depth : 48'
Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 Finish Date/Time : 7-31-19 / 17:00 WELL NO. TK 570-2

(Sheet 1 of 4)

N : N35° 29' 22.6" E : W108° 25' 27.7" Comments : Hand augered to 6' BGL

Air Temp. (F) : High 87, Low 80

Geologist : Tracy Payne **Driller Company**

: Enviro-Drill, Inc. Driller : Cohagan Drilling Rig : CME 75

: Hollow-Stem Augers Drilling Method Sampling Method : 2' Split Spoon - 2" Diam.

Total Depth : 48' Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 Finish Date/Time : 7-31-19 / 17:00 WELL NO. TK 570-2

(Sheet 2 of 4)

Ν : N35° 29' 22.6" : W108° 25' 27.7" Ε : Hand augered to 6' BGL Comments

Air Temp. (F) : High 87, Low 80

							Saturation	
					_		▼ Saturation	Completion Results
(ft.)	(mdi	ation) day		Recovery (%)	<u>_0</u>		TK 570-2
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recov	Sample	DESCRIPTION	
11-	15,000			CL	90			
12-							SANDY SILTY CLAY - low, soft, damp, brown, trace fine grain sand.	— Open Borehole
13-	15,000			CL	90			
14 -							SANDY SILTY CLAY - STA.	
15-	15,000			CL	90			—Bentonite Pellets
16 - - - - - 17 -	15,000			SC	90		CLAYEY SAND - very fine grain, compact, dark brown, moist to very moist, brown.	
				СН	90		CLAY - high, firm, damp, brown.	
18 – 18 – 18 – 18 – 18 – 18 – 18 – 18 –							CLAYEY SAND / SANDY CLAY - soft, low plasticity, damp, brown.	
Phase 3/TK	15,000			SC/CL	90			—10/20 Sieve Sand Filter Pack —2" Sch 40 PVC w/Threaded Joints
30 – 20 – 3 – 3 – 3 – 3 – 3 – 3 – 3 – 3 – 3 –	-						SILTY CLAY - low, firm, damp, brown.	
21 – 21 – .	15,000			CL	90			
22 – 22 –							CLAYEY SAND - fine, soft/compact, damp, light brown to brown.	
23 –	15,000			SC	90			
09-09-2019 C:Box SynckSheftall, AllielProjects for others/Crouch\WEST19038\Phase 3\TK 570-2.bor	15,000			sc			CLAYEY SAND - STA.	2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
25 –							DiSorbo Consulting, LLC	
1001 Lo Housto 713-95	ouisiana S n, Texas 7 5-1230			250			DISOIDO CONSUMING, ELC	8501 N. MoPac Expy, Suite 300 Austin, Texas 78759 512-693-4190
ŏ								

Geologist : Tracy Payne
Driller Company : Enviro-Drill, Inc.

Driller : Cohagan
Drilling Rig : CME 75

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" Diam.

Total Depth : 48'
Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 Finish Date/Time : 7-31-19 / 17:00

WELL NO. TK 570-2

(Sheet 3 of 4)

N : N35° 29' 22.6" E : W108° 25' 27.7" Comments : Hand augered to 6' BGL

Air Temp. (F) : High 87, Low 80

Geologist : Tracy Payne **Driller Company** : Enviro-Drill, Inc.

Driller : Cohagan Drilling Rig : CME 75

Drilling Method : Hollow-Stem Augers : 2' Split Spoon - 2" Diam. Sampling Method

Total Depth Saturation Depth : 32' & 38' BGL

Start Date/Time : 7-31-19 / 12:00 : 7-31-19 / 17:00 Finish Date/Time

WELL NO. TK 570-2

(Sheet 4 of 4)

Ν : N35° 29' 22.6" Ε : W108° 25' 27.7" Comments : Hand augered to 6' BGL

Air Temp. (F) : High 87, Low 80

52

53

09-09-2019

Geologist Drilling Company

Drilling Company
Driller
Drilling Rig

Drilling Method Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: CME 75

: Enviro-Drill, Inc. : Cohagan

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 48' : 33.5' BGL : 8-1-2019 / 14:30 : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 1 of 4)

N : N35° 29' 22.2" E : W108° 25' 28.1"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 86, Low 70

Saturation Saturation Completion Results Recovery (%) TK 570-3 Saturation Depth (ft.) (mdd) OIc Lithology Sample **DESCRIPTION** -3 -2 Top of Casing 3' above Ground Level -1 0 FILL - SILT/SAND/GRAVEL, dry to damp, brown, no odor. (Respirator donned - no olfactory observations.) 15,000 Fill 100 2 SANDY CLAY - low, firm, damp, brown, calcareous, very fine grain sand. CL 15,000 80 3 2" Sch 40 PVC 4 SANDY CLAY - Similar to above (STA), damp. w/Threaded Joints CL 70 5 15,000 Open Borehole 6 SANDY CLAY - STA, damp. 7 15,000 CL 60 8 SANDY CLAY - STA, damp. CL 70 15,000 9 SM 70 SILTY SAND - fine, angular, compact, damp 10 brown. 15,000 CL SANDY CLAY - low, firm, damp, brown. 11

Geologist **Drilling Company**

Driller Drilling Rig

Drilling Method Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time

: Tracy Payne : Enviro-Drill, Inc.

: Cohagan : CME 75

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 48' : 33.5' BGL : 8-1-2019 / 14:30 : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 2 of 4)

Ν : N35° 29' 22.2" : W108° 25' 28.1" Ε : Hand Augered to 6' BGL Comments

Air Temp. (F) : High 86, Low 70

Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	Saturation Saturation DESCRIPTION	Completion Results TK 570-3
11-								J
12-	15,000			CL	70		SILTY CLAY - high, soft, damp, brown, trace	- — Open Borehole
13-	15,000			СН	80		very fine grain sand.	
14— - - 15—	15,000			CL	80		SANDY SILTY CLAY - low to moderate, soft, damp, brown, very fine grain sand.	— Bentonite Pellets
- -	15,000			SM	40		SILTY SAND - fine to medium, subangular, loose, damp, brown, trace gravel.	2" Sch 40 PVC w/Threaded Joints
18— - 19— - 20—	15,000			CL	50		SANDY SILTY CLAY - low to moderate, firm to soft, damp, brown.	— 10/20 Sieve Sand Filter Pack
21-	15,000			CL	90		SILTY CLAY - low, firm, damp, brown.	
-	15,000			CL	90		SANDY SILTY CLAY - low, firm, damp, brown, very fine grain sand.	
24 — - - 25 —	15,000			CL			SANDY SILTY CLAY - STA, damp.	2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints

713-955-1230

Geologist Drilling Company

Driller
Drilling Rig

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" diamet.

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

Total Depth : 48'
Saturation Depth : 33.5' BGL
Start Date/Time : 8-1-2019 / 14:30
Finish Date/Time : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 3 of 4)

N : N35° 29' 22.2" E : W108° 25' 28.1" Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 86, Low 70

							Saturation	
					_		▼ Saturation	Completion Results
£ (t)	E E	nc	^		Recovery (%)			TK 570-3
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	cover	Sample		_
	믭	Sat	Lif	SN	Rec	Sar	DESCRIPTION	
25-	45.000							
26-	15,000			CL	90	Ш		
							SANDY SILTY CLAY - STA, sand lenses throughout, damp.	
27	15,000			CL	90			
-								
28-							SANDY SILTY CLAY - low, firm, damp,	
29-	15,000			CL	90		brown.	
-	10,000			OL				
30-						\blacksquare	SILTY CLAY - moderate to low, firm to soft,	
-							damp, brown.	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
31-	15,000			CL	100			10/20 Sieve Salid Filler Fack
32-								2" Sch 40 PVC Slotted 0.01"
-						\mathbb{N}	SILTY CLAY - STA.	Screen w/Threaded Joints
33-	15,000			CL	100	$\ \lambda\ $		
-	15,000	1		SM	100	\mathbb{H}	SILTY SAND - fine to medium, loose, very	
34	10,000			OW	100	H	moist, brown. SAND - medium, loose, saturated, brown.	
35-	15,000		OWOWOWO OWOWOWO OWOWOWO	SP	100		o, and inicalant, losses, saturated, shemin	
35-	15,000		0740740740 0740740740 0740740740	SF	100			
36-							SAND - STA.	
-							SAND - STA.	
37	15,000			SP	100			
38-	15,000			SP	100		SAND - STA.	
39-								

Geologist
Drilling Company

Driller
Drilling Rig

Drilling Method
Sampling Method
Total Depth

Saturation Depth
Start Date/Time
Finish Date/Time

: Tracy Payne

: CME 75

: Enviro-Drill, Inc. : Cohagan

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 48' : 33.5' BGL : 8-1-2019 / 14:30 : 8-5-2019 / 17:20

WELL NO. TK 570-3

(Sheet 4 of 4)

N : N35° 29' 22.2" E : W108° 25' 28.1"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 86, Low 70

Saturation Saturation Completion Results Recovery (%) TK 570-3 PID (ppm) Saturation Depth (ft.) Lithology Sample **USCS DESCRIPTION** 39 CLAY - high, very stiff, damp, brown, dark olive brown sandstone at base. 15,000 CL 100 40 SILTY CLAY - low, stiff, damp, dark brown, pockets of light tan silt throughout. 15,000 CL 80 41 2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints 42 SILTY CLAY - low, firm to soft, damp, moist in 10/20 Sieve Sand Filter Pack sand seams, gravel at base. 43 2810 CL 80 44 CLAY/CLAYSTONE - low, very stiff, dark 2" Flush Threaded reddish brown-trace gray, damp, shaley. Sch 40 PVC Cap CLST 50 45 4494 46 CLAYSTONE - STA. CLST 47 116 40 48 49 50 51

52

53

Geologist **Drilling Company**

Driller Drilling Rig

Drilling Method Sampling Method

Total Depth Saturation Depth : Tracy Payne

: Enviro-Drill, Inc. : Cohagen

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 26' and 42' BGL Start Date/Time : 8-7-2019 / 19:50 Finish Date/Time : 8-7-2019 / 13:00

: CME 75

WELL NO. TK 570-4

(Sheet 1 of 4)

Ν : N35° 29' 21.7" Ε : W108° 25' 27.5"

Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 75, Low 72

Geologist Drilling Company

Driller
Drilling Rig

Drilling Method
Sampling Method
Total Dooth

Total Depth
Saturation Depth
Start Date/Time

Start Date/Time : 8-7-2019 / 19:50 Finish Date/Time : 8-7-2019 / 13:00

: Tracy Payne

: Cohagen

: CME 75

: Enviro-Drill, Inc.

: 26' and 42' BGL

: Hollow-Stem Augers

: 2' Split Spoon - 2" diamet.

WELL NO. TK 570-4

(Sheet 2 of 4)

N : N35° 29' 21.7" E : W108° 25' 27.5"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 75, Low 72

					1		<u> </u>	T
							Saturation Saturation	Completion Results
(T)	<u>ب</u>	uc	_		Recovery (%)			TK 570-4
Depth (ft.)	PID (ppm)	Saturation	Lithology	တ္သ	over	Sample		4
		Sat	Liŧ	nscs	Rec	Sar	DESCRIPTION	
10-							SILTY CLAY - low, very soft, damp, greyish	7
				۵.			brown.	
11-	15,000			CL	25			On an Branchala
12-								Open Borehole
-							SILTY CLAY - STA, damp.	
13-	15,000			CL	25			
-								
14-							SILTY SANDY CLAY - low, very soft, damp,	
_							brown - sand in matrix and in lenses.	—Bentonite Seal
15	15,000			CL	90			
-								
16-						$\ \cdot\ $	SILTY SANDY CLAY - STA, damper than	
-				CL	90		above.	2" Sch 40 PVC w/Threaded Joints
17-	15,000						CLAY - high, very stiff, damp, brown.	7
-				СН	90			│
18-							SILTY CLAY - low, very soft, damp, brown.	7
-	45.000							
19-	15,000			CL	90			
20-								
-							SILTY CLAY - low, firm to soft, damp, brown, trace very fine grain sand.	
21-	15,000			CL	90			
-								
22-							SH TV SANDY OLAY Januara filozofia	4 1111
-	15,000			CL			SILTY SANDY CLAY - low, soft/crumbly, damp, fine grain sand, calcareous at base.	
23-								

Geologist
Drilling Company

Driller
Drilling Rig

Drilling Method Sampling Method

Total Depth : 48'
Saturation Depth : 26' and 42' BGL

: Tracy Payne

: Cohagen

: CME 75

: Enviro-Drill, Inc.

: 8-7-2019 / 19:50

: 8-7-2019 / 13:00

: Hollow-Stem Augers

: 2' Split Spoon - 2" diamet.

Start Date/Time Finish Date/Time WELL NO. TK 570-4

(Sheet 3 of 4)

N : N35° 29' 21.7" E : W108° 25' 27.5"

Comments : Hand Augered to 6' BGL

Air Temp. (F) : High 75, Low 72

Lithology

СН

СН

СН

GC

CLST

CLST

PID (ppm)

834

989

607

2686

624

99

Depth (ft.)

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Saturation

Recovery (%)

100

70

90

80

50

40

Geologist Drilling Company

Driller
Drilling Rig

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" diamet.

Total Depth Saturation Depth

Start Date/Time : 8-7-2019 / 19:50 Finish Date/Time : 8-7-2019 / 13:00

: Tracy Payne

: Cohagen

: CME 75

: Enviro-Drill, Inc.

: 26' and 42' BGL

WELL NO. TK 570-4

(Sheet 4 of 4)

N : N35° 29' 21.7" E : W108° 25' 27.5"

Comments : Hand Augered to 6' BGL Air Temp. (F) : High 75, Low 72

Saturation Saturation Completion Results TK 570-4 Sample **DESCRIPTION** SILTY CLAY / CLAY - high, stiff, damp, brown, calcareous nodules present. SILTY CLAY / CLAY - STA, dark brown, pockets of tan / light tansilt present. 2" Sch 40 PVC Slotted 0.01" Screen w/ Threaded Joints SILTY CLAY / CLAY - high, very stiff, damp, 10/20 Sieve Sand Filter Pack dark brown, pockets of light tan silt present, very calcareous (10mm gravel). CLAYEY SANDY GRAVEL - Angular 20mm gravel, brown clay, medium grain sand, moist to saturated. CLAY/CLAYSTONE - low, very stiff, dark 2" Flush Threaded reddish brown, damp, shaley at base. Sch 40 PVC Cap CLAYSTONE - STA.

Geologist
Drilling Company

Drilling Company
Driller
Drilling Rig

Drilling Method
Sampling Method

Total Depth
Saturation Depth

Start Date/Time Finish Date/Time : Tracy Payne

: Enviro-Drill, Inc. : Cohagan

: Hollow-Stem Augers : 2' Split Spoon - 2" diamet.

: 46'

: CME 75

: 32', 36', & 40' BGL : 8-8-2019 / 10:30 : 8-8-2019 / 14:20 WELL NO. TK 570-5

(Sheet 1 of 4)

N : N35° 29' 22.0" E : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

Geologist Drilling Company

Driller
Drilling Rig
Drilling Method

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" diamet.

Total Depth : 46'
Saturation Depth : 32', 36', & 40' BGL

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

Start Date/Time : 8-8-2019 / 10:30 Finish Date/Time : 8-8-2019 / 14:20

WELL NO. TK 570-5

(Sheet 2 of 4)

N : N35° 29' 22.0" E : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

							1 IIIISTI Date/11IIIe : 0-0-2019 / 14.20	
							Saturation	
							_ ▼ Saturation	Completion Results
		_			(%)			TK 570-5
) (ft.)) (mdc	atior	ogy		very	<u>e</u>		
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	DESCRIPTION	
9-	ш.			ا ا	LE.	0)		
	,			SC/CL	70			
	1			SC/CL	70			
10-							SILTY SANDY CLAY - low, soft/crumbly, dry	7
							to damp, brown, fine to medium grain sand.	
11-	98.5			CL	70			Open Borehole
-								
12-								_
							SILTY CLAY - low, soft, damp, brown, trace fine grain sand.	
1	004			01	40			2" Sch 40 PVC
13-	324			CL	40			w/Threaded Joints
]								
14-						Н	SILTY CLAY - STA, dark brown, damper than	
-							above.	—Bentonite Seal
15-	855			CL	80			
16-								
						\mathbb{N}	SILTY CLAY - high, stiff, damp, dark brown.	
						$ \setminus / $		
17-	1515			СН	90			
						$ / \setminus $		50 1 A 50 50 1 A 50 50 1 A 50 50 1 A 50
18-						Щ	SILTY CLAY - STA.	
]				СН	90		SILIT GEAT - GTA.	10/20 Sieve Sand Filter Pack
19-	1285							
' -	.200			N/1	00		CLAYEY SILT - low, soft, moist, brown, trace fine grain sand.	
[]				ML	90			
20-							SILTY CLAY - high, stiff, damp, brown, sandy	
	5210			СН			at base.	
21			////					

Geologist

Drilling Company Driller Drilling Rig

Drilling Method : Hollow-Stem Augers Sampling Method : 2' Split Spoon - 2" diamet.

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

Total Depth Saturation Depth : 32', 36', & 40' BGL

Start Date/Time : 8-8-2019 / 10:30 Finish Date/Time : 8-8-2019 / 14:20

WELL NO. TK 570-5

(Sheet 3 of 4)

Ν : N35° 29' 22.0" Ε : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

							Finish Date/Time : 8-8-2019 / 14:20	
							Saturation	
							▼ Saturation	Completion Results
	_				(%)			TK 570-5
(ft.)	(mdc	ation	ббс		/ery	<u>a</u>		
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample	DESCRIPTION	7
21-		0)		ا ر	<u> </u>	<u> </u>		
	5210			СН	90			
-	3210				90			
22-	1						CLAYEY SAND / SANDY CLAY - low, soft,	
							crumbly, damp, brown, fine grain sand.	2" Sch 40 PVC
23-	15,000			SC/CL	90			w/Threaded Joints
-								
24-						$\lVert - \rVert$	SANDY CLAY - moderate, stiff, damp, brown,	
							fine grain sand.	
25-	15,000			CL	90			
-								
	1			1				
26-							SANDY CLAY - low, firm, damp, brown, fine grain sand in matrix and lense.	
-							grain sand in matrix and tense.	
27 -	15,000			CL	60			- 10/20 Sieve Sand Filter Pack
-	1							
28-						H	CLAY - high, stiff, damp, brown.	2" Sch 40 PVC Slotted 0.01" Screen w/Threaded Joints
-							, and a second s	
- 29 –	7549			СН	90			
-				1				
30-]							
-						$\ \ \ $	SANDY CLAY - low, firm to soft, damp, brown.	
-								
31-	15,000			CL	90			
				1				
32-		1				$\ \cdot \ $	SILTY SAND - fine, medium, compact, very	
-	15,000			SM			moist, seperate-phase hydrocarbon present, greyish brown.	
33-	1						3.57.57.2.5	

Geologist

Saturation Depth

Drilling Company
Driller
Drilling Rig

Drilling Method : Hollow-Stem Augers
Sampling Method : 2' Split Spoon - 2" diamet.

: Tracy Payne

: Cohagan

: CME 75

: Enviro-Drill, Inc.

: 32', 36', & 40' BGL

Total Depth : 46

Start Date/Time : 8-8-2019 / 10:30 Finish Date/Time : 8-8-2019 / 14:20

WELL NO. TK 570-5

(Sheet 4 of 4)

N : N35° 29' 22.0" E : W108° 25' 27.0"

Comments: Hand augered to 2' - refusal in gravel.

Air Temp.(F) High 81, Low 77

C:\Box Sync\Sheftall, Allie\Projects for others\Crouch\WEST19038\Phase 3\TK 570-5.bor

09-09-2019

Well Development

All monitoring wells will be developed to create an effective filter pack around the well screen, correct damage to the formation caused by drilling, remove fine particles from the formation near the borehole, and assist in restoring the natural water quality of the aquifer in the vicinity of the well. Newly installed monitoring wells will not be developed for at least 48 hours after the surface pad and outer protective casing are installed. This will allow sufficient time for the well materials to cure before the development procedures are initiated. A new monitoring well will be developed until the column of water in the well is free of visible sediment, and the pH, temperature, turbidity, and specific conductivity have stabilized. In most cases, the above requirements can be satisfied. However, in some cases, the pH, temperature, and specific conductivity may stabilize but the water remains turbid. In this case, continuous flushing may be necessary to complete the well development. If the well is pumped dry, the water level will be allowed to sufficiently recover before the next development period is initiated. The common methods used for developing wells include:

- (1) pumping and over-pumping;
- (2) backwashing;
- (3) surging (with a surge block);
- (4) bailing;
- (5) jetting; and
- (6) airlift pumping.

These development procedures will be used, either individually or in combination, to achieve the most effective well development. However, the most favorable well development methods include pumping, over-pumping, bailing, surging, or a combination of these methods. Well development methods and equipment that alter the chemical composition of the groundwater will not be used.

Development methods that involve adding water or other fluids to the well or borehole, or that use air to accomplish well development will be avoided, if possible. Approval will be obtained from the NMED prior to introducing air, water, or other fluids into the well for the purpose of well development. If water is introduced to a borehole during well drilling and completion, then the same or greater volume of water will be removed from the well during development. In addition, the volume of water withdrawn from a well during development will be recorded, and best efforts will be used to avoid pumping wells dry during development activities.

Well Purging

All zones in each monitoring well will be purged by removing groundwater prior to sampling and in order to ensure that formation water is being sampled. Purge volumes will be determined by monitoring, at a minimum, groundwater pH, specific conductance, dissolved oxygen concentrations, turbidity, redox potential, and temperature during purging of volumes and at measurement intervals of not less than ½ the pre-purge well volume. The groundwater quality parameters and fluid levels will be measured using a YSI Professional Plus Multiparameter Meter, YSI Water Quality Sonde, Hach Portable Turbidimeter, and a Geotech Interface Meter. The volume of groundwater purged, the instruments used, and the readings obtained at each interval will be recorded on the field monitoring log. In general, water samples may be obtained from the well after the measured parameters of the purge water have stabilized to within ten percent for three consecutive measurements. Well purging

may also be conducted in accordance with the NMED's Position Paper "Use of Low-Flow and other Non-Traditional Sampling Techniques for RCRA Compliant Groundwater Monitoring" (October 30, 2001). If necessary, a written request for a variance from the described methods of well purging for individual wells may be submitted to NMED no later than 90 days prior to scheduled sampling activities.