AP - 111

SWMU-13 DRAINAGE DITCH (2)

2019

INVESTIGATION REPORT SWMU 13 – Drainage Ditch between API Evaporation Ponds and Neutralization Tank Evaporation Ponds

Gallup Refinery Marathon Petroleum Company Gallup, New Mexico

EPA ID# NMD000333211

January 2020

Scott Crouch, P.G DiSorbo Consulting, LLC

8501 North Mopac Expy

512.693.4190 (P)

Suite 300

Austin, TX 78759

www.disorboconsult.com

512.279.3118 (F)

Table of Contents

List of	Acronym	s	i	
Execut	ive Sum	mary	i	
Sectio	n 1 Intro	duction	1-1	
Sectio	n 2 Back	ground	2-1	
Section	n 3 Scop	e of Activities	3-1	
3.1	Soil B	oring, Temporary Monitoring Well Installation and Sample Collection	3-1	
	3.1.1	Site Investigation	3-1	
3.2	Collec	ction and Management of Investigation Derived Waste	3-3	
3.3	Surve	ys	3-3	
Sectio	n 4 Field	Investigation Results	4-1	
4.1	Surfa	ce Conditions	4-1	
4.2	Subsi	urface Conditions	4-1	
	4.2.1	Geology	4-2	
	4.2.2	Hydrogeology	4-2	
4.3	Explo	ratory Drilling Investigations, Soil Sampling and Boring Abandonment	4-4	
	4.3.1	Soil Investigation	4-4	
4.4	Monit	or Well Construction and Groundwater Sampling	4-16	
	4.4.1	Groundwater Investigation	4-17	
Sectio	n 5 Regu	latory Criteria	5-1	
Sectio	n 6 Site I	mpacts	6-1	
6.1	Soil A	Soil Analytical Results		
6.2	Grour	ndwater Analytical Results	6-3	
6.3	Gene	ral Groundwater Chemistry	6-6	
Sectio	n 7 Cond	lusions and Recommendations	7-1	
7.1	Concl	Conclusions7-2		
7.2	Reco	mmendations	7-2	
Continu	o O Dofo	vanaa.	0.1	

Table of Contents (Continued)

List of Tables

Table 1	Vapor Screening Results
Table 2	Groundwater Field Measurements
Table 3	Soil Screening Levels
Table 4	Groundwater Screening Levels
Table 5	Soil Analytical Results Summary
Table 6	Groundwater Analytical Results Summary

List of Figures

Figure 1	Site Location Map	
Figure 2	Site Map	
Figure 3	Location of Soil Borings and Wells	
Figure 4	Topographic Map	
Figure 5	Geologic Map of New Mexico	
Figure 6	Cross Section A-A'	
Figure 7	August 2018 Potentiometric Surface Map	
Figure 8	Chromium (total) Soils Concentration Map	
Figure 9	Manganese Soils Concentration Map	
Figure 10	Diesel Range Organics Soils Concentration Map	
Figure 11	Motor Oil Range Organics Soils Concentration Map	
Figure 12	Arsenic, Beryllium, Iron, and Lead Totals Groundwater Concentration Map	
Figure 13	Manganese (total), Chloride, Sulfate, and Fluoride Groundwater Concentration Map	
Figure 14	Arsenic, Iron and Manganese Dissolved Groundwater Concentration Map	
Figure 15	Gasoline Range and Diesel Range Organics Groundwater Concentration Map	

Table of Contents (Continued)

Appendices

Appendix A 1991 RFI Sampling Information

Appendix B 1996 Sampling Information

Appendix C Survey Data

Appendix D Permeability and Hydraulic Conductivity Evaluations

Appendix E Field Methods

Appendix F Soil Boring/Well Logs

Appendix G Photographs of Soil Cores

Appendix H Analytical Data Reports

Appendix I Quality Assurance/Quality Control Review

List of Acronyms

API American Petroleum Institute

AOCs areas of concern

BTEX benzene, toluene, ethylbenzene, and xylene

bgl below ground level (bgl) btoc below top of casing

CFR Code of Federal Regulations

DRO diesel range organics
DAF dilution/attenuation factor
EPA Environmental Protection Agency

gpm gallons per minute HI hazard index HSA hollow-stem auger

IDW investigation derived waste LPG liquefied petroleum gas LTU Land Treatment Unit

MADEP Massachusetts Department of Environmental Protection

MCL maximum contaminant level

msl mean sea level MW monitoring well

NMAC New Mexico Administrative Code
NMED New Mexico Environment Department
RCRA Resource Conservation and Recovery Act

PID photoionization detector

PVC polyvinyl chloride

SPH separate phase hydrocarbon
SVOC semi-volatile organic compound
SWMUs Solid Waste Management Units
TPH total petroleum hydrocarbon
TVOC total volatile organic content

TCLP toxicity characteristic leaching procedure

USCS unified soil classification system VOC volatile organic compound

WQCC Water Quality Control Commission

Executive Summary

The Gallup Refinery, which is located 17 miles east of Gallup, New Mexico, has been in operation since the 1950s. Past inspections by State [New Mexico Environment Department (NMED)] and federal environmental inspectors have identified locations where releases to the environment may have occurred. These locations are generally referred to as Solid Waste Management Units (SWMUs) or Areas of Concern (AOCs). Pursuant to the terms and conditions of the facility's Resource Conservation and Recovery Act (RCRA) Post-Closure Care Permit and 20.4.1.500 New Mexico Administrative Code (NMAC), this environmental site investigation was completed for the area identified as SWMU No. 13 - Drainage Ditch between API Evaporation Ponds and Neutralization Tank Evaporation Ponds, which is just north of Evaporation Pond (EP) -2.

The activities completed include sampling and analysis of soils and groundwater along the length of the drainage ditch. Seven deep soil borings were completed immediately adjacent to the drainage ditch and associated pond area using hollow stem augers and all were completed as temporary monitoring wells. Seven shallow soil borings were completed within the drainage ditch and associated pond area using a hand auger. Fifty-eight soil samples (excluding additional quality assurance samples) were collected for analysis of potential site-related constituents (e.g., volatile and semi-volatile organics, total petroleum hydrocarbons (TPH), and metals). Six groundwater samples (excluding additional quality assurance samples) were collected for analysis of potential site-related constituents (e.g., volatile and semi-volatile organics, TPH, metals, and inorganic/general water quality parameters). One of the temporary well completions did not yield groundwater.

Chromium (total) was detected at a concentration above the residential soil screening level in one soil sample [SWMU 13-4 (0-0.5')] and above the non-residential screening level in two soil samples [SWMU 13-9 (0-0.5') and SWMU 13-10 (0-0.5')]. Five soil samples [SWMU 13-1 (1.5-2'), SWMU 13-2 (1.5-2'), SWMU 13-7 (17.5-18'), and SWMU 13-12 (0-0.5')] have manganese concentrations that exceed the non-residential screening level. Both Diesel Range Organics and Motor Oil Range Organics were detected at concentrations above the residential soil screening level in three soil samples [SWMU 13-4 (0-0.5'), SWMU 13-9 (0-0.5'), and SWMU 13-10 (0-0.5') and concentrations exceed the non-residential screening level two samples [SWMU 13-11 (0-0.5') and SWMU 13-13 (0-0.5')].

The groundwater analyses indicate total and dissolved arsenic was detected above the screening level in one sample collected at SWMU 13-7. Beryllium (total analyses only) was detected above the screening level in one groundwater sample collected at SWMU 13-2. Iron was detected above the screening level in samples analyzed for total (four exceedances at SWMU 13-2, SWMU 13-4, SWMU 13-6, and SWMU13-7) and dissolved analyses (one exceedance at SWMU 13-7). Lead (total analyses) was detected at a concentration above the screening level in one of the groundwater samples collected which was collected at SWMU 13-2. Manganese was detected above the screening level in both total and dissolved analyses collected at all six locations (SWMU 13-2, SWMU 13-3, SWMU 13-4, SWMU 13-5, SWMU 13-6, and SWMU13-7). Chloride was detected above the screening level in five of the groundwater samples (SWMU 13-3, SWMU 13-4, SWMU 13-5, SWMU 13-6, and SWMU13-7). Sulfate was detected above the screening level in four of the groundwater samples (SWMU 13-2, SWMU 13-3, SWMU 13-4, and SWMU 13-6). Fluoride was detected in one groundwater sample (SWMU 13-7) above the screening level. Gasoline Range Organics were detected above the screening level in five groundwater samples (SWMU 13-2, SWMU 13-3, SWMU 13-4, SWMU 13-5, and SWMU13-7). Diesel Range Organics were detected above the screening level in four groundwater samples (SWMU 13-2, SWMU 13-3, SWMU 13-5, and SWMU13-7).

Section 1 Introduction

The Gallup Refinery is located approximately 17 miles east of Gallup, New Mexico along the north side of Interstate Highway I-40 in McKinley County. The physical address is I-40, Exit #39 Jamestown, New Mexico 87347. The Gallup Refinery property covers approximately 810 acres. Figure 1 presents the refinery location and the regional vicinity, which is characterized as high desert plain comprised primarily of public lands used for grazing by cattle and sheep.

The Gallup Refinery generally processes crude oil from the Four Corners area transported to the facility by pipeline or tanker truck. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, alkylation, isomerization, sulfur recovery, merox treater, and hydrotreating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, and residual fuel.

The area of investigation that is the subject of this report is shown on Figure 2. The purpose of the site investigation is to determine and evaluate the presence, nature, and extent of releases of contaminants in accordance with 20.4.1.500 New Mexico Administrative Code (NMAC) incorporating 40 Code of Federal Regulations (CFR) Section 264.101. The investigation activities were conducted in accordance with 20.4.1.500 NMAC incorporating 40 CFR Section 264.101, Section IV.H.5 of the Post-Closure Care Permit and the *Investigation Work Plan SWMU No.* 13 - *Drainage Ditch between API Evaporation Ponds and Neutralization Tank Evaporation Ponds* dated May 2016 (approved with modifications July 11, 2019).

Section 2 presents background information for SWMU No. 13, including a review of historical waste management activities to help identity the types of waste handled, sources of releases, and previously known impacts to the environment. Section 3 describes the scope of work completed during the site investigation, including completion of soil borings, installation of temporary monitoring wells, and sample collection. Section 4 of the report explains the results of the field investigation, including the general surface and subsurface conditions and detailed site-specific information acquired during subsurface investigations. Section 5 explains the regulatory standards that are used for comparison to the analytical results and Section 6 presents the analytical results of soil and groundwater samples analyzed for volatile and semi-volatile organic compounds, Total

Petroleum Hydrocarbons (TPH), metals, and inorganic/general chemistry constituents. The results of these analyses are compared to applicable state or federal screening levels. Section 7 summarizes the results, provides an evaluation of the potential impacts and provides recommendations for any future actions.

Section 2 Background

This section presents background information for the area near SWMU No. 13, including a review of historical waste management activities to identity the following:

- Type and characteristics of waste and contaminants handled in the SWMU;
- Known and possible sources of impacts;
- History of releases; and
- Known extent of impacts prior to the current investigation.

SWMU No. 13 is located between Evaporation Ponds No. 2 and No. 12 (Figure 2). In the *Inventory of Solid Waste Management Units* prepared in June 1985, SWMU No. 13 is not specifically described, but the series of related evaporation ponds and their respective uses are described (Geoscience Consultants, Ltd, 1985). An unlined conveyance ditch associated with water softener regeneration wastewater is identified by Unit Number 24 in Table 4-1 in the 1987 RCRA Facility Assessment (RFA) Report (Black and Veatch, 1987). However, as shown on Figure 4-1 in the RFA, this ditch is shown to be located immediately adjacent to the former neutralization tank and is not the same ditch that is later identified as SWMU No. 13. The area currently identified as SWMU No. 13 is discussed in Section 5.4 of the 1987 RFA Report and is noted as being observed during the Visual Site Inspection, but the information related to the contents of the ditch was insufficient to evaluate releases to all media.

In 1990, the "Drainage Ditch between APIS Evaporation Ponds and Neutralization Tank Evaporation Ponds" was identified as a SWMU targeted for investigation in the SWMU Site-Specific Facility Investigation Workplan (Applied Earth Sciences, Inc., 1990). Three soil borings (collected at the water's edge – ditch maximum width of 12 feet, 18 inches deep with no dikes) to a depth of five feet with samples collected at 2 - 2.5' and 3.5 – 4.0' were proposed in the Investigation Workplan, which was subsequently modified to four borings to address comments received from EPA on May 30, 1990. The exact boring locations were to be based on field observations with criteria such as stained soil, stressed vegetation, and significant discharge patterns. The general location was depicted as area #24 on Figure 1 – Site Map, which is included in Appendix A. The proposed analyses included the Skinner List constituents.

During the Phase II RCRA Facility Investigation (RFI) conducted in 1991, four soil borings (RFI 1301 through RFI 1304) were completed with two soil samples collected from each boring as proposed in the Investigation Workplan. The location of the borings is shown on the map from the 1991 Phase II RFI Report, which is included in Appendix A (Giant, 1991). The area of investigation was described as "the small overflow lagoon from Evaporation Pond #2 and the associated drainage ditch." The samples were analyzed for Skinner List volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals. None of the organic constituents were detected in the eight samples and all metals results were reported to be below background limits. A copy of the original data summary table from the 1991 RFI Report is included in Appendix A.

Giant requested a No Further Action designation from EPA and based on the sampling results no further investigation of the area was required, but rather in 1995 EPA required that the area be resampled every five years going forward as Giant planned to continue use of the ditch. The first sampling event was conducted in October 1996. Three angle borings were completed beneath the ditch with samples collected from the 6.0' - 6.5' interval, as measured along the length of the borings, and analyzed for VOCs, SVOCs, and metals. All of the VOC and SVOCs results were reported as non-detect and the metals concentrations were described as being comparable to (or lower) than those found in the original RFI sampling. A map showing the boring locations and the analytical report are provided in Appendix B. The location of the SWMU was surveyed at EPA direction and a copy is provided in Appendix B.

Practical Environmental Services, Inc. (PES) was hired in 1998 by Giant Industries to perform a visual inspection, data evaluation, and status assessment of SMWU 13. No additional sampling was conducted as the area was recently sampled in 1996. Their findings are summarized below:

- The drainage ditch was observed in active service conveying wastewater to north area evaporation ponds;
- The ditch sidewalls were visually inspected and found to be intact and stable. No erosion, damage, or sign of containment failure was observed;
- Native shrubs and grasses were observed growing around the perimeter of the ditch. No signs of distress were evident; and
- Local soil in the vicinity of the drainage ditch is bentonitic clays and silts. Similar soil strata from neighboring SWMU exhibited a hydraulic conductivity of less than 10⁻⁷ cm/sec.

They (PES) determined that the No Further Action proposal previously recommended by Giant and approved by EPA (with requirement for continued sampling) was appropriate for the site.

In August 2001, Giant Industries prepared a *No Further Action Report* to summarize previous activities at SWMU No. 13. Based on the earlier sampling conducted in the Phase II RFI and more recently in 1996, Giant proposed no further action for SWMU No. 13 (Giant, 2001). NMED responded to Giant's request for no further action via letter dated November 2, 2001 and a response letter prepared by PES was submitted October 2, 2002. Items specific to SWMU No. 13 are discussed below.

NMED requested an updated site plan.

o It was noted by PES that the requested site plan was provided.

NMED requested background and current information on the influent and effluent to the SWMU.

The requested information was provided in the October 2, 2002 response letter.
 Essentially, the ditch has been and continues to be used to transfer refinery wastewater between evaporation ponds.

NMED requested analyses of water samples from the ditch and bottom sludge or sediment samples, if available.

 PES noted neither water sample or bottom sludge/sediment samples had been collected from the ditch.

NMED requested boring logs from the 1991 and 1996 sampling efforts.

The requested boring logs were provided.

NMED asked what depths the soil samples were collected from in the 1996 borings.

 PES clarified the samples were collected from 6 feet as measured along the length of the angled borings.

After submission of the requested information to NMED on October 2, 2002, the next correspondence on SMWU No. 13 that is found in the available records is a letter from Western Refining Southwest, Inc. (dated June 24, 2013) requesting that NMED proceed with review of information previously submitted in the 2001 Petition for No Further Action and the Supplementary Information submitted on October 2, 2002. NMED replied to the request on November 18, 2014 stating they would proceed with the requested review and on April 13, 2015 a request for additional information was issued. Comments 23 through 25 were specific to SWMU 13. Western provided a response on June 15, 2015. Copies of NMED's letter and Western's response, including relevant

enclosures are included in Appendix C of the *Investigation Work Plan SWMU No.* 13 – *Drainage Ditch* between API Evaporation Ponds and Neutralization Tank Evaporation Ponds (DiSorbo, 2019a).

The responses in 2015 noted the drainage ditch was being used to convey non-contact storm water and that the ditch did not receive flows from the evaporation ponds. The area has since been regraded such that stormwater is no longer conveyed through either the ditch or the small "pond" area to the south. The only water entering these areas now is rainfall and there is no active use of these features. The regrading did not affect the drainage itself and surface soils within the ditch were not affected.

Section 3 Scope of Activities

3.1 Soil Boring, Temporary Monitoring Well Installation and Sample Collection

Pursuant to the approved Investigation Work Plan, an investigation of soils and groundwater was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and temporary monitoring wells were installed (Figure 3).

3.1.1 Site Investigation

The scope of work focused an investigation of soils along and beneath the drainage ditch and associated pond area and was conducted to characterize current concentrations of constituents associated with historical refinery operations and define the extent of any such impacts. Five shallow soil borings (SWMU 13-8 through SWMU 13-12) were located along the center line of the drainage ditch and two within the pond area (SWMU 13-13 and SWMU 13-14). These borings were completed using a hand auger to a completion depth of 3 feet. Due to physical limitations accessing locations within the ditch and pond areas, deeper borings were completed using the hollow stem auger method outside, but immediately adjacent to the ditch and pond areas. There are five deep soil borings located adjacent to the ditch (SWMU 13-1 through SWMU 13-5) and two deep soil borings adjacent to the pond area (SWMU 13-6 and SWMU 13-7) (Figure 3).

The seven deep borings were completed using hollow stem augers to depths ranging from 16 feet below ground level (bgl) to 18 feet bgl. Temporary wells were installed in the seven deeper borings. Groundwater samples were collected from six of the seven temporary wells. One temporary well (SWMU 13-1) was dry. The groundwater samples were analyzed for VOCs, SVOCs, TPH, Skinner List metals, cyanide, iron, manganese, chloride, fluoride, nitrate, nitrite, and sulfate.

Discrete soil samples were proposed in the work plan to be retained for laboratory analysis from within the following intervals at each of the soil borings:

• From the upper 0.5 foot interval of the ground surface;

- From the 1.5 to 2.0 foot interval;
- From the upper 0.5 foot interval of native soils (i.e., below any fill material);
- From the interval in each soil boring with the greatest apparent degree of contamination in the vadose zone, based on field observations and field screening;
- From the bottom of each borehole:
- From the 0.5 foot interval at the top of saturation, if encountered; and
- Any additional intervals as determined based on field screening results.

Discrete soil samples were collected for laboratory analysis from within the following intervals at each of the seven hand auger borings:

- From the upper 0.5 foot interval of the ground surface;
- From the 1.5 to 2.0 foot interval; and
- From the bottom of each borehole (2 to 3 foot interval).

The objectives were met at each deep soil boring with discussions below detailing the exact sample collection intervals at each soil boring. The soil samples were analyzed for VOCs, SVOCs, TPH, Skinner List metals, iron, and manganese.

The following list provides a summary of the soil borings advanced using hollow stem augers:

- SWMU 13-1; advanced to 16 feet bgl; temporary well installed;
- SWMU 13-2; advanced to 16 feet bgl; temporary well installed;
- SWMU 13-3; advanced to 16 feet bgl; temporary well installed;
- SWMU 13-4; advanced to 16 feet bgl; temporary well installed;
- SWMU 13-5; advanced to 16 feet bgl; temporary well installed;
- SWMU 13-6; advanced to 18 feet bgl; temporary well installed; and
- SWMU 13-7; advanced to 18 feet bgl; temporary well installed.

3.2 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and other investigation derived waste (IDW) associated with soil borings were placed in containers. All drill cuttings generated during the investigation were collected and put into 55-gallon drums. The drums are currently on-site pending finalization of waste characterization before being sent off-site for disposal. All purge water and decontamination water were disposed in the refinery wastewater system upstream of the API Separator.

3.3 Surveys

A global positioning system receiver was used to record the coordinates of each soil boring. These coordinates were recorded on the field boring logs. Surveys of each location and the land surface were completed by a registered land surveyor. The survey is included in Appendix C (page 3 of 9).

Section 4 Field Investigation Results

This section provides a summary of the surface and subsurface conditions at the refinery, including the area near SWMU No. 13. A discussion is included on the installation of soil borings, field screening of soils, and collection of soil samples for analysis. This is followed by a description of the installation of temporary well completions and the collection of groundwater samples.

4.1 Surface Conditions

A topographic map of the area near SWMU No. 13 is included as Figure 4. Site topographic features include high ground in the southeast gradually decreasing to a lowland fluvial plain to the northwest. Elevations on the refinery property range from 6,860 feet to 7,040 feet. The area of the site near SWMU No. 13 at an approximate elevation of 6,886 feet above mean sea level (msl).

The soils in the vicinity of SWMU No. 13 are identified as the Rehobeth silty clay loam. Rehobeth soil properties include a pH ranging from 8 to 9 standard units and salinity measuring up to approximately 8 mmhos/cm (slightly saline). It is classified as well drained. The parent material is described as stream alluvium derived from gypsiferous shale (USDA, 2005).

Regional surface water features include the refinery evaporation ponds and a number of small ponds (one cattle water pond and two small unnamed spring fed ponds). The site is located in the Puerco River Valley, north of the Zuni Uplift with overland flows directed northward to the tributaries of the Puerco River. The Puerco River continues to the west to the confluence with the Little Colorado River. The South Fork of the Puerco River is intermittent and retains flow only during and immediately following precipitation events.

4.2 Subsurface Conditions

An underground pipeline was detected during clearance of utilities in the area of the borings at SWMU No. 13. The location of the pipeline is shown on Figure 3. The pipeline is 4-inch PVC and was exposed at the land surface in some areas and increased with depth near the north end of SWMU No. 13.

4.2.1 Geology

The shallow subsurface soils consist of fluvial and alluvial deposits comprised of clay and silt with minor inter-bedded sand layers. The diverse properties and complex, irregular stratigraphy of the surface soils across the site cause a wide range of hydraulic conductivity ranging from less than 10^{-2} cm/sec for gravely sands immediately overlying the Petrified Forest Formation to 10^{-8} cm/sec in the clay soils located near the surface (Western Refining, 2009). Generally, shallow groundwater at the refinery follows the upper contact of the Chinle Group with prevailing flow from the southeast to the northwest, with some flow potentially to the northeast on the northeastern portion of the refinery property.

The Quaternary alluvium, which occurs at the land surface in the area of the refinery is mapped regionally as a narrow band trending west-northwest and running just north of I-40 (Figure 5). The Quaternary alluvium is thought to be the parent material of the Rehobeth soils discussed above in Section 4.1. A cross section of the shallow subsurface in the immediate vicinity of SWMU No. 13 is included as Figure 6. Figure 3 shows the location of the cross section. As shown on the cross section, the predominant lithology is clay with sandy clay/clayey sand layers.

Subcropping beneath the Quaternary alluvium is the Triassic Chinle Group (Figure 5). The stratigraphy of the Chinle Group was described in detail for the nearby Fort Wingate quadrangle by Lucas et al., 1997. The Painted Desert Member of the Petrified Forest Formation is the uppermost member of the Chinle Group present in the area of the refinery. The Painted Desert Member is described as reddish-brown and grayish red mudstone with minor beds of resistant, laminated or crossbedded, litharenite. This is consistent with the bedrock encountered at the refinery. Beneath the Painted Desert Member is the Sonsela Member, which is described by Lucas et al. (1997) as gray to yellowish-brown, fine-grained to conglomeratic, crossbedded sandstone. The base of the Sonsela Member is recognized as a basin wide unconformity, which was termed the Tr-4 unconformity (Heckert and Lucas, 1996). The Blue Mesa Member, which underlies the Sonsela Member, is the lowest member of the Petrified Forest Formation. The Blue Mesa Member is described as mostly purple and greenish-gray mudstone.

4.2.2 Hydrogeology

Figure 6 presents the potentiometric surface measured during field work activities conducted in the month of November 2019. A potentiometric surface map (Figure 7) is included using measurements

collected in August 2018. The groundwater flow direction in the area of SWMU No. 13 is to the northwest.

The diverse properties and complex, irregular stratigraphy of the Quaternary alluvium across the refinery cause a wide range of hydraulic conductivity ranging from less than 10^{-2} cm/sec for gravel like sands immediately overlying the Painted Desert Member to 10^{-8} cm/sec in the clay soils located near the surface (Western Refining, 2009). Permeability tests performed on the Quaternary alluvium beneath the nearby Land Treatment Unit (LTU) indicated an average permeability of 1.9E-05 cm/sec (Appendix D). Permeability tests performed on soils in the area of the firewater pond indicated an average permeability of 1.1E-07 cm/sec (Appendix D).

As described above, the bedrock (i.e., Petrified Forest Formation) is mainly composed of low permeability materials (e.g., mudstone) with the exception of the Sonsela Member and some thinner sandstones within the overlying Painted Desert Member. Yield tests, including slug tests and pumping tests have been performed at the refinery to estimate the hydraulic conductivity of the Painted Desert Member (Appendix D). A slug test performed on July 3, 1984 in well OW-4 indicated a hydraulic conductivity of 4.0E-7 cm/sec. A pump test was performed in well OW-24 on February 20, 1985 and it yielded a hydraulic conductivity of 2.5E-7 cm/sec. The Painted Desert Member appears to be a competent aquitard capable of reducing the potential for downward migration of contaminants from groundwater that may occur within the overlying Quaternary alluvium.

The Sonsela Member is identified as the uppermost aquifer for RCRA monitoring purposes at the LTU because the overlying groundwater bearing units are not capable of supplying sufficient quantities of groundwater to meet the definitions of an aquifer. Wells completed in a thinner permeable sandstone layer within the Painted Desert Member are also monitored near the LTU as a potential early warning network. The Sonsela's highest point occurs southeast of the site and slopes downward to the northwest as it passes under the refinery. The Sonsela Member forms a water-bearing reservoir with artesian conditions throughout the central and western portions of the refinery property (Western, 2009). Aquifer test of the Sonsela Member conducted northeast of Prewitt indicated a transmissivity of greater than 100 ft²/day (Stone and others, 1983). Yield tests conducted at the site have shown a much lower hydraulic conductivity of 0.34 ft/day (1.2E-04 cm/sec) (Appendix D).

4.3 Exploratory Drilling Investigations, Soil Sampling and Boring Abandonment

This subsection provides a detailed description of subsurface investigations to delineate impacts to soils and groundwater in the area of SWMU No. 13. This includes soil field screening results, soil sampling intervals and methods for detection of subsurface impacts in soils.

A description of the field screening and soil sampling procedures are presented in Appendix E – Field Methods. Copies of the boring/well logs are provided in Appendix F. In addition to being included on the soil boring logs, the soil vapor (i.e., headspace) screening results are summarized in Table 1. The locations of the soil borings/wells appear on Figure 3.

4.3.1 Soil Investigation

Seven deep soil borings (SWMU 13-1 through SWMU 13-7) were advanced using the hollow-stem auger (HSA) method. A hand auger was used to clear each drilling location to a depth of 5 feet. Soil samples for logging, screening and sample collection were collected from the auger bucket from 0 to 5 feet. After each location was cleared, the CME 55 track drilling rig was set up at the location. Sample collection was then accomplished using the HSA drilling method and split spoon samplers. Temporary groundwater monitoring wells were installed in these seven borings. Seven shallow soil borings (SWMU 13-8 through SWMU 13-14) were advanced using a hand auger. The drilling equipment was decontaminated between each borehole, as described in Appendix E. The soil boring logs describe the subsurface lithology, the presence of saturation, the field screening results, soil sample collection intervals, and any temporary well construction details. Soil samples that were collected with the split spoon sampler were photographed. Electronic copies of these photographs are included in Appendix G. The installation of soil borings and collection of soil samples are discussed below in numerical order.

SWMU 13-1

On October 22, 2019 the CME 55 track drilling rig was set up on location SWMU 13-1. SWMU 13-1 is located north of the drainage ditch at the west end of the ditch. The ground surface at SWMU 13-1 is approximately 2.54 feet above the bottom of the drainage ditch. Sample collection from 0 – 5 feet below ground level (bgl) was accomplished using a decontaminated hand auger. Sample collection from 5 to 16 feet was accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Five soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 1.4 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 1.2 ppm, no odor, required interval;
- 5 feet bgl to 6 feet bgl: PID reading 89.7 ppm, no odor, elevated PID reading;
- 8 feet bgl to 10 feet bgl: PID reading 4.7 ppm, no odor, interval immediately above saturation; and
- 14 feet bgl to 16 feet bgl: PID reading 2.8 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silt/Clayey Silt: 0 2 feet bgl (very fine grain, low plasticity, soft, damp, brown, no odor);
- Silty Clay: 2 feet bgl 5 feet bgl (low plasticity, firm, damp, brown, no odor);
- Clay: 5 feet bgl 8 feet bgl (high plasticity, firm, damp, brown, no odor, becomes sandy at base clayey sand);
- Clayey Sand/Sand: 8 feet bgl 10 feet bgl (fine grain, loose, damp, brown, no odor);
- Clayey Sand/Sand: 10 feet bgl 12 feet bgl (fine grain, loose, very moist to saturated, brown, no odor);
- Clayey Sand/Sand: 12 feet bgl 14 feet bgl (fine grain, loose, very moist to saturated at base, brown, no odor); and
- Clay: 14 feet bgl 16 feet bgl (high plasticity, stiff, damp, brown, no odor).

The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-2

On October 22, 2019 the CME 55 track drilling rig was set up on location SWMU 13-2. SWMU 13-2 is located south of the drainage ditch at the west end of the ditch. The ground surface at SWMU 13-2 is approximately 2.38 feet above the bottom of the drainage ditch. Sample collection from 0 – 5 feet bgl was accomplished using a decontaminated hand auger. Sample collection from 5 to 16 feet was accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Four soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 6.3 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 2.3 ppm, no odor, required interval;
- 8 feet bgl to 10 feet bgl: PID reading 1.3 ppm, no odor, interval immediately above saturation; and
- 14 feet bgl to 16 feet bgl: PID reading 1.1 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silt/Clayey Silt: 0 2 feet bgl (very fine grain, low plasticity, soft, damp, brown, no odor);
- Silty Clay: 2 feet bgl 5 feet bgl (low plasticity, firm, damp, brown, no odor, high plasticity at the base);
- Clay: 5 feet bgl 7 feet bgl (high plasticity, stiff, damp, brown, no odor);
- Silty Clay: 7 feet bgl 8 feet bgl (low plasticity, firm/crumbly, damp, brown, no odor, trace sand at base);
- Clayey Sand/Sandy Clay: 8 feet bgl 10 feet bgl (fine grain, compact, damp to moist at base, brown, no odor);
- Sand: 10 feet bgl 11 feet bgl (fine to medium grain, loose, damp to moist, brown, no odor);
- Clay: 11 feet bgl 12 feet bgl (high plasticity, very soft, damp to moist, brown, no odor);
- Clay: 12 feet bgl 13.5 feet bgl (high plasticity, very soft, moist to saturated in very soft lense, brown, no odor);
- Clay: 13.5 feet bgl 15.5 feet bgl (high plasticity, stiff, damp, brown, no odor); and
- Silty Clay: 15.5 feet bgl 16 feet bgl (low plasticity, firm, damp, brown, no odor).

The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-3

On October 22, 2019 the CME 55 track drilling rig was set up on location SWMU 13-3. SWMU 13-3 is located south of and along the western half of the ditch. The ground surface at SWMU 13-3 is approximately 1.64 feet above the bottom of the drainage ditch. Sample collection from 0 – 5 feet bgl was accomplished using a decontaminated hand auger. Sample collection from 5 to 16 feet was

accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Five soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 0.8 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 1.4 ppm, no odor, required interval;
- 8 feet bgl to 10 feet bgl: PID reading 1.3 ppm, no odor, interval immediately above saturation;
- 14 feet bgl to 15.25 feet bgl: PID reading 0.9 ppm, no odor, bottom of confining clay; and
- 15.25 feet bgl to 16 feet bgl: PID reading 2.1 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silt/Clayey Silt: 0 1.5 feet bgl (very fine grain, low plasticity, soft/loose, damp, brown, no odor);
- Silty Clay: 1.5 feet bgl 5 feet bgl (high plasticity, firm, damp, brown, no odor);
- Clay: 5 feet bgl 7 feet bgl (high plasticity, stiff, damp, brown, no odor);
- Silty Clay: 7 feet bgl 8 feet bgl (low plasticity, firm/crumbly, damp, brown, no odor);
- Silty Clay: 8 feet bgl 10 feet bgl (low plasticity, very soft, moist, brown, no odor);
- Sandy Clay: 10 feet bgl 12.75 feet bgl (low plasticity, very soft, saturated in fine grain sand lenses throughout, brown, no odor);
- Clay: 12.75 feet bgl 15.25 feet bgl (high plasticity, stiff, damp, brown, no odor); and
- Clayey Sand: 15.25 feet bgl 16 feet bgl (fine grain, compact to loose, saturated, brown, no odor).

The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-4

On October 23, 2019 the CME 55 track drilling rig was set up on location SWMU 13-4. SWMU 13-4 is located south of the drainage ditch near the middle of the ditch. The ground surface at SWMU 13-

4 is 1.93 feet above the bottom of the drainage ditch. Sample collection from 0 – 5 feet bgl was accomplished using a decontaminated hand auger. Sample collection from 5 to 16 feet was accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Five soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 1.9 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 1.6 ppm, no odor, required interval;
- 8 feet bgl to 10 feet bgl: PID reading 13.4/10.4 ppm, no odor, interval immediately above saturation;
- 14 feet bgl to 14.5 feet bgl: PID reading 10.1 ppm, no odor, bottom of confining clay (above lower saturated interval); and
- 15.5 feet bgl to 16 feet bgl: no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silt/Clayey Silt: 0 1.5 feet bgl (very fine grain, low plasticity, soft, damp, brown, no odor);
- Clay: 1.5 feet bgl 9 feet bgl (high plasticity, firm to stiff, damp, brown, no odor, very stiff and calcareous from 6 feet bgl to 8 feet bgl);
- Silty Clay: 9 feet bgl 10 feet bgl (low plasticity, very soft, damp, brown, no odor);
- Clayey Sand: 10 feet bgl 13.75 feet bgl (fine grain, compact, saturated, brown, no odor);
- Clay: 13.75 feet bgl 14.5 feet bgl (moderate to high plasticity, firm, damp, brown, no odor);
- Silty Clay: 14.5 feet bgl 15.5 feet bgl (low plasticity, soft, damp, brown, no odor); and
- Sand: 15.5 feet bgl 16 feet bgl (fine to medium grain, loose, saturated, brown, no odor).

The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-5

On October 23, 2019 the CME 55 track drilling rig was set up on location SWMU 13-5. SWMU 13-5 is located south of and along the eastern half of the ditch. The ground surface at SWMU 13-5 is

approximately 2.76 feet above the bottom of the drainage ditch. Sample collection from 0 – 5 feet bgl was accomplished using a decontaminated hand auger. Sample collection from 5 to 16 feet was accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Five soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 5.0 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 7.2 ppm, no odor, required interval;
- 8 feet bgl to 10 feet bgl: PID reading 15.6 ppm, no odor, highest PID reading:
- 10 feet bgl to 10.5 feet bgl: PID reading 13.1 ppm, no odor, bottom of clay interval and interval immediately above saturation; and
- 14 feet bgl to 16 feet bgl: no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silt: 0 1.5 feet bgl (very fine grain, loose, dry to damp, brown, no odor);
- Silty Clay: 1.5 feet bgl 5 feet bgl (low to moderate plasticity, firm, damp, brown, calcareous, no odor);
- Clay: 5 feet bgl 10.5 feet bgl (high plasticity, stiff, damp, brown, no odor, increase in silt at 10 feet bgl);
- Clayey Sand/Sand: 10.5 feet bgl 12 feet bgl (fine grain, compact to loose, saturated, brown, no odor);
- Silty Sand/Sandy Silt: 12 feet bgl 14 feet bgl (very fine grain, loose, saturated, brown, no odor); and
- Clay: 14 feet bgl 16 feet bgl (high plasticity, stiff, damp, brown, no odor).

The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-6

On October 23, 2019 the CME 55 track drilling rig was set up on location SWMU 13-6. SWMU 13-6 is located east of the small retention pond (located south of the drainage ditch). The ground surface at SWMU 13-6 is approximately 2.31 feet above the bottom of the retention pond. Sample collection from 0 – 5 feet bgl was accomplished using a decontaminated hand auger. Sample collection from 5 to 18 feet was accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Six soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 5.1 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 15.6 ppm, no odor, required interval;
- 2 feet bgl to 3 feet bgl: PID reading 15.7 ppm, no odor, highest PID reading and interval immediately above saturation;
- 6 feet bgl to 8 feet bgl: PID reading 11.3 ppm, exhibited a hydrocarbon odor;
- 10 feet bgl to 11 feet bgl: PID reading 4.7 ppm, no odor, interval immediately above saturation; and
- 17 feet bgl to 18 feet bgl: PID reading 1.2 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silty Clay: 0 3 feet bgl (low plasticity, soft, damp, brown, no odor, moisture increases from 2 feet bgl to 3 feet bgl);
- Clayey Silt/Silty Clay: 3 feet bgl 5 feet bgl (low plasticity, very soft/creamy, saturated, hydrocarbon odor);
- Clay: 5 feet bgl 6 feet bgl (moderate to low plasticity, soft, damp, brown, faint odor);
- Clay: 6 feet bgl 11 feet bgl (high plasticity, stiff, damp, brown, hydrocarbon odor, no odor detected from 8 feet bgl to 11 feet bgl);
- Clayey Sand: 11 feet bgl 12 feet bgl (fine grain, compact, saturated, brown, no odor);
- Sand/Silty Sand: 12 feet bgl 14 feet bgl (fine to medium grain, loose, saturated, brown, no odor, gravelly at base).

The sampling for the day ceased at 14 feet bgl. On October 24, 2019 sampling resumed. The lithology encountered consisted of the following:

- Silty Sand: 14 feet bgl 17 feet bgl (fine grain, compact, damp to saturated, brown, no odor, high plasticity at the base); and
- Clay: 17 feet bgl 18 feet bgl (high plasticity, stiff, damp, brown, no odor).

The sampling was terminated at 18 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 2 feet bgl to 17 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-7

On October 24, 2019 the CME 55 track drilling rig was set up on location SWMU 13-7. SWMU 13-7 is located east of the small retention pond (located south of the drainage ditch). The ground surface at SWMU 13-7 is approximately 3.01 feet above the bottom of the retention pond. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Discrete soil samples could not be collected from 3 feet bgl to 5 feet bgl using the hand auger due to collapsing soil/sediment. Sample collection from 3 to 18 feet was accomplished using the HSA drilling method and split spoon samplers. The split spoon samplers were decontaminated between each sample. Six soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 0.9 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 2.3 ppm, no odor, required interval and immediately above saturation;
- 4 feet bgl to 6 feet bgl: Saturated, no PID reading, exhibited odor and was black;
- 10 feet bgl to 12 feet bgl: PID reading 10.6 ppm, base of clay;
- 12 feet bgl to 13 feet bgl: PID reading 8.0 ppm, no odor, interval immediately above saturation; and
- 17.5 feet bgl to 18 feet bgl: PID reading 6.6 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silty Clay: 0 2 feet bgl (low plasticity, soft, damp, brown, no odor);
- Clayey Silt: 2 feet bgl 3 feet bgl (low plasticity, very soft, saturated, hydrocarbon odor);

- Sand: 3 feet bgl 4 feet bgl (poor recovery, black sand in shoe, hydrocarbon odor/organic odor);
- Sand: 4 feet bgl 7.5 feet bgl (medium grained, soft/loose, saturated, black, hydrocarbon odor/organic odor, CL clay at 6 feet bgl);
- Clay: 7.5 feet bgl 12 feet bgl (high plasticity, firm, damp, brown, no odor);
- Silty Clay: 12 feet bgl 13 feet bgl (low plasticity, soft, damp, brown);
- Silty Sand: 13 feet bgl 14 feet bgl (very fine grain, loose to compact, saturated, brown, no odor:
- Clay: 14 feet bgl to 16 feet bgl poor recovery high plasticity clay in split spoon shoe
- Silty Sand 16 feet bgl to 17.5 feet bgl (very fine grain, loose to compact, saturated, brown, no odor); and
- Clay: 17.5 feet bgl 18 feet bgl (high plasticity, firm, damp, no odor).

The sampling was terminated at 18 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 1.5 feet bgl to 16.5 feet bgl. Groundwater samples were collected as discussed below in Section 4.4.1. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-8

On October 24, 2019 soil samples were collected from boring location SWMU 13-8. SWMU 13-8 is located at the western end of the drainage ditch. The ground surface of SWMU 13-8 is the base of the drainage ditch. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Three soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 2.1 ppm, no odor, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 3.5 ppm, no odor, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 2.6 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silty Clay: 0 1 feet bgl (low plasticity, firm, damp, brown, no odor); and
- Clay: 1 feet bgl 3 feet bgl (high plasticity, firm to stiff, damp, brown, no odor).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

SWMU 13-9

On October 24, 2019 soil samples were collected from boring location SWMU 13-9. SWMU 13-9 is located at the western end of the drainage ditch. The ground surface of SWMU 13-9 is the base of the drainage ditch. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Three soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 3.3 ppm, hydrocarbon odor, stained black and grayish green, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 3.7 ppm, odor, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 6.7 ppm, odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silty Clay: 0 1 feet bgl (low plasticity, firm, damp, stained black and grayish green, hydrocarbon odor); and
- Clay: 1 feet bgl 3 feet bgl (high plasticity, firm to stiff, damp, brown, no odor).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

SWMU 13-10

On October 25, 2019 soil samples were collected from boring location SWMU 13-10. SWMU 13-10 is located approximately at the midpoint of the drainage ditch. The ground surface of SWMU 13-10 is the base of the drainage ditch. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Three soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 1.3 ppm, faint odor, stained black and greenish gray, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 1.7 ppm, odor, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 1.7 ppm, odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silty Clay: 0 1 feet bgl (low plasticity, firm, damp, stained black and greenish gray, faint odor); and
- Clay: 1 feet bgl 3 feet bgl (high plasticity, firm, damp, brown, odor, sticky).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

SWMU 13-11

On October 25, 2019 soil samples were collected from boring location SWMU 13-11. SWMU 13-11 is located in the eastern half of the drainage ditch. The ground surface of SWMU 13-11 is the base of the drainage ditch. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Three soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 2.6 ppm, odor, stained black and greenish gray, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 5.1 ppm, odor, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 5.1 ppm, odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Clayey Silt/Sand: 0 1 feet bgl (low plasticity, fine grain, compact, damp, odor, stained black and greenish gray); and
- Clay: 1 feet bgl 3 feet bgl (high plasticity, firm, damp, brown, odor).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

SWMU 13-12

On October 25, 2019 soil samples were collected from boring location SWMU 13-12. SWMU 13-12 is located at the eastern end of the drainage ditch. The ground surface of SWMU 13-12 is the base of the drainage ditch. Sample collection from 0 – 3 feet bgl was accomplished using a

decontaminated hand auger. Four soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 2.9 ppm, no odor, required interval;
- 0.5 feet bgl to 1.5 feet bgl: PID reading 16.3 ppm, light yellowish gray, faint odor, highest PID reading;
- 1.5 feet bgl to 2 feet bgl: PID reading 5.3 ppm, no odor, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 7.1 ppm, no odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Clayey Silt: 0 0.5 feet bgl (low plasticity, soft, damp, dark brown, no odor);
- Clayey Sand: 0.5 1.5 feet bgl (fine grain, light yellowish gray, faint odor, damp, crumbly);
 and
- Silty Clay: 1.5 feet bgl 3 feet bgl (low to moderate plasticity, firm, damp, no odor).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

SWMU 13-13

On October 25, 2019 soil samples were collected from boring location SWMU 13-13. SWMU 13-13 is located in the northern end of the retention pond. The ground surface of SWMU 13-13 is the base of the retention pond. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Three soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 13.7 ppm, odor, stained black, green and orange, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 204 ppm, hydrocarbon odor, highest PID reading, black, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 45 ppm, hydrocarbon odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Silt/Sand: 0 0.5 feet bgl (shrinkage cracks present, fine grain, dry to damp, odor, becomes stained black, green and orange, soft at base);
- Clay/Silty Clay: 0.5 2 feet bgl (moderate to high plasticity, very soft, hydrocarbon odor, damp to moist, black); and
- Clayey Sand/Sandy Clay: 2 feet bgl 3 feet bgl (low plasticity, soft, moist to saturated, brown, hydrocarbon odor).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

SWMU 13-14

On October 25, 2019 soil samples were collected from boring location SWMU 13-14. SWMU 13-14 is located in the southern end of the retention pond. The ground surface of SWMU 13-14 is the base of the retention pond. Sample collection from 0 – 3 feet bgl was accomplished using a decontaminated hand auger. Three soil samples were collected for laboratory analysis from the following intervals:

- 0 0.5 feet bgl: PID reading 6.3 ppm, odor, brown/ yellowish brown, trace black discoloration, required interval;
- 1.5 feet bgl to 2 feet bgl: PID reading 18.7 ppm, faint odor, required interval; and
- 2 feet bgl to 3 feet bgl: PID reading 13.3 ppm, faint odor, bottom of the borehole.

The lithology encountered consisted of the following:

- Sandy Clay: 0 0.5 feet bgl (low plasticity, soft, damp to very moist, odor, brown/yellowish brown, trace black discoloration); and
- Clayey Sand: 2 feet bgl 3 feet bgl (very fine grain, soft, saturated, brown, faint odor).

The sampling was terminated at 3 feet bgl. The borehole was filled with bentonite pellets and hydrated with potable water.

4.4 Monitor Well Construction and Groundwater Sampling

Groundwater samples were collected from six temporary well completions in November 2019. The following list provides a brief summary of the well development and groundwater sample collection activities:

- SWMU 13-1; well was dry and was not sampled;
- SWMU 13-2; developed and sampled; yielded enough water for a full analytical suite;
- SWMU 13-3; developed and sampled; yielded enough water for a full analytical suite;
- SWMU 13-4; developed and sampled; yielded enough water for a full analytical suite;
- SWMU 13-5; developed and sampled; yielded enough water for a full analytical suite;
- SWMU 13-6; developed and sampled; yielded enough water for a full analytical suite; and
- SWMU 13-7; developed and sampled; yielded enough water for a full analytical suite.

4.4.1 Groundwater Investigation

The drilling equipment was decontaminated between each borehole, as described in Appendix E. The well development and purging are also discussed in Appendix E. The installation of the temporary wells and the collection of groundwater samples are discussed below in numerical order. The fluid level measurements discussed below are provided in Table 2 with the field water quality measurements.

SWMU 13-1

On October 22, 2019 the CME 55 track drilling rig was set up on location SWMU 13-1. The boring was installed using the HSA drilling method. Groundwater was encountered in a clayey sand/sand (10 feet bgl to 14 feet). The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. The top of the screen was set approximately 4 feet above the uppermost saturated interval (clayey sand/sand – 10 feet bgl to 14 feet bgl). The screen was extended to a depth of 16 feet bgl which allowed for screening across the saturated interval. The screen terminated in a clay (14 feet bgl to 16 feet bgl) that was damp and did not exhibit visual or olfactory evidence of being impacted. The top of casing was 3 feet above the ground surface. Filter pack sand was installed around the screen and extended to 4 feet bgl. A bentonite seal was installed from ground level to 4 feet bgl.

On October 23, 2019, October 28, 2019, November 5, 2019, and November 11, 2019, the well was gauged and no fluids were detected. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-2

On October 22, 2019 the CME 55 track drilling rig was set up on location SWMU 13-2. The boring was installed using the HSA drilling method. The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. The top of the screen was set approximately 6 feet above the uppermost saturated interval (clay –12 feet bgl to 13.5 feet bgl). The screen was extended to a depth of 16 feet bgl which allowed for screening across saturated interval. The screen terminated in a silty clay (15.5 feet bgl to 16 feet bgl) that was damp and did not exhibit visual or olfactory evidence of being impacted. The top of casing was 3 feet above the ground surface. Filter pack sand was installed around the screen and extended to 4 feet bgl. A bentonite seal was installed from ground level to 4 feet bgl.

On October 23, 2019 the well was gauged. Groundwater was detected 14.86 feet below top of casing (btoc) / 11.86 bgl. The well was developed on October 23, 2019 and bailed dry after 3.10 gallons. Additional gauging was conducted with the following results:

- October 24, 2019 No SPH was detected. Depth to groundwater was 17.11 feet btoc / 14.11 feet bgl;
- October 28, 2019 No SPH was detected. Depth to groundwater was 15.48 feet btoc / 12.48 feet bgl; and
- November 5, 2019 No SPH was detected. Depth to groundwater was 14.94 feet btoc / 11.94 feet bgl.

The well was purged on November 5, 2019 and sampled on November 6, 2019. The well yielded enough water to collect samples for all analyses. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-3

On October 22, 2019 the CME 55 track drilling rig was set up on location SWMU 13-3. The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. The top of the screen was set approximately 4 feet above the uppermost

saturated interval (sandy clay – 10 feet bgl to 12.75 feet bgl). The screen was extended to a depth of 16 feet bgl which allowed for screening across the uppermost saturated interval encountered (10 feet bgl to 12.75 feet bgl) and a lower saturated interval (15.25 feet bgl to 16 feet bgl). The screen terminated in saturated clayey sand (15.25 feet bgl to 16 feet bgl). This interval did not exhibit visual or olfactory evidence of being impacted. The top of casing was 3 feet above the ground surface. Filter pack sand was installed around the screen and extended to 4 feet bgl. A bentonite seal was installed from ground level to 4 feet bgl.

On October 23, 2019 the well was gauged. Groundwater was detected 12.52 feet btoc / 9.52 feet bgl. The well was developed on October 23, 2019. Sixty-six gallons of groundwater were removed during development. Additional gauging was conducted with the following results:

- October 24, 2019 No SPH was detected. Depth to groundwater was 12.57 feet btoc / 9.57 feet bgl;
- October 28, 2019 No SPH was detected. Depth to groundwater was 12.35 feet btoc / 9.35 feet bgl; and
- November 5, 2019 No SPH was detected. Depth to groundwater was 12.77 feet btoc / 9.77 feet bgl.

The well was purged on November 5, 2019 and sampled on November 6, 2019. The well yielded enough water to collect samples for all analyses. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-4

On October 23, 2019 the CME 55 track drilling rig was set up on location SWMU 13-4. The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. The top of the screen was set approximately 4 feet above the uppermost saturated interval (clayey sand – 10 feet bgl to 13.75 feet bgl). The screen was extended to a depth of 16 feet bgl which allowed for screening across the uppermost saturated interval encountered (10 feet bgl to 13.75 feet bgl) and a lower saturated interval (15.5 feet bgl to 16 feet bgl). The screen terminated in saturated sand (15.5 feet bgl to 16 feet bgl). This interval did not exhibit visual or olfactory evidence of being impacted. The top of casing was 3 feet above the ground surface. Filter

pack sand was installed around the screen and extended to 4 feet bgl. A bentonite seal was installed from ground level to 4 feet bgl.

On October 24, 2019 the well was gauged. Groundwater was detected 12.78 feet btoc / 9.78 feet bgl. The well was developed on October 24, 2019. The well bailed dry after 3.5 gallons of groundwater were removed. Additional gauging was conducted with the following results:

- October 28, 2019 No SPH was detected. Depth to groundwater was 12.64 feet btoc /
 9.64 feet bgl. An additional 3.5 gallons of groundwater were developed from this well;
- October 29, 2019 No SPH was detected. Depth to groundwater was 12.74 feet btoc / 9.74 feet bgl; and
- November 5, 2019 No SPH was detected. Depth to groundwater was 12.77 feet btoc / 9.77 feet bgl.

The well was purged dry on November 5, 2019 and sampled on November 6, 2019. The well yielded enough water to collect samples for all analyses. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-5

On October 23, 2019 the CME 55 track drilling rig was set up on location SWMU 13-5. The sampling was terminated at 16 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 6 feet bgl to 16 feet bgl. The top of the screen was set approximately 4.5 feet above the uppermost saturated interval (clayey sand – 10.5 feet bgl to 12 feet bgl). The screen was extended to a depth of 16 feet bgl which allowed for screening across the uppermost saturated interval encountered. The screen terminated in clay (14 feet bgl to 16 feet bgl). This interval did not exhibit visual or olfactory evidence of being impacted. The top of casing was 3 feet above the ground surface. Filter pack sand was installed around the screen and extended to 4 feet bgl. A bentonite seal was installed from ground level to 4 feet bgl.

On October 24, 2019 the well was gauged. Groundwater was detected 13.14 feet btoc / 10.14 feet bgl. The well was developed on October 24, 2019. The well bailed dry after 6.5 gallons of groundwater were removed. Additional gauging was conducted with the following results:

- October 28, 2019 No SPH was detected. Depth to groundwater was 12.85 feet btoc / 9.85 feet bgl;
- October 29, 2019 No SPH was detected. Depth to groundwater was 12.78 feet btoc /
 9.78 feet bgl. An additional 7 gallons of groundwater were developed from this well; and
- November 5, 2019 No SPH was detected. Depth to groundwater was 12.96 feet btoc / 9.96 feet bgl.

On November 5, 2019 the well was purged. Approximately 6.3 gallons of groundwater were purged from the well. The well was sampled on November 7, 2019. The well yielded enough water to collect samples for all analyses. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-6

On October 23, 2019 the CME 55 track drilling rig was set up on location SWMU 13-6. The sampling for the day ceased at 14 feet bgl. On October 24, 2019 sampling resumed. The sampling was terminated at 18 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 2 feet bgl to 17 feet bgl. The top of the screen was set approximately 1 foot above the uppermost saturated interval (clayey silt/silty clay – 3 feet bgl to 5 feet bgl). The screen was extended to a depth of 17 feet bgl which allowed for screening across the uppermost saturated interval encountered and the lowermost saturated interval (11 feet bgl to 17 feet bgl). The screen terminated in clay (17 feet bgl to 18 feet bgl). This interval did not exhibit visual or olfactory evidence of being impacted. The top of casing was 2 feet above the ground surface. Filter pack sand was installed around the screen and extended to 1 foot bgl. A bentonite seal was installed from ground level to 1 foot bgl.

On October 28, 2019 the well was gauged. No SPH was detected. Groundwater was detected 13.98 feet btoc / 11.98 feet bgl. The well was developed on October 28, 2019. The well bailed dry after 1.1 gallons of groundwater were removed. Additional gauging was conducted with the following results:

 October 29, 2019 – No SPH was detected. Depth to groundwater was 13.94 feet btoc / 11.94 feet bgl; and November 6, 2019 – No SPH was detected. Depth to groundwater was 13.96 feet btoc / 11.96 feet bgl.

On November 6, 2019 the well was purged. Approximately 0.75 gallons of groundwater were purged from the well. The well was sampled on November 7, 2019. The well yielded enough water to collect samples for all analyses. On November 12, 2019 the well casing and screen were removed and the borehole was grouted.

SWMU 13-7

On October 24, 2019 the CME 55 track drilling rig was set up on location SWMU 13-7. The sampling was terminated at 18 feet bgl. A temporary monitoring well was installed at this location with 2-inch Schedule 40 PVC screen and casing. The well was installed with the screened interval ranging from 1.5 feet bgl to 16.5 feet bgl. The top of the screen was set approximately 0.5 foot above the uppermost saturated interval (clayey silt – 2 feet bgl to 3 feet bgl). The screen was extended to a depth of 16.5 feet bgl which allowed for screening across the uppermost saturated interval encountered and the lowermost saturated interval (13 feet bgl to 17.5 feet bgl). The screen terminated in silty sand (16 feet bgl to 17.5 feet bgl). This interval did not exhibit visual or olfactory evidence of being impacted. The top of casing was 3 feet above the ground surface. Filter pack sand was installed around the screen and extended to 1 foot bgl. A bentonite seal was installed from ground level to 1 foot bgl.

On October 28, 2019 the well was gauged. No SPH was detected. Groundwater was detected 15.44 feet btoc / 12.44 feet bgl. The well was developed on October 28, 2019. The well bailed dry after 2.6 gallons of groundwater were removed. Additional gauging was conducted with the following results:

- October 29, 2019 No SPH was detected. Depth to groundwater was 15.39 feet btoc / 12.39 feet bgl. An additional 2.2 gallons of groundwater were developed from this well;
 and
- November 6, 2019 No SPH was detected. Depth to groundwater was 15.40 feet btoc / 12.40 feet bgl.

On November 6, 2019 the well was purged. Approximately 1.5 gallons of groundwater were purged from the well. The well was sampled on November 7, 2019. The well yielded enough water to

Section 5 Regulatory Criteria

The applicable screening and potential cleanup levels are specified in NMED's *Risk Assessment Guidance for Site Investigations and Remediation* dated March 2019 and in the Environmental Protection Agency's (EPA) Regional Screening Levels dated November 2019.

For non-residential properties (e.g., the Gallup Refinery), the soil screening levels must be protective of commercial/industrial workers throughout the upper one foot of surface soils and construction workers throughout the upper ten feet based on NMED criteria. NMED residential soil screening levels are applied to the upper ten feet and soil screening levels for protection of groundwater apply throughout the vadose zone. EPA soil screening levels for direct contact exposure apply to the upper two feet of the vadose zone. To achieve closure as "corrective action complete without controls," the affected media must meet residential screening levels, which are presented in Table 3. Table 3 also provides a list of the available NMED and EPA soil screening levels for non-residential properties. While Table 3 indicates the various depths to which the individual soil screening levels are applicable, Table 5 discussed below does not include this level of detail. Table 3 has soil screening levels for the soil-to-groundwater pathway that are based on a dilution/attenuation factor (DAF) of 1.0, which is NMED's most conservative screening level for this pathway.

The groundwater cleanup levels are based on New Mexico Water Quality Control Commission (WQCC) standards (20.6.2.7 WW NMAC, 20.6.2.3103, and 20.6.2.4103) unless there is a federal maximum contaminant level (MCL), in which case the lower of the two values is selected as the cleanup level. If neither a WCQQ standard nor an MCL is available, then the cleanup level is based on a NMED Tap Water Screening Level is not available for a constituent, then an EPA Regional Screening Level is used. If an EPA Regional Screening Level is for a carcinogenic compound, then the screening level is multiplied by 10 to bring the risk level to 1E-05 to be consistent with the NMED screening levels. Table 4 presents the groundwater cleanup levels.

The screening levels that are compared to individual soil sample results are presented in Table 5.

The screening levels included in Table 5 are based on residential and non-residential land use. For the non-residential screening levels, the lower of the construction worker scenario and commercial/industrial scenario screening levels for each constituent is included in the data tables if

NMED screening levels are available. If NMED soil screening levels are not available for a particular constituent, then EPA soils screening levels are used. If an EPA soil screening level is for a carcinogenic compound, then the screening level is multiplied by 10 to bring the risk level to 1E-05 to be consistent with the NMED screening levels. The screening levels in Table 5 have not been segregated based on depth of the soil sample as discussed above for Table 3. The screening levels that are compared to individual groundwater sample results are presented in Table 6.

A review of the NMED guidelines for TPH indicates that the TPH screening levels were developed based on screening levels and compositional assumptions developed by the Massachusetts Department of Environmental Protection (MADEP). The analytical results, as presented in Table 5, are reported for gasoline range organics (C6-C10), diesel range organics (>C10-C28), and motor oil range organics (>C28-C35). The applicable TPH screening levels for comparison to the individual soil samples are selected from Table 6-2 of the NMED guidance (NMED, 2019).

As there could have been a variety of petroleum types (e.g., various refined products) in contact with the refinery wastewater water that flowed through SWMU No. 13, the screening level for "unknown oil" was selected for comparison to the gasoline range, diesel range and motor oil range soil analytical results. The motor oil range analytical results are compared to the "unknown oil" screening level as directed by NMED. However, it is noted that the laboratory analyses for motor oil range organics only reports results for the >C28 to C35 hydrocarbon range, while the "unknown oil" screening level is based on a hydrocarbon mixture assumed to include only C11-C22 aromatics.

Some of the individual constituents reported by the laboratory in the soil results do not have screening levels but were all non-detect. With respect to groundwater, there were also detections of constituents that do not have screening levels, but all were non-detect.

Section 6 Site Impacts

This section discusses the chemical analyses performed and presents the analytical results that were obtained through the analysis of soil and groundwater samples. The results for soils and groundwater analyses are compared to applicable screening levels, as described in Section 5.0.

6.1 Soil Analytical Results

Soil samples were analyzed by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico using the following methods for organic constituents:

- SW-846 Method 8260/5035 volatile organic compounds;
- SW-846 Method 8270C semi-volatile organic compounds; and
- SW-846 Method 8015D gasoline, diesel, and motor oil range petroleum hydrocarbons.

Soil samples were analyzed for the following metals using the indicated analytical methods, respectively.

Analyte	Analytical Method
Antimony	SW-846 Method 6010B
Arsenic	SW-846 Method 6010B
Barium	SW-846 Method 6010B
Beryllium	SW-846 Method 6010B
Cadmium	SW-846 Method 6010B
Chromium	SW-846 Method 6010B
Cobalt	SW-846 Method 6010B
Cyanide	SW-846 Method 9012B
Iron	SW-846 Method 6010B
Lead	SW-846 Method 6010B
Mercury	SW-846 Method 7471
Manganese	SW-846 Method 6010B
Nickel	SW-846 Method 6010B

Analyte	Analytical Method
Selenium	SW-846 Method 6010B
Silver	SW-846 Method 6010B
Vanadium	SW-846 Method 6010B
Zinc	SW-846 Method 6010B

The analytical results for soil samples are summarized in Table 5. The individual results that exceed the applicable cleanup levels are highlighted and/or bolded, as noted in the table footnotes. Maps showing the distribution of constituents detected in soils above the lowest applicable screening levels are included as Figures 8 through 11. The concentrations shown on figures that exceed the screening levels in Table 5 are underlined. The laboratory analytical reports are included in Appendix H and the data validation of the results, which includes the analytical results for the associated QA/QC samples, is included in Appendix I. The constituents that have concentrations in soils above screening levels are discussed below.

Chromium (total) was detected at a concentration of 110 mg/kg, which is above the residential soil screening level of 96.6 mg/kg, in sample SWMU 13-4 (0-0.5'). It was detected at 270 mg/kg and 160 mg/kg, which exceeds the non-residential screening level of 134 mg/kg, in samples SWMU 13-9 (0-0.5') and SWMU 13-10 (0-0.5'). The detected concentrations range from 4.8 to 270 mg/kg. The concentrations are plotted on Figure 8.

All manganese sample results are less than the residential soil screening level of 10,500 mg/kg. Five soil samples [SWMU 13-1 (1.5-2'), SWMU 13-2 (1.5-2'), SWMU 13-5 (1.5-2'), SWMU 13-7 (17.5-18'), and SWMU 13-12 (0-0.5')] have concentrations ranging from 520 mg/kg to 920 mg/kg, which exceed the non-residential screening level of 464 mg/kg. The detected concentrations range from 170 mg/kg to 920 mg/kg. The concentrations are plotted on Figure 9.

Diesel Range Organics were detected at concentrations above the residential soil screening level of 1,000 mg/kg in three soil samples [SWMU 13-4 (0-0.5'), SWMU 13-9 (0-0.5'), and SWMU 13-10 (0-0.5')] at concentrations of 1,200 mg/kg, 2,400 mg/kg, and 2,300 mg/kg, respectively, as indicated with highlighting in Table 5. Concentrations exceed the non-residential screening level of 3,800 mg/kg in samples SWMU 13-11 (0-0.5') and SWMU 13-13 (0-0.5') at concentrations of 4,300 mg/kg and 5,500 mg/kg, respectively. The detected concentrations range from 1.9 mg/kg to 5,500 mg/kg. The concentrations are plotted on Figure 10.

Motor Oil Range Organics were detected at concentrations above the residential soil screening level of 1,000 mg/kg in three soil samples [SWMU 13-4 (0-0.5'), SWMU 13-9 (0-0.5'), and SWMU 13-10 (0-0.5')] at concentrations of 1,300 mg/kg, 1,900 mg/kg, and 2,600 mg/kg, respectively. Concentrations exceed the non-residential screening level of 3,800 mg/kg in samples SWMU 13-11 (0-0.5') and SWMU 13-13 (0-0.5') at concentrations of 4,400 mg/kg and 5,400 mg/kg, respectively. The detected concentrations range from 65 mg/kg to 5,400 mg/kg. The concentrations are plotted on Figure 11.

6.2 Groundwater Analytical Results

The groundwater samples were analyzed for organic constituents by the following methods:

- SW-846 Method 8260 volatile organic compounds;
- SW-846 Method 8270 semi-volatile organic compounds;
- SW-846 Method 8015D gasoline range organics; and
- SW-846 Method 8015M/D diesel and motor oil range organics.

Groundwater samples were analyzed for the following total and dissolved metals using the indicated analytical methods.

Analyte	Analytical Method
Antimony	SW-846 Method 200.8
Arsenic	SW-846 Method 200.8
Barium	SW-846 Method 200.7
Beryllium	SW-846 Method 200.7
Cadmium	SW-846 Method 200.7
Chromium	SW-846 Method 200.7
Cobalt	SW-846 Method 200.7
Iron	SW-846 Method 200.7
Lead	SW-846 Method 200.8
Manganese	SW-846 Method 200.7
Nickel	SW-846 Method 200.7

Analyte	Analytical Method
Selenium	SW-846 Method 200.8
Silver	SW-846 Method 200.7
Vanadium	SW-846 Method 200.7
Zinc	SW-846 Method 200.7

Groundwater samples were also analyzed for the following total metals using the indicated analytical methods.

Analyte	Analytical Method
Cyanide	SW-846 Method 9012B
Mercury	SW-846 Method 245.1

In addition, groundwater samples were analyzed for chloride, fluoride, nitrate, nitrite, and sulfate using EPA method 300. Groundwater samples were also evaluated in the field using field test kits for nitrate and nitrite as discussed in Appendix E.

The analytical results and the applicable cleanup levels are presented in Table 6. The individual results that exceed the applicable cleanup levels are bolded. Maps depicting the distribution of the various constituents detected in groundwater samples above the screening levels are provided in Figures 12 through 15, with the concentrations that exceed the screening levels underlined. The results for the associated QA/QC samples and the data validation are provided in Appendix I. The laboratory analytical reports are included in Appendix H. The constituents with reported concentrations that exceed screening levels are discussed below.

Total arsenic was detected above the screening level of 10 micrograms per liter (ug/l) in one sample collected at SWMU 13-7 at a concentration of 22 ug/l. The detected total arsenic concentrations range from 3 ug/l to 22 ug/l. The total analyses are shown on Figure 12. One sample (SWMU 13-7) has a dissolved arsenic concentration above the screening level at 14 ug/l, with dissolved detections ranging from 1.6 ug/l to 14 ug/l. The dissolved analyses are shown on Figure 14.

Beryllium (total analyses only) was detected above the screening level of 4 ug/l in one groundwater sample collected at SWMU 13-2 at a concentration of 6.7 ug/l. None of the samples from the

dissolved analyses detected the presence of beryllium above the screening level. The detected total analyses range from 0.57 ug/l to 6.7 ug/l. The total analyses are shown on Figure 12.

Iron was detected above the screening level in samples analyzed for total (four exceedances at SWMU 13-2, SWMU 13-4, SWMU 13-6, and SWMU13-7) and dissolved analyses (one exceedance at SWMU 13-7). The total iron analyses range from 150 ug/l to 20,000 ug/l in comparison to a screening level of 1,000 ug/l. The dissolved analyses range from 11 ug/l to 1,600 ug/l vs. a screening level of 1,000 ug/l. The total analyses are shown on Figure 12 and the dissolved analyses results are shown on Figure 14.

Lead (total analyses) was detected at a concentration (44 ug/l) above the screening level (15 ug/l) in one of the groundwater samples collected that was collected at SWMU 13-2. The total lead analyses range from 0.8 ug/l to 44 ug/l. None of the dissolved analyses exceed the screening level of 15 ug/l, with the dissolved analyses for lead ranging from 0.38 ug/l to 0.81 ug/l. The total analyses are shown on Figure 12.

Manganese was detected above the screening level (200 ug/l) in both total and dissolved analyses collected at all six locations (SWMU 13-2, SWMU 13-3, SWMU 13-4, SWMU 13-5, SWMU 13-6, and SWMU13-7). The total analyses results range from 4,700 ug/l to 27,000 ug/l. The dissolved manganese concentrations range from 4,400 ug/l to 27,000 ug/l. The total analyses are shown on Figure 13 and the dissolved analyses results are shown on Figure 14.

Chloride was detected above the screening level (250,000 ug/l) in five of the groundwater samples (SWMU 13-3, SWMU 13-4, SWMU 13-5, SWMU 13-6, and SWMU13-7). The analytical results range from 5,700 ug/l to 6,100,000 ug/l. The concentrations are shown on Figure 13.

Sulfate was detected above the screening level (600,000 ug/l) in four of the groundwater samples (SWMU 13-2, SWMU 13-3, SWMU 13-4, and SWMU 13-6) with concentrations ranging from 660,000 ug/l to 1,200,000 ug/l. The detected analytical results range from 240,000 ug/l to 1,200,000 ug/l. The concentrations are shown on Figure 13.

Fluoride was detected in one groundwater sample (SWMU 13-7) and it was above the screening level (1,600 ug/l) with a concentration of 12,000 ug/l. The concentrations are shown on Figure 13.

Nitrate exceeded the screening level of 10,000 ug/l in samples SWMU 13-5 and SWMU 13-7 at concentrations of 14,000 ug/l and 12,000 ug/l, respectively, based on the field analyses using a

field test kit as described in Appendix E. However, the same samples were analyzed by the off-site laboratory and had reported concentrations of 170 ug/l for SWMU 13-5 and <30 ug/l for SWMU 13-7. The laboratory analytical results and the results using the field test kit are included in Table 6.

Gasoline Range Organics were detected above the screening level (39.8 ug/l) in five groundwater samples (SWMU 13-2, SWMU 13-3, SWMU 13-4, SWMU 13-5, and SWMU13-7). The detected concentrations range from 42 ug/L to 730 ug/L. The concentrations are shown on Figure 15.

Diesel Range Organics were detected above the screening level (39.8 ug/l) in four groundwater samples (SWMU 13-2, SWMU 13-3, SWMU 13-5, and SWMU13-7). The detected concentrations range from 280 ug/L to 610 ug/L. The concentrations are shown on Figure 15.

6.3 General Groundwater Chemistry

The measurement of field purging parameters included measurement of groundwater pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, turbidity, and temperature. The final results of the measurements taken before sample collection are included in Table 2.

Section 7 Conclusions and Recommendations

This section summarizes and provides an evaluation of the potential impacts as shown in field screening data and analytical data. This is followed by recommendations for any future actions.

7.1 Conclusions

Soils

The analytical results from soil samples indicate impacts to the environment from past operations at SWMU No. 13, which included flow of refinery wastewater through an unlined earthen ditch. As noted above in Section 6.1, two metals (chromium and manganese) were detected at concentrations above screening levels. The exceedance of screening levels for organic analyses was limited to diesel range and motor oil range organics. The exceedances occur primarily within the upper two feet with one exception of manganese that occurred at a depth of 17.5 feet to 18.0 feet at boring SWMU 13-7. The highest concentrations of organic constituents were detected in soil samples collected from within the drainage ditch vs. soil samples collected adjacent to the ditch in the deeper soil borings installed to support collection of groundwater samples.

Groundwater

Concentrations of five metals (arsenic, beryllium, iron, lead, and manganese) in the total metals analyses exceed screening levels, while three (arsenic, iron, and manganese) of the same constituents exceed screening levels in the dissolved metals analyses. Chloride and sulfate were found at concentrations exceeding screening levels in the majority of the groundwater samples, with fluoride present above the screening level in only one groundwater sample. The exceedances of groundwater screening levels occurred for at least one constituent in each of the temporary wells indicating potential groundwater impacts across the area of investigation.

While the soil samples indicate impacts from historical operations at SWMU No. 13, groundwater samples collected from temporary wells located immediately adjacent to the drainage ditch may also indicate impacts from the historical operations at SWMU No. 13. However, it is also noted that similar concentrations of gasoline range and diesel range organics have been detected in

groundwater samples collected at monitoring well OW-59 that is approximately 260 feet northnortheast and cross-gradient to SWMU No. 13.

7.2 Recommendations

Two permanent monitoring wells that are to be located near SWMU No. 13 are included in the *Work Plan SMW-2 and GWM-1 Areas* (DiSorbo, 2019b). These two wells will be installed upon NMED approval of the Work Plan and will provide additional information on groundwater and soil conditions near SWMU No. 13. It is recommended to review the results of the sampling conducted at these two additional locations and then prepare a new Work Plan to delineate the lateral extent of impacts observed at SMWU No. 13.

Section 8 References

- DiSorbo, 2019a, Investigation Work Plan SWMU No. 13 Drainage Ditch between API Evaporation Ponds and Neutralization Tank Evaporation Ponds, Marathon Petroleum Company, Gallup Refinery.
- DiSorbo, 2019b, Work Plan SMW-2 and GWM-1 Areas, Marathon Petroleum Company, Gallup Refinery.
- Black and Veatch, 1987, RCRA Facility Assessment Report Giant Ciniza Refinery, Gallup New, Mexico, p.76.
- Geoscience Consultants, Ltd, 1985, Inventory of Solid Waste Management Units, June 14, 1985, p. 22.
- Giant Refining Company, 1991, RCRA Facility Investigation Phase II Giant Refining Company, Gallup New Mexico, pp. 4.1 4.117.
- Heckert, A.B. and Lucas, S.G., 1996, Stratigraphic description of the Tr-4 unconformity in west-central New Mexico and eastern Arizona: New Mexico Geology, Vol. 18, No. 3, pp. 61-70.
- Lucas, S. G., Heckert, A.B., and Anderson, O. J., 1997, *Triassic Stratigraphy and Paleontology on the Fort Wingate quadrangle, west-central New Mexico*, New Mexico Geology, Vol. 19, No. 2. pp 33 42.
- NMED, 2019, *Risk Assessment Guidance for Site Investigations and Remediation*, New Mexico Environment Department, p.91.
- Practical Environmental Services, Inc., 1998, SWMU #13 Summary Report, Drainage Ditch at Evaporation Ponds, Ciniza Refinery, McKinley County, New Mexico, p. 4.
- Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizel, N.H., and Padgett, E.T., 1983, *Hydrogeology and Water Resources of San Juan Basin, New Mexico*; Hydrogeologic Report 6, New Mexico Bureau of Mines and Mineral Resources, p. 70.

USDA, 2005, Soil Survey of McKinley County Area, New Mexico, McKinley County and Parts of Cibola
and San Juan Counties, p. 683.

Tables

Table 1	Vapor Screening Results
Table 2	Groundwater Field Measurements
Table 3	Soil Screening Levels
Table 4	Groundwater Screening Levels
Table 5	Soil Analytical Results Summary
Table 6	Groundwater Analytical Results Summary

Table 1 - Vapor Screening Results

Marathon Petroleum Company - Gallup Refinery - SWMU 13

Gallup, New Mexico

Sample Interval Depth (ftbgl)	SWMU 13-1 (ppm)	SWMU 13-2 (ppm)	SWMU 13-3 (ppm)	SWMU 13-4 (ppm)	SWMU 13-5 (ppm)	SWMU 13-6 (ppm)	SWMU 13-7 (ppm)
0 - 0.5	1.4	6.3	0.8	1.9	5.0	5.1	0.9
0.5 - 1.5	1.1	4.8	0.8	1.5	5.9	9.2	1.3
1.5 - 2	1.2	2.3	1.4	1.6	7.2	15.6	2.3
2 - 4	1.1	2.9	1.3	2.3	7.7	15.7	38.4
4 - 5	1.2	3.1	1.3	2.3	4.5	SAT NR	SAT NR
5 - 6	89.7	1.5	3.0	4.7	15.6	10.1	SAT NR
6-8	4.3	2.7	4.0	11.0	11.9	11.3	9.0
8 - 10	4.7	1.3	1.3	13.4 / 10.4	15.6	7.5	14.6
10 - 12	2.4	2.1 / 1.8	2.1	SAT NR	13.1	4.7	10.6
12 - 14	2.7	1.2	1.8 / 1.8	SAT NR	SAT NR	SAT NR	8.0
14 - 16	2.8	1.1	0.9 / 2.1	10.1	11.4	SAT NR	7.3
16 - 18	TD @ 16 ftbgl	1.2	6.6				
						TD @ 16 ftbgl	TD @ 16 ftbgl

Sample Interval Depth (ftbgl)	SWMU 13-8 (ppm)	SWMU 13-9 (ppm)	SWMU 13-10 (ppm)	SWMU 13-11 (ppm)	SWMU 13-12 (ppm)	SWMU 13-13 (ppm)	SWMU 13-14 (ppm)
0 - 0.5	2.1	3.3	1.3	2.6	2.9	13.7	6.3
0.5 - 1.5	2.0	3.6	1.1	4.8	16.3	181	4.5
1.5 - 2	3.5	3.7	1.7	5.1	5.3	204	18.7
2 - 3	2.6	6.7	1.7	5.1	7.1	45	13.3
	TD @ 3 ftbgl	TD @ 3 ftbgl	TD @ 3 ftbgl	TD @ 3 ftbgl	TD @ 3 ftbgl	TD @ 3 ftbgl	TD @ 3 ftbgl

ftbgl - feet below ground level

ppm - parts per million

NR - NR - No sample recovery. No reading was collected.

SAT. - NR - Interval was saturated. No reading was collected.

TABLE 2 - Groundwater Field Measurements Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

WELL	DATE	GROUND LEVEL ELEVATION (ft-msl)	TOP OF WELL CASING ELEVATION (ft-msl)	DEPTH TO PSH (btoc-ft)	DEPTH TO GROUNDWATER (btoc-ft)	DEPTH TO GROUNDWATER (bgl-ft) ²	TOTAL WELL DEPTH (ft)	GROUND WATER ELEVATION (ft- msl)	WELL SCREEN INTERVAL (bgl-ft)	CASING STICKUP (agl-ft)	NITRATE ¹ (mg/l)	NITRITE ¹ (mg/l)	TEMPERATURE °F	SPECIFIC CONDUCTIVITY (uS/cm)	DISSOLVED OXYGEN (mg/L)	рН	OXYGEN REDUCTION POTENTIAL	TURBIDITY (NTU)
SWMU 13-1	11/05/19	6884.38	6887.38	ND	DRY	DRY	16.50	DRY	6 - 16	3	NM	NM	NM	NM	NM	NM	NM	NM
SWMU 13-2	11/05/19	6884.22	6887.22	ND	14.94	11.94	16.50	6872.28	6 - 16	3	NM	NM	57.7	16,613	4.08	6.4	191.3	777
SWMU 13-3	11/05/19	6883.78	6886.78	ND	12.53	9.53	16.50	6874.25	6 - 16	3	0	0	57.6	15,635	3.76	6.54	201.7	901
SWMU 13-4	11/05/19	6884.65	6887.65	ND	12.77	9.77	16.50	6874.88	6 - 16	3	2	0.04	57.3	15,356	4.41	6.52	236.2	130
SWMU 13-5	11/06/19	6885.36	6888.36	ND	12.96	9.96	16.50	6875.40	6 - 16	3	14	0	56.5	16,470	2.02	6.61	288.8	>1100
SWMU 13-6	11/06/19	6887.13	6889.13	ND	13.96	11.96	17.50	6875.17	1.5 -16.5	2	0	0	58.1	11,377	2.93	6.86	272	>40
SWMU 13-7	11/06/19	6888.17	6891.17	ND	15.40	12.40	18.00	6875.77	1.5 - 16.5	3	12	0.04	57	17,055	4.13	6.83	249.1	890

bgl - below ground level agl - above ground level

PSH - phase separated hydrocarbon

ft - fee

ft-msl - feet above mean sea level

btoc - below top of casing

ND - none detected NTU - nephelometric turbidity unit

NM - not measured

mg/I - milligrams per liter

1 - Field Test Kit (Hach NI-12) was used to determine the concentrations of nitrate and nitrite

	NMED Residential (0- 10')	endpoint	EPA Residential (0-2')	endpoint	NMED IndOccSoil (0-1')	NMED IndOccSoil_E ndpoint	NMED ConsWork Soil (0-10')	NMED ConsWork Soil_ Endpoint	EPA Industrial Soil (0-2')	EPA IndSoil_ key	NMED DAF1 SoilGW	EPA GW_Risk- based SSL SoilGW	NMED/ MCL-based SSL, DAF 1
Metals (mg/kg)		•		•	•		•		•		•		
Antimony	31.28571429	n	31	n	519.111111	n	141.575758	n	470	n	0.27104		0.27104
Arsenic	7.074957917	С	0.68	c*R	35.8843339	С	41.1506512	n	3	cR	0.291733		0.2917333
Barium	15558.08476	n	15000	n	254671.051	n	4391.7145	n	220000	nm	82.34667	160	82.346667
Beryllium	156.2157756	n	160	n	2583.16948	n	148.103365	n	2300	n	3.160693		3.1606933
Cadmium	70.52926266	n	71	n	1107.92874	n	72.1470065	n	980	n	0.375867		0.3758667
Chromium (Total)	96.60343409	С			504.62286	С	133.737855	n			180000		180000
Cobalt	23.44831516	n	23	n	388.402156	n	36.7434871	n	350	n	0.270092	0.27	-
Cyanide	11.15070404	n	23	n	63.3361859	n	12.0686831	n	150	n	0.035643	0.015	0.0356426
Iron	54750	n	55000	n	908444.444	n	247757.576	n	820000	nm	347.9428	350	
Lead	-	-	400	G	-	-	-	IEUBK	800	G	0.0026	#N/A	0.0026
Manganese	10547.69639	n	1800	n	160183.087	n	463.837179	n	26000	n	131.4807	28	
Mercury (elemental)	23.77624297	n	11	ns	112.076566	n	20.6835849	n	46	ns	0.104453	0.033	0.1044526
Nickel	1559.564767	n	1500	n	25681.9054	n	753.129017	n	22000	n	24.24168	26	-
Selenium	391.0700968	n	390	n	6488.81111	n	1753.13151	n	5800	n	0.258667	0.52	0.2586667
Silver	391.0714286	n	390	n	6488.88889	n	1769.69697	n	5800	n	0.687961	0.8	-
Vanadium	393.9295498	n	390	n	6525.03137	n	614.077939	n	5800	n	63.07862	86	-
Zinc	23464.28571	n	23000	n	389333.333	n	106181.818	n	350000	nm	370.5807	370	-
Volatiles (mg/kg)			l .				I.	ı	I.	l .	I	ı	-
1,1,1,2-Tetrachloroethane	28.06299779	С	2	С	137.227781	С	658.515124	С	8.8	С	0.001801	0.00022	-
1,1,1-Trichloroethane	14374.90324	n	8100	ns	72532.238	n	13601.9086	n	36000	ns	0.063818		0.0638182
1,1,2,2-Tetrachloroethane	7.984465167	С	0.6	С	39.3976459	С	196.512399	С	2.7	С	0.00024	0.00003	-
1,1,2-Trichloroethane	2.61310964	n	1.1	C**	12.391786	n	2.30274072	n	5	C**	0.001341	0.000089	0.0013411
1,1-Dichloroethane	78.60621702	С	3.6	С	383.266467	С	1817.05898	С	16	С	0.006799	0.00078	-
1,1-Dichloroethene	439.9346968	n	230	n	2255.40774	n	423.909375	n	1000	n	0.002396		0.0023964
1,1-Dichloropropene	-	-	-	-	-	-	-	-	-	_	-	-	-
Trichlorobenzene, 1,2,3-	_	-	63	n	_	-	_	-	930	n	-	0.021	_
1,2,3-Trichloropropane	0.051049053	С	-	-	1.21125926	С	6.3146991	n	-	_	2.91E-06	3.2E-07	_
1,2,4-Trichlorobenzene	82.90549359	n	_	-	422.891355	n	79.1109174	n	-	_	0.154975	0.0034	0.1549752
Trimethylbenzene, 1,2,4-	-	-	300	ns	-	-	-	-	1800	ns	-	0.081	-
1,2-Dibromoethane (Ethylene dibromide)	0.672476199	С	0.036	С	3.30948158	С	16.3184125	С	0.16	С	1.18E-05		1.179E-05
1,2-Dichlorobenzene	2149.557119	n	1800	ns	12967.4635	n	2495.84131	n	9300	ns	0.453963	0.3	0.453963
1,2-Dichloroethane	8.315434498	С	-	-	40.6737882	С	53.8326771	n	-	-	0.001191	0.000048	0.0011911
1,2-Dichloropropane	17.7717301	С	2.5	C**	86.8228257	С	25.4468715	n	11	C**	0.001387	0.00028	0.0013874
Trimethylbenzene, 1,3,5-	-	-	270	ns	-	-	-	-	1500	ns	-	0.087	-
1,3-Dichlorobenzene	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloropropane, 1,3-	-	_	1600	ns	-	-	-	-	23000	ns	-	0.13	-
1,4-Dichlorobenzene	1290	С	2.6	С	6730	С	24800	n	11	С	0.056061	0.00046	0.0560611
1-Methylnaphthalene	171.5924997	С	18	С	812.956959	С	6058.73325	С	73	С	0.044656	0.006	-
2,2-Dichloropropane	-	-	-	-	-	-	-	-	-	-	-	-	_
=,= = sicinor opropunc			ļ	ļ	ļ	Į	<u> </u>			ļ			

2-Butanone (Methyl ethyl ketone,	37418.18384	n	27000	n	410979.561	n	91656.7106	n	190000	nms	1.003665	1.2	_
MEK)		"	27000	"		11		!!	190000	111113			_
o-Chlorotoluene	1564.285714	n	-	-	25955.5556	n	7078.78788	n	-	-	0.178177	0.23	-
Hexanone, 2-	-	-	200	n	-	-	-	-	1300	n	-	0.0088	-
2-Methylnaphthalene	231.7975423	n	240	n	3367.96454	n	1004.01865	n	3000	n	0.137851	0.19	-
Chlorotoluene, p-	-	-	1600	ns	-	-	-	-	23000	ns	-	0.24	-
4-Isopropyltoluene	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl isobutyl ketone	5808.948357	n	33000	ns	81647.6456	n	20233.6053	n	140000	nms	0.239827	1.4	-
Acetone	66313.24226	n	61000	n	960090.734	n	241548.31	n	670000	nms	2.489842	2.9	-
Benzene	17.79460341	С	1.2	c*	87.2403585	С	141.859846	n	5.1	c*	0.002089	0.00023	0.0020891
Bromobenzene	-	-	290	n	-	-	-	-	1800	ns	-	0.042	-
Bromodichloromethane	6.192908208	С	0.29	С	30.1752832	С	142.609614	С	1.3	С	0.00031	0.000036	-
Tribromomethane (Bromoform)	674.1123176	С	19	c*	1760.351	С	5381.24856	n	86	С	0.007344	0.00087	-
Bromomethane	17.72689001	n	6.8	n	94.5152335	n	17.8608572	n	30	n	0.001715	0.0019	-
Carbon disulfide	1554.163366	n	770	ns	8541.0293	n	1621.48136	n	3500	ns	0.220874	0.24	-
Carbon tetrachloride	10.73452785	С	0.65	С	52.5035714	С	201.542918	n	2.9	С	0.001837	0.00018	0.0018371
Chlorobenzene (Monochlorobenzene)	378.4101248	n	280	n	2157.37076	n	411.626087	n	1300	ns	0.053863	0.053	0.0538634
Ethyl chloride	18995.90966	n	14000	ns	89543.0085	n	16644.4307	n	57000	ns	5.370846	5.9	-
Chloroform	5.899429115	С	0.32	С	28.6649065	С	133.938741	С	1.4	С	0.000546	0.000061	-
Chloromethane	41.14150758	С	110	n	200.776704	С	234.963523	n	460	n	0.004758	0.049	-
cis-1,2-Dichloroethene	156.4285714	n	160	n	2595.55556	n	707.878788	n	2300	n	0.017618	0.011	0.0176184
cis-1,3-Dichloropropene	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	13.90308173	С	8.3	С	67.3660386	С	340.486242	С	39	С	0.000377	0.00023	_
Dibromomethane (Methylene								-					
Bromide)	-	-	24	n	-	С	-	-	99	n	0.001677	0.0021	-
Dichlorodifluoromethane	181.9388375	n	87	n	864.825195	n	160.927034	n	370	n	0.361467	0.3	-
Ethylbenzene	75.10635655	С	5.8	С	367.636701	С	1771.91001	С	25	С	0.615369	0.0017	0.6153693
Hexachloro-1,3-butadiene	61.63458291	n	1.2	c*	52.081725	С	269.062428	n	5.3	С	0.002066	0.00027	-
Cumene (isopropylbenzene)	2364.349048	n	1900	ns	14223.1558	n	2737.88125	n	9900	ns	0.569049	0.74	-
tert-Butyl methyl ether (MTBE)	974.8113199	С	47	С	4817.93886	С	24230.6892	С	210	С	0.027664	0.0032	-
Methylene chloride	409.1270097	n	57	C**	5130.9539	n	1206.85225	n	1000	c**	0.001105		0.0011052
(Dichloromethane)										at.			
Naphthalene	1160	n	3.8	c*	16800	n	5020	n	17	C*	0.004115	0.00054	-
Butylbenzene, n-	-	-	3900	ns	-	-	-	-	58000	ns	-	3.2	-
Propyl benzene	-	-	3800	ns	-	-	-	-	24000	ns	-	1.2	-
Butylbenzene, sec-	-	-	7800	ns	-	-	-	-	120000	nms	-	5.9	-
Styrene	7264.479096	n	6000	ns	51298.2081	n	10166.3412	n	35000	ns	0.085526	1.3	0.0855262
Butylbenzene, tert-	-	-	7800	ns	-	-	-	-	120000	nms	-	1.6	-
Tetrachloroethene	110.83763	n	24	C**	628.785859	n	119.946456	n	100	c**	0.00199	_	0.0019899
Toluene	5228.442131	n	4900	ns	61340.2341	n	14041.3366	n	47000	ns	0.555037	0.76	0.5550372
trans-1,2-Dichloroethene	295.4386003	n	1600	n	1610.37937	n	305.259901	n	23000	ns	0.025169	0.11	0.0251692
trans-1,3-Dichloropropene	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	6.774958369	n	0.94	C**	36.4574585	n	6.89887525	n	6	C**	0.001551	0.00018	0.0015508
Trichlorofluoromethane	1231.409945	n	23000	ns	6031.2254	n	1126.65819	n	350000	nms	0.78429	3.3	-
Vinyl chloride	0.741954602	С	0.059	С	28.4135373	С	160.964245	С	1.7	С	0.00067	6.5E-06	0.0006702

Xylenes	870.8212522	n	580	ns	4275.2674	n	798.345553	n	2500	ns	7.717531	0.19	7.7175307
Semi-volatiles (mg/kg)	070.0212322	- 11	360	113	42/3.20/4	- 11	/ /0.545555	- 11	2300	113	1.111331	0.13	1.11/330/
1,2,4-Trichlorobenzene	82.90549359	n	_	_	422.891355	n	79.1109174	n	_	_	0.154975	0.0033	0.1549752
1,2-Dichlorobenzene	2149.557119	n	1800	ns	12967.4635	n	2495.84131	n	9300	ns	0.453963	0.0033	0.453963
1,3-Dichlorobenzene	2143.337113	- "-	-	-	12307.4033	- "-	2433.04131	- "	-	-	0.433303	-	-
1.4-Dichlorobenzene	1290	C	2.6	С	6730	C	24800	n	11	С	0.056061	0.00046	0.0560611
1-Methylnaphthalene	171.5924997	С	18	С	812.956959	С	6058.73325	С	73	С	0.030001	0.0058	0.0300011
2,4,5-Trichlorophenol	6163.458291	n	6300	n	91625.0902	n c	26906.2428	n	82000	n	3.310022	4.4	_
2,4,6-Trichlorophenol	61.63458291	n	49	C**	916.250902	n	269.062428	n	210	C**	0.033724	0.015	
2,4-Dichlorophenol	184.9037487	n	190	n	2748.75271	n	807.187284	n	2500	n n	0.033724	0.013	_
2,4-Dimethylphenol	1232.691658	n	1300	n	18325.018	n	5381.24856	n	16000	n	0.322397	0.42	_
2,4-Dinitrophenol	1232.691658		1300		1832.5018		5381.24856	n	16000		0.322397	0.42	-
· · · · · · · · · · · · · · · · · · ·	17.0988813	n	1.7	n c*		n			7.4	n		0.0044	-
2,4-Dinitrotoluene	_	С		C*	82.2735947	С	535.556259	n		С	0.002462		-
2,6-Dintitrotoluene	3.558669245	C	0.36		17.1537797	C	80.9127625	n	1.5	C	0.000512	0.000067	-
b-Chloronaphthalene	6257.142857	n	4800	n	103822.222	n	28315.1515	n	60000	n	2.850999	3.8	-
2-Chlorophenol	391.0714286	n	390	n	6488.88889	n	1769.69697	n	5800	n	0.057615	0.074	-
2-Methylnaphthalene	231.7975423	n	240	n	3367.96454	n	1004.01865	n	3000	n	0.137851	0.19	-
Cresol, o-	-	-	3200	n	-	-	-	-	41000	n	<u> </u>	0.75	-
Nitroaniline, 2-	-	-	630	n	-	-	-	-	8000	n	-	0.08	-
2-Nitrophenol	-	-	-	-	-	-	-	-	-	-	-	-	-
3,3-Dichlorobenzidine	11.83416498	С	1.2	С	57.0096943	С	409.56939	С	5.1	С	0.00621	0.00081	-
3+4-Methylphenol	-	-	-	-	-	-	-	-	-	1	-	-	-
3-Nitroaniline	-	-	-	-	-	-	-	-	-	-	-	-	-
4,6-Dinitro-o-cresol	4.930766633	n	5.1	n	73.3000722	n	21.5249942	n	66	n	0.001989	-	-
4-Bromophenyl phenyl ether	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chlorophenyl phenyl ether	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitroaniline, 4-	-	-	27	c**	-	-	-	-	110	c*	-	0.0016	-
4-Nitrophenol	-	-	-	-	-	-	-	-	-	ı	-	-	-
Acenaphthene	3476.963135	n	3600	n	50519.4682	n	15060.2798	n	45000	n	0.001543	5.5	0.0015429
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	-	-	-
Aniline	-	-	95	c**	-	-	-	-	400	c*	-	0.0046	-
Anthracene	17384.81567	n	18000	n	252597.341	n	75301.399	n	230000	nm	42.53903	58	-
Benzo(a)anthracene	1.530646717	С	1.1	С	32.3	С	239.712408	С	21	С	0.031842	0.0043	-
Benzo(a)pyrene	1.117362054	С	0.11	С	23.5753073	С	172.897367	С	2.1	С	0.176255	0.004	0.1762547
Benzo(b)fluoranthene	1.530646717	С	1.1	С	32.2953975	С	239.712408	С	21	С	0.308604	0.041	-
Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-	-	1	-	-	-
Benzo(k)fluoranthene	15.30605168	С	11	С	322.940213	С	2312.63791	С	210	С	3.024274	0.4	-
Benzoic acid	-	-	250000	nm	-	-	-	-	3300000	nm	-	15	-
Benzyl alcohol	-	-	6300	n	- 1	-	-	-	82000	n	-	0.48	-
Bis(2-chloroethoxy)methane	-	-	190	n	-	-	-	-	2500	n	-	0.013	-
Bis(2-chloroisopropyl) ether	99.31972789	С	-	-	519.111111	С	3539.39394	С	-	-	0.002377	-	_
Bis(2-ethylhexyl)phthalate [Di(2-													
ethylhexyl)phthalate, DEHP]	380.3915288	С	39	c*	1832.49106	С	5381.24856	n	160	С	1.07744	1.3	1.07744
Butyl Benzyl Phthalate	_	_	290	c*	 _ 	_	 	_	1200	С	<u> </u>	0.23	 _
Carbazole	-		-	-	 _ 	-	-	_	-	-	 	-	
Cai nazoie	-		-	_	-		-		-	-	_	_	_

Characas	153.0005100	_	110	_	2220 40242		22426 2704	_	2100	_	0.207204	1.2	1
Chrysene	153.0605168	С	110	С	3229.40213	С	23126.3791	С	2100	С	9.297301	1.2	-
Dibenz(a,h)anthracene	0.15306463	С	0.11	С	3.22953836	С	23.9623983	С	2.1	С	0.098427	0.013	-
Dibenzofuran	-	-	73	n	-	-	-	-	1000	n	-	0.15	-
Diethyl phthalate	49307.66633	n	51000	n	733000.722	n	215249.942	n	660000	nm	4.894328	6.1	-
Dimethyl phthalate (DMP, Phthalic	61634.58291	n	_	_	916250.902	n	269062.428	n	_	_	0.178474	_	_
Acid)	01054.50251	"			310230.302		203002.420				0.170474		
Di-n-butyl phthalate (Dibutyl	6163.458291	n	6300	n	91625.0902	n	26906.2428	n	82000	n	1.688941	_	_
phthalate)	0103.430231		0300	"	31023.0302		20300.2420		02000		1.000541		
Di-n-octyl phthalate	-	-	630	n	-	-	-	-	8200	n	-	57	-
Fluoranthene	2317.975423	n	2400	n	33679.6454	n	10040.1865	n	30000	n	66.86188	89	-
Fluorene	2317.975423	n	2400	n	33679.6454	n	10040.1865	n	30000	n	4.002187	5.4	-
Hexachlorobenzene	3.328412568	С	0.21	С	733.000722	n	116.741691	С	0.96	С	0.009474	0.00012	0.0094737
Hexachloro-1,3-butadiene	61.63458291	n	1.2	c*	52.081725	С	269.062428	n	5.3	С	0.002066	0.00026	-
Hexachlorocyclopentadiene	2.304307921	n	1.8	n	5491.92789	n	867.023021	n	7.5	n	0.12024	0.0013	0.1202397
Hexachloroethane	133.1365601	С	1.8	c*	641.375125	n	188.217514	n	8	c*	0.001598	0.0002	-
Indeno(1,2,3-c,d)pyrene	1.530646717	С	1.1	С	32.2953975	С	239.712408	С	21	С	1.004349	0.13	-
Isophorone	5605.803004	С	570	c*	27005.2897	С	53658.312	n	2400	c*	0.211621		
Naphthalene	1160	n	3.8	c*	16800	n	5020	n	17	c*	0.004115	0.00054	-
Nitrobenzene	60.42982743	С	5.1	c*	293.286096	С	352.525062	n	22	c*	0.00072	0.000092	-
N-Nitrosodiphenylamine	1086.819491	С	110	С	5235.62444	С	37855.1115	С	470	С	0.502482	0.066	-
Pentachlorophenol	9.854740573	С	1	С	44.5097584	С	346.199821	С	4	С	0.007612	0.0004	0.0076118
Phenanthrene	1738.481567	n	-	-	25259.7341	n	7530.1399	n	-	-	4.295901	-	-
Phenol	18490.07715	n	19000	n	274861.313	n	77383.595	n	250000	nm	2.616296	3.3	-
Pyrene	1738.481567	n	1800	n	25259.7341	n	7530.1399	n	23000	n	9.591486	13	-
Pyridine	-	ì	78	n	-	-	-	-	1200	n	-	0.0068	-
Total Petroleum Hydrocarbons (mg/kg)												
Gasoline Range Organics (GRO)	1000	-	-	-	3800	-	-	-	-	-	-	-	-
Diesel Range Organics (DRO)	1000	-	-	-	3800	-	-	-	-	-	-	-	-
Motor Oil Range Organics (MRO)	1000	-	-	-	3800	-	-	-	-	-	-	-	-

⁻ No screening level available

NMED - New Mexico Environment Department Risk Assessment Guidance for Site Investigations and Remediation (March 2019)

EPA - Environmental Protection Agency Regional Screening Levels (Nov. 2019)

NMED TPH Soil Screening Levels "unknown oil"

c -carcinogen

cs - carcinogenic, SSL may exceed saturation

c* - where: n SL < 100X c SL $\,$

c** - where n SL < 10X c SL

n - noncarcinogenic

ns - noncarcinogenic, SSL may exceed saturation nl - noncarcinogenic, SSL may exceed ceiling limit nm - concentration may exceed ceiling limit

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
Metals (ug/l) TOTAL								
Antimony	6	7.263235	n	7.8	n	6	6	(3)
Arsenic	10	0.855366	С	0.052	С	10	10	(3)
Barium	2000	3277.353	n	3800	n	2000	2000	(3)
Beryllium	4	12.38532	n	25	n	4	4	(3)
Cadmium	5	6.24	n	9.2	n	5	5	(3)
Chromium	50	5.701555	С	22000	n	100	50	(3)
Cobalt	50	5.979008	n	6	n	-	50	(3)
Cyanide	200	1.46442	n	1.5	n	200	200	(3)
Iron	1000	13821.88	n	14000	n	-	1000	(3)
Lead	15	-	-	15	L	15	15	(3)
Manganese	200	2017.4	n	430	n	-	200	(3)
Mercury	2	0.625714	n	0.63	n	2	2	(3)
Nickel	-	371.957	n	200	n	-	372	(4)
Selenium	50	98.72771	n	100	n	50	50	(3)
Silver	50	81.1913	n	94	n	-	50	(3)
Vanadium	-	63.06769	n	86	n	-	63.1	(4)
Zinc	10000	5960.445	n	6000	n	-	10000	(3)
Chloride	250000	-	-	-	-	-	250000	(3)
Fluoride	1600	1184.733	n	800	n	4000	1600	(3)
Sulfate	600000	-	-	-	-	-	600000	(3)
Nitrogen, Nitrate (As N)	10000	31600	n	32000	n	10000	10000	(3)
Nitrogen, Nitrite (As N)	1000	1970	n	2000	n	1000	1000	(3)
Metals (ug/l) DISSOLVED								
Antimony (D)	6	7.263235	n	7.8	n	6	6	(3)
Arsenic (D)	10	0.855366	С	0.052	С	10	10	(3)
Barium (D)	2000	3277.353	n	3800	n	2000	2000	(3)
Beryllium (D)	4	12.38532	n	25	n	4	4	(3)
Cadmium (D)	5	6.24	n	9.2	n	5	5	(3)

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
Calcium (D)	-	-	-	-	-	-	-	-
Chromium (D)	50	5.701555	С	22000	n	100	50	(3)
Cobalt (D)	50	5.979008	n	6	n	-	50	(3)
Cyanide (D)	200	1.46442	n	1.5	n	200	200	(3)
Iron (D)	1000	13821.88	n	14000	L	-	1000	(3)
Lead (D)	15	-	-	15	n	15	15	(3)
Magnesium (D)	-	-	-	-	-	-	-	-
Manganese (D)	200	2017.4	n	430	n	1	200	(3)
Nickel (D)	-	371.957	n	200	n	-	372	(4)
Potassium (D)	-	-	-	-	-	-	-	-
Selenium (D)	50	98.72771	n	100	n	50	50	(3)
Sodium (D)	-	-	-	-	-	-	-	-
Silver (D)	50	81.1913	n	94	n	-	50	(3)
Vanadium (D)	-	63.06769	n	86	n	-	63.1	(4)
Zinc (D)	10000	5960.445	n	6000	n	1	10000	(3)
Volatiles (ug/l)								
1,1,1,2-Tetrachloroethane	-	5.737156	С	0.57	С	-	5.74	(4)
1,1,1-Trichloroethane	200	8002.781	n	8000	n	200	200	(3)
1,1,2,2-Tetrachloroethane	10	0.756639	С	0.076	С	1	10	(3)
1,1,2-Trichloroethane	5	0.414843	С	0.28	c**	5	5	(3)
1,1-Dichloroethane	25	27.50549	С	2.8	С	-	25	(3)
1,1-Dichloroethene	7	284.421	n	280	n	7	7	(3)
1,1-Dichloropropene	-	-	-	-	-	-	-	-
1,2,3-Trichlorobenzene	-	-	ı	7	n	-	7	(1)
1,2,4-Trichlorobenzene (V)	70	3.983762	n	1.2	C**	70	70	(3)
1,2,4-Trimethylbenzene	-	-	-	56	n	-	56	(1)
1,2-Dibromoethane (EDB)	0.05	0.074669	С	0.0075	С	0.05	0.05	(3)
1,2-Dichlorobenzene (V)	600	302.4524	n	300	n	600	600	(3)
1,2-Dichloroethane (EDC)	5	1.708649	С	0.17	c*	5	5	(3)

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
1,2-Dichloropropane	5	4.376231	С	0.85	C*	5	5	(3)
1,3,5-Trimethylbenzene	-	-	-	60	n	-	60	(1)
1,3-Dichlorobenzene (V)	-	-	-	-	-	-	-	-
1,3-Dichloropropane	-	-	-	370	n	-	370	(1)
1,4-Dichlorobenzene (V)	75	4.818051	С	0.48	С	75	75	(2)
1-Methylnaphthalene (V)	-	11.37539	С	1.1	С	-	11.37	(4)
2,2-Dichloropropane	-	-	-	-	-	-	-	-
2-Butanone	-	5564.701	n	5600	n	-	5564	(4)
2-Chlorotoluene	-	233.1325	-	240	n	-	233	(4)
2-Hexanone	-	-	-	38	n	-	38	(1)
2-Methylnaphthalene (V)	-	35.11469	n	36	n	-	35.11	(4)
4-Chlorotoluene	-	-	-	250	n	-	250	(1)
4-Isopropyltoluene	-	-	-	-	-	-	-	-
4-Methyl-2-pentanone	-	1243.433	n	-	-	-	1243	(4)
Acetone	-	14063.57	n	14000	n	-	14063	(4)
Benzene	5	4.552198	С	0.46	c*	5	5	(3)
Bromobenzene	-	-	ı	62	n	-	62	(1)
Bromodichloromethane	-	1.34391	С	0.13	С	-	1.34	(4)
Bromoform	-	32.85098	-	3.3	c*	-	32.85	(4)
Bromomethane	-	7.544565	n	7.5	n	-	7.54	(4)
Carbon disulfide	-	809.5351	n	810	n	-	810	(4)
Carbon Tetrachloride	5	4.550271	С	0.46	С	5	5	(3)
Chlorobenzene	-	77.57247	n	78	n	100	100	(2)
Chloroethane	-	20857.14	n	-	-	-	20900	(4)
Chloroform	100	2.293155	С	0.22	С	-	100	(3)
Chloromethane	-	20.31275	С	190	n	-	20.3	(4)
cis-1,2-DCE	70	36.4848	n	36	n	70	70	(3)
cis-1,3-Dichloropropene	-	4.708265	С	0.47	С	-	4.71	(4)
Dibromochloromethane	-	1.678071	С	0.87	С	-	1.68	(4)

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
Dibromomethane	-	-	-	8.3	n	-	8.3	(1)
Dichlorodifluoromethane	-	197.2025	n	200	n	-	197	(4)
Ethylbenzene	700	14.99225	С	1.5	С	700	700	(3)
Hexachlorobutadiene (V)	-	1.387235	С	0.14	C*	-	1.39	(4)
Isopropylbenzene	-	446.8488	n	450	n	-	447	(4)
Methyl tert-butyl ether (MTBE)	100	142.9942	С	14	С	-	100	(4)
Methylene Chloride	5	117.9703	С	11	C**	5	5	(3)
Naphthalene (V)	30	1.651584	С	0.17	C*	-	30	(3)
n-Butylbenzene	-	-	-	1000	-	-	1000	(1)
n-Propylbenzene	-	-	-	660	-	-	660	(1)
sec-Butylbenzene	-	-	-	2000	-	-	2000	(1)
Styrene	100	1205.035	n	1200	n	100	100	(3)
tert-Butylbenzene	-	-	-	690	n	-	690	(1)
Tetrachloroethene (PCE)	5	112.9005	С	11	c**	5	5	(3)
Toluene	1000	1093.245	n	1100	n	1000	1000	(3)
trans-1,2-DCE	100	93.18158	n	360	n	100	100	(3)
trans-1,3-Dichloropropene	-	4.708265	С	0.47	c*	-	4.71	(4)
Trichloroethene (TCE)	5	2.591925	С	0.49	c**	5	5	(3)
Trichlorofluoromethane	-	1136.825	n	5200	n	-	1140	(4)
Vinyl chloride	2	0.323527	С	0.019	С	2	2	(3)
Xylenes, Total	620	192.995	n	190	n	10000	620	(3)
Semivolatiles (ug/l)								
1,2,4-Trichlorobenzene	-	11.54803	С	1.2	С	70	70	(2)
1,2-Dichlorobenzene	600	370.1408	n	300	n	600	600	(3)
1,3-Dichlorobenzene	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	75	4.818051	С	0.48	С	75	75	(3)
1-Methylnaphthalene	-	11.37539	С	1.1	С	-	11.38	(4)
2,4,5-Trichlorophenol	-	1165.977	n	1200	n	-	1166	(4)
2,4,6-Trichlorophenol	-	11.87956	n	4.1	C**	-	11.9	(4)

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
2,4-Dichlorophenol	-	45.3006	n	46	n	-	45.3	(4)
2,4-Dimethylphenol	-	353.8786	n	360	n	-	354	(4)
2,4-Dinitrophenol	-	38.66536	n	39	n	-	38.7	(4)
2,4-Dinitrotoluene	-	2.36907	С	0.24	С	-	2.37	(4)
2,6-Dinitrotoluene	-	0.48538	n	0.049	С	-	0.485	(4)
2-Chloronaphthalene	-	732.5619	n	750	n	-	733	(4)
2-Chlorophenol	-	90.99948	n	91	n	-	91	(4)
2-Methylnaphthalene	-	35.11469	n	36	n	-	35.11	(4)
2-Methylphenol	-	-	-	930	n	-	930	(1)
2-Nitroaniline	-	-	-	190	n	-	190	(1)
2-Nitrophenol	-	-	-	-	-	-	-	-
3,3´-Dichlorobenzidine	-	1.252389	С	0.13	С	-	1.25	(4)
3+4-Methylphenol	-	-	-	930	n	-	930	(1)
3-Nitroaniline	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol	-	1.52438	n	-	-	-	1.52	(4)
4-Bromophenyl phenyl ether	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol	-	-	-	-	-	-	-	-
4-Chlorophenyl phenyl ether	-	-	-	-	-	-	-	-
4-Nitroaniline	-	-	-	3.8	c*	-	38	(5)
4-Nitrophenol	-	-	-	-	-	-	-	-
Acenaphthene	-	534.6011	n	530	n	-	535	(4)
Acenaphthylene	-	-	-	-	-	-	-	-
Aniline	-	-	-	13	c*	-	130	(5)
Anthracene	-	1721.281	n	1800	n	-	1721	(4)
Benz(a)anthracene	-	0.119923	С	0.03	С	-	0.12	(4)
Benzo(a)pyrene	0.2	0.250515	С	0.025	С	0.2	0.2	(3)
Benzo(b)fluoranthene	-	0.343171	С	0.25	С	-	0.343	(4)
Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	-	3.431709	С	2.5	С	-	3.43	(4)

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
Benzoic acid	-	-	-	75000	n	-	75000	(1)
Benzyl alcohol	-	-	-	2000	n	-	2000	(1)
Bis(2-chloroethoxy)methane	-	-	-	59	n	-	59	(1)
Bis(2-chloroisopropyl)ether	-	9.809669	С	-	-	-	9.81	(4)
Bis(2-ethylhexyl)phthalate	-	55.64024	С	5.6	C*	6	6	(2)
Butyl benzyl phthalate	-	-	-	16	С	-	160	(5)
Carbazole	-	-	-	-	-	-	-	-
Chrysene	-	34.31709	С	25	С	-	34.3	(4)
Dibenz(a,h)anthracene	-	0.034317	С	0.025	С	-	0.0343	(4)
Dibenzofuran	-	-	-	7.9	n	-	7.9	(1)
Diethyl phthalate	-	14800.52	n	15000	n	-	14800	(4)
Dimethyl phthalate	-	611.5601	n	-	-	-	611.56	(4)
Di-n-butyl phthalate	-	884.7986	n	-	-	-	885	(4)
Di-n-octyl phthalate	-	-	-	200	n	-	200	(1)
Fluoranthene	-	802.1978	n	800	n	-	802	(4)
Fluorene	-	287.642	n	290	n	-	288	(4)
Hexachlorobenzene	-	0.097601	С	0.0098	С	1	1	(2)
Hexachlorobutadiene	-	1.387235	С	0.14	c*	-	1.39	(4)
Hexachlorocyclopentadiene	-	0.410975	n	0.41	n	50	50	(2)
Hexachloroethane	-	3.284195	С	0.33	C**	-	3.28	(4)
Indeno(1,2,3-cd)pyrene	-	0.343171	С	0.25	С	-	0.343	(4)
Isophorone	-	780.6306	С	78	С	-	780.63	(4)
Naphthalene	30	1.651584	С	0.17	c*	-	30	(3)
Nitrobenzene	-	1.403846	С	0.14	С	-	1.4	(4)
N-Nitrosodiphenylamine	-	121.9219	С	12	С	-	121.92193	(4)
Phenanthrene	-	170.4146	n	-	-	-	170	(4)
Pentachlorophenol	1	0.412922	С	0.041	С	1	1	(3)
Phenol	-	5761.054	n	5800	n	-	5760	(4)
Pyrene	-	117.4227	n	120	n	-	117	(4)

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_key	EPA Screening Levels.Tap Water	EPA TapW_key	MCL	Screening Levels	Source
Pyridine	-	-	-	20	n	-	20	(1)
TPH (ug/I)								
Gasoline Range Organics (GRO)	-	-	-	-	-	-	10.1	(7)
Diesel Range Organics (DRO)	-	-	-	-	-	-	85.8	(6)
Motor Oil Range Organics (MRO)	-	-	-	-	-	-	85.8	(6)

- No screening level or analytical result available
- 450 bolded value exceeds screening level
- (1) EPA Regional Screening Levels (November 2019) Tap Water
- (2) EPA Regional Screening Levels (November 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED Soil Screening Guidance "unknown oil" (March 2019)
- (7) NMED Soil Screening Guidance "gasoline" (March 2019)

				Τ																					
							5')	2')	£.	(.)	(9)	5.)	[2]	(.)	[6]	2.)	[2]	6	.25')	-16')	2.)	[2]	0.)	5.5')	
	Residential		Non-		Locabata DAE		0-0.	1.5-;	(5-6	(8-10	14-1	0-0-	<u>+</u>	(8-10	14-1	9.	1.5-	(8-10	4-15	5.25	0-0	1.5	(8-10	4-15	
NMED constitutent name	Soil	Source	Residential	Source	Leachate DAF (20) (mg/kg)	Source	3-1 (3-1 (3-1	3-1	17	3-2 (3-2 (3-2	-50	33	3-3 (3-3	3 (1,	3 (1)	3-4 (34 (3-4 (1 (1	
	Screening Level		Soil Screening Level	S	SoilGW		U 13	IU13	M T T] ∃	0 13) H) H	1 1	130		L H) 1	13,	13.	U 13	U 13	1	13-	
	20101		20101				WW	SWN	SW	N SWIA	MW.	WW.	NW.S	SWN	N N	NW.	MW8	× Σ	₩	₩	MW8	MW.	SWN	NMU.	
							O)	• ,			o o		, ,		6		,		NS NS	NS S			•	5	
					Lab ID							005 1910d16-00								13 1910D16-014					
Metals (mg/kg)					Sample Da	ate	10/22/2019	10/22/2019	10/22/2019	10/22/20	19 10/22/2	019 10/22/201	9 10/22/2019	0 10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/201	19 10/22/201	19 10/22/2019	10/23/2019	10/23/2019	10/23/2019	10/23/2	.019
Antimony	3.13E+01	(1)	1.42E+02	(5)	5.42E+00	(10)	< 0.7354 u	< 0.7329 u	< 0.7334 u	< 0.7321	u < 0.7307	u < 0.7328	u < 0.7291 u	< 0.7362 u	< 0.7382 u	< 0.7358 u	< 0.7422 u	< 0.7393	u < 0.7373	u < 0.7425 u	< 0.7241 u	< 0.7321 u	< 0.7193 u	< 0.7508	u
Arsenic	7.07E+00	(1)	3.59E+01	(4)	5.83E+00	(8)	< 2.8523 u	3.3 J	< 2.8449 u	< 2.8399	u < 2.8342		u < 2.828 u	< 2.8555 u	< 2.8632 u	< 2.854 u	< 2.8791 u	< 2.8678	u < 2.86	u < 2.8802 u	< 2.8088 u		< 2.7899 u	< 2.9123	u
Barium Beryllium	1.56E+04 1.56E+02	(1)	4.39E+03 1.48E+02	(5) (5)	1.65E+03 6.32E+01	(10)	310 v 1.1 v	220 v 0.86 v	180 v 1.3 v	330 0.67	v 230 v 1.3	v 350 v 0.94	v 550 v v 0.88 v	320 v 0.79 v	270 v	260 v 1.4 v	230 v 1.5 v	290 1.2	v 180 v 1.2	v 190 v v 0.59 v	300 v 1.6 v	270 v 1.3 v	190 v 1.6 v	240	V
Cadmium	7.05E+01	(1)	7.21E+01	(5)	7.52E+00	(10)	< 0.0485 u	< 0.0483 u	< 0.0484 u	< 0.0483	u < 0.0482		u < 0.0481 u	< 0.0486 u	< 0.0487 u	< 0.0485 u	< 0.049 u	< 0.0488	u < 0.0486	u < 0.049 u	< 0.0478 u	< 0.0483 u	< 0.0474 u	< 0.0495	u
Chromium (Total) Cobalt	9.66E+01 2.34E+01	(1)	1.34E+02 3.67E+01	(5) (5)	3.60E+06 5.40E+00	(10)	11 v 5.2 v	8.3 v 4.3 v	12 v 5.5 v	5.4 5.2	v 12 v 5.3	v 8.6 v 4.2	v 7.9 v v 4.3 v	5.6 v 3.8 v	7.8 v 4.5 v	30 v 6.1 v	26 v 6.6 v	13	v 12 v 4.8	v 4.8 v	7.9 v	14 v 5.5 v	16 v 6.4 v	12	V
Cyanide	1.12E+01	(1)	1.21E+01	(5)	7.13E-01	(8)	< 0.25 u	< 0.25 u	< 0.25 u	< 0.25	u < 0.25	u < 0.25	u < 0.25 u	< 0.25 u	< 0.25 u	0.52 v	< 0.25 u	< 0.25	u < 0.25	u < 0.25 u	0.75 v	< 0.25 u	< 0.25 u	< 0.25	u
Iron	5.48E+04	(1)	2.48E+05	(5)	6.96E+03	(8)	25000 v	12000 v	18000 v	9400	v 17000	v 13000	v 12000 v	11000 v	13000 v	19000 v	22000 v	16000	v 16000	v 8000 v	26000 v	18000 v	21000 v	17000	V
Lead Manganese	4.00E+02 1.05E+04	(2)	8.00E+02 4.64E+02	(6)	5.20E-02 2.63E+03	(10)	2.8 v 460 v	2.1 v 710 v	3.9 v 260 v	3.8 370	v 1.5 v 310	v 3.6 v 350	v 3 v v 920 v	3.6 v 340 v	3.5 v 330 v	0.87 v 280 v	1.4 v 360 v	2.9 340	v 1 v 310	v 1.7 v v 320 v	5.2 v 440 v	3.4 v 380 v	2.1 v 310 v	2.8	V
Mercury (elemental)	2.38E+01	(1)	2.07E+01	(5)	2.09E+00	(8)	0.018 J	0.0089 J	0.005 J	0.0034	J 0.0057	J 0.0079	J 0.008 J	0.0071 J	0.0037 J	0.074 v	0.034 v	0.026	J 0.0059	J < 0.0018 u	1.7 v	0.031 J	0.0059 J	0.0082	J
Nickel Selenium	1.56E+03 3.91E+02	(1) (1)	7.53E+02 1.75E+03	(5) (5)	4.85E+02 5.17E+00	(8)	11 v < 2.509 u	8.6 v < 2.5005 u	13 v < 2.5025 u	6 < 2.498	v 11 u < 2.493	v 8.4 u < 2.5002	v 8.5 v u < 2.4876 u	6.5 v < 2.5117 u	8.6 v < 2.5185 u	13 v < 2.5105 u	15 v < 2.5325 u	10 < 2.5226	v 10 u < 2.5157	v 5.1 v u < 2.5335 u	17 V	12 v < 2.4977 u	15 v < 2.4541 u	10 < 2.5617	V
Silver	3.91E+02 3.91E+02	(1)	1.75E+03 1.77E+03	(5)	1.38E+01	(8)	< 0.0641 u	< 0.0638 u	< 0.0639 u	< 0.0638	u < 0.0637		u < 0.0635 u	< 0.0641 u	< 0.0643 u	< 0.0641 u	< 0.0647 u	< 0.0644	u < 0.0642	u < 0.0647 u	< 0.0631 u		< 0.0627 u	< 0.0654	u
Vanadium	3.94E+02	(1)	6.14E+02	(5)	1.26E+03	(8)	21 v	17 v	18 v	12	v 21	v 17	v 20 v	13 v	16 v	26 v	27 v	19	v 20	v 11 v	36 v	21 v	24 v	21	V
Zinc Volatiles (mg/kg)	2.35E+04	(1)	1.06E+05	(5)	7.41E+03	(8)	22 v	14 v	18 v	9.9	v 18	v 14	v 14 v	10 v	13 v	41 V	29 v	18	v 16	v 9.2 v	120 v	20 v	21 v	17	<u> </u>
1,1,1,2-Tetrachloroethane	2.81E+01	(1)	1.37E+02	(4)	3.60E-02	(8)	< 0.0028 u	< 0.0022 u	< 0.0033 u	< 0.0019	u < 0.0019		u < 0.0021 u	< 0.0019 u	< 0.0017 u	< 0.002 u	< 0.0022 u	< 0.0018	u < 0.0015	u < 0.0019 u	< 0.0024 u	< 0.0023 u	< 0.0019 u	< 0.0019	u
1,1,1-Trichloroethane	1.44E+04	(1)	1.36E+04	(5)	1.28E+00	(10)	< 0.0037 u	< 0.0029 u	< 0.0045 u	< 0.0025	u < 0.0025	u < 0.0032	u < 0.0029 u	< 0.0026 u	< 0.0022 u	< 0.0027 u	< 0.0029 u	< 0.0025	u < 0.0021	u < 0.0025 u	< 0.0033 u	< 0.0031 u	< 0.0026 u	< 0.0025	u
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	7.98E+00 2.61E+00	(1)	3.94E+01 2.30E+00	(5)	4.81E-03 2.68E-02	(8)	< 0.0042 u < 0.0029 u	< 0.0033 u < 0.0023 u	< 0.005 u	< 0.0028 < 0.0019	u < 0.0028 u < 0.002	u < 0.0036 u < 0.0025	u < 0.0032 u u < 0.0022 u	< 0.0029 u < 0.002 u	< 0.0025 u < 0.0017 u	< 0.003 u < 0.0021 u	< 0.0033 u	< 0.0028 < 0.0019	u < 0.0023 u < 0.0016	u < 0.0029 u u < 0.002 u	< 0.0037 u	< 0.0035 u < 0.0024 u	< 0.0029 u < 0.002 u	< 0.0028 < 0.0019	u
1,1-Dichloroethane	7.86E+01	(1)	3.83E+02	(4)	1.36E-01	(8)	< 0.0026 u	< 0.0021 u	< 0.0032 u	< 0.0018	u < 0.0018		u < 0.002 u	< 0.0018 u	< 0.0016 u	< 0.0019 u	< 0.0021 u	< 0.0017	u < 0.0015	u < 0.0018 u	< 0.0023 u	< 0.0022 u	< 0.0018 u	< 0.0018	u
1,1-Dichloroethene 1,1-Dichloropropene	4.40E+02	(1)	4.24E+02	(5)	4.79E-02	(10)	< 0.0165 u < 0.0037 u	< 0.013 u < 0.003 u	< 0.0198 u < 0.0045 u	< 0.011 < 0.0025	u < 0.0111 u < 0.0025	u < 0.0141 u < 0.0032	u < 0.0127 u u < 0.0029 u	< 0.0113 u < 0.0026 u	< 0.0098 u < 0.0022 u	< 0.0118 u < 0.0027 u	< 0.0129 u < 0.0029 u	< 0.0109 < 0.0025	u < 0.0091 u < 0.0021	u < 0.0113 u u < 0.0026 u	< 0.0145 u < 0.0033 u	< 0.0137 u < 0.0031 u	< 0.0115 u < 0.0026 u	< 0.011 < 0.0025	u
Trichlorobenzene, 1,2,3-	6.30E+01	(2)	9.30E+02	(6)	4.20E-01	(9)	< 0.0037 u	< 0.0028 u	< 0.0043 u	< 0.0024	u < 0.0023		u < 0.0028 u	< 0.0025 u	< 0.0022 u	< 0.0027 u	< 0.0028 u	< 0.0023	u < 0.0021	u < 0.0025 u	< 0.0033 u	< 0.0031 u	< 0.0025 u	< 0.0023	u
1,2,3-Trichloropropane	5.10E-02	(1)	1.21E+00	(4)	5.82E-05	(8)	< 0.0067 u	< 0.0053 u	< 0.008 u	< 0.0044	u < 0.0045		u < 0.0051 u	< 0.0046 u	< 0.004 u	< 0.0048 u	< 0.0052 u	< 0.0044	u < 0.0037	u < 0.0046 u	< 0.0059 u		< 0.0046 u	< 0.0045	u
1,2,4-Trichlorobenzene Trimethylbenzene, 1,2,4-	8.29E+01 3.00E+02	(1)	7.91E+01 1.80E+03	(5)	3.10E+00 1.62E+00	(8)	< 0.0042 u < 0.0038 u	< 0.0033 u < 0.003 u	< 0.005 u < 0.0045 u	< 0.0028 < 0.0025	u < 0.0028 u < 0.0025	u < 0.0036 u < 0.0032	u < 0.0032 u u < 0.0029 u	< 0.0029 u < 0.0026 u	< 0.0025 u < 0.0022 u	< 0.003 u < 0.0027 u	< 0.0033 u	< 0.0027 < 0.0025	u < 0.0023 u < 0.0021	u < 0.0028 u u < 0.0026 u	< 0.0037 u	< 0.0035 u < 0.0031 u	< 0.0029 u < 0.0026 u	< 0.0028 < 0.0025	u
1,2-Dibromo-3-chloropropane	8.58E-02	(1)	1.18E+00	(4)	1.39E-03	(8)	< 0.0042 u	< 0.0033 u	< 0.0051 u	< 0.0028	u < 0.0028	u < 0.0036	u < 0.0033 u	< 0.0029 u	< 0.0025 u	< 0.003 u	< 0.0033 u	< 0.0028	u < 0.0023	u < 0.0029 u	< 0.0037 u		< 0.0029 u	< 0.0028	u
1,2-Dibromoethane (Ethylene dibromide)	6.72E-01	(1)	3.31E+00	(4)	2.36E-04	(10)	< 0.0038 u	< 0.003 u	< 0.0045 u	< 0.0025	u < 0.0025	u < 0.0032	u < 0.0029 u	< 0.0026 u	< 0.0022 u	< 0.0027 u	< 0.0029 u	< 0.0025	u < 0.0021	u < 0.0026 u	< 0.0033 u	< 0.0031 u	< 0.0026 u	< 0.0025	u
1,2-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00	(8)	< 0.0034 u	< 0.0027 u	< 0.0041 u	< 0.0022	u < 0.0023	u < 0.0029	u < 0.0026 u	< 0.0023 u	< 0.002 u	< 0.0024 u	< 0.0026 u	< 0.0022	u < 0.0019	u < 0.0023 u	< 0.003 u	< 0.0028 u	< 0.0024 u	< 0.0023	u
1,2-Dichloroethane	8.32E+00	(1)	4.07E+01	(4)	2.38E-02	(8)	< 0.0042 u	< 0.0033 u	< 0.0051 u	< 0.0028	u < 0.0028	u < 0.0036	u < 0.0032 u	< 0.0029 u	< 0.0025 u	< 0.003 u	< 0.0033 u	< 0.0028	u < 0.0023	u < 0.0029 u	< 0.0037 u	< 0.0035 u	< 0.0029 u	< 0.0028	u
1,2-Dichloropropane Trimethylbenzene, 1,3,5-	1.78E+01 2.70E+02	(1)	2.54E+01 1.50E+03	(5)	2.77E-02 1.74E+00	(8)	< 0.003 u < 0.004 u	< 0.0024 u < 0.0031 u	< 0.0036 u < 0.0048 u	< 0.002 < 0.0027	u < 0.002 u < 0.0027	u < 0.0026 u < 0.0034	u <0.0023 u u <0.0031 u	< 0.0021 u < 0.0027 u	< 0.0018 u < 0.0024 u	< 0.0022 u < 0.0029 u	< 0.0024 u < 0.0031 u	< 0.002 < 0.0026	u < 0.0017 u < 0.0022	u < 0.0021 u u < 0.0027 u	< 0.0026 u	< 0.0025 u	< 0.0021 u < 0.0028 u	< 0.002 < 0.0027	u
1,3-Dichlorobenzene	-	-	-	-	-	-	< 0.0036 u	< 0.0028 u	< 0.0043 u	< 0.0024	u < 0.0024	u < 0.0031	u <0.0028 u	< 0.0025 u	< 0.0021 u	< 0.0026 u	< 0.0028 u	< 0.0024	u < 0.002	u < 0.0025 u	< 0.0031 u	< 0.003 u	< 0.0025 u	< 0.0024	u
Dichloropropane, 1,3- 1,4-Dichlorobenzene	1.60E+03 1.29E+03	(2)	2.30E+04 6.73E+03	(6)	2.60E+00 1.12E+00	(9)	< 0.0045 u < 0.0034 u	< 0.0035 u < 0.0027 u	< 0.0054 u < 0.0041 u	< 0.003 < 0.0023	u < 0.003 u < 0.0023	u < 0.0038 u < 0.003	u < 0.0034 u u < 0.0027 u	< 0.0031 u < 0.0024 u	< 0.0027 u < 0.0021 u	< 0.0032 u < 0.0025 u	< 0.0035 u < 0.0027 u	< 0.0029 < 0.0023	u < 0.0025 u < 0.0019	u < 0.0031 u u < 0.0024 u	< 0.0039 u	< 0.0037 u < 0.0029 u	< 0.0031 u < 0.0024 u	< 0.003 < 0.0023	u
1-Methylnaphthalene	1.72E+02	(1)	8.13E+02	(4)	8.93E-01	(8)	< 0.0034 u	< 0.0027 u	< 0.0041 u	< 0.0023			u < 0.0027 u	< 0.0163 u	< 0.0021 u	< 0.0023 u	< 0.0027 u	< 0.0025	u < 0.0013	u < 0.0162 u	< 0.0208 u	< 0.0029 u	< 0.0165 u	< 0.0159	u
2,2-Dichloropropane	-	-	-	-	-	-	< 0.0134 u	< 0.0106 u	< 0.0161 u	< 0.0089	u < 0.009	u < 0.0115	u < 0.0103 u	< 0.0092 u	< 0.008 u	< 0.0096 u	< 0.0105 u	< 0.0088	u < 0.0074	u < 0.0092 u	< 0.0118 u	< 0.0111 u	< 0.0093 u	< 0.009	u
2-Butanone (Methyl ethyl ketone, MEK)	3.74E+04	(1)	9.17E+04	(5)	2.01E+01	(8)	0.069 J	0.04 J	< 0.0573 u	< 0.0317	u 0.04	J < 0.0409	u < 0.0368 u	0.045 J	0.034 J	0.059 J	< 0.0374 u	0.033	J < 0.0263	u < 0.0326 u	0.05 J	0.045 J	0.039 J	< 0.0319	u
o-Chlorotoluene	1.56E+03	(1)	7.08E+03	(5)	3.56E+00	(8)	< 0.0036 u	< 0.0028 u	< 0.0043 u	< 0.0024	u < 0.0024		u < 0.0028 u	< 0.0025 u	< 0.0021 u	< 0.0026 u	< 0.0028 u	< 0.0024	u < 0.002	u < 0.0025 u	< 0.0031 u	< 0.003 u	< 0.0025 u	< 0.0024	u
Hexanone, 2- 2-Methylnaphthalene	2.00E+02 2.32E+02	(2) (1)	1.30E+03 1.00E+03	(6) (5)	1.76E-01 2.76E+00	(9)	< 0.0068 u < 0.018 u	< 0.0054 u < 0.0142 u	< 0.0082 u < 0.0216 u	< 0.0046 < 0.012	u < 0.0046 u < 0.0121	+	u < 0.0053 u u < 0.0139 u	< 0.0047 u < 0.0124 u	< 0.0041 u < 0.0107 u	< 0.0049 u < 0.0129 u	< 0.0054 u < 0.0141 u	< 0.0045 < 0.0119	u < 0.0038 u < 0.0099	u < 0.0047 u u < 0.0123 u	< 0.006 u < 0.0158 u	< 0.0057 u < 0.015 u	< 0.0048 u < 0.0126 u	< 0.0046 < 0.0121	u
Chlorotoluene, p-	1.60E+03	(2)	2.30E+04	(6)	4.80E+00	(9)	< 0.018 u	< 0.0142 u	< 0.0216 u	< 0.012	u < 0.0121		u < 0.0139 u u < 0.0026 u	< 0.0124 u	< 0.0107 u	< 0.0129 u	< 0.0141 u	< 0.0119	u < 0.0099 u < 0.0019	u < 0.0123 u	< 0.0158 U	< 0.015 u	< 0.0126 u	< 0.0121	u
4-Isopropyltoluene	-	- (4)	-	- /=>	- 4 005 : 00	- (0)	< 0.0034 u					u < 0.0029							u < 0.0019			< 0.0028 u			_
Methyl isobutyl ketone Acetone	5.81E+03 6.63E+04	(1)	2.02E+04 2.42E+05	(5) (5)	4.80E+00 4.98E+01	(8)	< 0.0078 u < 0.0341 u	< 0.0061 u < 0.0269 u	< 0.0093 u 1.8 v	< 0.0052 < 0.0227		u < 0.0067 u < 0.0293		< 0.0054 u < 0.0235 u			< 0.0061 u < 0.0268 u	< 0.0051 < 0.0225	u < 0.0043 u < 0.0189	u < 0.0053 u u < 0.0234 u	< 0.0068 u			< 0.0052 < 0.0229	_
Benzene	1.78E+01	(1)	8.72E+01	(4)	4.18E-02	(8)	< 0.0034 u	< 0.0027 u	< 0.004 u	< 0.0022	u < 0.0023	u < 0.0029	u < 0.0026 u	< 0.0023 u	< 0.002 u	< 0.0024 u	< 0.0026 u	< 0.0022	u < 0.0019	u < 0.0023 u	< 0.003 u	< 0.0028 u	< 0.0023 u	< 0.0023	u
Bromobenzene Bromodichloromethane	2.90E+02 6.19E+00	(2) (1)	1.80E+03 3.02E+01	(6)	8.40E-01 6.21E-03	(9) (8)	< 0.0039 u < 0.0038 u	< 0.0031 u < 0.003 u	< 0.0047 u < 0.0045 u	< 0.0026 < 0.0025			u < 0.003 u u < 0.0029 u	< 0.0027 u < 0.0026 u	< 0.0024 u < 0.0022 u	< 0.0028 u < 0.0027 u	< 0.0031 u < 0.0029 u	< 0.0026 < 0.0025	u < 0.0022 u < 0.0021	u < 0.0027 u u < 0.0026 u			< 0.0028 u < 0.0026 u	< 0.0026 < 0.0025	
Tribromomethane (Bromoform)	6.19E+00 6.74E+02	(1)	1.76E+01	(4)	6.21E-03 1.47E-01		< 0.0038 u	< 0.003 u	< 0.0045 u	< 0.0025			u < 0.0029 u u < 0.0029 u	< 0.0026 u			< 0.0029 u	< 0.0025	u < 0.0021 u < 0.0021	u < 0.0026 u				< 0.0025	_
Bromomethane	1.77E+01	(1)	1.79E+01	(5)	3.43E-02	(8)	< 0.0099 u	< 0.0078 u	< 0.0119 u	< 0.0066	u < 0.0067	u < 0.0085	u < 0.0077 u	< 0.0068 u	< 0.0059 u	< 0.0071 u	< 0.0078 u	< 0.0066	u < 0.0055	u < 0.0068 u	< 0.0087 u	< 0.0083 u	< 0.0069 u	< 0.0067	u
Carbon disulfide Carbon tetrachloride	1.55E+03 1.07E+01	(1)	1.62E+03 5.25E+01	(5) (4)	4.42E+00 3.67E-02	(8)	< 0.0136 u < 0.0039 u	< 0.0107 u < 0.0031 u	< 0.0163 u < 0.0047 u	< 0.0091 < 0.0026	u < 0.0091 u < 0.0026	u < 0.0117 u < 0.0033	u < 0.0105 u u < 0.003 u	< 0.0094 u < 0.0027 u		< 0.0098 u < 0.0028 u	< 0.0107 u < 0.0031 u	< 0.009 < 0.0026	u < 0.0075 u < 0.0022	u < 0.0093 u u < 0.0027 u	< 0.0119 u < 0.0034 u		< 0.0095 u < 0.0027 u	< 0.0091 < 0.0026	
Chlorobenzene (Monochlorobenzene	3.78E+02	(1)	4.12E+02	(5)	1.08E+00	(8)	< 0.0053 u	< 0.0042 u	< 0.0063 u	< 0.0026	u < 0.0035	u < 0.0045	u < 0.0041 u	< 0.0036 u	< 0.0031 u	< 0.0038 u	< 0.0031 u	< 0.0035	u < 0.0029	u < 0.0036 u		< 0.0044 u	< 0.0037 u	< 0.0020	
Ethyl chloride	1.90E+04	(1)	1.66E+04	(5)	1.07E+02	(8)	< 0.0061 u	< 0.0048 u	< 0.0073 u	< 0.004		1 1 1 1 1 1	u < 0.0047 u	< 0.0042 u	< 0.0036 u	< 0.0044 u	< 0.0048 u	< 0.004	u < 0.0034	u < 0.0042 u	< 0.0053 u			< 0.0041	
Chloroform Chloromethane	5.90E+00 4.11E+01	(1)	2.87E+01 2.01E+02	(4)	1.09E-02 9.52E-02	(8)	< 0.0033 u < 0.0039 u	< 0.0026 u < 0.0031 u	< 0.004 u < 0.0047 u	< 0.0022 < 0.0026			u < 0.0026 u u < 0.003 u	< 0.0023 u < 0.0027 u	< 0.002 u < 0.0024 u	< 0.0024 u < 0.0028 u	< 0.0026 u < 0.0031 u	< 0.0022 < 0.0026	u < 0.0018 u < 0.0022	u < 0.0023 u u < 0.0027 u				< 0.0022 < 0.0026	
cis-1,2-Dichloroethene	1.56E+02	(1)	7.08E+02	(5)	3.52E-01	(8)	< 0.0056 u	< 0.0044 u	< 0.0068 u	< 0.0038	u < 0.0038	u < 0.0048	u < 0.0043 u	< 0.0039 u	< 0.0034 u	< 0.004 u	< 0.0044 u	< 0.0037	u < 0.0031	u < 0.0039 u	< 0.0049 u	< 0.0047 u	< 0.0039 u	< 0.0038	u
cis-1,3-Dichloropropene Dibromochloromethane	- 1.39E+01	(1)	- 6.74E+01	(4)	- 7.55E-03	- (8)	< 0.0035 u < 0.0029 u	< 0.0027 u < 0.0023 u	< 0.0042 u < 0.0035 u	< 0.0023 < 0.0019			u < 0.0027 u u < 0.0023 u	< 0.0024 u	. 0 0047	< 0.0025 u < 0.0021 u	< 0.0027 u < 0.0023 u	< 0.0023 < 0.0019	u < 0.0019 u < 0.0016	u < 0.0024 u u < 0.002 u	< 0.0031 u < 0.0026 u	< 0.0029 u < 0.0024 u	< 0.0024 u < 0.002 u	< 0.0023 < 0.002	_
Dibromomethane (Methylene	1.00L FUI	(±)	0.17LTUI	(4)	1.00L-03	(0)																			
Bromide)	2.40E+01	(2)	9.90E+01	(6)	4.20E-02	(9)		< 0.0035 u		< 0.003		u < 0.0038			< 0.0026 u				u < 0.0024	u < 0.003 u		< 0.0037 u		< 0.003	
Dichlorodifluoromethane	1.82E+02	(1)	1.61E+02	(5)	7.23E+00	(8)	< 0.0096 u	< 0.0075 u	< 0.0115 u	< 0.0064	u < 0.0064	u < 0.0082	u < 0.0074 u	< 0.0066 u	< 0.0057 u	< 0.0069 u	< 0.0075 u	< 0.0063	u < 0.0053	u < 0.0065 u	< 0.0084 u	< 0.0079 u	< 0.0067 u	< 0.0064	u

NMED constitutent name	Residential Soil Screening	Source	Non- Residential Soil Screening	Source	Leachate DAF (20) (mg/kg) SoilGW	Source	13-1 (0-0.5')	13-1 (1.5-2')	J13-1 (5-6')	13-1 (8-10')	13-1 (14-16')	13-2 (0-0.5')	13-2 (1.5-2')	13-2 (8-10')	13-2 (14-16')	13-3 (0-0.5')	13-3 (1.5-2')	13-3 (8-10')	3-3 (14-15.25')	3-3 (15.25-16')	13-4 (0-0.5')	13-4 (1.5-2')	13-4 (8-10')	.3-4 (14-15.5')	
	Level		Level		John		пимѕ	пммѕ	MWS	SWMU	SWMU	NWWS	NWWS	NWS	SWMU	NWWS	NWS	NMWS	SWMU 1	SWMU 1.	NWS	SWMU	SWMU	SWMU 1	
					Lab ID Sample D		1910d16-001 10/22/2019		1910d16-003 10/22/2019		04 1910d16-0 9 10/22/202	05 1910d16-00 .9 10/22/2019			1910d16-009 10/22/2019	1910d16-010 10/22/2019	1910D16-011 10/22/2019	1910D16-01 10/22/2019		13 1910D16-014 9 10/22/2019		1910d68-002 10/23/2019		1910d68-0	
Ethylbenzene	7.51E+01	(1)	3.68E+02	(4)	1.23E+01	(8)	< 0.0024 u	< 0.0019 u	< 0.0029 u	< 0.0016	u < 0.0016	u < 0.0021 l	u < 0.0018 u	< 0.0016 u	< 0.0014 u	< 0.0017 u	< 0.0019 u	< 0.0016 L	u < 0.0013 I	u < 0.0016 u	< 0.0021 u		< 0.0017 u	< 0.0016	u
Hexachloro-1,3-butadiene Cumene (isopropylbenzene)	6.16E+01 2.36E+03	(1)	5.21E+01 2.74E+03	(4)	4.13E-02 1.14E+01	(8)	< 0.0042 u < 0.003 u	< 0.0033 u < 0.0023 u	< 0.005 u < 0.0036 u	< 0.0028	u < 0.0028 u < 0.002	u < 0.0036 L	u < 0.0032 u u < 0.0023 u	< 0.0029 u < 0.002 u	< 0.0025 u < 0.0018 u	< 0.003 u < 0.0021 u	< 0.0033 u < 0.0023 u	< 0.0028 L	u < 0.0023 u u < 0.0016 u	u < 0.0029 u u < 0.002 u	< 0.0037 u < 0.0026 u		< 0.0029 u < 0.0021 u	< 0.0028 < 0.002	u
tert-Butyl methyl ether (MTBE)	9.75E+02	(1)	4.82E+03	(4)	5.53E-01	(8)	< 0.0098 u	< 0.0077 u	< 0.0117 u	< 0.0065	u < 0.0066	u < 0.0084 u	u < 0.0075 u	< 0.0067 u	< 0.0058 u	< 0.007 u	< 0.0077 u	< 0.0064	u < 0.0054	u < 0.0067 u	< 0.0086 u	< 0.0081 u	< 0.0068 u	< 0.0065	u
Methylene chloride (Dichloromethan Naphthalene	4.09E+02 1.16E+03	(1)	1.21E+03 5.02E+03	(5) (5)	2.21E-02 8.23E-02	(10)	< 0.0073 u < 0.0082 u	0.0067 J < 0.0065 u	< 0.0087 u < 0.0099 u	0.0055 < 0.0055	J 0.0056 u < 0.0055	J < 0.0062 L u < 0.0071 L	u < 0.0056 u u < 0.0064 u	0.0052 J < 0.0057 u	< 0.0043 u < 0.0049 u	< 0.0052 u < 0.0059 u	0.0067 J < 0.0065 u	< 0.0048 L	u 0.0043 . u < 0.0046 .	J < 0.005 u u < 0.0056 u	< 0.0064 u < 0.0072 u	< 0.006 u < 0.0069 u	< 0.0051 u < 0.0058 u	< 0.0049 < 0.0055	u II
Butylbenzene, n-	3.90E+03	(2)	5.80E+04	(6)	6.40E+01	(9)	< 0.0038 u	< 0.003 u	< 0.0046 u	< 0.0026	u < 0.0026	u < 0.0033 t	u < 0.003 u	< 0.0026 u	< 0.0023 u	< 0.0028 u	< 0.003 u	< 0.0025	u < 0.0021	u < 0.0026 u	< 0.0034 u	< 0.0032 u	< 0.0027 u	< 0.0026	u
Propyl benzene Butylbenzene, sec-	3.80E+03 7.80E+03	(2)	2.40E+04 1.20E+05	(6)	2.40E+01 1.18E+02	(9)	< 0.0033 u < 0.0046 u	< 0.0026 u < 0.0037 u	< 0.0039 u < 0.0056 u	< 0.0022	u < 0.0022 u < 0.0031	u < 0.0028 u u < 0.004 u	u < 0.0025 u u < 0.0036 u	< 0.0023 u < 0.0032 u	< 0.002 u < 0.0028 u	< 0.0024 u < 0.0033 u	< 0.0026 u < 0.0036 u	< 0.0022 L	u < 0.0018 u u < 0.0026 u	u < 0.0022 u u < 0.0032 u	< 0.0029 u < 0.0041 u	< 0.0027 u < 0.0039 u	< 0.0023 u < 0.0032 u	< 0.0022 < 0.0031	u
Styrene	7.26E+03	(1)	1.02E+04	(5)	1.71E+00	(10)	< 0.0046 u	< 0.0037 u	< 0.0039 u	< 0.0031	u < 0.0031	u < 0.0028 L	u < 0.0036 u u < 0.0025 u	< 0.0032 u	< 0.0028 u	< 0.0033 u	< 0.0036 u	< 0.0031 C	u < 0.0020 l	u < 0.0022 u	< 0.0041 u		< 0.0032 u	< 0.0031	u
Butylbenzene, tert-	7.80E+03	(2)	1.20E+05	(6)	3.20E+01	(9)	< 0.0039 u	< 0.0031 u	< 0.0047 u	< 0.0026	u < 0.0026	u < 0.0033 L	u < 0.003 u	< 0.0027 u	< 0.0023 u	< 0.0028 u	< 0.003 u	< 0.0026 L	u < 0.0021 u	u < 0.0027 u			< 0.0027 u	< 0.0026	u
Tetrachloroethene Toluene	1.11E+02 5.23E+03	(1)	1.20E+02 1.40E+04	(5) (5)	3.98E-02 1.11E+01	(10)	< 0.0033 u < 0.0039 u	< 0.0026 u < 0.0031 u	< 0.004 u < 0.0047 u	< 0.0022 < 0.0026	u < 0.0022 u < 0.0026	u < 0.0028 u u < 0.0034 u	u < 0.0025 u u < 0.003 u	< 0.0023 u < 0.0027 u	< 0.002 u < 0.0023 u	< 0.0024 u < 0.0028 u	< 0.0026 u < 0.0031 u	< 0.0022 L	u < 0.0018 u u < 0.0022 u	u < 0.0023 u u < 0.0027 u	< 0.0029 u < 0.0035 u	< 0.0027 u < 0.0033 u	< 0.0023 u < 0.0027 u	< 0.0022 < 0.0026	u
trans-1,2-Dichloroethene	2.95E+02	(1)	3.05E+02	(5)	5.03E-01	(8)	< 0.0038 u	< 0.003 u	< 0.0045 u	< 0.0025	u < 0.0025	u < 0.0032 u	u < 0.0029 u	< 0.0026 u	< 0.0022 u	< 0.0027 u	< 0.003 u	< 0.0025 l	u < 0.0021	u < 0.0026 u	< 0.0033 u	< 0.0031 u	< 0.0026 u	< 0.0025	u
trans-1,3-Dichloropropene Trichloroethylene	- 6.77E+00	- (1)	- 6.90E+00	(5)	- 3.10E-02	- (8)	< 0.0044 u < 0.0048 u	< 0.0034 u < 0.0038 u	< 0.0052 u < 0.0057 u	< 0.0029	u < 0.0029 u < 0.0032	u < 0.0037 u	u < 0.0034 u u < 0.0037 u	< 0.003 u < 0.0033 u	< 0.0026 u < 0.0028 u	< 0.0031 u < 0.0034 u	< 0.0034 u < 0.0037 u	< 0.0029 L	u < 0.0024 u u < 0.0026 u	u < 0.003 u u < 0.0033 u	< 0.0038 u < 0.0042 u	< 0.0036 u < 0.004 u	< 0.003 u < 0.0033 u	< 0.0029 < 0.0032	u
Trichlorofluoromethane	1.23E+03	(1)	1.13E+03	(5)	1.57E+01	(8)	< 0.0048 u	< 0.0038 u	< 0.0037 u	< 0.0032	u < 0.0094	u < 0.012 u		< 0.0033 u	< 0.0028 u	< 0.01 u	< 0.0037 u	< 0.0031 C	u < 0.0020	u < 0.0033 u				< 0.0032	u
Vinyl chloride	7.42E-01 8.71E+02	(1)	2.84E+01	(4)	1.34E-02 1.54E+02	(8)	< 0.0027 u	< 0.0021 u < 0.0082 u	< 0.0032 u	< 0.0018		u < 0.0023 L	4 0.0022 u	< 0.0019 u	0.0020 4	< 0.0019 u	< 0.0021 u	10.0010	u < 0.0015	u < 0.0018 u	< 0.0024 u	< 0.0022 u	< 0.0019 u	< 0.0018	u
Xylenes Semi-volatiles (mg/kg)	8.71E+02	(1)	7.98E+02	(5)	1.54E+02	(8)	< 0.0104 u	< 0.0082 U	< 0.0125 u	< 0.0069	u < 0.007	u < 0.0089 L	u < 0.008 u	< 0.0071 u	< 0.0062 u	< 0.0075 u	< 0.0081 u	< 0.0069 ι	u < 0.0057 I	u < 0.0071 u	< 0.0091 u	< 0.0086 u	< 0.0072 u	< 0.007	u
1,2,4-Trichlorobenzene	8.29E+01	(1)	7.91E+01	(5)	3.10E+00	(8)	< 1.5909 u	< 0.3172 u	< 0.1449 u	< 0.1514	u < 0.1519	u < 0.309 L	u < 0.1512 u	< 0.1549 u	< 0.1533 u	< 0.7637 u	< 0.3042 u	< 0.3019 U	u < 0.1576	u < 0.1501 u	< 1.5344 u	< 0.1596 u	< 0.1515 u	< 0.1477	u
1,2-Dichlorobenzene 1,3-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00 -	(8)	< 1.2297 u < 1.0778 u	< 0.2452 u < 0.2149 u	< 0.112 u < 0.0982 u	< 0.1171 < 0.1026	u < 0.1174 u < 0.1029	u < 0.2388 u	u < 0.1169 u u < 0.1024 u	< 0.1197 u < 0.105 u	< 0.1185 u	< 0.5903 u < 0.5174 u	< 0.2351 u < 0.2061 u	< 0.2334 L	u < 0.1218 u u < 0.1068 u	u < 0.116 u u < 0.1017 u	< 1.186 u	< 0.1234 u < 0.1081 u	< 0.1171 u < 0.1026 u	< 0.1142 < 0.1001	u
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)	1.12E+00	(8)	< 1.0904 u	< 0.2174 u	< 0.0993 u	< 0.1038	u < 0.1023	u < 0.2118 u	u < 0.1024 u	< 0.1062 u	< 0.1055 u	< 0.5234 u	< 0.2085 u	< 0.2049 U	u < 0.1008	u < 0.1029 u	< 1.0535 u	< 0.1094 u	< 0.1020 u	< 0.1001	u
1-Methylnaphthalene	1.72E+02	(1)	8.13E+02	(7)	8.93E-01	(8)	< 1.5322 u	< 0.3055 u	< 0.1396 u	< 0.1459	u < 0.1463	u < 0.2976 u	u < 0.1456 u	< 0.1492 u	< 0.1476 u	< 0.7355 u	< 0.2929 u	< 0.2908 U	< 0.1518	u < 0.1446 u	< 1.4778 u	< 0.1537 u	< 0.1459 u	< 0.1423	u
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	6.16E+03 6.16E+01	(1)	2.69E+04 2.69E+02	(5) (5)	6.62E+01 6.74E-01	(8)	< 1.3271 u < 1.0761 u	< 0.2646 u < 0.2146 u	< 0.1209 u < 0.098 u	< 0.1263 < 0.1024	u < 0.1267 u < 0.1027	u < 0.2578 u u < 0.209 u	u < 0.1261 u u < 0.1023 u	< 0.1292 u < 0.1048 u	< 0.1279 u < 0.1037 u	< 0.637 u	< 0.2537 u < 0.2057 u	< 0.2518 L	u < 0.1315 u u < 0.1066 u	u < 0.1252 u u < 0.1015 u	< 1.2799 u	< 0.1331 u	< 0.1264 u < 0.1025 u	< 0.1232 < 0.0999	u
2,4-Dichlorophenol	1.85E+02	(1)	8.07E+02	(5)	8.25E-01	(8)	< 1.1906 u	< 0.2374 u	< 0.1084 u	< 0.1133	u < 0.1137	u < 0.2313 u	u < 0.1132 u	< 0.1159 u	< 0.1147 u	< 0.5715 u	< 0.2276 u	< 0.2259	u < 0.118	u < 0.1124 u	< 1.1483 u	< 0.1194 u	< 0.1134 u	< 0.1106	u
2,4-Dimethylphenol 2,4-Dinitrophenol	1.23E+03 1.23E+02	(1) (1)	5.38E+03 5.38E+02	(5) (5)	6.45E+00 6.69E-01	(8)	< 1.1282 u < 0.7438 u	< 0.225 u < 0.1483 u	< 0.1028 u < 0.0677 u	< 0.1074 < 0.0708	u < 0.1077 u < 0.071	u < 0.2191 u u < 0.1445 u	u < 0.1072 u u < 0.0707 u	< 0.1099 u < 0.0724 u	< 0.1087 u	< 0.5416 u < 0.357 u	< 0.2157 u < 0.1422 u	< 0.2141 L	u < 0.1118 u u < 0.0737 u	u < 0.1065 u u < 0.0702 u	< 1.0881 u < 0.7173 u	< 0.1132 u < 0.0746 u	< 0.1074 u < 0.0708 u	< 0.1048 < 0.0691	u
2,4-Dinitrotoluene	1.71E+01	(1)	8.23E+01	(4)	4.92E-02	(8)	< 1.2066 u	< 0.1465 u	< 0.1099 u	< 0.1149	u < 0.1152	u < 0.2344 u	u < 0.1147 u	< 0.1175 u	< 0.1163 u	< 0.5792 u	< 0.1422 u	< 0.229	u < 0.0737 (u < 0.1139 u	< 1.1637 u	< 0.121 u	< 0.1149 u	< 0.0091	u
2,6-Dintitrotoluene	3.56E+00	(1)	1.72E+01	(4)	1.02E-02	(8)	< 1.3473 u	< 0.2686 u	< 0.1227 u	< 0.1283	u < 0.1286	u < 0.2617 u	u < 0.128 u	< 0.1312 u	< 0.1298 u	< 0.6467 u	< 0.2576 u	< 0.2557 L	u < 0.1335 u	u < 0.1271 u	< 1.2994 u	< 0.1351 u	< 0.1283 u	< 0.1251	u
b-Chloronaphthalene 2-Chlorophenol	6.26E+03 3.91E+02	(1)	2.83E+04 1.77E+03	(5)	5.70E+01 1.15E+00	(8)	< 1.2774 u < 1.2735 u	< 0.2547 u < 0.2539 u	< 0.1163 u < 0.116 u	< 0.1216 < 0.1212	u < 0.122 u < 0.1216	u < 0.2481 u u < 0.2474 u	u < 0.1214 u u < 0.121 u	< 0.1244 u < 0.124 u	< 0.1231 u < 0.1227 u	< 0.6132 u	< 0.2442 u < 0.2435 u	< 0.2424 L	u < 0.1266 u u < 0.1262 u	u < 0.1205 u u < 0.1202 u	< 1.232 u	< 0.1281 u < 0.1277 u	< 0.1216 u < 0.1213 u	< 0.1186 < 0.1183	u
2-Methylnaphthalene	2.32E+02	(1)	1.00E+03	(5)	2.76E+00	(8)	< 1.4914 u	< 0.2974 u	< 0.1358 u	< 0.142	u < 0.1424	u < 0.2897 u	u < 0.1417 u	< 0.1452 u	< 0.1437 u	< 0.7159 u	< 0.2851 u	< 0.283 ι	u < 0.1478	u < 0.1407 u	< 1.4384 u	< 0.1496 u	< 0.142 u	< 0.1385	u
Cresol, o- Nitroaniline, 2-	3.20E+03 6.30E+02	(2)	4.10E+04 8.00E+03	(6)	1.50E+01 1.60E+00	(9)	< 1.2141 u < 1.462 u	< 0.2421 u < 0.2915 u	< 0.1106 u < 0.1332 u	< 0.1156 < 0.1392	u < 0.1159 u < 0.1396	u < 0.2358 u u < 0.284 u	u < 0.1154 u u < 0.1389 u	< 0.1182 u < 0.1424 u	< 0.117 u	< 0.5828 u < 0.7018 u	< 0.2321 u < 0.2795 u	< 0.2304 L	u < 0.1203 u u < 0.1449 u	u < 0.1146 u u < 0.138 u	< 1.1709 u	< 0.1218 u < 0.1467 u	< 0.1156 u < 0.1392 u	< 0.1127 < 0.1358	<u>u</u>
2-Nitrophenol	-	-	-	-	-	-	< 1.3979 u	< 0.2787 u	< 0.1332 u	< 0.1331	u < 0.1335	u < 0.2715 u	u < 0.1328 u	< 0.1361 u	< 0.1409 u	< 0.671 u	< 0.2673 u	< 0.2653 L	u < 0.1449	u < 0.1319 u	< 1.3482 u	< 0.1402 u	< 0.1332 u	< 0.1338	u
3,3-Dichlorobenzidine	1.18E+01	(1)	5.70E+01	(4)	1.24E-01	(8)	< 0.91 u	< 0.1814 u	< 0.0829 u	< 0.0866	u < 0.0869	u < 0.1767 u	ı < 0.0865 u	< 0.0886 u	< 0.0877 u	< 0.4368 u	< 0.174 u	< 0.1727 U	ı < 0.0902 ı	u < 0.0859 u	< 0.8776 u	< 0.0913 u	< 0.0866 u	< 0.0845	u
3+4-Methylphenol 3-Nitroaniline	-	-	-	-	-	-	< 1.2565 u < 1.4125 u	< 0.2505 u < 0.2816 u	< 0.1144 u < 0.1286 u	< 0.1196 < 0.1345	u < 0.12 u < 0.1349	u < 0.244 u < 0.2744 u	u < 0.1194 u u < 0.1342 u	< 0.1223 u < 0.1375 u	< 0.1211 u	< 0.6031 u	< 0.2402 u < 0.2701 u	< 0.2384 L	u < 0.1245 u u < 0.14 u	u < 0.1186 u u < 0.1333 u	< 1.2118 u < 1.3623 u	< 0.126 u < 0.1417 u	< 0.1196 u < 0.1345 u	< 0.1167 < 0.1312	u
4,6-Dinitro-o-cresol	4.93E+00	(1)	2.15E+01	(5)	3.98E-02	(8)	< 0.9456 u	< 0.1885 u	< 0.0861 u	< 0.09	u < 0.0903	u < 0.1837 u	ı < 0.0899 u	< 0.0921 u	< 0.0911 u	< 0.4539 u	< 0.1808 u	< 0.1794 u	u < 0.0937	u < 0.0892 u	< 0.912 u	< 0.0949 u	< 0.09 u	< 0.0878	u
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	-	-	-	-	-	-	< 1.2034 u < 1.5706 u	< 0.2399 u < 0.3132 u	< 0.1096 u < 0.143 u	< 0.1146 < 0.1495	u < 0.1149 u < 0.1499	u < 0.2337 u u < 0.3051 u	u < 0.1144 u u < 0.1493 u	< 0.1172 u < 0.1529 u	< 0.1159 u < 0.1513 u	< 0.5776 u < 0.7539 u	< 0.2301 u < 0.3003 u	< 0.2284 L	u < 0.1192 u u < 0.1556 u	u < 0.1136 u u < 0.1482 u	< 1.1606 u	< 0.1207 u < 0.1575 u	< 0.1146 u < 0.1496 u	< 0.1118 < 0.1459	u
Chloroaniline, p-	2.70E+01	(3)	1.10E+02	(7)	3.20E-03	(9)	< 1.4502 u	< 0.2892 u	< 0.143 u	< 0.1495	u < 0.1499 u < 0.1384	u < 0.3051 t	u < 0.1493 u u < 0.1378 u	< 0.1329 U	< 0.1313 u	< 0.7539 u	< 0.3003 u	< 0.2752 u	u < 0.1336 1 u < 0.1437 1	u < 0.1368 u	< 1.3148 u	< 0.1375 u < 0.1455 u	< 0.1496 u	< 0.1459	u
4-Chlorophenyl phenyl ether	- 0.705:00	- (2)	- 1.405:00	- (7)	-	- (0)	< 1.1157 u	< 0.2225 u	< 0.1016 u	< 0.1062	u < 0.1065	u < 0.2167 u	u < 0.106 u	< 0.1086 u	< 0.1075 u	< 0.5356 u	< 0.2133 u	< 0.2117	u < 0.1106	u < 0.1053 u	< 1.0761 u	< 0.1119 u	< 0.1062 u	< 0.1036	u
Nitroaniline, 4- 4-Nitrophenol	2.70E+02 -	(3)	1.10E+03 -	- (1)	3.20E-02 -	(9)	< 1.3071 u < 1.3883 u	< 0.2606 u < 0.2768 u	< 0.119 u < 0.1264 u	< 0.1244 < 0.1322	u < 0.1248 u < 0.1325	u < 0.2539 u u < 0.2696 u	u < 0.1242 u u < 0.1319 u	< 0.1273 u < 0.1352 u	< 0.1259 u < 0.1338 u	< 0.6274 u < 0.6664 u	< 0.2499 u < 0.2654 u	< 0.248 L	u < 0.1295 u u < 0.1376 u	u < 0.1233 u u < 0.131 u	< 1.2607 u < 1.3389 u	< 0.1311 u < 0.1393 u	< 0.1245 u < 0.1322 u	< 0.1214 < 0.1289	u U
Acenaphthene	3.48E+03	(1)	1.51E+04	(5)	8.25E+01	(8)	< 1.228 u	< 0.2449 u	< 0.1118 u	< 0.1169	u < 0.1172	u < 0.2385 u	u < 0.1167 u	< 0.1196 u	< 0.1183 u	< 0.5895 u	< 0.2348 u	< 0.233 ι	u < 0.1217	u < 0.1159 u	< 1.1844 u	< 0.1232 u	< 0.1169 u	< 0.114	
Acenaphthylene Aniline	9.50E+02	(3)	- 4.00E+03	(7)	- 9.20E-02	(9)	< 1.122 u < 1.3163 u	< 0.2237 u < 0.2625 u	< 0.1022 u < 0.1199 u			u < 0.2179 u u < 0.2557 u		< 0.1093 u < 0.1282 u		< 0.5386 u < 0.6318 u	< 0.2145 u < 0.2517 u		u < 0.1112 u u < 0.1304 u		< 1.0821 u < 1.2695 u			< 0.1042 < 0.1222	
Anthracene	1.74E+04	(1)	7.53E+04	(5)	8.51E+02	(8)	< 1.0946 u	< 0.2182 u	< 0.0997 u	< 0.1233	u < 0.1237		u < 0.1231 u	< 0.1282 u	< 0.1268 u	< 0.5254 u	< 0.2093 u	< 0.2077 L	u < 0.1085	u < 0.1033 u	< 1.0557 u		< 0.1233 u	< 0.1222	u
Azobenzene	5.60E+01	(3)	2.60E+02	(7)	1.86E+06	(9)	< 1.4331 u	< 0.2857 u	< 0.1305 u	< 0.1364	u < 0.1368	u < 0.2784 L	2 0:2002 6:	< 0.1395 u		< 0.6879 u	< 0.274 u	< 0.2719 U	u < 0.142	u < 0.1352 u	< 1.3821 u		< 0.1365 u	< 0.1331	u
Benzo(a)anthracene Benzo(a)pyrene	1.53E+00 1.12E+00	(1)	3.23E+01 2.36E+01	(4)	6.37E-01 3.53E+00	(8)	< 0.9863 u < 0.9098 u	< 0.1967 u < 0.1814 u	< 0.0898 u < 0.0829 u	< 0.0939	u < 0.0942 u < 0.0869		u < 0.0937 u u < 0.0865 u	< 0.096 u < 0.0886 u	< 0.095 u < 0.0877 u	< 0.4734 u < 0.4367 u	< 0.1886 u < 0.1739 u	< 0.1872 L	u < 0.0977 u u < 0.0902 u	u < 0.0931 u u < 0.0859 u				< 0.0916 < 0.0845	u
Benzo(b)fluoranthene	1.53E+00	(1)	3.23E+01	(4)	6.17E+00	(8)	< 0.9054 u	< 0.1805 u	< 0.0825 u	< 0.0862	u < 0.0864	u < 0.1759 u	u < 0.086 u	< 0.0882 u	< 0.0872 u	< 0.4346 u	< 0.1731 u	< 0.1718 l	u < 0.0897 i	u < 0.0854 u	< 0.8732 u	< 0.0908 u	< 0.0862 u	< 0.0841	u
Benzo(g,h,i)perylene Benzo(k)fluoranthene	- 1.53E+01	- (1)	- 3.23E+02	- (<u>A</u>)	- 6.05E+01	- (8)	< 0.8781 u < 0.9304 u	< 0.1751 u < 0.1855 u	< 0.08 u < 0.0847 u	< 0.0836 < 0.0886	u < 0.0838	u < 0.1706 u u < 0.1807 u		< 0.0855 u < 0.0906 u	< 0.0846 u < 0.0896 u	< 0.4215 u < 0.4466 u	< 0.1679 u < 0.1779 u	< 0.1666 L	u < 0.087 u u < 0.0922 u	u < 0.0829 u u < 0.0878 u				< 0.0815 < 0.0864	u
Benzoic acid	2.50E+05	(2)	3.23E+02 3.30E+06	(6)	3.00E+01	(9)	< 1.0573 u	< 0.1855 u	< 0.0963 u	< 0.1006		u < 0.2054 u	u < 0.005 u	< 0.103 u	< 0.0096 u	< 0.4466 u	< 0.1779 u	< 0.2006	u < 0.0922 0 u < 0.1048 0	u < 0.0998 u				< 0.0864	u
Benzyl alcohol	6.30E+03	(2)	8.20E+04	(6)	9.60E+00	(9)	< 1.2701 u	< 0.2532 u	< 0.1157 u	< 0.1209		u < 0.2467 L		< 0.1237 u		< 0.6096 u	< 0.2428 u	V.= := \	u < 0.1258	u < 0.1198 u				< 0.1179	u
Bis(2-chloroethoxy)methane Bis(2-chloroethyl) ether	1.90E+02 3.11E+00	(2)	2.50E+03 1.95E+00	(6)	2.60E-01 6.05E-04	(9)	< 1.5132 u < 1.2476 u	< 0.3017 u < 0.2488 u	< 0.1378 u < 0.1136 u	< 0.144	u < 0.1445 u < 0.1191		u < 0.1438 u u < 0.1186 u	< 0.1473 u < 0.1215 u	< 0.1458 u < 0.1202 u	< 0.7264 u < 0.5989 u	< 0.2893 u < 0.2385 u	< 0.2872 L	u < 0.1499 u u < 0.1236 u	u < 0.1428 u u < 0.1177 u				< 0.1405 < 0.1159	u
Bis(2-chloroisopropyl) ether	9.93E+01	(1)	5.19E+02	(4)	4.75E-02	(8)	< 1.1654 u		< 0.1061 u		u < 0.1113		u < 0.1108 u	< 0.1135 u					u < 0.1155			< 0.1169 u		< 0.1082	u
Bis(2-ethylhexyl)phthalate [Di(2-ethylhexyl)phthalate, DEHP]	3.80E+02	/1)	1.83E+03	(4)	2.15E+01	(10)	< 1.4707 u	< 0.2932 u	< 0.1339 u	< 0.14	u 0.14	J < 0.2857	л О.14 J	< 0.1432 u	< 0.1417 u	< 0.7059 u	< 0.2812 u	< 0.2791	u 0.31 .	J < 0.1388 u	< 1.4184 u	< 0.1475 u	< 0.14 u	< 0.1366	u
Butyl Benzyl Phthalate	3.80E+02 2.90E+03	(1)	1.83E+03 1.20E+04	(4)	4.60E+01	(9)	< 1.0464 u	< 0.2086 u	< 0.0953 u	< 0.0996	u < 0.0999	u < 0.2032 t	ı < 0.0994 u	< 0.1019 u	< 0.1008 u	< 0.5023 u	< 0.2001 u	< 0.1986 L	u < 0.1037 u	u < 0.0987 u	< 1.0092 u	< 0.105 u	< 0.0996 u	< 0.0972	u
Carbazole	-	-	-	-	-	-	< 1.2005 u	< 0.2394 u	< 0.1093 u	< 0.1143	u < 0.1146	u < 0.2332 u	u < 0.1141 u	< 0.1169 u	< 0.1157 u	< 0.5762 u	< 0.2295 u	< 0.2278 ι	u < 0.119	u < 0.1133 u	< 1.1578 u	< 0.1204 u	< 0.1143 u	< 0.1115	u
Chrysene	1.53E+02	(1)	3.23E+03	(4)	1.86E+02	(8)	< 0.9028 u	< 0.18 u	< 0.0822 u	< 0.0859	u < 0.0862	u < 0.1753 เ	ı < 0.0858 u	< 0.0879 u	< 0.087 u	< 0.4333 u	< 0.1726 u	< 0.1713 ι	u < 0.0895	u < 0.0852 u	< 0.8707 u	< 0.0906 u	< 0.086 u	< 0.0838	u

Table 5 - Soil Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	Leachate DAF (20) (mg/kg) SoilGW		SWMU 1	SWMU13-1 (1.5-2')	SWMU13-1 (5-6')	SWMU 13-1 (8-10')	SWMU 13-1 (14-16')	SWMU 13-2 (0-0.5')	SWMU 13-2 (1.5-2')	SWMU 13-2 (8-10')	SWMU 13-2 (14-16')	SWMU 13-3 (0-0.5')	SWMU 13-3 (1.5-2')	SMWU 13-3 (8-10')	SWMU 13-3 (14-15.25')	SWMU 13-3 (15.25-16')	SWMU 13-4 (0-0.5')	SWMU 13-4 (1.5-2')	SWMU 13-4 (8-10')	SWMU 13-4 (14-15.5')
					Lab ID)						5 1910d16-006				1910d16-010	1910D16-011					1910d68-002		
					Sample D	ate	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/22/2019	10/23/2019	10/23/2019	10/23/201	10/23/2019
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	1.97E+00	(8)	< 0.9307 u	< 0.1856 u	< 0.0848 u	< 0.0886 u	< 0.0889 l	u < 0.1808 u	< 0.0884 u	< 0.0906 u	< 0.0897 u	< 0.4467 u	< 0.1779 u	< 0.1766 u	< 0.0922 u	< 0.0878 u	< 0.8976 u	< 0.0934 u	< 0.0886	u < 0.0864 u
Dibenzofuran	7.30E+01	(2)	1.00E+03	(6)	3.00E+00	(9)	< 1.3415 u	< 0.2675 u	< 0.1222 u	< 0.1277 u	< 0.1281 l	u < 0.2606 u	< 0.1275 u	< 0.1306 u	< 0.1292 u	< 0.6439 u	< 0.2565 u	< 0.2546 u	< 0.1329 u	< 0.1266 u	< 1.2938 u	< 0.1346 u	< 0.1277	u < 0.1246 u
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(5)	9.79E+01	(8)	< 1.4608 u	< 0.2913 u	< 0.133 u	< 0.1391 u	< 0.1395 l	ı < 0.2837 u	< 0.1388 u	< 0.1422 u	< 0.1407 u	< 0.7012 u	< 0.2793 u	< 0.2772 u	< 0.1447 u	< 0.1378 u	< 1.4089 u	< 0.1465 u	< 0.1391	u < 0.1357 u
Dimethyl phthalate (DMP, Phthalic							< 1.3651 u	< 0.2722 u	< 0.1243 u	< 0.1299 u	< 0.1303	u < 0.2651 u	< 0.1297 u	< 0.1329 u	< 0.1315 u	< 0.6553 u	< 0.261 u	< 0.2591 u	< 0.1353 u	< 0.1288 u	< 1.3166 u	< 0.1369 u	< 0.13	u < 0.1268 u
Acid)	6.16E+04	(1)	2.69E+05	(5)	3.57E+00	(8)	\ 1.3051 u	\ 0.2122 u	0.1243 u	\ 0.1299 u	0.1303	1 \ 0.2651 u	\ \ 0.1297 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 0.1329 \ u	\ 0.1315 \ u	\ 0.0555 \ u	\ \ 0.201 u	\ 0.2591 u	\ 0.1353 \ u	\ 0.1200 \ u	\ 1.3100 u	\ 0.1369 u	\ U.13	u \ 0.1200 u
Di-n-butyl phthalate (Dibutyl							< 1 F070 ···	< 0.3047 u	< 0.1202 ···	4 O 1 1 E 1	4 O 1 4 E O		< 0.14E0	< 0.1400 ···	< 0.1470 ···	< 0.7224 ···	< 0.2021 ···	< 0.0000 ···	4 O 1E11	0.15	< 1.4736 u	0.06	0.10	0.16
phthalate)	6.16E+03	(1)	2.69E+04	(5)	3.38E+01	(8)	< 1.5279 u	< 0.3041 u	< 0.1392 u	< 0.1454 u	< 0.1459	u < 0.2968 u	< 0.1452 u	< 0.1488 u	< 0.1472 u	< 0.7334 u	< 0.2921 u	< 0.2899 u	< 0.1514 u	0.15 J	1.4736 u	0.26 J	0.18	J 0.16 J
Di-n-octyl phthalate	6.30E+02	(2)	8.20E+03	(6)	1.14E+03	(9)	< 1.0445 u	< 0.2083 u	< 0.0951 u	< 0.0994 u	< 0.0997	ı < 0.2029 u	< 0.0993 u	< 0.1017 u	< 0.1006 u	< 0.5014 u	< 0.1997 u	< 0.1982 u	< 0.1035 u	< 0.0986 u	< 1.0074 u	< 0.1048 u	< 0.0995	u < 0.097 u
Fluoranthene	2.32E+03	(1)	1.00E+04	(5)	1.34E+03	(8)	< 1.1465 u	< 0.2286 u	< 0.1044 u	< 0.1091 u	< 0.1095 l	u < 0.2227 u	< 0.109 u	< 0.1116 u	< 0.1105 u	< 0.5503 u	< 0.2192 u	< 0.2176 u	< 0.1136 u	< 0.1082 u	< 1.1057 u	< 0.115 u	< 0.1092	u < 0.1065 u
Fluorene	2.32E+03	(1)	1.00E+04	(5)	8.00E+01	(8)	< 1.1667 u	< 0.2326 u	< 0.1063 u	< 0.1111 u	< 0.1114 l	ı < 0.2266 u	< 0.1109 u	< 0.1136 u	< 0.1124 u	< 0.56 u	< 0.223 u	< 0.2214 u	< 0.1156 u	< 0.1101 u	< 1.1252 u	< 0.117 u	< 0.1111	u < 0.1083 u
Hexachlorobenzene	3.33E+00	(1)	1.17E+02	(5)	1.89E-01	(8)	< 1.2672 u	< 0.2527 u	< 0.1154 u	< 0.1206 u	< 0.121 l	ı < 0.2461 u	< 0.1204 u	< 0.1234 u	< 0.1221 u	< 0.6083 u	< 0.2423 u	< 0.2405 u	< 0.1256 u	< 0.1196 u	< 1.2222 u	< 0.1271 u	< 0.1207	u < 0.1177 u
Hexachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01	(4)	4.13E-02	(8)	< 1.4272 u	< 0.2846 u	< 0.13 u	< 0.1359 u	< 0.1363 l	ı < 0.2772 u	< 0.1356 u	< 0.139 u	< 0.1375 u	< 0.6851 u	< 0.2729 u	< 0.2708 u	< 0.1414 u	< 0.1347 u	< 1.3765 u	< 0.1432 u	< 0.1359	u < 0.1325 u
Hexachlorocyclopentadiene	2.30E+00	(1)	8.67E+02	(5)	2.40E+00	(8)	< 1.1703 u	< 0.2333 u	< 0.1066 u	< 0.1114 u	< 0.1117 u	u < 0.2273 u	< 0.1112 u	< 0.114 u	< 0.1128 u	< 0.5617 u	< 0.2237 u	< 0.2221 u	< 0.116 u	< 0.1104 u	< 1.1287 u	< 0.1174 u	< 0.1114	u < 0.1087 u
Hexachloroethane	1.33E+02	(1)	1.88E+02	(5)	3.20E-02	(8)	< 1.1405 u	< 0.2274 u	< 0.1039 u	< 0.1086 u	< 0.1089 l	ı < 0.2215 u	< 0.1084 u	< 0.111 u	< 0.1099 u	< 0.5474 u	< 0.218 u	< 0.2164 u	< 0.113 u	< 0.1076 u	< 1.0999 u	< 0.1144 u	< 0.1086	u < 0.1059 u
Indeno(1,2,3-c,d)pyrene	1.53E+00	(1)	3.23E+01	(4)	2.01E+01	(8)	< 1.0191 u	< 0.2032 u	< 0.0928 u	< 0.097 u	< 0.0973 l	u < 0.1979 u	< 0.0968 u	< 0.0992 u	< 0.0982 u	< 0.4892 u	< 0.1948 u	< 0.1934 u	< 0.101 u	< 0.0962 u	< 0.9828 u	< 0.1022 u	< 0.097	u < 0.0946 u
Isophorone	5.61E+03	(1)	2.70E+04	(4)	0.00E+00	(9)	< 1.5074 u	< 0.3006 u	< 0.1373 u	< 0.1435 u	< 0.1439 u	ı < 0.2928 u	< 0.1433 u	< 0.1468 u	< 0.1452 u	< 0.7236 u	< 0.2882 u	< 0.2861 u	< 0.1494 u	< 0.1422 u	< 1.4538 u	< 0.1512 u	< 0.1435	u < 0.14 u
Naphthalene	1.16E+03	(1)	5.02E+03	(5)	8.23E-02	(8)	< 1.5481 u	< 0.3087 u	< 0.141 u	< 0.1474 u	< 0.1478	u < 0.3007 u	< 0.1471 u	< 0.1507 u	< 0.1492 u	< 0.7431 u	< 0.296 u	< 0.2938 u	< 0.1534 u	< 0.1461 u	< 1.493 u	< 0.1553 u	< 0.1474	u < 0.1438 u
Nitrobenzene	6.04E+01	(1)	2.93E+02	(4)	1.44E-02	(8)	< 1.4157 u	< 0.2823 u	< 0.1289 u	< 0.1348 u	< 0.1352 u	u < 0.275 u	< 0.1345 u	< 0.1379 u	< 0.1364 u	< 0.6795 u	< 0.2707 u	< 0.2686 u	< 0.1403 u	< 0.1336 u	< 1.3654 u	< 0.142 u	< 0.1348	u < 0.1315 u
Nitroso-di-N-propylamine, N-	7.80E-01	(3)	3.30E+00	(7)	1.62E-04	(9)	< 1.4615 u	< 0.2914 u	< 0.1331 u	< 0.1391 u	< 0.1395 u	ı < 0.2839 u	< 0.1389 u	< 0.1423 u	< 0.1408 u	< 0.7016 u	< 0.2794 u	< 0.2773 u	< 0.1448 u	< 0.1379 u	< 1.4096 u	< 0.1466 u	< 0.1392	u < 0.1357 u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	1.00E+01	(8)	< 1.0761 u	< 0.2146 u	< 0.098 u	< 0.1024 u	< 0.1027 U	u < 0.209 u	< 0.1023 u	< 0.1048 u	< 0.1037 u	< 0.5166 u	< 0.2057 u	< 0.2042 u	< 0.1066 u	< 0.1015 u	< 1.0379 u	< 0.1079 u	< 0.1025	u < 0.0999 u
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	1.52E-01	(8)	< 1.0551 u	< 0.2104 u	< 0.0961 u	< 0.1004 u	< 0.1007	u < 0.2049 u	< 0.1003 u	< 0.1027 u	< 0.1017 u	< 0.5064 u	< 0.2017 u	< 0.2002 u	< 0.1045 u	< 0.0996 u	< 1.0175 u	< 0.1058 u	< 0.1005	u < 0.098 u
Phenanthrene	1.74E+03	(1)	7.53E+03	(5)	8.59E+01	(8)	< 1.108 u	< 0.2209 u	< 0.1009 u	< 0.1055 u	< 0.1058 u	u < 0.2152 u	< 0.1053 u	< 0.1079 u	< 0.1068 u	< 0.5318 u	< 0.2118 u	< 0.2103 u	< 0.1098 u	< 0.1046 u	< 1.0686 u	< 0.1111 u	< 0.1055	u < 0.1029 u
Phenol	1.85E+04	(1)	7.74E+04	(5)	5.23E+01	(8)	< 1.2735 u	< 0.2539 u	< 0.116 u	< 0.1212 u	< 0.1216 u	u < 0.2474 u	< 0.121 u	< 0.124 u	< 0.1227 u	< 0.6113 u	< 0.2435 u	< 0.2417 u	< 0.1262 u	< 0.1202 u	< 1.2283 u	< 0.1277 u	< 0.1213	u < 0.1183 u
Pyrene	1.74E+03	(1)	7.53E+03	(5)	1.92E+02	(8)	< 0.9617 u	< 0.1918 u	< 0.0876 u	< 0.0915 u	< 0.0918 u	u < 0.1868 u	< 0.0914 u	< 0.0936 u	< 0.0927 u	< 0.4616 u	< 0.1839 u	< 0.1825 u	< 0.0953 u	< 0.0908 u	< 0.9275 u	< 0.0965 u	< 0.0916	u < 0.0893 u
Pyridine	7.80E+01	(2)	1.20E+03	(6)	1.36E-01	(9)	< 1.2328 u	< 0.2458 u	< 0.1123 u	< 0.1174 u	< 0.1177 u	ı < 0.2395 u	< 0.1172 u	< 0.12 u	< 0.1188 u	< 0.5918 u	< 0.2357 u	< 0.2339 u	< 0.1222 u	< 0.1163 u	< 1.189 u	< 0.1237 u	< 0.1174	u < 0.1145 u
Total Petroleum Hydrocarbons (mg,	/kg)						•		•	•	•	•	•	•	•	•	•	,	•	•	•	•	•	
Gasoline Range Organics (GRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 1.2454 u	< 0.982 u	< 1.4982 u	< 0.8305 u	< 0.8379 l	u < 1.0694 u	< 0.9614 u	< 0.8578 u	< 0.7436 u	< 0.8949 u	< 0.9775 u	< 0.8228 u	< 0.6888 u	< 0.8535 u	< 1.0949 u	< 1.0364 u	< 0.8692	u < 0.8346 u
Diesel Range Organics (DRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	9.5 J	2.6 J	2.4 J	2.1 J	< 1.9305 L	ı 1.9 J	3.1 J	3.2 J	2 J	110 v	21 v	2.4 J	2.1 J	2.1 J	1200 v	16 v	< 1.8315	u 3.1 J
Motor Oil Range Organics (MRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 48.2625 u	< 46.1681 u	< 43.3651 u	< 39.032 u	< 48.2625 u	ı < 43.8596 u	< 46.1681 u	< 48.3092 u	< 45.0857 u	160 v	< 45.6204 u	< 40.1284 u	< 43.8596 u	< 44.405 u	1300 v	< 48.1232 u	< 45.7875	u < 48.2625 u

- No screening level or analytical result available

NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2019)

EPA - Regional Screening Levels (Nov. 2019)

(1) NMED Residential Screening Level

(2) EPA Residential Screening Level

(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013

RCRA Post-Closure Permit because the constituent is listed as carcinogenic

(4) NMED Industrial Occupational Screening Level

(5) NMED Construction Worker Screening Level

(6) EPA Industrial - Screening Levels

(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA

Post-Closure Permit because the constituent is listed as carcinogenic

(8) SoilGW NMED Cw Dilution Attenuation Factor (DAF) = 20

(9) SoilGW Risk-based EPA DAF = 20

(10) SoilGW MCL-based NMED DAF = 20

(11) NMED Tables 6-2 and 6-4 TPH Soil Screening Levels "unknown oil" - see report Section 5 for use of

screening levels

Bold represents value above Residential Screening Level

yellow highlight represents value above Non-Residential Screening Level

Bold with yellow highlight value exceeds Residential and Non-Residential Screening Levels

v = reportable detection above the Practical quantitation limit (PQL)

u - result is not detected at method detection limit (MDL)

j - estimated result at concentration above MDL but less than PQL

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	Leachate DAF (20) (mg/kg) SoilGW		SWMU 13-4 (15.5-16')	SWMU 13-5 (0-0.5')		SWMU 13-5 (1.5-2')	SWMU 13-5 (8-10')	SWMU 13-5 (10-10.5')	SWMU 13-5 (10-10.5') SWMU 13-5 (14-16')		SWMU 13-6 (0-0.5')	SWMU 13-6 (1.5-2")		SWMU 13-6 (2-3')	SWMU 13-6 (6-8')	SWMU 13-6 (10-11')	SWMU 13-6 (17-18')	SWMU 13-7 (0-0.5')	SWMU 13-7 (1.5-2")	SWMU 13-7 (4-6')	SWMU 13-7 (10-12')	SWMU 13-7 (12-13")	
					Lab ID Sample Da		1910D68-005 10/23/2019			1910D68-007 10/23/2019	1910d68-008 10/23/2019				1910d68-01 10/23/2019					1910d68-015 10/23/2019		1910e04-002 10/24/2019		1910e04-005 10/24/2019			
Metals (mg/kg)		<u> </u>			Campio B	ato [10, 20, 2010	10/20/2010	<u> </u>	10, 20, 2010	10/20/2010	10/20/20	10/20/1		10/20/201	10,20,2	010	10/20/2010	10,20,2010	10/20/2010	10/2 1/2010	10/2 1/2010	10/21/2010	10/21/2010	10,21,20	10 10/2 1/20	710
Antimony	3.13E+01	(1)	1.42E+02	(5)	5.42E+00	(10)	< 0.7239 u	< 0.7064 u	u <	< 0.7292 u	< 0.7667 u	< 0.7339	u < 0.7159	u	< 0.7463	u < 0.7506	u	< 0.7122 u	< 0.7564 u	< 0.7475 u	< 0.719 u	< 0.7464 u	< 0.7139 u	< 0.721 u	< 0.7431	u < 0.7047	u
Arsenic	7.07E+00	(1)	3.59E+01	(4)	5.83E+00	(8)	< 2.808 u		u <	< 2.8283 u		< 2.8466	u < 2.7769	u	< 2.8948	u < 2.9117	u	< 2.7624 u	< 2.9341 u	< 2.8995 u	< 2.7891 u	< 2.8951 u	< 2.7691 u	< 2.7967 u	< 2.8823	u < 2.7333	u
Barium Beryllium	1.56E+04 1.56E+02	(1)	4.39E+03 1.48E+02	(5)	1.65E+03 6.32E+01	(10)	400 v 0.59 v	270 v 1.5 v	V	250 v 0.99 v	220 v 1.4 v	310 1.2	v 180 v 1.3	V	390 · · · · · · · · · · · · · · · · · · ·	v 410 v 0.78	V	310 v 0.81 v	290 v 1.3 v	280 v 1.3 v	260 v 1.3 v	210 v 1.1 v	740 v 0.86 v	290 v 0.72 v	250 1.4	v 270 v 1.3	V
Cadmium	7.05E+01	(1)	7.21E+01	(5)	7.52E+00	(10)	< 0.0478 u	< 0.0466 u	u <	< 0.0481 u	< 0.0506 u	< 0.0484	u < 0.0472	u	< 0.0492	u < 0.0495	u	< 0.047 u	< 0.0499 u	< 0.0493 u	< 0.0474 u	< 0.0492 u	< 0.0471 u	< 0.0476 u	< 0.049	u < 0.0465	u
Chromium (Total)	9.66E+01	(1)	1.34E+02	(5)	3.60E+06	(10)	5.4 v	62 v	V	8.8 v	14 v	13	v 13	V	12	v 9.3	V	7.6 v	12 v	12 v	13 v	11 v	8.9 v	11 v	14	v 14	V
Cyanida	2.34E+01 1.12E+01	(1)	3.67E+01 1.21E+01	(5)	5.40E+00 7.13E-01	(8)	2.6 v < 0.25 u	7.1 v	V	4.8 v	5.7 v < 0.25 u	5.4 < 0.25	v 4.7 u < 0.25	V	4.4 < 0.25	v 3.8 u < 0.25	V	4 v < 0.25 u	5.1 v < 0.25 u	5.8 v < 0.25 u	5.7 v < 0.25 u	4.8 v	3.8 v	4.1 v < 0.25 u	5.5 < 0.25	v 5.6 u < 0.25	V
Cyanide	5.48E+04	(1)	2.48E+05	(5)	6.96E+03	(8)	8600 v	24000 v	u V	< 0.25 u 14000 v	20000 v	17000	v 19000	V	15000	v 13000	v	12000 v	18000 v	19000 v	18000 v	< 0.25 u 17000 v	< 0.25 u 13000 v	11000 v	19000	v 18000	V
Lead	4.00E+02	(2)	8.00E+02	(6)	5.20E-02	(10)	2.6 v	1.2 v	v	5 v	2.3 v	3	v 1.3	V	2.8	v 3.1	V	3.7 v	3.8 v	2.9 v	1.7 v	1.8 v	1.7 v	2.5 v	2.7	v 2.8	V
Manganese	1.05E+04	(1)	4.64E+02	(5)	2.63E+03	(8)	210 v	320 v	V	630 v	330 v	350	v 230	V	360	v 350	V	410 v	320 v	330 v	430 v	320 v	380 v	360 v	310	v 300	V
Mercury (elemental) Nickel	2.38E+01 1.56E+03	(1)	2.07E+01 7.53E+02	(5) (5)	2.09E+00 4.85E+02	(8)	0.0033 J 4.8 v	0.15 v	V	0.011 J 9.6 v	0.0057 J 13 v	0.0073	J 0.006 v 11	J J	9.6	U 0.0083 V 7.5	, , ,	0.005 J 7.9 v	0.017 J 12 v	0.0044 J 13 v	0.0036 J 12 v	0.0046 J 9.8 v	0.021 J	0.0052 J	0.0034 12	J 0.0029 v 12	J
Selenium	3.91E+02	(1)	1.75E+03	(5)	5.17E+00	(10)	4.8 V < 2.47 u	< 2.4103 u	u <	< 2.4878 u	< 2.6158 u	< 2.504	u 2.5	y J	< 2.5463	u < 2.5611	u	< 2.4298 u	< 2.5809 u	< 2.5505 u	< 2.4983 u	9.8 V < 2.5466 u	< 2.4357 u	< 2.4601 u	< 2.5353	u < 2.5414	u
Silver	3.91E+02	(1)	1.77E+03	(5)	1.38E+01	(8)	< 0.0631 u	< 0.0615 u		< 0.0635 u	 	< 0.0639	u < 0.0624	u	< 0.065	u < 0.0654	-	< 0.062 u	< 0.0659 u	< 0.0651 u	< 0.0626 u	< 0.065 u	< 0.0622 u	< 0.0628 u	< 0.0647	u < 0.0614	
Vanadium	3.94E+02	(1)	6.14E+02	(5)	1.26E+03	(8)	13 v	33 v	V	16 v	22 v	22	v 21	V	20	v 17	V	17 v	20 v	20 v	23 v	20 v	19 v	15 v	21	v 22	V
Zinc Volatiles (mg/kg)	2.35E+04	(1)	1.06E+05	(5)	7.41E+03	(8)	8.6 v	65 v	V	15 v	19 v	18	v 18	V	18	v 16	V	13 v	17 v	18 v	19 v	20 v	14 v	15 v	19	v 18	V
1,1,1,2-Tetrachloroethane	2.81E+01	(1)	1.37E+02	(4)	3.60E-02	(8)	< 0.0033 u	< 0.0027 u	u <	< 0.0025 u	< 0.002 u	< 0.0033	u < 0.002	u	< 0.0022	u < 0.0016	u	< 0.0017 u	< 0.0016 u	< 0.0017 u	< 0.0034 u	< 0.002 u	< 0.0017 u	< 0.0017 u	< 0.0016	u < 0.0033	u
1,1,1-Trichloroethane	1.44E+04	(1)	1.36E+04	(5)	1.28E+00	(10)	< 0.0044 u	< 0.0035 u	u <	< 0.0034 u	< 0.0026 u	< 0.0044	u < 0.0026	u	< 0.003	u < 0.0022	u	< 0.0023 u	< 0.0022 u	< 0.0023 u	< 0.0045 u	< 0.0027 u	< 0.0023 u	< 0.0022 u	< 0.0022	u < 0.0044	u
1,1,2,2-Tetrachloroethane	7.98E+00	(1)	3.94E+01	(4)	4.81E-03	(8)	< 0.0049 u	< 0.004 u		< 0.0038 u	< 0.003 u	< 0.005	u < 0.0029	u	< 0.0033	u < 0.0025	u	< 0.0026 u	< 0.0024 u	< 0.0026 u	< 0.0051 u	< 0.003 u	< 0.0026 u	< 0.0025 u	< 0.0025	u < 0.005	u
1,1,2-Trichloroethane 1,1-Dichloroethane	2.61E+00 7.86E+01	(1)	2.30E+00 3.83E+02	(5)	2.68E-02 1.36E-01	(8)	< 0.0034 u	< 0.0028 u	_	< 0.0026 u < 0.0024 u	< 0.0021 u < 0.0019 u	< 0.0035 < 0.0031	u < 0.002 u < 0.0018	u	< 0.0023 Colored Color	u < 0.0017 u < 0.0015	u	< 0.0018 u < 0.0017 u	< 0.0017 u < 0.0015 u	< 0.0018 u < 0.0016 u	< 0.0035 u < 0.0032 u	< 0.0021 u < 0.0019 u	< 0.0018 u < 0.0016 u	< 0.0017 u < 0.0016 u	< 0.0017 < 0.0016	u < 0.0034 u < 0.0031	u
1,1-Dichloroethene	4.40E+02	(1)	4.24E+02	(5)	4.79E-02	(10)	< 0.0195 u	< 0.0157 u		< 0.015 u	< 0.0117 u	< 0.0196	u < 0.0116	_	< 0.0132	u < 0.0097	u	< 0.0104 u	< 0.0096 u	< 0.0101 u	< 0.02 u	< 0.0118 u	< 0.0102 u	< 0.0098 u	< 0.0097	u < 0.0196	u
1,1-Dichloropropene	-	-	-	-	-	-	< 0.0044 u	< 0.0036 u		< 0.0034 u	< 0.0027 u	< 0.0045	u < 0.0026	_	< 0.003	u < 0.0022	u	< 0.0024 u	< 0.0022 u	< 0.0023 u	< 0.0046 u	< 0.0027 u	< 0.0023 u	< 0.0022 u	< 0.0022	u < 0.0045	u
Trichlorobenzene, 1,2,3-1,2,3-Trichloropropane	6.30E+01 5.10E-02	(2)	9.30E+02 1.21E+00	(6)	4.20E-01 5.82E-05	(9)	< 0.0043 u < 0.0079 u	< 0.0034 u	_	< 0.0033 u < 0.0061 u	< 0.0026 u < 0.0047 u	< 0.0043 < 0.0079	u < 0.0025 u < 0.0047		< 0.0029 (< 0.0053 (u < 0.0021 u < 0.0039	u	< 0.0023 u < 0.0042 u	< 0.0021 u < 0.0039 u	< 0.0022 u < 0.0041 u	< 0.0044 u < 0.0081 u	< 0.0026 u < 0.0048 u	< 0.0022 u < 0.0041 u	< 0.0021 u < 0.004 u	< 0.0021 < 0.0039	u < 0.0043 u < 0.0079	u
1,2,4-Trichlorobenzene	8.29E+01	(1)	7.91E+01	(5)	3.10E+00	(8)	< 0.0079 u	< 0.004 U	_	< 0.0038 u	< 0.0047 u	< 0.0079	u < 0.0047	_	< 0.0033	u < 0.0039	u	< 0.0042 u	< 0.0039 u	< 0.0041 u	< 0.0051 u	< 0.0048 U	< 0.0041 u	< 0.004 u	< 0.0039	u < 0.0079	u
Trimethylbenzene, 1,2,4-	3.00E+02	(2)	1.80E+03	(6)	1.62E+00	(9)	< 0.0044 u	< 0.0036 u	_	< 0.0034 u	< 0.0027 u	< 0.0045	u < 0.0026		< 0.003	u < 0.0022	u	< 0.0024 u	< 0.0022 u	< 0.0023 u	< 0.0046 u	< 0.0027 u	< 0.0023 u	< 0.0022 u	< 0.0022	u < 0.0045	u
1,2-Dibromo-3-chloropropane	8.58E-02	(1)	1.18E+00	(4)	1.39E-03	(8)	< 0.005 u	< 0.004 u	u <	< 0.0038 u	< 0.003 u	< 0.005	u < 0.003	u	< 0.0034	u < 0.0025	u	< 0.0027 u	< 0.0025 u	< 0.0026 u	< 0.0051 u	< 0.003 u	< 0.0026 u	< 0.0025 u	< 0.0025	u < 0.005	u
1,2-Dibromoethane (Ethylene dibromide)	6.72E-01	(1)	3.31E+00	(4)	2.36E-04	(10)	< 0.0044 u	< 0.0036 u	u <	< 0.0034 u	< 0.0027 u	< 0.0045	u < 0.0026	u	< 0.003	u < 0.0022	u	< 0.0024 u	< 0.0022 u	< 0.0023 u	< 0.0046 u	< 0.0027 u	< 0.0023 u	< 0.0022 u	< 0.0022	u < 0.0045	u
1,2-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00	(8)	< 0.004 u	< 0.0032 u	u <	< 0.0031 u	< 0.0024 u	< 0.004	u < 0.0024	u	< 0.0027	u < 0.002	u	< 0.0021 u	< 0.002 u	< 0.0021 u	< 0.0041 u	< 0.0024 u	< 0.0021 u	< 0.002 u	< 0.002	u < 0.004	u
1,2-Dichloroethane	8.32E+00	(1)	4.07E+01	(4)	2.38E-02	(8)	< 0.005 u	< 0.004 u		< 0.0038 u	< 0.003 u	< 0.005	u < 0.0029	u	< 0.0034	u < 0.0025	u	< 0.0026 u	< 0.0024 u	< 0.0026 u	< 0.0051 u	< 0.003 u	< 0.0026 u	< 0.0025 u	< 0.0025	u < 0.005	u
1,2-Dichloropropane Trimethylbenzene, 1,3,5-	1.78E+01 2.70E+02	(1)	2.54E+01 1.50E+03	(5) (6)	2.77E-02 1.74E+00	(8)	< 0.0035 u < 0.0047 u	< 0.0029 u	_	< 0.0027 u < 0.0036 u	< 0.0021 u < 0.0028 u	< 0.0036 < 0.0047	u < 0.0021 u < 0.0028	u	< 0.0024 (< 0.0032 (u < 0.0018 u < 0.0023	u	< 0.0019 u < 0.0025 u	< 0.0017 u < 0.0023 u	< 0.0018 u	< 0.0036 u < 0.0048 u	< 0.0021 u < 0.0029 u	< 0.0019 u < 0.0025 u	< 0.0018 u < 0.0024 u	< 0.0018 < 0.0024	u < 0.0036 u < 0.0047	u
1,3-Dichlorobenzene	2.70E+02	-	1.50E+05 -	- (0)	-	- (9)	< 0.0047 u	< 0.0038 U	_	< 0.0036 u	< 0.0025 u	< 0.0047	u < 0.0028	u	< 0.0032	u < 0.0023	u	< 0.0023 u	< 0.0023 u	< 0.0024 u	< 0.0048 U	< 0.0029 u	< 0.0025 u	< 0.0024 u	< 0.0024	u < 0.0047	u
Dichloropropane, 1,3-	1.60E+03	(2)	2.30E+04	(6)	2.60E+00	(9)	< 0.0053 u	< 0.0042 u	_	< 0.004 u	< 0.0032 u	< 0.0053	u < 0.0031	u	< 0.0036	u < 0.0026	u	< 0.0028 u	< 0.0026 u	< 0.0027 u	< 0.0054 u	< 0.0032 u	< 0.0028 u	< 0.0026 u	< 0.0026	u < 0.0053	u
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)	1.12E+00	(8)	< 0.0041 u	< 0.0033 u		< 0.0031 u	< 0.0024 u	< 0.0041	u < 0.0024	_	< 0.0028	u < 0.002	u	< 0.0022 u	< 0.002 u	< 0.0021 u	< 0.0042 u	< 0.0025 u	< 0.0021 u	< 0.002 u	< 0.002	u < 0.0041	u
1-Methylnaphthalene 2,2-Dichloropropane	1.72E+02	(1)	8.13E+02	(4)	8.93E-01	(8)	< 0.028 u < 0.0158 u	< 0.0226 u	_	< 0.0215 u < 0.0122 u	< 0.0168 u < 0.0095 u	< 0.0282 < 0.0159	u < 0.0166 u < 0.0094	_	< 0.0189 (< 0.0107 (u < 0.0139 u < 0.0079	u	< 0.0149 u < 0.0084 u	< 0.0138 u < 0.0078 u	< 0.0145 u < 0.0082 u	< 0.0287 u < 0.0163 u	< 0.0169 u < 0.0096 u	< 0.0147 u < 0.0083 u	0.035 J < 0.008 u	< 0.014 < 0.0079	u < 0.0281 u < 0.0159	u
2-Butanone (Methyl ethyl ketone,																	u										
MEK)	3.74E+04	(1)	9.17E+04	(5)	2.01E+01	(8)	< 0.0563 u			0.049 J	< 0.0338 u	0.071	J < 0.0334		< 0.0381	u < 0.028	u	< 0.03 u	< 0.0277 u	< 0.0292 u	0.085 J	< 0.0341 u	< 0.0295 u	< 0.0283 u	< 0.0282	u 0.061	$\stackrel{\smile}{\longmapsto}$
o-Chlorotoluene Hexanone, 2-	1.56E+03 2.00E+02	(1)	7.08E+03 1.30E+03	(5)	3.56E+00 1.76E-01	(8)	< 0.0042 u < 0.0081 u	< 0.0034 u	_	< 0.0033 u < 0.0062 u	< 0.0025 u < 0.0049 u	< 0.0043 < 0.0081	u < 0.0025 u < 0.0048	_	< 0.0029 (< 0.0055 (u < 0.0021 u < 0.004	-	< 0.0023 u < 0.0043 u	< 0.0021 u < 0.004 u	< 0.0022 u < 0.0042 u	< 0.0044 u < 0.0083 u	< 0.0026 u < 0.0049 u	< 0.0022 u < 0.0042 u	< 0.0021 u < 0.0041 u	< 0.0021 < 0.004	u < 0.0043 u < 0.0081	u
2-Methylnaphthalene	2.32E+02	(1)	1.00E+03	(5)	2.76E+00	(8)	< 0.0081 u	< 0.0172 u	_	< 0.0062 U	< 0.0128 u	< 0.0031	u < 0.0126	u	< 0.0033	u < 0.004	-	< 0.0043 U	< 0.004 u	< 0.0042 u	< 0.0083 u	< 0.0129 u	< 0.0042 u	< 0.0041 u	< 0.004	u < 0.0081	u
Chlorotoluene, p-	1.60E+03	(2)	2.30E+04	(6)	4.80E+00	(9)	< 0.004 u	< 0.0032 u	_	< 0.0031 u	< 0.0024 u	< 0.004	u < 0.0024		< 0.0027	u < 0.002	u	< 0.0021 u	< 0.002 u	< 0.0021 u	< 0.0041 u	< 0.0024 u	< 0.0021 u	< 0.002 u	< 0.002	u < 0.004	u
4-Isopropyltoluene		- (4)	- 0.005+0.4	- (E)	- 4.005+00	- (0)	< 0.004 u	< 0.0033 u	_	< 0.0031 u	< 0.0024 u	< 0.0041	u < 0.0024	_	< 0.0027	u < 0.002	_	< 0.0021 u	< 0.002 u	< 0.0021 u	< 0.0041 u	< 0.0024 u	< 0.0021 u	< 0.002 u	< 0.002	u < 0.004	u
Methyl isobutyl ketone Acetone	5.81E+03 6.63E+04	(1)	2.02E+04 2.42E+05	(5)	4.80E+00 4.98E+01	(8)	< 0.0092 u < 0.0403 u	< 0.0074 u	_	< 0.0071 u < 0.031 u	< 0.0055 u < 0.0242 u	< 0.0093 < 0.0406	u < 0.0055 u < 0.024	u u	< 0.0062 (< 0.0273 (u < 0.0046 u < 0.0201	_	< 0.0049 u < 0.0215 u	< 0.0045 u < 0.0199 u	< 0.0048 u < 0.0209 u	< 0.0094 u < 0.0414 u	< 0.0056 u < 0.0244 u	< 0.0048 u < 0.0211 u	< 0.0046 u < 0.0203 u	< 0.0046 < 0.0202	u < 0.0092 u < 0.0405	u
Benzene	1.78E+01	(1)	8.72E+01	(4)	4.18E-02	(8)	< 0.004 u	< 0.00320 u		< 0.0031 u	< 0.00242 u	< 0.004	u < 0.0024	u	< 0.00273	u < 0.002	_	< 0.00213 u	< 0.002 u	< 0.0021 u	< 0.0041 u	< 0.00244 u	< 0.00211 u	< 0.002 u	< 0.002	u < 0.004	u
Bromobenzene	2.90E+02	(2)	1.80E+03	(6)	8.40E-01	(9)	< 0.0047 u	< 0.0038 u		< 0.0036 u	< 0.0028 u	< 0.0047	u < 0.0028		< 0.0032	u < 0.0023	_	< 0.0025 u	< 0.0023 u	< 0.0024 u	< 0.0048 u	< 0.0028 u	< 0.0024 u	< 0.0023 u	< 0.0023	u < 0.0047	u
Bromodichloromethane Tribromomethane (Bromoform)	6.19E+00 6.74E+02	(1)	3.02E+01 1.76E+03	(4)	6.21E-03 1.47E-01	· ' /	< 0.0044 u	< 0.0036 u	_	< 0.0034 u < 0.0034 u		< 0.0045 < 0.0044	u < 0.0026 u < 0.0026	_	< 0.003	u < 0.0022 u < 0.0022		< 0.0024 u < 0.0023 u	< 0.0022 u < 0.0022 u	< 0.0023 u	< 0.0046 u < 0.0045 u	< 0.0027 u < 0.0027 u	< 0.0023 u < 0.0023 u	< 0.0022 u < 0.0022 u	< 0.0022 < 0.0022	u < 0.0045 u < 0.0044	_
Bromomethane (Bromolorin)	1.77E+01	(1)	1.76E+03 1.79E+01	(5)	3.43E-02		< 0.0044 u	< 0.0035 U		< 0.0034 u		< 0.0044	u < 0.0026 u < 0.007	u	< 0.003	u < 0.0022 u < 0.0058	_	< 0.0023 u	< 0.0022 u	< 0.0023 u	< 0.0045 U	< 0.0027 u	< 0.0023 u	< 0.0022 u	< 0.0022	u < 0.0044 u < 0.0118	
Carbon disulfide	1.55E+03	(1)	1.62E+03	(5)	4.42E+00		< 0.0161 u	< 0.013 u		< 0.0123 u	 	< 0.0162	u < 0.0095	u	< 0.0109	u < 0.008		< 0.0086 u	< 0.0079 u		< 0.0165 u	< 0.0097 u	< 0.0084 u	< 0.0081 u	< 0.008	u < 0.0161	u
Carbon tetrachloride	1.07E+01	(1)	5.25E+01	(4)	3.67E-02	(8)	< 0.0046 u	< 0.0037 u		< 0.0035 u		< 0.0046	u < 0.0027	_	< 0.0031	u < 0.0023		< 0.0025 u	< 0.0023 u	< 0.0024 u	< 0.0047 u	< 0.0028 u	< 0.0024 u	< 0.0023 u	< 0.0023	u < 0.0046	
Chlorobenzene (Monochlorobenzene Ethyl chloride	e 3.78E+02 1.90E+04	(1)	4.12E+02 1.66E+04	(5) (5)	1.08E+00 1.07E+02	(8)	< 0.0062 u < 0.0072 u	< 0.005 u		< 0.0048 u < 0.0055 u	 	< 0.0063 < 0.0072	u < 0.0037 u < 0.0043		< 0.0042 (< 0.0049 (u < 0.0031 u < 0.0036	_	< 0.0033 u < 0.0038 u	< 0.0031 u < 0.0035 u	< 0.0032 u < 0.0037 u	< 0.0064 u < 0.0074 u	< 0.0038 u < 0.0043 u	< 0.0033 u < 0.0038 u	< 0.0031 u < 0.0036 u	< 0.0031 < 0.0036	u < 0.0063 u < 0.0072	
Chloroform	5.90E+00	(1)	2.87E+01	(4)	1.07E+02 1.09E-02	` '	< 0.0072 u	< 0.0032 u		< 0.0035 U		< 0.0072	u < 0.0043	_	< 0.0049	u < 0.0038	_	< 0.0036 u	< 0.0033 u	< 0.0037 u	< 0.0074 u	< 0.0043 u	< 0.0038 U	< 0.0036 u	< 0.0036	u < 0.0072	u
Chloromethane	4.11E+01	(1)	2.01E+02	(4)	9.52E-02	(8)	< 0.0047 u	< 0.0038 u	u <	< 0.0036 u	< 0.0028 u	< 0.0047	u < 0.0028	u	< 0.0032	u < 0.0023	u	< 0.0025 u	< 0.0023 u	< 0.0024 u	< 0.0048 u	< 0.0028 u	< 0.0024 u	< 0.0023 u	< 0.0023	u < 0.0047	u
cis-1,2-Dichloroethene	1.56E+02	(1)	7.08E+02	(5)	3.52E-01	(8)	< 0.0067 u	< 0.0054 u		< 0.0051 u		< 0.0067	u < 0.004	_	< 0.0045	u < 0.0033		< 0.0035 u	< 0.0033 u	< 0.0035 u	< 0.0068 u	< 0.004 u	< 0.0035 u	< 0.0033 u	< 0.0033	u < 0.0067	u
cis-1,3-Dichloropropene Dibromochloromethane	1.39E+01	(1)	6.74E+01	(4)	- 7.55E-03	- (8)	< 0.0041 u < 0.0035 u	< 0.0033 u < 0.0028 u		< 0.0032 u < 0.0027 u		< 0.0041 < 0.0035	u < 0.0024 u < 0.0021	_	< 0.0028 (< 0.0023 (u < 0.002 u < 0.0017	_	< 0.0022 u < 0.0018 u	< 0.002 u < 0.0017 u	< 0.0021 u < 0.0018 u	< 0.0042 u < 0.0035 u	< 0.0025 u < 0.0021 u	< 0.0022 u < 0.0018 u	< 0.0021 u < 0.0017 u	< 0.0021 < 0.0017	u < 0.0041 u < 0.0035	u u
Dibromomethane (Methylene Bromide)	2.40E+01	(2)	9.90E+01	(6)	4.20E-02	(9)	< 0.0052 u	< 0.0042 u	u_ ·	< 0.004 u	< 0.0031 u	< 0.0053	u < 0.0031	u	< 0.0035	u < 0.0026	u	< 0.0028 u	< 0.0026 u	< 0.0027 u	< 0.0054 u	< 0.0032 u	< 0.0027 u	< 0.0026 u	< 0.0026	u < 0.0053	u
Dichlorodifluoromethane	1.82E+02	(1)	1.61E+02	(5)	7.23E+00	(8)	< 0.0113 u	< 0.0091 u	u <	< 0.0087 u	< 0.0068 u	< 0.0114	u < 0.0067	u	< 0.0076	u < 0.0056	u	< 0.006 u	< 0.0056 u	< 0.0059 u	< 0.0116 u	< 0.0068 u	< 0.0059 u	< 0.0057 u	< 0.0057	u < 0.0113	u

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	Leachate DAF (20) (mg/kg) SoilGW	Source	SWMU 13-4 (15.5-16')	SWMU 13-5 (0-0.5')		SWMU 13-5 (1.5-2")	SWMU 13-5 (8-10')	SWMU 13-5 (10-10.5')	SWMU 13-5 (14-16')	SWMU 13-6 (0-0.5')		SWMU 13-6 (1.5-2')	SWMU 13-6 (2-3')	SWMU 13-6 (6-8')	SWMU 13-6 (10-11')	SWMU 13-6 (17-18')	SWMU 13-7 (0-0.5')	SWMU 13-7 (1.5-2')	SWMU 13-7 (4-6')	SWMU 13-7 (10-12')	SWMU 13-7 (12-13")	
					Lab ID		1910D68-005	5 1910d68-00	06	1910D68-007	1910d68-008	1910D68-009	9 1910D68-010) 1910d68	-011	1910d68-012	1910d68-013	1910d68-014	1910d68-015	1910e04-001	1910e04-002	1910E04-003	1910e04-005	1910E04-0	006 1910e04-	-007
					Sample Da		10/23/2019			10/23/2019	10/23/2019	10/23/2019			_	10/23/2019		10/23/2019	10/23/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019			
Ethylbenzene Hexachloro-1,3-butadiene	7.51E+01 6.16E+01	(1)	3.68E+02 5.21E+01	(4)	1.23E+01 4.13E-02	(8)	< 0.0028 u < 0.0049 u	< 0.0023 < 0.004	u ·	< 0.0022 u < 0.0038 u	< 0.0017 u < 0.003 u	< 0.0028 u	u < 0.0017 u u < 0.0029 u	< 0.0019 < 0.0034	_	< 0.0014 u < 0.0025 u	< 0.0015 u < 0.0026 u	< 0.0014 u < 0.0024 u	< 0.0015 u < 0.0026 u	< 0.0029 u < 0.0051 u	< 0.0017 u < 0.003 u	< 0.0015 u < 0.0026 u	< 0.0014 u < 0.0025 u	< 0.0014 < 0.0025	u < 0.0028 u < 0.005	u
Cumene (isopropylbenzene)	2.36E+03	(1)	2.74E+03	(5)	1.14E+01	(8)	< 0.0045 u	< 0.0028	u ·	< 0.0038 u		< 0.0035 u	1 < 0.0025 u	< 0.0024	+	< 0.0023 u	< 0.0020 u	< 0.0024 u	< 0.0028 u	< 0.0031 u	< 0.003 u	< 0.0028 u	< 0.0023 u	< 0.0023	u < 0.0035	u
tert-Butyl methyl ether (MTBE)	9.75E+02	(1)	4.82E+03	(4)	5.53E-01	(8)	< 0.0115 u	< 0.0093	u ·	< 0.0089 u		< 0.0116 u	ı < 0.0069 u	< 0.0078	_	< 0.0057 u	< 0.0061 u	< 0.0057 u	< 0.006 u	< 0.0119 u	< 0.007 u	< 0.006 u	< 0.0058 u	< 0.0058	u < 0.0116	-
Methylene chloride (Dichloromethan Naphthalene	4.09E+02 1.16E+03	(1)	1.21E+03 5.02E+03	(5)	2.21E-02 8.23E-02	(10)	< 0.0086 u < 0.0097 u	< 0.0069 < 0.0079	u	0.011 J < 0.0075 u	< 0.0052 u < 0.0059 u	< 0.0087 u	ı 0.0077 J ı < 0.0058 u	< 0.0058 < 0.0066	_	< 0.0043 u < 0.0048 u	0.005 J < 0.0052 u	< 0.0042 u < 0.0048 u	< 0.0045 u < 0.0051 u	< 0.0088 u < 0.01 u	< 0.0052 u < 0.0059 u	0.0071 J < 0.0051 u	< 0.0043 u < 0.0049 u	0.0069 < 0.0049	J < 0.0086 u < 0.0098	u
Butylbenzene, n-	3.90E+03	(2)	5.80E+04	(6)	6.40E+01	(9)	< 0.0097 u	< 0.0079	u ·	< 0.0075 u		< 0.0098 u	1 < 0.0038 u	< 0.0031	 	< 0.0048 u	< 0.0032 u	< 0.0022 u	< 0.0031 u	< 0.001 u	< 0.0039 u	< 0.0031 u	< 0.0049 u	< 0.0049	u < 0.0098	u
Propyl benzene	3.80E+03	(2)	2.40E+04	(6)	2.40E+01	(9)	< 0.0039 u	< 0.0031	u	< 0.003 u		< 0.0039 u	ı < 0.0023 u	< 0.0026	u	< 0.0019 u	< 0.0021 u	< 0.0019 u	< 0.002 u	< 0.004 u	< 0.0023 u	< 0.002 u	< 0.002 u	< 0.0019	u < 0.0039	u
Butylbenzene, sec-	7.80E+03	(2)	1.20E+05	(6)	1.18E+02	(9)	< 0.0055 u	< 0.0044		< 0.0042 u	< 0.0033 u	< 0.0055 u	< 0.0033 u	< 0.0037		< 0.0027 u	< 0.0029 u	< 0.0027 u	< 0.0028 u	< 0.0056 u	< 0.0033 u	< 0.0029 u	< 0.0028 u	< 0.0027	u < 0.0055	u
Styrene Butylbenzene, tert-	7.26E+03 7.80E+03	(2)	1.02E+04 1.20E+05	(6)	1.71E+00 3.20E+01	(9)	< 0.0038 u < 0.0046 u	< 0.0031 < 0.0037	u ·	< 0.0029 u < 0.0035 u		< 0.0038 u < 0.0046 u	o < 0.0023 u	< 0.0026 < 0.0031		< 0.0019 u < 0.0023 u	< 0.002 u < 0.0024 u	< 0.0019 u < 0.0023 u	< 0.002 u < 0.0024 u	< 0.0039 u < 0.0047 u	< 0.0023 u < 0.0028 u	< 0.002 u < 0.0024 u	<0.0019 u <0.0023 u	< 0.0019 < 0.0023	u < 0.0038 u < 0.0046	u
Tetrachloroethene	1.11E+02	(1)	1.20E+02	(5)	3.98E-02	(10)	< 0.0039 u	< 0.0031	u	< 0.003 u	< 0.0023 u	< 0.0039 u	ı < 0.0023 u	< 0.0026	u	< 0.0019 u	< 0.0021 u	< 0.0019 u	< 0.002 u	< 0.004 u	< 0.0024 u	< 0.002 u	< 0.002 u	< 0.0019	u < 0.0039	u
Toluene trans-1,2-Dichloroethene	5.23E+03	(1)	1.40E+04	(5)	1.11E+01 5.03E-01	(10)	< 0.0046 u	< 0.0038	u ·	< 0.0036 u		< 0.0047 u	< 0.0028 u	< 0.0031	 	< 0.0023 u	< 0.0025 u	< 0.0023 u	< 0.0024 u	< 0.0048 u	< 0.0028 u	< 0.0024 u	< 0.0023 u	< 0.0023	u < 0.0047	+
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	2.95E+02 -	(±) -	3.05E+02 -	(5)	5.03E-01 -	(0)	< 0.0044 u < 0.0051 u	< 0.0036 < 0.0042		< 0.0034 u < 0.004 u		< 0.0045 u < 0.0052 u	o < 0.0026 u < 0.0031 u	< 0.003 < 0.0035	_	< 0.0022 u < 0.0026 u	< 0.0024 u < 0.0027 u	< 0.0022 u < 0.0025 u	< 0.0023 u < 0.0027 u	< 0.0046 u < 0.0053 u	< 0.0027 u < 0.0031 u	< 0.0023 u < 0.0027 u	< 0.0022 u < 0.0026 u	< 0.0022 < 0.0026	u < 0.0045 u < 0.0052	_
Trichloroethylene	6.77E+00	(1)	6.90E+00	(5)	3.10E-02	(8)	< 0.0056 u	< 0.0045		< 0.0043 u		< 0.0057 u	ı < 0.0033 u	< 0.0038	_	< 0.0028 u	< 0.003 u	< 0.0028 u	< 0.0029 u	< 0.0058 u	< 0.0034 u	< 0.003 u	< 0.0028 u	< 0.0028	u < 0.0057	_
Trichlorofluoromethane	1.23E+03	(1)	1.13E+03	(5)	1.57E+01	(8)	< 0.0165 u	< 0.0133	u ·	< 0.0127 u		< 0.0166 u	< 0.0098 u	< 0.0112	_	< 0.0082 u	< 0.0088 u	< 0.0081 u	< 0.0086 u	< 0.017 u	< 0.01 u	< 0.0087 u	< 0.0083 u	< 0.0083	u < 0.0166	+
Vinyl chloride Xylenes	7.42E-01 8.71E+02	(1)	2.84E+01 7.98E+02	(4)	1.34E-02 1.54E+02	(8)	< 0.0032 u < 0.0123 u	< 0.0026 < 0.0099		< 0.0024 u < 0.0094 u		< 0.0032 u < 0.0124 u	o < 0.0019 u < 0.0073 u	< 0.0022 < 0.0083	 	< 0.0016 u < 0.0061 u	< 0.0017 u < 0.0065 u	< 0.0016 u	< 0.0016 u < 0.0064 u	< 0.0033 u < 0.0126 u	< 0.0019 u < 0.0074 u	< 0.0017 u < 0.0064 u	< 0.0016 u < 0.0062 u	< 0.0016 < 0.0061	u < 0.0032 u < 0.0123	
Semi-volatiles (mg/kg)] 0 == 0=	(-)		(0)		(0)	0.0220	1 0.0000			0.001.1	0.0== . 0.		1 0.0000		0.000= 0.	1 0.0000 0	1 0.000 0.	1 0.000 0	1 0.0220 0.	1 0.001.1	1 0.000.1 0	1 0.000_ 1 0.	1 0.000=1	U. 0.0220	
1,2,4-Trichlorobenzene	8.29E+01	(1)	7.91E+01	(5)	3.10E+00	(8)	< 0.1986 u	< 1.5543	u ·	< 0.1521 u	< 0.1483 u	< 0.1571 u	o < 0.1593 u	< 1.5293	u	< 0.151 u	< 0.1577 u	< 0.1545 u	< 0.1535 u	< 0.1511 u	< 0.3139 u	< 0.1536 u	< 0.1606 u	< 0.1591	u < 0.1545	u
1,2-Dichlorobenzene 1,3-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00 -	(8)	< 0.1535 u < 0.1346 u	< 1.2014 < 1.053		< 0.1176 u < 0.1031 u	< 0.1146 u < 0.1005 u	< 0.1214 u	o < 0.1231 u < 0.1079 u	< 1.1821 < 1.0361	u	< 0.1167 u < 0.1023 u	< 0.1219 u < 0.1069 u	< 0.1194 u < 0.1046 u	< 0.1186 u < 0.104 u	< 0.1168 u < 0.1024 u	< 0.2426 u < 0.2127 u	< 0.1187 u < 0.1041 u	< 0.1242 u < 0.1088 u	< 0.123 < 0.1078	u < 0.1194 u < 0.1046	u
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)	1.12E+00	(8)	< 0.1361 u	< 1.0653		< 0.1043 u	< 0.1016 u	< 0.1076 u	1 < 0.1092 u	< 1.0482		< 0.1035 u	< 0.1081 u	< 0.1059 u	< 0.1052 u	< 0.1036 u	< 0.2151 u	< 0.1053 u	< 0.1101 u	< 0.109	u < 0.1059	u
1-Methylnaphthalene	1.72E+02	(1)	8.13E+02	(7)	8.93E-01	(8)	< 0.1913 u	< 1.497	u ·	< 0.1465 u	< 0.1428 u	< 0.1513 u	< 0.1534 u	< 1.4729	u	< 0.1454 u	< 0.1519 u	< 0.1488 u	< 0.1478 u	< 0.1456 u	< 0.3023 u	< 0.1479 u	< 0.1547 u	< 0.1532	u < 0.1488	u
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	6.16E+03 6.16E+01	(1)	2.69E+04 2.69E+02	(5)	6.62E+01 6.74E-01	(8)	< 0.1657 u	< 1.2965 < 1.0513	u ·	< 0.1269 u < 0.1029 u	< 0.1237 u < 0.1003 u	< 0.131 u	o < 0.1329 u c < 0.1078 u	< 1.2757 < 1.0344	u	< 0.126 u < 0.1021 u	< 0.1316 u < 0.1067 u	< 0.1288 u < 0.1045 u	< 0.128 u < 0.1038 u	< 0.1261 u < 0.1022 u	< 0.2618 u < 0.2123 u	< 0.1281 u < 0.1039 u	< 0.134 u < 0.1086 u	< 0.1327 < 0.1076	u < 0.1288 u < 0.1045	u
2,4-Dichlorophenol	1.85E+02	(1)	8.07E+02	(5)	8.25E-01	(8)	< 0.1343 u	< 1.1632	u ·	< 0.1029 u	< 0.111 u	< 0.1002 u	< 0.1078 u	< 1.1445	u	< 0.1021 u	< 0.1007 u	< 0.1156 u	< 0.1149 u	< 0.1022 u	< 0.2123 u	< 0.1149 u	< 0.1202 u	< 0.1070	u < 0.1045	u
2,4-Dimethylphenol	1.23E+03	(1)	5.38E+03	(5)	6.45E+00	(8)	< 0.1409 u	< 1.1023	u ·	< 0.1079 u	< 0.1052 u	< 0.1114 u	ı < 0.113 u	< 1.0845		< 0.1071 u	< 0.1119 u	< 0.1095 u	< 0.1088 u	< 0.1072 u	< 0.2226 u	< 0.1089 u	< 0.1139 u	< 0.1128	u < 0.1095	-
2,4-Dinitrophenol 2,4-Dinitrotoluene	1.23E+02 1.71E+01	(1)	5.38E+02 8.23E+01	(5)	6.69E-01 4.92E-02	(8)	< 0.0929 u	< 0.7266 < 1.1788	u ·	< 0.0711 u < 0.1154 u	< 0.0693 u < 0.1125 u	< 0.0734 u	o < 0.0745 u < 0.1208 u	< 0.715 < 1.1599	+	< 0.0706 u < 0.1145 u	< 0.0737 u < 0.1196 u	< 0.0722 u < 0.1171 u	< 0.0718 u < 0.1164 u	< 0.0707 u < 0.1146 u	< 0.1467 u < 0.2381 u	< 0.0718 u < 0.1165 u	< 0.0751 u < 0.1218 u	< 0.0744 < 0.1207	u < 0.0722 u < 0.1171	
2,6-Dintitrotoluene	3.56E+00	(1)	1.72E+01	(4)	1.02E-02	(8)	< 0.1682 u	< 1.3163	u ·	< 0.1288 u	< 0.1256 u	< 0.1131 u	< 0.1349 u	< 1.2951	u	< 0.1279 u	< 0.1136 u	< 0.1308 u	< 0.1104 u	< 0.1146 u	< 0.2658 u	< 0.1301 u	< 0.136 u	< 0.1347	u < 0.1171	u
b-Chloronaphthalene	6.26E+03	(1)	2.83E+04	(5)	5.70E+01	(8)	< 0.1595 u	< 1.248	u ·	< 0.1222 u	< 0.1191 u	< 0.1261 u	ı < 0.1279 u	< 1.2279	u	< 0.1212 u	< 0.1267 u	< 0.124 u	< 0.1232 u	< 0.1214 u	< 0.252 u	< 0.1233 u	< 0.129 u	< 0.1277	u < 0.124	u
2-Chlorophenol 2-Methylnaphthalene	3.91E+02 2.32E+02	(1)	1.77E+03 1.00E+03	(5)	1.15E+00 2.76E+00	(8)	< 0.159 u < 0.1862 u	< 1.2442 < 1.4571	u ·	< 0.1218 u < 0.1426 u	< 0.1187 u < 0.139 u	< 0.1257 u	o < 0.1275 u < 0.1493 u	< 1.2242 < 1.4337	u	< 0.1209 u < 0.1416 u	< 0.1263 u < 0.1479 u	< 0.1236 u < 0.1448 u	< 0.1229 u < 0.1439 u	< 0.121 u < 0.1417 u	< 0.2513 u < 0.2943 u	< 0.1229 u < 0.144 u	< 0.1286 u < 0.1506 u	< 0.1274 < 0.1491	u < 0.1236 u < 0.1448	u
Cresol, o-	3.20E+03	(2)	4.10E+04	(6)	1.50E+01	(9)	< 0.1502 u	< 1.1862	u ·	< 0.1420 u	< 0.1132 u	< 0.1472 u	<0.1493 u	< 1.4557	u	< 0.1410 u	< 0.1479 u	< 0.1179 u	< 0.1171 u	< 0.1153 u	< 0.2395 u	< 0.1172 u	< 0.1226 u	< 0.1491	u < 0.1448	u
Nitroaniline, 2-	6.30E+02	(2)	8.00E+03	(6)	1.60E+00	(9)	< 0.1825 u	< 1.4284	u ·	< 0.1398 u	< 0.1363 u	< 0.1443 u	ı < 0.1464 u	< 1.4054	_	< 0.1388 u	< 0.145 u	< 0.1419 u	< 0.1411 u	< 0.1389 u	< 0.2885 u	< 0.1411 u	< 0.1476 u	< 0.1462	u < 0.1419	u
2-Nitrophenol 3,3-Dichlorobenzidine	- 1.18E+01	- (1)	- 5.70E+01	(4)	- 1.24E-01	- (Q)	< 0.1745 u < 0.1136 u	< 1.3657 < 0.889		< 0.1337 u < 0.087 u	< 0.1303 u < 0.0848 u	< 0.138 u	o	< 1.3437 < 0.8747	_	< 0.1327 u < 0.0864 u	< 0.1386 u < 0.0902 u	< 0.1357 u < 0.0883 u	< 0.1349 u < 0.0878 u	< 0.1328 u < 0.0865 u	< 0.2758 u < 0.1795 u	< 0.1349 u < 0.0878 u	< 0.1411 u < 0.0919 u	< 0.1398 < 0.091	u < 0.1357 u < 0.0883	u
3+4-Methylphenol	-	(±) -	- -	- (4)	- -	-	< 0.1136 u	< 1.2275		< 0.1201 u	< 0.1171 u	< 0.124 u	< 0.1258 u	< 1.2078	 	< 0.1193 u	< 0.1246 u	< 0.122 u	< 0.1212 u	< 0.1194 u	< 0.1795 u	< 0.1213 u	< 0.1269 u	< 0.1256	u < 0.122	u
3-Nitroaniline	-	-	-	-	-	-	< 0.1764 u	< 1.38	u ·	< 0.1351 u	< 0.1317 u	< 0.1394 u	o.1414 u	< 1.3578	 	< 0.1341 u	< 0.1401 u	< 0.1371 u	< 0.1363 u	< 0.1342 u	< 0.2787 u	< 0.1364 u	< 0.1426 u	< 0.1413	u < 0.1371	u
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	4.93E+00	(1)	2.15E+01	(5)	3.98E-02	(8)	< 0.1181 u < 0.1502 u	< 0.9238 < 1.1757	u ·	< 0.0904 u < 0.1151 u	< 0.0881 u	< 0.0933 u	o < 0.0947 u < 0.1205 u	< 0.909 < 1.1568	 	< 0.0897 u < 0.1142 u	< 0.0938 u	< 0.0918 u	< 0.0912 u < 0.1161 u	< 0.0898 u < 0.1143 u	< 0.1866 u < 0.2374 u	< 0.0913 u	< 0.0955 u < 0.1215 u	< 0.0946 < 0.1203	u < 0.0918 u < 0.1168	u
4-Chloro-3-methylphenol	-	-	-	-	-	-	< 0.1502 u	< 1.1757	u ·	< 0.1151 u < 0.1502 u	< 0.1122 u < 0.1464 u	< 0.1188 u	0.1205 u < 0.1573 u	< 1.1568		< 0.1142 u < 0.1491 u	< 0.1193 u < 0.1557 u	< 0.1168 u	< 0.1161 u	< 0.1143 U < 0.1492 U	< 0.2374 U < 0.3099 U	< 0.1162 u < 0.1516 u	< 0.1215 u	< 0.1203	u < 0.1168 u < 0.1525	
Chloroaniline, p-	2.70E+01	(3)	1.10E+02	(7)	3.20E-03	(9)	< 0.1811 u	< 1.4168	u ·	< 0.1387 u	< 0.1352 u	< 0.1432 u	o.1452 u	< 1.394	u	< 0.1376 u	< 0.1438 u	< 0.1408 u	< 0.1399 u	< 0.1378 u	< 0.2861 u	< 0.14 u	< 0.1464 u	< 0.145	u < 0.1408	u
4-Chlorophenyl phenyl ether Nitroaniline, 4-	- 2.70E+02	- (3)	- 1.10E+03	(7)	- 3.20E-02	- (9)	< 0.1393 u < 0.1632 u	< 1.0901 < 1.2771		< 0.1067 u < 0.125 u	< 0.104 u < 0.1219 u	< 0.1101 u	o < 0.1117 u < 0.1309 u	< 1.0725 < 1.2565	_	< 0.1059 u < 0.1241 u	< 0.1106 u < 0.1296 u	< 0.1083 u < 0.1269 u	< 0.1076 u < 0.1261 u	< 0.106 u < 0.1242 u	< 0.2201 u < 0.2579 u	< 0.1077 u < 0.1262 u	< 0.1127 u	< 0.1116 < 0.1307	u < 0.1083 u < 0.1269	u
4-Nitrophenol	-	-	-	-	-	-	< 0.1032 u	< 1.3563		< 0.125 u	< 0.1219 u	< 0.129 u	< 0.1309 u	< 1.3345	_	< 0.1241 u	< 0.1296 u	< 0.1269 u	< 0.1201 u	< 0.1242 u	< 0.2379 u	< 0.1262 u	< 0.132 u	< 0.1307	u < 0.1269 u < 0.1348	u
Acenaphthene	3.48E+03	(1)	1.51E+04	(5)	8.25E+01	(8)	< 0.1533 u	< 1.1998	u ·	< 0.1174 u	< 0.1145 u	< 0.1212 u	ı < 0.123 u	< 1.1805	u	< 0.1166 u	< 0.1218 u	< 0.1192 u	< 0.1185 u	< 0.1167 u	< 0.2423 u	< 0.1186 u	< 0.124 u	< 0.1228	u < 0.1192	u
Acenaphthylene Aniline	9.50E+02	- (2)	- 4.00E+03	(7)	- 9.20E-02	- (0)	< 0.1401 u < 0.1643 u	< 1.0962 < 1.286		< 0.1073 u < 0.1259 u		< 0.1108 u	o < 0.1124 u < 0.1318 u	< 1.0786 < 1.2654	-	< 0.1065 u < 0.1249 u	< 0.1113 u < 0.1305 u	< 0.1089 u < 0.1278 u	< 0.1082 u < 0.127 u	< 0.1066 u < 0.1251 u	< 0.2214 u < 0.2597 u	< 0.1083 u < 0.1271 u	< 0.1133 u < 0.1329 u	< 0.1122 < 0.1316	u < 0.1089 u < 0.1278	
Anthracene	9.50E+02 1.74E+04	(1)	7.53E+04	(5)	9.20E-02 8.51E+02	(8)	< 0.1643 u	< 1.286		< 0.1259 u < 0.1047 u		< 0.1299 u	<0.1318 u < 0.1096 u	< 1.2654		< 0.1249 u	< 0.1305 u	< 0.1278 U	< 0.127 u	< 0.1251 u	< 0.2597 u	< 0.1271 u < 0.1057 u	< 0.1329 u	< 0.1316	u < 0.1278 u < 0.1063	
Azobenzene	5.60E+01	(3)	2.60E+02	(7)	1.86E+06	(9)	< 0.1789 u	< 1.4001		< 0.137 u	< 0.1336 u	< 0.1415 u	ı < 0.1435 u	< 1.3776	u	< 0.136 u	< 0.1421 u	< 0.1391 u	< 0.1383 u	< 0.1362 u	< 0.2828 u	< 0.1383 u	< 0.1447 u	< 0.1433	u < 0.1391	u
Benzo(a)anthracene Benzo(a)pyrene	1.53E+00 1.12E+00	(1)	3.23E+01 2.36E+01	(4)	6.37E-01 3.53E+00	(8)	< 0.1231 u < 0.1136 u	< 0.9636 < 0.8889	u ·	< 0.0943 u < 0.087 u		< 0.0974 u	o < 0.0988 u < 0.0911 u	< 0.9481 < 0.8746		< 0.0936 u < 0.0864 u	<0.0978 u <0.0902 u	< 0.0958 u < 0.0883 u	< 0.0952 u < 0.0878 u	< 0.0937 u < 0.0864 u	< 0.1946 u < 0.1795 u	< 0.0952 u < 0.0878 u	< 0.0996 u < 0.0919 u	< 0.0986 < 0.091	u < 0.0958 u < 0.0883	_
Benzo(b)fluoranthene	1.12E+00 1.53E+00	(1)	3.23E+01	(4)	6.17E+00	(8)	< 0.1136 u	< 0.8845		< 0.087 u		< 0.0898 u	1 < 0.0911 u	< 0.8746	_	< 0.0864 u	< 0.0902 u	< 0.0883 u	< 0.0878 u	< 0.0864 u	< 0.1795 u	< 0.0878 u	< 0.0919 u	< 0.091	u < 0.0879	_
Benzo(g,h,i)perylene	-	-	-	-	-	-	< 0.1096 u	< 0.8579	u	< 0.084 u	< 0.0819 u	< 0.0867 u	ı < 0.0879 u	< 0.8441	u	< 0.0833 u	< 0.0871 u	< 0.0852 u	< 0.0847 u	< 0.0834 u	< 0.1733 u	< 0.0848 u	< 0.0887 u	< 0.0878	u < 0.0852	u
Benzo(k)fluoranthene Benzoic acid	1.53E+01 2.50E+05	(1)	3.23E+02 3.30E+06	(4)	6.05E+01 3.00E+02	(8)	< 0.1162 u	< 0.909		< 0.089 u		< 0.0918 u	< 0.0932 u	< 0.8944		< 0.0883 u	< 0.0923 u	< 0.0903 u	< 0.0898 u	< 0.0884 u	< 0.1836 u	< 0.0898 u	< 0.0939 u	< 0.093	u < 0.0903 u < 0.1026	-
Benzyl alcohol	6.30E+03	(2)	8.20E+06	(6)	9.60E+00	(-)	< 0.132 u < 0.1586 u	< 1.033 < 1.2408		< 0.1011 u < 0.1215 u		< 0.1044 u	u < 0.1059 u u < 0.1272 u	< 1.0164 < 1.2209	-	< 0.1004 u < 0.1205 u	< 0.1048 u < 0.1259 u	< 0.1026 u < 0.1233 u	< 0.102 u < 0.1225 u	< 0.1005 u < 0.1207 u	< 0.2086 u < 0.2506 u	< 0.1021 u < 0.1226 u	< 0.1068 u < 0.1282 u	< 0.1057 < 0.127	u < 0.1026 u < 0.1233	-
Bis(2-chloroethoxy)methane	1.90E+02	(2)	2.50E+03	(6)	2.60E-01	(9)	< 0.1889 u	< 1.4784	u ·	< 0.1447 u	< 0.1411 u	< 0.1494 u	ı < 0.1515 u	< 1.4546	u	< 0.1436 u	< 0.15 u	< 0.1469 u	< 0.146 u	< 0.1438 u	< 0.2986 u	< 0.1461 u	< 0.1528 u	< 0.1513	u < 0.1469	u
Bis(2-chloroethyl) ether	3.11E+00	(1)	1.95E+00	(5)	6.05E-04		< 0.1558 u	< 1.2189		< 0.1193 u		< 0.1232 u	 < 0.1249 u < 0.1167 u 	< 1.1993	_	< 0.1184 u	< 0.1237 u	< 0.1211 u	< 0.1204 u	< 0.1185 u	< 0.2462 u	< 0.1204 u	< 0.126 u	< 0.1248	u < 0.1211	_
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl)phthalate [Di(2-	9.93E+01	(±)	5.19E+02	(4)	4.75E-02	(8)	< 0.1455 u	< 1.1386		< 0.1114 u	< 0.1086 u	< 0.115 u	o.1167 u	< 1.1203		< 0.1106 u	< 0.1156 u	< 0.1131 u		< 0.1107 u	< 0.2299 u	< 0.1125 u	< 0.1177 u	< 0.1165	u < 0.1131	
ethylhexyl)phthalate, DEHP]	3.80E+02	(1)	1.83E+03	(4)	2.15E+01	(10)	< 0.1836 u	< 1.4368	u ·	< 0.1406 u	< 0.1371 u	< 0.1452 u	ı 0.17 J	< 1.4137	u	< 0.1396 u	< 0.1458 u	< 0.1428 u	< 0.1419 u		< 0.2902 u	< 0.142 u	< 0.1485 u	< 0.1471	u < 0.1428	u
Butyl Benzyl Phthalate	2.90E+03	(3)	1.20E+04	(7)	4.60E+00	(9)	< 0.1306 u	< 1.0223		< 0.1001 u	< 0.0975 u	< 0.1033 u	< 0.1048 u	< 1.0059	-	< 0.0993 u	< 0.1038 u	< 0.1016 u	< 0.101 u	< 0.0994 u	< 0.2065 u	< 0.101 u	< 0.1057 u	< 0.1046	u < 0.1016	
Carbazole Chrysene	- 1.53E+02	(1)	3.23E+03	(4)	- 1.86E+02	(8)	< 0.1499 u < 0.1127 u	< 1.1729 < 0.882		< 0.1148 u < 0.0863 u		< 0.1185 u < 0.0891 u	u < 0.1202 u u < 0.0904 u	< 1.154 < 0.8678		< 0.1139 u < 0.0857 u	< 0.119 u < 0.0895 u	< 0.1165 u < 0.0876 u	< 0.1158 u < 0.0871 u	< 0.1141 u < 0.0858 u	< 0.2369 u < 0.1781 u	< 0.1159 u < 0.0872 u	< 0.1212 u < 0.0911 u	< 0.12 < 0.0903	u < 0.1165 u < 0.0876	
,		\ - /	2.202.00	('/		(5)	<u>, </u>	1 3.002	~	2.2230 u	5.55 12 u	u	. 3.333+ u	1 0.0070		5.555. u	1 0.0000 0	1 3.00.01 0	, J.J.J. 1 u	, 3.0000 j u	1 3.2.02 0	1 3.33,2 u	1 3.3321 0	5.5555	S.0070	<u> </u>

Table 5 - Soil Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	Leachate DAF (20) (mg/kg) SoilGW		SWMU 13-	SWMU 13-5 (0-0.5')	SWMU 13-5 (1.5-2')	SWMU 13-5 (8-10')		SWMU 13-5 (10-10.5')		SWMU 13-5 (14-16')	SWMU 13-6 (0-0.5')	SWMU 13-6 (1.5-2')	SWMU 13-6 (2-3')	SWMU 13-6 (6-8')	SWMU 13-6 (10-11')	SWMU 13-6 (17-18')	SWMU 13-7 (0-0.5')	SWMU 13-7 (1.5-2')	SWMU 13-7 (4-6')	SWMU 13-7 (10-12')	SWMU 13-7 (12-13")
					Lab ID)	1910D68-005	1910d68-006	1910D68-007	1910d68-0	800	1910D68-0	09 191	0D68-010	1910d68-011	l 1910d68-012	2 1910d68-013	3 1910d68-014	1910d68-015	1910e04-001	1910e04-002	1910E04-003	1910e04-005	1910E04-006	1910e04-007
					Sample D	ate	10/23/2019	10/23/2019	10/23/2019	10/23/20	19	10/23/20	L9 10/	23/2019	10/23/2019	10/23/2019	10/23/2019	10/23/2019	10/23/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	1.97E+00	(8)	< 0.1162 u	< 0.9093 u	< 0.089 u	< 0.0868	u	< 0.0919	u < 0.0)932 u	< 0.8947 u	< 0.0883 u	< 0.0923 u	< 0.0904 u	< 0.0898 u	< 0.0884 u	< 0.1836 u	< 0.0898 u	< 0.094 u	< 0.0931 u	< 0.0904 u
Dibenzofuran	7.30E+01	(2)	1.00E+03	(6)	3.00E+00	(9)	< 0.1675 u	< 1.3106 u	< 0.1283 u	< 0.1251	u	< 0.1324	u < 0.1	.343 u	< 1.2895 u	< 0.1273 u	< 0.133 u	< 0.1302 u	< 0.1294 u	< 0.1274 u	< 0.2647 u	< 0.1295 u	< 0.1354 u	< 0.1341 u	< 0.1302 u
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(5)	9.79E+01	(8)	< 0.1824 u	< 1.4272 u	< 0.1397 u	< 0.1362	u	< 0.1442	u < 0.1	.463 u	< 1.4042 u	< 0.1387 u	< 0.1448 u	< 0.1418 u	< 0.1409 u	< 0.1388 u	< 0.2882 u	< 0.141 u	< 0.1475 u	< 0.1461 u	< 0.1418 u
Dimethyl phthalate (DMP, Phthalic							< 0.1704 u	< 1.3337 u	< 0.1305 u	< 0.1273		< 0.1348	u < 0.1	.367 u	< 1.3123 u	< 0.1296 u	< 0.1354 u	< 0.1325 u	< 0.1317 u	< 0.1297 u	< 0.2693 u	< 0.1318 u	< 0.1378 u	< 0.1365 u	< 0.1325 u
Acid)	6.16E+04	(1)	2.69E+05	(5)	3.57E+00	(8)	\ 0.1704 \ u	\ 1.5557 \ u	(0.1505) u	(0.1275	u	(0.1540	u \ 0.1	.507 u	\ 1.5125 \ u	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 0.1554 \ u	\ 0.1323 \ u	\ 0.1311 \ u	(0.1257 u	\ 0.2033 \ u	\ 0.1510 \ u	(0.1576) u	(0.1303 u	\ 0.1323 \ u
Di-n-butyl phthalate (Dibutyl							< 0.1908 u	< 1.4928 u	< 0.1461 II	< 0.1424	u	0.17	J 0.1	10 1	< 1.4688 u	0.15 J	< 0.1515 u	< 0.1483 u	< 0.1474 u	0.16 J	< 0.3015 u	0.15 J	< 0.1543 u	0.19 J	< 0.1483 u
phthalate)	6.16E+03	(1)	2.69E+04	(5)	3.38E+01	(8)	\ 0.1908 u	\ 1.4928 u	\ 0.1401 \ u	V 0.1424	u	0.17	J 0.1	19 7	\ 1.4000 u	0.13	\ 0.1313 \ u	\ 0.1405 u	\ 0.1474 \ u	0.10	\ 0.3013 \ u	0.15	\ 0.1545 \ u	0.19	< 0.1483 u
Di-n-octyl phthalate	6.30E+02	(2)	8.20E+03	(6)	1.14E+03	(9)	< 0.1304 u	< 1.0205 u	< 0.0999 u	< 0.0974	u	< 0.1031	u < 0.1	.046 u	< 1.0041 u	< 0.0991 u	< 0.1036 u	< 0.1014 u	< 0.1008 u	< 0.0992 u	< 0.2061 u	< 0.1008 u	< 0.1055 u	< 0.1045 u	< 0.1014 u
Fluoranthene	2.32E+03	(1)	1.00E+04	(5)	1.34E+03	(8)	< 0.1431 u	< 1.1201 u	< 0.1096 u	< 0.1069	u	< 0.1132	u < 0.1	.148 u	< 1.1021 u	< 0.1088 u	< 0.1137 u	< 0.1113 u	< 0.1106 u	< 0.1089 u	< 0.2262 u	< 0.1107 u	< 0.1158 u	< 0.1147 u	< 0.1113 u
Fluorene	2.32E+03	(1)	1.00E+04	(5)	8.00E+01	(8)	< 0.1457 u	< 1.1398 u	< 0.1116 u	< 0.1088	u	< 0.1152	u < 0.1	.168 u	< 1.1215 u	< 0.1107 u	< 0.1157 u	< 0.1133 u	< 0.1126 u	< 0.1108 u	< 0.2302 u	< 0.1126 u	< 0.1178 u	< 0.1167 u	< 0.1133 u
Hexachlorobenzene	3.33E+00	(1)	1.17E+02	(5)	1.89E-01	(8)	< 0.1582 u	< 1.2381 u	< 0.1212 u	< 0.1181	u	< 0.1251	u < 0.1	.269 u	< 1.2182 u	< 0.1203 u	< 0.1257 u	< 0.123 u	< 0.1223 u	< 0.1204 u	< 0.25 u	< 0.1223 u	< 0.1279 u	< 0.1267 u	< 0.123 u
Hexachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01	(4)	4.13E-02	(8)	< 0.1782 u	< 1.3944 u	< 0.1365 u	< 0.133	u	< 0.1409	u < 0.1		< 1.372 u	< 0.1355 u	< 0.1415 u	< 0.1386 u	< 0.1377 u	< 0.1356 u	< 0.2816 u	< 0.1378 u	< 0.1441 u	< 0.1427 u	< 0.1386 u
Hexachlorocyclopentadiene	2.30E+00	(1)	8.67E+02	(5)	2.40E+00	(8)	< 0.1461 u	< 1.1433 u	< 0.1119 u	< 0.1091	u	< 0.1155	u < 0.1	.172 u	< 1.125 u	< 0.1111 u	< 0.116 u	< 0.1136 u	< 0.1129 u	< 0.1112 u	< 0.2309 u	< 0.113 u	< 0.1182 u	< 0.117 u	< 0.1136 u
Hexachloroethane	1.33E+02	(1)	1.88E+02	(5)	3.20E-02	(8)	< 0.1424 u	< 1.1142 u	< 0.1091 u	< 0.1063	u	< 0.1126	u < 0.1	.142 u	< 1.0963 u	< 0.1082 u	< 0.1131 u	< 0.1107 u	< 0.11 u	< 0.1083 u	< 0.225 u	< 0.1101 u	< 0.1151 u	< 0.114 u	< 0.1107 u
Indeno(1,2,3-c,d)pyrene	1.53E+00	(1)	3.23E+01	(4)	2.01E+01	(8)	< 0.1272 u	< 0.9956 u	< 0.0975 u	< 0.095	u	< 0.1006	u < 0.:	102 u	< 0.9796 u	< 0.0967 u	< 0.101 u	< 0.0989 u	< 0.0983 u	< 0.0968 u	< 0.2011 u	< 0.0984 u	< 0.1029 u	< 0.1019 u	< 0.0989 u
Isophorone	5.61E+03	(1)	2.70E+04	(4)	0.00E+00	(9)	< 0.1882 u	< 1.4727 u	< 0.1441 u	< 0.1405	u	< 0.1488		151 u	< 1.4491 u	< 0.1431 u	< 0.1495 u	< 0.1463 u	< 0.1454 u	< 0.1432 u	< 0.2974 u	< 0.1455 u	< 0.1522 u	< 0.1507 u	< 0.1463 u
Naphthalene	1.16E+03	(1)	5.02E+03	(5)	8.23E-02	(8)	< 0.1933 u	< 1.5125 u	< 0.148 u	< 0.1443	u	< 0.1528	u < 0.:	155 u	< 1.4881 u	< 0.1469 u	< 0.1535 u	< 0.1503 u	< 0.1494 u	< 0.1471 u	< 0.3054 u	< 0.1495 u	< 0.1563 u	< 0.1548 u	< 0.1503 u
Nitrobenzene	6.04E+01	(1)	2.93E+02	(4)	1.44E-02	(8)	< 0.1768 u	< 1.3831 u	< 0.1354 u	< 0.132	u	< 0.1398	u < 0.1	.418 u	< 1.3609 u	< 0.1344 u	< 0.1404 u	< 0.1374 u	< 0.1366 u	< 0.1345 u	< 0.2793 u	< 0.1367 u	< 0.1429 u	< 0.1416 u	< 0.1374 u
Nitroso-di-N-propylamine, N-	7.80E-01	(3)	3.30E+00	(7)	1.62E-04	(9)	< 0.1825 u	 	+			< 0.1443	u < 0.1			< 0.1387 u		< 0.1419 u					< 0.1476 u		< 0.1419 u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	1.00E+01	(8)	< 0.1344 u	< 1.0514 u	< 0.1029 u	< 0.1003	u	< 0.1062	u < 0.1	.078 u	< 1.0345 u	< 0.1021 u	< 0.1067 u	< 0.1045 u	< 0.1038 u	< 0.1022 u	< 0.2123 u	< 0.1039 u	< 0.1087 u	< 0.1076 u	< 0.1045 u
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	1.52E-01	(8)	< 0.1317 u	< 1.0308 u	< 0.1009 u	< 0.0984	u	< 0.1042	u < 0.1	.057 u	< 1.0142 u	< 0.1001 u	< 0.1046 u	< 0.1024 u	< 0.1018 u	< 0.1002 u	< 0.2082 u	< 0.1019 u	< 0.1065 u	< 0.1055 u	< 0.1024 u
Phenanthrene	1.74E+03	(1)	7.53E+03	(5)	8.59E+01	(8)	< 0.1383 u	< 1.0825 u	< 0.106 u	< 0.1033	u	< 0.1094	u < 0.1	.109 u	< 1.0651 u	< 0.1052 u	< 0.1099 u	< 0.1076 u	< 0.1069 u	< 0.1053 u	< 0.2186 u	< 0.107 u	< 0.1119 u	< 0.1108 u	< 0.1076 u
Phenol	1.85E+04	(1)	7.74E+04	(5)	5.23E+01	(8)	< 0.159 u	< 1.2442 u	< 0.1218 u	< 0.1187	u	< 0.1257	u < 0.1	.275 u	< 1.2242 u	< 0.1209 u	< 0.1263 u	< 0.1236 u	< 0.1229 u	< 0.121 u	< 0.2513 u	< 0.1229 u	< 0.1286 u	< 0.1274 u	< 0.1236 u
Pyrene	1.74E+03	(1)	7.53E+03	(5)	1.92E+02	(8)	< 0.1201 u	< 0.9396 u	< 0.092 u	< 0.0897	u	< 0.0949	u < 0.0)963 u	< 0.9245 u	< 0.0913 u	< 0.0954 u	< 0.0934 u	< 0.0928 u	< 0.0914 u	< 0.1898 u	< 0.0928 u	< 0.0971 u	< 0.0962 u	< 0.0934 u
Pyridine	7.80E+01	(2)	1.20E+03	(6)	1.36E-01	(9)	< 0.1539 u	< 1.2044 u	< 0.1179 u	< 0.1149	u	< 0.1217	u < 0.1	.235 u	< 1.1851 u	< 0.117 u	< 0.1222 u	< 0.1197 u	< 0.1189 u	< 0.1171 u	< 0.2432 u	< 0.119 u	< 0.1245 u	< 0.1233 u	< 0.1197 u
Total Petroleum Hydrocarbons (mg,																									
Gasoline Range Organics (GRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 1.472 u	< 1.1887 u	< 1.1318 u	< 0.8854		< 1.4835	u < 0.8		< 0.9968 u	< 0.7328 u	< 0.784 u	< 0.7251 u	< 0.7642 u	< 1.5132 u		< 0.7716 u	< 0.7407 u		< 1.4792 u
Diesel Range Organics (DRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03			87 v	20 v	< 1.955		< 1.9084		102 u	20 v	11 v	< 1.7986 u	< 1.9342 u		< 1.9102 u		< 1.9084 u	< 1.6964 u	< 1.8248 u	
Motor Oil Range Organics (MRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 45.2489 u	120 v	< 47.7555 u	< 48.8759	u	< 47.7099	u < 47.	7555 u	< 46.9484 u	< 46.6418 u	< 44.964 u	< 48.3559 u	< 49.1159 u	< 47.7555 u	< 43.9754 u	< 47.7099 u	< 42.4088 u	< 45.6204 u	< 45.1264 u

- No screening level or analytical result available

NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2019)

EPA - Regional Screening Levels (Nov. 2019)

(1) NMED Residential Screening Level

(2) EPA Residential Screening Level

(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013

RCRA Post-Closure Permit because the constituent is listed as carcinogenic

(4) NMED Industrial Occupational Screening Level

(5) NMED Construction Worker Screening Level

(6) EPA Industrial - Screening Levels

(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA

Post-Closure Permit because the constituent is listed as carcinogenic

(8) SoilGW NMED Cw Dilution Attenuation Factor (DAF) = 20

(9) SoilGW Risk-based EPA DAF = 20

(10) SoilGW MCL-based NMED DAF = 20

(11) NMED Tables 6-2 and 6-4 TPH Soil Screening Levels "unknown oil" - see report Section 5 for use of screening levels

Bold represents value above Residential Screening Level

yellow highlight represents value above Non-Residential Screening Level

Bold with yellow highlight value exceeds Residential and Non-Residential Screening Levels

v = reportable detection above the Practical quantitation limit (PQL)

u - result is not detected at method detection limit (MDL)

j - estimated result at concentration above MDL but less than PQL

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level		Leachate DAF (20) (mg/kg) S SoilGW		SWMU 13-7 (17.5-18')	SWMU 13-8 (0-0.5')	SWMU 13-8 (1.5-2')	SWMU 13-8 (2-3')	SWMU 13-9 (0-0.5')	SWMU 13-9 (1.5-2')	SWMU 13-9 (2-3')		SWMU 13-10 (0-0.5')	SWMU 13-10 (1.5-2')	SWMU 13-10 (2-3')	SWMU 13-11 (0-0.5')	SWMU 13-11 (1.5-2')	SWMU 13-11 (2-3')	SWMU 13-12 (0-0.5')	SWMU 13-12 (0.5-1.5')	SWMU 13-12 (1.5-2')	SWMU 13-12 (2-3')
					Lab ID Sample Date			1910e04-009 10/24/2019	1910E04-010 10/24/2019		1910e04-012 10/24/2019				e04-019 5/2019				22 1910e04-023 9 10/25/2019				1910E04-027 10/25/2019	1910e04-028 10/25/2019
Metals (mg/kg)	<u> </u>		<u> </u>		20000										-,				= = = = = = = = = = = = = = = = = = = =					_5, _5, _5
Antimony	3.13E+01	(1)		(5)		(10)	< 0.7439 u	< 0.7368 u	< 0.7216 u	< 0.7473 u	< 0.7471 u	< 0.7201	u < 0.7342	u < 0.75	83 u	< 0.7286 u	< 0.7727	u < 0.7446	u < 0.7449 u	< 0.7411 u	ı < 0.7403 u	< 0.7356 u	< 0.7473 u	< 0.7578 u
Arsenic	7.07E+00	(1)		(4)	5.83E+00	(8)	< 2.8855 u	< 2.858 u	< 2.7989 u	< 2.8987 u		< 2.7932	u < 2.8478	u 5.6		< 2.8261 u	3.5	J < 2.8881	u < 2.8893 u	< 2.8747 u	1 < 2.8715 u		< 2.8987 u	
Barium Beryllium	1.56E+04 1.56E+02	(1)	4.39E+03 1.48E+02	(5)		(10)	370 v 1.2 v	280 v 1.2 v	170 v 1.4 v	270 v 1.3 v	260 v 0.91 v	210 1.4	v 210 v 1.3	v 220 v 1.2		150 v 1.3 v	1.2	v 310 v 1.3	v 170 v v 1.4 v	230 v 1.3 v	/ 340 V / 1.1 V	260 v 1.2 v	330 v 1.5 v	250 v 1.5 v
Cadmium	7.05E+01	(1)		(5)		(10)	< 0.0491 u	< 0.0486 u	< 0.0476 u	< 0.0493 u	< 0.0493 u	< 0.0475	u < 0.0484	u < 0.0		< 0.0481 u	< 0.051	u < 0.0491	u < 0.0491 u	< 0.0489 u	ı < 0.0488 u	< 0.0485 u	< 0.0493 u	< 0.05 u
Chromium (Total)	9.66E+01	(1)		(5)		(10)	12 v	32 v	13 v	14 v	270 v	18	v 13	v 160		16 v	12	v 81	v 16 v	14 v	/ 15 v	27 v	19 v	18 v
Cobalt Cyanide	2.34E+01 1.12E+01	(1)	 	(5) (5)		(8)	5.5 v < 0.25 u	6 V 1.2 V	5.5 v < 0.25 u	5.8 v < 0.25 u	6.8 v	6 < 0.25	v 5.6 u < 0.25	v 8.1 u 0.69		5.5 v < 0.25 u	5.2 < 0.25	v 7.2 u 1.2	v 6.3 v v < 0.25 u	5.7 v < 0.25 u	/ 5.4 v u < 0.25 u	5.4 v 0.44 v	6.9 v < 0.25 u	6.9 v < 0.25 u
Iron	5.48E+04	(1)		(5)		(8)	16000 v	19000 v	19000 v	19000 v	16000 v	19000	v 19000	v 2100		18000 v	17000	v 21000	v 22000 v	18000 v	17000 v	18000 v	22000 v	23000 v
Lead	4.00E+02	(2)	8.00E+02	(6)	5.20E-02	(10)	3.1 v	< 0.4863 u	4.2 v	3 v	7.5 v	1.6	v 2.7	v 3.4		3.4 v	3	v 3.8	v 1.7 v	2.7 v	/ 3.5 v	< 0.4855 u	0.51 v	< 0.5001 u
Manganese	1.05E+04	(1)		(5)		(8)	620 v	450 v	300 v	290 v	170 v	270	v 340	v 270		360 v	350	v 300	v 310 v	320 v	/ 520 V	270 v	380 v	360 v
Mercury (elemental) Nickel	2.38E+01 1.56E+03	(1)		(5)		(8)	0.0023 J 11 v	0.19 v 12 v	0.0067 J 13 v	0.0035 J 13 v	8.3 v 18 v	0.0045	J 0.003 v 12	J 1.6 v 19		0.0051 J 13 v	0.0035	J 1.1 v 16	v 0.0042 J v 14 v	0.0028 J 13 v	0.056 v 11 v	0.25 v 12 v	0.033 J 15 v	0.0044 J 14 v
Selenium	3.91E+02	(1)	 _ 	(5)		(10)	< 2.5915 u	< 2.514 u	< 2.462 u	< 2.5497 u	7.8 V	< 2.4569	u < 2.505	u 4	J	< 2.4859 u	< 2.6364	u < 2.5404	u < 2.5414 u	< 2.5287 u	1 < 2.5259 u	< 2.51 u	< 2.5497 u	< 2.5857 u
Silver	3.91E+02	(1)	1.77E+03	(5)	1.38E+01	(8)	< 0.0648 u	< 0.0642 u	< 0.0629 u	< 0.0651 u	< 0.0651 u	< 0.0627	u < 0.064	u < 0.06		< 0.0635 u	< 0.0673	u < 0.0649	u < 0.0649 u	< 0.0646 u	ı < 0.0645 u	< 0.0641 u	< 0.0651 u	< 0.066 u
Vanadium	3.94E+02	(1)	6.14E+02	(5)	1.26E+03	(8)	20 v	30 v	20 V	23 V	27 V	24	v 21	v 36		22 v	20	v 37	v 25 v	22 V	26 V	30 v	31 v	30 v
Zinc Volatiles (mg/kg)	2.35E+04	(工)	1.06E+05	(5)	7.41E+03	(8)	19 v	V 00 00	18 v	19 v	390 v	22	v 18	v 310	l V	23 v	17	v 140	v 21 V	18 v	/ 34 V	66 v	28 v	24 v
1,1,1,2-Tetrachloroethane	2.81E+01	(1)	1.37E+02	(4)	3.60E-02	(8)	< 0.0015 u	< 0.0023 u	< 0.0017 u	< 0.0017 u	< 0.0022 u	< 0.0018	u < 0.0018	u < 0.00	21 u	< 0.0018 u	< 0.0019	u < 0.0027	u < 0.0022 u	< 0.002 u	ı < 0.0023 u	< 0.0023 u	< 0.0023 u	< 0.002 u
1,1,1-Trichloroethane	1.44E+04	(1)	1.36E+04	(5)	1.28E+00	(10)	< 0.002 u	< 0.0031 u	< 0.0023 u	< 0.0023 u	< 0.0029 u	< 0.0025	u < 0.0024	u < 0.00		< 0.0024 u	< 0.0025	u < 0.0037	u < 0.0029 u	< 0.0027 u	ı < 0.0031 u	< 0.003 u	< 0.003 u	< 0.0027 u
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	7.98E+00 2.61E+00	(1)	 	(4)	4.81E-03 2.68E-02	(8)	< 0.0022 u < 0.0015 u	< 0.0034 u < 0.0024 u	< 0.0026 u < 0.0018 u	< 0.0026 u < 0.0018 u	< 0.0033 u < 0.0023 u	< 0.0028 < 0.0019	u < 0.0027 u < 0.0019	u < 0.00 u < 0.00		< 0.0027 u < 0.0019 u	< 0.0028 < 0.0019	u < 0.0041 u < 0.0029	u < 0.0032 u u < 0.0022 u	< 0.003 u < 0.0021 u	u < 0.0034 u u < 0.0024 u	< 0.0034 u < 0.0024 u	< 0.0034 u < 0.0024 u	< 0.003 u < 0.0021 u
1,1-Dichloroethane	7.86E+01	(1)		(4)	1.36E-01	(8)	< 0.0013 u	< 0.0024 u	< 0.0018 U	< 0.0016 u	< 0.0023 U	< 0.0019	u < 0.0019	u < 0.00		< 0.0019 u	< 0.0019	u < 0.0029	u < 0.0022 u	< 0.0021 u	1 < 0.0024 u	< 0.0024 u	< 0.0024 u	< 0.0021 u
1,1-Dichloroethene	4.40E+02	(1)		(5)		(10)	< 0.0087 u	< 0.0135 u	< 0.0103 u	< 0.0103 u	< 0.0129 u	< 0.0109	u < 0.0106	u < 0.01		< 0.0108 u	< 0.011	u < 0.0163	u < 0.0127 u	< 0.012 u	ı < 0.0135 u	< 0.0134 u	< 0.0135 u	< 0.0118 u
1,1-Dichloropropene	-	- (0)	-	- (0)	-	- (0)	< 0.002 u	< 0.0031 u	< 0.0024 u	< 0.0023 u	< 0.0029 u	< 0.0025	u < 0.0024	u < 0.00		< 0.0024 u	< 0.0025	u < 0.0037	u < 0.0029 u	< 0.0027 u	u < 0.0031 u	< 0.0031 u	< 0.0031 u	< 0.0027 u
Trichlorobenzene, 1,2,3- 1,2,3-Trichloropropane	6.30E+01 5.10E-02	(2)		(6)	4.20E-01 5.82E-05	(9)	< 0.0019 u < 0.0035 u	< 0.003 u < 0.0055 u	< 0.0023 u < 0.0042 u	< 0.0023 u < 0.0042 u	< 0.0028 u < 0.0052 u	< 0.0024 < 0.0044	u < 0.0023 u < 0.0043	u < 0.00 u < 0.00		< 0.0024 u < 0.0044 u	< 0.0024 < 0.0044	u < 0.0036 u < 0.0066	u < 0.0028 u u < 0.0052 u	< 0.0026 u < 0.0048 u	u < 0.003 u u < 0.0055 u	< 0.0029 u < 0.0054 u	< 0.003 u < 0.0054 u	< 0.0026 u < 0.0048 u
1,2,4-Trichlorobenzene	8.29E+01	(1)	 	(5)		(8)	< 0.0022 u	< 0.0033 u	< 0.0042 u	< 0.0042 u	< 0.0032 u	< 0.0028	u < 0.0027	u < 0.00		< 0.0027 u	< 0.0028	u < 0.0041	u < 0.0032 u	< 0.003 u	(< 0.0033 u	< 0.0034 u	< 0.0034 u	< 0.003 u
Trimethylbenzene, 1,2,4-	3.00E+02	(2)	1.80E+03	(6)	1.62E+00	(9)	< 0.002 u	< 0.0031 u	< 0.0024 u	< 0.0024 u	< 0.0029 u	< 0.0025	u < 0.0024	u < 0.00	_	< 0.0025 u	< 0.0025	u < 0.0037	u < 0.0029 u	< 0.0027 u	ı < 0.0031 u	< 0.0031 u	< 0.0031 u	< 0.0027 u
1,2-Dibromo-3-chloropropane	8.58E-02	(1)	1.18E+00	(4)	1.39E-03	(8)	< 0.0022 u	< 0.0035 u	< 0.0027 u	< 0.0026 u	< 0.0033 u	< 0.0028	u < 0.0027	u < 0.00	31 u	< 0.0028 u	< 0.0028	u < 0.0042	u < 0.0033 u	< 0.0031 u	u < 0.0035 u	< 0.0034 u	< 0.0034 u	< 0.003 u
1,2-Dibromoethane (Ethylene dibromide)	6.72E-01	(1)	3.31E+00	(4)	2.36E-04	(10)	< 0.002 u	< 0.0031 u	< 0.0024 u	< 0.0023 u	< 0.0029 u	< 0.0025	u < 0.0024	u < 0.00	28 u	< 0.0025 u	< 0.0025	u < 0.0037	u < 0.0029 u	< 0.0027 u	ı < 0.0031 u	< 0.0031 u	< 0.0031 u	< 0.0027 u
1,2-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00	(8)	< 0.0018 u	< 0.0028 u	< 0.0021 u	< 0.0021 u	< 0.0026 u	< 0.0022	u < 0.0022	u < 0.00	25 u	< 0.0022 u	< 0.0023	u < 0.0033	u < 0.0026 u	< 0.0025 u	ı < 0.0028 u	< 0.0027 u	< 0.0028 u	< 0.0024 u
1,2-Dichloroethane	8.32E+00	(1)		(4)	2.38E-02	(8)	< 0.0022 u	< 0.0034 u	< 0.0026 u	< 0.0026 u	< 0.0033 u	< 0.0028	u < 0.0027	u < 0.00		< 0.0027 u	< 0.0028	u < 0.0041	u < 0.0033 u	< 0.0031 u	u < 0.0034 u	< 0.0034 u	< 0.0034 u	< 0.003 u
1,2-Dichloropropane Trimethylbenzene, 1,3,5-	1.78E+01 2.70E+02	(1)		(5)	2.77E-02 1.74E+00	(8)	< 0.0016 u < 0.0021 u	< 0.0025 u < 0.0033 u	< 0.0019 u < 0.0025 u	< 0.0019 u < 0.0025 u	< 0.0024 u < 0.0031 u	< 0.002 < 0.0026	u < 0.0019 u < 0.0026	u < 0.00 u < 0.00	_	< 0.002 u < 0.0026 u	< 0.002 < 0.0027	u < 0.003 u < 0.0039	u < 0.0023 u u < 0.0031 u	< 0.0022 u < 0.0029 u	u < 0.0025 u u < 0.0033 u	< 0.0024 u < 0.0032 u	< 0.0024 u < 0.0033 u	< 0.0021 u < 0.0028 u
1,3-Dichlorobenzene	-	-	-	-	-	-	< 0.0021 u	< 0.0029 u	< 0.0023 u	< 0.0023 u	< 0.0031 u	< 0.0024	u < 0.0023	u < 0.00		< 0.0023 u	< 0.0024	u < 0.0035	u < 0.0031 u	< 0.0026 u	(< 0.0029 u	< 0.0032 u	< 0.0039 u	< 0.0026 u
Dichloropropane, 1,3-	1.60E+03	(2)		(6)	2.60E+00	(9)	< 0.0024 u	< 0.0037 u	< 0.0028 u	< 0.0028 u	< 0.0035 u	< 0.003	u < 0.0029	u < 0.00		< 0.0029 u	< 0.003	u < 0.0044	u < 0.0034 u	< 0.0032 u	ı < 0.0037 u	< 0.0036 u	< 0.0036 u	< 0.0032 u
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)	1.12E+00	(8)	< 0.0018 u	< 0.0028 u	< 0.0022 u	< 0.0022 u	< 0.0027 u	< 0.0023	u < 0.0022	u < 0.00		< 0.0022 u	< 0.0023	u < 0.0034	u < 0.0027 u	< 0.0025 u	ı < 0.0028 u	< 0.0028 u	< 0.0028 u	< 0.0025 u
1-Methylnaphthalene 2,2-Dichloropropane	1.72E+02	(1)	8.13E+02	- (4)	8.93E-01	(8)	< 0.0126 u < 0.0071 u	< 0.0194 u < 0.011 u	< 0.0149 u < 0.0084 u	< 0.0148 u < 0.0084 u	< 0.0185 u < 0.0105 u	< 0.0157 < 0.0089	u < 0.0152 u < 0.0086	u < 0.01 u < 0.00		< 0.0155 u < 0.0087 u	< 0.0158 < 0.0089	u < 0.0234 u < 0.0132	u < 0.0183 u u < 0.0104 u	< 0.0172 u < 0.0097 u	u < 0.0194 u u < 0.011 u	< 0.0193 u < 0.0109 u	< 0.0193 u < 0.0109 u	< 0.0169 u < 0.0096 u
2-Butanone (Methyl ethyl ketone,								< 0.0391 u		< 0.0298 u									u < 0.0369 u	< 0.0347 u		< 0.0388 u		
MEK)	3.74E+04	(1)		(5)	2.01E+01	(8)	< 0.0253 u		< 0.0299 u		< 0.0373 u	< 0.0317	u < 0.0306	u < 0.03		< 0.0311 u	0.0020	u < 0.047			ı < 0.0391 u		< 0.0389 u	< 0.034 u
o-Chlorotoluene Hexanone, 2-	1.56E+03 2.00E+02	(1)	7.08E+03 1.30E+03	(b)	3.56E+00 1.76E-01	(8)	< 0.0019 u < 0.0036 u	< 0.0029 u < 0.0056 u	< 0.0023 u < 0.0043 u	< 0.0022 u < 0.0043 u	< 0.0028 u < 0.0054 u	< 0.0024 < 0.0045	u < 0.0023 u < 0.0044	u < 0.00 u < 0.00		< 0.0023 u < 0.0045 u	< 0.0024 < 0.0046	u < 0.0035 u < 0.0067	u < 0.0028 u u < 0.0053 u	< 0.0026 u < 0.005 u	u < 0.0029 u u < 0.0056 u	< 0.0029 u < 0.0056 u	< 0.0029 u < 0.0056 u	< 0.0026 u < 0.0049 u
2-Methylnaphthalene	2.32E+02	(1)		(5)	2.76E+00	(8)	< 0.0036 u	< 0.0036 u	< 0.0043 U	< 0.0043 u	< 0.0054 u	< 0.0045	u < 0.0044 u < 0.0116	u < 0.00		< 0.0045 u	< 0.0046	u < 0.0087	u < 0.0033 u	< 0.003 u	1 < 0.0036 u	< 0.0036 u	< 0.0036 u	< 0.0129 u
Chlorotoluene, p-	1.60E+03	(2)	2.30E+04	(6)	4.80E+00	(9)	< 0.0018 u	< 0.0028 u	< 0.0021 u	< 0.0021 u	< 0.0026 u	< 0.0022	u < 0.0022	u < 0.00	25 u	< 0.0022 u	< 0.0023	u < 0.0033	u < 0.0026 u	< 0.0025 u	ı < 0.0028 u	< 0.0027 u	< 0.0028 u	< 0.0024 u
4-Isopropyltoluene	- 5 01E+02	- (1)	2.0251.04	- (5)	- 4 80E+00	- (0)	< 0.0018 u	< 0.0028 u	< 0.0021 u			< 0.0023	u < 0.0022	u < 0.00		< 0.0022 u	< 0.0023	u < 0.0034	u < 0.0026 u	< 0.0025 u	u < 0.0028 u		< 0.0028 u	< 0.0024 u
Methyl isobutyl ketone Acetone	5.81E+03 6.63E+04	(<u>1</u>)		(5) (5)	4.80E+00 4.98E+01	(8)	< 0.0041 u < 0.0181 u	< 0.0064 u < 0.028 u	< 0.0049 u < 0.0214 u	< 0.0049 u < 0.0213 u	< 0.0061 u < 0.0267 u	< 0.0052 < 0.0227	u < 0.005 u < 0.022	u < 0.00 u < 0.02		< 0.0051 u < 0.0223 u	< 0.0052 < 0.0228	u < 0.0077 u < 0.0337	u < 0.006 u u < 0.0264 u	< 0.0057 u < 0.0248 u	u < 0.0064 u u < 0.028 u	< 0.0063 u < 0.0278 u	< 0.0063 u < 0.0279 u	< 0.0056 u < 0.0244 u
Benzene	1.78E+01	(1)	 	(4)	4.18E-02	(8)	< 0.0018 u	< 0.0028 u	< 0.0021 u	< 0.00213 u	< 0.0026 u	< 0.0022	u < 0.0022	u < 0.00	_	< 0.0022 u	< 0.0022	u < 0.0033	u < 0.0026 u	< 0.0025 u	u < 0.0028 u	< 0.0027 u	< 0.0028 u	< 0.0024 u
Bromobenzene	2.90E+02	(2)		(6)		(9)	< 0.0021 u	< 0.0032 u	< 0.0025 u	< 0.0025 u	< 0.0031 u	< 0.0026	u < 0.0025	u < 0.00	_	< 0.0026 u	< 0.0026	u < 0.0039	u < 0.0031 u	< 0.0029 u	ı < 0.0032 u	< 0.0032 u	< 0.0032 u	< 0.0028 u
Bromodichloromethane Tribromomethane (Bromoform)	6.19E+00 6.74E+02	(1)		(4)	6.21E-03 1.47E-01	(8)	< 0.002 u < 0.002 u	<0.0031 u <0.0031 u	< 0.0024 u < 0.0023 u	< 0.0023 u < 0.0023 u	< 0.0029 u < 0.0029 u	< 0.0025 < 0.0025	u < 0.0024 u < 0.0024	u < 0.00 u < 0.00	_	< 0.0025 u < 0.0024 u	< 0.0025 < 0.0025	u < 0.0037 u < 0.0037	u < 0.0029 u u < 0.0029 u	< 0.0027 u < 0.0027 u	u < 0.0031 u u < 0.0031 u	< 0.0031 u	< 0.0031 u < 0.003 u	< 0.0027 u < 0.0027 u
Bromomethane	1.77E+01	(1)		(5)	3.43E-02		< 0.002 u	< 0.0031 u	< 0.0023 U	< 0.0023 u	< 0.0029 u	< 0.0025	u < 0.0024 u < 0.0064	u < 0.00		< 0.0024 u	< 0.0025	u < 0.0037	u < 0.0029 u u < 0.0077 u	< 0.0027 u	1 < 0.0031 u 1 < 0.0082 u	< 0.003 u	< 0.003 u	< 0.0027 u
Carbon disulfide	1.55E+03	(1)	1.62E+03	(5)	4.42E+00	(8)	< 0.0072 u	< 0.0112 u	< 0.0085 u	< 0.0085 u	< 0.0107 u	< 0.009	u < 0.0087	u < 0.0	1 u	< 0.0089 u	< 0.0091	u < 0.0134	u < 0.0105 u	< 0.0099 u	ı < 0.0112 u	< 0.0111 u	< 0.0111 u	< 0.0097 u
Carbon tetrachloride	1.07E+01	(1)	5.25E+01	(4)	3.67E-02		< 0.0021 u	< 0.0032 u	< 0.0025 u	< 0.0024 u	< 0.0031 u	< 0.0026	u < 0.0025	u < 0.00	_	< 0.0025 u	< 0.0026	u < 0.0039	u < 0.003 u	< 0.0028 u	< 0.0032 u	< 0.0032 u	< 0.0032 u	< 0.0028 u
Chlorobenzene (Monochlorobenzene Ethyl chloride	3.78E+02 1.90E+04	(1)	4.12E+02 1.66E+04	(5) (5)			< 0.0028 u < 0.0032 u	< 0.0043 u < 0.005 u	< 0.0033 u < 0.0038 u	< 0.0033 u < 0.0038 u	< 0.0041 u < 0.0048 u	< 0.0035 < 0.004	u < 0.0034 u < 0.0039	u < 0.00 u < 0.00		< 0.0034 u < 0.004 u	< 0.0035 < 0.004	u < 0.0052 u < 0.006	u < 0.0041 u u < 0.0047 u	< 0.0038 u < 0.0044 u	u < 0.0043 u u < 0.005 u	< 0.0043 u < 0.0049 u	< 0.0043 u < 0.005 u	< 0.0038 u < 0.0043 u
Chloroform	5.90E+00	(1)		(4)			< 0.0032 u	< 0.005 u	< 0.0038 U	< 0.0038 u	< 0.0048 U	< 0.004	u < 0.0039 u < 0.0021	u < 0.00	_	< 0.004 u	< 0.004	u < 0.003	u < 0.0047 u u < 0.0026 u	< 0.0044 u	1 < 0.005 u	< 0.0049 u	< 0.005 u	< 0.0043 U
Chloromethane	4.11E+01	(1)	2.01E+02	(4)			< 0.0021 u	< 0.0032 u	< 0.0025 u	< 0.0025 u	< 0.0031 u	< 0.0026	u < 0.0025	u < 0.00		< 0.0026 u	< 0.0026	u < 0.0039	u < 0.003 u	< 0.0029 u	ı < 0.0032 u	< 0.0032 u	< 0.0032 u	< 0.0028 u
cis-1,2-Dichloroethene	1.56E+02	(1)	7.08E+02	(5)	3.52E-01	(8)	< 0.003 u	< 0.0046 u	< 0.0035 u	< 0.0035 u		< 0.0037	u < 0.0036	u < 0.00		< 0.0037 u	< 0.0038	u < 0.0056	u < 0.0044 u	< 0.0041 u	u < 0.0046 u	< 0.0046 u	< 0.0046 u	< 0.004 u
cis-1,3-Dichloropropene Dibromochloromethane	- 1.39E+01	- (1)	- 6.74E+01	(4)	- 7.55E-03	- (8)	< 0.0018 u < 0.0016 u	< 0.0029 u < 0.0024 u	< 0.0022 u < 0.0018 u	< 0.0022 u < 0.0018 u	< 0.0027 u < 0.0023 u	< 0.0023 < 0.0019	u < 0.0022 u < 0.0019	u < 0.00 u < 0.00		< 0.0023 u < 0.0019 u	< 0.0023 < 0.002	u < 0.0034 u < 0.0029	u < 0.0027 u u < 0.0023 u	< 0.0025 u < 0.0021 u	u < 0.0029 u u < 0.0024 u	< 0.0028 u < 0.0024 u	< 0.0028 u < 0.0024 u	< 0.0025 u c c c c c c c c c c c c c c c c c c
Dibromomethane (Methylene	1.000101	(±)	J. 1 7L 1 U.L	(-7/	1.00L-00	(0)																		
Bromide)	2.40E+01	(2)		(6)	4.20E-02	(9)	< 0.0024 u	< 0.0036 u	< 0.0028 u	< 0.0028 u		< 0.0029	u < 0.0029	u < 0.00		< 0.0029 u	1		u < 0.0034 u	< 0.0032 u	ı < 0.0036 u	< 0.0036 u	< 0.0036 u	0.000=
Dichlorodifluoromethane	1.82E+02	(1)	1.61E+02	(5)	7.23E+00	(8)	< 0.0051 u	< 0.0078 u	< 0.006 u	< 0.006 u	< 0.0075 u	< 0.0064	u < 0.0061	u < 0.00)7 u	< 0.0062 u	< 0.0064	u < 0.0094	u < 0.0074 u	< 0.007 u	ı < 0.0078 u	< 0.0078 u	< 0.0078 u	< 0.0068 u

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	SoilGW	SWMU 13.	SWMU 13-8 (0-0.5')	SWMU 13-8 (1.5-2')	SWMU 13-8 (2-3')	SWMU 13-9 (0-0.5')	SWMU 13-9 (1.5-2')	SWMU 13-9 (2-3')	SWMU 13-10 (0-0.5')		SWMU 13-10 (1.5-2")	SWMU 13-10 (2-3')	SWMU 13-11 (0-0.5')	SWMU 13-11 (1.5-2")	SWMU 13-11 (2-3')	SWMU 13-12 (0-0.5')	SWMU 13-12 (0.5-1.5')	SWMU 13-12 (1.5-2')	SWMU 13-12 (2-3')
				Lab ID Sample Date	1910e04-008 10/24/2019		1910E04-010 10/24/2019		1910e04-012 10/24/2019					1910e04-020 10/25/2019	1910e04-021 10/25/2019		1910e04-023 10/25/2019	1910e04-024 10/25/2019	1910e04-025 10/25/2019	1910e04-026 10/25/2019	1910E04-027 10/25/2019	
Ethylbenzene	7.51E+01	(1)	3.68E+02 (4)	1.23E+01 (8)	< 0.0013 u	< 0.002 u	< 0.0015 u	< 0.0015 u	< 0.0019 u	< 0.0016	u < 0.0015	u < 0.0018		< 0.0016 u	< 0.0016 u	< 0.0024 u	< 0.0019 u	< 0.0017 u	< 0.002 u	< 0.0019 u	< 0.002 u	< 0.0017 u
Hexachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01 (4)	4.13E-02 (8)	< 0.0022 u	< 0.0034 u	< 0.0026 u	< 0.0026 u	< 0.0033 u	< 0.0028	u < 0.0027	u < 0.0031	_	< 0.0027 u	< 0.0028 u	< 0.0041 u	< 0.0032 u	< 0.003 u	< 0.0034 u	< 0.0034 u	< 0.0034 u	< 0.003 u
Cumene (isopropylbenzene) tert-Butyl methyl ether (MTBE)	2.36E+03 9.75E+02	(1)	2.74E+03 (5) 4.82E+03 (4)	1.14E+01 (8) 5.53E-01 (8)	< 0.0016 u	< 0.0024 u < 0.008 u	< 0.0019 u	< 0.0019 u < 0.0061 u	< 0.0023 u < 0.0077 u	< 0.002 < 0.0065	u < 0.0019 u < 0.0063	u < 0.0022		< 0.0019 u < 0.0064 u	< 0.002 u < 0.0065 u	< 0.0029 u	< 0.0023 u < 0.0076 u	< 0.0022 u < 0.0071 u	< 0.0024 u < 0.008 u	< 0.0024 u < 0.008 u	< 0.0024 u < 0.008 u	< 0.0021 u < 0.007 u
Methylene chloride (Dichloromethan	4.09E+02	(1)	1.21E+03 (5)	2.21E-02 (10)	< 0.0052 u 0.0063 J	< 0.006 u	< 0.0061 u < 0.0046 u	0.0073 J	< 0.0077 u	< 0.0065	u < 0.0063	u < 0.0072 u 0.0083		< 0.0048 u	< 0.0065 u	< 0.0096 u 0.011 J	< 0.0076 u	< 0.0071 u	< 0.006 u	0.0095 J	< 0.0059 u	< 0.007 u
Naphthalene	1.16E+03	(1)	5.02E+03 (5)	8.23E-02 (8)	< 0.0044 u	< 0.0068 u	< 0.0052 u	< 0.0052 u	< 0.0065 u	< 0.0055	u < 0.0053	u < 0.0061		< 0.0054 u	< 0.0055 u	< 0.0081 u	< 0.0064 u	< 0.006 u	< 0.0068 u	< 0.0067 u	< 0.0067 u	< 0.0059 u
Butylbenzene, n-	3.90E+03	(2)	5.80E+04 (6)	6.40E+01 (9)	< 0.002 u	< 0.0032 u	< 0.0024 u	< 0.0024 u	< 0.003 u	< 0.0026	u < 0.0025	u < 0.0028		< 0.0025 u	< 0.0026 u	< 0.0038 u	< 0.003 u	< 0.0028 u	< 0.0032 u	< 0.0031 u	< 0.0031 u	< 0.0027 u
Propyl benzene Butylbenzene, sec-	3.80E+03 7.80E+03	(2)	2.40E+04 (6) 1.20E+05 (6)	2.40E+01 (9) 1.18E+02 (9)	< 0.0017 u	< 0.0027 u < 0.0038 u	< 0.0021 u < 0.0029 u	< 0.0021 u < 0.0029 u	< 0.0026 u < 0.0036 u	< 0.0022 < 0.0031	u < 0.0021 u < 0.003	u < 0.0024 u < 0.0034		< 0.0021 u < 0.003 u	< 0.0022 u < 0.0031 u	< 0.0032 u	< 0.0025 u < 0.0036 u	< 0.0024 u < 0.0034 u	< 0.0027 u < 0.0038 u	< 0.0027 u < 0.0038 u	< 0.0027 u < 0.0038 u	< 0.0023 u
Styrene	7.26E+03	(1)	1.02E+04 (5)	1.71E+00 (10)		< 0.0027 u	< 0.002 u	< 0.002 u	< 0.0025 u	< 0.0021	u < 0.0021	u < 0.0024		< 0.0021 u	< 0.0022 u	< 0.0032 u	< 0.0025 u	< 0.0024 u	< 0.0027 u	< 0.0026 u	< 0.0026 u	< 0.0023 u
Butylbenzene, tert-	7.80E+03	(2)	1.20E+05 (6)	3.20E+01 (9)	< 0.0021 u	< 0.0032 u	< 0.0024 u	< 0.0024 u	< 0.003 u	< 0.0026	u < 0.0025	u < 0.0029		< 0.0025 u	< 0.0026 u	< 0.0038 u	< 0.003 u	< 0.0028 u	< 0.0032 u	< 0.0032 u	< 0.0032 u	< 0.0028 u
Tetrachloroethene Toluene	1.11E+02 5.23E+03	(1)	1.20E+02 (5) 1.40E+04 (5)	3.98E-02 (10) 1.11E+01 (10)		< 0.0027 u < 0.0032 u	< 0.0021 u < 0.0025 u	< 0.0021 u < 0.0025 u	< 0.0026 u < 0.0031 u	< 0.0022 < 0.0026	u < 0.0021 u < 0.0025	u < 0.0024 u < 0.0029		< 0.0021 u < 0.0026 u	< 0.0022 u < 0.0026 u	< 0.0032 u	< 0.0025 u < 0.003 u	< 0.0024 u < 0.0029 u	< 0.0027 u < 0.0032 u	< 0.0027 u < 0.0032 u	< 0.0027 u < 0.0032 u	< 0.0024 u < 0.0028 u
trans-1,2-Dichloroethene	2.95E+02	(1)	3.05E+02 (5)	5.03E-01 (8)	< 0.0021 u	< 0.0032 u	< 0.0023 u	< 0.0024 u	< 0.0031 u	< 0.0025	u < 0.0024	u < 0.0028		< 0.0025 u	< 0.0025 u	< 0.0037 u	< 0.0029 u	< 0.0027 u	< 0.0032 u	< 0.0032 u	< 0.0032 u	< 0.0023 u
trans-1,3-Dichloropropene		- (4)			< 0.0023 u	< 0.0036 u	< 0.0027 u	< 0.0027 u	< 0.0034 u	< 0.0029	u < 0.0028	u < 0.0032		< 0.0028 u	< 0.0029 u	< 0.0043 u	< 0.0034 u	< 0.0032 u	< 0.0036 u	< 0.0035 u	< 0.0036 u	< 0.0031 u
Trichloroethylene Trichlorofluoromethane	6.77E+00 1.23E+03	(1)	6.90E+00 (5) 1.13E+03 (5)	3.10E-02 (8) 1.57E+01 (8)	< 0.0025 u < 0.0074 u	< 0.0039 u < 0.0115 u	< 0.003 u < 0.0088 u	< 0.003 u < 0.0087 u	< 0.0037 u < 0.0109 u	< 0.0032 < 0.0093	u < 0.0031 u < 0.009	u < 0.0035 u < 0.0103	_	< 0.0031 u < 0.0091 u	< 0.0032 u < 0.0093 u	< 0.0047 u < 0.0138 u	< 0.0037 u < 0.0108 u	< 0.0035 u < 0.0102 u	< 0.0039 u < 0.0115 u	< 0.0039 u < 0.0114 u	< 0.0039 u < 0.0114 u	< 0.0034 u < 0.01 u
Vinyl chloride	7.42E-01	(1)	2.84E+01 (4)	+ · · ·	< 0.0014 u	< 0.0022 u	< 0.0017 u		 	< 0.0038		u < 0.002				< 0.0027 u	< 0.0021 u	< 0.002 u	< 0.0022 u		< 0.0022 u	< 0.0019 u
Xylenes	8.71E+02	(1)	7.98E+02 (5)	1.54E+02 (8)	< 0.0055 u	< 0.0085 u	< 0.0065 u	< 0.0065 u	< 0.0081 u	< 0.0069	u < 0.0067	u < 0.0077	u	< 0.0068 u	< 0.0069 u	< 0.0102 u	< 0.008 u	< 0.0076 u	< 0.0085 u	< 0.0085 u	< 0.0085 u	< 0.0074 u
Semi-volatiles (mg/kg) 1,2,4-Trichlorobenzene	8.29E+01	(1)	7.91E+01 (5)	3.10E+00 (8)	< 0.1522 u	< 0.7871 u	< 0.1499 u	< 0.1496 u	< 7.4869 u	< 0.3209	u < 0.1508	11 2 7 5868	[< 0.3079 u	< 0.151 u	- 7 /017 Lu	< 0.3130 II	< 0.1521 u	< 0.3061 u	< 1.5273 u	< 0.2997 u	< 0.3038 u
1,2-Dichlorobenzene	2.15E+03	(1)	2.50E+03 (5)	9.08E+00 (8)	< 0.1322 u	< 0.6084 u	< 0.1499 u	< 0.1496 u	< 5.787 u	< 0.3209	u < 0.1308	u < 5.8643	u	< 0.238 u	< 0.131 u	< 5.7907 u	< 0.2426 u	< 0.1321 u	< 0.2366 u	< 1.1805 u	< 0.2316 u	< 0.2348 u
1,3-Dichlorobenzene	-	-			< 0.1031 u	< 0.5333 u	< 0.1016 u	< 0.1014 u	< 5.0723 u	< 0.2174	u < 0.1022	u < 5.14	u	< 0.2086 u	< 0.1023 u	< 5.0755 u	< 0.2127 u	< 0.1031 u	< 0.2074 u	< 1.0347 u	< 0.203 u	< 0.2058 u
1,4-Dichlorobenzene	1.29E+03 1.72E+02	(1)	6.73E+03 (4)	1.12E+00 (8) 8.93E-01 (8)	< 0.1043 u < 0.1466 u	< 0.5395 u < 0.7581 u	< 0.1028 u	< 0.1026 u	< 5.1314 u	< 0.22	u < 0.1034	u < 5.2	u	< 0.211 u	< 0.1035 u	< 5.1347 u	< 0.2151 u < 0.3023 u	< 0.1043 u	< 0.2098 u	< 1.0468 u	< 0.2054 u	< 0.2082 u
1-Methylnaphthalene 2,4,5-Trichlorophenol	6.16E+03	(1)	8.13E+02 (7) 2.69E+04 (5)	8.93E-01 (8) 6.62E+01 (8)	< 0.1466 u	< 0.7581 u	< 0.1444 u < 0.1251 u	< 0.1441 u < 0.1248 u	< 7.2107 u < 6.2452 u	< 0.3091 < 0.2677	u < 0.1452 u < 0.1258	u < 7.307 u < 6.3286	u	< 0.2965 u < 0.2568 u	< 0.1454 u < 0.126 u	< 7.2154 u < 6.2492 u	< 0.3023 U	< 0.1465 u < 0.1269 u	< 0.2948 u < 0.2553 u	< 1.471 u < 1.274 u	< 0.2886 u < 0.25 u	< 0.2926 u < 0.2534 u
2,4,6-Trichlorophenol	6.16E+01	(1)	2.69E+02 (5)	6.74E-01 (8)	< 0.1029 u	< 0.5324 u	< 0.1014 u	< 0.1012 u	< 5.064 u	< 0.2171	u < 0.102	u < 5.1316		< 0.2082 u	< 0.1021 u	< 5.0672 u	< 0.2123 u	< 0.1029 u	< 0.207 u	< 1.033 u	< 0.2027 u	< 0.2055 u
2,4-Dichlorophenol	1.85E+02	(1)	8.07E+02 (5)	8.25E-01 (8)	< 0.1139 u	< 0.5891 u	< 0.1122 u	< 0.112 u	< 5.6031 u	< 0.2402	u < 0.1129	u < 5.6779		< 0.2304 u	< 0.113 u	< 5.6067 u	< 0.2349 u	< 0.1139 u	< 0.2291 u	< 1.143 u	< 0.2243 u	< 0.2273 u
2,4-Dimethylphenol 2,4-Dinitrophenol	1.23E+03 1.23E+02	(1)	5.38E+03 (5) 5.38E+02 (5)	6.45E+00 (8) 6.69E-01 (8)	< 0.1079 u < 0.0711 u	< 0.5582 u < 0.368 u	< 0.1063 u < 0.0701 u	< 0.1061 u < 0.07 u	< 5.3094 u < 3.5001 u	< 0.2276 < 0.15	u < 0.1069 u < 0.0705	u < 5.3803 u < 3.5469		< 0.2183 u < 0.1439 u	< 0.1071 u < 0.0706 u	< 5.3128 u < 3.5024 u	< 0.2226 u < 0.1467 u	< 0.1079 u < 0.0711 u	< 0.217 u < 0.1431 u	< 1.0831 u < 0.714 u	< 0.2125 u < 0.1401 u	< 0.2154 u < 0.142 u
2,4-Dinitrotoluene	1.71E+01	(1)	8.23E+01 (4)	4.92E-02 (8)	< 0.1154 u	< 0.597 u	< 0.1137 u	< 0.1135 u	< 5.6782 u	< 0.2434	u < 0.1144	u < 5.754		< 0.2335 u	< 0.1145 u	< 5.6819 u	< 0.2381 u	< 0.1154 u	< 0.2321 u	< 1.1583 u	< 0.2273 u	< 0.2304 u
2,6-Dintitrotoluene	3.56E+00	(1)	1.72E+01 (4)	1.02E-02 (8)	< 0.1289 u	< 0.6666 u	< 0.127 u	< 0.1267 u	< 6.3404 u	< 0.2718	u < 0.1277	u < 6.4251		< 0.2607 u	< 0.1279 u	< 6.3445 u	< 0.2658 u	< 0.1288 u	< 0.2592 u	< 1.2934 u	< 0.2538 u	< 0.2573 u
b-Chloronaphthalene 2-Chlorophenol	6.26E+03 3.91E+02	(1)	2.83E+04 (5) 1.77E+03 (5)	5.70E+01 (8) 1.15E+00 (8)	< 0.1222 u < 0.1218 u	< 0.632 u < 0.6301 u	< 0.1204 u < 0.12 u	< 0.1202 u < 0.1198 u	< 6.0115 u	< 0.2577 < 0.2569	u < 0.1211 u < 0.1207	u < 6.0917 u < 6.0732		< 0.2472 u < 0.2465 u	< 0.1212 u < 0.1209 u	< 6.0153 u < 5.997 u	< 0.252 u < 0.2513 u	< 0.1222 u < 0.1218 u	< 0.2457 u < 0.245 u	< 1.2263 u < 1.2226 u	< 0.2406 u < 0.2399 u	< 0.2439 u < 0.2432 u
2-Methylnaphthalene	2.32E+02	(1)	1.00E+03 (5)	2.76E+00 (8)	< 0.1427 u	< 0.7379 u	< 0.1406 u	< 0.1403 u	< 7.0187 u	< 0.3009	u < 0.1414	u < 7.1124		< 0.2886 u	< 0.1416 u	< 7.0232 u	< 0.2943 u	< 0.1426 u	< 0.2869 u	< 1.4318 u	< 0.2809 u	< 0.2848 u
Cresol, o-	3.20E+03	(2)	4.10E+04 (6)	1.50E+01 (9)	< 0.1161 u	< 0.6007 u	< 0.1144 u	< 0.1142 u	< 5.7136 u	< 0.2449	u < 0.1151	u < 5.7898	u	< 0.235 u	< 0.1152 u	< 5.7172 u	< 0.2395 u	< 0.1161 u	< 0.2336 u	< 1.1656 u	< 0.2287 u	< 0.2318 u
Nitroaniline, 2- 2-Nitrophenol	6.30E+02	(2)	8.00E+03 (6)	1.60E+00 (9)	< 0.1399 u < 0.1337 u	< 0.7234 u < 0.6916 u	< 0.1378 u < 0.1317 u	< 0.1375 u < 0.1315 u	< 6.8803 u	< 0.2949 < 0.282	u < 0.1386 u < 0.1325	u < 6.9722 u < 6.6661	u	< 0.2829 u < 0.2705 u	< 0.1388 u < 0.1327 u	< 6.8848 u < 6.5825 u	< 0.2885 u < 0.2758 u	< 0.1398 u < 0.1337 u	< 0.2813 u < 0.2689 u	< 1.4036 u < 1.342 u	< 0.2754 u < 0.2633 u	< 0.2792 u < 0.2669 u
3,3-Dichlorobenzidine	1.18E+01	(1)	5.70E+01 (4)	1.24E-01 (8)	< 0.087 u	< 0.4502 u	< 0.0858 u	< 0.0856 u	< 4.2823 u	< 0.1836	u < 0.0863	u < 4.3395		< 0.1761 u	< 0.0864 u	< 4.2851 u	< 0.1795 u	< 0.087 u	< 0.1751 u	< 0.8736 u	< 0.1714 u	< 0.1737 u
3+4-Methylphenol	-	-			< 0.1202 u	< 0.6217 u	< 0.1184 u	< 0.1182 u	< 5.9129 u	< 0.2535	u < 0.1191	u < 5.9918		< 0.2432 u	< 0.1193 u	< 5.9167 u	< 0.2479 u	< 0.1201 u	< 0.2417 u	< 1.2062 u	< 0.2367 u	< 0.2399 u
3-Nitroaniline 4,6-Dinitro-o-cresol	4.93E+00	(1)	2.15E+01 (5)	3.98E-02 (8)	< 0.1351 u < 0.0905 u	< 0.6989 u < 0.4678 u	< 0.1331 u < 0.0891 u	< 0.1329 u < 0.0889 u	< 6.6472 u < 4.4499 u	< 0.2849 < 0.1907	u < 0.1339 u < 0.0896	u < 6.736 u < 4.5094		< 0.2734 u < 0.183 u	< 0.1341 u < 0.0897 u	< 6.6515 u < 4.4528 u	< 0.2787 u < 0.1866 u	< 0.1351 u < 0.0904 u	< 0.2717 u < 0.1819 u	< 1.356 u < 0.9078 u	< 0.2661 u < 0.1781 u	< 0.2697 u < 0.1806 u
4-Bromophenyl phenyl ether	-	-			< 0.1151 u	< 0.5954 u	< 0.1134 u	< 0.1132 u	< 5.6632 u	< 0.2428	u < 0.1141	u < 5.7388		< 0.2329 u	< 0.1142 u	< 5.6668 u	< 0.2374 u	< 0.1151 u	< 0.2315 u	< 1.1553 u	< 0.2267 u	< 0.2298 u
4-Chloro-3-methylphenol	-	-			< 0.1502 u	< 0.7771 u	< 0.148 u	< 0.1477 u	< 7.3914 u	< 0.3168	u < 0.1489	u < 7.4901	u	< 0.304 u	< 0.1491 u	< 7.3961 u	< 0.3099 u	< 0.1502 u	< 0.3022 u	< 1.5078 u	< 0.2958 u	< 0.2999 u
Chloroaniline, p- 4-Chlorophenyl phenyl ether	2.70E+01 -	(3)	1.10E+02 (7)	3.20E-03 (9)	< 0.1387 u	< 0.7175 u < 0.552 u	< 0.1367 u < 0.1051 u	< 0.1364 u < 0.1049 u	< 6.8246 u < 5.2507 u	< 0.2925 < 0.2251	u < 0.1375 u < 0.1058	u < 6.9157 u < 5.3208		< 0.2806 u < 0.2159 u	< 0.1376 u < 0.1059 u	< 6.829 u	< 0.2861 u < 0.2201 u	< 0.1387 u < 0.1067 u	< 0.279 u < 0.2146 u	< 1.3922 u < 1.0711 u	< 0.2732 u < 0.2102 u	< 0.2769 u < 0.213 u
Nitroaniline, 4-	2.70E+02	(3)	1.10E+03 (7)	3.20E-02 (9)	< 0.1007 u	< 0.6467 u	< 0.1232 u	< 0.1229 u	< 6.1514 u	< 0.2637	u < 0.1239	u < 6.2335	u	< 0.253 u	< 0.1033 u	< 6.1554 u	< 0.2579 u	< 0.1007 u	< 0.2515 u	< 1.2549 u	< 0.2462 u	< 0.2496 u
4-Nitrophenol		-			< 0.1328 u	< 0.6869 u	< 0.1308 u	< 0.1306 u	< 6.5332 u	< 0.28	u < 0.1316	u < 6.6205		< 0.2687 u	< 0.1318 u	< 6.5374 u	< 0.2739 u	< 0.1328 u	< 0.2671 u	< 1.3328 u	< 0.2615 u	< 0.2651 u
Acenaphthene Acenaphthylene	3.48E+03 -	(1)	1.51E+04 (5)	8.25E+01 (8)	< 0.1175 u < 0.1073 u	< 0.6076 u < 0.5551 u	< 0.1157 u < 0.1057 u	< 0.1155 u < 0.1055 u		< 0.2477 < 0.2263	u < 0.1164 u < 0.1064	u < 5.8563 u < 5.3507		< 0.2377 u < 0.2171 u	< 0.1166 u < 0.1065 u	< 5.7829 u	< 0.2423 u < 0.2214 u	< 0.1174 u < 0.1073 u	< 0.2363 u < 0.2159 u	< 1.1789 u < 1.0772 u	< 0.2313 u < 0.2113 u	< 0.2345 u < 0.2142 u
Aniline	9.50E+02	(3)	4.00E+03 (7)	9.20E-02 (9)	< 0.1259 u	< 0.6513 u	< 0.1241 u	< 0.1238 u	< 6.1946 u	< 0.2655	u < 0.1248	u < 6.2773		< 0.2547 u	< 0.1249 u	< 6.1986 u	< 0.2597 u	< 0.1259 u	< 0.2532 u	< 1.2637 u	< 0.2479 u	< 0.2513 u
Anthracene	1.74E+04	(1)	7.53E+04 (5)	8.51E+02 (8)	< 0.1047 u	< 0.5416 u	< 0.1032 u	< 0.103 u	< 5.1511 u	< 0.2208	u < 0.1038	u < 5.2199		< 0.2118 u	< 0.1039 u	< 5.1544 u	< 0.216 u	< 0.1047 u	< 0.2106 u	< 1.0508 u	< 0.2062 u	< 0.209 u
Azobenzene Benzo(a)anthracene	5.60E+01 1.53E+00	(3)	2.60E+02 (7) 3.23E+01 (4)	1.86E+06 (9) 6.37E-01 (8)	< 0.1371 u < 0.0943 u	< 0.709 u < 0.488 u	< 0.1351 u < 0.093 u	< 0.1348 u < 0.0928 u	< 6.7441 u < 4.6417 u	< 0.2891 < 0.199	u < 0.1358 u < 0.0935	u < 6.8341 u < 4.7036		< 0.2773 u < 0.1909 u	< 0.136 u < 0.0936 u	< 6.7484 u < 4.6446 u	< 0.2828 u < 0.1946 u	< 0.137 u < 0.0943 u	< 0.2757 u < 0.1898 u	< 1.3758 u < 0.9469 u	< 0.2699 u < 0.1858 u	< 0.2736 u < 0.1883 u
Benzo(a)pyrene	1.12E+00	(1)	2.36E+01 (4)	3.53E+00 (10)		< 0.4501 u	< 0.0857 u	< 0.0856 u	< 4.2816 u	< 0.1835	u < 0.0862	u < 4.3387		< 0.1761 u	< 0.0864 u	< 4.2843 u	< 0.1795 u	< 0.087 u	< 0.175 u	< 0.8734 u	< 0.1714 u	< 0.1737 u
Benzo(b)fluoranthene	1.53E+00	(1)	3.23E+01 (4)	6.17E+00 (8)	< 0.0866 u	< 0.448 u	< 0.0853 u	< 0.0852 u	< 4.2607 u	< 0.1826	u < 0.0858	u < 4.3176		< 0.1752 u	< 0.0859 u		< 0.1786 u	< 0.0866 u	< 0.1742 u	< 0.8692 u	< 0.1705 u	< 0.1729 u
Benzo(g,h,i)perylene Benzo(k)fluoranthene	- 1.53E+01	(1)	3.23E+02 (4)	 6.05E+01 (8)	< 0.084 u < 0.089 u	< 0.4344 u < 0.4603 u	< 0.0828 u < 0.0877 u	< 0.0826 u < 0.0875 u	< 4.1323 u < 4.3785 u	< 0.1771 < 0.1877	u < 0.0832 u < 0.0882	u < 4.1874 u < 4.437		< 0.1699 u < 0.1801 u	< 0.0833 u < 0.0883 u	< 4.1349 u < 4.3813 u	< 0.1733 u < 0.1836 u	< 0.084 u < 0.089 u	< 0.1689 u < 0.179 u	< 0.843 u < 0.8932 u	< 0.1654 u < 0.1753 u	< 0.1677 u < 0.1777 u
Benzoic acid	2.50E+05	(2)	3.30E+06 (6)	3.00E+02 (9)	< 0.1011 u	< 0.5231 u	< 0.0996 u		 	< 0.2133	0.4000	u < 5.0422			< 0.1004 u		< 0.2086 u	< 0.1011 u	< 0.2034 u	< 1.015 u	< 0.1733 u	< 0.2019 u
Benzyl alcohol	6.30E+03	(2)	8.20E+04 (6)	9.60E+00 (9)	< 0.1215 u	< 0.6284 u	< 0.1197 u	< 0.1195 u		< 0.2562	u < 0.1204	u < 6.0567		< 0.2458 u	< 0.1205 u	< 5.9807 u	< 0.2506 u	< 0.1215 u	< 0.2443 u	< 1.2193 u	< 0.2392 u	< 0.2425 u
Bis(2-chloroethoxy)methane Bis(2-chloroethyl) ether	1.90E+02 3.11E+00	(2)	2.50E+03 (6) 1.95E+00 (5)	2.60E-01 (9) 6.05E-04 (8)	< 0.1448 u < 0.1193 u	< 0.7487 u < 0.6173 u	< 0.1426 u < 0.1176 u	< 0.1423 u < 0.1173 u	< 7.1213 u < 5.8711 u	< 0.3053 < 0.2517	u < 0.1434 u < 0.1183	u < 7.2163 u < 5.9495			< 0.1436 u < 0.1184 u	< 7.1258 u < 5.8749 u	< 0.2986 u < 0.2462 u	< 0.1447 u < 0.1193 u	< 0.2911 u < 0.24 u	< 1.4527 u < 1.1977 u	< 0.285 u < 0.235 u	< 0.2889 u < 0.2382 u
Bis(2-chloroisopropyl) ether	9.93E+01	(1)	5.19E+02 (4)		< 0.1195 u	< 0.5766 u	< 0.1178 u		 	< 0.2351	0.440=	u < 5.5575				- 40-0	< 0.2462 U	< 0.1193 u	< 0.2242 u	< 1.1977 u	< 0.235 u	< 0.2382 u
Bis(2-ethylhexyl)phthalate [Di(2-		` '			< 0.1407 II	< 0.7276 u	< 0.1386 u	0.14 J		< 0.2967		u < 7.0134				< 6.9255 u		< 0.1406 u	< 0.2829 u	< 1.4119 u	< 0.277 u	
ethylhexyl)phthalate, DEHP]	3.80E+02	(1)	1.83E+03 (4)	2.15E+01 (10)																		
Butyl Benzyl Phthalate Carbazole	2.90E+03 -	(3)	1.20E+04 (7)	4.60E+00 (9) 	< 0.1001 u < 0.1148 u	< 0.5177 u < 0.594 u	< 0.0986 u < 0.1131 u	< 0.0984 u < 0.1129 u	< 4.9244 u < 5.6494 u	< 0.2111 < 0.2422	u < 0.0992 u < 0.1138	u < 4.9902 u < 5.7249		< 0.2025 u < 0.2323 u	< 0.0993 u < 0.1139 u	< 4.9276 u < 5.6531 u	< 0.2065 u < 0.2369 u	< 0.1001 u < 0.1148 u	< 0.2013 u < 0.2309 u	< 1.0046 u < 1.1525 u	< 0.1971 u < 0.2261 u	< 0.1998 u < 0.2292 u
Chrysene	1.53E+02	(1)	3.23E+03 (4)	1.86E+02 (8)	< 0.0864 u	< 0.4467 u	< 0.0851 u	< 0.0849 u	< 4.2484 u	< 0.1821		u < 4.3052			< 0.0857 u		< 0.1781 u	< 0.0863 u	< 0.1737 u	< 0.8667 u	< 0.17 u	< 0.1724 u

Table 5 - Soil Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	Leachate DAF (20) (mg/kg) SoilGW	Source	SWMU 13	SWMU 13-8 (0-0.5')	SWMU 13-8 (1.5-2')	SWMU 13-8 (2-3')	SWMU 13-9 (0-0.5')	SWMU 13-9 (1.5-2')	SWMU 13-9 (2-3')		SWMU 13-10 (0-0.5')		SWMU 13-10 (1.5-2')	SWMU 13-10 (2-3')	SWMU 13-11 (0-0.5')	SWMU 13-11 (1.5-2')	SWMU 13-11 (2-3')	SWMU 13-12 (0-0.5')	SWMU 13-12 (0.5-1.5')	SWMU 13-12 (1.5-2')	SWMU 13-12 (2-3')
					Lab ID		1910e04-008	1910e04-009	1910E04-010	1910e04-011	1910e04-012	1910e04-0:	13 1910e0)4-014	1910e04-0	019	1910e04-020	1910e04-02	21 1910e04-0	22 1910e04-023	1910e04-024	1910e04-025	1910e04-026	1910E04-027	1910e04-028
					Sample D	ate	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/2019	10/24/201	10/24	/2019	10/25/20)19	10/25/2019	10/25/201	9 10/25/20:	9 10/25/2019	10/25/2019	10/25/2019	10/25/2019	10/25/2019	10/25/2019
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	1.97E+00	(8)	< 0.089 u	< 0.4605 u	< 0.0877 u	< 0.0875 u	< 4.3799 u	< 0.1877	u < 0.088	2 u	< 4.4383	u	< 0.1801 u	< 0.0883	u < 4.3827	u < 0.1836 u	< 0.089 u	< 0.179 u	< 0.8935 u	< 0.1753 u	< 0.1777 u
Dibenzofuran	7.30E+01	(2)	1.00E+03	(6)	3.00E+00	(9)	< 0.1283 u	< 0.6637 u	< 0.1264 u	< 0.1262 u	< 6.3129 u	< 0.2706	u < 0.127	2 u	< 6.3972	u	< 0.2596 u	< 0.1273	u < 6.317	u < 0.2647 u	< 0.1283 u	< 0.2581 u	< 1.2878 u	< 0.2527 u	< 0.2561 u
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(5)	9.79E+01	(8)	< 0.1397 u	< 0.7228 u	< 0.1377 u	< 0.1374 u	< 6.8746 u	< 0.2947	u < 0.138	5 u	< 6.9664	u	< 0.2827 u	< 0.1387	u < 6.879	u < 0.2882 u	< 0.1397 u	< 0.281 u	< 1.4024 u	< 0.2752 u	< 0.2789 u
Dimethyl phthalate (DMP, Phthalic Acid)	6.16E+04	(1)	2.69E+05	(5)	3.57E+00	(8)	< 0.1306 u	< 0.6754 u	< 0.1287 u	< 0.1284 u	< 6.4243 u	< 0.2754	u < 0.129	4 u	< 6.51	u	< 0.2642 u	< 0.1296	u < 6.4284	u < 0.2693 u	< 0.1305 u	< 0.2626 u	< 1.3105 u	< 0.2571 u	< 0.2607 u
Di-n-butyl phthalate (Dibutyl		,		,		, ,																			
phthalate)	6.16E+03	(1)	2.69E+04	(5)	3.38E+01	(8)	< 0.1462 u	< 0.756 u	0.2 J	0.26 J	< 7.1904 u	< 0.3082	u 0.23	ا ا	< 7.2864	u	< 0.2957 u	< 0.145	u < 7.1951	u < 0.3015 u	0.2 J	< 0.2939 u	< 1.4668 u	< 0.2878 u	< 0.2917 u
Di-n-octyl phthalate	6.30E+02	(2)	8.20E+03	(6)	1.14E+03	(9)	< 0.0999 u	< 0.5168 u	< 0.0984 u	< 0.0982 u	< 4.9156 u	< 0.2107	u < 0.099) u	< 4.9812	u	< 0.2021 u	< 0.0991	u < 4.9187	u < 0.2061 u	< 0.0999 u	< 0.2009 u	< 1.0028 u	< 0.1967 u	< 0.1994 u
Fluoranthene	2.32E+03	(1)	1.00E+04	(5)	1.34E+03	(8)	< 0.1097 u	< 0.5673 u	< 0.108 u	< 0.1078 u	< 5.3954 u	< 0.2313	u < 0.108	_	< 5.4675	u	< 0.2219 u	< 0.1088	u < 5.3989	u < 0.2262 u	< 0.1096 u	< 0.2206 u	< 1.1007 u	< 0.216 u	< 0.2189 u
Fluorene	2.32E+03	(1)	1.00E+04	(5)	8.00E+01	(8)	< 0.1116 u	< 0.5772 u	< 0.1099 u	< 0.1097 u	< 5.4902 u	< 0.2353	u < 0.110	_	< 5.5635	u	< 0.2258 u	< 0.1107	u < 5.4938	u < 0.2302 u	< 0.1116 u	< 0.2244 u	< 1.12 u	< 0.2198 u	< 0.2228 u
Hexachlorobenzene	3.33E+00	(1)	1.17E+02	(5)	1.89E-01	(8)	< 0.1212 u	< 0.627 u	< 0.1194 u	< 0.1192 u	< 5.9636 u	< 0.2556	u < 0.120	_	< 6.0432	u	< 0.2452 u	< 0.1203	u < 5.9674	u < 0.25 u	< 0.1212 u	< 0.2438 u	< 1.2166 u	< 0.2387 u	< 0.242 u
Hexachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01	(4)	4.13E-02	(8)	< 0.1365 u	< 0.7062 u	< 0.1345 u	< 0.1342 u	< 6.7166 u	< 0.2879	u < 0.135	_	< 6.8063	u	< 0.2762 u	< 0.1355	u < 6.7209	u < 0.2816 u	< 0.1365 u	< 0.2746 u	< 1.3702 u	< 0.2688 u	< 0.2725 u
Hexachlorocyclopentadiene	2.30E+00	(1)	8.67E+02	(5)	2.40E+00	(8)	< 0.1119 u	< 0.579 u	< 0.1103 u	< 0.1101 u	< 5.5073 u	< 0.2361	u < 0.110	_	< 5.5809	u	< 0.2265 u	< 0.1111	u < 5.5109	u < 0.2309 u	< 0.1119 u	< 0.2251 u	< 1.1235 u	< 0.2204 u	< 0.2235 u
Hexachloroethane	1.33E+02	(1)	1.88E+02	(5)	3.20E-02	(8)	< 0.1091 u	< 0.5643 u	< 0.1075 u	< 0.1073 u	< 5.3669 u	< 0.2301	u < 0.108	_	< 5.4386	u	< 0.2207 u	< 0.1082	u < 5.3704	u < 0.225 u	< 0.1091 u	< 0.2194 u	< 1.0948 u	< 0.2148 u	< 0.2178 u
Indeno(1,2,3-c,d)pyrene	1.53E+00	(1)	3.23E+01	(4)	2.01E+01	(8)	< 0.0975 u	< 0.5042 u	< 0.096 u	< 0.0959 u	< 4.7958 u	< 0.2056	u < 0.096	_	< 4.8598	u	< 0.1972 u	< 0.0967	u < 4.7989	u < 0.2011 u	< 0.0975 u	< 0.1961 u	< 0.9783 u	< 0.192 u	< 0.1946 u
Isophorone	5.61E+03	(1)	2.70E+04	(4)	0.00E+00	(9)	< 0.1442 u	< 0.7458 u	< 0.1421 u	< 0.1418 u	< 7.094 u	< 0.3041	u < 0.142	9 u	< 7.1887	u	< 0.2917 u	< 0.1431	u < 7.0986	u < 0.2974 u	< 0.1441 u	< 0.29 u	< 1.4472 u	< 0.2839 u	< 0.2878 u
Naphthalene	1.16E+03	(1)	5.02E+03	(5)	8.23E-02	(8)	< 0.1481 u	< 0.7659 u	< 0.1459 u	< 0.1456 u	< 7.2853 u	< 0.3123	u < 0.146	7 u	< 7.3825	u	< 0.2996 u	< 0.1469	u < 7.2899	u < 0.3054 u	< 0.148 u	< 0.2978 u	< 1.4862 u	< 0.2916 u	< 0.2956 u
Nitrobenzene	6.04E+01	(1)	2.93E+02	(4)	1.44E-02	(8)	< 0.1354 u	< 0.7004 u	< 0.1334 u	< 0.1332 u	< 6.6622 u	< 0.2856	u < 0.134	2 u	< 6.7512	u	< 0.274 u	< 0.1344	u < 6.6665	u < 0.2793 u	< 0.1354 u	< 0.2724 u	< 1.3591 u	< 0.2667 u	< 0.2703 u
Nitroso-di-N-propylamine, N-	7.80E-01	(3)	3.30E+00	(7)	1.62E-04	(9)	< 0.1398 u	< 0.7231 u		< 0.1375 u	< 6.878 u				< 6.9698	u	< 0.2828 u		u < 6.8824	u < 0.2884 u					< 0.2791 u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	1.00E+01	•	< 0.1029 u	< 0.5324 u	< 0.1014 u			< 0.2171	u < 0.102		< 5.1319	u	< 0.2083 u	< 0.1021	u < 5.0675	u < 0.2123 u	< 0.1029 u	< 0.207 u	< 1.0331 u	< 0.2027 u	< 0.2055 u
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	1.52E-01	(8)	< 0.1009 u	< 0.522 u	< 0.0994 u	< 0.0992 u	< 4.9651 u	< 0.2128	u < 0.1	u	< 5.0314	u	< 0.2042 u	< 0.1001	u < 4.9683	u < 0.2082 u	< 0.1009 u	< 0.203 u	< 1.0129 u	< 0.1987 u	< 0.2015 u
Phenanthrene	1.74E+03	(1)	7.53E+03	(5)	8.59E+01	(8)	< 0.106 u	< 0.5482 u	< 0.1044 u	< 0.1042 u	< 5.2141 u	< 0.2235	u < 0.105	5 u	< 5.2837	u	< 0.2144 u	< 0.1052	u < 5.2174	u < 0.2186 u	< 0.106 u	< 0.2132 u	< 1.0637 u	< 0.2087 u	< 0.2116 u
Phenol	1.85E+04	(1)	7.74E+04	(5)	5.23E+01	(8)	< 0.1218 u	< 0.6301 u	< 0.12 u	< 0.1198 u	< 5.9933 u	< 0.2569	u 0.14	J	< 6.0733	u	< 0.2465 u	< 0.1209	u < 5.9971	u < 0.2513 u	< 0.1218 u	< 0.245 u	< 1.2226 u	< 0.2399 u	< 0.2432 u
Pyrene	1.74E+03	(1)	7.53E+03	(5)	1.92E+02	(8)	< 0.092 u	< 0.4758 u	< 0.0906 u	< 0.0905 u	< 4.5259 u	< 0.194	u < 0.091	2 u	< 4.5863	u	< 0.1861 u	< 0.0913	u < 4.5288	u < 0.1898 u	< 0.092 u	< 0.185 u	< 0.9233 u	< 0.1812 u	< 0.1836 u
Pyridine	7.80E+01	(2)	1.20E+03	(6)	1.36E-01	(9)	< 0.1179 u	< 0.61 u	< 0.1162 u	< 0.116 u	< 5.8016 u	< 0.2487	u < 0.116	9 u	< 5.8791	u	< 0.2386 u	< 0.117	u < 5.8053	u < 0.2432 u	< 0.1179 u	< 0.2372 u	< 1.1835 u	< 0.2322 u	< 0.2354 u
Total Petroleum Hydrocarbons (mg/	kg)		-			-	•	•	•	•	•		•	•	•		•	-	•		•	•	•	•	
Gasoline Range Organics (GRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 0.6617 u	< 1.0231 u	< 0.7824 u	< 0.7792 u	< 0.9763 u	< 0.8282	u < 0.801	5 u	< 0.9193	u	< 0.814 u	< 0.8319	u < 1.2302	u < 0.9644 u	< 0.9067 u	< 1.0231 u	< 1.0149 u	< 1.0176 u	< 0.8906 u
Diesel Range Organics (DRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 1.8657 u	45 v	< 1.885 u	< 1.8744 u	2400 v	20	v 20	V	2300	V	21 v	2.7	J 4300	v < 1.8553 u	< 1.9048 u	39 v	320 v	16 v	< 1.626 u
Motor Oil Range Organics (MRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 46.6418 u	79 v	< 47.1254 u	< 46.8604 u	1900 v	< 43.3276	u < 45.289	99 u	2600	V	< 43.1779 u	< 33.7154	u 4400	v < 46.3822 u	< 47.619 u	65 v	250 v	< 45.9982 u	< 40.6504 u

- No screening level or analytical result available

NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2019)

EPA - Regional Screening Levels (Nov. 2019)

(1) NMED Residential Screening Level

(2) EPA Residential Screening Level

(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013

RCRA Post-Closure Permit because the constituent is listed as carcinogenic

(4) NMED Industrial Occupational Screening Level

(5) NMED Construction Worker Screening Level

(6) EPA Industrial - Screening Levels

(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA

Post-Closure Permit because the constituent is listed as carcinogenic

(8) SoilGW NMED Cw Dilution Attenuation Factor (DAF) = 20

(9) SoilGW Risk-based EPA DAF = 20

(10) SoilGW MCL-based NMED DAF = 20

(11) NMED Tables 6-2 and 6-4 TPH Soil Screening Levels "unknown oil" - see report Section 5 for use of screening levels

Bold represents value above Residential Screening Level

yellow highlight represents value above Non-Residential Screening Level

Bold with yellow highlight value exceeds Residential and Non-Residential Screening Levels

v = reportable detection above the Practical quantitation limit (PQL)

u - result is not detected at method detection limit (MDL)

j - estimated result at concentration above MDL but less than PQL

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	SoilGW	Source	SWMU 13	004	SWMU 13-13 (1.5-2')	002	SWMU 13-13 (2-3')	002	SWMU 13-14 (0-0.5')	004	SWMU 13-14 (1.5-2')	005	SWMU 13-14 (2-3')	006
					Lab ID Sample D		1910e49-0 10/25/20		1910E49- 10/25/20		1910e49- 10/25/20		1910e49- 10/25/20		1910e49- 10/25/2		1910e49- 10/25/20	
Metals (mg/kg)											T 1						T 1	
Antimony	3.13E+01 7.07E+00	(1)	1.42E+02 3.59E+01	(5)	5.42E+00 5.83E+00	(10)	< 0.7428 < 2.8814	u	< 0.7519 < 2.9164	u u	< 0.7321 < 2.8396	u u	< 0.7082 < 2.747	u	< 0.711 < 2.7579	u u	< 0.7546 < 2.9272	u u
Arsenic Barium	1.56E+04	(1) (1)	4.39E+01	(4) (5)	1.65E+03	(8)	290	u v	170	V	190	V	260	u v	240	v v	260	V
Beryllium	1.56E+02	(1)	1.48E+02	(5)	6.32E+01	(10)	1.3	V	1.4	V	1.4	V	1.1	V	1.1	V	1.1	V
Cadmium	7.05E+01	(1)	7.21E+01	(5)	7.52E+00	(10)	< 0.049	u	< 0.0496	u	< 0.0483	u	< 0.0467	u	< 0.0469	u	< 0.0498	u
Chromium (Total)	9.66E+01	(1)	1.34E+02	(5)	3.60E+06	(10)	28	V	22	V	20	V	20	V	12	V	12	V
Cobalt Cyanide	2.34E+01 1.12E+01	(1) (1)	3.67E+01 1.21E+01	(5) (5)	5.40E+00 7.13E-01	(8)	6.8 < 0.25	V	6.8 0.46		6.3 < 0.25	V	5.9 0.28	V	5.1 < 0.25	V	5.4 < 0.25	V
Iron	5.48E+04	(1)	2.48E+05	(5)	6.96E+03	(8)	20000	u v	21000		20000	u v	17000	V V	15000	u v	17000	u v
Lead	4.00E+02	(2)	8.00E+02	(6)	5.20E-02	(10)	< 0.4902	u	2.1	V	0.99	V	< 0.4674	u	2.4	V	2.3	V
Manganese	1.05E+04	(1)	4.64E+02	(5)	2.63E+03	(8)	330	V	380	V	280	V	290	V	220	V	240	V
Mercury (elemental)	2.38E+01	(1)	2.07E+01	(5)	2.09E+00	(8)	0.25	V	0.0056	J	0.047	V	0.07	V	0.017	J	0.0086	J
Nickel Selenium	1.56E+03 3.91E+02	(1) (1)	7.53E+02 1.75E+03	(5) (5)	4.85E+02 5.17E+00	(8)	12 < 2.5345	v u	15 < 2.5653	V	13 < 2.4977	v u	11 < 2.4163	V	11 < 2.4258	V	12 < 2.5748	V
Silver	3.91E+02 3.91E+02	(1)	1.75E+03 1.77E+03	(5)	1.38E+01	(8)	< 0.0647	u u	< 0.0655	u u	< 0.0638	u u	< 0.0617	u u	< 0.0619	u u	< 0.0657	u u
Vanadium	3.94E+02	(1)	6.14E+02	(5)	1.26E+03	(8)	33	V	30	V	28	V	27	V	21	V	22	V
Zinc	2.35E+04	(1)	1.06E+05	(5)	7.41E+03	(8)	60	V	31	V	29	V	62	V	17	V	17	V
Volatiles (mg/kg)	0.045+04	(4)	4.075+00	(4)	2.005.00	(O)					1		. 0 0040		1 . 0 0040 1			
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	2.81E+01 1.44E+04	(1) (1)	1.37E+02 1.36E+04	(4) (5)	3.60E-02 1.28E+00	(8)	< 0.0022 < 0.003	u u	< 0.0032 < 0.0043	u u	< 0.002 < 0.0027	u u	< 0.0019 < 0.0025	u u	< 0.0018 < 0.0024	u u	< 0.0018 < 0.0024	u u
1,1,2,2-Tetrachloroethane	7.98E+00	(1)	3.94E+01	(4)	4.81E-03	(8)	< 0.003	u U	< 0.0043	u	< 0.0027	u	< 0.0023	u	< 0.0024	u U	< 0.0024	u
1,1,2-Trichloroethane	2.61E+00	(1)	2.30E+00	(5)	2.68E-02	(8)	< 0.0023	u	< 0.0033	u	< 0.0021	u	< 0.002	u	< 0.0019	u	< 0.0019	u
1,1-Dichloroethane	7.86E+01	(1)	3.83E+02	(4)	1.36E-01	(8)	< 0.0021	u	< 0.003	u	< 0.0019	u	< 0.0018	u	< 0.0017	u	< 0.0017	u
1,1-Dichloroethene	4.40E+02	(1)	4.24E+02	(5)	4.79E-02	(10)	< 0.0132	u	< 0.0189	u	< 0.0121	u	< 0.0111	u	< 0.0106	u	< 0.0107	u
1,1-Dichloropropene Trichlorobenzene, 1,2,3-	- 6.30E+01	(2)	9.30E+02	(6)	- 4.20E-01	(9)	< 0.003 < 0.0029	u	< 0.0043 < 0.0041	u u	< 0.0028 < 0.0027	u u	< 0.0025 < 0.0024	u	< 0.0024 < 0.0023	u u	< 0.0024 < 0.0024	u u
1,2,3-Trichloropropane	5.10E-02	(1)	1.21E+00	(4)	5.82E-05	(8)	< 0.0029	u u	< 0.0041	u u	< 0.0027	u	< 0.0024	u u	< 0.0023	u u	< 0.0024	u
1,2,4-Trichlorobenzene	8.29E+01	(1)	7.91E+01	(5)	3.10E+00	(8)	< 0.0033	u	< 0.0048	u	< 0.0031	u	< 0.0028	u	< 0.0027	u	< 0.0027	u
Trimethylbenzene, 1,2,4-	3.00E+02	(2)	1.80E+03	(6)	1.62E+00	(9)	< 0.003	u	0.088	V	0.051	V	< 0.0025	u	< 0.0024	u	< 0.0024	u
1,2-Dibromo-3-chloropropane	8.58E-02	(1)	1.18E+00	(4)	1.39E-03	(8)	< 0.0034	u	< 0.0048	u	< 0.0031	u	< 0.0029	u	< 0.0027	u	< 0.0027	u
1,2-Dibromoethane (Ethylene dibromide)	6.72E-01	(1)	3.31E+00	(4)	2.36E-04	(10)	< 0.003	u	< 0.0043	u	< 0.0028	u	< 0.0025	u	< 0.0024	u	< 0.0024	u
1.2-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00	(8)	< 0.0027	u	< 0.0039	u	< 0.0025	u	< 0.0023	u	< 0.0022	u	< 0.0022	u
1,2-Dichloroethane	8.32E+00	(1)	4.07E+01	(4)	2.38E-02	(8)	< 0.0034	u	< 0.0048	u	< 0.0031	u	< 0.0028	u	< 0.0027	u	< 0.0027	u
1,2-Dichloropropane	1.78E+01	(1)	2.54E+01	(5)	2.77E-02	(8)	< 0.0024	u	< 0.0034	u	< 0.0022	u	< 0.002	u	< 0.0019	u	< 0.0019	u
Trimethylbenzene, 1,3,5-	2.70E+02	(2)	1.50E+03	(6)	1.74E+00	(9)	< 0.0032	u	0.026	J	0.017	J	< 0.0027	u	< 0.0026	u	< 0.0026	u
1,3-Dichlorobenzene Dichloropropane, 1,3-	- 1.60E+03	(2)	2.30E+04	(6)	- 2.60E+00	(9)	< 0.0029 < 0.0036	u u	< 0.0041 < 0.0051	u u	< 0.0026 < 0.0033	u	< 0.0024 < 0.003	u u	< 0.0023 < 0.0029	u u	< 0.0023 < 0.0029	u u
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)	1.12E+00	(8)	< 0.0038	u	< 0.0031	u	< 0.0035	u u	< 0.003	u	< 0.0029	u U	< 0.0029	u
1-Methylnaphthalene	1.72E+02	(1)	8.13E+02	(4)	8.93E-01	(8)	0.03	J	0.58	V	0.26	V	0.019	J	< 0.0153	u	< 0.0154	u
2,2-Dichloropropane	-	-	-	-	-	-	< 0.0107	u	< 0.0154	u	< 0.0098	u	< 0.0091	u	< 0.0086	u	< 0.0087	u
2-Butanone (Methyl ethyl ketone,		(4)	0.4== 0.4	(-)		(0)	0.067	J	< 0.0546	u	< 0.035	u	< 0.0322	u	0.039	J	< 0.031	u
MEK) o-Chlorotoluene	3.74E+04 1.56E+03	(1) (1)	9.17E+04 7.08E+03	(5) (5)	2.01E+01 3.56E+00	(8)	< 0.0029	u	< 0.0041	u	< 0.0026	u	< 0.0024	u	< 0.0023	u	< 0.0023	u
Hexanone, 2-	2.00E+02	(2)	1.30E+03	(6)	1.76E-01	(9)	< 0.0029	u	< 0.0041	u U	< 0.0026	u U	< 0.0024	u U	< 0.0023	u	< 0.0023	u
2-Methylnaphthalene	2.32E+02	(1)	1.00E+03	(5)	2.76E+00	(8)	0.023	J	0.24	V	0.16	V	< 0.0122	u	< 0.0116	u	< 0.0117	u
Chlorotoluene, p-	1.60E+03	(2)	2.30E+04	(6)	4.80E+00	(9)	< 0.0027	u	< 0.0039	u	< 0.0025	u	< 0.0023	u	< 0.0022	u	< 0.0022	u
4-Isopropyltoluene	- 5.81E+03	- /1\	- 2.02E+04	- (E)	- 4.80E+00	- (0)	< 0.0027	u	0.004	J 	0.0027	J 	0.016	J 	< 0.0022	u	< 0.0022	u
Methyl isobutyl ketone Acetone	5.81E+03 6.63E+04	(1) (1)	2.02E+04 2.42E+05	(5) (5)	4.80E+00 4.98E+01	(8)	< 0.0062 < 0.0273	u u	< 0.0089 0.15	u J	< 0.0057 < 0.0251	u u	< 0.0053 < 0.0231	u u	< 0.005 < 0.022	u u	< 0.0051 < 0.0222	u
Benzene	1.78E+01	(1)	8.72E+01	(4)	4.18E-02	(8)	< 0.0273	u	< 0.0039	u	< 0.0025	u	< 0.0231	u	< 0.022	u	< 0.0022	u
Bromobenzene	2.90E+02	(2)	1.80E+03	(6)	8.40E-01	(9)	< 0.0032	u	< 0.0045	u	< 0.0029	u	< 0.0027	u	< 0.0025	u	< 0.0026	u
Bromodichloromethane	6.19E+00	(1)	3.02E+01	(4)	6.21E-03	(8)	< 0.003	u	< 0.0043	u	< 0.0028	u	< 0.0025	u	< 0.0024	u	< 0.0024	u
Tribromomethane (Bromoform)	6.74E+02	(1)	1.76E+03	(4)	1.47E-01	(8)	< 0.003	u	< 0.0043	u	< 0.0027	u	< 0.0025	u	< 0.0024	u	< 0.0024	u
Bromomethane Carbon disulfide	1.77E+01 1.55E+03	(1) (1)	1.79E+01 1.62E+03	(5) (5)	3.43E-02 4.42E+00	(8)	< 0.0079 < 0.0109	u u	< 0.0114 0.061	u J	< 0.0073 < 0.01	u u	< 0.0067 < 0.0092	u u	< 0.0064 < 0.0088	u u	< 0.0065 < 0.0088	u u
Carbon tetrachloride	1.07E+01	(1)	5.25E+01	(4)	3.67E-02	(8)	< 0.0109	u	< 0.001	u	< 0.0029	u	< 0.0032	u	< 0.0025	u	< 0.0035	u
Chlorobenzene (Monochlorobenzene	3.78E+02	(1)	4.12E+02	(5)	1.08E+00	(8)	< 0.0042	u	< 0.006	u	< 0.0039	u	< 0.0036	u	< 0.0034	u	< 0.0034	u
Ethyl chloride	1.90E+04	(1)	1.66E+04	(5)	1.07E+02	(8)	< 0.0049	u	< 0.007	u	< 0.0045	u	< 0.0041	u	< 0.0039	u	< 0.0039	u
Chloroform	5.90E+00	(1)	2.87E+01	(4)	1.09E-02	(8)	< 0.0026	u	< 0.0038	u	< 0.0024	u	< 0.0022	u	< 0.0021	u	< 0.0022	u
Chloromethane cis-1,2-Dichloroethene	4.11E+01 1.56E+02	(1) (1)	2.01E+02 7.08E+02	(4) (5)	9.52E-02 3.52E-01	(8)	< 0.0032 < 0.0045	u u	< 0.0045 < 0.0065	u u	< 0.0029 < 0.0041	u u	< 0.0027 < 0.0038	u u	< 0.0025 < 0.0036	u u	< 0.0026 < 0.0037	u u
cis-1,2-Dichloropthene	±.50E∓0Z -	(<i>±)</i> -	UOETUZ	(3)	J.UZE-UI	(0)	< 0.0045	u u	< 0.0065	u u	< 0.0041	u u	< 0.0038	u u	< 0.0036	u u	< 0.0037	u
Dibromochloromethane	1.39E+01	(1)	6.74E+01	(4)	7.55E-03	(8)	< 0.0023	u	< 0.003	u	< 0.0021	u	< 0.0023	u	< 0.0022	u	< 0.0023	u
Dibromomethane (Methylene		-					< 0.0035					u					< 0.0029	
•	2.40E+01	(2)	9.90E+01	(6)	4.20E-02	(9)	< ()()()<	u	< 0.0051	u	< 0.0033		< 0.003	u	< 0.0029	u	< ()()()/()	l u l

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	SoilGW	Source	SWMU 13		SWMU 13-13 (1.5-2')		SWMU 13-13 (2-3')		SWMU 13-14 (0-0.5')		SWMU 13-14 (1.5-2")		SWMU 13-14 (2-3')	
					Lab ID Sample D		1910e49-		1910E49- 10/25/20		1910e49- 10/25/20		1910e49- 10/25/20		1910e49 10/25/2		1910e49- 10/25/20	
Ethylbenzene	7.51E+01	(1)	3.68E+02	(4)	1.23E+01	(8)	< 0.0019	u	< 0.0027	u	< 0.0018		< 0.0016		< 0.0015	u u	< 0.0016	019
Hexachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01	(4)	4.13E-02	(8)	0.0085	J	< 0.0048	u	< 0.0031	u	< 0.0028	u	< 0.0027	u	< 0.0027	u
Cumene (isopropylbenzene)	2.36E+03	(1)	2.74E+03	(5)	1.14E+01	(8)	< 0.0024	u	< 0.0034	u	< 0.0022	u	< 0.002	u	< 0.0019	u	< 0.0019	u
tert-Butyl methyl ether (MTBE)	9.75E+02	(1)	4.82E+03	(4)	5.53E-01	(8)	< 0.0078	u	< 0.0112	u	< 0.0072	u	< 0.0066	u	< 0.0063	u	< 0.0063	u
Methylene chloride (Dichloromethan	4.09E+02	(1)	1.21E+03	(5)	2.21E-02	(10)	0.0093	J	< 0.0083	u	< 0.0053	u	< 0.0049	u	< 0.0047	u	< 0.0047	u
Naphthalene	1.16E+03	(1)	5.02E+03	(5)	8.23E-02	(8)	< 0.0066	u	0.066	J	0.018	J	< 0.0056	u	< 0.0053	u	< 0.0054	u
Butylbenzene, n-	3.90E+03	(2)	5.80E+04	(6)	6.40E+01	(9)	< 0.0031	u	0.012	J	0.0084	J	< 0.0026	u 	< 0.0025	u	< 0.0025	u
Propyl benzene Butylbenzene, sec-	3.80E+03 7.80E+03	(2) (2)	2.40E+04 1.20E+05	(6) (6)	2.40E+01 1.18E+02	(9) (9)	< 0.0026 < 0.0037	u u	0.0093 0.0083	J	0.0064 0.0064	J	< 0.0022 < 0.0031	u u	< 0.0021 < 0.003	u u	< 0.0021 < 0.003	u u
Styrene	7.26E+03	(1)	1.02E+04	(5)	1.71E+00	(10)	< 0.0037	u U	< 0.0037	u	< 0.0004	u	< 0.0031	u	< 0.003	u	< 0.003	u
Butylbenzene, tert-	7.80E+03	(2)	1.20E+05	(6)	3.20E+01	(9)	< 0.0031	u	< 0.0045	u	< 0.0029	u	< 0.0026	u	< 0.0025	u	< 0.0025	u
Tetrachloroethene	1.11E+02	(1)	1.20E+02	(5)	3.98E-02	(10)	< 0.0026	u	< 0.0038	u	< 0.0024	u	< 0.0022	u	< 0.0021	u	< 0.0021	u
Toluene	5.23E+03	(1)	1.40E+04	(5)	1.11E+01	(10)	< 0.0031	u	< 0.0045	u	< 0.0029	u	< 0.0027	u	< 0.0025	u	< 0.0026	u
trans-1,2-Dichloroethene	2.95E+02	(1)	3.05E+02	(5)	5.03E-01	(8)	< 0.003	u	< 0.0043	u	< 0.0028	u	< 0.0025	u	< 0.0024	u	< 0.0024	u
trans-1,3-Dichloropropene	-	-	-	-	-	-	< 0.0035	u	< 0.005	u	< 0.0032	u	< 0.0029	u	< 0.0028	u	< 0.0028	u
Trichloroethylene	6.77E+00	(1)	6.90E+00	(5)	3.10E-02	(8)	< 0.0038	u	< 0.0055	u	< 0.0035	u	< 0.0032	u	< 0.0031	u	< 0.0031	u
Trichlorofluoromethane	1.23E+03 7.42E-01	(1)	1.13E+03 2.84E+01	(5)	1.57E+01 1.34E-02	(8)	< 0.0112	u	< 0.016	u	< 0.0103 < 0.002	u	< 0.0094 < 0.0018	u	< 0.009 < 0.0017	u	< 0.0091 < 0.0017	u
Vinyl chloride Xylenes	8.71E+02	(1) (1)	7.98E+02	(4) (5)	1.54E+02	(8)	< 0.0022 < 0.0083	u u	< 0.0031 0.016	u I	0.002	u ı	< 0.0018	u u	< 0.0017	u u	< 0.0017	u
Semi-volatiles (mg/kg)	0.712.02	(1)	7.50L+02	(5)	1.542.02	(0)	10.0000	u	0.010	,	0.012		\ 0.007	u	10.0001	u	10.0001	<u> </u>
1,2,4-Trichlorobenzene	8.29E+01	(1)	7.91E+01	(5)	3.10E+00	(8)	< 1.4803	u	< 1.5233	u	< 0.1494	u	< 0.2956	u	< 0.1461	u	< 0.1456	u
1,2-Dichlorobenzene	2.15E+03	(1)	2.50E+03	(5)	9.08E+00	(8)	< 1.1442	u	< 1.1775	u	< 0.1155	u	< 0.2285	u	< 0.1129	u	< 0.1126	u
1,3-Dichlorobenzene	-	-	-	-	-	-	< 1.0029	u	< 1.032	u	< 0.1013	u	< 0.2003	u	< 0.099	u	< 0.0987	u
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)	1.12E+00	(8)	< 1.0146	u	< 1.0441	u	< 0.1024	u	< 0.2026	u	< 0.1002	u	< 0.0998	u
1-Methylnaphthalene	1.72E+02	(1)	8.13E+02	(7)	8.93E-01	(8)	< 1.4257	u	< 1.4671	u	0.54	V	< 0.2847	u	< 0.1407	u	< 0.1402	u
2,4,5-Trichlorophenol	6.16E+03	(1)	2.69E+04	(5)	6.62E+01	(8)	< 1.2348	u	< 1.2707	u	< 0.1247	u 	< 0.2466	u 	< 0.1219	u	< 0.1215	u
2,4,6-Trichlorophenol 2,4-Dichlorophenol	6.16E+01 1.85E+02	(1) (1)	2.69E+02 8.07E+02	(5) (5)	6.74E-01 8.25E-01	(8)	< 1.0012 < 1.1078	u u	< 1.0303 < 1.14	u u	< 0.1011 < 0.1118	u u	< 0.1999 < 0.2212	u u	< 0.0988 < 0.1094	u u	< 0.0985 < 0.109	u
2,4-Dimethylphenol	1.23E+03	(1)	5.38E+03	(5)	6.45E+00	(8)	< 1.1078	u	< 1.0803	u	< 0.1118	u	< 0.2096	u	< 0.1034	u	< 0.103	u
2,4-Dinitrophenol	1.23E+02	(1)	5.38E+02	(5)	6.69E-01	(8)	< 0.692	u	< 0.7122	u	< 0.0699	u	< 0.1382	u	< 0.0683	u	< 0.0681	u
2,4-Dinitrotoluene	1.71E+01	(1)	8.23E+01	(4)	4.92E-02	(8)	< 1.1227	u	< 1.1553	u	< 0.1133	u	< 0.2242	u	< 0.1108	u	< 0.1104	u
2,6-Dintitrotoluene	3.56E+00	(1)	1.72E+01	(4)	1.02E-02	(8)	< 1.2536	u	< 1.2901	u	< 0.1266	u	< 0.2503	u	< 0.1237	u	< 0.1233	u
b-Chloronaphthalene	6.26E+03	(1)	2.83E+04	(5)	5.70E+01	(8)	< 1.1885	u	< 1.2231	u	< 0.12	u	< 0.2373	u	< 0.1173	u	< 0.1169	u
2-Chlorophenol	3.91E+02	(1)	1.77E+03	(5)	1.15E+00	(8)	< 1.1849	u	< 1.2194	u	< 0.1196	u	< 0.2366	u	< 0.117	u	< 0.1166	u
2-Methylnaphthalene	2.32E+02	(1)	1.00E+03	(5)	2.76E+00	(8)	< 1.3877	u	< 1.4281	u	0.37	V	< 0.2771	u	< 0.137	u	< 0.1365	u
Cresol, o- Nitroaniline, 2-	3.20E+03 6.30E+02	(2) (2)	4.10E+04 8.00E+03	(6) (6)	1.50E+01 1.60E+00	(9) (9)	< 1.1296 < 1.3603	u u	< 1.1625 < 1.3999	u u	< 0.1141 < 0.1373	u u	< 0.2256 < 0.2716	u u	< 0.1115 < 0.1343	u u	< 0.1111 < 0.1338	u
2-Nitrophenol	0.30L102	(2)		-	1.002100	(3)	< 1.3003	u U	< 1.3385	u	< 0.1373	u	< 0.2597	u	< 0.1343	u	< 0.1338	u II
3,3-Dichlorobenzidine	1.18E+01	(1)	5.70E+01	(4)	1.24E-01	(8)	< 0.8467	u	< 0.8713	u	< 0.0855	u	< 0.1691	u	< 0.0836	u	< 0.0833	u
3+4-Methylphenol	-	-	-	-	-	-	< 1.1691	u	< 1.2031	u	< 0.118	u	< 0.2334	u	< 0.1154	u	< 0.115	u
3-Nitroaniline	-	-	-	-	-	-	< 1.3142	u	< 1.3525	u	< 0.1327	u	< 0.2624	u	< 0.1297	u	< 0.1293	u
4,6-Dinitro-o-cresol	4.93E+00	(1)	2.15E+01	(5)	3.98E-02	(8)	< 0.8798	u	< 0.9054	u	< 0.0888	u	< 0.1757	u	< 0.0868	u	< 0.0866	u
4-Bromophenyl phenyl ether	-	-	-	-	-	-	< 1.1197	u	< 1.1523	u	< 0.113	u	< 0.2236	u	< 0.1105	u	< 0.1101	u
4-Chloro-3-methylphenol	- 0.705+04	- (0)	- 4.405 : 00	- (7)	-	- (0)	< 1.4614	u	< 1.5039	u	< 0.1475	u	< 0.2918	u	< 0.1443	u	< 0.1438	u
Chloroaniline, p- 4-Chlorophenyl phenyl ether	2.70E+01	(3)	1.10E+02	(7)	3.20E-03	(9)	< 1.3493 < 1.0381	u	< 1.3886 < 1.0683	u u	< 0.1362 < 0.1048	u	< 0.2694 < 0.2073	u	< 0.1332 < 0.1025	u	< 0.1327 < 0.1021	u
Nitroaniline, 4-	2.70E+02	(3)	1.10E+03	(7)	3.20E-02	(9)	< 1.0361	u u	< 1.2516	u u	< 0.1048	u u	< 0.2429	u	< 0.1025	u u	< 0.1021	u u
4-Nitrophenol	2.70L102 -	-	-	-	- -	-	< 1.2102	u	< 1.3293	u II	< 0.1228	u	< 0.2579	u	< 0.1275	u	< 0.1130	u
Acenaphthene	3.48E+03	(1)	1.51E+04	(5)	8.25E+01	(8)	< 1.1426	u	< 1.1759	u	< 0.1154	u	< 0.2282	u	< 0.1128	u	< 0.1124	u
Acenaphthylene	-	-	-	-	-	-	< 1.044	u	< 1.0743	u	< 0.1054	u	< 0.2085	u	< 0.1031	u	< 0.1027	u
Aniline	9.50E+02	(3)	4.00E+03	(7)	9.20E-02	(9)	< 1.2248	u	< 1.2604	u	< 0.1237	u	< 0.2446	u	< 0.1209	u	< 0.1205	u
Anthracene	1.74E+04	(1)	7.53E+04	(5)	8.51E+02	(8)	< 1.0184	u	< 1.0481	u	< 0.1028	u	< 0.2034	u	< 0.1005	u	< 0.1002	u
Azobenzene	5.60E+01	(3)	2.60E+02	(7)	1.86E+06	(9)	< 1.3334	u	< 1.3722	u	< 0.1346	u	< 0.2663	u	< 0.1316	u	< 0.1312	u
Benzo(a)anthracene	1.53E+00	(1)	3.23E+01	(4)	6.37E-01	(8)	< 0.9177	u	< 0.9444	u	< 0.0927	u	< 0.1833	u	< 0.0906	u	< 0.0903	u
Benzo(a)pyrene Benzo(b)fluoranthene	1.12E+00 1.53E+00	(1) (1)	2.36E+01 3.23E+01	(4)	3.53E+00 6.17E+00	(10)	< 0.8465 < 0.8424	u u	< 0.8711 < 0.8669	u u	< 0.0855 < 0.0851	u u	< 0.169 < 0.1682	u u	< 0.0836 < 0.0832	u u	< 0.0833 < 0.0829	u u
Benzo(g,h,i)perylene	±.JJL™UU	(<u>1</u>)	J.∠JL⊤UI -	- (4)	U.11LTUU	(8)	< 0.8424	u u	< 0.8408	u u	< 0.0851	u u	< 0.1631	u u	< 0.0832	u	< 0.0829	u
Benzo(k)fluoranthene	1.53E+01	(1)	3.23E+02	(4)	6.05E+01	(8)	< 0.8657	u	< 0.8909	u	< 0.0823	u	< 0.1729	u	< 0.0855	u	< 0.0852	u
Benzoic acid	2.50E+05	(2)	3.30E+06	(6)	3.00E+02	(9)	< 0.9838	u	< 1.0124	u	< 0.0993	u	< 0.1964	u	< 0.0971	u	< 0.0968	u
Benzyl alcohol	6.30E+03	(2)	8.20E+04	(6)	9.60E+00	(9)	< 1.1817	u	< 1.2161	u	< 0.1193	u	< 0.236	u	< 0.1167	u	< 0.1163	u
Bis(2-chloroethoxy)methane	1.90E+02	(2)	2.50E+03	(6)	2.60E-01	(9)	< 1.408	u	< 1.4489	u	< 0.1422	u	< 0.2811	u	< 0.139	u	< 0.1385	u
Bis(2-chloroethyl) ether	3.11E+00	(1)	1.95E+00	(5)	6.05E-04	(8)	< 1.1608	u	< 1.1946	u	< 0.1172	u	< 0.2318	u	< 0.1146	u	< 0.1142	u
Bis(2-chloroisopropyl) ether	9.93E+01	(1)	5.19E+02	(4)	4.75E-02	(8)	< 1.0843	u	< 1.1159	u	< 0.1095	u	< 0.2165	u	< 0.107	u	< 0.1067	u
Bis(2-ethylhexyl)phthalate [Di(2-ethylhexyl)phthalate, DEHP]	3.80E+02	(1)	1.83E+03	(1)	2.15E+01	(10)	< 1.3684	u	< 1.4082	u	< 0.1382	u	< 0.2732	u	< 0.1351	u	< 0.1346	u
Butyl Benzyl Phthalate	3.80E+02 2.90E+03	(1)	1.83E+03 1.20E+04	(4)	4.60E+00	(9)	< 0.9736	u	< 1.002	u	< 0.0983	u	< 0.1944	u	< 0.0961	u	< 0.0958	u
		(Ο)				(3)												_ <u> </u>
Carbazole	-	-	-	-	-	-	< 1.117	u	< 1.1495	u	< 0.1128	u	< 0.223	u	< 0.1103	u	< 0.1099	u

Table 5 - Soil Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

NMED constitutent name	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	Leachate DAF (20) (mg/kg) SoilGW	Source	SWMU 13-13 (0-0.5')		SWMU 13-13 (1.5-2')		SWMU 13-13 (2-3')		SWMU 13-14 (0-0.5')		SWMU 13-14 (1.5-2')		SWMU 13-14 (2-3')	
					Lab ID		1910e49-	001	1910E49-	002	1910e49-	003	1910e49-	004	1910e49-	005	1910e49-	-006
					Sample Da	ate	10/25/20)19	10/25/20	019	10/25/20	019	10/25/20	019	10/25/20	019	10/25/2	019
Dibenz(a,h)anthracene	1.53E-01	(1)	3.23E+00	(4)	1.97E+00	(8)	< 0.866	u	< 0.8911	u	< 0.0874	u	< 0.1729	u	< 0.0855	u	< 0.0852	u
Dibenzofuran	7.30E+01	(2)	1.00E+03	(6)	3.00E+00	(9)	< 1.2481	u	< 1.2845	u	< 0.126	u	< 0.2492	u	< 0.1232	u	< 0.1228	u
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(5)	9.79E+01	(8)	< 1.3592	u	< 1.3987	u	< 0.1372	u	< 0.2714	u	< 0.1342	u	< 0.1337	u
Dimethyl phthalate (DMP, Phthalic Acid)	6.16E+04	(1)	2.69E+05	(5)	3.57E+00	(8)	< 1.2702	u	< 1.3071	u	< 0.1282	u	< 0.2536	u	< 0.1254	u	< 0.125	u
Di-n-butyl phthalate (Dibutyl phthalate)	6.16E+03	(1)	2.69E+04	(5)	3.38E+01	(8)	< 1.4216	u	< 1.463	u	0.17	J	< 0.2839	u	< 0.1403	u	< 0.1399	u
Di-n-octyl phthalate	6.30E+02	(2)	8.20E+03	(6)	1.14E+03	(9)	< 0.9719	u	< 1.0002	u	< 0.0981	Ш	< 0.1941	u	< 0.0959	u	< 0.0956	u
Fluoranthene	2.32E+03	(1)	1.00E+04	(5)	1.34E+03	(8)	< 1.0667	u	< 1.0978	u	< 0.1077	u U	< 0.213	u	< 0.1053	u	< 0.1049	u
Fluorene	2.32E+03	(1)	1.00E+04	(5)	8.00E+01	(8)	< 1.0855	u	< 1.1171	u	0.25	V	< 0.2168	u	< 0.1072	u	< 0.1068	u
Hexachlorobenzene	3.33E+00	(1)	1.17E+02	(5)	1.89E-01	(8)	< 1.1791	u	< 1.2134	u	< 0.119	u	< 0.2354	u	< 0.1164	u	< 0.116	u
Hexachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01	(4)	4.13E-02	(8)	< 1.328	u	< 1.3666	u	< 0.1341	u	< 0.2652	u	< 0.1311	u	< 0.1306	u
Hexachlorocyclopentadiene	2.30E+00	(1)	8.67E+02	(5)	2.40E+00	(8)	< 1.0889	u	< 1.1205	u	< 0.1099	u	< 0.2174	u	< 0.1075	u	< 0.1071	u
Hexachloroethane	1.33E+02	(1)	1.88E+02	(5)	3.20E-02	(8)	< 1.0611	u	< 1.092	u	< 0.1071	u	< 0.2119	u	< 0.1047	u	< 0.1044	u
Indeno(1,2,3-c,d)pyrene	1.53E+00	(1)	3.23E+01	(4)	2.01E+01	(8)	< 0.9482	u	< 0.9758	u	< 0.0957	u	< 0.1893	u	< 0.0936	u	< 0.0933	u
Isophorone	5.61E+03	(1)	2.70E+04	(4)	0.00E+00	(9)	< 1.4026	u	< 1.4434	u	< 0.1416	u	< 0.2801	u	< 0.1385	u	< 0.138	u
Naphthalene	1.16E+03	(1)	5.02E+03	(5)	8.23E-02	(8)	< 1.4404	u	< 1.4823	u	< 0.1454	u	< 0.2876	u	< 0.1422	u	< 0.1417	u
Nitrobenzene	6.04E+01	(1)	2.93E+02	(4)	1.44E-02	(8)	< 1.3172	u	< 1.3555	u	< 0.133	u	< 0.263	u	< 0.13	u	< 0.1296	u
Nitroso-di-N-propylamine, N-	7.80E-01	(3)	3.30E+00	(7)	1.62E-04	(9)	< 1.3599	u	< 1.3994	u	< 0.1373	u	< 0.2715	u	< 0.1342	u	< 0.1338	u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)	1.00E+01	(8)	< 1.0013	u	< 1.0304	u	< 0.1011	u	< 0.1999	u	< 0.0988	u	< 0.0985	u
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(4)	1.52E-01	(8)	< 0.9817	u	< 1.0102	u	< 0.0991	u	< 0.196	u	< 0.0969	u	< 0.0966	u
Phenanthrene	1.74E+03	(1)	7.53E+03	(5)	8.59E+01	(8)	4.5	Z	2.2	Z	0.81	V	< 0.2059	u	< 0.1018	u	< 0.1014	u
Phenol	1.85E+04	(1)	7.74E+04	(5)	5.23E+01	(8)	< 1.1849	u	< 1.2194	u	< 0.1196	u	< 0.2366	u	< 0.117	u	< 0.1166	u
Pyrene	1.74E+03	(1)	7.53E+03	(5)	1.92E+02	(8)	< 0.8948	u	< 0.9209	u	0.14	J	< 0.1787	u	< 0.0883	u	< 0.088	u
Pyridine	7.80E+01	(2)	1.20E+03	(6)	1.36E-01	(9)	< 1.1471	u	< 1.1804	u	< 0.1158	u	< 0.229	u	< 0.1132	u	< 0.1128	u
Total Petroleum Hydrocarbons (mg/	. –																	
Gasoline Range Organics (GRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	< 0.9968	u	< 1.4289	u	< 0.9154	u	< 0.8425	u	< 0.8045	u	< 0.81	u
Diesel Range Organics (DRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	5500	V	500	V	550	V	620	V	20	V	13	V
Motor Oil Range Organics (MRO)	1.00E+03	(11)	3.80E+03	(11)	4.61E+03	(11)	5400	V	< 530.2227	u	< 489.2368	u	380	V	< 44.0917	u	< 51.0725	u

- No

NME

EPA

(1) N

(2) E

(3) E RCR

NMED constitutent name	Soil	Source	Residential	Source		I	က္		3-13 (:	3-13	3-14 (3-14 (;	3-14	
	Screening Level		Soil Screening Level	g	SoilGW	3/	U 13		U 13	MU 4	U 13	U 13	MO H	
	## Commonwork Company Section Company													
					<u> </u>		1010 10	201 101	10710 000	1010 10 000	1040 40 00	1 1010 10 005	1010 10 000	
enz(a,h)anthracene		1		(4)	1.97E+00	(8)	< 0.866	u < 0.8	8911 u	< 0.0874 u	< 0.1729 L	u < 0.0855 u	< 0.0852 u	
enzofuran thyl phthalate				(6)		_								
nethyl phthalate (DMP, Phthalic	4.552104	(1)		(3)										
d)	6.16E+04	(1)	2.69E+05	(5)	3.57E+00	(8)	1.2102	u \ 1	3071 u	V0.1202 U	\ 0.2550 \ (1 < 0.1254 u	\ 0.125 \ u	
halate)	6.16E+03	(1)	2.69E+04	(5)	3.38E+01	. (8)	< 1.4216	u < 1.	463 u	0.17 J	< 0.2839	u < 0.1403 u	< 0.1399 u	
n-octyl phthalate	6.30E+02	(2)	8.20E+03	(6)	1.14E+03	(9)				 				
oranthene		(1)		(5)		_								
orene kachlorobenzene		(1)		(5)		_				 				
kachloro-1,3-butadiene	6.16E+01	(1)	5.21E+01	(4)	4.13E-02	(8)	< 1.328	u < 1.3	3666 u		< 0.2652 ι	u < 0.1311 u	< 0.1306 u	
kachlorocyclopentadiene		(1)		(5)						 				
cachloroethane eno(1, 2, 3-c, d)pyrene		(1)		(5)		_				 				
phorone		` '		(4)	_									
ohthalene	String S													
robenzene	Author Medical Section													
roso-di-N-propylamine, N- litrosodiphenylamine	Extended to the control of the contr													
ntachlorophenol	Section 1													
enanthrene	The property of the control of the c													
enol	Section 1													
ene idine	Martin M													
al Petroleum Hydrocarbons (mg	March Color Colo													
soline Range Organics (GRO)	And the control of th													
sel Range Organics (DRO)	Section 1													
tor on nange organics (MRO)	Section 1													
screening level or analytical res	sult available													
ED - Risk Assessment Guidance	for Site Investig	ations and	d Remediation	(March 2	2019)									
_														
	See													
_	Set of the control of													
NMED Industrial Occupational So	Section of the control of the contro													
	Property													
EPA Industrial - Screening Levels	The state of the s													
_	Section 1.													
SoilGW Risk-based EPA DAF = 20	· · · · · · · · · · · · · · · · · · ·	, _3												
	Company Comp													
	Section Sect													
eening levels														
ow highlight represents value ab	ove Non-Reside	ntial Scre		_										
d with yellow highlight value ex	ceeds Resident	tial and N	on-Residential	Screeni	ng Levels									
reportable detection above the [Practical quantit	ation limit	t (POL)											
			. (ı ∠ ∟)											
	-		PQL											

Table 6 - Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	Screening	Source	SWMU 13-2-	GW	SWMU 13-3-0	W	SWMU 13-4-	GW	SWMU 13-5-0	GW .	SWMU 13-6-	-GW	SWMU 13-7-G	W
Lab ID	Levels		1911232-0	01	1911232-00)2	1911232-0	03	1911310-00)1	1911310-0	02	1911310-003	3
Sample Date			11/6/2019	9	11/6/2019)	11/6/2019	9	11/7/2019	9	11/7/201	.9	11/7/2019	
Metals (ug/l) TOTAL	*												•	
Antimony	6	(3)	<0.78	u	<0.78	u	<0.78	u	<0.78	u	<0.78	u	<0.78	u
Arsenic	10	(3)	9.5	٧	6.9	٧	3.4	J	5.1	٧	3	J	22	Z
Barium	2000	(3)	730	٧	77	٧	190	٧	88	٧	220	٧	620	٧
Beryllium	4	(3)	6.7	Ζ	0.57	J	1.3	J	0.64	J	2	٧	2.5	٧
Cadmium	5	(3)	<0.74	u	<0.74	u	<0.74	u	<0.74	u	<0.74	u	<0.74	u
Chromium	50	(3)	17	٧	<1.2	u	4.4	J	<1.2	u	5.3	J	43	٧
Cobalt	50	(3)	20	٧	25	٧	2.5	J	13	٧	2	J	8.1	٧
Cyanide	200	(3)	26.3	٧	31.2	٧	25.1	٧	32.5	٧	20.3	٧	20.3	٧
Iron	1,000	(3)	18,000	Ζ	170	٧	3,300	Z	150	٧	7,900	Z	20,000	Ζ
Lead	15	(3)	44	Ζ	1.1	J	4.1	٧	0.8	J	9	٧	13	٧
Manganese	200	(3)	14,000	Ζ	25,000	Z	8,600	Z	27,000	Z	4,700	Z	6,300	Ζ
Mercury	2	(3)	0.06	J	<0.04	u	<0.04	u	<0.04	u	<0.04	u	<0.04	u
Nickel	372	(4)	220	Z	340	Ζ	56	٧	240	Z	25	V	62	٧
Selenium	50	(3)	7.8	٧	<2.39	u	<2.39	u	<2.39	u	<2.39	u	7.6	٧
Silver	50	(3)	19	٧	17	٧	23	٧	19	٧	17	V	6.4	٧
Vanadium	63.1	(4)	50	٧	7.1	J	16	J	5.4	J	24	J	44	J
Zinc	10000	(3)	28	٧	<5.77	u	<5.77	u	<5.77	u	14	٧	28	٧
Chloride	250,000	(3)	5,700	Z	5,900,000	Z	5,200,000	Z	6,100,000	Z	3,200,000	Z	5,900,000	Z
Fluoride	1,600	(3)	<144.91	u	<144.91	u	<144.91	u	<144.91	u	<144.91	u	12,000	Z
Sulfate	600,000	(3)	780,000	Ζ	660,000	Ζ	1,200,000	Z	550,000	Z	1,200,000	Z	240,000	٧
Nitrogen, Nitrate (As N) 7	10,000	(3)	10000 - NA	Z	560 - 0	٧	1600 - 2000	٧	170 - 14000	J	<30.39 - 0	u	<30.39 - 12000	u
Nitrogen, Nitrite (As N) ⁷	1,000	(3)	<108 - NA	u	<108 - 0	u	<108 - 0.04	u	<108 - 0	u	<108 - 0	u	<108 - 0.04	u
Metals (ug/l) DISSOLVED	*												•	
Antimony (D)	6	(3)	<1.95	u	<1.95	u	<1.95	u	<1.95	u	<0.39	u	<1.95	u
Arsenic (D)	10	(3)	4.4	٧	6.1	٧	2.7	J	4.7	J	1.6	٧	14	Z
Barium (D)	2000	(3)	76	٧	74	٧	59	٧	89	٧	35	٧	310	٧
Beryllium (D)	4	(3)	<0.28	u	<0.28	u	0.34	J	0.62	J	0.32	J	<0.28	u
Cadmium (D)	5	(3)	<0.55	u	<0.55	u	<0.55	u	<0.55	u	<0.55	u	<0.55	u
Calcium (D)	-	-	1300000	٧	1200000	٧	1600000	٧	1300000	٧	1200000	٧	530000	٧
Chromium (D)	50	(3)	<1.53	u	<1.53	u	<1.53	u	<1.53	u	<1.53	u	2.4	J
Cobalt (D)	50	(3)	6.4	٧	27	٧	<3.09	u	14	V	<3.09	u	3.1	J
Iron (D)	1000	(3)	21	٧	67	٧	11	J	94	V	18	J	1600	Z
Lead (D)	15	(3)	<0.00013	u	<0.00013	J	<0.00013	u	0.81	J	<0.27	u	0.38	J
Magnesium (D)	-	-	250,000	٧	210,000	٧	290,000	V	230,000	V	190,000	V	150,000	V
Manganese (D)	200	(3)	12,000	Z	26,000	Z	12,000	Z	27,000	Z	4,400	Z	5,900	Z
Nickel (D)	372	(4)	220	Ζ	370	Ζ	75	٧	250	Z	13	٧	45	٧

Table 6 - Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	Screening	Source	SWMU 13-2-0	GW	SWMU 13-3-0	W	SWMU 13-4-	GW	SWMU 13-5-	GW	SWMU 13-6-	-GW	SWMU 13-7-G	iW
Lab ID	Levels		1911232-00	01	1911232-00)2	1911232-0	03	1911310-0	01	1911310-0	02	1911310-00	3
Sample Date			11/6/2019	9	11/6/2019)	11/6/201	9	11/7/2019	9	11/7/201	.9	11/7/2019	$\overline{}$
Potassium (D)	-	-	7800	٧	3100	٧	4000	٧	3200	٧	2600	٧	40000	٧
Selenium (D)	50	(3)	2.2	٧	1.7	٧	<0.86	u	<0.86	u	0.59	J	6.7	٧
Sodium (D)	-	-	2,700,000	٧	2,800,000	٧	2,400,000	٧	2,800,000	٧	1,700,000	٧	3,400,000	٧
Silver (D)	50	(3)	25	٧	22	٧	29	٧	21	V	20	٧	9.4	٧
Vanadium (D)	63.1	(4)	5	J	5.5	J	7.1	J	3.7	J	5	J	9.9	J
Zinc (D)	10000	(3)	13	٧	9.5	J	7	J	9.6	J	13	٧	14	٧
Volatiles (ug/l)														
1,1,1,2-Tetrachloroethane	5.74	(4)	0	u	<1.03	u	<0.21	u	<0.41	u	<0.41	u	<1.03	u
1,1,1-Trichloroethane	200	(3)	<0.86	u	<0.86	u	<0.17	u	<0.35	u	<0.35	u	<0.86	u
1,1,2,2-Tetrachloroethane	10	(3)	<2.74	u	<2.74	u	<0.55	u	<1.1	u	<1.1	u	<2.74	u
1,1,2-Trichloroethane	5	(3)	<1.08	u	<1.08	u	<0.22	u	<0.43	u	<0.43	u	<1.08	u
1,1-Dichloroethane	25	(3)	<0.7	u	<0.7	u	<0.14	u	<0.28	u	<0.28	u	<0.7	u
1,1-Dichloroethene	7	(3)	<1.03	u	<1.03	u	<0.21	u	<0.41	u	<0.41	u	<1.03	u
1,1-Dichloropropene	-	-	<0.81	u	<0.81	u	<0.16	u	<0.33	u	<0.33	u	<0.81	u
1,2,3-Trichlorobenzene	7	(1)	<1.49	u	<1.49	u	<0.3	u	<0.6	u	<0.6	u	<1.49	u
1,2,4-Trichlorobenzene (V)	70	(3)	<0.98	u	<0.98	u	<0.2	u	<0.39	u	<0.39	u	<0.98	u
1,2,4-Trimethylbenzene	56	(1)	<1.07	u	<1.07	u	<0.21	u	<0.43	u	<0.43	u	2.3	J
1,2-Dibromoethane (EDB)	0.05	(3)	<0.83	u	<0.83	u	<0.17	u	<0.33	u	<0.33	u	<0.83	u
1,2-Dichlorobenzene (V)	600	(3)	<1.49	u	<1.49	u	<0.3	u	<0.59	u	<0.59	u	<1.49	u
1,2-Dichloroethane (EDC)	5	(3)	<0.97	u	<0.97	u	<0.19	u	<0.39	u	<0.39	u	<0.97	u
1,2-Dichloropropane	5	(3)	<1.04	u	<1.04	u	<0.21	u	<0.42	u	<0.42	u	<1.04	u
1,3,5-Trimethylbenzene	60	(1)	<0.94	u	<0.94	u	<0.19	u	<0.38	u	<0.38	u	<0.94	u
1,3-Dichlorobenzene (V)	-	-	<1.24	u	<1.24	u	<0.25	u	<0.5	u	<0.5	u	<1.24	u
1,3-Dichloropropane	370	(1)	<1	u	<1	u	<0.2	u	<0.4	u	<0.4	u	<1	u
1,4-Dichlorobenzene (V)	75	(2)	<1.47	u	<1.47	u	<0.29	u	<0.59	u	<0.59	u	<1.47	u
1-Methylnaphthalene (V)	11.37	(4)	<1.57	u	<1.57	u	<0.31	u	1.7	J	<0.63	u	6	J
2,2-Dichloropropane	-	-	<1.17	u	<1.17	u	<0.23	u	<0.47	u	<0.47	u	<1.17	u
2-Butanone	5564	(4)	<10.45	u	<10.45	u	<2.09	u	<4.18	u	<4.18	u	<10.45	u
2-Chlorotoluene	233	(4)	<1.23	u	<1.23	u	<0.25	u	<0.49	u	<0.49	u	<1.23	u
2-Hexanone	38	(1)	<7.74	u	<7.74	u	<1.55	u	<3.09	u	<3.09	u	<7.74	u
2-Methylnaphthalene (V)	35.11	(4)	<1.73	u	<1.73	u	<0.35	u	<0.69	u	<0.69	u	<1.73	u
4-Chlorotoluene	250	(1)	<1.17	u	<1.17	u	<0.23	u	<0.47	u	<0.47	u	<1.17	u
4-Isopropyltoluene	-	-	<1.09	u	<1.09	u	<0.22	u	<0.43	u	<0.43	u	<1.09	u
4-Methyl-2-pentanone	1243	(4)	<3.57	u	<3.57	u	<0.71	u	<1.43	u	<1.43	u	<3.57	u
Acetone	14063	(4)	<6	u	<6	u	<1.2	u	4.5	J	<2.4	u	18	J
Benzene	5	(3)	<0.83	u	<0.83	u	<0.17	u	0.89	J	<0.33	u	1	J
Bromobenzene	62	(1)	<1.22	u	<1.22	u	<0.24	u	<0.49	u	<0.49	u	<1.22	u

Table 6 - Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	Screening	Source	SWMU 13-2-	GW	SWMU 13-3-0	GW	SWMU 13-4-	GW	SWMU 13-5-	GW	SWMU 13-6	-GW	SWMU 13-7-0	W
Lab ID	Levels		1911232-0	01	1911232-00)2	1911232-0	03	1911310-0	01	1911310-0	002	1911310-00	3
Sample Date			11/6/201	9	11/6/2019	9	11/6/201	9	11/7/2019	9	11/7/20:	19	11/7/2019	,
Bromodichloromethane	1.34	(4)	< 0.67	u	< 0.67	u	<0.13	u	<0.27	u	<0.27	u	< 0.67	u
Bromoform	32.85	(4)	<1.44	u	<1.44	u	<0.29	u	<0.58	u	<0.58	u	<1.44	u
Bromomethane	7.54	(4)	<1.37	u	<1.37	u	<0.27	u	<0.55	u	<0.55	u	<1.37	u
Carbon disulfide	810	(4)	<2.26	u	<2.26	u	<0.45	u	<0.91	u	<0.91	u	<2.26	u
Carbon Tetrachloride	5	(3)	<0.7	u	<0.7	u	<0.14	u	<0.28	u	<0.28	u	<0.7	u
Chlorobenzene	100	(2)	<0.97	u	<0.97	u	<0.19	u	<0.39	u	<0.39	u	<0.97	u
Chloroethane	20900	(4)	<0.89	u	<0.89	u	<0.18	u	<0.36	u	<0.36	u	<0.89	u
Chloroform	100	(3)	<0.61	u	<0.61	u	<0.12	u	<0.24	u	<0.24	u	<0.61	u
Chloromethane	20.3	(4)	<1.6	u	<1.6	u	<0.32	u	<0.64	u	<0.64	u	<1.6	u
cis-1,2-DCE	70	(3)	<0.95	u	< 0.951	u	<0.19	u	<0.38	u	<0.38	u	<0.95	u
cis-1,3-Dichloropropene	4.71	(4)	<0.69	u	<0.69	u	<0.14	u	<0.28	u	<0.28	u	<0.69	u
Dibromochloromethane	1.68	(4)	<1.19	u	<1.19	u	<0.24	u	<0.48	u	<0.48	u	<1.19	u
Dibromomethane	8.3	(1)	<1.05	u	<1.05	u	<0.21	u	<0.42	u	<0.42	u	<1.05	u
Dichlorodifluoromethane	197	(4)	<1.3	u	<1.3	u	<0.26	u	<0.52	u	<0.52	u	<1.3	u
Ethylbenzene	700	(3)	<0.66	u	<0.66	u	<0.13	u	<0.26	u	<0.26	u	<0.66	u
Hexachlorobutadiene (V)	1.39	(4)	<1.55	u	<1.55	u	< 0.31	u	<0.62	u	<0.62	u	<1.55	u
Isopropylbenzene	447	(4)	<0.96	u	<0.96	u	<0.19	u	<0.38	u	<0.38	u	<0.96	u
Methyl tert-butyl ether (MTBE)	100	(4)	21	Z	21	Z	15	٧	36	٧	6.8	٧	<2.28	u
Methylene Chloride	5	(3)	<0.77	u	<0.77	u	<0.15	u	<0.31	u	<0.31	u	<0.77	u
Naphthalene (V)	30	(3)	<1.38	u	<1.38	u	<0.28	u	<0.55	u	<0.55	u	<1.38	u
n-Butylbenzene	1000	(1)	<1.14	u	<1.14	u	<0.23	u	<0.46	u	<0.46	u	<1.14	u
n-Propylbenzene	660	(1)	<1.07	u	<1.07	u	<0.21	u	<0.43	u	<0.43	u	<1.07	u
sec-Butylbenzene	2000	(1)	<1.24	u	<1.24	u	<0.25	u	<0.5	u	<0.5	u	<1.24	u
Styrene	100	(3)	<0.96	u	<0.96	u	<0.19	u	<0.38	u	<0.38	u	<0.96	u
tert-Butylbenzene	690	(1)	<1.03	u	<1.03	u	<0.21	u	<0.41	u	<0.41	u	<1.03	u
Tetrachloroethene (PCE)	5	(3)	<0.75	u	<0.75	u	<0.15	u	<0.3	u	<0.3	u	<0.75	u
Toluene	1000	(3)	<1.75	u	<1.75	u	<0.35	u	<0.7	u	<0.7	u	<1.75	u
trans-1,2-DCE	100	(3)	<0.9	u	<0.9	u	<0.18	u	<0.36	u	<0.36	u	<0.9	u
trans-1,3-Dichloropropene	4.71	(4)	<0.83	u	< 0.833	u	<0.17	u	<0.33	u	<0.33	u	<0.83	u
Trichloroethene (TCE)	5	(3)	<0.83	u	<0.83	u	<0.17	u	<0.33	u	<0.33	u	<0.83	u
Trichlorofluoromethane	1140	(4)	<0.95	u	<0.95	u	<0.19	u	<0.38	u	<0.38	u	<0.95	u
Vinyl chloride	2	(3)	<0.9	u	<0.9	u	<0.18	u	<0.36	u	<0.36	u	<0.9	u
Xylenes, Total	620	(3)	<2.27	u	<2.27	u	<0.45	u	<0.91	u	<0.91	u	<2.27	u
Semivolatiles (ug/l)														
1,2,4-Trichlorobenzene	70	(2)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
1,2-Dichlorobenzene	600	(3)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
1,3-Dichlorobenzene	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u

Table 6 - Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	Screening	Source	SWMU 13-2-	GW	SWMU 13-3-0	GW	SWMU 13-4-	GW	SWMU 13-5-	GW	SWMU 13-6	-GW	SWMU 13-7-0	3W
Lab ID	Levels		1911232-0	01	1911232-00)2	1911232-0	03	1911310-0	01	1911310-0	002	1911310-00)3
Sample Date			11/6/201	9	11/6/2019	9	11/6/201	9	11/7/201	9	11/7/202	19	11/7/2019	•
1,4-Dichlorobenzene	75	(3)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
1-Methylnaphthalene	11.38	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	3.3	٧
2,4,5-Trichlorophenol	1166	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2,4,6-Trichlorophenol	11.9	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2,4-Dichlorophenol	45.3	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2,4-Dimethylphenol	354	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	1.5	٧
2,4-Dinitrophenol	38.7	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2,4-Dinitrotoluene	2.37	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2,6-Dinitrotoluene	0.485	(4)	<0.2	u	<0.2	u	<0.2	u	<0.2	u	<0.2	u	<0.2	u
2-Chloronaphthalene	733	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2-Chlorophenol	91	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2-Methylnaphthalene	35.11	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2-Methylphenol	930	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2-Nitroaniline	190	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
2-Nitrophenol	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
3,3´-Dichlorobenzidine	1.25	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
3+4-Methylphenol	930	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
3-Nitroaniline	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
4,6-Dinitro-2-methylphenol	1.52	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
4-Bromophenyl phenyl ether	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
4-Chloro-3-methylphenol	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
4-Chlorophenyl phenyl ether	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
4-Nitroaniline	38	(5)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
4-Nitrophenol	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Acenaphthene	535	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	0.97	٧
Acenaphthylene	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Aniline	130	(5)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Anthracene	1721	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Benz(a)anthracene	0.12	(4)	<0.1	u	<0.1	u	<0.1	u	<0.1	u	<0.1	u	<0.1	u
Benzo(a)pyrene	0.2	(3)	<0.1	u	<0.1	u	<0.1	u	<0.1	u	<0.1	u	<0.1	u
Benzo(b)fluoranthene	0.343	(4)	<0.1	u	<0.1	u	<0.1	u	<0.1	u	<0.1	u	<0.1	u
Benzo(g,h,i)perylene	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Benzo(k)fluoranthene	3.43	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Benzoic acid	75000	(1)	<1	u	<1	u	<1	u	<1	u	<1	u	<1	u
Benzyl alcohol	2000	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Bis(2-chloroethoxy)methane	59	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Bis(2-chloroisopropyl)ether	9.81	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u

Table 6 - Groundwater Analytical Results Summary
Marathon Petroleum Company - Gallup Refinery
Gallup, New Mexico

	Screening	Source	SWMU 13-2-0	GW	SWMU 13-3-0	ЭW	SWMU 13-4-	GW	SWMU 13-5-	GW	SWMU 13-6	-GW	SWMU 13-7-0	W£
Lab ID	Levels		1911232-00	01	1911232-00)2	1911232-0	03	1911310-0	01	1911310-0	02	1911310-00)3
Sample Date			11/6/2019		11/6/2019		11/6/2019		11/7/2019		11/7/2019		11/7/2019	
Bis(2-ethylhexyl)phthalate	6	(2)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Butyl benzyl phthalate	160	(5)	0.55	٧	0.51	٧	0.9	٧	<0.5	u	<0.5	u	<0.5	u
Carbazole	-	-	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Chrysene	34.3	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Dibenz(a,h)anthracene	0.0343	(4)	<0.03	u	<0.03	u	<0.03	u	<0.03	u	<0.03	u	<0.03	u
Dibenzofuran	7.9	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Diethyl phthalate	14800	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Dimethyl phthalate	611.56	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Di-n-butyl phthalate	885	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Di-n-octyl phthalate	200	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Fluoranthene	802	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Fluorene	288	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	0.5	٧
Hexachlorobenzene	1	(2)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Hexachlorobutadiene	1.39	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Hexachlorocyclopentadiene	50	(2)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Hexachloroethane	3.28	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Indeno(1,2,3-cd)pyrene	0.343	(4)	<0.2	u	<0.2	u	<0.2	u	<0.2	u	<0.2	u	<0.2	u
Isophorone	780.63	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Naphthalene	30	(3)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Nitrobenzene	1.4	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
N-Nitrosodiphenylamine	121.9219	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Phenanthrene	170	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Pentachlorophenol	1	(3)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Phenol	5760	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Pyrene	117	(4)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
Pyridine	20	(1)	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u	<0.5	u
TPH (ug/l)														
Gasoline Range Organics (GRO)	10.1	(6)	350	٧	450	٧	100	V	330	V	42	V	730	٧
Diesel Range Organics (DRO)	85.8	(6)	500	٧	610	٧	<132	u	280	J	<132	u	530	٧
Motor Oil Range Organics (MRO)	85.8	(6)	<2500	u	<2500	u	<2500	u	<2500	u	<2500	u	<2500	u

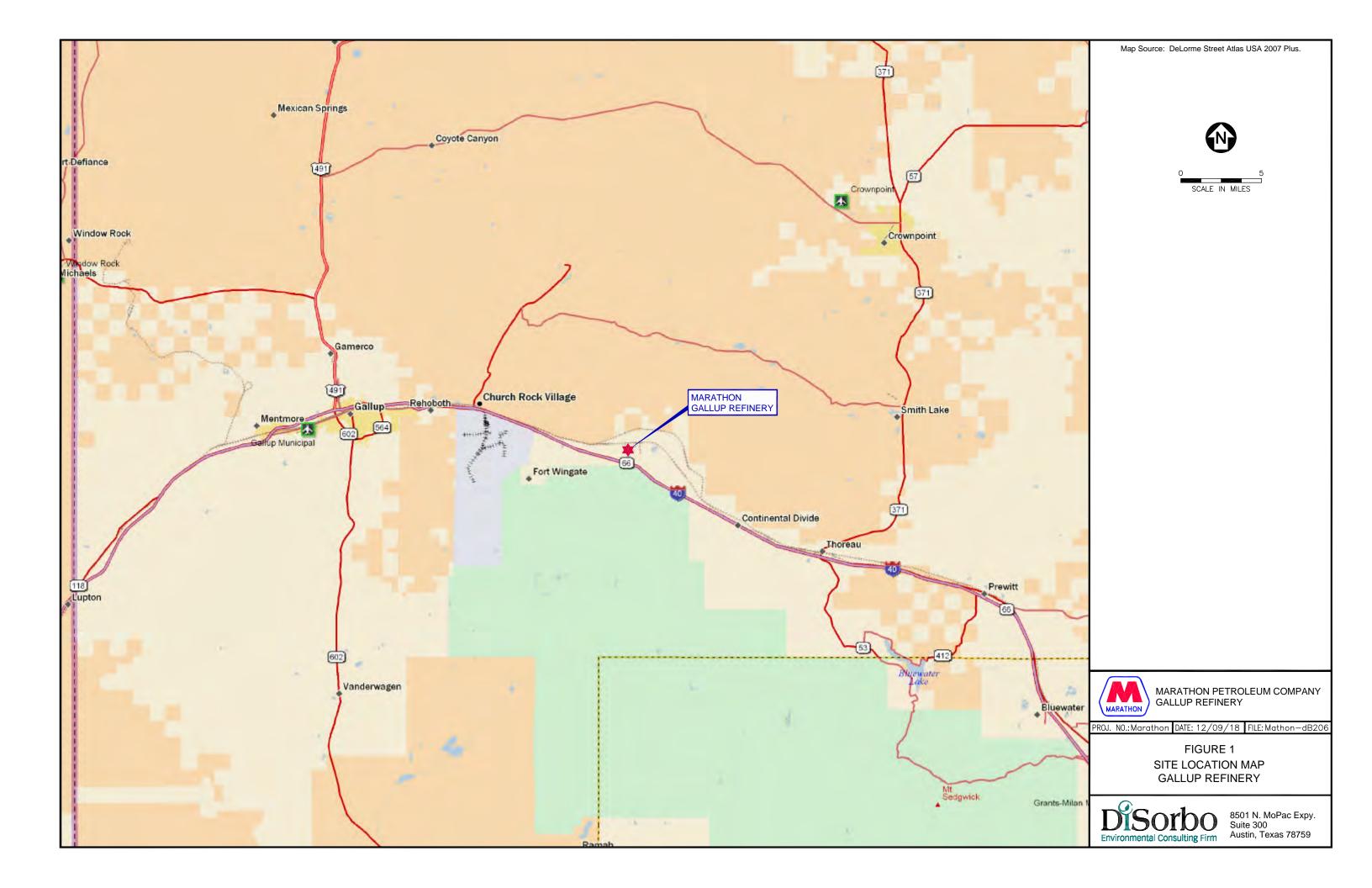
⁻ No screening level or analytical result available

^{450 -} bolded value exceeds screening level

⁽¹⁾ EPA - Regional Screening Levels (November 2019) - Tap Water

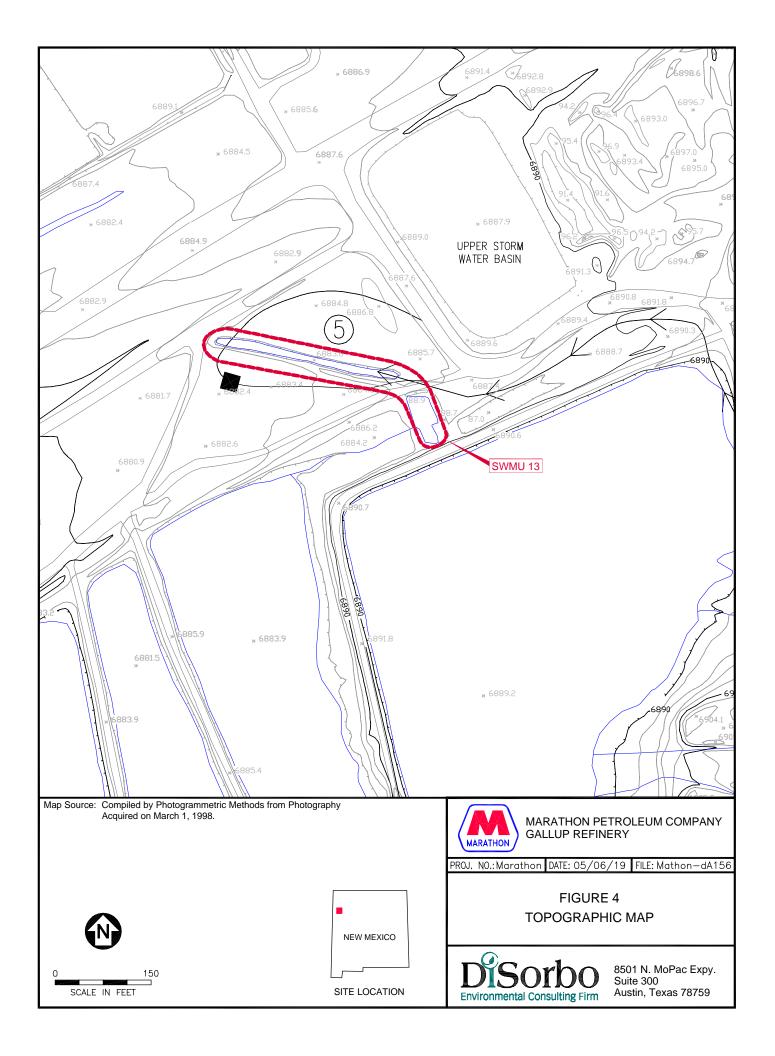
⁽²⁾ EPA - Regional Screening Levels (November 2019) - MCL

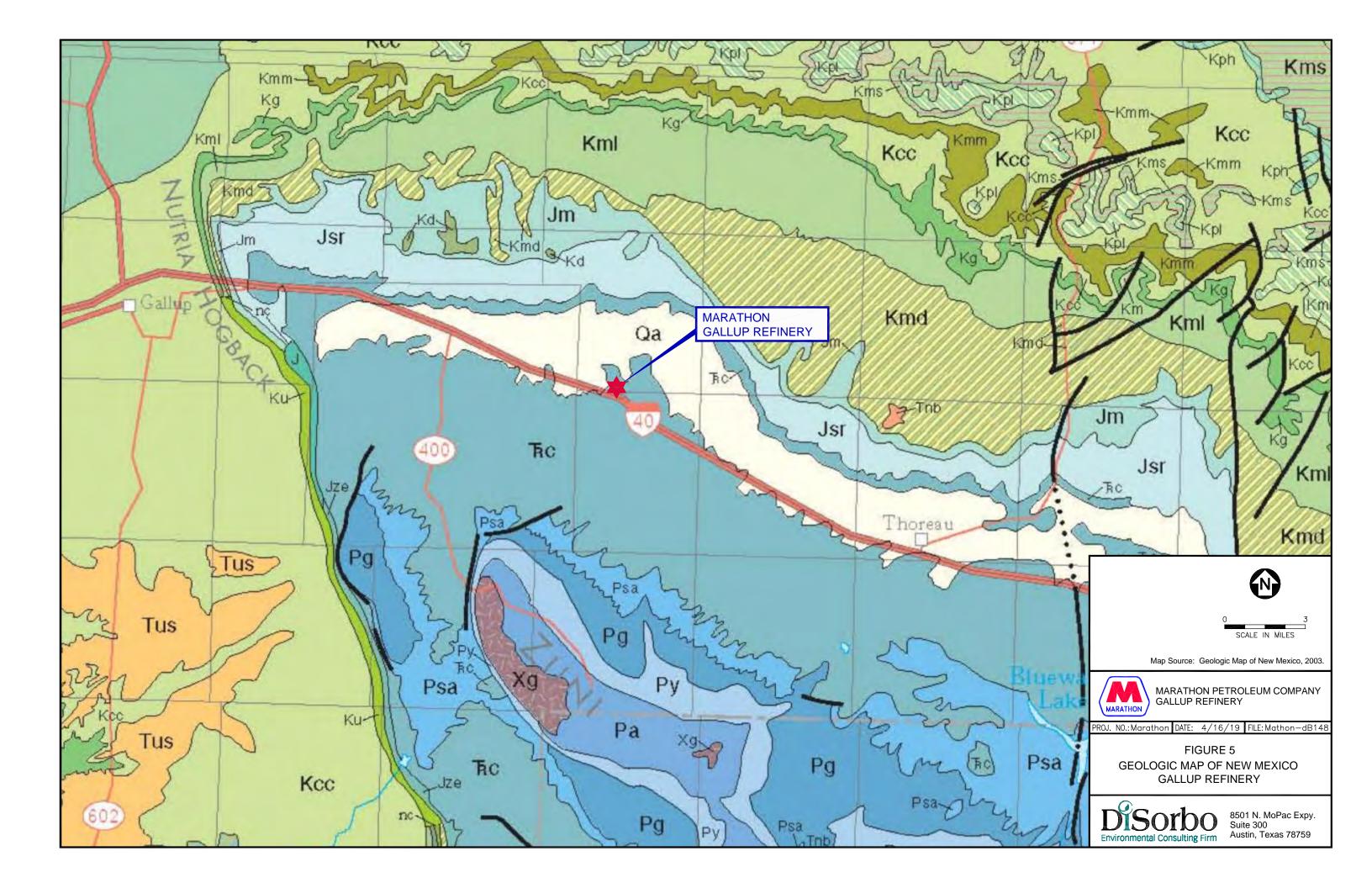
⁽³⁾ NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)

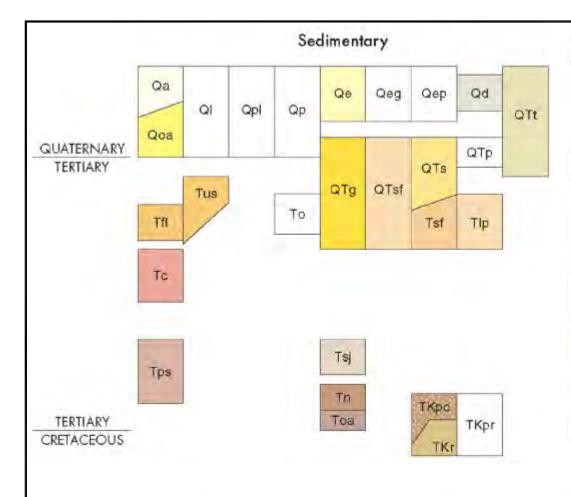

Table 6 - Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	Screening	Source	SWMU 13-2-GW	SWMU 13-3-GW	SWMU 13-4-GW	SWMU 13-5-GW	SWMU 13-6-GW	SWMU 13-7-GW
Lab ID	Levels		1911232-001	1911232-002	1911232-003	1911310-001	1911310-002	1911310-003
Sample Date			11/6/2019	11/6/2019	11/6/2019	11/7/2019	11/7/2019	11/7/2019

- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED Soil Screening Guidance "gasoline and unknown oil" (March 2019)
- (7) laboratory results for nitrate and nitrite followed by results using field test kit
- v = reportable detection above the Practical quantitation limit (PQL)
- u result is not detected at method detection limit (MDL)
- j estimated result at concentration above MDL but less than PQL
- z concentration exceeds MCL


Figures


Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Location of Soil Borings and Wells
Figure 4	Topographic Map
Figure 5	Geologic Map of New Mexico
Figure 6	Cross Section A-A'
Figure 7	August 2018 Potentiometric Surface Map
Figure 8	Chromium (total) Soils Concentration Map
Figure 9	Manganese Soils Concentration Map
Figure 10	Diesel Range Organics Soils Concentration Map
Figure 11	Motor Oil Range Organics Soils Concentration Map
Figure 12	Arsenic, Beryllium, Iron, and Lead Totals Groundwater Concentration Map
Figure 13	Manganese (total), Chloride, Sulfate, and Fluoride Groundwater Concentration Map
Figure 14	Arsenic, Iron and Manganese Dissolved Groundwater Concentration Map
Figure 15	Gasoline Range and Diesel Range Organics Groundwater Concentration Map



DESCRIPTION OF MAP UNITS

QUATERNARY

Alluvium (Holocene to upper Pleistocene)

Landslide deposits and colluvium (Holocene to Pleistocene) – Landslide deposits on western flanks of Socorro Mountains not shown for clarity

Qpl Lacustrine and playa deposits (Holocene) – Indudes associated alluvial and eolian deposits of major lake basins

Piedmont alluvial deposits (Holocene to lower Pleistocene)—Includes deposits of higher gradient tributaries bordering major stream valleys, alluvial veneers of the piedmont slope, and alluvial fans. May locally include uppermost Pliocene deposits

Qe Eolian deposits (Holocene to middle Pleistocene)

Qeg Gypsiferous eolian deposits (Holocene to middle Pleistocene)

Oep | Eolian and piedmont deposits (Holocene to middle Pleistocene) |
Interlayedeolian sands and piedmont – slope deposits along the eastern flank of the Pecos River valley, primarily between Roswell and Carlsbad. Typically capped by thin eolian deposits

Qd Glacial deposits; till and outwash (upper to middle Pleistocene)

Older alluvial deposits of upland plains and piedmont areas, and calcic soils and eolian cover sediments of High Plains region (middle to lower Pleistocene)—Includes scattered lacustrine, playa, and alluvial deposits of the Tahoka, Double Tanks, Tule, Blackwater Draw, and Gatuña Formations, the latter of which may be Pliocene at base; outcrops, however, are basically of Quaternary deposits

Qb Basaltic to andesitic lava flows (Holocene to middle Pleistocene) Flows south of Grants and west of Carrizozo are Holocene, Includes minorvent deposits

Qv Basaltictephra and lavas nearvents (upperto middle Pleistocene)—Tuff rings, maars, cindercones, and minorproximal lavas. Includes maars at Kilbourne Hole and Zuni Salt Lake

Qbo Basaltic to andesitic lava flows (middle to lower Pleistocene)—Includes vent deposits

Ring-fracture rhyolite lava domes of the Valles caldera (uppermost to lower Pleistocene)—Upper members of the Valles Rhyolite in Jemez Mountains. Includes 60-ka Banco Bonito and El Cajete Members on south margin of caldera

Older rhyolite lavas and early volcaniclastic sedimentary fill deposits of the Valles caldera (lower Pleistocene)—Units are associated with resurgent doming or predated oming of the caldera core. Includes minor middle Pleistocene tuffs of the upper Valles Rhyolite on north side of caldera

BandelierTuff(lowerPleistocene)—Includes large blocks of older and esite in caldera—collapse breccia facies locally exposed on resurgent dome of the Valles caldera

QUATERNARY and TERTIARY

OTt Traverline (Holocene to Pliocene)—Includes some pedagenic carbonate south of Sierra Ladrones

Older piedmont alluvial deposits and shallow basin fill (middle Pleistocene to uppermost Pliocene)—Includes Quemodo Formation and in northeast, high-level pediment gravels

Upper Sonto Fe Group (middle Pleistocene to uppermost Miocene)— Indudes Camp Rice, Fort Hancock, Palomas, Sierra Ladrones, Arroyo Ojito, Ancha, Puye, and Alamosa Formations

Oligocene)—Basin fill of the Rio Grande rift. Locally represents upper Miocene formations of the middle Santa Fe Group in the northern Albuquerque Basin

QTg Gila Group, Formation, or Conglomerate (middle Pleistocene to uppermostOligocene?) IndudesMimbresFormationandseveralinformal units in southwestern basins

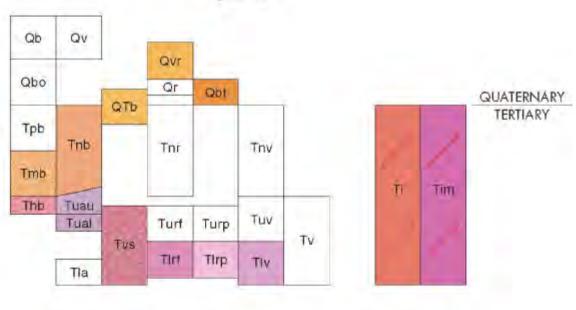
Basaltic to andesitic lava flows (upper Pleistocene to lower Pliocene)—
Includes minor vent deposits

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY
GALLUP REFINERY

PROJ. NO.: Marathon DATE: 4/16/19 FILE: Mathon-dB148

FIGURE 5 LEGEND SHEET 1 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY



TERTIARY

- Upper Tertiary sedimentary units (Pliocene to upper Oligocene)—
 Includes Bidahochi Formation (Pliocene to upper Miocene), Picuris
 Formation, (Miocene to Oligocene), Las Feveras Formation (Piocene),
 lower Gila Group units in the southwest, and unnamed Pliocene unit in
 northwestern Socorro County
- To Ogallala Formation (lower Pliocene to middle Miocene)—Alluvial and eolian deposits, and petrocalcic soils of the southern High Plains. Locally includes Qoa
- Fence Lake Formation (Miocene)—Conglomerate and conglomeratic sandstone, coarse fluvial volcaniclastic sediments, minor eolan facies, and pedogenic carbonates of the southern Colorado Plateau region
- Tsf LowerSantaFeGroup (upperMiocenetouppermost Oligocene)—Includes Hayner Ranch, Rincon Valley, Popotosa, Cochiti, Tesuque, Chamita, Abiquiu, Zia, and other formations
- Los Pinos Formation of lower Santa Fe Group (Miocene and upper Oligocene)—Includes Carson Conglomerate (Dane and Bachman, 1965) in Tusas Mountains-San Luis Basin area
- Chuska Sandstone (middle to upper Oligocene)—Restricted to Chuska Mountains
- Tpb Basaltic to andesitic lava flows (Plocene)—Includes minor vent deposits and small shield volcanoes. Flows are commonly interbedded in the Santa Fe and Gila Groups
- Basaltic to andesitic lava flows (Mocene)—Includes minor vent deposits.

 Flows are commonly interbedded in the Santa Fe and Gila Groups
- The Basaltic to andesitic lava flows (Neogene)—Includes minor vent deposits. Flows are commonly interbedded in the Santa Fe and Gila Groups
- Thr Silicic to intermediate volcanic rocks (Neogene, mostly Miocene)—
 Rhyolteanddacteflowswithassociatedminortuffs Commonlyinterbedded with Santa Fe or Gila Group sedimentary units. Dacitic lavas in northern Jemez Mountains are Pliocene
- Intermediate to silicic volcanic rocks (Neogene)—Mostly andesitic to dactic stratovolcanoes. Includes rhyolite lavas and tuffs in the Jemez Mountains. Volcanoes in Jemez Mountains and eastern Colfax County are upper Miocene, Mount Taylor and composite volcanoes in the Taos Plateau volcanic field are Pliocene
- This Hinsdale Basalt (Miocene and upper Oligocene)—Northern Taos and eastern Rio Arriba Counties; basalt flows interbedded with Los Pinos Formation

Igneous

TKa TKav

- Upper middle Tertiary basaltic andesites and andesites of the Mogollon Group (lower Miocene and uppermost Oligocene, 22–26 Ma)—Includes Bearwallow Mountain Andesite and basaltic andesite of Mangas Mountain; also near vent basaltic lavas and shallow intrusions in the Chuska Mountains
- Lower-upper middle Tertiary basaltic andesites and andesites of the Mogollon Group (upper Oligocene, 26-29 Ma)—Includes La Jara Peak Basaltic Andesite, Livas Basaltic Andesite, basaltic andesites of Poverty Creek and Twin Peaks, Souirrel Springs Canyon Andesite, Razorback Basalt, Bear Springs Basalt, flows of Gila Flat, Salt Creek Formation, Middle Mountain Formation, and the Alum Mountain Group. Pre-Amolio-Tufflovosin he Questo coldera are dominantly silicic andesites and dacites; elsewhere silicic lavas are a minor component of Tual
- Middle Tertiary volcaniclastic sedimentary units (Oligocene to upper Eccene)—Mostly syncruptive volcaniclastic sedimentary aprons. Lower units dominantly derived from volcanic highlands of andesitic to dacitic composition. Locally includes minor lavas and tuffs. Younger units (above and intertongued with Mogollon Group tuffs, Turp) include upper Bell Top Formation, South Crosby Peak Formation, and upper Spears Group units near Quemado. Older units (below and intertongued with Datil Group tuffs, Tirp) include Palm Park, lower Bell Top, Espinaso and Pueblo Creek Formations and lower Spears Group formations such as Rincon Windmill, Chavez Canyon, and Dog Springs

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 4/16/19 FILE: Mathon-dB148

FIGURE 5 LEGEND SHEET 2 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

- Turf Upper middle Tertiary rhyolitic lavas and local tuffs (upper Oligocene, 24-29Ma)—Indudes Taylor Creck Rhyolite, Fanney Rhyolite, rhyoliteof Rocky Canyon, rhyoliteof Hardy Ridge, and upper rhyolitemembers of the Luis Lopez and Sawmill Canyon formations
- Lower middle Tertiary rhyolitic lavas and local tuffs (lower Olgocene to upper Eocene, 36-31 Ma)—Includes Mimbres Peak Formation, rhyolite of Cedar Hills, and other units in the Bootheel region
- Upper middle Tertiary rhyolitic pyroclastic rocks of the Mogollon Group, ash-flowtuffs (upper Oligocene, 24-30 Ma)—Regional ash-flowtuffs include the Laulencia, Vicks Peak, Lemitar, South Canyon, Bloodgood Canyon, Shelly Peak, Davis Canyon, Park, Rhyolite Canyon, Apache Spring, and Amalia Tuffs, the tuffs of Horseshoe Canyon, Diamond Creek, Garcia Camp, Caronita Canyon, Turkey Springs, and Little Mineral Creek; and the Jordan Canyon Formation. Includes some locally erupted lavas and tuffs within thick intracable a units; includes minorvolcanic astics edimentary units between thin outflows heets.
- Lower middle Tertiary rhyolitic to dacitic pyroclastic rocks of the Datil Group, ash-flow tuffs (lower Oligocene to upper Eocene, 31–36 Ma)—Regional ash-flow tuffs include Hells Mesa, Kneeling Nun, Caballo Blanco, Datil Well, Lebya Well, Rock House Carryon, Blue Carryon, Sugarlump, Oak Creek, Bluff Creek, Gillespie, Box Carryon, Cooney, and Chiquito Peak Tuffs; the tuffs of Steins Mountain, Black Bill Carryon, Woodhaul Carryon, and Farr Ranch; tuffs of the Organicauldron; and lower tuffs in the Bell Top Formation. Includes some locally erupted lavas and tuffs within thick intracaldera units; includes minor volcanidastics edimentary units and lavas between thin outflow sheets.
 - Lower middle Tertiary andesitic to dacitic lavas and pyroclastic flow breccias (uppertomiddle Eccenc, 33–43 Ma)—Includes Rubio Peak Formation, Orejon Andesite, andesite of Dry Leggett Canyon, andesite of Telephone Canyon, and other units in southwestern, central, and northern New Mexico. Locally includes minor maficlavas. Ancient landside blods of Madera Limestone, as much as one milelong, occur within Rubio Peak lavas in the central Black Range, west of Winston
- Tuv Upper middle Tertiary volcanic rocks (lower Miocene to upper Oligocene, younger than 30 Ma)—Mostly a combination of basaltic andesite lavas and rhyolitic ash-flow tuffs of the Mogollon Group (Tuau + Tual + Turp). Includes locally erupted lavas and tuffs in some calderas
- Lowermiddle Tertiary volcanic rocks (lower Oligocene to upper Eccene, older than 31 Ma)—Mostly intermediate lavas of the lower Datil Group and intermediate volcaniclastic sediments of the lower Spears Group (Tla + Tvs). Locally includes ash-flow tuffs of the upper Datil Group (Tlrp). Includes intermediate volcaniclastic sedimentary rocks of the Conejos Formation in northern New Mexico
- Tv Middle Tertiary volcanic rocks, undifferentiated (lower Miocene to upper Eccene) includes the predominantly and esitic to dactic stratovolcano complex at Sierra Blanca (Oligocene to upper Eccene) and many smaller outliers

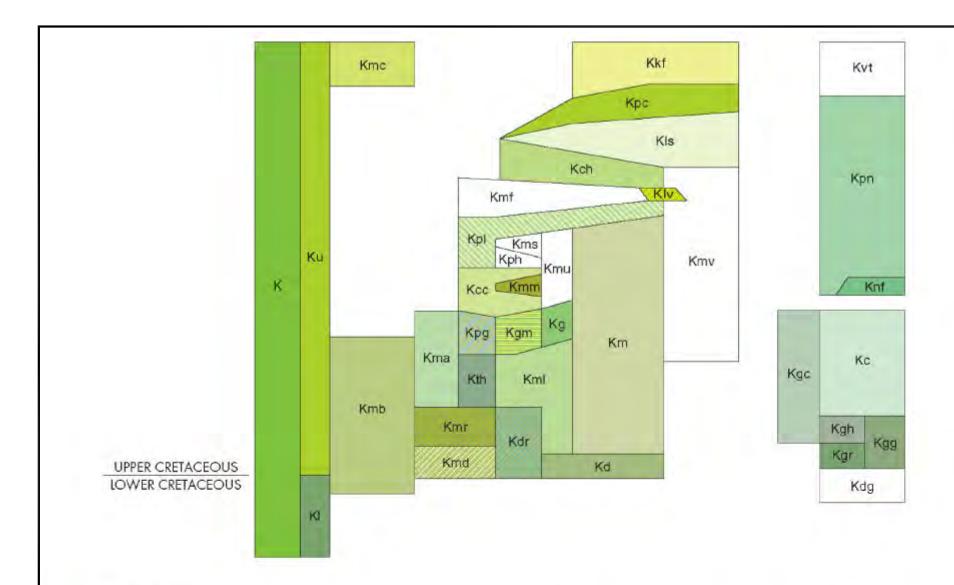
Tertiary intrusive rocks of intermediate to silicic composition (Pliocene to Eocene)—Includes manzonitic togranitic plutons, stocks, laccoliths, and porphyritic dikes in deeply eroded magmatic centers; and and esitic, dacitic, or rhyolitic plugs and dikes near cauldrons or stratovolcanoes. In the Latinfield, fine-grained rhyolitic dikes commonly cut coarse-grained granitic plutons. Includes alkaline laccoliths, plugs, and dikes in Colfax County. North-trending dikes near Capitan include some mafic diabase dikes

- Tertiary mafic intrusive rocks (Pliocene to upper Eccene) Includes many long basaltic andesite dikes of Oligocene age near Pie Town, Acoma, Riley, Chupadera, Truth or Consequences, Roswell, Raton, and Dulce; and several elongate or shoestring-like sils of basalt or basaltic andesite. Also includes basaltic necks of Pliocene age that dot the landscape northeast of Mount Taylor. Where dikes extend into Quaternary alluvium the contact is an unconformity
- Tps Paleogene sedimentary units—Includes Baca, Galisteo, El Rito, Blanco Basin, Hart Mine, Love Ranch, Lobo, Sanders Canyon, Skunk Ranch, Timberlake, and Qub Mountain Formations
- Tsj San Jose Formation (Eocene)—San Juan Basin
- Tn Nacimiento Formation (Paleocene) San Juan Basin
- Toa Ojo Alamo Formation (Paleocene) San Juan Basin

TERTIARY and CRETACEOUS

- Poison Canyon Formation (Paleocene and Upper Cretaceous)—Proximal conglomerates and sandstones inwestern Ration Basin; generally lacking coal beds. Cretaceous beds mostly restricted to subsurface
- Raton Formation (Paleocene and Upper Cretaceous)—Distal sandstones, mudstones, and coal beds in eastern Raton Basin. Middle barren zone laterally equivalent to Poison Canyon Formation. K/Tboundary discontinuous lyexposed about 100 m above basal concilomerate in area southwest of Raton
- TKpr PoisonCanyonandRatonFormations (Paleocene and Upper Cretaceous)— Broadly intertonguing conglomeratics and stones, sandstones and mudstones, minor coal beds
- Animas Formation (Paleocene and Upper Cretaceous)—Volcanidastic sedimentary rocks of intermediate composition innorthern San Juan Basin
- Tertiany-Cretaceous andesitic to dacitic lavas and pyroclastic breccias (Paleocene and Upper Cretaceous)—Includes many remnants of eruptive centers in Grant and Hidalgo Counties and Upper Cretaceous andesitic lavas in Sierra County
 - Tertiary-Cretaceous intrusive rocks (Paleocene and Upper Cretaceous)—
 Indudes granodiorite toquartz monzonite stocks and plutons at Hanover, Fierro,
 Tyrone, Lordsburg, and the 73-Maquartz monzonite porphyrystock at Copper
 Flats in Sierra County. Also includes many northeast-trending monzonite porphyry
 dikes in the Silver City region

Map Source: Geologic Map of New Mexico, 2003.



MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 4/16/19 FILE: Mathon-dB148

FIGURE 5 LEGEND SHEET 3 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

CRETACEOUS

- K Cretaceous rocks, undivided
- Wu Upper Cretaceous rocks of southwestern New Mexico, undivided (Maastrichtian to Cenomanian for most part, although Beartooth and Sarten Formations are in part Albian) Includes Virden Formation in northern Hidalgo County, Ringbone Formation in Hidalgo, Luna, and Grant Counties, Beartooth and Sarten Formations in Luna and Grant Counties, Mancos Shale in Silver City area
- Kmc McRae Formation (Maastrichtian) Engle Bosin Cutter sag area
- Kvt Vermejo Formation and Trinidad Sandstone (Maastrichtian to Campanian)
- Kkf Kirtland and Fruitland Formations (Campanian)—Coal-bearing, primarily in the Fruitland
- Kpc Pictured Cliffs Sandstone (Campanian)—Prominent, cliffforming marine sandstone

- Kpg Pescado Tongue of the Mancos Shale and Gallup Sandstone (Turonian)—In Zuni Basin only; Pescado is chronostratigraphic equivalent of Juana Lopez Member of Mancos Shale
- Kth Tres Hermanos Formation (Turonian) Formerly designated as lower Gallup Sandstone in the Zuni Basin
- Kma Moreno Hill Formation and Atarque Sandstone (Turonian)—In Salt Lake coal field and extreme southern Zuni Basin
- Mancos Shale (Cenomanian to Campanian)—Divided into upper and lower parts by Gallup Sandstone
- Kmu Mancos Shale, upper part (Campanian to Coniacian)
- Kmi Mancos Shale, lower part (Turonian and Cenamanian)
- Mancos Shale—In northwest Socorro County locally includes overlying
 Tres Hermanos Formation

Map Source: Geologic Map of New Mexico, 2003.

MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.; Marathon DATE: 4/16/19 | FILE: Mathon—dB148

FIGURE 5 LEGEND SHEET 4 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

Kpn	Pierre Shale and Niobrara Formation (Campanian to Coniacian)
dett	The series and thousand to the fourth and to compositing
Knf	Fort Hays Limestone Member of Niobrara Formation (Conjucian Turonian)
Kmv	Mesaverde Group (Campanian to Turonian) – Includes Cliff Hous Sandstone, Menefee Formation and Point Lookout Sandstone
Kch	Cliff House Sandstone (Campanian)—Transgressive marine sandstor
KIV	La Ventana Tongue of the Cliff House Sandstone (Turanian)
Kmf	Menefee Formation (Campanian to Santonian)—Mudstone, shale, and sandstone; coal-bearing
Kpl	Point Lookout Sandstone (Companian to Santonian)—Regressive marin sandstone in McKinley and Sandoval Counties; the lower, Hosta Tongu of Point Lookout is transgressive, and is separated from main body by the Satan Tongue of Mancos Shale
Kms	Satan Tongue of Mancos Shale (Santonian)
Kph	Hosta Tongue of Point Lookout Sandstone (Santonian)—Transgressiv marine sandstone
Cmm	Mulatto Tongue of Mancos Shale (Santonian to Conlacian)
Kcc	Crevasse Canyon Formation (Santonian to Coniacian)—Coal-bearing units are Dilco and Gibson Coal Members, other members are Bartle Barren, Dalton Sandstone, and Barrego Pass Sandstone (or Lentil)
Kg	Gallup Sandstone Turonian - Generally regressive marine sandstor
Kgm	Gallup Sandstone and underlying D-Cross Tongue of the Mance Shale Turonian)
Kmr	Rio Salado Tongue of the Mancos Shale (Turonian)—Overlies Twowe Tongue of Dakoia Sandstone; mapped only where Tres Hermand Formation or the Atarque Sandstone is present; mapped as Kdr in par of Socorro County
	UPPER
	JURASSIC Jm MIDDLE Jmsu
	MIDDLE JURASSIC J Jsr Jze
	Je Je

Sandstone for only Acoma Tongue of Zunil

niacian)	
Conjuction to	i
Cliff House e.	I
e sandstone	
in)	Ī
, shale, and	
ssive marine osta Tongue, body by the	Į
ransgressive	
n)	ſ
ioal-bearing are Bartlett Lentil)	
e sandstone	ı
he Mancos	
es Twowells Hermanos Kdr in parts	
2	J

Van	Greenhorn Formation and Carlile Shale, undivided (Turanian to Cenomanian) – Locally includes Graneros Shale
nge	Cenomanian) – Locally includes Graneros Shale

Carlile Shale (Turonian) - Limited to northeastern area

Greenhorn Formation and Graneros Shale (Turonian and Cenomanian)-Limited to northeastern area

Greenhorn Formation (Turonian to Cenomanian)-Limited to northeastern area; the upper member (Bridge Creek Limestone (Member) can be traced into western area where it is commonly shown as a bed-rank unit in Mancos Shale on detailed maps

Graneros Shale (Cenomanian)-Umited to northeastern area

Intertangued Mancos Shale and Dakota Sandstone of west-central New Mexico (Cenomanian) - Includes the Whitewater Arroya Tonque of Mancos Shale and the Twowells Tongue of the Dakota

Dakota Sandstone (Cenomanian)-Includes Oak Canyon, Cubero, and Paguate Tongues; includes Clay Mesa Tongue of Mancos Shale

Upper and Lower Cretaceous rocks of east-central and northeast New Mexico - Consists of Dakota Group, which includes Romeroville Sandstone (Cenomanian), Pajarito Shale, and Mesa Rica Sandstone. (Albian); the underlying Tucumcari Shale (Albian) in Tucumcari area; and Glencairn Formation (Albian) in Union County

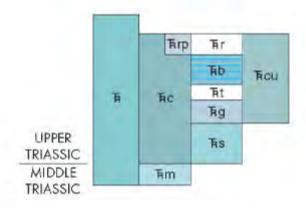
Mancos Shale (Cenomanian) and Beartooth and Sarten Formations (Albian) – Mancos includes what was formerly referred to as Colorado Shale, which in turn may include equivalents of Tres Hermanos Formation

Lower Cretaceous, undivided-In northern Lea and Roosevelt Counties includes equivalents of Tucumcari Shale; in Cornuclas Mountains includes Campagrande and Cox Formations and Washita Group; al Cerro de Cristo Rey includes several formations of the Fredericksburg and Washita Groups, and the Bogullas Formation (Cenomanian); in the southwest, includes Mojado, U-Bar (Aptian), and Hell-to-Finish Formations, which are equivalent to Bisbee Group of Arizona

JURASSIC

To compare this map nomenclature to the USGS nomenclature, see the diagram included on this sheet (at right)

Upper and Middle Jurassic rocks, undivided. In southwest includes the basalt-bearing Broken Jug Formation


Morrison Formation - Upper Jurassia nonmarine rocks

Morrison Formation and upper San Rafael Group | lowermost Cretaceous?-upper Jurassic)

Zuni Sandstone (Callovian) - Consists of undivided equivalents of the Summerville Formation and Bluff Sandstone; restricted to Zuni Basin area

Zuni and Entrada Sandstones, undivided

Entrada Sandstone (Middle Jurassic)

TRIASSIC

Chinle Formation of previous workers (e.g., Stewart et al., 1972) is used here as Chinle Group, following Lucas (1993)

Triassic rocks, undivided-Continental red beds

Rock Point Formation of Chinle Group (Upper Triassic) - May locally include Wingate Sandstone (Triassic)

Chinle Group (Upper Triassic)-Mop unit includes Maenkopi Formation (Middle Triassic) at base in many areas; in eastern part of state the tollowing five formations are mapped

Redonda Formation (Upper Triassic)

Rb Bull Canyon Formation (Notion)

Trujillo Formation (Notion)

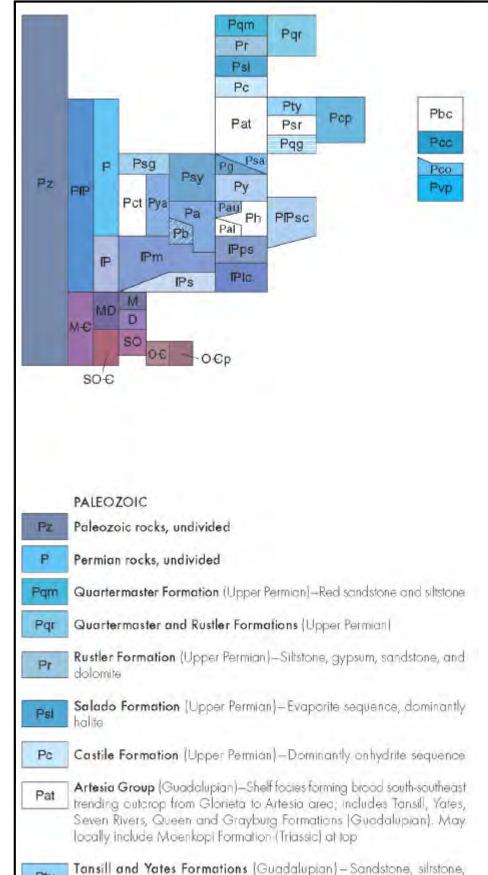
Tag Garita Creek Formation (Carnian)

Santa Rosa Formation (Comian)—Includes Moenkopi Formation (Middle Triassic) at base in most areas

Upper Chinle Group, Garita Creek through Redonda Formations, Ficu undivided

Moenkopi Formation (Middle Triassic)

Map Source: Geologic Map of New Mexico, 2003



MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 4/16/19 | FILE: Mathon—dB148

FIGURE 5 **LEGEND SHEET 5 OF 8** GEOLOGIC MAP OF NEW MEXICO **GALLUP REFINERY**

Imestone, dolomite, and anhydrite

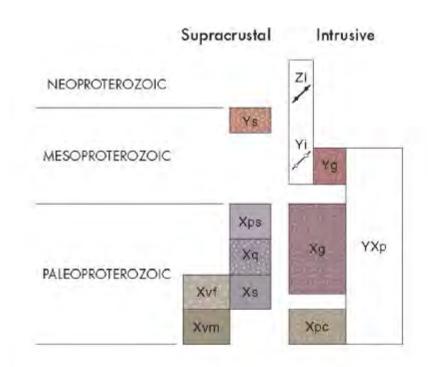
dolomite, and siltstone

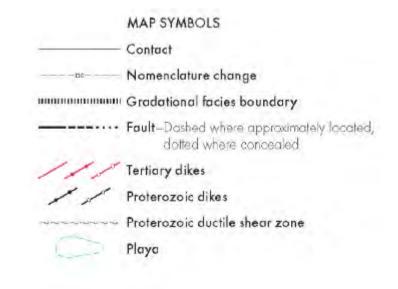
Seven Rivers Formation (Guadalupian - Gypsum, anhydrite, salt,

- Pag Queen and Grayburg Formations (Guadalupian)—Sandstone, gypsum, anhydrite, dolomite, and red mudstone

 Pag Capitan Formation (Guadalupian)—Limestone (reef facies)
- Pbc | Bell Canyon Formation (Guadalupian) Basin factes sandstone, limestone, and shale
- Cherry Canyon Formation (Guadalupian) Basin tacies sandstone, limestone, and shale
- Psa Son Andres Formation (Guadalupian in south, in part Leonardian to north)—Limestone and dolomite with minor shale
- Pg Glorieta Sandstone (Leonardian)—Texturally and mineralogically mature, high-silica quartz sandstone
- Psg San Andres Limestone and Glorieta Sandstone Guadalupian and Leonardian
- Pco Cutoff Shale (Leonardian) In Brokeoff Mountains only
- Pvp Victorio Peak Limestone (Leonardian)—In Brokeoff Mountains only
- Yeso Formation (Leonardian)—Sandstones, siltstones, anhydrite, gypsum, halite, and dolomite
- Pa Abo Formation (Walfcampian)—Red beds, arkosic at base, finer and more mature above; may include limestone beds of Pennsylvanian age (Virgilian) in Zuni Mountains; in Robledo Mountains the Abo may be considered a member of the Hueco Formation
- Pau Upper part of Abo Formation (Wolfcampian)
- Pal Lower part of Abo Formation (locally Virgilian to Upper Pennsylvanian)
- Psy San Andres, Glorieta, and Yeso Formations, undivided
- Pya Yeso and Abo Formations, undivided (Lower Permian)
- Pct Cutler Formation (Wolfcampian to Upper Pennsylvanian Used in northern areas and Chama embayment only
- Ph Hueco Formation or Group (Wolfcampian)—Limestone unit restricted to south-central area. Pendeja Tongue of Hueco Formation divides Abo Formation into upper and lower parts in Sacramento Mountains
- Bursum Formation (lowermost Permian to uppermost Pennsylvanian)— Shale, arkose, and limestone
- PPP Permian and Pennsylvanian rocks, undivided Includes Concha, Scherrer, Colina, Epitaph, and Earp Formations (Permian) and Harquilla Limestone (Permian to Pennsylvanian)
- PIPsc Sangre de Cristo Formation (Walfcampion to Desmoinesian)—In Sangre de Cristo Mountains

- Pennsylvanian rocks, undivided—In Sangre de Cristo Mountains may include Sandia, Madera, La Pasada, Alamitos, and Flechado Formations; elsewhere may include Bar-B, Nakaye, Red House, Oswaldo, and Syrena Formations.
- Madera Group (Pennsylvanian)—In Manzana Mountains includes Wild Cow Formation and Los Moyos Limestone; in Lucero Mesa includes Red Tanks, Atrasado, Gray Mesa Formations; in Sacramento Mountains includes the non-Madera Holder, Beeman, and Gobbler Formations. May include strata lumped as Magdalena Group in a few areas
- Sandia Formation (Atokan)—Predominantly clastic unit (commonly arkosic) with minor black shales, and limestone in lower part; map unit locally includes Morrowan Osha Canyon Formation in Sierra Nacimiento
- Panther Seep Formation (Virgilian)—In Organ, Franklin, and San Andres Mountains
- Pic Lead Camp Formation (Atokan to Missourian) In San Andres and Organ Mountains
- Mississippian rocks, undivided—Arroyo Peñasco Group in Sangre de Cristo Mountains, Sierra Nacimiento, San Pedro Mountains, and Sandia Mountains; Lake Valley Limestone in south-central New Mexico
- Mississippian and Devonian rocks, undivided—Includes Helms, Rancheria,
 Las Cruces, Lake Valley, and Caballero Formations and Escabrosa Group
 (Mississippian); Percha Shale, Contadero, Sly Gap, and Ottate Formations
 of south-central New Mexico, and Canutillo Formation of northern Franklin
 Mountains and Bishops Cap area (Devonian)
- Mississippian through Cambrian rocks, undivided—Includes Lake Valley Limestone (Mississippian); Devonian rocks, undivided; El Paso Formation and Montaya Group or Formation (Ordovician); and Bliss Sandstone (Ordovician and Cambrian)
- Devonian rocks undivided—Includes Percha Shale, Oñate, and Sly Gap Formations
- SO Silurian and Ordovician rocks, undivided
- soc Silurian through Cambrian rocks, undivided
- Ordovician and Cambrian rocks, undivided Includes Montoya Formation for Group), El Paso Formation, and Bliss Sandstone
- OEp Ordovician and Cambrian plutonic rocks of Florida Mountains




MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 4/16/19 FILE: Mathon—dB148

FIGURE 5 LEGEND SHEET 6 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

PROTEROZOIC

Zi Neoproterozoic mafic dikes - Exposed in Taos Range.

Yi Mesoproterozoic mafic dikes, diabase, metadiabase, metadiorite—
Mainly in Burro Mountains; age not well constrained

Mesoproterozoic sedimentary rocks—Exposed in Sacramento Mountains, present in subsurface in southeastern New Mexico as De Baca Group

Mesoproterozoic granitic plutonic rocks—Mainly 1.45–1.35 Ga megacrystic granites, generally weakly foliated except locally at their margins

YXp Mesoproterozoic and Paleoproterozoic plutonic rocks, undivided

Paleoproterozoic granitic plutonic rocks—Variably foliated granites and granitic gneisses; 1,71-1.65 Ga in northern New Mexico; 1,66-1,65 Ga in central and southern New Mexico

xps Paleoproterozoic pelitic schist—Includes Rinconada Formation in northern New Mexico and Blue Springs Schist in Manzano Mountains

Paleoproterozoic quartzite—Includes ~1.70 Ga Ortega Quartzite and equivalents in northern New Mexico and ~1.67 Ga quartzites in central New Mexico

Paleoproterozoic metasedimentary rocks—Pelilic schist, quartz-muscovite schist, immature quartzite, and subordinate amphibolite; includes parts of Vadito Group in northern New Mexico, immature metasedimentary rocks of central New Mexico; and Bullard Peak Series mixed supracrustal rocks in Burro Mountains

Paleoproterozoic rhyolite and felsic volcanic schist—Indudes 170 Ga Vadito Group in northern New Mexico and ~1.68 Ga Sevilleta Metarhyolite in central New Mexico

Paleoproterozoic calc-alkaline plutonic rocks—Granodiorite, diorite, and gabbro complexes; 1.78-1.71 Ga; Interpreted to be intrusive part of juvenile volcanic arc basement

Paleoproterozoic mafic metavolcanic rocks with subordinate felsic metavolcanic rocks—Includes the 1,78-1,72 Ga Moppin (Tusas Mountains), Gold Hill (Taos Range), and Pecos (Sangre de Cristo Mountains) complexes; interpreted to be supracrustal part of juvenile volcanic arc basement

Map Source: Geologic Map of New Mexico, 2003

MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 4/16/19 | FILE: Mathon—dB148

FIGURE 5 LEGEND SHEET 7 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

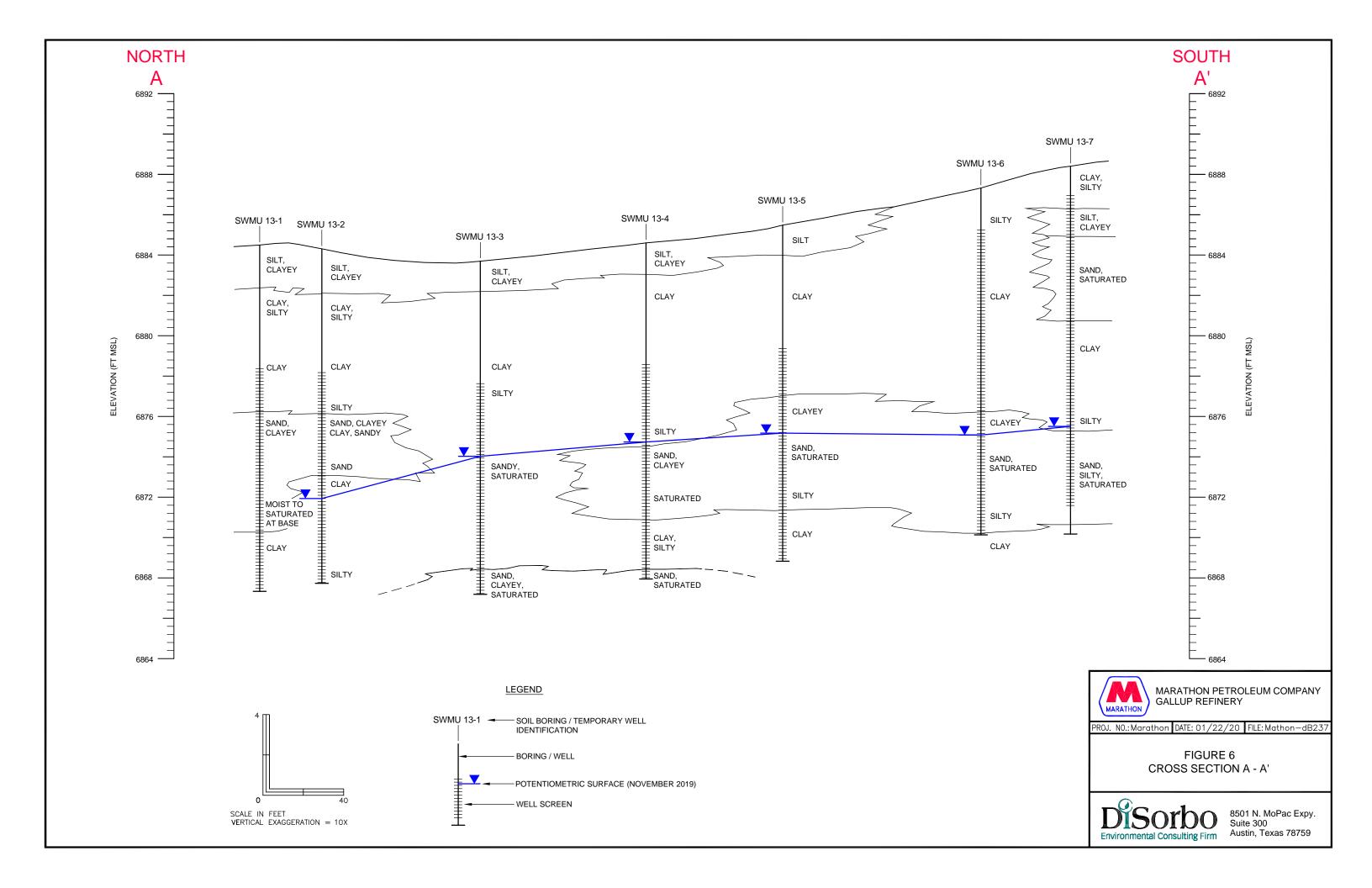
Western New Mexico

		M	ackpile lember		
		Brushy Basin Member Westwater Canyon Member Recapture Member			
Jec	Morrison				
Upl	Formation				
		Salt Wash Member			
		Tidwell Member			
	_ <		Horse Mesa Member		
Middle	Springs W		Be clabito Member		
	Sandstone	rmation	Todilto Limestone Member		
		Upper	sandstone ember		
	Entrada Sandstone	Rehoboth Member			
	27,479,9	lyanbito Member			
	Clan	Navajo Sandstone *			
owe	Canyon	Kayenta Formation*			
	Group	Wingate Sandstone			
	Lower Middle Upper	Cow Springs Sandstone Entrada Sandstone	Morrison Formation Resolven Springs Sandstone		

	_		Western New Mexico		_	Eastern N	New Mexico
			Rock Point Member				Redonda
			Owl Rock Member		Central New Mexico		Formation
Triassic	ррег	Chinle Formation	Correo Sandstone Member	ation	Siltstone member Petrified Forest Member	Dockum Group	Cooper Formation
)	Chinle	Sonsela Sandstone Member	Chinle Formation	Poleo Sandstone		Trujillo Sandstone Tecovas
			Monitor Butte Member		Lentil Salitral Shale Tongue Sandstone Agua Zarca Sandstone Member		Formation
			Shinarump Member				Santa Rosa Sandstone
	Middle	- 1	Moenkopi Formation				Anton Chico Formation

Formal stratigraphic terminology of Triassic and Jurassic rocks in New Mexico, as used in the National Geologic Map Database* of the U.S. Geological Survey. This terminology differs significantly from the Triassic and Jurassic stratigraphy represented on this map.

Map Source: Geologic Map of New Mexico, 2003.


MARATHON PETROLEUM COMPANY GALLUP REFINERY

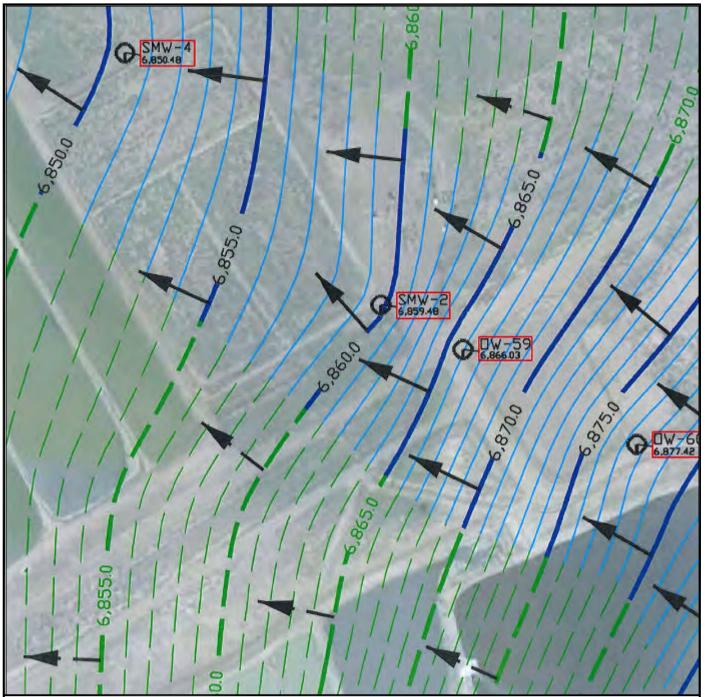

PROJ. NO.; Marathon DATE: 4/16/19 FILE: Mathon-dB148

FIGURE 5 LEGEND SHEET 8 OF 8 GEOLOGIC MAP OF NEW MEXICO GALLUP REFINERY

^{*} http://ngmdb.usgs.gov/geolex_gs.html

Map Source: Intertek psi, Figure 10 2018 Annual Ground Water Monitoring Report, Marathon Gallup Refinery.



PROJ. NO.; Marathon DATE: 01/19/20 | FILE: Mathon-dA177

FIGURE 7
AUGUST 2018
POTENTIOMETRIC SURFACE MAP

SWMU 13-8 🔺

HAND AUGER BORING LOCATION

SWMU 13-1 💠

SOIL BORING / TEMPORARY WELL LOCATION

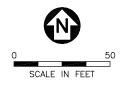
11(0-0.5')

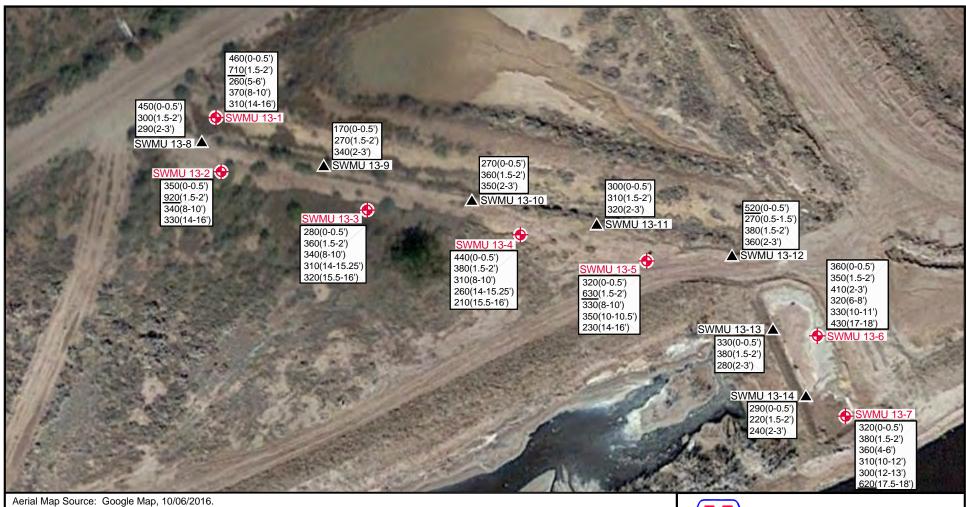
CHROMIUM (TOTAL) CONCENTRATION, mg/kg (SAMPLE DEPTH-FT)

96.6

UNDERLINED CONCENTRATION VALUE EXCEEDS SCREENING LEVEL

SITE LOCATION




MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 01/19/20 FILE: Mathon-dA178

FIGURE 8
CHROMIUM (TOTAL) SOILS
CONCENTRATION MAP

LEGEND

SWMU 13-8 🛕

HAND AUGER BORING LOCATION

SWMU 13-1 💠

SOIL BORING / TEMPORARY WELL LOCATION

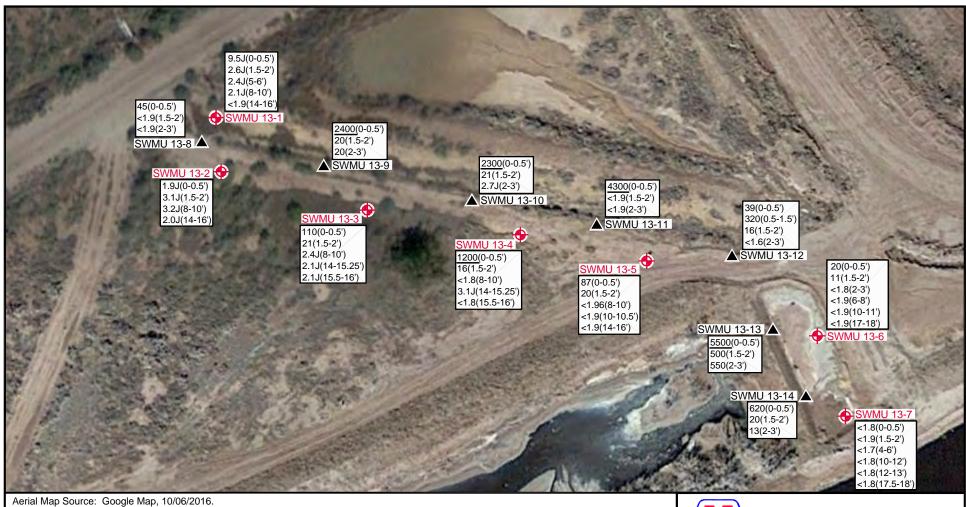
170(0-0.5')

MANGANESE CONCENTRATION, mg/kg (SAMPLE DEPTH-FT)

464

UNDERLINED CONCENTRATION VALUE EXCEEDS SCREENING LEVEL

SITE LOCATION EI


MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ, NO.; Marathon DATE: 01/20/20 | FILE: Mathon—dA179

FIGURE 9
MANGANESE SOILS
CONCENTRATION MAP

LEGEND

SWMU 13-8 ▲

HAND AUGER BORING LOCATION

SWMU 13-1 💠

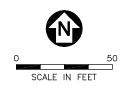
SOIL BORING / TEMPORARY WELL LOCATION

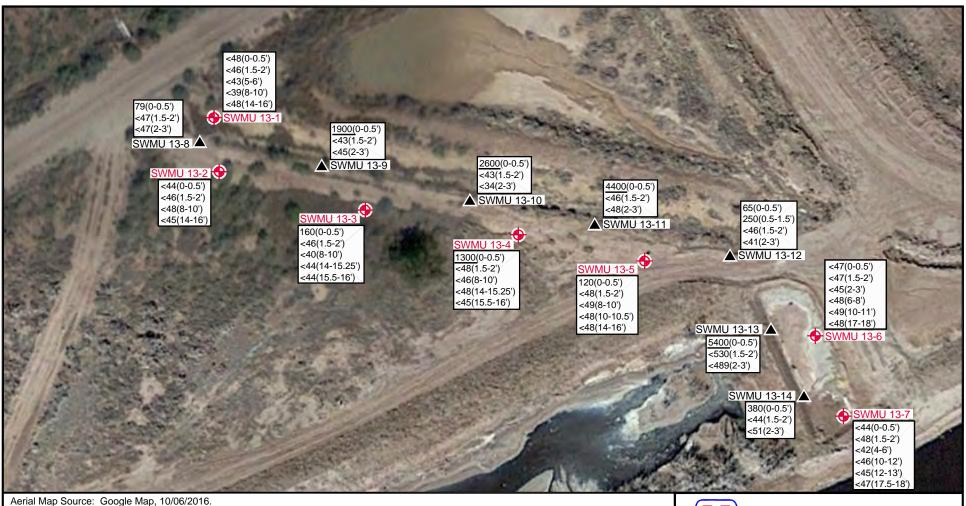
45(0-0.5')

DIESEL RANGE ORGANICS CONCENTRATION, mg/kg (SAMPLE DEPTH-FT)

UNDERLINED CONCENTRATION VALUE EXCEEDS SCREENING LEVEL

SITE LOCATION




MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.; Marathon DATE: 01/20/20 FILE: Mathon-dA180

FIGURE 10
DIESEL RANGE ORGANICS SOILS
CONCENTRATION MAP

LEGEND

SWMU 13-8 🛕

HAND AUGER BORING LOCATION

SWMU 13-1 💠

SOIL BORING / TEMPORARY WELL LOCATION

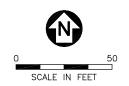
160(0-0.5')

MOTOR OIL RANGE ORGANICS CONCENTRATION, mg/kg (SAMPLE DEPTH-FT)

1000

UNDERLINED CONCENTRATION VALUE EXCEEDS SCREENING LEVEL

SITE LOCATION



MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE; 01/20/20 FILE: Mathon—dA181

FIGURE 11
MOTOR OIL RANGE ORGANICS SOILS
CONCENTRATION MAP

LEGEND

SWMU 13-8 HAND AUGER BORING LOCATION

SWMU 13-1 +

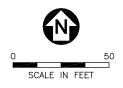
SOIL BORING / TEMPORARY WELL LOCATION

ARSENIC CONCENTRATION, μ g/L BERYLLIUM CONCENTRATION, μ g/L

IRON CONCENTRATION, μ g/L

LEAD CONCENTRATION, μ g/L

UNDERLINED CONCENTRATION VALUE **EXCEEDS SCREENING LEVEL**


SITE LOCATION

PROJ, NO.; Marathon DATE: 01/21/20 | FILE: Mathon-dA182

FIGURE 12 ARSENIC, BERYLLIUM, IRON AND LEAD TOTAL **GROUNDWATER CONCENTRATION MAP**

LEGEND

SWMU 13-8

HAND AUGER BORING LOCATION

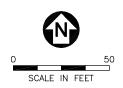
SWMU 13-1 +

SOIL BORING / TEMPORARY WELL LOCATION

MANGANESE (TOTAL) CONCENTRATION, μ g/L CHLORIDE CONCENTRATION, μ g/L SULFATE CONCENTRATION, μ g/L FLUORIDE CONCENTRATION, μ g/L

UNDERLINED CONCENTRATION VALUE EXCEEDS SCREENING LEVEL

SITE LOCATION



MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ, NO.: Marathon DATE: 01/21/20 FILE: Mathon—dA183

FIGURE 13
MANGANESE (TOTAL), CHLORIDE,
SULFATE AND FLUORIDE
GROUNDWATER CONCENTRATION MAP

LEGEND

SWMU 13-8

HAND AUGER BORING LOCATION

SWMU 13-1

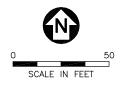
SOIL BORING / TEMPORARY WELL LOCATION

1000

ARSENIC CONCENTRATION, μ g/L IRON CONCENTRATION, μ g/L MANGANESE CONCENTRATION, μ g/L

UNDERLINED CONCENTRATION VALUE **EXCEEDS SCREENING LEVEL**

SITE LOCATION



MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ. NO.: Marathon DATE: 01/21/20 | FILE: Mathon-dA184

FIGURE 14 ARSENIC, IRON AND MANGANESE DISSOLVED **GROUNDWATER CONCENTRATION MAP**

LEGEND

SWMU 13-8 A

HAND AUGER BORING LOCATION

SWMU 13-1

SOIL BORING / TEMPORARY WELL LOCATION

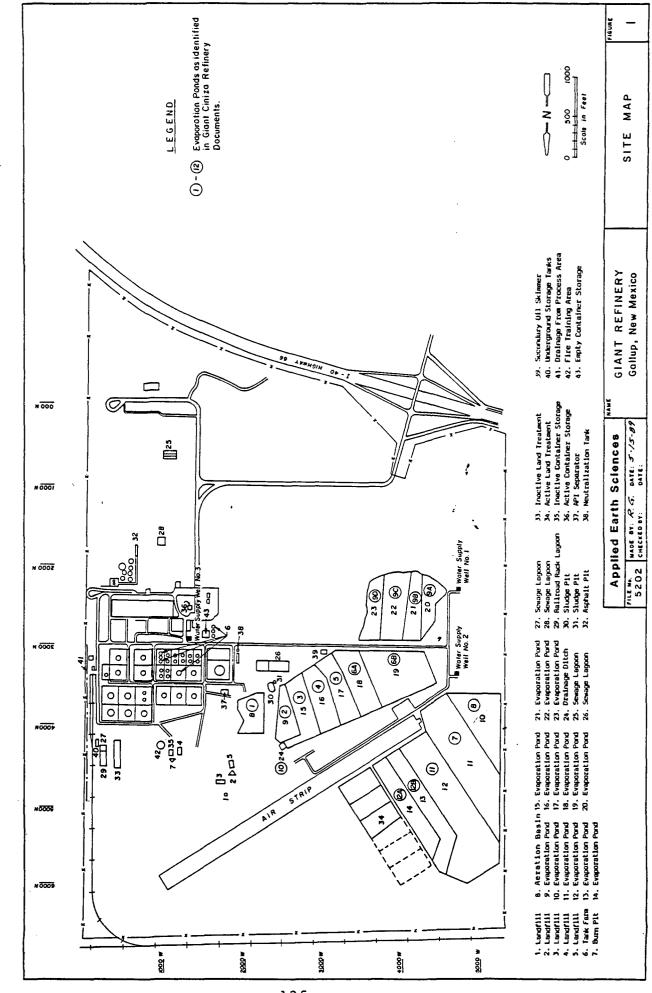
GASOLINE RANGE ORGANICS CONCENTRATION, $\,\mu\mathrm{g/L}$ DIESEL RANGE ORGANICS CONCENTRATION, $\,\mu\mathrm{g/L}$

EXCEEDS SCREENING LEVEL

MARATHON

MARATHON PETROLEUM COMPANY GALLUP REFINERY

PROJ, NO.; Marathon DATE: 01/21/20 | FILE: Mathon-dA185


FIGURE 15 **GASOLINE RANGE ORGANICS** AND DIESEL RANGE ORGANICS **GROUNDWATER CONCENTRATION MAP**

> 8501 N. MoPac Expy. Suite 300 Austin, Texas 78759

UNDERLINED CONCENTRATION VALUE

Appendix A 1991 RFI Sampling Information

...

FIGURE 4.4

SWMU #13

PHASE II, RFI 1991 GIANT REFINING CINIZA

METALS

SAMPLE POINT NUMBER SAMPLE POINT DEPTH		01 V2.0	01 V 3.5	02 V2.0	02 V3.5	03 V2.0	03 V3.5	04 V2.0	04 V3.5	04 D3.5	02 E2.0 (mg/l)
PARAMETER	UNITS										\ = g/ 1/
										-	
Antimony	mg/kg	<3	<3	< 3	<3	<3	<3 <i>·</i>	< 3	<3	<3	<0.05
Arsenic	ng/kg	<3	< 3	<3	<3	<3	<3	<3	<3	<3	<0.005
Barium	⊒g/kg	281	287	244	377	244	312	266	250	262	<0.010
Beryllium	ng/kg	2.4	3.6	4.3	3.2	4.1	4.3	4.3	4.6	4.9	<0.005
Cadmium	æg/kg	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.005
Chromium	a g/kg	4.5	5.2	6.0	5.1	5.2	5.3	7.1	6.4	6.5	<0.010
Cobalt	ag/kg	4.4	5.5	5.1	5.0	6.0	5.1	5.9	5.3	5.2	<0.010
Copper	≞g/kg	4.6	4.1	4.4	5.4	5.3	4.9	5.5	4.9	5.1	(<0.010
Lead	a g/kg	10	10	12	10	11	12	10	9	11	<0.002
Mercury	ag/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.0002
Nickel	mg/kg	8.5	8.9	9.0	9.2	10.9	ي-8.9	11.3	9.6	9.1	<0.020
Potassiu m	ng/kg	1080	1200	1720	1190	1680	1270	1830	2370	2190	<1.0
Selenium	ag/kg	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.005
Vanadium	ag/kg	10.0	11.5	12.3	9.3	12.1	12.0	10.0	12.2	12.6	<0.010
Zinc	∎g/kg	9.7	12.4	14.3	13.0	14.6	12.6	16.1	15.3	14.1	0.014

6 40

SVHU #13

PHASE II, RFI 1991 GIANT REFINING CINIZA

8240 VOLATILE ORGANICS	RGANICS	Ε	TI.	OLA	٧	40	82
------------------------	---------	---	-----	-----	---	----	----

SAMPLE POINT NUMBER SAMPLE POINT DEPTH		01 V2.0	01 V3.5	02 ₹2. 0	02 V 3.5	03 V 2.0	03 V 3.5	04 V2.0	04 V3.5	04 D3.5	02 E2.0 (ug/1)
PARAMETER	UNITS										(ug/ 17
Carbon Sulfide	∎g/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	·<0.5	<5
1,2-Dichloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 5
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5
2-Chloroethyl vinyl ether	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	. <\$
Chlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< \$
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5
2-Butanone (MEK)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5
Styrene	ng/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1<5
Xylenes (total)	ng/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5
1,4-Dioxane .	mg/kg	<7.5	<7.5	<7.5	<7.5	<7.5	<7.5	<7.5	<7.5	<7.5	<10
1,2-Dibromoethane (EDB)	≡ g/kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25 ~	<0.25	<0.25	<0.25	<2.5


SWMU #13

PHASE II, RFI 1991 GIANT REFINING CINIZA

8270 SEMI-VOLATILE ORGANICS

SAMPLE POINT NUMBER		01	01	02	. 02	03	03	04	04	04	02
SAMPLE POINT DEPTH		V2.0	V3.5	V2.0	V3.5	V2.0	V3.5	V2.0	V3.5	D3.5	E2.0
PARAMETER	UNITS										(ug/1)
Anthracene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	<0.17	< 5
Benzenethiol	ng/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	<0.17	<5
Benzo(a)anthracene	aq∕kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	< 5
Benzo(b)fluoranthene	ng/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Benzo(k)fluoranthene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Benzo(a)pyrene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Butyl benzyl phthalate	∎g/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Chrysene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	< 5
Dibenz(a,h)anthracene	ag/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	1 <5
Di-n-butyl phthalate	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
1,2-Dichlorobenzene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	< 5
1,3-Dichlorobenzene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17,	<0.17	<0.17	<0.17	<5
1,4-Dichlorobenzene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Diethyl phthalate	æ g∕kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
7,12-Dimethylbenz(a)-											
anthracene	ng/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
2,4-Dimethylphenol	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Dimethyl phthalate	ng/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
2,4-Dinitrophenol	ng/kg	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<25
Fluoranthene	ag/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<\$
Naphthalene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<\$
4-Nitrophenol	ag/kg	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<0.95	<0.85	<0.85	<25
Phenanthrene	ag/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<\$
Phenol	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Pyrene	ng/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
Methylchrysene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
1-Methylnaphthalene	mg/kg	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<5
3-Methyl Phenol	mg/kg	· <5	<5	< 5	<5	<5	<5	<5	<5	<5	< \$
Pyridine	ng/kg	<5	<\$	<5	<5	<5	<5	<5	<5	<\$	<5
Quinoline	ng/kg	<0.85	<0.95	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85	<25

Appendix B 1996 Sampling Information

11/14/96

10/24/96

10/25/96

Date Reported:

Date Sampled:

Date Received:

TRACE METAL CONCENTRATION

Client:

Giant Refining Company

Project:

Ciniza Refinery

Sample ID:

RFI 1301 A6

Matrix: Condition: Soil Intact

Lab ID:

0396G02343

	Result	Detection Limit	
Parameter	(mg/Kg)	(mg/Kg)	Method
Arsenic	< 0.25	0.25	SW-846-7000
Barium	119	0.50	SW-846 6010
Cadmium	< 0.05	0.05	SW-846 6010
Chromium	4.45	0.50	SW-846 6010
Cobalt	2.25	0.50	SW-846 6010
Copper	2.05	0.50	SW-846 6010
Selenium	< 0.250	0.250	SW-846-7000
Lead	4.60	2.50	SW-846-6010
Mercury	< 0.050	0.050	SW-846 7171A
Nickel	4.05	0.50	SW-846 6010
Antimony	< 0.250	0.250	SW-846 6010
Vanadium	6.90	0.50	SW-846 6010
Zinc	6.40	2.50	SW-846 6010
Beryllium	4.750	0.200	SW-846 6010

References:

Method 3050: Acid Digestion for Sediments, Sludges, and Soil,

SW-846, Rev. 1, July 1992.

Reported By:

Reviewed By: 8

TRACE METAL CONCENTRATION

Client:

Giant Refining Company

Project:

Ciniza Refinery

Sample ID:

RFI 1302 A6

Matrix: Condition: Soil Intact

Lab ID:

0396G02344

Date Reported:

11/14/96

Date Sampled:

10/24/96

Date Received: 10/25/96

		Detection <	
Parameter.	Result (mg/Kg)	Limit (mg/Kg)	Method
Arsenic	<0.25	0.25	SW-846-7000
Barium	84.5	0.50	SW-846 6010
Cadmium	< 0.05	0.05	SW-846 6010
Chromium	5.15	0.50	SW-846 6010
Cobalt	2.60	0.50	SW-846 6010
Copper	2.30	0.50	SW-846 6010
Selenium	< 0.250	0.250	SW-846-7000
Lead	5.55	2.50	Sw-846-6010
Mercury	< 0.050	0.050	SW-846 7171A
Nickel	4.60	0.50	SW-846 6010
Antimony	< 0.250	0.250	SW-846 6010
Vanadium	8.05	0.50	SW-846 6010
Zinc	7.30	2.50	SW-846 6010
Beryllium	6.00	0.200	SW-846 6010

References:

Method 3050: Acid Digestion for Sediments, Sludges, and Soil,

SW-846, Rev. 1, July 1992.

Reported By:

Reviewed By: __________

TRACE METAL CONCENTRATION

Client:

Giant Refining Company

Project:

Ciniza Refinery

Sample ID:

RFI 1303 A6

Matrix: Condition: Soil Intact

Lab ID:

0396G02345

Date Reported:

11/14/96

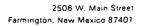
Date Sampled:

10/24/96

Date Received: 10/2

10/25/96

	are Herry Dr. V. Zakovany vysky się	Detection (-	
	Result	Limit	
Parameter:	(mg/Kg)	(mg/Kg)	Method
Arsenic	< 0.25	0.25	SW-846-7000
Barium	93.5	0.50	SW-846 6010
Cadmium	< 0.05	0.05	SW-846 6010
Chromium	4.90	0.50	SW-846 6010
Cobalt	2.55	0.50	SW-846 6010
Copper	2.55	0.50	SW-846 6010
Selenium	< 0.250	0.250	Sw-846-7000
Lead	5.00	2.50	SW-846-6010
Mercury	< 0.050	0.050	SW-846 7171A
Nickel	4.50	0.50	SW-846 6010
Antimony	< 0.250	0.250	SW-846 6010
Vanadium	7.55	0.50	SW-846 6010
Zinc	7.30	2.50	SW-846 6010
Beryllium	0.590	0.200	SW-846 6010


References:

Method 3050: Acid Digestion for Sediments, Sludges, and Soil,

SW-846, Rev. 1, July 1992.

Reported By:

Reviewed By:

Quality Control / Quality Assurance

Spike Analysis / Blank Analysis TOTAL METALS

Client:

Project: Sample Matrix: Giant Refining Company

Ciniza Refinery

soil

Date Reported:

Date Analyzed:

Date Received:

11/14/96 11/13/96

10/25/96

Spike Analysis

		Opike Allalysis		
	Spike	Sample	Spike	
	Result	Result	Added	Percent
Parameter	(mg/L)	(mg/L)	(mg/L)	Recovery
Antimony	0.506	0.500	0.500	101%
Arsenic*	*	*	*	*
Barium	0.55	0.50	0.50	98%
Cadium*	*	*	*	*
Chromium	0.53	0.50	0.50	106%
Lead	0.51	0.500	0.50	102%
Mercury	0.520	0.50	0.500	96%
Selenium	0.022	0.025	0.025	114%
Beryllium	0.52	0.50	0.50	104%
Cobalt	0.52	0.50	0.50	104%
Copper	0.52	0.50	0.50	104%
Nickel	0.50	0.50	0.50	101%
Vanadium	0.53	0.50	0.500	107%
Zinc	0.57	0.50	0.50	88%

Method Blank Analysis

	Famili.	Detection Limit	Units
Parameter	Result	0.25	
Antimony	ND		mg/L
Arsenic	ND	0.25	mg/L
Barium	ND	0.50	mg/L
Cadmium	ND	0.25	mg/L
Chromium	ND	0.50	mg/L
Lead	ND	0.75	mg/L
Mercury	ND	0.05	mg/L
Selenium	ND	0.25	mg/L
Silver	ND	0.50	mg/L
Beryllium	ND	0.20	mg/L
Cobalt	ND	0.50	mg/L
Copper	ND	0.50	mg/L
Nickel	ND	0.5	mg/L
Vanadium	ND	0.50	mg/L

References:

Method 3050: Acid Digestion for Sediments, Sludges, and Soil

SW-846, Rev. 1, July 1992.

Comments:

*Spikes did not recover due to matrix interferences.

Reported by_

Reviewed by B

Quality Control / Quality Assurance

Known Analysis TOTAL METALS

Client:

Giant Refining Company

Project:

Sample Matrix:

Ciniza Refinery

soil

Date Reported:

11/14/96

Date Analyzed:

11/13/96

Date Received:

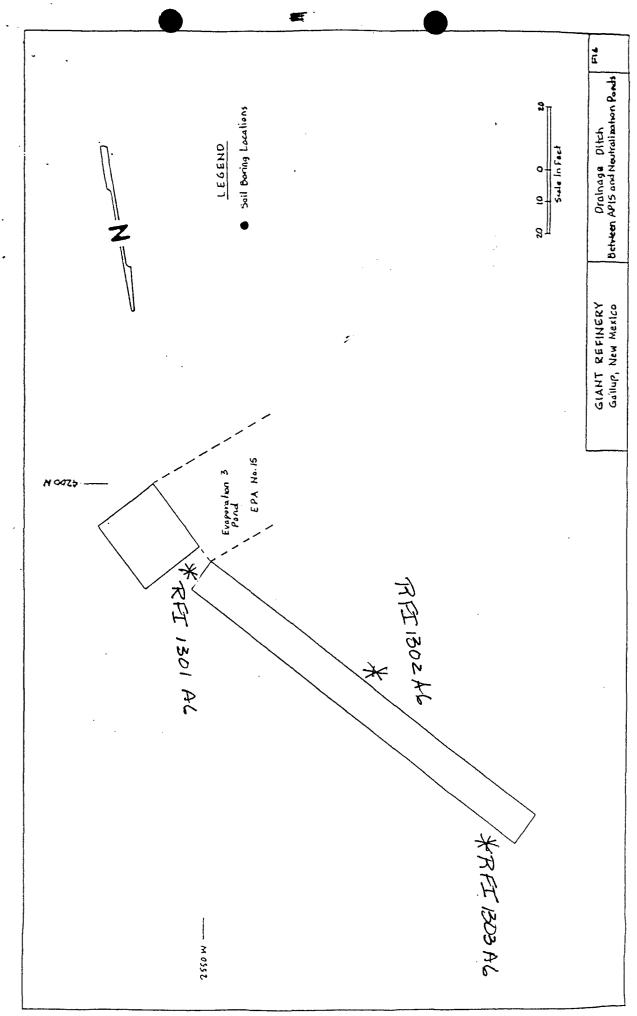
10/25/96

Known Analysis

		Kijowii zaratyolo		
Parameter	Found Result	Known Result	Percent Recovery	Units
Antimony	1.06	1.00	106%	mg/L
Arsenic	0.010	0.010	100%	mg/L
Barium	1.07	1.00	107%	mg/L
Cadmium	1.08	1.00	108%	mg/L
Chromium	1.06	1.00	106%	mg/L
Lead	1.03	1.00	103%	mg/L
Mercury	0.004	0.004	103%	mg/L
Selenium	0.010	0.010	100%	mg/L
Silver	0.49	0.50	98%	mg/L
Beryllium	1.00	1.00	100%	mg/L
Cobalt	1.01	1.00	101%	mg/L
Copper	1.04	1.00	104%	mg/L
Nickel	0.99	1.00	99%	mg/L
Vanadium	1.00	1.00	100%	mg/L

References:

Method 3050: Acid Digestion for Sediments, Sludges, and Soil,


SW-846, Rev. 1, July 1992.

Reviewed by

TABLE -1 BACKGROUND METALS

Total Metals

Parameter	Analytical Method	Reporting Limit mg/kg
Antimony	6010	6.0
Arsenic	7060	0.5
Barium	6010	1.0
Beryllium	6010 .	0.2
Cadmium	6010	0.5
Chromium	6010	1.0
Cobalt	6010	1.0
Copper	6010	2.0
Lead	6010	5.0
Mercury	7471	0.2
Nickel	6010	4.0
Potassium not requ	erted 6010	500
Selenium	7740	0.5
Vanadium	6010	. I.O
Zinc	6010	2.0

12

(21X) ·

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1301 A6

Project ID:

Ciniza

Lab ID:

B969762

2 0396G02343

Matrix:

Soil

Date Reported:

11/07/96

Date Sampled: Date Received: 10/23/96

Date Extracted:

10/29/96 11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
1,1,1,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,1-Trichloroethane	ND ,	0.2	mg/kg
1,1,2,2-Tetrachioroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,1-Dichloropropene	ND	0.2	mg/kg
1,2,3-Trichlorobenzene	ND	0.2	mg/kg
1,2,3-Trichloropropane	ND	0.2	mg/kg
1,2,4-Trichlorobenzene	ND	0.2	mg/kg
1,2,4-Trimethylbenzene	ND	0.2	mg/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.2	mg/kg
1,2-Dibromoethane (EDB)	ND	0.2	mg/kg
1,2-Dichlorobenzene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
1,3,5-Trimethylbenzene	ND	0.2	mg/kg
1,3-Dichlorobenzene	ND	0.2	mg/kg
1,3-Dichloropropane	ND	0.2	mg/kg
1,4-Dichlorobenzene	ND	0.2	mg/kg
2,2-Dichloropropane	· ND	0.2	mg/kg
2-Chlorotoluene	ND	0.2	mg/kg
4-Chlorotoluene	ND	0.2	mg/kg
4-Isopropyltoluene	ND	0.2	mg/kg
Benzene	ND	0.2	mg/kg
Bromobenzene	ND	0.2	mg/kg
Bromochloromethane	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1301 A6

Project ID:

Ciniza

Soil

Lab ID:

Matrix:

B969762

0396G02343

Date Reported:

11/07/96

Date Sampled: Date Received:

10/23/96

Date Extracted:

10/29/96 11/04/96

Date Analyzed:

11/04/96

Carbon Tetrachloride				
Carbon Tetrachloride ND 0.2 mg Chlorobenzene ND 0.2 mg Chloroethane ND 0.2 mg Chloroform ND 0.2 mg Chloromethane ND 0.2 mg cis-1,2-Dichloroethene ND 0.2 mg cis-1,3-Dichloropropene ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromomethane ND 0.2 mg Ethylbenzene ND 0.2 mg	Parameter	Result	PQL	Units
Chlorobenzene ND 0.2 mg Chloroethane ND 0.2 mg Chloroform ND 0.2 mg Chloromethane ND 0.2 mg cis-1,2-Dichloroethene ND 0.2 mg cis-1,3-Dichloropropene ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg Methylene chloride ND 0.2 mg Methylene chloride ND 0.2 mg n-Propylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene	ontinued			
Chloroethane ND 0.2 mg Chloroform ND 0.2 mg Chloromethane ND 0.2 mg cis-1,2-Dichloroethene ND 0.2 mg cis-1,3-Dichloropropene ND 0.2 mg Dibromomethane ND 0.2 mg Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg Npp-Xylene ND 0.2 mg Methylene chloride ND 0.2 mg Methylene chloride ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg <t< td=""><td>Carbon Tetrachloride</td><td>ND ج</td><td>0.2</td><td>mg/kg</td></t<>	Carbon Tetrachloride	ND ج	0.2	mg/kg
Chloroform ND 0.2 mg Chloromethane ND 0.2 mg cis-1,2-Dichloroethene ND 0.2 mg cis-1,3-Dichloropropene ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromochloromethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg Methylene chloride ND 0.2 mg Methylene chloride ND 0.2 mg n-Propylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg	Chlorobenzene	ND	0.2	mg/kg
Chloromethane ND 0.2 mg cis-1,2-Dichloroethene ND 0.2 mg cis-1,3-Dichloropropene ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 0.2 mg n-Propylbenzene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg	Chloroethane	ND	0.2	mg/kg
cis-1,2-Dichloroethene ND 0.2 mg cis-1,3-Dichloropropene ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 0.2 mg m-Propylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg sec-Butylbenzene ND 0.2 mg styrene ND 0.2 mg styrene ND 0.2 mg tetr-Butylbenzene ND 0.2 mg </td <td>Chloroform</td> <td>ND</td> <td>0.2</td> <td>mg/kg</td>	Chloroform	ND	0.2	mg/kg
cis-1,3-Dichloropropene ND 0.2 mg Dibromochloromethane ND 0.2 mg Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg Methylene chloride ND 0.2 mg m-Propylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Trichloroethene (PCE) ND 0.2 mg Trichloroethene (TCE) ND 0.2 <td< td=""><td>Chloromethane</td><td>ND</td><td>0.2</td><td>mg/kg</td></td<>	Chloromethane	ND	0.2	mg/kg
Dibromochloromethane ND 0.2 mg Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 0.2 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trichloroethene (TCE) ND 0.2 mg	cis-1,2-Dichloroethene	ND	0.2	mg/kg
Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 0.2 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichlorofluoromethane ND 0.2 mg	cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromomethane ND 0.2 mg Dichlorodifluoromethane ND 0.2 mg Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 1.0 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichlorofluoromethane ND 0.2 mg	•	ND	0.2	mg/kg
Ethylbenzene ND 0.2 mg Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 1.0 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg <td>Dibromomethane</td> <td>ND</td> <td>0.2</td> <td>mg/kg</td>	Dibromomethane	ND	0.2	mg/kg
Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 1.0 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	Dichlorodifluoromethane	ND	0.2	mg/kg
Hexachlorobutadiene ND 0.2 mg Isopropylbenzene ND 0.2 mg m,p-Xylene ND 0.2 mg Methylene chloride ND 1.0 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	Ethylbenzene	ND	0.2	mg/kg
m,p-Xylene ND 0.2 mg Methylene chloride ND 1.0 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg		ND	0.2	mg/kg
Methylene chloride ND 1.0 mg n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	Isopropylbenzene	ND	0.2	mg/kg
n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	m,p-Xylene	ND	0.2	mg/kg
n-Butylbenzene ND 0.2 mg n-Propylbenzene ND 0.2 mg Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	Methylene chloride	ND	1.0	mg/kg
Naphthalene ND 0.2 mg o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	n-Butylbenzene	ND	0.2	mg/kg
o-Xylene ND 0.2 mg sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	n-Propylbenzene	ND	0.2	mg/kg
sec-Butylbenzene ND 0.2 mg Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	Naphthalene	ND	0.2	mg/kg
Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	o-Xylene	ND	0.2	mg/kg
Styrene ND 0.2 mg tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	sec-Butylbenzene	· ND	0.2	mg/kg
tert-Butylbenzene ND 0.2 mg Tetrachloroethene (PCE) ND 0.2 mg Toluene ND 0.2 mg trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg		ND	0.2	mg/kg
Tetrachloroethene (PCE) ND O.2 mg Toluene ND O.2 mg trans-1,2-Dichloroethene ND O.2 mg Trichloroethene (TCE) ND O.2 mg Vinyl Chloride ND O.2 mg O	-	ND	0.2	mg/kg
trans-1,2-Dichloroethene ND 0.2 mg Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	-	ND	0.2	mg/kg
Trichloroethene (TCE) ND 0.2 mg Trichlorofluoromethane ND 0.2 mg Vinyl Chloride ND 0.2 mg	Toluene	ND	0.2	mg/kg
Trichloroethene (TCE)ND0.2mgTrichlorofluoromethaneND0.2mgVinyl ChlorideND0.2mg	trans-1,2-Dichloroethene	ND	0.2	mg/kg
TrichlorofluoromethaneND0.2mgVinyl ChlorideND0.2mg		ND	0.2	mg/kg
Vinyl Chloride ND 0.2 mg			0.2	mg/kg
·	Vinyl Chloride	·	0.2	mg/kg
	•	ND ·	0.2	mg/k

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1301 A6

Project ID: Lab ID:

Matrix:

Ciniza

Soil

B969762

0396G02343

Date Sampled:

11/07/96 10/23/96

Date Received:

Date Reported:

Date Extracted:

10/29/96 11/04/96

Date Analyzed:

11/05/96

		······································	
Parameter	Result	PQL	Units

Continued

QUALITY CONTROL - Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	93	70 - 121
Bromofluorobenzene	100	74 - 121
Toluene-d8	104	81 - 117

ND - Not Detected at Practical Quantitation Level (PQL)

Method 8260, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for

Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Rev. 1,

November 1992.

Reviewed

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1301 A6

Project ID:

Ciniza

Lab ID: Matrix:

B969762 Soil

0396G02343

Date Reported: Date Sampled:

11/08/96 10/23/96

Date Received:

10/29/96

Date Extracted: Date Analyzed: 11/04/96 11/05/96

Parameter	Result	PQL	Units
1,2,4-Trichlorobenzene	ND .	1.0`	mg/kg
1,2-Dichlorobenzene	ND	1.0	mg/kg
1,3-Dichlorobenzene	ND	1.0	mg/kg
1,4-Dichlorobenzene	ND	1.0	mg/kg
2,4,5-Trichlorophenol	ND	2.0	mg/kg
2,4,6-Trichlorophenol	ND	2.0	mg/kg
2,4-Dichlorophenol	ND	1.0	mg/kg
2,4-Dimethylphenol	ND	1.0	mg/kg
2,4-Dinitrophenol	ND	2.0	mg/kg
2,4-Dinitrotoluene	ND	1.0	mg/kg
2,6-Dinitrotoluene	ND	1.0	mg/kg
2-Chloronaphthalene	ND	1.0	mg/kg
2-Chlorophenol	ND	1.0	mg/kg
2-Methylnaphthalene	ND	1.0	mg/kg
2-Methylphenol	ND	1.0	mg/kg
2-Nitroaniline	ND	5.0	mg/kg
2-Nitrophenol	ND .	1.0	mg/kg
3,3'-Dichlorobenzidine	ND	2.0	mg/kg
3-Methylphenol/4-Methylphenol	ND	1.0	mg/kg
3-Nitroaniline	· ND	5.0	mg/kg
4,6-Dinitro-2-methylphenol	ND	5.0	mg/kg
4-Bromophenyl-phenylether	ND	1.0	mg/kg
4-Chloro-3-methylphenol	ND	2.0	mg/kg
4-Chloroaniline	ND	2.0	mg/kg
4-Chlorophenyl-phenylether	ND	1.0	mg/kg
4-Nitroaniline	ND	2.0	mg/kg
4-Nitrophenol	ND	2.0	mg/kg
Acenaphthene	ND	1.0	mg/kg

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

0396G02343

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1301 A6

Project ID:

Ciniza

Lab ID:

B969762

Matrix:

Soil

Date Reported:

11/08/96

Date Sampled: Date Received: 10/23/96 10/29/96

Date Extracted:

11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
ontinued			·
Acenaphthylene	ND	1.0	mg/kg
Anthracene	ND	1.0	mg/kg
Benzo(a)anthracene	ND	1.0	mg/kg
Benzo(a)pyrene	ND	1.0	mg/kg
Benzo(b)fluoranthene	ND	1.0	mg/kg
Benzo(g,h,i)perylene	ND	1.0	mg/kg
Benzo(k)fluoranthene	ND	1.0	mg/kg
Benzoic Acid	ND	5.0	mg/kg
Benzyl Alcohol	ND	2.0	mg/kg
bis(2-Chloroethoxy)methane	ND	1.0	mg/kg
bis(2-Chloroethyl)ether	. ND	1.0	mg/kg
bis(2-Chloroisopropyl)ether	ND	1.0	mg/kg
bis(2-Ethylhexyl)phthalate	ND	5.0	mg/kg
Butylbenzylphthalate	ND	1.0	mg/kg
Chrysene	ND	1.0	mg/kg
Di-n-Butylphthalate	ND	5.0	mg/kg
Di-n-Octylphthalate	ND	5.0	mg/kg
Dibenz(a,h)anthracene	ND	1.0	mg/kg
Dibenzofuran	· ND	1.0	mg/kg
Diethylphthalate	ND	1.0	mg/kg
Dimethylphthalate	ND	1.0	mg/kg
Fluoranthene	ND	1.0	mg/kg
Fluorene	ND	1.0	mg/kg
Hexachlorobenzene	ND	2.0	mg/kg
Hexachlorobutadiene	ND	2.0	mg/kg
Hexachlorocyclopentadiene	ND	1.0	mg/kg
Hexachloroethane	ND .	2.0	mg/kg
Indeno(1,2,3-cd)pyrene	ND	1.0	mg/kg

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1301 A6

Project ID: Lab ID:

Ciniza

B969762

0396G02343

Matrix:

Soil

Date Reported:

11/08/96

Date Sampled: Date Received:

10/23/96 10/29/96

Date Extracted: Date Analyzed:

11/04/96 11/05/96

Parameter	Result	PQL	Units
ontinued			
Isophorone	ND	1.0	mg/kg
N-Nitrosodi-n-propylamine	, ND	1.0	mg/kg
N-Nitrosodiphenylamine	ND	1.0	mg/kg
Naphthalene	ND	1.0	mg/kg
Nitrobenzene	ND	1.0	mg/kg
Pentachlorophenol	ND	5.0	mg/kg
Phenanthrene	ND	1.0	mg/kg
Phenol	ND	1.0	mg/kg
Pyrene	ND	1.0	mg/kg
QUALITY CONTROL - Surrogate Recovery	%	QC Limits	
2,4,6-Tribromophenol	59	19 - 122	
2-Fluorobiphenyl	59	30 - 115	
2-Fluorophenol	62	25 - 121	
Nitrobenzene-d5	51	23 - 120	
Phenol-d6	78	24 - 113	
Terphenyl-d14	62	18 - 137	

ND - Not Detected at Practical Quantitation Level (PQL)

Reference: Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile

Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, November 1990.

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1302 A6

Project ID:

Ciniza

Lab ID:

B969763

0396G02344

Matrix:

Soil

Date Reported:

11/07/96

Date Sampled:

10/23/96

Date Received:

10/29/96

Date Extracted:
Date Analyzed:

11/04/96 11/05/96

Parameter	Result	PQL	Units
1,1,1,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,1-Trichloroethane	ND -	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,1-Dichloropropene	ND	0.2	mg/kg
1,2,3-Trichlorobenzene	ND	0.2	mg/kg
1,2,3-Trichloropropane	ND	0.2	mg/kg
1,2,4-Trichlorobenzene	ND	0.2	mg/kg
1,2,4-Trimethylbenzene	ND	0.2	mg/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.2	mg/kg
1,2-Dibromoethane (EDB)	ND	·0.2	mg/kg
1,2-Dichlorobenzene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
1,3,5-Trimethylbenzene	ND	0.2	mg/kg
1,3-Dichlorobenzene	ND	0.2	mg/kg
1,3-Dichloropropane	ND	0.2	mg/kg
1,4-Dichlorobenzene	ND	0.2	mg/kg
2,2-Dichloropropane	, ND	0.2	mg/kg
2-Chlorotoluene	ND	0.2	mg/kg
4-Chlorotoluene	ND	0.2	mg/kg
4-isopropyltoluene	ND	0.2	mg/kg
Benzene	ND	0.2	mg/kg
Bromobenzene	ND	0.2	mg/kg
Bromochloromethane	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1302 A6

Project ID:

Ciniza

Lab ID:

B969763

0396G02344

Matrix:

Soil

Date Reported:
Date Sampled:

11/07/96

Date Received:

10/23/96 10/29/96

Date Extracted:

11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
Continued			
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND [*]	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	` mg/kg
cis-1,2-Dichloroethene	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
Dibromomethane	ND	0.2	mg/kg
Dichlorodifluoromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
Hexachlorobutadiene	ND ·	0.2	mg/kg
Isopropylbenzene	ND	0.2	mg/kg
m,p-Xylene	ND	0.2	mg/kg
Methylene chloride	ND	1.0	mg/kg
n-Butylbenzene	ND	0.2	mg/kg
n-Propylbenzene	ND	0.2	mg/kg
Naphthalene	ND	0.2	mg/kg
o-Xylene	ND	0.2	mg/kg
sec-Butylbenzene	. ND	0.2	mg/kg
Styrene	ND	0.2	mg/kg
tert-Butylbenzene	ND	0.2	mg/kg
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kg
trans-1,2-Dichloroethene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Trichlorofluoromethane	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg
Xylenes (total)	ND	0.2	mg/kg

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1302 A6

Project ID: Lab ID:

Ciniza

B969763

0396G02344

Matrix: Soil Date Reported:

11/07/96

Date Sampled:

10/23/96

Date Received:

10/29/96

Date Extracted:

11/04/96

Date Analyzed:

11/05/96

Parameter	Result	PQL	Units
1 4 4 4 1 1 4 1 4 1		· 	00

Continued

QUALITY CONTROL - Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	91	70 - 121
Bromofluorobenzene	100	74 - 121
Toluene-d8	104	81 - 117

ND - Not Detected at Practical Quantitation Level (PQL)

Reference: Method 8260, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for

Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Rev. 1,

November 1992.

Analyst F.D.

Reviewed_

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1302 A6

Project ID:

Ciniza

Lab ID: Matrix:

B969763 Soil

0396G02344

Date Reported: Date Sampled:

11/08/96 10/23/96

Date Received: Date Extracted: 10/29/96 11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
1,2,4-Trichlorobenzene	ND .	1.0	mg/kg
1,2-Dichlorobenzene	ND	1.0	mg/kg
1,3-Dichlorobenzene	ND	1.0	mg/kg
1,4-Dichlorobenzene	ND	1.0	mg/kg
2,4,5-Trichlorophenol	ND	2.0	mg/kg
2,4,6-Trichlorophenol	ND	2.0	mg/kg
2,4-Dichlorophenol	ND	1.0	mg/kg
2,4-Dimethylphenol	ND	1.0	mg/kg
2,4-Dinitrophenol	ND	2.0	mg/kg
2,4-Dinitrotoluene	ND	1.0	mg/kg
2,6-Dinitrotoluene	ND	1.0	mg/kg
2-Chloronaphthalene	ND	1.0	mg/kg
2-Chlorophenol	ND	1.0	mg/kg
2-Methylnaphthalene	ND	1.0	mg/kg
2-Methylphenoi	ND	1.0	mg/kg
2-Nitroaniline	ND	5.0	mg/kg
2-Nitrophenol	ND	1.0	mg/kg
3,3'-Dichlorobenzidine	ND	2.0	mg/kg
3-Methylphenol/4-Methylphenol	ND	1.0	mg/kg
3-Nitroaniline	· ND	5.0	mg/kg
4,6-Dinitro-2-methylphenol	ND	5.0	mg/kg
4-Bromophenyl-phenylether	ND	1.0	mg/kg
4-Chloro-3-methylphenol	ND	2.0	mg/kg
4-Chloroaniline	ND	2.0	mg/kg
4-Chlorophenyl-phenylether	ND	1.0	mg/kg
4-Nitroaniline	ND	2.0	mg/kg
4-Nitrophenol	ND	2.0	mg/kg
Acenaphthene	ND	1.0	mg/kg

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1302 A6

Project ID:

Ciniza

Lab ID:

B969763

0396G02344

Matrix:

Soil

Date Reported:

11/08/96

Date Sampled:

10/23/96

Date Received: Date Extracted: 10/29/96 11/04/96

Date Analyzed:

		,	, .
Parameter	Result	PQL	Units
Continued			
Acenaphthylene	ND	1.0	mg/kg
Anthracene	ND	1.0	mg/kg
Benzo(a)anthracene	ND	1.0	mg/kg
Benzo(a)pyrene	ND	1.0	mg/kg
Benzo(b)fluoranthene	ND	1.0	mg/kg
Benzo(g,h,i)perylene	ND	1.0	mg/kg
Benzo(k)fluoranthene	ND	1.0	mg/kg
Benzoic Acid	ND	5.0	mg/kg
Benzyl Alcohol	ND	2.0	mg/kg
bis(2-Chloroethoxy)methane	ND	1.0	mg/kg
bis(2-Chloroethyl)ether	ND	1.0	mg/kg
bis(2-Chloroisopropyl)ether	ND	1.0	mg/kg
bis(2-Ethylhexyl)phthalate	ND	5.0	mg/kg
Butylbenzylphthalate	ND	1.0	mg/kg
Chrysene	ND	1.0	mg/kg
Di-n-Butylphthalate	ND	5.0	mg/kg
Di-n-Octylphthalate	ND	5.0	mg/kg
Dibenz(a,h)anthracene	ND	1.0	mg/kg
Dibenzofuran	. ND	1.0	mg/kg
Diethylphthalate	ND	1.0	mg/kg
Dimethylphthalate	ND	1.0	mg/kg
Fluoranthene	ND	1.0	mg/kg
Fluorene	ND	1.0	mg/kg
Hexachlorobenzene	ND	2.0	mg/kg
Hexachlorobutadiene	ND	2.0	mg/kg
Hexachlorocyclopentadiene	ND	1.0	mg/kg
Hexachloroethane	ND	2.0	mg/kg
Indeno(1,2,3-cd)pyrene	ND	1.0	mg/kg

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

0396G02344

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1302 A6

Project ID:

Ciniza

Lab ID:

B969763

Matrix: Soil

2,4,6-Tribromophenol

2-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

Terphenyl-d14

Phenol-d6

Date Reported:

11/08/96 Date Sampled:

Date Received:

10/23/96 10/29/96

Date Extracted: Date Analyzed:

11/04/96 11/05/96

Parameter	Result	PQL	Units
ontinued			-
Isophorone	ND	1.0	mg/k
N-Nitrosodi-n-propylamine	ND	1.0	mg/k
N-Nitrosodiphenylamine	ND	1.0	mg/k
Naphthalene	ND	1.0	` mg/kg
Nitrobenzene	ND	1.0	mg/kg
Pentachlorophenol	ND	5.0	mg/kg
Phenanthrene	ND	1.0	mg/kg
Phenol	ND	1.0	mg/kg
Pyrene	ND	1.0	mg/kg
QUALITY CONTROL - Surrogate Recovery	%	QC Limits	

59

58

55

49

69

58

ND - Not Detected at Practical Quantitation Level (PQL)

Reference: Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile

Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, November 1990.

Reviewed

19 - 122

30 - 115

25 - 121 23 - 120

24 - 113

18 - 137

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1303 A6

Project ID:

Lab ID:

Ciniza

B969764

0396G02345

Matrix:

Soil

Date Reported:

11/07/96

Date Sampled: Date Received:

10/23/96

Date Extracted:

10/29/96 11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
1,1,1,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,1-Trichloroethane	ND ,	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ΝD	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	` mg/kg
1,1-Dichloropropene	ND	0.2	mg/kg
1,2,3-Trichlorobenzene	ND	0.2	mg/kg
1,2,3-Trichloropropane	ND	0.2	mg/kg
1,2,4-Trichlorobenzene	ND	0.2	mg/kg
1,2,4-Trimethylbenzene	ND	0.2	mg/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.2	mg/kg
1,2-Dibromoethane (EDB)	ND	0.2	mg/kg
1,2-Dichlorobenzene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
1,3,5-Trimethylbenzene	ND	0.2	mg/kg
1,3-Dichlorobenzene	ND	0.2	mg/kg
1,3-Dichloropropane	ND	0.2	mg/kg
1,4-Dichlorobenzene	ND	0.2	mg/kg
2,2-Dichloropropane	· ND	0.2	mg/kg
2-Chlorotoluene	ND	0.2	mg/kg
4-Chlorotoluene	ND	0.2	mg/kg
4-Isopropyltoluene	ND	0.2	mg/kg
Benzene	ND	0.2	mg/kg
Bromobenzene	· ND	0.2	mg/kg
Bromochloromethane	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1303 A6

Project ID:

Ciniza

Lab ID:

B969764

0396G02345

Matrix: Soil Date Reported:

11/07/96

Date Sampled: Date Received: 10/23/96

Date Extracted:

10/29/96 11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
ontinued	A CONTRACTOR OF THE CONTRACTOR		
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND *	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	` mg/kg
cis-1,2-Dichloroethene	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
Dibromomethane	ND	0.2	mg/ko
Dichlorodifluoromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
Hexachlorobutadiene	ND	0.2	mg/kg
Isopropylbenzene	ND	0.2	mg/kg
m,p-Xylene	ND	0.2	mg/kg
Methylene chloride	ND	1.0	mg/kg
n-Butylbenzene	ND	0.2	mg/kg
n-Propylbenzene	ND	0.2	mg/kg
Naphthalene	ND	0.2	mg/kg
o-Xylene	ND	0.2	mg/kg
sec-Butylbenzene	, ND	0.2	mg/kg
Styrene	ND	0.2	mg/kg
tert-Butylbenzene	ND	0.2	mg/kg
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kç
trans-1,2-Dichloroethene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Trichlorofluoromethane	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg
Xylenes (total)	ND	0.2	mg/kg

EPA METHOD 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1303 A6

Project ID: Lab ID:

Ciniza

B969764

0396G02345

Matrix: Soil Date Reported:

11/07/96

Date Sampled:

10/23/96

Date Received:

10/29/96

Date Extracted:

11/04/96

Date Analyzed:

11/05/96

Parameter	Result	PQL	Units

Continued

QUALITY CONTROL - Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	95	70 - 121
Bromofluorobenzene Toluene-d8	104 116	74 - 121 81 - 117

ND - Not Detected at Practical Quantitation Level (PQL)

Reference: Method 8260, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for

Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Rev. 1,

November 1992.

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1303 A6

Project ID:

Ciniza

Lab ID:

B969764

0396G02345

Matrix:

Soil

Date Reported:

11/08/96

Date Sampled: Date Received:

10/23/96 10/29/96

Date Extracted:

11/04/96 11/05/96

Date Analyzed:

Parameter	Result	PQL	Units
1,2,4-Trichlorobenzene	ND «	1.0	mg/kg
1,2-Dichlorobenzene	ND	1.0	mg/kg
1,3-Dichlorobenzene	ND	1.0	mg/kg
1,4-Dichlorobenzene	ND	1.0	. mg/kg
2,4,5-Trichlorophenol	ND	2.0	mg/kg
2,4,6-Trichlorophenol	ND	2.0	mg/kg
2,4-Dichlorophenol	ND	1.0	mg/kg
2,4-Dimethylphenol	ND	1.0 .	mg/kg
2,4-Dinitrophenol	ND	2.0	mg/kg
2,4-Dinitrotoluene	ND	1.0	mg/kg
2,6-Dinitrotoluene	ND	1.0	mg/kg
2-Chloronaphthalene	ND	1.0	mg/kg
2-Chlorophenol	ND	1.0	mg/kg
2-Methylnaphthalene	ND	1.0	mg/kg
2-Methylphenol	ND	1.0	mg/kg
2-Nitroaniline	ND	5.0	mg/kg
2-Nitrophenol	ND	1.0	mg/kg
3,3'-Dichlorobenzidine	ND	2.0	mg/kg
3-Methylphenol/4-Methylphenol	ND	1.0	mg/kg
3-Nitroaniline	, ND	5.0	mg/kg
4,6-Dinitro-2-methylphenol	ND	5.0	mg/kg
4-Bromophenyl-phenylether	ND	1.0	mg/kg
4-Chloro-3-methylphenol	ND	2.0	mg/kg
4-Chloroaniline	ND	2.0	mg/kg
4-Chlorophenyl-phenylether	ND	1.0	mg/kg
4-Nitroaniline	ND	2.0	mg/kg
4-Nitrophenol	ND	2.0	mg/kg
Acenaphthene	ND	1.0	mg/kg

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1303 A6

Project ID:

Ciniza

Lab ID: Matrix: B969764

0396G02345

Soil

Date Reported:
Date Sampled:

11/08/96

Date Received:

10/23/96 10/29/96

Date Extracted:

11/04/96

Date Analyzed:

Parameter	Result	PQL	Units
ontinued			
Acenaphthylene	ND	1.0	mg/kg
Anthracene	ND	1.0	mg/kg
Benzo(a)anthracene	ND	1.0	mg/kg
Benzo(a)pyrene	ND	1.0	mg/kg
Benzo(b)fluoranthene	ND	1.0	mg/kg
Benzo(g,h,i)perylene	ND	1.0	mg/kg
Benzo(k)fluoranthene	ND	1.0	mg/kg
Benzoic Acid	ND	5.0	mg/kg
Benzyl Alcohol	ND	2.0	mg/kg
bis(2-Chloroethoxy)methane	ND	1.0	mg/kg
bis(2-Chloroethyl)ether	ND ·	1.0	mg/kg
bis(2-Chloroisopropyl)ether	ND	1.0	mg/kg
bis(2-Ethylhexyl)phthalate	ND	5.0	mg/kg
Butylbenzylphthalate	ND	1.0	mg/kg
Chrysene	ND	1.0	mg/kg
Di-n-Butylphthalate	ND	5.0	mg/kg
Di-n-Octylphthalate	ND	5.0	mg/kg
Dibenz(a,h)anthracene	ND	1.0	mg/kg
Dibenzofuran	· ND	1.0	mg/kg
Diethylphthalate	ND	1.0	mg/kg
Dimethylphthalate	ND	1.0	mg/kg
Fluoranthene	ND	1.0	mg/kg
Fluorene	ND	1.0	mg/kg
Hexachlorobenzene	ND	2.0	mg/kg
Hexachlorobutadiene	ND	2.0	mg/kg
Hexachlorocyclopentadiene	ND	1.0	mg/kg
Hexachloroethane	ND	2.0	mg/kg
Indeno(1,2,3-cd)pyrene	ND	1.0	mg/kg

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:

GIANT REFINING COMPANY

Sample ID:

RFI 1303 A6

Project ID:

Ciniza

Lab ID:

B969764

0396G02345

Matrix:

Soil

Date Reported:

11/08/96

Date Sampled: Date Received: 10/23/96 10/29/96

Date Extracted: Date Analyzed: 11/04/96 11/05/96

Parameter	Result	PQL	Units
ontinued			 ,
Isophorone	ND	1.0	mg/kg
N-Nitrosodi-n-propylamine	ND	1.0	mg/kg
N-Nitrosodiphenylamine	ND	1.0	mg/kg
Naphthalene	ND	1.0	` mg/kg
Nitrobenzene	ND	1.0	mg/kg
Pentachlorophenol ·	ND	5.0	mg/kg
Phenanthrene	ND	1.0	mg/kg
Phenol	ND	1.0	mg/kg
Pyrene	ND	1.0	mg/kg
QUALITY CONTROL - Surrogate Recovery	%	QC Limits	
2,4,6-Tribromophenol	62	19 - 122	
2-Fluorobiphenyl	59	30 - 115	
2-Fluorophenol	58	25 - 121	
Nitrobenzene-d5	53	23 - 120	
Phenol-d6	72	24 - 113	
Terphenyl-d14	_. 64	18 - 137	

ND - Not Detected at Practical Quantitation Level (PQL)

Reference: Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile

Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, November 1990.

Reviewed

LAB QA/QC **EPA METHOD 8260 INSTRUMENT BLANK**

Date Analyzed: 11/04/96

Lab ID:

IBS96309A

Matrix:

Water

Parameter	Result	PQL	Units
1,1,1,2-Tetrachloroethane	ND <	0.2	mg/kg
1,1,1-Trichloroethane	ŅD	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	. mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,1-Dichloropropene	ND	0.2	mg/kg
1,2,3-Trichlorobenzene	ND	0.2	mg/kg
1,2,3-Trichloropropane	ND	0.2	mg/kg
1,2,4-Trichlorobenzene	ND	0.2	mg/kg
1,2,4-Trimethylbenzene	ND	0.2	mg/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.2	mg/kg
1,2-Dibromoethane (EDB)	ND	0.2	mg/kg
1,2-Dichlorobenzene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
1,3,5-Trimethylbenzene	. ND	0.2	mg/kg
1,3-Dichlorobenzene	ND	0.2	mg/kg
1,3-Dichloropropane	ND	0.2	mg/kg
1,4-Dichlorobenzene	, ND	0.2	mg/kg
2,2-Dichloropropane	ND	0.2	mg/kg
2-Chlorotoluene	ND	0.2	mg/kg
4-Chlorotoluene	ND	0.2	mg/kg
4-Isopropyltoluene	ND	0.2	mg/kg
Benzene	ND	0.2	mg/kg
Bromobenzene	ND	0.2	mg/kg
Bromochloromethane	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg

LAB QA/QC **EPA METHOD 8260 INSTRUMENT BLANK**

Date Analyzed: 11/04/96

Lab ID:

IBS96309A

Matrix:

Water

Parameter	Result	PQL	Units
ontinued			
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	mg/kg
cis-1,2-Dichloroethene	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
Dibromomethane	ND	0.2	mg/kg
Dichlorodifluoromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
Hexachlorobutadiene	ND	0.2	mg/kg
Isopropylbenzene	ND	0.2	mg/kg
m,p-Xylene	ND	0.2	mg/kg
Methylene chloride	ND	1.0	mg/kg
n-Butylbenzene	ND	0.2	mg/kg
n-Propylbenzene	ND	0.2	mg/kg
Naphthalene	ND	0.2	mg/kg
o-Xylene	ND	0.2	mg/kg
sec-Butylbenzene	ND	0.2	mg/kg
Styrene	ND	0.2	mg/kg
tert-Butylbenzene	, ND	0.2	mg/kg
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kg
trans-1,2-Dichloroethene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Trichlorofluoromethane	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg
Xylenes (total)	ND	0.2	mg/kg

LAB QA/QC **EPA METHOD 8260 INSTRUMENT BLANK**

Date Analyzed: 11/04/96

Lab ID:

IBS96309A

Matrix:

Water

Parameter	Result	PQL	Units
Continued			
QUALITY CONTROL - Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	89	80 - 120	
Bromofluorobenzene	103	74 - 121	
Toluene-d8	115	81 - 117	

ND - Not Detected at Practical Quantitation Level (PQL)

Analyst E.O.

Reviewed_

LAB QA/QC **EPA METHOD 8260 METHOD BLANK**

Date Analyzed: 11/05/96

Lab ID:

MBS96309

Matrix:

Soil

Date Extracted: 11/04/96

Parameter	Result	PQL	Units
1,1,1,2-Tetrachloroethane	ND -	0.2	mg/kg
1,1,1-Trichloroethane	ND	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,1-Dichloropropene	ND	0.2	mg/kg
1,2,3-Trichlorobenzene	ND	. 0.2	mg/kg
1,2,3-Trichloropropane	ND	0.2	mg/kg
1,2,4-Trichlorobenzene	ND	0.2	mg/kg
1,2,4-Trimethylbenzene	ND	0.2	mg/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.2	mg/kg
1,2-Dibromoethane (EDB)	ND	0.2	mg/kg
1,2-Dichlorobenzene	ND	0.2	· mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
1,3,5-Trimethylbenzene	ND	0.2	mg/kg
1,3-Dichlorobenzene	ND	0.2 .	mg/kg
1,3-Dichloropropane	ND	0.2	mg/kg
1,4-Dichlorobenzene	· ND	0.2	mg/kg
2,2-Dichloropropane	ND	0.2	mg/kg
2-Butanone (MEK)	ND	2.0	mg/kg
2-Chlorotoluene	ND	0.2	mg/kg
4-Chlorotoluene	ND	0.2	mg/kg
4-Isopropyltoluene	ND	0.2	mg/kg
Benzene	ND	0.2	mg/kg
Bromobenzene	ND	0.2	mg/kg
Bromochloromethane	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND	0.2	mg/kg

LAB QA/QC **EPA METHOD 8260 METHOD BLANK**

Date Analyzed: 11/05/96

Lab ID:

MBS96309

Matrix:

Soil

Date Extracted: 11/04/96

Parameter	Result	PQL	Units
ontinued			
Chloroethane	ND *	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	mg/kg
cis-1,2-Dichloroethene	ND	0.2	` mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
Dibromomethane	ND	0.2	mg/kg
Dichlorodifluoromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
Hexachlorobutadiene	ND	0.2	mg/kg
Isopropylbenzene	ND	0.2	mg/kg
m,p-Xylene	ND	0.2	mg/kg
Methylene chloride	ND	1.0	mg/kg
n-Butylbenzene	ND	0.2	mg/kg
n-Propylbenzene	ND	0.2	mg/kg
Naphthalene	ND	0.2	mg/kg
o-Xylene	ND	0.2	mg/kg
sec-Butylbenzene	ND	0.2	mg/kg
Styrene	· ND	0.2	mg/kg
tert-Butylbenzene	ND	0.2	mg/kg
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kg
rans-1,2-Dichloroethene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Trichlorofluoromethane	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg
Kylenes (total)	ND	0.2	mg/kg
•			•

LAB QA/QC **EPA METHOD 8260 METHOD BLANK**

Date Analyzed: 11/05/96

Lab ID:

MBS96309

Matrix:

Date Extracted: 11/04/96

Parameter	Result	PQL	Units
Continued			
QUALITY CONTROL - Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	99	80 - 120	
Bromofluorobenzene	107	74 - 121	•
Toluene-d8	111	81 - 117	

ND - Not Detected at Practical Quantitation Level (PQL)

Reviewed_

LAB QA/QC **EPA METHOD 8270** METHOD BLANK

Date Analyzed: 11/05/96

Lab ID:

MBS96308

Matrix:

Soil

Date Extracted: 11/05/96

Parameter	Result	PQL '	Units
1,2,4-Trichlorobenzene	ND <	1.0	mg/kg
1,2-Dichlorobenzene	ND	1.0	mg/kg
1,3-Dichlorobenzene	ND	1.0	mg/kg
1,4-Dichlorobenzene	ND	1.0	mg/kg
2,4,5-Trichlorophenol	ND	2.0	mg/kg
2,4,6-Trichlorophenol	ND	2.0	mg/kg
2,4-Dichlorophenol	ND	1.0	mg/kg
2,4-Dimethylphenol	ND	1.0	mg/kg
2,4-Dinitrophenol	ND	2.0	mg/kg
2,4-Dinitrotoluene	ND	1.0	mg/kg
2,6-Dinitrotoluene	ND	1.0	mg/kg
2-Chloronaphthalene	ND	1.0	mg/kg
2-Chlorophenol	ND	1.0	mg/kg
2-Methylnaphthalene	ND	1.0	mg/kg
2-Methylphenol	ND	1.0	mg/kg
2-Nitroaniline	ND	5.0	mg/kg
2-Nitrophenol	ND	1.0	mg/kg
3,3'-Dichlorobenzidine	ND	2.0	mg/kg
3-Methylphenol/4-Methylphenol	ND	1.0	mg/kg
3-Nitroaniline	· ND	5.0	mg/kg
4,6-Dinitro-2-methylphenol	ND	5.0	mg/kg
4-Bromophenyl-phenylether	ND	1.0	mg/kg
4-Chloro-3-methylphenol	ND	2.0	mg/kg
4-Chloroaniline	ND	2.0	mg/kg
4-Chlorophenyl-phenylether	ND	1.0	mg/kg
4-Nitroaniline	ND	2.0	mg/kg
4-Nitrophenol	ND	2.0	mg/kg
Acenaphthene	ND	1.0	mg/kg
Acenaphthylene	ND	1.0	mg/kg
Anthracene	ND	1.0	mg/kg
Benzo(a)anthracene	ND	1.0	mg/kg
Benzo(a)pyrene	ND	1.0	mg/kg
Benzo(b)fluoranthene	ND	1.0	mg/kg

LAB QA/QC **EPA METHOD 8260** MATRIX SPIKE / MATRIX SPIKE DUPLICATE SUMMARY

Date Analyzed: 11/05/96

Lab ID:

0596H09764

Matrix:

Soil

Date Extracted: 11/04/96

Original Sample Parameters

Parameter	Spike Added (mg/kg)	Sample Result (mg/kg)	Spike Result (mg/kg)	MS Recovery %	QC Limits Rec.
1,1-Dichloroethene	12.5	0	8.0	64 *	75 .145
Benzene	12.5	0	11	88	71 -120
Chlorobenzene	12.5	0-	11	88	76 - 127
Toluene	12.5	. 0	14	112	71 -127
Trichloroethene (TCE)	12.5	0	9.7	78	75 -130

Duplicate Sample Parameters

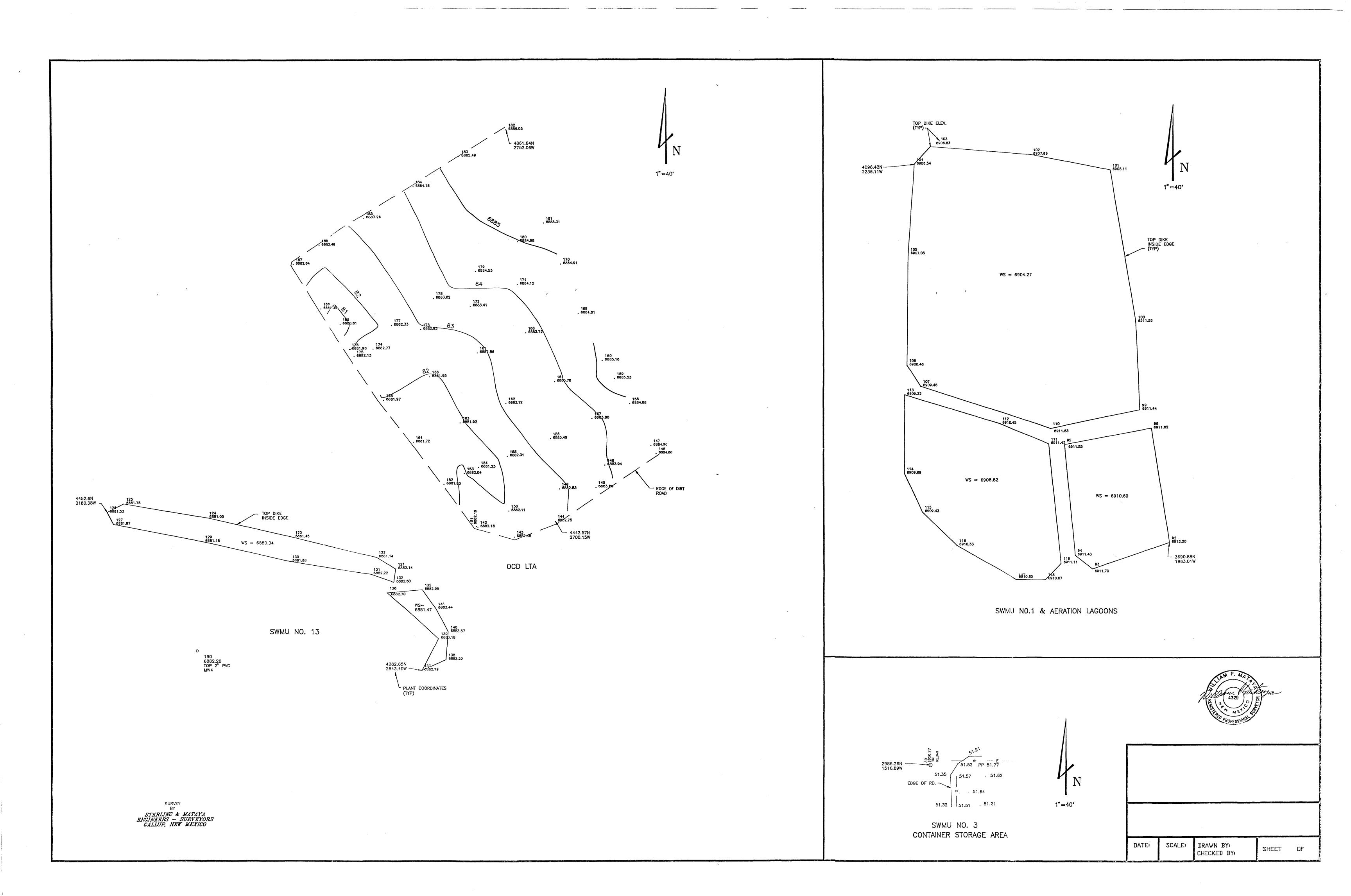
	Spike Added	MSD Result	MSD Recovery	RPD		Q	C Limits
Parameter	(mg/kg)	(mg/kg)	%	%		RPD	Rec.
1,1-Dichloroethene	12.5	6.7	54 *	18		22	75 -145
Benzene	12.5	8.8	70 *	22		24	71 - 120
Chlorobenzene	12.5	8.7	70 *	23	*	21	76 -127
Toluene	12.5	10	80	33	*	21	71 - 127
Trichloroethene (TCE)	12.5	8.1	65 *	18		21	75 -130

Note:

Spike Recoveries are calculated using zero for Sample result

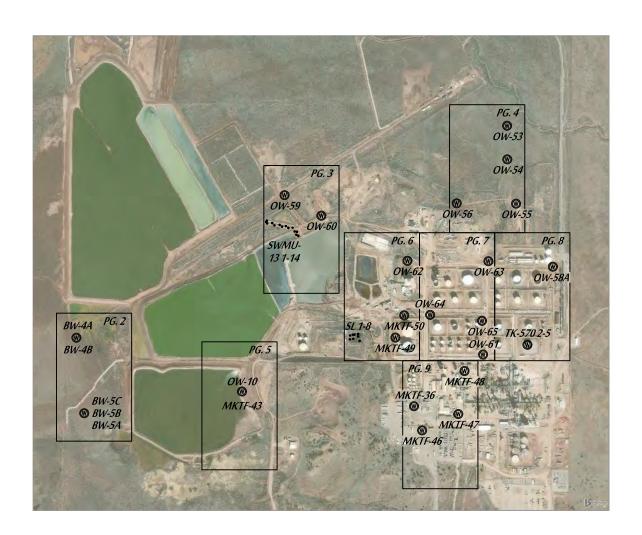
if Sample result was less than PQL (Practical Quantitation Level).

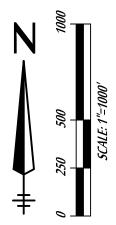
Spike Recovery:


5 out of 10 outside QC limits.

RPD:

2 out of 5 outside QC limits.


Analyst F.D.


Reviewed

Appen	dix	C
Survey	Da	ta

MONITORING WELL and BORE SITE SURVEY in Sections 28 & 33, T15N, R15W, N.M.P.M., Marathon Gallup Refinery, Jamestown, McKinley County, New Mexico, U.S.A.

SYMBOLS LEGEND

MONITORING WELLSOIL BORE

NOTES

- 1 FIELD SURVEY PERFORMEDNOVEMBER 18, 2019, 8:00 a.m. to 5:00 p.m.
- 2 FIELD MEASUREMENTS PERFORMED UTILIZING TOPCON 'GR-3' BASE AND ROVER G.P.S. SYSTEM WHICH CAN NOT BE CALIBRATED.
- 3 THE BORE SITES WERE IDENTIFIED BY DISORBO CONSULTING, LLC. PERSONNEL AND WERE VISIBLE AS EVIDENCE OF A BORE HOLE.
- 4 STATE PLANE COORDINATES BASED ON THE BRASS CAP I-040-105 USING DIFFERENTIAL G.P.S. DERIVED MEASUREMENTS.
- 5 THE COORDINATE LIST SHOWN ARE N.M. STATE PLANE WEST ZONE GRID COORDINATES, ELEVATIONS ARE NAVD88 (-3.37 TO REACH NGVD29).

SURVEYOR'S CERTIFICATE

I, Clyde J. King, a New Mexico Professional Surveyor do hereby certify that this plat was prepared from a field survey performed by me or under my direct supervision, that I am responsible for this survey, that this survey is true and correct to the best of my knowledge and belief, that this plat and the field survey upon which it is based meet the Minimum Standards for Surveying in New Mexico and that this survey is not a land division or subdivision as defined by the New Mexico Subdivision Act.

Clyde J. King, IS 13979

LIRVEVING SERVICES

HAMMON ENTERPRISES, INC. PROFESSIONAL SURVEYING SERVICES

P. O. Box 770 Ramah, NM 87321 Tel: 505-870-6901 HEISurveys@Yahoo.com

MONITORING WELL and BORE SITE SURVEY in Sections 28 & 33, T15N, R15W, N.M.P.M., Marathon Gallup Refinery, Jamestown, McKinley County, New Mexico, U.S.A.

BW-4A

BW-4A

® BW-4B N: 1634063.04 E: 2542465.11 Z: 6872.55 TOP CENTER OF METAL LID Z: 6872.20 N. TOP OF PVC PIPE

Z: 6869.68 TOP OF CONCRETE PAD N. OF CASING Z: 6869.28 NATURAL GROUND N. OF PAD

BW-4B

N: 1634043.32 E: 2542462.85 Z: 6872.68 TOP CENTER OF METAL LID Z: 6872.24 N. TOP OF PVC PIPE Z: 6869.80 TOP OF CONCRETE PAD N. OF CASING Z: 6869.45 NATURAL GROUND N. OF PAD

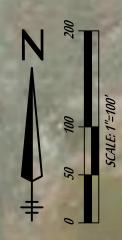
BW-5C

N: 1633279.48
E: 2542552.85
CENTER OF METAL LID
Z: 6876.32 TOP CENTER OF METAL LID
Z: 6877.30 N. TOP OF PVC PIPE
Z: 6873.31 TOP OF CONCRETE PAD N. OF CASING
Z: 6872.92 NATURAL GROUND N. OF PAD

BW-5B

N: 1633269.46 E: 2542551.64 Z: 6876.24 TOP CENTER OF METAL LID Z: 6875.84 N. TOP OF PVC PIPE Z: 6873.36 TOP OF CONCRETE PAD N. OF CASING Z: 6873.30 NATURAL GROUND N. OF PAD

SYMBOLS LEGEND


MONITORING WELL

• SOIL BORE

BW-5C BW-5B BW-5A

BW-5A

N: 1633259.76 E: 2542551.42 Z: 6876.43TOP CENTER OF METAL LID Z: 6876.06 N. TOP OF PVC PIPE Z: 6873.39 TOP OF CONCRETE PAD N. OF CASING Z: 6873.18 NATURAL GROUND N. OF PAD

HAMMON ENTERPRISES, INC. PROFESSIONAL SURVEYING SERVICES

→ **E** → **P**. O. Box 770 Ramah, NM 87321 Tel: 505- 870-6901 HElSurveys@Yahoo.com

MONITORING WELL and BORE SITE SURVEY in Sections 28 & 33, T15N, R15W, N.M.P.M., Marathon Gallup Refinery, Jamestown, McKinley County, New Mexico, U.S.A.

OW-59

OW-59

N: 1635547.23 CENTER OF METAL LID F: 2544632.95

Z: 6889.13 TOP CENTER OF METAL LID

Z: 6988.66 N. TOP OF PVC PIPE Z: 6986.55 TOP OF CONCRETE PAD N. OF CASING

Z: 6986.40 NATURAL GROUND N. OF PAD

OW-53

N: 1636271.72 E: 2546952.45 Z: 6914.74 TOP CENTER OF METAL LID Z: 6914.38 N. TOP OF PVC PIPE Z: 6911.97 TOP OF CONCRETE PAD N. OF CASING

OW-60

Z: 6911.71 NATURAL GROUND N. OF PAD

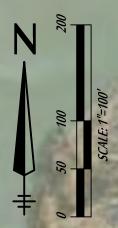
0

• SWMU 13-9 SWMU 13-3

• SWMU 13- 10

SWMU 13-4

• SWMU 13-5


• SWMU 13- 1 SWMU 13- 13 WMU 13- 6

SWMU 13- 14 • SWMU 13- 7 •

GROUND ELEV. NORTHING EASTING SWMU13-1 1635283.76 2544450.28 6884.38 *SWMU13-2* 1635255.51 2544452.89 6884.22 *SWMU13-3* 6883.78 2544528.80 1635235.05 2544608.45 6884.65 1635207.59 2544674.13 6885.36 SWMU13-5 *SWMU13-6* 1635168.07 2544762.81 6887.13 2544777.26 **SWMU13-7** 1635126.04 6888.17 SWMU13-14 1635136.50 2544756.75 6885.16 SWMU13-13 1635171.39 2544739.77 6884.82 SWMU13-12 1635209.89 2544718.62 6874.45 SWMU13-11 1635226.59 2544648.37 6882.60 SWMU13-10 1635239.56 2544583.37 6882.72 2544506.40 *SWMU13-8* 1635270.92 2544442.83 6881.84

SYMBOLS LEGEND

- **MONITORING WELL**
- SOIL BORE

HAMMON ENTERPRISES, INC. *PROFESSIONAL SURVEYING SERVICES*P. O. Box 770 Ramah, NM 87321 Tel: 505-870-6901 HEISurveys@Yahoo.com

PAGE 4 OF 9

MONITORING WELL and BORE SITE SURVEY in Sections 28 & 33, T15N, R15W, N.M.P.M., Marathon Gallup Refinery, Jamestown, McKinley County, New Mexico, U.S.A.

OW-53

OW-53

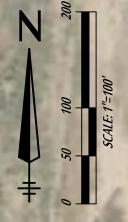
N: 1636271.72 E: 2546952.45 Z: 6914.74 TOP CENTER OF METAL LID Z: 6914.38 N. TOP OF PVC PIPE Z: 6911.97 TOP OF CONCRETE PAD N. OF CASING Z: 6911.71 NATURAL GROUND N. OF PAD

OW-54

OW-54

N: 1635922.19 E: 2546953.94 CENTER OF METAL LID Z: 6919.34 TOP CENTER OF METAL LID Z: 6918.92 N. TOP OF PVC PIPE Z: 6916.36 TOP OF CONCRETE PAD N. OF CASING Z: 6916.27 NATURAL GROUND N. OF PAD

OW-55
N: 1635460.37
E: 2547045.34
CENTER OF METAL LID
Z: 6923.66 TOP CENTER OF METAL LID
Z: 6923.25 N. TOP OF PVC PIPE
Z: 6921.09 TOP OF CONCRETE PAD N. OF CASING
Z: 6921.02 NATURAL GROUND N. OF PAD


OW-56

OW-56

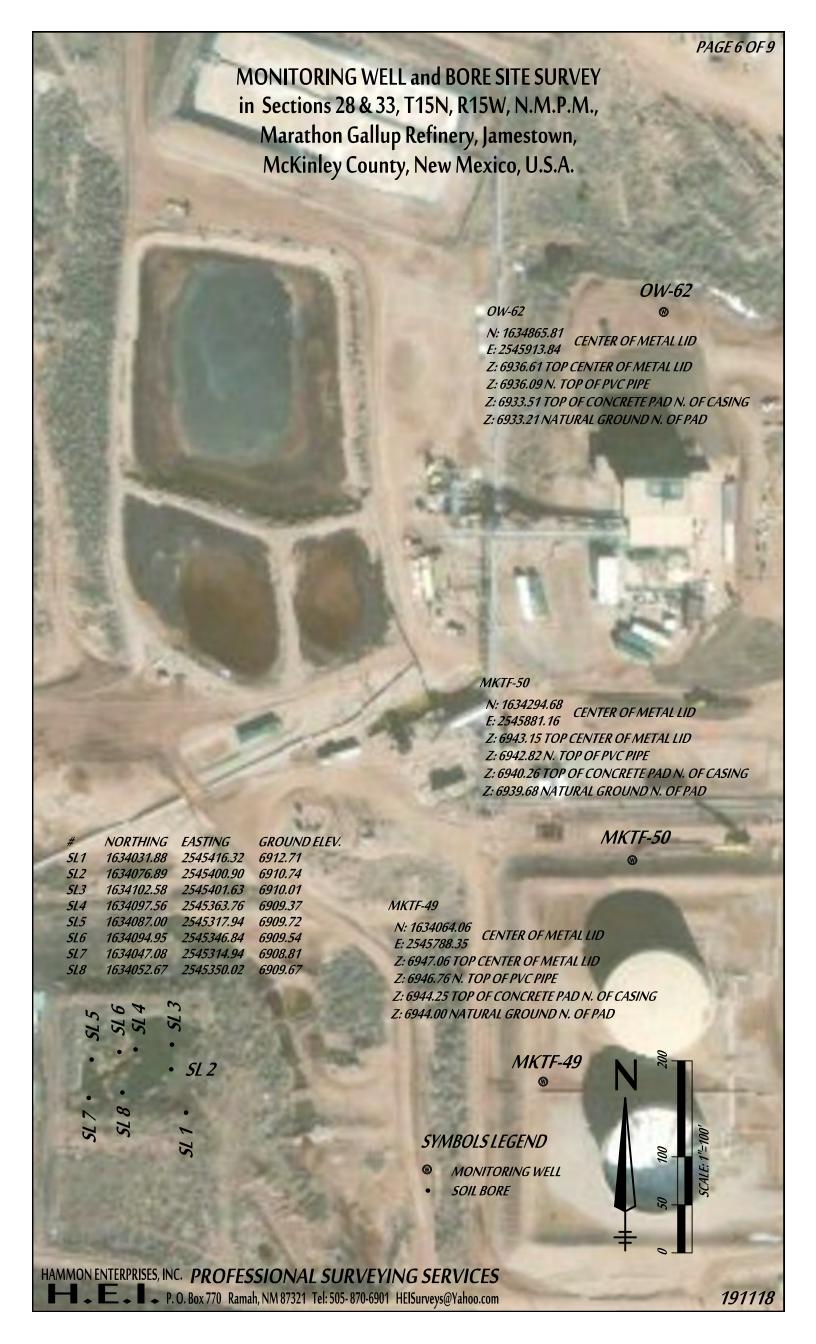
N: 1635463.15 E: 2546427.02 Z: 6920.67 TOP CENTER OF METAL LID Z: 6920.18 N. TOP OF PVC PIPE Z: 6917.73 TOP OF CONCRETE PAD N. OF CASING Z: 6917.61 NATURAL GROUND N. OF PAD

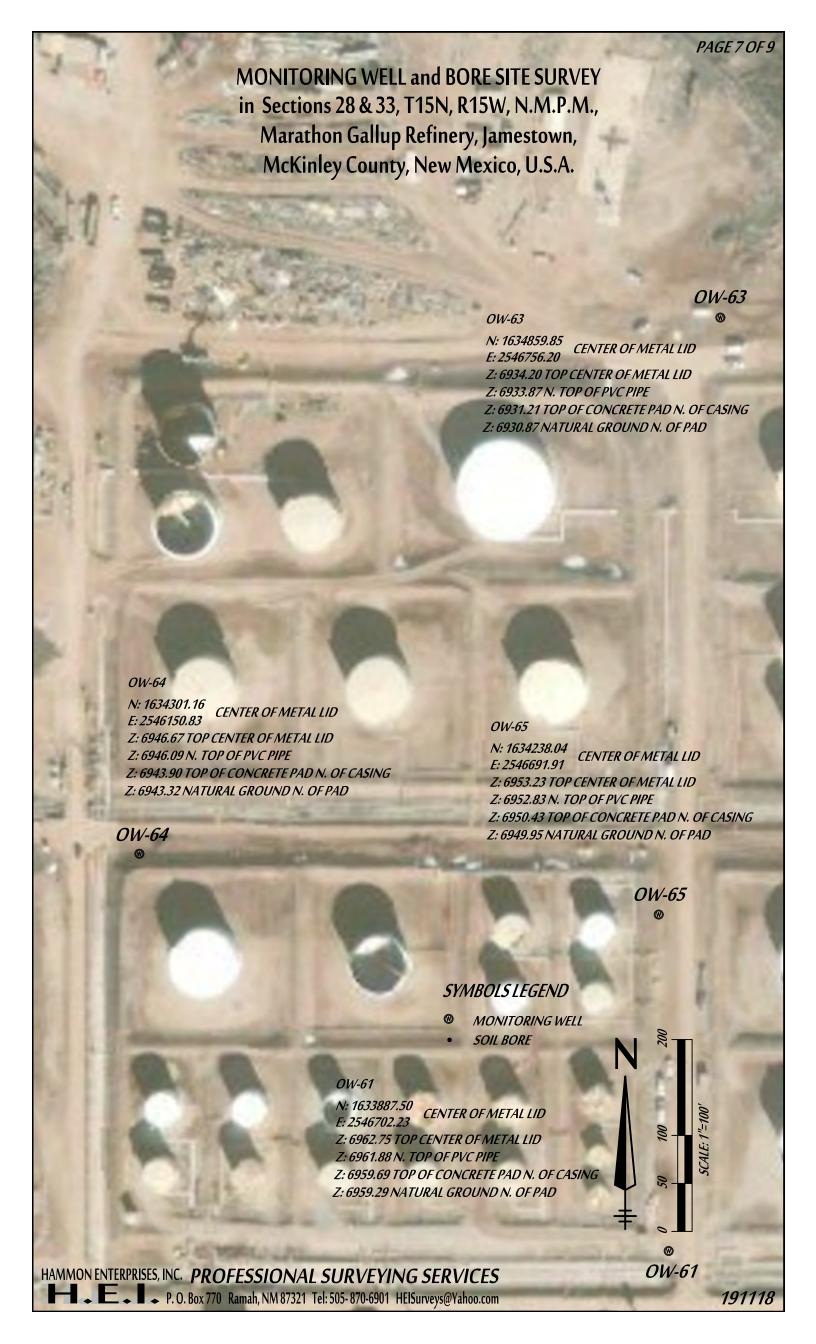
SYMBOLS LEGEND

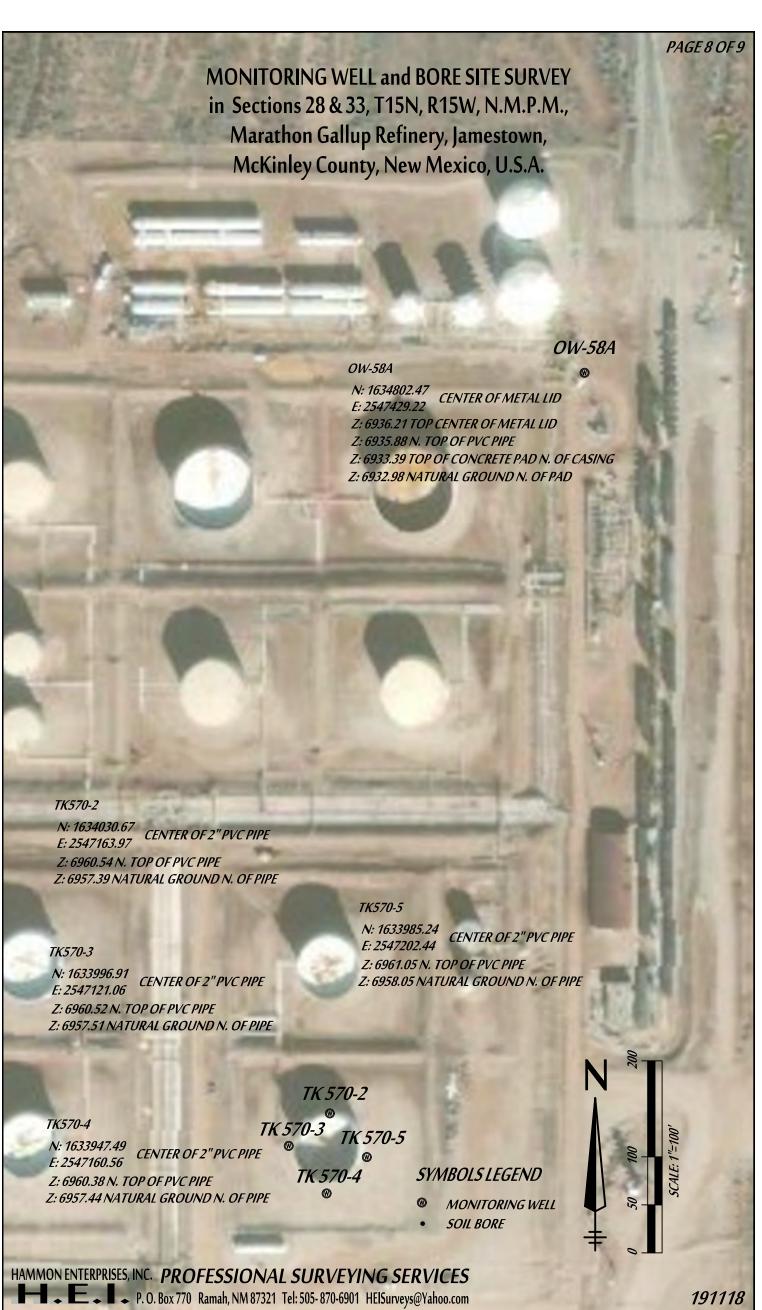
MONITORING WELLSOIL BORE

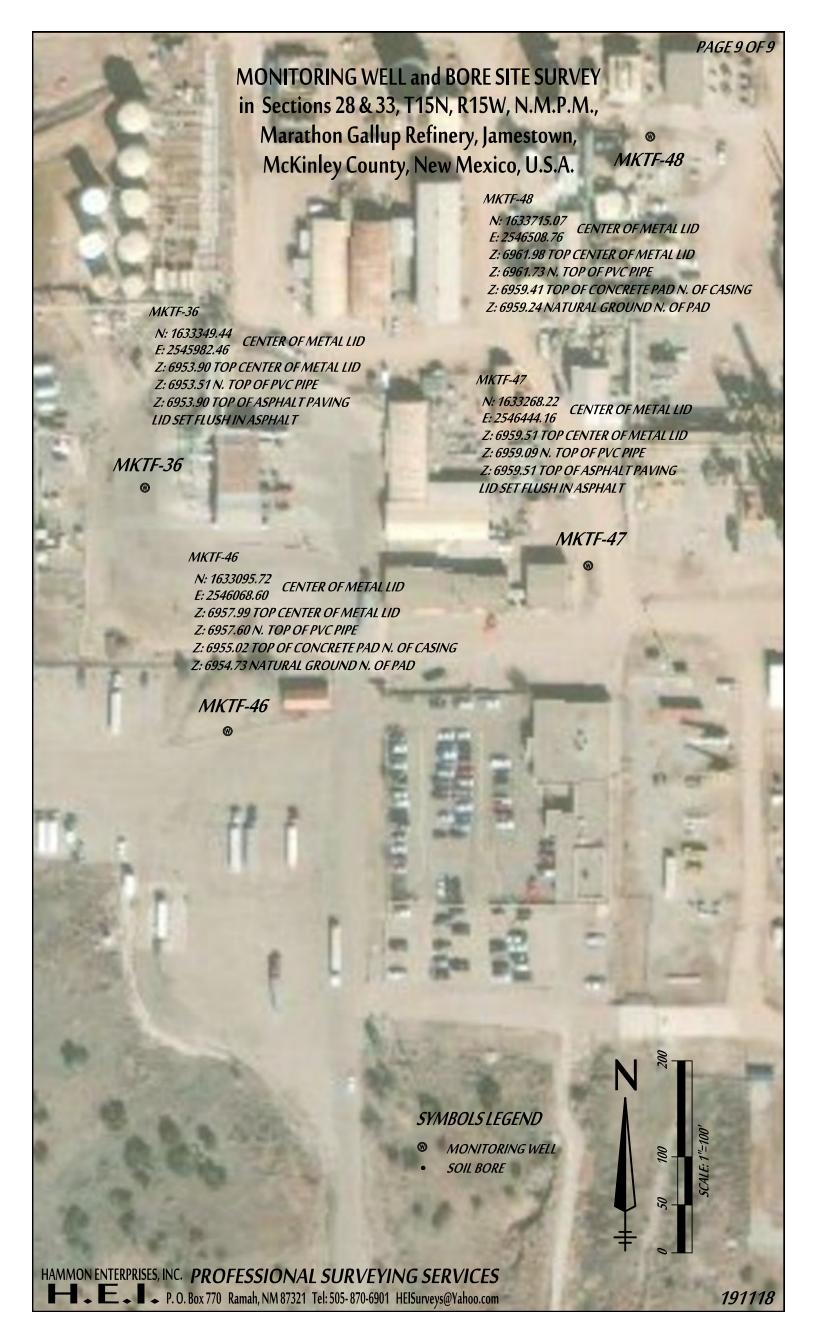
OW-55

HAMMON ENTERPRISES, INC. PROFESSIONAL SURVEYING SERVICES


→ P.O. Box 770 Ramah, NM 87321 Tel: 505-870-6901 HElSurveys@Yahoo.com


PAGE 5 OF 9 MONITORING WELL and BORE SITE SURVEY in Sections 28 & 33, T15N, R15W, N.M.P.M., Marathon Gallup Refinery, Jamestown, McKinley County, New Mexico, U.S.A. N: 1633508.16 CENTER OF METAL LID E: 2544188.11 Z: 6882.74 TOP CENTER OF METAL LID Z: 6882.41 N. TOP OF PVC PIPE Z: 6879.71 TOP OF CONCRETE PAD N. OF CASING OW-10 Z: 6879.45 NATURAL GROUND N. OF PAD MKTF-43 N: 1633490.95 MKTF-43 CENTER OF METAL LID E: 2544190.29 Z: 6882.20 TOP CENTER OF METAL LID Z: 6881.82 N. TOP OF PVC PIPE Z: 6879.61 TOP OF CONCRETE PAD N. OF CASING Z: 6879.16 NATURAL GROUND N. OF PAD SYMBOLS LEGEND MONITORING WELL SOIL BORE


HAMMON ENTERPRISES, INC. PROFESSIONAL SURVEYING SERVICES


P. O. Box 770 Ramah, NM 87321 Tel: 505-870-6901 HEISurveys@Yahoo.com

191118

Appendix D Permeability and Hydraulic Conductivity Evaluations

Appendix E Field Methods

Field Methods

Pursuant to the *Investigation Work Plan for the SWMU 13 – Drainage Ditch between API Evaporation Ponds and Neutralization Tank Evaporation Ponds*, an investigation of soils and groundwater was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and temporary monitoring wells were installed within and adjacent to the drainage ditch and retention pond north of Evaporation Pond EP-2. The field methods are described below and individual discussions are presented for the following activities:

- Drilling procedures;
- · Soil screening;
- Decontamination procedures;
- Fluid level measurements;
- Well development/purging;
- Sample collection and handling procedures;
- Equipment calibration; and
- Management of investigation derived waste.

Drilling Procedures

The soil borings were drilled using the hollow-stem auger (HSA) method. The drilling rig was a track mounted CME 55. In addition, a hand auger was used to collect soil samples from the ground surface to a depth of five feet. Soil samples were collected continuously and logged by a qualified geologist in accordance with the Unified Soil Classification System (USCS) nomenclature. As shown on the boring logs, the data recorded included the lithologic interval, symbol, percent recovery, field screening results, and a sample description of the cuttings and core samples. Soil samples that were collected using the split spoon sampler were photographed.

Soil Screening

Samples obtained from the borings were screened in the field on 2-foot intervals for evidence of contaminants. Samples collected using a hand auger were screened in smaller intervals and generally coincided with the required sampling interval (e.g., 0 to 0-5', 0.5-1.5', 1.5-2', 2-4', and 4-5'). Field screening results were recorded on the soil boring logs. Field screening results were used

to aid in the selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds.

Visual screening included examining the soil samples for evidence of staining caused by petroleum-related compounds or other substances that may have caused staining of soils such as elemental sulfur or cyanide compounds. Headspace vapor screening was conducted and involved placing a soil sample in a plastic sealable bag allowing space for ambient air. The bag was sealed, labeled and then shaken gently to expose the soil to the air trapped in the container. The sealed bag was allowed to rest for a minimum of 5 minutes while the vapors equilibrated. If the ambient temperatures were 45 degrees or less, the bags were placed inside a warm vehicle prior to screening.

Vapors present within the sample bag's headspace were then measured by inserting the probe of a MiniRae 3000 portable volatile organic constituent (VOC) monitor in a small opening in the bag. The maximum value and the ambient air temperature were recorded on the field boring log for each sample. Field screening results and any conditions that were considered to be capable of influencing the results of the field screening were recorded on the field logs.

Decontamination Procedures

The drilling equipment (e.g., hollow-stem augers) was decontaminated between each borehole using a high-pressure potable water wash. The sampling equipment coming in direct contact with the samples (e.g., hand augers and split-spoon samplers) were decontaminated using a brush, as necessary, to remove larger particulate matter followed by a rinse with potable water, wash with non-phosphate detergent, rinse with potable water, and double rinse with deionized water.

Fluid Level Measurements

The depth to separate phase hydrocarbon, if present, and groundwater was measured prior to and after well development. Fluid levels were also measured prior to and after well purging. If a well was bailed down or bailed dry and required sampling at a later time, fluid level measurements were collected prior to sampling. A Geotech Interface Probe was used to measure fluid levels to 0.01 foot.

Well Development/Purging

The temporary monitoring wells were developed/purged using a new disposable bailer attached to the end of the clean rope. The groundwater and sediment removed from the wells were transported to the bundle cleaning pad in sealed 5-gallon buckets or in a 65-gallon horizontal leg polyethylene tank.

The purge volumes are calculated as follows:

Volume (gallons) = water column thickness (ft) \times 3.14 \times radius of well casing² (ft) \times 7.48 (gals/ft). The calculated purge volumes and actual volumes removed from each well are presented below.

Well (Date)	Water Column Thickness (ft)	Calculated Purge Volume (gallons) – 3 well volumes	Actual Purge Volume (gallons)
SWMU 13-1	DRY	NA	NA
SWMU 13-2	4.50	2.30	2.75
SWMU 13-3	6.63	3.40	6.50
SWMU 13-4	6.84	3.50	Bailed dry at 3.0
SWMU 13-5	6.19	3.30	Bailed dry at 6.3
SWMU 13-6	5.89	3.00	Bailed dry at 0.75
SWMU 13-7	5.05	2.58	Bailed dry at 1.5

NA - not applicable

During well development and well purging the following information was recorded on a field worksheet:

- Time;
- Purge Volume;
- Temperature (°F);
- Dissolved Oxygen (mg/L);
- Conductivity (uS/cm);
- Total Dissolved Solids (mg/L);
- Hq
- Oxidation-Reduction Potential (MV); and
- Turbidity (NTUs).

The field work sheets are included at the end of this appendix.

Sample Collection and Handling Procedures

Soil samples were collected using split-spoon samplers or directly from the auger bucket for borings completed with a hand auger. The selected portion of the sample interval was placed in pre-cleaned, laboratory-prepared sample containers for laboratory chemical analysis. Two soil samples were collected for VOC analysis in the following manner:

- Two sample aliquots were collected using a syringe for preservation with methanol. For the
 methanol preserved kits, 10 grams (10 cc) of soil was injected into each methanol vial using
 the syringe. The syringes were disposed after soil collection; and
- The third sample aliquot was placed in an 8-ounce glass jar, which was filled to the top to minimize any head space.

Two additional soil samples were collected in 8-ounce glass jars for semi-volatile and metals analyses.

Groundwater samples were collected using disposable bailers and clean rope. The water was immediately poured directly into clean laboratory supplied sample containers with the exception of samples collected for dissolved metals analyses. Samples specified for dissolved metals analyses were filtered in the field using a disposable 0.45 micron filter. A new filter and syringe were used for each sample.

All samples were immediately placed into an ice chest with ice. The samples were maintained in the custody of the sampler until the chain-of-custody form was completed and the ice chest was sealed for delivery to the laboratory.

In addition to collecting groundwater samples for nitrate/nitrite analyses, field tests were conducted to determine the comparability of field data with laboratory data. In accordance with the instruction manual for the Nitrate-Nitrite Test Kit, Hach Model NI-12, the color disc was placed in the color comparator box. Two vials were each filed with 5mL of sample water. The nitrate test method was diazotization cadmium reduction, with a result range between 0 - 40 mg/L. The nitrite method was diazotization with a range of 0 - 0.4 mg/L. The reagents, NitraVer 5 Nitrate Reagent Powder Pillow and NitriVer 3 Nitrite Reagent Powder Pillow, were mixed with the water to create a solution. The cap

was placed on the vials and shook for 1 minute. After 10 minutes the solutions' colors were compared to the individual color wheels and when the color of the solution matched the color on the wheel, the numeric value was recorded. To calculate the results in mg/L, the nitrate result was multiplied by 4.4 and the nitrite result was multiplied by 3.33. The data was recorded on the groundwater sampling worksheets.

Equipment Calibration

Soil vapor screening was conducted using a MiniRae 3000 portable VOC monitor. The instrument was calibrated at the beginning of each work day to a concentration of 100 ppm isobutylene.

The instruments used to measure groundwater stabilization parameters included an YSI Professional Series Data Logger and YSI Quatro Sonde. The calibration solutions used prior to using the water quality meter are as follows:

- 4.0 pH solution;
- 7.0 pH solution;
- 10.0 pH solution; and
- 1.413 uS/cm conductivity solution.

Management of Investigation Derived Waste

The drilling rig and drilling equipment were decontaminated on the bundle cleaning pad. The water is diverted to the Refinery's wastewater treatment system up-stream of the API Separator. The decontamination water generated from sampling equipment was collected in buckets and disposed at the bundle cleaning pad at the end of each day of sampling. All development/purge water was collected in five-gallon buckets or a 65-gallon horizontal leg polyethylene tank and disposed at the bundle cleaning pad.

Soil cuttings were placed into open top 55-gallon drums and were sealed when not in use. Each drum of soils was labeled and temporarily stored in a concrete curbed area pending waste characterization and disposal.

		WELL	DEVELOR	PMENT WOR	KSHEET			
Well Identification:	SWMU	13-1	Date:	10.23.	19	Time:	0822	,
Client / Location:				BUM CO.		_		
Temperature:	41		Clear?		Cloudy?			
Current Precipitation			0			ontinuous?	Intermitte	ent?
Estimated Wind Spe				rong Very S		I Van Village Village		
	PRE-D	EVELOPI	IENT MEA	SUREMENTS	S/OBSER	VATIONS:		
Top of Casing	3		e ground le			_	ground leve	el
Depth to SPH:		BTOC	BGL	Interface			evel meter	
Depth to GW:		втос		Interface	7		evel meter	
Total Depth:	□ SPH	□ Sheen	BGL	✓ Interface ☐ Turbid			evel meter	
Appearance: Odor: Yes	□ No	Type:	Silty	u rurbid	Clear	☐ Opaque	,	
Additional notes:	□ 1 10	туре.						
Development method	d:	☐ Bailing		☐ Pumping		☐ Air lift	□ Su	rge & block
			ELOPMEN	T MEASURE	MENTS			
Paramete	r				Readings	S		
Time								
Purge Volume								
Temperature (°F)								
Dissolved Oxygen (n	ng/L)							
Conductivity (uS/cm))							
Total Dissolved Solid	ds (mg/L)							
рН								
ORP(MV)								
Turbidity (NTUs)								
Paramete	r				Readings	S		
Time								
Purge Volume								
Temperature (°F)								
Dissolved Oxygen (n	ng/L)							
Conductivity (uS/cm)								
Total Dissolved Solid	ds (mg/L)							
рН								
ORP(MV)								
Turbidity (NTUs)								
Development Time:		minutes /	hours	Amount of I				gallons
Disposition of Fluids	3:	☐ Drumr	ned		Numbe	er of drums:		
		☐ Facility	y wastewat	ter treatment	system			
Completed by:	IRA	LA TAY	INE	_ Signature:	N-	7		

WELL DEVELOPMENT WORKSHEET						
Well Identification:	SWMU 13-1	Date: /	0.28-2019	Time: 0930		
			ASUREMENTS/OBSE	RVATIONS:		
Depth to SPH:	_ND □ BT	OC 🗆 BGL	☑Interface probe	□ Water level meter		
Depth to GW:	¬PD □ BTO	OC 🗆 BGL	☑Interface probe	□ Water level meter		
Total Depth:	18.56 BT	OC 🗆 BGL	☑ Interface probe	□ Water level meter		
Appearance:	□ SPH □ She	een 🗆 Silty	□ Turbid □ Clear	□ Opaque 🖊 🛕		
Odor: 🗆 Yes	⊡ •No Type:			•		
Additional notes:						
	ADDITI	ONAL FLUID	LEVEL MEASUREME	NTS:		
Date: 11- 5	. 19 Time:	124	0 5	· · · · ·		
Depth to SPH:	<u>~9</u> □ BT		□ Interfac e probe	☐ Water level meter		
Depth to GW:	□ BT•		□ Interface probe	□ Water level meter		
Total Depth:	198.55 BE	OC 🗆 BGL	□ Interface probe	□ Water level meter		
Date: 11.1	1 - 19 Time:	150	5 √	7		
Depth to SPH:	ND BT		☐ Interface probe	□ Water level meter		
Depth to GW:			☐ Interface probe	☐ Water level meter		
Total Depth:	18.56 PBT		☐ Interface probe	□ Water level meter		
Date:	Time:			- Malete e level en atom		
Depth to SPH:			☐ Interface probe	□ Water level meter		
Depth to GW:	BT		☐ Interface probe	□ Water level meter		
Total Depth:	D BT	OC 🗆 BGL	☐ Interface probe	□ Water level meter		
Date:	Time:					
Depth to SPH:	D BT	OC 🗆 BGL	□ Interface probe	□ Water level meter		
Depth to GW:	🗆 BT	OC 🗆 BGL	□ Interface probe	□ Water level meter		
Total Depth:	□ BT	OC 🗆 BGL	□ Interface probe	□ Water level meter		
Date:	Time:					
Depth to SPH:			☐ Interface probe	□ Water level meter		
Depth to GW:	□ BT(□ Interface probe	□ Water level meter		
Total Depth:			□ Interface probe	□ Water level meter		
Date:	Time:					
Depth to SPH:	Time. □ BT		☐ Interface probe	□ Water level meter		
Depth to GW:	□ BT		□ Interface probe	☐ Water level meter		
Total Depth:	BT		☐ Interface probe	□ Water level meter		
•			-			
Date:	Time:					
Depth to SPH:	BT		☐ Interface probe	□ Water level meter		
Depth to GW:	BT		☐ Interface probe	□ Water level meter		
Total Depth:	BT	OC 🗆 BGL	☐ Interface probe	□ Water level meter		
Completed by:	James Re	21:	Signature:	met -		

		WELL	DEVELOP	MENT WO	RKSHEET			
Well Identification:	SWMU !	3-2_	_Date:	10.23.10	3	_Time:	0822	
Client / Location:	MP	<u> </u>						
Temperature:			Clear?	•	Cloudy?			
Current Precipitation	_	Drizzle	3		•	ontinuous?	Intermitte	ent?
Estimated Wind Spe		ght Mode			Strong			
		EVELOPM	ENT MEAS	UREMENT	S/OBSER\	/ATIONS:		
Top of Casing	3		ground lev	4		-	ground lev	el
Depth to SPH:	ND	_ ®BTOC	■ BGL	Interfac		□ Water le		
Depth to GW:	14.86		⊕ BGL	Interfac		☐ Water le	=	
Total Depth:	<i>_/9./5</i> ∃ SPH	_ BTOC □ Sheen	□ BGL ☑Silty			□ Water le		
	∃ No	ರ Sneen Type:			□ Clear	□ Opaque		
Additional notes:	NO	Type.	Hydrox	to Leon				
Development method	<u> </u>	Bailing		☐ Pumpin	a	∃ Air lift	⊜ Su	rge & block
			LOPMENT	MEASURE				ige & block
Parameter	•				Readings		<u> </u>	······································
Time		0853	0903	0908	0913	0921		
Purge Volume / Opalk	ons)	0	0.25	1.25	2.25	3.10		
Temperature (°F)		55.1	56.3	56.2	55.8	BAILED	luga	
Dissolved Oxygen (m	g/L)	4.84	5.00	4.52	4.80	12.12.	7	
Conductivity (uS/cm)		12,913	13,102	13,194	13,266			
Total Dissolved Solids	s (mg/L)	956	907	1004.5	1128			
pН		7.71	7.31	7.14	7.19			
ORP(MV)		256.2	263.8	266.7	2.64.2			
Turbidity (NTUs)		217	44.1	13.6	0.02			
Parameter					Readings			
Time								
Purge Volume	_							
Temperature (°F)								
Dissolved Oxygen (m	g / L)							
Conductivity (uS/cm)								
Total Dissolved Solids	(mg/L)							
рH								
ORP(MV)								
Turbidity (NTUs)								
Development Time:	28	minutes/ h	ours .	Amount of	Fluids Deve	eloned:	3.10	aallana
Disposition of Fluids:		☐ Drumme	ed	, anount of		of drums:	<u>J.10</u>	gallons
		Facility	wastewate	r treatment	system			
Completed by:	Jame	s Ro		Signature: _	In	1		

		WELL	DEVELOR	MENT WORKSHEET		
Well Identification:	SWMU	3-2	Date: 10	1.23.19	Time: 0930	
	POST-I	DEVELOP	MENT MEA	SUREMENTS/OBSE	RVATIONS:	
Depth to SPH:	ND	E BTOC	⊒ BGL	✓Interface probe	□ Water level meter	
Depth to GW:	19.05	₽ BTOC	□ BGL	✓Interface probe	Water level meter	
Total Depth:	19.40	ВТОС	∷ BGL	☑ Interface probe	☐ Water level meter	
Appearance:	□ SPH	_ □ Sheen	Silty	☑ Turbid 🛭 Clear	□ Opaque	
Odor: Yes	™ o	Type:	Hudo	carbon		
Additional notes:	Bailed	low	at 210	zallors		
				EVEL MEASUREME	NTS:	
Date: /0 - 24	. 19	Time:	08:20			
Depth to SPH:	DN	BTOC	BGL	Interface probe	☐ Water level meter	
Depth to GW:	17.11	_ ∠ BTOC	BGL	✓Interface probe	☐ Water level meter	
Total Depth:	19.39	_з∕втос	::: BGL	Interface probe	Water level meter	
Date: 10-26	-1019	T:	192E			
Depth to SPH:		_Time: BTOC	<i>0935</i> □ BGL			
Depth to GW:	<u>ND</u> 15.48	_ BTOC	□ BGL	☑Interface probe	☐ Water level meter	
Total Depth:	19.41	_ ØBTOC -		Interface probe	☐ Water level meter	
rotal Deptil.	11711	_ SPIOC	BGL	✓interface probe	Water level meter	
Date:		Time:				
Depth to SPH:		BTOC	BGL	Interface probe	Water level meter	
Depth to GW:		BTOC	□ BGL	Interface probe	Water level meter	
Total Depth:		□ BTOC	□ BGL	Interfaçe probe	Water level meter	
Date:		Time:				
Depth to SPH:	······································	BTOC	BGL	Interface probe	□ Water level meter	
Depth to GW:		. BTOC	BGL	Interface probe	☐ Water level meter	
Total Depth:		BTOC	BGL	Interface probe	□ Water level meter	
•		•		e inionado probo	Trater level meter	
Date:		Time:				
Depth to SPH:		BTOC	BGL	Interface probe	∷ Water level meter	
Depth to GW:		E BTOC	BGL	Interface probe	Water level meter	
Total Depth:		BTOC	:: BGL	Interface probe	☐ Water level meter	
Date:		Time:				
Depth to SPH:		E BTOC	BGL	Interface probe	Water level meter	
Depth to GW:		BTOC	BGL	☐ Interface probe	Water level meter Water level meter	
Total Depth:		□ BTOC	BGL	☐ Interface probe	Water level meter Water level meter	
		•		,		
Date:		Time:				
Depth to SPH:		BTOC		⊡ Interface probe	□ Water level meter	
Depth to GW;		BTOC	□ BGL	Interface probe	☐ Water level meter	
Total Depth:		BTOC	BGL	☐ Interface probe	☐ Water level meter	
Completed by:	1	Ω .		Cianatus ()	\mathcal{L}	}
completed by.	Vami	S KC	<u> </u>	_Signature:	~12	

Г

		WELL	DEVELOP	MENT WOF	RKSHEET			
Well Identification:	SWMU !		_Date:	10.23./	'9	_Time:	0825	
Client / Location:	MPC-	-GIR	_				·	-
Temperature:			Clear?		Cloudy?			
Current Precipitation				•		us? Intermit	tent?	
Estimated Wind Spe		-	·	Very Str				···
		EVELOPM			S/OBSER\	/ATIONS:		
Top of Casing	3		ground lev			-	ground lev	el
Depth to SPH:	<u>ND</u>	_BETOC		⊮ Interface	•	□ Water le		
Depth to GW: Total Depth:	12.52	_ Ø BTOC ■ BTOC	□ BGL □ BGL	☑ Interface ☑	•	☐ Water le		
Appearance:		_ □ Sheen	□ Silty		e probe □ Clear	☐ Water le		
Odor: □ Yes	□ No	Type:	□ Only		Li Oleai	B Opaque		
Additional notes:		.)						
Development method	d:	₽Bailing		☐ Pumpin	g	□ Air lift	□ Su	rge & block
		DEVE	LOPMENT	MEASURE	MENTS			
Paramete	r				Readings	,	*****	·
Time		0954	1000	1007	1013	1018	1025	1035
Purge Volume		0	0.50	7.00	3.00	4.00	5.00	8.00
Temperature (°F)		58.3	57.9	\$57. 5	57.2	57.5	57.4	56.6
Dissolved Oxygen (m	ng/L)	6.38	4.94	4.62	3.18	4.20	6.26	2.83
Conductivity (uS/cm)		14,038	14,227	14.134	14,101	14,209	14,246	14,116
Total Dissolved Solid	ls (mg/L)	1420	1687	1583	1609	1648	1693.5	1713
рН		7.25	7.22	7.04	6.99	7.07	6.91	7.08
ORP(MV)		213.7	211.7	206.9	201.	201.8	196.7	202.1
Turbidity (NTUs)		101	486	250	284	427	312	621
Paramete	<u> </u>			,	Readings			
Time		1100	1142	1227	1241	1254	1308	1325
Purge Volume		13.00	13.35	18.00	23.00	28.00	33.00	38.00
Temperature (°F)		56.8	57.4	59.6	57.7	57.8	57.2	57.8
Dissolved Oxygen (m	ng/L)	2.66	4.84	5,94	9.71	4.18	6.74	535
Conductivity (uS/cm)		14,377	14,237	14.796	14,400	14,502	14,405	14,484
Total Dissolved Solid	s (mg/L)	1895	1706	1745	1726	1817	1830	1817
рН		7.02	7.03	7.07	7.03	7.11	7.25	7.11
ORP(MV)		202.5	245.8	171.6	188.2	189	Z 00	202.4
Turbidity (NTUs)		7/100	31.4	7/100	1020	71/00	786	1050
Development Time:	1:060	² minutes / h	nours	Amount of	Fluids Dev	eloped:	130	gallons
Disposition of Fluids	•	☐ Drumm			Numbe	r of drums:		
	*	T Facility	wastewate	r treatment	t system	4		
Completed by:	()	Rin		Cian -tu	()			
Completed by:	VIMIT	2 1/C/1.		Signature:	my			· · · · · · · · · · · · · · · · · · ·
	·					W		

P9-1 of 2

	WELL	DEVELOP	MENT WO	RKSHEET			
Well Identification: SWM	W13-3		10.23	-19	_Time:	1400	
Temperature: Current Precipitation: Not Estimated Wind Speed:	ne Drizzle Slight Mode	•	oderate ong Very		ontinuous?	Intermitte	ent?
PR	E-DEVELOPM	ENT MEAS	UREMENT	S/OBSER\	/ATIONS:		
Top of Casing feet also Depth to SPH: BTC		e ground level BGL Interface probe BGL Interface probe BGL Interface probe Silty Turbid Clear			_feet below ground level ☐ Water level meter ☐ Water level meter ☐ Water level meter ☐ Opaque		
Development method:	☐ Bailing		☐ Pumpin	g	☐ Air lift	□ Su	rge & block
	DEVE	LOPMENT	MEASURE	EMENTS			
Parameter				Readings			
Time	1410	1420	1430	1440	1455	1500	1505
Purge Volume	39.00	43.00	46.00	48.00	53.00	53.25	53.75
Temperature (°F)	58.00	57.4	56.8	57.6	51.7	56.3	56.2
Dissolved Oxygen (mg/L)	9.18	3.62	3.76	2.82	3.87	3.36	2.90
Conductivity (uS/cm)	14.713	14,426		14,287	14,281	14,162	14100
Total Dissolved Solids (mg/L) 1934	1836	1869	1680	1804	1778	1752
рН	7.17	7.23	7.19	7.10	7.10	7.03	7.06
ORP(MV)	194.6	2.005	212.9	211.5	217.2	219.8	228.3
Turbidity (NTUs)	71100	7/100	399	391	360	169	102
Parameter				Readings			
Time	1515	1553	1600	1615	1635		
Purge Volume	56.00	57.00	58.00	62.00	66.00		
Temperature (°F)	56.5%	57.5	56.5	56.1	55.7		
Dissolved Oxygen (mg/L)	4.90	5.45	4.05	2.8	3.05		
Conductivity (uS/cm)	19,260	14.545	14276	14,247	14,205		
Total Dissolved Solids (mg/L	1849	1882	1862	1888	1934		
рН	7.02	7.24	7.16	7.25	7.30		
ORP(MV)	226.1	217.1	2258	236.0	232.1		
Turbidity (NTUs)	257	198	184	210.0	164		
Development Time: 6:4 Disposition of Fluids: Completed by:	☐ Drumm	ed wastewate	Amount of r treatment	Fluids Deve		66	gallons

pg Zof Z

		WELL	DEVELOF	MENT WORKSHEET	
Well Identification:	SWMU 13	5-2	Date: j	0/23/19	Time:
				ASUREMENTS/OBSER	tVATIONS:
Depth to SPH:	ND	□ ВТОС	□ BGL	☑ Interface probe	□ Water level meter
Depth to GW:	17.98	втос	□ BGL	☑ Interface probe	□ Water level meter
Total Depth:	19.18	втос	□ BGL	Interface probe	□ Water level meter
Appearance:	☐ SPH	_ □ Sheen	□ Silty	Turbid □ Clear	□ Opaque
Odor:	□ No	Type:		ocerpan	
Additional notes:					
		ADDITIONA	\L FLUID	LEVEL MEASUREMEN	NTS:
Date: 10-24-		Time:	083		
Depth to SPH:	_ ND_	BTOC	□ BGL	☑ Interface probe	☐ Water level meter
Depth to GW:	12.67	_ & BTOC	□ BGL	☐ Interface probe	☐ Water level meter
Total Depth:	19.10	_ BTOC	□ BGL	⊡∕interface probe	□ Water level meter
Data: in 16	3-2019	Time:	094	O	
Date: <u>/() - </u> とも Depth to SPH:	ND - COLT	rime: BTOC	BGL	☑ Interface probe	□ Water level meter
Depth to GW:	12.35	_	□ BGL	☑ Interface probe	☐ Water level meter
Total Depth:	19.10	BTOC	□ BGL	⊡ Interface probe	☐ Water level meter
F 777	<u></u>	_	_	•	
Date:		Time:			m 184-4- 1
Depth to SPH:		BTOC	□ BGL	☐ Interface probe	☐ Water level meter
Depth to GW:		_ BTOC		☐ Interface probe	☐ Water level meter☐ Water level meter
Total Depth:		_ D BTOC	□ BGL	□ Interface probe	□ vvater level Hietel
Date:		Time:			
Depth to SPH:		BTOC	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:			□ BGL	☐ Interface probe	□ Water level meter
Total Depth:			□ BGL	□ Interface probe	□ Water level meter
Data		Time:			
Date: Depth to SPH:		Time:	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:			□ BGL	☐ Interface probe	☐ Water level meter
Total Depth:		BTOC	□ BGL	☐ Interface probe	□ Water level meter
- -	,,			·	
Date:		Time:			D 181-4 Louis
Depth to SPH:				☐ Interface probe	☐ Water level meter
Depth to GW:		BTOC	□ BGL □ BGL	☐ Interface probe☐ Interface probe	☐ Water level meter☐ Water level meter
Total Depth:		_ n b100	u bUL	писнасе ргоре	- Trace level Hickel
Date:		Time:		****	
Depth to SPH:			□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:		_ 🗆 втос	🗆 BGL	☐ Interface probe	☐ Water level meter
Total Depth:		_ BTOC	□ BGL	☐ Interface probe	☐ Water level meter
Completed by:	Jam	es Reis		Signature:	12

		WELL D	DEVELOPI	MENT WOR	RKSHEET			
Well Identification:		13-4		10-24		Time:	08:15	5
Client / Location:		on Petro). LP -	Gallup	Refine	7	
Temperature:	30°	D: 1	Clear?	to see a	Cloudy?		Into smitte	m+2
Current Precipitation			0			ntinuous?	Intermitte	ent?
Estimated Wind Spe		ht Moder			Strong			
		EVELOPME	ENT MEAS	UREMENT	S/OBSERV			
Top of Casing	3	feet above	_	/			ground lev	el
Depth to SPH:	ND		BGL	Interface			evel meter	
Depth to GW:		ВТОС	BGL	Interface			evel meter	
Total Depth:		-	BGL	Interface			evel meter	
Appearance:	SPH	Sheen	Silty	☐ Turbid	Clear	☐ Opaque	9	
Odor: Yes	□ No	Туре:						
Additional notes: Development method	d.	Bailing		☐ Pumping	n	☐ Air lift	□ Su	rge & block
Development metrics	u.		OPMENT	MEASURE		_ / (11 11)		igo a biook
Paramete	-	1	LOT MILIT	ME/(OO)(E	Readings			
		0015	00:05	09/10	Readings			
Time		0915	09:25	09:40				
Purge Volume		0	2.00	3.5 B	ATLED	DOWN (D	RY	
Temperature (°F)		55.2	55.5				1	
Dissolved Oxygen (n	ng/L)	3.25	2.55					
Conductivity (uS/cm))	14,366	12,873					
Total Dissolved Solid	ds (mg/L)	2155	842					
рН		648	6.99					
ORP(MV)		354.6	338.4					
Turbidity (NTUs)		881	×100					
Paramete	r				Readings	from	10/28/19	
Time		1325	1335	1345				
Purge Volume		0	3.00		BATLED	DOWN T	xy)	
Temperature (°F)		55.0	54.6				.,	
Dissolved Oxygen (n	ng/L)	3.35	3.45					
Conductivity (uS/cm)		16480	16325					
Total Dissolved Solid	ds (mg/L)	3949	3916		*			
рН		6.87	6.81					
ORP(MV)		320.1	209.0					
Turbidity (NTUs)		189	>1100					
Development Time:	25	minutes / h	nours	Amount of	Fluids Dev	eloped:	3.5	gallons
Disposition of Fluids	3:	☐ Drumm	ed		Numbe	r of drums		
		Facility	wastewate	er treatmen	nt system			
to the contract of	it				/ /	1	1)	
Completed by:	Jam	es (Lei	.5	_Signature:	S	~ 1/	/	

	WELL	DEVELOP	MENT WORK	SHEET			
the state of the s	413-4 -GR	_Date:	10/29/2	2019	Time:	084	5
Temperature: 36		Clear?		Cloudy?			
Current Precipitation: None					ntinuous?	Intermitte	nt?
	ight Mode	rate Stro	ing Very S	trong			
PRE-I	DEVELOPM	ENT MEAS	UREMENTS	/OBSERV	ATIONS:		
Top of Casing		e ground lev				ground leve	el
Depth to SPH:	_ BTOC	BGL	□ Interface□ Interface	•	□ Water le		
Depth to GW:					□ Water le□ Water le		
Total Depth: Appearance:	BTOC Sheen	☐ BGL ☐ Silty	☐ Interface☐ Turbid	•	□ Opaque		
Odor:	Type:	_ Only	_ raibia	_ 0.00.	= -		
Additional notes:	7,000						
Development method:	☑ Bailing		☐ Pumping		☐ Air lift	□ Sur	ge & block
(i	RE-) DEVE	LOPMENT	MEASURE	WENTS			
Parameter				Readings			
Time	0900	0910	0920				
Purge Volume	0	2.75	3.00				
Temperature (°F)	53.2	53,9	BAILE	D Down	V		
Dissolved Oxygen (mg/L)	3.80	5.72	DTW=	19.53'B	TOC		
Conductivity (uS/cm)	15917	15786	TD=	19.56B	Toc		
Total Dissolved Solids (mg/L)	3923	3598	3.0	gals total	Develope	L	
рН	5.71	6.26	20 m	in. of 8	eveloping		
ORP(MV)	342.6	322.4			. (
Turbidity (NTUs)	174	21100					
Parameter				Readings			
Time							
Purge Volume							
Temperature (°F)							
Dissolved Oxygen (mg/L)	7						
Conductivity (uS/cm)							
Total Dissolved Solids (mg/L)							
pH							
ORP(MV)							
Turbidity (NTUs)							
Development Time:	minutes /	hours	Amount of I	Fluids Dev	eloped:		gallons
Disposition of Fluids:	☐ Drumr☐ Facility		er treatment		r of drums:		
Completed by:			_Signature: _				

	<u> </u>	WELL I		MENT WORKSHEET	
Well Identification: \$	wm11			-24-19	Time: 09:40
3			<u>-</u> -	SUREMENTS/OBSER	EVATIONS:
Denth to SDU		BTOC	∃BGL		☐ Water level meter
Depth to SPH:	ND	BTOC	∃ BGL	✓ Interface probe	☐ Water level meter
Depth to GW:	19.71	_		✓ Interface probe	Water level meter Water level meter
Total Depth:		BTOC Bhoon	□ BGL	✓ Interface probe □ Turbid □ Clear	☐ Opaque
, appearance.	□ SPH	☐ Sheen	⊋∕Silty	1	o opaquo
	□ No	Type:	Hydro	corbin	
Additional notes:					
		DDITIONA		EVEL MEASUREMEN	NTS:
Date: 10-28		Time:	0945		
Depth to SPH:	ND	BTOC	⊒ BGL	☑ Interface probe	☐ Water level meter
Depth to GW:	12.64	_ 3′BTOC	□ BGL	Interface probe	☐ Water level meter
Total Depth:	19.57	_⊅ B TOC	□ BGL	Interface probe	☐ Water level meter
Date: 10 - 29	- 7019	Time:	0900	(Prelim.)	
Date: 10-C1 Depth to SPH:	ND	_ i ime: _ [BTOC		Interface probe	∃ Water level meter
Depth to GW:		_ E BTOC	∃ BGL	Interface probe	☐ Water level meter
Total Depth:		_ 3∕BTOC	∃ BGL	✓ Interface probe	☐ Water level meter
, gran wopun	<u> </u>		_ 	F	
Date:		_Time:			
Depth to SPH:		_ □ BTOC	BGL	☐ Interface probe	Water level meter
Depth to GW:		BTOC	∃BGL	☐ Interface probe	☐ Water level meter
Total Depth:		_ □ BTOC	∃ BGL	☐ Interface probe	☐ Water level meter
Date:		Time:			
Depth to SPH:		_ ⊓me: □ BTOC	 □ BGL	 ☐ Interface probe	☐ Water level meter
Depth to SPH:		BTOC	E BGL E BGL	☐ Interface probe	□ Water level meter
Total Depth:		BTOC	_ BGL ⊒ BGL	☐ Interface probe	□ Water level meter
		_ = = .00	~ ~	p.000	- -
Date:		_Time:			
Depth to SPH:		□□BTOC	BGL	Interface probe	☐ Water level meter
Depth to GW:		_ □ BTOC	⊑ BGL	☐ Interface probe	☐ Water level meter
Total Depth:		BTOC	∃ BGL	⊡ Interface probe	☐ Water level meter
Date:		Time:			
Depth to SPH:		_ Tille. □ BTOC	☐ BGL	☐ Interface probe	☐ Water level meter
Depth to GW:		_ ∃ BTOC	□ BGL	☐ Interface probe	□ Water level meter
Total Depth:	-	_ BTOC	BGL	☐ Interface probe	☐ Water level meter
		_			
Date:		_Time:	_ = -:	ero dui e - C	- 186-41 · ·
Depth to SPH:		_ BTOC	∃ BGL	☐ Interface probe	□ Water level meter
Depth to GW:		_ E BTOC	∃ BGL	☐ Interface probe	☐ Water level meter
Total Depth:		_ = BTOC	∃BGL	☐ Interface probe	☐ Water level meter
Completed by:	Jan	ies Ra	<u> </u>	_Signature:	m/)

		DEVELOP			7	10.05	
Well Identification: SWMW		Date:	10-24-		Time:	10:05	
	on Petrolan		- Gallup				
Temperature: 40 Current Precipitation: None	Drizzle Ligh	Clear?	Heavy	Cloudy?	e2 Intermi	ttent?	-
Estimated Wind Speed: Slight		_	Very Stro		S: IIILEIIIII	tient?	
Charles and the second	DEVELOPM				ATIONS:		
Top of Casing 3	feet above	ground lev	el		feet below	ground lev	el
Depth to SPH:	BTOC	BGL	Interface		□ Water le	evel meter	
Depth to GW: 13.14		BGL	Interface			evel meter	1
Total Depth: 19.13	_ ⊮BTOC	BGL	☑ Interface			evel meter	
Appearance: ☐ SPH Odor: ☐ Yes ☐ No	☐ Sheen	Silty	□ Turbid	Clear	Opaque)	
Additional notes:	Type:	Hydrocar	100M		-		
Development method:	Bailing		☐ Pumping	1	☐ Air lift	□ Su	rge & block
	AUC DA	LOPMENT		100 a 100 b 1	= 7 m m·s		.go a bioak
Parameter	+			Readings		- J	
Γime'	10:15	10:25	10:35	10:45	11:05		
Purge Volume	0	2.00	4.50	6.00	6.50	RATLED	DOWN DE
emperature (°F)	56.6	56.8	55.2	54.5		-	
Dissolved Oxygen (mg/L)	5.09	4.05	2.87	3.50			
Conductivity (uS/cm)	14,953	14,316	13,818	14,269			
Total Dissolved Solids (mg/L)	2399.0	1882.0	1713.0	2174.5	1		
Н	6.75	6.82	6.73	6.82			
DRP(MV)	349.1	339.2	335.9	317.4			
Turbidity (NTUs)	402	>1100	71100	>1100			
Parameter		7		Readings			
Time	**						
Purge Volume	6						
emperature (°F)						-	
Dissolved Oxygen (mg/L)							
Conductivity (uS/cm)				-			
Total Dissolved Solids (mg/L)						-	
oH .					- V		
DRP(MV)	- 0						
Turbidity (NTUs)	5						
Development Time: 50	minutes Ph	nours	Amount of	Fluids Dev	eloped:	6.5	gallons
Disposition of Fluids:	□ Drumm	ned			r of drums		
- 11	Pacility	wastewate	er treatmen	t system	6		
Completed by: Jam.	es Pais		Signature:				
	ر المال		- Olymature.	-X/V		0	

		WELL	DEVELOP	MENT WOR	KSHEET			
		13-5	Date:	10/29/	2019	Time:	0930	
	MPC-G	1R		'				
Temperature:	38	Dringle	Clear?	danata l	Cloudy?	-4:	l=4====:44=	-40
Current Precipitation: C Estimated Wind Speed		nt Mode	_		Heavy Co Strong	ontinuous?	Intermitte	nt?
Estimated Wind Speed.				UREMENT		ATIONS:		
Top of Casing		feet above	ground lev	el		feet below	ground leve	el
Depth to SPH:				☐ Interface	probe	☐ Water le	evel meter	
Depth to GW:				☐ Interface		□ Water le		
Total Depth:		BTOC	BGL	☐ Interface		☐ Water le		
		☐ Sheen Type:	☐ Silty	☐ Turbid	□ Clear	☐ Opaque		
Additional notes:	140	турс.						
Development method:		Bailing		☐ Pumping	9	☐ Air lift	□ Sur	ge & bloc
		DEVE	LOPMENT	MEASURE	MENTS			
Parameter					Readings			
Time		09:40	09:50	10:00	10:35			
Purge Volume		0	2.0	4.0	7.0			
Temperature (°F)		55.2	55.8	54.8	BAILE	Down	0	
Dissolved Oxygen (mg/L)		3.27	3.26	3.19	1	=18.65'B		
Conductivity (uS/cm)		17,270	17,033	16,982	TD=	19.13'B	Toc	
Total Dissolved Solids ((mg/L)	4612	4358	4475	7.0	gals tot	al develop	el
pН		6.42	6.34	6.32	55n	nins of d	eveloping	
ORP(MV)		282.5	283.0	286.6			, 0	
Turbidity (NTUs)		84	122	298				
Parameter					Readings			
Time								
Purge Volume								
Temperature (°F)								
Dissolved Oxygen (mg/	(L)							
Conductivity (uS/cm)								
Total Dissolved Solids ((mg/L)							
рН								
ORP(MV)								
Turbidity (NTUs)								
Development Time:		minutes / h	nours	Amount of	Fluids Dev	eloped:		gallons
Disposition of Fluids:		☐ Drumm☐ Facility		er treatmen		r of drums:		
Completed by:				Signature:				

		WELL	DEVELOP	MENT WORKSHEET		
Well Identification: (3WMW.	13-5	Date: 10	-24-19	Time: //:05	
			MENT MEA	SUREMENTS/OBSEF		
Depth to SPH:	DA	ВТОС	∃ BGL	✓Interface probe	.Water level meter	
Depth to GW:	18.95	BTOC	∃ BGL	✓Interface probe	□ Water level meter	
Total Depth:	19.15	_ ₹BTOC	∃ BGL	✓Interface probe	□ Water level meter	
Appearance:	□ SPH	- □ Sheen	⊋∕ Silty	∃ Turbid □ Clear	□ Opaque	
Odor: 🛂 Yes	Ľ No	Type:	Unda	carbon		
Additional notes:		· ·	11901	(C-14 800)/		
		ADDITIONA	AL FLUID L	EVEL MEASUREMEI		
Date: 10 - 28	1.2019	Time:	1950		¢	
Depth to SPH:	ND		□ BGL	☑ Interface probe	□ Water level meter	
Depth to GW:	12.85	≱BTOC	□ BGL	Interface probe	☐ Water level meter	
Total Depth:	19.15	∃≯BTOC	□ BGL -	✓Interface probe	□ Water level meter	
D-4 12 00	00.0	~ :	4000	\ \(\tau \) \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	4	
	-2019	_Time:	0930			
Depth to SPH:	ND	BTOC	⊡ BGL	Interface probe	☐ Water level meter	
Depth to GW:	12.78	_⇒∕BTOC	BGL	✓Interface probe	□ Water level meter	
Total Depth:	19.21	BTOC	□ BGL		☐ Water level meter	
Date:		Time:	,			
Depth to SPH:	·-		□ BGL	☐ Interface probe	☐ Water level meter	
Depth to GW:			□ BGL	☐ Interface probe	□ Water level meter	
Total Depth:		⊒ втос	□ BGL	☐ Interface probe	☐ Water level meter	
Data:		Times				
Date: Depth to SPH:		_Time:	- BCI		¬ \\/	
•		BTOC	□ BGL	Interface probe	□ Water level meter	
Depth to GW:			□ BGL	☐ Interface probe	✓ ☐ Water level meter	
Total Depth:		BTOC	□ BGL	☐ Interface probe	□ Water level meter	
Date:		Time:	•			
Depth to SPH:			□ BGL	☐ Interface probe	☐ Water level meter	
Depth to GW:		_∃ BŤOC	. BGL	Interface probe	☐ Water level meter	
Total Depth:		BTOC	⊡ BGL	☐ Interface probe	☐ Water level meter	
Date:		Time:				
Depth to SPH:		BTOC	BGL	☐ Interface probe	☐ Water level meter	
Depth to GW:			□ BGL	☐ Interface probe	☐ Water level meter	
Total Depth:		□ BTOC	□ BGL	☐ Interface probe	☐ Water level meter	
		-				
Date:	-	Time:				
Depth to SPH:		BTOC	∃ BGL	☐ Interface probe	☐ Water level meter	
Depth to GW:		BTOC	BGL	Interface probe		
Total Depth:		BTOC	BGL	Interface probe	☐ Water level meter	
Ones al late of the	. T	$\widehat{\mathcal{D}}$			\mathcal{L}	
Completed by:	Van	1e5 14	215	Signature: (/	1/0	

	WELL	DEVELOP	MENT WOR	KSHEET			
Well Identification: <u>SWMU</u>	13-6	_Date:	10.28	2019	Time:	1025	
	THON P		EM Co.				
	3°F	_Clear?		Cloudy?			
Current Precipitation: None Estimated Wind Speed: Sli					ontinuous?	Intermitte	ent?
	ght Mode DEVELOPM				ATIONS.		
Top of Casing 2				3/OBSERV			-1
Depth to SPH:					□ Water le	ground lev	eı
				□ Water le			
Total Depth: 19.71	I BTOC	BGL	Interface		□ Water le		
Appearance: SPH	□ Sheen	Silty	Turbid	☐ Clear	☐ Opaque		
Odor:	Type:						
Additional notes:	\frac{1}{2}						
Development method:	Bailing		□ Pumping		☐ Air lift	□ Su	rge & bloc
	DEVE	LOPMENT	MEASURE	MENTS			
Parameter	-	3/2019		Readings			
Time	1030	1090	BAILED				
Purge Volume	50	1	DRYC				
Temperature (°F)	54.8	55.2	1.1GAL9				-
Dissolved Oxygen (mg/L)	7.24	5.48					
Conductivity (uS/cm)	11,443	11471					
Total Dissolved Solids (mg/L)	9912	9776					
рН	7.36	7.04					
ORP(MV)	248.1	262.6					
Turbidity (NTUs)	434	>1100					
Parameter	10/29/	2019		Readings			
Time	11:10	11:20	11:25				
Purge Volume	0	1.5	2.0				
Temperature (°F)	56.0	55.6	BAILE	DOWN			
Dissolved Oxygen (mg/L)	3.09	4.92		19.29 BT	ОС		
Conductivity (uS/cm)	12024	11,723	TD=	19.89'BTO	c		
Total Dissolved Solids (mg/L)	42.5	9873		Is total b	0		
рН	6,83	6.78		n total be	1.		
ORP(MV)	278.3	305.1			0		
Turbidity (NTUs)	138	>1100					
Development Time: 35	minutes / I	hours	Amount of	Fluids Dev	eloped:	1.1	gallons
Disposition of Fluids:	☐ Drumm	ned			r of drums:		
	Facility	wastewate	er treatment	t system			
T	D				(1)		
Completed by:	es Ke	.5	Signature:	Ju;	1/6		

	WFII	DEVEL OP	MENT WORKSHEET	
Well Identification:			28-2019	Time: /025
			SUREMENTS/OBSEI	1025
Darah ta ODUb				☐ Water level meter
Depth to SPH:	<u>ND</u> □ BTOC	□ BGL	☑ Interface probe	
Depth to GW:	13.18 ЗВТОС	□ BGL	✓Interface probe	□ Water level meter
Total Depth:	19.71 3 BTOC		✓Interface probe	☐ Water level meter
Appearance:	☐ SPH ☐ Sheen	-∕Silty	⊡ Clear ☐ Clear	□ Opaque
Odor: ⊋Yes	□ No Type:			
Additional notes:		-		-
	ADDITION	AL FLUID L	EVEL MEASUREME	NTS:
Date: 10-27	-20/9 Time:	11:00	(Prelim.)	-
Depth to SPH:	N D □ BTOC	□ BGL	☑ Interface probe	☐ Water level meter
Depth to GW:	<i>13.94</i>	□ BGL		□ Water level meter
Total Depth:	<i>19.85</i> ∡BTOC	∃ BGL	Interface probe	☐ Water level meter
Date:	Time:			
Depth to SPH:	D BTOC	□ BGL	□ Interface probe	☐ Water level meter
Depth to GW:		BGL	☐ Interface probe	☐ Water level meter
Total Depth:	: BTOC	⊞ BGL	☐ Interface probe	□ Water level meter
Date:	Time:			
Depth to SPH:		□ BGL	☐ Interface probe	☐ Water level meter
Depth to GW:	∃ BTOC	□ BGL	☐ Interface probe	☐ Water level meter
Total Depth:	∃ BTOC	□ BGL	☐ Interface probe	□ Water level meter
Data	- -			
Date:	Time:	- DCI		
Depth to SPH:	BTOC	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:	∃ BTOC ∃ BTOC	□ BGL □ BGL	☐ Interface probe	□ Water level meter
Total Depth:	J BIOC	⊔ BGL	☐ Interface probe	☐ Water level meter
Date:	Time:			
Depth to SPH:	⊒ втос	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:	□ BTOC	□ BGL	☐ Interface probe	□ Water level meter
Total Depth:	BTOC	∃ BGL	☐ Interface probe	□ Water level meter
Date:	Time:			
Depth to SPH:	⊓nne. □ BTOC	BGL	☐ Interface probe	□ Water level meter
Depth to GW:	□ BTOC	□ BGL	☐ Interface probe	☐ Water level meter
Total Depth:	□ BTOC	∃ BGL	☐ Interface probe	☐ Water level meter
			·	
Date:	Time:			
Depth to SPH:	BTOC	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:	BTOC	□ BGL	☐ Interface probe	☐ Water level meter
Total Depth:		□ BGL	☐ Interface probe	Water level meter
Completed by:	James R) -èis	Signature:	

		WELL	DEVELOP	MENT WOR	KSHEET			
Well Identification:	SWMU I	3-7	Date:	10.28	. 2019	Time:	1125	
Client / Location:		HON PETI		Co. LP				
Temperature:	34		Clear?		Cloudy?			
Current Precipitation						ntinuous?	Intermitte	ent?
Estimated Wind Spec		t Mode			Strong S/OBSERV	ATIONS:		
Top of Casing	3		ground lev		O/ODOLIK	feet below	around lev	el
Depth to SPH:	ND	■ BTOC	□ BGL	Interface	e probe	□ Water le	-	Ci
Depth to GW:	15.44	BTOC	BGL	Interface		□ Water le		
Total Depth:	20.37				□ Water le	vel meter		
Appearance:	SPH	☐ Sheen	Silty	Turbid	☐ Clear	☐ Opaque		
Odor: Yes	□ No	Type:	Hydroco	Moon				
Additional notes: Development method	4.	Bailing	0	- Dumning		☐ Air lift	□ C	rac 9 blook
Development method	и.		LOPMENT	☐ Pumping MEASURE		□ All lilt	□ Su	rge & block
Paramete	r	10/28/2		III LAGORE	Readings			
Time		1130	1135	1140	1200			
Purge Volume		0	0.8	1,5	2.5			
Temperature (°F)		55.2	56.2	55.9	54.3	BAILED		
Dissolved Oxygen (n	ng/L)	2.43	2.68	3.60	3.82	DRYAT		
Conductivity (uS/cm)		16,711	16,707	15,674	16,389	2.6 GAL	5	
Total Dissolved Solid	ls (mg/L)	4456	3968	3201	4215			
рН		6.94	6.98	7.01	7.03			
ORP(MV)		264.6	233.6	63.2	1120			
Turbidity (NTUs)		>1100	71100	71100	>1100			
Paramete	r	10/29/20	19		Readings			
Time		1145	1158	12:05				
Purge Volume		0	1.2	2.2				
Temperature (°F)		57.4	56.4	BAILE	DOWN			
Dissolved Oxygen (m	ng/L)	3.18	3.60		9,79'BTOC			
Conductivity (uS/cm)		17,646	17407	TD=2	0.43 BTO			
Total Dissolved Solid	ls (mg/L)	4469	4499	2.29	als total bo	iled		
рН		6.74	6.85	20 mi	n total ba	ling		
ORP(MV)		258.1	244.5			J		
Turbidity (NTUs)		202	36.6					
Development Time:	40 (minutes / I	nours	Amount of	Fluids Dev	eloped:	2.6	gallons
Disposition of Fluids	S:	☐ Drumm				r of drums:		
		Facility	wastewate	er treatmen	t system			
Completed by:	Dam	es Rois	5	Signature:	()	-11)_	
				_ Jigi iatai o.	-	-//		

V

	WELL	DEVELOP	MENT WORKSHEET	
Well Identification:	SWMU 13-7	Date: / 0-	28-2019	Time: 1125
			SUREMENTS/OBSER	
Depth to SPH:	ND BLOC	∃ BGL	☑ Interface probe	☐ Water level meter
Depth to GW:	15.44 ₽BTOC	□ BGL	✓Interface probe	☐ Water level meter
Total Depth:	20.37 PBTOC	BGL	✓Interface probe	☐ Water level meter
Appearance:	☐ SPH ☐ Sheen	 Silty	☑furbid 🛭 Clear	□ Opaque
Odor: 🗹 Yes	□ No Type:	Oder.	Possibly hydroc	arloon
Additional notes:			1 0 0	
	ADDITION	AL FLUID L	EVEL MEASUREME	NTS:
Date: 10-29			(Prolim)	
Depth to SPH:	<i>ND</i> ∃ BTOC	□ BGL	✓Interface probe	□ Water level meter
Depth to GW:	_ <i>15,</i> 39_ 3′втос	□ BGL		
Total Depth:	20.43 ₽BTOC	□ BGL	☑ Interface probe	□ Water level meter
Date:	Time:			
Depth to SPH:	⊔ BTOC	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:	□ BTOC	BGL		□ Water level meter
Total Depth:		BGL	□ Interface probe	☐ Water level meter
Date:	Time:			
Depth to SPH:	Time.	□ BGL	☐ Interface probe	☐ Water level meter
Depth to GW:	BTOC	∃ BGL	☐ Interface probe	□ Water level meter
Total Depth:	BTOC		☐ Interface probe	Water level meter Water level meter
			·	
Date:	Time:			
Depth to SPH:	BTOC	□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:		□ BGL	☐ Interface probe	□ Water level meter
Total Depth:	U BTOC	□ BGL	□ Interface probe	☐ Water level meter
Date:	Time:			
Depth to SPH:		□ BGL	☐ Interface probe	☐ Water level meter
Depth to GW:	BTOC	□ BGL	☐ Interface probe	Water level meter Water level meter level meter Water level meter level m
Total Depth:	BTOC	∃ BGL	□ Interface probe	□ Water level meter
Date:	Time:		١	
Depth to SPH:	□ BTOC	∃ BGL	☐ Interface probe	□ Water level meter
Depth to GW:		∃ BGL	☐ Interface probe	☐ Water level meter
Total Depth:	BTOC	∃BGL	☐ Interface probe	☐ Water level meter
Date:	Time:		₩	
Depth to SPH:		□ BGL	☐ Interface probe	□ Water level meter
Depth to GW:	BTOC	□ BGL	☐ Interface probe	□ Water level meter
Total Depth:	□ BTOC	□ BGL	☐ Interface probe	□ Water level meter
Completed by:	James R	<u> </u>	Signature:	~12.

*

	WEL	L SAMPLII	NG WORKS	SHEET			
Well Identification: 5WM	u 13-2	Date:		-2019	Time:	11:25	
	thon Petro	-					
Temperature:		Clear?		Cloudy?	7		
Current Precipitation: Non-	·		derate F	-	ntinuous?	Intermitte	nt?
Estimated Wind Speed:	Slight Mode	rate Stro	ng Very !	Strong			
Top of Casing3_	feet above	ground lev	el		feet below	ground leve	el
Depth to SPH: ND		∐ BGL		probe	_ □ Water le	evel meter	
Depth to GW:	≱BTOC	□ BGL	 Interface	e probe	□ Water le	evel meter	
Total Depth: 19.40	₹BTOC	□ BGL	∃rInterface	e probe	□ Water le	evel meter	
Fluid column length: 4.5		0.17					
One well volume = Fluid colu	mn length x <u>(</u>			_gals: 3 vol	s = <u>2.3</u>	_gals	
$e^{-} = 0.17 \text{ gal/ft}$ 4" = 0.6	6 gal/ft	6" = 1.5 ga	al/ft	8" = 2.60 g	jal/ft		
Parameter				Readings			
Purge Volume	0	1	2	3	4	5	6
Temperature (°F)	59.2	58.3	57.7	57.7			
Dissolved Oxygen (mg/L)	4.83	3,35	5.84	4.08			
Conductivity (uS/cm)	16,709	16,601	16,534	16613			
Total Dissolved Solids (mg/L	3403	3455	3562.5	3598.1			
рН	6.43	6.35	6.30	6.40			
ORP(MV)	172.3	181.2	186.9	191.3			
Turbidity (NTUs)	740.0	>1100	864	777			
Actual Purge Volume: 2.75	galllons	Bailed Dry		Time <u>1145</u>	DTSPH_/	DTW de	9.35'STOC
Odor: Strong Odor			e: Turbi		sh-bro		
Comments: V				1			
Date: 11 - 6 - 70/9	_Time:			DTSPH:	ND D	TW: 17.58	9
Temp: 43°F Clear Cloud	P? Current Pr	ecip. <u>1:44+</u>		Est. Wir	nd Speed:_	Imph	
Sampling Method: Bailer / P	ump	Sampling	Sequence:	VOCs, SV	OCs, Metal	s, Inorganic	3
	- 2019	_ Sa	mple Time:			_	
	ег Туре:			No. of Cor	ntainers:	Preser	
SUMU 13-2-Gb 40ml				5		HC)	
	1 Amber	<u>.</u>		1		_	
	Ambor			1			
	l plastic			<u> </u>		HW	. 7
	Plastic					HNO	
	PLASHL			<u> </u>		H25	<u> Ս</u>
-	Plastic			<u> </u>			it l
	plartic			<u> </u>		NaC	M
Odor: Faint		Annearan	ce: Turbi	1	 		
Comments: Nitrate		hphearain	<u></u>	(- 1			
Duplicate collected: Yes /			method:	None /A	II Ware	used for s	amdis
Dup ID:				Equip. Bla		->->- 104 3	
Internal Temperature of Ship							
Sampling completed by: 5			Signature:	()	11 1		
					7		

	WELL SAMPLING WORKSHEET							
Well Identification:	SWMU	/3-3	Date:	11-5-	2019	Time:	12:30	
			um Co.	LP - (Sallue R	chinery		
Temperature:	6501	٢ (Clear?	LP - (Cloudy?	4		
Current Precipitation:	None	Drizzle	Light Mo	derate H	leavy Co	ntinuous?	Intermitte	nt?
Estimated Wind Speed	d: Slig	ht Mode	rate Stro	ng Very S	Strong			
Top of Casing	3	feet above	e ground level feet below ground level					el
Depth to SPH:	ND		☐ BGL				vel meter	
Depth to GW:	12.53	 ≝ BTOC	□ BGL	☑Interface	probe	□ Water le	vel meter	
Total Depth:	19.16	♂BTOC	□ BGL	⊴ Interface	probe	□ Water le	vel meter	
Fluid column length:	5.63	(feet)		: 12		.		
One well volume = Flu	iid column	length x _6	<u>2.∖7 g</u> ai/fi	: = <u>1.13</u>	_gals: 3 vol	s = <u>3.4</u>	_gals	
2'' = 0.17 gal/ft 4	·" = 0.66 g	ıal/ft	6" = 1.5 ga	ıl/ft	8'' = 2.60 g	ıal/ft		
Parameter					Readings		· ·	
Purge Volume		0	1	2	3	4	5	6
Temperature (°F)		60.1	58.8	57.9	57.2	57.4	57.6	
Dissolved Oxygen (mg	ј/ L)	4.35	4.36	4.58	4.05	2.50	3.76	
Conductivity (uS/cm)		16,360	16038	15,851	8949	15,620	15,635	
Total Dissolved Solids	(mg/L)	2889.5	2844,0	2876.5	7345	Z850.5	Z785.0	
рН		6.4	6.39	6.30	6.36	6.47	6.54	
ORP(MV)		194.9	195.9	197.7	201, 2	203.1	701.7	
Turbidity (NTUs)	: 	2.83	66.2	78.3	100	346	901	
Actual Purge Volume:	<u>6.5</u> ga	Illons	Bailed Dry			DTSPH	<u> </u>	<u>8.65</u>
Odor: Strong			Appearance	:e: <u>' Цеа</u>				-
Comments:								
Date: 11-6-2019							TW: <u>12</u> 52	
Temp: Clear?								
Sampling Method: Ba				=		JCs, Metals	s, inorganic	<u>S</u>
Sample Date:	•	_	. 5a	mple Time:	No. of Con		Draaan	.ativaa.
SUMUI3-4-GW	َ ontainer مرار ارسط	•			No. of Con	itali ieis.	Preser HC	vatives: 1
	250 ml H				<u> </u>		<u></u>	<u> </u>
	1 liter An				3			-
		nber Hic					HN	Us.
	125ml pla	shit			 i		HN	
	25ml ph				ì			304
500ml plastic								
	500 m plastic NaOH						H	
					*			
Odor: Show			Appearance	e: (100v				
Comments: Nitra	He - 0.0		Nitrite -	0.0				
Duplicate collected:	es/ No	Purge water	er disposal	method:			1rea	
Dup ID: 51444 13-DVI	P01 Fi	ield Blank II	D:		_Equip. ⁹ Bla	nk 1 D:		
Internal Temperature					\bigcirc	A)		
Sampling completed b	y: Jame	s Kers	12· -	Signature:	Jn	-1/2		
						V		

Well Identification: SWMW 13-4 Date: 1/5-28/8 Time: 1/3 40		WEL	L SAMPLI	NG WORK	SHEET			
Client / Location: Temperature: CS-F Clear? Cloudy? Continuous? Intermittent? Estimated Wind Speed: Slight Moderate Strong Very Strong Top of Casing 3 feet above ground level Depth to SPH: Depth to SPH: Depth to SPH: Depth to GW: Depth to GW: Parameter Purge Volume = Fluid column length x Parameter Purge Volume Dissolved Oxygen (mg/L) Conductivity (uS/cm) Total Dissolved Solids (mg/L) Conductivity (uS/cm) Total Dissolved Solids (mg/L) Turbidity (NTUs) Actual Purge Volume: 3.0 gallions Odor: 27.4 2.0 130 Actual Purge Volume: Date:		13-4	Date:	11-5-	-2019	Time [.]	1240	
Cloudy: Clou	Client / Location: Marath	ion Perrol	eum Co.	-P - (201	Jun D.A.		75 70	· · · · · ·
Current Precipitation: None Dirizale Light Moderate Heavy Continuous? Intermittent? Estimated Wind Speed: Slight Moderate Strong Very Strong Top of Casing 3 feet above ground level Feet above ground level Period Speed Strong Strong Feet above ground level Feet Casing Feet Bold Finterface probe Speed Feet Feet Feet Feet Feet Feet Feet F	remperature.	, , (Clear?		Cloudy?			
Estimated Wind Speed:	Current Precipitation: None	Drizzle		oderate H	•	ontinuous?	Intermitte	nt?
Top of Casing 3		ght) Mode			•		iiiteiiiitte	: III :
Depth to SPH: ND	·							
Depth to GW: 12.77 CBTOC BGL Interface probe Water level meter 17.6 CBTOC BGL Interface probe Water level meter 17.6 CBTOC BGL Interface probe Water level meter Water leve					e probe			ÇI.
Total Depth: 19.6		_ ≥ ∕BTOC	□ BGL					
Fluid column length								
Parameter	Fluid column length: 6.84	(feet)			-			
Parameter	One well volume = Fluid colum	n length x <u>【</u>).17_ gal/fl	t = 1.2	gals: 3 vol	s = 3.5	gals	
Purge Volume	2'' = 0.17 gal/ft $4'' = 0.66$	gal/ft	6" = 1.5 ga	al/ft	8" = 2.60 g	al/ft	940	
Purge Volume	Parameter	T -			Readings			
Dissolved Oxygen (mg/L)	Purge Volume	0	1 1	2		<u> </u>		
Dissolved Oxygen (mg/L) 4.30 4.45 4.41 Conductivity (uS/cm) IS,579 15,431 15,356 Total Dissolved Solids (mg/L) 2421.5 2479.5 203.5 pH 6.45 6.58 6.52 ORP(MV) 224.2 223.7 236.2 Turbidity (NTUs) 34.9 71100 130 Actual Purge Volume: 3.0 galllons Odor: 25, fairer Appearance: Twick Comments: Date: 11.6 2019 Time: 11.30 Temp: 48 Clear? 2500000 Current Precip. None Est Wind Speed: Imple Sampling Method: 2510000 Pump Sampling Sequence: VOCs, SVOCs, Metals, Inorganics Sample Date: 11.6 - 2019 Sample ID Container Type: Sample ID Container Type: No. of Containers: Preservatives: HCI 250ml Medic 1 Hood 11.35 HCI 250ml Medic 1 HN0.3 12.5ml Medic 1 Na.0H Odor: Mone Appearance: Clear Comments: Nitrate 2.0 Nitrate, 0.04 Duplicate collected: Yes / No Purge water disposal method: Equip. Blank ID: Internal Temperature of Shipping Container: ()		 			 	-		- 6
Total Dissolved Solids (mg/L)	remperature (*F)	57.0	28.0	57.3				
Total Dissolved Solids (mg/L)	Dissolved Oxygen (mg/L)	4.30	4.45	4.41				
PH 6.45 6.58 6.52 ORP(MV) 274.2 723.7 736.2 Turbidity (NTUs) 34.9 71100 130 Actual Purge Volume: 3.0 gallions Appearance: Time 1405 DTSPH ND DTW 19.37 Actual Purge Volume: 3.0 gallions Appearance: Time 1405 DTSPH ND DTW 19.37 Actual Purge Volume: 3.0 gallions Appearance: Time 1405 DTSPH ND DTW 19.37 Actual Purge Volume: 3.0 gallions Appearance: Time 1405 DTSPH ND DTW 19.37 Appearance: VOCs. SVOCs, Metals, Inorganics Sample Date: 16-6 7019 Sample Date: 16-6 7019 Sample Date: 11:30 No. of Containers: Preservatives: Preservatives: Preservatives: Preservatives: 1 HCl 250ml Andre 3 125ml Assec 1 HN03 125ml Assec 1 NaOH Odor: Mone Comments: Nitrate-2.0 Nitrate 0.04 Duplicate collected: Yes / No Purge water disposal method: Equip. Blank ID: Internal Temperature of Shipping Container: [Field Blank ID: Internal Temperature o	Conductivity (uS/cm)	15,579	15,431	15,356				
ORP(MV) 224.2 723.7 236.2 Turbidity (NTUs) 34.9 71100 130 Actual Purge Volume: 3.0 gallions	Total Dissolved Solids (mg/L)	2421.5	2499.5	2603.5				
Turbidity (NTUs) Actual Purge Volume: 3.0 galllons Odor: 10.2 1.0 2.0	pH	6.45	6.58	6.52			i	
Actual Purge Volume: 3.0 galllons Bailed Dry? YES Time 1405 DTSPH ND DTW 17.37 Odor: 45 fairer Appearance: TwisiQ Comments: Date: 11 6 2019 Time: 1/1:30 DTSPH: DTW: 12.85 Temp: 48 Clear? Etoudy) Current Precip. None Est. Wind Speed: 11 mph. Sampling Method: Ealler? Pump Sampling Sequence: VOCs, SVOCs, Metals, Inorganics Sample Date: 11 6 - 2019 Sample Time: 11:30 Sample ID Container Type: No. of Containers: Preservatives: SWMW 13-4-(AW 40M 10a S HCl 250M Ander 1 1 Ster Ander 3 750M Plastic 1 HN03 125M Plastic 1 HN03 125M Plastic 1 H2304 Goom Diastic 1 NaOH Odor: Mone Appearance: Clear Comments: Nitrate-2.0 Nimbe, 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container:	ORP(MV)	224.2	723.7	236.2				
Odor: 16. 1	Turbidity (NTUs)	34.9	>1100	130				
Appearance: Twist Comments: Date: 11 6 2019 Time: 11:30 DTSPH: DTW: 12.85 Temp: 48 Clear? 2004D Current Precip. None Est. Wind Speed: 11mph. Sampling Method: 2019 Sampling Sequence: VOCs, SVOCs, Metals, Inorganics Sample Date: 11:30 No. of Container Type: No. of Containers: Preservatives: SWMU 13-4-6W 40M Voa S	Actual Purge Volume: 3.0 g	alllons	Bailed Dry	? YES	Time 1405	DTSPH N	DTW I	9.39
Date: 11.6.2019 Time: 11:30 DTSPH: DTW: 12.85 Temp: 48 Clear? 200gy? Current Precip. None Est. Wind Speed: 11 mph. Sampling Method: Bailer? Pump Sampling Sequence: VOCs. SVOCs, Metals, Inorganics Sample Date: 11-6-2019 Sample Time: 11:30 Sample ID Container Type: No. of Containers: Preservatives: SWMU 13-4-61W 40ml 10a S HCl Z50ml Amber 3 I liter Amber 3 Z50ml plashc 1 HN0.3 12.5ml plashc 1 HN0.3 12							<u> </u>	<u></u>
Temp: 48 Clear? Eloudy Current Precip. None	Comments:							_
Sampling Method: Ballet Pump Sampling Sequence: VOCs, SVOCs, Metals, Inorganics Sample Date: II-6-7019	Date: 11 6 2019 T	ime: <u>//:3</u>	0	-	DTSPH:	D	TW: 12.8	5
Sampling Method: Ballet Pump Sampling Sequence: VOCs, SVOCs, Metals, Inorganics Sample Date: II-6-7019	Temp: 48 Clear? ¿toudy?	Current Pre	ecip. Non	<u>e</u>	Est. Wir	d Speed:_	Ilmph	
Sample Date:	Sampling Method: Baller/ Pun	1p	Sampling 8	Sequence:	VOCs, SV	OCs, Metals	s, Inorganics	 §
SWMU 13-4-6W 40ml Voa 5 HCl 250ml Amber 1	Sample Date:	2019	. Sa	mple Time:	11:30		- "	
1 1 1 1 1 1 1 1 1 1						tainers:	Preserv	/atives:
The Amber 3					<u> </u>		HCI	
750ml plastic HN03 125ml plastic HN03 125ml plastic HN03 125ml plastic HN03 HN03 125ml plastic HN03 HN03 HN03 HN03 HN04 HN04 HN04 HN04 HN04 HN06								
125ml plashc HN03 125ml plashc H2504 500ml plashc NaOH Odor: Mone Appearance: Clear Comments: Nitrate- 2.0 Nimbe 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: ()	· · · · · · · · · · · · · · · · · · ·				3_			
125ml leshc H 2504 500ml blashc NaOH Odor: Mone Appearance: Clear Comments: Nitrate- 2.0 Nimite 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID:					1	<u>_</u>		
Doom plastic Doom Dastic Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: () Doom				<u> </u>				
Odor: None. Comments: Nitrate- 2.0 Nitrate. 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: ()							<u> </u>	04
Odor: None Appearance: Clear Comments: Nitrate - 2.0 Nimbs 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: ()					- <u>l</u>			.) (
Comments: Nitrate - 2.0 Nitrate 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: ()	500M	- prashc	 -		<u> </u>		NaO	и
Comments: Nitrate - 2.0 Nitrate 0.04 Duplicate collected: Yes / No Purge water disposal method: Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: ()	Odor: Mone		Appearance	e Clear	 			
Duplicate collected: Yes / No Purge water disposal method: Dup ID:Field Blank ID:Equip. Blank ID: Internal Temperature of Shipping Container:()	Comments: Nitrate - 2.0	Nitrilo.	0.04	J				
Dup ID: Field Blank ID: Equip. Blank ID: Internal Temperature of Shipping Container: ()				method:				
Internal Temperature of Shipping Container:()	Dup ID: F	ield Blank i): D:		Equip Blar	nk ID:	·	
Sampling completed by: James Reis Signature: ()	Internal Temperature of Shippin	ng Container		()	q-ip. Diai	<u>.</u>		
	Sampling completed by: James	es Reis		Signature:	()	1)		

		WEL	L SAMPLIN	NG WORKS	SHEET			
Well Identification:	BWMU	13-5	Date:	11-6-8	2019	Time:	14:30	
Client / Location:	Marath	on Petrol	Rum Co.	LP - G	allup Rc	incry		
' 					Cloudy?	, F		
Current Precipitation: (•	derate F	leavy Co	ntinuous?	Intermitte	nt?
Estimated Wind Speed	_	ht Moder		-	Strong			
Top of Casing	<u> 3 _ </u>	feet above	-			-	ground leve	el
Depth to SPH:	ND	BTOC	□ BGL	✓Interface	•	☐ Water le		
	12.96	Z BTOC	□ BGL	☑ Interface	·•	□ Water le		
· -	19. 15	✓ BTOC	□ BGL	∠ Interface	e probe	□ Water le	vel meter	
Fluid column length: 4	2.19	(feet)	. 1-7	4.4		22		
One well volume = Flui							_gals	
2" = 0.17 gal/ft 4"	' = 0.66 g	al/ft	6" = 1.5 ga	ıl/ft	8" = 2.60 g	jal/ft		
Parameter					Readings			
Purge Volume		0	- 1	2	3	4	5	6
Temperature (°F)		58.1	58.0	58.0	57.1	56.5		
Dissolved Oxygen (mg/	/L)	4.75	3.77	3.77	3.05	2.02		
Conductivity (uS/cm)		16,675	16,687	16628	16,512	16470		
Total Dissolved Solids	(mg/L)	3565.5	3578.5	3669.5	3617.5	3695.5		
рН		5.92	5.93	6.36	6.42	6.61		
ORP(MV)		293.4	291.7	292.1	292.0	288.8		
Turbidity (NTUs)		17.5	1040	>1100	1040	71100		
Actual Purge Volume:_		Illons	Bailed Dry	? <u>YES</u>	Time <u>15</u> 15	_DTSPH	<u> DTW_ </u>	1865
Odor: Strong abor			Appearance	e: <u>Si<i>lt</i>y</u>	/Turbid			_
	Ni+rate			itrite -				
Date: 11-7-2019	Ti	me: <u>08</u> 9	0		DTSPH:	<i>ND</i> D	ΓW: <u> /3.06</u>	
Temp: 38* Clear?								
Sampling Method Bail	e ⊅/ Pum	p	Sampling S	Sequence:	VOCs, SV	<u> OCs, Metals</u>	s, Inorganic	<u>s</u>
Sample Date:			Sa	mple Time:			•	
Sample ID Co		• •			No. of Con	itainers:		vatives:
SWMM 13-5-GW					5		<u> 4</u> 4	
		Amber			<u>-3</u>			- 0
		plastic					HN	
		plastic			<u> </u>			501
		plastic			1		HL	<u> SO4</u>
		plastic .			- 1			<u> </u>
	250 ml	dastic			1		Nac	<u>'</u> n
	CONT	MADEL			<u> </u>			
Odor: Strong (Hydroco	Yous)		Appearanc	e: a haque				
Comments:								 、
Duplicate collected: Ye					Facility	waste Wa	iter Bun	<u>dle 51ab)</u>
Dup ID:					_Equip. 4 Bla	nk ID:	· · · · · · · · · · · · · · · · · · ·	
Internal Temperature o					\bigcirc			
Sampling completed by	1. Jame	3 K-015		Signature:	Jones	12.		

	WELL	SAMPLI	NG WORKS	HEET			
Well Identification: 5WMU	13-6	Date:	11-6-20	019	Time:	15:45	5
Client / Location: Marat	non Petrole		LP - (70	ellup Re	Finen		
Temperature: 49°F		Clear?	(Cloudy?	9		
Current Precipitation: None			derate H		ntinuous?	Intermitte	nt?
Estimated Wind Speed: Slig				Strong			
Top of Casing Z	_feet above g					ground leve	el
Depth to SPH: ND					☐ Water le		
Depth to GW: 13.96	_ ☑BTOC	BGL	Interface	probe	☐ Water le		
	_BTOC	BGL	☑Interface	probe	☐ Water le	evel meter	
Fluid column length: 5.69 One well volume = Fluid column	_ (feet)	17	10		30	dura	
One well volume = Fluid column	n length x <u>U</u>	91 - 1 5 a	1/4	_gais: 3 voi	S =	_gais	
2" = 0.17 gal/ft 4" = 0.66	gal/ft 6	5 - 1.5 ga	ai/IL	o = 2.60 g	jai/it		
Parameter				Readings		_	
Purge Volume	0	1	2	3	4	5	6
Temperature (°F)	58.1						
Dissolved Oxygen (mg/L)	2.93						
Conductivity (uS/cm)	11377						
Total Dissolved Solids (mg/L)	9256		1				
рН	6.86						
ORP(MV)	272.0						
Turbidity (NTUs)	>40.0						
Actual Purge Volume: <u>0.75</u> ga Odor: り0	allions I	Bailed Dry Appearance	? YES ce: Clear,	Time 1550	DTSPH_/	D_DTM_	19.18
Comments: Nitrate Date: 15-6- 11-7-209 T	2 -		Nimite -				
Date: 11-7-2019 T	ime: 0920)		DTSPH:	ND D	TW: 14.05	5
Temp: 39°F Clear? Cloudy?	Current Pred	cip. NON	E	_ Est. Wir	nd Speed:_	3mph	
Sampling Method: Bailer / Pun						s, Inorganio	S
Sample Date:		Sa					
Sample ID Container				No. of Cor	itainers:	Preser	
SWMU 13-6-GW 40ml V				5		HC	-1
	nlocr			3			
	per			- 1		11	03
175ml -10	She			1			
125ml pla	stic						504
300ml pl	ashic					112	304
500m/pl				i		Na	ОН
Odor: None		Annearan	ce: Clear	to 0-0-			
Comments:		hhearail	o. <u>Geor</u>	OP4 1	ME		
Duplicate collected: Yes (No	Purge water	r disposal	method:	Facility 1	Waste 1	Water B	alle SI
Dup ID:F	ield Blank ID	:			nk ID:		
Internal Temperature of Shippin	ng Container:		()	\wedge			
Sampling completed by: Jaw				Short	1/_		

	WEL	L SAMPLIN	IG WORK	SHEET			
Well Identification: SWML	1 13-7	Date:	11-6-	2019	Time:	16:30	16:15
	hon Pet	roleum O	o. LP -	Gallup	Refinen		
Temperature: 48°	F	Clear?	<	Cloudy?	0	T	
Current Precipitation: None	Drizzle	•			ontinuous?	Intermitten	t?
Estimated Wind Speed: Sli			ng Very	Strong			
Top of Casing 3	_	ground lev	el		_	ground level	
Depth to SPH: ND	BTOC		Interfac		☐ Water le		
Depth to GW: 15.40	_	BGL			☐ Water le		
	BTOC	BGL	Interfac	e probe	□ Water le		
Fluid column length: 5.05	_ (feet)		201				
One well volume = Fluid colum				gals: 3 vo	ols = y	_gals	
2" = 0.17 gal/ft 4" = 0.66	gal/ft	6" = 1.5 ga	ιι/ττ	8" = 2.60	gai/π		
Parameter				Readings	S		
Purge Volume	0	1	2	3	4	5	6
Temperature (°F)	56.9	57.0					
Dissolved Oxygen (mg/L)	3.51	4.13					
Conductivity (uS/cm)	16,672	17055					
Total Dissolved Solids (mg/L)	3637.5	4092					
рН	6.89	6.83					
ORP(MV)	270.6	249.1					
Turbidity (NTUs)	14.4	890				1	
Actual Purge Volume: 1,5 g	alllons	Bailed Dry	? YES	Time 162	2DTSPH_	MTD DW	2.01
Odor: Hydrocorbon		Appearance	e: Clear	^			
Comments: Nitrat	re-	N	itate -				
Date: 11-7-2019 T						TW: 15.42	
Temp: 40°F Clear? Cloudy?							-
Sampling Method: Bailer / Pun						s, Inorganics	
Sample Date: Container		. Sa	mpie i ime			- D	- Africa - 1
SWMU 13-7-GW 40ml 1				No. of Co	ntainers.	Preserv HC1	
250ml A				1		ric i	
1 L Hmb				3		-	
250ml pl				1		HN	23
125ml p						HN	
125ml pl				1		H25	
500ml pl				1		_	
500ml pl	astic			1		Na	DH
01 11 1 2 2 2 2							
Odor: Hydrocarbon ? Smo.	ng	Appearance	e: Opaq	rue			
	Purge water	er disposal	method:	Facilia	West W	ater /Run	SIE Slab
Duplicate collected: Yes / 100 Dup ID:F	ield Blank II	D:		Equip. Bi	ank ID:	- La Court	
Internal Temperature of Shippin	ng Containe	r:	()		0		
Sampling completed by: James				: Jan	112-		
				0			

Appendix F Soil Boring/Well Logs

Geologist

Drilling Company Driller

Drilling Rig : CME 55 Track Rig
Drilling Method : Hollow-Stem Augers 8"
Sampling Method : 2' Split Spoon

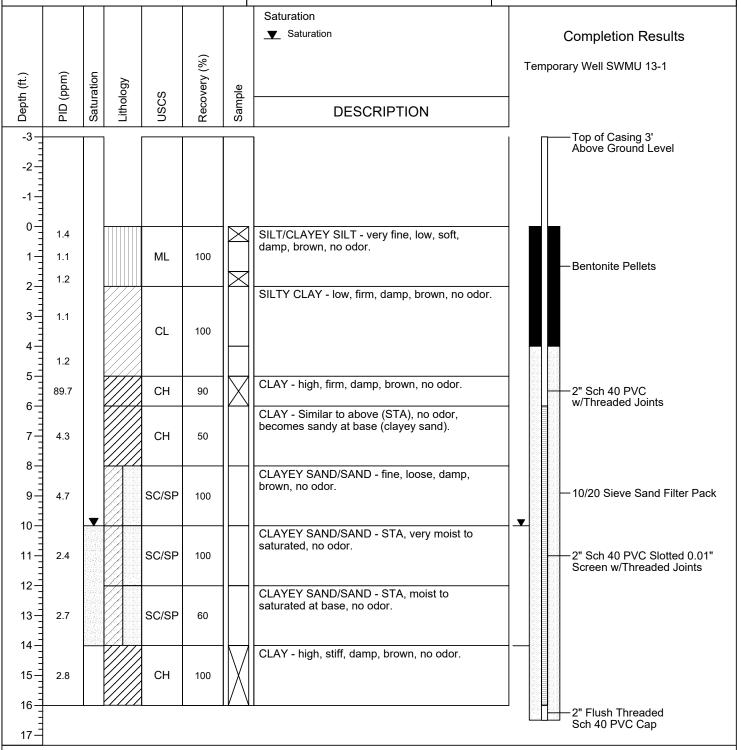
Total Depth : 16' Saturation Depth : 10'

Start Date/Time : 10/22/19 - 09:20 Finish Date/Time : 10/22/19 - 10:40

: Tracy Payne

: Terracon

: Cothron


BORING NO. SWMU 13-1

(Sheet 1 of 1)

Northing : 1635283.76 Easting : 2544450.28 Ground Elevation : 6884.38 ft. MSL

Comments : Elev. 2.54' above bottom of ditch. Hand augered to

5'.

Geologist
Drilling Company

Drilling Company
Driller

Drilling Rig Drilling Method Sampling Method

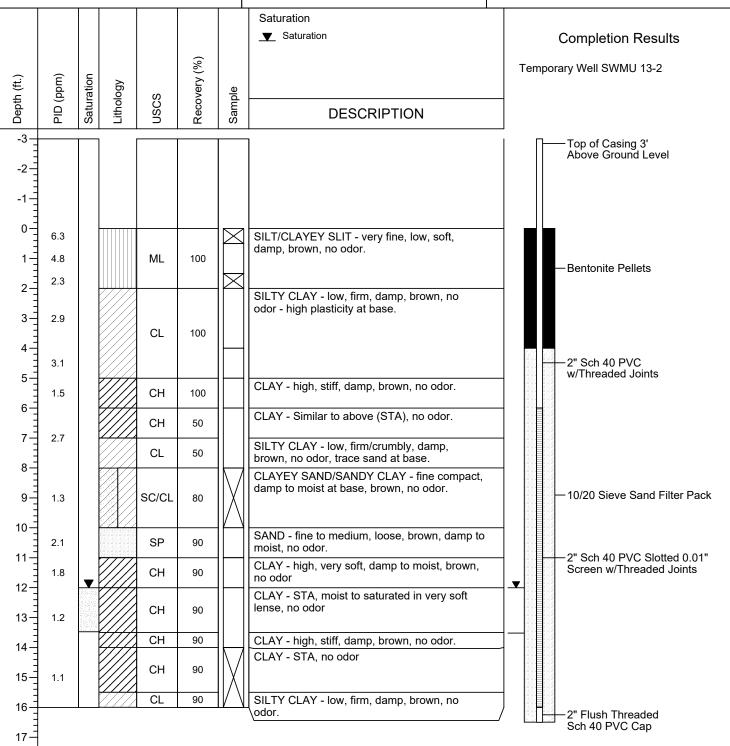
Total Depth
Saturation Depth

Start Date/Time Finish Date/Time : Tracy Payne

: Terracon : Cothron

: CME 55 Track Rig : Hollow-Stem Augers 8"

: 2' Split Spoon : 16'


: ~12' : 10/22/19 - 12:35 : 10/22/19 - 13:25 **BORING NO. SWMU 13-2**

(Sheet 1 of 1)

Northing : 1635255.51 Easting : 2544452.89 Ground Elevation : 6884.22 ft. MSL

Comments : Elev. 2.38' above bottom of ditch. Hand augered to

5'.

Geologist

Drilling Company Driller

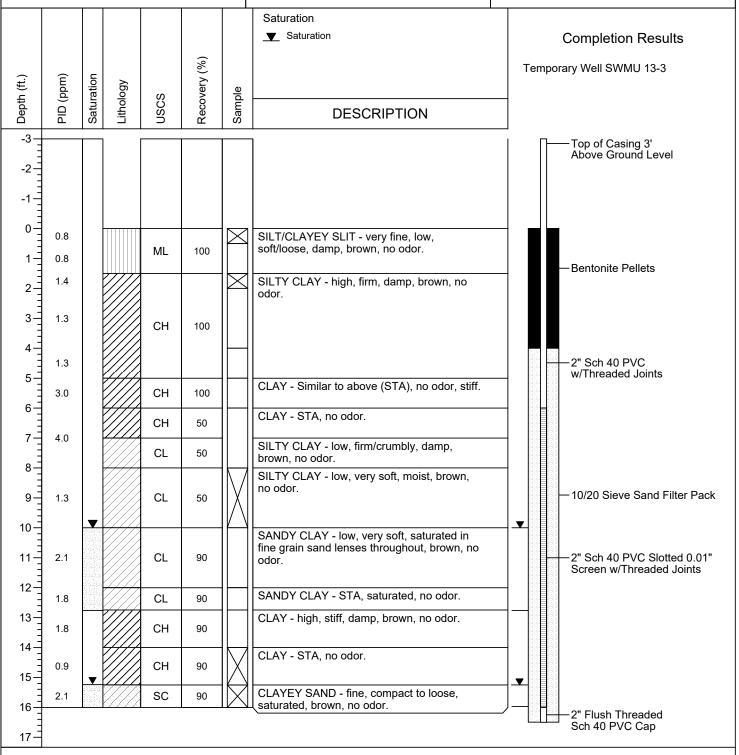
Drilling Rig Drilling Method Sampling Method

Total Depth Saturation Depth : Tracy Payne : Terracon : Cothron

: CME 55 Track Rig : Hollow-Stem Augers 8"

: 2' Split Spoon : 16'

: 10' & 15.25'


Start Date/Time : 10/22/19 - 14:40 Finish Date/Time : 10/22/19 - 16:35 **BORING NO. SWMU 13-3**

(Sheet 1 of 1)

Northing : 1635235.05 Easting : 2544528.80 **Ground Elevation** : 6883.78 ft. MSL

Comments

: Elev. 1.64' above bottom of ditch. Hand augered to

Geologist

Drilling Company Driller

Drilling Rig Drilling Method Sampling Method

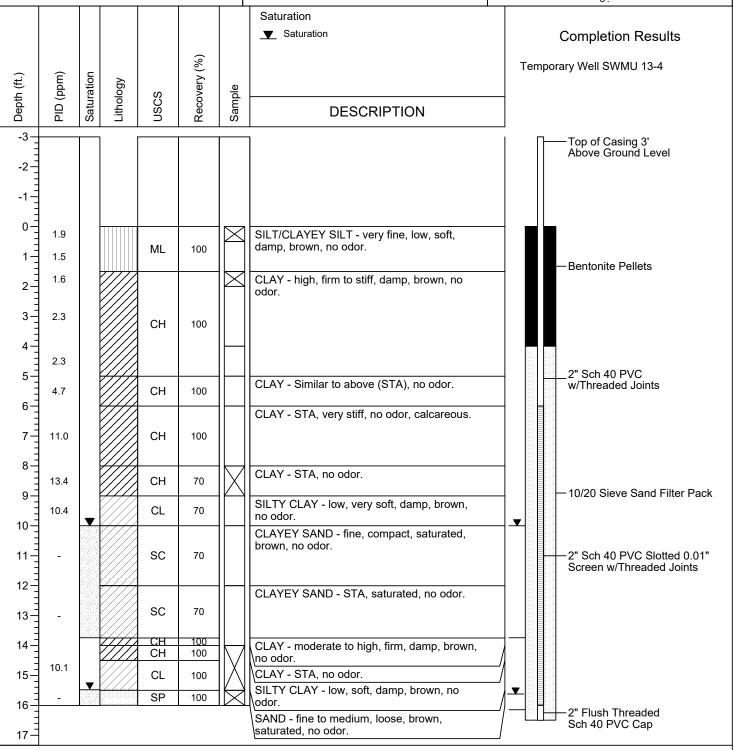
Saturation Depth Start Date/Time

Total Depth

: Tracy Payne : Terracon : Cothron

: CME 55 Track Rig : Hollow-Stem Augers 8"

: 2' Split Spoon : 16'


: 10' & 15.25'

: 10/23/19 - 08:40 Finish Date/Time : 10/23/19 - 10:15 **BORING NO. SWMU 13-4**

(Sheet 1 of 1)

Northing : 1635221.64 Easting : 2544608.45 **Ground Elevation** : 6884.65 ft. MSL

Comments : Elev. 1.93' above bottom of ditch. Hand augered to

Geologist **Drilling Company**

Driller Drilling Rig

: CME 55 Track Rig Drilling Method : Hollow-Stem Augers 8" Sampling Method : 2' Split Spoon

Saturation Depth Start Date/Time

Total Depth

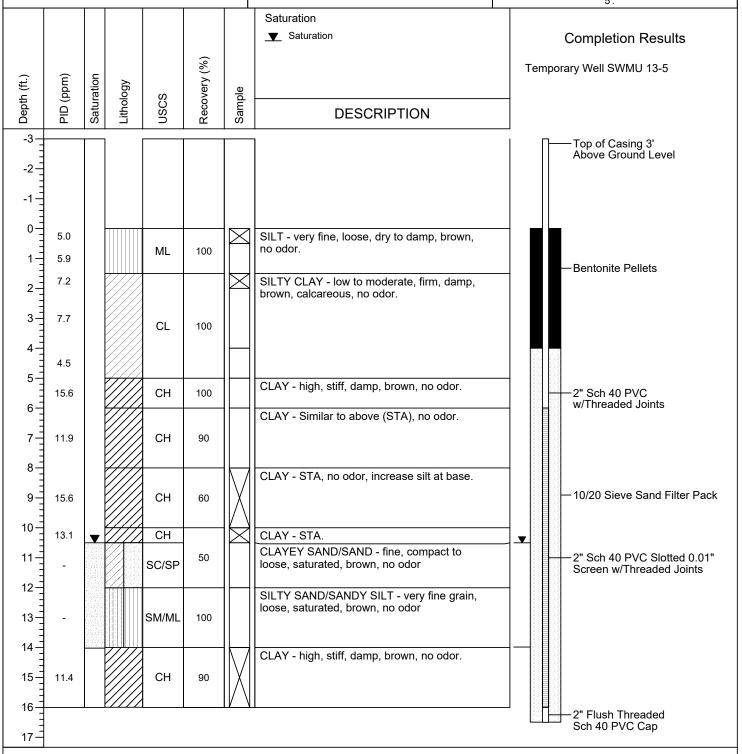
: 10/23/19 - 12:15 Finish Date/Time : 10/23/19 - 13:45

: Tracy Payne

: Terracon

: Cothron

: 16'


: 10.5'

BORING NO. SWMU 13-5

(Sheet 1 of 1)

Northing : 1635207.59 Easting : 2544674.13 **Ground Elevation** : 6885.36 ft. MSL

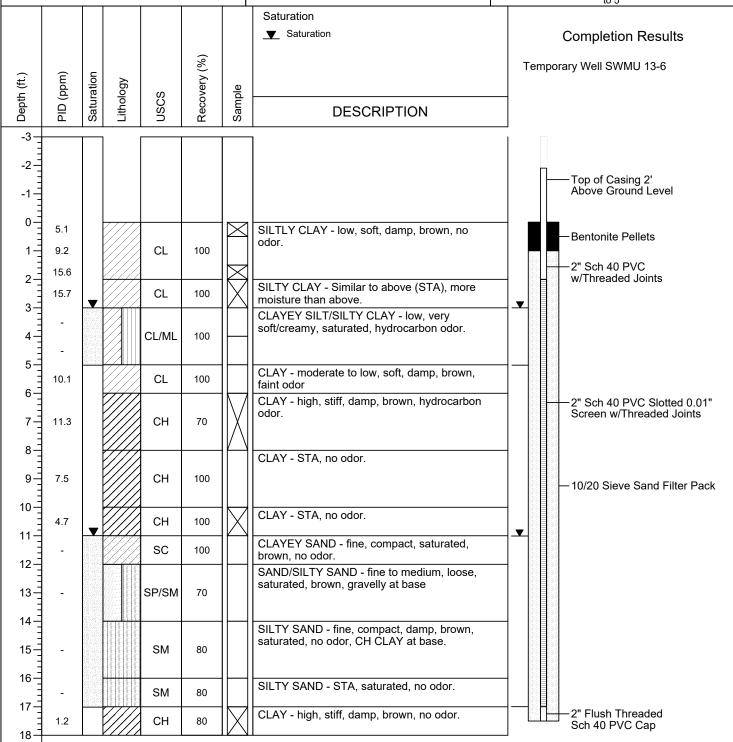
Comments : Elev. 2.76' above bottom of ditch. Hand augered to

Geologist : Tracy Payne
Drilling Company : Terracon

Driller : Cothron

Drilling Rig : CME 55 Track Rig
Drilling Method : Hollow-Stem Augers 8"
Sampling Method : 2' Split Spoon

Total Depth : 18'
Saturation Depth(s) : 3' & 11'
Start Date/Time : 10/23/19 - 15:10
Finish Date/Time : 10/24/19 - 08:20


BORING NO. SWMU 13-6

(Sheet 1 of 1)

Northing : 1635168.07 Easting : 2544762.81 Ground Elevation : 6887.13 ft. MSL

Comments : Elev. 2.31' above bottom of retention pond. Hand augered

to 5'

Geologist : Tracy Payne
Drilling Company : Terracon

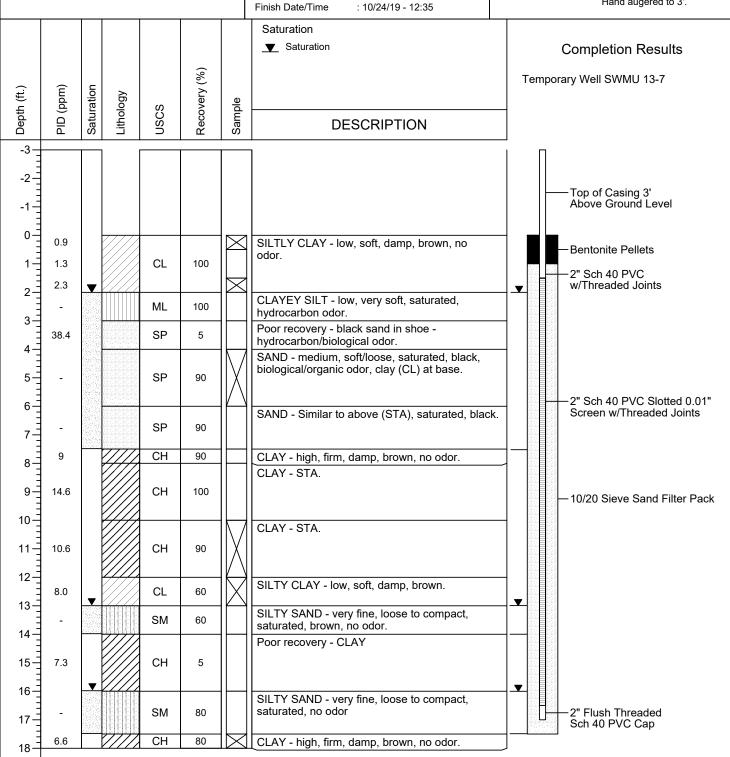
Driller : Cothron

Drilling Rig : CME 55 Track Rig
Drilling Method : Hollow-Stem Augers 8"
Sampling Method : 2' Split Spoon

: 18'

Saturation Depth(s) : 2', 3', & 12'
Start Date/Time : 10/24/19 - 11:15
Finish Date/Time : 10/24/19 - 12:35

Total Depth


BORING NO. SWMU 13-7

(Sheet 1 of 1)

Northing : 1635126.04 Easting : 2544777.26 Ground Elevation : 6888.17 ft. MSL

Comments

: Elev. 3.0' above bottom of retention pond. ... Hand augered to 3'.

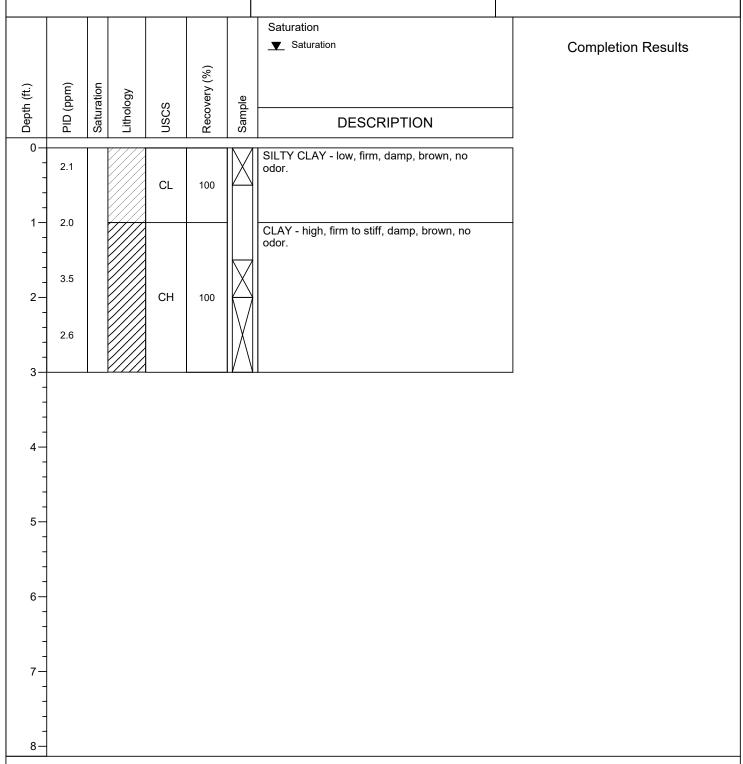
Geologist Drilling Method

Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time

: Tracy Payne

: Hand Auger : Auger Bucket


: Not encountered

BORING NO. SWMU 13-8

(Sheet 1 of 1)

Northing : 1635270.92 : 2544442.83

Easting : 10/24/19 - 14:35 : 10/24/19 - 14:50 **Ground Elevation** : 6881.84 ft. MSL Comments

Geologist Drilling Method

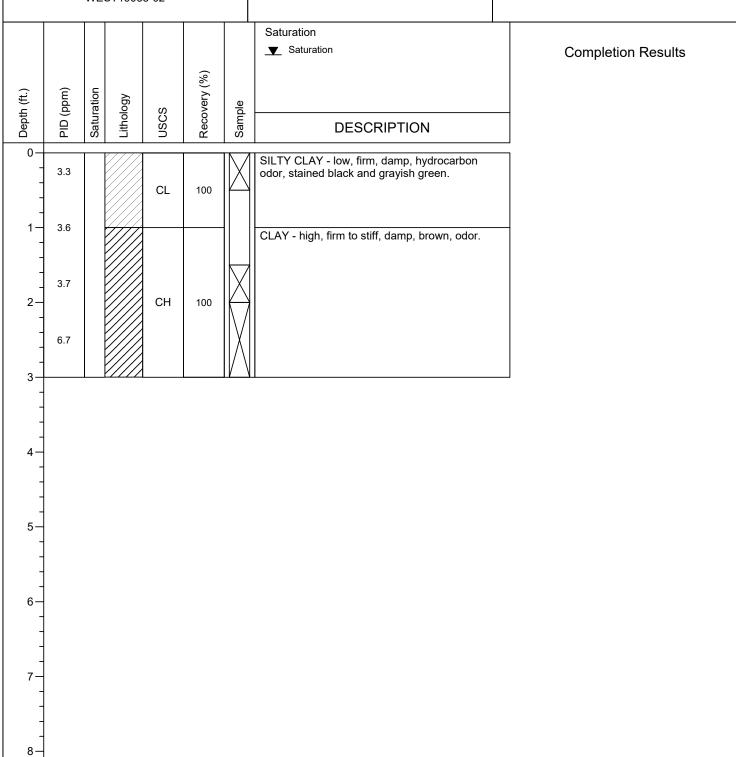
Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time

: Tracy Payne

: Hand Auger : Auger Bucket

: Not encountered : 10/24/19 - 15:35


: 10/24/19 - 15:55

BORING NO. SWMU 13-9

(Sheet 1 of 1)

Northing : 1635258.03 Easting : 2544506.40 **Ground Elevation** : 6882.14 ft. MSL

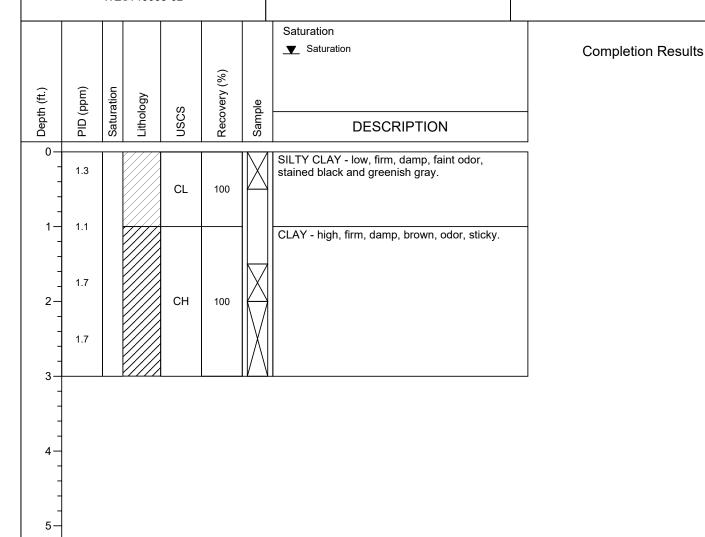
Comments

Geologist
Drilling Method

Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: Hand Auger : Auger Bucket


: Not encountered : 10/25/19 - 10:00 : 10/25/19 - 10:30

BORING NO. SWMU 13-10

(Sheet 1 of 1)

Northing : 1635239.56
Easting : 2544583.37
Ground Elevation : 6882.72 ft. MSL

Comments :

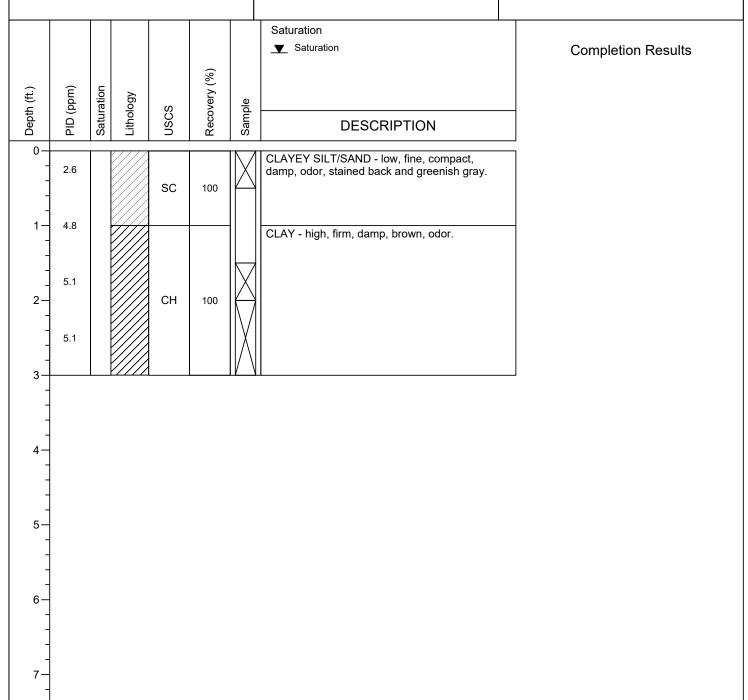
6

Geologist Drilling Method

Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: Hand Auger : Auger Bucket


: Not encountered : 10/25/19 - 11:30 : 10/25/19 - 12:00

BORING NO. SWMU 13-11

(Sheet 1 of 1)

Northing : 1635226.59
Easting : 2544648.37
Ground Elevation : 6882.60 ft. MSL

Comments :

Geologist Drilling Method

Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: Hand Auger : Auger Bucket

: Not encountered : 10/25/19 - 12:55 : 10/25/19 - 13:55

BORING NO. SWMU 13-12

(Sheet 1 of 1)

Northing : 1635209.89
Easting : 2544718.62
Ground Elevation : 6874.45 ft. MSL

Comments :

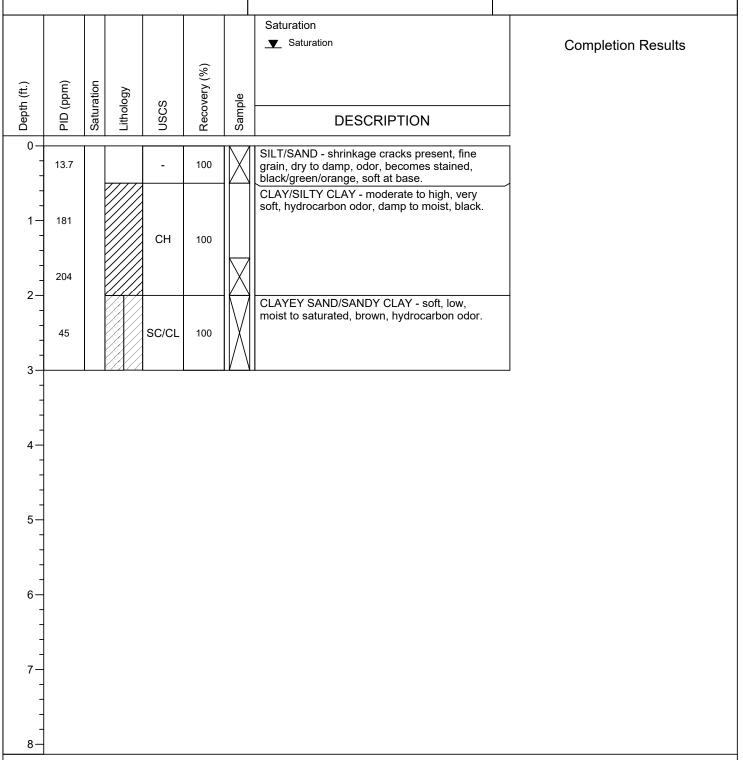
 							<u> </u>	
							Saturation Saturation	Completion Results
Depth (ft.)	PID (ppm)	Saturation	Lithology	nscs	Recovery (%)	Sample		- Completion Results
		SS	Ë	Ď	Ä	Š	DESCRIPTION	
0	2.9			ML	100		CLAYEY SILT - low, soft, damp, dark brown, no odor.	
1- -	16.3			SC	100		CLAYEY SAND - fine grain, light yellowish gray, faint odor, damp, crumbly.	
2-	5.3						SILTY CLAY - low to moderate, firm, damp, no odor.	
-	7.1			CL	100			
3			<u> </u>			IV V		
4-								
5-								
-								
6-								
- - -								

Geologist
Drilling Method

Sampling Method Total Depth

Saturation Depth Start Date/Time Finish Date/Time : Tracy Payne

: Hand Auger : Auger Bucket


: 3' : Not encountered

: 10/25/19 - 14:55

BORING NO. SWMU 13-13

(Sheet 1 of 1)

Northing : 1635171.39
Easting : 2544739.77
Ground Elevation : 6884.82 ft. MSL

Geologist Drilling Method

Drilling Method
Sampling Method
Total Depth

Saturation Depth
Start Date/Time

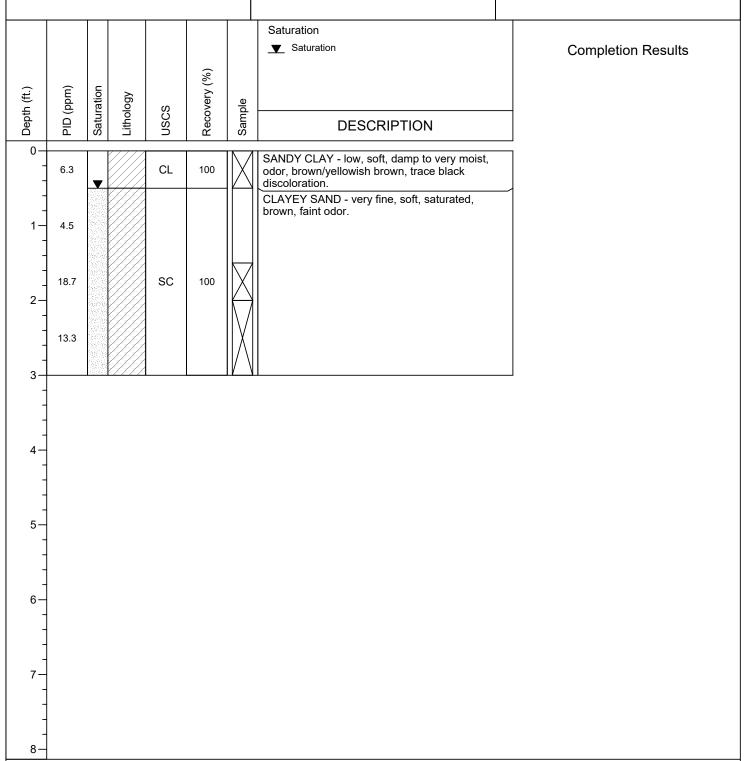
Start Date/Time : 10/25/19 - 16:20 Finish Date/Time : 10/25/19 - 16:40

: Tracy Payne

: Hand Auger

: 3'

: 0.5'


: Auger Bucket

BORING NO. SWMU 13-14

(Sheet 1 of 1)

Northing : 1635136.50
Easting : 2544756.75
Ground Elevation : 6885.16 ft. MSL

Comments :

Appendix G Photographs of Soil Cores

(Included on CD)

Appendix H Analytical Data Reports

(Included on CD)

Appendix I
Quality Assurance/Quality Control Review

DATA VALIDATION INTRODUCTION

This summary presents data verification results for soil and groundwater samples collected from soil boring and monitoring wells installed at the Solid Waste Management Unit (SWMU) No. 13 – Drainage Ditch Between API Evaporation Ponds and Neutralization Tank Evaporation Ponds at the Gallup Refinery. The data review was performed in accordance with Provision IV.J.3.b (Review of Field and Laboratory QA/QC Data) of the RCRA Permit issued by NMED in October 2013, USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc.

A total of 58 soil samples and six groundwater samples (excluding QA samples) were collected from October 22, 2019 through November 7, 2019 in accordance with the *Investigation Work Plan SWMU No.* 13 – *Drainage Ditch Between API Evaporation Ponds and Neutralization Tank Evaporation Ponds* (DiSorbo, 2019). Soil and groundwater samples were submitted to Hall Environmental Analysis Laboratory for the following parameters in accordance with the approved Work Plan:

- volatile organic compounds (VOCs) by USEPA Method 8260B;
- semi-volatile organic compounds (SVOCs) by USEPA Method 8270;
- Gasoline, diesel, and motor oil range organics by SW-846 Method 8015B;
- Total recoverable and dissolved metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by EPA Method 200.7;
- Cyanide by SW-846 method 9012; and
- Mercury by EPA Method 7470.

The groundwater samples were analyzed for water quality parameters including, sulfate, chloride, nitrate, nitrite, and fluoride by EPA Method 300.

Additionally, 22 quality assurance samples consisting of trip blanks, methanol blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation activities. Table A-1 presents a summary of the field sample identifications, laboratory sample identifications, and sample collection dates.

QUALITY CONTROL PARAMETERS REVIEWED

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt
- Holding Times;
- Blank Contamination (method blanks, trip blanks, methanol blanks, and equipment rinsate blanks);
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J+ The analyte was positively identified; however, the result should be considered an estimated value with a potential high bias.
- J- The analyte was positively identified; however, the result should be considered an estimated value with a potential low bias.
- UJ The reporting limit for a constituent that was not detected is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J+", "J-", or "UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines. Results for the performance monitoring events that required qualification based on the data verification are summarized in Table A-2.

CHAIN-OF-CUSTODY

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

SAMPLE PRESERVATION AND TEMPERATURE UPON LABORATORY RECEIPT

Samples were received preserved and intact by Hall Environmental Laboratories, Inc. Samples were received by the laboratory at a temperature of 6.0 degrees Celsius or lower.

HOLDING TIMES

All samples were extracted and analyzed within method-specified holding time limits.

BLANK CONTAMINATION

Method Blank

Method blanks were analyzed at the appropriate frequency. Target compounds were not detected in the method blanks, with the exception of the following:

- Methylene chloride was detected at 0.01 part per million (ppm) in batch S64028 in lab report 1910D16 and 1910D68. It was detected at mostly lower concentrations and below the quantitation limits in associated field samples SWMU 13-1 (14-16'), SWMU 13-2 (8-10'), SWMU 13-3 (14-15.25'), DUP02, SWMU 13-5 (1.5-2'), SWMU 13-5 (14-16'), and SWMU 13-6 (2-3'). The samples are J-flagged in the lab reports due to being at concentrations below the reporting limit and are shown as J+ in Table A-2
- Di-n-butyl phthalate was detected at 0.16 ppm in batch 48455 in lab report 1910D16. It was detected at similar concentrations in associated field samples SWMU 13-3 (15.25-16'), SWMU 13-4 (1.5-2'), SWMU 13-4 (14-15.5'), SWMU 13-4 (8-10'), SWMU 13-5 (10-10.5'), SWMU 13-5 (14-16'), SWMU 13-6 (1.5-2'), and SWMU 13-6 (17-18'). The samples are J-flagged in the lab reports due to being at concentrations below the reporting limit and are shown as J+ in Table A-2.
- Benzyl alcohol, bis(2-ethylhexyl)phthalate, di-n-butyl phthalate were detected in batch # 48439, lab report 1910D16 at concentrations of 0.85 ug/l, 4.1 ug/l, and 3.1 ug/l, respectively. The only associated sample is EB102219 and all of the related results were non-detect; no data qualification required.
- Vanadium was detected at a concentration of 0.0012 mg/l in batch 48486, lab report 1910D68.
 The only associated sample is EB102219 and the related sample result was non-detect; no data qualification required.

- Cadmium, chromium, manganese, and zinc were detected in batch # 48433, lab report 1910D68 at concentrations of 0.025J ppm, 0.12J ppm, 0.079J ppm, and 0.92J ppm, respectively.
 Cadmium was non-detect in the associated samples and no qualification is required. Chromium, manganese and zinc were detected in all related samples with concentrations much higher than the reported results in the method blank and none of the associated samples are qualified.
- Cadmium, iron, manganese, and zinc were detected in batch # 48519, lab report 1910D68 at
 concentrations of 0.033J ppm, 1.7J ppm, 0.021J ppm, and 0.40J ppm, respectively. Cadmium
 was non-detect in the associated samples and no qualification is required. Chromium, iron and
 zinc were detected in all related samples with concentrations much higher than the reported
 results in the method blank and none of the associated samples are qualified.
- Cadmium, chromium, manganese, and silver were detected in batch # 48651, lab report 1910D68 at concentrations of 0.045 ppm, 0.086J ppm, 0.049J ppm, and 0.044J ppm, respectively.
 Cadmium and silver were non-detect in the associated sample and no qualification is required.
 Chromium and manganese were detected in the related sample with concentrations much higher than the reported results in the method blank and none of the associated samples are qualified.
- Lead and Vanadium were detected in batch #48486, lab report 1910D68 at concentrations of 0.0043J ppm and 0.0012J ppm, respectively. Vanadium was non-detect in the associated sample (EB102319), while lead was detected at 0.0069 ppm. The lead result is qualified as J+ in Table A-2.
- Di-n-butyl phthalate was detected at 0.25J ppm in batch 48494 in lab report 1910E04. It was not detected in a number of associated samples, which are not qualified. However, it was detected at similar concentrations in associated field samples SWMU 13-11 (2-3'), SWMU 13-7 (1.5-2'), SWMU 13-7 (10-12'), SWMU 13-8 (1.5-2'), SWMU 13-8 (2-3'), SWMU 13-9 (2-3') and DUP04. The samples are J-flagged in the lab reports due to being at concentrations below the reporting limit and are shown as J+ in Table A-2.
- Acenaphthene, benzyl alcohol, bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, diethyl
 phthalate, dimethyl phthalate, N-nitrosodiphenylamine, 3-nitroaniline, and pyrene was
 detected at low concentrations batch 48455 in lab report 1910E04. However, there were
 only detections for bis (2-ethylhexyl)phthalate and di-n-butyl phthalate. The associated
 samples are qualified as J+ in Table A-2.

- Azobene, benzyl alcohol, bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, diethyl phthalate, 3-nitroaniline, and phenol were detected at low concentrations in batch #48536, lab report 1910E04. Only phenol, bis(2-ethylhexyl)phthalate and di-n-butyl phthalate are qualified as J+ in Table A-2 as the other constituents were non-detect.
- Cadmium, chromium, manganese, and zinc were detected in batch # 48433, lab report 1910E04 at concentrations of 0.025 ppm, 0.12J ppm, 0.079J ppm, and 0.92J ppm, respectively. Cadmium was non-detect in the associated samples and no qualification is required. Chromium, manganese, and zinc were detected in the related sample with concentrations much higher than the reported results in the method blank and none of the associated samples are qualified.
- Cadmium, iron, lead, manganese, and nickel were detected in batch # 48604, lab report 1910E04 at concentrations of 0.05J ppm, 2.1J ppm, 0.25J ppm, 0.05J ppm and 0.25J ppm, respectively. Cadmium was non-detect in the associated samples and no qualification is required. Iron, lead, manganese, and nickel were detected in the related samples with concentrations either non-detect (one sample for nickel) or at much higher concentrations than the reported results in the method blank and none of the associated samples are qualified.
- 2-Butanone was detected in batch 48453, lab report 1910E49 at 0.086J ppm, but was not detected in the related samples and therefore none of the associated sample results are qualified.
- Azobene, benzyl alcohol, bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, diethyl phthalate, 3-nitroaniline, and phenol were detected at low concentrations in batch #48536, lab report 1910E49. Only di-n-butyl phthalate was detected in the associated samples and it is qualified as J+ in Table A-2.
- Cadmium, iron, manganese, and zinc were detected in batch # 48519, lab report 1910E49 at
 concentrations of 0.033J ppm, 1.7J ppm, 0.021J ppm, and 0.40J ppm, respectively. Cadmium
 was non-detect in the associated samples and no qualification is required. Iron, manganese, and
 zinc were detected in the related sample with concentrations much higher than the reported
 results in the method blank and none of the associated samples are qualified.

Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Permit. Target compounds were not detected in the trip blanks.

Equipment Rinsate Blank

Equipment rinsate blanks were collected as specified in the SWMU No. 13 Investigation Work Plan and the Permit. The following constituents were detected in equipment rinsate blanks.

- In sample EB102219 (1910D16-017) mercury was detected at 0.00019J mg/l and it was also detected at 0.00018J mg/l in the associated method blank. The sample result is qualified as J+ in table A-2.
- In sample EB102319 (1910D38-018) mercury was detected at 0.00017J mg/l and it was also detected at 0.00018J mg/l in the associated method blank. The sample result is qualified as J+ in table A-2. Manganese (0.00093J mg/L) was also detected in the equipment blank, but is not qualified other than being an estimate concentration. Benzyl alcohol was also detected at a low concentration (2.5 ug/l), but was detected in the associated method blank and thus it is qualified in Table A-2 as j+.
- In sample EB102419, mercury was detected at 0.00011J mg/l, but was also detected in the associated method blank at 0.00012J mg/l resulting in a j+ flag in Table A-2. Manganese was also detected at a low estimated concentration, but is otherwise not qualified.
- In sample EB102519, mercury was detected at 0.00013J mg/l, but was also detected in the associated method blank at 0.00012J mg/l resulting in a j+ flag in Table A-2. Iron was also detected at a low estimated concentration, but is otherwise not qualified.
- Sample EB01 had detections of chloride, dissolved manganese and dissolved sodium all at
 low estimated concentrations that are not otherwise qualified. Total manganese was
 detected at 0.00048J mg/l and also detected at 0.00015J mg/l in the associated method
 blank. The total manganese result is qualified as J+ in Table A-2. Benzene and toluene were
 detected at 0.17J ug/l and 0.42J ug/l, respectively and are not otherwise qualified.
- Sodium was detected at 0.59J mg/l and is not otherwise qualified. Manganese and nickel were detected at 0.00027J mg/l and 0.0016J mg/l in the dissolved analyses. Both constituents were also detected in the associated method blank at 0.000089J mg/l and 0.0023J mg/l and are qualified as J+ in Table A-2.

Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2-butanone (MEK), cyclohexane, chloromethane, and methylene chloride. Common laboratory contaminants for SVOC analysis include phthalates. Data qualification was required for samples with methylene chloride and phthalates since there were detection in blanks and field analytical results were

detected at concentrations less than 10 times the blank concentration in field samples. See Table A-2 for qualified data.

Methanol Blanks

Methanol Blanks provided by the laboratory were analyzed for VOCs. There were no analytes detected in the methanol blanks above the respective laboratory reporting limits.

SURROGATE RECOVERY

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exceptions:

Lab Report 1910D68

- Surrogate recovery for gasoline range organics was above the acceptance limit for field sample SWMU 13-6 (10-11'); however, the result was non-detect and is not qualified.
- Surrogate recovery for diesel range organics was low for the laboratory control samples (LCS) in batch # 48457; however, the recovery for the same surrogate was within range for the associated method blank, matrix spike (MS) and matrix spike duplicate (MSD) analyses and all of the associated field samples. The results are not qualified.

Lab Report 1910E04

- One of the six surrogates for the semi-volatile analysis of sample SWMU 13-7 (0-0.5') was above the acceptance limit, but as the others were all within range the results are not qualified.
- Two of the six surrogates for the semi-volatile analysis of sample SWMU 13-8 (0-0.5') were above the acceptance limits, but as the others were all within range the results are not qualified.
- Surrogate recovery for gasoline range organics was above the acceptance limit for field sample SWMU 13-9 (2-3'); however, the result was non-detect and is not qualified.

Lab Report 1910E49

• Surrogate recovery for gasoline range organics was above the acceptance limit for field samples SWMU 13-13 (0-0.5'), SWMU 13-13 (1.5-2'), and SWMU 13-13 (2-3'); however, the results were non-detect and are not qualified.

• Two of the six surrogates for the semi-volatile analysis of sample SWMU 13-14 (0-0.5') were below the acceptance limits, but as the others were all within range the results are not qualified.

Lab Report 1911232

- The surrogate recovery for gasoline range organics was significantly above the acceptance limit (2710 vs. 143) for field sample SWMU 13-2-GW and the associated result is qualified in Table A-2 as J+.
- The surrogate recovery for gasoline range organics was significantly above the acceptance limit (2830 vs. 143) for field sample SWMU 13-3-GW and the associated result is qualified in Table A-2 as J+.
- The surrogate recovery for gasoline range organics was significantly above the acceptance limit (748 vs. 143) for field sample SWMU 13-4-GW and the associated result is qualified in Table A-2 as J+.

Lab Report 1911310

- The surrogate recovery for gasoline range organics was significantly above the acceptance limit (1610 vs. 143) for field sample SWMU 13-5-GW and the associated result is qualified in Table A-2 as J+.
- The surrogate recovery for gasoline range organics was significantly above the acceptance limit (363 vs. 143) for field sample SWMU 13-6-GW and the associated result is qualified in Table A-2 as J+.
- The surrogate recovery for gasoline range organics was significantly above the acceptance limit (2410 vs. 143) for field sample SWMU 13-7-GW and the associated result is qualified in Table A-2 as J+.

LCS RECOVERY AND RELATIVE PERCENT DIFFERENCE

Laboratory control samples (LCS)/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

• If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J+" to account for a potential high bias.
- If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J-" for detected results) to account for a potential low bias.

LCS/LCSD percent recoveries and relative percent differences (RPDs) were within acceptance limits and no qualification was required, except as noted below:

Lab Report 1910E49

 LCS recovery RPDs for two semivolatiles (2-chlorophenol and n-nitrosodi-n-propylamine) in batch 48505 was above the acceptance limit. The actual recovery percentages in both the LCS and LCSD were within range and the related samples are not qualified.

MS/MSD RECOVERY AND RELATIVE PERCENT DIFFERENCE

Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte was not detected in the associated analytical batch, then data qualification was not required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J+" to account for a potential high bias.
- Low MS/MSD recoveries for organic or inorganic parameters result in sample qualification of the associated analytical batch with a "J-".
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

MS/MSD percent recoveries and RPDs were within acceptance limits except for the following:

Lab Report 1910D16

 The MS and MSD RPD exceeded the limit for 1,4-dichlorobenzene in batch 48455; however, both the MS and MDS recoveries met acceptance criteria and all related samples were nondetect. None of the data are qualified.

Lab Report 1910E04

- The MS and MSD recoveries for antimony, barium, chromium, manganese, silver, and zinc were outside the limits in batch 48433. Barium recoveries exceeded the limits and the associated results are qualified as J+ and the other constituents except manganese recovered low and are flagged as J- if detected and UJ if not detected in Table A-2. Manganese had a low recovery in the MDS and exceeded limits in the MS, therefore the associated results are flagged as "J."
- Laboratory batch #48519 for metals analyses had two runs. The MS and MSD recoveries for run #64624 were all within limits and most related samples are reported for this run. The MS and/or MSD recoveries were out of range for antimony, barium, manganese, selenium, and silver for run #64655. The detected sample results are qualified J- and non-detects as UJ in Table A-2 as the recoveries were low.
- For laboratory batch #48434, the MS and MSD recoveries were low for barium and silver,
 while the MS was high for manganese, but the MSD was low for manganese. The barium and silver results are flagged as J- and manganese is flagged as J in Table A-2.

Lab Report 1910E49

• The MS and MSD recoveries both exceed the limit for mercury in batch #48648 and the associated results are flagged as J+ in Table A-2.

Lab Report 1911232

 The MS and MSD recoveries were both below the limit for mercury in batch #48912 and the associated detected result is flagged as J- and the non-detect results are flagged as UJ in Table A-2.

Lab Report 1605999

 The MS and/or MSD recoveries for several metals (antimony, barium, cobalt, lead, nickel, and zinc) were below acceptance limits for batch 25681. This affects only samples DUP-01 and DUP-02. However, the reference values are significant in comparison to the spike values, thus the low recoveries are not reflective of a laboratory problem and the associated results are not qualified.

DUPLICATES

Field Duplicates

Field duplicates were collected at a rate as stated in the approved Investigation Work Plan. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table A-3. The field duplicates were evaluated by the following criteria:

- If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 35 percent for soil and 25 percent for ground water samples.
- If an analyte was detected at a concentration that is less than five times the method
 reporting limit, then the difference between the sample and the field duplicate should not
 exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average
 of the concentrations.

Field duplicate RPDs were within acceptance limits with the exception of several metals analyses (dissolved cobalt, iron, lead, nickel; and total iron and nickel) and gasoline range organics in groundwater duplicate DUP01. See Table 3A for a field duplicate summary.

COMPLETENESS SUMMARY

The following equation was used to calculate the technical completeness:

% Technical Completeness =
$$\left(\frac{\text{Number of usable results}}{\text{Number of reported results}}\right) \times 100$$

The technical completeness attained for Investigation activities was 100 percent. The completeness results are provided in Table A-4. The analytical results for the required analytes per the approved Work Plan were considered usable for the intended purposes and the project DQOs have been met.

Table A-1 Sample Identification

SWMU13 Investigation Report

Sample ID	Lab ID	Date Collected	Sample Type
SWMU 13-1 (0-0.5')	1910d16-001	10/22/2019	SO SO
SWMU13-1 (1.5-2')	1910d16-002	10/22/2019	SO
SWMU13-1 (5-6')	1910d16-003	10/22/2019	S0
SWMU 13-1 (8-10')	1910D16-004	10/22/2019	SO
SWMU 13-1 (14-16')	1910d16-005	10/22/2019	S0
SWMU 13-2 (0-0.5')	1910d16-006	10/22/2019	SO
SWMU 13-2 (1.5-2')	1910d16-007	10/22/2019	SO
SWMU 13-2 (8-10')	1910d16-008	10/22/2019	S0
SWMU 13-2 (14-16')	1910d16-009	10/22/2019	SO
SWMU 13-3 (0-0.5')	1910d16-010	10/22/2019	S0
SWMU 13-3 (1.5-2')	1910D16-011	10/22/2019	SO
SMWU 13-3 (8-10')	1910D16-012	10/22/2019	SO
SWMU 13-3 (14-15.25')	1910d16-013	10/22/2019	SO
SWMU 13-3 (15.25-16')	1910D16-014	10/22/2019	SO
DUP01	1910d16-015	10/22/2019	FD
MeOH Blank	1910d16-016	10/22/2019	MB
EB102219	1910d16-017	10/22/2019	EB
SWMU 13-4 (0-0.5')	1910d68-001	10/23/2019	SO
SWMU 13-4 (1.5-2')	1910d68-002	10/23/2019	SO
SWMU 13-4 (8-10')	1910d68-003	10/23/2019	SO
SWMU 13-4 (14-15.5')	1910d68-004	10/23/2019	SO
SWMU 13-4 (15.5-16')	1910D68-005	10/23/2019	SO
SWMU 13-5 (0-0.5')	1910d68-006	10/23/2019	S0
SWMU 13-5 (1.5-2')	1910068-007	10/23/2019	SO
SWMU 13-5 (8-10')	1910d68-007	10/23/2019	S0
SWMU 13-5 (10-10.5')	1910008-008 1910D68-009	10/23/2019	S0
SWMU 13-5 (14-16')	1910D68-010	10/23/2019	SO
SWMU 13-6 (0-0.5')	1910d68-011	10/23/2019	S0
SWMU 13-6 (1.5-2')	1910d68-011	10/23/2019	S0
SWMU 13-6 (2-3')	1910d68-012	10/23/2019	S0
SWMU 13-6 (6-8')	1910d68-013	10/23/2019	S0
SWMU 13-6 (10-11')	1910d68-014	10/23/2019	S0
DUP02	1910d68-015	10/23/2019	FD FD
MeOH Blank	1910d68-017	10/23/2019	MB
EB102319	1910d68-017	10/23/2019	EB
SWMU 13-6 (17-18')	1910e04-001	10/23/2019	SO
SWMU 13-7 (0-0.5')	1910e04-001 1910e04-002	10/24/2019	S0
SWMU 13-7 (0-0.5)	1910E04-002	10/24/2019	SO
MeOH Blank	1910E04-003	10/24/2019	MB
SWMU 13-7 (4-6')	1910e04-005	10/24/2019	SO SO
SWMU 13-7 (10-12')	1910E04-006	10/24/2019	S0
SWMU 13-7 (10-12)	1910e04-007	10/24/2019	S0
SWMU 13-7 (17.5-18')	1910e04-007	10/24/2019	S0
SWMU 13-8 (0-0.5')	1910e04-008	10/24/2019	S0
SWMU 13-8 (1.5-2')	1910E04-019	10/24/2019	S0
SWMU 13-8 (2-3')	1910e04-010	10/24/2019	S0
SWMU 13-8 (2-3)	1910e04-011 1910e04-012	10/24/2019	S0
SWMU 13-9 (1.5-2')	1910e04-012	10/24/2019	S0
SWMU 13-9 (1.5-2)	1910e04-013	 	S0
` '		10/24/2019	FD
DUP03 DUP04	1910e04-015 1910E04-016	10/24/2019	FD FD
		10/24/2019	
MeOH Blank	1910E04-017 1910E04-018	10/24/2019	MB
EB102419	1310504-018	10/24/2019	EB

Sample Identification

SWMU13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

Sample ID	Lab ID	Date Collected	Sample Type
SWMU 13-10 (0-0.5')	1910e04-019	10/25/2019	SO
SWMU 13-10 (1.5-2')	1910e04-020	10/25/2019	S0
SWMU 13-10 (2-3')	1910e04-021	10/25/2019	S0
SWMU 13-11 (0-0.5')	1910e04-022	10/25/2019	S0
SWMU 13-11 (1.5-2')	1910e04-023	10/25/2019	S0
SWMU 13-11 (2-3')	1910e04-024	10/25/2019	SO
SWMU 13-12 (0-0.5')	1910e04-025	10/25/2019	S0
SWMU 13-12 (0.5-1.5')	1910e04-026	10/25/2019	S0
SWMU 13-12 (1.5-2')	1910E04-027	10/25/2019	S0
SWMU 13-12 (2-3')	1910e04-028	10/25/2019	SO
DUP05	1910E04-029	10/25/2019	FD
MeOH Blank	1910E04-030	10/25/2019	MB
SWMU 13-13 (0-0.5')	1910e49-001	10/25/2019	S0
SWMU 13-13 (1.5-2')	1910E49-002	10/25/2019	SO
SWMU 13-13 (2-3')	1910e49-003	10/25/2019	SO
SWMU 13-14 (0-0.5')	1910e49-004	10/25/2019	S0
SWMU 13-14 (1.5-2')	1910e49-005	10/25/2019	SO
SWMU 13-14 (2-3')	1910e49-006	10/25/2019	S0
EB102519	1910e49-007	10/25/2019	EB
SWMU 13-2-GW	1911232-001	11/6/2019	GW
SWMU 13-3-GW	1911232-002	11/6/2019	GW
SWMU 13-4-GW	1911232-003	11/6/2019	GW
DUP01	1911232-004	11/6/2019	FD
EB01	1911232-005	11/6/2019	EB
Trip Blank-1	1911232-006	11/6/2019	ТВ
Trip Blank-2	1911232-007	11/6/2019	ТВ
Trip Blank-3	1911232-008	11/6/2019	TB
SWMU 13-5-GW	1911310-001	11/7/2019	GW
SWMU 13-6-GW	1911310-002	11/7/2019	GW
SWMU 13-7-GW	1911310-003	11/7/2019	GW
EB02	1911310-004	11/7/2019	EB
Trip Blank-1	1911310-005	11/7/2019	TB
Trip Blank-2	1911310-006	11/7/2019	ТВ

SO = Soil Sample

FD = Field Duplicate

MB = Methanol Blank

TB = Trip Blank

EB = Equipment Blank

GW = Groundwater

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 13-1 (14-16')	10/22/2019	Methylene Chloride	0.0056	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
SWMU 13-2 (8-10')	10/22/2019	Methylene Chloride	0.0052	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
SWMU 13-3 (14-15.25')	10/22/2019	Methylene Chloride	0.0043	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
DUP02	10/23/2019	Methylene Chloride	0.013	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
SWMU 13-5 (1.5-2')	10/23/2019	Methylene Chloride	0.011	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
SWMU 13-5 (14-16')	10/23/2019	Methylene Chloride	0.0077	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
SWMU 13-6 (2-3')	10/23/2019	Methylene Chloride	0.005	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.01 ppm in associated method blank
SWMU 13-3 (15.25-16')	10/22/2019	Di-n-butyl phthalate	0.15	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-4 (1.5-2')	10/23/2019	Di-n-butyl phthalate	0.26	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-4 (14-15.5')	10/23/2019	Di-n-butyl phthalate	0.16	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-4 (8-10')	10/23/2019	Di-n-butyl phthalate	0.18	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-5 (10-10.5')	10/23/2019	Di-n-butyl phthalate	0.17	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-5 (14-16')	10/23/2019	Di-n-butyl phthalate	0.19	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-6 (1.5-2')	10/23/2019	Di-n-butyl phthalate	0.15	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
SWMU 13-6 (17-18')	10/24/2019	Di-n-butyl phthalate	0.16	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.16 ppm in associated method blank
EB102319	10/23/2019	lead	0.0069	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.0043 mg/l in associated method blank
SWMU 13-11 (2-3')	10/25/2019	Di-n-butyl phthalate	0.2	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
SWMU 13-7 (1.5-2')	10/24/2019	Di-n-butyl phthalate	0.15	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
SWMU 13-7 (10-12')	10/24/2019	Di-n-butyl phthalate	0.19	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
SWMU 13-8 (1.5-2')	10/24/2019	Di-n-butyl phthalate	0.2	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
SWMU 13-8 (2-3')	10/24/2019	Di-n-butyl phthalate	0.26	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
SWMU 13-9 (2-3')	10/24/2019	Di-n-butyl phthalate	0.23	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
DUP04	10/24/2019	Di-n-butyl phthalate	0.21	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.25 ppm in associated method blank
SWMU 13-8 (2-3')	10/24/2019	Bis(2-ethylhexyl)phthalate	0.14	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.14 ppm in associated method blank
DUP04	10/24/2019	Bis(2-ethylhexyl)phthalate	0.18	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.14 ppm in associated method blank
SWMU 13-9 (2-3')	10/24/2019	Phenol	0.14	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.015 ppm in associated method blank
SWMU 13-13 (2-3')	10/25/2019	Di-n-butyl phthalate	0.17	mg/kg	soil	j+	qualifed as potentially biased high due to detection at 0.20 ppm in associated method blank
EB102219	10/22/2019	mercury	0.00017	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.00018 mg/l in associated method blank
EB102319	10/23/2019	benzyl alcohol	0.0025	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.00085 mg/l in associated method blank
EB102419	10/24/2019	mercury	0.00011	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.00012 mg/l in associated method blank
EB102519	10/25/2019	mercury	0.00011	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.00012 mg/l in associated method blank
EB01	11/6/2019	manganese	0.00049	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.00015 mg/l in associated method blank
EB02	11/7/2019	manganese	0.00027	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.000089 mg/l in associated method blank
EB02	11/7/2019	nickel	0.0016	mg/l	Water	j+	qualifed as potentially biased high due to detection at 0.0023 mg/l in associated method blank
SWMU 13-2-GW	11/6/2019	gasoline range organics	0.35	mg/l	Water	j+	qualifed as an estimated concentration with a high bias as the surrogate recovery was 2710% vs. the upper range limit of 143% recovery
SWMU 13-3-GW	11/6/2019	gasoline range organics	0.45	mg/l	Water	j+	qualifed as an estimated concentration with a high bias as the surrogate recovery was 2830% vs. the upper range limit of 143% recovery
SWMU 13-4-GW	11/6/2019	gasoline range organics	0.1	mg/l	Water	j+	qualifed as an estimated concentration with a high bias as the surrogate recovery was 748% vs. the upper range limit of 143% recovery
SWMU 13-5-GW	11/7/2019	gasoline range organics	0.33	mg/l	Water	j+	qualifed as an estimated concentration with a high bias as the surrogate recovery was 1610% vs. the upper range limit of 143% recovery

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 13-6-GW	11/7/2019	gasoline range organics	0.042	mg/l	Water	j+	qualifed as an estimated concentration with a high bias as the surrogate recovery was 363% vs. the upper range limit of 143% recovery
SWMU 13-7-GW	11/7/2019	gasoline range organics	0.73	mg/l	Water	j+	qualifed as an estimated concentration with a high bias as the surrogate recovery was 2410% vs. the upper range limit of 143% recovery
DUP02	10/23/2019	Antimony	< 0.7491	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-4 (0-0.5')	10/23/2019	Antimony	< 0.7241	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-4 (1.5-2')	10/23/2019	Antimony	< 0.7321	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-4 (14-15.5')	10/23/2019	Antimony	< 0.7508	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (0-0.5')	10/23/2019	Antimony	< 0.7064	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (1.5-2')	10/23/2019	Antimony	< 0.7292	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (14-16')	10/23/2019	Antimony	< 0.7159	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (8-10')	10/23/2019	Antimony	< 0.7667	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (0-0.5')	10/23/2019	Antimony	< 0.7463	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (1.5-2')	10/23/2019	Antimony	< 0.7506	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (10-11')	10/23/2019	Antimony	< 0.7475	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (2-3')	10/23/2019	Antimony	< 0.7122	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (6-8')	10/23/2019	Antimony	< 0.7564	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (0-0.5')	10/24/2019	Antimony	< 0.7464	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (1.5-2')	10/24/2019	Antimony	< 0.7139	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (10-12')	10/24/2019	Antimony	< 0.7431	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (4-6')	10/24/2019	Antimony	< 0.721	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-8 (0-0.5')	10/24/2019	Antimony	< 0.7368	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-8 (1.5-2')	10/24/2019	Antimony	< 0.7216	mg/kg	soil	UJ	MS and MSD recoveries are below limits
DUP02	10/23/2019	Barium	280	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-4 (0-0.5')	10/23/2019	Barium	300	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-4 (1.5-2')	10/23/2019	Barium	270	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-4 (14-15.5')	10/23/2019	Barium	240	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-5 (0-0.5')	10/23/2019	Barium	270	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-5 (1.5-2')	10/23/2019	Barium	250	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-5 (14-16')	10/23/2019	Barium	180	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-5 (8-10')	10/23/2019	Barium	220	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-6 (0-0.5')	10/23/2019	Barium	390	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-6 (1.5-2')	10/23/2019	Barium	410	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-6 (10-11')	10/23/2019	Barium	280	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-6 (2-3')	10/23/2019	Barium	310	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-6 (6-8')	10/23/2019	Barium	290	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-7 (0-0.5')	10/24/2019	Barium	210	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-7 (1.5-2')	10/24/2019	Barium	740	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-7 (10-12')	10/24/2019	Barium	250	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-7 (4-6')	10/24/2019	Barium	290	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-8 (0-0.5')	10/24/2019	Barium	280	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-8 (1.5-2')	10/24/2019	Barium	170	mg/kg	soil	J+	MS and MSD recoveries are above limits
DUP02	10/23/2019	Chromium	57	mg/kg	soil	J-	MS and MSD recoveries are below limits

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 13-4 (0-0.5')	10/23/2019	Chromium	110	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-4 (1.5-2')	10/23/2019	Chromium	14	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-4 (14-15.5')	10/23/2019	Chromium	12	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (0-0.5')	10/23/2019	Chromium	62	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (1.5-2')	10/23/2019	Chromium	8.8	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (14-16')	10/23/2019	Chromium	13	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (8-10')	10/23/2019	Chromium	14	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (0-0.5')	10/23/2019	Chromium	12	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (1.5-2')	10/23/2019	Chromium	9.3	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (10-11')	10/23/2019	Chromium	12	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (2-3')	10/23/2019	Chromium	7.6	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (6-8')	10/23/2019	Chromium	12	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (0-0.5')	10/24/2019	Chromium	11	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (1.5-2')	10/24/2019	Chromium	8.9	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (10-12')	10/24/2019	Chromium	14	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (4-6')	10/24/2019	Chromium	11	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-8 (0-0.5')	10/24/2019	Chromium	32	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-8 (1.5-2')	10/24/2019	Chromium	13	mg/kg	soil	J-	MS and MSD recoveries are below limits
DUP02	10/23/2019	Manganese	340	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-4 (0-0.5')	10/23/2019	Manganese	440	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-4 (1.5-2')	10/23/2019	Manganese	380	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-4 (14-15.5')	10/23/2019	Manganese	260	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-5 (0-0.5')	10/23/2019	Manganese	320	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-5 (1.5-2')	10/23/2019	Manganese	630	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-5 (14-16')	10/23/2019	Manganese	230	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-5 (8-10')	10/23/2019	Manganese	330	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-6 (0-0.5')	10/23/2019	Manganese	360	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-6 (1.5-2')	10/23/2019	Manganese	350	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-6 (10-11')	10/23/2019	Manganese	330	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-6 (2-3')	10/23/2019	Manganese	410	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-6 (6-8')	10/23/2019	Manganese	320	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-7 (0-0.5')	10/24/2019	Manganese	320	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-7 (1.5-2')	10/24/2019	Manganese	380	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-7 (10-12')	10/24/2019	Manganese	310	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-7 (4-6')	10/24/2019	Manganese	360	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-8 (0-0.5')	10/24/2019	Manganese	450	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
SWMU 13-8 (1.5-2')	10/24/2019	Manganese	300	mg/kg	soil	J	MS recovery exceeded the limit and MSD was below the limit
DUP02	10/23/2019	Silver	< 0.0653	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-4 (0-0.5')	10/23/2019	Silver	< 0.0631	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-4 (1.5-2')	10/23/2019	Silver	< 0.0638	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-4 (14-15.5')	10/23/2019	Silver	< 0.0654	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (0-0.5')	10/23/2019	Silver	< 0.0615	mg/kg	soil	UJ	MS and MSD recoveries are below limits

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 13-5 (1.5-2')	10/23/2019	Silver	< 0.0635	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (14-16')	10/23/2019	Silver	< 0.0624	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-5 (8-10')	10/23/2019	Silver	< 0.0668	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (0-0.5')	10/23/2019	Silver	< 0.065	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (1.5-2')	10/23/2019	Silver	< 0.0654	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (10-11')	10/23/2019	Silver	< 0.0651	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (2-3')	10/23/2019	Silver	< 0.062	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-6 (6-8')	10/23/2019	Silver	< 0.0659	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (0-0.5')	10/24/2019	Silver	< 0.065	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (1.5-2')	10/24/2019	Silver	< 0.0622	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (10-12')	10/24/2019	Silver	< 0.0647	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-7 (4-6')	10/24/2019	Silver	< 0.0628	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-8 (0-0.5')	10/24/2019	Silver	< 0.0642	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-8 (1.5-2')	10/24/2019	Silver	< 0.0629	mg/kg	soil	UJ	MS and MSD recoveries are below limits
DUP02	10/23/2019	Zinc	59	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-4 (0-0.5')	10/23/2019	Zinc	120	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-4 (1.5-2')	10/23/2019	Zinc	20	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-4 (14-15.5')	10/23/2019	Zinc	17	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (0-0.5')	10/23/2019	Zinc	65	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (1.5-2')	10/23/2019	Zinc	15	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (14-16')	10/23/2019	Zinc	18	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-5 (8-10')	10/23/2019	Zinc	19	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (0-0.5')	10/23/2019	Zinc	18	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (1.5-2')	10/23/2019	Zinc	16	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (10-11')	10/23/2019	Zinc	18	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (2-3')	10/23/2019	Zinc	13	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-6 (6-8')	10/23/2019	Zinc	17	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (0-0.5')	10/24/2019	Zinc	20	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (1.5-2')	10/24/2019	Zinc	14	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (10-12')	10/24/2019	Zinc	19	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-7 (4-6')	10/24/2019	Zinc	15	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-8 (0-0.5')	10/24/2019	Zinc	66	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-8 (1.5-2')	10/24/2019	Zinc	18	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-12 (0-0.5')	10/25/2019	Antimony	< 0.7403	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-12 (0-0.5')	10/25/2019	Barium	340	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-12 (0-0.5')	10/25/2019	Manganese	520	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-12 (0-0.5')	10/25/2019	Selenium	< 2.5259	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-12 (0-0.5')	10/25/2019	Silver	< 0.0645	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-8 (2-3')	10/24/2019	Barium	270	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-8 (2-3')	10/24/2019	Manganese	290	mg/kg	soil	J-	MS and MSD recoveries are below limits
SWMU 13-8 (2-3')	10/24/2019	Silver	< 0.0651	mg/kg	soil	UJ	MS and MSD recoveries are below limits
SWMU 13-13 (0-0.5')	10/25/2019	Mercury	0.25	mg/kg	soil	J+	MS and MSD recoveries are above limits

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 13-13 (1.5-2')	10/25/2019	Mercury	0.0056	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-13 (2-3')	10/25/2019	Mercury	0.047	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-14 (0-0.5')	10/25/2019	Mercury	0.07	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-14 (1.5-2')	10/25/2019	Mercury	0.017	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-14 (2-3')	10/25/2019	Mercury	0.0086	mg/kg	soil	J+	MS and MSD recoveries are above limits
SWMU 13-2-GW	11/6/2019	Mercury	0.06	mg/l	water	J-	MS and MSD recoveries are below limits
SWMU 13-3-GW	11/6/2019	Mercury	<0.04	mg/l	water	UJ	MS and MSD recoveries are below limits
SWMU 13-3-GW	11/6/2019	Mercury	<0.19	mg/l	water	UJ	MS and MSD recoveries are below limits
SWMU 13-4-GW	11/6/2019	Mercury	<0.04	mg/l	water	UJ	MS and MSD recoveries are below limits
DUP01	11/6/2019	Mercury	<0.04	mg/l	water	UJ	MS and MSD recoveries are below limits
SWMU 13-5-GW	11/7/2019	Mercury	<0.04	mg/l	water	UJ	MS and MSD recoveries are below limits
SWMU 13-6-GW	11/7/2019	Mercury	<0.04	mg/l	water	UJ	MS and MSD recoveries are below limits
SWMU 13-7-GW	11/7/2019	Mercury	<0.04	mg/l	water	UJ	MS and MSD recoveries are below limits

Notes:

UJ Estimated reporting limit

J- Low bias J+ High bias

	SWMU 13-3 (0-0.5	5')	DUP01		RPD
	Sample Result	丁寸	Duplicate Result	П	(%)
Metals (mg/kg)	'		•		. ,
Antimony	< 0.7358	u	< 0.739	u	NC
Arsenic	< 2.854	u	< 2.8666	u	NC
Barium	260.00	V	290	v	2.7
Beryllium	1.40	v	1.4	v	0.0
Cadmium	< 0.0485	u	< 0.0488	u	NC
Chromium (Total)	30.00	V	40	V	7.1
Cobalt	6.10	v	6.6	v	2.0
Cyanide	0.52	v	0.59	v	3.2
Iron	19000.00	v	22000	v	3.7
Lead	0.87	v	1	v	3.5
Manganese	280.00	v	400	v	8.8
Mercury (elemental)	0.07	v	0.14	v	15.4
Nickel	13.00	v	14	v	1.9
Selenium	< 2.5105	u	< 2.5215	u	NC
Silver	< 0.0641	u	< 0.0644	u	NC
Vanadium	26.00	v	30.00000	v	3.6
Zinc	41.00	V	45.00000	V	2.3
Volatiles (mg/kg)	71.00	╅	10.0000	╁┼	2.0
1,1,1,2-Tetrachloroethane	< 0.002	+	< 0.0027	++	NC
		u		u	
1,1,1-Trichloroethane	< 0.0027	u 	< 0.0036	u	NC
1,1,2,2-Tetrachloroethane	< 0.003	u	< 0.004	u	NC
1,1,2-Trichloroethane	< 0.0021	u	< 0.0028	u	NC
1,1-Dichloroethane	< 0.0019	u	< 0.0025	u	NC
1,1-Dichloroethene	< 0.0118	u	< 0.0159	u	NC
1,1-Dichloropropene	< 0.0027	u	< 0.0036	u	NC
Trichlorobenzene, 1,2,3-	< 0.0026	u	< 0.0035	u	NC
1,2,3-Trichloropropane	< 0.0048	u	< 0.0064	u	NC
1,2,4-Trichlorobenzene	< 0.003	u	< 0.004	u	NC
Trimethylbenzene, 1,2,4-	< 0.0027	u	< 0.0036	u	NC
1,2-Dibromo-3-chloropropane	< 0.003	u	< 0.0041	u	NC
1,2-Dibromoethane (Ethylene dibromide)	< 0.0027	u	< 0.0036	u	NC
1,2-Dichlorobenzene	< 0.0024	u	< 0.0033	u	NC
1,2-Dichloroethane	< 0.003	u	< 0.004	u	NC
1,2-Dichloropropane	< 0.0022	u	< 0.0029	u	NC
Trimethylbenzene, 1,3,5-	< 0.0029	u	< 0.0038	u	NC
1,3-Dichlorobenzene	< 0.0026	u	< 0.0034	u	NC
Dichloropropane, 1,3-	< 0.0032	u	< 0.0043	u	NC
1,4-Dichlorobenzene	< 0.0025	u	< 0.0033	u	NC
1-Methylnaphthalene	< 0.017	u	< 0.0228	u	NC
2,2-Dichloropropane	< 0.0096	u	< 0.0129	u	NC
2-Butanone (Methyl ethyl ketone, MEK)	0.06	J	0.05400	J	2.2
o-Chlorotoluene	< 0.0026	u	< 0.0035	u	NC
Hexanone, 2-	< 0.0049	u	< 0.0066	u	NC
2-Methylnaphthalene	< 0.0129	u	< 0.0173	u	NC
Chlorotoluene, p-	< 0.0024	u	< 0.0032	u	NC
4-Isopropyltoluene	< 0.0024	u	< 0.0033	u	NC
Methyl isobutyl ketone	< 0.0056	u	< 0.0075	u	NC
Acetone	< 0.0245	u	< 0.0329	u	NC
Benzene	< 0.0024	u	< 0.0032	u	NC
Bromobenzene	< 0.0028	u	< 0.0038	u	NC
Bromodichloromethane	< 0.0027	u	< 0.0036	u	NC
Tribromomethane (Bromoform)	< 0.0027	u	< 0.0036	u	NC
Bromomethane	< 0.0071	u	< 0.0096	u	NC
Carbon disulfide	< 0.0098	u	< 0.0131	u	NC
Carbon tetrachloride	< 0.0028	u	< 0.0038	u	NC
Chlorobenzene (Monochlorobenzene)	< 0.0038	u	< 0.0051	u	NC

	SWMU 13-3 (0-0.5))	DUP01	Ī	RPD
	Sample Result		Duplicate Result	П	(%)
Ethyl chloride	< 0.0044	u	< 0.0058	u	NC
Chloroform	< 0.0024	u	< 0.0032	u	NC
Chloromethane	< 0.0028	u	< 0.0038	u	NC
cis-1,2-Dichloroethene	< 0.004	u	< 0.0054	u	NC
cis-1,3-Dichloropropene	< 0.0025	u	< 0.0033	u	NC
Dibromochloromethane	< 0.0021	u	< 0.0028	u	NC
Dibromomethane (Methylene Bromide)	< 0.0032	u	< 0.0043	u	NC
Dichlorodifluoromethane	< 0.0069	u	< 0.0092	u	NC
Ethylbenzene	< 0.0017	u	< 0.0023	u	NC
Hexachloro-1,3-butadiene	< 0.003	u	< 0.004	u	NC
Cumene (isopropylbenzene)	< 0.0021	u	< 0.0029	u	NC
tert-Butyl methyl ether (MTBE)	< 0.007	u	< 0.0094	u	NC
Methylene chloride (Dichloromethane)	< 0.0052	u	< 0.007	u	NC
Naphthalene	< 0.0059	u	< 0.0079	u	NC
Butylbenzene, n-	< 0.0028	u	< 0.0037	u	NC
Propyl benzene	< 0.0024	u	< 0.0032	u	NC
Butylbenzene, sec-	< 0.0033	u	< 0.0045	u	NC
Styrene	< 0.0023	u	< 0.0031	u	NC
Butylbenzene, tert-	< 0.0028	u	< 0.0037	u	NC
Tetrachloroethene	< 0.0024	u	< 0.0032	u	NC
Toluene	< 0.0028	u	< 0.0038	u	NC
trans-1,2-Dichloroethene	< 0.0027	u	< 0.0036	u	NC
trans-1,3-Dichloropropene	< 0.0031	u	< 0.0042	u	NC
Trichloroethylene	< 0.0034	u	< 0.0046	u	NC
Trichlorofluoromethane	< 0.01	u	< 0.0135	u	NC
Vinyl chloride	< 0.0019	u	< 0.0026	u	NC
Xylenes	< 0.0075	u	< 0.01	u	NC
Semi-volatiles (mg/kg)	10000	Ť		+	- 110
1,2,4-Trichlorobenzene	< 0.7637	u	< 0.7743	u	NC
1,2-Dichlorobenzene	< 0.5903	u	< 0.5985	u	NC
1,3-Dichlorobenzene	< 0.5174	u	< 0.5246	u	NC
1,4-Dichlorobenzene	< 0.5234	u	< 0.5307	u	NC
1-Methylnaphthalene	< 0.7355	u	< 0.7458	u	NC
2,4,5-Trichlorophenol	< 0.637	+	< 0.6459	+	NC
2,4,6-Trichlorophenol	< 0.5165	u u	< 0.5237	u	NC
2,4-Dichlorophenol	< 0.5715	u	< 0.5795	u	NC
2,4-Dimethylphenol	< 0.5416	u	< 0.5491	u	NC
2,4-Dinitrophenol	< 0.357	+	< 0.362	u	NC
2,4-Dinitrophenol	< 0.5792	u	< 0.5873	+ +	NC
2,6-Dintitotoluene	< 0.6467	u	< 0.6557	u	NC
b-Chloronaphthalene	< 0.6132	u	< 0.6217	u	NC
·		u 	< 0.6217	u	
2-Chlorophenol	< 0.6113 < 0.7159	u 	< 0.7259	u	NC NC
2-Methylnaphthalene		u 		u	
Cresol, o-	< 0.5828	u	< 0.5909	u	NC
Nitroaniline, 2-	< 0.7018	u	< 0.7116	u	NC
2-Nitrophenol	< 0.671	u 	< 0.6803	u	NC NC
3,3-Dichlorobenzidine	< 0.4368	u 	< 0.4429	u	NC
3+4-Methylphenol	< 0.6031	u	< 0.6115	u	NC
3-Nitroaniline	< 0.678	u	< 0.6875	u	NC
4,6-Dinitro-o-cresol	< 0.4539	u	< 0.4602	u	NC
4-Bromophenyl phenyl ether	< 0.5776	u	< 0.5857	u	NC
4-Chloro-3-methylphenol	< 0.7539	u	< 0.7644	u	NC
Chloroaniline, p-	< 0.6961	u	< 0.7058	u	NC
4-Chlorophenyl phenyl ether	< 0.5356	u	< 0.543	u	NC
Nitroaniline, 4-	< 0.6274	u	< 0.6362	u	NC
4-Nitrophenol	< 0.6664	u	< 0.6757	u	NC
Acenaphthene	< 0.5895	u	< 0.5977	u	NC

Field Duplicate Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	SWMU 13-3 (0-0.5')		DUP01		RPD
	Sample Result		Duplicate Result	П	(%)
Acenaphthylene	< 0.5386	u	< 0.5461	u	NC
Aniline	< 0.6318	u	< 0.6407	u	NC
Anthracene	< 0.5254	u	< 0.5327	u	NC
Azobenzene	< 0.6879	u	< 0.6975	u	NC
Benzo(a)anthracene	< 0.4734	u	< 0.4801	u	NC
Benzo(a)pyrene	< 0.4367	u	< 0.4428	u	NC
Benzo(b)fluoranthene	< 0.4346	u	< 0.4407	u	NC
Benzo(g,h,i)perylene	< 0.4215	u	< 0.4274	u	NC
Benzo(k)fluoranthene	< 0.4466	u	< 0.4528	u	NC
Benzoic acid	< 0.5075	u	< 0.5146	u	NC
Benzyl alcohol	< 0.6096	u	< 0.6181	u	NC
Bis(2-chloroethoxy)methane	< 0.7264	u	< 0.7365	u	NC
Bis(2-chloroethyl) ether	< 0.5989	u	< 0.6072	u	NC
Bis(2-chloroisopropyl) ether	< 0.5594	u	< 0.5672	u	NC
Bis(2-ethylhexyl)phthalate [Di(2-	< 0.7050		< 0.74E0		NO
ethylhexyl)phthalate, DEHP]	< 0.7059	u	< 0.7158	u	NC
Butyl Benzyl Phthalate	< 0.5023	u	< 0.5093	u	NC
Carbazole	< 0.5762	u	< 0.5843	u	NC
Chrysene	< 0.4333	u	< 0.4394	u	NC
Dibenz(a,h)anthracene	< 0.4467	u	< 0.453	u	NC
Dibenzofuran	< 0.6439	u	< 0.6529	u	NC
Diethyl phthalate	< 0.7012	u	< 0.711	u	NC
Dimethyl phthalate (DMP, Phthalic Acid)	< 0.6553	u	< 0.6644	u	NC
Di-n-butyl phthalate (Dibutyl phthalate)	< 0.7334	u	< 0.7437	u	NC
Di-n-octyl phthalate	< 0.5014	u	< 0.5084	u	NC
Fluoranthene	< 0.5503	u	< 0.558	u	NC
Fluorene	< 0.56	u	< 0.5678	u	NC
Hexachlorobenzene	< 0.6083	u	< 0.6168	u	NC
Hexachloro-1,3-butadiene	< 0.6851	u	< 0.6947	u	NC
Hexachlorocyclopentadiene	< 0.5617	u	< 0.5696	u	NC
Hexachloroethane	< 0.5474	u	< 0.5551	u	NC
Indeno(1,2,3-c,d)pyrene	< 0.4892	u	< 0.496	u	NC
Isophorone	< 0.7236	u	< 0.7337	u	NC
Naphthalene	< 0.7431	u	< 0.7535	u	NC
Nitrobenzene	< 0.6795	u	< 0.689	u	NC
Nitroso-di-N-propylamine, N-	< 0.7016	u	< 0.7113	u	NC
N-Nitrosodiphenylamine	< 0.5166	u	< 0.5238	u	NC
Pentachlorophenol	< 0.5064	u	< 0.5135	u	NC
Phenanthrene	< 0.5318	u	< 0.5393	u	NC
Phenol	< 0.6113	u	< 0.6198	u	NC
Pyrene	< 0.4616	u	< 0.4681	u	NC
Pyridine	< 0.5918	u	< 0.6	u	NC
Total Petroleum Hydrocarbons (mg/kg)				П	
Gasoline Range Organics (GRO)	< 0.8949	u	< 1.2	u	NC
Diesel Range Organics (DRO)	110.00	V	100	٧	2.4
Motor Oil Range Organics (MRO)	160.00	v	160	v	0.0

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

	SWMU 13-5 (0-0.5)	')	DUP02		RPD
	Sample Result	ĺ	Duplicate Result	П	(%)
Metals (mg/kg)					. ,
Antimony	< 0.7064	u	< 0.7491	u	NC
Arsenic	< 2.7401	u	< 2.9057	u	NC
Barium	270.00	٧	280	v	0.9
Beryllium	1.50	٧	1.5	٧	0.0
Cadmium	< 0.0466	u	< 0.0494	u	NC
Chromium (Total)	62.00	٧	57	V	2.1
Cobalt	7.10	٧	7.1	٧	0.0
Cyanide	< 0.25	u	1.1	V	NC
Iron	24000.00	٧	23000	V	1.1
Lead	1.20	٧	1.3	v	2.0
Manganese	320.00	٧	340	٧	1.5
Mercury (elemental)	0.15	٧	0.16	V	1.6
Nickel	15.00	V	15	v	0.0
Selenium	< 2.4103	u	3.3	IJ	NC
Silver	< 0.0615	u	< 0.0653	u	NC
Vanadium	33.00	٧	35.00000	٧	1.5
Zinc	65.00	٧	59.00000	٧	2.4
Volatiles (mg/kg)					
1,1,1,2-Tetrachloroethane	< 0.0027	u	< 0.0029	u	NC
1,1,1-Trichloroethane	< 0.0027	u	< 0.0029	u	NC
1,1,2,2-Tetrachloroethane	< 0.004	u	< 0.0033	u	NC
1,1,2-Trichloroethane	< 0.004	u	< 0.0031	u	NC
1,1-Dichloroethane	< 0.0025	u	< 0.0031	u	NC
1,1-Dichloroethane	< 0.0157	u	< 0.0173	u	NC
1,1-Dichloropropene	< 0.0036	u	< 0.0173	u	NC
Trichlorobenzene, 1,2,3-	< 0.0034	u	< 0.0039	u	NC
1,2,3-Trichloropropane	< 0.0064	u	< 0.0038	u	NC
1,2,4-Trichlorobenzene	< 0.004	u	< 0.0044	u	NC
Trimethylbenzene, 1,2,4-	< 0.004	u	< 0.004	u	NC
1,2-Dibromo-3-chloropropane	< 0.004	u	< 0.004	u	NC
1,2-Dibromoethane (Ethylene dibromide)	< 0.004	+	< 0.0044	††	NC
1,2-Dichlorobenzene	< 0.0032	u u	< 0.0036	u u	NC
1,2-Dichloroethane	< 0.0032	u	< 0.0044	u	NC
1,2-Dichloropropane	< 0.004	u	< 0.0032	u	NC
Trimethylbenzene, 1,3,5-	< 0.0029	_	< 0.0032	+	NC NC
1,3-Dichlorobenzene	< 0.0034	u u	< 0.0042	u u	NC
Dichloropropane, 1,3-	< 0.0034	+	< 0.0038	+-+	NC
1,4-Dichlorobenzene	< 0.0042	u	< 0.0036	u	NC
1-Methylnaphthalene	< 0.0226	u 	< 0.0249	u	NC
	< 0.0226	u	< 0.0249	u	NC
2,2-Dichloropropane		u 		u	
2-Butanone (Methyl ethyl ketone, MEK) o-Chlorotoluene	< 0.0454	u 	< 0.0502	u	NC
	< 0.0034	u	< 0.0038	u	NC
Hexanone, 2-	< 0.0065	u	< 0.0072	u	NC
2-Methylnaphthalene	< 0.0172	u 	< 0.0189	u	NC
Chlorotoluene, p-	< 0.0032	u 	< 0.0036	u 	NC
4-Isopropyltoluene	< 0.0033	u	< 0.0036	u	NC NC
Methyl isobutyl ketone	< 0.0074	u 	< 0.0082	u	NC
Acetone	< 0.0326	u 	< 0.0359	u	NC
Benzene	< 0.0032	u	< 0.0035	u	NC
Bromobenzene	< 0.0038	u	< 0.0042	u	NC
Bromodichloromethane	< 0.0036	u	< 0.004	u	NC
Tribromomethane (Bromoform)	< 0.0035	u	< 0.0039	u	NC
Bromomethane	< 0.0095	u	< 0.0105	u	NC
Carbon disulfide	< 0.013	u	< 0.0143	u	NC
Carbon tetrachloride	< 0.0037	u	< 0.0041	u	NC

	SWMU 13-5 (0-0.5')		DUP02	1	RPD
	Sample Result	Н	Duplicate Result	Н	(%)
Chlorobenzene (Monochlorobenzene)	< 0.005	u	< 0.0056	u	NC
Ethyl chloride	< 0.0058	u	< 0.0064	u	NC
Chloroform	< 0.0032	u	< 0.0035	u	NC
Chloromethane	< 0.0032	u	< 0.0041	u	NC
cis-1,2-Dichloroethene	< 0.0054	u	< 0.0059	u	NC
cis-1,3-Dichloropropene	< 0.0034	u	< 0.0037	u	NC
Dibromochloromethane	< 0.0038	u	< 0.0031	u	NC
Dibromomethane (Methylene Bromide)	< 0.0042	u	< 0.0047	u	NC
Dichlorodifluoromethane	< 0.0091	u	< 0.0101	u	NC
Ethylbenzene	< 0.0031	u	< 0.0025	u	NC
Hexachloro-1,3-butadiene	< 0.004	u	< 0.0044	u	NC
Cumene (isopropylbenzene)	< 0.0028	u	< 0.0031	u	NC
tert-Butyl methyl ether (MTBE)	< 0.0093	u	< 0.0103	u	NC
Methylene chloride (Dichloromethane)	< 0.0069	u	0.01300	J	NC
Naphthalene	< 0.0079	u	< 0.0087	u	NC
Butylbenzene, n-	< 0.0073	u	< 0.004	u	NC
Propyl benzene	< 0.0031	u	< 0.0035	u	NC
Butylbenzene, sec-	< 0.0031	u	< 0.0049	u	NC
Styrene	< 0.0031	u	< 0.0043	u	NC
Butylbenzene, tert-	< 0.0037	u	< 0.0041	u	NC
Tetrachloroethene	< 0.0031	u	< 0.0035	u	NC
Toluene	< 0.0038	u	< 0.0041	u	NC
trans-1,2-Dichloroethene	< 0.0036	u	< 0.004	u	NC
trans-1,3-Dichloropropene	< 0.0042	u	< 0.0046	u	NC
Trichloroethylene	< 0.0045	u	< 0.005	u	NC
Trichlorofluoromethane	< 0.0133	u	< 0.0147	u	NC
Vinyl chloride	< 0.0026	u	< 0.0028	u	NC
Xylenes	< 0.0020	u	< 0.0109	u	NC
Semi-volatiles (mg/kg)	. 0.0000	Н	. 0.0100	Ĭ	110
1,2,4-Trichlorobenzene	< 1.5543	u	< 1.56		NC
1,2-Dichlorobenzene	< 1.3343	u u	< 1.2058	u u	NC
1,3-Dichlorobenzene	< 1.053	H	< 1.0569	tt	NC
1,4-Dichlorobenzene	< 1.0653	u u	< 1.0692	u u	NC
1-Methylnaphthalene	< 1.497	u	< 1.5025	u	NC
2,4,5-Trichlorophenol	< 1.2965	u	< 1.3013	u	NC
2,4,6-Trichlorophenol	< 1.0513	u	< 1.0552	u	NC
2,4-Dichlorophenol	< 1.1632	u	< 1.1675	u	NC
2,4-Dimethylphenol	< 1.1032	u	< 1.1063	u	NC
2,4-Dinitrophenol	< 0.7266	u	< 0.7293	u	NC
2,4-Dinitrotoluene	< 1.1788	u	< 1.1832	u	NC
2,6-Dintitrotoluene	< 1.3163	u	< 1.3212	u	NC
b-Chloronaphthalene	< 1.248	u	< 1.2526	u	NC
2-Chlorophenol	< 1.2442	u	< 1.2488	u	NC
2-Methylnaphthalene	< 1.4571	u	< 1.4625	u	NC
Cresol, o-	< 1.1862	Н	< 1.1905	+	NC
Nitroaniline, 2-	< 1.4284	u 		u	NC
2-Nitrophenol	< 1.4284 < 1.3657	u	< 1.4337 < 1.3707	u	NC NC
3,3-Dichlorobenzidine	< 0.889	u	< 0.8923	u	NC
3+4-Methylphenol	< 1.2275	u	< 1.2321	u	NC
3-Nitroaniline	< 1.2275	u	< 1.2321 < 1.3851	u	NC NC
4,6-Dinitro-o-cresol	< 0.9238	u	< 0.9272	u	NC
	< 0.9238	u	< 1.18	u	NC
4-Bromophenyl phenyl ether		u 		u	
4-Chloro-3-methylphenol	< 1.5345	u	< 1.5401	u	NC
Chlorophonyl phonyl other	< 1.4168	u 	< 1.422	u	NC
4-Chlorophenyl phenyl ether	< 1.0901	u 	< 1.0941	u	NC
Nitroaniline, 4-	< 1.2771	u	< 1.2818	u	NC

Field Duplicate Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	SWMU 13-5 (0-0.5')		DUP02		RPD
	Sample Result		Duplicate Result		(%)
4-Nitrophenol	< 1.3563	u	< 1.3613	u	NC
Acenaphthene	< 1.1998	u	< 1.2042	u	NC
Acenaphthylene	< 1.0962	u	< 1.1002	u	NC
Aniline	< 1.286	u	< 1.2908	u	NC
Anthracene	< 1.0694	u	< 1.0733	u	NC
Azobenzene	< 1.4001	u	< 1.4053	u	NC
Benzo(a)anthracene	< 0.9636	u	< 0.9672	u	NC
Benzo(a)pyrene	< 0.8889	u	< 0.8921	u	NC
Benzo(b)fluoranthene	< 0.8845	u	< 0.8878	u	NC
Benzo(g,h,i)perylene	< 0.8579	u	< 0.861	u	NC
Benzo(k)fluoranthene	< 0.909	u	< 0.9123	u	NC
Benzoic acid	< 1.033	u	< 1.0368	u	NC
Benzyl alcohol	< 1.2408	u	< 1.2454	u	NC
Bis(2-chloroethoxy)methane	< 1.4784	u	< 1.4839	u	NC
Bis(2-chloroethyl) ether	< 1.2189	u	< 1.2234	u	NC
Bis(2-chloroisopropyl) ether	< 1.1386	u	< 1.1428	u	NC
Bis(2-ethylhexyl)phthalate [Di(2-	. 4. 4000		. 4 . 4 . 4 . 4		NO
ethylhexyl)phthalate, DEHP]	< 1.4368	u	< 1.4421	u	NC
Butyl Benzyl Phthalate	< 1.0223	u	< 1.0261	u	NC
Carbazole	< 1.1729	u	< 1.1772	u	NC
Chrysene	< 0.882	u	< 0.8852	u	NC
Dibenz(a,h)anthracene	< 0.9093	u	< 0.9126	u	NC
Dibenzofuran	< 1.3106	u	< 1.3154	u	NC
Diethyl phthalate	< 1.4272	u	< 1.4325	u	NC
Dimethyl phthalate (DMP, Phthalic Acid)	< 1.3337	u	< 1.3386	u	NC
Di-n-butyl phthalate (Dibutyl phthalate)	< 1.4928	u	< 1.4983	u	NC
Di-n-octyl phthalate	< 1.0205	u	< 1.0243	u	NC
Fluoranthene	< 1.1201	u	< 1.1242	u	NC
Fluorene	< 1.1398	u	< 1.144	u	NC
Hexachlorobenzene	< 1.2381	u	< 1.2426	u	NC
Hexachloro-1,3-butadiene	< 1.3944	u	< 1.3995	u	NC
Hexachlorocyclopentadiene	< 1.1433	u	< 1.1476	u	NC
Hexachloroethane	< 1.1142	u	< 1.1183	u	NC
Indeno(1,2,3-c,d)pyrene	< 0.9956	u	< 0.9993	u	NC
Isophorone	< 1.4727	u	< 1.4782	u	NC
Naphthalene	< 1.5125	u	< 1.518	u	NC
Nitrobenzene	< 1.3831	u	< 1.3882	u	NC
Nitroso-di-N-propylamine, N-	< 1.4279	u	< 1.4332	u	NC
N-Nitrosodiphenylamine	< 1.0514	u	< 1.0552	u	NC
Pentachlorophenol	< 1.0308	u	< 1.0346	u	NC
Phenanthrene	< 1.0825	u	< 1.0865	u	NC
Phenol	< 1.2442	u	< 1.2488	u	NC
Pyrene	< 0.9396	u	< 0.9431	u	NC
Pyridine	< 1.2044	u	< 1.2089	u	NC
Total Petroleum Hydrocarbons (mg/kg)					
Gasoline Range Organics (GRO)	< 1.1887	u	< 1.3124	u	NC
Diesel Range Organics (DRO)	87.00	V	120	٧	8.0
Motor Oil Range Organics (MRO)	120.00	V	130	v	2.0

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

	SWMU 13-7 (0-0.5') DUP03				RPD
	Sample Result	' 	Duplicate Result	Н	(%)
Metals (mg/kg)	Sample Result	+	Duplicate Result	H	(70)
Antimony	< 0.7464	-	< 0.7421	Н	NC
Arsenic	< 2.8951	u u	< 2.8785	u u	NC
Barium	210.00	v	260	t - t	5.3
Beryllium	1.10	V	1	V	2.4
Cadmium	< 0.0492	+-1	< 0.049	+	NC
Chromium (Total)	11.00	u	8.9	u	5.3
Cobalt	4.80	V	4.4	V	2.2
Cyanide	< 0.25	V	< 0.25	V	NC
	17000.00	u	15000	u	3.1
Iron Lead	1.80	V	3	V	12.5
	320.00	+-1	<u>3</u> 370	V	3.6
Manganese Marguny (clamental)	0.00	V	0.007	٧	10.3
Mercury (elemental)		+		J	
Nickel Colonium	9.80	V	8.9	٧	2.4
Selenium	< 2.5466	u	< 2.532	u	NC NC
Silver Vanadium	< 0.065	u	< 0.0647	u	NC 4.1
Zinc	20.00	V	17.00000	٧	4.1
	20.00	V	16.00000	٧	5.6
Volatiles (mg/kg)				Ш	
1,1,1,2-Tetrachloroethane	< 0.002	u	< 0.002	u	NC
1,1,1-Trichloroethane	< 0.0027	u	< 0.0027	u	NC
1,1,2,2-Tetrachloroethane	< 0.003	u	< 0.003	u	NC
1,1,2-Trichloroethane	< 0.0021	u	< 0.0021	u	NC
1,1-Dichloroethane	< 0.0019	u	< 0.0019	u	NC
1,1-Dichloroethene	< 0.0118	u	< 0.0118	u	NC
1,1-Dichloropropene	< 0.0027	u	< 0.0027	u	NC
Trichlorobenzene, 1,2,3-	< 0.0026	u	< 0.0026	u	NC
1,2,3-Trichloropropane	< 0.0048	u	< 0.0048	u	NC
1,2,4-Trichlorobenzene	< 0.003	u	< 0.003	u	NC
Trimethylbenzene, 1,2,4-	< 0.0027	u	< 0.0027	u	NC
1,2-Dibromo-3-chloropropane	< 0.003	u	< 0.003	u	NC
1,2-Dibromoethane (Ethylene dibromide)	< 0.0027	u	< 0.0027	u	NC
1,2-Dichlorobenzene	< 0.0024	u	< 0.0024	u	NC
1,2-Dichloroethane	< 0.003	u	< 0.003	u	NC
1,2-Dichloropropane	< 0.0021	u	< 0.0022	u	NC
Trimethylbenzene, 1,3,5-	< 0.0029	u	< 0.0029	u	NC
1,3-Dichlorobenzene	< 0.0026	u	< 0.0026	u	NC
Dichloropropane, 1,3-	< 0.0032	u	< 0.0032	u	NC
1,4-Dichlorobenzene	< 0.0025	u	< 0.0025	u	NC
1-Methylnaphthalene	< 0.0169	u	< 0.017	u	NC
2,2-Dichloropropane	< 0.0096	u	< 0.0096	u	NC
2-Butanone (Methyl ethyl ketone, MEK)	< 0.0341	u	< 0.0341	u	NC
o-Chlorotoluene	< 0.0026	u	< 0.0026	u	NC
Hexanone, 2-	< 0.0049	u	< 0.0049	u	NC
2-Methylnaphthalene	< 0.0129	u	< 0.0129	u	NC
Chlorotoluene, p-	< 0.0024	u	< 0.0024	u	NC
4-Isopropyltoluene	< 0.0024	u	< 0.0024	u	NC
Methyl isobutyl ketone	< 0.0056	u	< 0.0056	u	NC
Acetone	< 0.0244	u	< 0.0245	u	NC
Benzene	< 0.0024	u	< 0.0024	u	NC
Bromobenzene	< 0.0028	u	< 0.0028	u	NC
Dramadiahlaramathana	0.00			ГТ	NO
Bromodichloromethane	< 0.0027	u	< 0.0027	u	NC
Tribromomethane (Bromoform)		u u	< 0.0027 < 0.0027	u	NC
	< 0.0027	+		t - t	
Tribromomethane (Bromoform)	< 0.0027 < 0.0027	u	< 0.0027	u	NC

	SWMU 13-7 (0-0.5') DUP03		DUP03		RPD
	Sample Result	П	Duplicate Result	П	(%)
Chlorobenzene (Monochlorobenzene)	< 0.0038	u	< 0.0038	u	NC
Ethyl chloride	< 0.0043	u	< 0.0043	u	NC
Chloroform	< 0.0024	u	< 0.0024	u	NC
Chloromethane	< 0.0028	u	< 0.0028	u	NC
cis-1,2-Dichloroethene	< 0.004	u	< 0.004	u	NC
cis-1,3-Dichloropropene	< 0.0025	u	< 0.0025	u	NC
Dibromochloromethane	< 0.0021	u	< 0.0021	u	NC
Dibromomethane (Methylene Bromide)	< 0.0032	u	< 0.0032	u	NC
Dichlorodifluoromethane	< 0.0068	u	< 0.0069	u	NC
Ethylbenzene	< 0.0017	u	< 0.0017	u	NC
Hexachloro-1,3-butadiene	< 0.003	u	< 0.003	u	NC
Cumene (isopropylbenzene)	< 0.0021	u	< 0.0021	u	NC
tert-Butyl methyl ether (MTBE)	< 0.007	u	< 0.007	u	NC
Methylene chloride (Dichloromethane)	< 0.0052	u	< 0.0052	u	NC
Naphthalene	< 0.0059	u	< 0.0059	u	NC
Butylbenzene, n-	< 0.0027	u	< 0.0028	u	NC
Propyl benzene	< 0.0023	u	< 0.0024	u	NC
Butylbenzene, sec-	< 0.0033	u	< 0.0033	u	NC
Styrene	< 0.0023	u	< 0.0023	u	NC
Butylbenzene, tert-	< 0.0028	u	< 0.0028	u	NC
Tetrachloroethene	< 0.0024	u	< 0.0024	u	NC
Toluene	< 0.0028	u	< 0.0028	u	NC
trans-1,2-Dichloroethene	< 0.0027	u	< 0.0027	u	NC
trans-1,3-Dichloropropene	< 0.0031	u	< 0.0031	u	NC
Trichloroethylene	< 0.0034	u	< 0.0034	u	NC
Trichlorofluoromethane	< 0.01	u	< 0.01	u	NC
Vinyl chloride	< 0.0019	u	< 0.0019	u	NC
Xylenes	< 0.0074	u	< 0.0074	u	NC
Semi-volatiles (mg/kg)					
1,2,4-Trichlorobenzene	< 0.3139	u	< 0.3145	u	NC
1,2-Dichlorobenzene	< 0.2426	u	< 0.2431	u	NC
1,3-Dichlorobenzene	< 0.2127	u	< 0.2131	u	NC
1,4-Dichlorobenzene	< 0.2151	u	< 0.2156	u	NC
1-Methylnaphthalene	< 0.3023	u	< 0.3029	u	NC
2,4,5-Trichlorophenol	< 0.2618	u	< 0.2624	u	NC
2,4,6-Trichlorophenol	< 0.2123	u	< 0.2127	u	NC
2,4-Dichlorophenol	< 0.2349	u	< 0.2354	u	NC
2,4-Dimethylphenol	< 0.2226	u	< 0.2231	u	NC
2,4-Dinitrophenol	< 0.1467	u	< 0.147	u	NC
2,4-Dinitrotoluene	< 0.2381	u	< 0.2385	u	NC
2,6-Dintitrotoluene	< 0.2658	u	< 0.2664	u	NC
b-Chloronaphthalene	< 0.252	u	< 0.2526	u	NC
2-Chlorophenol	< 0.2513	u	< 0.2518	u	NC
2-Methylnaphthalene	< 0.2943	u	< 0.2949	u	NC
Cresol, o-	< 0.2395	u	< 0.24	u	NC
Nitroaniline, 2-	< 0.2885	u	< 0.2891	u	NC
2-Nitrophenol	< 0.2758	u	< 0.2764	u	NC
3,3-Dichlorobenzidine	< 0.1795	u	< 0.1799	u	NC
3+4-Methylphenol	< 0.2479	u	< 0.2484	u	NC
3-Nitroaniline	< 0.2787	u	< 0.2793	u	NC
4,6-Dinitro-o-cresol	< 0.1866	u	< 0.1869	u	NC
4-Bromophenyl phenyl ether	< 0.2374	u	< 0.2379	u	NC
4-Chloro-3-methylphenol	< 0.3099	u	< 0.3105	u	NC
Chloroaniline, p-	< 0.2861	u	< 0.2867	u	NC
4-Chlorophenyl phenyl ether	< 0.2201	u	< 0.2206	u	NC
Nitroaniline, 4-	< 0.2579	u	< 0.2584	u	NC
, .	. 0.2010		5.200∓	ч	110

Field Duplicate Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	SWMU 13-7 (0-0.5')		DUP03		RPD
	Sample Result	ÍП	Duplicate Result	П	(%)
4-Nitrophenol	< 0.2739	u	< 0.2745	u	NC
Acenaphthene	< 0.2423	u	< 0.2428	u	NC
Acenaphthylene	< 0.2214	u	< 0.2218	u	NC
Aniline	< 0.2597	u	< 0.2602	u	NC
Anthracene	< 0.216	u	< 0.2164	u	NC
Azobenzene	< 0.2828	u	< 0.2833	u	NC
Benzo(a)anthracene	< 0.1946	u	< 0.195	u	NC
Benzo(a)pyrene	< 0.1795	u	< 0.1799	u	NC
Benzo(b)fluoranthene	< 0.1786	u	< 0.179	u	NC
Benzo(g,h,i)perylene	< 0.1733	u	< 0.1736	u	NC
Benzo(k)fluoranthene	< 0.1836	u	< 0.1839	u	NC
Benzoic acid	< 0.2086	u	< 0.209	u	NC
Benzyl alcohol	< 0.2506	u	< 0.2511	u	NC
Bis(2-chloroethoxy)methane	< 0.2986	u	< 0.2992	u	NC
Bis(2-chloroethyl) ether	< 0.2462	u	< 0.2467	u	NC
Bis(2-chloroisopropyl) ether	< 0.2299	u	< 0.2304	u	NC
Bis(2-ethylhexyl)phthalate [Di(2-		11			
ethylhexyl)phthalate, DEHP]	< 0.2902	u	< 0.2908	u	NC
Butyl Benzyl Phthalate	< 0.2065	u	< 0.2069	u	NC
Carbazole	< 0.2369	u	< 0.2373	u	NC
Chrysene	< 0.1781	u	< 0.1785	u	NC
Dibenz(a,h)anthracene	< 0.1836	u	< 0.184	u	NC
Dibenzofuran	< 0.2647	u	< 0.2652	u	NC
Diethyl phthalate	< 0.2882	u	< 0.2888	u	NC
Dimethyl phthalate (DMP, Phthalic Acid)	< 0.2693	u	< 0.2699	u	NC
Di-n-butyl phthalate (Dibutyl phthalate)	< 0.3015	u	< 0.3021	u	NC
Di-n-octyl phthalate	< 0.2061	u	< 0.2065	u	NC
Fluoranthene	< 0.2262	u	< 0.2267	u	NC
Fluorene	< 0.2302	u	< 0.2307	u	NC
Hexachlorobenzene	< 0.25	u	< 0.2505	u	NC
Hexachloro-1,3-butadiene	< 0.2816	u	< 0.2822	u	NC
Hexachlorocyclopentadiene	< 0.2309	u	< 0.2314	u	NC
Hexachloroethane	< 0.225	u	< 0.2255	u	NC
Indeno(1,2,3-c,d)pyrene	< 0.2011	u	< 0.2015	u	NC
Isophorone	< 0.2974	u	< 0.298	u	NC
Naphthalene	< 0.3054	u	< 0.3061	u	NC
Nitrobenzene	< 0.2793	u	< 0.2799	u	NC
Nitroso-di-N-propylamine, N-	< 0.2884	u	< 0.289	u	NC
N-Nitrosodiphenylamine	< 0.2123	u	< 0.2128	u	NC
Pentachlorophenol	< 0.2082	u	< 0.2086	u	NC
Phenanthrene	< 0.2186	u	< 0.2191	u	NC
Phenol	< 0.2513	u	< 0.2518	u	NC
Pyrene	< 0.1898	u	< 0.1901	u	NC
Pyridine	< 0.2432	u	< 0.2437	u	NC
Total Petroleum Hydrocarbons (mg/kg)		1			
Gasoline Range Organics (GRO)	< 0.8912	u	< 0.8933	u	NC
Diesel Range Organics (DRO)	< 1.759	u	3.2	J	NC
Motor Oil Range Organics (MRO)	< 43.9754	u	< 39.4322	u	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

	SWMU 13-9 (1.5-2') DUPO4		SWMU 13-9 (1.5-2') DUP04		RPD
	Sample Result	Ī	Duplicate Result	П	(%)	
Metals (mg/kg)						
Antimony	< 0.7201	u	< 0.7471	u	NC	
Arsenic	< 2.7932	u	< 2.8981	u	NC	
Barium	210.00	٧	240	٧	3.3	
Beryllium	1.40	٧	1.4	٧	0.0	
Cadmium	< 0.0475	u	< 0.0493	u	NC	
Chromium (Total)	18.00	٧	18	٧	0.0	
Cobalt	6.00	٧	6.7	٧	2.8	
Cyanide	< 0.25	u	< 0.25	u	NC	
Iron	19000.00	٧	20000	٧	1.3	
Lead	1.60	٧	1.8	٧	2.9	
Manganese	270.00	٧	310	٧	3.4	
Mercury (elemental)	0.00	J	0.0047	J	1.1	
Nickel	13.00	v	14	٧	1.9	
Selenium	< 2.4569	u	< 2.5492	u	NC	
Silver	< 0.0627	u	< 0.0651	u	NC	
Vanadium	24.00	٧	25.00000	٧	1.0	
Zinc	22.00	٧	22.00000	٧	0.0	
Volatiles (mg/kg)				H		
1,1,1,2-Tetrachloroethane	< 0.0018	u	< 0.0017	u	NC	
1,1,1-Trichloroethane	< 0.0025	u	< 0.0023	u	NC	
1,1,2,2-Tetrachloroethane	< 0.0028	u	< 0.0025	u	NC	
1,1,2-Trichloroethane	< 0.0028	u	< 0.0020	u	NC	
1,1-Dichloroethane	< 0.0019	u	< 0.0018	u	NC	
1,1-Dichloroethane	< 0.0109	u	< 0.0101	u	NC	
1,1-Dichloropropene	< 0.0025	u	< 0.0101	u	NC	
Trichlorobenzene, 1,2,3-	< 0.0023	u	< 0.0023	u	NC	
1,2,3-Trichloropropane	< 0.0024	u	< 0.0022	u	NC	
1,2,4-Trichlorobenzene	< 0.0028	u	< 0.0041	u	NC	
Trimethylbenzene, 1,2,4-	< 0.0025	u	< 0.0023	u	NC	
1,2-Dibromo-3-chloropropane	< 0.0028	u	< 0.0025	u	NC	
1,2-Dibromoethane (Ethylene dibromide)	< 0.0025	+	< 0.0023	tt	NC	
1,2-Dichlorobenzene	< 0.0023	u	< 0.0023	u u	NC	
1,2-Dichloroethane	< 0.0022	u	< 0.0021	u	NC	
1,2-Dichloropropane	< 0.0028	u	< 0.0028	u	NC	
Trimethylbenzene, 1,3,5-	< 0.002		< 0.0018	+	NC	
1,3-Dichlorobenzene	< 0.0024	u u	< 0.0024	u u	NC	
Dichloropropane, 1,3-	< 0.0024	_	< 0.0022	+ +	NC	
1,4-Dichlorobenzene	< 0.003	u	< 0.0021	u	NC	
1-Methylnaphthalene	< 0.0157	u 	< 0.0021	u 	NC	
		u	< 0.0145	u	NC	
2,2-Dichloropropane 2-Butanone (Methyl ethyl ketone, MEK)	< 0.0089	u 		u		
o-Chlorotoluene	< 0.0317	u 	< 0.0292	u	NC	
	< 0.0024	u	< 0.0022	u	NC	
Hexanone, 2-	< 0.0045	u	< 0.0042	u	NC	
2-Methylnaphthalene	< 0.012	u	< 0.011	u	NC	
Chlorotoluene, p-	< 0.0022	u	< 0.0021	u	NC	
4-Isopropyltoluene	< 0.0023	u	< 0.0021	u	NC NC	
Methyl isobutyl ketone	< 0.0052	u	< 0.0048	u	NC	
Acetone	< 0.0227	u	< 0.0209	u	NC	
Benzene	< 0.0022	u	< 0.0021	u	NC	
Bromobenzene	< 0.0026	u	< 0.0024	u	NC	
Bromodichloromethane	< 0.0025	u	< 0.0023	u	NC	
Tribromomethane (Bromoform)	< 0.0025	u	< 0.0023	u	NC	
Bromomethane	< 0.0066	u	< 0.0061	u	NC	
Carbon disulfide	< 0.009	u	< 0.0083	u	NC	
Carbon tetrachloride	< 0.0026	u	< 0.0024	u	NC	

	SWMU 13-9 (1.5-2))	DUP04		RPD
	Sample Result		Duplicate Result		(%)
Chlorobenzene (Monochlorobenzene)	< 0.0035	u	< 0.0032	u	NC
Ethyl chloride	< 0.004	u	< 0.0037	u	NC
Chloroform	< 0.0022	u	< 0.002	u	NC
Chloromethane	< 0.0026	u	< 0.0024	u	NC
cis-1,2-Dichloroethene	< 0.0037	u	< 0.0034	u	NC
cis-1,3-Dichloropropene	< 0.0023	u	< 0.0021	u	NC
Dibromochloromethane	< 0.0019	u	< 0.0018	u	NC
Dibromomethane (Methylene Bromide)	< 0.0029	u	< 0.0027	u	NC
Dichlorodifluoromethane	< 0.0064	u	< 0.0058	u	NC
Ethylbenzene	< 0.0016	u	< 0.0015	u	NC
Hexachloro-1,3-butadiene	< 0.0028	u	< 0.0026	u	NC
Cumene (isopropylbenzene)	< 0.002	u	< 0.0018	u	NC
tert-Butyl methyl ether (MTBE)	< 0.0065	u	< 0.006	u	NC
Methylene chloride (Dichloromethane)	< 0.0048	u	< 0.0045	u	NC
Naphthalene	< 0.0055	u	< 0.005	u	NC
Butylbenzene, n-	< 0.0026	u	< 0.0024	u	NC
Propyl benzene	< 0.0022	u	< 0.002	u	NC
Butylbenzene, sec-	< 0.0031	u	< 0.0028	u	NC
Styrene	< 0.0021	u	< 0.002	u	NC
Butylbenzene, tert-	< 0.0026	u	< 0.0024	u	NC
Tetrachloroethene	< 0.0022	u	< 0.002	u	NC
Toluene	< 0.0026	u	< 0.0024	u	NC
trans-1,2-Dichloroethene	< 0.0025	u	< 0.0023	u	NC
trans-1,3-Dichloropropene	< 0.0029	u	< 0.0027	u	NC
Trichloroethylene	< 0.0032	u	< 0.0029	u	NC
Trichlorofluoromethane	< 0.0093	u	< 0.0086	u	NC
Vinyl chloride	< 0.0018	u	< 0.0016	u	NC
Xylenes	< 0.0069	u	< 0.0064	u	NC
Semi-volatiles (mg/kg)		Ħ			
1,2,4-Trichlorobenzene	< 0.3209	u	< 0.1526	u	NC
1,2-Dichlorobenzene	< 0.2481	u	< 0.1179	u	NC
1,3-Dichlorobenzene	< 0.2174	u	< 0.1034	u	NC
1,4-Dichlorobenzene	< 0.22	u	< 0.1046	u	NC
1-Methylnaphthalene	< 0.3091	u	< 0.147	u	NC
2,4,5-Trichlorophenol	< 0.2677	u	< 0.1273	u	NC
2,4,6-Trichlorophenol	< 0.2171	u	< 0.1032	u	NC
2,4-Dichlorophenol	< 0.2402	u	< 0.1142	u	NC
2,4-Dimethylphenol	< 0.2276	u	< 0.1082	u	NC
2,4-Dinitrophenol	< 0.15	u	< 0.0713	u	NC
2,4-Dinitrotoluene	< 0.2434	u	< 0.1157	u	NC
2,6-Dintitrotoluene	< 0.2718	u	< 0.1292	u	NC
b-Chloronaphthalene	< 0.2577	u	< 0.1292	u	NC
2-Chlorophenol	< 0.2569	u	< 0.1223	u	NC
2-Methylnaphthalene	< 0.3009	u	< 0.143	u	NC
Cresol, o-	< 0.2449	+	< 0.1164	+ +	NC
Nitroaniline, 2-	< 0.2949	u u	< 0.1164	u	NC
2-Nitrophenol	< 0.282	u	< 0.1341	u	NC
3,3-Dichlorobenzidine	< 0.282	+	< 0.1341	u	NC
· ·		u		u	
3+4-Methylphenol 3-Nitroaniline	< 0.2535	u	< 0.1205	u	NC NC
	< 0.2849	u	< 0.1355	u 	
4,6-Dinitro-o-cresol	< 0.1907	u	< 0.0907	u 	NC
4-Bromophenyl phenyl ether	< 0.2428	u 	< 0.1154	u 	NC
4-Chloro-3-methylphenol	< 0.3168	u	< 0.1506	u 	NC
Chloroaniline, p-	< 0.2925	u	< 0.1391	u	NC
4-Chlorophenyl phenyl ether	< 0.2251	u	< 0.107	u	NC
Nitroaniline, 4-	< 0.2637	u	< 0.1254	u	NC

Field Duplicate Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	SWMU 13-9 (1.5-2')		DUP04		RPD
	Sample Result	T	Duplicate Result		(%)
4-Nitrophenol	< 0.28	u	< 0.1331	u	NC
Acenaphthene	< 0.2477	u	< 0.1178	u	NC
Acenaphthylene	< 0.2263	u	< 0.1076	u	NC
Aniline	< 0.2655	u	< 0.1262	u	NC
Anthracene	< 0.2208	u	< 0.105	u	NC
Azobenzene	< 0.2891	u	< 0.1374	u	NC
Benzo(a)anthracene	< 0.199	u	< 0.0946	u	NC
Benzo(a)pyrene	< 0.1835	u	< 0.0873	u	NC
Benzo(b)fluoranthene	< 0.1826	u	< 0.0868	u	NC
Benzo(g,h,i)perylene	< 0.1771	u	< 0.0842	u	NC
Benzo(k)fluoranthene	< 0.1877	u	< 0.0892	u	NC
Benzoic acid	< 0.2133	u	< 0.1014	u	NC
Benzyl alcohol	< 0.2562	u	< 0.1218	u	NC
Bis(2-chloroethoxy)methane	< 0.3053	u	< 0.1451	u	NC
Bis(2-chloroethyl) ether	< 0.2517	u	< 0.1197	u	NC
Bis(2-chloroisopropyl) ether	< 0.2351	u	< 0.1118	u	NC
Bis(2-ethylhexyl)phthalate [Di(2-	< 0.2967	u	0.18000	J	NC
ethylhexyl)phthalate, DEHP]		u	0.18000		
Butyl Benzyl Phthalate	< 0.2111	u	< 0.1004	u	NC
Carbazole	< 0.2422	u	< 0.1151	u	NC
Chrysene	< 0.1821	u	< 0.0866	u	NC
Dibenz(a,h)anthracene	< 0.1877	u	< 0.0893	u	NC
Dibenzofuran	< 0.2706	u	< 0.1287	u	NC
Diethyl phthalate	< 0.2947	u	< 0.1401	u	NC
Dimethyl phthalate (DMP, Phthalic Acid)	< 0.2754	u	< 0.1309	u	NC
Di-n-butyl phthalate (Dibutyl phthalate)	< 0.3082	u	0.21000	J	NC
Di-n-octyl phthalate	< 0.2107	u	< 0.1002	u	NC
Fluoranthene	< 0.2313	u	< 0.11	u	NC
Fluorene	< 0.2353	u	< 0.1119	u	NC
Hexachlorobenzene	< 0.2556	u	< 0.1215	u	NC
Hexachloro-1,3-butadiene	< 0.2879	u	< 0.1369	u	NC
Hexachlorocyclopentadiene	< 0.2361	u	< 0.1122	u	NC
Hexachloroethane	< 0.2301	u	< 0.1094	u	NC
Indeno(1,2,3-c,d)pyrene	< 0.2056	u	< 0.0977	u	NC
Isophorone	< 0.3041	u	< 0.1446	u	NC
Naphthalene	< 0.3123	u	< 0.1485	u	NC
Nitrobenzene	< 0.2856	u	< 0.1358	u	NC
Nitroso-di-N-propylamine, N-	< 0.2948	u	< 0.1402	u	NC
N-Nitrosodiphenylamine	< 0.2171	u	< 0.1032	u	NC
Pentachlorophenol	< 0.2128	u	< 0.1012	u	NC
Phenanthrene	< 0.2235	u	< 0.1063	u	NC
Phenol	< 0.2569	u	< 0.1221	u	NC
Pyrene	< 0.194	u	< 0.0922	u	NC
Pyridine	< 0.2487	u	< 0.1182	u	NC
Total Petroleum Hydrocarbons (mg/kg)				Ш	
Gasoline Range Organics (GRO)	< 0.8282	u	< 0.7627	u	NC
Diesel Range Organics (DRO)	20.00	٧	6.5	J	25.5
Motor Oil Range Organics (MRO)	< 43.3276	u	< 47.1254	u	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

Table A-3 Field Duplicate Summary

SWMU 13 Investigation Report

	SWMU 13-12 (0.5-1.5')		DUP05	RPD	
	Sample Result	Í	Duplicate Result	П	(%)
Metals (mg/kg)	·		•		
Antimony	< 0.7356	u	< 0.7376	u	NC
Arsenic	< 2.8535	u	< 2.8609	u	NC
Barium	260.00	٧	320	v	5.2
Beryllium	1.20	٧	1.1	v	2.2
Cadmium	< 0.0485	u	< 0.0487	u	NC
Chromium (Total)	27.00	٧	26	v	0.9
Cobalt	5.40	٧	5.3	v	0.5
Cyanide	0.44	٧	0.39	v	NC
Iron	18000.00	V	14000	v	6.3
Lead	< 0.4855	u	< 0.4867	u	NC
Manganese	270.00	V	270	V	0.0
Mercury (elemental)	0.25	V	0.33	v	6.9
Nickel	12.00	V	11	v	2.2
Selenium	< 2.51	u	< 2.5165	u	NC
Silver	< 0.0641	u	< 0.0643	u	NC
Vanadium	30.00	V	28.00000	V	1.7
Zinc	66.00	V	77.00000	v	3.8
Volatiles (mg/kg)	33.33	†	1110000	$\dagger\dagger$	
1,1,1,2-Tetrachloroethane	< 0.0023	u	< 0.0019	u	NC
1,1,1-Trichloroethane	< 0.0023	_	< 0.0019	+ +	NC
1,1,2,2-Tetrachloroethane	< 0.003	u	< 0.0026	u	NC
1,1,2-Trichloroethane	< 0.0034	_	< 0.0029	u u	NC
1,1-Dichloroethane	< 0.0024	u	< 0.002	+	NC
1,1-Dichloroethene		u		u	
<u>'</u>	< 0.0134	u	< 0.0114	u	NC
1,1-Dichloropropene	< 0.0031	u	< 0.0026	u	NC
Trichlorobenzene, 1,2,3-	< 0.0029	u	< 0.0025	u	NC
1,2,3-Trichloropropane	< 0.0054	u	< 0.0046	u	NC
1,2,4-Trichlorobenzene	< 0.0034	u	< 0.0029	u	NC
Trimethylbenzene, 1,2,4-	< 0.0031	u	< 0.0026	u	NC
1,2-Dibromo-3-chloropropane	< 0.0034	u	< 0.0029	u	NC
1,2-Dibromoethane (Ethylene dibromide)	< 0.0031	u	< 0.0026	u	NC
1,2-Dichlorobenzene	< 0.0027	u	< 0.0023	u	NC
1,2-Dichloroethane	< 0.0034	u	< 0.0029	u	NC
1,2-Dichloropropane	< 0.0024	u	< 0.0021	u	NC
Trimethylbenzene, 1,3,5-	< 0.0032	u	< 0.0028	u	NC
1,3-Dichlorobenzene	< 0.0029	u	< 0.0025	u	NC
Dichloropropane, 1,3-	< 0.0036	u	< 0.0031	u	NC
1,4-Dichlorobenzene	< 0.0028	u	< 0.0024	u	NC
1-Methylnaphthalene	< 0.0193	u	< 0.0164	u	NC
2,2-Dichloropropane	< 0.0109	u	< 0.0093	u	NC
2-Butanone (Methyl ethyl ketone, MEK)	< 0.0388	u	< 0.033	u	NC
o-Chlorotoluene	< 0.0029	u	< 0.0025	u	NC
Hexanone, 2-	< 0.0056	u	< 0.0047	u	NC
2-Methylnaphthalene	< 0.0147	u	< 0.0125	u	NC
Chlorotoluene, p-	< 0.0027	u	< 0.0023	u	NC
4-Isopropyltoluene	< 0.0028	u	< 0.0024	u	NC
Methyl isobutyl ketone	< 0.0063	u	< 0.0054	u	NC
Acetone	< 0.0278	u	< 0.0237	u	NC
Benzene	< 0.0027	u	< 0.0023	u	NC
Bromobenzene	< 0.0032	u	< 0.0027	u	NC
Bromodichloromethane	< 0.0031	u	< 0.0026	u	NC
Tribromomethane (Bromoform)	< 0.003	u	< 0.0026	u	NC
Bromomethane	< 0.0081	u	< 0.0069	u	NC
Carbon disulfide	< 0.0111	u	< 0.0094	u	NC
Carbon tetrachloride	< 0.0032	u	< 0.0027	u	NC

	SWMU 13-12 (0.5-1.5')		DUP05	RPD	
	Sample Result	ÍΠ	Duplicate Result	П	(%)
Chlorobenzene (Monochlorobenzene)	< 0.0043	u	< 0.0037	u	NC
Ethyl chloride	< 0.0049	u	< 0.0042	u	NC
Chloroform	< 0.0027	u	< 0.0023	u	NC
Chloromethane	< 0.0032	u	< 0.0027	u	NC
cis-1,2-Dichloroethene	< 0.0046	u	< 0.0039	u	NC
cis-1,3-Dichloropropene	< 0.0028	u	< 0.0024	u	NC
Dibromochloromethane	< 0.0024	u	< 0.002	u	NC
Dibromomethane (Methylene Bromide)	< 0.0036	u	< 0.0031	u	NC
Dichlorodifluoromethane	< 0.0078	u	< 0.0066	u	NC
Ethylbenzene	< 0.0019	u	< 0.0017	u	NC
Hexachloro-1,3-butadiene	< 0.0034	u	< 0.0029	u	NC
Cumene (isopropylbenzene)	< 0.0024	u	< 0.0021	u	NC
tert-Butyl methyl ether (MTBE)	< 0.008	u	< 0.0068	u	NC
Methylene chloride (Dichloromethane)	0.01	J	< 0.005	u	NC
Naphthalene	< 0.0067	u	< 0.0057	u	NC
Butylbenzene, n-	< 0.0031	u	< 0.0027	u	NC
Propyl benzene	< 0.0027	u	< 0.0023	u	NC
Butylbenzene, sec-	< 0.0038	u	< 0.0032	u	NC
Styrene	< 0.0026	u	< 0.0022	u	NC
Butylbenzene, tert-	< 0.0032	u	< 0.0027	u	NC
Tetrachloroethene	< 0.0027	u	< 0.0023	u	NC
Toluene	< 0.0032	u	< 0.0027	u	NC
trans-1,2-Dichloroethene	< 0.0031	u	< 0.0026	u	NC
trans-1,3-Dichloropropene	< 0.0035	u	< 0.003	u	NC
Trichloroethylene	< 0.0039	u	< 0.0033	u	NC
Trichlorofluoromethane	< 0.0114	u	< 0.0097	u	NC
Vinyl chloride	< 0.0022	u	< 0.0019	u	NC
Xylenes	< 0.0085	u	< 0.0072	u	NC
Semi-volatiles (mg/kg)		-	51551=	Ħ	
1,2,4-Trichlorobenzene	< 1.5273	u	< 1.453	u	NC
1,2-Dichlorobenzene	< 1.1805	u	< 1.1231	u	NC
1,3-Dichlorobenzene	< 1.0347	u	< 0.9844	111	NC
1,4-Dichlorobenzene	< 1.0468	u	< 0.9959	u	NC
1-Methylnaphthalene	< 1.471		< 1.3994	u	NC NC
2,4,5-Trichlorophenol	< 1.274	u	< 1.212	u	NC
2,4,6-Trichlorophenol	< 1.033	u	< 0.9828	u	NC
2,4-Dichlorophenol	< 1.143	u	< 1.0874	u	NC
2,4-Dimethylphenol	< 1.0831	u	< 1.0304	u	NC
2,4-Dinitrophenol	< 0.714	u	< 0.6793	u	NC
2,4-Dinitrophenol	< 1.1583	u	< 1.102	-	NC
2,6-Dintitrotoluene	< 1.2934	-	< 1.2305	u	NC
b-Chloronaphthalene	< 1.2263	u	< 1.1667	u	NC NC
2-Chlorophenol	< 1.2203	u	< 1.1631	u	NC
2-Methylnaphthalene	< 1.4318	u	< 1.3622	+-+	NC
		u 		u	
Cresol, o- Nitroaniline, 2-	< 1.1656 < 1.4036	u	< 1.1089	u	NC NC
2-Nitrophenol	< 1.4036	u	< 1.3353 < 1.2767	u	NC NC
•		u		u	
3,3-Dichlorobenzidine	< 0.8736	u	< 0.8311	u	NC NC
3+4-Methylphenol	< 1.2062	u	< 1.1475	u	NC NC
3-Nitroaniline	< 1.356	u	< 1.2901	u	NC
4,6-Dinitro-o-cresol	< 0.9078	u 	< 0.8636	u	NC
4-Bromophenyl phenyl ether	< 1.1553	u 	< 1.0991	u	NC
4-Chloro-3-methylphenol	< 1.5078	u	< 1.4345	u	NC
Chloroaniline, p-	< 1.3922	u	< 1.3245	u	NC
4-Chlorophenyl phenyl ether	< 1.0711	u	< 1.019	u	NC
Nitroaniline, 4-	< 1.2549	u	< 1.1938	u	NC

Field Duplicate Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	SWMU 13-12 (0.5-1.5	IU 13-12 (0.5-1.5') DUP05		RPD	
	Sample Result		Duplicate Result		(%)
4-Nitrophenol	< 1.3328	u	< 1.2679	u	NC
Acenaphthene	< 1.1789	u	< 1.1216	u	NC
Acenaphthylene	< 1.0772	u	< 1.0248	u	NC
Aniline	< 1.2637	u	< 1.2022	u	NC
Anthracene	< 1.0508	u	< 0.9997	u	NC
Azobenzene	< 1.3758	u	< 1.3089	u	NC
Benzo(a)anthracene	< 0.9469	u	< 0.9008	u	NC
Benzo(a)pyrene	< 0.8734	u	< 0.8309	u	NC
Benzo(b)fluoranthene	< 0.8692	u	< 0.8269	u	NC
Benzo(g,h,i)perylene	< 0.843	u	< 0.802	u	NC
Benzo(k)fluoranthene	< 0.8932	u	< 0.8498	u	NC
Benzoic acid	< 1.015	u	< 0.9657	u	NC
Benzyl alcohol	< 1.2193	u	< 1.16	u	NC
Bis(2-chloroethoxy)methane	< 1.4527	u	< 1.3821	u	NC
Bis(2-chloroethyl) ether	< 1.1977	u	< 1.1394	u	NC
Bis(2-chloroisopropyl) ether	< 1.1188	u	< 1.0644	u	NC
Bis(2-ethylhexyl)phthalate [Di(2-	. 4 4440		. 1 0 100		NO
ethylhexyl)phthalate, DEHP]	< 1.4119	u	< 1.3432	u	NC
Butyl Benzyl Phthalate	< 1.0046	u	< 0.9557	u	NC
Carbazole	< 1.1525	u	< 1.0964	u	NC
Chrysene	< 0.8667	u	< 0.8245	u	NC
Dibenz(a,h)anthracene	< 0.8935	u	< 0.85	u	NC
Dibenzofuran	< 1.2878	u	< 1.2252	u	NC
Diethyl phthalate	< 1.4024	u	< 1.3342	u	NC
Dimethyl phthalate (DMP, Phthalic Acid)	< 1.3105	u	< 1.2468	u	NC
Di-n-butyl phthalate (Dibutyl phthalate)	< 1.4668	u	< 1.3955	u	NC
Di-n-octyl phthalate	< 1.0028	u	< 0.954	u	NC
Fluoranthene	< 1.1007	u	< 1.0471	u	NC
Fluorene	< 1.12	u	< 1.0655	u	NC
Hexachlorobenzene	< 1.2166	u	< 1.1574	u	NC
Hexachloro-1,3-butadiene	< 1.3702	u	< 1.3035	u	NC
Hexachlorocyclopentadiene	< 1.1235	u	< 1.0688	u	NC
Hexachloroethane	< 1.0948	u	< 1.0416	u	NC
Indeno(1,2,3-c,d)pyrene	< 0.9783	u	< 0.9307	u	NC
Isophorone	< 1.4472	u	< 1.3768	u	NC
Naphthalene	< 1.4862	u	< 1.4139	u	NC
Nitrobenzene	< 1.3591	u	< 1.293	u	NC
Nitroso-di-N-propylamine, N-	< 1.4031	u	< 1.3349	u	NC
N-Nitrosodiphenylamine	< 1.0331	u	< 0.9829	u	NC
Pentachlorophenol	< 1.0129	u	< 0.9636	u	NC
Phenanthrene	< 1.0637	u	< 1.0119	u	NC
Phenol	< 1.2226	u	< 1.1631	u	NC
Pyrene	< 0.9233	u	< 0.8784	u	NC
Pyridine	< 1.1835	u	< 1.126	u	NC
Total Petroleum Hydrocarbons (mg/kg)				П	
Gasoline Range Organics (GRO)	< 1.0149	u	4.5	v	NC
Diesel Range Organics (DRO)	320.00	V	790	٧	21.2
Motor Oil Range Organics (MRO)	250.00	V	530	v	17.9

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

Field Duplicate Summary SWMU 13 Investigation Report

	SWMU 13-4-GW		DUP01	RPD	
	Sample Result		Duplicate Result	П	(%)
Metals (ug/l) TOTAL					
Antimony	<0.78	u	<0.78	u	NC
Arsenic	3.40	J	7	٧	17.3
Barium	190.00	V	77	٧	21.2
Beryllium	1.30	J	0.62	J	17.7
Cadmium	<0.74	u	<0.74	u	NC
Chromium	4.40	J	<1.2	u	NC
Cobalt	2.50	J	24	٧	40.6
Cyanide	25.10	V	30.8	٧	5.1
Iron	3300.00	Z	220	٧	43.8
Lead	4.10	V -	1.1	J	28.8
Manganese	8600.00	Z	24000	Z	23.6
Mercury	<0.04	u	<0.04	u	NC OF C
Nickel	56.00	V	340	Z	35.9
Selenium	<2.39	u	<2.39 17.00	u	NC 7.F
Silver Vanadium	23.00 16.00	V		V	7.5 18.1
Zinc	16.00 <5.77	J	7.50000 <5.77	J	18.1 NC
Chloride	5200000.00	u Z	<5.77 5700000.00000	u Z	2.3
Fluoride	\$20000.00 <144.91		<144.91	+-+	NC
Sulfate	1200000.00	u Z	680000.00000	u Z	13.8
Nitrogen, Nitrate (As N)	1600.00	V	800.00000	V	16.7
Nitrogen, Nitrite (As N)	<108	u	<108	u	NC
Metals (ug/l) DISSOLVED	100	u	100	1	110
Antimony (D)	<1.95	u	< 0.002	u	NC
Arsenic (D)	2.70	J	5.50000	v	17.1
Barium (D)	59.00	V	71.00000	v	4.6
Beryllium (D)	0.34	 	0.35000		0.7
Cadmium (D)	<0.55	u	<0.55	u	NC
Calcium (D)	1600000.00	V	1200000.00000	v	7.1
Chromium (D)	<1.53	u	<1.53	u	NC
Cobalt (D)	<3.09	u	25.00000	v	NC
Iron (D)	11.00	J	100.00000	٧	40.1
Lead (D)	< 0.00013	u	1.10000	J	NC
Magnesium (D)	290000.00	V	210000.00000	٧	8.0
Manganese (D)	12000.00	Z	26000.00000	Ζ	18.4
Nickel (D)	75.00	٧	340.00000	Ζ	31.9
Potassium (D)	4000.00	٧	3100.00000	٧	6.3
Selenium (D)	<0.86	u	0.98000	J	NC
Sodium (D)	240000.00	٧	2700000.00000	٧	2.9
Silver (D)	29.00	V	22.00000	٧	6.9
Vanadium (D)	7.10	J	5.50000	J	6.3
Zinc (D)	7.00	J	8.70000	J	5.4
Volatiles (ug/l)					
1,1,1,2-Tetrachloroethane	<0.21	u	<1.03	u	NC
1,1,1-Trichloroethane	<0.17	u	<0.86	u	NC
1,1,2,2-Tetrachloroethane	<0.55	u	<2.74	u	NC
1,1,2-Trichloroethane	<0.22	u	<1.08	u	NC
1,1-Dichloroethane	<0.14	u	<0.7	u	NC
1,1-Dichloroethene	<0.21	u	<1.03	u	NC
1,1-Dichloropropene	<0.16	u	<0.81	u	NC
1,2,3-Trichlorobenzene	<0.3	u	<1.49	u	NC
1,2,4-Trichlorobenzene (V)	<0.2	u	<0.98	u	NC
1,2,4-Trimethylbenzene	<0.21	u	<1.07	u	NC
1,2-Dibromoethane (EDB)	<0.17	u	<0.83	u	NC
1,2-Dichlorosthana (FDC)	<0.3	u	<1.49	u	NC
1,2-Dichloroethane (EDC)	<0.19	u	<0.97	u	NC NC
1,2-Dichloropropane	<0.21	u	<1.04	u	NC NC
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene (V)	<0.19	u	<0.94 <1.24	u	NC NC
1,3-Dichloropenzene (V)	<0.25 <0.2	u	<1.24 <1	u	NC NC
1,4-Dichlorobenzene (V)	<0.2	u	<1.47	u	NC NC
T,4-DICHIOIODEHZEHE (V)	\0.29	u	\1.4 <i>1</i>	u	INC

Field Duplicate Summary SWMU 13 Investigation Report

	SWMU 13-4-GW		DUP01		RPD
	Sample Result		Duplicate Result		(%)
1-Methylnaphthalene (V)	<0.31	u	<1.57	u	NC
2,2-Dichloropropane	<0.23	u	<1.17	u	NC
2-Butanone	<2.09	u	<10.45	u	NC
2-Chlorotoluene	<0.25	u	<1.23	u	NC
2-Hexanone	<1.55	u	<7.74	u	NC
2-Methylnaphthalene (V)	<0.35	u	<1.73	u	NC
4-Chlorotoluene	<0.23	u	<1.17	u	NC
4-Isopropyltoluene	<0.22	u	<1.09	u	NC
4-Methyl-2-pentanone	<0.71	u	<3.57	- u	NC
Acetone	<1.2	u	<6	u	NC
Benzene	<0.17	u	<0.83	u	NC
Bromobenzene	<0.24	u	<1.22	u	NC
Bromodichloromethane	<0.13	+	<0.67	+	NC
Bromoform	<0.13	u	<1.44	u	NC
		u		u	
Bromomethane	<0.27	u	<1.37	u	NC
Carbon disulfide	<0.45	u	<2.26	u	NC
Carbon Tetrachloride	<0.14	u	<0.7	u	NC
Chlorobenzene	<0.19	u	<0.97	u	NC
Chloroethane	<0.18	u	<0.89	u	NC
Chloroform	<0.12	u	<0.61	u	NC
Chloromethane	<0.32	u	<1.6	u	NC
cis-1,2-DCE	<0.19	u	<0.95	u	NC
cis-1,3-Dichloropropene	<0.14	u	<0.69	u	NC
Dibromochloromethane	<0.24	u	<1.19	u	NC
Dibromomethane	<0.21	u	<1.05	u	NC
Dichlorodifluoromethane	<0.26	u	<1.3	u	NC
Ethylbenzene	<0.13	u	<0.66	u	NC
Hexachlorobutadiene (V)	< 0.31	u	<1.55	u	NC
Isopropylbenzene	<0.19	u	<0.96	u	NC
Methyl tert-butyl ether (MTBE)	15.00	V	22.00000	Z	9.5
Methylene Chloride	<0.15	u	<0.77	u	NC
Naphthalene (V)	<0.28	u	<1.38	u	NC
n-Butylbenzene	<0.23	u	<1.14	u	NC
n-Propylbenzene	<0.21	u	<1.07	u	NC
sec-Butylbenzene	<0.25	u	<1.24	u	NC
Styrene	<0.19	u	<0.96	u	NC
tert-Butylbenzene	<0.21	u	< 1.035	u	NC
Tetrachloroethene (PCE)	<0.21	u	<0.75	u	NC
Toluene	<0.15	+	<1.75	u	NC
trans-1,2-DCE		u		++	
	<0.18	u	<0.9 <0.83	u	NC
trans-1,3-Dichloropropene	<0.17	u		u	NC
Trichloroethene (TCE)	<0.17	u	<0.83	u	NC
Trichlorofluoromethane	<0.19	u	<0.95	u	NC
Vinyl chloride	<0.18	u	<0.9	u	NC
Xylenes, Total	<0.45	u	<2.27	u	NC
Semivolatiles (ug/l)				$\bot \bot$	
1,2,4-Trichlorobenzene	<0.5	u	<0.5	u	NC
1,2-Dichlorobenzene	<0.5	u	<0.5	u	NC
1,3-Dichlorobenzene	<0.5	u	<0.5	u	NC
1,4-Dichlorobenzene	<0.5	u	<0.5	u	NC
1-Methylnaphthalene	<0.5	u	<0.5	u	NC
2,4,5-Trichlorophenol	<0.5	u	<0.5	u	NC
2,4,6-Trichlorophenol	<0.5	u	<0.5	u	NC
2,4-Dichlorophenol	<0.5	u	<0.5	u	NC
2,4-Dimethylphenol	<0.5	u	<0.5	u	NC
2,4-Dinitrophenol	<0.5	u	<0.5	u	NC
2,4-Dinitrotoluene	<0.5	u	<0.5	u	NC
2,6-Dinitrotoluene	<0.2	u	<0.2	u	NC
2-Chloronaphthalene	<0.5		<0.2	++	NC
•		u		u	
2-Chlorophenol	<0.5	u	<0.5	u	NC
2-Methylnaphthalene	<0.5	u	<0.5	u	NC
2-Methylphenol	<0.5	u	<0.5	u	NC

Field Duplicate Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	SWMU 13-4-GW	DUP01	RPD		
	Sample Result		Duplicate Result		(%)
2-Nitroaniline	<0.5	u	<0.5	u	NC
2-Nitrophenol	<0.5	u	<0.5	u	NC
3,3´-Dichlorobenzidine	<0.5	u	<0.5	u	NC
3+4-Methylphenol	<0.5	u	<0.5	u	NC
3-Nitroaniline	<0.5	u	<0.5	u	NC
4,6-Dinitro-2-methylphenol	<0.5	u	<0.5	u	NC
4-Bromophenyl phenyl ether	<0.5	u	<0.5	u	NC
4-Chloro-3-methylphenol	<0.5	u	<0.5	u	NC
4-Chlorophenyl phenyl ether	<0.5	u	<0.5	u	NC
4-Nitroaniline	<0.5	u	<0.5	u	NC
4-Nitrophenol	<0.5	u	<0.5	u	NC NC
Acenaphthene	<0.5		<0.5	1	NC
Acenaphthylene		u	<0.5	u 	NC
	<0.5	u		u	
Aniline	<0.5	u	<0.5	u	NC
Anthracene	<0.5	u	<0.5	u	NC
Benz(a)anthracene	<0.1	u	<0.1	u	NC
Benzo(a)pyrene	<0.1	u	<0.1	u	NC
Benzo(b)fluoranthene	<0.1	u	<0.1	u	NC
Benzo(g,h,i)perylene	<0.5	u	<0.5	u	NC
Benzo(k)fluoranthene	<0.5	u	<0.5	u	NC
Benzoic acid	<1	u	<1	u	NC
Benzyl alcohol	<0.5	u	<0.5	u	NC
Bis(2-chloroethoxy)methane	<0.5	u	<0.5	u	NC
Bis(2-chloroisopropyl)ether	<0.5	u	<0.5	u	NC
Bis(2-ethylhexyl)phthalate	<0.5	u	<0.5	u	NC
Butyl benzyl phthalate	0.90	٧	0.7	٧	NC
Carbazole	<0.5	u	<0.5	u	NC
Chrysene	<0.5	u	<0.5	u	NC
Dibenz(a,h)anthracene	< 0.03	u	<0.03	u	NC
Dibenzofuran	<0.5	u	<0.5	u	NC
Diethyl phthalate	<0.5	u	<0.5	u	NC
Dimethyl phthalate	<0.5	u	<0.5	u	NC
Di-n-butyl phthalate	<0.5	u	<0.5	u	NC
Di-n-octyl phthalate	<0.5	u	<0.5	u	NC
Fluoranthene	<0.5	u	<0.5	u	NC
Fluorene	<0.5	u	<0.5	u	NC
Hexachlorobenzene	<0.5	u	<0.5	u	NC
Hexachlorobutadiene	<0.5	u	<0.5	u	NC
Hexachlorocyclopentadiene	<0.5	u	<0.5	u	NC
Hexachloroethane	<0.5	_	<0.5	+ +	NC
Indeno(1,2,3-cd)pyrene	<0.2	u	<0.5	u	NC
		u		u	
Isophorone	<0.5	u	<0.5	u 	NC
Naphthalene	<0.5	u	< 0.5	u	NC
Nitrobenzene	<0.5	u	<0.5	u	NC
N-Nitrosodiphenylamine	<0.5	u	<0.5	u	NC
Phenanthrene	<0.5	u	<0.5	u	NC
Pentachlorophenol	<0.5	u	<0.5	u	NC
Phenol	<0.5	u	<0.5	u	NC
Pyrene	<0.5	u	<0.5	u	NC
Pyridine	<0.5	u	<0.5	u	NC
TPH (ug/l)					
Gasoline Range Organics (GRO)	100.00	٧	450	٧	31.8
Diesel Range Organics (DRO)	<132	u	370	j	NC
Motor Oil Range Organics (MRO)	<2500	u	<2500	u	NC
Notes:	1 2000	ч	-2000	ı u	110

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

Completeness Summary

SWMU 13 Investigation Report

Marathon Petroleum Company - Gallup Refinery

	Parameter	Total Number of Results	Number of Usable Results	Percent Technical Compliance
TPH:	Diesel Range Organics (DRO)	75	75	100
	Gasoline Rang Organics (GRO)	75	75	100
	Motor Oil Range Organics (MRO)	75	75	100
VOCs:	All VOC Analytes	75	75	100
SVOCs:	All SVOC Analytes	75	75	100
Metals (total and dissolved):	All metals analytes	75	75	100

Notes:

Number of samples used in completeness calculations includes soil samples, groundwater samples, soil and groundwater field duplicates.

Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 25, 2019

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX:

RE: SWMU 13 OrderNo.: 1910D16

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 17 sample(s) on 10/24/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com **Case Narrative**

WO#: **1910D16**Date: **11/25/2019**

CLIENT: Marathon **Project:** SWMU 13

Surrogates with an "S" flag are flagged due to sample dilution and/or matrix interference.

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-1 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 10:45:00 AM

 Lab ID:
 1910D16-001
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	9.5	1.9	9.7	J	mg/Kg	1	10/30/2019 2:32:24 PM	48409
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/30/2019 2:32:24 PM	48409
Surr: DNOP	100	0	70-130		%Rec	1	10/30/2019 2:32:24 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.2	4.1		mg/Kg	1	10/27/2019 10:38:38 A	G63989
Surr: BFB	90.2	0	77.4-118		%Rec	1	10/27/2019 10:38:38 A	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.018	0.0017	0.031	J	mg/Kg	1	11/1/2019 11:54:09 AM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Barium	310	0.046	0.20		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Beryllium	1.1	0.018	0.30		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Chromium	11	0.16	0.60		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Cobalt	5.2	0.21	0.60		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Iron	25000	730	2500		mg/Kg	1000	11/12/2019 1:01:01 PM	48420
Lead	2.8	0.49	0.50		mg/Kg	2	11/12/2019 3:03:37 PM	48420
Manganese	460	0.041	0.20		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Nickel	11	0.30	1.0		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:48:13 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Vanadium	21	0.13	5.0		mg/Kg	2	11/7/2019 4:56:20 PM	48420
Zinc	22	0.79	5.0		mg/Kg	2	11/7/2019 4:56:20 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Aniline	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Anthracene	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Benz(a)anthracene	ND	0.99	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Benzo(a)pyrene	ND	0.91	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Benzo(b)fluoranthene	ND	0.91	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Benzo(g,h,i)perylene	ND	0.88	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424
Benzo(k)fluoranthene	ND	0.93	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	-
Benzoic acid	ND	1.1	5.1	D	mg/Kg	1	10/30/2019 1:14:25 PM	
Benzyl alcohol	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

O Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Analytical Report

Date Reported: 11/25/2019

Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-1 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 10:45:00 AM

 Lab ID:
 1910D16-001
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Bis(2-chloroisopropyl)ether	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Bis(2-ethylhexyl)phthalate	ND	1.5	5.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Carbazole	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
4-Chloro-3-methylphenol	ND	1.6	5.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
4-Chloroaniline	ND	1.5	5.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2-Chloronaphthalene	ND	1.3	2.6	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2-Chlorophenol	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Chrysene	ND	0.90	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Di-n-butyl phthalate	ND	1.5	4.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Di-n-octyl phthalate	ND	1.0	4.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Dibenz(a,h)anthracene	ND	0.93	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
1,3-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
1,4-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
3,3'-Dichlorobenzidine	ND	0.91	2.6	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Diethyl phthalate	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Dimethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2,4-Dichlorophenol	ND	1.2	4.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2,4-Dimethylphenol	ND	1.1	3.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
4,6-Dinitro-2-methylphenol	ND	0.95	4.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2,4-Dinitrophenol	ND	0.74	5.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2,4-Dinitrotoluene	ND	1.2	5.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2,6-Dinitrotoluene	ND	1.3	5.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Fluorene	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Hexachlorobenzene	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Hexachlorocyclopentadiene	ND	1.2	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Indeno(1,2,3-cd)pyrene	ND	1.0	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
Isophorone	ND	1.5	4.1	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424
2-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 F	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 123

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-1 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 10:45:00 AM

 Lab ID:
 1910D16-001
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDI	, RL	Qual	Units	DF	Date Analyzed H	Batch ID			
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC				
2-Methylphenol	ND	1.2	4.1	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
3+4-Methylphenol	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
N-Nitrosodi-n-propylamine	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
N-Nitrosodiphenylamine	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
2-Nitroaniline	ND	1.5	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
4-Nitroaniline	ND	1.3	4.1	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Nitrobenzene	ND	1.4	4.1	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
2-Nitrophenol	ND	1.4	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
4-Nitrophenol	ND	1.4	2.6	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Pentachlorophenol	ND	1.1	4.1	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Phenol	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Pyrene	ND	0.96	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Pyridine	ND	1.2	4.1	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
1,2,4-Trichlorobenzene	ND	1.6	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
2,4,6-Trichlorophenol	ND	1.1	2.0	D	mg/Kg	1	10/30/2019 1:14:25 PM	48424			
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	10/30/2019 1:14:25 PM	48424			
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	10/30/2019 1:14:25 PM	48424			
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	10/30/2019 1:14:25 PM	48424			
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	10/30/2019 1:14:25 PM	48424			
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	10/30/2019 1:14:25 PM	48424			
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	10/30/2019 1:14:25 PM	48424			
EPA METHOD 8260B: VOLATILES							Analyst: DJF				
Benzene	ND	0.0034	0.021		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
Toluene	ND	0.0039	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
Ethylbenzene	ND	0.0024	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
Methyl tert-butyl ether (MTBE)	ND	0.0098	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
1,2,4-Trimethylbenzene	ND	0.0038	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
1,3,5-Trimethylbenzene	ND	0.0040	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
1,2-Dichloroethane (EDC)	ND	0.0042	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
1,2-Dibromoethane (EDB)	ND	0.0038	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
Naphthalene	ND	0.0082	0.082		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
1-Methylnaphthalene	ND	0.024	0.16		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			
2-Methylnaphthalene	ND	0.018	0.16		mg/Kg	1	10/25/2019 7:31:22 PM				
Acetone	ND	0.034	0.62		mg/Kg	1	10/25/2019 7:31:22 PM				
Bromobenzene	ND	0.0039	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 123

Analytical Report

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-1 (0-0.5')

Project: SWMU 13

Collection Date: 10/22/2019 10:45:00 AM

Lab ID: 1910D16-001 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID		
EPA METHOD 8260B: VOLATILES							Analyst: DJF			
Bromodichloromethane	ND	0.0038	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Bromoform	ND	0.0037	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Bromomethane	ND	0.0099	0.12		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
2-Butanone	0.069	0.048	0.41	J	mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Carbon disulfide	ND	0.014	0.41		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Carbon tetrachloride	ND	0.0039	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Chlorobenzene	ND	0.0053	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Chloroethane	ND	0.0061	0.082		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Chloroform	ND	0.0033	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Chloromethane	ND	0.0039	0.12		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
2-Chlorotoluene	ND	0.0036	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
4-Chlorotoluene	ND	0.0034	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
cis-1,2-DCE	ND	0.0056	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
cis-1,3-Dichloropropene	ND	0.0035	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,2-Dibromo-3-chloropropane	ND	0.0042	0.082		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Dibromochloromethane	ND	0.0029	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Dibromomethane	ND	0.0044	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,2-Dichlorobenzene	ND	0.0034	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,3-Dichlorobenzene	ND	0.0036	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,4-Dichlorobenzene	ND	0.0034	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Dichlorodifluoromethane	ND	0.0096	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,1-Dichloroethane	ND	0.0026	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,1-Dichloroethene	ND	0.016	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,2-Dichloropropane	ND	0.0030	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,3-Dichloropropane	ND	0.0045	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
2,2-Dichloropropane	ND	0.013	0.082		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,1-Dichloropropene	ND	0.0037	0.082		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Hexachlorobutadiene	ND	0.0042	0.082		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
2-Hexanone	ND	0.0068	0.41		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Isopropylbenzene	ND	0.0030	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
4-Isopropyltoluene	ND	0.0034	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
4-Methyl-2-pentanone	ND	0.0078	0.41		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Methylene chloride	ND	0.0073	0.12		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
n-Butylbenzene	ND	0.0038	0.12		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
n-Propylbenzene	ND	0.0033	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
sec-Butylbenzene	ND	0.0046	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
Styrene	ND	0.0032	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
tert-Butylbenzene	ND	0.0039	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		
1,1,1,2-Tetrachloroethane	ND	0.0028	0.041		mg/Kg	1	10/25/2019 7:31:22 PM	S63992		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-1 (0-0.5')

Collection Date: 10/22/2019 10:45:00 AM

Lab ID: 1910D16-001 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	_
1,1,2,2-Tetrachloroethane	ND	0.0042	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
Tetrachloroethene (PCE)	ND	0.0033	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
trans-1,2-DCE	ND	0.0038	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
trans-1,3-Dichloropropene	ND	0.0044	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
1,2,3-Trichlorobenzene	ND	0.0036	0.082	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
1,2,4-Trichlorobenzene	ND	0.0042	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
1,1,1-Trichloroethane	ND	0.0037	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
1,1,2-Trichloroethane	ND	0.0029	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
Trichloroethene (TCE)	ND	0.0048	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
Trichlorofluoromethane	ND	0.014	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
1,2,3-Trichloropropane	ND	0.0067	0.082	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
Vinyl chloride	ND	0.0027	0.041	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
Xylenes, Total	ND	0.010	0.082	mg/Kg	1	10/25/2019 7:31:22 PM	S63992
Surr: Dibromofluoromethane	105		70-130	%Rec	1	10/25/2019 7:31:22 PM	S63992
Surr: 1,2-Dichloroethane-d4	91.8		70-130	%Rec	1	10/25/2019 7:31:22 PM	S63992
Surr: Toluene-d8	100		70-130	%Rec	1	10/25/2019 7:31:22 PM	S63992
Surr: 4-Bromofluorobenzene	88.3		70-130	%Rec	1	10/25/2019 7:31:22 PM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 123

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU13-1 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 10:55:00 AM

 Lab ID:
 1910D16-002
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.6	1.8	9.2	J	mg/Kg	1	10/30/2019 3:20:18 PM	48409
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	10/30/2019 3:20:18 PM	48409
Surr: DNOP	88.3	0	70-130		%Rec	1	10/30/2019 3:20:18 PM	48409
EPA METHOD 8015D: GASOLINE RANGI	E						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.98	3.2		mg/Kg	1	10/27/2019 11:01:35 A	G63989
Surr: BFB	89.4	0	77.4-118		%Rec	1	10/27/2019 11:01:35 A	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0089	0.0017	0.031	J	mg/Kg	1	11/1/2019 12:02:20 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Arsenic	3.3	2.8	5.0	J	mg/Kg	2	11/7/2019 4:58:03 PM	48420
Barium	220	0.046	0.20		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Beryllium	0.86	0.018	0.30		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Chromium	8.3	0.16	0.60		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Cobalt	4.3	0.21	0.60		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Iron	12000	72	250		mg/Kg	100	11/12/2019 12:51:44 P	48420
Lead	2.1	0.48	0.50		mg/Kg	2	11/12/2019 3:05:11 PM	48420
Manganese	710	2.1	10		mg/Kg	100	11/12/2019 12:51:44 P	48420
Nickel	8.6	0.30	1.0		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:49:56 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Vanadium	17	0.13	5.0		mg/Kg	2	11/7/2019 4:58:03 PM	48420
Zinc	14	0.79	5.0		mg/Kg	2	11/7/2019 4:58:03 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.24	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Acenaphthylene	ND	0.22	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Aniline	ND	0.26	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Anthracene	ND	0.22	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Azobenzene	ND	0.29	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benz(a)anthracene	ND	0.20	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benzo(a)pyrene	ND	0.18	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benzo(b)fluoranthene	ND	0.18	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benzo(g,h,i)perylene	ND	0.18	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benzo(k)fluoranthene	ND	0.19	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benzoic acid	ND	0.21	1.0		mg/Kg	1	10/30/2019 1:43:23 PM	48424
Benzyl alcohol	ND	0.25	0.41		mg/Kg	1	10/30/2019 1:43:23 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU13-1 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 10:55:00 AM

 Lab ID:
 1910D16-002
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.30	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Bis(2-chloroethyl)ether	ND	0.25	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Bis(2-chloroisopropyl)ether	ND	0.23	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Bis(2-ethylhexyl)phthalate	ND	0.29	1.0	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
4-Bromophenyl phenyl ether	ND	0.24	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Butyl benzyl phthalate	ND	0.21	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Carbazole	ND	0.24	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
4-Chloro-3-methylphenol	ND	0.31	1.0	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
4-Chloroaniline	ND	0.29	1.0	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2-Chloronaphthalene	ND	0.25	0.51	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2-Chlorophenol	ND	0.25	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
4-Chlorophenyl phenyl ether	ND	0.22	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Chrysene	ND	0.18	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Di-n-butyl phthalate	ND	0.30	0.82	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Di-n-octyl phthalate	ND	0.21	0.82	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Dibenz(a,h)anthracene	ND	0.19	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Dibenzofuran	ND	0.27	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
1,2-Dichlorobenzene	ND	0.25	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
1,3-Dichlorobenzene	ND	0.21	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
1,4-Dichlorobenzene	ND	0.22	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
3,3´-Dichlorobenzidine	ND	0.18	0.51	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Diethyl phthalate	ND	0.29	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Dimethyl phthalate	ND	0.27	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2,4-Dichlorophenol	ND	0.24	0.82	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2,4-Dimethylphenol	ND	0.22	0.61	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
4,6-Dinitro-2-methylphenol	ND	0.19	0.82	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2,4-Dinitrophenol	ND	0.15	1.0	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2,4-Dinitrotoluene	ND	0.24	1.0	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2,6-Dinitrotoluene	ND	0.27	1.0	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Fluoranthene	ND	0.23	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Fluorene	ND	0.23	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Hexachlorobenzene	ND	0.25	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Hexachlorobutadiene	ND	0.28	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Hexachlorocyclopentadiene	ND	0.23	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Hexachloroethane	ND	0.23	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Indeno(1,2,3-cd)pyrene	ND	0.20	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
Isophorone	ND	0.30	0.82	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
1-Methylnaphthalene	ND	0.31	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424
2-Methylnaphthalene	ND	0.30	0.41	mg/Kg	1	10/30/2019 1:43:23 PI	M 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 123

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU13-1 (1.5-2')

Project: SWMU 13

Collection Date: 10/22/2019 10:55:00 AM

Lab ID: 1910D16-002 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual U	nits	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.24	0.82	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
3+4-Methylphenol	ND	0.25	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
N-Nitrosodi-n-propylamine	ND	0.29	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
N-Nitrosodiphenylamine	ND	0.21	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Naphthalene	ND	0.31	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
2-Nitroaniline	ND	0.29	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
3-Nitroaniline	ND	0.28	0.41	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
4-Nitroaniline	ND	0.26	0.82	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Nitrobenzene	ND	0.28	0.82	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
2-Nitrophenol	ND	0.28	0.41	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
4-Nitrophenol	ND	0.28	0.51	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Pentachlorophenol	ND	0.21	0.82	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Phenanthrene	ND	0.22	0.41	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Phenol	ND	0.25	0.41	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Pyrene	ND	0.19	0.41	m	ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Pyridine	ND	0.25	0.82		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
1,2,4-Trichlorobenzene	ND	0.32	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
2,4,5-Trichlorophenol	ND	0.26	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
2,4,6-Trichlorophenol	ND	0.21	0.41		ıg/Kg	1	10/30/2019 1:43:23 PM	48424
Surr: 2-Fluorophenol	40.0		26.7-85.9		Rec	1	10/30/2019 1:43:23 PM	48424
Surr: Phenol-d5	42.9		18.5-101	%	Rec	1	10/30/2019 1:43:23 PM	48424
Surr: 2,4,6-Tribromophenol	53.3		35.8-85.6	%	Rec	1	10/30/2019 1:43:23 PM	48424
Surr: Nitrobenzene-d5	44.7		40.8-95.2	%	Rec	1	10/30/2019 1:43:23 PM	48424
Surr: 2-Fluorobiphenyl	46.7		34.7-85.2	%	Rec	1	10/30/2019 1:43:23 PM	48424
Surr: 4-Terphenyl-d14	55.7		37.4-91.3	%	Rec	1	10/30/2019 1:43:23 PM	48424
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0027	0.016	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
Toluene	ND	0.0031	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
Ethylbenzene	ND	0.0019	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0077	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2,4-Trimethylbenzene	ND	0.0030	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,3,5-Trimethylbenzene	ND	0.0031	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2-Dichloroethane (EDC)	ND	0.0033	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2-Dibromoethane (EDB)	ND	0.0030	0.032	m	ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
Naphthalene	ND	0.0065	0.065		ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
1-Methylnaphthalene	ND	0.019	0.13		ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
2-Methylnaphthalene	ND	0.014	0.13		ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
Acetone	ND	0.027	0.49		ıg/Kg	1	10/25/2019 8:58:14 PM	S63992
Bromobenzene	ND	0.0031	0.032		ıg/Kg	1	10/25/2019 8:58:14 PM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU13-1 (1.5-2')

Project: SWMU 13 **Collection Date:** 10/22/2019 10:55:00 AM

Lab ID: 1910D16-002 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0030	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Bromoform	ND	0.0029	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Bromomethane	ND	0.0078	0.097		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
2-Butanone	0.040	0.038	0.32	J	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Carbon disulfide	ND	0.011	0.32		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Carbon tetrachloride	ND	0.0031	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Chlorobenzene	ND	0.0042	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Chloroethane	ND	0.0048	0.065		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Chloroform	ND	0.0026	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Chloromethane	ND	0.0031	0.097		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
2-Chlorotoluene	ND	0.0028	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
4-Chlorotoluene	ND	0.0027	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
cis-1,2-DCE	ND	0.0044	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
cis-1,3-Dichloropropene	ND	0.0027	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2-Dibromo-3-chloropropane	ND	0.0033	0.065		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Dibromochloromethane	ND	0.0023	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Dibromomethane	ND	0.0035	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2-Dichlorobenzene	ND	0.0027	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,3-Dichlorobenzene	ND	0.0028	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,4-Dichlorobenzene	ND	0.0027	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Dichlorodifluoromethane	ND	0.0075	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,1-Dichloroethane	ND	0.0021	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,1-Dichloroethene	ND	0.013	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2-Dichloropropane	ND	0.0024	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,3-Dichloropropane	ND	0.0035	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
2,2-Dichloropropane	ND	0.011	0.065		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,1-Dichloropropene	ND	0.0030	0.065		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Hexachlorobutadiene	ND	0.0033	0.065		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
2-Hexanone	ND	0.0054	0.32		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Isopropylbenzene	ND	0.0023	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
4-Isopropyltoluene	ND	0.0027	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
4-Methyl-2-pentanone	ND	0.0061	0.32		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Methylene chloride	0.0067	0.0057	0.097	J	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
n-Butylbenzene	ND	0.0030	0.097		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
n-Propylbenzene	ND	0.0026	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
sec-Butylbenzene	ND	0.0037	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Styrene	ND	0.0025	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
tert-Butylbenzene	ND	0.0031	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,1,1,2-Tetrachloroethane	ND	0.0022	0.032		mg/Kg	1	10/25/2019 8:58:14 PM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU13-1 (1.5-2')

Collection Date: 10/22/2019 10:55:00 AM

Lab ID: 1910D16-002 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual U	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	_
1,1,2,2-Tetrachloroethane	ND	0.0033	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Tetrachloroethene (PCE)	ND	0.0026	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
trans-1,2-DCE	ND	0.0030	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
trans-1,3-Dichloropropene	ND	0.0034	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2,3-Trichlorobenzene	ND	0.0028	0.065	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2,4-Trichlorobenzene	ND	0.0033	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,1,1-Trichloroethane	ND	0.0029	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,1,2-Trichloroethane	ND	0.0023	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Trichloroethene (TCE)	ND	0.0038	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Trichlorofluoromethane	ND	0.011	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
1,2,3-Trichloropropane	ND	0.0053	0.065	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Vinyl chloride	ND	0.0021	0.032	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Xylenes, Total	ND	0.0082	0.065	r	mg/Kg	1	10/25/2019 8:58:14 PM	S63992
Surr: Dibromofluoromethane	101		70-130	Ç	%Rec	1	10/25/2019 8:58:14 PM	S63992
Surr: 1,2-Dichloroethane-d4	92.4		70-130	C	%Rec	1	10/25/2019 8:58:14 PM	S63992
Surr: Toluene-d8	100		70-130	C	%Rec	1	10/25/2019 8:58:14 PM	S63992
Surr: 4-Bromofluorobenzene	99.0		70-130	Ç	%Rec	1	10/25/2019 8:58:14 PM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU13-1 (5-6')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:00:00 AM

 Lab ID:
 1910D16-003
 Matrix: SOIL
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.4	1.7	8.7	J	mg/Kg	1	10/29/2019 1:39:29 PM	l 48409
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	10/29/2019 1:39:29 PM	l 48409
Surr: DNOP	110	0	70-130		%Rec	1	10/29/2019 1:39:29 PM	l 48409
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.5	5.0		mg/Kg	1	10/30/2019 11:27:05 A	48446
Surr: BFB	104	0	77.4-118		%Rec	1	10/30/2019 11:27:05 A	48446
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0050	0.0017	0.032	J	mg/Kg	1	11/1/2019 12:19:05 PM	l 48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Barium	180	0.046	0.20		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Beryllium	1.3	0.018	0.30		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Chromium	12	0.16	0.60		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Cobalt	5.5	0.21	0.60		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Iron	18000	72	250		mg/Kg	100	11/12/2019 12:53:15 P	48420
Lead	3.9	0.48	0.50		mg/Kg	2	11/12/2019 3:06:45 PM	48420
Manganese	260	0.041	0.20		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Nickel	13	0.30	1.0		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:51:35 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Vanadium	18	0.13	5.0		mg/Kg	2	11/7/2019 4:59:37 PM	48420
Zinc	18	0.79	5.0		mg/Kg	2	11/7/2019 4:59:37 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.11	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	l 48424
Acenaphthylene	ND	0.10	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Aniline	ND	0.12	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Anthracene	ND	0.10	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Azobenzene	ND	0.13	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Benz(a)anthracene	ND	0.090	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Benzo(a)pyrene	ND	0.083	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Benzo(b)fluoranthene	ND	0.082	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Benzo(g,h,i)perylene	ND	0.080	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	48424
Benzo(k)fluoranthene	ND	0.085	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	1 48424
Benzoic acid	ND	0.096	0.47		mg/Kg	1	10/30/2019 2:12:18 PM	48424
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	10/30/2019 2:12:18 PM	l 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 123

Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU13-1 (5-6')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:00:00 AM

 Lab ID:
 1910D16-003
 Matrix: SOIL
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	<u></u>
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Bis(2-chloroethyl)ether	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Bis(2-ethylhexyl)phthalate	ND	0.13	0.47	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Butyl benzyl phthalate	ND	0.095	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Carbazole	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
4-Chloro-3-methylphenol	ND	0.14	0.47	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
4-Chloroaniline	ND	0.13	0.47	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2-Chloronaphthalene	ND	0.12	0.23	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
4-Chlorophenyl phenyl ether	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Chrysene	ND	0.082	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Di-n-butyl phthalate	ND	0.14	0.37	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Di-n-octyl phthalate	ND	0.095	0.37	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Dibenz(a,h)anthracene	ND	0.085	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Dibenzofuran	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
1,2-Dichlorobenzene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
1,3-Dichlorobenzene	ND	0.098	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
1,4-Dichlorobenzene	ND	0.099	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
3,3´-Dichlorobenzidine	ND	0.083	0.23	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Diethyl phthalate	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Dimethyl phthalate	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2,4-Dichlorophenol	ND	0.11	0.37	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2,4-Dimethylphenol	ND	0.10	0.28	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
4,6-Dinitro-2-methylphenol	ND	0.086	0.37	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2,4-Dinitrophenol	ND	0.068	0.47	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2,4-Dinitrotoluene	ND	0.11	0.47	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2,6-Dinitrotoluene	ND	0.12	0.47	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Fluoranthene	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Fluorene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Hexachlorobenzene	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Hexachlorobutadiene	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Hexachloroethane	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
Indeno(1,2,3-cd)pyrene	ND	0.093	0.19	mg/Kg	1	10/30/2019 2:12:18 P	PM 48424
Isophorone	ND	0.14	0.37	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
1-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:12:18 F	PM 48424
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:12:18 P	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 123

Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU13-1 (5-6')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:00:00 AM

 Lab ID:
 1910D16-003
 Matrix: SOIL
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	, RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
2-Methylphenol	ND	0.11	0.37	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
3+4-Methylphenol	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
N-Nitrosodi-n-propylamine	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
N-Nitrosodiphenylamine	ND	0.098	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Naphthalene	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
2-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
4-Nitroaniline	ND	0.12	0.37	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Nitrobenzene	ND	0.13	0.37	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
4-Nitrophenol	ND	0.13	0.23	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Pentachlorophenol	ND	0.096	0.37	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Phenanthrene	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Phenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Pyrene	ND	0.088	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Pyridine	ND	0.11	0.37	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
1,2,4-Trichlorobenzene	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
2,4,5-Trichlorophenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
2,4,6-Trichlorophenol	ND	0.098	0.19	mg/Kg	1	10/30/2019 2:12:18 P	M 48424
Surr: 2-Fluorophenol	41.5		26.7-85.9	%Rec	1	10/30/2019 2:12:18 P	M 48424
Surr: Phenol-d5	47.4		18.5-101	%Rec	1	10/30/2019 2:12:18 P	M 48424
Surr: 2,4,6-Tribromophenol	53.4		35.8-85.6	%Rec	1	10/30/2019 2:12:18 P	M 48424
Surr: Nitrobenzene-d5	49.2		40.8-95.2	%Rec	1	10/30/2019 2:12:18 P	M 48424
Surr: 2-Fluorobiphenyl	48.2		34.7-85.2	%Rec	1	10/30/2019 2:12:18 P	M 48424
Surr: 4-Terphenyl-d14	59.0		37.4-91.3	%Rec	1	10/30/2019 2:12:18 P	M 48424
EPA METHOD 8260B: VOLATILES						Analyst: DJI	=
Benzene	ND	0.0040	0.025	mg/Kg	1	10/30/2019 12:39:40	P 48446
Toluene	ND	0.0047	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
1,2,4-Trimethylbenzene	ND	0.0045	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
1,2-Dibromoethane (EDB)	ND	0.0045	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446
Naphthalene	ND	0.0099	0.099	mg/Kg	1	10/30/2019 12:39:40	P 48446
1-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	10/30/2019 12:39:40	P 48446
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/30/2019 12:39:40	P 48446
Acetone	1.8	0.041	0.74	mg/Kg	1	10/30/2019 12:39:40	P 48446
Bromobenzene	ND	0.0047	0.050	mg/Kg	1	10/30/2019 12:39:40	P 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU13-1 (5-6')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:00:00 AM

 Lab ID:
 1910D16-003
 Matrix: SOIL
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0045	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
Bromoform	ND	0.0045	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
Bromomethane	ND	0.012	0.15	mg/Kg	1	10/30/2019 12:39:40 P	48446
2-Butanone	ND	0.057	0.50	mg/Kg	1	10/30/2019 12:39:40 P	48446
Carbon disulfide	ND	0.016	0.50	mg/Kg	1	10/30/2019 12:39:40 P	48446
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
Chlorobenzene	ND	0.0063	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
Chloroethane	ND	0.0073	0.099	mg/Kg	1	10/30/2019 12:39:40 P	48446
Chloroform	ND	0.0040	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
Chloromethane	ND	0.0047	0.15	mg/Kg	1	10/30/2019 12:39:40 P	48446
2-Chlorotoluene	ND	0.0043	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,2-Dibromo-3-chloropropane	ND	0.0051	0.099	mg/Kg	1	10/30/2019 12:39:40 P	48446
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
Dibromomethane	ND	0.0053	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,4-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 12:39:40 P	
Dichlorodifluoromethane	ND	0.011	0.050	mg/Kg	1	10/30/2019 12:39:40 P	
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
2,2-Dichloropropane	ND	0.016	0.099	mg/Kg	1	10/30/2019 12:39:40 P	48446
1,1-Dichloropropene	ND	0.0045	0.099	mg/Kg	1	10/30/2019 12:39:40 P	48446
Hexachlorobutadiene	ND	0.0050	0.099	mg/Kg	1	10/30/2019 12:39:40 P	48446
2-Hexanone	ND	0.0082	0.50	mg/Kg	1	10/30/2019 12:39:40 P	48446
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
4-Methyl-2-pentanone	ND	0.0093	0.50	mg/Kg	1	10/30/2019 12:39:40 P	48446
Methylene chloride	ND	0.0087	0.15	mg/Kg	1	10/30/2019 12:39:40 P	48446
n-Butylbenzene	ND	0.0046	0.15	mg/Kg	1	10/30/2019 12:39:40 P	48446
n-Propylbenzene	ND	0.0039	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	10/30/2019 12:39:40 P	
Styrene	ND	0.0039	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	10/30/2019 12:39:40 P	
1,1,1,2-Tetrachloroethane	ND	0.0033	0.050	mg/Kg	1	10/30/2019 12:39:40 P	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU13-1 (5-6')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:00:00 AM

 Lab ID:
 1910D16-003
 Matrix: SOIL
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
1,1,2,2-Tetrachloroethane	ND	0.0050	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
trans-1,2-DCE	ND	0.0045	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
trans-1,3-Dichloropropene	ND	0.0052	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
1,2,3-Trichlorobenzene	ND	0.0043	0.099	mg/Kg	1	10/30/2019 12:39:40 F	48446
1,2,4-Trichlorobenzene	ND	0.0050	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
Trichloroethene (TCE)	ND	0.0057	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
1,2,3-Trichloropropane	ND	0.0080	0.099	mg/Kg	1	10/30/2019 12:39:40 F	48446
Vinyl chloride	ND	0.0032	0.050	mg/Kg	1	10/30/2019 12:39:40 F	48446
Xylenes, Total	ND	0.012	0.099	mg/Kg	1	10/30/2019 12:39:40 F	48446
Surr: Dibromofluoromethane	109		70-130	%Rec	1	10/30/2019 12:39:40 F	48446
Surr: 1,2-Dichloroethane-d4	94.3		70-130	%Rec	1	10/30/2019 12:39:40 F	48446
Surr: Toluene-d8	103		70-130	%Rec	1	10/30/2019 12:39:40 F	48446
Surr: 4-Bromofluorobenzene	91.4		70-130	%Rec	1	10/30/2019 12:39:40 F	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT:MarathonClient Sample ID: SWMU 13-1 (8-10')Project:SWMU 13Collection Date: 10/22/2019 11:05:00 AM

Lab ID: 1910D16-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.1	1.6	7.8	J	mg/Kg	1	10/29/2019 1:48:43 PM	48409
Motor Oil Range Organics (MRO)	ND	39	39		mg/Kg	1	10/29/2019 1:48:43 PM	48409
Surr: DNOP	99.0	0	70-130		%Rec	1	10/29/2019 1:48:43 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.83	2.7		mg/Kg	1	10/27/2019 11:24:35 A	G63989
Surr: BFB	87.9	0	77.4-118		%Rec	1	10/27/2019 11:24:35 A	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0034	0.0018	0.033	J	mg/Kg	1	11/1/2019 12:21:08 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Barium	330	0.046	0.20		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Beryllium	0.67	0.018	0.30		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Chromium	5.4	0.16	0.60		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Cobalt	5.2	0.21	0.60		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Iron	9400	72	250		mg/Kg	100	11/12/2019 12:54:48 P	48420
Lead	3.8	0.48	0.50		mg/Kg	2	11/12/2019 3:12:58 PM	48420
Manganese	370	0.041	0.20		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Nickel	6.0	0.30	0.99		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:53:07 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Vanadium	12	0.13	5.0		mg/Kg	2	11/7/2019 5:01:12 PM	48420
Zinc	9.9	0.79	5.0		mg/Kg	2	11/7/2019 5:01:12 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Aniline	ND	0.13	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Anthracene	ND	0.10	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Azobenzene	ND	0.14	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benz(a)anthracene	ND	0.094	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benzo(a)pyrene	ND	0.087	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benzo(b)fluoranthene	ND	0.086	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benzo(g,h,i)perylene	ND	0.084	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benzo(k)fluoranthene	ND	0.089	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benzoic acid	ND	0.10	0.49		mg/Kg	1	10/30/2019 2:41:10 PM	48424
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	10/30/2019 2:41:10 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU 13-1 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:05:00 AM

 Lab ID:
 1910D16-004
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Bis(2-chloroethyl)ether	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Butyl benzyl phthalate	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Carbazole	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
4-Chloro-3-methylphenol	ND	0.15	0.49	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
4-Chloroaniline	ND	0.14	0.49	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
2-Chloronaphthalene	ND	0.12	0.24	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
4-Chlorophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Chrysene	ND	0.086	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Di-n-butyl phthalate	ND	0.15	0.39	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Di-n-octyl phthalate	ND	0.099	0.39	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Dibenz(a,h)anthracene	ND	0.089	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Dibenzofuran	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
1,2-Dichlorobenzene	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
1,3-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
1,4-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
3,3´-Dichlorobenzidine	ND	0.087	0.24	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Diethyl phthalate	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
Dimethyl phthalate	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
2,4-Dichlorophenol	ND	0.11	0.39	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
2,4-Dimethylphenol	ND	0.11	0.29	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
4,6-Dinitro-2-methylphenol	ND	0.090	0.39	mg/Kg	1	10/30/2019 2:41:10 F	M 48424
2,4-Dinitrophenol	ND	0.071	0.49	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
2,4-Dinitrotoluene	ND	0.11	0.49	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
2,6-Dinitrotoluene	ND	0.13	0.49	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Fluoranthene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Fluorene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Hexachlorobenzene	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Hexachlorobutadiene	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Hexachloroethane	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Indeno(1,2,3-cd)pyrene	ND	0.097	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
Isophorone	ND	0.14	0.39	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
1-Methylnaphthalene	ND	0.15	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:41:10 F	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 123

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-1 (8-10')

Project: SWMU 13

Collection Date: 10/22/2019 11:05:00 AM

Lab ID: 1910D16-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	atch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	10/30/2019 2:41:10 PM	48424
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Naphthalene	ND	0.15	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
2-Nitroaniline	ND	0.14	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Nitrobenzene	ND	0.13	0.39	mg/Kg	1	10/30/2019 2:41:10 PM	48424
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Phenanthrene	ND	0.11	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Phenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Pyrene	ND	0.092	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Pyridine	ND	0.12	0.39	mg/Kg	1	10/30/2019 2:41:10 PM	48424
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
2,4,5-Trichlorophenol	ND	0.13	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	10/30/2019 2:41:10 PM	48424
Surr: 2-Fluorophenol	48.6		26.7-85.9	%Rec	1	10/30/2019 2:41:10 PM	48424
Surr: Phenol-d5	52.4		18.5-101	%Rec	1	10/30/2019 2:41:10 PM	48424
Surr: 2,4,6-Tribromophenol	65.1		35.8-85.6	%Rec	1	10/30/2019 2:41:10 PM	48424
Surr: Nitrobenzene-d5	56.6		40.8-95.2	%Rec	1	10/30/2019 2:41:10 PM	48424
Surr: 2-Fluorobiphenyl	57.6		34.7-85.2	%Rec	1	10/30/2019 2:41:10 PM	48424
Surr: 4-Terphenyl-d14	67.3		37.4-91.3	%Rec	1	10/30/2019 2:41:10 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0022	0.014	mg/Kg	1	10/25/2019 11:23:20 P	S63992
Toluene	ND	0.0026	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
Ethylbenzene	ND	0.0016	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0065	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,2,4-Trimethylbenzene	ND	0.0025	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,3,5-Trimethylbenzene	ND	0.0027	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,2-Dichloroethane (EDC)	ND	0.0028	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,2-Dibromoethane (EDB)	ND	0.0025	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992
Naphthalene	ND	0.0055	0.055	mg/Kg	1	10/25/2019 11:23:20 P	S63992
1-Methylnaphthalene	ND	0.016	0.11	mg/Kg	1	10/25/2019 11:23:20 P	S63992
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	1	10/25/2019 11:23:20 P	S63992
Acetone	ND	0.023	0.41	mg/Kg	1	10/25/2019 11:23:20 P	S63992
Bromobenzene	ND	0.0026	0.027	mg/Kg	1	10/25/2019 11:23:20 P	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-1 (8-10')

Project: SWMU 13

Collection Date: 10/22/2019 11:05:00 AM

Lab ID: 1910D16-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0025	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Bromoform	ND	0.0025	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Bromomethane	ND	0.0066	0.082		mg/Kg	1	10/25/2019 11:23:20 P	S63992
2-Butanone	ND	0.032	0.27		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Carbon disulfide	ND	0.0091	0.27		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Carbon tetrachloride	ND	0.0026	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Chlorobenzene	ND	0.0035	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Chloroethane	ND	0.0040	0.055		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Chloroform	ND	0.0022	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Chloromethane	ND	0.0026	0.082		mg/Kg	1	10/25/2019 11:23:20 P	S63992
2-Chlorotoluene	ND	0.0024	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
4-Chlorotoluene	ND	0.0022	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
cis-1,2-DCE	ND	0.0038	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
cis-1,3-Dichloropropene	ND	0.0023	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,2-Dibromo-3-chloropropane	ND	0.0028	0.055		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Dibromochloromethane	ND	0.0019	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Dibromomethane	ND	0.0030	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,2-Dichlorobenzene	ND	0.0022	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,3-Dichlorobenzene	ND	0.0024	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,4-Dichlorobenzene	ND	0.0023	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Dichlorodifluoromethane	ND	0.0064	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,1-Dichloroethane	ND	0.0018	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,1-Dichloroethene	ND	0.011	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,2-Dichloropropane	ND	0.0020	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,3-Dichloropropane	ND	0.0030	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
2,2-Dichloropropane	ND	0.0089	0.055		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,1-Dichloropropene	ND	0.0025	0.055		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Hexachlorobutadiene	ND	0.0028	0.055		mg/Kg	1	10/25/2019 11:23:20 P	S63992
2-Hexanone	ND	0.0046	0.27		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Isopropylbenzene	ND	0.0020	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
4-Isopropyltoluene	ND	0.0023	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
4-Methyl-2-pentanone	ND	0.0052	0.27		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Methylene chloride	0.0055	0.0048	0.082	J	mg/Kg	1	10/25/2019 11:23:20 P	S63992
n-Butylbenzene	ND	0.0026	0.082		mg/Kg	1	10/25/2019 11:23:20 P	S63992
n-Propylbenzene	ND	0.0022	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
sec-Butylbenzene	ND	0.0031	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
Styrene	ND	0.0022	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
tert-Butylbenzene	ND	0.0026	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992
1,1,1,2-Tetrachloroethane	ND	0.0019	0.027		mg/Kg	1	10/25/2019 11:23:20 P	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 123

Analytical Report Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-1 (8-10')

Project: SWMU 13

Collection Date: 10/22/2019 11:05:00 AM

Lab ID: 1910D16-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0028	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
Tetrachloroethene (PCE)	ND	0.0022	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
trans-1,2-DCE	ND	0.0025	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
trans-1,3-Dichloropropene	ND	0.0029	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
1,2,3-Trichlorobenzene	ND	0.0024	0.055	mg/Kg	1	10/25/2019 11:23:20 F	S63992
1,2,4-Trichlorobenzene	ND	0.0028	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
1,1,1-Trichloroethane	ND	0.0025	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
1,1,2-Trichloroethane	ND	0.0019	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
Trichloroethene (TCE)	ND	0.0032	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
Trichlorofluoromethane	ND	0.0093	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
1,2,3-Trichloropropane	ND	0.0044	0.055	mg/Kg	1	10/25/2019 11:23:20 F	S63992
Vinyl chloride	ND	0.0018	0.027	mg/Kg	1	10/25/2019 11:23:20 F	S63992
Xylenes, Total	ND	0.0069	0.055	mg/Kg	1	10/25/2019 11:23:20 F	S63992
Surr: Dibromofluoromethane	104		70-130	%Rec	1	10/25/2019 11:23:20 F	S63992
Surr: 1,2-Dichloroethane-d4	94.6		70-130	%Rec	1	10/25/2019 11:23:20 F	S63992
Surr: Toluene-d8	103		70-130	%Rec	1	10/25/2019 11:23:20 F	S63992
Surr: 4-Bromofluorobenzene	90.6		70-130	%Rec	1	10/25/2019 11:23:20 F	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-1 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:15:00 AM

 Lab ID:
 1910D16-005
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: JME	
Diesel Range Organics (DRO)	ND	1.9	9.7		mg/Kg	1	10/29/2019 1:57:51 PM	48409
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/29/2019 1:57:51 PM	48409
Surr: DNOP	106	0	70-130		%Rec	1	10/29/2019 1:57:51 PM	48409
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.84	2.8		mg/Kg	1	10/27/2019 11:47:32 A	G63989
Surr: BFB	101	0	77.4-118		%Rec	1	10/27/2019 11:47:32 A	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0057	0.0018	0.033	J	mg/Kg	1	11/1/2019 12:23:11 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Barium	230	0.046	0.20		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Beryllium	1.3	0.018	0.30		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Chromium	12	0.16	0.60		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Cobalt	5.3	0.21	0.60		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Iron	17000	72	250		mg/Kg	100	11/12/2019 12:56:23 P	48420
Lead	1.5	0.48	0.50		mg/Kg	2	11/12/2019 3:14:30 PM	48420
Manganese	310	0.041	0.20		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Nickel	11	0.30	0.99		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:54:39 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Vanadium	21	0.13	5.0		mg/Kg	2	11/7/2019 5:02:43 PM	48420
Zinc	18	0.79	5.0		mg/Kg	2	11/7/2019 5:02:43 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Aniline	ND	0.13	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Anthracene	ND	0.10	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benz(a)anthracene	ND	0.094	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benzo(a)pyrene	ND	0.087	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benzo(b)fluoranthene	ND	0.086	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benzo(g,h,i)perylene	ND	0.084	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benzo(k)fluoranthene	ND	0.089	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benzoic acid	ND	0.10	0.49		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 123

Lab Order 1910D16

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

1910D16-005

Lab ID:

Received Date: 10/24/2019 9:15:00 AM

CLIENT: Marathon **Client Sample ID:** SWMU 13-1 (14-16') Project: SWMU 13 **Collection Date:** 10/22/2019 11:15:00 AM

Matrix: MEOH (SOIL)

Analyses Result MDL RL Qual Units DF Date Analyzed **Batch ID**

<u> </u>				<u></u>				
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Bis(2-chloroethoxy)methane	ND	0.14	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Bis(2-chloroisopropyl)ether	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Bis(2-ethylhexyl)phthalate	0.14	0.14	0.49	J	mg/Kg	1	10/30/2019 3:10:12 PM	48424
4-Bromophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Carbazole	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	10/30/2019 3:10:12 PM	48424
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2-Chlorophenol	ND	0.12	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Chrysene	ND	0.086	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Di-n-butyl phthalate	ND	0.15	0.39		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Di-n-octyl phthalate	ND	0.10	0.39		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Dibenz(a,h)anthracene	ND	0.089	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
1,3-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
1,4-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
3,3´-Dichlorobenzidine	ND	0.087	0.24		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Dimethyl phthalate	ND	0.13	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	10/30/2019 3:10:12 PM	48424
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,4-Dinitrotoluene	ND	0.12	0.49		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Fluoranthene	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Fluorene	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Hexachlorobenzene	ND	0.12	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Hexachlorocyclopentadiene	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Indeno(1,2,3-cd)pyrene	ND	0.097	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
Isophorone	ND	0.14	0.39		mg/Kg	1	10/30/2019 3:10:12 PM	48424
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424
2-Methylnaphthalene	ND	0.14	0.20		mg/Kg	1	10/30/2019 3:10:12 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-1 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:15:00 AM

 Lab ID:
 1910D16-005
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	10/30/2019 3:10:12 PM	48424
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Naphthalene	ND	0.15	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
3-Nitroaniline	ND	0.13	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Nitrobenzene	ND	0.14	0.39	mg/Kg	1	10/30/2019 3:10:12 PM	48424
2-Nitrophenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Phenanthrene	ND	0.11	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Phenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Pyrene	ND	0.092	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Pyridine	ND	0.12	0.39	mg/Kg	1	10/30/2019 3:10:12 PM	48424
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	10/30/2019 3:10:12 PM	48424
Surr: 2-Fluorophenol	66.5		26.7-85.9	%Rec	1	10/30/2019 3:10:12 PM	48424
Surr: Phenol-d5	71.0		18.5-101	%Rec	1	10/30/2019 3:10:12 PM	48424
Surr: 2,4,6-Tribromophenol	71.1		35.8-85.6	%Rec	1	10/30/2019 3:10:12 PM	48424
Surr: Nitrobenzene-d5	81.8		40.8-95.2	%Rec	1	10/30/2019 3:10:12 PM	48424
Surr: 2-Fluorobiphenyl	67.1		34.7-85.2	%Rec	1	10/30/2019 3:10:12 PM	48424
Surr: 4-Terphenyl-d14	78.5		37.4-91.3	%Rec	1	10/30/2019 3:10:12 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0023	0.014	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Toluene	ND	0.0026	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Ethylbenzene	ND	0.0016	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0066	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,2,4-Trimethylbenzene	ND	0.0025	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,3,5-Trimethylbenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,2-Dichloroethane (EDC)	ND	0.0028	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,2-Dibromoethane (EDB)	ND	0.0025	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Naphthalene	ND	0.0055	0.055	mg/Kg	1	10/28/2019 12:20:51 P	S64028
1-Methylnaphthalene	ND	0.016	0.11	mg/Kg	1	10/28/2019 12:20:51 P	S64028
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Acetone	ND	0.023	0.42	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Bromobenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 12:20:51 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-1 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 11:15:00 AM

 Lab ID:
 1910D16-005
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0025	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Bromoform	ND	0.0025	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Bromomethane	ND	0.0067	0.083		mg/Kg	1	10/28/2019 12:20:51 P	S64028
2-Butanone	0.040	0.032	0.28	J	mg/Kg	1	10/28/2019 12:20:51 P	S64028
Carbon disulfide	ND	0.0091	0.28		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Carbon tetrachloride	ND	0.0026	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Chlorobenzene	ND	0.0035	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Chloroethane	ND	0.0041	0.055		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Chloroform	ND	0.0022	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Chloromethane	ND	0.0026	0.083		mg/Kg	1	10/28/2019 12:20:51 P	S64028
2-Chlorotoluene	ND	0.0024	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
4-Chlorotoluene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
cis-1,2-DCE	ND	0.0038	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
cis-1,3-Dichloropropene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,2-Dibromo-3-chloropropane	ND	0.0028	0.055		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Dibromochloromethane	ND	0.0020	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Dibromomethane	ND	0.0030	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,2-Dichlorobenzene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,3-Dichlorobenzene	ND	0.0024	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,4-Dichlorobenzene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Dichlorodifluoromethane	ND	0.0064	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,1-Dichloroethane	ND	0.0018	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,1-Dichloroethene	ND	0.011	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,2-Dichloropropane	ND	0.0020	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,3-Dichloropropane	ND	0.0030	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
2,2-Dichloropropane	ND	0.0090	0.055		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,1-Dichloropropene	ND	0.0025	0.055		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Hexachlorobutadiene	ND	0.0028	0.055		mg/Kg	1	10/28/2019 12:20:51 P	S64028
2-Hexanone	ND	0.0046	0.28		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Isopropylbenzene	ND	0.0020	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
4-Isopropyltoluene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
4-Methyl-2-pentanone	ND	0.0052	0.28		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Methylene chloride	0.0056	0.0049	0.083	J	mg/Kg	1	10/28/2019 12:20:51 P	S64028
n-Butylbenzene	ND	0.0026	0.083		mg/Kg	1	10/28/2019 12:20:51 P	S64028
n-Propylbenzene	ND	0.0022	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
sec-Butylbenzene	ND	0.0031	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
Styrene	ND	0.0022	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
tert-Butylbenzene	ND	0.0026	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028
1,1,1,2-Tetrachloroethane	ND	0.0019	0.028		mg/Kg	1	10/28/2019 12:20:51 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-1 (14-16')

Project: SWMU 13

Collection Date: 10/22/2019 11:15:00 AM

Lab ID: 1910D16-005 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	:
1,1,2,2-Tetrachloroethane	ND	0.0028	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
Tetrachloroethene (PCE)	ND	0.0022	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
trans-1,2-DCE	ND	0.0025	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
trans-1,3-Dichloropropene	ND	0.0029	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
1,2,3-Trichlorobenzene	ND	0.0024	0.055	mg/Kg	1	10/28/2019 12:20:51 F	S64028
1,2,4-Trichlorobenzene	ND	0.0028	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
1,1,1-Trichloroethane	ND	0.0025	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
1,1,2-Trichloroethane	ND	0.0020	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
Trichloroethene (TCE)	ND	0.0032	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
Trichlorofluoromethane	ND	0.0094	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
1,2,3-Trichloropropane	ND	0.0045	0.055	mg/Kg	1	10/28/2019 12:20:51 F	S64028
Vinyl chloride	ND	0.0018	0.028	mg/Kg	1	10/28/2019 12:20:51 F	S64028
Xylenes, Total	ND	0.0070	0.055	mg/Kg	1	10/28/2019 12:20:51 F	S64028
Surr: Dibromofluoromethane	97.3		70-130	%Rec	1	10/28/2019 12:20:51 F	S64028
Surr: 1,2-Dichloroethane-d4	89.0		70-130	%Rec	1	10/28/2019 12:20:51 F	S64028
Surr: Toluene-d8	103		70-130	%Rec	1	10/28/2019 12:20:51 F	S64028
Surr: 4-Bromofluorobenzene	96.9		70-130	%Rec	1	10/28/2019 12:20:51 F	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (0-0.5')

Project: SWMU 13

Collection Date: 10/22/2019 1:35:00 PM

Lab ID: 1910D16-006 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: JME	
Diesel Range Organics (DRO)	1.9	1.8	8.8	J	mg/Kg	1	10/29/2019 2:06:57 PM	48409
Motor Oil Range Organics (MRO)	ND	44	44		mg/Kg	1	10/29/2019 2:06:57 PM	48409
Surr: DNOP	8.08	0	70-130		%Rec	1	10/29/2019 2:06:57 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.1	3.5		mg/Kg	1	10/27/2019 12:10:30 P	G63989
Surr: BFB	88.5	0	77.4-118		%Rec	1	10/27/2019 12:10:30 P	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0079	0.0018	0.033	J	mg/Kg	1	11/1/2019 12:25:13 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Barium	350	0.046	0.20		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Beryllium	0.94	0.018	0.30		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Chromium	8.6	0.16	0.60		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Cobalt	4.2	0.21	0.60		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Iron	13000	72	250		mg/Kg	100	11/12/2019 12:57:57 P	48420
Lead	3.6	0.48	0.50		mg/Kg	2	11/12/2019 3:16:04 PM	48420
Manganese	350	0.041	0.20		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Nickel	8.4	0.30	1.0		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:56:09 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Vanadium	17	0.13	5.0		mg/Kg	2	11/7/2019 5:04:18 PM	48420
Zinc	14	0.79	5.0		mg/Kg	2	11/7/2019 5:04:18 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.24	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Acenaphthylene	ND	0.22	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Aniline	ND	0.26	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Anthracene	ND	0.21	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Azobenzene	ND	0.28	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Benz(a)anthracene	ND	0.19	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Benzo(a)pyrene	ND	0.18	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Benzo(b)fluoranthene	ND	0.18	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Benzo(g,h,i)perylene	ND	0.17	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424
Benzo(k)fluoranthene	ND	0.18	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	-
Benzoic acid	ND	0.21	0.99		mg/Kg	1	10/30/2019 3:39:03 PM	
Benzyl alcohol	ND	0.25	0.40		mg/Kg	1	10/30/2019 3:39:03 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-2 (0-0.5')

Collection Date: 10/22/2019 1:35:00 PM

Lab ID: 1910D16-006 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	
Bis(2-chloroethoxy)methane	ND	0.29	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Bis(2-chloroethyl)ether	ND	0.24	0.40	mg/Kg	1	10/30/2019 3:39:03 F	PM 48424
Bis(2-chloroisopropyl)ether	ND	0.23	0.40	mg/Kg	1	10/30/2019 3:39:03 F	PM 48424
Bis(2-ethylhexyl)phthalate	ND	0.29	0.99	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
4-Bromophenyl phenyl ether	ND	0.23	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Butyl benzyl phthalate	ND	0.20	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Carbazole	ND	0.23	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
4-Chloro-3-methylphenol	ND	0.31	0.99	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
4-Chloroaniline	ND	0.28	0.99	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2-Chloronaphthalene	ND	0.25	0.50	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2-Chlorophenol	ND	0.25	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
4-Chlorophenyl phenyl ether	ND	0.22	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Chrysene	ND	0.18	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Di-n-butyl phthalate	ND	0.30	0.80	mg/Kg	1	10/30/2019 3:39:03 F	PM 48424
Di-n-octyl phthalate	ND	0.20	0.80	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Dibenz(a,h)anthracene	ND	0.18	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Dibenzofuran	ND	0.26	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
1,2-Dichlorobenzene	ND	0.24	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
1,3-Dichlorobenzene	ND	0.21	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
1,4-Dichlorobenzene	ND	0.21	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
3,3´-Dichlorobenzidine	ND	0.18	0.50	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Diethyl phthalate	ND	0.28	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Dimethyl phthalate	ND	0.27	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2,4-Dichlorophenol	ND	0.23	0.80	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2,4-Dimethylphenol	ND	0.22	0.60	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
4,6-Dinitro-2-methylphenol	ND	0.18	0.80	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2,4-Dinitrophenol	ND	0.14	0.99	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2,4-Dinitrotoluene	ND	0.23	0.99	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2,6-Dinitrotoluene	ND	0.26	0.99	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Fluoranthene	ND	0.22	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Fluorene	ND	0.23	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Hexachlorobenzene	ND	0.25	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Hexachlorobutadiene	ND	0.28	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Hexachlorocyclopentadiene	ND	0.23	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Hexachloroethane	ND	0.22	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Indeno(1,2,3-cd)pyrene	ND	0.20	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
Isophorone	ND	0.29	0.80	mg/Kg	1	10/30/2019 3:39:03 P	M 48424
1-Methylnaphthalene	ND	0.30	0.40	mg/Kg	1	10/30/2019 3:39:03 F	M 48424
2-Methylnaphthalene	ND	0.29	0.40	mg/Kg	1	10/30/2019 3:39:03 P	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 123

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-2 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:35:00 PM

 Lab ID:
 1910D16-006
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.24	0.80	mg/Kg	1	10/30/2019 3:39:03 PM	48424
3+4-Methylphenol	ND	0.24	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
N-Nitrosodi-n-propylamine	ND	0.28	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
N-Nitrosodiphenylamine	ND	0.21	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Naphthalene	ND	0.30	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
2-Nitroaniline	ND	0.28	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
3-Nitroaniline	ND	0.27	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
4-Nitroaniline	ND	0.25	0.80	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Nitrobenzene	ND	0.27	0.80	mg/Kg	1	10/30/2019 3:39:03 PM	48424
2-Nitrophenol	ND	0.27	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
4-Nitrophenol	ND	0.27	0.50	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Pentachlorophenol	ND	0.20	0.80	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Phenanthrene	ND	0.22	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Phenol	ND	0.25	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Pyrene	ND	0.19	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Pyridine	ND	0.24	0.80	mg/Kg	1	10/30/2019 3:39:03 PM	48424
1,2,4-Trichlorobenzene	ND	0.31	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
2,4,5-Trichlorophenol	ND	0.26	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
2,4,6-Trichlorophenol	ND	0.21	0.40	mg/Kg	1	10/30/2019 3:39:03 PM	48424
Surr: 2-Fluorophenol	70.2		26.7-85.9	%Rec	1	10/30/2019 3:39:03 PM	48424
Surr: Phenol-d5	70.5		18.5-101	%Rec	1	10/30/2019 3:39:03 PM	48424
Surr: 2,4,6-Tribromophenol	69.0		35.8-85.6	%Rec	1	10/30/2019 3:39:03 PM	48424
Surr: Nitrobenzene-d5	81.1		40.8-95.2	%Rec	1	10/30/2019 3:39:03 PM	48424
Surr: 2-Fluorobiphenyl	73.5		34.7-85.2	%Rec	1	10/30/2019 3:39:03 PM	48424
Surr: 4-Terphenyl-d14	77.6		37.4-91.3	%Rec	1	10/30/2019 3:39:03 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0029	0.018	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Toluene	ND	0.0034	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Ethylbenzene	ND	0.0021	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0084	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2,4-Trimethylbenzene	ND	0.0032	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,3,5-Trimethylbenzene	ND	0.0034	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2-Dichloroethane (EDC)	ND	0.0036	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2-Dibromoethane (EDB)	ND	0.0032	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Naphthalene	ND	0.0071	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1-Methylnaphthalene	ND	0.020	0.14	mg/Kg	1	10/26/2019 12:21:40 A	S63992
2-Methylnaphthalene	ND	0.015	0.14	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Acetone	ND	0.029	0.53	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Bromobenzene	ND	0.0034	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 123

Lab Order 1910D16

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (0-0.5')

Collection Date: 10/22/2019 1:35:00 PM

SWMU 13 Project: 1910D16-006 Lab ID: Matrix: MEOH (SOIL) Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0032	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Bromoform	ND	0.0032	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Bromomethane	ND	0.0085	0.11	mg/Kg	1	10/26/2019 12:21:40 A	S63992
2-Butanone	ND	0.041	0.35	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Carbon disulfide	ND	0.012	0.35	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Carbon tetrachloride	ND	0.0033	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Chlorobenzene	ND	0.0045	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Chloroethane	ND	0.0052	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Chloroform	ND	0.0028	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Chloromethane	ND	0.0034	0.11	mg/Kg	1	10/26/2019 12:21:40 A	S63992
2-Chlorotoluene	ND	0.0031	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
4-Chlorotoluene	ND	0.0029	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
cis-1,2-DCE	ND	0.0048	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
cis-1,3-Dichloropropene	ND	0.0030	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2-Dibromo-3-chloropropane	ND	0.0036	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Dibromochloromethane	ND	0.0025	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Dibromomethane	ND	0.0038	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2-Dichlorobenzene	ND	0.0029	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,3-Dichlorobenzene	ND	0.0031	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,4-Dichlorobenzene	ND	0.0030	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Dichlorodifluoromethane	ND	0.0082	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,1-Dichloroethane	ND	0.0023	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,1-Dichloroethene	ND	0.014	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2-Dichloropropane	ND	0.0026	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,3-Dichloropropane	ND	0.0038	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
2,2-Dichloropropane	ND	0.011	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,1-Dichloropropene	ND	0.0032	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Hexachlorobutadiene	ND	0.0036	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
2-Hexanone	ND	0.0059	0.35	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Isopropylbenzene	ND	0.0025	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
4-Isopropyltoluene	ND	0.0029	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
4-Methyl-2-pentanone	ND	0.0067	0.35	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Methylene chloride	ND	0.0062	0.11	mg/Kg	1	10/26/2019 12:21:40 A	S63992
n-Butylbenzene	ND	0.0033	0.11	mg/Kg	1	10/26/2019 12:21:40 A	S63992
n-Propylbenzene	ND	0.0028	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
sec-Butylbenzene	ND	0.0040	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Styrene	ND	0.0028	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
tert-Butylbenzene	ND	0.0033	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,1,1,2-Tetrachloroethane	ND	0.0024	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 30 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (0-0.5')

Project: SWMU 13

Collection Date: 10/22/2019 1:35:00 PM

Lab ID: 1910D16-006 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0036	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Tetrachloroethene (PCE)	ND	0.0028	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
trans-1,2-DCE	ND	0.0032	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
trans-1,3-Dichloropropene	ND	0.0037	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2,3-Trichlorobenzene	ND	0.0031	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2,4-Trichlorobenzene	ND	0.0036	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,1,1-Trichloroethane	ND	0.0032	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,1,2-Trichloroethane	ND	0.0025	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Trichloroethene (TCE)	ND	0.0041	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Trichlorofluoromethane	ND	0.012	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
1,2,3-Trichloropropane	ND	0.0057	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Vinyl chloride	ND	0.0023	0.035	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Xylenes, Total	ND	0.0089	0.071	mg/Kg	1	10/26/2019 12:21:40 A	S63992
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/26/2019 12:21:40 A	S63992
Surr: 1,2-Dichloroethane-d4	98.1		70-130	%Rec	1	10/26/2019 12:21:40 A	S63992
Surr: Toluene-d8	102		70-130	%Rec	1	10/26/2019 12:21:40 A	S63992
Surr: 4-Bromofluorobenzene	90.4		70-130	%Rec	1	10/26/2019 12:21:40 A	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-2 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:45:00 PM

 Lab ID:
 1910D16-007
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	3.1	1.8	9.2	J	mg/Kg	1	10/29/2019 2:16:07 PM	48409
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	10/29/2019 2:16:07 PM	48409
Surr: DNOP	112	0	70-130		%Rec	1	10/29/2019 2:16:07 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.96	3.2		mg/Kg	1	10/27/2019 12:33:32 P	G63989
Surr: BFB	90.6	0	77.4-118		%Rec	1	10/27/2019 12:33:32 P	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0080	0.0018	0.033	J	mg/Kg	1	11/1/2019 12:27:17 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Barium	550	0.11	0.50		mg/Kg	5	11/12/2019 12:20:50 P	48420
Beryllium	0.88	0.018	0.30		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Chromium	7.9	0.16	0.59		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Cobalt	4.3	0.21	0.59		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Iron	12000	72	250		mg/Kg	100	11/12/2019 12:59:31 P	48420
Lead	3.0	0.48	0.50		mg/Kg	2	11/12/2019 3:17:38 PM	48420
Manganese	920	2.1	9.9		mg/Kg	100	11/12/2019 12:59:31 P	48420
Nickel	8.5	0.30	0.99		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:57:37 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Vanadium	20	0.13	5.0		mg/Kg	2	11/7/2019 5:05:53 PM	48420
Zinc	14	0.78	5.0		mg/Kg	2	11/7/2019 5:05:53 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Aniline	ND	0.13	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Anthracene	ND	0.10	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Azobenzene	ND	0.14	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benz(a)anthracene	ND	0.094	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benzo(b)fluoranthene	ND	0.086	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benzoic acid	ND	0.10	0.49		mg/Kg	1	10/30/2019 4:07:54 PM	48424
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	10/30/2019 4:07:54 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (1.5-2')

Project: SWMU 13

Collection Date: 10/22/2019 1:45:00 PM

Lab ID: 1910D16-007 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Bis(2-ethylhexyl)phthalate	0.14	0.14	0.49	J	mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Butyl benzyl phthalate	ND	0.099	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Carbazole	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
4-Chlorophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Chrysene	ND	0.086	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Di-n-butyl phthalate	ND	0.15	0.39		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Di-n-octyl phthalate	ND	0.099	0.39		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
3,3´-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2,4-Dinitrotoluene	ND	0.11	0.49		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Fluoranthene	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Fluorene	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Hexachlorobutadiene	ND	0.14	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Indeno(1,2,3-cd)pyrene	ND	0.097	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
Isophorone	ND	0.14	0.39		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
1-Methylnaphthalene	ND	0.15	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	10/30/2019 4:07:54 F	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 123

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-2 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:45:00 PM

 Lab ID:
 1910D16-007
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	10/30/2019 4:07:54 PM	48424
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Naphthalene	ND	0.15	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
2-Nitroaniline	ND	0.14	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Nitrobenzene	ND	0.13	0.39	mg/Kg	1	10/30/2019 4:07:54 PM	48424
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Phenanthrene	ND	0.11	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Phenol	ND	0.12	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Pyrene	ND	0.091	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Pyridine	ND	0.12	0.39	mg/Kg	1	10/30/2019 4:07:54 PM	48424
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
2,4,5-Trichlorophenol	ND	0.13	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	10/30/2019 4:07:54 PM	48424
Surr: 2-Fluorophenol	66.3		26.7-85.9	%Rec	1	10/30/2019 4:07:54 PM	48424
Surr: Phenol-d5	70.1		18.5-101	%Rec	1	10/30/2019 4:07:54 PM	48424
Surr: 2,4,6-Tribromophenol	67.5		35.8-85.6	%Rec	1	10/30/2019 4:07:54 PM	48424
Surr: Nitrobenzene-d5	83.2		40.8-95.2	%Rec	1	10/30/2019 4:07:54 PM	48424
Surr: 2-Fluorobiphenyl	80.6		34.7-85.2	%Rec	1	10/30/2019 4:07:54 PM	48424
Surr: 4-Terphenyl-d14	80.6		37.4-91.3	%Rec	1	10/30/2019 4:07:54 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0026	0.016	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Toluene	ND	0.0030	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Ethylbenzene	ND	0.0018	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0075	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,2,4-Trimethylbenzene	ND	0.0029	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,3,5-Trimethylbenzene	ND	0.0031	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,2-Dichloroethane (EDC)	ND	0.0032	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,2-Dibromoethane (EDB)	ND	0.0029	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Naphthalene	ND	0.0064	0.064	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1-Methylnaphthalene	ND	0.018	0.13	mg/Kg	1	10/26/2019 12:50:45 A	S63992
2-Methylnaphthalene	ND	0.014	0.13	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Acetone	ND	0.026	0.48	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Bromobenzene	ND	0.0030	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-2 (1.5-2')

Collection Date: 10/22/2019 1:45:00 PM

Lab ID: 1910D16-007 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0029	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Bromoform	ND	0.0029	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Bromomethane	ND	0.0077	0.095	mg/Kg	1	10/26/2019 12:50:45 A	S63992
2-Butanone	ND	0.037	0.32	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Carbon disulfide	ND	0.010	0.32	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Carbon tetrachloride	ND	0.0030	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Chlorobenzene	ND	0.0041	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Chloroethane	ND	0.0047	0.064	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Chloroform	ND	0.0026	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Chloromethane	ND	0.0030	0.095	mg/Kg	1	10/26/2019 12:50:45 A	S63992
2-Chlorotoluene	ND	0.0028	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
4-Chlorotoluene	ND	0.0026	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
cis-1,2-DCE	ND	0.0043	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
cis-1,3-Dichloropropene	ND	0.0027	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,2-Dibromo-3-chloropropane	ND	0.0033	0.064	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Dibromochloromethane	ND	0.0023	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Dibromomethane	ND	0.0034	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,2-Dichlorobenzene	ND	0.0026	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,3-Dichlorobenzene	ND	0.0028	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,4-Dichlorobenzene	ND	0.0027	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Dichlorodifluoromethane	ND	0.0074	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,1-Dichloroethane	ND	0.0020	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,1-Dichloroethene	ND	0.013	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,2-Dichloropropane	ND	0.0023	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,3-Dichloropropane	ND	0.0034	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
2,2-Dichloropropane	ND	0.010	0.064	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,1-Dichloropropene	ND	0.0029	0.064	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Hexachlorobutadiene	ND	0.0032	0.064	mg/Kg	1	10/26/2019 12:50:45 A	S63992
2-Hexanone	ND	0.0053	0.32	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Isopropylbenzene	ND	0.0023	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
4-Isopropyltoluene	ND	0.0026	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
4-Methyl-2-pentanone	ND	0.0060	0.32	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Methylene chloride	ND	0.0056	0.095	mg/Kg	1	10/26/2019 12:50:45 A	S63992
n-Butylbenzene	ND	0.0030	0.095	mg/Kg	1	10/26/2019 12:50:45 A	S63992
n-Propylbenzene	ND	0.0025	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
sec-Butylbenzene	ND	0.0036	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
Styrene	ND	0.0025	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
tert-Butylbenzene	ND	0.0030	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992
1,1,1,2-Tetrachloroethane	ND	0.0021	0.032	mg/Kg	1	10/26/2019 12:50:45 A	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (1.5-2')

Project: SWMU 13

Collection Date: 10/22/2019 1:45:00 PM

Lab ID: 1910D16-007 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	:
1,1,2,2-Tetrachloroethane	ND	0.0032	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
Tetrachloroethene (PCE)	ND	0.0025	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
trans-1,2-DCE	ND	0.0029	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
trans-1,3-Dichloropropene	ND	0.0034	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
1,2,3-Trichlorobenzene	ND	0.0028	0.064	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
1,2,4-Trichlorobenzene	ND	0.0032	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
1,1,1-Trichloroethane	ND	0.0029	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
1,1,2-Trichloroethane	ND	0.0022	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
Trichloroethene (TCE)	ND	0.0037	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
Trichlorofluoromethane	ND	0.011	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
1,2,3-Trichloropropane	ND	0.0051	0.064	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
Vinyl chloride	ND	0.0021	0.032	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
Xylenes, Total	ND	0.0080	0.064	mg/Kg	1	10/26/2019 12:50:45 A	A S63992
Surr: Dibromofluoromethane	105		70-130	%Rec	1	10/26/2019 12:50:45 A	A S63992
Surr: 1,2-Dichloroethane-d4	96.0		70-130	%Rec	1	10/26/2019 12:50:45 A	A S63992
Surr: Toluene-d8	103		70-130	%Rec	1	10/26/2019 12:50:45 A	A S63992
Surr: 4-Bromofluorobenzene	94.3		70-130	%Rec	1	10/26/2019 12:50:45 A	A S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D16

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-2 (8-10')

Collection Date: 10/22/2019 1:50:00 PM

Lab ID: 1910D16-008 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	3.2	1.9	9.7	J	mg/Kg	1	10/29/2019 2:25:13 PM	48409
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/29/2019 2:25:13 PM	48409
Surr: DNOP	105	0	70-130		%Rec	1	10/29/2019 2:25:13 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.86	2.8		mg/Kg	1	10/27/2019 12:56:17 P	G63989
Surr: BFB	91.2	0	77.4-118		%Rec	1	10/27/2019 12:56:17 P	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0071	0.0017	0.032	J	mg/Kg	1	11/1/2019 12:29:21 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Barium	320	0.046	0.20		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Beryllium	0.79	0.018	0.30		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Chromium	5.6	0.16	0.60		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Cobalt	3.8	0.21	0.60		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Iron	11000	73	250		mg/Kg	100	11/12/2019 1:04:33 PM	48420
Lead	3.6	0.49	0.50		mg/Kg	2	11/12/2019 3:19:13 PM	48420
Manganese	340	0.041	0.20		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Nickel	6.5	0.30	1.0		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 11:59:14 A	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Vanadium	13	0.13	5.0		mg/Kg	2	11/7/2019 5:07:34 PM	48420
Zinc	10	0.79	5.0		mg/Kg	2	11/7/2019 5:07:34 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Aniline	ND	0.13	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Anthracene	ND	0.11	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benz(a)anthracene	ND	0.096	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benzo(a)pyrene	ND	0.089	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benzo(b)fluoranthene	ND	0.088	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benzo(g,h,i)perylene	ND	0.086	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benzo(k)fluoranthene	ND	0.091	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benzoic acid	ND	0.10	0.50		mg/Kg	1	10/30/2019 4:36:46 PM	48424
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	10/30/2019 4:36:46 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 37 of 123

Value exceeds Maximum Contaminant Level.

O Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:50:00 PM

 Lab ID:
 1910D16-008
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Result Analyses **MDL Qual Units** DF **Date Analyzed Batch ID EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC Bis(2-chloroethoxy)methane ND 0.15 0.20 mg/Kg 10/30/2019 4:36:46 PM 48424 1 Bis(2-chloroethyl)ether ND 0.12 0.20 mg/Kg 1 10/30/2019 4:36:46 PM Bis(2-chloroisopropyl)ether ND 0.11 0.20 48424 mg/Kg 1 10/30/2019 4:36:46 PM ND Bis(2-ethylhexyl)phthalate 0.14 0.50 mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 4-Bromophenyl phenyl ether 0.12 0.20 mg/Kg 1 48424 10/30/2019 4:36:46 PM Butyl benzyl phthalate ND 0.10 0.20 mg/Kg 1 10/30/2019 4:36:46 PM Carbazole ND 0.12 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 4-Chloro-3-methylphenol ND 0.15 0.50 mg/Kg 1 48424 10/30/2019 4:36:46 PM ND 4-Chloroaniline 0.14 0.50 mg/Kg 1 10/30/2019 4:36:46 PM 48424 2-Chloronaphthalene ND 0.12 0.25 48424 mg/Kg 1 10/30/2019 4:36:46 PM 2-Chlorophenol ND 0.12 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 4-Chlorophenyl phenyl ether ND 0.11 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 0.088 0.20 Chrysene mg/Kg 1 10/30/2019 4:36:46 PM ND 0.15 0.40 Di-n-butyl phthalate mg/Kg 1 10/30/2019 4:36:46 PM 48424 Di-n-octyl phthalate ND 0.10 0.40 mg/Kg 1 10/30/2019 4:36:46 PM Dibenz(a,h)anthracene ND 0.091 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 Dibenzofuran ND 0.13 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 0.20 1,2-Dichlorobenzene 0.12 mg/Kg 1 10/30/2019 4:36:46 PM 48424 1,3-Dichlorobenzene ND 0.10 0.20 10/30/2019 4:36:46 PM 48424 mg/Kg 1 1,4-Dichlorobenzene ND 0.11 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 0.089 0.25 3.3'-Dichlorobenzidine mg/Kg 1 10/30/2019 4:36:46 PM 48424 Diethyl phthalate ND 0.14 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 Dimethyl phthalate ND 0.13 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 2,4-Dichlorophenol ND 0.12 0.40 mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 0.11 0.30 2,4-Dimethylphenol mg/Kg 1 10/30/2019 4:36:46 PM 48424 0.092 4,6-Dinitro-2-methylphenol ND 0.40 mg/Kg 1 10/30/2019 4:36:46 PM ND 0.072 0.50 10/30/2019 4:36:46 PM 48424 2,4-Dinitrophenol mg/Kg 1 2.4-Dinitrotoluene ND 0.12 0.50 mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 2,6-Dinitrotoluene 0.13 0.50 mg/Kg 1 10/30/2019 4:36:46 PM 48424 Fluoranthene ND 0.11 0.20 10/30/2019 4:36:46 PM 48424 mg/Kg 1 Fluorene ND 0.11 0.20 mg/Kg 10/30/2019 4:36:46 PM 48424 Hexachlorobenzene ND 0.12 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 Hexachlorobutadiene ND 0.14 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424 Hexachlorocyclopentadiene ND 0.11 0.20 10/30/2019 4:36:46 PM 48424 mg/Kg 1 ND 0.11 0.20 Hexachloroethane mg/Kg 1 10/30/2019 4:36:46 PM 48424 ND 0.099 0.20 Indeno(1,2,3-cd)pyrene mg/Kg 1 10/30/2019 4:36:46 PM 48424 Isophorone ND 0.15 0.40 mg/Kg 1 10/30/2019 4:36:46 PM ND 0.15 0.20 mg/Kg 1-Methylnaphthalene 1 10/30/2019 4:36:46 PM 48424 2-Methylnaphthalene ND 0.15 0.20 mg/Kg 1 10/30/2019 4:36:46 PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 123

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-2 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:50:00 PM

 Lab ID:
 1910D16-008
 Matrix:
 MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	10/30/2019 4:36:46 PM	48424
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Naphthalene	ND	0.15	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	10/30/2019 4:36:46 PM	48424
2-Nitrophenol	ND	0.14	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
4-Nitrophenol	ND	0.14	0.25	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Phenanthrene	ND	0.11	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Phenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Pyrene	ND	0.094	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Pyridine	ND	0.12	0.40	mg/Kg	1	10/30/2019 4:36:46 PM	48424
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	10/30/2019 4:36:46 PM	48424
Surr: 2-Fluorophenol	54.0		26.7-85.9	%Rec	1	10/30/2019 4:36:46 PM	48424
Surr: Phenol-d5	59.4		18.5-101	%Rec	1	10/30/2019 4:36:46 PM	48424
Surr: 2,4,6-Tribromophenol	59.3		35.8-85.6	%Rec	1	10/30/2019 4:36:46 PM	48424
Surr: Nitrobenzene-d5	60.8		40.8-95.2	%Rec	1	10/30/2019 4:36:46 PM	48424
Surr: 2-Fluorobiphenyl	59.6		34.7-85.2	%Rec	1	10/30/2019 4:36:46 PM	48424
Surr: 4-Terphenyl-d14	65.8		37.4-91.3	%Rec	1	10/30/2019 4:36:46 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0023	0.014	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Toluene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Ethylbenzene	ND	0.0016	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0067	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,2,4-Trimethylbenzene	ND	0.0026	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,3,5-Trimethylbenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,2-Dichloroethane (EDC)	ND	0.0029	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,2-Dibromoethane (EDB)	ND	0.0026	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Naphthalene	ND	0.0057	0.057	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1-Methylnaphthalene	ND	0.016	0.11	mg/Kg	1	10/28/2019 12:50:08 P	S64028
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Acetone	ND	0.023	0.43	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Bromobenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-2 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:50:00 PM

 Lab ID:
 1910D16-008
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	:
Bromodichloromethane	ND	0.0026	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Bromoform	ND	0.0026	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Bromomethane	ND	0.0068	0.085		mg/Kg	1	10/28/2019 12:50:08 F	S64028
2-Butanone	0.045	0.033	0.28	J	mg/Kg	1	10/28/2019 12:50:08 F	S64028
Carbon disulfide	ND	0.0094	0.28		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Carbon tetrachloride	ND	0.0027	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Chlorobenzene	ND	0.0036	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Chloroethane	ND	0.0042	0.057		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Chloroform	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Chloromethane	ND	0.0027	0.085		mg/Kg	1	10/28/2019 12:50:08 F	S64028
2-Chlorotoluene	ND	0.0025	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
4-Chlorotoluene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
cis-1,2-DCE	ND	0.0039	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
cis-1,3-Dichloropropene	ND	0.0024	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,2-Dibromo-3-chloropropane	ND	0.0029	0.057		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Dibromochloromethane	ND	0.0020	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Dibromomethane	ND	0.0031	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,2-Dichlorobenzene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,3-Dichlorobenzene	ND	0.0025	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,4-Dichlorobenzene	ND	0.0024	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Dichlorodifluoromethane	ND	0.0066	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,1-Dichloroethane	ND	0.0018	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,1-Dichloroethene	ND	0.011	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,2-Dichloropropane	ND	0.0021	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,3-Dichloropropane	ND	0.0031	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
2,2-Dichloropropane	ND	0.0092	0.057		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,1-Dichloropropene	ND	0.0026	0.057		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Hexachlorobutadiene	ND	0.0029	0.057		mg/Kg	1	10/28/2019 12:50:08 F	S64028
2-Hexanone	ND	0.0047	0.28		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Isopropylbenzene	ND	0.0020	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
4-Isopropyltoluene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
4-Methyl-2-pentanone	ND	0.0054	0.28		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Methylene chloride	0.0052	0.0050	0.085	J	mg/Kg	1	10/28/2019 12:50:08 F	S64028
n-Butylbenzene	ND	0.0026	0.085		mg/Kg	1	10/28/2019 12:50:08 F	S64028
n-Propylbenzene	ND	0.0023	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
sec-Butylbenzene	ND	0.0032	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
Styrene	ND	0.0022	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
tert-Butylbenzene	ND	0.0027	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028
1,1,1,2-Tetrachloroethane	ND	0.0019	0.028		mg/Kg	1	10/28/2019 12:50:08 F	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 40 of 123

Date Reported: 11/25/2019

Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-2 (8-10')

Collection Date: 10/22/2019 1:50:00 PM

Lab ID: 1910D16-008 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0029	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Tetrachloroethene (PCE)	ND	0.0023	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
trans-1,2-DCE	ND	0.0026	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
trans-1,3-Dichloropropene	ND	0.0030	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,2,3-Trichlorobenzene	ND	0.0025	0.057	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,2,4-Trichlorobenzene	ND	0.0029	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,1,1-Trichloroethane	ND	0.0026	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,1,2-Trichloroethane	ND	0.0020	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Trichloroethene (TCE)	ND	0.0033	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Trichlorofluoromethane	ND	0.0096	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
1,2,3-Trichloropropane	ND	0.0046	0.057	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Vinyl chloride	ND	0.0019	0.028	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Xylenes, Total	ND	0.0071	0.057	mg/Kg	1	10/28/2019 12:50:08 P	S64028
Surr: Dibromofluoromethane	99.3		70-130	%Rec	1	10/28/2019 12:50:08 P	S64028
Surr: 1,2-Dichloroethane-d4	89.3		70-130	%Rec	1	10/28/2019 12:50:08 P	S64028
Surr: Toluene-d8	96.9		70-130	%Rec	1	10/28/2019 12:50:08 P	S64028
Surr: 4-Bromofluorobenzene	94.5		70-130	%Rec	1	10/28/2019 12:50:08 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-2 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:55:00 PM

 Lab ID:
 1910D16-009
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.0	1.8	9.0	J	mg/Kg	1	10/29/2019 2:34:18 PM	48409
Motor Oil Range Organics (MRO)	ND	45	45		mg/Kg	1	10/29/2019 2:34:18 PM	48409
Surr: DNOP	102	0	70-130		%Rec	1	10/29/2019 2:34:18 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.74	2.5		mg/Kg	1	10/27/2019 1:19:05 PM	G63989
Surr: BFB	115	0	77.4-118		%Rec	1	10/27/2019 1:19:05 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0037	0.0017	0.031	J	mg/Kg	1	11/1/2019 12:31:25 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Barium	270	0.047	0.20		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Beryllium	1.0	0.018	0.30		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Chromium	7.8	0.16	0.60		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Cobalt	4.5	0.21	0.60		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Iron	13000	73	250		mg/Kg	100	11/12/2019 1:12:02 PM	48420
Lead	3.5	0.49	0.50		mg/Kg	2	11/12/2019 3:20:46 PM	48420
Manganese	330	0.042	0.20		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Nickel	8.6	0.30	1.0		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 12:06:47 P	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Vanadium	16	0.13	5.0		mg/Kg	2	11/7/2019 5:09:09 PM	48420
Zinc	13	0.79	5.0		mg/Kg	2	11/7/2019 5:09:09 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Aniline	ND	0.13	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Anthracene	ND	0.11	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benz(a)anthracene	ND	0.095	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benzo(a)pyrene	ND	0.088	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benzo(g,h,i)perylene	ND	0.085	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benzo(k)fluoranthene	ND	0.090	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benzoic acid	ND	0.10	0.49		mg/Kg	1	10/30/2019 5:05:48 PM	48424
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	10/30/2019 5:05:48 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 42 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-2 (14-16')

Collection Date: 10/22/2019 1:55:00 PM

Lab ID: 1910D16-009 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	C
Bis(2-chloroethoxy)methane	ND	0.15	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Carbazole	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
4-Chloro-3-methylphenol	ND	0.15	0.49	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
4-Chloroaniline	ND	0.14	0.49	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2-Chloronaphthalene	ND	0.12	0.25	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2-Chlorophenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Chrysene	ND	0.087	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Di-n-butyl phthalate	ND	0.15	0.39	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Di-n-octyl phthalate	ND	0.10	0.39	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Dibenz(a,h)anthracene	ND	0.090	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
1,3-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
1,4-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
3,3'-Dichlorobenzidine	ND	0.088	0.25	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2,4-Dichlorophenol	ND	0.11	0.39	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2,4-Dimethylphenol	ND	0.11	0.30	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
4,6-Dinitro-2-methylphenol	ND	0.091	0.39	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2,4-Dinitrophenol	ND	0.072	0.49	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2,4-Dinitrotoluene	ND	0.12	0.49	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2,6-Dinitrotoluene	ND	0.13	0.49	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Fluoranthene	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Fluorene	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Hexachlorocyclopentadiene	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Indeno(1,2,3-cd)pyrene	ND	0.098	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
Isophorone	ND	0.15	0.39	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424
2-Methylnaphthalene	ND	0.14	0.20	mg/Kg	1	10/30/2019 5:05:48 P	M 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-2 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:55:00 PM

 Lab ID:
 1910D16-009
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	10/30/2019 5:05:48 PM	48424
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Naphthalene	ND	0.15	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
4-Nitroaniline	ND	0.13	0.39	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Nitrobenzene	ND	0.14	0.39	mg/Kg	1	10/30/2019 5:05:48 PM	48424
2-Nitrophenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
4-Nitrophenol	ND	0.13	0.25	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Phenanthrene	ND	0.11	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Phenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Pyrene	ND	0.093	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Pyridine	ND	0.12	0.39	mg/Kg	1	10/30/2019 5:05:48 PM	48424
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	10/30/2019 5:05:48 PM	48424
Surr: 2-Fluorophenol	52.8	2	26.7-85.9	%Rec	1	10/30/2019 5:05:48 PM	48424
Surr: Phenol-d5	54.4		18.5-101	%Rec	1	10/30/2019 5:05:48 PM	48424
Surr: 2,4,6-Tribromophenol	55.9	3	35.8-85.6	%Rec	1	10/30/2019 5:05:48 PM	48424
Surr: Nitrobenzene-d5	62.8	4	10.8-95.2	%Rec	1	10/30/2019 5:05:48 PM	48424
Surr: 2-Fluorobiphenyl	52.7	3	34.7-85.2	%Rec	1	10/30/2019 5:05:48 PM	48424
Surr: 4-Terphenyl-d14	62.6	3	37.4-91.3	%Rec	1	10/30/2019 5:05:48 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0020	0.012	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Toluene	ND	0.0023	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Ethylbenzene	ND	0.0014	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0058	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	
1,2,4-Trimethylbenzene	ND	0.0022	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0024	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0025	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0022	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Naphthalene	ND	0.0049	0.049	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1-Methylnaphthalene	ND	0.014	0.098	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
2-Methylnaphthalene	ND	0.011	0.098	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Acetone	ND	0.020	0.37	mg/Kg	1	10/28/2019 1:19:35 PM	
Bromobenzene	ND	0.0024	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-2 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 1:55:00 PM

 Lab ID:
 1910D16-009
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0022	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Bromoform	ND	0.0022	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Bromomethane	ND	0.0059	0.074		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
2-Butanone	0.034	0.028	0.25	J	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Carbon disulfide	ND	0.0081	0.25		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Carbon tetrachloride	ND	0.0023	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Chlorobenzene	ND	0.0031	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Chloroethane	ND	0.0036	0.049		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Chloroform	ND	0.0020	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Chloromethane	ND	0.0024	0.074		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
2-Chlorotoluene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
4-Chlorotoluene	ND	0.0020	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
cis-1,2-DCE	ND	0.0034	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
cis-1,3-Dichloropropene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0025	0.049		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Dibromochloromethane	ND	0.0017	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Dibromomethane	ND	0.0026	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2-Dichlorobenzene	ND	0.0020	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,3-Dichlorobenzene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,4-Dichlorobenzene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Dichlorodifluoromethane	ND	0.0057	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,1-Dichloroethane	ND	0.0016	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,1-Dichloroethene	ND	0.0098	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2-Dichloropropane	ND	0.0018	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,3-Dichloropropane	ND	0.0027	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
2,2-Dichloropropane	ND	0.0080	0.049		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,1-Dichloropropene	ND	0.0022	0.049		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Hexachlorobutadiene	ND	0.0025	0.049		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
2-Hexanone	ND	0.0041	0.25		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Isopropylbenzene	ND	0.0018	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
4-Isopropyltoluene	ND	0.0020	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
4-Methyl-2-pentanone	ND	0.0046	0.25		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Methylene chloride	ND	0.0043	0.074		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
n-Butylbenzene	ND	0.0023	0.074		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
n-Propylbenzene	ND	0.0020	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
sec-Butylbenzene	ND	0.0028	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Styrene	ND	0.0019	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
tert-Butylbenzene	ND	0.0023	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0017	0.025		mg/Kg	1	10/28/2019 1:19:35 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 45 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-2 (14-16')

Collection Date: 10/22/2019 1:55:00 PM

Lab ID: 1910D16-009 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	_
1,1,2,2-Tetrachloroethane	ND	0.0025	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Tetrachloroethene (PCE)	ND	0.0020	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
trans-1,2-DCE	ND	0.0022	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
trans-1,3-Dichloropropene	ND	0.0026	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2,3-Trichlorobenzene	ND	0.0022	0.049	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2,4-Trichlorobenzene	ND	0.0025	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,1,1-Trichloroethane	ND	0.0022	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,1,2-Trichloroethane	ND	0.0017	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Trichloroethene (TCE)	ND	0.0028	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Trichlorofluoromethane	ND	0.0083	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
1,2,3-Trichloropropane	ND	0.0040	0.049	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Vinyl chloride	ND	0.0016	0.025	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Xylenes, Total	ND	0.0062	0.049	mg/Kg	1	10/28/2019 1:19:35 PM	S64028
Surr: Dibromofluoromethane	102		70-130	%Rec	1	10/28/2019 1:19:35 PM	S64028
Surr: 1,2-Dichloroethane-d4	90.0		70-130	%Rec	1	10/28/2019 1:19:35 PM	S64028
Surr: Toluene-d8	103		70-130	%Rec	1	10/28/2019 1:19:35 PM	S64028
Surr: 4-Bromofluorobenzene	92.4		70-130	%Rec	1	10/28/2019 1:19:35 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-3 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:25:00 PM

 Lab ID:
 1910D16-010
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: JME	
Diesel Range Organics (DRO)	110	2.0	9.8	mg/Kg	1	10/30/2019 3:29:19 PM	48409
Motor Oil Range Organics (MRO)	160	49	49	mg/Kg	1	10/30/2019 3:29:19 PM	48409
Surr: DNOP	105	0	70-130	%Rec	1	10/30/2019 3:29:19 PM	48409
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.89	3.0	mg/Kg	1	10/27/2019 1:41:51 PM	G63989
Surr: BFB	91.5	0	77.4-118	%Rec	1	10/27/2019 1:41:51 PM	G63989
EPA METHOD 7471: MERCURY						Analyst: pmf	
Mercury	0.074	0.0018	0.032	mg/Kg	1	11/1/2019 12:33:30 PM	48512
EPA METHOD 6010B: SOIL METALS						Analyst: rde	
Antimony	ND	0.74	5.0	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Arsenic	ND	2.9	5.0	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Barium	260	0.046	0.20	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Beryllium	1.4	0.018	0.30	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Cadmium	ND	0.049	0.20	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Chromium	30	0.16	0.60	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Cobalt	6.1	0.21	0.60	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Iron	19000	73	250	mg/Kg	100	11/12/2019 1:13:33 PM	48420
Lead	0.87	0.49	0.50	mg/Kg	2	11/12/2019 3:22:21 PM	48420
Manganese	280	0.041	0.20	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Nickel	13	0.30	1.0	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Selenium	ND	2.5	5.0	mg/Kg	2	11/12/2019 12:08:20 P	48420
Silver	ND	0.064	0.50	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Vanadium	26	0.13	5.0	mg/Kg	2	11/7/2019 5:10:43 PM	48420
Zinc	41	0.79	5.0	mg/Kg	2	11/7/2019 5:10:43 PM	48420
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
Acenaphthene	ND	0.59	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Acenaphthylene	ND	0.54	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Aniline	ND	0.63	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Anthracene	ND	0.53	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Azobenzene	ND	0.69	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benz(a)anthracene	ND	0.47	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benzo(a)pyrene	ND	0.44	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benzo(b)fluoranthene	ND	0.43	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benzo(g,h,i)perylene	ND	0.42	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benzo(k)fluoranthene	ND	0.45	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benzoic acid	ND	0.51	2.5	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Benzyl alcohol	ND	0.61	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 47 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-3 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:25:00 PM

 Lab ID:
 1910D16-010
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	
Bis(2-chloroethoxy)methane	ND	0.73	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Bis(2-chloroethyl)ether	ND	0.60	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Bis(2-chloroisopropyl)ether	ND	0.56	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Bis(2-ethylhexyl)phthalate	ND	0.71	2.5	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
4-Bromophenyl phenyl ether	ND	0.58	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Butyl benzyl phthalate	ND	0.50	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Carbazole	ND	0.58	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
4-Chloro-3-methylphenol	ND	0.75	2.5	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
4-Chloroaniline	ND	0.70	2.5	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
2-Chloronaphthalene	ND	0.61	1.2	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
2-Chlorophenol	ND	0.61	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
4-Chlorophenyl phenyl ether	ND	0.54	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Chrysene	ND	0.43	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Di-n-butyl phthalate	ND	0.73	2.0	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Di-n-octyl phthalate	ND	0.50	2.0	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Dibenz(a,h)anthracene	ND	0.45	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Dibenzofuran	ND	0.64	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
1,2-Dichlorobenzene	ND	0.59	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
1,3-Dichlorobenzene	ND	0.52	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
1,4-Dichlorobenzene	ND	0.52	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
3,3´-Dichlorobenzidine	ND	0.44	1.2	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Diethyl phthalate	ND	0.70	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
Dimethyl phthalate	ND	0.66	0.98	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
2,4-Dichlorophenol	ND	0.57	2.0	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
2,4-Dimethylphenol	ND	0.54	1.5	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
4,6-Dinitro-2-methylphenol	ND	0.45	2.0	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
2,4-Dinitrophenol	ND	0.36	2.5	mg/Kg	1	10/30/2019 5:34:39 F	M 48424
2,4-Dinitrotoluene	ND	0.58	2.5	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
2,6-Dinitrotoluene	ND	0.65	2.5	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Fluoranthene	ND	0.55	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Fluorene	ND	0.56	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Hexachlorobenzene	ND	0.61	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Hexachlorobutadiene	ND	0.69	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Hexachlorocyclopentadiene	ND	0.56	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Hexachloroethane	ND	0.55	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
Indeno(1,2,3-cd)pyrene	ND	0.49	0.98	mg/Kg	1	10/30/2019 5:34:39 P	PM 48424
Isophorone	ND	0.72	2.0	mg/Kg	1	10/30/2019 5:34:39 P	PM 48424
1-Methylnaphthalene	ND	0.74	0.98	mg/Kg	1	10/30/2019 5:34:39 F	PM 48424
2-Methylnaphthalene	ND	0.72	0.98	mg/Kg	1	10/30/2019 5:34:39 P	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-3 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:25:00 PM

 Lab ID:
 1910D16-010
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.58	2.0	mg/Kg	1	10/30/2019 5:34:39 PM	48424
3+4-Methylphenol	ND	0.60	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
N-Nitrosodi-n-propylamine	ND	0.70	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
N-Nitrosodiphenylamine	ND	0.52	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Naphthalene	ND	0.74	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
2-Nitroaniline	ND	0.70	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
3-Nitroaniline	ND	0.68	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
4-Nitroaniline	ND	0.63	2.0	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Nitrobenzene	ND	0.68	2.0	mg/Kg	1	10/30/2019 5:34:39 PM	48424
2-Nitrophenol	ND	0.67	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
4-Nitrophenol	ND	0.67	1.2	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Pentachlorophenol	ND	0.51	2.0	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Phenanthrene	ND	0.53	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Phenol	ND	0.61	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Pyrene	ND	0.46	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Pyridine	ND	0.59	2.0	mg/Kg	1	10/30/2019 5:34:39 PM	48424
1,2,4-Trichlorobenzene	ND	0.76	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
2,4,5-Trichlorophenol	ND	0.64	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
2,4,6-Trichlorophenol	ND	0.52	0.98	mg/Kg	1	10/30/2019 5:34:39 PM	48424
Surr: 2-Fluorophenol	61.2		26.7-85.9	%Rec	1	10/30/2019 5:34:39 PM	48424
Surr: Phenol-d5	62.3		18.5-101	%Rec	1	10/30/2019 5:34:39 PM	48424
Surr: 2,4,6-Tribromophenol	68.7		35.8-85.6	%Rec	1	10/30/2019 5:34:39 PM	48424
Surr: Nitrobenzene-d5	60.7		40.8-95.2	%Rec	1	10/30/2019 5:34:39 PM	48424
Surr: 2-Fluorobiphenyl	60.6		34.7-85.2	%Rec	1	10/30/2019 5:34:39 PM	48424
Surr: 4-Terphenyl-d14	69.6		37.4-91.3	%Rec	1	10/30/2019 5:34:39 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0024	0.015	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Toluene	ND	0.0028	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Ethylbenzene	ND	0.0017	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0070	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2,4-Trimethylbenzene	ND	0.0027	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,3,5-Trimethylbenzene	ND	0.0029	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2-Dichloroethane (EDC)	ND	0.0030	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2-Dibromoethane (EDB)	ND	0.0027	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Naphthalene	ND	0.0059	0.059	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1-Methylnaphthalene	ND	0.017	0.12	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
2-Methylnaphthalene	ND	0.013	0.12	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Acetone	ND	0.025	0.44	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Bromobenzene	ND	0.0028	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Project:

SWMU 13

Client Sample ID: SWMU 13-3 (0-0.5')

Collection Date: 10/22/2019 3:25:00 PM

Lab ID: 1910D16-010 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0027	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Bromoform	ND	0.0027	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Bromomethane	ND	0.0071	0.089		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
2-Butanone	0.059	0.034	0.30	J	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Carbon disulfide	ND	0.0098	0.30		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Carbon tetrachloride	ND	0.0028	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Chlorobenzene	ND	0.0038	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Chloroethane	ND	0.0044	0.059		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Chloroform	ND	0.0024	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Chloromethane	ND	0.0028	0.089		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
2-Chlorotoluene	ND	0.0026	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
4-Chlorotoluene	ND	0.0024	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
cis-1,2-DCE	ND	0.0040	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
cis-1,3-Dichloropropene	ND	0.0025	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2-Dibromo-3-chloropropane	ND	0.0030	0.059		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Dibromochloromethane	ND	0.0021	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Dibromomethane	ND	0.0032	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2-Dichlorobenzene	ND	0.0024	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,3-Dichlorobenzene	ND	0.0026	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,4-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Dichlorodifluoromethane	ND	0.0069	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,1-Dichloroethane	ND	0.0019	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,1-Dichloroethene	ND	0.012	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2-Dichloropropane	ND	0.0022	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,3-Dichloropropane	ND	0.0032	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
2,2-Dichloropropane	ND	0.0096	0.059		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,1-Dichloropropene	ND	0.0027	0.059		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Hexachlorobutadiene	ND	0.0030	0.059		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
2-Hexanone	ND	0.0049	0.30		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Isopropylbenzene	ND	0.0021	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
4-Isopropyltoluene	ND	0.0024	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
4-Methyl-2-pentanone	ND	0.0056	0.30		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Methylene chloride	ND	0.0052	0.089		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
n-Butylbenzene	ND	0.0028	0.089		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
n-Propylbenzene	ND	0.0024	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
sec-Butylbenzene	ND	0.0033	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Styrene	ND	0.0023	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
tert-Butylbenzene	ND	0.0028	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,1,1,2-Tetrachloroethane	ND	0.0020	0.030		mg/Kg	1	10/26/2019 2:18:00 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SWMU 13-3 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:25:00 PM

 Lab ID:
 1910D16-010
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	_
1,1,2,2-Tetrachloroethane	ND	0.0030	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Tetrachloroethene (PCE)	ND	0.0024	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
trans-1,2-DCE	ND	0.0027	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
trans-1,3-Dichloropropene	ND	0.0031	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2,3-Trichlorobenzene	ND	0.0026	0.059	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2,4-Trichlorobenzene	ND	0.0030	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,1,1-Trichloroethane	ND	0.0027	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,1,2-Trichloroethane	ND	0.0021	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Trichloroethene (TCE)	ND	0.0034	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Trichlorofluoromethane	ND	0.010	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
1,2,3-Trichloropropane	ND	0.0048	0.059	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Vinyl chloride	ND	0.0019	0.030	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Xylenes, Total	ND	0.0075	0.059	mg/Kg	1	10/26/2019 2:18:00 AM	S63992
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/26/2019 2:18:00 AM	S63992
Surr: 1,2-Dichloroethane-d4	97.2		70-130	%Rec	1	10/26/2019 2:18:00 AM	S63992
Surr: Toluene-d8	101		70-130	%Rec	1	10/26/2019 2:18:00 AM	S63992
Surr: 4-Bromofluorobenzene	89.7		70-130	%Rec	1	10/26/2019 2:18:00 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 51 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:35:00 PM

 Lab ID:
 1910D16-011
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: JME	
Diesel Range Organics (DRO)	21	1.8	9.1	mg/Kg	1	10/30/2019 3:47:22 PM	48409
Motor Oil Range Organics (MRO)	ND	46	46	mg/Kg	1	10/30/2019 3:47:22 PM	48409
Surr: DNOP	108	0	70-130	%Rec	1	10/30/2019 3:47:22 PM	48409
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.98	3.2	mg/Kg	1	10/27/2019 2:04:40 PM	G63989
Surr: BFB	94.5	0	77.4-118	%Rec	1	10/27/2019 2:04:40 PM	G63989
EPA METHOD 7471: MERCURY						Analyst: pmf	
Mercury	0.034	0.0017	0.032	mg/Kg	1	11/1/2019 12:39:37 PM	48512
EPA METHOD 6010B: SOIL METALS						Analyst: rde	
Antimony	ND	0.74	5.0	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Arsenic	ND	2.9	5.0	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Barium	230	0.047	0.20	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Beryllium	1.5	0.019	0.30	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Cadmium	ND	0.049	0.20	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Chromium	26	0.16	0.60	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Cobalt	6.6	0.21	0.60	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Iron	22000	73	250	mg/Kg	100	11/12/2019 1:15:03 PM	48420
Lead	1.4	0.49	0.50	mg/Kg	2	11/12/2019 3:23:54 PM	48420
Manganese	360	0.042	0.20	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Nickel	15	0.30	1.0	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Selenium	ND	2.5	5.0	mg/Kg	2	11/12/2019 12:09:54 P	48420
Silver	ND	0.065	0.50	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Vanadium	27	0.13	5.0	mg/Kg	2	11/7/2019 5:19:47 PM	48420
Zinc	29	0.80	5.0	mg/Kg	2	11/7/2019 5:19:47 PM	48420
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
Acenaphthene	ND	0.23	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Acenaphthylene	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Aniline	ND	0.25	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Anthracene	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Azobenzene	ND	0.27	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benz(a)anthracene	ND	0.19	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benzo(a)pyrene	ND	0.17	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benzo(b)fluoranthene	ND	0.17	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benzo(g,h,i)perylene	ND	0.17	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benzo(k)fluoranthene	ND	0.18	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benzoic acid	ND	0.20	0.98	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Benzyl alcohol	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 52 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:35:00 PM

 Lab ID:
 1910D16-011
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	C
Bis(2-chloroethoxy)methane	ND	0.29	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Bis(2-chloroethyl)ether	ND	0.24	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Bis(2-chloroisopropyl)ether	ND	0.22	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Bis(2-ethylhexyl)phthalate	ND	0.28	0.98	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
4-Bromophenyl phenyl ether	ND	0.23	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Butyl benzyl phthalate	ND	0.20	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Carbazole	ND	0.23	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
4-Chloro-3-methylphenol	ND	0.30	0.98	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
4-Chloroaniline	ND	0.28	0.98	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2-Chloronaphthalene	ND	0.24	0.49	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2-Chlorophenol	ND	0.24	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
4-Chlorophenyl phenyl ether	ND	0.21	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Chrysene	ND	0.17	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Di-n-butyl phthalate	ND	0.29	0.78	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Di-n-octyl phthalate	ND	0.20	0.78	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Dibenz(a,h)anthracene	ND	0.18	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Dibenzofuran	ND	0.26	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
1,2-Dichlorobenzene	ND	0.24	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
1,3-Dichlorobenzene	ND	0.21	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
1,4-Dichlorobenzene	ND	0.21	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
3,3'-Dichlorobenzidine	ND	0.17	0.49	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Diethyl phthalate	ND	0.28	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Dimethyl phthalate	ND	0.26	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2,4-Dichlorophenol	ND	0.23	0.78	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2,4-Dimethylphenol	ND	0.22	0.59	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
4,6-Dinitro-2-methylphenol	ND	0.18	0.78	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2,4-Dinitrophenol	ND	0.14	0.98	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2,4-Dinitrotoluene	ND	0.23	0.98	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2,6-Dinitrotoluene	ND	0.26	0.98	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Fluoranthene	ND	0.22	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Fluorene	ND	0.22	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Hexachlorobenzene	ND	0.24	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Hexachlorobutadiene	ND	0.27	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Hexachlorocyclopentadiene	ND	0.22	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Hexachloroethane	ND	0.22	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
Indeno(1,2,3-cd)pyrene	ND	0.19	0.39	mg/Kg	j 1	10/30/2019 6:03:26 P	M 48424
Isophorone	ND	0.29	0.78	mg/Kg	j 1	10/30/2019 6:03:26 P	M 48424
1-Methylnaphthalene	ND	0.29	0.39	mg/Kg	g 1	10/30/2019 6:03:26 P	M 48424
2-Methylnaphthalene	ND	0.29	0.39	mg/Kg	j 1	10/30/2019 6:03:26 P	M 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 53 of 123

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-3 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:35:00 PM

 Lab ID:
 1910D16-011
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.23	0.78	mg/Kg	1	10/30/2019 6:03:26 PM	48424
3+4-Methylphenol	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
N-Nitrosodi-n-propylamine	ND	0.28	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
N-Nitrosodiphenylamine	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Naphthalene	ND	0.30	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
2-Nitroaniline	ND	0.28	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
3-Nitroaniline	ND	0.27	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
4-Nitroaniline	ND	0.25	0.78	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Nitrobenzene	ND	0.27	0.78	mg/Kg	1	10/30/2019 6:03:26 PM	48424
2-Nitrophenol	ND	0.27	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
4-Nitrophenol	ND	0.27	0.49	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Pentachlorophenol	ND	0.20	0.78	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Phenanthrene	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Phenol	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Pyrene	ND	0.18	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Pyridine	ND	0.24	0.78	mg/Kg	1	10/30/2019 6:03:26 PM	48424
1,2,4-Trichlorobenzene	ND	0.30	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
2,4,5-Trichlorophenol	ND	0.25	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
2,4,6-Trichlorophenol	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:03:26 PM	48424
Surr: 2-Fluorophenol	64.9		26.7-85.9	%Rec	1	10/30/2019 6:03:26 PM	48424
Surr: Phenol-d5	72.9		18.5-101	%Rec	1	10/30/2019 6:03:26 PM	48424
Surr: 2,4,6-Tribromophenol	77.8		35.8-85.6	%Rec	1	10/30/2019 6:03:26 PM	48424
Surr: Nitrobenzene-d5	71.6		40.8-95.2	%Rec	1	10/30/2019 6:03:26 PM	48424
Surr: 2-Fluorobiphenyl	76.6		34.7-85.2	%Rec	1	10/30/2019 6:03:26 PM	48424
Surr: 4-Terphenyl-d14	83.6		37.4-91.3	%Rec	1	10/30/2019 6:03:26 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0026	0.016	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Toluene	ND	0.0031	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	
Ethylbenzene	ND	0.0019	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0077	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2,4-Trimethylbenzene	ND	0.0030	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,3,5-Trimethylbenzene	ND	0.0031	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2-Dichloroethane (EDC)	ND	0.0033	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2-Dibromoethane (EDB)	ND	0.0029	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Naphthalene	ND	0.0065	0.065	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1-Methylnaphthalene	ND	0.019	0.13	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
2-Methylnaphthalene	ND	0.014	0.13	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Acetone	ND	0.027	0.48	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Bromobenzene	ND	0.0031	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 54 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Project:

SWMU 13

Client Sample ID: SWMU 13-3 (1.5-2')

Collection Date: 10/22/2019 3:35:00 PM

Lab ID: 1910D16-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0029	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Bromoform	ND	0.0029	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Bromomethane	ND	0.0078	0.097		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
2-Butanone	ND	0.037	0.32		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Carbon disulfide	ND	0.011	0.32		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Carbon tetrachloride	ND	0.0031	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Chlorobenzene	ND	0.0041	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Chloroethane	ND	0.0048	0.065		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Chloroform	ND	0.0026	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Chloromethane	ND	0.0031	0.097		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
2-Chlorotoluene	ND	0.0028	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
4-Chlorotoluene	ND	0.0026	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
cis-1,2-DCE	ND	0.0044	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
cis-1,3-Dichloropropene	ND	0.0027	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2-Dibromo-3-chloropropane	ND	0.0033	0.065		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Dibromochloromethane	ND	0.0023	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Dibromomethane	ND	0.0035	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2-Dichlorobenzene	ND	0.0026	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,3-Dichlorobenzene	ND	0.0028	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,4-Dichlorobenzene	ND	0.0027	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Dichlorodifluoromethane	ND	0.0075	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,1-Dichloroethane	ND	0.0021	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,1-Dichloroethene	ND	0.013	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2-Dichloropropane	ND	0.0024	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,3-Dichloropropane	ND	0.0035	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
2,2-Dichloropropane	ND	0.011	0.065		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,1-Dichloropropene	ND	0.0029	0.065		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Hexachlorobutadiene	ND	0.0033	0.065		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
2-Hexanone	ND	0.0054	0.32		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Isopropylbenzene	ND	0.0023	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
4-Isopropyltoluene	ND	0.0027	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
4-Methyl-2-pentanone	ND	0.0061	0.32		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Methylene chloride	0.0067	0.0057	0.097	J	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
n-Butylbenzene	ND	0.0030	0.097		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
n-Propylbenzene	ND	0.0026	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
sec-Butylbenzene	ND	0.0036	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Styrene	ND	0.0025	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
tert-Butylbenzene	ND	0.0030	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,1,1,2-Tetrachloroethane	ND	0.0022	0.032		mg/Kg	1	10/26/2019 2:46:58 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 55 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (1.5-2')

Project: SWMU 13

Collection Date: 10/22/2019 3:35:00 P

 Project:
 SWMU 13
 Collection Date: 10/22/2019 3:35:00 PM

 Lab ID:
 1910D16-011
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed E	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	_
1,1,2,2-Tetrachloroethane	ND	0.0033	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Tetrachloroethene (PCE)	ND	0.0026	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
trans-1,2-DCE	ND	0.0030	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
trans-1,3-Dichloropropene	ND	0.0034	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2,3-Trichlorobenzene	ND	0.0028	0.065	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2,4-Trichlorobenzene	ND	0.0033	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,1,1-Trichloroethane	ND	0.0029	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,1,2-Trichloroethane	ND	0.0023	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Trichloroethene (TCE)	ND	0.0037	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Trichlorofluoromethane	ND	0.011	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
1,2,3-Trichloropropane	ND	0.0052	0.065	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Vinyl chloride	ND	0.0021	0.032	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Xylenes, Total	ND	0.0081	0.065	mg/Kg	1	10/26/2019 2:46:58 AM	S63992
Surr: Dibromofluoromethane	104		70-130	%Rec	1	10/26/2019 2:46:58 AM	S63992
Surr: 1,2-Dichloroethane-d4	92.0		70-130	%Rec	1	10/26/2019 2:46:58 AM	S63992
Surr: Toluene-d8	104		70-130	%Rec	1	10/26/2019 2:46:58 AM	S63992
Surr: 4-Bromofluorobenzene	89.5		70-130	%Rec	1	10/26/2019 2:46:58 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 56 of 123

Lab Order 1910D16

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SMWU 13-3 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 4:50:00 PM

 Lab ID:
 1910D16-012
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.4	1.6	8.0	J	mg/Kg	1	10/29/2019 3:01:42 PM	48409
Motor Oil Range Organics (MRO)	ND	40	40		mg/Kg	1	10/29/2019 3:01:42 PM	48409
Surr: DNOP	106	0	70-130		%Rec	1	10/29/2019 3:01:42 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.82	2.7		mg/Kg	1	10/27/2019 2:27:32 PM	G63989
Surr: BFB	95.2	0	77.4-118		%Rec	1	10/27/2019 2:27:32 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.026	0.0018	0.033	J	mg/Kg	1	11/1/2019 12:41:35 PM	48512
EPA METHOD 6010B: SOIL METALS					0 0		Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Barium	290	0.047	0.20		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Beryllium	1.2	0.018	0.30		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Chromium	13	0.16	0.60		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Cobalt	5.0	0.21	0.60		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Iron	16000	73	250		mg/Kg	100	11/12/2019 1:16:31 PM	48420
Lead	2.9	0.49	0.50		mg/Kg	2	11/12/2019 3:25:30 PM	48420
Manganese	340	0.042	0.20		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Nickel	10	0.30	1.0		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 12:11:30 P	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Vanadium	19	0.13	5.0		mg/Kg	2	11/7/2019 5:21:30 PM	48420
Zinc	18	0.80	5.0		mg/Kg	2	11/7/2019 5:21:30 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.23	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Acenaphthylene	ND	0.21	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Aniline	ND	0.25	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Anthracene	ND	0.21	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Azobenzene	ND	0.27	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benz(a)anthracene	ND	0.19	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benzo(a)pyrene	ND	0.17	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benzo(b)fluoranthene	ND	0.17	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benzo(g,h,i)perylene	ND	0.17	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benzo(k)fluoranthene	ND	0.18	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benzoic acid	ND	0.20	0.97		mg/Kg	1	10/30/2019 6:32:09 PM	48424
Benzyl alcohol	ND	0.24	0.39		mg/Kg	1	10/30/2019 6:32:09 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 57 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: SMWU 13-3 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 4:50:00 PM

 Lab ID:
 1910D16-012
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
Bis(2-chloroethoxy)methane	ND	0.29	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Bis(2-chloroethyl)ether	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Bis(2-chloroisopropyl)ether	ND	0.22	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Bis(2-ethylhexyl)phthalate	ND	0.28	0.97	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
4-Bromophenyl phenyl ether	ND	0.23	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Butyl benzyl phthalate	ND	0.20	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Carbazole	ND	0.23	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
4-Chloro-3-methylphenol	ND	0.30	0.97	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
4-Chloroaniline	ND	0.28	0.97	mg/Kg	1	10/30/2019 6:32:09 PM	48424
2-Chloronaphthalene	ND	0.24	0.49	mg/Kg	1	10/30/2019 6:32:09 PM	48424
2-Chlorophenol	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
4-Chlorophenyl phenyl ether	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Chrysene	ND	0.17	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Di-n-butyl phthalate	ND	0.29	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Di-n-octyl phthalate	ND	0.20	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Dibenz(a,h)anthracene	ND	0.18	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Dibenzofuran	ND	0.25	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
1,2-Dichlorobenzene	ND	0.23	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
1,3-Dichlorobenzene	ND	0.20	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
1,4-Dichlorobenzene	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
3,3´-Dichlorobenzidine	ND	0.17	0.49	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Diethyl phthalate	ND	0.28	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Dimethyl phthalate	ND	0.26	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
2,4-Dichlorophenol	ND	0.23	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
2,4-Dimethylphenol	ND	0.21	0.58	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
4,6-Dinitro-2-methylphenol	ND	0.18	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
2,4-Dinitrophenol	ND	0.14	0.97	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
2,4-Dinitrotoluene	ND	0.23	0.97	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
2,6-Dinitrotoluene	ND	0.26	0.97	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Fluoranthene	ND	0.22	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Fluorene	ND	0.22	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Hexachlorobenzene	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Hexachlorobutadiene	ND	0.27	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Hexachlorocyclopentadiene	ND	0.22	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Hexachloroethane	ND	0.22	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Indeno(1,2,3-cd)pyrene	ND	0.19	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
Isophorone	ND	0.29	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
1-Methylnaphthalene	ND	0.29	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424
2-Methylnaphthalene	ND	0.28	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	1 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 58 of 123

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SMWU 13-3 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 4:50:00 PM

 Lab ID:
 1910D16-012
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed F	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.23	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	48424
3+4-Methylphenol	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
N-Nitrosodi-n-propylamine	ND	0.28	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
N-Nitrosodiphenylamine	ND	0.20	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Naphthalene	ND	0.29	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
2-Nitroaniline	ND	0.28	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
3-Nitroaniline	ND	0.27	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
4-Nitroaniline	ND	0.25	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Nitrobenzene	ND	0.27	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	48424
2-Nitrophenol	ND	0.27	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
4-Nitrophenol	ND	0.26	0.49	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Pentachlorophenol	ND	0.20	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Phenanthrene	ND	0.21	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Phenol	ND	0.24	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Pyrene	ND	0.18	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Pyridine	ND	0.23	0.78	mg/Kg	1	10/30/2019 6:32:09 PM	48424
1,2,4-Trichlorobenzene	ND	0.30	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
2,4,5-Trichlorophenol	ND	0.25	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
2,4,6-Trichlorophenol	ND	0.20	0.39	mg/Kg	1	10/30/2019 6:32:09 PM	48424
Surr: 2-Fluorophenol	66.7	2	26.7-85.9	%Rec	1	10/30/2019 6:32:09 PM	48424
Surr: Phenol-d5	69.6		18.5-101	%Rec	1	10/30/2019 6:32:09 PM	48424
Surr: 2,4,6-Tribromophenol	62.1	;	35.8-85.6	%Rec	1	10/30/2019 6:32:09 PM	48424
Surr: Nitrobenzene-d5	73.3	4	40.8-95.2	%Rec	1	10/30/2019 6:32:09 PM	48424
Surr: 2-Fluorobiphenyl	61.4	;	34.7-85.2	%Rec	1	10/30/2019 6:32:09 PM	48424
Surr: 4-Terphenyl-d14	70.7	(37.4-91.3	%Rec	1	10/30/2019 6:32:09 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0022	0.014	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Toluene	ND	0.0026	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Ethylbenzene	ND	0.0016	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0064	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,2,4-Trimethylbenzene	ND	0.0025	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,3,5-Trimethylbenzene	ND	0.0026	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,2-Dichloroethane (EDC)	ND	0.0028	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,2-Dibromoethane (EDB)	ND	0.0025	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Naphthalene	ND	0.0054	0.054	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1-Methylnaphthalene	ND	0.016	0.11	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Acetone	ND	0.023	0.41	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Bromobenzene	ND	0.0026	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 59 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

1910D16-012

Project:

Lab ID:

Client Sample ID: SMWU 13-3 (8-10')

Received Date: 10/24/2019 9:15:00 AM

SWMU 13 Collection Date: 10/22/2019 4:50:00 PM

Matrix: MEOH (SOIL)

Result Analyses **MDL Qual Units** DF **Date Analyzed Batch ID EPA METHOD 8260B: VOLATILES** Analyst: DJF Bromodichloromethane ND 0.0025 0.027 mg/Kg 10/26/2019 3:15:56 AM S63992 1 **Bromoform** ND 0.0025 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 ND S63992 Bromomethane 0.0066 0.082 mg/Kg 1 10/26/2019 3:15:56 AM 0.033 J S63992 2-Butanone 0.031 0.27 mg/Kg 1 10/26/2019 3:15:56 AM Carbon disulfide ND 0.0090 0.27 mg/Kg 1 S63992 10/26/2019 3:15:56 AM Carbon tetrachloride ND 0.0026 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Chlorobenzene ND 0.0035 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Chloroethane ND 0.0040 0.054 mg/Kg 1 10/26/2019 3:15:56 AM S63992 ND Chloroform 0.0022 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 ND S63992 Chloromethane 0.0026 0.082 mg/Kg 1 10/26/2019 3:15:56 AM 2-Chlorotoluene ND 0.0024 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 4-Chlorotoluene ND 0.0022 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 cis-1,2-DCE ND 0.0037 0.027 1 S63992 mg/Kg 10/26/2019 3:15:56 AM ND cis-1,3-Dichloropropene 0.0023 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 1.2-Dibromo-3-chloropropane ND 0.0028 0.054 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Dibromochloromethane ND 0.0019 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Dibromomethane ND 0.0029 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 ND S63992 1,2-Dichlorobenzene 0.0022 0.027 mg/Kg 1 10/26/2019 3:15:56 AM 1,3-Dichlorobenzene ND 0.0024 0.027 10/26/2019 3:15:56 AM S63992 mg/Kg 1 1,4-Dichlorobenzene ND 0.0023 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Dichlorodifluoromethane ND 0.027 10/26/2019 3:15:56 AM S63992 0.0063 mg/Kg 1 1.1-Dichloroethane ND 0.0017 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 ND 0.027 10/26/2019 3:15:56 AM S63992 1,1-Dichloroethene 0.011 mg/Kg 1 ND 0.0020 0.027 10/26/2019 3:15:56 AM S63992 1,2-Dichloropropane mg/Kg 1 ND S63992 1,3-Dichloropropane 0.0029 0.027 mg/Kg 1 10/26/2019 3:15:56 AM 2,2-Dichloropropane ND 0.0088 0.054 mg/Kg 1 10/26/2019 3:15:56 AM S63992 1,1-Dichloropropene ND 0.0025 0.054 mg/Kg 10/26/2019 3:15:56 AM S63992 1 Hexachlorobutadiene ND 0.0028 0.054 mg/Kg 1 10/26/2019 3:15:56 AM S63992 ND S63992 2-Hexanone 0.0045 0.27 mg/Kg 1 10/26/2019 3:15:56 AM ND 0.0020 0.027 10/26/2019 3:15:56 AM S63992 Isopropylbenzene mg/Kg 1 4-Isopropyltoluene ND 0.0023 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 4-Methyl-2-pentanone ND 0.0051 0.27 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Methylene chloride ND 0.0048 0.082 mg/Kg 1 10/26/2019 3:15:56 AM S63992 n-Butylbenzene ND 0.0025 0.082 10/26/2019 3:15:56 AM S63992 mg/Kg 1 n-Propylbenzene ND 0.0022 0.027 10/26/2019 3:15:56 AM S63992 mg/Kg 1 ND sec-Butylbenzene 0.0031 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 Styrene ND 0.0021 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992 mg/Kg tert-Butylbenzene ND 10/26/2019 3:15:56 AM S63992 0.0026 0.027 1 1,1,1,2-Tetrachloroethane ND 0.0018 0.027 mg/Kg 1 10/26/2019 3:15:56 AM S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 60 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Project:

SWMU 13

Client Sample ID: SMWU 13-3 (8-10')

Collection Date: 10/22/2019 4:50:00 PM

Lab ID: 1910D16-012 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	_
1,1,2,2-Tetrachloroethane	ND	0.0028	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Tetrachloroethene (PCE)	ND	0.0022	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
trans-1,2-DCE	ND	0.0025	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
trans-1,3-Dichloropropene	ND	0.0029	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,2,3-Trichlorobenzene	ND	0.0024	0.054	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,2,4-Trichlorobenzene	ND	0.0027	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,1,1-Trichloroethane	ND	0.0025	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,1,2-Trichloroethane	ND	0.0019	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Trichloroethene (TCE)	ND	0.0031	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Trichlorofluoromethane	ND	0.0092	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
1,2,3-Trichloropropane	ND	0.0044	0.054	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Vinyl chloride	ND	0.0018	0.027	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Xylenes, Total	ND	0.0069	0.054	mg/Kg	1	10/26/2019 3:15:56 AM	S63992
Surr: Dibromofluoromethane	108		70-130	%Rec	1	10/26/2019 3:15:56 AM	S63992
Surr: 1,2-Dichloroethane-d4	97.9		70-130	%Rec	1	10/26/2019 3:15:56 AM	S63992
Surr: Toluene-d8	99.8		70-130	%Rec	1	10/26/2019 3:15:56 AM	S63992
Surr: 4-Bromofluorobenzene	91.3		70-130	%Rec	1	10/26/2019 3:15:56 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-3 (14-15.25')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 4:55:00 PM

 Lab ID:
 1910D16-013
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.1	1.8	8.8	J	mg/Kg	1	10/29/2019 3:10:52 PM	48409
Motor Oil Range Organics (MRO)	ND	44	44		mg/Kg	1	10/29/2019 3:10:52 PM	48409
Surr: DNOP	108	0	70-130		%Rec	1	10/29/2019 3:10:52 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.69	2.3		mg/Kg	1	10/27/2019 2:50:33 PM	G63989
Surr: BFB	114	0	77.4-118		%Rec	1	10/27/2019 2:50:33 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0059	0.0017	0.031	J	mg/Kg	1	11/1/2019 12:43:33 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Barium	180	0.046	0.20		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Beryllium	1.2	0.018	0.30		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Chromium	12	0.16	0.60		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Cobalt	4.8	0.21	0.60		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Iron	16000	73	250		mg/Kg	100	11/12/2019 1:18:05 PM	48420
Lead	1.0	0.49	0.50		mg/Kg	2	11/12/2019 3:27:04 PM	48420
Manganese	310	0.042	0.20		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Nickel	10	0.30	1.0		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 12:13:03 P	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Vanadium	20	0.13	5.0		mg/Kg	2	11/7/2019 5:23:04 PM	48420
Zinc	16	0.79	5.0		mg/Kg	2	11/7/2019 5:23:04 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Aniline	ND	0.13	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Anthracene	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benz(a)anthracene	ND	0.098	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benzo(a)pyrene	ND	0.090	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benzo(b)fluoranthene	ND	0.090	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benzo(g,h,i)perylene	ND	0.087	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benzo(k)fluoranthene	ND	0.092	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benzoic acid	ND	0.10	0.51		mg/Kg	1	10/30/2019 7:00:49 PM	48424
Benzyl alcohol	ND	0.13	0.20		mg/Kg	1	10/30/2019 7:00:49 PM	48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 62 of 123

Date Reported: 11/25/2019

Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

SWMU 13

Project:

Client Sample ID: SWMU 13-3 (14-15.25')

Collection Date: 10/22/2019 4:55:00 PM

Lab ID: 1910D16-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	<u></u>
Bis(2-chloroethoxy)methane	ND	0.15	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Bis(2-chloroisopropyl)ether	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Bis(2-ethylhexyl)phthalate	0.31	0.15	0.51	J	mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
4-Bromophenyl phenyl ether	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Carbazole	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
4-Chloro-3-methylphenol	ND	0.16	0.51		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
4-Chloroaniline	ND	0.14	0.51		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2-Chloronaphthalene	ND	0.13	0.25		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2-Chlorophenol	ND	0.13	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Chrysene	ND	0.089	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Di-n-butyl phthalate	ND	0.15	0.41		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Di-n-octyl phthalate	ND	0.10	0.41		mg/Kg	1	10/30/2019 7:00:49 F	M 48424
Dibenz(a,h)anthracene	ND	0.092	0.20		mg/Kg	1	10/30/2019 7:00:49 F	M 48424
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	10/30/2019 7:00:49 F	M 48424
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
1,3-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
1,4-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
3,3´-Dichlorobenzidine	ND	0.090	0.25		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Dimethyl phthalate	ND	0.14	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2,4-Dichlorophenol	ND	0.12	0.41		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2,4-Dimethylphenol	ND	0.11	0.30		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
4,6-Dinitro-2-methylphenol	ND	0.094	0.41		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2,4-Dinitrophenol	ND	0.074	0.51		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2,4-Dinitrotoluene	ND	0.12	0.51		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2,6-Dinitrotoluene	ND	0.13	0.51		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Fluoranthene	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Fluorene	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Hexachlorobenzene	ND	0.13	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Hexachlorocyclopentadiene	ND	0.12	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Indeno(1,2,3-cd)pyrene	ND	0.10	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
Isophorone	ND	0.15	0.41		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424
2-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	10/30/2019 7:00:49 F	PM 48424

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 63 of 123

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT:MarathonClient Sample ID: SWMU 13-3 (14-15.25')Project:SWMU 13Collection Date: 10/22/2019 4:55:00 PM

Lab ID: 1910D16-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.41	mg/Kg	1	10/30/2019 7:00:49 PM	48424
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
N-Nitrosodiphenylamine	ND	0.11	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Naphthalene	ND	0.15	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
4-Nitroaniline	ND	0.13	0.41	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Nitrobenzene	ND	0.14	0.41	mg/Kg	1	10/30/2019 7:00:49 PM	48424
2-Nitrophenol	ND	0.14	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
4-Nitrophenol	ND	0.14	0.25	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Pentachlorophenol	ND	0.10	0.41	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Phenanthrene	ND	0.11	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Phenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Pyrene	ND	0.095	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Pyridine	ND	0.12	0.41	mg/Kg	1	10/30/2019 7:00:49 PM	48424
1,2,4-Trichlorobenzene	ND	0.16	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
2,4,6-Trichlorophenol	ND	0.11	0.20	mg/Kg	1	10/30/2019 7:00:49 PM	48424
Surr: 2-Fluorophenol	58.9		26.7-85.9	%Rec	1	10/30/2019 7:00:49 PM	48424
Surr: Phenol-d5	62.4		18.5-101	%Rec	1	10/30/2019 7:00:49 PM	48424
Surr: 2,4,6-Tribromophenol	57.0		35.8-85.6	%Rec	1	10/30/2019 7:00:49 PM	48424
Surr: Nitrobenzene-d5	61.5		40.8-95.2	%Rec	1	10/30/2019 7:00:49 PM	48424
Surr: 2-Fluorobiphenyl	52.2		34.7-85.2	%Rec	1	10/30/2019 7:00:49 PM	48424
Surr: 4-Terphenyl-d14	56.1		37.4-91.3	%Rec	1	10/30/2019 7:00:49 PM	48424
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0019	0.011	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Toluene	ND	0.0022	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Ethylbenzene	ND	0.0013	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0054	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,2,4-Trimethylbenzene	ND	0.0021	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0022	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0023	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0021	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Naphthalene	ND	0.0046	0.046	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1-Methylnaphthalene	ND	0.013	0.091	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
2-Methylnaphthalene	ND	0.0099	0.091	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Acetone	ND	0.019	0.34	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Bromobenzene	ND	0.0022	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 64 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Project:

SWMU 13

Client Sample ID: SWMU 13-3 (14-15.25')

Collection Date: 10/22/2019 4:55:00 PM

Lab ID: 1910D16-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0021	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Bromoform	ND	0.0021	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Bromomethane	ND	0.0055	0.068		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
2-Butanone	ND	0.026	0.23		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Carbon disulfide	ND	0.0075	0.23		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Carbon tetrachloride	ND	0.0022	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Chlorobenzene	ND	0.0029	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Chloroethane	ND	0.0034	0.046		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Chloroform	ND	0.0018	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Chloromethane	ND	0.0022	0.068		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
2-Chlorotoluene	ND	0.0020	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
4-Chlorotoluene	ND	0.0019	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
cis-1,2-DCE	ND	0.0031	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
cis-1,3-Dichloropropene	ND	0.0019	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0023	0.046		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Dibromochloromethane	ND	0.0016	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Dibromomethane	ND	0.0024	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,2-Dichlorobenzene	ND	0.0019	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,3-Dichlorobenzene	ND	0.0020	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,4-Dichlorobenzene	ND	0.0019	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Dichlorodifluoromethane	ND	0.0053	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,1-Dichloroethane	ND	0.0015	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,1-Dichloroethene	ND	0.0091	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,2-Dichloropropane	ND	0.0017	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,3-Dichloropropane	ND	0.0025	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
2,2-Dichloropropane	ND	0.0074	0.046		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,1-Dichloropropene	ND	0.0021	0.046		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Hexachlorobutadiene	ND	0.0023	0.046		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
2-Hexanone	ND	0.0038	0.23		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Isopropylbenzene	ND	0.0016	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
4-Isopropyltoluene	ND	0.0019	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
4-Methyl-2-pentanone	ND	0.0043	0.23		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Methylene chloride	0.0043	0.0040	0.068	J	mg/Kg	1	10/28/2019 1:48:28 PM	S64028
n-Butylbenzene	ND	0.0021	0.068		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
n-Propylbenzene	ND	0.0018	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
sec-Butylbenzene	ND	0.0026	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
Styrene	ND	0.0018	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
tert-Butylbenzene	ND	0.0021	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0015	0.023		mg/Kg	1	10/28/2019 1:48:28 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 65 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Project:

SWMU 13

Client Sample ID: SWMU 13-3 (14-15.25')

Collection Date: 10/22/2019 4:55:00 PM

Lab ID: 1910D16-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0023	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
Tetrachloroethene (PCE)	ND	0.0018	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
trans-1,2-DCE	ND	0.0021	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
trans-1,3-Dichloropropene	ND	0.0024	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
1,2,3-Trichlorobenzene	ND	0.0020	0.046	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
1,2,4-Trichlorobenzene	ND	0.0023	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
1,1,1-Trichloroethane	ND	0.0021	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
1,1,2-Trichloroethane	ND	0.0016	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
Trichloroethene (TCE)	ND	0.0026	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
Trichlorofluoromethane	ND	0.0077	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
1,2,3-Trichloropropane	ND	0.0037	0.046	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
Vinyl chloride	ND	0.0015	0.023	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
Xylenes, Total	ND	0.0057	0.046	mg/Kg	1	10/28/2019 1:48:28 PM	1 S64028
Surr: Dibromofluoromethane	102		70-130	%Rec	1	10/28/2019 1:48:28 PM	1 S64028
Surr: 1,2-Dichloroethane-d4	90.1		70-130	%Rec	1	10/28/2019 1:48:28 PM	1 S64028
Surr: Toluene-d8	104		70-130	%Rec	1	10/28/2019 1:48:28 PM	1 S64028
Surr: 4-Bromofluorobenzene	97.7		70-130	%Rec	1	10/28/2019 1:48:28 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-3 (15.25-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 5:05:00 PM

 Lab ID:
 1910D16-014
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2.1	1.8	8.9	J	mg/Kg	1	10/29/2019 3:19:59 PM	48409
Motor Oil Range Organics (MRO)	ND	44	44		mg/Kg	1	10/29/2019 3:19:59 PM	48409
Surr: DNOP	105	0	70-130		%Rec	1	10/29/2019 3:19:59 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.85	2.8		mg/Kg	1	10/27/2019 3:13:40 PM	G63989
Surr: BFB	96.5	0	77.4-118		%Rec	1	10/27/2019 3:13:40 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	ND	0.0018	0.033		mg/Kg	1	11/4/2019 5:59:32 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Barium	190	0.047	0.20		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Beryllium	0.59	0.019	0.30		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Chromium	4.8	0.16	0.61		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Cobalt	3.0	0.21	0.61		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Iron	8000	73	250		mg/Kg	100	11/12/2019 1:19:38 PM	48420
Lead	1.7	0.49	0.50		mg/Kg	2	11/12/2019 3:33:17 PM	48420
Manganese	320	0.042	0.20		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Nickel	5.1	0.30	1.0		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 12:14:33 P	48420
Silver	ND	0.065	0.50		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Vanadium	11	0.13	5.0		mg/Kg	2	11/7/2019 5:24:39 PM	48420
Zinc	9.2	0.80	5.0		mg/Kg	2	11/7/2019 5:24:39 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Aniline	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Anthracene	ND	0.10	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Azobenzene	ND	0.14	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benz(a)anthracene	ND	0.093	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benzo(b)fluoranthene	ND	0.085	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benzoic acid	ND	0.10	0.48		mg/Kg	1	10/31/2019 5:18:20 PM	48455
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 67 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (15.25-16')

 Project:
 SWMU 13
 Collection Date: 10/22/2019 5:05:00 PM

 Lab ID:
 1910D16-014
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (;
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.48		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Butyl benzyl phthalate	ND	0.099	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Carbazole	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
4-Chloro-3-methylphenol	ND	0.15	0.48		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
4-Chloroaniline	ND	0.14	0.48		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Chrysene	ND	0.085	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Di-n-butyl phthalate	0.15	0.14	0.39	J	mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Di-n-octyl phthalate	ND	0.099	0.39		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
3,3'-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
4,6-Dinitro-2-methylphenol	ND	0.089	0.39		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2,4-Dinitrophenol	ND	0.070	0.48		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2,4-Dinitrotoluene	ND	0.11	0.48		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2,6-Dinitrotoluene	ND	0.13	0.48		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Fluoranthene	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Fluorene	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Hexachlorobutadiene	ND	0.13	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.096	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
Isophorone	ND	0.14	0.39		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
1-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	10/31/2019 5:18:20 PI	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 68 of 123

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (15.25-16')

Project: SWMU 13

Collection Date: 10/22/2019 5:05:00 PM

Lab ID: 1910D16-014 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.11	0.39	mg/Kg	1	10/31/2019 5:18:20 PM	48455
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Naphthalene	ND	0.15	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
2-Nitroaniline	ND	0.14	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Nitrobenzene	ND	0.13	0.39	mg/Kg	1	10/31/2019 5:18:20 PM	48455
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Phenanthrene	ND	0.10	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Phenol	ND	0.12	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Pyrene	ND	0.091	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Pyridine	ND	0.12	0.39	mg/Kg	1	10/31/2019 5:18:20 PM	48455
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
2,4,5-Trichlorophenol	ND	0.13	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	10/31/2019 5:18:20 PM	48455
Surr: 2-Fluorophenol	63.1		26.7-85.9	%Rec	1	10/31/2019 5:18:20 PM	48455
Surr: Phenol-d5	69.0		18.5-101	%Rec	1	10/31/2019 5:18:20 PM	48455
Surr: 2,4,6-Tribromophenol	70.4		35.8-85.6	%Rec	1	10/31/2019 5:18:20 PM	48455
Surr: Nitrobenzene-d5	68.7		40.8-95.2	%Rec	1	10/31/2019 5:18:20 PM	48455
Surr: 2-Fluorobiphenyl	62.2		34.7-85.2	%Rec	1	10/31/2019 5:18:20 PM	48455
Surr: 4-Terphenyl-d14	85.0		37.4-91.3	%Rec	1	10/31/2019 5:18:20 PM	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0023	0.014	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Toluene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Ethylbenzene	ND	0.0016	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0067	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
1,2,4-Trimethylbenzene	ND	0.0026	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0029	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0026	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Naphthalene	ND	0.0056	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
1-Methylnaphthalene	ND	0.016	0.11	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Acetone	ND	0.023	0.42	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Bromobenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 69 of 123

Lab Order 1910D16

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (15.25-16')

Collection Date: 10/22/2019 5:05:00 PM

Project: SWMU 13 1910D16-014 Lab ID: Matrix: MEOH (SOIL) Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0026	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Bromoform	ND	0.0025	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Bromomethane	ND	0.0068	0.085	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
2-Butanone	ND	0.033	0.28	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Carbon disulfide	ND	0.0093	0.28	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Carbon tetrachloride	ND	0.0027	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Chlorobenzene	ND	0.0036	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Chloroethane	ND	0.0042	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Chloroform	ND	0.0023	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Chloromethane	ND	0.0027	0.085	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
2-Chlorotoluene	ND	0.0025	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
4-Chlorotoluene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
cis-1,2-DCE	ND	0.0039	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
cis-1,3-Dichloropropene	ND	0.0024	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,2-Dibromo-3-chloropropane	ND	0.0029	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Dibromochloromethane	ND	0.0020	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Dibromomethane	ND	0.0030	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,2-Dichlorobenzene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,3-Dichlorobenzene	ND	0.0025	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,4-Dichlorobenzene	ND	0.0024	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Dichlorodifluoromethane	ND	0.0065	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,1-Dichloroethane	ND	0.0018	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,1-Dichloroethene	ND	0.011	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,2-Dichloropropane	ND	0.0021	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,3-Dichloropropane	ND	0.0031	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
2,2-Dichloropropane	ND	0.0092	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,1-Dichloropropene	ND	0.0026	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Hexachlorobutadiene	ND	0.0029	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
2-Hexanone	ND	0.0047	0.28	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Isopropylbenzene	ND	0.0020	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
4-Isopropyltoluene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
4-Methyl-2-pentanone	ND	0.0053	0.28	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
Methylene chloride	ND	0.0050	0.085	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
n-Butylbenzene	ND	0.0026	0.085	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
n-Propylbenzene	ND	0.0022	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
sec-Butylbenzene	ND	0.0032	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	S64028
Styrene	ND	0.0022	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
tert-Butylbenzene	ND	0.0027	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028
1,1,1,2-Tetrachloroethane	ND	0.0019	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 70 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-3 (15.25-16')

Project: SWMU 13

Collection Date: 10/22/2019 5:05:00 PM

Lab ID: 1910D16-014 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0029	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
Tetrachloroethene (PCE)	ND	0.0023	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
trans-1,2-DCE	ND	0.0026	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
trans-1,3-Dichloropropene	ND	0.0030	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
1,2,3-Trichlorobenzene	ND	0.0025	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
1,2,4-Trichlorobenzene	ND	0.0028	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
1,1,1-Trichloroethane	ND	0.0025	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
1,1,2-Trichloroethane	ND	0.0020	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
Trichloroethene (TCE)	ND	0.0033	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
Trichlorofluoromethane	ND	0.0096	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
1,2,3-Trichloropropane	ND	0.0046	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
Vinyl chloride	ND	0.0018	0.028	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
Xylenes, Total	ND	0.0071	0.056	mg/Kg	1	10/28/2019 2:17:48 PM	// S64028
Surr: Dibromofluoromethane	101		70-130	%Rec	1	10/28/2019 2:17:48 PM	// S64028
Surr: 1,2-Dichloroethane-d4	92.0		70-130	%Rec	1	10/28/2019 2:17:48 PM	// S64028
Surr: Toluene-d8	106		70-130	%Rec	1	10/28/2019 2:17:48 PM	/ S64028
Surr: 4-Bromofluorobenzene	95.8		70-130	%Rec	1	10/28/2019 2:17:48 PM	// S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP01

Project: SWMU 13 Collection Date: 10/22/2019

Lab ID: 1910D16-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	100	1.8	8.9		mg/Kg	1	10/30/2019 3:56:25 PM	48409
Motor Oil Range Organics (MRO)	160	44	44		mg/Kg	1	10/30/2019 3:56:25 PM	48409
Surr: DNOP	83.7	0	70-130		%Rec	1	10/30/2019 3:56:25 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.2	4.0		mg/Kg	1	10/27/2019 3:36:37 PM	G63989
Surr: BFB	86.2	0	77.4-118		%Rec	1	10/27/2019 3:36:37 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.14	0.0018	0.032		mg/Kg	1	11/1/2019 12:45:33 PM	48512
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Barium	290	0.047	0.20		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Beryllium	1.4	0.018	0.30		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Chromium	40	0.16	0.60		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Cobalt	6.6	0.21	0.60		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Iron	22000	73	250		mg/Kg	100	11/12/2019 1:21:23 PM	48420
Lead	1.0	0.49	0.50		mg/Kg	2	11/12/2019 3:34:51 PM	48420
Manganese	400	0.042	0.20		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Nickel	14	0.30	1.0		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Selenium	ND	2.5	5.0		mg/Kg	2	11/12/2019 12:16:03 P	48420
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Vanadium	30	0.13	5.0		mg/Kg	2	11/7/2019 5:26:12 PM	48420
Zinc	45	0.79	5.0		mg/Kg	2	11/7/2019 5:26:12 PM	48420
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.60	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Acenaphthylene	ND	0.55	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Aniline	ND	0.64	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Anthracene	ND	0.53	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Azobenzene	ND	0.70	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benz(a)anthracene	ND	0.48	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benzo(a)pyrene	ND	0.44	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benzo(b)fluoranthene	ND	0.44	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benzo(g,h,i)perylene	ND	0.43	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benzo(k)fluoranthene	ND	0.45	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benzoic acid	ND	0.51	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Benzyl alcohol	ND	0.62	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: DUP01

Project: SWMU 13 Collection Date: 10/22/2019

Lab ID: 1910D16-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (;
Bis(2-chloroethoxy)methane	ND	0.74	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Bis(2-chloroethyl)ether	ND	0.61	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Bis(2-chloroisopropyl)ether	ND	0.57	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.72	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
4-Bromophenyl phenyl ether	ND	0.59	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Butyl benzyl phthalate	ND	0.51	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Carbazole	ND	0.58	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
4-Chloro-3-methylphenol	ND	0.76	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
4-Chloroaniline	ND	0.71	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2-Chloronaphthalene	ND	0.62	1.2	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2-Chlorophenol	ND	0.62	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
4-Chlorophenyl phenyl ether	ND	0.54	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Chrysene	ND	0.44	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Di-n-butyl phthalate	ND	0.74	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Di-n-octyl phthalate	ND	0.51	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Dibenz(a,h)anthracene	ND	0.45	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Dibenzofuran	ND	0.65	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
1,2-Dichlorobenzene	ND	0.60	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
1,3-Dichlorobenzene	ND	0.52	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
1,4-Dichlorobenzene	ND	0.53	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
3,3´-Dichlorobenzidine	ND	0.44	1.2	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Diethyl phthalate	ND	0.71	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Dimethyl phthalate	ND	0.66	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2,4-Dichlorophenol	ND	0.58	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2,4-Dimethylphenol	ND	0.55	1.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
4,6-Dinitro-2-methylphenol	ND	0.46	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2,4-Dinitrophenol	ND	0.36	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2,4-Dinitrotoluene	ND	0.59	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2,6-Dinitrotoluene	ND	0.66	2.5	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Fluoranthene	ND	0.56	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Fluorene	ND	0.57	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Hexachlorobenzene	ND	0.62	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Hexachlorobutadiene	ND	0.69	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Hexachlorocyclopentadiene	ND	0.57	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Hexachloroethane	ND	0.56	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.50	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
Isophorone	ND	0.73	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
1-Methylnaphthalene	ND	0.75	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455
2-Methylnaphthalene	ND	0.73	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PI	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 73 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP01

Project: SWMU 13 Collection Date: 10/22/2019

Lab ID: 1910D16-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.59	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
3+4-Methylphenol	ND	0.61	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
N-Nitrosodi-n-propylamine	ND	0.71	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
N-Nitrosodiphenylamine	ND	0.52	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Naphthalene	ND	0.75	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
2-Nitroaniline	ND	0.71	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
3-Nitroaniline	ND	0.69	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
4-Nitroaniline	ND	0.64	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Nitrobenzene	ND	0.69	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
2-Nitrophenol	ND	0.68	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
4-Nitrophenol	ND	0.68	1.2	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Pentachlorophenol	ND	0.51	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Phenanthrene	ND	0.54	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Phenol	ND	0.62	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Pyrene	ND	0.47	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	48455
Pyridine	ND	0.60	2.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
1,2,4-Trichlorobenzene	ND	0.77	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
2,4,5-Trichlorophenol	ND	0.65	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
2,4,6-Trichlorophenol	ND	0.52	1.0	D	mg/Kg	1	10/31/2019 6:44:54 PM	l 48455
Surr: 2-Fluorophenol	61.2		26.7-85.9	D	%Rec	1	10/31/2019 6:44:54 PM	l 48455
Surr: Phenol-d5	67.9		18.5-101	D	%Rec	1	10/31/2019 6:44:54 PM	l 48455
Surr: 2,4,6-Tribromophenol	67.8		35.8-85.6	D	%Rec	1	10/31/2019 6:44:54 PM	l 48455
Surr: Nitrobenzene-d5	62.8		40.8-95.2	D	%Rec	1	10/31/2019 6:44:54 PM	l 48455
Surr: 2-Fluorobiphenyl	68.1		34.7-85.2	D	%Rec	1	10/31/2019 6:44:54 PM	48455
Surr: 4-Terphenyl-d14	90.1		37.4-91.3	D	%Rec	1	10/31/2019 6:44:54 PM	l 48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0032	0.020		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Toluene	ND	0.0038	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Ethylbenzene	ND	0.0023	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Methyl tert-butyl ether (MTBE)	ND	0.0094	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2,4-Trimethylbenzene	ND	0.0036	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,3,5-Trimethylbenzene	ND	0.0038	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2-Dichloroethane (EDC)	ND	0.0040	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2-Dibromoethane (EDB)	ND	0.0036	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Naphthalene	ND	0.0079	0.079		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1-Methylnaphthalene	ND	0.023	0.16		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
2-Methylnaphthalene	ND	0.017	0.16		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Acetone	ND	0.033	0.59		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Bromobenzene	ND	0.0038	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 74 of 123

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: DUP01

 Project:
 SWMU 13
 Collection Date: 10/22/2019

 Lab ID:
 1910D16-015
 Matrix: MEOH (SOIL)
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0036	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Bromoform	ND	0.0036	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Bromomethane	ND	0.0096	0.12		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
2-Butanone	0.054	0.046	0.40	J	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Carbon disulfide	ND	0.013	0.40		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Carbon tetrachloride	ND	0.0038	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Chlorobenzene	ND	0.0051	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Chloroethane	ND	0.0058	0.079		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Chloroform	ND	0.0032	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Chloromethane	ND	0.0038	0.12		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
2-Chlorotoluene	ND	0.0035	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
4-Chlorotoluene	ND	0.0032	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
cis-1,2-DCE	ND	0.0054	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
cis-1,3-Dichloropropene	ND	0.0033	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2-Dibromo-3-chloropropane	ND	0.0041	0.079		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Dibromochloromethane	ND	0.0028	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Dibromomethane	ND	0.0043	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2-Dichlorobenzene	ND	0.0033	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,3-Dichlorobenzene	ND	0.0034	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,4-Dichlorobenzene	ND	0.0033	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Dichlorodifluoromethane	ND	0.0092	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,1-Dichloroethane	ND	0.0025	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,1-Dichloroethene	ND	0.016	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2-Dichloropropane	ND	0.0029	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,3-Dichloropropane	ND	0.0043	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
2,2-Dichloropropane	ND	0.013	0.079		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,1-Dichloropropene	ND	0.0036	0.079		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Hexachlorobutadiene	ND	0.0040	0.079		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
2-Hexanone	ND	0.0066	0.40		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Isopropylbenzene	ND	0.0029	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
4-Isopropyltoluene	ND	0.0033	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
4-Methyl-2-pentanone	ND	0.0075	0.40		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Methylene chloride	ND	0.0070	0.12		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
n-Butylbenzene	ND	0.0037	0.12		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
n-Propylbenzene	ND	0.0032	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
sec-Butylbenzene	ND	0.0045	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Styrene	ND	0.0031	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
tert-Butylbenzene	ND	0.0037	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,1,1,2-Tetrachloroethane	ND	0.0027	0.040		mg/Kg	1	10/26/2019 4:42:48 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 75 of 123

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP01

Project: SWMU 13 Collection Date: 10/22/2019

Lab ID: 1910D16-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0040	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Tetrachloroethene (PCE)	ND	0.0032	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
trans-1,2-DCE	ND	0.0036	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
trans-1,3-Dichloropropene	ND	0.0042	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2,3-Trichlorobenzene	ND	0.0035	0.079	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2,4-Trichlorobenzene	ND	0.0040	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,1,1-Trichloroethane	ND	0.0036	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,1,2-Trichloroethane	ND	0.0028	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Trichloroethene (TCE)	ND	0.0046	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Trichlorofluoromethane	ND	0.013	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
1,2,3-Trichloropropane	ND	0.0064	0.079	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Vinyl chloride	ND	0.0026	0.040	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Xylenes, Total	ND	0.010	0.079	mg/Kg	1	10/26/2019 4:42:48 AM	S63992
Surr: Dibromofluoromethane	105		70-130	%Rec	1	10/26/2019 4:42:48 AM	S63992
Surr: 1,2-Dichloroethane-d4	93.5		70-130	%Rec	1	10/26/2019 4:42:48 AM	S63992
Surr: Toluene-d8	100		70-130	%Rec	1	10/26/2019 4:42:48 AM	S63992
Surr: 4-Bromofluorobenzene	91.1		70-130	%Rec	1	10/26/2019 4:42:48 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 76 of 123

Date Reported: 11/25/2019

Lab Order 1910D16

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: SWMU 13 Collection Date:

Lab ID: 1910D16-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0041	0.025	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Toluene	ND	0.0048	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Naphthalene	ND	0.010	0.10	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Acetone	ND	0.041	0.75	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Bromodichloromethane	ND	0.0046	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Bromoform	ND	0.0045	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Bromomethane	ND	0.012	0.15	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
2-Butanone	ND	0.058	0.50	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Carbon disulfide	ND	0.017	0.50	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Chloroethane	ND	0.0074	0.10	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Chloroform	ND	0.0040	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Chloromethane	ND	0.0048	0.15	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
2-Chlorotoluene	ND	0.0044	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,4-Dichlorobenzene	ND	0.0042	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
2,2-Dichloropropane	ND	0.016	0.10	mg/Kg	1	10/26/2019 5:11:42 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 77 of 123

Date Reported: 11/25/2019

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: SWMU 13 Collection Date:

Lab ID: 1910D16-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	_
1,1-Dichloropropene	ND	0.0046	0.10		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Hexachlorobutadiene	ND	0.0051	0.10		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
2-Hexanone	ND	0.0083	0.50		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Isopropylbenzene	ND	0.0036	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
4-Isopropyltoluene	ND	0.0041	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
4-Methyl-2-pentanone	ND	0.0094	0.50		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Methylene chloride	0.011	0.0088	0.15	J	mg/Kg	1	10/26/2019 5:11:42 AM	S63992
n-Butylbenzene	ND	0.0047	0.15		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
n-Propylbenzene	ND	0.0040	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
sec-Butylbenzene	ND	0.0056	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Styrene	ND	0.0039	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
tert-Butylbenzene	ND	0.0047	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Tetrachloroethene (PCE)	ND	0.0040	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
trans-1,2-DCE	ND	0.0046	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
trans-1,3-Dichloropropene	ND	0.0053	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2,3-Trichlorobenzene	ND	0.0044	0.10		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2,4-Trichlorobenzene	ND	0.0051	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,1,1-Trichloroethane	ND	0.0045	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,1,2-Trichloroethane	ND	0.0035	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Trichloroethene (TCE)	ND	0.0058	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Trichlorofluoromethane	ND	0.017	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
1,2,3-Trichloropropane	ND	0.0081	0.10		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Vinyl chloride	ND	0.0033	0.050		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Xylenes, Total	ND	0.013	0.10		mg/Kg	1	10/26/2019 5:11:42 AM	S63992
Surr: Dibromofluoromethane	105		70-130		%Rec	1	10/26/2019 5:11:42 AM	S63992
Surr: 1,2-Dichloroethane-d4	92.5		70-130		%Rec	1	10/26/2019 5:11:42 AM	S63992
Surr: Toluene-d8	101		70-130		%Rec	1	10/26/2019 5:11:42 AM	S63992
Surr: 4-Bromofluorobenzene	87.5		70-130		%Rec	1	10/26/2019 5:11:42 AM	S63992

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 78 of 123

Analytical Report

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: EB102219

 Project:
 SWMU 13
 Collection Date: 10/22/2019 2:15:00 PM

 Lab ID:
 1910D16-017
 Matrix: AQUEOUS
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE							Analyst: BRM	
Diesel Range Organics (DRO)	ND	0.35	1.0		mg/L	1	10/30/2019 3:26:14 AM	48422
Motor Oil Range Organics (MRO)	ND	5.0	5.0		mg/L	1	10/30/2019 3:26:14 AM	48422
Surr: DNOP	85.3	0	70-130		%Rec	1	10/30/2019 3:26:14 AM	48422
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.021	0.050		mg/L	1	11/1/2019 3:47:05 PM	R64171
Surr: BFB	94.0	0	65.8-143		%Rec	1	11/1/2019 3:47:05 PM	R64171
EPA METHOD 7470: MERCURY							Analyst: pmf	
Mercury	0.00019	0.000038	0.00020	J	mg/L	1	11/5/2019 2:26:36 PM	48565
EPA 6010B: TOTAL RECOVERABLE META	ALS						Analyst: pmf	
Antimony	ND	0.0081	0.050		mg/L	1	11/14/2019 5:16:57 PM	48486
Arsenic	ND	0.015	0.020		mg/L	1	11/13/2019 7:56:41 PM	
Barium	ND	0.0012	0.020		mg/L	1	11/13/2019 7:56:41 PM	48486
Beryllium	ND	0.00025	0.0030		mg/L	1	11/13/2019 7:56:41 PM	48486
Cadmium	ND	0.00055	0.0020		mg/L	1	11/13/2019 7:56:41 PM	48486
Chromium	ND	0.00086	0.0060		mg/L	1	11/13/2019 7:56:41 PM	48486
Cobalt	ND	0.0012	0.0060		mg/L	1	11/14/2019 5:16:57 PM	48486
Iron	ND	0.0093	0.020		mg/L	1	11/13/2019 7:56:41 PM	48486
Lead	ND	0.0035	0.0050		mg/L	1	11/13/2019 7:56:41 PM	48486
Manganese	ND	0.00041	0.0020		mg/L	1	11/14/2019 5:16:57 PM	48486
Nickel	ND	0.0028	0.010		mg/L	1	11/13/2019 7:56:41 PM	48486
Selenium	ND	0.035	0.050		mg/L	1	11/13/2019 7:56:41 PM	48486
Silver	ND	0.00055	0.0050		mg/L	1	11/13/2019 7:56:41 PM	48486
Vanadium	ND	0.00086	0.050		mg/L	1	11/13/2019 7:56:41 PM	48486
Zinc	ND	0.011	0.020		mg/L	1	11/13/2019 7:56:41 PM	48486
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	3.0	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Acenaphthylene	ND	2.4	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Aniline	ND	3.6	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Anthracene	ND	2.7	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Azobenzene	ND	3.3	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Benz(a)anthracene	ND	3.6	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Benzo(a)pyrene	ND	3.5	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Benzo(b)fluoranthene	ND	3.4	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Benzo(g,h,i)perylene	ND	2.2	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Benzo(k)fluoranthene	ND	2.9	10		μg/L	1	10/31/2019 2:53:33 PM	48439
Benzoic acid	ND	11	20		μg/L	1	10/31/2019 2:53:33 PM	48439
Benzyl alcohol	ND	2.4	10		μg/L	1	10/31/2019 2:53:33 PM	48439

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 79 of 123

Analytical Report

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: EB102219

 Project:
 SWMU 13
 Collection Date: 10/22/2019 2:15:00 PM

 Lab ID:
 1910D16-017
 Matrix: AQUEOUS
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (2
Bis(2-chloroethoxy)methane	ND	2.6	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Bis(2-chloroethyl)ether	ND	3.2	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Bis(2-chloroisopropyl)ether	ND	3.9	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Bis(2-ethylhexyl)phthalate	ND	4.3	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
4-Bromophenyl phenyl ether	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Butyl benzyl phthalate	ND	3.3	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Carbazole	ND	2.9	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
4-Chloro-3-methylphenol	ND	3.4	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
4-Chloroaniline	ND	2.3	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
2-Chloronaphthalene	ND	3.1	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
2-Chlorophenol	ND	2.7	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
4-Chlorophenyl phenyl ether	ND	2.4	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Chrysene	ND	2.8	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Di-n-butyl phthalate	ND	2.7	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Di-n-octyl phthalate	ND	3.5	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Dibenz(a,h)anthracene	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Dibenzofuran	ND	3.2	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
1,2-Dichlorobenzene	ND	4.8	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
1,3-Dichlorobenzene	ND	5.3	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
1,4-Dichlorobenzene	ND	4.4	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
3,3'-Dichlorobenzidine	ND	2.8	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Diethyl phthalate	ND	2.9	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Dimethyl phthalate	ND	3.2	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
2,4-Dichlorophenol	ND	2.9	20	μg/L	1	10/31/2019 2:53:33 P	M 48439
2,4-Dimethylphenol	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
4,6-Dinitro-2-methylphenol	ND	2.9	20	μg/L	1	10/31/2019 2:53:33 P	M 48439
2,4-Dinitrophenol	ND	2.6	20	μg/L	1	10/31/2019 2:53:33 P	M 48439
2,4-Dinitrotoluene	ND	3.8	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
2,6-Dinitrotoluene	ND	2.4	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Fluoranthene	ND	2.4	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Fluorene	ND	2.9	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Hexachlorobenzene	ND	3.1	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Hexachlorobutadiene	ND	4.7	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Hexachlorocyclopentadiene	ND	3.6	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Hexachloroethane	ND	4.8	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Indeno(1,2,3-cd)pyrene	ND	2.7	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
Isophorone	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
1-Methylnaphthalene	ND	3.1	10	μg/L	1	10/31/2019 2:53:33 P	M 48439
2-Methylnaphthalene	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 P	M 48439

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 80 of 123

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: EB102219

 Project:
 SWMU 13
 Collection Date: 10/22/2019 2:15:00 PM

 Lab ID:
 1910D16-017
 Matrix: AQUEOUS
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	2.9	10	μg/L	1	10/31/2019 2:53:33 PM	48439
3+4-Methylphenol	ND	3.6	10	μg/L	1	10/31/2019 2:53:33 PM	48439
N-Nitrosodi-n-propylamine	ND	6.5	10	μg/L	1	10/31/2019 2:53:33 PM	48439
N-Nitrosodimethylamine	ND	5.0	10	μg/L	1	10/31/2019 2:53:33 PM	48439
N-Nitrosodiphenylamine	ND	2.4	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Naphthalene	ND	4.1	10	μg/L	1	10/31/2019 2:53:33 PM	48439
2-Nitroaniline	ND	3.2	10	μg/L	1	10/31/2019 2:53:33 PM	48439
3-Nitroaniline	ND	3.2	10	μg/L	1	10/31/2019 2:53:33 PM	48439
4-Nitroaniline	ND	2.7	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Nitrobenzene	ND	2.8	10	μg/L	1	10/31/2019 2:53:33 PM	48439
2-Nitrophenol	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 PM	48439
4-Nitrophenol	ND	7.6	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Pentachlorophenol	ND	2.7	20	μg/L	1	10/31/2019 2:53:33 PM	48439
Phenanthrene	ND	2.8	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Phenol	ND	8.0	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Pyrene	ND	2.5	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Pyridine	ND	9.6	10	μg/L	1	10/31/2019 2:53:33 PM	48439
1,2,4-Trichlorobenzene	ND	4.0	10	μg/L	1	10/31/2019 2:53:33 PM	48439
2,4,5-Trichlorophenol	ND	3.0	10	μg/L	1	10/31/2019 2:53:33 PM	48439
2,4,6-Trichlorophenol	ND	2.3	10	μg/L	1	10/31/2019 2:53:33 PM	48439
Surr: 2-Fluorophenol	51.5	0	15-101	%Rec	1	10/31/2019 2:53:33 PM	48439
Surr: Phenol-d5	37.5	0	15-84.6	%Rec	1	10/31/2019 2:53:33 PM	48439
Surr: 2,4,6-Tribromophenol	69.9	0	27.8-112	%Rec	1	10/31/2019 2:53:33 PM	48439
Surr: Nitrobenzene-d5	75.7	0	33-113	%Rec	1	10/31/2019 2:53:33 PM	48439
Surr: 2-Fluorobiphenyl	69.5	0	26.6-107	%Rec	1	10/31/2019 2:53:33 PM	48439
Surr: 4-Terphenyl-d14	51.7	0	18.7-148	%Rec	1	10/31/2019 2:53:33 PM	48439
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Benzene	ND	0.17	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Toluene	ND	0.35	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Ethylbenzene	ND	0.13	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Naphthalene	ND	0.28	2.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Acetone	ND	1.2	10	μg/L	1	10/30/2019 6:18:25 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order **1910D16**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/25/2019

CLIENT: Marathon Client Sample ID: EB102219

 Project:
 SWMU 13
 Collection Date: 10/22/2019 2:15:00 PM

 Lab ID:
 1910D16-017
 Matrix: AQUEOUS
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Bromobenzene	ND	0.24	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Bromodichloromethane	ND	0.13	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Bromoform	ND	0.29	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Bromomethane	ND	0.27	3.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
2-Butanone	ND	2.1	10	μg/L	1	10/30/2019 6:18:25 AM	R64075
Carbon disulfide	ND	0.45	10	μg/L	1	10/30/2019 6:18:25 AM	R64075
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Chlorobenzene	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Chloroethane	ND	0.18	2.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Chloroform	ND	0.12	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Chloromethane	ND	0.32	3.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Dibromochloromethane	ND	0.24	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Dibromomethane	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	10/30/2019 6:18:25 AM	
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
2-Hexanone	ND	1.5	10	μg/L	1	10/30/2019 6:18:25 AM	R64075
Isopropylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	10/30/2019 6:18:25 AM	R64075
Methylene Chloride	ND	0.15	3.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
n-Butylbenzene	ND	0.23	3.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
n-Propylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Styrene	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 82 of 123

Analytical Report

Lab Order **1910D16**

Date Reported: 11/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102219

 Project:
 SWMU 13
 Collection Date: 10/22/2019 2:15:00 PM

 Lab ID:
 1910D16-017
 Matrix: AQUEOUS
 Received Date: 10/24/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
1,2,3-Trichloropropane	ND	0.30	2.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Vinyl chloride	ND	0.18	1.0	μg/L	1	10/30/2019 6:18:25 AM	R64075
Xylenes, Total	ND	0.45	1.5	μg/L	1	10/30/2019 6:18:25 AM	R64075
Surr: 1,2-Dichloroethane-d4	95.3	0	70-130	%Rec	1	10/30/2019 6:18:25 AM	R64075
Surr: 4-Bromofluorobenzene	93.7	0	70-130	%Rec	1	10/30/2019 6:18:25 AM	R64075
Surr: Dibromofluoromethane	102	0	70-130	%Rec	1	10/30/2019 6:18:25 AM	R64075
Surr: Toluene-d8	100	0	70-130	%Rec	1	10/30/2019 6:18:25 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 83 of 123

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Project:	SWMU 13										
Sample ID: M	B-48409	SampTyp	e: MI	BLK	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: PI	38	Batch II	D: 48	409	F	RunNo: 6	4033				
Prep Date: 1	0/28/2019	Analysis Date	e: 1 0	0/29/2019	(SeqNo: 2	190866	Units: mg/K	g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga		ND	10								
Motor Oil Range C	organics (MRO)	ND	50	40.00		00.0	70	120			
Surr: DNOP		9.3		10.00		93.3	70	130			
Sample ID: M	B-48409	SampTyp	e: MI	BLK	Tes	tCode: El	PA Method	8015M/D: Die	sel Rang	e Organics	
Client ID: PI	BS	Batch II	D: 48	409	F	RunNo: 6	4033				
Prep Date: 1	0/28/2019	Analysis Date	e: 1 0	0/29/2019	Ş	SeqNo: 2	191318	Units: mg/K	g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	ND	10								
Motor Oil Range C	organics (MRO)	ND	50								
Surr: DNOP		12		10.00		115	70	130			
Sample ID: L0	CS-48409	SampTyp	e: LC	s	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LO	css	Batch II	D: 48	409	F	RunNo: 6	4033				
Prep Date: 1	0/28/2019	Analysis Date	e: 1 0	0/29/2019	9	SeqNo: 2	191319	Units: mg/K	g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	48	10	50.00	0	96.3	63.9	124			
Surr: DNOP		4.9		5.000		97.7	70	130			
Sample ID: 19	10D16-001AMS	SampTyp	e: M \$	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: SI	WMU 13-1 (0-0.5')	Batch II	D: 48	409	F	RunNo: 6	4090				
Prep Date: 1	0/28/2019	Analysis Date	e: 1 0	0/30/2019	5	SeqNo: 2	193139	Units: mg/K	g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	47	9.7	48.50	0	97.7	57	142			
Surr: DNOP		4.5		4.850		92.3	70	130			
Sample ID: 19	10D16-001AMSD	SampTyp	е: М	SD	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: SI	WMU 13-1 (0-0.5')	Batch II	D: 48	409	F	RunNo: 6	4090				
Prep Date: 1	0/28/2019	Analysis Date	e: 1 0	0/30/2019	5	SeqNo: 2	193141	Units: mg/K	g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	50	9.9	49.50	0	102	57	142	6.10	20	
C DNOC		5 0		4.050		400	70	400	•	•	

Qualifiers:

Surr: DNOP

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

5.0

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

102

70

130

0

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

4.950

Page 84 of 123

0

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48422	SampT	SampType: MBLK TestCode: EPA Metho					d 8015M/D: Diesel Range				
Client ID: PBW	Batch	n ID: 48	422	F	RunNo: 6	4033					
Prep Date: 10/28/2019	Analysis D	oate: 10	0/29/2019	5	SeqNo: 2	190876	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	1.0									
Motor Oil Range Organics (MRO)	ND	5.0									
Surr: DNOP	1.3		1.000		125	70	130				
Sample ID: LCS-48422	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	•		
Sample ID: LCS-48422 Client ID: LCSW	•	ype: LC			tCode: E l RunNo: 6		8015M/D: Die	sel Range)		
·	•	n ID: 48 4	422	F		4047	8015M/D: Die Units: mg/L	sel Range	•		
Client ID: LCSW	Batch	n ID: 48 4	422 0/29/2019	F	RunNo: 6	4047		sel Range	RPDLimit	Qual	
Client ID: LCSW Prep Date: 10/28/2019	Batch Analysis D	n ID: 484 Date: 10	422 0/29/2019	F	RunNo: 6 SeqNo: 2	4047 192516	Units: mg/L	J		Qual	
Client ID: LCSW Prep Date: 10/28/2019 Analyte	Batch Analysis D Result	n ID: 48 - Date: 10 PQL	422 0 /29/2019 SPK value	SPK Ref Val	RunNo: 6 SeqNo: 2 %REC	4047 192516 LowLimit	Units: mg/L HighLimit	J		Qual	

CI	ient ID: PBW	Batch	n ID: 48	422	F	RunNo: 6	4047				
Pr	ep Date: 10/28/2019	Analysis D	oate: 10)/29/2019	9	SeqNo: 2	192517	Units: mg/L			
Ar	nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Die	sel Range Organics (DRO)	ND	1.0								
Mot	or Oil Range Organics (MRO)	ND	5.0								
S	urr: DNOP	0.83		1.000		82.7	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Project:	SWMU 13	3									
Sample ID: F	RB	SampT	ype: M E	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: F	PBS	Batch	ID: G6	3989	F	RunNo: 6	3989				
Prep Date:		Analysis D	ate: 10	0/27/2019	S	SeqNo: 2	189138	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	ND	5.0								
Surr: BFB		960		1000		96.3	77.4	118			
Sample ID: 2	2.5UG GRO LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	е	
Client ID: L	_css	Batch	ID: G 6	3989	F	RunNo: 6	3989				
Prep Date:		Analysis D	ate: 10	0/27/2019	8	SeqNo: 2	189139	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	26	5.0	25.00	0	106	80	120			
Surr: BFB		1200		1000		116	77.4	118			
Sample ID: 1	910D16-002AMS	SampT	ype: M \$	5	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	e	
Client ID: S	SWMU13-1 (1.5-2')	Batch	ID: G	3989	F	RunNo: 6	3989				
Prep Date:		Analysis D	ate: 10	0/27/2019	8	SeqNo: 2	189142	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	15	3.2	16.22	0	91.5	69.1	142			
Surr: BFB		670		648.9		104	77.4	118			
Sample ID: 1	910D16-002AMSE	SampT	ype: M \$	SD	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	е	
Client ID: S	SWMU13-1 (1.5-2')	Batch	ID: G	3989	F	RunNo: 6	3989				
Prep Date:		Analysis D	ate: 10	0/27/2019	S	SeqNo: 2	189143	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	15	3.2	16.22	0	89.8	69.1	142	1.94	20	
Surr: BFB		650		648.9		101	77.4	118	0	0	
Sample ID: N	MB-48446	SampT	ype: ME	BLK	Tes	tCode: Ef	PA Method	8015D: Gaso	oline Rang	e	
Client ID: F	PBS	Batch	ID: 48	446	F	RunNo: 64	4076				
Prep Date:	10/29/2019	Analysis D	ate: 10	0/30/2019	S	SeqNo: 2	193023	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	ND	5.0								
Surr: BFB		1000		1000		99.9	77.4	118			
Sample ID: L	_CS-48446	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: L	_css	Batch	ID: 48	446	F	RunNo: 64	4076				
Prep Date:	10/29/2019	Analysis D	ate: 10	0/30/2019	S	SeqNo: 2	193024	Units: mg/k	(g		

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 86 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48446 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 48446 RunNo: 64076

Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2193024 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 23
 5.0
 25.00
 0
 91.5
 80
 120

 Surr: BFB
 1100
 1000
 108
 77.4
 118

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 87 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R64171 RunNo: 64171

Prep Date: Analysis Date: 11/1/2019 SeqNo: 2195897 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 97.4 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R64171 RunNo: 64171

Prep Date: Analysis Date: 11/1/2019 SeqNo: 2195898 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.39 0.050 0.5000 77.4 73.6 119 20.00 109 65.8 Surr: BFB 22 143

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 88 of 123

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

Batch ID: S63992

0.15

0.050

0.050

0.050

0.050

0.10

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.050

0.10

ND

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

PBS

Sample ID: rb

Client ID:

Prep Date: Analysis Date: 10/25/2019 SeqNo: 2189469 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.025 Toluene ND 0.050 ND Ethylbenzene 0.050 Methyl tert-butyl ether (MTBE) ND 0.050 1,2,4-Trimethylbenzene ND 0.050 1,3,5-Trimethylbenzene ND 0.050 1,2-Dichloroethane (EDC) ND 0.050 1,2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 ND 0.20 1-Methylnaphthalene 2-Methylnaphthalene ND 0.20 ND 0.75 Acetone Bromobenzene ND 0.050 Bromodichloromethane ND 0.050 Bromoform ND 0.050 Bromomethane ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chloroethane ND 0.10 Chloroform ND 0.050

TestCode: EPA Method 8260B: Volatiles

RunNo: 63992

Qualifiers:

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

1.2-Dichlorobenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,1-Dichloroethane 1,1-Dichloroethene

1,2-Dichloropropane 1,3-Dichloropropane

2,2-Dichloropropane

Dichlorodifluoromethane

1,2-Dibromo-3-chloropropane

cis-1.2-DCE

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: rb	SampT	Туре: МЕ	3LK	Tes	TestCode: EPA Method 8260B: Volatiles					
Client ID: PBS	Batch	h ID: S6	3992	F	RunNo: 63	3992				ļ
Prep Date:	Analysis D)ate: 10)/25/2019	\$	SeqNo: 21	189469	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.55		0.5000		110	70	130			
Surr: 1,2-Dichloroethane-d4	0.49		0.5000		97.5	70	130			
Surr: Toluene-d8	0.51		0.5000		101	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.5000		91.2	70	130			
Sample ID: 100ng lcs	SampT	Type: LC	:s	Tes	tCode: E	PA Method	d 8260B: Volat	tiles		
Client ID: LCSS	Batch	h ID: S6	3992	F	RunNo: 63	3992				

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	iles				
Client ID: LCSS	Batch	ID: S6	3992	F	RunNo: 6	3992				
Prep Date:	Analysis D	ate: 10	/25/2019	8	SeqNo: 2	189470	Units: mg/K	g		
Analyte	Dogult	PQL	CDI/l	ODK D-(\/-I	N/DE0	Land to S	Life and the Country	O/ DDD	DDDI ::t	0
Allalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.025	1.000	O SPK Ret Val	89.4	LOWLIMIT 68	HighLimit 135	%RPD	RPDLIMIT	Quai
,							<u> </u>	%RPD	RPDLIMIT	Quai

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 90 of 123

Hall Environmental Analysis Laboratory, Inc.

0.47

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Surr: 4-Bromofluorobenzene

Sample ID: 100ng lcs SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: S63992 RunNo: 63992 Prep Date: Analysis Date: 10/25/2019 SeqNo: 2189470 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 1,1-Dichloroethene 1.000 0 51.1 0.77 0.050 77.4 139 0 Trichloroethene (TCE) 0.82 0.050 1.000 82.3 70 130 95.6 70 Surr: Dibromofluoromethane 0.48 0.5000 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 90.5 70 130 Surr: Toluene-d8 0.48 0.5000 96.9 70 130

93.8

70

130

0.5000

SampType: MS Sample ID: 1910d16-001ams TestCode: EPA Method 8260B: Volatiles Client ID: SWMU 13-1 (0-0.5') Batch ID: S63992 RunNo: 63992 Prep Date: Analysis Date: 10/25/2019 SeqNo: 2189472 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual Benzene 0.68 0.021 0.8230 83.1 0.041 0.8230 0 87.0 70 Toluene 0.72 130 Chlorobenzene 0.72 0.041 0.8230 0 87.2 70 130 76.0 1,1-Dichloroethene 0.63 0.041 0.8230 0 38.5 141 Trichloroethene (TCE) 0.66 0.041 0.8230 0 80.3 70 130 Surr: Dibromofluoromethane 0.40 0.4115 96.0 70 130 Surr: 1,2-Dichloroethane-d4 0.4115 92.6 70 0.38 130 Surr: Toluene-d8 0.40 0.4115 97.5 70 130 Surr: 4-Bromofluorobenzene 0.39 0.4115 94.5 70 130

Sample ID: 1910d16-001amsd	SD	Tes	tCode: El	PA Method	8260B: Volat	iles				
Client ID: SWMU 13-1 (0-0.5	') Batch	1D: S6	3992	F	RunNo: 6	3992				
Prep Date:	Analysis D	ate: 10	/25/2019	8	SeqNo: 2	189473	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.65	0.021	0.8230	0	79.6	57.1	141	4.31	20	
Toluene	0.70	0.041	0.8230	0	84.6	70	130	2.72	20	
Chlorobenzene	0.69	0.041	0.8230	0	83.8	70	130	3.97	20	
1,1-Dichloroethene	0.57	0.041	0.8230	0	69.8	38.5	141	8.43	20	
Trichloroethene (TCE)	0.61	0.041	0.8230	0	74.6	70	130	7.43	20	
Surr: Dibromofluoromethane	0.38		0.4115		91.5	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.36		0.4115		88.5	70	130	0	0	
Surr: Toluene-d8	0.40		0.4115		96.2	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.37		0.4115		89.9	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 91 of 123

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1910D16

25-Nov-19

Client: Marathon **Project:** SWMU 13

Sample ID: rb

TestCode: EPA Method 8260B: Volatiles

Client ID: PBS	Batch	n ID: S6	4028	F	RunNo: 6	4028				
Prep Date:	Analysis D	Date: 10)/28/2019	5	SeqNo: 2	190354	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 92 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: rb	SampType: MBLK TestCode: EPA Method					PA Method	8260B: Volat	iles				
Client ID: PBS	Batc	h ID: S6	4028	F	RunNo: 6	4028						
Prep Date:	Analysis [Date: 10	0/28/2019	5	SeqNo: 2	190354	Units: mg/K	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	0.10										
Hexachlorobutadiene	ND	0.10										
2-Hexanone	ND	0.50										
Isopropylbenzene	ND	0.050										
4-Isopropyltoluene	ND	0.050										
4-Methyl-2-pentanone	ND	0.50										
Methylene chloride	0.010	0.15								J		
n-Butylbenzene	ND	0.15										
n-Propylbenzene	ND	0.050										
sec-Butylbenzene	ND	0.050										
Styrene	ND	0.050										
tert-Butylbenzene	ND	0.050										
1,1,1,2-Tetrachloroethane	ND	0.050										
1,1,2,2-Tetrachloroethane	ND	0.050										
Tetrachloroethene (PCE)	ND	0.050										
trans-1,2-DCE	ND	0.050										
trans-1,3-Dichloropropene	ND	0.050										
1,2,3-Trichlorobenzene	ND	0.10										
1,2,4-Trichlorobenzene	ND	0.050										
1,1,1-Trichloroethane	ND	0.050										
1,1,2-Trichloroethane	ND	0.050										
Trichloroethene (TCE)	ND	0.050										
Trichlorofluoromethane	ND	0.050										
1,2,3-Trichloropropane	ND	0.10										
Vinyl chloride	ND	0.050										
Xylenes, Total	ND	0.10										
Surr: Dibromofluoromethane	0.49		0.5000		98.7	70	130					
Surr: 1,2-Dichloroethane-d4	0.44		0.5000		87.9	70	130					
Surr: Toluene-d8	0.48		0.5000		96.3	70	130					
Surr: 4-Bromofluorobenzene	0.49		0.5000		98.6	70	130					
Sample ID: 100ng lcs	Samp ⁻	Гуре: LC	:S	Tes	tCode: El	PA Method	8260B: Volat	tiles				
011 112 1 222	_ :	Detail ID: 004000				Durkley 04000						

Sample ID: 100ng lcs	SampType: LCS			Tes	TestCode: EPA Method 8260B: Volatiles					
Client ID: LCSS	Batch	n ID: S6	4028	R	RunNo: 64	4028				
Prep Date:	Analysis D	oate: 10	/28/2019	S	SeqNo: 2	190356	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
·		. ~-	0	0 : 11:10: 10:	70111		·g=	,	= =	
Benzene	0.89	0.025	1.000	0	89.0	68	135			
							<u> </u>	,,,,,,		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: 100ng lcs	SampType: LCS			Tes	tCode: El	tiles				
Client ID: LCSS	Batch ID: \$64028			F	RunNo: 6	4028				
Prep Date:	Analysis Date: 10/28/2019			SeqNo: 2190356			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.90	0.050	1.000	0	90.4	51.1	139			
Trichloroethene (TCE)	0.85	0.050	1.000	0	85.2	70	130			
Surr: Dibromofluoromethane	0.44		0.5000		87.4	70	130			
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		82.2	70	130			
Surr: Toluene-d8	0.47		0.5000		93.5	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.7	70	130			

Sample ID: mb-48446	Sampl	SampType: MBLK TestCode: EPA Metho					8260B: Volat	iles		
Client ID: PBS	Batc	h ID: 48	446	F	RunNo: 64	4109				
Prep Date: 10/29/2019	Analysis [Date: 10	0/30/2019	S	SeqNo: 2	194198	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Client ID: PBS Batch ID: 48446 RunNo: 64109 Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2194198 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 1,2-Dibromo-3-chloropropane ND 0.10 0.050 Dibromochloromethane ND ND Dibromomethane 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1.1-Dichloroethene ND 0.050 ND 1,2-Dichloropropane 0.050 1,3-Dichloropropane ND 0.050 ND 0.10 2,2-Dichloropropane 1,1-Dichloropropene ND 0.10 Hexachlorobutadiene ND 0.10 2-Hexanone ND 0.50 Isopropylbenzene ND 0.050 4-Isopropyltoluene ND 0.050 4-Methyl-2-pentanone ND 0.50 Methylene chloride ND 0.15 n-Butylbenzene ND 0.15 0.050 n-Propylbenzene ND sec-Butylbenzene ND 0.050 0.050 Styrene ND tert-Butylbenzene ND 0.050 1,1,1,2-Tetrachloroethane ND 0.050 1.1.2.2-Tetrachloroethane ND 0.050 Tetrachloroethene (PCE) ND 0.050 trans-1,2-DCE ND 0.050 trans-1,3-Dichloropropene ND 0.050 ND 0.10 1,2,3-Trichlorobenzene ND 0.050 1.2.4-Trichlorobenzene 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethene (TCE) ND 0.050 ND 0.050 Trichlorofluoromethane 1,2,3-Trichloropropane ND 0.10 ND 0.050 Vinyl chloride Xylenes, Total ND 0.10

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Surr: Dibromofluoromethane

H Holding times for preparation or analysis exceeded

0.54

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

107

70

130

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0.5000

Page 95 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446	SampT	SampType: MBLK			tCode: El	iles				
Client ID: PBS	Batch	Batch ID: 48446			RunNo: 6	4109				
Prep Date: 10/29/2019	Analysis D	Analysis Date: 10/30/2019			SeqNo: 2194198 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		93.0	70	130			
Surr: Toluene-d8	0.49		0.5000		98.5	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.5000		92.1	70	130			
Sample ID: Ics-48446	SampType: LCS TestCode: EPA Method 8260B: Volatiles									

Client ID: LCSS	Batc	h ID: 48	446	F	RunNo: 6	4109				
Prep Date: 10/29/2019	Analysis D	Date: 10	0/30/2019	5	SeqNo: 2	194199	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	98.8	68	135			
Toluene	0.96	0.050	1.000	0	95.8	70	130			
Chlorobenzene	0.91	0.050	1.000	0	91.0	70	130			
1,1-Dichloroethene	0.94	0.050	1.000	0	93.8	51.1	139			
Trichloroethene (TCE)	0.94	0.050	1.000	0	93.9	70	130			
Surr: Dibromofluoromethane	0.48		0.5000		95.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.4	70	130			
Surr: Toluene-d8	0.48		0.5000		95.6	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		88.7	70	130			

Sample ID: 1910d16-003ams	s SampType: MS TestCode: EPA Method 8260B: Volatiles									
Client ID: SWMU13-1 (5-6')	Batch	h ID: 48 4	446	F	RunNo: 6	4109				
Prep Date: 10/29/2019	Analysis D	Date: 10	/30/2019	9	SeqNo: 2	194201	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.024	0.9718	0	109	57.1	141			
Toluene	1.1	0.049	0.9718	0	109	70	130			
Chlorobenzene	1.0	0.049	0.9718	0	106	70	130			
1,1-Dichloroethene	1.0	0.049	0.9718	0	104	38.5	141			
Trichloroethene (TCE)	1.0	0.049	0.9718	0	103	70	130			
Surr: Dibromofluoromethane	0.43		0.4859		89.5	70	130			
Surr: 1,2-Dichloroethane-d4	0.45		0.4859		93.3	70	130			

Sample ID: 1910d16-003amsc	I SampT	уре: М \$	SD	Tes	tCode: El	iles				
Client ID: SWMU13-1 (5-6')	Batch	ID: 48	446	F	tunNo: 6	4109				
Prep Date: 10/29/2019	Analysis D	Analysis Date: 10/30/2019			SeqNo: 2194202 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.024	0.9756	0	112	57.1	141	2.89	20	

0.4859

0.4859

Qualifiers:

Surr: Toluene-d8

Surr: 4-Bromofluorobenzene

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

0.47

0.45

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

96.7

91.9

70

70

130

130

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 96 of 123

Hall Environmental Analysis Laboratory, Inc.

0.43

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Surr: 4-Bromofluorobenzene

Sample ID: 1910d16-003amsd SampType: MSD TestCode: EPA Method 8260B: Volatiles Client ID: SWMU13-1 (5-6') Batch ID: 48446 RunNo: 64109 Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2194202 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.9756 0 70 2.49 20 Toluene 1.1 0.049 111 130 0.9756 0 108 70 Chlorobenzene 1.1 0.049 130 1.81 20 0.049 0 38.5 1.23 1,1-Dichloroethene 1.0 0.9756 105 141 20 Trichloroethene (TCE) 1.0 0.049 0.9756 0 105 70 130 1.94 20 Surr: Dibromofluoromethane 0.44 0.4878 90.5 70 130 0 0 Surr: 1,2-Dichloroethane-d4 0.46 0.4878 95.3 70 130 0 0 Surr: Toluene-d8 0.47 0.4878 96.2 70 130 0 0

0.4878

88.7

70

130

0

0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: 100ng lcs	SampType: LCS			TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	1D: R6	4075	F	RunNo: 6	4075				
Prep Date:	Analysis D	ate: 10	/29/2019	9	SeqNo: 2	192371	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.5	70	130			
Toluene	19	1.0	20.00	0	93.8	70	130			
Chlorobenzene	20	1.0	20.00	0	99.5	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	84.9	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	84.3	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.1	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		90.9	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.9		10.00		99.1	70	130			

Sample ID: rb	Camar Turas MDL IZ	TestCode: EPA Method 8260B: VOLATILES
i Samble ID: rb	SampType: MBLK	LestCode: FPA Method 8260B, VOLATILES

Client ID: PBW Batch ID: R64075 RunNo: 64075

Prep Date: Analysis Date: 10/29/2019 SeqNo: 2192402 Units: µg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 98 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: R64075 RunNo: 64075 Prep Date: Analysis Date: 10/29/2019 SeqNo: 2192402 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 4-Chlorotoluene ND 1.0 ND cis-1,2-DCE 1.0 ND cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 ND 1.0 1,3-Dichlorobenzene 1.4-Dichlorobenzene ND 1.0 ND Dichlorodifluoromethane 1.0 1.1-Dichloroethane ND 1.0 ND 1.0 1,1-Dichloroethene 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 1,1-Dichloropropene ND 1.0 Hexachlorobutadiene ND 1.0 2-Hexanone ND 10 1.0 Isopropylbenzene ND 4-Isopropyltoluene ND 1.0 4-Methyl-2-pentanone ND 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 ND 1.0 Styrene tert-Butylbenzene ND 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 ND 1.0 trans-1,2-DCE ND 1.0 trans-1,3-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 1,2,4-Trichlorobenzene ND 1.0 ND 1.0 1,1,1-Trichloroethane 1,1,2-Trichloroethane ND 1.0 ND 1.0 Trichloroethene (TCE) Trichlorofluoromethane ND 1.0 1,2,3-Trichloropropane ND 2.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: rb Client ID: PBW	SampType: MBLK Batch ID: R64075				tCode: El RunNo: 6		8260B: VOL	ATILES		
Prep Date:	Analysis Date: 10/29/2019			S	SeqNo: 2	192402	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.4	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		93.8	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.0	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 100 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48424 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS	Batch	1D: 48 4	124	R	RunNo: 6 4	1102				
Prep Date: 10/28/2019	Analysis Da	ate: 10	/30/2019	s	SeqNo: 21	193522	Units: mg/Kg	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	ND	0.40								
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3´-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 101 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48424 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBS Batch ID: 48424 RunNo: 64102 Analysis Date: 10/30/2019 Prep Date: 10/28/2019 SeqNo: 2193522 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 ND 0.20 Fluoranthene Fluorene ND 0.20 Hexachlorobenzene ND 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 ND 0.20 Hexachloroethane Indeno(1,2,3-cd)pyrene ND 0.20 ND 0.40 Isophorone 1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.20 2-Methylphenol ND 0.40 3+4-Methylphenol ND 0.20 N-Nitrosodi-n-propylamine ND 0.20 N-Nitrosodiphenylamine ND 0.20 Naphthalene ND 0.20 2-Nitroaniline ND 0.20 3-Nitroaniline ND 0.20 4-Nitroaniline ND 0.40 Nitrobenzene ND 0.40 2-Nitrophenol ND 0.20 4-Nitrophenol 0.25 ND Pentachlorophenol ND 0.40 Phenanthrene ND 0.20 Phenol ND 0.20 Pyrene ND 0.20 Pyridine ND 0.40 1,2,4-Trichlorobenzene ND 0.20 2,4,5-Trichlorophenol ND 0.20 2,4,6-Trichlorophenol ND 0.20 3.330 52.4 26.7 85.9 Surr: 2-Fluorophenol 1.7 Surr: Phenol-d5 1.9 3.330 57.3 18.5 101 Surr: 2,4,6-Tribromophenol 2.3 3.330 68.1 35.8 85.6 Surr: Nitrobenzene-d5 0.99 1.670 59.4 40.8 95.2 Surr: 2-Fluorobiphenyl 0.97 1.670 57.9 34.7 85.2 1.670 70.0 37.4 91.3 Surr: 4-Terphenyl-d14 1.2

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 102 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48424	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSS	Batch	n ID: 484	424	F	RunNo: 6	4102				
Prep Date: 10/28/2019	Analysis D	Date: 10)/30/2019	8	SeqNo: 2	193523	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.1	0.20	1.670	0	66.1	46	89.5			
4-Chloro-3-methylphenol	2.1	0.50	3.330	0	63.3	44.1	101			
2-Chlorophenol	2.2	0.20	3.330	0	67.2	47	91			
1,4-Dichlorobenzene	1.1	0.20	1.670	0	62.9	41.4	85.8			
2,4-Dinitrotoluene	0.94	0.50	1.670	0	56.2	37.4	82			
N-Nitrosodi-n-propylamine	1.2	0.20	1.670	0	69.8	47.8	92.9			
4-Nitrophenol	1.9	0.25	3.330	0	56.0	45	94.3			
Pentachlorophenol	1.6	0.40	3.330	0	48.9	31.7	76.9			
Phenol	2.3	0.20	3.330	0	70.4	49.4	92.5			
Pyrene	0.92	0.20	1.670	0	54.9	52.9	82.7			
1,2,4-Trichlorobenzene	0.99	0.20	1.670	0	59.2	43.6	98.1			
Surr: 2-Fluorophenol	2.1		3.330		62.6	26.7	85.9			
Surr: Phenol-d5	2.3		3.330		67.7	18.5	101			
Surr: 2,4,6-Tribromophenol	1.9		3.330		57.6	35.8	85.6			
Surr: Nitrobenzene-d5	1.1		1.670		68.7	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.0		1.670		61.5	34.7	85.2			
Surr: 4-Terphenyl-d14	0.94		1.670		56.5	37.4	91.3			

Sample ID: mb-48455	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 48	455	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	5	SeqNo: 2	194553	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 103 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBS Batch ID: 48455 RunNo: 64136 Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194553 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 4-Bromophenyl phenyl ether ND 0.20 Butyl benzyl phthalate ND 0.20 ND 0.20 Carbazole 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 ND 4-Chlorophenyl phenyl ether 0.20 Chrysene ND 0.20 0.40 J Di-n-butyl phthalate 0.16 Di-n-octyl phthalate ND 0.40 ND 0.20 Dibenz(a,h)anthracene Dibenzofuran ND 0.20 1,2-Dichlorobenzene ND 0.20 1.3-Dichlorobenzene ND 0.20 1,4-Dichlorobenzene ND 0.20 3,3´-Dichlorobenzidine ND 0.25 Diethyl phthalate ND 0.20 Dimethyl phthalate ND 0.20 2,4-Dichlorophenol ND 0.40 0.30 2,4-Dimethylphenol ND 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol 0.50 ND 2.4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene ND 0.20 Fluorene ND 0.20 Hexachlorobenzene ND 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 Hexachloroethane ND 0.20 0.20 Indeno(1,2,3-cd)pyrene ND Isophorone ND 0.40 1-Methylnaphthalene ND 0.20 ND 0.20 2-Methylnaphthalene 2-Methylphenol ND 0.40 ND 0.20 3+4-Methylphenol N-Nitrosodi-n-propylamine ND 0.20 N-Nitrosodiphenylamine ND 0.20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 104 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48455	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 484	455	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	Date: 10	/31/2019	8	SeqNo: 2	194553	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.3		3.330		69.5	26.7	85.9			
Surr: Phenol-d5	2.4		3.330		71.3	18.5	101			
Surr: 2,4,6-Tribromophenol	2.2		3.330		66.0	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		74.7	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		69.1	34.7	85.2			
Surr: 4-Terphenyl-d14	1.5		1.670		90.2	37.4	91.3			

Sample ID: Ics-48455	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS	Batch	n ID: 484	455	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	S	SeqNo: 2	194554	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.3	0.20	1.670	0	75.4	46	89.5			
4-Chloro-3-methylphenol	2.6	0.50	3.330	0	78.8	44.1	101			
2-Chlorophenol	2.5	0.20	3.330	0	74.9	47	91			
1,4-Dichlorobenzene	1.2	0.20	1.670	0	72.1	41.4	85.8			
2,4-Dinitrotoluene	1.1	0.50	1.670	0	65.5	37.4	82			
N-Nitrosodi-n-propylamine	1.4	0.20	1.670	0	86.6	47.8	92.9			
4-Nitrophenol	2.4	0.25	3.330	0	71.5	45	94.3			
Pentachlorophenol	2.0	0.40	3.330	0	60.3	31.7	76.9			
Phenol	2.9	0.20	3.330	0	87.0	49.4	92.5			
Pyrene	1.2	0.20	1.670	0	69.1	52.9	82.7			
1,2,4-Trichlorobenzene	1.2	0.20	1.670	0	71.1	43.6	98.1			
Surr: 2-Fluorophenol	2.3		3.330		68.5	26.7	85.9			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 105 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48455 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSS Batch ID: 48455 RunNo: 64136 Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194554 Units: mg/Kg Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: Phenol-d5 2.5 74.8 18.5 3.330 101 70.7 35.8 Surr: 2,4,6-Tribromophenol 2.4 3.330 85.6 78.1 Surr: Nitrobenzene-d5 1.3 1.670 40.8 95.2

Surr: 2-Fluorobiphenyl 1.2 1.670 73.2 34.7 85.2 Surr: 4-Terphenyl-d14 1.3 1.670 76.0 37.4 91.3 Sample ID: 1910D16-014Ams SampType: MS TestCode: EPA Method 8270C: Semivolatiles Client ID: SWMU 13-3 (15.25-1 Batch ID: 48455 RunNo: **64136**

Analysis D	Date: 10	0/31/2019	S	SeqNo: 2	194577	Units: mg/K	g		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0.94	0.20	1.661	0	56.6	28	113			
2.1	0.50	3.311	0	63.0	28.8	121			
1.8	0.20	3.311	0	54.1	15.4	115			
0.53	0.20	1.661	0	32.2	15	107			
0.89	0.50	1.661	0	53.7	29.9	100			
1.1	0.20	1.661	0	64.5	23.5	120			
1.9	0.25	3.311	0	57.2	42.3	125			
1.6	0.40	3.311	0	49.8	23.4	114			
2.1	0.20	3.311	0	62.7	16.3	117			
0.89	0.20	1.661	0	53.4	34.2	122			
0.73	0.20	1.661	0	44.2	16.3	117			
1.8		3.311		53.2	26.7	85.9			
1.9		3.311		56.6	18.5	101			
1.9		3.311		58.8	35.8	85.6			
0.99		1.661		59.7	40.8	95.2			
0.85		1.661		51.4	34.7	85.2			
1.2		1.661		70.3	37.4	91.3			
	Result 0.94 2.1 1.8 0.53 0.89 1.1 1.9 1.6 2.1 0.89 0.73 1.8 1.9 1.9 0.99 0.85	Result PQL 0.94 0.20 2.1 0.50 1.8 0.20 0.53 0.20 0.89 0.50 1.1 0.20 1.9 0.25 1.6 0.40 2.1 0.20 0.89 0.20 0.73 0.20 1.8 1.9 1.9 0.99 0.85	Result PQL SPK value 0.94 0.20 1.661 2.1 0.50 3.311 1.8 0.20 3.311 0.53 0.20 1.661 0.89 0.50 1.661 1.1 0.20 1.661 1.9 0.25 3.311 1.6 0.40 3.311 2.1 0.20 3.311 0.89 0.20 1.661 1.8 3.311 1.9 3.311 1.9 3.311 0.99 1.661 0.85 1.661	Result PQL SPK value SPK Ref Val 0.94 0.20 1.661 0 2.1 0.50 3.311 0 1.8 0.20 3.311 0 0.53 0.20 1.661 0 0.89 0.50 1.661 0 1.1 0.20 1.661 0 1.9 0.25 3.311 0 1.6 0.40 3.311 0 2.1 0.20 3.311 0 0.89 0.20 1.661 0 0.73 0.20 1.661 0 1.8 3.311 0 1.9 3.311 0 0.99 1.661 0 0.85 1.661 0	Result PQL SPK value SPK Ref Val %REC 0.94 0.20 1.661 0 56.6 2.1 0.50 3.311 0 63.0 1.8 0.20 3.311 0 54.1 0.53 0.20 1.661 0 32.2 0.89 0.50 1.661 0 64.5 1.9 0.25 3.311 0 57.2 1.6 0.40 3.311 0 62.7 0.89 0.20 1.661 0 53.4 0.73 0.20 1.661 0 44.2 1.8 3.311 53.2 1.9 3.311 56.6 1.9 3.311 58.8 0.99 1.661 59.7 0.85 1.661 51.4	Result PQL SPK value SPK Ref Val %REC LowLimit 0.94 0.20 1.661 0 56.6 28 2.1 0.50 3.311 0 63.0 28.8 1.8 0.20 3.311 0 54.1 15.4 0.53 0.20 1.661 0 32.2 15 0.89 0.50 1.661 0 53.7 29.9 1.1 0.20 1.661 0 64.5 23.5 1.9 0.25 3.311 0 57.2 42.3 1.6 0.40 3.311 0 49.8 23.4 2.1 0.20 3.311 0 62.7 16.3 0.89 0.20 1.661 0 53.4 34.2 0.73 0.20 1.661 0 44.2 16.3 1.9 3.311 53.2 26.7 1.9 3.311 58.8 35.8 0.99	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.94 0.20 1.661 0 56.6 28 113 2.1 0.50 3.311 0 63.0 28.8 121 1.8 0.20 3.311 0 54.1 15.4 115 0.53 0.20 1.661 0 32.2 15 107 0.89 0.50 1.661 0 53.7 29.9 100 1.1 0.20 1.661 0 64.5 23.5 120 1.9 0.25 3.311 0 57.2 42.3 125 1.6 0.40 3.311 0 49.8 23.4 114 2.1 0.20 3.311 0 62.7 16.3 117 0.89 0.20 1.661 0 53.4 34.2 122 0.73 0.20 1.661 0 44.2 16.3 117	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.94 0.20 1.661 0 56.6 28 113 2.1 0.50 3.311 0 63.0 28.8 121 1.8 0.20 3.311 0 54.1 15.4 115 0.53 0.20 1.661 0 32.2 15 107 0.89 0.50 1.661 0 53.7 29.9 100 1.1 0.20 1.661 0 64.5 23.5 120 1.9 0.25 3.311 0 57.2 42.3 125 1.6 0.40 3.311 0 49.8 23.4 114 2.1 0.20 3.311 0 62.7 16.3 117 0.89 0.20 1.661 0 53.4 34.2 122 0.73 0.20 1.661 0 44.2 16.3 <td>Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.94 0.20 1.661 0 56.6 28 113 2.1 0.50 3.311 0 63.0 28.8 121 1.8 0.20 3.311 0 54.1 15.4 115 0.53 0.20 1.661 0 32.2 15 107 0.89 0.50 1.661 0 53.7 29.9 100 1.1 0.20 1.661 0 64.5 23.5 120 1.9 0.25 3.311 0 57.2 42.3 125 1.6 0.40 3.311 0 49.8 23.4 114 2.1 0.20 3.311 0 62.7 16.3 117 0.89 0.20 1.661 0 53.4 34.2 122 0.73 0.20 1.661 0 44.2</td>	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.94 0.20 1.661 0 56.6 28 113 2.1 0.50 3.311 0 63.0 28.8 121 1.8 0.20 3.311 0 54.1 15.4 115 0.53 0.20 1.661 0 32.2 15 107 0.89 0.50 1.661 0 53.7 29.9 100 1.1 0.20 1.661 0 64.5 23.5 120 1.9 0.25 3.311 0 57.2 42.3 125 1.6 0.40 3.311 0 49.8 23.4 114 2.1 0.20 3.311 0 62.7 16.3 117 0.89 0.20 1.661 0 53.4 34.2 122 0.73 0.20 1.661 0 44.2

Sample ID: 1910D16-014Amso	d SampT	ype: MS	SD.	Tes	TestCode: EPA Method 8270C: Semivolatile					
Client ID: SWMU 13-3 (15.25	5-1 Batch	ID: 484	155	R	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10	/31/2019	S	SeqNo: 2	194578	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.2	0.20	1.640	0	71.0	28	113	21.3	33.1	
4-Chloro-3-methylphenol	2.4	0.49	3.270	0	73.5	28.8	121	14.1	39	
2-Chlorophenol	2.3	0.20	3.270	0	70.6	15.4	115	25.3	27.1	
1,4-Dichlorobenzene	0.76	0.20	1.640	0	46.4	15	107	34.9	26.3	R
2,4-Dinitrotoluene	1.1	0.49	1.640	0	64.1	29.9	100	16.4	51.5	
N-Nitrosodi-n-propylamine	1.3	0.20	1.640	0	80.3	23.5	120	20.6	22.8	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 106 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: 1910D16-014Amsd SampType: MSD TestCode: EPA Method 8270C: Semivolatiles Client ID: SWMU 13-3 (15.25-1 Batch ID: 48455 RunNo: 64136 Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194578 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 4-Nitrophenol 0.25 3.270 0 70.1 42.3 19.0 52.9 2.3 125 Pentachlorophenol 0 57.8 23.4 1.9 0.39 3.270 114 13.6 52.1 3.270 0 80.9 28.8 Phenol 2.6 0.20 16.3 117 24.0 Pyrene 1.1 0.20 1.640 0 66.3 34.2 122 20.4 37.1 1,2,4-Trichlorobenzene 0.97 0.20 1.640 0 59.2 16.3 117 27.9 28.4 Surr: 2-Fluorophenol 2.2 3.270 66.2 26.7 85.9 0 0 Surr: Phenol-d5 2.4 3.270 73.3 18.5 101 0 0 0 0 Surr: 2,4,6-Tribromophenol 2.2 65.9 35.8 85.6 3.270 Surr: Nitrobenzene-d5 1.2 1.640 75.3 40.8 95.2 0 0 68.2 34.7 0 Surr: 2-Fluorobiphenyl 1.1 1.640 85.2 0 Surr: 4-Terphenyl-d14 1.3 1.640 76.7 37.4 91.3 0

Sample ID: MB-48455	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 484	455	F	RunNo: 6	4267				
Prep Date: 10/29/2019	Analysis D	ate: 11	/6/2019	5	SeqNo: 2	199506	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	0.030	0.20								J
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	0.015	0.20								J
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	0.14	0.50								J
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 107 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBS Batch ID: 48455 RunNo: 64267 Prep Date: 10/29/2019 Analysis Date: 11/6/2019 SeqNo: 2199506 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 2-Chlorophenol ND 0.20 ND 4-Chlorophenyl phenyl ether 0.20 ND 0.20 Chrysene Di-n-butyl phthalate 0.18 0.40 J Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 Dibenzofuran ND 0.20 ND 0.20 1,2-Dichlorobenzene 1.3-Dichlorobenzene ND 0.20 ND 0.20 1,4-Dichlorobenzene 3,3´-Dichlorobenzidine ND 0.25 Diethyl phthalate 0.20 J 0.11 0.036 Dimethyl phthalate 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene ND 0.20 0.20 Fluorene ND Hexachlorobenzene ND 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 Hexachloroethane ND 0.20 ND 0.20 Indeno(1,2,3-cd)pyrene Isophorone ND 0.40 1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.20 2-Methylphenol ND 0.40 3+4-Methylphenol ND 0.20 ND 0.20 N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine 0.030 0.20 J Naphthalene ND 0.20 ND 0.20 2-Nitroaniline 3-Nitroaniline 0.019 0.20 J ND 0.40 4-Nitroaniline Nitrobenzene ND 0.40 ND 0.20 2-Nitrophenol

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 108 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48455 Client ID: PBS		ype: ME n ID: 48 4		TestCode: EPA Method 8270C: Semivolatile RunNo: 64267								
Prep Date: 10/29/2019	Analysis D	ate: 11	/6/2019	8	SeqNo: 2	199506	Units: mg/K	Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
4-Nitrophenol	ND	0.25										
Pentachlorophenol	ND	0.40										
Phenanthrene	ND	0.20										
Phenol	ND	0.20										
Pyrene	0.0082	0.20								J		
Pyridine	ND	0.40										
1,2,4-Trichlorobenzene	ND	0.20										
2,4,5-Trichlorophenol	ND	0.20										
2,4,6-Trichlorophenol	ND	0.20										
Surr: 2-Fluorophenol	2.6		3.330		76.8	26.7	85.9					
Surr: Phenol-d5	2.6		3.330		79.5	18.5	101					
Surr: 2,4,6-Tribromophenol	1.7		3.330		52.3	35.8	85.6					
Surr: Nitrobenzene-d5	1.2		1.670		71.3	40.8	95.2					
Surr: 2-Fluorobiphenyl	1.0		1.670		59.7	34.7	85.2					
Surr: 4-Terphenyl-d14	1.4		1.670		85.6	37.4	91.3					

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 109 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 48439 RunNo: 64136 Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194544 Units: µg/L Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Acenaphthene ND 10 ND 10 Acenaphthylene ND 10 Aniline Anthracene ND 10 Azobenzene ND 10 Benz(a)anthracene ND 10 Benzo(a)pyrene ND 10 ND 10 Benzo(b)fluoranthene Benzo(q,h,i)perylene ND 10 ND 10 Benzo(k)fluoranthene Benzoic acid ND 20 10 ND Benzyl alcohol ND 10 Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether ND 10 Bis(2-chloroisopropyl)ether ND 10 Bis(2-ethylhexyl)phthalate ND 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate ND 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1.3-Dichlorobenzene ND 10 1,4-Dichlorobenzene ND 10 3,3´-Dichlorobenzidine ND 10 Diethyl phthalate ND 10 ND 10 Dimethyl phthalate 20 2,4-Dichlorophenol ND ND 10 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol ND 20 2,4-Dinitrophenol ND 20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 110 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 48439 RunNo: 64136 Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194544 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 2,4-Dinitrotoluene ND 10 10 2,6-Dinitrotoluene ND ND Fluoranthene 10 Fluorene ND 10 Hexachlorobenzene ND 10 Hexachlorobutadiene ND 10 Hexachlorocyclopentadiene ND 10 ND 10 Hexachloroethane Indeno(1,2,3-cd)pyrene ND 10 ND 10 Isophorone 1-Methylnaphthalene ND 10 2-Methylnaphthalene ND 10 10 2-Methylphenol ND 3+4-Methylphenol ND 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10 N-Nitrosodiphenylamine ND 10 Naphthalene ND 10 2-Nitroaniline ND 10 3-Nitroaniline ND 10 4-Nitroaniline ND 10 Nitrobenzene ND 10 2-Nitrophenol ND 10 4-Nitrophenol ND 10 20 Pentachlorophenol ND Phenanthrene ND 10 Phenol ND 10 Pyrene ND 10 Pyridine ND 10 ND 10 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol ND 10 10 2,4,6-Trichlorophenol ND Surr: 2-Fluorophenol 130 200.0 66.6 15 101 Surr: Phenol-d5 99 200.0 49.5 15 84.6 170 200.0 84.1 27.8 112 Surr: 2,4,6-Tribromophenol 92.9 Surr: Nitrobenzene-d5 93 100.0 33 113 83 100.0 83.1 26.6 107 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 62 100.0 61.9 18.7 148

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 111 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#:

1910D16 25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48439	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	n ID: 484	439	F	RunNo: 64	4136				
Prep Date: 10/29/2019	Analysis D	Date: 10	/31/2019	S	SeqNo: 2	194545	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	85	10	100.0	0	84.9	32.2	94			
4-Chloro-3-methylphenol	180	10	200.0	0	88.4	37.7	101			
2-Chlorophenol	170	10	200.0	0	83.6	32.6	90.1			
1,4-Dichlorobenzene	79	10	100.0	0	79.2	30	87.2			
2,4-Dinitrotoluene	72	10	100.0	0	72.2	35.9	85.8			
N-Nitrosodi-n-propylamine	97	10	100.0	0	97.0	37.1	108			
4-Nitrophenol	94	10	200.0	0	47.2	22.4	86.6			
Pentachlorophenol	140	20	200.0	0	70.0	31.6	91			
Phenol	110	10	200.0	0	57.2	21.7	84.9			
Pyrene	80	10	100.0	0	80.4	46.3	103			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	30.2	88.3			
Surr: 2-Fluorophenol	130		200.0		66.0	15	101			
Surr: Phenol-d5	100		200.0		51.5	15	84.6			
Surr: 2,4,6-Tribromophenol	160		200.0		80.3	27.8	112			
Surr: Nitrobenzene-d5	91		100.0		91.3	33	113			
Surr: 2-Fluorobiphenyl	81		100.0		81.1	26.6	107			
Surr: 4-Terphenyl-d14	59		100.0		58.7	18.7	148			

Sample ID: Icsd-48439	SampT	ype: LC	SD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	1D: 48 4	439	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10	/31/2019	9	SeqNo: 2	194546	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	84	10	100.0	0	84.3	32.2	94	0.709	32.9	
4-Chloro-3-methylphenol	170	10	200.0	0	86.7	37.7	101	1.92	29.9	
2-Chlorophenol	160	10	200.0	0	80.9	32.6	90.1	3.33	28.5	
1,4-Dichlorobenzene	75	10	100.0	0	75.1	15	87.2	5.36	44.9	
2,4-Dinitrotoluene	77	10	100.0	0	77.1	35.9	85.8	6.51	28.5	
N-Nitrosodi-n-propylamine	92	10	100.0	0	92.3	37.1	108	4.97	29.9	
4-Nitrophenol	100	10	200.0	0	50.6	15	86.6	6.96	68	
Pentachlorophenol	140	20	200.0	0	68.3	31.6	91	2.40	39.5	
Phenol	110	10	200.0	0	53.0	15	84.9	7.69	44.2	
Pyrene	78	10	100.0	0	78.3	46.3	103	2.65	23.8	
1,2,4-Trichlorobenzene	75	10	100.0	0	75.4	15.7	88.3	3.31	38	
Surr: 2-Fluorophenol	120		200.0		61.9	15	101	0	0	
Surr: Phenol-d5	93		200.0		46.7	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	160		200.0		78.3	27.8	112	0	0	
Surr: Nitrobenzene-d5	92		100.0		92.3	33	113	0	0	
Surr: 2-Fluorobiphenyl	81		100.0		80.9	26.6	107	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 112 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: Icsd-48439 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 48439 RunNo: 64136

Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194546 Units: µg/L

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 4-Terphenyl-d14 58 100.0 57.7 18.7 148 0 0

-	SampType: MBLK Batch ID: 48439			TestCode: EPA Method 8270C: Semivolatiles							
Client ID: PBW				RunNo: 64213							
Prep Date: 10/29/2019 Analyte	Analysis Date: 11/4/2019		SeqNo: 2197264			Units: µg/L					
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	ND	10									
Acenaphthylene	ND	10									
Aniline	ND	10									
Anthracene	ND	10									
Azobenzene	ND	10									
Benz(a)anthracene	ND	10									
Benzo(a)pyrene	ND	10									
Benzo(b)fluoranthene	ND	10									
Benzo(g,h,i)perylene	ND	10									
Benzo(k)fluoranthene	ND	10									
Benzoic acid	ND	20									
Benzyl alcohol	0.85	10								J	
Bis(2-chloroethoxy)methane	ND	10									
Bis(2-chloroethyl)ether	ND	10									
Bis(2-chloroisopropyl)ether	ND	10									
Bis(2-ethylhexyl)phthalate	4.1	10								J	
4-Bromophenyl phenyl ether	ND	10									
Butyl benzyl phthalate	ND	10									
Carbazole	ND	10									
4-Chloro-3-methylphenol	ND	10									
4-Chloroaniline	ND	10									
2-Chloronaphthalene	ND	10									
2-Chlorophenol	ND	10									
4-Chlorophenyl phenyl ether	ND	10									
Chrysene	ND	10									
Di-n-butyl phthalate	3.1	10								J	
Di-n-octyl phthalate	ND	10									
Dibenz(a,h)anthracene	ND	10									
Dibenzofuran	ND	10									
1,2-Dichlorobenzene	ND	10									
1,3-Dichlorobenzene	ND	10									
1,4-Dichlorobenzene	ND	10									

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 113 of 123

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1910D16

25-Nov-19

Client: Marathon **Project:** SWMU 13

Sample ID: MB-48439

Client ID: PBW Batch ID: 48439 RunNo: 64213

TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW	Batch ID: 48439 Analysis Date: 11/4/2019			i	RunNo: 6	4213				
Prep Date: 10/29/2019				SeqNo: 2197264			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
3,3´-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
2,.,0 111011010001101	112									

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 114 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910D16

25-Nov-19

Client: Marathon **Project:** SWMU 13

Sample ID: MB-48439 SampType: MBLK				TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	ID: 48	439	RunNo: 64213						
Prep Date: 10/29/2019	Analysis Date: 11/4/2019			SeqNo: 2197264			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	140		200.0		68.6	15	101			
Surr: Phenol-d5	100		200.0		50.1	15	84.6			
Surr: 2,4,6-Tribromophenol	160		200.0		80.4	27.8	112			
Surr: Nitrobenzene-d5	84		100.0		84.5	33	113			
Surr: 2-Fluorobiphenyl	73		100.0		73.4	26.6	107			
Surr: 4-Terphenyl-d14	64		100.0		64.4	18.7	148			

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Project:	SWMU 1										
Sample ID:	MB-48512	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	PBS	Batch	n ID: 48	512	F	RunNo: 64	4163				
Prep Date:	10/31/2019	Analysis D	ate: 11	/1/2019	8	SeqNo: 2	195447	Units: mg/K	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0022	0.033								J
Sample ID:	LLLCS-48512	SampT	ype: LC	SLL	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	BatchQC	Batch	n ID: 48	512	RunNo: 64163						
Prep Date:	10/31/2019	Analysis D	ate: 11	/1/2019	SeqNo: 2195448 Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0079	0.033	0.006660	0	118	70	130			J
Sample ID:	LCS-48512	SampT	ype: LC	s	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	LCSS	Batch	n ID: 48	512	F	RunNo: 64	4163				
Prep Date:	10/31/2019	Analysis D	ate: 11	/1/2019	9	SeqNo: 2	195449	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.17	0.033	0.1667	0	103	80	120			
Sample ID:	1910D16-001AMS	SampT	уре: М \$	3	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	SWMU 13-1 (0-0.5	') Batch	n ID: 48	512	F	RunNo: 64	4163				
Prep Date:	10/31/2019	Analysis D	ate: 11	/1/2019	8	SeqNo: 2	195452	Units: mg/K	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.19	0.033	0.1665	0.01838	104	80	120			
Sample ID:	1910D16-001AMSI	O SampT	уре: М\$	SD	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	SWMU 13-1 (0-0.5	') Batch	n ID: 48	512	F	RunNo: 64	4163				
Prep Date:	10/31/2019	Analysis D	ate: 11	/1/2019	9	SeqNo: 2	195453	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury	_	0.18	0.032	0.1606	0.01838	101	80	120	5.44	20	
Sample ID:	: MB-48571 SampType: MBLK				TestCode: EPA Method 7471: Mercury						
Client ID:	PBS Batch ID: 48571			RunNo: 64207							
Prep Date:	11/4/2019	Analysis D	ate: 11	/4/2019	9	SeqNo: 2	197008	Units: mg/k	(g		
l				0.014	001/0 /1/1						

Qualifiers:

Analyte

Mercury

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Result

PQL

0.033

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Limit

Page 116 of 123

RPDLimit

Qual

%RPD

HighLimit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910D16

25-Nov-19

Client: Marathon **Project:** SWMU 13

Sample ID: LCSLL-48571 SampType: LCSLL TestCode: EPA Method 7471: Mercury

Client ID: **BatchQC** Batch ID: 48571 RunNo: 64207

Prep Date: 11/4/2019 Analysis Date: 11/4/2019 SeqNo: 2197009 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual J

Mercury 0.0050 0.033 0.006660 0 75.6 70 130

Sample ID: LCS-48571 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 48571 RunNo: 64207

Prep Date: 11/4/2019 Analysis Date: 11/4/2019 SeqNo: 2197010 Units: mg/Kg

Analyte SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Result PQL HighLimit Qual

Mercury 0.17 0.033 0.1667 0 101 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 117 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48565 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 48565 RunNo: 64240

Prep Date: 11/4/2019 Analysis Date: 11/5/2019 SeqNo: 2198291 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.00018 0.00020 J

Sample ID: LCS-48565 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 48565 RunNo: 64240

Prep Date: 11/4/2019 Analysis Date: 11/5/2019 SeqNo: 2198292 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.4 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 118 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48420	SampT	уре: МЕ	BLK	Tes						
Client ID: PBS	Batch	n ID: 484	420	RunNo: 64060						
Prep Date: 10/28/2019	Analysis Date: 10/29/2019			S	SeqNo: 2	191422	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Barium	ND	0.10								
Beryllium	0.012	0.15								J
Cadmium	0.037	0.10								J
Chromium	ND	0.30								
Cobalt	ND	0.30								
Iron	2.2	2.5								J
Lead	ND	0.25								
Manganese	0.052	0.10								J
Nickel	ND	0.50								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	0.87	2.5								J

Sample ID: LCS-48420	SampType: LCS TestCode: EPA Method 6010B: Soil Metals									
Client ID: LCSS	Batch	n ID: 484	420	R	RunNo: 64	4060				
Prep Date: 10/28/2019	Analysis D)ate: 10)/29/2019	S	SeqNo: 2	191424	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	27	2.5	25.00	0	106	80	120			
Barium	24	0.10	25.00	0	95.5	80	120			
Beryllium	25	0.15	25.00	0	99.3	80	120			
Cadmium	24	0.10	25.00	0	95.7	80	120			
Chromium	24	0.30	25.00	0	96.7	80	120			
Cobalt	24	0.30	25.00	0	97.0	80	120			
Iron	29	2.5	25.00	0	114	80	120			
Lead	24	0.25	25.00	0	97.8	80	120			
Manganese	25	0.10	25.00	0	99.3	80	120			
Nickel	24	0.50	25.00	0	95.7	80	120			
Silver	4.8	0.25	5.000	0	95.2	80	120			
Vanadium	25	2.5	25.00	0	101	80	120			
Zinc	24	2.5	25.00	0	97.5	80	120			

Sample ID: MB-48420	SampType: MI	BLK	Tes	Code: EF	PA Method	/letals			
Client ID: PBS	Batch ID: 48	420	R	tunNo: 64	4060				
Prep Date: 10/28/2019	Analysis Date: 10	S	eqNo: 2	191520	Units: mg/K	g			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	ND OF								

Arsenic ND 2.5

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 119 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48420 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 48420 RunNo: 64060

Prep Date: 10/28/2019 Analysis Date: 10/29/2019 SeqNo: 2191522 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 24 2.5 25.00 0 96.4 80 120

Sample ID: MB-48420 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 48420 RunNo: 64206

Prep Date: 10/28/2019 Analysis Date: 11/4/2019 SeqNo: 2196943 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Selenium ND 2.5

Sample ID: LCS-48420 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 48420 RunNo: 64206

Prep Date: 10/28/2019 Analysis Date: 11/4/2019 SeqNo: 2196944 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Selenium 27 2.5 25.00 0 106 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 120 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 48486 RunNo: 64273 Prep Date: 10/30/2019 Analysis Date: 11/6/2019 SeqNo: 2199636 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.050 Antimony ND 0.020 Arsenic Barium ND 0.020 Beryllium ND 0.0030 Cadmium ND 0.0020 Chromium ND 0.0060 Cobalt ND 0.0060 ND 0.020 Iron Manganese ND 0.0020 Nickel ND 0.010 Silver ND 0.0050 J Vanadium 0.0012 0.050 ND Zinc 0.020

Sample ID: LCS-48486	Samp	Type: LC	s	Tes	TestCode: EPA 6010B: Total Recoverable Metals							
Client ID: LCSW	Bato	ch ID: 48	486	F	RunNo: 64	4273						
Prep Date: 10/30/2019	Analysis	Date: 11	/6/2019	S	SeqNo: 2	199638	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Antimony	0.51	0.050	0.5000	0	102	80	120					
Arsenic	0.50	0.020	0.5000	0	99.8	80	120					
Barium	0.48	0.020	0.5000	0	96.6	80	120					
Beryllium	0.52	0.0030	0.5000	0	103	80	120					
Cadmium	0.51	0.0020	0.5000	0	101	80	120					
Chromium	0.50	0.0060	0.5000	0	99.3	80	120					
Cobalt	0.51	0.0060	0.5000	0	101	80	120					
Iron	0.51	0.020	0.5000	0	102	80	120					
Manganese	0.50	0.0020	0.5000	0	101	80	120					
Nickel	0.49	0.010	0.5000	0	98.1	80	120					
Silver	0.095	0.0050	0.1000	0	94.6	80	120					
Vanadium	0.51	0.050	0.5000	0	101	80	120					
Zinc	0.49	0.020	0.5000	0	98.7	80	120					

Sample ID: MB-48486	SampType: MBLK	TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: PBW	Batch ID: 48486	RunNo: 64389						
Prep Date: 10/30/2019	Analysis Date: 11/11/2019	SeqNo: 2203942 Units: mg/L						
Analyte	Result PQL SPK value S	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual					
Lead	0.0043 0.0050		J					

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 121 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client:	Marathon
Project:	SWMU 13

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals Client ID: LCSW Batch ID: 48486 RunNo: 64389 Prep Date: SeqNo: 2203944 10/30/2019 Analysis Date: 11/11/2019 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 80 Lead 0.51 0.0050 0.5000 n 101 120

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 48486 RunNo: 64501 Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208275 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Lead ND 0.0050

Comple ID: LCC 4949C CompType: LCC

Sample ID: LCS-48486 TestCode: EPA 6010B: Total Recoverable Metals SampType: LCS Client ID: LCSW Batch ID: 48486 RunNo: 64501 Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208277 Units: mg/L SPK value SPK Ref Val Analyte **PQL** %REC %RPD **RPDLimit** Result HighLimit Qual LowLimit 0.5000 Lead 0.0050 103

Sample ID: 1910D16-017DMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals Client ID: EB102219 Batch ID: 48486 RunNo: 64501 10/30/2019 Prep Date: Analysis Date: 11/13/2019 SeqNo: 2208299 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Arsenic 0.51 0.020 0.5000 0 102 75 125 0.020 0.5000 0 98.5 75 **Barium** 0.49125 Beryllium 0.50 0.0030 0.5000 0 101 75 125 Cadmium 0.50 0.0020 0.5000 Λ 99 6 75 125 Chromium 0.50 0.0060 0.5000 0 99.1 75 125 0 100 75 Iron 0.50 0.020 0.5000 125 0.0050 102 Lead 0.51 0.5000 0 75 125 Nickel 0.010 0.5000 0 97.8 75 0.49 125 Selenium 0.46 0.050 0.5000 0 92.4 75 125 Silver 0.11 0.0050 0.1000 0 107 75 125 Vanadium 0.50 0.050 0.5000 0 101 75 125 Zinc 0.47 0.020 0.5000 0 93.6 75 125

Sample ID: 1910D16-017DMS	D SampT	ype: MS	SD	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: EB102219	Batch	ID: 48	486	F	tunNo: 6	4501				
Prep Date: 10/30/2019	Analysis D	ate: 1 1	/13/2019	S	SeqNo: 2	208300	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.52	0.020	0.5000	0	105	75	125	2.48	20	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

8 % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 122 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D16**

25-Nov-19

Client: Marathon
Project: SWMU 13

Sample ID: 1910D16-017DMS	Sample ID: 1910D16-017DMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals									
Client ID: EB102219	Bato	ch ID: 484	486	RunNo: 64501						
Prep Date: 10/30/2019	Analysis	Date: 11	/13/2019	S	SeqNo: 2	208300	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.50	0.020	0.5000	0	99.6	75	125	1.12	20	
Beryllium	0.51	0.0030	0.5000	0	101	75	125	0.575	20	
Cadmium	0.50	0.0020	0.5000	0	101	75	125	1.27	20	
Chromium	0.50	0.0060	0.5000	0	99.4	75	125	0.333	20	
Iron	0.51	0.020	0.5000	0	101	75	125	1.25	20	
Lead	0.51	0.0050	0.5000	0	101	75	125	0.358	20	
Nickel	0.49	0.010	0.5000	0	98.3	75	125	0.463	20	
Selenium	0.49	0.050	0.5000	0	98.7	75	125	6.58	20	
Silver	0.11	0.0050	0.1000	0	108	75	125	0.716	20	
Vanadium	0.50	0.050	0.5000	0	101	75	125	0.195	20	
Zinc	0.48	0.020	0.5000	0	95.1	75	125	1.54	20	

Sample ID: 1910D16-017DMS	Samp	SampType: MS TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: EB102219	Bato	h ID: 484	486	R	tunNo: 6	4540				
Prep Date: 10/30/2019	Analysis I	Date: 11	/14/2019	S	SeqNo: 2	209887	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cobalt	0.49	0.0060	0.5000	0	97.2	75	125			
Manganese	0.49	0.0020	0.5000	0	97.7	75	125			

Sample ID: 1910D16-017DMS	D Samp	Туре: М	SD	TestCode: EPA 6010B: Total Recoverable Metals							
Client ID: EB102219	Bato	h ID: 484	486	F	RunNo: 6	4540					
Prep Date: 10/30/2019	Analysis I	Date: 11	/14/2019	8	SeqNo: 2	209888	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Cobalt	0.49	0.0060	0.5000	0	99.0	75	125	1.79	20		
Manganese	0.49	0.0020	0.5000	0	98.0	75	125	0.285	20		

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 123 of 123

ANALYTICAL REPORT

November 06, 2019

Hall Environmental Analysis Laboratory

Sample Delivery Group: L1154882 Samples Received: 10/29/2019

Project Number:

Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

Jason Romer

TABLE OF CONTENTS

ONE LAB. NATIONWIDE.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
1910D16-001B SWMU 13-1 (0-0.5) L1154882-01	6
1910D16-002B SWMU 13-1 (1.5-2) L1154882-02	7
1910D16-003B SWMU13-1 (5-6) L1154882-03	8
1910D16-004B SWMU 13-1 (8-10) L1154882-04	9
1910D16-005B SWMU 13-1 (14-16) L1154882-05	10
1910D16-006B SWMU 13-2 (0-0.5) L1154882-06	11
1910D16-007B SWMU 13-2 (1.5-2) L1154882-07	12
1910D16-008B SWMU13-2 (8-10) L1154882-08	13
1910D16-009B SWMU 13-2 (14-16) L1154882-09	14
1910D16-010B SWMU 13-3 (1.5-2) L1154882-10	15
1910D16-011B SWMU 13-3 (1.5-2) L1154882-11	16
1910D16-012B SMWU 13-3 (8-10) L1154882-12	17
1910D16-013B SWMU 13-3 (14-15.25) L1154882-13	18
1910D16-014B SWMU 13-3 (15.25-16) L1154882-14	19
1910D16-015B DUP01 L1154882-15	20
1910D16-017E EB102219 L1154882-16	21
Qc: Quality Control Summary	22
Wet Chemistry by Method 4500CN E-2011	22
Wet Chemistry by Method 9012B	23
GI: Glossary of Terms	25
Al: Accreditations & Locations	26

Sc: Sample Chain of Custody

27

SAMPLE SUMMARY

1910D16-001B SWMU 13-1 (0-0.5) L1154882-01	Solid		Collected by	Collected date/time 10/22/19 10:45	Received da: 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:26	JER	Mt. Juliet, TN
1910D16-002B SWMU 13-1 (1.5-2) L1154882-02	Solid		Collected by	Co ll ected date/time 10/22/19 10:55	Received da 10/29/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:29	JER	Mt. Juliet, TN
1910D16-003B SWMU13-1 (5-6) L1154882-03 S	Solid		Collected by	Collected date/time 10/22/19 11:00	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:30	JER	Mt. Juliet, TN
1910D16-004B SWMU 13-1 (8-10) L1154882-04	Solid		Collected by	Collected date/time 10/22/19 11:05	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:31	JER	Mt. Juliet, TN
1910D16-005B SWMU 13-1 (14-16) L1154882-05	Solid		Collected by	Collected date/time 10/22/19 11:15	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:32	JER	Mt. Juliet, TN
1910D16-006B SWMU 13-2 (0-0.5) L1154882-0	6 Solid		Collected by	Co ll ected date/time 10/22/19 13:35	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:34	JER	Mt. Juliet, TN
1910D16-007B SWMU 13-2 (1.5-2) L1154882-07	' Solid		Collected by	Co ll ected date/time 10/22/19 13:45	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:40	JER	Mt. Juliet, TN
1910D16-008B SWMU13-2 (8-10) L1154882-08	Solid		Collected by	Collected date/time 10/22/19 13:50	Received da 10/29/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:41	JER	Mt. Juliet, TN

SAMPLE SUMMARY

1910D16-009B SWMU 13-2 (14-16) L1154882-09 Sc	lid		Collected by	Co ll ected date/time 10/22/19 13:55	Received da: 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:42	JER	Mt. Juliet, TN
1910D16-010B SWMU 13-3 (1.5-2) L1154882-10 Soli	d		Collected by	Collected date/time 10/22/19 15:25	Received da 10/29/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:43	JER	Mt. Juliet, TN
1910D16-011B SWMU 13-3 (1.5-2) L1154882-11 Solid			Collected by	Collected date/time 10/22/19 15:35	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:44	JER	Mt. Juliet, TN
1910D16-012B SMWU 13-3 (8-10) L1154882-12 Solid	d		Collected by	Co ll ected date/time 10/22/19 16:50	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:45	JER	Mt. Juliet, TN
1910D16-013B SWMU 13-3 (14-15.25) L1154882-13 S	Solid		Collected by	Co ll ected date/time 10/22/19 16:55	Received da 10/29/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:46	JER	Mt. Juliet, TN
1910D16-014B SWMU 13-3 (15.25-16) L1154882-14 S	Solid		Collected by	Collected date/time 10/22/19 17:05	Received da 10/29/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375050	1	11/05/19 09:25	11/05/19 15:47	JER	Mt. Juliet, TN
1910D16-015B DUP01 L1154882-15 Solid			Collected by	Collected date/time 10/22/19 00:00	Received da 10/29/19 08:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:13	JER	Mt. Juliet, TN
1910D16-017E EB102219 L1154882-16 GW			Collected by	Co ll ected date/time 10/22/19 14:15	Received da 10/29/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mar Character In Market AFOOON F 2000	WC4272040	4	40/24/40 20 00	44/04/40 44 00	IED	Maria Day TNI

Wet Chemistry by Method 4500CN E-2011

WG1373010

10/31/19 20:09

11/01/19 14:09

JER

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

1910D16-001B SWMU 13-1 (0-0.5)

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 10/22/19 10:45

Wet Chemistry b	y Method 9012B					
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND	J6	0.250	1	11/05/2019 15:26	WG1375050

1910D16-002B SWMU 13-1 (1.5-2) Collected date/time: 10/22/19 10:55

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:29	WG1375050

1910D16-003B SWMU13-1 (5-6)
Collected date/time: 10/22/19 11:00

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

	Result	<u>Qualifier</u> R	DL	Dilution	Analysis	Batch
Analyte	mg/kg	m	g/kg		date / time	
Cvanide	ND	0.	250	1	11/05/2019 15:30	WG1375050

1910D16-004B SWMU 13-1 (8-10) Collected date/time: 10/22/19 11:05

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:31	WG1375050

1910D16-005B SWMU 13-1 (14-16)

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 10/22/19 11:15

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:32	WG1375050

1910D16-006B SWMU 13-2 (0-0.5)
Collected date/time: 10/22/19 13:35

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

	Result	Qualifier RDL	Diluti	on Analysis	Batch	
Analyte	mg/kg	mg/	kg	date / time		
Cvanide	ND	0.2	50 1	11/05/2019 15:34	WG1375050	

1910D16-007B SWMU 13-2 (1.5-2) Collected date/time: 10/22/19 13:45

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:40	WG1375050

1910D16-008B SWMU13-2 (8-10) Collected date/time: 10/22/19 13:50

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:41	WG1375050

1910D16-009B SWMU 13-2 (14-16) Collected date/time: 10/22/19 13:55

SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:42	WG1375050

1910D16-010B SWMU 13-3 (1.5-2) Collected date/time: 10/22/19 15:25

SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	0.521		0.250	1	11/05/2019 15:43	WG1375050

1910D16-011B SWMU 13-3 (1.5-2) Collected date/time: 10/22/19 15:35

SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

/IDE. 🗮

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:44	WG1375050

1910D16-012B SMWU 13-3 (8-10) Collected date/time: 10/22/19 16:50

SAMPLE RESULTS - 12

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:45	WG1375050

1910D16-013B SWMU 13-3 (14-15.25)

SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

*

Collected date/time: 10/22/19 16:55

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 15:46	WG1375050

1910D16-014B SWMU 13-3 (15.25-16)

SAMPLE RESULTS - 14

ONE LAB. NATIONWIDE.

Collected date/time: 10/22/19 17:05

Wet Chemistry	by Method 9012B					
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cvanide	ND		0.250	1	11/05/2019 15:47	WG1375050

1910D16-015B DUP01

SAMPLE RESULTS - 15

ONE LAB. NATIONWIDE.

Collected date/time: 10/22/19 00:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	0.587		0.250	1	11/05/2019 13:13	WG1374859

1910D16-017E EB102219

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

Collected date/time: 10/22/19 14:15

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/ I		mg/		date / time	
Cvanide	ND		0.00500	1	11/01/2019 14:09	WG1373010

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500CN E-2011

Method Blank (MB)

(MB) R3467499-1 11/01/19 13:41	1/01/19 13:41			
	MB Result	MB Qualifier MB MDL	MB MDL	MDL MB RDL
Analyte	√gm		∥/bm	l/gm
Cyanide	ח		0.00180	180 0.00500

L1153885-03 Original Sample (OS) • Duplicate (DUP)

13:55
11/01/19
R3467499-5
(DUP)
13:54 •
11/01/19
53885-03

mg/l % % % 0.000 1 0.000 20
1 0.000

Ŋ

Ss

Q

Ū

Š

Sc

₹

L1154821-02 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	20
01/19 14:06	Dilution DUP RPD	%	1 0.000
P) R3467499-8 11/(Original Result DUP Result Dilution	l/gm	0.00208
(OS) L1154821-02 11/01/19 14:05 • (DUP) R3467499-8 11/01/19 14:06	Original Re	∥/6ш	QN
(OS) L1154821-02		Analyte	Cyanide

Laboratory Control Sample (LCS)

	CS Qualifier		
	Rec. Limits LC	%	85.0-115
	LCS Rec.	%	100
	LCS Result	l/bm	0.100
19 13:42	Spike Amount	//bm	0.100
(LCS) R3467499-2 11/01/19 13:42		Analyte	Cyanide

L1153711-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1153711-02 11/01/19 13:48 • (MS) R3467499-3 11/01/19 13:49 • (MSD) R3467499-4 11/01/19 13:50	19 13:48 • (MS) R34	67499-3 11/01/1	9 13:49 • (MSE) R3467499-4	11/01/19 13:50							
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	Result MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	∥/gm	mg/I	mg/l	mg/l	%	%		%			%	%
Cyanide	0.100	0.0132	9060.0	0.0867	77.4	73.5	-	75.0-125		97	4.40	20

L1153928-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%
	MSD Qualifier RPD	%
	MS Qualifier	
	Dilution Rec. Limits	%
69:	MSD Rec.	%
-/ 11/01/19 13	MS Rec.	%
19 13:58 • (MSD) R346/499-/ 11/01/19 13:59	MSD Result	l/gm
1/19 13:58 • (M	MS Result	mg/I
46/499-6 11/0	Original Result	mg/I
01/19 13:57 • (MS) R3	Spike Amount	/bm
(05) [1153928-03 11/		Analyte

20

4.50

9

75.0-125

76.8

72.8

0.0908

0.0868

0.0140

0.100

Cyanide

PAGE:	22 of 29
DATE/TIME:	11/06/19 09:44
SDG:	L1154882
PROJECT:	
ACCOUNT:	Hall Environmental Analysis Laboratory

QUALITY CONTROL SUMMARY 1154882-15

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

Method Blank (MB)

11/05/15	MB) R3468562-1 11/05/19 13:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
	mg/kg		mg/kg	mg/kg
	D		0.0390	0.250

L1154882-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1154882-15 11/05/19 13:13 • (DUP) R3468562-3 11/05/19 13:14

DUP RPD Limits	%	20
DUP Qualifier		
Dilution DUP RPD	%	1 9.93
Original Result DUP Result Dilution	mg/kg	0.531
Original Re	mg/kg	0.587
	Analyte	Cyanide

Ŋ

Ss

C

Q

Ū

Š

Sc

₹

L1155312-10 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	20
05/19 13:40	Dilution DUP RPD	%	1 0.000
3468562-8 11/(Original Result DUP Result	mg/kg	0.000
OS) L1155312-10 11/05/19 13:39 • (DUP) R3468562-8 11/05/19 13:4(Original Result	mg/kg	QN
(OS) L1155312-10		Analyte	Cyanide

Laboratory Control Sample (LCS)

	LCS Qualifier		
	Rec. Limits	%	50.0-150
	LCS Rec.	%	103
	LCS Result	mg/kg	2.57
5/19 13:09	Spike Amount	mg/kg	2.50
(LCS) R3468562-2 11/05/19 13:09		Analyte	Cyanide

L1155184-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1155184-04 11/05/19 13:22 • (MS) R3468562-4 11/05/19 13:23 • (MSD) R3468562-5 11/05/19 13:24	5/19 13:22 • (MS) R3	3468562 - 4 11/0)5/19 13:23 • (N	1SD) R3468562	2-5 11/05/19 13	3:24						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	N Q	1.08	1.28	60.3	71.9	_	75.0-125	90	90	16.5	20

L1155312-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L/1553/2-02 11/05/19 13:27 • (MS) R3468562-6 11/05/19 13:28 • (MSD) R3468562-7 11/05/19 13:29		2
312-02 11/05/19 13:27 • (MS) R3468562-6 11/05/19 13:28 • (MSD) R3468562-7 11/05/19 13		911
312-02 11/05/19 13:27 • (MS) R3468562-6 11/05/19 13:28 • (MSD) R3468562-7 11/05/19 13		
312-02 11/05/19 13:27 • (MS) R3468562-6 11/05/19 13:28 • (MSD) R3468562-7 11/05/19 13		
312-02 11/05/19 13:27 • (MS) R3468562-6 11/05/19 13:28 • (MSD) R3468562-7 11/05/19 13		-
312-02 11/05/19 13:2	13:29	
312-02 11/05/19 13:2	52-7 11/05/19	
312-02 11/05/19 13:2	MSD) R346856	4
312-02 11/05/19 13:2	05/19 13:28 • (41
312-02 11/05/19 13:2	468562-6 11/	
(OS) L1155312-02 11/05/19 1.	3:27 • (MS) R3	1 A II A
(OS) L1155312-02	11/05/19 13	-
9	05) L1155312-02	
) 	

RPD Limits	%	20
MSD Qualifier RPD	%	0.682
MS Qualifier		
Rec. Limits	%	75.0-125
Dilution		_
MSD Rec.	%	86.0
MS Rec.	%	85.4
MSD Result	mg/kg	1.49
Original Result MS Result	mg/kg	1.48
Original Res	mg/kg m	9
Spike Amount	mg/kg	1.67
	Analyte	Cyanide

DATE/TIME:	11/06/19 09:44	
SDG:	L1154882	
PROJECT:		
ACCOUNT:	Hall Environmental Analysis Laboratory	

PAGE: 23 of 29

L1154882-01,02,03,04,05,06,07,08,09,10,11,12,13,14

ONE LAB. NATIONWIDE.

(MB)	
Blank	
ethod E	
/let	

Wet Chemistry by Method 9012B

WG1375050

	er MB MDL MB RDL	mg/kg mg/kg	0.0390 0.250
(MB) R3468639-1 11/05/19 15:13	MB Result MB Qualifier	Analyte mg/kg	Cvanide

L1152519-21 Original Sample (OS) • Duplicate (DUP)

15:18
11/02/19
R3468639-3
(DUP)
17
19 15
11/05/
519-21
L1152
(SO)

UP Qualifier DUP RPD Limits	%	20
DUP RPD DUP QL	%	31.3 JP1
Dilution		-
Result DUP Result	mg/kg	0.0942
Original Result	mg/kg	QN
	Analyte	Cyanide

Q

Ū

Š

Sc

₹

C,

Ss

C

L1154882-05 Original Sample (OS) • Duplicate (DUP)

	DUP RPD Limits	%	20
	DUP Qualifier		
5:33	DUP RPD	%	0.000
11/05/19 1	Dilution DUP		-
P) R3468639-6	Original Result DUP Result	mg/kg	0.000
OS) L1154882-05 11/05/19 15:32 • (DUP) R3468639-6 11/05/19 15:33	Original Res	mg/kg	QN
(OS) L1154882-05 1		Analyte	Cyanide

Laboratory Control Sample (LCS)

%	50.0-150
%	102
mg/kg	2.55
mg/kg	2.50
Analyte	Cyanide
	, mg/kg mg/kg %

L1154882-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1154882-01 11/05/19 15:26 • (MS) R3468639-4 11/05/19 15:27 • (MSD) R3	15:26 • (MS) R3	3468639-4 11/0	5/19 15:27 • (M	ISD) R3468635	3468639-5 11/05/19 15:28	:28						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.35	1.47	71.8	78.9	_	75.0-125	90		8.46	20

L1154882-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

RPD Limi
MSD Qualifier RPD
MS Qualifier
Rec. Limits
Dilution
MSD Rec.
MS Rec.
MSD Result
esult MS Result
Original Result
Spike Amount (

			PAGE:	24 of 29
RPD Limits	%	20		
MSD Qualifier RPD	%	4.90	DATE/TIME:	11/06/19 09:44
MS Qualifier				
on Rec. Limits	%	75.0-125	SDG:	L1154882
Dilution		<u></u>		
MSD Rec.	%	85.1		
MS Rec.	%	89.4	PROJECT:	
MSD Result	mg/kg	1.42	PR	
Spike Amount Original Result MS Result	mg/kg	1.49		
Original Res	mg/kg	Q		oratory
Spike Amount	mg/kg	1.67	ACCOUNT:	Hall Environmental Analysis Laboratory
	Analyte	Cyanide		Hall Env

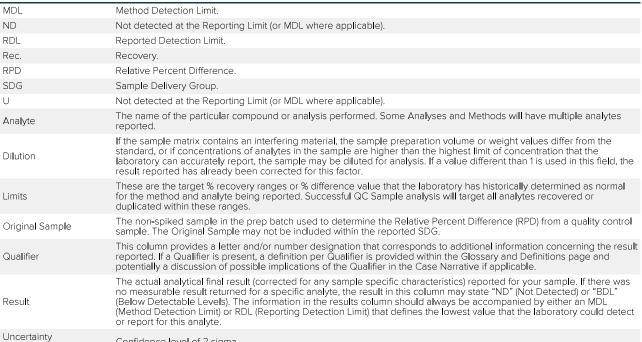
GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Ss


Cn

Sr

Qc

GI

Abbreviations and Definitions

⁹ Sc

Confidence level of 2 sigma

times of preparation and/or analysis.

A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will Case Narrative (Cn) be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.

Quality Control Summary (Qc)

(Radiochemistry)

This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.

Sample Chain of Custody (Sc)

This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis. This section of your report will provide the results of all testing performed on your samples. These results are provided

Sample Results (Sr)

by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported. This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

Sample Summary (Ss)

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 1 6	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Ok l ahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ENVIRONMENTAL LABORATORY RMALYSIS

CHAIN OF CUSTODY RECORD FACE 1

003

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Allnquerque, NM 87109

757-505-345,3975

FAX: 505-345-4107

Website: www.hallenwronmental.com

12065 Lebanon Rd 12065 Leban	9008	BCONTLATOR ESC PACE	ACE	ESC PACE		PHONE	(800) 767-5859	PAX (615) 758-5859	
BOTTLE AMTRIX DATE DAT	DEPS		Lebanon Rd			ACCIDICAT VI		SMAIL	
BOTTLE CLIENT SANPLE ID TYPE MATRIX COLLECTION	7.50	ATE 279 Mt. Ju	liet, TN 37122						
1910D16-0018 SVMVU 13-1 (9-0,5') 402GU NeOH 10/22/2019 10-65 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-1 (1-5-2') 402GU Soil 10/22/2019 10-65 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-1 (1-6-6') 402GU Soil 10/22/2019 11-60 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-1 (1-6-6') 402GU Soil 10/22/2019 11-60 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-2 (0-0.5') 402GU MeOH 10/22/2019 11-60 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-2 (1-6-6') 402GU MeOH 10/22/2019 15-60 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-2 (1-6-6') 402GU MeOH 10/22/2019 15-60 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-2 (1-6-6') 402GU MeOH 10/22/2019 15-60 00 AM 1 Lv.4 Total Cyanide 1910D16-0028 SVMVU 13-3 (0-0.5') 402GU MeOH 10/22/2019 15-60 00 AM 1 Lv.4 Total Cyanide 1902GU MeOH 10/22/2019 10/24 Total Cyanide 1902GU 10/24/2019 1902GU 10/24/2019 10/2	WE	SAMPLE	CLIENT SAMPLE ID	BOTTLE 3/Y7	MATRIX			M058 NALYTICAL COMMENTS	Pil
1910016-0028 SWMU13-1 (1.5-2)		1910D16-001B	SWMU 13-1 (0-0.5')	402GU	MeOH	10/23/2019 16-45:00 AM	1 Ly.4 Total Cyanide		10-
1910D16-0038 SWMU13-1 (5-6') 402GU MeOH 1022/2019 1115 00 AW LV.4 Total Cyanide 402GU MeOH 1022/2019 1115 00 AW LV.4 Total Cyanide 402GU MeOH 402GU MeOH 1022/2019 1115 00 AW LV.4 Total Cyanide 402GU MeOH 402GU MeOH 1022/2019 1115 00 AW LV.4 Total Cyanide 402GU MeOH 402GU MeOH 1022/2019 1115 00 AW LV.4 Total Cyanide 402GU MeOH 1022/2019 1110 Cyanide 1022/2019 1110 Cyanide 402GU MeOH 1022/2019 1110 Cyanide 1022/2019 1		1910D16-002B	SWMU13-1 (1.5-2')	40ZGIJ	Soil	10/22/2019 10:55:00 AM	1 Lv.4 Total Cyanide		20
1910016-0048 SWMU 13-1 (14-16') 402GU MeCH 10222019 11.05 00 AW 1 LV.4 Total Cyanide A02GU A02GU A02GU A0222019 11.05 00 AW 1 LV.4 Total Cyanide A02GU		1910D16-003B	SWMU13-1 (5-6')	402GU	Soll	10/22/2019 11:00:00 AM	1 Lv.4 Total Cyanide		03
1910D16-0058 SWMU 13-1 (14-16') 402GU MeCH 10/22/2019 11/15 CO AM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 11/15 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 402GU MeCH 10/22/2019 145 CO PM 1 LV.4 Total Cyanide 10/22/2019 145 CO PM 1 LV.4 To		1910016-0048	SWMU 13-1 (8-10")	40ZGU	MeOH	10/22/2019 11:05:00 AM	1 Lv.4 Total Cyanide		101
1910D16-0068 SWMU 13-2 (1.5-2') 402GU Soll 1022Z019 1/5:00 PM 1 Lv.4 Total Cyanide 1910D16-0078 SWMU 13-2 (1.5-2') 402GU MeOH 1022Z019 1/5:00 PM 1 Lv.4 Total Cyanide 1910D16-0088 SWMU 13-2 (14-15') 402GU MeOH 1022Z019 1/5:00 PM 1 Lv.4 Total Cyanide 1910D16-0108 SWMU 13-3 (0-0,5') 402GU MeOH 1022Z019 3/5:00 PM 1 Lv.4 Total Cyanide 1910D16-0118 SWMU 13-3 (1-5-2') 402GU MeOH 1022Z019 3/5:00 PM 1 Lv.4 Total Cyanide 1910D16-0128 SWMU 13-3 (14-15.2') 402GU MeOH 1022Z019 4/5:00 PW 1 Lv.4 Total Cyanide 1910D16-0138 SWMU 13-3 (14-15.2S') 402GU MeOH 1022Z019 4/5:00 PW 1 Lv.4 Total Cyanide		1910D16-005B	SWMU 13-1 (14-16')	40ZGU	MeOH	10/22/2019 11:15 00 AV	1 Lv.4 Total Cyanide	Va.	20-
1910D16-007B SWMU 13-2 (1.5-2") 402GU		1910D16-006B	SWMU 13-2 (0-0.5')	40ZGU	Soil		1 Lv.4 Total Cyanide		90-
1910D16-008B SWMU 13-2 (8-10') 40Z6U MeCH 1022/2019 1-50 00 PM 1 Lv.4 Total Cyanide 1910D16-009B SWMU 13-2 (14-15') 40Z6U MeCH 1022/2019 1-50 00 PM 1 Lv.4 Total Cyanide 1910D16-010B SWMU 13-3 (0-0.5') 40Z6U MeCH 1022/2019 3-50 00 PM 1 Lv.4 Total Cyanide 1910D16-012B SWMU 13-3 (8-10') 40Z6U MeCH 1022/2019 3-50 00 PW 1 Lv.4 Total Cyanide 1910D16-012B SWMU 13-3 (14-15.25') 40Z6U MeCH 1022/2019 4-50 00 PW 1 Lv.4 Total Cyanide 1910D16-013B SWMU 13-3 (14-15.25') 40Z6U MeCH 1022/2019 4-50 00 PW 1 Lv.4 Total Cyanide		1910016-0078	SWMU 13-2 (1.5-2')	40ZGU	MeoH	10/22/2019 1:45:00 PM	1 Lv.4 Total Cyanide		10-
1910D16-0108 SWMU 13-2 (14-15') 40ZGU McOH 1072Z01913500 PW 1 Lv.4 Total Cyanide 1910D16-0108 SWMU 13-3 (0-0.5') 40ZGU McOH 1072Z01933500 PW 1 Lv.4 Total Cyanide 1910D16-0108 SWMU 13-3 (1-5-2') 40ZGU McOH 1072Z01943500 PW 1 Lv.4 Total Cyanide 1910D16-0108 SWMU 13-3 (14-15.25') 40ZGU MCOH 1072Z01943500 PW 1 Lv.4 Total Cyanide 1910D16-0108 SWMU 13-3 (14-15.25') 40ZGU MCOH 1072Z01943500 PW 1 Lv.4 Total Cyanide		1910D16-008B	SWMU 13-2 (8-10')	40ZGU	MeOH	10/22/2019 1:50:00 PM	1 Lv.4 Total Cyanide		80-
1910016-0108 SWMU 13-3 (0-0.5') 402GU MSCH 1022/2019 3-25:00 PM 1 Lv.4 Total Cyanide 1910016-0128 SWMU 13-3 (1-5-2') 402GU MSCH 1022/2019 3-35:00 PW 1 Lv.4 Total Cyanide 402GU MSCH 1022/2019 4-50:00 PW 1 Lv.4 Total Cyanide 402GU MSCH 1022/2019 4-50:00 PW 1 Lv.4 Total Cyanide 402GU MSCH 1022/2019 4-50:00 PW 1 Lv.4 Total Cyanide 402GU MSCH 1022/2019 4-50:00 PW 1 Lv.4 Total Cyanide		1910016-0098	SWMU 13-2 (14-16")	40ZGU	MeOH	10/22/2019 1-55:00 PM	1 Lv.4 Total Cyanide		-09
1910D16-0118 SWMU 13-3 (1.5-2') 402GU MeOH 10/22/2019 3:35:00 PW 1 LV-4 Total Cyanide (Scall Hoods) 402GU MeOH 10/22/2019 4:55:00 PW 1 LV-4 Total Cyanide (Acada) 402GU MeOH 10/22/2019 4:55:00 PW 1 LV-4 Total Cyanide (Scall Hoods) 402GU MeOH 10/22/2019 4:55:00 PW 1 LV-4 Total Cyanide		1910016-0108	SWMU 13-3 (0-0.5')	40ZGU	MeOH	10/22/2019 3:25:00 PM	1 Lv.4 Total Cyanide		01-
1910D16-0128 SMWU 13-3 (8-10') 40ZGU MeOH 10/22/2019 455:00 PW 1 Lv.4 Total Cyanide 40ZGU MeOH 10/22/2019 455:00 PW 1 Lv.4 Total Cyanide	12	1910016-0118	SWMU 13-3 (1.5-2")	UĐZO4	MeOH	10/22/2019 3:35:00 PM	1 Lv.4 Total Cyanide		11-
1910D16-013B SWMU 13-3 (14-15.25") 402GU MeOH 10/22/2019 4:55:00 PM 1 Lv.4 Total Cyanide	1	1910016-0128	SMWU 13-3 (8-10')	40ZGU	MeOH	10/22/2019 4:50:00 PW	1 Lv.4 Total Cyanide		7
		1910016-0138	SWMU 13-3 (14-15.25")	HOZON	MeoH	10/22/2019 4:55:00 PW	1 Lv.4 Total Cyanide		13

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab/@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

cellinguished By:	1	10/24/2019	Tane 10-St AM.	Ratarised By	Duke	v. Yes:	REPORT TRANSMITTAL DESIRED.
Relinquished By		Date	Taxer	Received By.	Date	te Tine	DADLOS (CIN COR)
Reinquefied By		Dans	Three	STORES AND	40	のところいの	Tumori comple
TAE	St. Str.	thadard 🗆	RUSH	Nexted: []	Del tec	□ cuper	Comments:

HALL ENVIRONMENTAL NALYSIS LABORATORY

CHAIN OF CUSTODY RECORD PAGE

Hall Environmental Analyzis Laboratory

00: 2

4901 Hawkins NE Albuquerque, NM 87109 TIZ.: 505-345-3975

FAX: 505-345-3973 FAX: 505-345-4707 Website: www.hallenvironmental.com

				1	Constant.		FAX	(615) 758-5859	
O BLAN	WIRITOR DOC DAY	CCMP/NY.	ESC PACE		PHCONE	(800) 767-5859	H	(010)	
O CO	ESC PACE	· P			ACCOUNT		SMAIN		
ADDRESS		12065 Lebanon Rd		1					
CITY,	CITY, STAIR, ZIP. Mrt., Juliet. TN 37122	L. TN 37122							
			BOTTLE	Mountain	COLLECTION	CONTAINER	NALYTICAL	ANALYTICAL COMMENTS	
-	T TO AND IT	CHENT SAMPLE ID	TYPE	MALKIA		September 1			111
	M SAMPLE	191 30 3 (16 oc 16")	40ZGU	МеОН	10/22/2019 5:05:00 PM	10/22/2019 5:05:00 PM 1 Lv.4 Total Cyanide			11
14	1910D16-014B SV	14 1910D16-014B SWMU 13-3 (15:23-10)	1	(Losi)	400000000	1 Lv 4 Total Cvanide			
1	A STATE OF THE PARTY OF	100	40ZGD	MeOH	10/20/2012	1			2/-
11	15 1910D16-0156 DCP01	PUL	-	Agendante	County Annual Annual (NO) CON 1 LV. 4 Total CN	1 Lv. 4 Total CN			
1	16 1910D16-017E EB102219	102219	S00AMBHDP	Wdneons					
•									

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental com. Please return all coolers and blue ice. Thank you SPECIAL INSTRUCTIONS / COMMENTS:

and the contribution	1.1	Dates	Time	Received By	Date	r. Times	THARD STIPY (extra cost)
School and a second	SIS	10/24/2019	10/24/2019 10:54 AM		-	Tree	Al law way.
Reinquished By:		Dafe.	Time	Received By	W	CARE CONT.	POR LAB USE ONLY
					7	Cult	2 1 1 2 1 1 2 1
Busingshided By:		Date	Time	Received By:	4		Tump of earthirs 3. 1. 1.30 gg. Attempt to Look
	1	1		1	1.1 000 1.1	3rd BO	20
TAT:	Stan	undard 🗆	RUSH	Next 180	THE PERSON NAMED IN		Community
		1					CONTRACTOR MB/hr (Acc.)
							BAD SCHEEN, SOO HILVER

Pace Analytical National Center for Testing & Innovation	vation	
Cooler Receipt Form		
Client	1115	5484J
Cooler Received/Opened On: 10-29-19 Temperature:	3.0	
Received By: M. Pap Pas		
Signature: Www.		The same of
ON THE RESERVE OF THE PERSON O	Vac	No
Receipt Check List	3	
COC Seal Present / Intact?	1	
COC Signed / Accurate?		
Bottles arrive intact?	1	
Correct bottles used?	1	
Sufficient volume sent?	1	
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?	1	

Hall Environmental Analysis Laboratory
49th Hawkins NE
Albuquerque, NM 87109
771-505-345-3975 FAX: 505-545-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	MARATH	ION GALLUF	Wo	rk Order Ni	ımber: 19	I0D16			Rep	No: 1
Received By:	Juan	Rojas	10/24	2019 9:15	00 AM					
Completed By:		-		2019 10:3			Live	Sec		
	ENM						Look	Pas	in.	
Reviewed by:	CNM		107	25/19						
Chain of Cus	stody									
1 Is Chain of C	Custody com	plete?			Yes	V	No	(1)	Not Present	1
2. How was the	sample de	ivered?				mer			(NOTA TOSONE)	-
Log In										
3. Was an atten	mpt made to	cool the sam	oples?		Yes	V	No	Ū	NA E	J
4, Were all sam	ples receive	ed at a tempe	rathre of >0° C	to 6.0°C	Yes	V	No		NA [I.
5. Sample(s) in	proper cant	ainer(s)?			Yes	V	No [
6. Sufficient sam	nole unlume	for indicated	buelle12			1791				
				Ge.	Yes	Y	No			
7 Ate samples (roperty preserv	ed ^o	Yes	1	No	-		
Was preserva	ilive added i	to bottles?			Yes		No 3	1	NA 🗔	
9. VOA vials hav					Yes	V	No L	1	No VOA Vials	
0. Were any san	nple contain	iers received	broken?		Yes		No B		# of preserved	
1. Does paperwo	ark mater he	ottle lekelet			Lucy.	imali.	- F	9	bottles checked	C2 T
(Note discrepa	incles on ch	iain of custod	VY		Yes	~	No L		for pH.	- CON
2. Are matrices of					.Va.	~	No E	1	Adjusted?	or \$12 unless noted)
3. Is it clear what						~		4	()ajasies	No
4. Were all holding			9,6		Yes	-	No I		en e	NAS LONGE
(If no, notify cu	stomer for	authorization)		Yes	V	No. L	L-	Checked by:	DAD 10/25/1
pecial Handli	ing (if ap	plicable)								
5. Was client not	tified of all d	iscrepancies	with this order	7	Yes		No L	_	NA 🗹	
Person I	Notified:			Date		_		-		
By Who	m:			Via:		a Ti	Phone F	au.	In Person	
Regardii	ng:			1.00	L. Cirie	11	Tone III	an	LI III PEISON	
Client In	structions:									
6. Additional ren	narks:									
7. Cooler Inform	nation									
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Scal Da	te	Signed By	-		
1	1,2	Good	Yes		200,00		Signed By			
2	0.1	Good	Yes			-				
3	0.2	Good	Yes							
4	0.0	Good	Yes							

Date: Time: 0700		-	+	1100	+		1055	_		101 6/22/61	Date Time		X EDD (Type)	Other_	□ Standard		Email: Bm	Phone #	
Time:			+	0	-		G	+		1045		-				age	core1@	5	
Relinquished by	Relinquished by		<							Soil	Matrix		EXCEL	-			marat)5-72	Gallu
	J /wa pic		*	SWHUB-1 (5-6')	+		SWMU 13-1(15-2')	-	Maria Caraca	SWMU 13-1 (0-0.5)	Sample Request ID				X Level 4 (Full Validation)		Bmcore1@marathonpetroleum.com	505-726-9745	Gallup, NM 87301
Received by:	Received by		4 CEJAR-1	SOE JAR-Z	402 JAR-1	VIAL-2	8 CEJAR-Z	HOZJAR-I	Vial - 2	8 oz Jar - 2	Container Type and #	Sample Temperature:	On Ice:	Sampler			Project Mana		Project #:
	10.3.12		NEAT	NEAT	NEAT	MEOH	NEAT	NEAT	МеОН	Neat	Preservative Type	100	BYes .	Tracy Payr			Project Manager, Brian Moore		
	Silv bulhala		بدر	- 6003			2002	+		-00-	HEAL No	see Remarks	□No	Tracy Payne - 919-561-7055			Moore		
											BTEX+MT	BE+	TM	B's(8021	1)			
	Remarks: and Tan	4									BTEX+MT	_	_		-		-		Tel
	irks: See attachi Target Analytes		+	×			×		-	×	TPH 8015		-		IO/M	RO)		Tel. 505-345-3975
	att anal	-	+-		-		-	Н			TPH (Meth EDB (Meth	_		_	_	_			-345
	attached	-	+		+	-	-				PAH (831)	-	-		MSS				-397
	00						П				RCRA 8 M		_	001	,,,,		П	Ana	O.
200	sheet i(4)-			Т							Anions (F.		_	O ₂ ,F	04.8	O ₄)		Analysis Request	Fax
00	for	1.1									8081 Pest	icide	5/	808	2 PC	B's		Rec	
NW	ND			X		X	X		×	×	8260B (V	(AC						ues	505-345-4107
000	nalyti			X			X			×	8270 (Sen	ni-V	OA)						17
N-			X	X	×		×			×	Metals an	d Cy	ani	ide					37
	thods										Air Bubble	e IV	a- 1	MV					
								-			All Dubble	3 (1	Vi	4/					

HALL ENVIRONMENTAL ANALYSIS LABORATORY

www.hallenvironmental.com

4901 Hawkins NE - Albuquerque, NM 87109

Mailing Address: 92 Giant Crossing Road

Gallup Refinery

Project Name: SWMU 13

Chain-of-Custody Record

Client Marathon Petroleum Company LP

Turn-Around Time:

X Standard

□ Rush_

	Gall	Gallup, NM 87301	Project #				Te	505	Tel. 505-345-3975	-397	5	Fax		5-34	5-41	07	505-345-4107
Phone #:	505-7	505-726-9745									Ana	Analysis Request	Rec	sank	۳		9
Email: Bmoore	e1@mara	Email: Bmoore1@marathonpetroleum.com	Project Mana	Project Manager. Brian Moore	loore		-)	-	-			0				
QA/QC Package:						_		MRO		,	,	SO ₄)	CB's				
□ Standard		X Level 4 (Full Validation)					-	O/N		121	,,,	04.5	2 P(
□ Other			Sampler	Tracy Payn	Tracy Payne - 919-561-7055	_	_	-			70111	J₂.P	082			de	de
X EDD (Type)	EXCEL		On Ice:	Σ-Yes	□ No		_				-	_	1/8		(A)	anic	_
			Sample Temperature:	1	a Remonts		-				-		cides	-	i-VC	Cy	
Date Time	Matrix	Sample Request ID	Container	Preservative	HEAL No	X+MT	X+MT	8015	(Meth	3 (Meth 1 (8310	RA 8 M	ns (F.C	1 Pesti	OB (VC	0 (Sem	als and	_
					MUDIL	-			1			-	808		827	Met	
1922/9/105	Soil	SMHU 13-1 (8-10')	8 oz Jar - 2	Neat	490 -			×	-					×	×	×	
	_		Vial - 2	МеОН			_	-	-					×			
4		~	HOZJAR-1	NEAT	1-			-		Н						×	×
1115		SWMU 13-1 (14-16')	BOZ TAR-2	NEAT	-005			×	2 2					X	×	×	×
			VIAL-2	HEOH					-					×	1		
·		<	HOE JAR-1	NEAT	1											X	×
1335		5MMU 13-2(0-0.51)	800 JAC- Z	NEAT	-006			×						X	×	X	
			VIAL-2	MEOH			_,	_					П	×			
+	+	+	HORTAR-	NEAT			-	+	+	+						X	×
Date Time:	Relinquished by	J de by	Recovered by	131.13.182	Date Time Rem	Remarks:	Tarks	See See	arks: See attache	attached	d	sheet	0 6	N S	y aly	No Me	for Analytical Methods
Date: Time:	Relimquished by	ned by	Received by									000	217		A. Kt. 44	00-	1.1

ANALYSIS LABORATORY HALL ENVIRONMENTAL

www.hallenvironmental.com

4901 Hawkins NE - Albuquerque, NM 87109

Mailing Address: 92 Giant Crossing Road

Gallup Refinery

Project Name: SWMU 13

Client Marathon Petroleum Company LP

Chain-of-Custody Record

Turn-Around Time:

X Standard

□ Rush

Date: Time:	Date: Time: 0100	+		1355	_		is in			19/22/19 1345		-	X EDD (Type)	□ Other	QA/QC Package	Email: Bm	Phone #:	
Relinquished by		+		55 SOIL	+		350 SOIL	+		5 Soil	Time Matrix		De) EXCEL		age	oore1@ma	505-7	00
shed by.	Relinquished by:	+		SWMU 13-2(14-16)	<		- SMMU 13-2(8-10)	4		SWMU 13-2(1.5-21)	× Sample Request ID		EL		X Level 4 (Full Validation)	Bmoore1@marathonpetroleum.com	505-726-9745	California of Sol
Received by:	Anny	4 OF JAR-1	VIAL-2	SOZIAR-Z	4 OF TAR-1	VAL-2	BOLIAR-2	HOE JAR- 1	Vial - 2	8 oz Jar - 2	Container Type and #	Sample Temperature:	On Ice:	Sampler		Project Mans		L TOTOGOT III
	Carries	NEAT	MEDH	NEAT	NEAT	HEOH	NEAT	NEAT	МеОН	Neat	Preservative Type	perature: <pe< td=""><td>D-Yes</td><td>Tracy Payn</td><td></td><td>Project Manager. Brian Moore</td><td></td><td></td></pe<>	D-Yes	Tracy Payn		Project Manager. Brian Moore		
Date Time	Date Time	1		- NOW	+		600	+		-067	HEAL No.	e Revouls	□No	Tracy Payne - 919-561-7055		loore		
	Rem										BTEX+MT	BE+	TM	B's(8021)			
	63										BTEX+MT	BE+	TP	H(G	as only)		ē
	arks: See attach Target Analytes	4		×			×			×	75 0.4038		-		RO/MRC)		Tel. 505-345-3975
	Ana									-	TPH (Meti		_	_				0-34
	attached nalytes.	+					*	Н			EDB (Met		-	-		_		80-0
	00	+	-				-				PAH (831		_	USI	MS)		An:	G
000	sheet	+	-	H	H	+	1	-	H	Н	RCRA 8 M Anions (F,		-	n i	20. 90.	١	Analysis Request	XEA
55	0 10	-	1	\vdash	-	1					8081 Pest			-		-	s Re	100
000	N A		×	×	-	×	×		×	×	8260B (V		ia /	000	2100	0	que	5-36
11111	naly			X			×	\vdash	-	×	8270 (Ser	-	OA				ş	505-345-4107
CV	r) dica	×		×	×		×	×		×	Metals an			- /				70
O M	for Analytical Methods																	

Client Marathon Petroleum Company LP

Chain-of-Custody Record

Turn-Around Time

X Standard

□ Rush

Mailing Address: 92 Giant Crossing Road

Gallup Refinery

Project Name: SWMU 13

HALL ENVIRONMENTAL ANALYSIS LABORATORY

www.hallenvironmental.com

4901 Hawkins NE - Albuquerque, NM 87109

ŀ	1	_
l	_	
4	H	
Į,	-	
ľ	0	7

Mailing Address: 92 Giant Crossing Road

Gallup Refinery

Project Name: SWMU 13

4901 Hawkins NE - Albuquerque, NM 87109

www.hallenvironmental.com

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Client Marathon Petroleum Company LP

Chain-of-Custody Record

Turn-Around Time:

X Standard

□ Rush

Date: Tir	Date: Tir	<		16			16			10/2/01			X EDD (Type)_	□ Other	QA/QC Package	Email: B	Phone #:	
/ mul	Time:	+		1650	<		1535	<		525	Time		ype)_		ckage	moore		
Relinquished by	Relinquished by:	*								Soil	Matrix		EXCEL			1@mara	505-72	Galli
ed by:	7/188	+		SWMU 13-3(8-10')	<u> </u>		9WMU 3-3(1.5-2')	←		SWMU 13-3 (0-0.5')	Sample Request ID				X Level 4 (Full Validation)	Email: Bmoore1@marathonpetroleum.com	505-726-9745	Gallup, NM 87301
				(,01-8			1.5-2')			(0-0.5')	quest ID				Validation)	om		
Kepsived by	Received by	4 ORTAR-1	VIAL-Z	BOING-Z	HOZZAR-1	VIAL-2	BOZJAR-2	HOE LAR-	Vial -2	8 oz Jar - 2	Container Type and #	Sample Ten	On Ice:	Sampler:		Project Man		Project #:
	CRETTER	NEAT	MEOH	NEAT	NEAT	MEDH	NEAT	NEST.	МеОН	Neat	Preservative Type	Sample Temperature: 5 < <	+d-Yes	Tracy Payr		Project Manager: Brian Moore		
a d	Date Time	-		-012	1		-0,4	F		-010	HEAL NO.	Cerrents	□ No	Tracy Payne - 919-561-7055		Moore		
	Pris Rem	1					Ē				втех+мт	BE+	TM	B's((8021)			Ì
	00	Œ									BTEX+MT		_	24		-		Te
	irks: See attachi Taiget Analytes	+		X			×			×	TPH 8015	_		_	ROMRO	0)		Tel. 505-345-3975
	Ana	+	-	H	-	-	H	-	-	-	TPH (Meth				_			-345
	attached ralyles.	+	1		H		-				EDB (Met	_	-		MON	=		-397
	- B	+	-	H	-	H	H	1	H		PAH (831) RCRA 8 M	_	_	USI	MO)		Ana	Si
v	she	+		Н	H						Anions (F.			O ₂ ,F	04.504)	Analysis Request	Fax
00	et for	+		Ħ	T						8081 Pest	-					Re	1000
75		1	×	×	Ħ	X	×		×	×	8260B (V		300		F 22.2		quès	505-345-4107
00	Analytical	T		X			×			×	8270 (Sen	ni-V	OA)		_		Ť	5-41
4		X		×	X		×	×		×	Metals an	d Cy	/an	de		1		07
	Methods						L											
	41				11		1				1							4

Date	Date:		+	+		-	-		1/22/19	Date		X EDC	□ Other	☐ Standard	Email:	Phone #	
ime	COOC CITIES		7		t	<	1705	*	1655	Time	ì	X EDD (Type)	eg.	☐ Standard	Bricore	#	
Reinquished by:	Relinquished by	Паон	*	-	-	-			Soil	Matrix		EXCEL			e 1@mara	505-7	Gall
		TECH OLANK	2		Dupo1	+	SWMU 13-3(1525-16)	4	SWMU 13-3(14-1525)8 02 Jar-2	Sample Request ID				X Level 4 (Full Validation)	Bridging 1@marathonpetroleum.com	505-726-9745	Gallup, NM 87301
Received by:	Received by:	VIAL-Z	HOE JAR-1	VIAL-Z	BOZTAR-Z	VIAL-Z	-SALTOS	Vial - 2)8 oz Jar - 2	Container Type and #	Sample Ten	On loe:	Sampler.		Project Man		Project #:
	Carrier.	MEOH	NEAT	MEDH	NEAT	MEOH	NEAT	MeOH	Neat	Preservative Type	Sample Temperature: Ske	∠a Yes	Tracy Pay		Project Manager. Brian Moore		
Date Time	Date Time	-016			-D15	+	- MM X	L Jack	-013	HEAL NO.	e Revnowks	□ No	Tracy Payne - 919-561-7055		Moore		
	1		t				Ē	16	3	BTEX+MT	BE+	TM	B's(8021)			
	100									BTEX+MT	BE+	TPI	I(G	as only	y)	И	7
	arks: See attache Target Analytes.				X	13	×	-1	×	TPH 8015E	3 (G	RO	/DR	O/MR	0)		Tel. 505-345-3975
	Ana		1							TPH (Meth	-	_	- 4			1	5-34
	attached nalytes.		-	H			-		Ċ.	EDB (Meth		_	-				5-39
		++	+	-						PAH (8310			OSIN	MS)	-	An	75
W. 20	sheet for		+		-	-				RCRA 8 Me Anions (F,C	-	_	0 0	0.00	,	Analysis Request	Fax
7.11	etfor								-	8081 Pestic	_	-	_	-	-	is R	
WW.		×		×	×	X	X	×	×	8260B (VO	_	316	3002	FUB	5	que	505-345-4107
1000	malytic				×		X	-		8270 (Sem		(AC				st	15-4
ch_	L 8		X		×		X		-	Metals and	-		_				107
	Analytical Methods									Air Bubbles	(Y	or N	I).				

HALL ENVIRONMENTAL ANALYSIS LABORATORY

www.hallenvironmental.com

4901 Hawkins NE - Albuquerque, NM 87109

Mailing Address: 92 Giant Crossing Road

Gallup Refinery

Chain-of-Custody Record
Client Marathon Petroleum Company LP

Turn-Around Time:

X Standard

□ Rush

Project Name SWMU 13

Date: 19/23/19 0						1927/9 1415	Date		X EDD (Type)	□ Other	QA/QC Package: Standard	Email:	Phone #:	
Time		~		_	_	15	Time		(Type)		ackage:	Bmoore	1.3	
Relinquished by.		~			/	Water	Matrix		EXCEL			1@marath	505-726-9745	Gallu
1,		-			/	EB lozz 19	Sample Request ID				X Level 4 (Full Validation)	Email: Bmoore1@marathonpetroleum.com	3-9745	Gallup, NM 87301
Received by		500 ml plastic - 1	250 ml plastic - 1	1 litter amber - i	250 ml amber - 1	40ml voa - 5	Container Type and #	Sample Temperature.	On fce:	Sampler		Project Mana		Project #:
Carrier .		NaOH	HNO ₃	Neat	Neat	HCI	Preservative Type	perature. Sec	A-Yes	Tracy Payr		Project Manager Brian Moore		
Date Time						-007	HEAL No.	C REWAYKS	□No	Tracy Payne - 919-561-7055		Moore		
					Ì		BTEX+M1	rBE+	TM	B's(8021)			
The last	1 1						втех+мт	BE+	TPI	H(G	as only)		귯
(()					×	×	TPH 8015	B (G	RO	/DR	OMRO)		Tel. 505-345-3975
See a							TPH (Met	hod 4	18	1)-				5-34
attached nalytes.							EDB (Met	hod 5	04	1)				5-39
hed hed							PAH (831	0 or 8	327	081	MS)		Ą	175
1200 S			_		4		RCRA 8 N	_	_	2 15	15		Analysis	70
111 0							Anions (F.	-	_	_		-	-	Fax 5
NO W						125	8081 Pest		s/	808	2 PCB's		Request	05-
and " ba		1		44	-	×	8260B (V		Jun	_		4	est	505-345-4107
alytica alytica		-		×	-	_	8270 (Ser	_	DA)			-		1107
<u>a</u>			×				Metals - T	otal	-	-		-		r
sheet for Analytical Methods		×					Cyanide		_					
ods									_	-				
							Air Bubble	se (V	or I	us.				

HALL ENVIRONMENTAL ANALYSIS LABORATORY

www.hallenvironmental.com

Mailing Address: 92 Giant Crossing Road

Gallup Refinery

Chain-of-Custody Record
Client Marathon Petroleum Company LP

Turn-Around Time:

X Standard

□ Rush

Project Name: SWMU 13

4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107

SWMU 13 - Soil and Equipment Blank Analytical Requirements

- SW 846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diese range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese)

Inorganic Analytical Methods

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 05, 2019

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: SWMU 13 OrderNo.: 1910D68

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 18 sample(s) on 10/25/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 10:50:00 AM

 Lab ID:
 1910D68-001
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	1200	19	93		mg/Kg	10	10/30/2019 4:14:28 PM	48409
Motor Oil Range Organics (MRO)	1300	460	460		mg/Kg	10	10/30/2019 4:14:28 PM	48409
Surr: DNOP	0	0	70-130	S	%Rec	10	10/30/2019 4:14:28 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.1	3.6		mg/Kg	1	10/27/2019 3:59:28 PM	G63989
Surr: BFB	90.5	0	77.4-118		%Rec	1	10/27/2019 3:59:28 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	1.7	0.018	0.33		mg/Kg	10	11/1/2019 2:47:40 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.72	4.9		mg/Kg	2	11/20/2019 4:12:38 PM	48433
Arsenic	ND	2.8	4.9		mg/Kg	2	11/7/2019 2:32:41 PM	48433
Barium	300	0.046	0.20		mg/Kg	2	11/20/2019 4:12:38 PM	48433
Beryllium	1.6	0.018	0.30		mg/Kg	2	11/7/2019 2:32:41 PM	48433
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 2:32:41 PM	48433
Chromium	110	0.16	0.59		mg/Kg	2	11/20/2019 4:12:38 PM	48433
Cobalt	7.9	0.21	0.59		mg/Kg	2	11/7/2019 2:32:41 PM	48433
Iron	26000	140	490		mg/Kg	200	11/20/2019 4:25:12 PM	48433
Lead	5.2	0.48	0.49		mg/Kg	2	11/20/2019 4:12:38 PM	48433
Manganese	440	0.041	0.20		mg/Kg	2	11/20/2019 4:12:38 PM	48433
Nickel	17	0.29	0.98		mg/Kg	2	11/7/2019 2:32:41 PM	48433
Selenium	4.0	2.5	4.9	J	mg/Kg	2	11/7/2019 2:32:41 PM	48433
Silver	ND	0.063	0.49		mg/Kg	2	11/20/2019 4:12:38 PM	48433
Vanadium	36	0.13	4.9		mg/Kg	2	11/7/2019 2:32:41 PM	48433
Zinc	120	0.78	4.9		mg/Kg	2	11/20/2019 4:12:38 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Aniline	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Anthracene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benz(a)anthracene	ND	0.95	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benzo(a)pyrene	ND	0.88	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benzo(b)fluoranthene	ND	0.87	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benzo(g,h,i)perylene	ND	0.85	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benzo(k)fluoranthene	ND	0.90	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benzoic acid	ND	1.0	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 1 of 123

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 10:50:00 AM

 Lab ID:
 1910D68-001
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Bis(2-ethylhexyl)phthalate	ND	1.4	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Carbazole	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
4-Chloro-3-methylphenol	ND	1.5	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
4-Chloroaniline	ND	1.4	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2-Chloronaphthalene	ND	1.2	2.5	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Chrysene	ND	0.87	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Di-n-butyl phthalate	ND	1.5	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Di-n-octyl phthalate	ND	1.0	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Dibenz(a,h)anthracene	ND	0.90	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
1,3-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
1,4-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
3,3´-Dichlorobenzidine	ND	0.88	2.5	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2,4-Dichlorophenol	ND	1.1	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2,4-Dimethylphenol	ND	1.1	3.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
4,6-Dinitro-2-methylphenol	ND	0.91	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2,4-Dinitrophenol	ND	0.72	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2,4-Dinitrotoluene	ND	1.2	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2,6-Dinitrotoluene	ND	1.3	4.9	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Fluorene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.98	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
Isophorone	ND	1.5	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455
2-Methylnaphthalene	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PI	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D68**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/5/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 10:50:00 AM

 Lab ID:
 1910D68-001
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	. RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	1.2	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
N-Nitrosodiphenylamine	ND	1.0	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
4-Nitroaniline	ND	1.3	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Nitrobenzene	ND	1.4	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
2-Nitrophenol	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
4-Nitrophenol	ND	1.3	2.5	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Pentachlorophenol	ND	1.0	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Phenol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Pyrene	ND	0.93	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Pyridine	ND	1.2	4.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
1,2,4-Trichlorobenzene	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
2,4,6-Trichlorophenol	ND	1.0	2.0	D	mg/Kg	1	10/31/2019 7:13:40 PM	1 48455
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	10/31/2019 7:13:40 PM	1 48455
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	10/31/2019 7:13:40 PM	1 48455
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	10/31/2019 7:13:40 PM	1 48455
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	10/31/2019 7:13:40 PM	1 48455
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	10/31/2019 7:13:40 PM	1 48455
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	10/31/2019 7:13:40 PM	1 48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0030	0.018		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
Toluene	ND	0.0035	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Ethylbenzene	ND	0.0021	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0086	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
1,2,4-Trimethylbenzene	ND	0.0033	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
1,3,5-Trimethylbenzene	ND	0.0035	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
1,2-Dichloroethane (EDC)	ND	0.0037	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
1,2-Dibromoethane (EDB)	ND	0.0033	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
Naphthalene	ND	0.0072	0.072		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
1-Methylnaphthalene	ND	0.021	0.14		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
2-Methylnaphthalene	ND	0.016	0.14		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
Acetone	ND	0.030	0.54		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028
Bromobenzene	ND	0.0035	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	I S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 10:50:00 AM

 Lab ID:
 1910D68-001
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0033	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Bromoform	ND	0.0033	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Bromomethane	ND	0.0087	0.11		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
2-Butanone	0.050	0.042	0.36	J	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Carbon disulfide	ND	0.012	0.36		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Carbon tetrachloride	ND	0.0034	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Chlorobenzene	ND	0.0046	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Chloroethane	ND	0.0053	0.072		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Chloroform	ND	0.0029	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Chloromethane	ND	0.0035	0.11		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
2-Chlorotoluene	ND	0.0031	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
4-Chlorotoluene	ND	0.0030	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
cis-1,2-DCE	ND	0.0049	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
cis-1,3-Dichloropropene	ND	0.0031	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0037	0.072		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Dibromochloromethane	ND	0.0026	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Dibromomethane	ND	0.0039	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,2-Dichlorobenzene	ND	0.0030	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,3-Dichlorobenzene	ND	0.0031	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,4-Dichlorobenzene	ND	0.0030	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Dichlorodifluoromethane	ND	0.0084	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,1-Dichloroethane	ND	0.0023	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,1-Dichloroethene	ND	0.014	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,2-Dichloropropane	ND	0.0026	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,3-Dichloropropane	ND	0.0039	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
2,2-Dichloropropane	ND	0.012	0.072		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,1-Dichloropropene	ND	0.0033	0.072		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Hexachlorobutadiene	ND	0.0037	0.072		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
2-Hexanone	ND	0.0060	0.36		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Isopropylbenzene	ND	0.0026	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
4-Isopropyltoluene	ND	0.0030	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
4-Methyl-2-pentanone	ND	0.0068	0.36		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Methylene chloride	ND	0.0064	0.11		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
n-Butylbenzene	ND	0.0034	0.11		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
n-Propylbenzene	ND	0.0029	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
sec-Butylbenzene	ND	0.0041	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Styrene	ND	0.0028	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
tert-Butylbenzene	ND	0.0034	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0024	0.036		mg/Kg	1	10/28/2019 2:47:24 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 10:50:00 AM

 Lab ID:
 1910D68-001
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0037	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Tetrachloroethene (PCE)	ND	0.0029	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
trans-1,2-DCE	ND	0.0033	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
trans-1,3-Dichloropropene	ND	0.0038	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,2,3-Trichlorobenzene	ND	0.0032	0.072	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,2,4-Trichlorobenzene	ND	0.0037	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,1,1-Trichloroethane	ND	0.0033	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,1,2-Trichloroethane	ND	0.0026	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Trichloroethene (TCE)	ND	0.0042	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Trichlorofluoromethane	ND	0.012	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
1,2,3-Trichloropropane	ND	0.0059	0.072	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Vinyl chloride	ND	0.0024	0.036	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Xylenes, Total	ND	0.0091	0.072	mg/Kg	1	10/28/2019 2:47:24 PM	S64028
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/28/2019 2:47:24 PM	S64028
Surr: 1,2-Dichloroethane-d4	95.8		70-130	%Rec	1	10/28/2019 2:47:24 PM	S64028
Surr: Toluene-d8	105		70-130	%Rec	1	10/28/2019 2:47:24 PM	S64028
Surr: 4-Bromofluorobenzene	94.2		70-130	%Rec	1	10/28/2019 2:47:24 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:05:00 AM

 Lab ID:
 1910D68-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	16	1.9	9.6		mg/Kg	1	10/30/2019 4:32:32 PM	48409
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/30/2019 4:32:32 PM	48409
Surr: DNOP	126	0	70-130		%Rec	1	10/30/2019 4:32:32 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.4		mg/Kg	1	10/27/2019 4:22:16 PM	G63989
Surr: BFB	90.4	0	77.4-118		%Rec	1	10/27/2019 4:22:16 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.031	0.0018	0.032	J	mg/Kg	1	11/1/2019 1:04:12 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Barium	270	0.046	0.20		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Beryllium	1.3	0.018	0.30		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Chromium	14	0.16	0.60		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Cobalt	5.5	0.21	0.60		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Iron	18000	72	250		mg/Kg	100	11/18/2019 6:42:31 PM	48433
Lead	3.4	0.48	0.50		mg/Kg	2	11/18/2019 6:40:57 PM	48433
Manganese	380	0.041	0.20		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Nickel	12	0.30	0.99		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Selenium	ND	2.5	5.0		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Vanadium	21	0.13	5.0		mg/Kg	2	11/7/2019 2:37:39 PM	48433
Zinc	20	0.79	5.0		mg/Kg	2	11/7/2019 2:37:39 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Acenaphthylene	ND	0.11	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Aniline	ND	0.13	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Anthracene	ND	0.11	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Azobenzene	ND	0.14	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benz(a)anthracene	ND	0.099	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benzo(a)pyrene	ND	0.091	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benzo(b)fluoranthene	ND	0.091	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benzo(g,h,i)perylene	ND	0.088	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benzo(k)fluoranthene	ND	0.093	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benzoic acid	ND	0.11	0.51		mg/Kg	1	10/31/2019 7:42:21 PM	48455
Benzyl alcohol	ND	0.13	0.21		mg/Kg	1	10/31/2019 7:42:21 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:05:00 AM

 Lab ID:
 1910D68-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD 0	 -
Bis(2-chloroethoxy)methane	ND	0.15	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Bis(2-chloroethyl)ether	ND	0.13	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Bis(2-chloroisopropyl)ether	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.15	0.51		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
4-Bromophenyl phenyl ether	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Butyl benzyl phthalate	ND	0.10	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Carbazole	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
4-Chloro-3-methylphenol	ND	0.16	0.51		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
4-Chloroaniline	ND	0.15	0.51		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2-Chloronaphthalene	ND	0.13	0.26		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2-Chlorophenol	ND	0.13	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Chrysene	ND	0.091	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Di-n-butyl phthalate	0.26	0.15	0.41	J	mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Di-n-octyl phthalate	ND	0.10	0.41		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Dibenz(a,h)anthracene	ND	0.093	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Dibenzofuran	ND	0.13	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
1,2-Dichlorobenzene	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
1,3-Dichlorobenzene	ND	0.11	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
1,4-Dichlorobenzene	ND	0.11	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
3,3'-Dichlorobenzidine	ND	0.091	0.26		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Diethyl phthalate	ND	0.15	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Dimethyl phthalate	ND	0.14	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2,4-Dichlorophenol	ND	0.12	0.41		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2,4-Dimethylphenol	ND	0.11	0.31		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
4,6-Dinitro-2-methylphenol	ND	0.095	0.41		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2,4-Dinitrophenol	ND	0.075	0.51		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2,4-Dinitrotoluene	ND	0.12	0.51		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2,6-Dinitrotoluene	ND	0.14	0.51		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Fluoranthene	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Fluorene	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Hexachlorobenzene	ND	0.13	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Hexachlorobutadiene	ND	0.14	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Hexachlorocyclopentadiene	ND	0.12	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Hexachloroethane	ND	0.11	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.10	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
Isophorone	ND	0.15	0.41		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
1-Methylnaphthalene	ND	0.15	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455
2-Methylnaphthalene	ND	0.15	0.21		mg/Kg	1	10/31/2019 7:42:21 P	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 123

Lab Order **1910D68**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/5/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-4 (1.5-2')

Project: SWMU 13

Collection Date: 10/23/2019 11:05:00 AM

Lab ID: 1910D68-002 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	;
2-Methylphenol	ND	0.12	0.41	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
3+4-Methylphenol	ND	0.13	0.21	mg/Kg	g 1	10/31/2019 7:42:21 P	M 48455
N-Nitrosodi-n-propylamine	ND	0.15	0.21	mg/Kg	g 1	10/31/2019 7:42:21 P	M 48455
N-Nitrosodiphenylamine	ND	0.11	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Naphthalene	ND	0.16	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
2-Nitroaniline	ND	0.15	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
3-Nitroaniline	ND	0.14	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
4-Nitroaniline	ND	0.13	0.41	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Nitrobenzene	ND	0.14	0.41	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
2-Nitrophenol	ND	0.14	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
4-Nitrophenol	ND	0.14	0.26	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Pentachlorophenol	ND	0.11	0.41	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Phenanthrene	ND	0.11	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Phenol	ND	0.13	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Pyrene	ND	0.096	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Pyridine	ND	0.12	0.41	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
1,2,4-Trichlorobenzene	ND	0.16	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
2,4,5-Trichlorophenol	ND	0.13	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
2,4,6-Trichlorophenol	ND	0.11	0.21	mg/Kg	j 1	10/31/2019 7:42:21 P	M 48455
Surr: 2-Fluorophenol	66.6	;	26.7-85.9	%Rec	1	10/31/2019 7:42:21 P	M 48455
Surr: Phenol-d5	71.9		18.5-101	%Rec	1	10/31/2019 7:42:21 P	M 48455
Surr: 2,4,6-Tribromophenol	66.2	;	35.8-85.6	%Rec	1	10/31/2019 7:42:21 P	M 48455
Surr: Nitrobenzene-d5	78.8		40.8-95.2	%Rec	1	10/31/2019 7:42:21 P	M 48455
Surr: 2-Fluorobiphenyl	70.2	;	34.7-85.2	%Rec	1	10/31/2019 7:42:21 P	M 48455
Surr: 4-Terphenyl-d14	79.3	;	37.4-91.3	%Rec	1	10/31/2019 7:42:21 P	M 48455
EPA METHOD 8260B: VOLATILES						Analyst: DJI	=
Benzene	ND	0.0028	0.017	mg/Kg	g 1	10/28/2019 4:14:41 P	M S64028
Toluene	ND	0.0033	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
Ethylbenzene	ND	0.0020	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
Methyl tert-butyl ether (MTBE)	ND	0.0081	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
1,2,4-Trimethylbenzene	ND	0.0031	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
1,3,5-Trimethylbenzene	ND	0.0033	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
1,2-Dichloroethane (EDC)	ND	0.0035	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
1,2-Dibromoethane (EDB)	ND	0.0031	0.034	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
Naphthalene	ND	0.0069	0.068	mg/Kg	j 1	10/28/2019 4:14:41 P	M S64028
1-Methylnaphthalene	ND	0.020	0.14	mg/Kg	, 1	10/28/2019 4:14:41 P	M S64028
2-Methylnaphthalene	ND	0.015	0.14	mg/Kg		10/28/2019 4:14:41 P	M S64028
Acetone	ND	0.028	0.51	mg/Kg	, 1	10/28/2019 4:14:41 P	M S64028
Bromobenzene	ND	0.0033	0.034	mg/Kg		10/28/2019 4:14:41 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:05:00 AM

 Lab ID:
 1910D68-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0031	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Bromoform	ND	0.0031	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Bromomethane	ND	0.0083	0.10		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
2-Butanone	0.045	0.040	0.34	J	mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Carbon disulfide	ND	0.011	0.34		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Carbon tetrachloride	ND	0.0032	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Chlorobenzene	ND	0.0044	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Chloroethane	ND	0.0050	0.068		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Chloroform	ND	0.0028	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Chloromethane	ND	0.0033	0.10		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
2-Chlorotoluene	ND	0.0030	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
4-Chlorotoluene	ND	0.0028	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
cis-1,2-DCE	ND	0.0047	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
cis-1,3-Dichloropropene	ND	0.0029	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,2-Dibromo-3-chloropropane	ND	0.0035	0.068		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Dibromochloromethane	ND	0.0024	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Dibromomethane	ND	0.0037	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,2-Dichlorobenzene	ND	0.0028	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,3-Dichlorobenzene	ND	0.0030	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,4-Dichlorobenzene	ND	0.0029	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Dichlorodifluoromethane	ND	0.0079	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,1-Dichloroethane	ND	0.0022	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,1-Dichloroethene	ND	0.014	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,2-Dichloropropane	ND	0.0025	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,3-Dichloropropane	ND	0.0037	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
2,2-Dichloropropane	ND	0.011	0.068		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,1-Dichloropropene	ND	0.0031	0.068		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Hexachlorobutadiene	ND	0.0035	0.068		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
2-Hexanone	ND	0.0057	0.34		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Isopropylbenzene	ND	0.0025	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
4-Isopropyltoluene	ND	0.0028	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
4-Methyl-2-pentanone	ND	0.0065	0.34		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Methylene chloride	ND	0.0060	0.10		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
n-Butylbenzene	ND	0.0032	0.10		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
n-Propylbenzene	ND	0.0027	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
sec-Butylbenzene	ND	0.0039	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
Styrene	ND	0.0027	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
tert-Butylbenzene	ND	0.0032	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028
1,1,1,2-Tetrachloroethane	ND	0.0023	0.034		mg/Kg	1	10/28/2019 4:14:41 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-4 (1.5-2')

Project: SWMU 13

Collection Date: 10/23/2019 11:05:00 AM

Lab ID: 1910D68-002 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: D	IF
1,1,2,2-Tetrachloroethane	ND	0.0035	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
Tetrachloroethene (PCE)	ND	0.0027	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
trans-1,2-DCE	ND	0.0031	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
trans-1,3-Dichloropropene	ND	0.0036	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
1,2,3-Trichlorobenzene	ND	0.0030	0.068	mg/Kg	1	10/28/2019 4:14:41	PM S64028
1,2,4-Trichlorobenzene	ND	0.0035	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
1,1,1-Trichloroethane	ND	0.0031	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
1,1,2-Trichloroethane	ND	0.0024	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
Trichloroethene (TCE)	ND	0.0040	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
Trichlorofluoromethane	ND	0.012	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
1,2,3-Trichloropropane	ND	0.0055	0.068	mg/Kg	1	10/28/2019 4:14:41	PM S64028
Vinyl chloride	ND	0.0022	0.034	mg/Kg	1	10/28/2019 4:14:41	PM S64028
Xylenes, Total	ND	0.0086	0.068	mg/Kg	1	10/28/2019 4:14:41	PM S64028
Surr: Dibromofluoromethane	109		70-130	%Rec	1	10/28/2019 4:14:41	PM S64028
Surr: 1,2-Dichloroethane-d4	93.8		70-130	%Rec	1	10/28/2019 4:14:41	PM S64028
Surr: Toluene-d8	103		70-130	%Rec	1	10/28/2019 4:14:41	PM S64028
Surr: 4-Bromofluorobenzene	96.1		70-130	%Rec	1	10/28/2019 4:14:41	PM S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:15:00 AM

 Lab ID:
 1910D68-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.8	9.2		mg/Kg	1	11/7/2019 11:35:45 PM	I 48616
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	11/7/2019 11:35:45 PM	l 48616
Surr: DNOP	96.8	0	70-130		%Rec	1	11/7/2019 11:35:45 PM	l 48616
EPA METHOD 8015D: GASOLINE RANGE	•						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.87	2.9		mg/Kg	1	10/27/2019 4:45:02 PM	G63989
Surr: BFB	90.8	0	77.4-118		%Rec	1	10/27/2019 4:45:02 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0059	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:01:35 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.72	4.9		mg/Kg	2	11/18/2019 6:44:05 PM	I 48651
Arsenic	ND	2.8	4.9		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Barium	190	0.045	0.20		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Beryllium	1.6	0.018	0.29		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Cadmium	ND	0.047	0.20		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Chromium	16	0.16	0.59		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Cobalt	6.4	0.21	0.59		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Iron	21000	71	240		mg/Kg	100	11/18/2019 6:45:45 PM	l 48651
Lead	2.1	0.47	0.49		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Manganese	310	0.041	0.20		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Nickel	15	0.29	0.98		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Selenium	ND	2.5	4.9		mg/Kg	2	11/19/2019 6:13:47 PM	l 48651
Silver	ND	0.063	0.49		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Vanadium	24	0.13	4.9		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
Zinc	21	0.77	4.9		mg/Kg	2	11/18/2019 6:44:05 PM	l 48651
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Aniline	ND	0.13	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	48455
Anthracene	ND	0.10	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benz(a)anthracene	ND	0.094	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benzo(a)pyrene	ND	0.087	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benzo(b)fluoranthene	ND	0.086	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benzo(g,h,i)perylene	ND	0.084	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benzo(k)fluoranthene	ND	0.089	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benzoic acid	ND	0.10	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	l 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:15:00 AM

 Lab ID:
 1910D68-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Bis(2-chloroethoxy)methane	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4-Bromophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Carbazole	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2-Chlorophenol	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Chrysene	ND	0.086	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Di-n-butyl phthalate	0.18	0.15	0.39	J	mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Di-n-octyl phthalate	ND	0.099	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Dibenz(a,h)anthracene	ND	0.089	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
1,3-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
1,4-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
3,3´-Dichlorobenzidine	ND	0.087	0.24		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Dimethyl phthalate	ND	0.13	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,4-Dinitrotoluene	ND	0.11	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Fluoranthene	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Fluorene	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Hexachlorobenzene	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Hexachlorocyclopentadiene	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Indeno(1,2,3-cd)pyrene	ND	0.097	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Isophorone	ND	0.14	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2-Methylnaphthalene	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:15:00 AM

 Lab ID:
 1910D68-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.12	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
3+4-Methylphenol	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
N-Nitrosodi-n-propylamine	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
N-Nitrosodiphenylamine	ND	0.10	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Naphthalene	ND	0.15	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2-Nitroaniline	ND	0.14	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
3-Nitroaniline	ND	0.13	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4-Nitroaniline	ND	0.12	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Nitrobenzene	ND	0.13	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2-Nitrophenol	ND	0.13	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Pentachlorophenol	ND	0.10	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Phenanthrene	ND	0.11	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Phenol	ND	0.12	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Pyrene	ND	0.092	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Pyridine	ND	0.12	0.39		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
1,2,4-Trichlorobenzene	ND	0.15	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,4,5-Trichlorophenol	ND	0.13	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
2,4,6-Trichlorophenol	ND	0.10	0.20		mg/Kg	1	10/31/2019 8:11:08 PM	1 48455
Surr: 2-Fluorophenol	53.0	2	26.7-85.9		%Rec	1	10/31/2019 8:11:08 PM	1 48455
Surr: Phenol-d5	65.9		18.5-101		%Rec	1	10/31/2019 8:11:08 PM	1 48455
Surr: 2,4,6-Tribromophenol	58.4	;	35.8-85.6		%Rec	1	10/31/2019 8:11:08 PM	1 48455
Surr: Nitrobenzene-d5	62.8	4	40.8-95.2		%Rec	1	10/31/2019 8:11:08 PM	1 48455
Surr: 2-Fluorobiphenyl	55.5	;	34.7-85.2		%Rec	1	10/31/2019 8:11:08 PM	1 48455
Surr: 4-Terphenyl-d14	74.4	;	37.4-91.3		%Rec	1	10/31/2019 8:11:08 PM	1 48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0023	0.014		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
Toluene	ND	0.0027	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
Ethylbenzene	ND	0.0017	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
Methyl tert-butyl ether (MTBE)	ND	0.0068	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
1,2,4-Trimethylbenzene	ND	0.0026	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
1,3,5-Trimethylbenzene	ND	0.0028	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
1,2-Dichloroethane (EDC)	ND	0.0029	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
1,2-Dibromoethane (EDB)	ND	0.0026	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
Naphthalene	ND	0.0058	0.057		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
1-Methylnaphthalene	ND	0.017	0.11		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
2-Methylnaphthalene	ND	0.013	0.11		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
Acetone	ND	0.024	0.43		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028
Bromobenzene	ND	0.0028	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:15:00 AM

 Lab ID:
 1910D68-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0026	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Bromoform	ND	0.0026	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Bromomethane	ND	0.0069	0.086		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
2-Butanone	0.039	0.033	0.29	J	mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Carbon disulfide	ND	0.0095	0.29		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Carbon tetrachloride	ND	0.0027	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Chlorobenzene	ND	0.0037	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Chloroethane	ND	0.0042	0.057		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Chloroform	ND	0.0023	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Chloromethane	ND	0.0027	0.086		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
2-Chlorotoluene	ND	0.0025	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
4-Chlorotoluene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
cis-1,2-DCE	ND	0.0039	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
cis-1,3-Dichloropropene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0029	0.057		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Dibromochloromethane	ND	0.0020	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Dibromomethane	ND	0.0031	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,2-Dichlorobenzene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,3-Dichlorobenzene	ND	0.0025	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,4-Dichlorobenzene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Dichlorodifluoromethane	ND	0.0067	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,1-Dichloroethane	ND	0.0018	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,1-Dichloroethene	ND	0.011	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,2-Dichloropropane	ND	0.0021	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,3-Dichloropropane	ND	0.0031	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
2,2-Dichloropropane	ND	0.0093	0.057		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,1-Dichloropropene	ND	0.0026	0.057		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Hexachlorobutadiene	ND	0.0029	0.057		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
2-Hexanone	ND	0.0048	0.29		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Isopropylbenzene	ND	0.0021	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
4-Isopropyltoluene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
4-Methyl-2-pentanone	ND	0.0054	0.29		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Methylene chloride	ND	0.0051	0.086		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
n-Butylbenzene	ND	0.0027	0.086		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
n-Propylbenzene	ND	0.0023	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
sec-Butylbenzene	ND	0.0032	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
Styrene	ND	0.0023	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
tert-Butylbenzene	ND	0.0027	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0019	0.029		mg/Kg	1	10/28/2019 4:43:38 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-4 (8-10')

Project: SWMU 13

Collection Date: 10/23/2019 11:15:00 AM

Lab ID: 1910D68-003 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Uni	ts DI	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: D	JF
1,1,2,2-Tetrachloroethane	ND	0.0029	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
Tetrachloroethene (PCE)	ND	0.0023	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
trans-1,2-DCE	ND	0.0026	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
trans-1,3-Dichloropropene	ND	0.0030	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
1,2,3-Trichlorobenzene	ND	0.0025	0.057	mg/	(g 1	10/28/2019 4:43:38	PM S64028
1,2,4-Trichlorobenzene	ND	0.0029	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
1,1,1-Trichloroethane	ND	0.0026	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
1,1,2-Trichloroethane	ND	0.0020	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
Trichloroethene (TCE)	ND	0.0033	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
Trichlorofluoromethane	ND	0.0097	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
1,2,3-Trichloropropane	ND	0.0046	0.057	mg/	(g 1	10/28/2019 4:43:38	PM S64028
Vinyl chloride	ND	0.0019	0.029	mg/	(g 1	10/28/2019 4:43:38	PM S64028
Xylenes, Total	ND	0.0072	0.057	mg/	(g 1	10/28/2019 4:43:38	PM S64028
Surr: Dibromofluoromethane	103		70-130	%Re	ec 1	10/28/2019 4:43:38	PM S64028
Surr: 1,2-Dichloroethane-d4	94.8		70-130	%Re	ec 1	10/28/2019 4:43:38	PM S64028
Surr: Toluene-d8	100		70-130	%Re	ec 1	10/28/2019 4:43:38	PM S64028
Surr: 4-Bromofluorobenzene	97.8		70-130	%Re	ec 1	10/28/2019 4:43:38	PM S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (14-15.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:25:00 AM

 Lab ID:
 1910D68-004
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: JME	
Diesel Range Organics (DRO)	3.1	1.9	9.7	J	mg/Kg	1	10/29/2019 4:05:50 PM	48409
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/29/2019 4:05:50 PM	48409
Surr: DNOP	138	0	70-130	S	%Rec	1	10/29/2019 4:05:50 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.83	2.8		mg/Kg	1	10/27/2019 5:07:46 PM	G63989
Surr: BFB	98.7	0	77.4-118		%Rec	1	10/27/2019 5:07:46 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0082	0.0018	0.033	J	mg/Kg	1	11/1/2019 1:06:14 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.75	5.1		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Arsenic	ND	2.9	5.1		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Barium	240	0.047	0.20		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Beryllium	1.2	0.019	0.31		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Cadmium	ND	0.050	0.20		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Chromium	12	0.16	0.61		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Cobalt	4.8	0.22	0.61		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Iron	17000	74	250		mg/Kg	100	11/18/2019 6:48:49 PM	48433
Lead	2.8	0.50	0.51		mg/Kg	2	11/18/2019 6:47:16 PM	48433
Manganese	260	0.042	0.20		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Nickel	10	0.30	1.0		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Selenium	ND	2.6	5.1		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Silver	ND	0.065	0.51		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Vanadium	21	0.14	5.1		mg/Kg	2	11/7/2019 2:41:20 PM	48433
Zinc	17	0.81	5.1		mg/Kg	2	11/7/2019 2:41:20 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Acenaphthylene	ND	0.10	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Aniline	ND	0.12	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Anthracene	ND	0.10	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Azobenzene	ND	0.13	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benz(a)anthracene	ND	0.092	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benzo(a)pyrene	ND	0.084	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benzo(b)fluoranthene	ND	0.084	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benzo(g,h,i)perylene	ND	0.082	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benzo(k)fluoranthene	ND	0.086	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benzoic acid	ND	0.098	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	48455
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (14-15.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:25:00 AM

 Lab ID:
 1910D68-004
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
Butyl benzyl phthalate	ND	0.097	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
Carbazole	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
4-Chloro-3-methylphenol	ND	0.15	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
4-Chloroaniline	ND	0.13	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
4-Chlorophenyl phenyl ether	ND	0.10	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
Chrysene	ND	0.084	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
Di-n-butyl phthalate	0.16	0.14	0.38	J	mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
Di-n-octyl phthalate	ND	0.097	0.38		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
Dibenz(a,h)anthracene	ND	0.086	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
Dibenzofuran	ND	0.12	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
1,2-Dichlorobenzene	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
3,3´-Dichlorobenzidine	ND	0.085	0.24		mg/Kg	1	10/31/2019 8:39:52 PM	Л 48455
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	И 48455
2,4-Dichlorophenol	ND	0.11	0.38		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
2,4-Dimethylphenol	ND	0.10	0.29		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
4,6-Dinitro-2-methylphenol	ND	0.088	0.38		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
2,4-Dinitrophenol	ND	0.069	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
2,4-Dinitrotoluene	ND	0.11	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
2,6-Dinitrotoluene	ND	0.13	0.48		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Fluoranthene	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Fluorene	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Hexachlorobutadiene	ND	0.13	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	√ 48455
Indeno(1,2,3-cd)pyrene	ND	0.095	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455
Isophorone	ND	0.14	0.38		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455
1-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	10/31/2019 8:39:52 PM	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D68**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/5/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-4 (14-15.5')

Project: SWMU 13

Collection Date: 10/23/2019 11:25:00 AM

Lab ID: 1910D68-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.11	0.38	mg/Kg	1	10/31/2019 8:39:52 PM	1 48455
3+4-Methylphenol	ND	0.12	0.19	mg/Kg		10/31/2019 8:39:52 PM	1 48455
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg		10/31/2019 8:39:52 PM	1 48455
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
Naphthalene	ND	0.14	0.19	mg/Kg	1	10/31/2019 8:39:52 PM	1 48455
2-Nitroaniline	ND	0.14	0.19	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/31/2019 8:39:52 PM	1 48455
4-Nitroaniline	ND	0.12	0.38	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
Nitrobenzene	ND	0.13	0.38	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
2-Nitrophenol	ND	0.13	0.19	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
4-Nitrophenol	ND	0.13	0.24	mg/Kg	j 1	10/31/2019 8:39:52 PM	1 48455
Pentachlorophenol	ND	0.098	0.38	mg/Kg	j 1	10/31/2019 8:39:52 PM	1 48455
Phenanthrene	ND	0.10	0.19	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
Phenol	ND	0.12	0.19	mg/Kg	j 1	10/31/2019 8:39:52 PM	1 48455
Pyrene	ND	0.089	0.19	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
Pyridine	ND	0.11	0.38	mg/Kg	j 1	10/31/2019 8:39:52 PM	1 48455
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	j 1	10/31/2019 8:39:52 PM	1 48455
2,4,5-Trichlorophenol	ND	0.12	0.19	mg/Kg	, 1	10/31/2019 8:39:52 PM	1 48455
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	10/31/2019 8:39:52 PM	1 48455
Surr: 2-Fluorophenol	64.1		26.7-85.9	%Rec	1	10/31/2019 8:39:52 PM	1 48455
Surr: Phenol-d5	73.0		18.5-101	%Rec	1	10/31/2019 8:39:52 PM	1 48455
Surr: 2,4,6-Tribromophenol	70.8		35.8-85.6	%Rec	1	10/31/2019 8:39:52 PM	1 48455
Surr: Nitrobenzene-d5	72.1		40.8-95.2	%Rec	1	10/31/2019 8:39:52 PM	1 48455
Surr: 2-Fluorobiphenyl	67.4		34.7-85.2	%Rec	1	10/31/2019 8:39:52 PM	1 48455
Surr: 4-Terphenyl-d14	85.7		37.4-91.3	%Rec	1	10/31/2019 8:39:52 PM	1 48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0023	0.014	mg/Kg	1	10/28/2019 5:12:42 PM	1 S64028
Toluene	ND	0.0026	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
Ethylbenzene	ND	0.0016	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
Methyl tert-butyl ether (MTBE)	ND	0.0065	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
1,2,4-Trimethylbenzene	ND	0.0025	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
1,3,5-Trimethylbenzene	ND	0.0027	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
1,2-Dichloroethane (EDC)	ND	0.0028	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
1,2-Dibromoethane (EDB)	ND	0.0025	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
Naphthalene	ND	0.0055	0.055	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028
1-Methylnaphthalene	ND	0.016	0.11	mg/Kg	j 1	10/28/2019 5:12:42 PM	1 S64028
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	j 1	10/28/2019 5:12:42 PM	1 S64028
Acetone	ND	0.023	0.41	mg/Kg	j 1	10/28/2019 5:12:42 PM	1 S64028
Bromobenzene	ND	0.0026	0.028	mg/Kg	, 1	10/28/2019 5:12:42 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-4 (14-15.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:25:00 AM

 Lab ID:
 1910D68-004
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0025	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Bromoform	ND	0.0025	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Bromomethane	ND	0.0067	0.083	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
2-Butanone	ND	0.032	0.28	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Carbon disulfide	ND	0.0091	0.28	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Carbon tetrachloride	ND	0.0026	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Chlorobenzene	ND	0.0035	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Chloroethane	ND	0.0041	0.055	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Chloroform	ND	0.0022	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Chloromethane	ND	0.0026	0.083	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
2-Chlorotoluene	ND	0.0024	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
4-Chlorotoluene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
cis-1,2-DCE	ND	0.0038	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
cis-1,3-Dichloropropene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0028	0.055	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Dibromochloromethane	ND	0.0020	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Dibromomethane	ND	0.0030	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,2-Dichlorobenzene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,3-Dichlorobenzene	ND	0.0024	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,4-Dichlorobenzene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Dichlorodifluoromethane	ND	0.0064	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,1-Dichloroethane	ND	0.0018	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,1-Dichloroethene	ND	0.011	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,2-Dichloropropane	ND	0.0020	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,3-Dichloropropane	ND	0.0030	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
2,2-Dichloropropane	ND	0.0090	0.055	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,1-Dichloropropene	ND	0.0025	0.055	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Hexachlorobutadiene	ND	0.0028	0.055	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
2-Hexanone	ND	0.0046	0.28	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Isopropylbenzene	ND	0.0020	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
4-Isopropyltoluene	ND	0.0023	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
4-Methyl-2-pentanone	ND	0.0052	0.28	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Methylene chloride	ND	0.0049	0.083	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
n-Butylbenzene	ND	0.0026	0.083	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
n-Propylbenzene	ND	0.0022	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
sec-Butylbenzene	ND	0.0031	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
Styrene	ND	0.0022	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
tert-Butylbenzene	ND	0.0026	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0019	0.028	mg/Kg	1	10/28/2019 5:12:42 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-4 (14-15.5')

Project: SWMU 13

Collection Date: 10/23/2019 11:25:00 AM

Lab ID: 1910D68-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ l	=
1,1,2,2-Tetrachloroethane	ND	0.0028	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
Tetrachloroethene (PCE)	ND	0.0022	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
trans-1,2-DCE	ND	0.0025	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
trans-1,3-Dichloropropene	ND	0.0029	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
1,2,3-Trichlorobenzene	ND	0.0024	0.055	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
1,2,4-Trichlorobenzene	ND	0.0028	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
1,1,1-Trichloroethane	ND	0.0025	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
1,1,2-Trichloroethane	ND	0.0019	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
Trichloroethene (TCE)	ND	0.0032	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
Trichlorofluoromethane	ND	0.0094	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
1,2,3-Trichloropropane	ND	0.0045	0.055	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
Vinyl chloride	ND	0.0018	0.028	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
Xylenes, Total	ND	0.0070	0.055	mg/Kg	1	10/28/2019 5:12:42 P	M S64028
Surr: Dibromofluoromethane	101		70-130	%Rec	1	10/28/2019 5:12:42 P	M S64028
Surr: 1,2-Dichloroethane-d4	91.4		70-130	%Rec	1	10/28/2019 5:12:42 P	M S64028
Surr: Toluene-d8	103		70-130	%Rec	1	10/28/2019 5:12:42 P	M S64028
Surr: 4-Bromofluorobenzene	93.1		70-130	%Rec	1	10/28/2019 5:12:42 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-4 (15.5-16')

Project: SWMU 13

Collection Date: 10/23/2019 11:35:00 AM

Lab ID: 1910D68-005 **Matrix:** SOIL **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.8	9.0		mg/Kg	1	10/30/2019 9:40:54 AM	48457
Motor Oil Range Organics (MRO)	ND	45	45		mg/Kg	1	10/30/2019 9:40:54 AM	48457
Surr: DNOP	84.0	0	70-130		%Rec	1	10/30/2019 9:40:54 AM	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.5	4.9		mg/Kg	1	10/30/2019 11:50:33 A	48446
Surr: BFB	101	0	77.4-118		%Rec	1	10/30/2019 11:50:33 A	48446
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0033	0.0018	0.033	J	mg/Kg	1	11/1/2019 1:08:18 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.72	4.9		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Arsenic	ND	2.8	4.9		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Barium	400	0.046	0.20		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Beryllium	0.59	0.018	0.29		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Cadmium	ND	0.048	0.20		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Chromium	5.4	0.16	0.59		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Cobalt	2.6	0.21	0.59		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Iron	8600	71	250		mg/Kg	100	11/18/2019 7:00:06 PM	48519
Lead	2.6	0.48	0.49		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Manganese	210	0.041	0.20		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Nickel	4.8	0.29	0.98		mg/Kg	2	11/18/2019 6:56:27 PM	48519
Selenium	ND	2.5	4.9		mg/Kg	2	11/19/2019 6:15:21 PM	48519
Silver	ND	0.063	0.49		mg/Kg	2	11/18/2019 6:56:27 PM	
Vanadium	13	0.13	4.9		mg/Kg	2	11/18/2019 6:56:27 PM	
Zinc	8.6	0.78	4.9		mg/Kg	2	11/18/2019 6:56:27 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.15	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455
Acenaphthylene	ND	0.14	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455
Aniline	ND	0.16	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455
Anthracene	ND	0.14	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455
Azobenzene	ND	0.18	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455
Benz(a)anthracene	ND	0.12	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	
Benzo(a)pyrene	ND	0.11	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455
Benzo(b)fluoranthene	ND	0.11	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	
Benzo(g,h,i)perylene	ND	0.11	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	
Benzo(k)fluoranthene	ND	0.12	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	
Benzoic acid	ND	0.13	0.64		mg/Kg	1	10/31/2019 9:08:30 PM	
Benzyl alcohol	ND	0.16	0.26		mg/Kg	1	10/31/2019 9:08:30 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4 (15.5-16')

Project: SWMU 13 **Collection Date:** 10/23/2019 11:35:00 AM

Lab ID: 1910D68-005 **Matrix:** SOIL **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.19	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Bis(2-chloroethyl)ether	ND	0.16	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Bis(2-chloroisopropyl)ether	ND	0.15	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.18	0.64	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
4-Bromophenyl phenyl ether	ND	0.15	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Butyl benzyl phthalate	ND	0.13	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Carbazole	ND	0.15	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
4-Chloro-3-methylphenol	ND	0.20	0.64	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
4-Chloroaniline	ND	0.18	0.64	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2-Chloronaphthalene	ND	0.16	0.32	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2-Chlorophenol	ND	0.16	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
4-Chlorophenyl phenyl ether	ND	0.14	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Chrysene	ND	0.11	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Di-n-butyl phthalate	ND	0.19	0.51	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Di-n-octyl phthalate	ND	0.13	0.51	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Dibenz(a,h)anthracene	ND	0.12	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Dibenzofuran	ND	0.17	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
1,2-Dichlorobenzene	ND	0.15	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
1,3-Dichlorobenzene	ND	0.13	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
1,4-Dichlorobenzene	ND	0.14	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
3,3´-Dichlorobenzidine	ND	0.11	0.32	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Diethyl phthalate	ND	0.18	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Dimethyl phthalate	ND	0.17	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2,4-Dichlorophenol	ND	0.15	0.51	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2,4-Dimethylphenol	ND	0.14	0.38	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
4,6-Dinitro-2-methylphenol	ND	0.12	0.51	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2,4-Dinitrophenol	ND	0.093	0.64	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2,4-Dinitrotoluene	ND	0.15	0.64	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2,6-Dinitrotoluene	ND	0.17	0.64	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Fluoranthene	ND	0.14	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Fluorene	ND	0.15	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Hexachlorobenzene	ND	0.16	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Hexachlorobutadiene	ND	0.18	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Hexachlorocyclopentadiene	ND	0.15	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Hexachloroethane	ND	0.14	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.13	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
Isophorone	ND	0.19	0.51	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
1-Methylnaphthalene	ND	0.19	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455
2-Methylnaphthalene	ND	0.19	0.26	mg/Kg	1	10/31/2019 9:08:30 PI	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4 (15.5-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:35:00 AM

 Lab ID:
 1910D68-005
 Matrix: SOIL
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	
2-Methylphenol	ND	0.15	0.51	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
3+4-Methylphenol	ND	0.16	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
N-Nitrosodi-n-propylamine	ND	0.18	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
N-Nitrosodiphenylamine	ND	0.13	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Naphthalene	ND	0.19	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
2-Nitroaniline	ND	0.18	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
3-Nitroaniline	ND	0.18	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
4-Nitroaniline	ND	0.16	0.51	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Nitrobenzene	ND	0.18	0.51	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
2-Nitrophenol	ND	0.17	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
4-Nitrophenol	ND	0.17	0.32	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Pentachlorophenol	ND	0.13	0.51	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Phenanthrene	ND	0.14	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Phenol	ND	0.16	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Pyrene	ND	0.12	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Pyridine	ND	0.15	0.51	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
1,2,4-Trichlorobenzene	ND	0.20	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
2,4,5-Trichlorophenol	ND	0.17	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
2,4,6-Trichlorophenol	ND	0.13	0.26	mg/Kg	1	10/31/2019 9:08:30 P	M 48455
Surr: 2-Fluorophenol	57.8		26.7-85.9	%Rec	1	10/31/2019 9:08:30 P	M 48455
Surr: Phenol-d5	65.7		18.5-101	%Rec	1	10/31/2019 9:08:30 P	M 48455
Surr: 2,4,6-Tribromophenol	67.9		35.8-85.6	%Rec	1	10/31/2019 9:08:30 P	M 48455
Surr: Nitrobenzene-d5	62.4		40.8-95.2	%Rec	1	10/31/2019 9:08:30 P	M 48455
Surr: 2-Fluorobiphenyl	60.4		34.7-85.2	%Rec	1	10/31/2019 9:08:30 P	M 48455
Surr: 4-Terphenyl-d14	80.7		37.4-91.3	%Rec	1	10/31/2019 9:08:30 P	M 48455
EPA METHOD 8260B: VOLATILES						Analyst: DJI	=
Benzene	ND	0.0040	0.024	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
Toluene	ND	0.0046	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
Ethylbenzene	ND	0.0028	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
1,2,4-Trimethylbenzene	ND	0.0044	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
1,3,5-Trimethylbenzene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
1,2-Dichloroethane (EDC)	ND	0.0050	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
1,2-Dibromoethane (EDB)	ND	0.0044	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
Naphthalene	ND	0.0097	0.097	mg/Kg	1	10/30/2019 2:07:33 P	
1-Methylnaphthalene	ND	0.028	0.19	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
2-Methylnaphthalene	ND	0.021	0.19	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
Acetone	ND	0.040	0.73	mg/Kg	1	10/30/2019 2:07:33 P	M 48446
Bromobenzene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 2:07:33 P	M 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4 (15.5-16')

Project: SWMU 13 **Collection Date:** 10/23/2019 11:35:00 AM

Lab ID: 1910D68-005 Matrix: SOIL Received Date: 10/25/2019 9:15:00 AM

Analyses Result MDL RL Qual Units DF Date Analyzed Batch I

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: D	JF
Bromodichloromethane	ND	0.0044	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Bromoform	ND	0.0044	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Bromomethane	ND	0.012	0.15		mg/Kg	1	10/30/2019 2:07:33	PM 48446
2-Butanone	ND	0.056	0.49		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Carbon disulfide	ND	0.016	0.49		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Carbon tetrachloride	ND	0.0046	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Chlorobenzene	ND	0.0062	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Chloroethane	ND	0.0072	0.097		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Chloroform	ND	0.0039	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Chloromethane	ND	0.0047	0.15		mg/Kg	1	10/30/2019 2:07:33	PM 48446
2-Chlorotoluene	ND	0.0042	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
4-Chlorotoluene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
cis-1,2-DCE	ND	0.0067	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
cis-1,3-Dichloropropene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,2-Dibromo-3-chloropropane	ND	0.0050	0.097		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Dibromochloromethane	ND	0.0035	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Dibromomethane	ND	0.0052	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,2-Dichlorobenzene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,3-Dichlorobenzene	ND	0.0042	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,4-Dichlorobenzene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Dichlorodifluoromethane	ND	0.011	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,1-Dichloroethane	ND	0.0031	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,1-Dichloroethene	ND	0.019	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,2-Dichloropropane	ND	0.0035	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,3-Dichloropropane	ND	0.0053	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
2,2-Dichloropropane	ND	0.016	0.097		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,1-Dichloropropene	ND	0.0044	0.097		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Hexachlorobutadiene	ND	0.0049	0.097		mg/Kg	1	10/30/2019 2:07:33	PM 48446
2-Hexanone	ND	0.0081	0.49		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Isopropylbenzene	ND	0.0035	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
4-Isopropyltoluene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
4-Methyl-2-pentanone	ND	0.0092	0.49		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Methylene chloride	ND	0.0086	0.15		mg/Kg	1	10/30/2019 2:07:33	PM 48446
n-Butylbenzene	ND	0.0045	0.15		mg/Kg	1	10/30/2019 2:07:33	PM 48446
n-Propylbenzene	ND	0.0039	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
sec-Butylbenzene	ND	0.0055	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
Styrene	ND	0.0038	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
tert-Butylbenzene	ND	0.0046	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446
1,1,1,2-Tetrachloroethane	ND	0.0033	0.049		mg/Kg	1	10/30/2019 2:07:33	PM 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4 (15.5-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 11:35:00 AM

 Lab ID:
 1910D68-005
 Matrix: SOIL
 Received Date: 10/25/2019 9:15:00 AM

Result **MDL Qual Units** DF **Date Analyzed Analyses** RL**Batch ID EPA METHOD 8260B: VOLATILES** Analyst: DJF ND 0.0049 10/30/2019 2:07:33 PM 48446 1.1.2.2-Tetrachloroethane 0.049 mg/Kg 1 Tetrachloroethene (PCE) ND 0.0039 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 48446 trans-1,2-DCE ND 0.0044 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 48446 trans-1,3-Dichloropropene ND 0.0051 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 48446 0.0043 mg/Kg 1,2,3-Trichlorobenzene ND 0.097 1 10/30/2019 2:07:33 PM 48446 0.0049 1.2.4-Trichlorobenzene ND 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 48446 ND 0.0044 mg/Kg 1 10/30/2019 2:07:33 PM 48446 1,1,1-Trichloroethane 0.049 1.1.2-Trichloroethane ND 0.0034 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 1 Trichloroethene (TCE) ND 0.0056 0.049 mg/Kg 10/30/2019 2:07:33 PM 48446 Trichlorofluoromethane ND 0.017 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 48446 1,2,3-Trichloropropane ND 0.0079 0.097 mg/Kg 1 10/30/2019 2:07:33 PM 48446 Vinyl chloride ND 0.0032 0.049 mg/Kg 1 10/30/2019 2:07:33 PM 48446 Xylenes, Total ND 0.012 0.097 mg/Kg 1 10/30/2019 2:07:33 PM 48446 Surr: Dibromofluoromethane 108 70-130 1 10/30/2019 2:07:33 PM 48446 %Rec Surr: 1,2-Dichloroethane-d4 96.3 70-130 %Rec 1 10/30/2019 2:07:33 PM 99.3 70-130 1 10/30/2019 2:07:33 PM 48446 Surr: Toluene-d8 %Rec Surr: 4-Bromofluorobenzene 88.6 70-130 %Rec 10/30/2019 2:07:33 PM 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 1:55:00 PM

 Lab ID:
 1910D68-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	87	2.0	9.9		mg/Kg	1	10/30/2019 4:50:38 PM	48409
Motor Oil Range Organics (MRO)	120	49	49		mg/Kg	1	10/30/2019 4:50:38 PM	48409
Surr: DNOP	87.7	0	70-130		%Rec	1	10/30/2019 4:50:38 PM	48409
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.2	3.9		mg/Kg	1	10/27/2019 5:53:21 PM	G63989
Surr: BFB	90.2	0	77.4-118		%Rec	1	10/27/2019 5:53:21 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.15	0.0017	0.031		mg/Kg	1	11/1/2019 1:46:25 PM	48513
EPA METHOD 6010B: SOIL METALS					0 0		Analyst: rde	
Antimony	ND	0.71	4.8		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Arsenic	ND	2.7	4.8		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Barium	270	0.045	0.19		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Beryllium	1.5	0.018	0.29		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Cadmium	ND	0.047	0.19		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Chromium	62	0.15	0.58		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Cobalt	7.1	0.20	0.58		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Iron	24000	70	240		mg/Kg	100	11/18/2019 7:03:23 PM	48433
Lead	1.2	0.47	0.48		mg/Kg	2	11/18/2019 7:01:42 PM	48433
Manganese	320	0.040	0.19		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Nickel	15	0.29	0.96		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Selenium	ND	2.4	4.8		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Silver	ND	0.062	0.48		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Vanadium	33	0.13	4.8		mg/Kg	2	11/7/2019 2:44:56 PM	48433
Zinc	65	0.76	4.8		mg/Kg	2	11/7/2019 2:44:56 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Aniline	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Anthracene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Benz(a)anthracene	ND	0.96	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Benzo(a)pyrene	ND	0.89	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Benzo(b)fluoranthene	ND	0.88	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Benzo(g,h,i)perylene	ND	0.86	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455
Benzo(k)fluoranthene	ND	0.91	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	
Benzoic acid	ND	1.0	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 1:55:00 PM

 Lab ID:
 1910D68-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Bis(2-ethylhexyl)phthalate	ND	1.4	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Carbazole	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4-Chloro-3-methylphenol	ND	1.5	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4-Chloroaniline	ND	1.4	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2-Chloronaphthalene	ND	1.2	2.5	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Chrysene	ND	0.88	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Di-n-butyl phthalate	ND	1.5	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Di-n-octyl phthalate	ND	1.0	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Dibenz(a,h)anthracene	ND	0.91	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
1,3-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
1,4-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
3,3'-Dichlorobenzidine	ND	0.89	2.5	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,4-Dichlorophenol	ND	1.2	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,4-Dimethylphenol	ND	1.1	3.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4,6-Dinitro-2-methylphenol	ND	0.92	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,4-Dinitrophenol	ND	0.73	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,4-Dinitrotoluene	ND	1.2	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,6-Dinitrotoluene	ND	1.3	5.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Fluorene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Indeno(1,2,3-cd)pyrene	ND	1.0	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Isophorone	ND	1.5	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 1:55:00 PM

 Lab ID:
 1910D68-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
2-Methylphenol	ND	1.2	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
N-Nitrosodiphenylamine	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4-Nitroaniline	ND	1.3	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Nitrobenzene	ND	1.4	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2-Nitrophenol	ND	1.4	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
4-Nitrophenol	ND	1.4	2.5	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Pentachlorophenol	ND	1.0	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Phenol	ND	1.2	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Pyrene	ND	0.94	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Pyridine	ND	1.2	4.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
1,2,4-Trichlorobenzene	ND	1.6	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
2,4,6-Trichlorophenol	ND	1.1	2.0	D	mg/Kg	1	10/31/2019 9:37:36 PM	A 48455
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	10/31/2019 9:37:36 PM	A 48455
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	10/31/2019 9:37:36 PM	A 48455
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	10/31/2019 9:37:36 PM	A 48455
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	10/31/2019 9:37:36 PM	A 48455
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	10/31/2019 9:37:36 PM	A 48455
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	10/31/2019 9:37:36 PM	A 48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0032	0.020		mg/Kg	1	10/28/2019 5:41:51 PN	/ S64028
Toluene	ND	0.0038	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	/ S64028
Ethylbenzene	ND	0.0023	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	
Methyl tert-butyl ether (MTBE)	ND	0.0093	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	/ S64028
1,2,4-Trimethylbenzene	ND	0.0036	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	
1,3,5-Trimethylbenzene	ND	0.0038	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	/ S64028
1,2-Dichloroethane (EDC)	ND	0.0040	0.039		mg/Kg	1	10/28/2019 5:41:51 PM	/ S64028
1,2-Dibromoethane (EDB)	ND	0.0036	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	
Naphthalene	ND	0.0079	0.079		mg/Kg	1	10/28/2019 5:41:51 PN	
1-Methylnaphthalene	ND	0.023	0.16		mg/Kg	1	10/28/2019 5:41:51 PN	
2-Methylnaphthalene	ND	0.017	0.16		mg/Kg	1	10/28/2019 5:41:51 PN	
Acetone	ND	0.033	0.59		mg/Kg	1	10/28/2019 5:41:51 PN	
Bromobenzene	ND	0.0038	0.039		mg/Kg	1	10/28/2019 5:41:51 PN	/ S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 1:55:00 PM

 Lab ID:
 1910D68-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	:
Bromodichloromethane	ND	0.0036	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Bromoform	ND	0.0035	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Bromomethane	ND	0.0095	0.12	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
2-Butanone	ND	0.045	0.39	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Carbon disulfide	ND	0.013	0.39	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Carbon tetrachloride	ND	0.0037	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Chlorobenzene	ND	0.0050	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Chloroethane	ND	0.0058	0.079	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Chloroform	ND	0.0032	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Chloromethane	ND	0.0038	0.12	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
2-Chlorotoluene	ND	0.0034	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
4-Chlorotoluene	ND	0.0032	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
cis-1,2-DCE	ND	0.0054	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
cis-1,3-Dichloropropene	ND	0.0033	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,2-Dibromo-3-chloropropane	ND	0.0040	0.079	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Dibromochloromethane	ND	0.0028	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Dibromomethane	ND	0.0042	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,2-Dichlorobenzene	ND	0.0032	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,3-Dichlorobenzene	ND	0.0034	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,4-Dichlorobenzene	ND	0.0033	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Dichlorodifluoromethane	ND	0.0091	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,1-Dichloroethane	ND	0.0025	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,1-Dichloroethene	ND	0.016	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,2-Dichloropropane	ND	0.0029	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,3-Dichloropropane	ND	0.0042	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
2,2-Dichloropropane	ND	0.013	0.079	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,1-Dichloropropene	ND	0.0036	0.079	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Hexachlorobutadiene	ND	0.0040	0.079	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
2-Hexanone	ND	0.0065	0.39	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Isopropylbenzene	ND	0.0028	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
4-Isopropyltoluene	ND	0.0033	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
4-Methyl-2-pentanone	ND	0.0074	0.39	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Methylene chloride	ND	0.0069	0.12	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
n-Butylbenzene	ND	0.0037	0.12	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
n-Propylbenzene	ND	0.0031	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
sec-Butylbenzene	ND	0.0044	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
Styrene	ND	0.0031	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
tert-Butylbenzene	ND	0.0037	0.039	mg/Kg	1	10/28/2019 5:41:51 PI	M S64028
1,1,1,2-Tetrachloroethane	ND	0.0027	0.039	mg/Kg	1	10/28/2019 5:41:51 Pi	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-5 (0-0.5')

Project: SWMU 13

Collection Date: 10/23/2019 1:55:00 PM

Lab ID: 1910D68-006 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,1,2,2-Tetrachloroethane	ND	0.0040	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
Tetrachloroethene (PCE)	ND	0.0031	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
trans-1,2-DCE	ND	0.0036	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
trans-1,3-Dichloropropene	ND	0.0042	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
1,2,3-Trichlorobenzene	ND	0.0034	0.079		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
1,2,4-Trichlorobenzene	ND	0.0040	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
1,1,1-Trichloroethane	ND	0.0035	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
1,1,2-Trichloroethane	ND	0.0028	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
Trichloroethene (TCE)	ND	0.0045	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
Trichlorofluoromethane	ND	0.013	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
1,2,3-Trichloropropane	ND	0.0064	0.079		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
Vinyl chloride	ND	0.0026	0.039		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
Xylenes, Total	ND	0.0099	0.079		mg/Kg	1	10/28/2019 5:41:51 I	PM S64028
Surr: Dibromofluoromethane	107		70-130		%Rec	1	10/28/2019 5:41:51 I	PM S64028
Surr: 1,2-Dichloroethane-d4	95.1		70-130		%Rec	1	10/28/2019 5:41:51 I	PM S64028
Surr: Toluene-d8	98.4		70-130		%Rec	1	10/28/2019 5:41:51 I	PM S64028
Surr: 4-Bromofluorobenzene	91.5		70-130		%Rec	1	10/28/2019 5:41:51 I	PM S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:15:00 PM

 Lab ID:
 1910D68-007
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	20	1.9	9.6		mg/Kg	1	10/31/2019 3:48:40 PM	48457
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/31/2019 3:48:40 PM	48457
Surr: DNOP	92.7	0	70-130		%Rec	1	10/31/2019 3:48:40 PM	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.1	3.7		mg/Kg	1	10/27/2019 6:16:13 PM	G63989
Surr: BFB	88.9	0	77.4-118		%Rec	1	10/27/2019 6:16:13 PM	G63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.011	0.0018	0.033	J	mg/Kg	1	11/1/2019 1:12:27 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.73	5.0		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Arsenic	ND	2.8	5.0		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Barium	250	0.046	0.20		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Beryllium	0.99	0.018	0.30		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Chromium	8.8	0.16	0.59		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Cobalt	4.8	0.21	0.59		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Iron	14000	72	250		mg/Kg	100	11/18/2019 7:06:36 PM	48433
Lead	5.0	0.48	0.50		mg/Kg	2	11/18/2019 7:05:00 PM	48433
Manganese	630	2.1	9.9		mg/Kg	100	11/18/2019 7:06:36 PM	48433
Nickel	9.6	0.30	0.99		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Selenium	ND	2.5	5.0		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Silver	ND	0.064	0.50		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Vanadium	16	0.13	5.0		mg/Kg	2	11/7/2019 2:52:16 PM	48433
Zinc	15	0.78	5.0		mg/Kg	2	11/7/2019 2:52:16 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Aniline	ND	0.13	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Anthracene	ND	0.10	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benz(a)anthracene	ND	0.094	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benzo(a)pyrene	ND	0.087	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benzo(g,h,i)perylene	ND	0.084	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benzo(k)fluoranthene	ND	0.089	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benzoic acid	ND	0.10	0.49		mg/Kg	1	10/31/2019 10:06:36 P	48455
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	10/31/2019 10:06:36 P	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:15:00 PM

 Lab ID:
 1910D68-007
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49	mg/Kg	1	10/31/2019 10:06:36	P 48455
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Carbazole	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
4-Chloro-3-methylphenol	ND	0.15	0.49	mg/Kg	1	10/31/2019 10:06:36	P 48455
4-Chloroaniline	ND	0.14	0.49	mg/Kg	1	10/31/2019 10:06:36	P 48455
2-Chloronaphthalene	ND	0.12	0.24	mg/Kg	1	10/31/2019 10:06:36	P 48455
2-Chlorophenol	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Chrysene	ND	0.086	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Di-n-butyl phthalate	ND	0.15	0.39	mg/Kg	1	10/31/2019 10:06:36	P 48455
Di-n-octyl phthalate	ND	0.10	0.39	mg/Kg	1	10/31/2019 10:06:36	P 48455
Dibenz(a,h)anthracene	ND	0.089	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
1,3-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
1,4-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
3,3´-Dichlorobenzidine	ND	0.087	0.24	mg/Kg	1	10/31/2019 10:06:36	P 48455
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
2,4-Dichlorophenol	ND	0.11	0.39	mg/Kg	1	10/31/2019 10:06:36	P 48455
2,4-Dimethylphenol	ND	0.11	0.29	mg/Kg	1	10/31/2019 10:06:36	P 48455
4,6-Dinitro-2-methylphenol	ND	0.090	0.39	mg/Kg	1	10/31/2019 10:06:36	P 48455
2,4-Dinitrophenol	ND	0.071	0.49	mg/Kg	1	10/31/2019 10:06:36	P 48455
2,4-Dinitrotoluene	ND	0.12	0.49	mg/Kg	1	10/31/2019 10:06:36	P 48455
2,6-Dinitrotoluene	ND	0.13	0.49	mg/Kg	1	10/31/2019 10:06:36	P 48455
Fluoranthene	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Fluorene	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Hexachlorocyclopentadiene	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Indeno(1,2,3-cd)pyrene	ND	0.097	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
Isophorone	ND	0.14	0.39	mg/Kg	1	10/31/2019 10:06:36	P 48455
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455
2-Methylnaphthalene	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36	P 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:15:00 PM

 Lab ID:
 1910D68-007
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Satch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	10/31/2019 10:06:36 P	48455
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
Naphthalene	ND	0.15	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	10/31/2019 10:06:36 P	48455
Nitrobenzene	ND	0.14	0.39	mg/Kg	1	10/31/2019 10:06:36 P	48455
2-Nitrophenol	ND	0.13	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	10/31/2019 10:06:36 P	48455
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	10/31/2019 10:06:36 P	48455
Phenanthrene	ND	0.11	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
Phenol	ND	0.12	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
Pyrene	ND	0.092	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
Pyridine	ND	0.12	0.39	mg/Kg	1	10/31/2019 10:06:36 P	48455
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	10/31/2019 10:06:36 P	48455
Surr: 2-Fluorophenol	64.7	;	26.7-85.9	%Rec	1	10/31/2019 10:06:36 P	48455
Surr: Phenol-d5	67.2		18.5-101	%Rec	1	10/31/2019 10:06:36 P	48455
Surr: 2,4,6-Tribromophenol	68.8	;	35.8-85.6	%Rec	1	10/31/2019 10:06:36 P	48455
Surr: Nitrobenzene-d5	71.5		40.8-95.2	%Rec	1	10/31/2019 10:06:36 P	48455
Surr: 2-Fluorobiphenyl	72.2	;	34.7-85.2	%Rec	1	10/31/2019 10:06:36 P	48455
Surr: 4-Terphenyl-d14	84.0	;	37.4-91.3	%Rec	1	10/31/2019 10:06:36 P	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0031	0.019	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
Toluene	ND	0.0036	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
Ethylbenzene	ND	0.0022	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0089	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
1,2,4-Trimethylbenzene	ND	0.0034	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0036	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0038	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0034	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
Naphthalene	ND	0.0075	0.075	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
1-Methylnaphthalene	ND	0.022	0.15	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
2-Methylnaphthalene	ND	0.016	0.15	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
Acetone	ND	0.031	0.56	mg/Kg	1	10/28/2019 6:11:07 PM	S64028
Bromobenzene	ND	0.0036	0.037	mg/Kg	1	10/28/2019 6:11:07 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:15:00 PM

 Lab ID:
 1910D68-007
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0034	0.037		mg/Kg	1	10/28/2019 6:11:07 PN	1 S64028
Bromoform	ND	0.0034	0.037		mg/Kg	1	10/28/2019 6:11:07 PN	1 S64028
Bromomethane	ND	0.0090	0.11		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
2-Butanone	0.049	0.043	0.37	J	mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Carbon disulfide	ND	0.012	0.37		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Carbon tetrachloride	ND	0.0035	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Chlorobenzene	ND	0.0048	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Chloroethane	ND	0.0055	0.075		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Chloroform	ND	0.0030	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	M S64028
Chloromethane	ND	0.0036	0.11		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
2-Chlorotoluene	ND	0.0033	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
4-Chlorotoluene	ND	0.0031	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
cis-1,2-DCE	ND	0.0051	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
cis-1,3-Dichloropropene	ND	0.0032	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,2-Dibromo-3-chloropropane	ND	0.0038	0.075		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Dibromochloromethane	ND	0.0027	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Dibromomethane	ND	0.0040	0.037		mg/Kg	1	10/28/2019 6:11:07 PN	1 S64028
1,2-Dichlorobenzene	ND	0.0031	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,3-Dichlorobenzene	ND	0.0032	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,4-Dichlorobenzene	ND	0.0031	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Dichlorodifluoromethane	ND	0.0087	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,1-Dichloroethane	ND	0.0024	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,1-Dichloroethene	ND	0.015	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,2-Dichloropropane	ND	0.0027	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
1,3-Dichloropropane	ND	0.0040	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
2,2-Dichloropropane	ND	0.012	0.075		mg/Kg	1	10/28/2019 6:11:07 PM	M S64028
1,1-Dichloropropene	ND	0.0034	0.075		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Hexachlorobutadiene	ND	0.0038	0.075		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
2-Hexanone	ND	0.0062	0.37		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Isopropylbenzene	ND	0.0027	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	M S64028
4-Isopropyltoluene	ND	0.0031	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	M S64028
4-Methyl-2-pentanone	ND	0.0071	0.37		mg/Kg	1	10/28/2019 6:11:07 PM	M S64028
Methylene chloride	0.011	0.0066	0.11	J	mg/Kg	1	10/28/2019 6:11:07 PM	M S64028
n-Butylbenzene	ND	0.0035	0.11		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
n-Propylbenzene	ND	0.0030	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
sec-Butylbenzene	ND	0.0042	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028
Styrene	ND	0.0029	0.037		mg/Kg	1	10/28/2019 6:11:07 PN	1 S64028
tert-Butylbenzene	ND	0.0035	0.037		mg/Kg	1	10/28/2019 6:11:07 PN	1 S64028
1,1,1,2-Tetrachloroethane	ND	0.0025	0.037		mg/Kg	1	10/28/2019 6:11:07 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-5 (1.5-2')Project:SWMU 13Collection Date: 10/23/2019 2:15:00 PM

Lab ID: 1910D68-007 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,1,2,2-Tetrachloroethane	ND	0.0038	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
Tetrachloroethene (PCE)	ND	0.0030	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
trans-1,2-DCE	ND	0.0034	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
trans-1,3-Dichloropropene	ND	0.0040	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
1,2,3-Trichlorobenzene	ND	0.0033	0.075		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
1,2,4-Trichlorobenzene	ND	0.0038	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
1,1,1-Trichloroethane	ND	0.0034	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
1,1,2-Trichloroethane	ND	0.0026	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
Trichloroethene (TCE)	ND	0.0043	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
Trichlorofluoromethane	ND	0.013	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
1,2,3-Trichloropropane	ND	0.0061	0.075		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
Vinyl chloride	ND	0.0024	0.037		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
Xylenes, Total	ND	0.0094	0.075		mg/Kg	1	10/28/2019 6:11:07 F	PM S64028
Surr: Dibromofluoromethane	104		70-130		%Rec	1	10/28/2019 6:11:07 F	PM S64028
Surr: 1,2-Dichloroethane-d4	94.2		70-130		%Rec	1	10/28/2019 6:11:07 F	PM S64028
Surr: Toluene-d8	105		70-130		%Rec	1	10/28/2019 6:11:07 F	PM S64028
Surr: 4-Bromofluorobenzene	96.3		70-130		%Rec	1	10/28/2019 6:11:07 F	PM S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:30:00 PM

 Lab ID:
 1910D68-008
 Matrix:
 MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	2.0	9.8		mg/Kg	1	10/30/2019 10:24:42 A	48457
Motor Oil Range Organics (MRO)	ND	49	49		mg/Kg	1	10/30/2019 10:24:42 A	48457
Surr: DNOP	85.8	0	70-130		%Rec	1	10/30/2019 10:24:42 A	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.89	2.9		mg/Kg	1	10/27/2019 7:25:07 PM	A63989
Surr: BFB	88.5	0	77.4-118		%Rec	1	10/27/2019 7:25:07 PM	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0057	0.0018	0.032	J	mg/Kg	1	11/1/2019 1:14:25 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.77	5.2		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Arsenic	ND	3.0	5.2		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Barium	220	0.048	0.21		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Beryllium	1.4	0.019	0.31		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Cadmium	ND	0.051	0.21		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Chromium	14	0.17	0.62		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Cobalt	5.7	0.22	0.62		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Iron	20000	76	260		mg/Kg	100	11/18/2019 7:09:52 PM	48433
Lead	2.3	0.51	0.52		mg/Kg	2	11/18/2019 7:08:10 PM	48433
Manganese	330	0.043	0.21		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Nickel	13	0.31	1.0		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Selenium	ND	2.6	5.2		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Silver	ND	0.067	0.52		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Vanadium	22	0.14	5.2		mg/Kg	2	11/7/2019 2:53:52 PM	48433
Zinc	19	0.82	5.2		mg/Kg	2	11/7/2019 2:53:52 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.11	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Acenaphthylene	ND	0.10	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Aniline	ND	0.12	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Anthracene	ND	0.10	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Azobenzene	ND	0.13	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benz(a)anthracene	ND	0.092	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benzo(a)pyrene	ND	0.085	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benzo(b)fluoranthene	ND	0.084	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benzo(g,h,i)perylene	ND	0.082	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benzo(k)fluoranthene	ND	0.087	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benzoic acid	ND	0.099	0.48		mg/Kg	1	10/31/2019 10:35:22 P	48455
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	10/31/2019 10:35:22 P	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 36 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:30:00 PM

 Lab ID:
 1910D68-008
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Bis(2-chloroethyl)ether	ND	0.12	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.48	mg/Kg	1	10/31/2019 10:35:22 F	48455
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Butyl benzyl phthalate	ND	0.098	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Carbazole	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
4-Chloro-3-methylphenol	ND	0.15	0.48	mg/Kg	1	10/31/2019 10:35:22 F	48455
4-Chloroaniline	ND	0.14	0.48	mg/Kg	1	10/31/2019 10:35:22 F	48455
2-Chloronaphthalene	ND	0.12	0.24	mg/Kg	1	10/31/2019 10:35:22 F	48455
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
4-Chlorophenyl phenyl ether	ND	0.10	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Chrysene	ND	0.084	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Di-n-butyl phthalate	ND	0.14	0.38	mg/Kg	1	10/31/2019 10:35:22 F	48455
Di-n-octyl phthalate	ND	0.097	0.38	mg/Kg	1	10/31/2019 10:35:22 F	48455
Dibenz(a,h)anthracene	ND	0.087	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Dibenzofuran	ND	0.13	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
1,2-Dichlorobenzene	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
1,3-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
1,4-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
3,3´-Dichlorobenzidine	ND	0.085	0.24	mg/Kg	1	10/31/2019 10:35:22 F	48455
Diethyl phthalate	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Dimethyl phthalate	ND	0.13	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
2,4-Dichlorophenol	ND	0.11	0.38	mg/Kg	1	10/31/2019 10:35:22 F	48455
2,4-Dimethylphenol	ND	0.11	0.29	mg/Kg	1	10/31/2019 10:35:22 F	48455
4,6-Dinitro-2-methylphenol	ND	0.088	0.38	mg/Kg	1	10/31/2019 10:35:22 F	48455
2,4-Dinitrophenol	ND	0.069	0.48	mg/Kg	1	10/31/2019 10:35:22 F	48455
2,4-Dinitrotoluene	ND	0.11	0.48	mg/Kg	1	10/31/2019 10:35:22 F	48455
2,6-Dinitrotoluene	ND	0.13	0.48	mg/Kg	1	10/31/2019 10:35:22 F	48455
Fluoranthene	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Fluorene	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Hexachlorobenzene	ND	0.12	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Hexachlorobutadiene	ND	0.13	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Hexachloroethane	ND	0.11	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Indeno(1,2,3-cd)pyrene	ND	0.095	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
Isophorone	ND	0.14	0.38	mg/Kg	1	10/31/2019 10:35:22 F	48455
1-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 F	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 37 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:30:00 PM

 Lab ID:
 1910D68-008
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.11	0.38	mg/Kg	1	10/31/2019 10:35:22 P	48455
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
Naphthalene	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
2-Nitroaniline	ND	0.14	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
4-Nitroaniline	ND	0.12	0.38	mg/Kg	1	10/31/2019 10:35:22 P	48455
Nitrobenzene	ND	0.13	0.38	mg/Kg	1	10/31/2019 10:35:22 P	48455
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	10/31/2019 10:35:22 P	48455
Pentachlorophenol	ND	0.098	0.38	mg/Kg	1	10/31/2019 10:35:22 P	48455
Phenanthrene	ND	0.10	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
Phenol	ND	0.12	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
Pyrene	ND	0.090	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
Pyridine	ND	0.11	0.38	mg/Kg	1	10/31/2019 10:35:22 P	48455
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
2,4,5-Trichlorophenol	ND	0.12	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	10/31/2019 10:35:22 P	48455
Surr: 2-Fluorophenol	56.7		26.7-85.9	%Rec	1	10/31/2019 10:35:22 P	48455
Surr: Phenol-d5	61.9		18.5-101	%Rec	1	10/31/2019 10:35:22 P	48455
Surr: 2,4,6-Tribromophenol	64.7		35.8-85.6	%Rec	1	10/31/2019 10:35:22 P	48455
Surr: Nitrobenzene-d5	65.2		40.8-95.2	%Rec	1	10/31/2019 10:35:22 P	48455
Surr: 2-Fluorobiphenyl	58.5		34.7-85.2	%Rec	1	10/31/2019 10:35:22 P	48455
Surr: 4-Terphenyl-d14	87.0		37.4-91.3	%Rec	1	10/31/2019 10:35:22 P	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0024	0.015	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
Toluene	ND	0.0028	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
Ethylbenzene	ND	0.0017	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
Methyl tert-butyl ether (MTBE)	ND	0.0069	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
1,2,4-Trimethylbenzene	ND	0.0027	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
1,3,5-Trimethylbenzene	ND	0.0028	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
1,2-Dichloroethane (EDC)	ND	0.0030	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
1,2-Dibromoethane (EDB)	ND	0.0027	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
Naphthalene	ND	0.0059	0.059	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
1-Methylnaphthalene	ND	0.017	0.12	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
2-Methylnaphthalene	ND	0.013	0.12	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
Acetone	ND	0.024	0.44	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028
Bromobenzene	ND	0.0028	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (8-10')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:30:00 PM

 Lab ID:
 1910D68-008
 Matrix:
 MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0027	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Bromoform	ND	0.0026	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Bromomethane	ND	0.0071	0.088	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
2-Butanone	ND	0.034	0.29	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Carbon disulfide	ND	0.0097	0.29	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Carbon tetrachloride	ND	0.0028	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Chlorobenzene	ND	0.0037	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Chloroethane	ND	0.0043	0.059	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Chloroform	ND	0.0024	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Chloromethane	ND	0.0028	0.088	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
2-Chlorotoluene	ND	0.0025	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
4-Chlorotoluene	ND	0.0024	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
cis-1,2-DCE	ND	0.0040	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
cis-1,3-Dichloropropene	ND	0.0025	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0030	0.059	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Dibromochloromethane	ND	0.0021	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Dibromomethane	ND	0.0031	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,2-Dichlorobenzene	ND	0.0024	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,3-Dichlorobenzene	ND	0.0025	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,4-Dichlorobenzene	ND	0.0024	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Dichlorodifluoromethane	ND	0.0068	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,1-Dichloroethane	ND	0.0019	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,1-Dichloroethene	ND	0.012	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,2-Dichloropropane	ND	0.0021	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,3-Dichloropropane	ND	0.0032	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
2,2-Dichloropropane	ND	0.0095	0.059	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,1-Dichloropropene	ND	0.0027	0.059	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Hexachlorobutadiene	ND	0.0030	0.059	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
2-Hexanone	ND	0.0049	0.29	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Isopropylbenzene	ND	0.0021	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
4-Isopropyltoluene	ND	0.0024	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
4-Methyl-2-pentanone	ND	0.0055	0.29	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Methylene chloride	ND	0.0052	0.088	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
n-Butylbenzene	ND	0.0027	0.088	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
n-Propylbenzene	ND	0.0023	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
sec-Butylbenzene	ND	0.0033	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
Styrene	ND	0.0023	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
tert-Butylbenzene	ND	0.0028	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0020	0.029	mg/Kg	1	10/28/2019 6:40:18 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-5 (8-10')

Project: SWMU 13

Collection Date: 10/23/2019 2:30:00 PM

Lab ID: 1910D68-008 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ I	=
1,1,2,2-Tetrachloroethane	ND	0.0030	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
Tetrachloroethene (PCE)	ND	0.0023	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
trans-1,2-DCE	ND	0.0027	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
trans-1,3-Dichloropropene	ND	0.0031	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
1,2,3-Trichlorobenzene	ND	0.0026	0.059	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
1,2,4-Trichlorobenzene	ND	0.0030	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
1,1,1-Trichloroethane	ND	0.0026	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
1,1,2-Trichloroethane	ND	0.0021	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
Trichloroethene (TCE)	ND	0.0034	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
Trichlorofluoromethane	ND	0.0099	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
1,2,3-Trichloropropane	ND	0.0047	0.059	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
Vinyl chloride	ND	0.0019	0.029	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
Xylenes, Total	ND	0.0074	0.059	mg/Kg	1	10/28/2019 6:40:18 P	M S64028
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/28/2019 6:40:18 P	M S64028
Surr: 1,2-Dichloroethane-d4	95.0		70-130	%Rec	1	10/28/2019 6:40:18 P	M S64028
Surr: Toluene-d8	99.1		70-130	%Rec	1	10/28/2019 6:40:18 P	M S64028
Surr: 4-Bromofluorobenzene	91.6		70-130	%Rec	1	10/28/2019 6:40:18 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Collection Date: 10/23/2019 2:35:00 PM

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

SWMU 13

Project:

CLIENT: Marathon Client Sample ID: SWMU 13-5 (10-10.5')

Lab ID: 1910D68-009 **Matrix:** SOIL **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.5		mg/Kg	1	10/30/2019 10:46:33 A	48457
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/30/2019 10:46:33 A	48457
Surr: DNOP	93.3	0	70-130		%Rec	1	10/30/2019 10:46:33 A	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.5	4.9		mg/Kg	1	10/30/2019 1:00:53 PM	48446
Surr: BFB	102	0	77.4-118		%Rec	1	10/30/2019 1:00:53 PM	48446
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0073	0.0018	0.032	J	mg/Kg	1	11/1/2019 1:16:22 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.73	5.0		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Arsenic	ND	2.8	5.0		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Barium	310	0.046	0.20		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Beryllium	1.2	0.018	0.30		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Cadmium	ND	0.048	0.20		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Chromium	13	0.16	0.60		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Cobalt	5.4	0.21	0.60		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Iron	17000	72	250		mg/Kg	100	11/18/2019 7:13:01 PM	48519
Lead	3.0	0.48	0.50		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Manganese	350	0.041	0.20		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Nickel	11	0.30	1.0		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 6:22:07 PM	48519
Silver	ND	0.064	0.50		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Vanadium	22	0.13	5.0		mg/Kg	2	11/18/2019 7:11:26 PM	48519
Zinc	18	0.79	5.0		mg/Kg	2	11/18/2019 7:11:26 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Aniline	ND	0.13	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Anthracene	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Azobenzene	ND	0.14	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benz(a)anthracene	ND	0.097	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benzo(a)pyrene	ND	0.090	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benzo(b)fluoranthene	ND	0.089	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benzo(g,h,i)perylene	ND	0.087	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benzo(k)fluoranthene	ND	0.092	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benzoic acid	ND	0.10	0.51		mg/Kg	1	10/31/2019 11:04:32 P	48455
Benzyl alcohol	ND	0.13	0.20		mg/Kg	1	10/31/2019 11:04:32 P	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 41 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-5 (10-10.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:35:00 PM

 Lab ID:
 1910D68-009
 Matrix: SOIL
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.15	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Bis(2-chloroisopropyl)ether	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Bis(2-ethylhexyl)phthalate	ND	0.15	0.51		mg/Kg	1	10/31/2019 11:04:32	P 48455
4-Bromophenyl phenyl ether	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Carbazole	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
4-Chloro-3-methylphenol	ND	0.16	0.51		mg/Kg	1	10/31/2019 11:04:32	P 48455
4-Chloroaniline	ND	0.14	0.51		mg/Kg	1	10/31/2019 11:04:32	P 48455
2-Chloronaphthalene	ND	0.13	0.25		mg/Kg	1	10/31/2019 11:04:32	P 48455
2-Chlorophenol	ND	0.13	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Chrysene	ND	0.089	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Di-n-butyl phthalate	0.17	0.15	0.40	J	mg/Kg	1	10/31/2019 11:04:32	P 48455
Di-n-octyl phthalate	ND	0.10	0.40		mg/Kg	1	10/31/2019 11:04:32	P 48455
Dibenz(a,h)anthracene	ND	0.092	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
1,3-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
1,4-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
3,3´-Dichlorobenzidine	ND	0.090	0.25		mg/Kg	1	10/31/2019 11:04:32	P 48455
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Dimethyl phthalate	ND	0.13	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
2,4-Dichlorophenol	ND	0.12	0.40		mg/Kg	1	10/31/2019 11:04:32	P 48455
2,4-Dimethylphenol	ND	0.11	0.30		mg/Kg	1	10/31/2019 11:04:32	P 48455
4,6-Dinitro-2-methylphenol	ND	0.093	0.40		mg/Kg	1	10/31/2019 11:04:32	P 48455
2,4-Dinitrophenol	ND	0.073	0.51		mg/Kg	1	10/31/2019 11:04:32	P 48455
2,4-Dinitrotoluene	ND	0.12	0.51		mg/Kg	1	10/31/2019 11:04:32	P 48455
2,6-Dinitrotoluene	ND	0.13	0.51		mg/Kg	1	10/31/2019 11:04:32	P 48455
Fluoranthene	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Fluorene	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Hexachlorobenzene	ND	0.13	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Hexachlorocyclopentadiene	ND	0.12	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Indeno(1,2,3-cd)pyrene	ND	0.10	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
Isophorone	ND	0.15	0.40		mg/Kg	1	10/31/2019 11:04:32	P 48455
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455
2-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	10/31/2019 11:04:32	P 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 42 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-5 (10-10.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:35:00 PM

 Lab ID:
 1910D68-009
 Matrix: SOIL
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	10/31/2019 11:04:32 P	48455
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
N-Nitrosodiphenylamine	ND	0.11	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
Naphthalene	ND	0.15	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	10/31/2019 11:04:32 P	48455
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	10/31/2019 11:04:32 P	48455
2-Nitrophenol	ND	0.14	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
4-Nitrophenol	ND	0.14	0.25	mg/Kg	1	10/31/2019 11:04:32 P	48455
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	10/31/2019 11:04:32 P	48455
Phenanthrene	ND	0.11	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
Phenol	ND	0.13	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
Pyrene	ND	0.095	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
Pyridine	ND	0.12	0.40	mg/Kg	1	10/31/2019 11:04:32 P	48455
1,2,4-Trichlorobenzene	ND	0.16	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
2,4,6-Trichlorophenol	ND	0.11	0.20	mg/Kg	1	10/31/2019 11:04:32 P	48455
Surr: 2-Fluorophenol	66.7		26.7-85.9	%Rec	1	10/31/2019 11:04:32 P	48455
Surr: Phenol-d5	70.2		18.5-101	%Rec	1	10/31/2019 11:04:32 P	48455
Surr: 2,4,6-Tribromophenol	70.4		35.8-85.6	%Rec	1	10/31/2019 11:04:32 P	48455
Surr: Nitrobenzene-d5	76.1		40.8-95.2	%Rec	1	10/31/2019 11:04:32 P	48455
Surr: 2-Fluorobiphenyl	68.6		34.7-85.2	%Rec	1	10/31/2019 11:04:32 P	48455
Surr: 4-Terphenyl-d14	88.7		37.4-91.3	%Rec	1	10/31/2019 11:04:32 P	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0040	0.025	mg/Kg	1	10/30/2019 2:36:27 PM	48446
Toluene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
Ethylbenzene	ND	0.0028	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
1,2,4-Trimethylbenzene	ND	0.0045	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
1,3,5-Trimethylbenzene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
1,2-Dichloroethane (EDC)	ND	0.0050	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
1,2-Dibromoethane (EDB)	ND	0.0045	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446
Naphthalene	ND	0.0098	0.098	mg/Kg	1	10/30/2019 2:36:27 PM	48446
1-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	10/30/2019 2:36:27 PM	48446
2-Methylnaphthalene	ND	0.021	0.20	mg/Kg	1	10/30/2019 2:36:27 PM	48446
Acetone	ND	0.041	0.74	mg/Kg	1	10/30/2019 2:36:27 PM	48446
Bromobenzene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 2:36:27 PM	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 43 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-5 (10-10.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:35:00 PM

 Lab ID:
 1910D68-009
 Matrix: SOIL
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	=
Bromodichloromethane	ND	0.0045	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Bromoform	ND	0.0044	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Bromomethane	ND	0.012	0.15		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
2-Butanone	0.071	0.057	0.49	J	mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Carbon disulfide	ND	0.016	0.49		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Carbon tetrachloride	ND	0.0046	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Chlorobenzene	ND	0.0063	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Chloroethane	ND	0.0072	0.098		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Chloroform	ND	0.0039	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Chloromethane	ND	0.0047	0.15		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
2-Chlorotoluene	ND	0.0043	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
4-Chlorotoluene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
cis-1,2-DCE	ND	0.0067	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
cis-1,3-Dichloropropene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,2-Dibromo-3-chloropropane	ND	0.0050	0.098		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Dibromochloromethane	ND	0.0035	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Dibromomethane	ND	0.0053	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,2-Dichlorobenzene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,3-Dichlorobenzene	ND	0.0043	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,4-Dichlorobenzene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Dichlorodifluoromethane	ND	0.011	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,1-Dichloroethane	ND	0.0031	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,1-Dichloroethene	ND	0.020	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,2-Dichloropropane	ND	0.0036	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,3-Dichloropropane	ND	0.0053	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
2,2-Dichloropropane	ND	0.016	0.098		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,1-Dichloropropene	ND	0.0045	0.098		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Hexachlorobutadiene	ND	0.0050	0.098		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
2-Hexanone	ND	0.0081	0.49		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Isopropylbenzene	ND	0.0035	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
4-Isopropyltoluene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
4-Methyl-2-pentanone	ND	0.0093	0.49		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Methylene chloride	ND	0.0087	0.15		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
n-Butylbenzene	ND	0.0046	0.15		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
n-Propylbenzene	ND	0.0039	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
sec-Butylbenzene	ND	0.0055	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
Styrene	ND	0.0038	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
tert-Butylbenzene	ND	0.0046	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446
1,1,1,2-Tetrachloroethane	ND	0.0033	0.049		mg/Kg	1	10/30/2019 2:36:27 P	M 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 44 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-5 (10-10.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:35:00 PM

 Lab ID:
 1910D68-009
 Matrix: SOIL
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Un	its	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0050	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	VI 48446
Tetrachloroethene (PCE)	ND	0.0039	0.049	mg	/Kg	1	10/30/2019 2:36:27 Pf	M 48446
trans-1,2-DCE	ND	0.0045	0.049	mg	/Kg	1	10/30/2019 2:36:27 Pf	M 48446
trans-1,3-Dichloropropene	ND	0.0052	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
1,2,3-Trichlorobenzene	ND	0.0043	0.098	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
1,2,4-Trichlorobenzene	ND	0.0050	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
1,1,1-Trichloroethane	ND	0.0044	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
1,1,2-Trichloroethane	ND	0.0035	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
Trichloroethene (TCE)	ND	0.0057	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
Trichlorofluoromethane	ND	0.017	0.049	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
1,2,3-Trichloropropane	ND	0.0079	0.098	mg	/Kg	1	10/30/2019 2:36:27 PI	M 48446
Vinyl chloride	ND	0.0032	0.049	mg	/Kg	1	10/30/2019 2:36:27 Pf	M 48446
Xylenes, Total	ND	0.012	0.098	mg	/Kg	1	10/30/2019 2:36:27 Pf	M 48446
Surr: Dibromofluoromethane	103		70-130	%F	Rec	1	10/30/2019 2:36:27 Pf	M 48446
Surr: 1,2-Dichloroethane-d4	91.9		70-130	%F	Rec	1	10/30/2019 2:36:27 PI	M 48446
Surr: Toluene-d8	98.8		70-130	%F	Rec	1	10/30/2019 2:36:27 PI	M 48446
Surr: 4-Bromofluorobenzene	92.8		70-130	%F	Rec	1	10/30/2019 2:36:27 PI	M 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 45 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:45:00 PM

 Lab ID:
 1910D68-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.6		mg/Kg	1	10/30/2019 11:08:37 A	48457
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/30/2019 11:08:37 A	48457
Surr: DNOP	85.5	0	70-130		%Rec	1	10/30/2019 11:08:37 A	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.87	2.9		mg/Kg	1	10/27/2019 9:19:43 PM	A63989
Surr: BFB	107	0	77.4-118		%Rec	1	10/27/2019 9:19:43 PM	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0060	0.0017	0.032	J	mg/Kg	1	11/1/2019 1:18:21 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.72	4.9		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Arsenic	ND	2.8	4.9		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Barium	180	0.045	0.19		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Beryllium	1.3	0.018	0.29		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Cadmium	ND	0.047	0.19		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Chromium	13	0.15	0.58		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Cobalt	4.7	0.21	0.58		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Iron	19000	71	240		mg/Kg	100	11/18/2019 7:22:19 PM	48433
Lead	1.3	0.47	0.49		mg/Kg	2	11/18/2019 7:18:41 PM	48433
Manganese	230	0.040	0.19		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Nickel	11	0.29	0.97		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Selenium	2.5	2.4	4.9	J	mg/Kg	2	11/7/2019 2:57:26 PM	48433
Silver	ND	0.062	0.49		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Vanadium	21	0.13	4.9		mg/Kg	2	11/7/2019 2:57:26 PM	48433
Zinc	18	0.77	4.9		mg/Kg	2	11/7/2019 2:57:26 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Acenaphthylene	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Aniline	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Anthracene	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Azobenzene	ND	0.14	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benz(a)anthracene	ND	0.099	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benzo(a)pyrene	ND	0.091	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benzo(b)fluoranthene	ND	0.091	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benzo(g,h,i)perylene	ND	0.088	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benzo(k)fluoranthene	ND	0.093	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benzoic acid	ND	0.11	0.51		mg/Kg	1	10/31/2019 11:33:10 P	48455
Benzyl alcohol	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 46 of 123

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:45:00 PM

 Lab ID:
 1910D68-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (;
Bis(2-chloroethoxy)methane	ND	0.15	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Bis(2-chloroethyl)ether	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Bis(2-chloroisopropyl)ether	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Bis(2-ethylhexyl)phthalate	0.17	0.15	0.51	J	mg/Kg	1	10/31/2019 11:33:10 F	48455
4-Bromophenyl phenyl ether	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Butyl benzyl phthalate	ND	0.10	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Carbazole	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
4-Chloro-3-methylphenol	ND	0.16	0.51		mg/Kg	1	10/31/2019 11:33:10 F	48455
4-Chloroaniline	ND	0.15	0.51		mg/Kg	1	10/31/2019 11:33:10 F	48455
2-Chloronaphthalene	ND	0.13	0.26		mg/Kg	1	10/31/2019 11:33:10 F	48455
2-Chlorophenol	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
4-Chlorophenyl phenyl ether	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Chrysene	ND	0.090	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Di-n-butyl phthalate	0.19	0.15	0.41	J	mg/Kg	1	10/31/2019 11:33:10 F	48455
Di-n-octyl phthalate	ND	0.10	0.41		mg/Kg	1	10/31/2019 11:33:10 F	48455
Dibenz(a,h)anthracene	ND	0.093	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Dibenzofuran	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
1,2-Dichlorobenzene	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
1,3-Dichlorobenzene	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
1,4-Dichlorobenzene	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
3,3´-Dichlorobenzidine	ND	0.091	0.26		mg/Kg	1	10/31/2019 11:33:10 F	48455
Diethyl phthalate	ND	0.15	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Dimethyl phthalate	ND	0.14	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
2,4-Dichlorophenol	ND	0.12	0.41		mg/Kg	1	10/31/2019 11:33:10 F	48455
2,4-Dimethylphenol	ND	0.11	0.31		mg/Kg	1	10/31/2019 11:33:10 F	48455
4,6-Dinitro-2-methylphenol	ND	0.095	0.41		mg/Kg	1	10/31/2019 11:33:10 F	48455
2,4-Dinitrophenol	ND	0.074	0.51		mg/Kg	1	10/31/2019 11:33:10 F	48455
2,4-Dinitrotoluene	ND	0.12	0.51		mg/Kg	1	10/31/2019 11:33:10 F	48455
2,6-Dinitrotoluene	ND	0.13	0.51		mg/Kg	1	10/31/2019 11:33:10 F	48455
Fluoranthene	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Fluorene	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Hexachlorobenzene	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Hexachlorobutadiene	ND	0.14	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Hexachlorocyclopentadiene	ND	0.12	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Hexachloroethane	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Indeno(1,2,3-cd)pyrene	ND	0.10	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
Isophorone	ND	0.15	0.41		mg/Kg	1	10/31/2019 11:33:10 F	48455
1-Methylnaphthalene	ND	0.15	0.21		mg/Kg	1	10/31/2019 11:33:10 F	48455
2-Methylnaphthalene	ND	0.15	0.21		mg/Kg	1	10/31/2019 11:33:10 F	P 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 47 of 123

Lab Order 1910D68

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/5/2019

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:45:00 PM

 Lab ID:
 1910D68-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.12	0.41		mg/Kg	1	10/31/2019 11:33:10 P	48455
3+4-Methylphenol	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
N-Nitrosodi-n-propylamine	ND	0.15	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
N-Nitrosodiphenylamine	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Naphthalene	ND	0.16	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
2-Nitroaniline	ND	0.15	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
3-Nitroaniline	ND	0.14	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
4-Nitroaniline	ND	0.13	0.41		mg/Kg	1	10/31/2019 11:33:10 P	48455
Nitrobenzene	ND	0.14	0.41		mg/Kg	1	10/31/2019 11:33:10 P	48455
2-Nitrophenol	ND	0.14	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
4-Nitrophenol	ND	0.14	0.26		mg/Kg	1	10/31/2019 11:33:10 P	48455
Pentachlorophenol	ND	0.11	0.41		mg/Kg	1	10/31/2019 11:33:10 P	48455
Phenanthrene	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Phenol	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Pyrene	ND	0.096	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Pyridine	ND	0.12	0.41		mg/Kg	1	10/31/2019 11:33:10 P	48455
1,2,4-Trichlorobenzene	ND	0.16	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
2,4,5-Trichlorophenol	ND	0.13	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
2,4,6-Trichlorophenol	ND	0.11	0.21		mg/Kg	1	10/31/2019 11:33:10 P	48455
Surr: 2-Fluorophenol	64.0		26.7-85.9		%Rec	1	10/31/2019 11:33:10 P	48455
Surr: Phenol-d5	60.7		18.5-101		%Rec	1	10/31/2019 11:33:10 P	48455
Surr: 2,4,6-Tribromophenol	62.5		35.8-85.6		%Rec	1	10/31/2019 11:33:10 P	48455
Surr: Nitrobenzene-d5	64.6		40.8-95.2		%Rec	1	10/31/2019 11:33:10 P	48455
Surr: 2-Fluorobiphenyl	57.9		34.7-85.2		%Rec	1	10/31/2019 11:33:10 P	48455
Surr: 4-Terphenyl-d14	35.9		37.4-91.3	S	%Rec	1	10/31/2019 11:33:10 P	48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0024	0.014		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Toluene	ND	0.0028	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Ethylbenzene	ND	0.0017	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0069	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	
1,2,4-Trimethylbenzene	ND	0.0026	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0028	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0029	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0026	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Naphthalene	ND	0.0058	0.058		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1-Methylnaphthalene	ND	0.017	0.12		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
2-Methylnaphthalene	ND	0.013	0.12		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Acetone	ND	0.024	0.43		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Bromobenzene	ND	0.0028	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 48 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:45:00 PM

 Lab ID:
 1910D68-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0026	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Bromoform	ND	0.0026	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Bromomethane	ND	0.0070	0.087		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
2-Butanone	ND	0.033	0.29		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Carbon disulfide	ND	0.0095	0.29		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Carbon tetrachloride	ND	0.0027	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Chlorobenzene	ND	0.0037	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Chloroethane	ND	0.0043	0.058		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Chloroform	ND	0.0023	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Chloromethane	ND	0.0028	0.087		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
2-Chlorotoluene	ND	0.0025	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
4-Chlorotoluene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
cis-1,2-DCE	ND	0.0040	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
cis-1,3-Dichloropropene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0030	0.058		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Dibromochloromethane	ND	0.0021	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Dibromomethane	ND	0.0031	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,2-Dichlorobenzene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,3-Dichlorobenzene	ND	0.0025	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,4-Dichlorobenzene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Dichlorodifluoromethane	ND	0.0067	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,1-Dichloroethane	ND	0.0018	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,1-Dichloroethene	ND	0.012	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,2-Dichloropropane	ND	0.0021	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,3-Dichloropropane	ND	0.0031	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
2,2-Dichloropropane	ND	0.0094	0.058		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,1-Dichloropropene	ND	0.0026	0.058		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Hexachlorobutadiene	ND	0.0029	0.058		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
2-Hexanone	ND	0.0048	0.29		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Isopropylbenzene	ND	0.0021	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
4-Isopropyltoluene	ND	0.0024	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
4-Methyl-2-pentanone	ND	0.0055	0.29		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Methylene chloride	0.0077	0.0051	0.087	J	mg/Kg	1	10/28/2019 7:09:33 PM	S64028
n-Butylbenzene	ND	0.0027	0.087		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
n-Propylbenzene	ND	0.0023	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
sec-Butylbenzene	ND	0.0033	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
Styrene	ND	0.0023	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
tert-Butylbenzene	ND	0.0027	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0020	0.029		mg/Kg	1	10/28/2019 7:09:33 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 49 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-5 (14-16')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 2:45:00 PM

 Lab ID:
 1910D68-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual U	J nits	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJI	=
1,1,2,2-Tetrachloroethane	ND	0.0029	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
Tetrachloroethene (PCE)	ND	0.0023	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
trans-1,2-DCE	ND	0.0026	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
trans-1,3-Dichloropropene	ND	0.0031	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
1,2,3-Trichlorobenzene	ND	0.0025	0.058	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
1,2,4-Trichlorobenzene	ND	0.0029	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
1,1,1-Trichloroethane	ND	0.0026	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
1,1,2-Trichloroethane	ND	0.0020	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
Trichloroethene (TCE)	ND	0.0033	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
Trichlorofluoromethane	ND	0.0098	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
1,2,3-Trichloropropane	ND	0.0047	0.058	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
Vinyl chloride	ND	0.0019	0.029	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
Xylenes, Total	ND	0.0073	0.058	r	ng/Kg	1	10/28/2019 7:09:33 P	M S64028
Surr: Dibromofluoromethane	104		70-130	9	%Rec	1	10/28/2019 7:09:33 P	M S64028
Surr: 1,2-Dichloroethane-d4	89.9		70-130	9	%Rec	1	10/28/2019 7:09:33 P	M S64028
Surr: Toluene-d8	103		70-130	9	%Rec	1	10/28/2019 7:09:33 P	M S64028
Surr: 4-Bromofluorobenzene	91.9		70-130	9	%Rec	1	10/28/2019 7:09:33 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 4:50:00 PM

 Lab ID:
 1910D68-011
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	20	1.9	9.4		mg/Kg	1	10/31/2019 4:12:57 PM	48457
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	10/31/2019 4:12:57 PM	48457
Surr: DNOP	91.1	0	70-130		%Rec	1	10/31/2019 4:12:57 PM	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.3		mg/Kg	1	10/27/2019 10:06:00 P	A63989
Surr: BFB	95.0	0	77.4-118		%Rec	1	10/27/2019 10:06:00 P	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.019	0.0018	0.032	J	mg/Kg	1	11/1/2019 1:20:20 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.75	5.1		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Arsenic	ND	2.9	5.1		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Barium	390	0.047	0.20		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Beryllium	0.97	0.019	0.30		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Chromium	12	0.16	0.61		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Cobalt	4.4	0.21	0.61		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Iron	15000	74	250		mg/Kg	100	11/18/2019 7:25:30 PM	48433
Lead	2.8	0.49	0.51		mg/Kg	2	11/18/2019 7:23:55 PM	48433
Manganese	360	0.042	0.20		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Nickel	9.6	0.30	1.0		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Selenium	ND	2.5	5.1		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Silver	ND	0.065	0.51		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Vanadium	20	0.14	5.1		mg/Kg	2	11/7/2019 2:59:04 PM	48433
Zinc	18	0.80	5.1		mg/Kg	2	11/7/2019 2:59:04 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Aniline	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Anthracene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benz(a)anthracene	ND	0.95	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benzo(a)pyrene	ND	0.87	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benzo(b)fluoranthene	ND	0.87	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benzo(g,h,i)perylene	ND	0.84	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benzo(k)fluoranthene	ND	0.89	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benzoic acid	ND	1.0	4.9	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 51 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-6 (0-0.5')

Project: SWMU 13

Collection Date: 10/23/2019 4:50:00 PM

Lab ID: 1910D68-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JC	С
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Bis(2-ethylhexyl)phthalate	ND	1.4	4.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Carbazole	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
4-Chloro-3-methylphenol	ND	1.5	4.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
4-Chloroaniline	ND	1.4	4.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2-Chloronaphthalene	ND	1.2	2.5	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Chrysene	ND	0.87	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Di-n-butyl phthalate	ND	1.5	3.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Di-n-octyl phthalate	ND	1.0	3.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Dibenz(a,h)anthracene	ND	0.89	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
1,3-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
1,4-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
3,3´-Dichlorobenzidine	ND	0.87	2.5	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2,4-Dichlorophenol	ND	1.1	3.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2,4-Dimethylphenol	ND	1.1	3.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
4,6-Dinitro-2-methylphenol	ND	0.91	3.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2,4-Dinitrophenol	ND	0.71	4.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2,4-Dinitrotoluene	ND	1.2	4.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2,6-Dinitrotoluene	ND	1.3	4.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Fluorene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Indeno(1,2,3-cd)pyrene	ND	0.98	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
Isophorone	ND	1.4	3.9	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455
2-Methylnaphthalene	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15	AM 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 4:50:00 PM

 Lab ID:
 1910D68-011
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed l	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	1.2	3.9	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
N-Nitrosodiphenylamine	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
4-Nitroaniline	ND	1.3	3.9	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Nitrobenzene	ND	1.4	3.9	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
2-Nitrophenol	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
4-Nitrophenol	ND	1.3	2.5	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Pentachlorophenol	ND	1.0	3.9	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Phenol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Pyrene	ND	0.92	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Pyridine	ND	1.2	3.9	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
1,2,4-Trichlorobenzene	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
2,4,6-Trichlorophenol	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 12:02:15 AM	1 48455
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	11/1/2019 12:02:15 AM	1 48455
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	11/1/2019 12:02:15 AM	1 48455
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	11/1/2019 12:02:15 AM	1 48455
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	11/1/2019 12:02:15 AM	1 48455
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	11/1/2019 12:02:15 AM	1 48455
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	11/1/2019 12:02:15 AM	1 48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0027	0.016		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
Toluene	ND	0.0031	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
Ethylbenzene	ND	0.0019	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
Methyl tert-butyl ether (MTBE)	ND	0.0078	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
1,2,4-Trimethylbenzene	ND	0.0030	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
1,3,5-Trimethylbenzene	ND	0.0032	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
1,2-Dichloroethane (EDC)	ND	0.0034	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
1,2-Dibromoethane (EDB)	ND	0.0030	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	
Naphthalene	ND	0.0066	0.066		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
1-Methylnaphthalene	ND	0.019	0.13		mg/Kg	1	10/28/2019 7:38:45 PM	
2-Methylnaphthalene	ND	0.014	0.13		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
Acetone	ND	0.027	0.49		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028
Bromobenzene	ND	0.0032	0.033		mg/Kg	1	10/28/2019 7:38:45 PM	I S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 53 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 4:50:00 PM

 Lab ID:
 1910D68-011
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Bromodichloromethane	ND	0.0030	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Bromoform	ND	0.0030	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Bromomethane	ND	0.0079	0.099		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
2-Butanone	ND	0.038	0.33		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Carbon disulfide	ND	0.011	0.33		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Carbon tetrachloride	ND	0.0031	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Chlorobenzene	ND	0.0042	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Chloroethane	ND	0.0049	0.066		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Chloroform	ND	0.0026	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Chloromethane	ND	0.0032	0.099		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
2-Chlorotoluene	ND	0.0029	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
4-Chlorotoluene	ND	0.0027	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
cis-1,2-DCE	ND	0.0045	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
cis-1,3-Dichloropropene	ND	0.0028	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,2-Dibromo-3-chloropropane	ND	0.0034	0.066		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Dibromochloromethane	ND	0.0023	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Dibromomethane	ND	0.0035	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,2-Dichlorobenzene	ND	0.0027	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,3-Dichlorobenzene	ND	0.0029	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,4-Dichlorobenzene	ND	0.0028	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Dichlorodifluoromethane	ND	0.0076	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,1-Dichloroethane	ND	0.0021	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,1-Dichloroethene	ND	0.013	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,2-Dichloropropane	ND	0.0024	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,3-Dichloropropane	ND	0.0036	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
2,2-Dichloropropane	ND	0.011	0.066		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,1-Dichloropropene	ND	0.0030	0.066		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Hexachlorobutadiene	ND	0.0034	0.066		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
2-Hexanone	ND	0.0055	0.33		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Isopropylbenzene	ND	0.0024	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
4-Isopropyltoluene	ND	0.0027	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
4-Methyl-2-pentanone	ND	0.0062	0.33		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Methylene chloride	ND	0.0058	0.099		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
n-Butylbenzene	ND	0.0031	0.099		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
n-Propylbenzene	ND	0.0026	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
sec-Butylbenzene	ND	0.0037	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
Styrene	ND	0.0026	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
tert-Butylbenzene	ND	0.0031	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028
1,1,1,2-Tetrachloroethane	ND	0.0022	0.033		mg/Kg	1	10/28/2019 7:38:45 I	PM S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 54 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-6 (0-0.5')

Project: SWMU 13

Collection Date: 10/23/2019 4:50:00 PM

Lab ID: 1910D68-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ l	•
1,1,2,2-Tetrachloroethane	ND	0.0033	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
Tetrachloroethene (PCE)	ND	0.0026	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
trans-1,2-DCE	ND	0.0030	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
trans-1,3-Dichloropropene	ND	0.0035	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
1,2,3-Trichlorobenzene	ND	0.0029	0.066		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
1,2,4-Trichlorobenzene	ND	0.0033	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
1,1,1-Trichloroethane	ND	0.0030	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
1,1,2-Trichloroethane	ND	0.0023	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
Trichloroethene (TCE)	ND	0.0038	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
Trichlorofluoromethane	ND	0.011	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
1,2,3-Trichloropropane	ND	0.0053	0.066		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
Vinyl chloride	ND	0.0022	0.033		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
Xylenes, Total	ND	0.0083	0.066		mg/Kg	1	10/28/2019 7:38:45 P	M S64028
Surr: Dibromofluoromethane	110		70-130		%Rec	1	10/28/2019 7:38:45 P	M S64028
Surr: 1,2-Dichloroethane-d4	99.1		70-130		%Rec	1	10/28/2019 7:38:45 P	M S64028
Surr: Toluene-d8	100		70-130		%Rec	1	10/28/2019 7:38:45 P	M S64028
Surr: 4-Bromofluorobenzene	92.8		70-130		%Rec	1	10/28/2019 7:38:45 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 55 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:00:00 PM

 Lab ID:
 1910D68-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	11	1.9	9.3		mg/Kg	1	10/31/2019 5:25:33 PM	48457
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	10/31/2019 5:25:33 PM	48457
Surr: DNOP	98.3	0	70-130		%Rec	1	10/31/2019 5:25:33 PM	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.73	2.4		mg/Kg	1	10/27/2019 10:29:09 P	A63989
Surr: BFB	103	0	77.4-118		%Rec	1	10/27/2019 10:29:09 P	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0083	0.0017	0.031	J	mg/Kg	1	11/1/2019 1:22:23 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.75	5.1		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Arsenic	ND	2.9	5.1		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Barium	410	0.047	0.20		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Beryllium	0.78	0.019	0.31		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Cadmium	ND	0.050	0.20		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Chromium	9.3	0.16	0.61		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Cobalt	3.8	0.22	0.61		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Iron	13000	74	250		mg/Kg	100	11/18/2019 7:28:40 PM	48433
Lead	3.1	0.50	0.51		mg/Kg	2	11/18/2019 7:27:05 PM	48433
Manganese	350	0.042	0.20		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Nickel	7.5	0.30	1.0		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Selenium	ND	2.6	5.1		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Silver	ND	0.065	0.51		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Vanadium	17	0.14	5.1		mg/Kg	2	11/7/2019 3:00:38 PM	48433
Zinc	16	0.81	5.1		mg/Kg	2	11/7/2019 3:00:38 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Aniline	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Anthracene	ND	0.10	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Azobenzene	ND	0.14	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benz(a)anthracene	ND	0.094	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benzo(b)fluoranthene	ND	0.086	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/1/2019 12:30:55 AM	48455
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 AM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 56 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:00:00 PM

 Lab ID:
 1910D68-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Butyl benzyl phthalate	ND	0.099	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Carbazole	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Chrysene	ND	0.086	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Di-n-butyl phthalate	0.15	0.15	0.39	J	mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Di-n-octyl phthalate	ND	0.099	0.39		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
3,3´-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2,4-Dinitrotoluene	ND	0.11	0.49		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Fluoranthene	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Fluorene	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Hexachlorobutadiene	ND	0.14	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.097	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
Isophorone	ND	0.14	0.39		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
1-Methylnaphthalene	ND	0.15	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/1/2019 12:30:55 Al	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 57 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon **Client Sample ID:** SWMU 13-6 (1.5-2') SWMU 13 Project: Collection Date: 10/23/2019 5:00:00 PM 1910D68-012 Matrix: MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM Lab ID:

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	11/1/2019 12:30:55 AM	48455
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Naphthalene	ND	0.15	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
2-Nitroaniline	ND	0.14	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Nitrobenzene	ND	0.13	0.39	mg/Kg	1	11/1/2019 12:30:55 AM	48455
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Phenanthrene	ND	0.11	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Phenol	ND	0.12	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Pyrene	ND	0.091	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Pyridine	ND	0.12	0.39	mg/Kg	1	11/1/2019 12:30:55 AM	48455
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
2,4,5-Trichlorophenol	ND	0.13	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	11/1/2019 12:30:55 AM	48455
Surr: 2-Fluorophenol	60.9	2	26.7-85.9	%Rec	1	11/1/2019 12:30:55 AM	48455
Surr: Phenol-d5	64.0		18.5-101	%Rec	1	11/1/2019 12:30:55 AM	48455
Surr: 2,4,6-Tribromophenol	60.0	;	35.8-85.6	%Rec	1	11/1/2019 12:30:55 AM	48455
Surr: Nitrobenzene-d5	65.6	4	40.8-95.2	%Rec	1	11/1/2019 12:30:55 AM	48455
Surr: 2-Fluorobiphenyl	62.5	;	34.7-85.2	%Rec	1	11/1/2019 12:30:55 AM	48455
Surr: 4-Terphenyl-d14	38.5	;	37.4-91.3	%Rec	1	11/1/2019 12:30:55 AM	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0020	0.012	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Toluene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Ethylbenzene	ND	0.0014	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0057	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2,4-Trimethylbenzene	ND	0.0022	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0025	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0022	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Naphthalene	ND	0.0048	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1-Methylnaphthalene	ND	0.014	0.097	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
2-Methylnaphthalene	ND	0.011	0.097	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Acetone	ND	0.020	0.36	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Bromobenzene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit RL

Page 58 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:00:00 PM

 Lab ID:
 1910D68-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0022	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Bromoform	ND	0.0022	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Bromomethane	ND	0.0058	0.073	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
2-Butanone	ND	0.028	0.24	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Carbon disulfide	ND	0.0080	0.24	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Carbon tetrachloride	ND	0.0023	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Chlorobenzene	ND	0.0031	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Chloroethane	ND	0.0036	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Chloroform	ND	0.0019	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Chloromethane	ND	0.0023	0.073	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
2-Chlorotoluene	ND	0.0021	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
4-Chlorotoluene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
cis-1,2-DCE	ND	0.0033	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
cis-1,3-Dichloropropene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0025	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Dibromochloromethane	ND	0.0017	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Dibromomethane	ND	0.0026	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2-Dichlorobenzene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,3-Dichlorobenzene	ND	0.0021	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,4-Dichlorobenzene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Dichlorodifluoromethane	ND	0.0056	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,1-Dichloroethane	ND	0.0015	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,1-Dichloroethene	ND	0.0097	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2-Dichloropropane	ND	0.0018	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,3-Dichloropropane	ND	0.0026	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
2,2-Dichloropropane	ND	0.0079	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,1-Dichloropropene	ND	0.0022	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Hexachlorobutadiene	ND	0.0025	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
2-Hexanone	ND	0.0040	0.24	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Isopropylbenzene	ND	0.0017	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
4-Isopropyltoluene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
4-Methyl-2-pentanone	ND	0.0046	0.24	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Methylene chloride	ND	0.0043	0.073	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
n-Butylbenzene	ND	0.0023	0.073	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
n-Propylbenzene	ND	0.0019	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
sec-Butylbenzene	ND	0.0027	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Styrene	ND	0.0019	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
tert-Butylbenzene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0016	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 59 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:00:00 PM

 Lab ID:
 1910D68-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0025	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Tetrachloroethene (PCE)	ND	0.0019	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
trans-1,2-DCE	ND	0.0022	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
trans-1,3-Dichloropropene	ND	0.0026	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2,3-Trichlorobenzene	ND	0.0021	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2,4-Trichlorobenzene	ND	0.0024	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,1,1-Trichloroethane	ND	0.0022	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,1,2-Trichloroethane	ND	0.0017	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Trichloroethene (TCE)	ND	0.0028	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Trichlorofluoromethane	ND	0.0082	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
1,2,3-Trichloropropane	ND	0.0039	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Vinyl chloride	ND	0.0016	0.024	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Xylenes, Total	ND	0.0061	0.048	mg/Kg	1	10/28/2019 8:07:36 PM	S64028
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/28/2019 8:07:36 PM	S64028
Surr: 1,2-Dichloroethane-d4	95.1		70-130	%Rec	1	10/28/2019 8:07:36 PM	S64028
Surr: Toluene-d8	99.1		70-130	%Rec	1	10/28/2019 8:07:36 PM	S64028
Surr: 4-Bromofluorobenzene	93.2		70-130	%Rec	1	10/28/2019 8:07:36 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 60 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:10:00 PM

 Lab ID:
 1910D68-013
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.8	9.0		mg/Kg	1	10/30/2019 12:14:12 P	48457
Motor Oil Range Organics (MRO)	ND	45	45		mg/Kg	1	10/30/2019 12:14:12 P	48457
Surr: DNOP	85.2	0	70-130		%Rec	1	10/30/2019 12:14:12 P	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.78	2.6		mg/Kg	1	10/27/2019 10:52:16 P	A63989
Surr: BFB	104	0	77.4-118		%Rec	1	10/27/2019 10:52:16 P	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0050	0.0018	0.033	J	mg/Kg	1	11/1/2019 1:32:53 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.71	4.8		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Arsenic	ND	2.8	4.8		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Barium	310	0.045	0.19		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Beryllium	0.81	0.018	0.29		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Cadmium	ND	0.047	0.19		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Chromium	7.6	0.15	0.58		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Cobalt	4.0	0.20	0.58		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Iron	12000	70	240		mg/Kg	100	11/18/2019 7:31:50 PM	48433
Lead	3.7	0.47	0.48		mg/Kg	2	11/18/2019 7:30:14 PM	48433
Manganese	410	0.040	0.19		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Nickel	7.9	0.29	0.97		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Selenium	ND	2.4	4.8		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Silver	ND	0.062	0.48		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Vanadium	17	0.13	4.8		mg/Kg	2	11/7/2019 3:02:12 PM	48433
Zinc	13	0.77	4.8		mg/Kg	2	11/7/2019 3:02:12 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Aniline	ND	0.13	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Anthracene	ND	0.11	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benz(a)anthracene	ND	0.098	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benzo(a)pyrene	ND	0.090	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benzo(b)fluoranthene	ND	0.090	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benzo(g,h,i)perylene	ND	0.087	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benzo(k)fluoranthene	ND	0.092	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benzoic acid	ND	0.10	0.51		mg/Kg	1	11/1/2019 8:13:24 AM	48455
Benzyl alcohol	ND	0.13	0.20		mg/Kg	1	11/1/2019 8:13:24 AM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 61 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-6 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:10:00 PM

 Lab ID:
 1910D68-013
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Bis(2-chloroisopropyl)ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Bis(2-ethylhexyl)phthalate	ND	0.15	0.51	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Carbazole	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
4-Chloro-3-methylphenol	ND	0.16	0.51	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
4-Chloroaniline	ND	0.14	0.51	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
2-Chloronaphthalene	ND	0.13	0.25	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
2-Chlorophenol	ND	0.13	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Chrysene	ND	0.090	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Di-n-butyl phthalate	ND	0.15	0.41	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Di-n-octyl phthalate	ND	0.10	0.41	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Dibenz(a,h)anthracene	ND	0.092	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
1,3-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
1,4-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
3,3´-Dichlorobenzidine	ND	0.090	0.25	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Dimethyl phthalate	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
2,4-Dichlorophenol	ND	0.12	0.41	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
2,4-Dimethylphenol	ND	0.11	0.30	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
4,6-Dinitro-2-methylphenol	ND	0.094	0.41	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
2,4-Dinitrophenol	ND	0.074	0.51	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
2,4-Dinitrotoluene	ND	0.12	0.51	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
2,6-Dinitrotoluene	ND	0.13	0.51	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Fluoranthene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
Fluorene	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Hexachlorobenzene	ND	0.13	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
Hexachlorocyclopentadiene	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
Indeno(1,2,3-cd)pyrene	ND	0.10	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	Л 48455
Isophorone	ND	0.15	0.41	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	A 48455
2-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:13:24 AM	И 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 62 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-6 (2-3')Project:SWMU 13Collection Date: 10/23/2019 5:10:00 PM

Lab ID: 1910D68-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Ur	nits	DF	Date Analyzed 1	Batch ID	
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JDC				
2-Methylphenol	ND	0.12	0.41	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
3+4-Methylphenol	ND	0.12	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
N-Nitrosodiphenylamine	ND	0.11	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Naphthalene	ND	0.15	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
2-Nitroaniline	ND	0.14	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
3-Nitroaniline	ND	0.14	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
4-Nitroaniline	ND	0.13	0.41	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Nitrobenzene	ND	0.14	0.41	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
2-Nitrophenol	ND	0.14	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
4-Nitrophenol	ND	0.14	0.25	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Pentachlorophenol	ND	0.10	0.41	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Phenanthrene	ND	0.11	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Phenol	ND	0.13	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Pyrene	ND	0.095	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Pyridine	ND	0.12	0.41	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
1,2,4-Trichlorobenzene	ND	0.16	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
2,4,5-Trichlorophenol	ND	0.13	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
2,4,6-Trichlorophenol	ND	0.11	0.20	mç	g/Kg	1	11/1/2019 8:13:24 AM	48455	
Surr: 2-Fluorophenol	61.8		26.7-85.9	%	Rec	1	11/1/2019 8:13:24 AM	48455	
Surr: Phenol-d5	64.3		18.5-101	%	Rec	1	11/1/2019 8:13:24 AM	48455	
Surr: 2,4,6-Tribromophenol	64.4		35.8-85.6	%	Rec	1	11/1/2019 8:13:24 AM	48455	
Surr: Nitrobenzene-d5	65.2		40.8-95.2	%	Rec	1	11/1/2019 8:13:24 AM	48455	
Surr: 2-Fluorobiphenyl	56.4		34.7-85.2	%l	Rec	1	11/1/2019 8:13:24 AM	48455	
Surr: 4-Terphenyl-d14	41.4		37.4-91.3	%l	Rec	1	11/1/2019 8:13:24 AM	48455	
EPA METHOD 8260B: VOLATILES							Analyst: DJF		
Benzene	ND	0.0021	0.013	mç	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
Toluene	ND	0.0025	0.026	mç	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
Ethylbenzene	ND	0.0015	0.026	mg	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
Methyl tert-butyl ether (MTBE)	ND	0.0061	0.026	mç	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
1,2,4-Trimethylbenzene	ND	0.0024	0.026	mç	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
1,3,5-Trimethylbenzene	ND	0.0025	0.026	mç	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
1,2-Dichloroethane (EDC)	ND	0.0026	0.026	mg	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
1,2-Dibromoethane (EDB)	ND	0.0024	0.026	mg	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
Naphthalene	ND	0.0052	0.052	mg	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
1-Methylnaphthalene	ND	0.015	0.10	mç	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
2-Methylnaphthalene	ND	0.011	0.10		g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
Acetone	ND	0.021	0.39	mg	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	
Bromobenzene	ND	0.0025	0.026	m	g/Kg	1	10/28/2019 8:36:50 PM	I S64028	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 63 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-6 (2-3')

Project: SWMU 13

Collection Date: 10/23/2019 5:10:00 PM

Lab ID: 1910D68-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0024	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Bromoform	ND	0.0023	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Bromomethane	ND	0.0062	0.078		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
2-Butanone	ND	0.030	0.26		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Carbon disulfide	ND	0.0086	0.26		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Carbon tetrachloride	ND	0.0025	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Chlorobenzene	ND	0.0033	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Chloroethane	ND	0.0038	0.052		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Chloroform	ND	0.0021	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Chloromethane	ND	0.0025	0.078		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
2-Chlorotoluene	ND	0.0023	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
4-Chlorotoluene	ND	0.0021	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
cis-1,2-DCE	ND	0.0035	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
cis-1,3-Dichloropropene	ND	0.0022	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,2-Dibromo-3-chloropropane	ND	0.0027	0.052		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Dibromochloromethane	ND	0.0018	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Dibromomethane	ND	0.0028	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,2-Dichlorobenzene	ND	0.0021	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,3-Dichlorobenzene	ND	0.0023	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,4-Dichlorobenzene	ND	0.0022	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Dichlorodifluoromethane	ND	0.0060	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,1-Dichloroethane	ND	0.0017	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,1-Dichloroethene	ND	0.010	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,2-Dichloropropane	ND	0.0019	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,3-Dichloropropane	ND	0.0028	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
2,2-Dichloropropane	ND	0.0084	0.052		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,1-Dichloropropene	ND	0.0024	0.052		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Hexachlorobutadiene	ND	0.0026	0.052		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
2-Hexanone	ND	0.0043	0.26		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Isopropylbenzene	ND	0.0019	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
4-Isopropyltoluene	ND	0.0021	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
4-Methyl-2-pentanone	ND	0.0049	0.26		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Methylene chloride	0.0050	0.0046	0.078	J	mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
n-Butylbenzene	ND	0.0024	0.078		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
n-Propylbenzene	ND	0.0021	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
sec-Butylbenzene	ND	0.0029	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
Styrene	ND	0.0020	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
tert-Butylbenzene	ND	0.0024	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028
1,1,1,2-Tetrachloroethane	ND	0.0017	0.026		mg/Kg	1	10/28/2019 8:36:50 PM	1 S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 64 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-6 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:10:00 PM

 Lab ID:
 1910D68-013
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJI	•
1,1,2,2-Tetrachloroethane	ND	0.0026	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
Tetrachloroethene (PCE)	ND	0.0021	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
trans-1,2-DCE	ND	0.0024	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
trans-1,3-Dichloropropene	ND	0.0027	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
1,2,3-Trichlorobenzene	ND	0.0023	0.052	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
1,2,4-Trichlorobenzene	ND	0.0026	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
1,1,1-Trichloroethane	ND	0.0023	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
1,1,2-Trichloroethane	ND	0.0018	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
Trichloroethene (TCE)	ND	0.0030	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
Trichlorofluoromethane	ND	0.0088	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
1,2,3-Trichloropropane	ND	0.0042	0.052	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
Vinyl chloride	ND	0.0017	0.026	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
Xylenes, Total	ND	0.0065	0.052	mg/Kg	1	10/28/2019 8:36:50 P	M S64028
Surr: Dibromofluoromethane	108		70-130	%Rec	1	10/28/2019 8:36:50 P	M S64028
Surr: 1,2-Dichloroethane-d4	100		70-130	%Rec	1	10/28/2019 8:36:50 P	M S64028
Surr: Toluene-d8	104		70-130	%Rec	1	10/28/2019 8:36:50 P	M S64028
Surr: 4-Bromofluorobenzene	96.4		70-130	%Rec	1	10/28/2019 8:36:50 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 65 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-6 (6-8') **Project:** SWMU 13 Collection Date: 10/23/2019 5:15:00 PM Lab ID: 1910D68-014 Matrix: MEOH (SOIL) Received Date: 10/25/2019 9:15:00 AM

Result **MDL** DF **Analyses** RL**Qual Units Date Analyzed Batch ID EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) 1.9 9.7 mg/Kg 1 10/30/2019 12:36:13 P 48457 ND 48 Motor Oil Range Organics (MRO) 48 mg/Kg 1 10/30/2019 12:36:13 P 48457 Surr: DNOP 89.6 0 70-130 %Rec 1 10/30/2019 12:36:13 P 48457 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 0.73 10/28/2019 12:10:34 P A63989 2.4 mg/Kg 1 Surr: BFB 130 0 77.4-118 S %Rec 1 10/28/2019 12:10:34 P A63989 **EPA METHOD 7471: MERCURY** Analyst: pmf 11/1/2019 2:37:53 PM Mercurv 0.017 0.0017 0.031 J mg/Kg 48513 1 **EPA METHOD 6010B: SOIL METALS** Analyst: rde Antimony ND 0.76 5.1 mg/Kg 2 11/7/2019 3:03:44 PM 48433 Arsenic ND 2.9 5.1 mg/Kg 2 11/7/2019 3:03:44 PM 48433 2 Barium 290 0.048 0.21 mg/Kg 11/7/2019 3:03:44 PM 48433 0.019 2 Beryllium 0.31 mg/Kg 11/7/2019 3:03:44 PM 48433 1.3 Cadmium ND 0.050 0.21 mg/Kg 2 11/7/2019 3:03:44 PM 48433 2 Chromium 12 0.16 0.62 mg/Kg 11/7/2019 3:03:44 PM 48433 Cobalt mg/Kg 2 5.1 0.22 0.62 11/7/2019 3:03:44 PM 18000 Iron 75 260 mg/Kg 100 11/18/2019 7:35:00 PM 48433 Lead 3.8 0.50 0.51 mg/Kg 2 11/18/2019 7:33:26 PM 48433 320 0.043 0.21 2 Manganese mg/Kg 11/7/2019 3:03:44 PM 48433 Nickel 12 0.31 1.0 mg/Kg 2 11/7/2019 3:03:44 PM 48433 2 Selenium ND 2.6 5.1 mg/Kg 11/7/2019 3:03:44 PM 48433 Silver ND 0.066 0.51 mg/Kg 2 11/7/2019 3:03:44 PM 48433 2 Vanadium 20 0.14 5.1 mg/Kg 11/7/2019 3:03:44 PM 48433 Zinc 0.81 2 17 5.1 mg/Kg 11/7/2019 3:03:44 PM 48433 **EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC Acenaphthene ND 0.12 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 Acenaphthylene ND 0.11 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 Aniline ND 0.13 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 ND 0.11 Anthracene 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 ND 0.14 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 Azobenzene Benz(a)anthracene 0.096 ND 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 Benzo(a)pyrene ND 0.088 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 ND 0.088 Benzo(b)fluoranthene 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 Benzo(g,h,i)perylene ND 0.085 0.20 mg/Kg 1 11/1/2019 8:42:16 AM 48455 Benzo(k)fluoranthene ND 0.090 1 48455 0.20 mg/Kg 11/1/2019 8:42:16 AM Benzoic acid ND 0.10 0.50 mg/Kg 1 11/1/2019 8:42:16 AM 48455

0.12 Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

ND

Oualifiers:

Benzyl alcohol

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

mg/Kg

1

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

0.20

Page 66 of 123

48455

11/1/2019 8:42:16 AM

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-6 (6-8')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:15:00 PM

 Lab ID:
 1910D68-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.50	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Carbazole	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
4-Chloro-3-methylphenol	ND	0.15	0.50	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
4-Chloroaniline	ND	0.14	0.50	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
2-Chloronaphthalene	ND	0.12	0.25	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
2-Chlorophenol	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Chrysene	ND	0.088	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Di-n-butyl phthalate	ND	0.15	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
Di-n-octyl phthalate	ND	0.10	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
Dibenz(a,h)anthracene	ND	0.090	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
1,3-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
1,4-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
3,3'-Dichlorobenzidine	ND	0.088	0.25	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
2,4-Dichlorophenol	ND	0.12	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
2,4-Dimethylphenol	ND	0.11	0.30	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
4,6-Dinitro-2-methylphenol	ND	0.092	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455
2,4-Dinitrophenol	ND	0.072	0.50	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
2,4-Dinitrotoluene	ND	0.12	0.50	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
2,6-Dinitrotoluene	ND	0.13	0.50	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Fluoranthene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Fluorene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Hexachlorocyclopentadiene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Indeno(1,2,3-cd)pyrene	ND	0.099	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
Isophorone	ND	0.15	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	A 48455
2-Methylnaphthalene	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	Л 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 67 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (6-8')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:15:00 PM

 Lab ID:
 1910D68-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	48455
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Naphthalene	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	48455
2-Nitrophenol	ND	0.14	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
4-Nitrophenol	ND	0.13	0.25	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Phenanthrene	ND	0.11	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Phenol	ND	0.12	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Pyrene	ND	0.093	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Pyridine	ND	0.12	0.40	mg/Kg	1	11/1/2019 8:42:16 AM	48455
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	11/1/2019 8:42:16 AM	48455
Surr: 2-Fluorophenol	56.3	2	26.7-85.9	%Rec	1	11/1/2019 8:42:16 AM	48455
Surr: Phenol-d5	63.4		18.5-101	%Rec	1	11/1/2019 8:42:16 AM	48455
Surr: 2,4,6-Tribromophenol	74.6	3	35.8-85.6	%Rec	1	11/1/2019 8:42:16 AM	48455
Surr: Nitrobenzene-d5	60.9	4	10.8-95.2	%Rec	1	11/1/2019 8:42:16 AM	48455
Surr: 2-Fluorobiphenyl	62.7	3	34.7-85.2	%Rec	1	11/1/2019 8:42:16 AM	48455
Surr: 4-Terphenyl-d14	44.4	3	37.4-91.3	%Rec	1	11/1/2019 8:42:16 AM	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0020	0.012	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Toluene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Ethylbenzene	ND	0.0014	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0057	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	
1,2,4-Trimethylbenzene	ND	0.0022	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0024	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0022	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Naphthalene	ND	0.0048	0.048	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1-Methylnaphthalene	ND	0.014	0.096	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
2-Methylnaphthalene	ND	0.010	0.096	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Acetone	ND	0.020	0.36	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Bromobenzene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 68 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (6-8')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:15:00 PM

 Lab ID:
 1910D68-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0022	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Bromoform	ND	0.0022	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Bromomethane	ND	0.0058	0.072	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
2-Butanone	ND	0.028	0.24	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Carbon disulfide	ND	0.0079	0.24	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Carbon tetrachloride	ND	0.0023	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Chlorobenzene	ND	0.0031	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Chloroethane	ND	0.0035	0.048	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Chloroform	ND	0.0019	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Chloromethane	ND	0.0023	0.072	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
2-Chlorotoluene	ND	0.0021	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
4-Chlorotoluene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
cis-1,2-DCE	ND	0.0033	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
cis-1,3-Dichloropropene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,2-Dibromo-3-chloropropane	ND	0.0025	0.048	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Dibromochloromethane	ND	0.0017	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Dibromomethane	ND	0.0026	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,2-Dichlorobenzene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,3-Dichlorobenzene	ND	0.0021	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,4-Dichlorobenzene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Dichlorodifluoromethane	ND	0.0056	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,1-Dichloroethane	ND	0.0015	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,1-Dichloroethene	ND	0.0096	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,2-Dichloropropane	ND	0.0017	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,3-Dichloropropane	ND	0.0026	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
2,2-Dichloropropane	ND	0.0078	0.048	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,1-Dichloropropene	ND	0.0022	0.048	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Hexachlorobutadiene	ND	0.0024	0.048	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
2-Hexanone	ND	0.0040	0.24	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Isopropylbenzene	ND	0.0017	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
4-Isopropyltoluene	ND	0.0020	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
4-Methyl-2-pentanone	ND	0.0045	0.24	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Methylene chloride	ND	0.0042	0.072	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
n-Butylbenzene	ND	0.0022	0.072	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
n-Propylbenzene	ND	0.0019	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
sec-Butylbenzene	ND	0.0027	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
Styrene	ND	0.0019	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
tert-Butylbenzene	ND	0.0023	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028
1,1,1,2-Tetrachloroethane	ND	0.0016	0.024	mg/Kg	1	10/28/2019 9:05:49 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 69 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-6 (6-8')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:15:00 PM

 Lab ID:
 1910D68-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	:
1,1,2,2-Tetrachloroethane	ND	0.0024	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
Tetrachloroethene (PCE)	ND	0.0019	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
trans-1,2-DCE	ND	0.0022	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
trans-1,3-Dichloropropene	ND	0.0025	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
1,2,3-Trichlorobenzene	ND	0.0021	0.048	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
1,2,4-Trichlorobenzene	ND	0.0024	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
1,1,1-Trichloroethane	ND	0.0022	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
1,1,2-Trichloroethane	ND	0.0017	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
Trichloroethene (TCE)	ND	0.0028	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
Trichlorofluoromethane	ND	0.0081	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
1,2,3-Trichloropropane	ND	0.0039	0.048	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
Vinyl chloride	ND	0.0016	0.024	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
Xylenes, Total	ND	0.0060	0.048	mg/Kg	1	10/28/2019 9:05:49 P	M S64028
Surr: Dibromofluoromethane	111		70-130	%Rec	1	10/28/2019 9:05:49 P	M S64028
Surr: 1,2-Dichloroethane-d4	99.4		70-130	%Rec	1	10/28/2019 9:05:49 P	M S64028
Surr: Toluene-d8	103		70-130	%Rec	1	10/28/2019 9:05:49 P	M S64028
Surr: 4-Bromofluorobenzene	95.2		70-130	%Rec	1	10/28/2019 9:05:49 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 70 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (10-11')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:20:00 PM

 Lab ID:
 1910D68-015
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	2.0	9.8		mg/Kg	1	10/30/2019 12:58:00 P	48457
Motor Oil Range Organics (MRO)	ND	49	49		mg/Kg	1	10/30/2019 12:58:00 P	48457
Surr: DNOP	85.3	0	70-130		%Rec	1	10/30/2019 12:58:00 P	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.76	2.5		mg/Kg	1	10/28/2019 12:24:20 A	A63989
Surr: BFB	121	0	77.4-118	S	%Rec	1	10/28/2019 12:24:20 A	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0044	0.0018	0.033	J	mg/Kg	1	11/1/2019 2:39:54 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.75	5.1		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Arsenic	ND	2.9	5.1		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Barium	280	0.047	0.20		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Beryllium	1.3	0.019	0.30		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Chromium	12	0.16	0.61		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Cobalt	5.8	0.21	0.61		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Iron	19000	74	250		mg/Kg	100	11/18/2019 7:44:22 PM	48433
Lead	2.9	0.49	0.51		mg/Kg	2	11/18/2019 7:40:42 PM	48433
Manganese	330	0.042	0.20		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Nickel	13	0.30	1.0		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Selenium	ND	2.6	5.1		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Silver	ND	0.065	0.51		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Vanadium	20	0.14	5.1		mg/Kg	2	11/7/2019 3:05:19 PM	48433
Zinc	18	0.80	5.1		mg/Kg	2	11/7/2019 3:05:19 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Aniline	ND	0.13	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Anthracene	ND	0.11	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benz(a)anthracene	ND	0.095	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benzo(a)pyrene	ND	0.088	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benzo(g,h,i)perylene	ND	0.085	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benzo(k)fluoranthene	ND	0.090	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/1/2019 9:11:14 AM	48455
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	11/1/2019 9:11:14 AM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 71 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (10-11')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:20:00 PM

 Lab ID:
 1910D68-015
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.15	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Carbazole	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
4-Chloro-3-methylphenol	ND	0.15	0.49	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
4-Chloroaniline	ND	0.14	0.49	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2-Chloronaphthalene	ND	0.12	0.25	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2-Chlorophenol	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Chrysene	ND	0.087	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Di-n-butyl phthalate	ND	0.15	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Di-n-octyl phthalate	ND	0.10	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Dibenz(a,h)anthracene	ND	0.090	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
1,3-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
1,4-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
3,3´-Dichlorobenzidine	ND	0.088	0.25	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2,4-Dichlorophenol	ND	0.11	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2,4-Dimethylphenol	ND	0.11	0.30	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
4,6-Dinitro-2-methylphenol	ND	0.091	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2,4-Dinitrophenol	ND	0.072	0.49	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2,4-Dinitrotoluene	ND	0.12	0.49	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2,6-Dinitrotoluene	ND	0.13	0.49	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Fluoranthene	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Fluorene	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Hexachlorocyclopentadiene	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Indeno(1,2,3-cd)pyrene	ND	0.098	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
Isophorone	ND	0.15	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455
2-Methylnaphthalene	ND	0.14	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	1 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (10-11')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:20:00 PM

 Lab ID:
 1910D68-015
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	48455
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Naphthalene	ND	0.15	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	48455
2-Nitrophenol	ND	0.13	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
4-Nitrophenol	ND	0.13	0.25	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Phenanthrene	ND	0.11	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Phenol	ND	0.12	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Pyrene	ND	0.093	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Pyridine	ND	0.12	0.40	mg/Kg	1	11/1/2019 9:11:14 AM	48455
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	11/1/2019 9:11:14 AM	48455
Surr: 2-Fluorophenol	58.2	:	26.7-85.9	%Rec	1	11/1/2019 9:11:14 AM	48455
Surr: Phenol-d5	61.0		18.5-101	%Rec	1	11/1/2019 9:11:14 AM	48455
Surr: 2,4,6-Tribromophenol	62.3	;	35.8-85.6	%Rec	1	11/1/2019 9:11:14 AM	48455
Surr: Nitrobenzene-d5	62.0		40.8-95.2	%Rec	1	11/1/2019 9:11:14 AM	48455
Surr: 2-Fluorobiphenyl	55.4	;	34.7-85.2	%Rec	1	11/1/2019 9:11:14 AM	48455
Surr: 4-Terphenyl-d14	39.2	;	37.4-91.3	%Rec	1	11/1/2019 9:11:14 AM	48455
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0021	0.013	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
Toluene	ND	0.0024	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
Ethylbenzene	ND	0.0015	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
Methyl tert-butyl ether (MTBE)	ND	0.0060	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
1,2,4-Trimethylbenzene	ND	0.0023	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
1,3,5-Trimethylbenzene	ND	0.0024	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
1,2-Dichloroethane (EDC)	ND	0.0026	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
1,2-Dibromoethane (EDB)	ND	0.0023	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
Naphthalene	ND	0.0051	0.051	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
1-Methylnaphthalene	ND	0.015	0.10	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
2-Methylnaphthalene	ND	0.011	0.10	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
Acetone	ND	0.021	0.38	mg/Kg	1	10/28/2019 9:34:59 PM	S64028
Bromobenzene	ND	0.0024	0.025	mg/Kg	1	10/28/2019 9:34:59 PM	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 73 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-6 (10-11')

 Project:
 SWMU 13
 Collection Date: 10/23/2019 5:20:00 PM

 Lab ID:
 1910D68-015
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJI	=
Bromodichloromethane	ND	0.0023	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Bromoform	ND	0.0023	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Bromomethane	ND	0.0061	0.076		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
2-Butanone	ND	0.029	0.25		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Carbon disulfide	ND	0.0083	0.25		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Carbon tetrachloride	ND	0.0024	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Chlorobenzene	ND	0.0032	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Chloroethane	ND	0.0037	0.051		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Chloroform	ND	0.0020	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Chloromethane	ND	0.0024	0.076		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
2-Chlorotoluene	ND	0.0022	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
4-Chlorotoluene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
cis-1,2-DCE	ND	0.0035	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
cis-1,3-Dichloropropene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,2-Dibromo-3-chloropropane	ND	0.0026	0.051		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Dibromochloromethane	ND	0.0018	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Dibromomethane	ND	0.0027	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,2-Dichlorobenzene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,3-Dichlorobenzene	ND	0.0022	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,4-Dichlorobenzene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Dichlorodifluoromethane	ND	0.0059	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,1-Dichloroethane	ND	0.0016	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,1-Dichloroethene	ND	0.010	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,2-Dichloropropane	ND	0.0018	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,3-Dichloropropane	ND	0.0027	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
2,2-Dichloropropane	ND	0.0082	0.051		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,1-Dichloropropene	ND	0.0023	0.051		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Hexachlorobutadiene	ND	0.0026	0.051		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
2-Hexanone	ND	0.0042	0.25		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Isopropylbenzene	ND	0.0018	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
4-Isopropyltoluene	ND	0.0021	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
4-Methyl-2-pentanone	ND	0.0048	0.25		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Methylene chloride	ND	0.0045	0.076		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
n-Butylbenzene	ND	0.0024	0.076		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
n-Propylbenzene	ND	0.0020	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
sec-Butylbenzene	ND	0.0028	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
Styrene	ND	0.0020	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
tert-Butylbenzene	ND	0.0024	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028
1,1,1,2-Tetrachloroethane	ND	0.0017	0.025		mg/Kg	1	10/28/2019 9:34:59 P	M S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 74 of 123

Lab Order 1910D68

Received Date: 10/25/2019 9:15:00 AM

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-6 (10-11')Project:SWMU 13Collection Date: 10/23/2019 5:20:00 PM

Matrix: MEOH (SOIL)

Result **MDL** DF **Date Analyzed Analyses** RL**Qual Units Batch ID EPA METHOD 8260B: VOLATILES** Analyst: DJF ND 0.0026 10/28/2019 9:34:59 PM S64028 1.1.2.2-Tetrachloroethane 0.025 mg/Kg 1 Tetrachloroethene (PCE) ND 0.0020 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 trans-1,2-DCE ND 0.0023 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 trans-1,3-Dichloropropene ND 0.0027 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 mg/Kg 10/28/2019 9:34:59 PM S64028 1,2,3-Trichlorobenzene ND 0.0022 0.051 1 0.0026 1.2.4-Trichlorobenzene ND 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 ND 0.0023 mg/Kg 1 1,1,1-Trichloroethane 0.025 10/28/2019 9:34:59 PM 1.1.2-Trichloroethane ND 0.0018 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 1 Trichloroethene (TCE) ND 0.0029 0.025 mg/Kg 10/28/2019 9:34:59 PM S64028 Trichlorofluoromethane ND 0.0086 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 1,2,3-Trichloropropane ND 0.0041 0.051 mg/Kg 1 10/28/2019 9:34:59 PM S64028 Vinyl chloride ND 0.0016 0.025 mg/Kg 1 10/28/2019 9:34:59 PM S64028 Xylenes, Total ND 0.0064 0.051 mg/Kg 1 10/28/2019 9:34:59 PM S64028 Surr: Dibromofluoromethane 108 70-130 1 10/28/2019 9:34:59 PM S64028 %Rec Surr: 1,2-Dichloroethane-d4 95.8 70-130 %Rec 1 10/28/2019 9:34:59 PM S64028 100 1 10/28/2019 9:34:59 PM S64028 Surr: Toluene-d8 70-130 %Rec Surr: 4-Bromofluorobenzene 93.5 70-130 %Rec 10/28/2019 9:34:59 PM S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1910D68-015

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 75 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: DUP02Project:SWMU 13Collection Date: 10/23/2019

Lab ID: 1910D68-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	120	1.9	9.7		mg/Kg	1	10/31/2019 5:49:50 PM	48457
Motor Oil Range Organics (MRO)	130	48	48		mg/Kg	1	10/31/2019 5:49:50 PM	48457
Surr: DNOP	90.1	0	70-130		%Rec	1	10/31/2019 5:49:50 PM	48457
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.3	4.3		mg/Kg	1	10/28/2019 12:47:22 A	A63989
Surr: BFB	90.9	0	77.4-118		%Rec	1	10/28/2019 12:47:22 A	A63989
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.16	0.0018	0.032		mg/Kg	1	11/1/2019 2:41:55 PM	48513
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.75	5.1		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Arsenic	ND	2.9	5.1		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Barium	280	0.047	0.20		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Beryllium	1.5	0.019	0.31		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Chromium	57	0.16	0.61		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Cobalt	7.1	0.22	0.61		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Iron	23000	74	250		mg/Kg	100	11/18/2019 7:47:41 PM	48433
Lead	1.3	0.49	0.51		mg/Kg	2	11/18/2019 7:45:59 PM	48433
Manganese	340	0.042	0.20		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Nickel	15	0.30	1.0		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Selenium	3.3	2.6	5.1	J	mg/Kg	2	11/7/2019 3:06:59 PM	48433
Silver	ND	0.065	0.51		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Vanadium	35	0.14	5.1		mg/Kg	2	11/7/2019 3:06:59 PM	48433
Zinc	59	0.81	5.1		mg/Kg	2	11/7/2019 3:06:59 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Aniline	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Anthracene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benz(a)anthracene	ND	0.97	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benzo(a)pyrene	ND	0.89	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benzo(b)fluoranthene	ND	0.89	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benzo(g,h,i)perylene	ND	0.86	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benzo(k)fluoranthene	ND	0.91	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benzoic acid	ND	1.0	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 76 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP02

Project: SWMU 13 Collection Date: 10/23/2019

Lab ID: 1910D68-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD 0	
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Bis(2-ethylhexyl)phthalate	ND	1.4	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Carbazole	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
4-Chloro-3-methylphenol	ND	1.5	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
4-Chloroaniline	ND	1.4	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
2-Chloronaphthalene	ND	1.3	2.5	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Chrysene	ND	0.89	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Di-n-butyl phthalate	ND	1.5	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Di-n-octyl phthalate	ND	1.0	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Dibenz(a,h)anthracene	ND	0.91	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
1,3-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
1,4-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
3,3´-Dichlorobenzidine	ND	0.89	2.5	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,4-Dichlorophenol	ND	1.2	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,4-Dimethylphenol	ND	1.1	3.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
4,6-Dinitro-2-methylphenol	ND	0.93	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,4-Dinitrophenol	ND	0.73	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,4-Dinitrotoluene	ND	1.2	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,6-Dinitrotoluene	ND	1.3	5.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Fluorene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Indeno(1,2,3-cd)pyrene	ND	1.0	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Isophorone	ND	1.5	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	1 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP02

Project: SWMU 13 Collection Date: 10/23/2019

Lab ID: 1910D68-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed l	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	1.2	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
N-Nitrosodiphenylamine	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
4-Nitroaniline	ND	1.3	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Nitrobenzene	ND	1.4	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2-Nitrophenol	ND	1.4	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
4-Nitrophenol	ND	1.4	2.5	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Pentachlorophenol	ND	1.0	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Phenol	ND	1.2	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Pyrene	ND	0.94	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Pyridine	ND	1.2	4.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
1,2,4-Trichlorobenzene	ND	1.6	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
2,4,6-Trichlorophenol	ND	1.1	2.0	D	mg/Kg	1	11/1/2019 9:40:06 AM	48455
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	11/1/2019 9:40:06 AM	48455
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	11/1/2019 9:40:06 AM	48455
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	11/1/2019 9:40:06 AM	48455
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	11/1/2019 9:40:06 AM	48455
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	11/1/2019 9:40:06 AM	48455
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	11/1/2019 9:40:06 AM	48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0035	0.022		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Toluene	ND	0.0041	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Ethylbenzene	ND	0.0025	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Methyl tert-butyl ether (MTBE)	ND	0.010	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,2,4-Trimethylbenzene	ND	0.0040	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,3,5-Trimethylbenzene	ND	0.0042	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,2-Dichloroethane (EDC)	ND	0.0044	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,2-Dibromoethane (EDB)	ND	0.0040	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Naphthalene	ND	0.0087	0.087		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1-Methylnaphthalene	ND	0.025	0.17		mg/Kg	1	10/28/2019 10:04:09 P	S64028
2-Methylnaphthalene	ND	0.019	0.17		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Acetone	ND	0.036	0.65		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Bromobenzene	ND	0.0042	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 78 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP02

Project: SWMU 13 Collection Date: 10/23/2019

Lab ID: 1910D68-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0040	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Bromoform	ND	0.0039	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Bromomethane	ND	0.010	0.13		mg/Kg	1	10/28/2019 10:04:09 P	S64028
2-Butanone	ND	0.050	0.43		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Carbon disulfide	ND	0.014	0.43		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Carbon tetrachloride	ND	0.0041	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Chlorobenzene	ND	0.0056	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Chloroethane	ND	0.0064	0.087		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Chloroform	ND	0.0035	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Chloromethane	ND	0.0041	0.13		mg/Kg	1	10/28/2019 10:04:09 P	S64028
2-Chlorotoluene	ND	0.0038	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
4-Chlorotoluene	ND	0.0036	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
cis-1,2-DCE	ND	0.0059	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
cis-1,3-Dichloropropene	ND	0.0037	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,2-Dibromo-3-chloropropane	ND	0.0044	0.087		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Dibromochloromethane	ND	0.0031	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Dibromomethane	ND	0.0047	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,2-Dichlorobenzene	ND	0.0036	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,3-Dichlorobenzene	ND	0.0038	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,4-Dichlorobenzene	ND	0.0036	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Dichlorodifluoromethane	ND	0.010	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,1-Dichloroethane	ND	0.0028	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,1-Dichloroethene	ND	0.017	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,2-Dichloropropane	ND	0.0032	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,3-Dichloropropane	ND	0.0047	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
2,2-Dichloropropane	ND	0.014	0.087		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,1-Dichloropropene	ND	0.0039	0.087		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Hexachlorobutadiene	ND	0.0044	0.087		mg/Kg	1	10/28/2019 10:04:09 P	S64028
2-Hexanone	ND	0.0072	0.43		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Isopropylbenzene	ND	0.0031	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
4-Isopropyltoluene	ND	0.0036	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
4-Methyl-2-pentanone	ND	0.0082	0.43		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Methylene chloride	0.013	0.0077	0.13	J	mg/Kg	1	10/28/2019 10:04:09 P	S64028
n-Butylbenzene	ND	0.0040	0.13		mg/Kg	1	10/28/2019 10:04:09 P	S64028
n-Propylbenzene	ND	0.0035	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
sec-Butylbenzene	ND	0.0049	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
Styrene	ND	0.0034	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
tert-Butylbenzene	ND	0.0041	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028
1,1,1,2-Tetrachloroethane	ND	0.0029	0.043		mg/Kg	1	10/28/2019 10:04:09 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 79 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP02

Project: SWMU 13 Collection Date: 10/23/2019

Lab ID: 1910D68-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0044	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
Tetrachloroethene (PCE)	ND	0.0035	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
trans-1,2-DCE	ND	0.0040	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
trans-1,3-Dichloropropene	ND	0.0046	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
1,2,3-Trichlorobenzene	ND	0.0038	0.087		mg/Kg	1	10/28/2019 10:04:09 F	S64028
1,2,4-Trichlorobenzene	ND	0.0044	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
1,1,1-Trichloroethane	ND	0.0039	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
1,1,2-Trichloroethane	ND	0.0031	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
Trichloroethene (TCE)	ND	0.0050	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
Trichlorofluoromethane	ND	0.015	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
1,2,3-Trichloropropane	ND	0.0070	0.087		mg/Kg	1	10/28/2019 10:04:09 F	S64028
Vinyl chloride	ND	0.0028	0.043		mg/Kg	1	10/28/2019 10:04:09 F	S64028
Xylenes, Total	ND	0.011	0.087		mg/Kg	1	10/28/2019 10:04:09 F	S64028
Surr: Dibromofluoromethane	107		70-130		%Rec	1	10/28/2019 10:04:09 F	S64028
Surr: 1,2-Dichloroethane-d4	94.9		70-130		%Rec	1	10/28/2019 10:04:09 F	S64028
Surr: Toluene-d8	102		70-130		%Rec	1	10/28/2019 10:04:09 F	S64028
Surr: 4-Bromofluorobenzene	89.7		70-130		%Rec	1	10/28/2019 10:04:09 F	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: MeOH BlankProject:SWMU 13Collection Date: 10/23/2019

Lab ID: 1910D68-017 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0041	0.025	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Toluene	ND	0.0048	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Naphthalene	ND	0.010	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	10/28/2019 10:33:14 P	S64028
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Acetone	ND	0.041	0.75	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Bromodichloromethane	ND	0.0046	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Bromoform	ND	0.0045	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Bromomethane	ND	0.012	0.15	mg/Kg	1	10/28/2019 10:33:14 P	S64028
2-Butanone	ND	0.058	0.50	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Carbon disulfide	ND	0.017	0.50	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Chloroethane	ND	0.0074	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Chloroform	ND	0.0040	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Chloromethane	ND	0.0048	0.15	mg/Kg	1	10/28/2019 10:33:14 P	S64028
2-Chlorotoluene	ND	0.0044	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,4-Dichlorobenzene	ND	0.0042	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
2,2-Dichloropropane	ND	0.016	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 81 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: MeOH BlankProject:SWMU 13Collection Date: 10/23/2019

Lab ID: 1910D68-017 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1-Dichloropropene	ND	0.0046	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Hexachlorobutadiene	ND	0.0051	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
2-Hexanone	ND	0.0083	0.50	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
4-Methyl-2-pentanone	ND	0.0094	0.50	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Methylene chloride	ND	0.0088	0.15	mg/Kg	1	10/28/2019 10:33:14 P	S64028
n-Butylbenzene	ND	0.0047	0.15	mg/Kg	1	10/28/2019 10:33:14 P	S64028
n-Propylbenzene	ND	0.0040	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Styrene	ND	0.0039	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
trans-1,2-DCE	ND	0.0046	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
trans-1,3-Dichloropropene	ND	0.0053	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2,3-Trichlorobenzene	ND	0.0044	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2,4-Trichlorobenzene	ND	0.0051	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Trichloroethene (TCE)	ND	0.0058	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
1,2,3-Trichloropropane	ND	0.0081	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Vinyl chloride	ND	0.0033	0.050	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Xylenes, Total	ND	0.013	0.10	mg/Kg	1	10/28/2019 10:33:14 P	S64028
Surr: Dibromofluoromethane	112		70-130	%Rec	1	10/28/2019 10:33:14 P	S64028
Surr: 1,2-Dichloroethane-d4	103		70-130	%Rec	1	10/28/2019 10:33:14 P	S64028
Surr: Toluene-d8	99.7		70-130	%Rec	1	10/28/2019 10:33:14 P	S64028
Surr: 4-Bromofluorobenzene	86.5		70-130	%Rec	1	10/28/2019 10:33:14 P	S64028

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102319

 Project:
 SWMU 13
 Collection Date: 10/23/2019 6:40:00 PM

 Lab ID:
 1910D68-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE							Analyst: BRM	
Diesel Range Organics (DRO)	ND	0.35	1.0		mg/L	1	10/30/2019 9:38:45 AM	48464
Motor Oil Range Organics (MRO)	ND	5.0	5.0		mg/L	1	10/30/2019 9:38:45 AM	48464
Surr: DNOP	103	0	70-130		%Rec	1	10/30/2019 9:38:45 AM	48464
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.021	0.050		mg/L	1	11/1/2019 5:18:15 PM	R64171
Surr: BFB	98.8	0	65.8-143		%Rec	1	11/1/2019 5:18:15 PM	R64171
EPA METHOD 7470: MERCURY							Analyst: pmf	
Mercury	0.00017	0.000038	0.00020	J	mg/L	1	11/5/2019 2:28:54 PM	48565
EPA 6010B: TOTAL RECOVERABLE META	ALS						Analyst: pmf	
Antimony	ND	0.0081	0.050		mg/L	1	11/14/2019 5:22:39 PM	48486
Arsenic	ND	0.015	0.020		mg/L	1	11/25/2019 4:12:51 PM	48486
Barium	ND	0.0012	0.020		mg/L	1	11/13/2019 8:02:24 PM	
Beryllium	ND	0.00025	0.0030		mg/L	1	11/13/2019 8:02:24 PM	48486
Cadmium	ND	0.00055	0.0020		mg/L	1	11/13/2019 8:02:24 PM	48486
Chromium	ND	0.00086	0.0060		mg/L	1	11/13/2019 8:02:24 PM	48486
Cobalt	ND	0.0012	0.0060		mg/L	1	11/14/2019 5:22:39 PM	48486
Iron	0.021	0.0093	0.020		mg/L	1	11/13/2019 8:02:24 PM	48486
Lead	0.0069	0.0035	0.0050		mg/L	1	11/13/2019 8:02:24 PM	48486
Manganese	0.00093	0.00041	0.0020	J	mg/L	1	11/14/2019 5:22:39 PM	48486
Nickel	ND	0.0028	0.010		mg/L	1	11/13/2019 8:02:24 PM	48486
Selenium	ND	0.035	0.050		mg/L	1	11/13/2019 8:02:24 PM	48486
Silver	ND	0.00055	0.0050		mg/L	1	11/13/2019 8:02:24 PM	48486
Vanadium	ND	0.00086	0.050		mg/L	1	11/13/2019 8:02:24 PM	48486
Zinc	ND	0.011	0.020		mg/L	1	11/13/2019 8:02:24 PM	48486
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	3.0	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Acenaphthylene	ND	2.4	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Aniline	ND	3.6	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Anthracene	ND	2.7	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Azobenzene	ND	3.3	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Benz(a)anthracene	ND	3.6	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Benzo(a)pyrene	ND	3.5	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Benzo(b)fluoranthene	ND	3.4	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Benzo(g,h,i)perylene	ND	2.2	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Benzo(k)fluoranthene	ND	2.9	10		μg/L	1	10/31/2019 3:22:30 PM	48439
Benzoic acid	ND	11	20		μg/L	1	10/31/2019 3:22:30 PM	48439
Benzyl alcohol	2.5	2.4	10	J	μg/L	1	10/31/2019 3:22:30 PM	48439

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 83 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102319

 Project:
 SWMU 13
 Collection Date: 10/23/2019 6:40:00 PM

 Lab ID:
 1910D68-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	2.6	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Bis(2-chloroethyl)ether	ND	3.2	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Bis(2-chloroisopropyl)ether	ND	3.9	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Bis(2-ethylhexyl)phthalate	ND	4.3	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
4-Bromophenyl phenyl ether	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Butyl benzyl phthalate	ND	3.3	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Carbazole	ND	2.9	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
4-Chloro-3-methylphenol	ND	3.4	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
4-Chloroaniline	ND	2.3	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2-Chloronaphthalene	ND	3.1	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2-Chlorophenol	ND	2.7	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
4-Chlorophenyl phenyl ether	ND	2.4	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Chrysene	ND	2.8	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Di-n-butyl phthalate	ND	2.7	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Di-n-octyl phthalate	ND	3.5	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Dibenz(a,h)anthracene	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Dibenzofuran	ND	3.2	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
1,2-Dichlorobenzene	ND	4.8	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
1,3-Dichlorobenzene	ND	5.3	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
1,4-Dichlorobenzene	ND	4.4	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
3,3´-Dichlorobenzidine	ND	2.8	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Diethyl phthalate	ND	2.9	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Dimethyl phthalate	ND	3.2	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2,4-Dichlorophenol	ND	2.9	20	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2,4-Dimethylphenol	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
4,6-Dinitro-2-methylphenol	ND	2.9	20	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2,4-Dinitrophenol	ND	2.6	20	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2,4-Dinitrotoluene	ND	3.8	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2,6-Dinitrotoluene	ND	2.4	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Fluoranthene	ND	2.4	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Fluorene	ND	2.9	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Hexachlorobenzene	ND	3.1	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Hexachlorobutadiene	ND	4.7	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Hexachlorocyclopentadiene	ND	3.6	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Hexachloroethane	ND	4.8	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Indeno(1,2,3-cd)pyrene	ND	2.7	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
Isophorone	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
1-Methylnaphthalene	ND	3.1	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439
2-Methylnaphthalene	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 F	PM 48439

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 84 of 123

Lab Order **1910D68**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102319

 Project:
 SWMU 13
 Collection Date: 10/23/2019 6:40:00 PM

 Lab ID:
 1910D68-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	2.9	10	μg/L	1	10/31/2019 3:22:30 PM	48439
3+4-Methylphenol	ND	3.6	10	μg/L	1	10/31/2019 3:22:30 PM	48439
N-Nitrosodi-n-propylamine	ND	6.5	10	μg/L	1	10/31/2019 3:22:30 PM	48439
N-Nitrosodimethylamine	ND	5.0	10	μg/L	1	10/31/2019 3:22:30 PM	48439
N-Nitrosodiphenylamine	ND	2.4	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Naphthalene	ND	4.1	10	μg/L	1	10/31/2019 3:22:30 PM	48439
2-Nitroaniline	ND	3.2	10	μg/L	1	10/31/2019 3:22:30 PM	48439
3-Nitroaniline	ND	3.2	10	μg/L	1	10/31/2019 3:22:30 PM	48439
4-Nitroaniline	ND	2.7	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Nitrobenzene	ND	2.8	10	μg/L	1	10/31/2019 3:22:30 PM	48439
2-Nitrophenol	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 PM	48439
4-Nitrophenol	ND	7.6	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Pentachlorophenol	ND	2.7	20	μg/L	1	10/31/2019 3:22:30 PM	48439
Phenanthrene	ND	2.8	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Phenol	ND	8.0	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Pyrene	ND	2.5	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Pyridine	ND	9.6	10	μg/L	1	10/31/2019 3:22:30 PM	48439
1,2,4-Trichlorobenzene	ND	4.0	10	μg/L	1	10/31/2019 3:22:30 PM	48439
2,4,5-Trichlorophenol	ND	3.0	10	μg/L	1	10/31/2019 3:22:30 PM	48439
2,4,6-Trichlorophenol	ND	2.3	10	μg/L	1	10/31/2019 3:22:30 PM	48439
Surr: 2-Fluorophenol	54.1	0	15-101	%Rec	1	10/31/2019 3:22:30 PM	48439
Surr: Phenol-d5	38.6	0	15-84.6	%Rec	1	10/31/2019 3:22:30 PM	48439
Surr: 2,4,6-Tribromophenol	63.1	0	27.8-112	%Rec	1	10/31/2019 3:22:30 PM	48439
Surr: Nitrobenzene-d5	74.9	0	33-113	%Rec	1	10/31/2019 3:22:30 PM	48439
Surr: 2-Fluorobiphenyl	64.4	0	26.6-107	%Rec	1	10/31/2019 3:22:30 PM	48439
Surr: 4-Terphenyl-d14	49.7	0	18.7-148	%Rec	1	10/31/2019 3:22:30 PM	48439
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Benzene	ND	0.17	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Toluene	ND	0.35	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Ethylbenzene	ND	0.13	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Naphthalene	ND	0.28	2.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Acetone	ND	1.2	10	μg/L	1	10/30/2019 6:46:54 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 85 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102319

 Project:
 SWMU 13
 Collection Date: 10/23/2019 6:40:00 PM

 Lab ID:
 1910D68-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Bromobenzene	ND	0.24	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Bromodichloromethane	ND	0.13	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Bromoform	ND	0.29	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Bromomethane	ND	0.27	3.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
2-Butanone	ND	2.1	10	μg/L	1	10/30/2019 6:46:54 AM	R64075
Carbon disulfide	ND	0.45	10	μg/L	1	10/30/2019 6:46:54 AM	R64075
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Chlorobenzene	ND	0.19	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Chloroethane	ND	0.18	2.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Chloroform	ND	0.12	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Chloromethane	ND	0.32	3.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Dibromochloromethane	ND	0.24	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Dibromomethane	ND	0.21	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
2-Hexanone	ND	1.5	10	μg/L	1	10/30/2019 6:46:54 AM	R64075
Isopropylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	10/30/2019 6:46:54 AM	R64075
Methylene Chloride	ND	0.15	3.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
n-Butylbenzene	ND	0.23	3.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
n-Propylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
Styrene	ND	0.19	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 6:46:54 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 86 of 123

Lab Order 1910D68

Date Reported: 12/5/2019

10/30/2019 6:46:54 AM R64075

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102319

 Project:
 SWMU 13
 Collection Date: 10/23/2019 6:40:00 PM

 Lab ID:
 1910D68-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 9:15:00 AM

Result **MDL Qual Units** DF **Date Analyzed Analyses** RL**Batch ID EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 0.21 10/30/2019 6:46:54 AM R64075 1.1.1.2-Tetrachloroethane 1.0 µg/L 1 1,1,2,2-Tetrachloroethane ND 0.55 2.0 μg/L 1 10/30/2019 6:46:54 AM R64075 Tetrachloroethene (PCE) ND 0.15 1.0 10/30/2019 6:46:54 AM R64075 µg/L 1 trans-1,2-DCE ND 0.18 μg/L 10/30/2019 6:46:54 AM R64075 1.0 1 10/30/2019 6:46:54 AM R64075 trans-1,3-Dichloropropene ND 0.17 1.0 μg/L 1 1.2.3-Trichlorobenzene ND 0.30 1.0 μg/L 1 10/30/2019 6:46:54 AM R64075 ND 0.20 1 10/30/2019 6:46:54 AM R64075 1,2,4-Trichlorobenzene 1.0 µg/L 1.1.1-Trichloroethane ND 0.17 1.0 μg/L 1 10/30/2019 6:46:54 AM R64075 1 1,1,2-Trichloroethane ND 0.22 1.0 µg/L 10/30/2019 6:46:54 AM R64075 Trichloroethene (TCE) ND 0.17 1.0 μg/L 10/30/2019 6:46:54 AM R64075 1 Trichlorofluoromethane ND 0.19 1.0 μg/L 1 10/30/2019 6:46:54 AM R64075 1,2,3-Trichloropropane ND 0.30 2.0 μg/L 1 10/30/2019 6:46:54 AM R64075 Vinyl chloride ND 0.18 1.0 μg/L 1 10/30/2019 6:46:54 AM R64075 Xylenes, Total ND 0.45 1 10/30/2019 6:46:54 AM R64075 1.5 μg/L Surr: 1,2-Dichloroethane-d4 94.5 0 70-130 %Rec 1 10/30/2019 6:46:54 AM R64075 Surr: 4-Bromofluorobenzene 93.9 0 70-130 1 10/30/2019 6:46:54 AM R64075 %Rec Surr: Dibromofluoromethane 99.8 0 70-130 %Rec 1 10/30/2019 6:46:54 AM R64075

0

70-130

99.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Surr: Toluene-d8

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

%Rec

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL REPORT

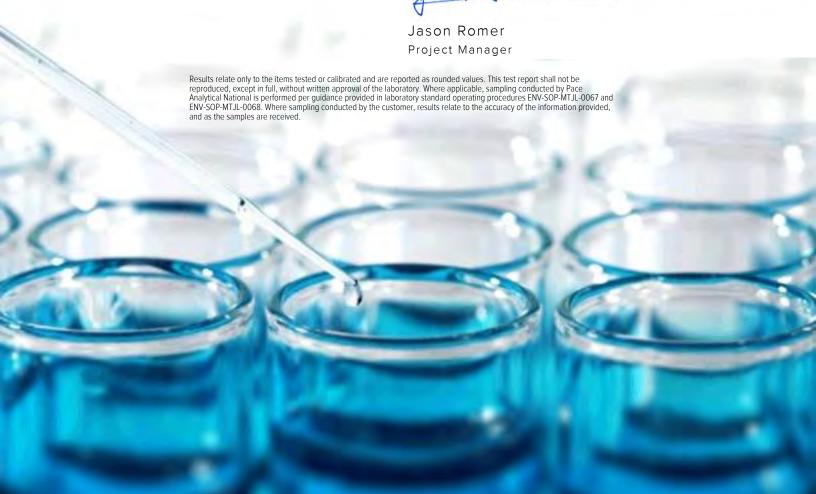
November 07, 2019

Cp

Hall Environmental Analysis Laboratory

Sample Delivery Group: L1155312 Samples Received: 10/30/2019

Project Number:


Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
1910D68-001B SWMU-13-4 (0-0.5') L1155312-01	7
1910D68-002B SWMU-13-4 (1.5-2') L1155312-02	8
1910D68-003B SWMU-13-4 (8-10') L1155312-03	9
1910D68-004B SWMU-13-4 ((14-15.5') L1155312-04	10
1910D68-005B SWMU-13-4 ((15.5-16') L1155312-05	11
1910D68-006B SWMU-13-5 (0-0.5') L1155312-06	12
1910D68-007B SWMU-13-5 (1.5-2') L1155312-07	13
1910D68-008B SWMU-13-5 (8-10') L1155312-08	14
1910D68-009B SWMU-13-5 (10-10.5') L1155312-09	15
1910D68-010B SWMU-13-5 (14-16') L1155312-10	16
1910D68-011B SWMU-13-6 (0-0.5') L1155312-11	17
1910D68-012B SWMU-13-6 (1.5-2') L1155312-12	18
1910D68-013B SWMU-13-6 (2-3') L1155312-13	19
1910D68-014B SWMU-13-6 (6-8') L1155312-14	20
1910D68-015B SWMU-13-6 (10-11') L1155312-15	21
1910D68-016B DUP02 L1155312-16	22
1910D68-017E EB102319 L1155312-17	23
Qc: Quality Control Summary	24
Wet Chemistry by Method 4500CN E-2011	24
Wet Chemistry by Method 9012B	25
GI: Glossary of Terms	27
Al: Accreditations & Locations	28

Sc: Sample Chain of Custody

29

SAMPLE SUMMARY

DE.	
DL.	-

					D	100
1910D68-001B SWMU-13-4 (0-0.5') L1155312-01 Sc	olid		Collected by	Collected date/time 10/23/19 10:50	10/30/19 08:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:26	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
1910D68-002B SWMU-13-4 (1.5-2') L1155312-02 Sc	olid			10/23/19 11:05	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:27	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
1910D68-003B SWMU-13-4 (8-10') L1155312-03 So	lid			10/23/19 11:15	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:30	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
910D68-004B SWMU-13-4 ((14-15.5') L1155312-04	Solid		•	10/23/19 11:25	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Vet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:33	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
1910D68-005B SWMU-13-4 ((15.5-16') L1155312-05	Solid			10/23/19 11:35	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:34	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
1910D68-006B SWMU-13-5 (0-0.5') L1155312-06 S	Solid			10/23/19 13:55	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1374859	1	11/05/19 09:00	11/05/19 13:35	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
1910D68-007B SWMU-13-5 (1.5-2') L1155312-07 Sc	olid			10/23/19 14:15	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 9012B	WG1374859	1	date/time 11/05/19 09:00	date/time 11/05/19 13:36	JER	Mt. Juliet, TN
S.		'	111 0 51 15 0 5.00	11/00/10 10:00	JEN	ma Junet, III
			Collected by	Collected date/time	Received dat	te/time
1910D68-008B SWMU-13-5 (8-10') L1155312-08 Sc	olid			10/23/19 14:30	10/30/19 08:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

Ss

[†]Cn

Sr

[°]Qc

GI

Sc

WG1374859

date/time

11/05/19 09:00

date/time

11/05/19 13:37

JER

Mt. Juliet, TN

SAMPLE SUMMARY

ONE	ΙΔΒ	ΝΔΤ	IONW	ID
OINL	LAD.			-

Collected by Collected date/time Received date/time 10/30/19 08:30 10/23/19 18:40 1910D68-017E EB102319 L1155312-17 WW Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Wet Chemistry by Method 4500CN E-2011 WG1375056 11/05/19 15:00 11/06/19 15:51 JER Mt. Juliet, TN 1

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager 1910D68-001B SWMU-13-4 (0-0.5') Collected date/time: 10/23/19 10:50

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	0.747		0.250	1	11/05/2019 13:26	WG1374859	

1910D68-002B SWMU-13-4 (1.5-2')
Collected date/time: 10/23/19 11:05

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	11/05/2019 13:27	WG1374859	

1910D68-003B SWMU-13-4 (8-10') Collected date/time: 10/23/19 11:15

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/05/2019 13:30	WG1374859	

1910D68-004B SWMU-13-4 ((14-15.5')

Collected date/time: 10/23/19 11:25

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 13:33	WG1374859

1910D68-005B SWMU-13-4 ((15.5-16')

Collected date/time: 10/23/19 11:35

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

111553

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	11/05/2019 13:34	WG1374859	

1910D68-006B SWMU-13-5 (0-0.5')
Collected date/time: 10/23/19 13:55

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/05/2019 13:35	WG1374859	

1910D68-007B SWMU-13-5 (1.5-2')
Collected date/time: 10/23/19 14:15

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/05/2019 13:36	WG1374859

1910D68-008B SWMU-13-5 (8-10') Collected date/time: 10/23/19 14:30

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	11/05/2019 13:37	WG1374859	

1910D68-009B SWMU-13-5 (10-10.5')

SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 9012B

Collected date/time: 10/23/19 14:35

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/05/2019 13:38	WG1374859	

1910D68-010B SWMU-13-5 (14-16') Collected date/time: 10/23/19 14:45

SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/05/2019 13:39	WG1374859	

1910D68-011B SWMU-13-6 (0-0.5')
Collected date/time: 10/23/19 16:50

SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 16:49	WG1375250	

1910D68-012B SWMU-13-6 (1.5-2')
Collected date/time: 10/23/19 17:00

SAMPLE RESULTS - 12

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 16:50	WG1375250	

1910D68-013B SWMU-13-6 (2-3')

Collected date/time: 10/23/19 17:10

SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

*

	Result	Qualifier R	DL	Dilution	Analysis	Batch	
Analyte	mg/kg	n	ng/kg		date / time		
Cyanide	ND	0	.250	1	11/06/2019 16:51	WG1375250	

1910D68-014B SWMU-13-6 (6-8') Collected date/time: 10/23/19 17:15

SAMPLE RESULTS - 14

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 16:53	WG1375250

1910D68-015B SWMU-13-6 (10-11')

Collected date/time: 10/23/19 17:20

SAMPLE RESULTS - 15

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 16:54	WG1375250	

1910D68-016B DUP02 Collected date/time: 10/23/19 00:00

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	1.06	J6	0.250	1	11/06/2019 16:57	WG1375250	

1910D68-017E EB102319 Collected date/time: 10/23/19 18:40

SAMPLE RESULTS - 17

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Cyanide	ND		0.00500	1	11/06/2019 15:51	WG1375056

QUALITY CONTROL SUMMARY

C

SS

Ų.

ONE LAB. NATIONWIDE.

		MB RDL	l/gm	0.00500
		MB Qualifier MB MDL	l/gm	0.00180
ank (MB)	(MB) R3469134-1 11/06/19 15:34	MB Result	l/gm	n
Method Blank (MB)	(MB) R3469134		Analyte	Cyanide

L1155017-01 Original Sample (OS) • Duplicate (DUP)

		DUP Qualifier Limits	%	20
	6/19 15:47	Dilution DUP RPD	%	0.000
	(OS) L1155017-01 11/06/19 15:46 • (DUP) R3469134-3 11/06/19 15:47	Original Result DUP Result Dilution DUP RPD	l/gm	0.000
)	11/06/19 15:46 • (DUF	Original Re	l/gm	QN
	(OS) L1155017-01 1		Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

₹

Š

Sc

L1155479-03 Original Sample (OS) • Duplicate (DUP)

(0	
16:06	
/19	
11/06	
, 84	
69134	
346	
JP, R	
<u></u>	-
6:05	
19 16	
06/1	
3 11	
79-03 1	
(OS) L1155479-03 11/06/19 16:05 • (DUP) R3469134-8 11/06/19 16:06	
)[1]	
(OS	

Laboratory Control Sample (LCS)

(LCS) R3469134-2 11/06/19 15:39	06/19 15:39				
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	l/gm	l/gm	%	%	
Syanide	0.100	0.0907	90.7	85.0-115	

L1155184-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155184-01 11/06/19 15:48 • (MS) R3469134-4 11/06/19 15:49 • (MSD) R346	19 15:48 • (MS) R3	3469134-4 11/06,	/19 15:49 • (MS	3D) R3469134-E	169134-5 11/06/19 15:50	_	:	:		9		:
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualitier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	mg/l	l/gm	l/gm	%	%		%			%	%
Cyanide	0.100	QN	0.0764	0.0753	76.4	75.3	-	75.0-125			1.45	20

L1155340-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1155340-16 11/06/19 15:53 • (MS) R3469134-6 11/06/19 15:54 • (MSD) R3469134-7	9 15:53 • (MS) R3	469134-6 11/0	5/19 15:54 • (M	ISD) R3469134-;	7 11/06/19 15:55	.5						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	l/gm	l/gm	%	%		%			%	%
Cyanide	0.100	QN	0.0735	0.0688	73.5	8.89	-	75.0-125	97	<u> 9</u>	6.61	20

PROJECT:

SDG: L1155312

DATE/TIME: 11/07/19 09:41

QUALITY CONTROL SUMMARY

L1155312-01,02,03,04,05,06,07,08,09,10

ONE LAB. NATIONWIDE.

\Box
$\overline{}$
_
(
7 ·
(1)
$\overline{\mathbf{v}}$
_
_
_
_

	MB RDL	mg/kg	0.250
	MB MDL	mg/kg	0.0390
	MB Qualifier		
MB) R3468562-1 11/05/19 13:08	MB Result	mg/kg	D
(MB) R3468562		Analyte	Cyanide

L1154882-15 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Dup RPD Limits	%	20
5/19 13:14	Dilution DUP RPD	%	1 9.93
) R3468562-3 11/0	Original Result DUP Result	mg/kg	0.531
05/19 13:13 • (DUP,	Original Res	mg/kg	0.587
(OS) L1154882-15 11/05/19 13:13 • (DUP) R3468562-3 11/05/19 13:14		Analyte	Cyanide

Ŋ

Š

SS

g

 $\overline{\mathbb{Q}}$

Sc

₹

L1155312-10 Original Sample (OS) • Duplicate (DUP)

	DUP RPD Limits
	DUP Qualifier
-8 11/05/19 13:40	ult Dilution DUP RPD
OS) L1155312-10 11/05/19 13:39 • (DUP) R3468562-8 11/05/19 13:40	Original Result DUP Result
(OS) L1155312-10 11/05/	

Laboratory Control Sample (LCS)

(LCS) R3468562-2 11/05/19 13:09	1/05/19 13:09				
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.57	103	50.0-150	

L1155184-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(ad) Endoughed in Oding 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	Spike Amount mg/kg	Spike Amount Original Result MS Result mg/kg mg/kg mg/kg	MS Result	MSD Result	MS Rec.	MSD Rec. %	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD %	RPD Limits
yanide	1.67	o QN	1.08	1.28	60.3	71.9	-	75.0-125	96	J6	16.5	20

L1155312-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155312-02 11/05/19 13:27 • (MS) R3468562-6 11/05/19 13:28 • (MSD) R3468563	19 13:27 • (MS) R3	468562-6 11/C	15/19 13:28 • (M	1SD) R3468562	2-7 11/05/19 13:29	3:29						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.48	1.49	85.4	86.0	_	75.0-125			0.682	20

PROJECT:

SDG: L1155312

Method Blank (MB)

	MB RDL	mg/kg	0.250
	MB MDL	mg/kg	0.0390
	MB Qualifier		
MB) R3469178-1 11/06/19 16:45	MB Result	mg/kg	n
(MB) R3469178		Analyte	Cyanide

L1155312-13 Original Sample (OS) • Duplicate (DUP)

06/19 16:52 Dilution DUP RPD %	(OS) L1155312-13 11/06/19 16:51 • (DUP) R3469178-3 11/06/19 16:52 Original Result DUP Result Dilution DUP RP Analyte mg/kg mg/kg % Cyanide ND 0.000 1 0.000		DD DUP Qualifier DUP RPD Limits	%	20
06/19 16:5 Dilution	73469178-3 11/06/19 16:5 It DUP Result Dilution mg/kg 0.000 1	2	DUP R	%	0.000
	11 DUP Result mg/kg 0.000	36/19 16:5	Dilution		_
19 16:51 • (DUP) R Original Resul mg/kg ND	1 <	(OS) L1155312-13 11/06/1		Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

₹

Š

Sc

SS

Ų.

L1155340-08 Original Sample (OS) • Duplicate (DUP)

	DUP RPD Limits	%	20
	DUP Qualifie		ᆈ
17:11	Dilution DUP RPD	%	31.8
11/06/19			_
IP) R3469178-6	Original Result DUP Result	mg/kg	0.863
OS) L1155340-08 11/06/19 17:10 • (DUP) R3469178-6 11/06/19 17:11	Original Re	mg/kg	1.19
(OS) L1155340-08		Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469178-2 11/06/19 16:46	16:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.37	95.0	50.0-150	

L1155312-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155312-16 11/06/19 16:57 • (MS) R3469178-4 11/06/19 16:58 • (MSD) R3469178-5 11/06/19 16:59	9 16:57 • (MS) R3·	469178-4 11/06	5/19 16:58 • (M.	SD) R3469178-5	11/06/19 16:5	ത						
	Spike Amount	Spike Amount Original Result MS Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cvanide	1.67	1.06	2.30	2.31	74.8	75.2	-	75.0-125	Je		0.295	20

L1155340-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1155340-14 11/06/19 17:17 • (MS) R3469178-7 11/06/19 17:18 • (MSD) R3469178-8	5/19 17:17 • (MS) R34	169178-7 11/06	/19 17:18 • (MSI) R3469178-8	11/06/19 17:19							
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier RPD		RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		%		%
Cyanide	1.67	ND	1.50	1.55	90.2	93.0	-	75.0-125		3.04	14 2	50

PROJECT:

SDG: L1155312

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

	<u> </u>
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD PAGE: 1

OF:

C193

Hall Environmental Analysis Laboratory

Albuquerque, NM 87109 TEL: 505-345-3975 4901 Hawkins NE

FAX: 505-345-4107

ADD	ADDRESS:	ESC PACE	ACE		PHONE:	(800) 767-5859	FAX:	((45) MEG MORE
VIII	12065 Lebanon Rd				ACCOUNT#:		EMAIL:	6585-86/ (610)
	Mt. Juliet, TN 37122				100			
1								
ITEM	M SAMPLE CLENT SAMPLE ID	93	BOTTLE	MATTER	100	# CONTAINE		
-	1010DER ONTO CHAMMILES A SO O EST		LILE	MAIKIX	DATE	ERS	ANALYTICAL COMMENTS	COMMENTS
1			40ZGU	МеОН	10/23/2019 10:50:00 AM	10/23/2019 10:50:00 AM 1 I v 4 Total Cvanida		CHARTETA
7	1910D68-002B SWMU 13-4 (1.5-2')		40ZGU	MeOH	10/23/2019 11-05:00 AM	10/23/2019 11:05:00 AM 1 1:: 4 T-:: 0		111 55313-01
3	1910D68-003B SWMU 13-4 (8-10')		40201	(Coil)	MIL 00.00.11	1 LV.4 lotal Cyanide		
4	- 10		40260	MeOH	10/23/2019 11:15:00 AM 1 Lv.4 Total Cyanide	1 Lv.4 Total Cyanide		
-			40ZGU	МеОН	10/23/2019 11:25:00 AM 1 LV 4 Total Cyanida	1 I v 4 Total Cuanido		
2	1910D68-005B SWMU 13-4 (15.5-16')		40ZGU	Chil	10020040 44.05.00 444	- Living Cyallide		
9	1910D68-006B CM/MIL 13-E /0 0 EN				UNESTED 11:30:00 AM 1 LV.4 Total Cyanide	1 Lv.4 Total Cyanide		
			40ZGU	МеОН	10/23/2019 1:55:00 PM	1 Lv.4 Total Cvanide		
7	1910D68-007B SWMU 13-5 (1.5-2')		40ZGU	MeOH		I VA Total O last		
00	1910D68-008B SWMU 13-5 (8-10')		40ZGU			- LV.7 Total Cyalifue		
6	1910D68-009B CA/MIL13 E /10 10 10 EN					1 Lv.4 Total Cyanide		
			40ZGU	Soil	10/23/2019 2:35:00 PM	1 Lv.4 Total Cvanide		
10	1910D68-010B SWMU 13-5 (14-16')		40ZGU			1 ly 4 Total Cyanida		
11	1910D68-011B SWMU 13-6 (0-0.5')		40ZGU	MeOH		Last local cyallide		
12	1910D68-012B SWMU 13-6 (1.5-2')					1 Lv.4 Total Cyanide		
13	1910D68-013B SWMH 13-6 (2-3)					1 LV.4 lotal Cyanide		
	(63) 650		40ZGU	MeOH	10/23/2019 5:10:00 PM 1	1 Lv.4 Total Cyanide		

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.cc

THAIR YOU.	and blue ice.	Thank you.		COCST CO.5 mRAIN	0.5 mR/h
	REPORT IN	REPORT TRANSMITTAL DESIRED:	DESIRED:		T
☐ HARDCOPY (extra cost)	ra cost)	☐ FAX ☐ EMAIL.	□ EMAIL	ONLINE	
	FOR 227	FOR LAB USE ONLY	ĽŸ		Τ
Temp of samples	4.0-1-46.5		Attempt to Cool ?		
Commenter					_

Date: | 20/14 Time: 3/

Received By: Received By:

Time: Time:

Date: Date:

Time: 10:55 AM

Date: 10/25/2019

Relinquished By: Relinquished By: Relinquished By:

Time:

Date:

3rd BD

2nd BD

Next BD

RUSH

andard

TAT:

17 contras Teches 4510 lang 1572

CHAIN OF CUSTODY RECORD PAGE: 2

OF: 2

Hall Environmental Analysis Laboratory

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975

FAX: 505-345-4107

Website: www.hallenvironmental.cor

SUB	CONTRATOR	CONTRACTOR OF THE PARTY OF THE						morning.	
	ESC PACE	COMPANY	ESC PACE		PHONE				
ADD.	ADDRESS:					(800) 767-5859	FAX:	(645) 750 2020	
	12065 Lebanon Rd				ACCOUNT #:			6585-86/ (510)	
CITY,	CITY, STATE, ZIP:						EMAIL:		1
	Mt. Juliet, TN 37122								
Alexander.					D. F.				1
				- 13		# CC			
			ROTTIF		T T T T T T T T T T T T T T T T T T T	ONT			
ITEM	A SAMPLE CLIENT SAMPLE ID	PLE ID	TYPE	MATRIX	5	AINE		N. W.	
14	14 1910D68-0148 SWMII 13-6 /6-9"			VINITARIA	DAIE	RS	ANALYTICA	ANALYTICAL COMMENTS	
	(8-9) 0-CT OLIMS OF TO COOK		40ZGU	МеОН	10/23/2019 5:15:00 PM	0/23/2019 5:15:00 PM 1 v 4 Total Circia		CINTENIO	
15	1910D68-015B SWMII 13-6 (10-111)	li li		(Coil)		- CV.T I Otal Cyarilde		111/1/23	-
	11 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		40ZGU	МеОН	10/23/2019 5:20:00 PM	10/23/2019 5:20:00 PM 11 V 4 Total Cuanda		41-22/4-14	-
16	16 1910D68-016B DUP02			(Coil)		- Line or alline			-
			40ZGD	МеОН	10/23/2019	1 V 4 Total Consider		51	-
17	17 1910D68-018F FB102319			(Coil)		- cv. i ocal cyallide			-
			SUNAMBHD	S00AMBHDP Aqueous	10/23/2019 6:40:00 PM	10/23/2019 6:40:00 PM 1 Lv.4 Total Cvanida	7	2	-
			HOVINGE			مصر حاما المح	212	7	-
								The Carlot of th	

RAD SCREEN: <0.5 mR/hr

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Col 24/19 G : Y Date: Time: HARDCOPY (extra cerived By: Date: Time: Time: Temp of samples A Date: Time: Temp of samples A Date: Date:	Relinquished By:	X	Date: 10/25/2019	Date: Time: R	Leceived By: Doug	Datey , /.	2		
Table: Time: Received By: Date: Time: FOR LAB USE ONL Y Temp of samples State Attempt to Cool?	Relinquished By:		Date:	Time:	eccived By:	101 20119 Date:	7. S	RT TRANSMITTA	
Standard Temp of samples State 2nd BD 3rd BD	Relinquished By:		Date:		Received By:	Date:	Time:	FOR LAB USE ONLY	ONLINE
	TAT:	Stanı	dard	RUSH				公元のお後	

race Allalytical National Center for Testing & Innovation	
1055	
5)1.1	6217
26	
Voc	
S	ON
1	
1	
,	
1	
	Ves No

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Project: SWMU	13								
Sample ID: MB-48409	SampType: M	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID: 48	3409	F	RunNo: 6	4033				
Prep Date: 10/28/2019	Analysis Date: 1	0/29/2019	S	SeqNo: 2	190866	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 10	1							
Motor Oil Range Organics (MRO)	ND 50								
Surr: DNOP	9.3	10.00		93.3	70	130			
Sample ID: MB-48409	SampType: M	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID: 48	3409	F	RunNo: 6	4033				
Prep Date: 10/28/2019	Analysis Date: 1	0/29/2019	5	SeqNo: 2	191318	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 10	1							
Motor Oil Range Organics (MRO)	ND 50)							
Surr: DNOP	12	10.00		115	70	130			
Sample ID: LCS-48409	SampType: L	cs	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch ID: 48	3409	F	RunNo: 6	4033				
Prep Date: 10/28/2019	Analysis Date: 1	0/29/2019	5	SeqNo: 2	191319	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	48 10	50.00	0	96.3	63.9	124			
Surr: DNOP	4.9	5.000		97.7	70	130			
Sample ID: LCS-48457	SampType: L	cs	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch ID: 48	3457	F	RunNo: 6	4089				
Prep Date: 10/29/2019	Analysis Date: 1	0/30/2019	9	SeqNo: 2	192645	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	44 10	50.00	0	88.2	63.9	124			
Surr: DNOP	3.2	5.000		64.8	70	130			S
Sample ID: MB-48457	SampType: M	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID: 48	3457	F	RunNo: 6	4089				
Prep Date: 10/29/2019	Analysis Date: 1	0/30/2019	5	SeqNo: 2	192646	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 10								
Motor Oil Range Organics (MRO)	ND 50)							
Surr: DNOP	8.4	10.00		84.4	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 88 of 123

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

PQL

10

50

10.00

Result

ND

ND

11

WO#: **1910D68**

05-Dec-19

Project:	SWMU 13	3									
Sample ID:	1910D68-007AMS	SampTy	pe: M \$	<u></u> S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	SWMU 13-5 (1.5-2')	Batch	ID: 48	457	F	RunNo: 64	4116				
Prep Date:	10/29/2019	Analysis Da	ite: 10	0/31/2019	S	SeqNo: 2	195298	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Or	rganics (DRO)	55	9.8	48.78	0	114	57	142			
Surr: DNOP		4.3		4.878		89.0	70	130			
Sample ID:	1910D68-007AMSD	SampTy	pe: M \$	SD	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	SWMU 13-5 (1.5-2')	Batch	ID: 48	457	F	RunNo: 64	4116				
Prep Date:	10/29/2019	Analysis Da	ite: 10	0/31/2019	5	SeqNo: 2	195299	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Or	rganics (DRO)	52	9.7	48.40	19.68	67.1	57	142	6.13	20	
Surr: DNOP		4.3		4.840		89.8	70	130	0	0	
Sample ID: I	LCS-48616	SampTy	npType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics								
Client ID:	LCSS	Batch	ID: 48	616	F	RunNo: 64	4266				
Prep Date:	11/6/2019	Analysis Da	ite: 1	1/7/2019	S	SeqNo: 2	200977	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	rganics (DRO)	55	10	50.00	0	110	63.9	124			
Surr: DNOP		4.9		5.000		97.0	70	130			
Sample ID: I	MB-48616	SampTy	ре: МГ	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	PBS	Batch	ID: 48	616	F	RunNo: 6	4266				
Prep Date:	11/6/2019	Analysis Da	ate: 1 '	1/7/2019	5	SeqNo: 2	200978	Units: mg/K	(g		

SPK value SPK Ref Val %REC LowLimit

HighLimit

130

70

%RPD

RPDLimit

Qual

Qualifiers:

Analyte

Surr: DNOP

Diesel Range Organics (DRO)

Motor Oil Range Organics (MRO)

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

B Analyte detected in the associated Method Blank

110

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48464 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range
Client ID: LCSW Batch ID: 48464 RunNo: 64071

CHERTE. LCGW BACKTID. 40404 RUINO. 04071

Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2192326 Units: mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual Diesel Range Organics (DRO) 0 5.3 1.0 5.000 106 71.8 135 Surr: DNOP 0.44 0.5000 88.0 130

Sample ID: MB-48464 TestCode: EPA Method 8015M/D: Diesel Range SampType: MBLK Client ID: PBW Batch ID: 48464 RunNo: 64071 Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2192327 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 1.0 Motor Oil Range Organics (MRO) ND 5.0 Surr: DNOP 0.87 1.000 87.0 70 130

Sample ID: MB-48464 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Client ID: PBW Batch ID: 48464 RunNo: 64124 Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194394 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

 Diesel Range Organics (DRO)
 ND
 1.0

 Motor Oil Range Organics (MRO)
 ND
 5.0

 Surr: DNOP
 1.1
 1.000
 111
 70
 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 90 of 123

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Project:	SWMU 1	3									
Sample ID:	RB	SampT	ype: ME	BLK	Test	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	ID: G6	3989	R	tunNo: 6	3989				
Prep Date:		Analysis Da	ate: 10)/27/2019	S	SeqNo: 2	189138	Units: mg/k	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Surr: BFB	e Organics (GRO)	ND 960	5.0	1000		96.3	77.4	118			
Sample ID:	2.5UG GRO LCS	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID:	LCSS	Batch	ID: G6	3989	R	tunNo: 6	3989				
Prep Date:		Analysis Da	ate: 10)/27/2019	S	SeqNo: 2	189139	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	26 1200	5.0	25.00 1000	0	106 116	80 77.4	120 118			
Sample ID:	RB-II	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	ID: A6	3989	R	tunNo: 6	3989				
Prep Date:		Analysis Da	ate: 10)/27/2019	S	SeqNo: 2	189162	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	ND 970	5.0	1000		97.1	77.4	118			
Sample ID:	2.5UG GRO LCS-II	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID:	LCSS	Batch	ID: A6	3989	R	tunNo: 6	3989				
Prep Date:		Analysis Da	ate: 10)/27/2019	S	SeqNo: 2	189163	Units: mg/k	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
_	e Organics (GRO)	27	5.0	25.00	0	109	80	120			
Surr: BFB		1200		1000		116	77.4	118			
		8-008AMS SampType: MS			TestCode: EPA Method 8015D: Gasoline Range						
Sample ID:	1910D68-008AMS	SampT	ype: MS	3	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
	1910D68-008AMS SWMU 13-5 (8-10')		ype: MS ID: A6			tCode: Ef tunNo: 6		8015D: Gaso	oline Rang	e	
			ID: A6	3989	R		3989	8015D: Gaso	J	e	
Client ID: Prep Date: Analyte	SWMU 13-5 (8-10')	Batch Analysis Da Result	ID: A6 ate: 10	3989 0/27/2019 SPK value	R	RunNo: 6 3 SeqNo: 2 4 %REC	3989 189165 LowLimit	Units: mg/k HighLimit	J	e RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang		Batch Analysis Da Result 14	ID: A6 ate: 10	3989 0/27/2019 SPK value 14.63	R	RunNo: 6 3 SeqNo: 2 7 %REC 92.3	3989 189165 LowLimit 69.1	Units: mg/K HighLimit 142	(g		Qual
Client ID: Prep Date: Analyte	SWMU 13-5 (8-10')	Batch Analysis Da Result	ID: A6 ate: 10	3989 0/27/2019 SPK value	R S SPK Ref Val	RunNo: 6 3 SeqNo: 2 4 %REC	3989 189165 LowLimit	Units: mg/k HighLimit	(g		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	SWMU 13-5 (8-10')	Batch Analysis Da Result 14 610 SampTy	ID: A6 ate: 10 PQL 2.9 ype: MS	3989 0/27/2019 SPK value 14.63 585.1	SPK Ref Val 0	RunNo: 63 SeqNo: 2' **REC 92.3 104 tCode: EF	3989 189165 LowLimit 69.1 77.4	Units: mg/K HighLimit 142	Kg %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID: Client ID:	SWMU 13-5 (8-10') e Organics (GRO)	Batch Analysis Da Result 14 610 SampTy	ID: A6 ate: 10 PQL 2.9	3989 0/27/2019 SPK value 14.63 585.1	SPK Ref Val 0	RunNo: 6 3 SeqNo: 2 3 %REC 92.3 104	3989 189165 LowLimit 69.1 77.4	Units: mg/k HighLimit 142 118 8015D: Gaso	%RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID:	SWMU 13-5 (8-10') e Organics (GRO)	Batch Analysis Da Result 14 610 SampTy	ID: A6 ate: 10 PQL 2.9 ype: MS	3989 0/27/2019 SPK value 14.63 585.1 SD 3989	SPK Ref Val 0	RunNo: 63 SeqNo: 2' **REC 92.3 104 tCode: EF	3989 189165 LowLimit 69.1 77.4 PA Method 3989	Units: mg/K HighLimit 142 118	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 91 of 123

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Project: SWMU	13									
Sample ID: 1910D68-008AM	SD SampT	ype: M \$	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: SWMU 13-5 (8-1	0') Batch	1D: A6	3989	F	RunNo: 6 :	3989				
Prep Date:	Analysis D	ate: 10	0/27/2019	5	SeqNo: 2	189166	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	14	2.9	14.63	0	92.6	69.1	142	0.260	20	
Surr: BFB	610		585.1		104	77.4	118	0	0	
Sample ID: MB-48446	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch	1D: 48	446	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis D	ate: 10	0/30/2019	S	SeqNo: 2	193023	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	1000		1000		99.9	77.4	118			
Sample ID: LCS-48446	SampT	SampType: LCS TestCode: EPA Method 8015D: Gasoline Range								
Client ID: LCSS	Batch	1D: 48	446	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis D	ate: 10	0/30/2019	9	SeqNo: 2	193024	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23	5.0	25.00	0	91.5	80	120			
Surr: BFB	1100		1000		108	77.4	118			
Sample ID: 1910D68-005AM	S SampT	ype: M \$	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: SWMU 13-4 (15.	5-16 Batch	1D: 48	446	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis D	ate: 10	0/30/2019	5	SeqNo: 2	193028	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	25	4.8	23.81	0	103	69.1	142			
Surr: BFB	1100		952.4		113	77.4	118			
Sample ID: 1910D68-005AM	SD SampT	ype: MS	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: SWMU 13-4 (15.	5-16 Batch	1D: 48	446	F	RunNo: 6	4076				
Prep Date: 10/29/2019	Analysis D	ate: 10	0/30/2019	5	SeqNo: 2	193029	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23	4.7	23.70	0	96.2	69.1	142	7.26	20	
Surr: BFB	1000		947.9		110	77.4	118	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 92 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R64171 RunNo: 64171

Prep Date: Analysis Date: 11/1/2019 SeqNo: 2195897 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 97.4 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R64171 RunNo: 64171

Prep Date: Analysis Date: 11/1/2019 SeqNo: 2195898 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 73.6 0.39 0.050 0.5000 0 77.4 119 Surr: BFB 22 20.00 109 65.8 143

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 93 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: **PBS** Batch ID: **S64028** RunNo: **64028**

Client ID: PBS	Batcl	h ID: S6	4028	F	RunNo: 6 4	4028				
Prep Date:	Analysis D)ate: 10)/28/2019	٤	SeqNo: 21	190354	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								
r specie		0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb	Samp1	уре: МЕ	BLK	TestCode: EPA Method 8260B: Volatiles						
Client ID: PBS	Batcl	h ID: S6	4028	F	RunNo: 6	4028				
Prep Date:	Analysis D	Date: 10)/28/2019	\$	SeqNo: 2	190354	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	0.010	0.15								J
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.49		0.5000		98.7	70	130			
Surr: 1,2-Dichloroethane-d4	0.44		0.5000		87.9	70	130			
Surr: Toluene-d8	0.48		0.5000		96.3	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		98.6	70	130			
Sample ID: 100ng lcs	Samp1	ype: LC	s	TestCode: EPA Method 8260B: Volatiles						
Client ID: LCSS	Batcl	h ID: S6	4028	F	RunNo: 6	4028				

Qualifiers:

Chlorobenzene

Prep Date:

Analyte

Benzene

Toluene

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

Analysis Date: 10/28/2019

PQL

0.025

0.050

0.050

Result

0.89

0.93

0.91

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

SeqNo: 2190356

LowLimit

68

70

70

%REC

89.0

93.2

91.5

Units: mg/Kg

135

130

130

%RPD

HighLimit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

0

0

SPK value SPK Ref Val

1.000

1.000

1.000

Page 95 of 123

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 100ng lcs SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: **S64028** RunNo: 64028 Prep Date: Analysis Date: 10/28/2019 SeqNo: 2190356 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 51.1 1,1-Dichloroethene 0.90 0.050 1.000 0 90.4 139 Trichloroethene (TCE) 0.85 0.050 1.000 0 85.2 70 130 87.4 70 Surr: Dibromofluoromethane 0.44 0.5000 130 Surr: 1,2-Dichloroethane-d4 0.41 0.5000 82.2 70 130 Surr: Toluene-d8 0.47 0.5000 93.5 70 130 Surr: 4-Bromofluorobenzene 0.48 0.5000 96.7 70 130

Sample ID: 1910d68-001ams SampType: MS TestCode: EPA Method 8260B: Volatiles Client ID: SWMU 13-4 (0-0.5') Batch ID: **S64028** RunNo: 64028 Prep Date: Analysis Date: 10/28/2019 SeqNo: 2190368 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** PQL LowLimit HighLimit Qual Analyte Result Benzene 0.69 0.018 0.7236 95.7 57.1 141 0 96.2 70 0.70 0.036 0.7236 130 Toluene 0.036 0.7236 0 94.1 70 Chlorobenzene 0.68 130 1,1-Dichloroethene 0.71 0.036 0.7236 0 97.6 38.5 141 Trichloroethene (TCE) 0.68 0.036 0 93.4 70 130 0.7236 Surr: Dibromofluoromethane 0.35 0.3618 96.1 70 130 Surr: 1,2-Dichloroethane-d4 92.2 70 0.33 0.3618 130 Surr: Toluene-d8 0.35 0.3618 96.4 70 130 Surr: 4-Bromofluorobenzene 0.33 0.3618 92.5 70 130

Sample ID: 1910d68-001amsd	SD	TestCode: EPA Method 8260B: Volatiles								
Client ID: SWMU 13-4 (0-0.5) Batch	1D: S6	4028	F	RunNo: 6	4028				
Prep Date:	Analysis D	ate: 10	/28/2019	8	SeqNo: 2	190370	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.66	0.018	0.7236	0	90.8	57.1	141	5.16	20	
Toluene	0.70	0.036	0.7236	0	97.0	70	130	0.835	20	
Chlorobenzene	0.67	0.036	0.7236	0	92.1	70	130	2.22	20	
1,1-Dichloroethene	0.68	0.036	0.7236	0	94.3	38.5	141	3.43	20	
Trichloroethene (TCE)	0.66	0.036	0.7236	0	90.9	70	130	2.71	20	
Surr: Dibromofluoromethane	0.35		0.3618		95.6	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.33		0.3618		92.4	70	130	0	0	
Surr: Toluene-d8	0.36		0.3618		99.0	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.34		0.3618		94.6	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 96 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: 48446 RunNo: 64109

Client ID: PBS	Batcl	h ID: 48	446	F	RunNo: 6 4	4109				
Prep Date: 10/29/2019	Analysis D	Date: 10)/30/2019	5	SeqNo: 2	194198	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446	SampT	ype: MBLK	TestCode: EPA Method 8260B: Volatiles						
Client ID: PBS	Batch	n ID: 48446	F	RunNo: 6 4	4109				
Prep Date: 10/29/2019	Analysis D	Date: 10/30/2019	5	SeqNo: 21	194198	Units: mg/K	g		
Analyte	Result	PQL SPK valu	e SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10							
Hexachlorobutadiene	ND	0.10							
2-Hexanone	ND	0.50							
Isopropylbenzene	ND	0.050							
4-Isopropyltoluene	ND	0.050							
4-Methyl-2-pentanone	ND	0.50							
Methylene chloride	ND	0.15							
n-Butylbenzene	ND	0.15							
n-Propylbenzene	ND	0.050							
sec-Butylbenzene	ND	0.050							
Styrene	ND	0.050							
tert-Butylbenzene	ND	0.050							
1,1,1,2-Tetrachloroethane	ND	0.050							
1,1,2,2-Tetrachloroethane	ND	0.050							
Tetrachloroethene (PCE)	ND	0.050							
trans-1,2-DCE	ND	0.050							
trans-1,3-Dichloropropene	ND	0.050							
1,2,3-Trichlorobenzene	ND	0.10							
1,2,4-Trichlorobenzene	ND	0.050							
1,1,1-Trichloroethane	ND	0.050							
1,1,2-Trichloroethane	ND	0.050							
Trichloroethene (TCE)	ND	0.050							
Trichlorofluoromethane	ND	0.050							
1,2,3-Trichloropropane	ND	0.10							
Vinyl chloride	ND	0.050							
Xylenes, Total	ND	0.10							
Surr: Dibromofluoromethane	0.54	0.500	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	0.46	0.500	0	93.0	70	130			
Surr: Toluene-d8	0.49	0.500	0	98.5	70	130			
Surr: 4-Bromofluorobenzene	0.46	0.500		92.1	70	130			
Sample ID: Ics-48446	SampT	ype: LCS	Tes	tCode: EF	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batch	n ID: 48446	F	RunNo: 64	4109				

Sample ID: Ics-48446	SampT	ype: LC	S	Tes	tCode: El	iles				
Client ID: LCSS	Batcl	Batch ID: 48446			RunNo: 64	4109				
Prep Date: 10/29/2019	Analysis D	ate: 10	/30/2019	S	SeqNo: 2	194199	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	98.8	68	135			
Toluene	0.96	0.050	1.000	0	95.8	70	130			
	0.00	0.000		-		_				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 98 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48446 Client ID: LCSS	Batch	ype: LC	146	F	RunNo: 6	4109	8260B: Volat			
Prep Date: 10/29/2019	Analysis L	Analysis Date: 10/30/2019			SeqNo: 2	194199	Units: mg/k	.g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.94	0.050	1.000	0	93.8	51.1	139			
Trichloroethene (TCE)	0.94	0.050	1.000	0	93.9	70	130			
Surr: Dibromofluoromethane	0.48		0.5000		95.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.4	70	130			
Surr: Toluene-d8	0.48		0.5000		95.6	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		88.7	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910D68

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	ATILES					
Client ID: LCSW	Batcl	Batch ID: R64075			RunNo: 6	4075					
Prep Date:	Analysis D	Analysis Date: 10/29/2019			SeqNo: 2	192371	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	19	1.0	20.00	0	96.5	70	130				
Toluene	19	1.0	20.00	0	93.8	70	130				
Chlorobenzene	20	1.0	20.00	0	99.5	70	130				
1,1-Dichloroethene	17	1.0	20.00	0	84.9	70	130				
Trichloroethene (TCE)	17	1.0	20.00	0	84.3	70	130				
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.1	70	130				
Surr: 4-Bromofluorobenzene	9.1		10.00		90.9	70	130				
Surr: Dibromofluoromethane	10		10.00		101	70	130				
Surr: Toluene-d8	9.9		10.00		99.1	70	130				

Sample ID: rb SampType: MBLK				TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	n ID: R6	4075	F	RunNo: 6	4075					
Prep Date:	Analysis D	ate: 10)/29/2019	5	SeqNo: 2	192402	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									

Euryibenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0

ND

1.0

Qualifiers:

2-Chlorotoluene

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 100 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910D68

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW

Batch ID: R64075 RunNo: 64075

Client ID: PBW	Batch ID: R64075		RunNo: 64075							
Prep Date:	Analysis [Date: 10)/29/2019	;	SeqNo: 2	192402	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
• •		_								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 101 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch ID: R64075			RunNo: 64075						
Prep Date:	Analysis Date: 10/29/2019			SeqNo: 2192402			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.4	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		93.8	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.0	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 102 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS Batch ID: 48455 RunNo: 64136

Ciletti ID. PB3	Datu	11D. 40	433	г	Kuriino. 6 4	4130				
Prep Date: 10/29/2019	Analysis D	Date: 10	0/31/2019	5	SeqNo: 2	194553	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	0.16	0.40								J
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3'-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								
-										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 103 of 123

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48455

Client ID: PBS Batch ID: 48455 RunNo: 64136

Ciletit ID. FB3	Dato	Datch ID. 46433		Kulino. 04130						
Prep Date: 10/29/2019	Analysis D	oate: 10)/31/2019	5	SeqNo: 2	194553	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	0.50								
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.3		3.330		69.5	26.7	85.9			
Surr: Phenol-d5	2.4		3.330		71.3	18.5	101			
Surr: 2,4,6-Tribromophenol	2.2		3.330		66.0	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		74.7	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		69.1	34.7	85.2			
Surr: 4-Terphenyl-d14	1.5		1.670		90.2	37.4	91.3			
• •										

TestCode: EPA Method 8270C: Semivolatiles

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 104 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48455	SampT	SampType: LCS			tCode: El	PA Method	8270C: Sem	ivolatiles				
Client ID: LCSS	Batch	n ID: 484	455	F	RunNo: 64	4136						
Prep Date: 10/29/2019	Analysis D	Analysis Date: 10/31/2019			SeqNo: 2	194554	Units: mg/k	Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Acenaphthene	1.3	0.20	1.670	0	75.4	46	89.5					
4-Chloro-3-methylphenol	2.6	0.50	3.330	0	78.8	44.1	101					
2-Chlorophenol	2.5	0.20	3.330	0	74.9	47	91					
1,4-Dichlorobenzene	1.2	0.20	1.670	0	72.1	41.4	85.8					
2,4-Dinitrotoluene	1.1	0.50	1.670	0	65.5	37.4	82					
N-Nitrosodi-n-propylamine	1.4	0.20	1.670	0	86.6	47.8	92.9					
4-Nitrophenol	2.4	0.25	3.330	0	71.5	45	94.3					
Pentachlorophenol	2.0	0.40	3.330	0	60.3	31.7	76.9					
Phenol	2.9	0.20	3.330	0	87.0	49.4	92.5					
Pyrene	1.2	0.20	1.670	0	69.1	52.9	82.7					
1,2,4-Trichlorobenzene	1.2	0.20	1.670	0	71.1	43.6	98.1					
Surr: 2-Fluorophenol	2.3		3.330		68.5	26.7	85.9					
Surr: Phenol-d5	2.5		3.330		74.8	18.5	101					
Surr: 2,4,6-Tribromophenol	2.4		3.330		70.7	35.8	85.6					
Surr: Nitrobenzene-d5	1.3		1.670		78.1	40.8	95.2					
Surr: 2-Fluorobiphenyl	1.2		1.670		73.2	34.7	85.2					
Surr: 4-Terphenyl-d14	1.3		1.670		76.0	37.4	91.3					

Sample ID: MB-48455	SampType: MBLK		TestCode: EPA Method 8270C: Semivolatile						•	
Client ID: PBS	Batch	n ID: 484	455	F	RunNo: 64	4267				
Prep Date: 10/29/2019	Analysis D	ate: 11	1/6/2019	8	SeqNo: 21	199506	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	0.030	0.20								J
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	0.015	0.20								J
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	0.14	0.50								J

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 105 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles PBS Client ID: Batch ID: 48455 RunNo: 64267 Prep Date: 10/29/2019 Analysis Date: 11/6/2019 SeqNo: 2199506 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 4-Bromophenyl phenyl ether ND 0.20 Butyl benzyl phthalate ND 0.20 ND 0.20 Carbazole 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 Chrysene ND 0.20 Di-n-butyl phthalate 0.18 0.40 J Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 ND 0.20 Dibenzofuran 1,2-Dichlorobenzene ND 0.20 1,3-Dichlorobenzene ND 0.20 1,4-Dichlorobenzene ND 0.20 ND 3,3'-Dichlorobenzidine 0.25 Diethyl phthalate 0.11 0.20 Dimethyl phthalate 0.036 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene ND 0.20 Fluorene ND 0.20 Hexachlorobenzene ND 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 Hexachloroethane ND 0.20 ND Indeno(1,2,3-cd)pyrene 0.20 Isophorone ND 0.40 0.20 1-Methylnaphthalene ND 2-Methylnaphthalene ND 0.20 2-Methylphenol ND 0.40 3+4-Methylphenol ND 0.20 N-Nitrosodi-n-propylamine ND 0.20 N-Nitrosodiphenylamine 0.030 0.20 J

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 106 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48455	SampT	SampType: MBLK		Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 484	455	F	RunNo: 6	4267				
Prep Date: 10/29/2019	Analysis D	oate: 11	/6/2019	S	SeqNo: 2	199506	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	0.019	0.20								J
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	0.0082	0.20								J
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.6		3.330		76.8	26.7	85.9			
Surr: Phenol-d5	2.6		3.330		79.5	18.5	101			
Surr: 2,4,6-Tribromophenol	1.7		3.330		52.3	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		71.3	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.0		1.670		59.7	34.7	85.2			
Surr: 4-Terphenyl-d14	1.4		1.670		85.6	37.4	91.3			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 48439 RunNo: 64136

Client ID: PBW	Batch ID: 48439		RunNo: 64136							
Prep Date: 10/29/2019	Analysis D	Date: 10	0/31/2019	5	SeqNo: 2	194544	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 108 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 48439 RunNo: 64136

5										
Prep Date: 10/29/2019	Analysis D	Date: 10)/31/2019	S	SeqNo: 21	194544	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	130		200.0		66.6	15	101			
Surr: Phenol-d5	99		200.0		49.5	15	84.6			
Surr: 2,4,6-Tribromophenol	170		200.0		84.1	27.8	112			
Surr: Nitrobenzene-d5	93		100.0		92.9	33	113			
Surr: 2-Fluorobiphenyl	83		100.0		83.1	26.6	107			
Surr: 4-Terphenyl-d14	62		100.0		61.9	18.7	148			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 109 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48439	SampT	SampType: LCS			tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	n ID: 484	439	F	RunNo: 64	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	8	SeqNo: 2194545					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	85	10	100.0	0	84.9	32.2	94			
4-Chloro-3-methylphenol	180	10	200.0	0	88.4	37.7	101			
2-Chlorophenol	170	10	200.0	0	83.6	32.6	90.1			
1,4-Dichlorobenzene	79	10	100.0	0	79.2	30	87.2			
2,4-Dinitrotoluene	72	10	100.0	0	72.2	35.9	85.8			
N-Nitrosodi-n-propylamine	97	10	100.0	0	97.0	37.1	108			
4-Nitrophenol	94	10	200.0	0	47.2	22.4	86.6			
Pentachlorophenol	140	20	200.0	0	70.0	31.6	91			
Phenol	110	10	200.0	0	57.2	21.7	84.9			
Pyrene	80	10	100.0	0	80.4	46.3	103			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	30.2	88.3			
Surr: 2-Fluorophenol	130		200.0		66.0	15	101			
Surr: Phenol-d5	100		200.0		51.5	15	84.6			
Surr: 2,4,6-Tribromophenol	160		200.0		80.3	27.8	112			
Surr: Nitrobenzene-d5	91		100.0		91.3	33	113			
Surr: 2-Fluorobiphenyl	81		100.0		81.1	26.6	107			
Surr: 4-Terphenyl-d14	59		100.0		58.7	18.7	148			

Sample ID: Icsd-48439	SampT	ype: LC	SD	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: LCSS02	Batch	1D: 48 4	439	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	8	SeqNo: 2	194546	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	84	10	100.0	0	84.3	32.2	94	0.709	32.9	
4-Chloro-3-methylphenol	170	10	200.0	0	86.7	37.7	101	1.92	29.9	
2-Chlorophenol	160	10	200.0	0	80.9	32.6	90.1	3.33	28.5	
1,4-Dichlorobenzene	75	10	100.0	0	75.1	15	87.2	5.36	44.9	
2,4-Dinitrotoluene	77	10	100.0	0	77.1	35.9	85.8	6.51	28.5	
N-Nitrosodi-n-propylamine	92	10	100.0	0	92.3	37.1	108	4.97	29.9	
4-Nitrophenol	100	10	200.0	0	50.6	15	86.6	6.96	68	
Pentachlorophenol	140	20	200.0	0	68.3	31.6	91	2.40	39.5	
Phenol	110	10	200.0	0	53.0	15	84.9	7.69	44.2	
Pyrene	78	10	100.0	0	78.3	46.3	103	2.65	23.8	
1,2,4-Trichlorobenzene	75	10	100.0	0	75.4	15.7	88.3	3.31	38	
Surr: 2-Fluorophenol	120		200.0		61.9	15	101	0	0	
Surr: Phenol-d5	93		200.0		46.7	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	160		200.0		78.3	27.8	112	0	0	
Surr: Nitrobenzene-d5	92		100.0		92.3	33	113	0	0	
Surr: 2-Fluorobiphenyl	81		100.0		80.9	26.6	107	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 110 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Icsd-48439 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 48439 RunNo: 64136

Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194546 Units: μg/L

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 4-Terphenyl-d14 58 100.0 57.7 18.7 148 0 0

Sample ID: MB-48439	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	1D: 48 4	139	F	tunNo: 6	4213				
Prep Date: 10/29/2019	Analysis D	ate: 11	/4/2019	S	SeqNo: 2	197264	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	0.85	10								J
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	4.1	10								J
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	3.1	10								J
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48439

Client ID: **PBW** Batch ID: **48439** RunNo: **64213**

TestCode: EPA Method 8270C: Semivolatiles

Prep Date: 10/29/2019 Analysis Date: 11/4/2019 SeqNo: 2197264 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 3,3'-Dichlorobenzidine ND 10 Diethyl phthalate ND 10 Dimethyl phthalate ND 10 2,4-Dichlorophenol ND 20 2,4-Dimethylphenol ND 10 4,6-Dinitro-2-methylphenol ND 20 2,4-Dinitrophenol ND 20 2.4-Dinitrotoluene ND 10 2,6-Dinitrotoluene ND 10 ND 10 Fluoranthene ND 10 Fluorene 10 ND Hexachlorobenzene ND 10 Hexachlorobutadiene Hexachlorocyclopentadiene ND 10 Hexachloroethane ND 10 10 Indeno(1,2,3-cd)pyrene ND ND 10 Isophorone 1-Methylnaphthalene ND 10 2-Methylnaphthalene ND 10 2-Methylphenol ND 10 ND 3+4-Methylphenol 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10 N-Nitrosodiphenylamine ND 10 Naphthalene ND 10 2-Nitroaniline ND 10 3-Nitroaniline ND 10 ND 10 4-Nitroaniline Nitrobenzene ND 10 2-Nitrophenol ND 10 4-Nitrophenol ND 10 ND Pentachlorophenol 20 10 Phenanthrene ND ND 10 Phenol Pyrene ND 10 Pyridine ND 10 1,2,4-Trichlorobenzene ND 10 2,4,5-Trichlorophenol ND 10 2,4,6-Trichlorophenol ND 10

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48439 Client ID: PBW		SampType: MBLK Batch ID: 48439			tCode: El	PA Method 4213	volatiles			
Prep Date: 10/29/2019	Analysis Da	Analysis Date: 11/4/2019			SeqNo: 2197264					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	140		200.0		68.6	15	101			
Surr: Phenol-d5	100		200.0		50.1	15	84.6			
Surr: 2,4,6-Tribromophenol	160		200.0		80.4	27.8	112			
Surr: Nitrobenzene-d5	84		100.0		84.5	33	113			
Surr: 2-Fluorobiphenyl	73		100.0		73.4	26.6	107			
Surr: 4-Terphenyl-d14	64		100.0		64.4	18.7	148			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathe Project: SWMU	
Sample ID: MB-48513	SampType: MBLK TestCode: EPA Method 7471: Mercury
Client ID: PBS	Batch ID: 48513 RunNo: 64163
Prep Date: 10/31/2019	Analysis Date: 11/1/2019 SeqNo: 2195473 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury	ND 0.033
Sample ID: LLLCS-48513	SampType: LCSLL TestCode: EPA Method 7471: Mercury
Client ID: BatchQC	Batch ID: 48513 RunNo: 64163
Prep Date: 10/31/2019	Analysis Date: 11/1/2019 SeqNo: 2195474 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury	0.0083 0.033 0.006660 0 124 70 130 J
Sample ID: LCS-48513	SampType: LCS TestCode: EPA Method 7471: Mercury
Client ID: LCSS	Batch ID: 48513 RunNo: 64163
Prep Date: 10/31/2019	Analysis Date: 11/1/2019 SeqNo: 2195475 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury	0.18 0.033 0.1667 0 109 80 120
Sample ID: MB-48571	SampType: MBLK TestCode: EPA Method 7471: Mercury
Client ID: PBS	Batch ID: 48571 RunNo: 64207
Prep Date: 11/4/2019	Analysis Date: 11/4/2019 SeqNo: 2197008 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury	ND 0.033
Sample ID: LCSLL-48571	SampType: LCSLL TestCode: EPA Method 7471: Mercury
Client ID: BatchQC	Batch ID: 48571 RunNo: 64207
Prep Date: 11/4/2019	Analysis Date: 11/4/2019 SeqNo: 2197009 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury	0.0050 0.033 0.006660 0 75.6 70 130 J
Sample ID: LCS-48571	SampType: LCS TestCode: EPA Method 7471: Mercury
Client ID: LCSS	Batch ID: 48571 RunNo: 64207
Prep Date: 11/4/2019	Analysis Date: 11/4/2019 SeqNo: 2197010 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury	0.17 0.033 0.1667 0 101 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48565 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 48565 RunNo: 64240

Prep Date: 11/4/2019 Analysis Date: 11/5/2019 SeqNo: 2198291 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.00018 0.00020 J

Sample ID: LCS-48565 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 48565 RunNo: 64240

Prep Date: 11/4/2019 Analysis Date: 11/5/2019 SeqNo: 2198292 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.4 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 115 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48433	mple ID: MB-48433 SampType: MBLK			Tes	tCode: El	PA Method	6010B: Soil I	/letals		
Client ID: PBS	Batch	h ID: 48	433	F	RunNo: 6	4206				
Prep Date: 10/28/2019	Analysis D	Date: 11	1/4/2019	\$	SeqNo: 2	196928	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.025	0.10								J
Chromium	0.12	0.30								J
Cobalt	ND	0.30								
Manganese	0.079	0.10								J
Nickel	ND	0.50								
Selenium	ND	2.5								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	0.92	2.5								J

Sample ID: LCS-48433	SampT	ype: LC	s	Tes	tCode: El	Metals				
Client ID: LCSS	Batch	1D: 48 4	433	F	RunNo: 6	4206				
Prep Date: 10/28/2019	Analysis D	ate: 11	/4/2019	S	SeqNo: 2	196930	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	25	2.5	25.00	0	101	80	120			
Arsenic	24	2.5	25.00	0	97.8	80	120			
Barium	24	0.10	25.00	0	96.0	80	120			
Beryllium	26	0.15	25.00	0	103	80	120			
Cadmium	24	0.10	25.00	0	96.6	80	120			
Chromium	24	0.30	25.00	0	96.9	80	120			
Cobalt	24	0.30	25.00	0	95.7	80	120			
Manganese	25	0.10	25.00	0	99.4	80	120			
Nickel	24	0.50	25.00	0	96.0	80	120			
Selenium	24	2.5	25.00	0	96.0	80	120			
Silver	4.9	0.25	5.000	0	98.4	80	120			
Vanadium	25	2.5	25.00	0	99.9	80	120			
Zinc	25	2.5	25.00	0	98.7	80	120			

Sample ID: MB-48519	SampTyp	e: MBLK	Test	tCode: El	PA Method	6010B: Soil I	Metals				
Client ID: PBS	Batch II	D: 48519	R	RunNo: 64	4206						
Prep Date: 10/31/2019	Analysis Date	e: 11/4/2019	S	SeqNo: 2196952			Units: mg/Kg				
Analyte	Result I	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Antimony	ND	2.5									
Arsenic	ND	2.5									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 116 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48519	SampType: MBLK			Tes	tCode: El	PA Method	6010B: Soil I	/letals		
Client ID: PBS	Batcl	h ID: 48	519	R	tunNo: 64	4206				
Prep Date: 10/31/2019	Analysis Date: 11/4/2019			S	SeqNo: 2196952			g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.033	0.10								J
Chromium	ND	0.30								
Cobalt	ND	0.30								
Iron	1.7	2.5								J
Manganese	0.021	0.10								J
Nickel	ND	0.50								
Selenium	ND	2.5								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	0.40	2.5								J

Sample ID: LCS-48519	Sample ID: LCS-48519 SampType: LCS					TestCode: EPA Method 6010B: Soil Metals						
Client ID: LCSS	Batch	n ID: 48	519	R	tunNo: 64	4206						
Prep Date: 10/31/2019	Analysis D)ate: 11	/4/2019	S	SeqNo: 2	196954	Units: mg/k	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Antimony	24	2.5	25.00	0	97.6	80	120					
Arsenic	25	2.5	25.00	0	99.6	80	120					
Barium	24	0.10	25.00	0	95.0	80	120					
Beryllium	26	0.15	25.00	0	103	80	120					
Cadmium	24	0.10	25.00	0	95.1	80	120					
Chromium	24	0.30	25.00	0	96.4	80	120					
Cobalt	24	0.30	25.00	0	97.2	80	120					
Iron	26	2.5	25.00	0	102	80	120					
Manganese	25	0.10	25.00	0	99.3	80	120					
Nickel	24	0.50	25.00	0	96.4	80	120					
Selenium	25	2.5	25.00	0	98.6	80	120					
Silver	4.6	0.25	5.000	0	92.7	80	120					
Vanadium	25	2.5	25.00	0	99.2	80	120					
Zinc	24	2.5	25.00	0	97.8	80	120					

Sample ID: MB-48433	SampType: MBLK	TestCode: EPA Method					
Client ID: PBS	Batch ID: 48433	RunNo: 64206	RunNo: 64206				
Prep Date: 10/28/2019	Analysis Date: 11/4/2019	SeqNo: 2197455	Units: mg/Kg				
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual			
Lead	0.24 0.25			J			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 117 of 123

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

Qual

RPDLimit

05-Dec-19

Project: SWMU	J 13							
Sample ID: LCS-48433	SampT	ype: LC	s	Test	Code: EF	PA Method	6010B: Soil I	Vietals
Client ID: LCSS	Batch ID: 48433			R	tunNo: 64	4206		
Prep Date: 10/28/2019	Analysis D	Analysis Date: 11/4/2019			eqNo: 2	197457	Units: mg/K	g
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD
Lead	25	0.25	25.00	0	99.7	80	120	

Sample ID: MB-48519 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: **PBS** Batch ID: **48519** RunNo: **64206**

Prep Date: 10/31/2019 Analysis Date: 11/4/2019 SeqNo: 2197458 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.25

Sample ID: LCS-48519 SampType: LCS TestCode: EPA Method 6010B: Soil Metals Client ID: LCSS Batch ID: 48519 RunNo: 64206 Prep Date: 10/31/2019 Analysis Date: 11/4/2019 SeqNo: 2197462 Units: mg/Kg SPK value SPK Ref Val %REC Result POL HighLimit %RPD **RPDLimit** Qual Analyte LowLimit 24 0.25 25.00 97.9 Lead

Sample ID: MB-48433 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals Client ID: PBS Batch ID: 48433 RunNo: 64334 Analysis Date: 11/7/2019 Prep Date: 10/28/2019 SeqNo: 2201997 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Iron 5.0 2.5

Sample ID: LCS-48433 SampType: LCS TestCode: EPA Method 6010B: Soil Metals Client ID: LCSS Batch ID: 48433 RunNo: 64334 Prep Date: 10/28/2019 Analysis Date: 11/7/2019 SeqNo: 2201999 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 26 25.00 В Iron 2.5 104 80 120

Sample ID: 1910D68-001AMS TestCode: EPA Method 6010B: Soil Metals SampType: MS Client ID: SWMU 13-4 (0-0.5') Batch ID: 48433 RunNo: 64334 Prep Date: 10/28/2019 Analysis Date: 11/7/2019 SeqNo: 2202031 Units: mg/Kg %RPD Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Arsenic 24 5.0 24.76 0 98.5 75 125 89.9 75 Beryllium 24 0.30 24.76 1.637 125 Cadmium 21 0.20 24.76 0 83.8 75 125 Cobalt 28 0.59 24.76 7.946 81.4 75 125 Nickel 37 0.99 17.06 82.3 75 125 24.76

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 118 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910D68

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: 1910D68-001AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: SWMU 13-4 (0-0.5') RunNo: 64334 Batch ID: 48433

Prep Date: 10/28/2019 Analysis Date: 11/7/2019 SeqNo: 2202031 Units: mg/Kg

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Selenium 27 5.0 24.76 4.047 90.8 75 125 Vanadium 58 5.0 24.76 36.19 88.8 75 125

Sample ID: 1910D68-001AMSD TestCode: EPA Method 6010B: Soil Metals SampType: MSD

Client ID: SWMU 13-4 (0-0.5') Batch ID: 48433 RunNo: 64334

Prep Date: 10/28/2019 Analysis Date: 11/7/2019 SeaNo: 2202032 Units: ma/Ka

Fiep Date. 10/26/2019	Allalysis Date. 11/1/2019				3eq110. 2202032			y		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	27	5.1	25.59	0	106	75	125	10.9	20	
Beryllium	26	0.31	25.59	1.637	93.4	75	125	6.67	20	
Cadmium	22	0.20	25.59	0	86.3	75	125	6.16	20	
Cobalt	30	0.61	25.59	7.946	84.3	75	125	4.93	20	
Nickel	39	1.0	25.59	17.06	84.9	75	125	3.58	20	
Selenium	26	5.1	25.59	4.047	84.5	75	125	3.23	20	
Vanadium	59	5.1	25.59	36.19	89.9	75	125	1.71	20	

Sample ID: MB-48651	SampType: MBLK			Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID: PBS	Batch	n ID: 48	651	F	RunNo: 6	4473				
Prep Date: 11/7/2019	Analysis D	ate: 1 1	1/13/2019	9	SeqNo: 2	207228	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.045	0.10								J
Chromium	0.086	0.30								J
Cobalt	ND	0.30								
Iron	3.5	2.5								
Lead	ND	0.25								
Manganese	0.049	0.10								J
Nickel	ND	0.50								
Selenium	ND	2.5								
Silver	0.044	0.25								J
Vanadium	ND	2.5								
Zinc	ND	2.5								

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 119 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

SWMU 13

Sample ID: LCS-48651	SampType: LCS TestCode: E					EPA Method 6010B: Soil Metals						
Client ID: LCSS	Batch	ID: 486	651	R	RunNo: 64	4473						
Prep Date: 11/7/2019	Analysis Da	ate: 11	/13/2019	S	SeqNo: 22	207230	Units: mg/K	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Antimony	24	2.5	25.00	0	94.5	80	120					
Barium	24	0.10	25.00	0	94.7	80	120					
Beryllium	24	0.15	25.00	0	96.1	80	120					
Cadmium	24	0.10	25.00	0	96.1	80	120					
Chromium	24	0.30	25.00	0	94.0	80	120					
Cobalt	24	0.30	25.00	0	95.2	80	120					
Iron	26	2.5	25.00	0	104	80	120			В		
Lead	24	0.25	25.00	0	97.6	80	120					
Manganese	26	0.10	25.00	0	103	80	120					
Nickel	24	0.50	25.00	0	94.3	80	120					
Selenium	20	2.5	25.00	0	81.8	80	120					
Silver	4.8	0.25	5.000	0	95.5	80	120					
Vanadium	24	2.5	25.00	0	96.6	80	120					
Zinc	23	2.5	25.00	0	93.6	80	120					
Sample ID: MB-48651	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	6010B: Soil I	Vietals				
Client ID: PBS	Batch	ID: 480	651	R	RunNo: 64	4552						
Prep Date: 11/7/2019	Analysis Da	ate: 11	/15/2019	S	SeqNo: 22	210343	Units: mg/K	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Arsenic	ND	2.5										
Sample ID: LCS-48651	SampT	ype: LC	s	Tes	tCode: EF	PA Method	6010B: Soil I	Vietals				
Client ID: LCSS	Batch	ID: 486	651	R	RunNo: 64	4552						
Prep Date: 11/7/2019	Analysis Da	ate: 11	/15/2019	S	SeqNo: 22	210345	Units: mg/K	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Arsenic	25	2.5	25.00	0	99.5	80	120					
Sample ID: MB-48651	SampT	ype: ME	BLK	TestCode: EPA Method 6010B: Soil Metals								
Client ID: PBS	Batch ID: 48651		RunNo: 64594									
Prep Date: 11/7/2019	Analysis Da	Batch ID: 48651 Analysis Date: 11/18/2019			SeqNo: 2212237 Units: mg/Kg			(g				

Qualifiers:

Analyte Arsenic

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Result

ND

PQL

2.5

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Limit

Page 120 of 123

RPDLimit

Qual

%RPD

HighLimit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48651 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 48651 RunNo: 64594

Prep Date: 11/7/2019 Analysis Date: 11/18/2019 SeqNo: 2212239 Units: mg/Kg

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Arsenic 25 2.5 25.00 0 100 80 120

Sample ID: 1910D68-001AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: **SWMU 13-4 (0-0.5')** Batch ID: **48433** RunNo: **64665**

Prep Date: 10/28/2019 Analysis Date: 11/20/2019 SeqNo: 2215348 Units: mg/Kg

1 10	Date. 10/20/2019	Analysis Date. 11/20/2019				0cq110. 2213340			y			
Ana	lyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antim	ony	ND	5.0	24.76	0	0	75	125			S	
Bariu	m	360	0.20	24.76	297.5	243	75	125			S	
Chror	nium	120	0.59	24.76	111.6	28.0	75	125			S	
Lead		26	0.50	24.76	5.243	82.9	75	125				
Mang	anese	520	0.20	24.76	442.9	305	75	125			ES	
Silver		1.7	0.50	4.953	0	33.4	75	125			S	
Zinc		140	5.0	24.76	122.8	51.1	75	125			S	

Sample ID: 1910D68-001AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: SWMU 13-4 (0-0.5') Batch ID: 48433 RunNo: 64665

		,				_						
Prep Date:	10/28/2019	Analysis D	Date: 11	1/20/2019	5	SeqNo: 2	215349	Units: mg/k	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony		ND	5.1	25.59	0	0	75	125	0	20	S	
Barium		330	0.20	25.59	297.5	126	75	125	8.12	20	S	
Chromium		99	0.61	25.59	111.6	-50.7	75	125	18.3	20	S	
Lead		26	0.51	25.59	5.243	81.3	75	125	1.12	20		
Manganese		390	0.20	25.59	442.9	-191	75	125	27.3	20	RS	
Silver		1.7	0.51	5.119	0	32.4	75	125	0.0334	20	S	
Zinc		120	5.1	25.59	122.8	-25.4	75	125	15.2	20	S	

Sample ID: 1910D68-001APS SampType: PS TestCode: EPA Method 6010B: Soil Metals

Client ID: **SWMU 13-4 (0-0.5')** Batch ID: **48433** RunNo: **64665**

Prep Date:	Analysis D	oate: 11	/20/2019	9	SeqNo: 2	215350	Units: mg/K	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	32	4.9	49.18	0	66.1	80	120			S
Barium	340	0.20	49.18	297.5	93.1	80	120			
Chromium	150	0.59	49.18	111.6	87.1	80	120			
Lead	48	0.49	49.18	5.243	86.7	80	120			
Manganese	490	0.20	49.18	442.9	92.4	80	120			
Silver	5.9	0.49	9.836	0	60.2	80	120			S
Zinc	160	4.9	49.18	122.8	80.6	80	120			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 121 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 48486 RunNo: 64273 Prep Date: 10/30/2019 Analysis Date: 11/6/2019 SeqNo: 2199636 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Antimony ND 0.050 Arsenic ND 0.020 ND 0.020 Barium Beryllium ND 0.0030 Cadmium ND 0.0020 0.0060 Chromium ND Cobalt ND 0.0060 ND 0.020 Iron Manganese ND 0.0020 Nickel ND 0.010 Silver ND 0.0050 J Vanadium 0.0012 0.050 ND 0.020 Zinc

Sample ID: LCS-48486	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: LCSW	Bato	ch ID: 48	486	F	RunNo: 6	4273				
Prep Date: 10/30/2019	Analysis	Date: 1 1	1/6/2019	S	SeqNo: 2	199638	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.51	0.050	0.5000	0	102	80	120			
Arsenic	0.50	0.020	0.5000	0	99.8	80	120			
Barium	0.48	0.020	0.5000	0	96.6	80	120			
Beryllium	0.52	0.0030	0.5000	0	103	80	120			
Cadmium	0.51	0.0020	0.5000	0	101	80	120			
Chromium	0.50	0.0060	0.5000	0	99.3	80	120			
Cobalt	0.51	0.0060	0.5000	0	101	80	120			
Iron	0.51	0.020	0.5000	0	102	80	120			
Manganese	0.50	0.0020	0.5000	0	101	80	120			
Nickel	0.49	0.010	0.5000	0	98.1	80	120			
Silver	0.095	0.0050	0.1000	0	94.6	80	120			
Vanadium	0.51	0.050	0.5000	0	101	80	120			
Zinc	0.49	0.020	0.5000	0	98.7	80	120			

Sample ID: MB-48486	SampType: MBLK	TestCode: EPA 6010B: Total Recoverable Metals
Client ID: PBW	Batch ID: 48486	RunNo: 64389
Prep Date: 10/30/2019	Analysis Date: 11/11/2019	SeqNo: 2203942 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Lead	0.0043 0.0050	J

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 122 of 123

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910D68**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 48486 RunNo: 64389

Prep Date: 10/30/2019 Analysis Date: 11/11/2019 SeqNo: 2203944 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.51 0.0050 0.5000 0 101 80 120

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 48486 RunNo: 64501

Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208275 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 48486 RunNo: 64501

Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208277 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.51 0.0050 0.5000 0 103 80 12

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 123 of 123

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Nam	e: MARATH	ON GALLUP	Work	Order Nur	mber: 191	0D68			RcptNo	p: 1
Received B	sy: Jun	Rojas	10/25/20	19 9:15:0	00 AM					
Completed I		0	10/25/20	19 10:34:	42 AM		/m/_	P		
Reviewed B	YEN K	1	10/2	5/19	7		Loab)) ae	4	
Chain of C	Custody									
1. Is Chain	of Custody com	plete?			Yes	~	No		Not Present	
2. How was	the sample deli	ivered?			Cou	rier				
Log In		2011					044.0			
o. was an a	ittempt made to	cool the sam	iples?		Yes	V	No		NA 🗌	
4. Were all s	samples receive	d at a temper	rature of >0° C to	6.0°C	Yes	~	No		NA 🗆	
5. Sample(s) in proper conta	ainer(s)?			Yes	~	No			
6 Sufficient	sample volume	for indicated	tost(s)2		Yes		No. I			
			roperly preserved	10				_		
	ervative added t		ropeny preserved	17	Yes	V				
O. Was piese	sivative added t	o bottles?			Yes	Ш	No	V	NA 🗌	
9. VOA vials	have zero head	Ispace?			Yes	V	No [No VOA Vials	
10. Were any	sample contain	ers received	broken?		Yes		No	~		
									# of preserved / bottles checked)	(1
	erwork match bo				Yes	V	No [for pH:	(1)
	repancies on ch						- Total 1	_		r >12/unless noted)
	es correctly idea				Yes	V			Adjusted?	100
	what analyses w olding times abl		a?		Yes	V	9.75	_	Observed how	12 1/201
	fy customer for		.)		Yes	V	No L		Checked by:	ND 10 29
Special Har	ndling (if ap	plicable)								
		111111111111111111111111111111111111111	with this order?		Yes		No		NA 🗹	
Pers	son Notified:			Date				emment.		
By V	Nhom:			Via:	eM	ail 🗆	Phone	Fax	☐ In Person	
Reg	arding:									
Clie	nt Instructions:									
16. Additiona	l remarks:									
17. <u>Cooler In</u>	formation									
Cooler In		Condition	Seal Intact	Seal No	Seel D	oto	Cianad D		Table 1	
1	0.0	Good	Yes	Jeai NU	Seal D	ale	Signed B	У	ned a service	
2	0.2	Good	Yes	····) who is a second second	en i mer egelik de lan landere		() - I files i i i i i i i i i i i i i i i i i i i			
3	0.4	Good	Yes		an end-ti-ti-timene account of the			A STATE OF THE PARTY OF THE PAR		

1 OF 6

Turn-Around **X Standard Project Name Project Mana Project Mana Sampler: On Ice: Sample Tem Sample Tem Container Type and # **Yial-2 **Vial-2 **Vial-3												1	1)	1
ANALYSIS LABORATORY A Standard Rush ANALYSIS LABORATORY Astandary Project Name: SWMU 13 Analysis Road Project Name Project	Chain-of-Custody Record	Turn-Around	Time:				I	4		>	PO	Z	NI N	IAT	
Callup Refinery Project Name. SWMU 13 Allowins New Applies For Secretary Project Name. SWMU 13 Allowins New Applies For Sec 345 4107							< <	Z	X	IS	4	30	RA	OR	. >
Solidiup, NM 87301 Project #: Solidiup, NM 87301 Project Wanager. Brian Moore Project Wanager. Brian	Gallup Refinery	Project Name					>	A VAVA			letne	9			
Substitution Substitution Project #: Substitution Project #: Substitution Project #: Substitution Project Manager: Brian Moore Substitution Substitut	ling Address: 92 Giant Crossing Road					4901	Hawkir	s NE	,	nane	aue.	N N	7109		
Signore Society Soci	Gallup, NM 87301	Project #:			·	Tel. 5	05-34	5-397	10	ax 5	05-34	5-41	07		
Type EXCEL									nal		senbe	, t			Ē
Sampler Tracy Payne - 919-561-7055 Structure Tracy Payne - 919-561-705		Project Mana	ger: Brian Mc	oore				-							-
Type EXCEL Sampler Tracy Payne - 919-561-7055 Sampler Tracy Payne - 919-561-7055 Sampler Type Container Preservative Container Preservative Container Type								(5)	/		S.A.				
Type EXCEL	Other	Sampler:	Tracy Payne		_						780		əp		(
Sample Temperature: 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		On Ice:		No I							Ω / 9	(A	oine		N 10
Container Preservative O-2-0-5-2- Fig. Fi		Sample Tem	0-0	200	_								СV		(人
CSO SWML 13-4 (0-0.5) 8 oz Jar - 2 Neat	Time Matrix		trive	0.470-0.2 0.470-0.4 1910068									Metals and		Air Bubbles
Vial-2 WeOH	1050 Soil SWMU 13-4 (71.60	,-	100-		×					×		×		
105 Swmu i3-4 (1.5-2') Squar-2 Neat -000 X			МеОН								×				
105 Swhu i3-4 (1.5-2') 8-3-3-2 NEAT	→ →	402 JAR-1	NEAT	-									X		
	5WMU [3-4		NEAT	-005		×					X	X	×		
115 SWML 13-4 (8-10') 802-JAR-2 NEAT		VIAL-2	Medh								×				
115 Swmu 13-4 (8-10') 802.178-2 NEAT	→	402 JAR-1	NEAT	-1									×		
ime: Relinquished by: Received by: Receive		8 OF TAR-2	NEAT	-603		\times					×	X	×		
ime: Relinquished by: Received by: Date Time Remarks: See attached sheet for	→ → ·	VIAL-2	MEDH	-							X				
To A Analytes. Received by: Date Time Remarks: See attached sheet for															
ime: Refinquished by: Aeceived by: Date Tim	ine:	Received by:	Tarrior	E 2	Rema	rks: S	ee a't Ana	tach lytes	D	eet f	or Ar	lalyt	ical M	ethods	
	ime:	Received by:													

2 00 6

	AL RY							(1)	/ 1C	(Y)	Air Bubbles											spou	
5	HALL ENVIKONMENIAL ANALYSIS LABORATORY		60					an	מווו	60	Metals and					_						sheet for Analytical Methods	
	2 S	_	Albuquerque, NM 87109	1107		-		9			ima2) 0728	×		×	X	×	-	_	×			ytica	
1	S	l.con	N N	345-4	est						8260B (VO	×	×		×	\hat{x}	×		×	×		Anal	
	Z Z	enta	anba	505-3	sedn	9	5 bcB.	2808	3/5		S081 Pestic											for ,	
	NIS I	ironn	andne	Fax 505-345-4107	sis		(°OS'°	d,sC	N'ε	ON'	IO, 7) snoinA											ieet	
	YS F	llenv	- Alb		nal						RCRA 8 Me											s p	
- 1	ANAL	www.hallenvironmental.com	R	Tel. 505-345-3975	1		(SN				01E8) HAG											See attached et Analytes.	
:	ZZ	*	kins	345-							EDB (Metho											atta	
			4901 Hawkins NE	505-		- (4	ONINIO.				APH 8015B	×			\.	\			×			See let A	
			4901	Te.						-	BTM+X3T8	^			×	×			_		-	irks: Targ	
											BTM+X3T8											Remarks: See attache and Target Analytes	
												1										5	
						oore		Tracy Payne - 919-561-7055	oN 🗆	0.02	0.4-6-50.7 0.4-6-50.4 191006x	h00-			-005	000-		7	t00-		-\	Date Time	Date Time
Time:	□ Rush	Project Name: SWMU 13				Project Manager: Brian Moore		Tracy Payne	□ Yes □	perature: 6-0	Φ	Neat	МеОН	NEAT	NEAT	NEAT	MEOH	NEAT	NEAT	MEDH	NEAT	Jan, Carliby	
Turn-Around	X Standard	Project Name		Project #:		Project Mana		Sampler:	On Ice:	Sample Tem	Container Type and #	8 oz Jar - 2	Vial - 2	402 JAR-1	402JAR-1	802 IAR-2	VIAL-Z	402 JAR-1	802JAR-2	VIAL-2	402 IAR-1	Received by:	Received by:
Chain-of-Custody Record	Marathon Petroleum Company LP		Mailing Address: 92 Giant Crossing Road	7301		eum.com	X Level 4 (Full Validation)				Sample Request ID	SWMU 13-4 (14-15.5)		\rightarrow	GWIMU 13-4 (15.5-16)	SWMU 13-5(0-0.5')		→	SWMU 13-5(1.5-2')		→	Ī	
ustody	troleum	ery	ant Cros	Gallup, NM 87301	505-726-9745	Bmoore1@marathonpetroleum.com	X Level		-1			SWMU			SWIMU	SWMU !			SMMU			ned by:	ned by:
-of-C	hon Pe	Gallup Refinery	s. 92 G	Gall	505-72	e1@mara	-		EXCEL		Matrix	Soil									\rightarrow	Relinquished by:	Relinquished by:
hain		Gallu	Addres		#:		QA/QC Package:	٤٢	EDD (Type)		Time	1125		>	1135	1355		→	SE	-	\rightarrow	Time:	Time:
O	Client:		Mailing		Phone #:	Email:	QA/QC Packa	□ Other	X EDD		Date	19/23/19									\rightarrow	Date: Time:	Date:

3 or 6

HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	2	nal	O/MRO)	(Ge) (Ge)	OA .81 .406 .728 .728 .738 .818	(G) (G) (G) (G) (G) (G) (G) (G)	PTEX NO. 4 HEAL NO. 6 HEAL NO. 6 HEAL NO. 6 HEAL NO. 6 HEAL NO. 7 HEAL N		×	X	X X X X	× × × × × × × × × × × × × × × × × × ×	×	× .	XXX X	X		Time Remarks: See attached sheet for Analytical Methods	Time
Turn-Around Time:	X Standard Rush	Project Name: SWMU 13		Project #:		Project Manager: Brian Moore	Sampler: Tracy Payne - 919-561-7055	On Ice: Pres No	Sample Temperature: $0.0 - 0 = 0$	Container Preservative 0.2-1 Type and # Type	8 oz Jar - 2 Neat	Vial - 2 MeOH	402 JAR-2 NEAT	BOSTAR-1 NEAT	8 a JAR-1 NEAT		_	NEAT	VIAL-2 MEOH	I NEAT		Received by: Date
Chain-of-Custody Record	Client: Marathon Petroleum Company LP	Gallup Refinery	Mailing Address: 92 Giant Crossing Road	Gallup, NM 87301	Phone #: 505-726-9745	Email: Bmoore1@marathonpetroleum.com QA/QC Package: X Level 4 (Full Validation)		X EDD (Type) EXCEL		Date Time Matrix Sample Request ID	105/9/1430 Soil SWMU 13-5 (8-10)		→	1435 SWAU 13-5(10-10.5)	1445 BWMU 13-5 (14-16')		^	[650 SWAL 13-6 (0-0.5')		→ → →	Date: Time: Relinquished by:	Relinanished by:

4 or 6

HALL ENVIRONMENTAL	ANALYSIS LABORATORY		60								Metals and	×		×	×		×	×		>		sheet for Analytical Methods	
Σ	O	٤	Albuquerque, NM 87109	Fax 505-345-4107					_		im92) 0728	×		^	X		^	X	•			alytic	
O	AB	www.hallenvironmental.com	N N	345-	iest					(∀	8260B (VO.	×	×		X	X		X	X			Ana	
IR		nenta	erque	505-	Redu	S	S PCB's	808	3 / S	əpi	8081 Pestio											for	
>	SIS	ironn	ndne	-ax	sis	([†] OS' [†] Oo	A,sO	N'E	ON'	D,7) enoinA											neet	
Ш	YS	llenv	- Alb		Analysis Request				•	stals	RCRA 8 Me												
	4	w.hal	H	975	٨		(SM	IIS0	728	3 10	01£8) HA9											attached nalytes.	
4	Z	*	kins	45-3							EDB (Wetho											atta naly	
			4901 Hawkins NE	Tel. 505-345-3975							TPH (Metho											Remarks: See attache and Target Analytes	
		W.	901	el.							83108 H9T	×			X			×				ks:	
			4	150		(BTM+X3T8										_	Remarks: and Targ	
				Г	4		(1508)s'A	IMT	+3	BTM+X3T8	7						-			-		
		3				Moore		Tracy Payne - 919-561-7055	ON 🗆	0-0-0	0.2-0=0.2 0.4-0=0.4 HEAL NO.	-		+	-013		-)	1010		1		Date Time /0/95/19 9:15	Ţ
	□ Rush	Project Name: SWMU 13				ger: Brian Moore		Tracy Payn	₽ Yes	perature: 0.0	Preservative Type	Neat	МеОН	NEAT	NEAT	MEOH	NEAT	NEAT	НОЭЖ	NEAT		MY YOU	
plipole-line -	X Standard	Project Name		Project #:		Project Mana		Sampler:	On Ice:	Sample Temp	Container Type and #	8 oz Jar - 2	Vial - 2	नेव्ह जबर-।	8 oz JAR-2	VIAL-2	4 02 JAR-1	802TAR-2	VIAL-Z	402 JAR-1		Received by:	Received by:
מברסומ	Client: Marathon Petroleum Company LP		ng Road	01		n.com	X Level 4 (Full Validation)				Sample Request ID	SWMU 13-6 (1.5-2')		→	6(2-31)		_	(,8-9,)				ì	
CHAILL-OI-CUSTONY NECOLO	roleum Co	ıry	Mailing Address: 92 Giant Crossing Road	Gallup, NM 87301	505-726-9745	Email: Bmoore1@marathonpetroleum.com	X Level 4 (F				Sample	SWMU 13			9-E1 NWMS		,	SWMU 13-6 (6-8')				1/1	ed by:
2-10-	hon Pet	Gallup Refinery	3. 92 Gi	Gallu	505-72	1@marat			EXCEL		Matrix	Soil								>		Relinquished by:	Relinquished by:
	Marat	Gallup	Address		:#	Bmoore	QA/QC Package:	35	X EDD (Type)		Time	1700		\rightarrow	1710		\rightarrow	1715	,	\rightarrow		Date: Time:	Time:
כ	Client:		Mailing		Phone #:	Email:	QA/QC Packa	□ Other	X EDD		Date	10/23/10								>		loge:	Date:

5 or 6

Turn-Around Time: Colore	sheet for Analytical Methods
Turn-Around Time: A Standard Rush Project Name: SWMU 13	cal N
Turn-Around Time: A Standard Rush Project Name: SWMU 13	alytic
Turn-Around Time: Standard Continuer: Swwu 13	An
Turn-Around Time: Turn-Around Time: Standard Rush Project Name: SWMU 13 A901 Hav Project Name: SWMU 13 Project Manager: Brian Moore Project Manager: Brian Moore Project Manager: Brian Moore Sampler: Tracy Payne - 919-561-7055 Sampler: T	at for
Turn-Around Time: Name: Swmu 13	hee
Turn-Around Time: Name: Swmu 13	0 .
Turn-Around Time: Name Swmu 13	See attached et Analytes.
Industrian Turn-Around Time: Industrian Project Name: SWMU 13	Ana Ana
ny LP x Standard □ Rush Project Name: SWMU 13 oad Project Manager: Brian Moore On Ice: Aryes □ No Sample Temperature: 0.0-0-0-0 Sample Temperature: 0.0-0-0-0-0 Type and # Type Container Type Aryes Nial - 2 Neat Vial - 1 NEAT Accura - 017	
ny LP X Standard Rush Project Name: SWMU 13 oad Project Manager: Brian Moore Project Manager: Brian Moore Project Manager: Brian Moore Sampler: Tracy Payne - 919-561-7055 On Ice: E-Yes No October Sampler: Tracy Payne - 919-561-7055 On Ice: E-Yes No October Sampler: Tracy Payne - 919-561-7055 On Ice: E-Yes No October Type and # Type If the Location Vial - 2 Neat October Vial - 2 Neat Vial - 2 Neat Vial - 2 Neat Vial - 1 Neat Vial - 1 Neat Action Nea	Remarks:
ny LP x Standard Rush Project Name: SWMU 13 oad Project Manager: Brian Mc Sampler: Tracy Payne On Ice: Aryes Sample Temperature: 0.0 Container Preservative Type and # Type and # Type Act Type and # Vial - 2 Neat Vial - 3 Neat Vial - 4 Neat Vial - 4 Neat Vial - 5 Neat Vial - 7 N	Ren
ny LP ny LP lidation) lidation)	Date Time Carrier 10/25/19 9:15 Date Time
ny LP ny LP lidation) lest ID NK	Received by:
And the state of t	e: Relinquished by:
Chain: Marat Client: Marat Gallup Gallup Mailing Address CAVOC Package: CAVOC Pac	Date: Time: \(\frac{100}{24} \) O To D Date: Time: \(\frac{1}{24} \)
Client: Nailing A Mailing A Date Date Date Date	Date:

6 05 6

HALL ENVIRONMENTAL	rtal.com	Albuquerque, NM 87109	505-345-4107	luest				(A(Α) -VC [8]	8260B (VO.) 8270 (Semi Metals - To Cyanide	×		×	×	×			See attached sheet for Analytical Methods et Analytes.	
HALL ENVIR	www.hallenvironmental.com	-1		Analysis Request		(†OS'†O	NIS(3577(3,40(or 8 stals NO,	PAH (8310 RCRA 8 Me Anions (F.Cl								ached sheet fo	
	W	4901 Hawkins NE	Tel. 505-345-3975			λluo st	1) 10 10	НРН RO .	+∃! (e)	BTEX+MTB BTEX+MTB BTEX+MTT BTPH (Methory) PHDB (Methory)	×	×						Remarks: See attacher and Target Analytes	
					floore	(1000	- 919-561-7055	No	0.0=0-	0.2 -0-0.2 0.4 -0-0.4 HEAL NO.	-01%							Date Time R	Date Time
X Standard	SWMU 13				yer: Brian N		Tracy Payne	₽Yes	erature: 0-0	Preservative Type	HCI	Neat	Neat	HNO ₃	NaOH			1917:00	
× Standard	Project Name: SWMU 13		Project #:		Project Manager: Brian Moore		Sampler:	On Ice:	Sample Temperature:	Container Type and #	40ml voa - 5	250 ml amber - 1	1 liter amber - l	250 ml plastic - 1	500 ml plastic - 1			Received by:	Received by:
Client: Marathon Petroleum Company LP	A	92 Giant Crossing Road	Gallup, NM 87301	-9745	Email: Bmoore1@marathonpetroleum.com	X Level 4 (Full Validation)				Sample Request ID	EB102319				→			by:	by:
t: Marathon Petroleum Company I	Gallup Refinery		Gallup	505-726-9745	1@maratho			EXCEL		Matrix	Water				->	7		Relinquished by:	Relinquished by:
Marat	Gallup	Mailing Address:		#:	Bmoore	QA/QC Package:	<u> </u>	(Type)		Time	0481				\rightarrow			Time: 0760	Time:
Client:		Mailing		Phone #:	Email:	QA/QC Packa	□ Other	X EDD (Type)		Date	6/62/21				\rightarrow			Date: 19/24/0	Date:

SWMU 13 - Soil and Equipment Blank Analytical Requirements

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese)

Inorganic Analytical Methods

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 05, 2019

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: SWMU 13 OrderNo.: 1910E04

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 30 sample(s) on 10/25/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-6 (17-18')

Project: SWMU 13

Collection Date: 10/24/2019 9:30:00 AM

Lab ID: 1910E04-001 **Matrix:** SOIL **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.6		mg/Kg	1	10/31/2019 5:44:47 AM	1 48458
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/31/2019 5:44:47 AM	1 48458
Surr: DNOP	99.5	0	70-130		%Rec	1	10/31/2019 5:44:47 AM	1 48458
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.5	5.0		mg/Kg	1	10/30/2019 1:24:22 PM	1 48446
Surr: BFB	115	0	77.4-118		%Rec	1	10/30/2019 1:24:22 PM	1 48446
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0036	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:03:39 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.72	4.9		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Arsenic	ND	2.8	4.9		mg/Kg	2	11/18/2019 7:49:17 PM	
Barium	260	0.045	0.20		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Beryllium	1.3	0.018	0.29		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Cadmium	ND	0.047	0.20		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Chromium	13	0.16	0.59		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Cobalt	5.7	0.21	0.59		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Iron	18000	71	240		mg/Kg	100	11/18/2019 7:50:51 PM	1 48604
Lead	1.7	0.47	0.49		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Manganese	430	0.041	0.20		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Nickel	12	0.29	0.98		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Selenium	ND	2.5	5.0		mg/Kg	2	11/25/2019 6:33:49 PM	1 48977
Silver	ND	0.063	0.49		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Vanadium	23	0.13	4.9		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
Zinc	19	0.77	4.9		mg/Kg	2	11/18/2019 7:49:17 PM	1 48604
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Aniline	ND	0.13	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Anthracene	ND	0.10	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Azobenzene	ND	0.14	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benz(a)anthracene	ND	0.094	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benzo(b)fluoranthene	ND	0.086	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/1/2019 10:08:56 AM	1 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 195

Lab Order 1910E04

Collection Date: 10/24/2019 9:30:00 AM

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

SWMU 13

Project:

CLIENT: Marathon Client Sample ID: SWMU 13-6 (17-18')

Lab ID: 1910E04-001 **Matrix:** SOIL **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Butyl benzyl phthalate	ND	0.099	0.19		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
Carbazole	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
4-Chlorophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Chrysene	ND	0.086	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Di-n-butyl phthalate	0.16	0.15	0.39	J	mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Di-n-octyl phthalate	ND	0.099	0.39		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
3,3'-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
2,4-Dinitrotoluene	ND	0.11	0.49		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Fluoranthene	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Af	M 48455
Fluorene	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Hexachlorobutadiene	ND	0.14	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455
Indeno(1,2,3-cd)pyrene	ND	0.097	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	
Isophorone	ND	0.14	0.39		mg/Kg	1	11/1/2019 10:08:56 Al	
1-Methylnaphthalene	ND	0.15	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/1/2019 10:08:56 Al	M 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-6 (17-18')

Project: SWMU 13

Collection Date: 10/24/2019 9:30:00 AM

 Project:
 SWMU 13
 Collection Date: 10/24/2019 9:30:00 AM

 Lab ID:
 1910E04-001
 Matrix: SOIL
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES			Analyst: JD				
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
N-Nitrosodi-n-propylamine	ND	0.14	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
N-Nitrosodiphenylamine	ND	0.10	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Naphthalene	ND	0.15	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
2-Nitroaniline	ND	0.14	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Nitrobenzene	ND	0.13	0.39	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Phenanthrene	ND	0.11	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Phenol	ND	0.12	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Pyrene	ND	0.091	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Pyridine	ND	0.12	0.39	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
2,4,5-Trichlorophenol	ND	0.13	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
2,4,6-Trichlorophenol	ND	0.10	0.19	mg/Kg	1	11/1/2019 10:08:56 A	M 48455
Surr: 2-Fluorophenol	72.2		26.7-85.9	%Rec	1	11/1/2019 10:08:56 A	M 48455
Surr: Phenol-d5	75.3		18.5-101	%Rec	1	11/1/2019 10:08:56 A	M 48455
Surr: 2,4,6-Tribromophenol	73.5		35.8-85.6	%Rec	1	11/1/2019 10:08:56 A	M 48455
Surr: Nitrobenzene-d5	78.4		40.8-95.2	%Rec	1	11/1/2019 10:08:56 A	M 48455
Surr: 2-Fluorobiphenyl	66.7		34.7-85.2	%Rec	1	11/1/2019 10:08:56 A	M 48455
Surr: 4-Terphenyl-d14	91.0		37.4-91.3	%Rec	1	11/1/2019 10:08:56 A	M 48455
EPA METHOD 8260B: VOLATILES						Analyst: DJI	=
Benzene	ND	0.0041	0.025	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
Toluene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
Naphthalene	ND	0.010	0.10	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/30/2019 3:05:18 P	
Acetone	ND	0.041	0.75	mg/Kg	1	10/30/2019 3:05:18 P	M 48446
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 3:05:18 P	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-6 (17-18')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 9:30:00 AM

 Lab ID:
 1910E04-001
 Matrix: SOIL
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID	
EPA METHOD 8260B: VOLATILES							Analyst: DJF		
Bromodichloromethane	ND	0.0046	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Bromoform	ND	0.0045	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Bromomethane	ND	0.012	0.15		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
2-Butanone	0.085	0.058	0.50	J	mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Carbon disulfide	ND	0.017	0.50		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Carbon tetrachloride	ND	0.0047	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Chlorobenzene	ND	0.0064	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Chloroethane	ND	0.0074	0.10		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Chloroform	ND	0.0040	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Chloromethane	ND	0.0048	0.15		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
2-Chlorotoluene	ND	0.0044	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
4-Chlorotoluene	ND	0.0041	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
cis-1,2-DCE	ND	0.0068	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
cis-1,3-Dichloropropene	ND	0.0042	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Dibromochloromethane	ND	0.0035	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Dibromomethane	ND	0.0054	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,2-Dichlorobenzene	ND	0.0041	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,3-Dichlorobenzene	ND	0.0043	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,4-Dichlorobenzene	ND	0.0042	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Dichlorodifluoromethane	ND	0.012	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,1-Dichloroethane	ND	0.0032	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,1-Dichloroethene	ND	0.020	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,2-Dichloropropane	ND	0.0036	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,3-Dichloropropane	ND	0.0054	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
2,2-Dichloropropane	ND	0.016	0.10		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,1-Dichloropropene	ND	0.0046	0.10		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Hexachlorobutadiene	ND	0.0051	0.10		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
2-Hexanone	ND	0.0083	0.50		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Isopropylbenzene	ND	0.0036	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
4-Isopropyltoluene	ND	0.0041	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
4-Methyl-2-pentanone	ND	0.0094	0.50		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Methylene chloride	ND	0.0088	0.15		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
n-Butylbenzene	ND	0.0047	0.15		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
n-Propylbenzene	ND	0.0040	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
sec-Butylbenzene	ND	0.0056	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
Styrene	ND	0.0039	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
tert-Butylbenzene	ND	0.0047	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050		mg/Kg	1	10/30/2019 3:05:18 P	M 48446	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-6 (17-18')

Project: SWMU 13

Collection Date: 10/24/2019 9:30:00 AM

Lab ID: 1910E04-001 **Matrix:** SOIL **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8260B: VOLATILES						Analyst: DJF			
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
trans-1,2-DCE	ND	0.0046	0.050	mg/Kg	1	10/30/2019 3:05:18 PN	A 48446		
trans-1,3-Dichloropropene	ND	0.0053	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
1,2,3-Trichlorobenzene	ND	0.0044	0.10	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
1,2,4-Trichlorobenzene	ND	0.0051	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
Trichloroethene (TCE)	ND	0.0058	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
1,2,3-Trichloropropane	ND	0.0081	0.10	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
Vinyl chloride	ND	0.0033	0.050	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
Xylenes, Total	ND	0.013	0.10	mg/Kg	1	10/30/2019 3:05:18 PM	A 48446		
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/30/2019 3:05:18 PM	A 48446		
Surr: 1,2-Dichloroethane-d4	93.4		70-130	%Rec	1	10/30/2019 3:05:18 PM	A 48446		
Surr: Toluene-d8	102		70-130	%Rec	1	10/30/2019 3:05:18 PM	A 48446		
Surr: 4-Bromofluorobenzene	88.6		70-130	%Rec	1	10/30/2019 3:05:18 PM	A 48446		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 10:45:00 AM

 Lab ID:
 1910E04-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE (Analyst: BRM		
Diesel Range Organics (DRO)	ND	1.8	8.8		mg/Kg	1	10/31/2019 6:50:21 AM	48458
Motor Oil Range Organics (MRO)	ND	44	44		mg/Kg	1	10/31/2019 6:50:21 AM	48458
Surr: DNOP	93.5	0	70-130		%Rec	1	10/31/2019 6:50:21 AM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.89	2.9		mg/Kg	1	10/29/2019 9:05:55 PM	G64058
Surr: BFB	115	0	77.4-118		%Rec	1	10/29/2019 9:05:55 PM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0046	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:05:44 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.75	5.1		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Arsenic	ND	2.9	5.1		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Barium	210	0.047	0.20		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Beryllium	1.1	0.019	0.30		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Chromium	11	0.16	0.61		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Cobalt	4.8	0.21	0.61		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Iron	17000	74	250		mg/Kg	100	11/18/2019 7:54:01 PM	48433
Lead	1.8	0.49	0.51		mg/Kg	2	11/18/2019 7:52:27 PM	48433
Manganese	320	0.042	0.20		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Nickel	9.8	0.30	1.0		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Selenium	ND	2.5	5.1		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Silver	ND	0.065	0.51		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Vanadium	20	0.14	5.1		mg/Kg	2	11/7/2019 3:16:01 PM	48433
Zinc	20	0.80	5.1		mg/Kg	2	11/7/2019 3:16:01 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.24	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Acenaphthylene	ND	0.22	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Aniline	ND	0.26	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Anthracene	ND	0.22	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Azobenzene	ND	0.28	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benz(a)anthracene	ND	0.19	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benzo(a)pyrene	ND	0.18	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benzo(b)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benzo(g,h,i)perylene	ND	0.17	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benzo(k)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benzoic acid	ND	0.21	1.0		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Benzyl alcohol	ND	0.25	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 10:45:00 AM

 Lab ID:
 1910E04-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
Bis(2-chloroethoxy)methane	ND	0.30	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Bis(2-chloroethyl)ether	ND	0.25	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Bis(2-chloroisopropyl)ether	ND	0.23	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Bis(2-ethylhexyl)phthalate	ND	0.29	1.0	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
4-Bromophenyl phenyl ether	ND	0.24	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Butyl benzyl phthalate	ND	0.21	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Carbazole	ND	0.24	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
4-Chloro-3-methylphenol	ND	0.31	1.0	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
4-Chloroaniline	ND	0.29	1.0	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
2-Chloronaphthalene	ND	0.25	0.51	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
2-Chlorophenol	ND	0.25	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
4-Chlorophenyl phenyl ether	ND	0.22	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Chrysene	ND	0.18	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Di-n-butyl phthalate	ND	0.30	0.81	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Di-n-octyl phthalate	ND	0.21	0.81	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Dibenz(a,h)anthracene	ND	0.18	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Dibenzofuran	ND	0.26	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
1,2-Dichlorobenzene	ND	0.24	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
1,3-Dichlorobenzene	ND	0.21	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
1,4-Dichlorobenzene	ND	0.22	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
3,3´-Dichlorobenzidine	ND	0.18	0.51	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Diethyl phthalate	ND	0.29	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Dimethyl phthalate	ND	0.27	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
2,4-Dichlorophenol	ND	0.23	0.81	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
2,4-Dimethylphenol	ND	0.22	0.61	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
4,6-Dinitro-2-methylphenol	ND	0.19	0.81	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
2,4-Dinitrophenol	ND	0.15	1.0	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
2,4-Dinitrotoluene	ND	0.24	1.0	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
2,6-Dinitrotoluene	ND	0.27	1.0	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Fluoranthene	ND	0.23	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Fluorene	ND	0.23	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Hexachlorobenzene	ND	0.25	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Hexachlorobutadiene	ND	0.28	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Hexachlorocyclopentadiene	ND	0.23	0.40	mg/Kg	1	11/1/2019 10:37:47 AM	1 48455
Hexachloroethane	ND	0.23	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Indeno(1,2,3-cd)pyrene	ND	0.20	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
Isophorone	ND	0.30	0.81	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
1-Methylnaphthalene	ND	0.30	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455
2-Methylnaphthalene	ND	0.29	0.40	mg/Kg	1	11/1/2019 10:37:47 AN	1 48455

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 10:45:00 AM

 Lab ID:
 1910E04-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.24	0.81		mg/Kg	1	11/1/2019 10:37:47 AM	48455
3+4-Methylphenol	ND	0.25	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
N-Nitrosodi-n-propylamine	ND	0.29	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
N-Nitrosodiphenylamine	ND	0.21	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Naphthalene	ND	0.31	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
2-Nitroaniline	ND	0.29	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
3-Nitroaniline	ND	0.28	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
4-Nitroaniline	ND	0.26	0.81		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Nitrobenzene	ND	0.28	0.81		mg/Kg	1	11/1/2019 10:37:47 AM	48455
2-Nitrophenol	ND	0.28	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
4-Nitrophenol	ND	0.27	0.51		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Pentachlorophenol	ND	0.21	0.81		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Phenanthrene	ND	0.22	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Phenol	ND	0.25	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Pyrene	ND	0.19	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Pyridine	ND	0.24	0.81		mg/Kg	1	11/1/2019 10:37:47 AM	48455
1,2,4-Trichlorobenzene	ND	0.31	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
2,4,5-Trichlorophenol	ND	0.26	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
2,4,6-Trichlorophenol	ND	0.21	0.40		mg/Kg	1	11/1/2019 10:37:47 AM	48455
Surr: 2-Fluorophenol	78.8		26.7-85.9		%Rec	1	11/1/2019 10:37:47 AM	48455
Surr: Phenol-d5	80.4		18.5-101		%Rec	1	11/1/2019 10:37:47 AM	48455
Surr: 2,4,6-Tribromophenol	76.8		35.8-85.6		%Rec	1	11/1/2019 10:37:47 AM	48455
Surr: Nitrobenzene-d5	92.9		40.8-95.2		%Rec	1	11/1/2019 10:37:47 AM	48455
Surr: 2-Fluorobiphenyl	79.8		34.7-85.2		%Rec	1	11/1/2019 10:37:47 AM	48455
Surr: 4-Terphenyl-d14	107		37.4-91.3	S	%Rec	1	11/1/2019 10:37:47 AM	48455
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0024	0.015		mg/Kg	1	10/29/2019 12:15:30 P	A64063
Toluene	ND	0.0028	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
Ethylbenzene	ND	0.0017	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0070	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2,4-Trimethylbenzene	ND	0.0027	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,3,5-Trimethylbenzene	ND	0.0029	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2-Dichloroethane (EDC)	ND	0.0030	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2-Dibromoethane (EDB)	ND	0.0027	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063
Naphthalene	ND	0.0059	0.059		mg/Kg	1	10/29/2019 12:15:30 P	A64063
1-Methylnaphthalene	ND	0.017	0.12		mg/Kg	1	10/29/2019 12:15:30 P	A64063
2-Methylnaphthalene	ND	0.013	0.12		mg/Kg	1	10/29/2019 12:15:30 P	A64063
Acetone	ND	0.024	0.44		mg/Kg	1	10/29/2019 12:15:30 P	A64063
Bromobenzene	ND	0.0028	0.029		mg/Kg	1	10/29/2019 12:15:30 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 10:45:00 AM

 Lab ID:
 1910E04-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0027	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Bromoform	ND	0.0027	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Bromomethane	ND	0.0071	0.088	mg/Kg	1	10/29/2019 12:15:30 P	A64063
2-Butanone	ND	0.034	0.29	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Carbon disulfide	ND	0.0097	0.29	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Carbon tetrachloride	ND	0.0028	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Chlorobenzene	ND	0.0038	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Chloroethane	ND	0.0043	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Chloroform	ND	0.0024	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Chloromethane	ND	0.0028	0.088	mg/Kg	1	10/29/2019 12:15:30 P	A64063
2-Chlorotoluene	ND	0.0026	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
4-Chlorotoluene	ND	0.0024	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
cis-1,2-DCE	ND	0.0040	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
cis-1,3-Dichloropropene	ND	0.0025	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2-Dibromo-3-chloropropane	ND	0.0030	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Dibromochloromethane	ND	0.0021	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Dibromomethane	ND	0.0032	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2-Dichlorobenzene	ND	0.0024	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,3-Dichlorobenzene	ND	0.0026	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,4-Dichlorobenzene	ND	0.0025	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Dichlorodifluoromethane	ND	0.0068	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,1-Dichloroethane	ND	0.0019	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,1-Dichloroethene	ND	0.012	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2-Dichloropropane	ND	0.0021	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,3-Dichloropropane	ND	0.0032	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
2,2-Dichloropropane	ND	0.0096	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,1-Dichloropropene	ND	0.0027	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Hexachlorobutadiene	ND	0.0030	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
2-Hexanone	ND	0.0049	0.29	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Isopropylbenzene	ND	0.0021	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
4-Isopropyltoluene	ND	0.0024	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
4-Methyl-2-pentanone	ND	0.0056	0.29	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Methylene chloride	ND	0.0052	0.088	mg/Kg	1	10/29/2019 12:15:30 P	A64063
n-Butylbenzene	ND	0.0027	0.088	mg/Kg	1	10/29/2019 12:15:30 P	A64063
n-Propylbenzene	ND	0.0023	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
sec-Butylbenzene	ND	0.0033	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Styrene	ND	0.0023	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
tert-Butylbenzene	ND	0.0028	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,1,1,2-Tetrachloroethane	ND	0.0020	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 10:45:00 AM

 Lab ID:
 1910E04-002
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0030	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Tetrachloroethene (PCE)	ND	0.0024	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
trans-1,2-DCE	ND	0.0027	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
trans-1,3-Dichloropropene	ND	0.0031	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2,3-Trichlorobenzene	ND	0.0026	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2,4-Trichlorobenzene	ND	0.0030	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,1,1-Trichloroethane	ND	0.0027	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,1,2-Trichloroethane	ND	0.0021	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Trichloroethene (TCE)	ND	0.0034	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Trichlorofluoromethane	ND	0.010	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
1,2,3-Trichloropropane	ND	0.0048	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Vinyl chloride	ND	0.0019	0.029	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Xylenes, Total	ND	0.0074	0.059	mg/Kg	1	10/29/2019 12:15:30 P	A64063
Surr: Dibromofluoromethane	116		70-130	%Rec	1	10/29/2019 12:15:30 P	A64063
Surr: 1,2-Dichloroethane-d4	99.5		70-130	%Rec	1	10/29/2019 12:15:30 P	A64063
Surr: Toluene-d8	99.5		70-130	%Rec	1	10/29/2019 12:15:30 P	A64063
Surr: 4-Bromofluorobenzene	92.3		70-130	%Rec	1	10/29/2019 12:15:30 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 11:10:00 AM

 Lab ID:
 1910E04-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.5		mg/Kg	1	10/31/2019 7:25:35 AM	48458
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/31/2019 7:25:35 AM	48458
Surr: DNOP	95.6	0	70-130		%Rec	1	10/31/2019 7:25:35 AM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.77	2.5		mg/Kg	1	10/29/2019 9:29:30 PM	G64058
Surr: BFB	108	0	77.4-118		%Rec	1	10/29/2019 9:29:30 PM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.021	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:11:58 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.71	4.8		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Arsenic	ND	2.8	4.8		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Barium	740	0.11	0.48		mg/Kg	5	11/19/2019 6:25:11 PM	48433
Beryllium	0.86	0.018	0.29		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Cadmium	ND	0.047	0.19		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Chromium	8.9	0.15	0.58		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Cobalt	3.8	0.21	0.58		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Iron	13000	70	240		mg/Kg	100	11/18/2019 7:57:11 PM	48433
Lead	1.7	0.47	0.48		mg/Kg	2	11/18/2019 7:55:35 PM	48433
Manganese	380	0.040	0.19		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Nickel	7.7	0.29	0.97		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Selenium	ND	2.4	4.8		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Silver	ND	0.062	0.48		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Vanadium	19	0.13	4.8		mg/Kg	2	11/7/2019 3:17:37 PM	48433
Zinc	14	0.77	4.8		mg/Kg	2	11/7/2019 3:17:37 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Aniline	ND	0.13	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Anthracene	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benz(a)anthracene	ND	0.095	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benzo(a)pyrene	ND	0.088	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benzo(g,h,i)perylene	ND	0.085	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benzo(k)fluoranthene	ND	0.090	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	48494
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 11:10:00 AM

 Lab ID:
 1910E04-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.15	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
4-Bromophenyl phenyl ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Carbazole	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2-Chloronaphthalene	ND	0.12	0.25		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2-Chlorophenol	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Chrysene	ND	0.087	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Di-n-butyl phthalate	0.15	0.15	0.40	J	mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Di-n-octyl phthalate	ND	0.10	0.40		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Dibenz(a,h)anthracene	ND	0.090	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
1,3-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
1,4-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
3,3´-Dichlorobenzidine	ND	0.088	0.25		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Dimethyl phthalate	ND	0.13	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2,4-Dichlorophenol	ND	0.11	0.40		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2,4-Dimethylphenol	ND	0.11	0.30		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.091	0.40		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2,4-Dinitrophenol	ND	0.072	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2,4-Dinitrotoluene	ND	0.12	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Fluoranthene	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Fluorene	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Hexachlorobenzene	ND	0.12	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Hexachlorocyclopentadiene	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Indeno(1,2,3-cd)pyrene	ND	0.098	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
Isophorone	ND	0.15	0.40		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494
2-Methylnaphthalene	ND	0.14	0.20		mg/Kg	1	11/4/2019 1:00:07 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 11:10:00 AM

 Lab ID:
 1910E04-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	11/4/2019 1:00:07 PM	48494
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Naphthalene	ND	0.15	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	11/4/2019 1:00:07 PM	48494
2-Nitrophenol	ND	0.13	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
4-Nitrophenol	ND	0.13	0.25	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Phenanthrene	ND	0.11	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Phenol	ND	0.12	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Pyrene	ND	0.093	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Pyridine	ND	0.12	0.40	mg/Kg	1	11/4/2019 1:00:07 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	11/4/2019 1:00:07 PM	48494
Surr: 2-Fluorophenol	68.0	2	26.7-85.9	%Rec	1	11/4/2019 1:00:07 PM	48494
Surr: Phenol-d5	74.1		18.5-101	%Rec	1	11/4/2019 1:00:07 PM	48494
Surr: 2,4,6-Tribromophenol	67.6	;	35.8-85.6	%Rec	1	11/4/2019 1:00:07 PM	48494
Surr: Nitrobenzene-d5	78.7	4	40.8-95.2	%Rec	1	11/4/2019 1:00:07 PM	48494
Surr: 2-Fluorobiphenyl	64.6	;	34.7-85.2	%Rec	1	11/4/2019 1:00:07 PM	48494
Surr: 4-Terphenyl-d14	72.4	;	37.4-91.3	%Rec	1	11/4/2019 1:00:07 PM	48494
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0021	0.013	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Toluene	ND	0.0024	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Ethylbenzene	ND	0.0015	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0060	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0023	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0025	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0026	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0023	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Naphthalene	ND	0.0051	0.051	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1-Methylnaphthalene	ND	0.015	0.10	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
2-Methylnaphthalene	ND	0.011	0.10	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Acetone	ND	0.021	0.38	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Bromobenzene	ND	0.0024	0.025	mg/Kg	1	10/29/2019 1:43:37 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 11:10:00 AM

 Lab ID:
 1910E04-003
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0023	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Bromoform	ND	0.0023	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Bromomethane	ND	0.0061	0.076		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
2-Butanone	ND	0.029	0.25		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Carbon disulfide	ND	0.0084	0.25		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Carbon tetrachloride	ND	0.0024	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Chlorobenzene	ND	0.0033	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Chloroethane	ND	0.0038	0.051		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Chloroform	ND	0.0020	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Chloromethane	ND	0.0024	0.076		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
2-Chlorotoluene	ND	0.0022	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
4-Chlorotoluene	ND	0.0021	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
cis-1,2-DCE	ND	0.0035	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
cis-1,3-Dichloropropene	ND	0.0022	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0026	0.051		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Dibromochloromethane	ND	0.0018	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Dibromomethane	ND	0.0027	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,2-Dichlorobenzene	ND	0.0021	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,3-Dichlorobenzene	ND	0.0022	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,4-Dichlorobenzene	ND	0.0021	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Dichlorodifluoromethane	ND	0.0059	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,1-Dichloroethane	ND	0.0016	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,1-Dichloroethene	ND	0.010	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,2-Dichloropropane	ND	0.0019	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,3-Dichloropropane	ND	0.0028	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
2,2-Dichloropropane	ND	0.0083	0.051		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,1-Dichloropropene	ND	0.0023	0.051		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Hexachlorobutadiene	ND	0.0026	0.051		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
2-Hexanone	ND	0.0042	0.25		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Isopropylbenzene	ND	0.0018	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
4-Isopropyltoluene	ND	0.0021	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
4-Methyl-2-pentanone	ND	0.0048	0.25		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Methylene chloride	0.0071	0.0045	0.076	J	mg/Kg	1	10/29/2019 1:43:37 PM	A64063
n-Butylbenzene	ND	0.0024	0.076		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
n-Propylbenzene	ND	0.0020	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
sec-Butylbenzene	ND	0.0029	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
Styrene	ND	0.0020	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
tert-Butylbenzene	ND	0.0024	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0017	0.025		mg/Kg	1	10/29/2019 1:43:37 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-7 (1.5-2')

Project: SWMU 13

Collection Date: 10/24/2019 11:10:00 AM

Lab ID: 1910E04-003 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: D	IF
1,1,2,2-Tetrachloroethane	ND	0.0026	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
Tetrachloroethene (PCE)	ND	0.0020	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
trans-1,2-DCE	ND	0.0023	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
trans-1,3-Dichloropropene	ND	0.0027	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
1,2,3-Trichlorobenzene	ND	0.0022	0.051	mg/Kg	1	10/29/2019 1:43:37	PM A64063
1,2,4-Trichlorobenzene	ND	0.0026	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
1,1,1-Trichloroethane	ND	0.0023	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
1,1,2-Trichloroethane	ND	0.0018	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
Trichloroethene (TCE)	ND	0.0030	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
Trichlorofluoromethane	ND	0.0087	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
1,2,3-Trichloropropane	ND	0.0041	0.051	mg/Kg	1	10/29/2019 1:43:37	PM A64063
Vinyl chloride	ND	0.0017	0.025	mg/Kg	1	10/29/2019 1:43:37	PM A64063
Xylenes, Total	ND	0.0064	0.051	mg/Kg	1	10/29/2019 1:43:37	PM A64063
Surr: Dibromofluoromethane	110		70-130	%Rec	1	10/29/2019 1:43:37	PM A64063
Surr: 1,2-Dichloroethane-d4	98.6		70-130	%Rec	1	10/29/2019 1:43:37	PM A64063
Surr: Toluene-d8	97.0		70-130	%Rec	1	10/29/2019 1:43:37	PM A64063
Surr: 4-Bromofluorobenzene	91.9		70-130	%Rec	1	10/29/2019 1:43:37	PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: SWMU 13 Collection Date:

Lab ID: 1910E04-004 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0041	0.025	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Toluene	ND	0.0048	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Naphthalene	ND	0.010	0.10	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Acetone	ND	0.041	0.75	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Bromodichloromethane	ND	0.0046	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Bromoform	ND	0.0045	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Bromomethane	ND	0.012	0.15	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
2-Butanone	ND	0.058	0.50	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Carbon disulfide	ND	0.017	0.50	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Chloroethane	ND	0.0074	0.10	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Chloroform	ND	0.0040	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Chloromethane	ND	0.0048	0.15	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
2-Chlorotoluene	ND	0.0044	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,4-Dichlorobenzene	ND	0.0042	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
2,2-Dichloropropane	ND	0.016	0.10	mg/Kg	1	10/29/2019 2:13:02 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: SWMU 13 Collection Date:

Lab ID: 1910E04-004 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1-Dichloropropene	ND	0.0046	0.10		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Hexachlorobutadiene	ND	0.0051	0.10		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
2-Hexanone	ND	0.0083	0.50		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Isopropylbenzene	ND	0.0036	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
4-Isopropyltoluene	ND	0.0041	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
4-Methyl-2-pentanone	ND	0.0094	0.50		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Methylene chloride	0.011	0.0088	0.15	J	mg/Kg	1	10/29/2019 2:13:02 PM	A64063
n-Butylbenzene	ND	0.0047	0.15		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
n-Propylbenzene	ND	0.0040	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
sec-Butylbenzene	ND	0.0056	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Styrene	ND	0.0039	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
tert-Butylbenzene	ND	0.0047	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Tetrachloroethene (PCE)	ND	0.0040	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
trans-1,2-DCE	ND	0.0046	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
trans-1,3-Dichloropropene	ND	0.0053	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0044	0.10		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0051	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,1,1-Trichloroethane	ND	0.0045	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,1,2-Trichloroethane	ND	0.0035	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Trichloroethene (TCE)	ND	0.0058	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Trichlorofluoromethane	ND	0.017	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
1,2,3-Trichloropropane	ND	0.0081	0.10		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Vinyl chloride	ND	0.0033	0.050		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Xylenes, Total	ND	0.013	0.10		mg/Kg	1	10/29/2019 2:13:02 PM	A64063
Surr: Dibromofluoromethane	108		70-130		%Rec	1	10/29/2019 2:13:02 PM	A64063
Surr: 1,2-Dichloroethane-d4	97.6		70-130		%Rec	1	10/29/2019 2:13:02 PM	A64063
Surr: Toluene-d8	100		70-130		%Rec	1	10/29/2019 2:13:02 PM	A64063
Surr: 4-Bromofluorobenzene	92.0		70-130		%Rec	1	10/29/2019 2:13:02 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (4-6')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:05:00 PM

 Lab ID:
 1910E04-005
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.7	8.5		mg/Kg	1	10/31/2019 7:47:34 AM	48458
Motor Oil Range Organics (MRO)	ND	42	42		mg/Kg	1	10/31/2019 7:47:34 AM	48458
Surr: DNOP	95.2	0	70-130		%Rec	1	10/31/2019 7:47:34 AM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.74	2.4		mg/Kg	1	10/29/2019 9:53:05 PM	G64058
Surr: BFB	108	0	77.4-118		%Rec	1	10/29/2019 9:53:05 PM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0052	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:13:56 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.72	4.9		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Arsenic	ND	2.8	4.9		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Barium	290	0.045	0.20		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Beryllium	0.72	0.018	0.29		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Chromium	11	0.16	0.59		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Cobalt	4.1	0.21	0.59		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Iron	11000	71	240		mg/Kg	100	11/18/2019 8:06:34 PM	48433
Lead	2.5	0.48	0.49		mg/Kg	2	11/18/2019 8:02:53 PM	48433
Manganese	360	0.041	0.20		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Nickel	7.1	0.29	0.98		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Selenium	ND	2.5	4.9		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Silver	ND	0.063	0.49		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Vanadium	15	0.13	4.9		mg/Kg	2	11/7/2019 3:19:11 PM	48433
Zinc	15	0.78	4.9		mg/Kg	2	11/7/2019 3:19:11 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Acenaphthylene	ND	0.11	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Aniline	ND	0.13	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Anthracene	ND	0.11	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Azobenzene	ND	0.14	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benz(a)anthracene	ND	0.10	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benzo(a)pyrene	ND	0.092	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benzo(b)fluoranthene	ND	0.091	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benzo(g,h,i)perylene	ND	0.089	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benzo(k)fluoranthene	ND	0.094	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benzoic acid	ND	0.11	0.52		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Benzyl alcohol	ND	0.13	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-7 (4-6')

Project: SWMU 13

Collection Date: 10/24/2019 1:05:00 PM

Lab ID: 1910E04-005 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.15	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.13	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Bis(2-chloroisopropyl)ether	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.15	0.52	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
4-Bromophenyl phenyl ether	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	48494
Butyl benzyl phthalate	ND	0.11	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Carbazole	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
4-Chloro-3-methylphenol	ND	0.16	0.52	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
4-Chloroaniline	ND	0.15	0.52	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2-Chloronaphthalene	ND	0.13	0.26	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2-Chlorophenol	ND	0.13	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Chrysene	ND	0.091	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Di-n-butyl phthalate	ND	0.15	0.41	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Di-n-octyl phthalate	ND	0.11	0.41	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Dibenz(a,h)anthracene	ND	0.094	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Dibenzofuran	ND	0.14	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	48494
1,2-Dichlorobenzene	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
1,3-Dichlorobenzene	ND	0.11	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
1,4-Dichlorobenzene	ND	0.11	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
3,3'-Dichlorobenzidine	ND	0.092	0.26	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Diethyl phthalate	ND	0.15	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Dimethyl phthalate	ND	0.14	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2,4-Dichlorophenol	ND	0.12	0.41	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2,4-Dimethylphenol	ND	0.11	0.31	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.095	0.41	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2,4-Dinitrophenol	ND	0.075	0.52	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2,4-Dinitrotoluene	ND	0.12	0.52	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2,6-Dinitrotoluene	ND	0.14	0.52	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Fluoranthene	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Fluorene	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Hexachlorobenzene	ND	0.13	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Hexachlorobutadiene	ND	0.14	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Hexachlorocyclopentadiene	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Hexachloroethane	ND	0.12	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Indeno(1,2,3-cd)pyrene	ND	0.10	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
Isophorone	ND	0.15	0.41	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
1-Methylnaphthalene	ND	0.15	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494
2-Methylnaphthalene	ND	0.15	0.21	mg/Kg	1	11/4/2019 2:28:16 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (4-6')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:05:00 PM

 Lab ID:
 1910E04-005
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.12	0.41		mg/Kg	1	11/4/2019 2:28:16 PM	48494
3+4-Methylphenol	ND	0.13	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
N-Nitrosodi-n-propylamine	ND	0.15	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
N-Nitrosodiphenylamine	ND	0.11	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Naphthalene	ND	0.16	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
2-Nitroaniline	ND	0.15	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
3-Nitroaniline	ND	0.14	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
4-Nitroaniline	ND	0.13	0.41		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Nitrobenzene	ND	0.14	0.41		mg/Kg	1	11/4/2019 2:28:16 PM	48494
2-Nitrophenol	ND	0.14	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
4-Nitrophenol	ND	0.14	0.26		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Pentachlorophenol	ND	0.11	0.41		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Phenanthrene	ND	0.11	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Phenol	ND	0.13	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Pyrene	ND	0.097	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Pyridine	ND	0.12	0.41		mg/Kg	1	11/4/2019 2:28:16 PM	48494
1,2,4-Trichlorobenzene	ND	0.16	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
2,4,6-Trichlorophenol	ND	0.11	0.21		mg/Kg	1	11/4/2019 2:28:16 PM	48494
Surr: 2-Fluorophenol	66.6	;	26.7-85.9		%Rec	1	11/4/2019 2:28:16 PM	48494
Surr: Phenol-d5	69.3		18.5-101		%Rec	1	11/4/2019 2:28:16 PM	48494
Surr: 2,4,6-Tribromophenol	56.3	;	35.8-85.6		%Rec	1	11/4/2019 2:28:16 PM	48494
Surr: Nitrobenzene-d5	64.7		40.8-95.2		%Rec	1	11/4/2019 2:28:16 PM	48494
Surr: 2-Fluorobiphenyl	58.7	;	34.7-85.2		%Rec	1	11/4/2019 2:28:16 PM	48494
Surr: 4-Terphenyl-d14	52.5	;	37.4-91.3		%Rec	1	11/4/2019 2:28:16 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0020	0.012		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Toluene	ND	0.0023	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Ethylbenzene	ND	0.0014	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0058	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0022	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0024	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0025	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0022	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Naphthalene	ND	0.0049	0.049		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1-Methylnaphthalene	0.035	0.014	0.098	J	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
2-Methylnaphthalene	ND	0.011	0.098		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Acetone	ND	0.020	0.37		mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Bromobenzene	ND	0.0023	0.024		mg/Kg	1	10/29/2019 2:42:11 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-7 (4-6')

Project: SWMU 13

Collection Date: 10/24/2019 1:05:00 PM

Lab ID: 1910E04-005 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF
Bromodichloromethane	ND	0.0022	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Bromoform	ND	0.0022	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Bromomethane	ND	0.0059	0.073	mg/Kg	1	10/29/2019 2:42:11 PM A64063
2-Butanone	ND	0.028	0.24	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Carbon disulfide	ND	0.0081	0.24	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Carbon tetrachloride	ND	0.0023	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Chlorobenzene	ND	0.0031	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Chloroethane	ND	0.0036	0.049	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Chloroform	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Chloromethane	ND	0.0023	0.073	mg/Kg	1	10/29/2019 2:42:11 PM A64063
2-Chlorotoluene	ND	0.0021	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
4-Chlorotoluene	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
cis-1,2-DCE	ND	0.0033	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
cis-1,3-Dichloropropene	ND	0.0021	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,2-Dibromo-3-chloropropane	ND	0.0025	0.049	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Dibromochloromethane	ND	0.0017	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Dibromomethane	ND	0.0026	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,2-Dichlorobenzene	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,3-Dichlorobenzene	ND	0.0021	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,4-Dichlorobenzene	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Dichlorodifluoromethane	ND	0.0057	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,1-Dichloroethane	ND	0.0016	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,1-Dichloroethene	ND	0.0098	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,2-Dichloropropane	ND	0.0018	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,3-Dichloropropane	ND	0.0026	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
2,2-Dichloropropane	ND	0.0080	0.049	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,1-Dichloropropene	ND	0.0022	0.049	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Hexachlorobutadiene	ND	0.0025	0.049	mg/Kg	1	10/29/2019 2:42:11 PM A64063
2-Hexanone	ND	0.0041	0.24	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Isopropylbenzene	ND	0.0018	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
4-Isopropyltoluene	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
4-Methyl-2-pentanone	ND	0.0046	0.24	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Methylene chloride	ND	0.0043	0.073	mg/Kg	1	10/29/2019 2:42:11 PM A64063
n-Butylbenzene	ND	0.0023	0.073	mg/Kg	1	10/29/2019 2:42:11 PM A64063
n-Propylbenzene	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
sec-Butylbenzene	ND	0.0028	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
Styrene	ND	0.0019	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
tert-Butylbenzene	ND	0.0023	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063
1,1,1,2-Tetrachloroethane	ND	0.0017	0.024	mg/Kg	1	10/29/2019 2:42:11 PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-7 (4-6')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:05:00 PM

 Lab ID:
 1910E04-005
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0025	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Tetrachloroethene (PCE)	ND	0.0020	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
trans-1,2-DCE	ND	0.0022	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
trans-1,3-Dichloropropene	ND	0.0026	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0021	0.049	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0025	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,1,1-Trichloroethane	ND	0.0022	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,1,2-Trichloroethane	ND	0.0017	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Trichloroethene (TCE)	ND	0.0028	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Trichlorofluoromethane	ND	0.0083	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
1,2,3-Trichloropropane	ND	0.0040	0.049	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Vinyl chloride	ND	0.0016	0.024	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Xylenes, Total	ND	0.0062	0.049	mg/Kg	1	10/29/2019 2:42:11 PM	A64063
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/29/2019 2:42:11 PM	A64063
Surr: 1,2-Dichloroethane-d4	96.6		70-130	%Rec	1	10/29/2019 2:42:11 PM	A64063
Surr: Toluene-d8	102		70-130	%Rec	1	10/29/2019 2:42:11 PM	A64063
Surr: 4-Bromofluorobenzene	94.3		70-130	%Rec	1	10/29/2019 2:42:11 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (10-12')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:15:00 PM

 Lab ID:
 1910E04-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRN	1
Diesel Range Organics (DRO)	ND	1.8	9.1		mg/Kg	1	10/31/2019 8:31:40 AM	1 48458
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	10/31/2019 8:31:40 AM	1 48458
Surr: DNOP	95.9	0	70-130		%Rec	1	10/31/2019 8:31:40 AM	1 48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.74	2.4		mg/Kg	1	10/29/2019 10:16:46 P	G64058
Surr: BFB	118	0	77.4-118		%Rec	1	10/29/2019 10:16:46 P	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0034	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:15:54 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Arsenic	ND	2.9	5.0		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Barium	250	0.047	0.20		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Beryllium	1.4	0.019	0.30		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Cadmium	ND	0.049	0.20		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Chromium	14	0.16	0.61		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Cobalt	5.5	0.21	0.61		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Iron	19000	73	250		mg/Kg	100	11/18/2019 8:09:46 PM	1 48433
Lead	2.7	0.49	0.50		mg/Kg	2	11/18/2019 8:08:11 PM	1 48433
Manganese	310	0.042	0.20		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Nickel	12	0.30	1.0		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Selenium	ND	2.5	5.0		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Silver	ND	0.065	0.50		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Vanadium	21	0.13	5.0		mg/Kg	2	11/7/2019 3:20:46 PM	48433
Zinc	19	0.80	5.0		mg/Kg	2	11/7/2019 3:20:46 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Aniline	ND	0.13	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Anthracene	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benz(a)anthracene	ND	0.099	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benzo(a)pyrene	ND	0.091	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benzo(b)fluoranthene	ND	0.091	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benzo(g,h,i)perylene	ND	0.088	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benzo(k)fluoranthene	ND	0.093	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benzoic acid	ND	0.11	0.51		mg/Kg	1	11/4/2019 2:57:34 PM	48494
Benzyl alcohol	ND	0.13	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (10-12')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:15:00 PM

 Lab ID:
 1910E04-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.15	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Bis(2-chloroisopropyl)ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Bis(2-ethylhexyl)phthalate	ND	0.15	0.51		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
4-Bromophenyl phenyl ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Carbazole	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
4-Chloro-3-methylphenol	ND	0.16	0.51		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
4-Chloroaniline	ND	0.15	0.51		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2-Chloronaphthalene	ND	0.13	0.26		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2-Chlorophenol	ND	0.13	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Chrysene	ND	0.090	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Di-n-butyl phthalate	0.19	0.15	0.41	J	mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Di-n-octyl phthalate	ND	0.10	0.41		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Dibenz(a,h)anthracene	ND	0.093	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
1,3-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
1,4-Dichlorobenzene	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
3,3´-Dichlorobenzidine	ND	0.091	0.26		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Diethyl phthalate	ND	0.15	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Dimethyl phthalate	ND	0.14	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2,4-Dichlorophenol	ND	0.12	0.41		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2,4-Dimethylphenol	ND	0.11	0.31		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
4,6-Dinitro-2-methylphenol	ND	0.095	0.41		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2,4-Dinitrophenol	ND	0.074	0.51		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2,4-Dinitrotoluene	ND	0.12	0.51		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2,6-Dinitrotoluene	ND	0.13	0.51		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Fluoranthene	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Fluorene	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Hexachlorobenzene	ND	0.13	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Hexachlorocyclopentadiene	ND	0.12	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Indeno(1,2,3-cd)pyrene	ND	0.10	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
Isophorone	ND	0.15	0.41		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	11/4/2019 2:57:34 PN	A 48494
2-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	11/4/2019 2:57:34 PM	A 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (10-12')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:15:00 PM

 Lab ID:
 1910E04-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

EPA METHOD 8270C: SEMIVOLATILES 2-Methylphenol ND 0.12 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 3+4-Methylphenol ND 0.13 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodi-n-propylamine ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodiphenylamine ND 0.11 0.20 mg/Kg 1 11/4/2019 2:57:34 PM Naphthalene ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitroaniline ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM	Batch ID
3+4-Methylphenol ND 0.13 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodi-n-propylamine ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodiphenylamine ND 0.11 0.20 mg/Kg 1 11/4/2019 2:57:34 PM Naphthalene ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitroaniline ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 <td></td>	
3+4-Methylphenol ND 0.13 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodi-n-propylamine ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodiphenylamine ND 0.11 0.20 mg/Kg 1 11/4/2019 2:57:34 PM Naphthalene ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitroaniline ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11	48494
N-Nitrosodi-n-propylamine ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM N-Nitrosodiphenylamine ND 0.11 0.20 mg/Kg 1 11/4/2019 2:57:34 PM Naphthalene ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitroaniline ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
N-Nitrosodiphenylamine ND 0.11 0.20 mg/Kg 1 11/4/2019 2:57:34 PM Naphthalene ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitroaniline ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
2-Nitroaniline ND 0.15 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
3-Nitroaniline ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
4-Nitroaniline ND 0.13 0.41 mg/Kg 1 11/4/2019 2:57:34 PM Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
Nitrobenzene ND 0.14 0.41 mg/Kg 1 11/4/2019 2:57:34 PM 2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
2-Nitrophenol ND 0.14 0.20 mg/Kg 1 11/4/2019 2:57:34 PM 4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
4-Nitrophenol ND 0.14 0.26 mg/Kg 1 11/4/2019 2:57:34 PM Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
Pentachlorophenol ND 0.11 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
	48494
Phenanthrone ND 0.11 0.20 mg/Kg 1 11/4/2010 2:57:24 PM	48494
1 Horiantinone 110 0.11 0.20 Hig/Rg 1 11/4/2019 2.37.34 FW	48494
Phenol ND 0.13 0.20 mg/Kg 1 11/4/2019 2:57:34 PM	48494
Pyrene ND 0.096 0.20 mg/Kg 1 11/4/2019 2:57:34 PM	48494
Pyridine ND 0.12 0.41 mg/Kg 1 11/4/2019 2:57:34 PM	48494
1,2,4-Trichlorobenzene ND 0.16 0.20 mg/Kg 1 11/4/2019 2:57:34 PM	48494
2,4,5-Trichlorophenol ND 0.13 0.20 mg/Kg 1 11/4/2019 2:57:34 PM	48494
2,4,6-Trichlorophenol ND 0.11 0.20 mg/Kg 1 11/4/2019 2:57:34 PM	48494
Surr: 2-Fluorophenol 60.2 26.7-85.9 %Rec 1 11/4/2019 2:57:34 PM	48494
Surr: Phenol-d5 67.2 18.5-101 %Rec 1 11/4/2019 2:57:34 PM	48494
Surr: 2,4,6-Tribromophenol 64.9 35.8-85.6 %Rec 1 11/4/2019 2:57:34 PM	48494
Surr: Nitrobenzene-d5 63.6 40.8-95.2 %Rec 1 11/4/2019 2:57:34 PM	48494
Surr: 2-Fluorobiphenyl 63.1 34.7-85.2 %Rec 1 11/4/2019 2:57:34 PM	48494
Surr: 4-Terphenyl-d14 79.9 37.4-91.3 %Rec 1 11/4/2019 2:57:34 PM	48494
EPA METHOD 8260B: VOLATILES Analyst: DJF	
Benzene ND 0.0020 0.012 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
Toluene ND 0.0023 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
Ethylbenzene ND 0.0014 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
Methyl tert-butyl ether (MTBE) ND 0.0058 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
1,2,4-Trimethylbenzene ND 0.0022 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
1,3,5-Trimethylbenzene ND 0.0024 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
1,2-Dichloroethane (EDC) ND 0.0025 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
1,2-Dibromoethane (EDB) ND 0.0022 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
Naphthalene ND 0.0049 0.049 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
1-Methylnaphthalene ND 0.014 0.097 mg/Kg 1 10/29/2019 3:11:16 PM	404000
2-Methylnaphthalene ND 0.011 0.097 mg/Kg 1 10/29/2019 3:11:16 PM	A64063
Acetone ND 0.020 0.37 mg/Kg 1 10/29/2019 3:11:16 PM	
Bromobenzene ND 0.0023 0.024 mg/Kg 1 10/29/2019 3:11:16 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (10-12')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:15:00 PM

 Lab ID:
 1910E04-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0022	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
Bromoform	ND	0.0022	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
Bromomethane	ND	0.0059	0.073		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
2-Butanone	ND	0.028	0.24		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
Carbon disulfide	ND	0.0080	0.24		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Carbon tetrachloride	ND	0.0023	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Chlorobenzene	ND	0.0031	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
Chloroethane	ND	0.0036	0.049		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Chloroform	ND	0.0020	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
Chloromethane	ND	0.0023	0.073		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
2-Chlorotoluene	ND	0.0021	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
4-Chlorotoluene	ND	0.0020	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
cis-1,2-DCE	ND	0.0033	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
cis-1,3-Dichloropropene	ND	0.0021	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0025	0.049		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Dibromochloromethane	ND	0.0017	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Dibromomethane	ND	0.0026	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,2-Dichlorobenzene	ND	0.0020	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,3-Dichlorobenzene	ND	0.0021	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,4-Dichlorobenzene	ND	0.0020	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Dichlorodifluoromethane	ND	0.0057	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,1-Dichloroethane	ND	0.0016	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,1-Dichloroethene	ND	0.0097	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,2-Dichloropropane	ND	0.0018	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,3-Dichloropropane	ND	0.0026	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
2,2-Dichloropropane	ND	0.0079	0.049		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,1-Dichloropropene	ND	0.0022	0.049		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Hexachlorobutadiene	ND	0.0025	0.049		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
2-Hexanone	ND	0.0040	0.24		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Isopropylbenzene	ND	0.0018	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
4-Isopropyltoluene	ND	0.0020	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
4-Methyl-2-pentanone	ND	0.0046	0.24		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Methylene chloride	0.0069	0.0043	0.073	J	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
n-Butylbenzene	ND	0.0023	0.073		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
n-Propylbenzene	ND	0.0019	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A64063
sec-Butylbenzene	ND	0.0027	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
Styrene	ND	0.0019	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063
tert-Butylbenzene	ND	0.0023	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	M A64063
1,1,1,2-Tetrachloroethane	ND	0.0016	0.024		mg/Kg	1	10/29/2019 3:11:16 PM	A A 64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (10-12')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:15:00 PM

 Lab ID:
 1910E04-006
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0025	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Tetrachloroethene (PCE)	ND	0.0019	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
trans-1,2-DCE	ND	0.0022	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
trans-1,3-Dichloropropene	ND	0.0026	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0021	0.049	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0025	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,1,1-Trichloroethane	ND	0.0022	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,1,2-Trichloroethane	ND	0.0017	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Trichloroethene (TCE)	ND	0.0028	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Trichlorofluoromethane	ND	0.0083	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
1,2,3-Trichloropropane	ND	0.0039	0.049	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Vinyl chloride	ND	0.0016	0.024	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Xylenes, Total	ND	0.0061	0.049	mg/Kg	1	10/29/2019 3:11:16 PM	A64063
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/29/2019 3:11:16 PM	A64063
Surr: 1,2-Dichloroethane-d4	94.9		70-130	%Rec	1	10/29/2019 3:11:16 PM	A64063
Surr: Toluene-d8	97.9		70-130	%Rec	1	10/29/2019 3:11:16 PM	A64063
Surr: 4-Bromofluorobenzene	91.7		70-130	%Rec	1	10/29/2019 3:11:16 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-7 (12-13")

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:25:00 PM

 Lab ID:
 1910E04-007
 Matrix: SOIL
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Satch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.8	9.0		mg/Kg	1	10/31/2019 8:53:32 AM	48458
Motor Oil Range Organics (MRO)	ND	45	45		mg/Kg	1	10/31/2019 8:53:32 AM	48458
Surr: DNOP	98.0	0	70-130		%Rec	1	10/31/2019 8:53:32 AM	48458
EPA METHOD 8015D: GASOLINE RANGE	.						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.5	4.9		mg/Kg	1	10/30/2019 1:47:53 PM	48446
Surr: BFB	97.4	0	77.4-118		%Rec	1	10/30/2019 1:47:53 PM	48446
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0029	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:17:52 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.70	4.8		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Arsenic	ND	2.7	4.8		mg/Kg	2	11/19/2019 6:26:41 PM	48604
Barium	270	0.044	0.19		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Beryllium	1.3	0.018	0.29		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Cadmium	ND	0.046	0.19		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Chromium	14	0.15	0.57		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Cobalt	5.6	0.20	0.57		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Iron	18000	70	240		mg/Kg	100	11/18/2019 8:13:02 PM	48604
Lead	2.8	0.47	0.48		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Manganese	300	0.040	0.19		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Nickel	12	0.29	0.96		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Selenium	ND	2.5	5.1		mg/Kg	2	11/25/2019 6:35:36 PM	48977
Silver	ND	0.061	0.48		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Vanadium	22	0.13	4.8		mg/Kg	2	11/18/2019 8:11:21 PM	48604
Zinc	18	0.76	4.8		mg/Kg	2	11/18/2019 8:11:21 PM	48604
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Aniline	ND	0.13	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Anthracene	ND	0.11	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benz(a)anthracene	ND	0.096	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benzo(a)pyrene	ND	0.088	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benzo(b)fluoranthene	ND	0.088	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benzo(g,h,i)perylene	ND	0.085	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benzo(k)fluoranthene	ND	0.090	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benzoic acid	ND	0.10	0.50		mg/Kg	1	11/4/2019 3:45:36 PM	48494
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	11/4/2019 3:45:36 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-7 (12-13")

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:25:00 PM

 Lab ID:
 1910E04-007
 Matrix: SOIL
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.15	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.50	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Carbazole	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
4-Chloro-3-methylphenol	ND	0.15	0.50	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
4-Chloroaniline	ND	0.14	0.50	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2-Chloronaphthalene	ND	0.12	0.25	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2-Chlorophenol	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Chrysene	ND	0.088	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Di-n-butyl phthalate	ND	0.15	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Di-n-octyl phthalate	ND	0.10	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Dibenz(a,h)anthracene	ND	0.090	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
1,3-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
1,4-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
3,3´-Dichlorobenzidine	ND	0.088	0.25	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2,4-Dichlorophenol	ND	0.12	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2,4-Dimethylphenol	ND	0.11	0.30	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.092	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2,4-Dinitrophenol	ND	0.072	0.50	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2,4-Dinitrotoluene	ND	0.12	0.50	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2,6-Dinitrotoluene	ND	0.13	0.50	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Fluoranthene	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Fluorene	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Hexachlorocyclopentadiene	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Indeno(1,2,3-cd)pyrene	ND	0.099	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
Isophorone	ND	0.15	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494
2-Methylnaphthalene	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 195

Lab Order 1910E04

Collection Date: 10/24/2019 1:25:00 PM

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

SWMU 13

Project:

CLIENT: Marathon Client Sample ID: SWMU 13-7 (12-13")

Lab ID: 1910E04-007 **Matrix:** SOIL **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (;
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
Naphthalene	ND	0.15	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	48494
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
2-Nitrophenol	ND	0.14	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	48494
4-Nitrophenol	ND	0.13	0.25	mg/Kg	1	11/4/2019 3:45:36 PM	48494
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
Phenanthrene	ND	0.11	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
Phenol	ND	0.12	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
Pyrene	ND	0.093	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
Pyridine	ND	0.12	0.40	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	l 48494
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	11/4/2019 3:45:36 PM	
Surr: 2-Fluorophenol	57.0		26.7-85.9	%Rec	1	11/4/2019 3:45:36 PM	
Surr: Phenol-d5	60.4		18.5-101	%Rec	1	11/4/2019 3:45:36 PM	
Surr: 2,4,6-Tribromophenol	58.0		35.8-85.6	%Rec	1	11/4/2019 3:45:36 PM	
Surr: Nitrobenzene-d5	58.7		40.8-95.2	%Rec	1	11/4/2019 3:45:36 PM	
Surr: 2-Fluorobiphenyl	54.6		34.7-85.2	%Rec	1	11/4/2019 3:45:36 PM	
Surr: 4-Terphenyl-d14	66.4		37.4-91.3	%Rec	1	11/4/2019 3:45:36 PM	
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0040	0.024	mg/Kg	1	10/30/2019 11:12:06 /	
Toluene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
Ethylbenzene	ND	0.0028	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
1,2,4-Trimethylbenzene	ND	0.0045	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
1,3,5-Trimethylbenzene	ND	0.0047	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
1,2-Dichloroethane (EDC)	ND	0.0050	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
1,2-Dibromoethane (EDB)	ND	0.0036	0.049	mg/Kg	1	10/30/2019 11:12:06 /	
Naphthalene	ND	0.0098	0.043	mg/Kg	1	10/30/2019 11:12:06 /	
1-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	10/30/2019 11:12:06 /	
2-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	10/30/2019 11:12:06 /	
Acetone	ND	0.021	0.20	mg/Kg	1	10/30/2019 11:12:06 /	
Bromobenzene	ND	0.041	0.73	mg/Kg	1	10/30/2019 11:12:06 /	
DIGITIODOLIZORIO	ND	0.0047	0.043	mg/Rg	'	10/00/2013 11.12.00 /	· +0++0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-7 (12-13")

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:25:00 PM

 Lab ID:
 1910E04-007
 Matrix: SOIL
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	:
Bromodichloromethane	ND	0.0045	0.049		mg/Kg	1	10/30/2019 11:12:06 /	A 48446
Bromoform	ND	0.0044	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
Bromomethane	ND	0.012	0.15		mg/Kg	1	10/30/2019 11:12:06 /	48446
2-Butanone	0.061	0.057	0.49	J	mg/Kg	1	10/30/2019 11:12:06 /	48446
Carbon disulfide	ND	0.016	0.49		mg/Kg	1	10/30/2019 11:12:06 /	48446
Carbon tetrachloride	ND	0.0046	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
Chlorobenzene	ND	0.0063	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
Chloroethane	ND	0.0072	0.098		mg/Kg	1	10/30/2019 11:12:06 /	48446
Chloroform	ND	0.0039	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
Chloromethane	ND	0.0047	0.15		mg/Kg	1	10/30/2019 11:12:06 /	48446
2-Chlorotoluene	ND	0.0043	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
4-Chlorotoluene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
cis-1,2-DCE	ND	0.0067	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
cis-1,3-Dichloropropene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
1,2-Dibromo-3-chloropropane	ND	0.0050	0.098		mg/Kg	1	10/30/2019 11:12:06 /	48446
Dibromochloromethane	ND	0.0035	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
Dibromomethane	ND	0.0053	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
1,2-Dichlorobenzene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
1,3-Dichlorobenzene	ND	0.0042	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
1,4-Dichlorobenzene	ND	0.0041	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
Dichlorodifluoromethane	ND	0.011	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
1,1-Dichloroethane	ND	0.0031	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
1,1-Dichloroethene	ND	0.020	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
1,2-Dichloropropane	ND	0.0036	0.049		mg/Kg	1	10/30/2019 11:12:06 /	48446
1,3-Dichloropropane	ND	0.0053	0.049		mg/Kg	1	10/30/2019 11:12:06	48446
2,2-Dichloropropane	ND	0.016	0.098		mg/Kg	1	10/30/2019 11:12:06	48446
1,1-Dichloropropene	ND	0.0045	0.098		mg/Kg	1	10/30/2019 11:12:06	48446
Hexachlorobutadiene	ND	0.0050	0.098		mg/Kg	1	10/30/2019 11:12:06 A	48446
2-Hexanone	ND	0.0081	0.49		mg/Kg	1	10/30/2019 11:12:06 A	48446
Isopropylbenzene	ND	0.0035	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
4-Isopropyltoluene	ND	0.0040	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
4-Methyl-2-pentanone	ND	0.0092	0.49		mg/Kg	1	10/30/2019 11:12:06 A	48446
Methylene chloride	ND	0.0086	0.15		mg/Kg	1	10/30/2019 11:12:06 A	48446
n-Butylbenzene	ND	0.0046	0.15		mg/Kg	1	10/30/2019 11:12:06 A	48446
n-Propylbenzene	ND	0.0039	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
sec-Butylbenzene	ND	0.0055	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
Styrene	ND	0.0038	0.049		mg/Kg	1	10/30/2019 11:12:06 A	48446
tert-Butylbenzene	ND	0.0046	0.049		mg/Kg	1	10/30/2019 11:12:06 A	A 48446
1,1,1,2-Tetrachloroethane	ND	0.0033	0.049		mg/Kg	1	10/30/2019 11:12:06 /	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-7 (12-13")

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:25:00 PM

 Lab ID:
 1910E04-007
 Matrix: SOIL
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	•
1,1,2,2-Tetrachloroethane	ND	0.0050	0.049	mg/Kg	1	10/30/2019 11:12:06 /	A 48446
Tetrachloroethene (PCE)	ND	0.0039	0.049	mg/Kg	1	10/30/2019 11:12:06 /	48446
trans-1,2-DCE	ND	0.0045	0.049	mg/Kg	1	10/30/2019 11:12:06 /	48446
trans-1,3-Dichloropropene	ND	0.0052	0.049	mg/Kg	1	10/30/2019 11:12:06 /	48446
1,2,3-Trichlorobenzene	ND	0.0043	0.098	mg/Kg	1	10/30/2019 11:12:06 /	48446
1,2,4-Trichlorobenzene	ND	0.0049	0.049	mg/Kg	1	10/30/2019 11:12:06 /	48446
1,1,1-Trichloroethane	ND	0.0044	0.049	mg/Kg	1	10/30/2019 11:12:06 /	A 48446
1,1,2-Trichloroethane	ND	0.0034	0.049	mg/Kg	1	10/30/2019 11:12:06 /	A 48446
Trichloroethene (TCE)	ND	0.0057	0.049	mg/Kg	1	10/30/2019 11:12:06 /	A 48446
Trichlorofluoromethane	ND	0.017	0.049	mg/Kg	1	10/30/2019 11:12:06 /	48446
1,2,3-Trichloropropane	ND	0.0079	0.098	mg/Kg	1	10/30/2019 11:12:06 /	48446
Vinyl chloride	ND	0.0032	0.049	mg/Kg	1	10/30/2019 11:12:06 /	48446
Xylenes, Total	ND	0.012	0.098	mg/Kg	1	10/30/2019 11:12:06 /	48446
Surr: Dibromofluoromethane	102		70-130	%Rec	1	10/30/2019 11:12:06 /	48446
Surr: 1,2-Dichloroethane-d4	91.3		70-130	%Rec	1	10/30/2019 11:12:06 /	A 48446
Surr: Toluene-d8	99.1		70-130	%Rec	1	10/30/2019 11:12:06 /	48446
Surr: 4-Bromofluorobenzene	88.1		70-130	%Rec	1	10/30/2019 11:12:06 /	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (17.5-18')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:30:00 PM

 Lab ID:
 1910E04-008
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.3		mg/Kg	1	10/31/2019 9:15:33 AM	48458
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	10/31/2019 9:15:33 AM	48458
Surr: DNOP	96.4	0	70-130		%Rec	1	10/31/2019 9:15:33 AM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.66	2.2		mg/Kg	1	10/29/2019 10:40:36 P	G64058
Surr: BFB	113	0	77.4-118		%Rec	1	10/29/2019 10:40:36 P	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0023	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:19:51 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.1		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 6:29:47 PM	
Barium	370	0.047	0.20		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Beryllium	1.2	0.019	0.30		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Cadmium	ND	0.049	0.20		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Chromium	12	0.16	0.61		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Cobalt	5.5	0.21	0.61		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Iron	16000	73	250		mg/Kg	100	11/18/2019 8:16:12 PM	48604
Lead	3.1	0.49	0.51		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Manganese	620	0.42	2.0		mg/Kg	20	11/19/2019 6:28:13 PM	48604
Nickel	11	0.30	1.0		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Selenium	ND	2.6	5.2		mg/Kg	2	11/25/2019 6:37:26 PM	48977
Silver	ND	0.065	0.51		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Vanadium	20	0.13	5.1		mg/Kg	2	11/18/2019 8:14:37 PM	48604
Zinc	19	0.80	5.1		mg/Kg	2	11/18/2019 8:14:37 PM	48604
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Aniline	ND	0.13	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Anthracene	ND	0.10	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benz(a)anthracene	ND	0.094	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benzo(a)pyrene	ND	0.087	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benzo(g,h,i)perylene	ND	0.084	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benzo(k)fluoranthene	ND	0.089	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-7 (17.5-18')

Project: SWMU 13

Collection Date: 10/24/2019 1:30:00 PM

Lab ID: 1910E04-008 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.14	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49	mg/Kg	1	11/4/2019 4:14:39 PM	48494
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Carbazole	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
4-Chloro-3-methylphenol	ND	0.15	0.49	mg/Kg	1	11/4/2019 4:14:39 PM	48494
4-Chloroaniline	ND	0.14	0.49	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2-Chloronaphthalene	ND	0.12	0.24	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2-Chlorophenol	ND	0.12	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Chrysene	ND	0.086	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Di-n-butyl phthalate	ND	0.15	0.39	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Di-n-octyl phthalate	ND	0.10	0.39	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Dibenz(a,h)anthracene	ND	0.089	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
1,3-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
1,4-Dichlorobenzene	ND	0.10	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
3,3'-Dichlorobenzidine	ND	0.087	0.24	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,4-Dichlorophenol	ND	0.11	0.39	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,4-Dimethylphenol	ND	0.11	0.29	mg/Kg	1	11/4/2019 4:14:39 PM	48494
4,6-Dinitro-2-methylphenol	ND	0.090	0.39	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,4-Dinitrophenol	ND	0.071	0.49	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,4-Dinitrotoluene	ND	0.12	0.49	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,6-Dinitrotoluene	ND	0.13	0.49	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Fluoranthene	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Fluorene	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Hexachlorocyclopentadiene	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Indeno(1,2,3-cd)pyrene	ND	0.097	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
Isophorone	ND	0.14	0.39	mg/Kg	1	11/4/2019 4:14:39 PM	48494
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494
2-Methylnaphthalene	ND	0.14	0.20	mg/Kg	1	11/4/2019 4:14:39 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (17.5-18')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:30:00 PM

 Lab ID:
 1910E04-008
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.12	0.39		mg/Kg	1	11/4/2019 4:14:39 PM	48494
3+4-Methylphenol	ND	0.12	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Naphthalene	ND	0.15	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
2-Nitroaniline	ND	0.14	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
3-Nitroaniline	ND	0.14	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
4-Nitroaniline	ND	0.13	0.39		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Nitrobenzene	ND	0.14	0.39		mg/Kg	1	11/4/2019 4:14:39 PM	48494
2-Nitrophenol	ND	0.13	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Pentachlorophenol	ND	0.10	0.39		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Phenanthrene	ND	0.11	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Phenol	ND	0.12	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Pyrene	ND	0.092	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Pyridine	ND	0.12	0.39		mg/Kg	1	11/4/2019 4:14:39 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.20		mg/Kg	1	11/4/2019 4:14:39 PM	48494
Surr: 2-Fluorophenol	49.5		26.7-85.9		%Rec	1	11/4/2019 4:14:39 PM	48494
Surr: Phenol-d5	51.1		18.5-101		%Rec	1	11/4/2019 4:14:39 PM	48494
Surr: 2,4,6-Tribromophenol	50.1		35.8-85.6		%Rec	1	11/4/2019 4:14:39 PM	48494
Surr: Nitrobenzene-d5	53.0		40.8-95.2		%Rec	1	11/4/2019 4:14:39 PM	48494
Surr: 2-Fluorobiphenyl	42.1		34.7-85.2		%Rec	1	11/4/2019 4:14:39 PM	48494
Surr: 4-Terphenyl-d14	57.1		37.4-91.3		%Rec	1	11/4/2019 4:14:39 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0018	0.011		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
Toluene	ND	0.0021	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
Ethylbenzene	ND	0.0013	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0052	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0020	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0021	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0022	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0020	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
Naphthalene	ND	0.0044	0.044		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1-Methylnaphthalene	ND	0.013	0.087		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
2-Methylnaphthalene	ND	0.0096	0.087		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
Acetone	ND	0.018	0.33		mg/Kg	1	10/29/2019 3:41:06 PM	A64063
Bromobenzene	ND	0.0021	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-7 (17.5-18')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:30:00 PM

 Lab ID:
 1910E04-008
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0020	0.022		mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063
Bromoform	ND	0.0020	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Bromomethane	ND	0.0053	0.066		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
2-Butanone	ND	0.025	0.22		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Carbon disulfide	ND	0.0072	0.22		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Carbon tetrachloride	ND	0.0021	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Chlorobenzene	ND	0.0028	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Chloroethane	ND	0.0032	0.044		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Chloroform	ND	0.0018	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Chloromethane	ND	0.0021	0.066		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
2-Chlorotoluene	ND	0.0019	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
4-Chlorotoluene	ND	0.0018	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
cis-1,2-DCE	ND	0.0030	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
cis-1,3-Dichloropropene	ND	0.0018	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,2-Dibromo-3-chloropropane	ND	0.0022	0.044		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Dibromochloromethane	ND	0.0016	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Dibromomethane	ND	0.0024	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,2-Dichlorobenzene	ND	0.0018	0.022		mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063
1,3-Dichlorobenzene	ND	0.0019	0.022		mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063
1,4-Dichlorobenzene	ND	0.0018	0.022		mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063
Dichlorodifluoromethane	ND	0.0051	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,1-Dichloroethane	ND	0.0014	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,1-Dichloroethene	ND	0.0087	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,2-Dichloropropane	ND	0.0016	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,3-Dichloropropane	ND	0.0024	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
2,2-Dichloropropane	ND	0.0071	0.044		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,1-Dichloropropene	ND	0.0020	0.044		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Hexachlorobutadiene	ND	0.0022	0.044		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
2-Hexanone	ND	0.0036	0.22		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Isopropylbenzene	ND	0.0016	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
4-Isopropyltoluene	ND	0.0018	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
4-Methyl-2-pentanone	ND	0.0041	0.22		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Methylene chloride	0.0063	0.0039	0.066	J	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
n-Butylbenzene	ND	0.0020	0.066		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
n-Propylbenzene	ND	0.0017	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
sec-Butylbenzene	ND	0.0025	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Styrene	ND	0.0017	0.022		mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063
tert-Butylbenzene	ND	0.0021	0.022		mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,1,1,2-Tetrachloroethane	ND	0.0015	0.022		mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 36 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-7 (17.5-18')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:30:00 PM

 Lab ID:
 1910E04-008
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0022	0.022	mg/Kg	1	10/29/2019 3:41:06 PN	1 A64063
Tetrachloroethene (PCE)	ND	0.0017	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
trans-1,2-DCE	ND	0.0020	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
trans-1,3-Dichloropropene	ND	0.0023	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0019	0.044	mg/Kg	1	10/29/2019 3:41:06 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0022	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,1,1-Trichloroethane	ND	0.0020	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,1,2-Trichloroethane	ND	0.0015	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Trichloroethene (TCE)	ND	0.0025	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Trichlorofluoromethane	ND	0.0074	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
1,2,3-Trichloropropane	ND	0.0035	0.044	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Vinyl chloride	ND	0.0014	0.022	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Xylenes, Total	ND	0.0055	0.044	mg/Kg	1	10/29/2019 3:41:06 PM	1 A64063
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/29/2019 3:41:06 PM	1 A64063
Surr: 1,2-Dichloroethane-d4	96.0		70-130	%Rec	1	10/29/2019 3:41:06 PM	1 A64063
Surr: Toluene-d8	100		70-130	%Rec	1	10/29/2019 3:41:06 PM	1 A64063
Surr: 4-Bromofluorobenzene	87.0		70-130	%Rec	1	10/29/2019 3:41:06 PM	1 A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 37 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:35:00 PM

 Lab ID:
 1910E04-009
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Ur	nits	DF	Date Analyzed 1	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRN	
Diesel Range Organics (DRO)	45	1.8	8.9	mg	g/Kg	1	11/4/2019 1:32:40 PM	48458
Motor Oil Range Organics (MRO)	79	44	44	mg	g/Kg	1	11/4/2019 1:32:40 PM	48458
Surr: DNOP	99.0	0	70-130	%l	Rec	1	11/4/2019 1:32:40 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.4	mç	g/Kg	1	10/29/2019 11:04:28 P	G64058
Surr: BFB	102	0	77.4-118	-	Rec	1	10/29/2019 11:04:28 P	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.19	0.0018	0.033	mç	g/Kg	1	11/4/2019 6:21:51 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.74	5.0	mo	g/Kg	2	11/7/2019 3:22:26 PM	48433
Arsenic	ND	2.9	5.0		g/Kg	2	11/7/2019 3:22:26 PM	48433
Barium	280	0.046	0.20	`	g/Kg	2	11/7/2019 3:22:26 PM	48433
Beryllium	1.2	0.018	0.30		g/Kg	2	11/7/2019 3:22:26 PM	48433
Cadmium	ND	0.049	0.20	mg	g/Kg	2	11/7/2019 3:22:26 PM	48433
Chromium	32	0.16	0.60	mç	g/Kg	2	11/7/2019 3:22:26 PM	48433
Cobalt	6.0	0.21	0.60	mg	g/Kg	2	11/7/2019 3:22:26 PM	48433
Iron	19000	73	250	mg	g/Kg	100	11/18/2019 8:19:20 PM	48433
Lead	ND	0.49	0.50	mç	g/Kg	2	11/18/2019 8:17:46 PM	48433
Manganese	450	0.042	0.20	mç	g/Kg	2	11/7/2019 3:22:26 PM	48433
Nickel	12	0.30	1.0	mç	g/Kg	2	11/7/2019 3:22:26 PM	48433
Selenium	ND	2.5	5.0	mç	g/Kg	2	11/7/2019 3:22:26 PM	48433
Silver	ND	0.064	0.50	mg	g/Kg	2	11/7/2019 3:22:26 PM	48433
Vanadium	30	0.13	5.0	mg	g/Kg	2	11/7/2019 3:22:26 PM	48433
Zinc	66	0.79	5.0	mç	g/Kg	2	11/7/2019 3:22:26 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.61	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Acenaphthylene	ND	0.56	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Aniline	ND	0.65	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Anthracene	ND	0.54	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Azobenzene	ND	0.71	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benz(a)anthracene	ND	0.49	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benzo(a)pyrene	ND	0.45	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benzo(b)fluoranthene	ND	0.45	1.0	mg	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benzo(g,h,i)perylene	ND	0.43	1.0	mg	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benzo(k)fluoranthene	ND	0.46	1.0	mg	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benzoic acid	ND	0.52	2.5	mg	g/Kg	1	11/4/2019 4:43:38 PM	48494
Benzyl alcohol	ND	0.63	1.0	mç	g/Kg	1	11/4/2019 4:43:38 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-8 (0-0.5')

Project: SWMU 13

Collection Date: 10/24/2019 2:35:00 PM

Lab ID: 1910E04-009 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.75	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.62	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	48494
Bis(2-chloroisopropyl)ether	ND	0.58	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.73	2.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
4-Bromophenyl phenyl ether	ND	0.60	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Butyl benzyl phthalate	ND	0.52	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Carbazole	ND	0.59	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
4-Chloro-3-methylphenol	ND	0.78	2.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
4-Chloroaniline	ND	0.72	2.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2-Chloronaphthalene	ND	0.63	1.3	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2-Chlorophenol	ND	0.63	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.55	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Chrysene	ND	0.45	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Di-n-butyl phthalate	ND	0.76	2.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Di-n-octyl phthalate	ND	0.52	2.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Dibenz(a,h)anthracene	ND	0.46	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	48494
Dibenzofuran	ND	0.66	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	48494
1,2-Dichlorobenzene	ND	0.61	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	48494
1,3-Dichlorobenzene	ND	0.53	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	48494
1,4-Dichlorobenzene	ND	0.54	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
3,3´-Dichlorobenzidine	ND	0.45	1.3	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Diethyl phthalate	ND	0.72	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Dimethyl phthalate	ND	0.68	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2,4-Dichlorophenol	ND	0.59	2.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2,4-Dimethylphenol	ND	0.56	1.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.47	2.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2,4-Dinitrophenol	ND	0.37	2.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2,4-Dinitrotoluene	ND	0.60	2.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2,6-Dinitrotoluene	ND	0.67	2.5	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Fluoranthene	ND	0.57	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Fluorene	ND	0.58	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Hexachlorobenzene	ND	0.63	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Hexachlorobutadiene	ND	0.71	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Hexachlorocyclopentadiene	ND	0.58	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Hexachloroethane	ND	0.56	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Indeno(1,2,3-cd)pyrene	ND	0.50	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
Isophorone	ND	0.75	2.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
1-Methylnaphthalene	ND	0.76	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494
2-Methylnaphthalene	ND	0.74	1.0	mg/Kg	1	11/4/2019 4:43:38 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:35:00 PM

 Lab ID:
 1910E04-009
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Satch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.60	2.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
3+4-Methylphenol	ND	0.62	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
N-Nitrosodi-n-propylamine	ND	0.72	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
N-Nitrosodiphenylamine	ND	0.53	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Naphthalene	ND	0.77	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
2-Nitroaniline	ND	0.72	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
3-Nitroaniline	ND	0.70	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
4-Nitroaniline	ND	0.65	2.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Nitrobenzene	ND	0.70	2.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
2-Nitrophenol	ND	0.69	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
4-Nitrophenol	ND	0.69	1.3		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Pentachlorophenol	ND	0.52	2.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Phenanthrene	ND	0.55	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Phenol	ND	0.63	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Pyrene	ND	0.48	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Pyridine	ND	0.61	2.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
1,2,4-Trichlorobenzene	ND	0.79	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
2,4,5-Trichlorophenol	ND	0.66	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
2,4,6-Trichlorophenol	ND	0.53	1.0		mg/Kg	1	11/4/2019 4:43:38 PM	48494
Surr: 2-Fluorophenol	83.8		26.7-85.9		%Rec	1	11/4/2019 4:43:38 PM	48494
Surr: Phenol-d5	84.1		18.5-101		%Rec	1	11/4/2019 4:43:38 PM	48494
Surr: 2,4,6-Tribromophenol	82.3		35.8-85.6		%Rec	1	11/4/2019 4:43:38 PM	48494
Surr: Nitrobenzene-d5	86.1		40.8-95.2		%Rec	1	11/4/2019 4:43:38 PM	48494
Surr: 2-Fluorobiphenyl	88.7		34.7-85.2	S	%Rec	1	11/4/2019 4:43:38 PM	48494
Surr: 4-Terphenyl-d14	96.0		37.4-91.3	S	%Rec	1	11/4/2019 4:43:38 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0028	0.017		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Toluene	ND	0.0032	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Ethylbenzene	ND	0.0020	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0080	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0031	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0033	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0034	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0031	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Naphthalene	ND	0.0068	0.068		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1-Methylnaphthalene	ND	0.019	0.14		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
2-Methylnaphthalene	ND	0.015	0.14		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Acetone	ND	0.028	0.51		mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Bromobenzene	ND	0.0032	0.034		mg/Kg	1	10/29/2019 4:10:19 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 40 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-8 (0-0.5')Project:SWMU 13Collection Date: 10/24/2019 2:35:00 PM

Lab ID: 1910E04-009 Matrix: MEOH (SOIL) Received Date: 10/25/2019 4:55:00 PM

Analyses Result MDL RL Qual Units DF Date Analyzed

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ I	=
Bromodichloromethane	ND	0.0031	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Bromoform	ND	0.0031	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Bromomethane	ND	0.0082	0.10		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
2-Butanone	ND	0.039	0.34		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Carbon disulfide	ND	0.011	0.34		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Carbon tetrachloride	ND	0.0032	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Chlorobenzene	ND	0.0043	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Chloroethane	ND	0.0050	0.068		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Chloroform	ND	0.0027	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Chloromethane	ND	0.0032	0.10		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
2-Chlorotoluene	ND	0.0029	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
4-Chlorotoluene	ND	0.0028	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
cis-1,2-DCE	ND	0.0046	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
cis-1,3-Dichloropropene	ND	0.0029	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,2-Dibromo-3-chloropropane	ND	0.0035	0.068		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Dibromochloromethane	ND	0.0024	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Dibromomethane	ND	0.0036	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,2-Dichlorobenzene	ND	0.0028	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,3-Dichlorobenzene	ND	0.0029	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,4-Dichlorobenzene	ND	0.0028	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Dichlorodifluoromethane	ND	0.0078	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,1-Dichloroethane	ND	0.0022	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,1-Dichloroethene	ND	0.014	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,2-Dichloropropane	ND	0.0025	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,3-Dichloropropane	ND	0.0037	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
2,2-Dichloropropane	ND	0.011	0.068		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,1-Dichloropropene	ND	0.0031	0.068		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Hexachlorobutadiene	ND	0.0034	0.068		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
2-Hexanone	ND	0.0056	0.34		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Isopropylbenzene	ND	0.0024	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
4-Isopropyltoluene	ND	0.0028	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
4-Methyl-2-pentanone	ND	0.0064	0.34		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Methylene chloride	ND	0.0060	0.10		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
n-Butylbenzene	ND	0.0032	0.10		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
n-Propylbenzene	ND	0.0027	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
sec-Butylbenzene	ND	0.0038	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
Styrene	ND	0.0027	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
tert-Butylbenzene	ND	0.0032	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063
1,1,1,2-Tetrachloroethane	ND	0.0023	0.034		mg/Kg	1	10/29/2019 4:10:19 P	M A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 41 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-8 (0-0.5')

Project: SWMU 13

Collection Date: 10/24/2019 2:35:00 PM

Lab ID: 1910E04-009 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0034	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Tetrachloroethene (PCE)	ND	0.0027	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
trans-1,2-DCE	ND	0.0031	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
trans-1,3-Dichloropropene	ND	0.0036	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0030	0.068	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0034	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,1,1-Trichloroethane	ND	0.0031	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,1,2-Trichloroethane	ND	0.0024	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Trichloroethene (TCE)	ND	0.0039	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Trichlorofluoromethane	ND	0.011	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
1,2,3-Trichloropropane	ND	0.0055	0.068	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Vinyl chloride	ND	0.0022	0.034	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Xylenes, Total	ND	0.0085	0.068	mg/Kg	1	10/29/2019 4:10:19 PM	A64063
Surr: Dibromofluoromethane	105		70-130	%Rec	1	10/29/2019 4:10:19 PM	A64063
Surr: 1,2-Dichloroethane-d4	92.1		70-130	%Rec	1	10/29/2019 4:10:19 PM	A64063
Surr: Toluene-d8	97.2		70-130	%Rec	1	10/29/2019 4:10:19 PM	A64063
Surr: 4-Bromofluorobenzene	87.5		70-130	%Rec	1	10/29/2019 4:10:19 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:45:00 PM

 Lab ID:
 1910E04-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed l	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRN	1
Diesel Range Organics (DRO)	ND	1.9	9.4		mg/Kg	1	10/31/2019 9:59:15 AM	1 48458
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	10/31/2019 9:59:15 AM	1 48458
Surr: DNOP	97.8	0	70-130		%Rec	1	10/31/2019 9:59:15 AM	1 48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.78	2.6		mg/Kg	1	10/29/2019 11:28:20 P	G64058
Surr: BFB	110	0	77.4-118		%Rec	1	10/29/2019 11:28:20 P	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0067	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:23:51 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: rde	
Antimony	ND	0.72	4.9		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Arsenic	ND	2.8	4.9		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Barium	170	0.045	0.20		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Beryllium	1.4	0.018	0.29		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Cadmium	ND	0.048	0.20		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Chromium	13	0.16	0.59		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Cobalt	5.5	0.21	0.59		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Iron	19000	71	250		mg/Kg	100	11/18/2019 8:28:51 PM	1 48433
Lead	4.2	0.48	0.49		mg/Kg	2	11/19/2019 6:56:32 PM	1 48433
Manganese	300	0.041	0.20		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Nickel	13	0.29	0.98		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Selenium	ND	2.5	4.9		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Silver	ND	0.063	0.49		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Vanadium	20	0.13	4.9		mg/Kg	2	11/7/2019 3:24:06 PM	48433
Zinc	18	0.78	4.9		mg/Kg	2	11/7/2019 3:24:06 PM	48433
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Aniline	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Anthracene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Azobenzene	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benz(a)anthracene	ND	0.093	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benzo(b)fluoranthene	ND	0.085	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benzoic acid	ND	0.10	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 43 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:45:00 PM

 Lab ID:
 1910E04-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Butyl benzyl phthalate	ND	0.099	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Carbazole	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
4-Chloro-3-methylphenol	ND	0.15	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
4-Chloroaniline	ND	0.14	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/4/2019 5:14:31 PM	И 48494
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	И 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	И 48494
Chrysene	ND	0.085	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Di-n-butyl phthalate	0.20	0.14	0.39	J	mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Di-n-octyl phthalate	ND	0.098	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
3,3´-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
4,6-Dinitro-2-methylphenol	ND	0.089	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2,4-Dinitrophenol	ND	0.070	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2,4-Dinitrotoluene	ND	0.11	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2,6-Dinitrotoluene	ND	0.13	0.48		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Fluoranthene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Fluorene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Hexachlorobutadiene	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Indeno(1,2,3-cd)pyrene	ND	0.096	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
Isophorone	ND	0.14	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
1-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	Л 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:45:00 PM

 Lab ID:
 1910E04-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed l	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.11	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	48494
3+4-Methylphenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Naphthalene	ND	0.15	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
2-Nitroaniline	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
3-Nitroaniline	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
4-Nitroaniline	ND	0.12	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Nitrobenzene	ND	0.13	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	48494
2-Nitrophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Pentachlorophenol	ND	0.099	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Phenanthrene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Phenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Pyrene	ND	0.091	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Pyridine	ND	0.12	0.39		mg/Kg	1	11/4/2019 5:14:31 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:14:31 PM	48494
Surr: 2-Fluorophenol	52.8		26.7-85.9		%Rec	1	11/4/2019 5:14:31 PM	48494
Surr: Phenol-d5	55.1		18.5-101		%Rec	1	11/4/2019 5:14:31 PM	48494
Surr: 2,4,6-Tribromophenol	58.6		35.8-85.6		%Rec	1	11/4/2019 5:14:31 PM	48494
Surr: Nitrobenzene-d5	58.1		40.8-95.2		%Rec	1	11/4/2019 5:14:31 PM	48494
Surr: 2-Fluorobiphenyl	54.0		34.7-85.2		%Rec	1	11/4/2019 5:14:31 PM	48494
Surr: 4-Terphenyl-d14	67.7		37.4-91.3		%Rec	1	11/4/2019 5:14:31 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0021	0.013		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
Toluene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
Ethylbenzene	ND	0.0015	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
Methyl tert-butyl ether (MTBE)	ND	0.0061	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
1,2,4-Trimethylbenzene	ND	0.0024	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
1,3,5-Trimethylbenzene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
1,2-Dichloroethane (EDC)	ND	0.0026	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
1,2-Dibromoethane (EDB)	ND	0.0024	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
Naphthalene	ND	0.0052	0.052		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
1-Methylnaphthalene	ND	0.015	0.10		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
2-Methylnaphthalene	ND	0.011	0.10		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
Acetone	ND	0.021	0.39		mg/Kg	1	10/29/2019 4:39:22 PM	I A64063
Bromobenzene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 4:39:22 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 45 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:45:00 PM

 Lab ID:
 1910E04-010
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0024	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Bromoform	ND	0.0023	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Bromomethane	ND	0.0062	0.078	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
2-Butanone	ND	0.030	0.26	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Carbon disulfide	ND	0.0085	0.26	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Carbon tetrachloride	ND	0.0025	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Chlorobenzene	ND	0.0033	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Chloroethane	ND	0.0038	0.052	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Chloroform	ND	0.0021	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Chloromethane	ND	0.0025	0.078	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
2-Chlorotoluene	ND	0.0023	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
4-Chlorotoluene	ND	0.0021	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
cis-1,2-DCE	ND	0.0035	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
cis-1,3-Dichloropropene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0027	0.052	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Dibromochloromethane	ND	0.0018	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Dibromomethane	ND	0.0028	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,2-Dichlorobenzene	ND	0.0021	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,3-Dichlorobenzene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,4-Dichlorobenzene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Dichlorodifluoromethane	ND	0.0060	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,1-Dichloroethane	ND	0.0017	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,1-Dichloroethene	ND	0.010	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,2-Dichloropropane	ND	0.0019	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,3-Dichloropropane	ND	0.0028	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
2,2-Dichloropropane	ND	0.0084	0.052	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,1-Dichloropropene	ND	0.0024	0.052	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Hexachlorobutadiene	ND	0.0026	0.052	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
2-Hexanone	ND	0.0043	0.26	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Isopropylbenzene	ND	0.0019	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
4-Isopropyltoluene	ND	0.0021	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
4-Methyl-2-pentanone	ND	0.0049	0.26	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Methylene chloride	ND	0.0046	0.078	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
n-Butylbenzene	ND	0.0024	0.078	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
n-Propylbenzene	ND	0.0021	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
sec-Butylbenzene	ND	0.0029	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
Styrene	ND	0.0020	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
tert-Butylbenzene	ND	0.0024	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0017	0.026	mg/Kg	1	10/29/2019 4:39:22 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 46 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-8 (1.5-2')

Project: SWMU 13

Collection Date: 10/24/2019 2:45:00 PM

Lab ID: 1910E04-010 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,1,2,2-Tetrachloroethane	ND	0.0026	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
Tetrachloroethene (PCE)	ND	0.0021	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
trans-1,2-DCE	ND	0.0024	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
trans-1,3-Dichloropropene	ND	0.0027	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
1,2,3-Trichlorobenzene	ND	0.0023	0.052	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
1,2,4-Trichlorobenzene	ND	0.0026	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
1,1,1-Trichloroethane	ND	0.0023	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
1,1,2-Trichloroethane	ND	0.0018	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
Trichloroethene (TCE)	ND	0.0030	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
Trichlorofluoromethane	ND	0.0088	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
1,2,3-Trichloropropane	ND	0.0042	0.052	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
Vinyl chloride	ND	0.0017	0.026	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
Xylenes, Total	ND	0.0065	0.052	mg/Kg	1	10/29/2019 4:39:22 F	PM A64063
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/29/2019 4:39:22 F	PM A64063
Surr: 1,2-Dichloroethane-d4	94.3		70-130	%Rec	1	10/29/2019 4:39:22 F	PM A64063
Surr: Toluene-d8	102		70-130	%Rec	1	10/29/2019 4:39:22 F	PM A64063
Surr: 4-Bromofluorobenzene	92.2		70-130	%Rec	1	10/29/2019 4:39:22 F	PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-8 (2-3')

Project: SWMU 13

Collection Date: 10/24/2019 2:50:00 PM

Lab ID: 1910E04-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.4		mg/Kg	1	10/31/2019 10:21:11 A	48458
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	10/31/2019 10:21:11 A	48458
Surr: DNOP	94.3	0	70-130		%Rec	1	10/31/2019 10:21:11 A	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.78	2.6		mg/Kg	1	10/29/2019 11:52:09 P	G64058
Surr: BFB	106	0	77.4-118		%Rec	1	10/29/2019 11:52:09 P	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0035	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:25:51 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.75	5.1		mg/Kg	2	11/21/2019 7:39:13 PM	48434
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 5:15:47 PM	
Barium	270	0.047	0.20		mg/Kg	2	11/22/2019 4:28:38 PM	48434
Beryllium	1.3	0.019	0.30		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Chromium	14	0.16	0.61		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Cobalt	5.8	0.21	0.61		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Iron	19000	74	250		mg/Kg	100	11/20/2019 4:26:46 PM	48434
Lead	3.0	0.49	0.51		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Manganese	290	0.042	0.20		mg/Kg	2	11/22/2019 4:28:38 PM	48434
Nickel	13	0.30	1.0		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Selenium	ND	2.5	5.1		mg/Kg	2	11/22/2019 4:28:38 PM	48434
Silver	ND	0.065	0.51		mg/Kg	2	11/22/2019 4:28:38 PM	48434
Vanadium	23	0.14	5.1		mg/Kg	2	11/19/2019 5:15:47 PM	48434
Zinc	19	0.80	5.1		mg/Kg	2	11/19/2019 5:15:47 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Aniline	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Anthracene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Azobenzene	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benz(a)anthracene	ND	0.093	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benzo(b)fluoranthene	ND	0.085	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benzoic acid	ND	0.099	0.48		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 48 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-8 (2-3')

Project: SWMU 13

Collection Date: 10/24/2019 2:50:00 PM

Lab ID: 1910E04-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Bis(2-ethylhexyl)phthalate	0.14	0.14	0.48	J	mg/Kg	1	11/4/2019 5:43:45 PM	Л 48494
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	Л 48494
Butyl benzyl phthalate	ND	0.098	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Carbazole	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
4-Chloro-3-methylphenol	ND	0.15	0.48		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
4-Chloroaniline	ND	0.14	0.48		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
4-Chlorophenyl phenyl ether	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
Chrysene	ND	0.085	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Di-n-butyl phthalate	0.26	0.14	0.39	J	mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Di-n-octyl phthalate	ND	0.098	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494
3,3´-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
4,6-Dinitro-2-methylphenol	ND	0.089	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
2,4-Dinitrophenol	ND	0.070	0.48		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
2,4-Dinitrotoluene	ND	0.11	0.48		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
2,6-Dinitrotoluene	ND	0.13	0.48		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Fluoranthene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Fluorene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Hexachlorobutadiene	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Indeno(1,2,3-cd)pyrene	ND	0.096	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
Isophorone	ND	0.14	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
1-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	И 48494
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	M 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 49 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-8 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 2:50:00 PM

 Lab ID:
 1910E04-011
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.11	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	48494
3+4-Methylphenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Naphthalene	ND	0.15	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
2-Nitroaniline	ND	0.14	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
3-Nitroaniline	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
4-Nitroaniline	ND	0.12	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Nitrobenzene	ND	0.13	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	48494
2-Nitrophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Pentachlorophenol	ND	0.099	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Phenanthrene	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Phenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Pyrene	ND	0.090	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Pyridine	ND	0.12	0.39		mg/Kg	1	11/4/2019 5:43:45 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
2,4,5-Trichlorophenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.19		mg/Kg	1	11/4/2019 5:43:45 PM	48494
Surr: 2-Fluorophenol	48.1		26.7-85.9		%Rec	1	11/4/2019 5:43:45 PM	48494
Surr: Phenol-d5	52.1		18.5-101		%Rec	1	11/4/2019 5:43:45 PM	48494
Surr: 2,4,6-Tribromophenol	55.5		35.8-85.6		%Rec	1	11/4/2019 5:43:45 PM	48494
Surr: Nitrobenzene-d5	56.7		40.8-95.2		%Rec	1	11/4/2019 5:43:45 PM	48494
Surr: 2-Fluorobiphenyl	50.5		34.7-85.2		%Rec	1	11/4/2019 5:43:45 PM	48494
Surr: 4-Terphenyl-d14	67.1		37.4-91.3		%Rec	1	11/4/2019 5:43:45 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0021	0.013		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Toluene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Ethylbenzene	ND	0.0015	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0061	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0024	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0026	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0023	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Naphthalene	ND	0.0052	0.051		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1-Methylnaphthalene	ND	0.015	0.10		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
2-Methylnaphthalene	ND	0.011	0.10		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Acetone	ND	0.021	0.39		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Bromobenzene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-8 (2-3')Project:SWMU 13Collection Date: 10/24/2019 2:50:00 PM

Lab ID: 1910E04-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0023	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Bromoform	ND	0.0023	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Bromomethane	ND	0.0062	0.077		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
2-Butanone	ND	0.030	0.26		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Carbon disulfide	ND	0.0085	0.26		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Carbon tetrachloride	ND	0.0024	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Chlorobenzene	ND	0.0033	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Chloroethane	ND	0.0038	0.051		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Chloroform	ND	0.0021	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Chloromethane	ND	0.0025	0.077		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
2-Chlorotoluene	ND	0.0022	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
4-Chlorotoluene	ND	0.0021	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
cis-1,2-DCE	ND	0.0035	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
cis-1,3-Dichloropropene	ND	0.0022	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0026	0.051		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Dibromochloromethane	ND	0.0018	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Dibromomethane	ND	0.0028	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2-Dichlorobenzene	ND	0.0021	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,3-Dichlorobenzene	ND	0.0022	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,4-Dichlorobenzene	ND	0.0022	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Dichlorodifluoromethane	ND	0.0060	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,1-Dichloroethane	ND	0.0016	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,1-Dichloroethene	ND	0.010	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2-Dichloropropane	ND	0.0019	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,3-Dichloropropane	ND	0.0028	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
2,2-Dichloropropane	ND	0.0084	0.051		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,1-Dichloropropene	ND	0.0023	0.051		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Hexachlorobutadiene	ND	0.0026	0.051		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
2-Hexanone	ND	0.0043	0.26		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Isopropylbenzene	ND	0.0019	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
4-Isopropyltoluene	ND	0.0021	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
4-Methyl-2-pentanone	ND	0.0049	0.26		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Methylene chloride	0.0073	0.0045	0.077	J	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
n-Butylbenzene	ND	0.0024	0.077		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
n-Propylbenzene	ND	0.0021	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
sec-Butylbenzene	ND	0.0029	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Styrene	ND	0.0020	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
tert-Butylbenzene	ND	0.0024	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0017	0.026		mg/Kg	1	10/29/2019 5:08:36 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 51 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-8 (2-3')

Project: SWMU 13

Collection Date: 10/24/2019 2:50:00 PM

Lab ID: 1910E04-011 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0026	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Tetrachloroethene (PCE)	ND	0.0021	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
trans-1,2-DCE	ND	0.0024	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
trans-1,3-Dichloropropene	ND	0.0027	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0023	0.051	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0026	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,1,1-Trichloroethane	ND	0.0023	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,1,2-Trichloroethane	ND	0.0018	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Trichloroethene (TCE)	ND	0.0030	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Trichlorofluoromethane	ND	0.0087	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
1,2,3-Trichloropropane	ND	0.0042	0.051	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Vinyl chloride	ND	0.0017	0.026	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Xylenes, Total	ND	0.0065	0.051	mg/Kg	1	10/29/2019 5:08:36 PM	A64063
Surr: Dibromofluoromethane	109		70-130	%Rec	1	10/29/2019 5:08:36 PM	A64063
Surr: 1,2-Dichloroethane-d4	98.0		70-130	%Rec	1	10/29/2019 5:08:36 PM	A64063
Surr: Toluene-d8	101		70-130	%Rec	1	10/29/2019 5:08:36 PM	A64063
Surr: 4-Bromofluorobenzene	89.0		70-130	%Rec	1	10/29/2019 5:08:36 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 52 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:35:00 PM

 Lab ID:
 1910E04-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	2400	19	94		mg/Kg	10	11/4/2019 1:54:52 PM	48458
Motor Oil Range Organics (MRO)	1900	470	470		mg/Kg	10	11/4/2019 1:54:52 PM	48458
Surr: DNOP	0	0	70-130	S	%Rec	10	11/4/2019 1:54:52 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.98	3.2		mg/Kg	1	10/30/2019 12:15:58 A	G64058
Surr: BFB	102	0	77.4-118		%Rec	1	10/30/2019 12:15:58 A	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	8.3	0.090	1.6		mg/Kg	50	11/4/2019 6:58:05 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.75	5.1		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Arsenic	8.3	2.9	5.1		mg/Kg	2	11/19/2019 5:22:03 PM	
Barium	260	0.047	0.20		mg/Kg	2	11/19/2019 5:22:03 PM	
Beryllium	0.91	0.019	0.30		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Chromium	270	0.16	0.61		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Cobalt	6.8	0.21	0.61		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Iron	16000	74	250		mg/Kg	100	11/20/2019 4:28:19 PM	48434
Lead	7.5	0.49	0.51		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Manganese	170	0.042	0.20		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Nickel	18	0.30	1.0		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Selenium	7.8	2.5	5.1		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Silver	ND	0.065	0.51		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Vanadium	27	0.14	5.1		mg/Kg	2	11/19/2019 5:22:03 PM	48434
Zinc	390	0.80	5.1		mg/Kg	2	11/19/2019 5:22:03 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	5.8	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Acenaphthylene	ND	5.3	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Aniline	ND	6.2	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Anthracene	ND	5.2	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Azobenzene	ND	6.7	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benz(a)anthracene	ND	4.6	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benzo(a)pyrene	ND	4.3	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benzo(b)fluoranthene	ND	4.3	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benzo(g,h,i)perylene	ND	4.1	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benzo(k)fluoranthene	ND	4.4	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benzoic acid	ND	5.0	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Benzyl alcohol	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 53 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:35:00 PM

 Lab ID:
 1910E04-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	C
Bis(2-chloroethoxy)methane	ND	7.1	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Bis(2-chloroethyl)ether	ND	5.9	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Bis(2-chloroisopropyl)ether	ND	5.5	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Bis(2-ethylhexyl)phthalate	ND	6.9	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
4-Bromophenyl phenyl ether	ND	5.7	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Butyl benzyl phthalate	ND	4.9	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Carbazole	ND	5.6	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
4-Chloro-3-methylphenol	ND	7.4	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
4-Chloroaniline	ND	6.8	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2-Chloronaphthalene	ND	6.0	12	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2-Chlorophenol	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
4-Chlorophenyl phenyl ether	ND	5.3	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Chrysene	ND	4.2	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Di-n-butyl phthalate	ND	7.2	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Di-n-octyl phthalate	ND	4.9	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Dibenz(a,h)anthracene	ND	4.4	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Dibenzofuran	ND	6.3	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
1,2-Dichlorobenzene	ND	5.8	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
1,3-Dichlorobenzene	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
1,4-Dichlorobenzene	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
3,3´-Dichlorobenzidine	ND	4.3	12	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Diethyl phthalate	ND	6.9	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Dimethyl phthalate	ND	6.4	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2,4-Dichlorophenol	ND	5.6	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2,4-Dimethylphenol	ND	5.3	14	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
4,6-Dinitro-2-methylphenol	ND	4.4	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2,4-Dinitrophenol	ND	3.5	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2,4-Dinitrotoluene	ND	5.7	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2,6-Dinitrotoluene	ND	6.3	24	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Fluoranthene	ND	5.4	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Fluorene	ND	5.5	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Hexachlorobenzene	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Hexachlorobutadiene	ND	6.7	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Hexachlorocyclopentadiene	ND	5.5	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Hexachloroethane	ND	5.4	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Indeno(1,2,3-cd)pyrene	ND	4.8	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
Isophorone	ND	7.1	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
1-Methylnaphthalene	ND	7.2	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494
2-Methylnaphthalene	ND	7.0	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	A 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:35:00 PM

 Lab ID:
 1910E04-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDI	. RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	5.7	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
3+4-Methylphenol	ND	5.9	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
N-Nitrosodi-n-propylamine	ND	6.9	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
N-Nitrosodiphenylamine	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Naphthalene	ND	7.3	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
2-Nitroaniline	ND	6.9	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
3-Nitroaniline	ND	6.6	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
4-Nitroaniline	ND	6.2	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Nitrobenzene	ND	6.7	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
2-Nitrophenol	ND	6.6	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
4-Nitrophenol	ND	6.5	12	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Pentachlorophenol	ND	5.0	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Phenanthrene	ND	5.2	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Phenol	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Pyrene	ND	4.5	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Pyridine	ND	5.8	19	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
1,2,4-Trichlorobenzene	ND	7.5	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
2,4,5-Trichlorophenol	ND	6.2	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
2,4,6-Trichlorophenol	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 6:12:58 PM	48494
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	5	11/4/2019 6:12:58 PM	48494
Surr: Phenol-d5	0		18.5-101	SD	%Rec	5	11/4/2019 6:12:58 PM	48494
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	5	11/4/2019 6:12:58 PM	48494
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	5	11/4/2019 6:12:58 PM	48494
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	5	11/4/2019 6:12:58 PM	48494
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	5	11/4/2019 6:12:58 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0026	0.016		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
Toluene	ND	0.0031	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
Ethylbenzene	ND	0.0019	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0077	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0029	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0031	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0033	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0029	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
Naphthalene	ND	0.0065	0.065		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
1-Methylnaphthalene	ND	0.019	0.13		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
2-Methylnaphthalene	ND	0.014	0.13		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
Acetone	ND	0.027	0.48		mg/Kg	1	10/29/2019 5:38:01 PM	A64063
Bromobenzene	ND	0.0031	0.032		mg/Kg	1	10/29/2019 5:38:01 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 55 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:35:00 PM

 Lab ID:
 1910E04-012
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
Bromodichloromethane	ND	0.0029	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Bromoform	ND	0.0029	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Bromomethane	ND	0.0078	0.097	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
2-Butanone	ND	0.037	0.32	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Carbon disulfide	ND	0.011	0.32	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Carbon tetrachloride	ND	0.0031	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Chlorobenzene	ND	0.0041	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Chloroethane	ND	0.0048	0.065	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Chloroform	ND	0.0026	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Chloromethane	ND	0.0031	0.097	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
2-Chlorotoluene	ND	0.0028	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
4-Chlorotoluene	ND	0.0026	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
cis-1,2-DCE	ND	0.0044	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
cis-1,3-Dichloropropene	ND	0.0027	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,2-Dibromo-3-chloropropane	ND	0.0033	0.065	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Dibromochloromethane	ND	0.0023	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Dibromomethane	ND	0.0035	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,2-Dichlorobenzene	ND	0.0026	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,3-Dichlorobenzene	ND	0.0028	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,4-Dichlorobenzene	ND	0.0027	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Dichlorodifluoromethane	ND	0.0075	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,1-Dichloroethane	ND	0.0021	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,1-Dichloroethene	ND	0.013	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,2-Dichloropropane	ND	0.0024	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,3-Dichloropropane	ND	0.0035	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
2,2-Dichloropropane	ND	0.010	0.065	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,1-Dichloropropene	ND	0.0029	0.065	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Hexachlorobutadiene	ND	0.0033	0.065	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
2-Hexanone	ND	0.0054	0.32	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Isopropylbenzene	ND	0.0023	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
4-Isopropyltoluene	ND	0.0027	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
4-Methyl-2-pentanone	ND	0.0061	0.32	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Methylene chloride	ND	0.0057	0.097	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
n-Butylbenzene	ND	0.0030	0.097	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
n-Propylbenzene	ND	0.0026	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
sec-Butylbenzene	ND	0.0036	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
Styrene	ND	0.0025	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
tert-Butylbenzene	ND	0.0030	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063
1,1,1,2-Tetrachloroethane	ND	0.0022	0.032	mg/Kg	1	10/29/2019 5:38:01 P	M A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 56 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-9 (0-0.5')

Project: SWMU 13

Collection Date: 10/24/2019 3:35:00 PM

Lab ID: 1910E04-012 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: D.	JF
1,1,2,2-Tetrachloroethane	ND	0.0033	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
Tetrachloroethene (PCE)	ND	0.0026	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
trans-1,2-DCE	ND	0.0030	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
trans-1,3-Dichloropropene	ND	0.0034	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
1,2,3-Trichlorobenzene	ND	0.0028	0.065	mg/Kg	1	10/29/2019 5:38:01	PM A64063
1,2,4-Trichlorobenzene	ND	0.0033	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
1,1,1-Trichloroethane	ND	0.0029	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
1,1,2-Trichloroethane	ND	0.0023	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
Trichloroethene (TCE)	ND	0.0037	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
Trichlorofluoromethane	ND	0.011	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
1,2,3-Trichloropropane	ND	0.0052	0.065	mg/Kg	1	10/29/2019 5:38:01	PM A64063
Vinyl chloride	ND	0.0021	0.032	mg/Kg	1	10/29/2019 5:38:01	PM A64063
Xylenes, Total	ND	0.0081	0.065	mg/Kg	1	10/29/2019 5:38:01	PM A64063
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/29/2019 5:38:01	PM A64063
Surr: 1,2-Dichloroethane-d4	93.2		70-130	%Rec	1	10/29/2019 5:38:01	PM A64063
Surr: Toluene-d8	97.7		70-130	%Rec	1	10/29/2019 5:38:01	PM A64063
Surr: 4-Bromofluorobenzene	90.5		70-130	%Rec	1	10/29/2019 5:38:01	PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 57 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:45:00 PM

 Lab ID:
 1910E04-013
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	20	1.7	8.7		mg/Kg	1	11/1/2019 1:51:43 PM	48458
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	11/1/2019 1:51:43 PM	48458
Surr: DNOP	110	0	70-130		%Rec	1	11/1/2019 1:51:43 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.83	2.7		mg/Kg	1	10/30/2019 12:39:44 A	G64058
Surr: BFB	112	0	77.4-118		%Rec	1	10/30/2019 12:39:44 A	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0045	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:30:01 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.72	4.9		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Arsenic	ND	2.8	4.9		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Barium	210	0.045	0.20		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Beryllium	1.4	0.018	0.29		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Cadmium	ND	0.048	0.20		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Chromium	18	0.16	0.59		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Cobalt	6.0	0.21	0.59		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Iron	19000	71	240		mg/Kg	100	11/20/2019 4:29:54 PM	48434
Lead	1.6	0.48	0.49		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Manganese	270	0.041	0.20		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Nickel	13	0.29	0.98		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Selenium	ND	2.5	4.9		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Silver	ND	0.063	0.49		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Vanadium	24	0.13	4.9		mg/Kg	2	11/19/2019 5:25:01 PM	48434
Zinc	22	0.77	4.9		mg/Kg	2	11/19/2019 5:25:01 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.25	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Acenaphthylene	ND	0.23	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Aniline	ND	0.27	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Anthracene	ND	0.22	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Azobenzene	ND	0.29	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benz(a)anthracene	ND	0.20	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benzo(a)pyrene	ND	0.18	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benzo(b)fluoranthene	ND	0.18	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benzo(g,h,i)perylene	ND	0.18	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benzo(k)fluoranthene	ND	0.19	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benzoic acid	ND	0.21	1.0		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Benzyl alcohol	ND	0.26	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 58 of 195

Lab Order 1910E04

Received Date: 10/25/2019 4:55:00 PM

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: MarathonClient Sample ID: SWMU 13-9 (1.5-2')Project: SWMU 13Collection Date: 10/24/2019 3:45:00 PM

Matrix: MEOH (SOIL)

Result **MDL** DF **Batch ID** Analyses RL**Qual Units Date Analyzed EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC Bis(2-chloroethoxy)methane ND 0.31 0.41 11/4/2019 6:42:07 PM 48494 mg/Kg 1 Bis(2-chloroethyl)ether ND 0.25 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 Bis(2-chloroisopropyl)ether ND 0.24 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 Bis(2-ethylhexyl)phthalate ND 0.30 mg/Kg 1 11/4/2019 6:42:07 PM 48494 1.0 4-Bromophenyl phenyl ether ND 0.24 1 0.41 mg/Kg 11/4/2019 6:42:07 PM 48494 1 Butvl benzvl phthalate ND 0.21 0.41 mg/Kg 11/4/2019 6:42:07 PM 48494 ND 0.24 0.41 1 11/4/2019 6:42:07 PM Carbazole mg/Kg 48494 4-Chloro-3-methylphenol ND 0.32 1.0 mg/Kg 1 11/4/2019 6:42:07 PM 48494 0.29 1 4-Chloroaniline ND 1.0 mg/Kg 11/4/2019 6:42:07 PM 48494 2-Chloronaphthalene ND 0.26 0.52 mg/Kg 1 11/4/2019 6:42:07 PM 48494 2-Chlorophenol ND 0.26 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 11/4/2019 6:42:07 PM 4-Chlorophenyl phenyl ether ND 0.23 0.41 mg/Kg 1 48494 Chrysene ND 0.18 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 Di-n-butyl phthalate ND 0.31 0.83 mg/Kg 1 11/4/2019 6:42:07 PM 48494 Di-n-octyl phthalate ND 0.21 0.83 mg/Kg 1 11/4/2019 6:42:07 PM 48494 ND 0.19 1 48494 Dibenz(a,h)anthracene 0.41 mg/Kg 11/4/2019 6:42:07 PM Dibenzofuran ND 0.27 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 ND 0.25 1,2-Dichlorobenzene 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 1.3-Dichlorobenzene ND 0.22 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 1,4-Dichlorobenzene ND 0.22 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 ND 0.18 0.52 1 3,3'-Dichlorobenzidine mg/Kg 11/4/2019 6:42:07 PM 48494 Diethyl phthalate ND 0.29 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 ND Dimethyl phthalate 0.28 mg/Kg 1 48494 0.41 11/4/2019 6:42:07 PM 2,4-Dichlorophenol ND 0.24 0.83 1 11/4/2019 6:42:07 PM mg/Kg 48494 ND 0.23 2,4-Dimethylphenol 0.62 mg/Kg 1 11/4/2019 6:42:07 PM 48494 4,6-Dinitro-2-methylphenol ND 0.19 0.83 mg/Kg 1 11/4/2019 6:42:07 PM 48494 2,4-Dinitrophenol ND 0.15 mg/Kg 1 11/4/2019 6:42:07 PM 1.0 48494 2,4-Dinitrotoluene ND 0.24 1.0 mg/Kg 1 11/4/2019 6:42:07 PM 48494 ND 0.27 1 2,6-Dinitrotoluene 1.0 mg/Kg 11/4/2019 6:42:07 PM 48494 Fluoranthene ND 0.23 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 Fluorene ND 0.24 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494 Hexachlorobenzene ND 0.26 0.41 mg/Kg 1 11/4/2019 6:42:07 PM 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

0.29

0.24

0.23

0.21

0.30

0.31

0.30

0.41

0.41

0.41

0.41

0.83

0.41

0.41

ND

ND

ND

ND

ND

ND

ND

Qualifiers:

Hexachlorobutadiene

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

2-Methylnaphthalene

Hexachloroethane

Isophorone

Hexachlorocyclopentadiene

Lab ID:

1910E04-013

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

1

1

1

1

1

1

1

11/4/2019 6:42:07 PM

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 59 of 195

48494

48494

48494

48494

48494

48494

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:45:00 PM

 Lab ID:
 1910E04-013
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.24	0.83		mg/Kg	1	11/4/2019 6:42:07 PM	48494
3+4-Methylphenol	ND	0.25	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
N-Nitrosodi-n-propylamine	ND	0.29	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
N-Nitrosodiphenylamine	ND	0.22	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Naphthalene	ND	0.31	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
2-Nitroaniline	ND	0.29	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
3-Nitroaniline	ND	0.28	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
4-Nitroaniline	ND	0.26	0.83		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Nitrobenzene	ND	0.29	0.83		mg/Kg	1	11/4/2019 6:42:07 PM	48494
2-Nitrophenol	ND	0.28	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
4-Nitrophenol	ND	0.28	0.52		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Pentachlorophenol	ND	0.21	0.83		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Phenanthrene	ND	0.22	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Phenol	ND	0.26	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Pyrene	ND	0.19	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Pyridine	ND	0.25	0.83		mg/Kg	1	11/4/2019 6:42:07 PM	48494
1,2,4-Trichlorobenzene	ND	0.32	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
2,4,5-Trichlorophenol	ND	0.27	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
2,4,6-Trichlorophenol	ND	0.22	0.41		mg/Kg	1	11/4/2019 6:42:07 PM	48494
Surr: 2-Fluorophenol	64.9	2	26.7-85.9		%Rec	1	11/4/2019 6:42:07 PM	48494
Surr: Phenol-d5	66.1		18.5-101		%Rec	1	11/4/2019 6:42:07 PM	48494
Surr: 2,4,6-Tribromophenol	65.4	;	35.8-85.6		%Rec	1	11/4/2019 6:42:07 PM	48494
Surr: Nitrobenzene-d5	68.5	4	40.8-95.2		%Rec	1	11/4/2019 6:42:07 PM	48494
Surr: 2-Fluorobiphenyl	64.0	;	34.7-85.2		%Rec	1	11/4/2019 6:42:07 PM	48494
Surr: 4-Terphenyl-d14	76.5	;	37.4-91.3		%Rec	1	11/4/2019 6:42:07 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0022	0.014		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
Toluene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
Ethylbenzene	ND	0.0016	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0065	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0025	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0028	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0025	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
Naphthalene	ND	0.0055	0.055		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
1-Methylnaphthalene	ND	0.016	0.11		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
2-Methylnaphthalene	ND	0.012	0.11		mg/Kg	1	10/29/2019 6:07:06 PM	
Acetone	ND	0.023	0.41		mg/Kg	1	10/29/2019 6:07:06 PM	A64063
Bromobenzene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 6:07:06 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 60 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:45:00 PM

 Lab ID:
 1910E04-013
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	•
Bromodichloromethane	ND	0.0025	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Bromoform	ND	0.0025	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	И A64063
Bromomethane	ND	0.0066	0.082		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
2-Butanone	ND	0.032	0.27		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Carbon disulfide	ND	0.0090	0.27		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Carbon tetrachloride	ND	0.0026	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Chlorobenzene	ND	0.0035	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Chloroethane	ND	0.0040	0.055		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Chloroform	ND	0.0022	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Chloromethane	ND	0.0026	0.082		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
2-Chlorotoluene	ND	0.0024	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
4-Chlorotoluene	ND	0.0022	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
cis-1,2-DCE	ND	0.0037	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
cis-1,3-Dichloropropene	ND	0.0023	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,2-Dibromo-3-chloropropane	ND	0.0028	0.055		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Dibromochloromethane	ND	0.0019	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Dibromomethane	ND	0.0029	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,2-Dichlorobenzene	ND	0.0022	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,3-Dichlorobenzene	ND	0.0024	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,4-Dichlorobenzene	ND	0.0023	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Dichlorodifluoromethane	ND	0.0064	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,1-Dichloroethane	ND	0.0017	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,1-Dichloroethene	ND	0.011	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,2-Dichloropropane	ND	0.0020	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,3-Dichloropropane	ND	0.0030	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
2,2-Dichloropropane	ND	0.0089	0.055		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,1-Dichloropropene	ND	0.0025	0.055		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Hexachlorobutadiene	ND	0.0028	0.055		mg/Kg	1	10/29/2019 6:07:06 Pf	M A64063
2-Hexanone	ND	0.0045	0.27		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Isopropylbenzene	ND	0.0020	0.027		mg/Kg	1	10/29/2019 6:07:06 Pf	M A64063
4-Isopropyltoluene	ND	0.0023	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
4-Methyl-2-pentanone	ND	0.0052	0.27		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Methylene chloride	ND	0.0048	0.082		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
n-Butylbenzene	ND	0.0026	0.082		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
n-Propylbenzene	ND	0.0022	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
sec-Butylbenzene	ND	0.0031	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
Styrene	ND	0.0021	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
tert-Butylbenzene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 6:07:06 PI	M A64063
1,1,1,2-Tetrachloroethane	ND	0.0018	0.027		mg/Kg	1	10/29/2019 6:07:06 Pf	И А64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 61 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-9 (1.5-2')

Project: SWMU 13

Collection Date: 10/24/2019 3:45:00 PM

Lab ID: 1910E04-013 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual 1	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,1,2,2-Tetrachloroethane	ND	0.0028	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
Tetrachloroethene (PCE)	ND	0.0022	0.027		mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
trans-1,2-DCE	ND	0.0025	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
trans-1,3-Dichloropropene	ND	0.0029	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
1,2,3-Trichlorobenzene	ND	0.0024	0.055	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
1,2,4-Trichlorobenzene	ND	0.0028	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
1,1,1-Trichloroethane	ND	0.0025	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
1,1,2-Trichloroethane	ND	0.0019	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
Trichloroethene (TCE)	ND	0.0032	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
Trichlorofluoromethane	ND	0.0093	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
1,2,3-Trichloropropane	ND	0.0044	0.055	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
Vinyl chloride	ND	0.0018	0.027	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
Xylenes, Total	ND	0.0069	0.055	1	mg/Kg	1	10/29/2019 6:07:06 F	PM A64063
Surr: Dibromofluoromethane	105		70-130	•	%Rec	1	10/29/2019 6:07:06 F	PM A64063
Surr: 1,2-Dichloroethane-d4	93.0		70-130	•	%Rec	1	10/29/2019 6:07:06 F	PM A64063
Surr: Toluene-d8	100		70-130	•	%Rec	1	10/29/2019 6:07:06 F	PM A64063
Surr: 4-Bromofluorobenzene	93.5		70-130	•	%Rec	1	10/29/2019 6:07:06 F	PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 62 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-9 (2-3')

Project: SWMU 13

Collection Date: 10/24/2019 3:55:00 PM

Lab ID: 1910E04-014 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	20	1.8	9.1		mg/Kg	1	11/1/2019 2:00:53 PM	48458
Motor Oil Range Organics (MRO)	ND	45	45		mg/Kg	1	11/1/2019 2:00:53 PM	48458
Surr: DNOP	103	0	70-130		%Rec	1	11/1/2019 2:00:53 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.80	2.6		mg/Kg	1	10/30/2019 1:03:31 AM	G64058
Surr: BFB	124	0	77.4-118	S	%Rec	1	10/30/2019 1:03:31 AM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0030	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:36:12 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.73	5.0		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Arsenic	ND	2.8	5.0		mg/Kg	2	11/19/2019 5:28:07 PM	
Barium	210	0.046	0.20		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Beryllium	1.3	0.018	0.30		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Cadmium	ND	0.048	0.20		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Chromium	13	0.16	0.60		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Cobalt	5.6	0.21	0.60		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Iron	19000	72	250		mg/Kg	100	11/20/2019 4:31:27 PM	48434
Lead	2.7	0.48	0.50		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Manganese	340	0.041	0.20		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Nickel	12	0.30	1.0		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Silver	ND	0.064	0.50		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Vanadium	21	0.13	5.0		mg/Kg	2	11/19/2019 5:28:07 PM	48434
Zinc	18	0.79	5.0		mg/Kg	2	11/19/2019 5:28:07 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Aniline	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Anthracene	ND	0.10	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Azobenzene	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benz(a)anthracene	ND	0.093	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benzo(b)fluoranthene	ND	0.086	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 63 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-9 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:55:00 PM

 Lab ID:
 1910E04-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Butyl benzyl phthalate	ND	0.099	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Carbazole	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Chrysene	ND	0.086	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Di-n-butyl phthalate	0.23	0.14	0.39	J	mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Di-n-octyl phthalate	ND	0.099	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Dibenz(a,h)anthracene	ND	0.088	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
3,3´-Dichlorobenzidine	ND	0.086	0.24		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2,4-Dinitrotoluene	ND	0.11	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Fluoranthene	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Fluorene	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Hexachlorobutadiene	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Indeno(1,2,3-cd)pyrene	ND	0.097	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
Isophorone	ND	0.14	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
1-Methylnaphthalene	ND	0.15	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	A 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 64 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:55:00 PM

 Lab ID:
 1910E04-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.12	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	48494
3+4-Methylphenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Naphthalene	ND	0.15	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
2-Nitroaniline	ND	0.14	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
3-Nitroaniline	ND	0.13	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
4-Nitroaniline	ND	0.12	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Nitrobenzene	ND	0.13	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	48494
2-Nitrophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Pentachlorophenol	ND	0.10	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Phenanthrene	ND	0.11	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Phenol	0.14	0.12	0.19	J	mg/Kg	1	11/4/2019 7:11:16 PM	48494
Pyrene	ND	0.091	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Pyridine	ND	0.12	0.39		mg/Kg	1	11/4/2019 7:11:16 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.19		mg/Kg	1	11/4/2019 7:11:16 PM	48494
Surr: 2-Fluorophenol	56.4		26.7-85.9		%Rec	1	11/4/2019 7:11:16 PM	48494
Surr: Phenol-d5	57.4		18.5-101		%Rec	1	11/4/2019 7:11:16 PM	48494
Surr: 2,4,6-Tribromophenol	57.9		35.8-85.6		%Rec	1	11/4/2019 7:11:16 PM	48494
Surr: Nitrobenzene-d5	59.0		40.8-95.2		%Rec	1	11/4/2019 7:11:16 PM	48494
Surr: 2-Fluorobiphenyl	53.4		34.7-85.2		%Rec	1	11/4/2019 7:11:16 PM	48494
Surr: 4-Terphenyl-d14	67.7		37.4-91.3		%Rec	1	11/4/2019 7:11:16 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0022	0.013		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Toluene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Ethylbenzene	ND	0.0015	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0063	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0024	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0026	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0027	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0024	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Naphthalene	ND	0.0053	0.053		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1-Methylnaphthalene	ND	0.015	0.11		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
2-Methylnaphthalene	ND	0.012	0.11		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Acetone	ND	0.022	0.40		mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Bromobenzene	ND	0.0025	0.026		mg/Kg	1	10/29/2019 6:36:12 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 65 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-9 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:55:00 PM

 Lab ID:
 1910E04-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0024	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Bromoform	ND	0.0024	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Bromomethane	ND	0.0064	0.079	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
2-Butanone	ND	0.031	0.26	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Carbon disulfide	ND	0.0087	0.26	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Carbon tetrachloride	ND	0.0025	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Chlorobenzene	ND	0.0034	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Chloroethane	ND	0.0039	0.053	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Chloroform	ND	0.0021	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Chloromethane	ND	0.0025	0.079	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
2-Chlorotoluene	ND	0.0023	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
4-Chlorotoluene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
cis-1,2-DCE	ND	0.0036	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
cis-1,3-Dichloropropene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0027	0.053	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Dibromochloromethane	ND	0.0019	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Dibromomethane	ND	0.0029	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,2-Dichlorobenzene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,3-Dichlorobenzene	ND	0.0023	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,4-Dichlorobenzene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Dichlorodifluoromethane	ND	0.0061	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,1-Dichloroethane	ND	0.0017	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,1-Dichloroethene	ND	0.011	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,2-Dichloropropane	ND	0.0019	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,3-Dichloropropane	ND	0.0029	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
2,2-Dichloropropane	ND	0.0086	0.053	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,1-Dichloropropene	ND	0.0024	0.053	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Hexachlorobutadiene	ND	0.0027	0.053	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
2-Hexanone	ND	0.0044	0.26	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Isopropylbenzene	ND	0.0019	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
4-Isopropyltoluene	ND	0.0022	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
4-Methyl-2-pentanone	ND	0.0050	0.26	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Methylene chloride	ND	0.0047	0.079	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
n-Butylbenzene	ND	0.0025	0.079	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
n-Propylbenzene	ND	0.0021	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
sec-Butylbenzene	ND	0.0030	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
Styrene	ND	0.0021	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
tert-Butylbenzene	ND	0.0025	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0018	0.026	mg/Kg	1	10/29/2019 6:36:12 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 66 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-9 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/24/2019 3:55:00 PM

 Lab ID:
 1910E04-014
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: D	IF
1,1,2,2-Tetrachloroethane	ND	0.0027	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
Tetrachloroethene (PCE)	ND	0.0021	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
trans-1,2-DCE	ND	0.0024	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
trans-1,3-Dichloropropene	ND	0.0028	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
1,2,3-Trichlorobenzene	ND	0.0023	0.053		mg/Kg	1	10/29/2019 6:36:12	PM A64063
1,2,4-Trichlorobenzene	ND	0.0027	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
1,1,1-Trichloroethane	ND	0.0024	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
1,1,2-Trichloroethane	ND	0.0019	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
Trichloroethene (TCE)	ND	0.0031	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
Trichlorofluoromethane	ND	0.0090	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
1,2,3-Trichloropropane	ND	0.0043	0.053		mg/Kg	1	10/29/2019 6:36:12	PM A64063
Vinyl chloride	ND	0.0017	0.026		mg/Kg	1	10/29/2019 6:36:12	PM A64063
Xylenes, Total	ND	0.0067	0.053		mg/Kg	1	10/29/2019 6:36:12	PM A64063
Surr: Dibromofluoromethane	105		70-130		%Rec	1	10/29/2019 6:36:12	PM A64063
Surr: 1,2-Dichloroethane-d4	95.4		70-130		%Rec	1	10/29/2019 6:36:12	PM A64063
Surr: Toluene-d8	103		70-130		%Rec	1	10/29/2019 6:36:12	PM A64063
Surr: 4-Bromofluorobenzene	90.3		70-130		%Rec	1	10/29/2019 6:36:12	PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 67 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP03

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	3.2	1.6	7.9	J	mg/Kg	1	11/1/2019 2:10:02 PM	48458
Motor Oil Range Organics (MRO)	ND	39	39		mg/Kg	1	11/1/2019 2:10:02 PM	48458
Surr: DNOP	103	0	70-130		%Rec	1	11/1/2019 2:10:02 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.89	3.0		mg/Kg	1	10/30/2019 1:27:19 AM	G64058
Surr: BFB	110	0	77.4-118		%Rec	1	10/30/2019 1:27:19 AM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0070	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:38:14 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.0		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Arsenic	ND	2.9	5.0		mg/Kg	2	11/19/2019 5:37:52 PM	
Barium	260	0.047	0.20		mg/Kg	2	11/19/2019 5:37:52 PM	
Beryllium	1.0	0.019	0.30		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Chromium	8.9	0.16	0.60		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Cobalt	4.4	0.21	0.60		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Iron	15000	73	250		mg/Kg	100	11/20/2019 4:33:02 PM	48434
Lead	3.0	0.49	0.50		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Manganese	370	0.042	0.20		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Nickel	8.9	0.30	1.0		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Silver	ND	0.065	0.50		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Vanadium	17	0.13	5.0		mg/Kg	2	11/19/2019 5:37:52 PM	48434
Zinc	16	0.80	5.0		mg/Kg	2	11/19/2019 5:37:52 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.24	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Acenaphthylene	ND	0.22	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Aniline	ND	0.26	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Anthracene	ND	0.22	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Azobenzene	ND	0.28	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benz(a)anthracene	ND	0.20	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benzo(a)pyrene	ND	0.18	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benzo(b)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benzo(g,h,i)perylene	ND	0.17	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benzo(k)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benzoic acid	ND	0.21	1.0		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Benzyl alcohol	ND	0.25	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 68 of 195

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP03

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.30	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.25	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Bis(2-chloroisopropyl)ether	ND	0.23	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.29	1.0	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
4-Bromophenyl phenyl ether	ND	0.24	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Butyl benzyl phthalate	ND	0.21	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Carbazole	ND	0.24	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
4-Chloro-3-methylphenol	ND	0.31	1.0	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
4-Chloroaniline	ND	0.29	1.0	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2-Chloronaphthalene	ND	0.25	0.51	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2-Chlorophenol	ND	0.25	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.22	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Chrysene	ND	0.18	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Di-n-butyl phthalate	ND	0.30	0.81	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Di-n-octyl phthalate	ND	0.21	0.81	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Dibenz(a,h)anthracene	ND	0.18	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Dibenzofuran	ND	0.27	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
1,2-Dichlorobenzene	ND	0.24	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
1,3-Dichlorobenzene	ND	0.21	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
1,4-Dichlorobenzene	ND	0.22	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
3,3´-Dichlorobenzidine	ND	0.18	0.51	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Diethyl phthalate	ND	0.29	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Dimethyl phthalate	ND	0.27	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2,4-Dichlorophenol	ND	0.24	0.81	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2,4-Dimethylphenol	ND	0.22	0.61	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.19	0.81	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2,4-Dinitrophenol	ND	0.15	1.0	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2,4-Dinitrotoluene	ND	0.24	1.0	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2,6-Dinitrotoluene	ND	0.27	1.0	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Fluoranthene	ND	0.23	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Fluorene	ND	0.23	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Hexachlorobenzene	ND	0.25	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Hexachlorobutadiene	ND	0.28	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Hexachlorocyclopentadiene	ND	0.23	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Hexachloroethane	ND	0.23	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Indeno(1,2,3-cd)pyrene	ND	0.20	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
Isophorone	ND	0.30	0.81	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
1-Methylnaphthalene	ND	0.30	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494
2-Methylnaphthalene	ND	0.29	0.40	mg/Kg	1	11/4/2019 7:40:23 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 69 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP03

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Satch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.24	0.81		mg/Kg	1	11/4/2019 7:40:23 PM	48494
3+4-Methylphenol	ND	0.25	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
N-Nitrosodi-n-propylamine	ND	0.29	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
N-Nitrosodiphenylamine	ND	0.21	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Naphthalene	ND	0.31	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
2-Nitroaniline	ND	0.29	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
3-Nitroaniline	ND	0.28	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
4-Nitroaniline	ND	0.26	0.81		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Nitrobenzene	ND	0.28	0.81		mg/Kg	1	11/4/2019 7:40:23 PM	48494
2-Nitrophenol	ND	0.28	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
4-Nitrophenol	ND	0.27	0.51		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Pentachlorophenol	ND	0.21	0.81		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Phenanthrene	ND	0.22	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Phenol	ND	0.25	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Pyrene	ND	0.19	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Pyridine	ND	0.24	0.81		mg/Kg	1	11/4/2019 7:40:23 PM	48494
1,2,4-Trichlorobenzene	ND	0.31	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
2,4,5-Trichlorophenol	ND	0.26	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
2,4,6-Trichlorophenol	ND	0.21	0.40		mg/Kg	1	11/4/2019 7:40:23 PM	48494
Surr: 2-Fluorophenol	78.6		26.7-85.9		%Rec	1	11/4/2019 7:40:23 PM	48494
Surr: Phenol-d5	85.1		18.5-101		%Rec	1	11/4/2019 7:40:23 PM	48494
Surr: 2,4,6-Tribromophenol	85.7		35.8-85.6	S	%Rec	1	11/4/2019 7:40:23 PM	48494
Surr: Nitrobenzene-d5	85.4		40.8-95.2		%Rec	1	11/4/2019 7:40:23 PM	48494
Surr: 2-Fluorobiphenyl	83.4		34.7-85.2		%Rec	1	11/4/2019 7:40:23 PM	48494
Surr: 4-Terphenyl-d14	95.4		37.4-91.3	S	%Rec	1	11/4/2019 7:40:23 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0024	0.015		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
Toluene	ND	0.0028	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
Ethylbenzene	ND	0.0017	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0070	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0027	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0029	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0030	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0027	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
Naphthalene	ND	0.0059	0.059		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
1-Methylnaphthalene	ND	0.017	0.12		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
2-Methylnaphthalene	ND	0.013	0.12		mg/Kg	1	10/29/2019 7:05:49 PM	
Acetone	ND	0.024	0.44		mg/Kg	1	10/29/2019 7:05:49 PM	A64063
Bromobenzene	ND	0.0028	0.030		mg/Kg	1	10/29/2019 7:05:49 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 70 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP03

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJI	=
Bromodichloromethane	ND	0.0027	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Bromoform	ND	0.0027	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Bromomethane	ND	0.0071	0.089		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
2-Butanone	ND	0.034	0.30		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Carbon disulfide	ND	0.0097	0.30		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Carbon tetrachloride	ND	0.0028	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Chlorobenzene	ND	0.0038	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Chloroethane	ND	0.0043	0.059		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Chloroform	ND	0.0024	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Chloromethane	ND	0.0028	0.089		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
2-Chlorotoluene	ND	0.0026	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
4-Chlorotoluene	ND	0.0024	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
cis-1,2-DCE	ND	0.0040	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
cis-1,3-Dichloropropene	ND	0.0025	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,2-Dibromo-3-chloropropane	ND	0.0030	0.059		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Dibromochloromethane	ND	0.0021	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Dibromomethane	ND	0.0032	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,2-Dichlorobenzene	ND	0.0024	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,3-Dichlorobenzene	ND	0.0026	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,4-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Dichlorodifluoromethane	ND	0.0069	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,1-Dichloroethane	ND	0.0019	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,1-Dichloroethene	ND	0.012	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,2-Dichloropropane	ND	0.0022	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,3-Dichloropropane	ND	0.0032	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
2,2-Dichloropropane	ND	0.0096	0.059		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,1-Dichloropropene	ND	0.0027	0.059		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Hexachlorobutadiene	ND	0.0030	0.059		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
2-Hexanone	ND	0.0049	0.30		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Isopropylbenzene	ND	0.0021	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
4-Isopropyltoluene	ND	0.0024	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
4-Methyl-2-pentanone	ND	0.0056	0.30		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Methylene chloride	ND	0.0052	0.089		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
n-Butylbenzene	ND	0.0028	0.089		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
n-Propylbenzene	ND	0.0024	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
sec-Butylbenzene	ND	0.0033	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
Styrene	ND	0.0023	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
tert-Butylbenzene	ND	0.0028	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063
1,1,1,2-Tetrachloroethane	ND	0.0020	0.030		mg/Kg	1	10/29/2019 7:05:49 P	M A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP03

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-015 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,1,2,2-Tetrachloroethane	ND	0.0030	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
Tetrachloroethene (PCE)	ND	0.0024	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
trans-1,2-DCE	ND	0.0027	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
trans-1,3-Dichloropropene	ND	0.0031	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
1,2,3-Trichlorobenzene	ND	0.0026	0.059		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
1,2,4-Trichlorobenzene	ND	0.0030	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
1,1,1-Trichloroethane	ND	0.0027	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
1,1,2-Trichloroethane	ND	0.0021	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
Trichloroethene (TCE)	ND	0.0034	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
Trichlorofluoromethane	ND	0.010	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
1,2,3-Trichloropropane	ND	0.0048	0.059		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
Vinyl chloride	ND	0.0019	0.030		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
Xylenes, Total	ND	0.0074	0.059		mg/Kg	1	10/29/2019 7:05:49 F	M A64063
Surr: Dibromofluoromethane	108		70-130		%Rec	1	10/29/2019 7:05:49 F	M A64063
Surr: 1,2-Dichloroethane-d4	93.9		70-130		%Rec	1	10/29/2019 7:05:49 F	M A64063
Surr: Toluene-d8	98.8		70-130		%Rec	1	10/29/2019 7:05:49 F	M A64063
Surr: 4-Bromofluorobenzene	89.7		70-130		%Rec	1	10/29/2019 7:05:49 F	M A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 72 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP04

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	6.5	1.9	9.4	J	mg/Kg	1	10/31/2019 12:10:59 P	48458
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	10/31/2019 12:10:59 P	48458
Surr: DNOP	94.9	0	70-130		%Rec	1	10/31/2019 12:10:59 P	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.76	2.5		mg/Kg	1	10/30/2019 1:50:58 AM	G64058
Surr: BFB	106	0	77.4-118		%Rec	1	10/30/2019 1:50:58 AM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0047	0.0018	0.033	J	mg/Kg	1	11/4/2019 6:40:18 PM	48571
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.75	5.1		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Barium	240	0.047	0.20		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Beryllium	1.4	0.019	0.30		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Chromium	18	0.16	0.61		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Cobalt	6.7	0.21	0.61		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Iron	20000	74	250		mg/Kg	100	11/20/2019 4:34:36 PM	48434
Lead	1.8	0.49	0.51		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Manganese	310	0.042	0.20		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Nickel	14	0.30	1.0		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Selenium	ND	2.5	5.1		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Silver	ND	0.065	0.51		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Vanadium	25	0.14	5.1		mg/Kg	2	11/19/2019 5:41:01 PM	48434
Zinc	22	0.80	5.1		mg/Kg	2	11/19/2019 5:41:01 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Aniline	ND	0.13	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Anthracene	ND	0.10	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benz(a)anthracene	ND	0.095	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benzo(a)pyrene	ND	0.087	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benzo(g,h,i)perylene	ND	0.084	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benzo(k)fluoranthene	ND	0.089	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 73 of 195

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP04

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.15	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Bis(2-ethylhexyl)phthalate	0.18	0.14	0.49	J	mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
4-Bromophenyl phenyl ether	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Carbazole	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2-Chloronaphthalene	ND	0.12	0.25		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2-Chlorophenol	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Chrysene	ND	0.087	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Di-n-butyl phthalate	0.21	0.15	0.39	J	mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Di-n-octyl phthalate	ND	0.10	0.39		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Dibenz(a,h)anthracene	ND	0.089	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
1,3-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
1,4-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
3,3'-Dichlorobenzidine	ND	0.087	0.25		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Dimethyl phthalate	ND	0.13	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
4,6-Dinitro-2-methylphenol	ND	0.091	0.39		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2,4-Dinitrotoluene	ND	0.12	0.49		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Fluoranthene	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Fluorene	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Hexachlorobenzene	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Hexachlorocyclopentadiene	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
Indeno(1,2,3-cd)pyrene	ND	0.098	0.20		mg/Kg	1	11/4/2019 8:09:21 Pi	M 48494
Isophorone	ND	0.14	0.39		mg/Kg	1	11/4/2019 8:09:21 Pi	M 48494
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	11/4/2019 8:09:21 PI	M 48494
2-Methylnaphthalene	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 Pi	M 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 74 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: DUP04Project:SWMU 13Collection Date: 10/24/2019

Lab ID: 1910E04-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.12	0.39		mg/Kg	1	11/4/2019 8:09:21 PM	48494
3+4-Methylphenol	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Naphthalene	ND	0.15	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
2-Nitroaniline	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
3-Nitroaniline	ND	0.14	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
4-Nitroaniline	ND	0.13	0.39		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Nitrobenzene	ND	0.14	0.39		mg/Kg	1	11/4/2019 8:09:21 PM	48494
2-Nitrophenol	ND	0.13	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
4-Nitrophenol	ND	0.13	0.25		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Pentachlorophenol	ND	0.10	0.39		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Phenanthrene	ND	0.11	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Phenol	ND	0.12	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Pyrene	ND	0.092	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Pyridine	ND	0.12	0.39		mg/Kg	1	11/4/2019 8:09:21 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.20		mg/Kg	1	11/4/2019 8:09:21 PM	48494
Surr: 2-Fluorophenol	64.4		26.7-85.9		%Rec	1	11/4/2019 8:09:21 PM	48494
Surr: Phenol-d5	64.7		18.5-101		%Rec	1	11/4/2019 8:09:21 PM	48494
Surr: 2,4,6-Tribromophenol	65.7		35.8-85.6		%Rec	1	11/4/2019 8:09:21 PM	48494
Surr: Nitrobenzene-d5	69.7		40.8-95.2		%Rec	1	11/4/2019 8:09:21 PM	48494
Surr: 2-Fluorobiphenyl	58.2		34.7-85.2		%Rec	1	11/4/2019 8:09:21 PM	48494
Surr: 4-Terphenyl-d14	77.0		37.4-91.3		%Rec	1	11/4/2019 8:09:21 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0021	0.013		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
Toluene	ND	0.0024	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
Ethylbenzene	ND	0.0015	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
Methyl tert-butyl ether (MTBE)	ND	0.0060	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
1,2,4-Trimethylbenzene	ND	0.0023	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
1,3,5-Trimethylbenzene	ND	0.0024	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
1,2-Dichloroethane (EDC)	ND	0.0026	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
1,2-Dibromoethane (EDB)	ND	0.0023	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
Naphthalene	ND	0.0050	0.050		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
1-Methylnaphthalene	ND	0.014	0.10		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
2-Methylnaphthalene	ND	0.011	0.10		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
Acetone	ND	0.021	0.38		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063
Bromobenzene	ND	0.0024	0.025		mg/Kg	1	10/29/2019 7:34:41 PM	1 A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 75 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP04

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed Batch	ı ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0023	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Bromoform	ND	0.0023	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Bromomethane	ND	0.0061	0.076	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
2-Butanone	ND	0.029	0.25	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Carbon disulfide	ND	0.0083	0.25	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Carbon tetrachloride	ND	0.0024	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Chlorobenzene	ND	0.0032	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Chloroethane	ND	0.0037	0.050	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Chloroform	ND	0.0020	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Chloromethane	ND	0.0024	0.076	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
2-Chlorotoluene	ND	0.0022	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
4-Chlorotoluene	ND	0.0021	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
cis-1,2-DCE	ND	0.0034	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
cis-1,3-Dichloropropene	ND	0.0021	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	4063
1,2-Dibromo-3-chloropropane	ND	0.0026	0.050	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Dibromochloromethane	ND	0.0018	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Dibromomethane	ND	0.0027	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,2-Dichlorobenzene	ND	0.0021	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,3-Dichlorobenzene	ND	0.0022	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,4-Dichlorobenzene	ND	0.0021	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Dichlorodifluoromethane	ND	0.0058	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,1-Dichloroethane	ND	0.0016	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,1-Dichloroethene	ND	0.010	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,2-Dichloropropane	ND	0.0018	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,3-Dichloropropane	ND	0.0027	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
2,2-Dichloropropane	ND	0.0082	0.050	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
1,1-Dichloropropene	ND	0.0023	0.050	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Hexachlorobutadiene	ND	0.0026	0.050	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
2-Hexanone	ND	0.0042	0.25	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Isopropylbenzene	ND	0.0018	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	4063
4-Isopropyltoluene	ND	0.0021	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
4-Methyl-2-pentanone	ND	0.0048	0.25	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Methylene chloride	ND	0.0045	0.076	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
n-Butylbenzene	ND	0.0024	0.076	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
n-Propylbenzene	ND	0.0020	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
sec-Butylbenzene	ND	0.0028	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
Styrene	ND	0.0020	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063
tert-Butylbenzene	ND	0.0024	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	4063
1,1,1,2-Tetrachloroethane	ND	0.0017	0.025	mg/Kg	1	10/29/2019 7:34:41 PM A64	1063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 76 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP04

Project: SWMU 13 Collection Date: 10/24/2019

Lab ID: 1910E04-016 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: D .	JF
1,1,2,2-Tetrachloroethane	ND	0.0026	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
Tetrachloroethene (PCE)	ND	0.0020	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
trans-1,2-DCE	ND	0.0023	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
trans-1,3-Dichloropropene	ND	0.0027	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
1,2,3-Trichlorobenzene	ND	0.0022	0.050	mg/Kg	1	10/29/2019 7:34:41	PM A64063
1,2,4-Trichlorobenzene	ND	0.0025	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
1,1,1-Trichloroethane	ND	0.0023	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
1,1,2-Trichloroethane	ND	0.0018	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
Trichloroethene (TCE)	ND	0.0029	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
Trichlorofluoromethane	ND	0.0086	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
1,2,3-Trichloropropane	ND	0.0041	0.050	mg/Kg	1	10/29/2019 7:34:41	PM A64063
Vinyl chloride	ND	0.0016	0.025	mg/Kg	1	10/29/2019 7:34:41	PM A64063
Xylenes, Total	ND	0.0064	0.050	mg/Kg	1	10/29/2019 7:34:41	PM A64063
Surr: Dibromofluoromethane	110		70-130	%Rec	1	10/29/2019 7:34:41	PM A64063
Surr: 1,2-Dichloroethane-d4	100		70-130	%Rec	1	10/29/2019 7:34:41	PM A64063
Surr: Toluene-d8	103		70-130	%Rec	1	10/29/2019 7:34:41	PM A64063
Surr: 4-Bromofluorobenzene	93.8		70-130	%Rec	1	10/29/2019 7:34:41	PM A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: MeOH BlankProject:SWMU 13Collection Date: 10/24/2019

Lab ID: 1910E04-017 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0041	0.025	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Toluene	ND	0.0048	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Naphthalene	ND	0.010	0.10	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Acetone	ND	0.041	0.75	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Bromodichloromethane	ND	0.0046	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Bromoform	ND	0.0045	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Bromomethane	ND	0.012	0.15	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
2-Butanone	ND	0.058	0.50	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Carbon disulfide	ND	0.017	0.50	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Chloroethane	ND	0.0074	0.10	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Chloroform	ND	0.0040	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Chloromethane	ND	0.0048	0.15	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
2-Chlorotoluene	ND	0.0044	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,4-Dichlorobenzene	ND	0.0042	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	10/29/2019 8:03:55 PM	A64063
2,2-Dichloropropane	ND	0.016	0.10	mg/Kg	1	10/29/2019 8:03:55 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 78 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: MeOH BlankProject:SWMU 13Collection Date: 10/24/2019

Lab ID: 1910E04-017 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1-Dichloropropene	ND	0.0046	0.10		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Hexachlorobutadiene	ND	0.0051	0.10		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
2-Hexanone	ND	0.0083	0.50		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Isopropylbenzene	ND	0.0036	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
4-Isopropyltoluene	ND	0.0041	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
4-Methyl-2-pentanone	ND	0.0094	0.50		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Methylene chloride	ND	0.0088	0.15		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
n-Butylbenzene	ND	0.0047	0.15		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
n-Propylbenzene	ND	0.0040	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
sec-Butylbenzene	ND	0.0056	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Styrene	ND	0.0039	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
tert-Butylbenzene	ND	0.0047	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Tetrachloroethene (PCE)	ND	0.0040	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
trans-1,2-DCE	ND	0.0046	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
trans-1,3-Dichloropropene	ND	0.0053	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0044	0.10		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0051	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,1,1-Trichloroethane	ND	0.0045	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,1,2-Trichloroethane	ND	0.0035	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Trichloroethene (TCE)	ND	0.0058	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Trichlorofluoromethane	ND	0.017	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
1,2,3-Trichloropropane	ND	0.0081	0.10		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Vinyl chloride	ND	0.0033	0.050		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Xylenes, Total	ND	0.013	0.10		mg/Kg	1	10/29/2019 8:03:55 PM	A64063
Surr: Dibromofluoromethane	108		70-130		%Rec	1	10/29/2019 8:03:55 PM	A64063
Surr: 1,2-Dichloroethane-d4	97.4		70-130		%Rec	1	10/29/2019 8:03:55 PM	A64063
Surr: Toluene-d8	103		70-130		%Rec	1	10/29/2019 8:03:55 PM	A64063
Surr: 4-Bromofluorobenzene	87.3		70-130		%Rec	1	10/29/2019 8:03:55 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 79 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102419

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:45:00 PM

 Lab ID:
 1910E04-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE							Analyst: BRM	
Diesel Range Organics (DRO)	ND	0.35	1.0		mg/L	1	10/30/2019 2:27:01 PM	48464
Motor Oil Range Organics (MRO)	ND	5.0	5.0		mg/L	1	10/30/2019 2:27:01 PM	48464
Surr: DNOP	106	0	70-130		%Rec	1	10/30/2019 2:27:01 PM	48464
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.021	0.050		mg/L	1	11/1/2019 5:40:59 PM	R64171
Surr: BFB	99.7	0	65.8-143		%Rec	1	11/1/2019 5:40:59 PM	R64171
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00011	0.000038	0.00020	J	mg/L	1	11/8/2019 2:55:59 PM	48664
EPA 6010B: TOTAL RECOVERABLE META	ALS						Analyst: pmf	
Antimony	ND	0.0081	0.050		mg/L	1	11/14/2019 5:24:42 PM	48486
Arsenic	ND	0.015	0.020		mg/L	1	11/25/2019 4:14:42 PM	
Barium	ND	0.0012	0.020		mg/L	1	11/13/2019 8:04:24 PM	48486
Beryllium	ND	0.00025	0.0030		mg/L	1	11/13/2019 8:04:24 PM	48486
Cadmium	ND	0.00055	0.0020		mg/L	1	11/13/2019 8:04:24 PM	48486
Chromium	ND	0.00086	0.0060		mg/L	1	11/13/2019 8:04:24 PM	48486
Cobalt	ND	0.0012	0.0060		mg/L	1	11/14/2019 5:24:42 PM	48486
Iron	ND	0.0093	0.020		mg/L	1	11/13/2019 8:04:24 PM	48486
Lead	ND	0.0035	0.0050		mg/L	1	11/13/2019 8:04:24 PM	48486
Manganese	0.0011	0.00041	0.0020	J	mg/L	1	11/14/2019 5:24:42 PM	48486
Nickel	ND	0.0028	0.010		mg/L	1	11/13/2019 8:04:24 PM	48486
Selenium	ND	0.035	0.050		mg/L	1	11/13/2019 8:04:24 PM	48486
Silver	ND	0.00055	0.0050		mg/L	1	11/13/2019 8:04:24 PM	48486
Vanadium	ND	0.00086	0.050		mg/L	1	11/13/2019 8:04:24 PM	48486
Zinc	ND	0.011	0.020		mg/L	1	11/13/2019 8:04:24 PM	48486
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	3.0	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Acenaphthylene	ND	2.4	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Aniline	ND	3.6	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Anthracene	ND	2.7	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Azobenzene	ND	3.3	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Benz(a)anthracene	ND	3.6	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Benzo(a)pyrene	ND	3.5	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Benzo(b)fluoranthene	ND	3.4	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Benzo(g,h,i)perylene	ND	2.2	10		μg/L	1	10/31/2019 3:51:30 PM	48439
Benzo(k)fluoranthene	ND	2.9	10		μg/L	1	10/31/2019 3:51:30 PM	
Benzoic acid	ND	11	20		μg/L	1	10/31/2019 3:51:30 PM	
Benzyl alcohol	ND	2.4	10		μg/L	1	10/31/2019 3:51:30 PM	48439

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 80 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102419

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:45:00 PM

 Lab ID:
 1910E04-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	2.6	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Bis(2-chloroethyl)ether	ND	3.2	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Bis(2-chloroisopropyl)ether	ND	3.9	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Bis(2-ethylhexyl)phthalate	ND	4.3	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
4-Bromophenyl phenyl ether	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Butyl benzyl phthalate	ND	3.3	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Carbazole	ND	2.9	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
4-Chloro-3-methylphenol	ND	3.4	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
4-Chloroaniline	ND	2.3	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2-Chloronaphthalene	ND	3.1	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2-Chlorophenol	ND	2.7	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
4-Chlorophenyl phenyl ether	ND	2.4	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Chrysene	ND	2.8	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Di-n-butyl phthalate	ND	2.7	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Di-n-octyl phthalate	ND	3.5	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Dibenz(a,h)anthracene	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Dibenzofuran	ND	3.2	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
1,2-Dichlorobenzene	ND	4.8	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
1,3-Dichlorobenzene	ND	5.3	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
1,4-Dichlorobenzene	ND	4.4	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
3,3´-Dichlorobenzidine	ND	2.8	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Diethyl phthalate	ND	2.9	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Dimethyl phthalate	ND	3.2	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2,4-Dichlorophenol	ND	2.9	20	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2,4-Dimethylphenol	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
4,6-Dinitro-2-methylphenol	ND	2.9	20	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2,4-Dinitrophenol	ND	2.6	20	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2,4-Dinitrotoluene	ND	3.8	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2,6-Dinitrotoluene	ND	2.4	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Fluoranthene	ND	2.4	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Fluorene	ND	2.9	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Hexachlorobenzene	ND	3.1	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Hexachlorobutadiene	ND	4.7	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Hexachlorocyclopentadiene	ND	3.6	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Hexachloroethane	ND	4.8	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Indeno(1,2,3-cd)pyrene	ND	2.7	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
Isophorone	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
1-Methylnaphthalene	ND	3.1	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439
2-Methylnaphthalene	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 F	PM 48439

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 81 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102419

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:45:00 PM

 Lab ID:
 1910E04-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	2.9	10	μg/L	1	10/31/2019 3:51:30 PM	48439
3+4-Methylphenol	ND	3.6	10	μg/L	1	10/31/2019 3:51:30 PM	48439
N-Nitrosodi-n-propylamine	ND	6.5	10	μg/L	1	10/31/2019 3:51:30 PM	48439
N-Nitrosodimethylamine	ND	5.0	10	μg/L	1	10/31/2019 3:51:30 PM	48439
N-Nitrosodiphenylamine	ND	2.4	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Naphthalene	ND	4.1	10	μg/L	1	10/31/2019 3:51:30 PM	48439
2-Nitroaniline	ND	3.2	10	μg/L	1	10/31/2019 3:51:30 PM	48439
3-Nitroaniline	ND	3.2	10	μg/L	1	10/31/2019 3:51:30 PM	48439
4-Nitroaniline	ND	2.7	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Nitrobenzene	ND	2.8	10	μg/L	1	10/31/2019 3:51:30 PM	48439
2-Nitrophenol	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 PM	48439
4-Nitrophenol	ND	7.6	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Pentachlorophenol	ND	2.7	20	μg/L	1	10/31/2019 3:51:30 PM	48439
Phenanthrene	ND	2.8	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Phenol	ND	8.0	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Pyrene	ND	2.5	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Pyridine	ND	9.6	10	μg/L	1	10/31/2019 3:51:30 PM	48439
1,2,4-Trichlorobenzene	ND	4.0	10	μg/L	1	10/31/2019 3:51:30 PM	48439
2,4,5-Trichlorophenol	ND	3.0	10	μg/L	1	10/31/2019 3:51:30 PM	48439
2,4,6-Trichlorophenol	ND	2.3	10	μg/L	1	10/31/2019 3:51:30 PM	48439
Surr: 2-Fluorophenol	55.5	0	15-101	%Rec	1	10/31/2019 3:51:30 PM	48439
Surr: Phenol-d5	40.5	0	15-84.6	%Rec	1	10/31/2019 3:51:30 PM	48439
Surr: 2,4,6-Tribromophenol	70.2	0	27.8-112	%Rec	1	10/31/2019 3:51:30 PM	48439
Surr: Nitrobenzene-d5	81.6	0	33-113	%Rec	1	10/31/2019 3:51:30 PM	48439
Surr: 2-Fluorobiphenyl	70.9	0	26.6-107	%Rec	1	10/31/2019 3:51:30 PM	48439
Surr: 4-Terphenyl-d14	57.5	0	18.7-148	%Rec	1	10/31/2019 3:51:30 PM	48439
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Benzene	ND	0.17	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Toluene	ND	0.35	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Ethylbenzene	ND	0.13	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Naphthalene	ND	0.28	2.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Acetone	ND	1.2	10	μg/L	1	10/30/2019 7:15:29 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 82 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102419

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:45:00 PM

 Lab ID:
 1910E04-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Bromobenzene	ND	0.24	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Bromodichloromethane	ND	0.13	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Bromoform	ND	0.29	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Bromomethane	ND	0.27	3.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
2-Butanone	ND	2.1	10	μg/L	1	10/30/2019 7:15:29 AM	R64075
Carbon disulfide	ND	0.45	10	μg/L	1	10/30/2019 7:15:29 AM	R64075
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Chlorobenzene	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Chloroethane	ND	0.18	2.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Chloroform	ND	0.12	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Chloromethane	ND	0.32	3.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Dibromochloromethane	ND	0.24	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Dibromomethane	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
2-Hexanone	ND	1.5	10	μg/L	1	10/30/2019 7:15:29 AM	R64075
Isopropylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	10/30/2019 7:15:29 AM	R64075
Methylene Chloride	ND	0.15	3.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
n-Butylbenzene	ND	0.23	3.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
n-Propylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
Styrene	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 83 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102419

 Project:
 SWMU 13
 Collection Date: 10/24/2019 1:45:00 PM

 Lab ID:
 1910E04-018
 Matrix: AQUEOUS
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: R	AA
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	10/30/2019 7:15:29	AM R64075
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
1,2,3-Trichloropropane	ND	0.30	2.0	μg/L	1	10/30/2019 7:15:29	AM R64075
Vinyl chloride	ND	0.18	1.0	μg/L	1	10/30/2019 7:15:29	AM R64075
Xylenes, Total	ND	0.45	1.5	μg/L	1	10/30/2019 7:15:29	AM R64075
Surr: 1,2-Dichloroethane-d4	95.4	0	70-130	%Rec	1	10/30/2019 7:15:29	AM R64075
Surr: 4-Bromofluorobenzene	89.4	0	70-130	%Rec	1	10/30/2019 7:15:29	AM R64075
Surr: Dibromofluoromethane	102	0	70-130	%Rec	1	10/30/2019 7:15:29	AM R64075
Surr: Toluene-d8	103	0	70-130	%Rec	1	10/30/2019 7:15:29	AM R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:00:00 AM

 Lab ID:
 1910E04-019
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	2300	37	190		mg/Kg	20	11/4/2019 2:16:55 PM	48458
Motor Oil Range Organics (MRO)	2600	930	930		mg/Kg	20	11/4/2019 2:16:55 PM	48458
Surr: DNOP	0	0	70-130	S	%Rec	20	11/4/2019 2:16:55 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.92	3.0		mg/Kg	1	10/30/2019 2:14:33 AM	G64058
Surr: BFB	100	0	77.4-118		%Rec	1	10/30/2019 2:14:33 AM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	1.6	0.018	0.33		mg/Kg	10	11/4/2019 6:47:52 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.76	5.1		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Arsenic	5.6	2.9	5.1		mg/Kg	2	11/19/2019 5:44:09 PM	
Barium	220	0.048	0.21		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Beryllium	1.2	0.019	0.31		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Cadmium	ND	0.050	0.21		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Chromium	160	0.16	0.62		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Cobalt	8.1	0.22	0.62		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Iron	21000	75	260		mg/Kg	100	11/20/2019 4:44:00 PM	48434
Lead	3.4	0.50	0.51		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Manganese	270	0.043	0.21		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Nickel	19	0.31	1.0		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Selenium	4.0	2.6	5.1	J	mg/Kg	2	11/19/2019 5:44:09 PM	48434
Silver	ND	0.066	0.51		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Vanadium	36	0.14	5.1		mg/Kg	2	11/19/2019 5:44:09 PM	48434
Zinc	310	0.82	5.1		mg/Kg	2	11/19/2019 5:44:09 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	5.9	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Acenaphthylene	ND	5.4	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Aniline	ND	6.3	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Anthracene	ND	5.2	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Azobenzene	ND	6.8	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benz(a)anthracene	ND	4.7	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benzo(a)pyrene	ND	4.3	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benzo(b)fluoranthene	ND	4.3	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benzo(g,h,i)perylene	ND	4.2	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benzo(k)fluoranthene	ND	4.4	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benzoic acid	ND	5.0	24	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Benzyl alcohol	ND	6.1	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 85 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:00:00 AM

 Lab ID:
 1910E04-019
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Result **MDL** DF **Batch ID Analyses** RL**Qual Units Date Analyzed EPA METHOD 8270C: SEMIVOLATILES** Analyst: JDC Bis(2-chloroethoxy)methane ND 7.2 9.8 D 11/4/2019 8:38:23 PM 48494 mg/Kg 5 Bis(2-chloroethyl)ether ND 5.9 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Bis(2-chloroisopropyl)ether ND 5.6 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Bis(2-ethylhexyl)phthalate ND 7.0 24 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 5 ND 5.7 D mg/Kg 4-Bromophenyl phenyl ether 9.8 11/4/2019 8:38:23 PM 48494 D 5 Butvl benzvl phthalate ND 5.0 9.8 mg/Kg 11/4/2019 8:38:23 PM 48494 ND 5.7 9.8 D mg/Kg 5 Carbazole 11/4/2019 8:38:23 PM 48494 4-Chloro-3-methylphenol ND 7.5 24 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 5 6.9 24 D 4-Chloroaniline ND mg/Kg 11/4/2019 8:38:23 PM 48494 2-Chloronaphthalene ND 6.1 12 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 6.1 5 2-Chlorophenol ND 9.8 D mg/Kg 11/4/2019 8:38:23 PM 48494 4-Chlorophenyl phenyl ether ND 5.3 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Chrysene ND 4.3 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Di-n-butyl phthalate ND 7.3 20 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Di-n-octyl phthalate ND 5.0 20 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 5 ND 4.4 9.8 D Dibenz(a,h)anthracene mg/Kg 11/4/2019 8:38:23 PM 48494 Dibenzofuran ND 6.4 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 mg/Kg ND 5.9 D 5 1,2-Dichlorobenzene 9.8 11/4/2019 8:38:23 PM 48494 ND 5.1 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 1,3-Dichlorobenzene 5 1,4-Dichlorobenzene ND 5.2 9.8 D mg/Kg 11/4/2019 8:38:23 PM 48494 ND 4.3 12 D mg/Kg 5 3,3'-Dichlorobenzidine 11/4/2019 8:38:23 PM 48494 Diethyl phthalate ND 7.0 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 D 5 Dimethyl phthalate ND 6.5 9.8 mg/Kg 48494 11/4/2019 8:38:23 PM 2,4-Dichlorophenol ND 5.7 20 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 ND 5.4 15 D mg/Kg 5 2,4-Dimethylphenol 11/4/2019 8:38:23 PM 48494 mg/Kg 4,6-Dinitro-2-methylphenol ND 4.5 20 D 5 11/4/2019 8:38:23 PM 48494 2,4-Dinitrophenol ND 3.5 24 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 5 2,4-Dinitrotoluene ND 5.8 24 D mg/Kg 11/4/2019 8:38:23 PM 48494 ND 6.4 24 D 5 2,6-Dinitrotoluene mg/Kg 11/4/2019 8:38:23 PM 48494 Fluoranthene ND 5.5 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Fluorene ND 5.6 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Hexachlorobenzene ND 6.0 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 Hexachlorobutadiene ND 6.8 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 ND 5 Hexachlorocyclopentadiene 5.6 9.8 D mg/Kg 48494 11/4/2019 8:38:23 PM Hexachloroethane ND 5.4 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM Indeno(1,2,3-cd)pyrene ND 4.9 9.8 D mg/Kg 5 11/4/2019 8:38:23 PM 48494 D 5 Isophorone ND 7.2 20 mg/Kg 11/4/2019 8:38:23 PM 48494 1-Methylnaphthalene ND 7.3 9.8 D mg/Kg 5 48494 11/4/2019 8:38:23 PM D 2-Methylnaphthalene ND 7.1 9.8 mg/Kg 5 11/4/2019 8:38:23 PM 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:00:00 AM

 Lab ID:
 1910E04-019
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	5.8	20	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
3+4-Methylphenol	ND	6.0	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
N-Nitrosodi-n-propylamine	ND	7.0	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
N-Nitrosodiphenylamine	ND	5.1	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Naphthalene	ND	7.4	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
2-Nitroaniline	ND	7.0	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
3-Nitroaniline	ND	6.7	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
4-Nitroaniline	ND	6.2	20	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Nitrobenzene	ND	6.8	20	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
2-Nitrophenol	ND	6.7	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
4-Nitrophenol	ND	6.6	12	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Pentachlorophenol	ND	5.0	20	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Phenanthrene	ND	5.3	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Phenol	ND	6.1	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Pyrene	ND	4.6	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Pyridine	ND	5.9	20	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
1,2,4-Trichlorobenzene	ND	7.6	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
2,4,5-Trichlorophenol	ND	6.3	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
2,4,6-Trichlorophenol	ND	5.1	9.8	D	mg/Kg	5	11/4/2019 8:38:23 PM	48494
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	5	11/4/2019 8:38:23 PM	48494
Surr: Phenol-d5	0		18.5-101	SD	%Rec	5	11/4/2019 8:38:23 PM	48494
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	5	11/4/2019 8:38:23 PM	48494
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	5	11/4/2019 8:38:23 PM	48494
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	5	11/4/2019 8:38:23 PM	48494
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	5	11/4/2019 8:38:23 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0025	0.015		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
Toluene	ND	0.0029	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
Ethylbenzene	ND	0.0018	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0072	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
1,2,4-Trimethylbenzene	ND	0.0028	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
1,3,5-Trimethylbenzene	ND	0.0029	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
1,2-Dichloroethane (EDC)	ND	0.0031	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
1,2-Dibromoethane (EDB)	ND	0.0028	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
Naphthalene	ND	0.0061	0.061		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
1-Methylnaphthalene	ND	0.017	0.12		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
2-Methylnaphthalene	ND	0.013	0.12		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
Acetone	ND	0.025	0.46		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
Bromobenzene	ND	0.0029	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 87 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:00:00 AM

 Lab ID:
 1910E04-019
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0028	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Bromoform	ND	0.0027	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Bromomethane	ND	0.0073	0.091		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
2-Butanone	ND	0.035	0.30		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Carbon disulfide	ND	0.010	0.30		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Carbon tetrachloride	ND	0.0029	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Chlorobenzene	ND	0.0039	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Chloroethane	ND	0.0045	0.061		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Chloroform	ND	0.0024	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Chloromethane	ND	0.0029	0.091		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
2-Chlorotoluene	ND	0.0026	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
4-Chlorotoluene	ND	0.0025	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
cis-1,2-DCE	ND	0.0042	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
cis-1,3-Dichloropropene	ND	0.0026	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,2-Dibromo-3-chloropropane	ND	0.0031	0.061		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Dibromochloromethane	ND	0.0022	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Dibromomethane	ND	0.0033	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,2-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,3-Dichlorobenzene	ND	0.0026	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,4-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Dichlorodifluoromethane	ND	0.0070	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,1-Dichloroethane	ND	0.0019	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,1-Dichloroethene	ND	0.012	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,2-Dichloropropane	ND	0.0022	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,3-Dichloropropane	ND	0.0033	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
2,2-Dichloropropane	ND	0.0099	0.061		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,1-Dichloropropene	ND	0.0028	0.061		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Hexachlorobutadiene	ND	0.0031	0.061		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
2-Hexanone	ND	0.0050	0.30		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Isopropylbenzene	ND	0.0022	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
4-Isopropyltoluene	ND	0.0025	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
4-Methyl-2-pentanone	ND	0.0057	0.30		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Methylene chloride	0.0083	0.0054	0.091	J	mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
n-Butylbenzene	ND	0.0028	0.091		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
n-Propylbenzene	ND	0.0024	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	A64063
sec-Butylbenzene	ND	0.0034	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
Styrene	ND	0.0024	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
tert-Butylbenzene	ND	0.0029	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063
1,1,1,2-Tetrachloroethane	ND	0.0021	0.030		mg/Kg	1	10/29/2019 8:33:27 PM	1 A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 88 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

10/29/2019 8:33:27 PM A64063

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:00:00 AM

 Lab ID:
 1910E04-019
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Result **MDL** DF **Date Analyzed Analyses** RL**Qual Units Batch ID EPA METHOD 8260B: VOLATILES** Analyst: DJF ND 0.0031 10/29/2019 8:33:27 PM A64063 1.1.2.2-Tetrachloroethane 0.030 mg/Kg 1 Tetrachloroethene (PCE) ND 0.0024 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 trans-1,2-DCE ND 0.0028 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 trans-1,3-Dichloropropene ND 0.0032 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 mg/Kg 10/29/2019 8:33:27 PM A64063 1,2,3-Trichlorobenzene ND 0.0027 0.061 1 0.0031 1.2.4-Trichlorobenzene ND 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 ND 0.0027 mg/Kg 1 10/29/2019 8:33:27 PM A64063 1,1,1-Trichloroethane 0.030 1.1.2-Trichloroethane ND 0.0021 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 1 Trichloroethene (TCE) ND 0.0035 0.030 mg/Kg 10/29/2019 8:33:27 PM A64063 Trichlorofluoromethane ND 0.010 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 1,2,3-Trichloropropane ND 0.0049 0.061 mg/Kg 1 10/29/2019 8:33:27 PM A64063 Vinyl chloride ND 0.0020 0.030 mg/Kg 1 10/29/2019 8:33:27 PM A64063 Xylenes, Total ND 0.0077 0.061 mg/Kg 1 10/29/2019 8:33:27 PM A64063 Surr: Dibromofluoromethane 108 70-130 1 10/29/2019 8:33:27 PM A64063 %Rec Surr: 1,2-Dichloroethane-d4 93.8 70-130 %Rec 1 10/29/2019 8:33:27 PM A64063 98.1 1 10/29/2019 8:33:27 PM A64063 Surr: Toluene-d8 70-130 %Rec

70-130

87.2

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Surr: 4-Bromofluorobenzene

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

%Rec

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 89 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:15:00 AM

 Lab ID:
 1910E04-020
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	21	1.7	8.6		mg/Kg	1	11/1/2019 2:56:04 PM	48458
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	11/1/2019 2:56:04 PM	48458
Surr: DNOP	110	0	70-130		%Rec	1	11/1/2019 2:56:04 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.81	2.7		mg/Kg	1	10/30/2019 2:38:06 AM	G64058
Surr: BFB	113	0	77.4-118		%Rec	1	10/30/2019 2:38:06 AM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0051	0.0018	0.033	J	mg/Kg	1	11/4/2019 7:04:12 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.73	4.9		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Arsenic	ND	2.8	4.9		mg/Kg	2	11/19/2019 5:47:17 PM	
Barium	150	0.046	0.20		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Beryllium	1.3	0.018	0.30		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Cadmium	ND	0.048	0.20		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Chromium	16	0.16	0.59		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Cobalt	5.5	0.21	0.59		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Iron	18000	72	250		mg/Kg	100	11/20/2019 4:45:37 PM	48434
Lead	3.4	0.48	0.49		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Manganese	360	0.041	0.20		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Nickel	13	0.30	0.99		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Selenium	ND	2.5	4.9		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Silver	ND	0.063	0.49		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Vanadium	22	0.13	4.9		mg/Kg	2	11/19/2019 5:47:17 PM	48434
Zinc	23	0.78	4.9		mg/Kg	2	11/19/2019 5:47:17 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.24	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Acenaphthylene	ND	0.22	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Aniline	ND	0.25	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Anthracene	ND	0.21	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Azobenzene	ND	0.28	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benz(a)anthracene	ND	0.19	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benzo(a)pyrene	ND	0.18	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benzo(b)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benzo(g,h,i)perylene	ND	0.17	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benzo(k)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benzoic acid	ND	0.20	0.99		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Benzyl alcohol	ND	0.25	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 90 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:15:00 AM

 Lab ID:
 1910E04-020
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.29	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Bis(2-chloroethyl)ether	ND	0.24	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Bis(2-chloroisopropyl)ether	ND	0.23	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Bis(2-ethylhexyl)phthalate	ND	0.28	0.99	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
4-Bromophenyl phenyl ether	ND	0.23	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Butyl benzyl phthalate	ND	0.20	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Carbazole	ND	0.23	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
4-Chloro-3-methylphenol	ND	0.30	0.99	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
4-Chloroaniline	ND	0.28	0.99	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2-Chloronaphthalene	ND	0.25	0.50	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2-Chlorophenol	ND	0.25	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
4-Chlorophenyl phenyl ether	ND	0.22	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Chrysene	ND	0.17	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Di-n-butyl phthalate	ND	0.30	0.79	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Di-n-octyl phthalate	ND	0.20	0.79	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Dibenz(a,h)anthracene	ND	0.18	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Dibenzofuran	ND	0.26	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
1,2-Dichlorobenzene	ND	0.24	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
1,3-Dichlorobenzene	ND	0.21	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
1,4-Dichlorobenzene	ND	0.21	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
3,3'-Dichlorobenzidine	ND	0.18	0.50	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Diethyl phthalate	ND	0.28	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Dimethyl phthalate	ND	0.26	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2,4-Dichlorophenol	ND	0.23	0.79	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2,4-Dimethylphenol	ND	0.22	0.59	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
4,6-Dinitro-2-methylphenol	ND	0.18	0.79	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2,4-Dinitrophenol	ND	0.14	0.99	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2,4-Dinitrotoluene	ND	0.23	0.99	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2,6-Dinitrotoluene	ND	0.26	0.99	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Fluoranthene	ND	0.22	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Fluorene	ND	0.23	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Hexachlorobenzene	ND	0.25	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Hexachlorobutadiene	ND	0.28	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Hexachlorocyclopentadiene	ND	0.23	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Hexachloroethane	ND	0.22	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Indeno(1,2,3-cd)pyrene	ND	0.20	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
Isophorone	ND	0.29	0.79	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
1-Methylnaphthalene	ND	0.30	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494
2-Methylnaphthalene	ND	0.29	0.40	mg/Kg	1	11/4/2019 9:07:19 PM	A 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 91 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:15:00 AM

 Lab ID:
 1910E04-020
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.23	0.79		mg/Kg	1	11/4/2019 9:07:19 PM	48494
3+4-Methylphenol	ND	0.24	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
N-Nitrosodi-n-propylamine	ND	0.28	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
N-Nitrosodiphenylamine	ND	0.21	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Naphthalene	ND	0.30	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
2-Nitroaniline	ND	0.28	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
3-Nitroaniline	ND	0.27	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
4-Nitroaniline	ND	0.25	0.79		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Nitrobenzene	ND	0.27	0.79		mg/Kg	1	11/4/2019 9:07:19 PM	48494
2-Nitrophenol	ND	0.27	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
4-Nitrophenol	ND	0.27	0.50		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Pentachlorophenol	ND	0.20	0.79		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Phenanthrene	ND	0.21	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Phenol	ND	0.25	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Pyrene	ND	0.19	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Pyridine	ND	0.24	0.79		mg/Kg	1	11/4/2019 9:07:19 PM	48494
1,2,4-Trichlorobenzene	ND	0.31	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
2,4,5-Trichlorophenol	ND	0.26	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
2,4,6-Trichlorophenol	ND	0.21	0.40		mg/Kg	1	11/4/2019 9:07:19 PM	48494
Surr: 2-Fluorophenol	70.8	2	26.7-85.9		%Rec	1	11/4/2019 9:07:19 PM	48494
Surr: Phenol-d5	71.6		18.5-101		%Rec	1	11/4/2019 9:07:19 PM	48494
Surr: 2,4,6-Tribromophenol	71.0	3	35.8-85.6		%Rec	1	11/4/2019 9:07:19 PM	48494
Surr: Nitrobenzene-d5	72.7	4	10.8-95.2		%Rec	1	11/4/2019 9:07:19 PM	48494
Surr: 2-Fluorobiphenyl	67.6	3	34.7-85.2		%Rec	1	11/4/2019 9:07:19 PM	48494
Surr: 4-Terphenyl-d14	81.8	3	37.4-91.3		%Rec	1	11/4/2019 9:07:19 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0022	0.013		mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Toluene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
Ethylbenzene	ND	0.0016	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
Methyl tert-butyl ether (MTBE)	ND	0.0064	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
1,2,4-Trimethylbenzene	ND	0.0025	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
1,3,5-Trimethylbenzene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
1,2-Dichloroethane (EDC)	ND	0.0027	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
1,2-Dibromoethane (EDB)	ND	0.0025	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
Naphthalene	ND	0.0054	0.054		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
1-Methylnaphthalene	ND	0.015	0.11		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
2-Methylnaphthalene	ND	0.012	0.11		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
Acetone	ND	0.022	0.40		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063
Bromobenzene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 9:02:23 PM	I A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 92 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:15:00 AM

 Lab ID:
 1910E04-020
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0025	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Bromoform	ND	0.0024	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Bromomethane	ND	0.0065	0.081	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
2-Butanone	ND	0.031	0.27	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Carbon disulfide	ND	0.0089	0.27	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Carbon tetrachloride	ND	0.0025	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Chlorobenzene	ND	0.0034	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Chloroethane	ND	0.0040	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Chloroform	ND	0.0022	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Chloromethane	ND	0.0026	0.081	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
2-Chlorotoluene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
4-Chlorotoluene	ND	0.0022	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
cis-1,2-DCE	ND	0.0037	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
cis-1,3-Dichloropropene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,2-Dibromo-3-chloropropane	ND	0.0028	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Dibromochloromethane	ND	0.0019	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Dibromomethane	ND	0.0029	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,2-Dichlorobenzene	ND	0.0022	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,3-Dichlorobenzene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,4-Dichlorobenzene	ND	0.0022	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Dichlorodifluoromethane	ND	0.0062	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,1-Dichloroethane	ND	0.0017	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,1-Dichloroethene	ND	0.011	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,2-Dichloropropane	ND	0.0020	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,3-Dichloropropane	ND	0.0029	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
2,2-Dichloropropane	ND	0.0087	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,1-Dichloropropene	ND	0.0024	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Hexachlorobutadiene	ND	0.0027	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
2-Hexanone	ND	0.0045	0.27	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Isopropylbenzene	ND	0.0019	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
4-Isopropyltoluene	ND	0.0022	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
4-Methyl-2-pentanone	ND	0.0051	0.27	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Methylene chloride	ND	0.0048	0.081	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
n-Butylbenzene	ND	0.0025	0.081	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
n-Propylbenzene	ND	0.0021	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
sec-Butylbenzene	ND	0.0030	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Styrene	ND	0.0021	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
tert-Butylbenzene	ND	0.0025	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,1,1,2-Tetrachloroethane	ND	0.0018	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:15:00 AM

 Lab ID:
 1910E04-020
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0027	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Tetrachloroethene (PCE)	ND	0.0021	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
trans-1,2-DCE	ND	0.0025	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
trans-1,3-Dichloropropene	ND	0.0028	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,2,3-Trichlorobenzene	ND	0.0024	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,2,4-Trichlorobenzene	ND	0.0027	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,1,1-Trichloroethane	ND	0.0024	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,1,2-Trichloroethane	ND	0.0019	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Trichloroethene (TCE)	ND	0.0031	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Trichlorofluoromethane	ND	0.0091	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
1,2,3-Trichloropropane	ND	0.0044	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Vinyl chloride	ND	0.0018	0.027	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Xylenes, Total	ND	0.0068	0.054	mg/Kg	1	10/29/2019 9:02:23 PM	A64063
Surr: Dibromofluoromethane	101		70-130	%Rec	1	10/29/2019 9:02:23 PM	A64063
Surr: 1,2-Dichloroethane-d4	87.2		70-130	%Rec	1	10/29/2019 9:02:23 PM	A64063
Surr: Toluene-d8	98.4		70-130	%Rec	1	10/29/2019 9:02:23 PM	A64063
Surr: 4-Bromofluorobenzene	88.4		70-130	%Rec	1	10/29/2019 9:02:23 PM	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 94 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:30:00 AM

 Lab ID:
 1910E04-021
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	2.7	1.3	6.7	J	mg/Kg	1	10/31/2019 1:38:55 PM	48458
Motor Oil Range Organics (MRO)	ND	34	34		mg/Kg	1	10/31/2019 1:38:55 PM	48458
Surr: DNOP	100	0	70-130		%Rec	1	10/31/2019 1:38:55 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.83	2.7		mg/Kg	1	10/30/2019 3:01:34 AM	G64058
Surr: BFB	105	0	77.4-118		%Rec	1	10/30/2019 3:01:34 AM	G64058
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0035	0.0018	0.032	J	mg/Kg	1	11/4/2019 7:06:11 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.77	5.2		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Arsenic	3.5	3.0	5.2	J	mg/Kg	2	11/19/2019 5:50:24 PM	
Barium	240	0.049	0.21		mg/Kg	2	11/19/2019 5:50:24 PM	
Beryllium	1.2	0.019	0.31		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Cadmium	ND	0.051	0.21		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Chromium	12	0.17	0.63		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Cobalt	5.2	0.22	0.63		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Iron	17000	76	260		mg/Kg	100	11/20/2019 4:47:11 PM	48434
Lead	3.0	0.51	0.52		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Manganese	350	0.044	0.21		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Nickel	12	0.31	1.0		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Selenium	ND	2.6	5.2		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Silver	ND	0.067	0.52		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Vanadium	20	0.14	5.2		mg/Kg	2	11/19/2019 5:50:24 PM	48434
Zinc	17	0.83	5.2		mg/Kg	2	11/19/2019 5:50:24 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Aniline	ND	0.12	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Anthracene	ND	0.10	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Azobenzene	ND	0.14	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benz(a)anthracene	ND	0.094	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benzo(a)pyrene	ND	0.086	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benzo(b)fluoranthene	ND	0.086	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benzo(g,h,i)perylene	ND	0.083	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benzo(k)fluoranthene	ND	0.088	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 95 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:30:00 AM

 Lab ID:
 1910E04-021
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	<u></u>
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Bis(2-chloroethyl)ether	ND	0.12	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Butyl benzyl phthalate	ND	0.099	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Carbazole	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
4-Chloro-3-methylphenol	ND	0.15	0.49	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
4-Chloroaniline	ND	0.14	0.49	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2-Chloronaphthalene	ND	0.12	0.24	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Chrysene	ND	0.086	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Di-n-butyl phthalate	ND	0.15	0.39	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Di-n-octyl phthalate	ND	0.099	0.39	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Dibenz(a,h)anthracene	ND	0.088	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Dibenzofuran	ND	0.13	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
1,2-Dichlorobenzene	ND	0.12	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
1,3-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
1,4-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
3,3´-Dichlorobenzidine	ND	0.086	0.24	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Diethyl phthalate	ND	0.14	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Dimethyl phthalate	ND	0.13	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2,4-Dichlorophenol	ND	0.11	0.39	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2,4-Dimethylphenol	ND	0.11	0.29	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
4,6-Dinitro-2-methylphenol	ND	0.090	0.39	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2,4-Dinitrophenol	ND	0.071	0.49	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2,4-Dinitrotoluene	ND	0.11	0.49	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2,6-Dinitrotoluene	ND	0.13	0.49	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Fluoranthene	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Fluorene	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Hexachlorobenzene	ND	0.12	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Hexachlorobutadiene	ND	0.14	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Hexachloroethane	ND	0.11	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Indeno(1,2,3-cd)pyrene	ND	0.097	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
Isophorone	ND	0.14	0.39	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
1-Methylnaphthalene	ND	0.15	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	11/4/2019 9:36:13 PM	Л 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 96 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:30:00 AM

 Lab ID:
 1910E04-021
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
2-Methylphenol	ND	0.12	0.39		mg/Kg	1	11/4/2019 9:36:13 PM	48494
3+4-Methylphenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Naphthalene	ND	0.15	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
2-Nitroaniline	ND	0.14	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
3-Nitroaniline	ND	0.13	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
4-Nitroaniline	ND	0.12	0.39		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Nitrobenzene	ND	0.13	0.39		mg/Kg	1	11/4/2019 9:36:13 PM	48494
2-Nitrophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Pentachlorophenol	ND	0.10	0.39		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Phenanthrene	ND	0.11	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Phenol	ND	0.12	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Pyrene	ND	0.091	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Pyridine	ND	0.12	0.39		mg/Kg	1	11/4/2019 9:36:13 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.19		mg/Kg	1	11/4/2019 9:36:13 PM	48494
Surr: 2-Fluorophenol	71.5	:	26.7-85.9		%Rec	1	11/4/2019 9:36:13 PM	48494
Surr: Phenol-d5	76.6		18.5-101		%Rec	1	11/4/2019 9:36:13 PM	48494
Surr: 2,4,6-Tribromophenol	70.6	;	35.8-85.6		%Rec	1	11/4/2019 9:36:13 PM	48494
Surr: Nitrobenzene-d5	79.2		40.8-95.2		%Rec	1	11/4/2019 9:36:13 PM	48494
Surr: 2-Fluorobiphenyl	70.9	;	34.7-85.2		%Rec	1	11/4/2019 9:36:13 PM	48494
Surr: 4-Terphenyl-d14	73.4	;	37.4-91.3		%Rec	1	11/4/2019 9:36:13 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0022	0.014		mg/Kg	1	10/29/2019 11:29:03 F	A64063
Toluene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
Ethylbenzene	ND	0.0016	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0065	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
1,2,4-Trimethylbenzene	ND	0.0025	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
1,3,5-Trimethylbenzene	ND	0.0027	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
1,2-Dichloroethane (EDC)	ND	0.0028	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
1,2-Dibromoethane (EDB)	ND	0.0025	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063
Naphthalene	ND	0.0055	0.055		mg/Kg	1	10/29/2019 11:29:03 F	A64063
1-Methylnaphthalene	ND	0.016	0.11		mg/Kg	1	10/29/2019 11:29:03 F	A64063
2-Methylnaphthalene	ND	0.012	0.11		mg/Kg	1	10/29/2019 11:29:03 F	A64063
Acetone	ND	0.023	0.41		mg/Kg	1	10/29/2019 11:29:03 F	A64063
Bromobenzene	ND	0.0026	0.027		mg/Kg	1	10/29/2019 11:29:03 F	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 97 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-10 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 10:30:00 AM

 Lab ID:
 1910E04-021
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0025	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Bromoform	ND	0.0025	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Bromomethane	ND	0.0066	0.082	mg/Kg	1	10/29/2019 11:29:03 P	A64063
2-Butanone	ND	0.032	0.27	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Carbon disulfide	ND	0.0091	0.27	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Carbon tetrachloride	ND	0.0026	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Chlorobenzene	ND	0.0035	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Chloroethane	ND	0.0040	0.055	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Chloroform	ND	0.0022	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Chloromethane	ND	0.0026	0.082	mg/Kg	1	10/29/2019 11:29:03 P	A64063
2-Chlorotoluene	ND	0.0024	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
4-Chlorotoluene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
cis-1,2-DCE	ND	0.0038	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
cis-1,3-Dichloropropene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,2-Dibromo-3-chloropropane	ND	0.0028	0.055	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Dibromochloromethane	ND	0.0020	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Dibromomethane	ND	0.0030	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,2-Dichlorobenzene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,3-Dichlorobenzene	ND	0.0024	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,4-Dichlorobenzene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Dichlorodifluoromethane	ND	0.0064	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,1-Dichloroethane	ND	0.0018	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,1-Dichloroethene	ND	0.011	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,2-Dichloropropane	ND	0.0020	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,3-Dichloropropane	ND	0.0030	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
2,2-Dichloropropane	ND	0.0089	0.055	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,1-Dichloropropene	ND	0.0025	0.055	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Hexachlorobutadiene	ND	0.0028	0.055	mg/Kg	1	10/29/2019 11:29:03 P	A64063
2-Hexanone	ND	0.0046	0.27	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Isopropylbenzene	ND	0.0020	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
4-Isopropyltoluene	ND	0.0023	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
4-Methyl-2-pentanone	ND	0.0052	0.27	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Methylene chloride	ND	0.0049	0.082	mg/Kg	1	10/29/2019 11:29:03 P	A64063
n-Butylbenzene	ND	0.0026	0.082	mg/Kg	1	10/29/2019 11:29:03 P	A64063
n-Propylbenzene	ND	0.0022	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
sec-Butylbenzene	ND	0.0031	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
Styrene	ND	0.0022	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
tert-Butylbenzene	ND	0.0026	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,1,1,2-Tetrachloroethane	ND	0.0019	0.027	mg/Kg	1	10/29/2019 11:29:03 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 98 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-10 (2-3')Project:SWMU 13Collection Date: 10/25/2019 10:30:00 AM

Lab ID: 1910E04-021 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0028	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
Tetrachloroethene (PCE)	ND	0.0022	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
trans-1,2-DCE	ND	0.0025	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
trans-1,3-Dichloropropene	ND	0.0029	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,2,3-Trichlorobenzene	ND	0.0024	0.055		mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,2,4-Trichlorobenzene	ND	0.0028	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,1,1-Trichloroethane	ND	0.0025	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,1,2-Trichloroethane	ND	0.0019	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
Trichloroethene (TCE)	ND	0.0032	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
Trichlorofluoromethane	ND	0.0093	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
1,2,3-Trichloropropane	ND	0.0044	0.055		mg/Kg	1	10/29/2019 11:29:03 P	A64063
Vinyl chloride	ND	0.0018	0.027		mg/Kg	1	10/29/2019 11:29:03 P	A64063
Xylenes, Total	ND	0.0069	0.055		mg/Kg	1	10/29/2019 11:29:03 P	A64063
Surr: Dibromofluoromethane	111		70-130		%Rec	1	10/29/2019 11:29:03 P	A64063
Surr: 1,2-Dichloroethane-d4	96.4		70-130		%Rec	1	10/29/2019 11:29:03 P	A64063
Surr: Toluene-d8	100		70-130		%Rec	1	10/29/2019 11:29:03 P	A64063
Surr: 4-Bromofluorobenzene	89.7		70-130		%Rec	1	10/29/2019 11:29:03 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 99 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:30:00 AM

 Lab ID:
 1910E04-022
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	4300	90	450		mg/Kg	50	11/1/2019 2:46:49 PM	48458
Motor Oil Range Organics (MRO)	4400	2200	2200		mg/Kg	50	11/1/2019 2:46:49 PM	48458
Surr: DNOP	0	0	70-130	S	%Rec	50	11/1/2019 2:46:49 PM	48458
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.2	4.1		mg/Kg	1	10/30/2019 8:30:31 PM	G64077
Surr: BFB	89.4	0	77.4-118		%Rec	1	10/30/2019 8:30:31 PM	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	1.1	0.0091	0.16		mg/Kg	5	11/4/2019 7:12:16 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.1		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 6:01:13 PM	
Barium	310	0.047	0.20		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Beryllium	1.3	0.019	0.30		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Chromium	81	0.16	0.61		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Cobalt	7.2	0.21	0.61		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Iron	21000	74	250		mg/Kg	100	11/20/2019 4:48:45 PM	48434
Lead	3.8	0.49	0.51		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Manganese	300	0.042	0.20		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Nickel	16	0.30	1.0		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Selenium	ND	2.5	5.1		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Silver	ND	0.065	0.51		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Vanadium	37	0.13	5.1		mg/Kg	2	11/19/2019 6:01:13 PM	48434
Zinc	140	0.80	5.1		mg/Kg	2	11/19/2019 6:01:13 PM	48434
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	5.8	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Acenaphthylene	ND	5.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Aniline	ND	6.2	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Anthracene	ND	5.2	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Azobenzene	ND	6.7	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benz(a)anthracene	ND	4.6	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benzo(a)pyrene	ND	4.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benzo(b)fluoranthene	ND	4.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benzo(g,h,i)perylene	ND	4.1	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benzo(k)fluoranthene	ND	4.4	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benzoic acid	ND	5.0	24	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Benzyl alcohol	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 100 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:30:00 AM

 Lab ID:
 1910E04-022
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (
Bis(2-chloroethoxy)methane	ND	7.1	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Bis(2-chloroethyl)ether	ND	5.9	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Bis(2-chloroisopropyl)ether	ND	5.5	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Bis(2-ethylhexyl)phthalate	ND	6.9	24	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
4-Bromophenyl phenyl ether	ND	5.7	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Butyl benzyl phthalate	ND	4.9	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Carbazole	ND	5.7	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
4-Chloro-3-methylphenol	ND	7.4	24	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
4-Chloroaniline	ND	6.8	24	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2-Chloronaphthalene	ND	6.0	12	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2-Chlorophenol	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
4-Chlorophenyl phenyl ether	ND	5.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Chrysene	ND	4.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Di-n-butyl phthalate	ND	7.2	19	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Di-n-octyl phthalate	ND	4.9	19	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Dibenz(a,h)anthracene	ND	4.4	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Dibenzofuran	ND	6.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
1,2-Dichlorobenzene	ND	5.8	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
1,3-Dichlorobenzene	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
1,4-Dichlorobenzene	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
3,3'-Dichlorobenzidine	ND	4.3	12	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Diethyl phthalate	ND	6.9	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Dimethyl phthalate	ND	6.4	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2,4-Dichlorophenol	ND	5.6	19	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2,4-Dimethylphenol	ND	5.3	14	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
4,6-Dinitro-2-methylphenol	ND	4.5	19	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2,4-Dinitrophenol	ND	3.5	24	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2,4-Dinitrotoluene	ND	5.7	24	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2,6-Dinitrotoluene	ND	6.3	24	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Fluoranthene	ND	5.4	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Fluorene	ND	5.5	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Hexachlorobenzene	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Hexachlorobutadiene	ND	6.7	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Hexachlorocyclopentadiene	ND	5.5	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Hexachloroethane	ND	5.4	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Indeno(1,2,3-cd)pyrene	ND	4.8	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
Isophorone	ND	7.1	19	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
1-Methylnaphthalene	ND	7.2	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494
2-Methylnaphthalene	ND	7.0	9.6	D	mg/Kg	5	11/4/2019 10:05:05 P	M 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 101 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:30:00 AM

 Lab ID:
 1910E04-022
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed E	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	5.7	19	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
3+4-Methylphenol	ND	5.9	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
N-Nitrosodi-n-propylamine	ND	6.9	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
N-Nitrosodiphenylamine	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Naphthalene	ND	7.3	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
2-Nitroaniline	ND	6.9	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
3-Nitroaniline	ND	6.7	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
4-Nitroaniline	ND	6.2	19	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Nitrobenzene	ND	6.7	19	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
2-Nitrophenol	ND	6.6	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
4-Nitrophenol	ND	6.5	12	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Pentachlorophenol	ND	5.0	19	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Phenanthrene	ND	5.2	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Phenol	ND	6.0	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Pyrene	ND	4.5	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Pyridine	ND	5.8	19	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
1,2,4-Trichlorobenzene	ND	7.5	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
2,4,5-Trichlorophenol	ND	6.2	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
2,4,6-Trichlorophenol	ND	5.1	9.6	D	mg/Kg	5	11/4/2019 10:05:05 PM	48494
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	5	11/4/2019 10:05:05 PM	48494
Surr: Phenol-d5	0		18.5-101	SD	%Rec	5	11/4/2019 10:05:05 PM	48494
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	5	11/4/2019 10:05:05 PM	48494
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	5	11/4/2019 10:05:05 PM	48494
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	5	11/4/2019 10:05:05 PM	48494
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	5	11/4/2019 10:05:05 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0033	0.020		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Toluene	ND	0.0039	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Ethylbenzene	ND	0.0024	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0096	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,2,4-Trimethylbenzene	ND	0.0037	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,3,5-Trimethylbenzene	ND	0.0039	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,2-Dichloroethane (EDC)	ND	0.0041	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,2-Dibromoethane (EDB)	ND	0.0037	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Naphthalene	ND	0.0081	0.081		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1-Methylnaphthalene	ND	0.023	0.16		mg/Kg	1	10/29/2019 11:58:35 P	A64063
2-Methylnaphthalene	ND	0.018	0.16		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Acetone	ND	0.034	0.61		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Bromobenzene	ND	0.0039	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 102 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:30:00 AM

 Lab ID:
 1910E04-022
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0037	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Bromoform	ND	0.0037	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Bromomethane	ND	0.0098	0.12		mg/Kg	1	10/29/2019 11:58:35 P	A64063
2-Butanone	ND	0.047	0.41		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Carbon disulfide	ND	0.013	0.41		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Carbon tetrachloride	ND	0.0039	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Chlorobenzene	ND	0.0052	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Chloroethane	ND	0.0060	0.081		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Chloroform	ND	0.0033	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Chloromethane	ND	0.0039	0.12		mg/Kg	1	10/29/2019 11:58:35 P	A64063
2-Chlorotoluene	ND	0.0035	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
4-Chlorotoluene	ND	0.0033	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
cis-1,2-DCE	ND	0.0056	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
cis-1,3-Dichloropropene	ND	0.0034	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,2-Dibromo-3-chloropropane	ND	0.0042	0.081		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Dibromochloromethane	ND	0.0029	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Dibromomethane	ND	0.0044	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,2-Dichlorobenzene	ND	0.0033	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,3-Dichlorobenzene	ND	0.0035	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,4-Dichlorobenzene	ND	0.0034	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Dichlorodifluoromethane	ND	0.0094	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,1-Dichloroethane	ND	0.0026	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,1-Dichloroethene	ND	0.016	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,2-Dichloropropane	ND	0.0030	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,3-Dichloropropane	ND	0.0044	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
2,2-Dichloropropane	ND	0.013	0.081		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,1-Dichloropropene	ND	0.0037	0.081		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Hexachlorobutadiene	ND	0.0041	0.081		mg/Kg	1	10/29/2019 11:58:35 P	A64063
2-Hexanone	ND	0.0067	0.41		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Isopropylbenzene	ND	0.0029	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
4-Isopropyltoluene	ND	0.0034	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
4-Methyl-2-pentanone	ND	0.0077	0.41		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Methylene chloride	0.011	0.0072	0.12	J	mg/Kg	1	10/29/2019 11:58:35 P	A64063
n-Butylbenzene	ND	0.0038	0.12		mg/Kg	1	10/29/2019 11:58:35 P	A64063
n-Propylbenzene	ND	0.0032	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
sec-Butylbenzene	ND	0.0046	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
Styrene	ND	0.0032	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
tert-Butylbenzene	ND	0.0038	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063
1,1,1,2-Tetrachloroethane	ND	0.0027	0.041		mg/Kg	1	10/29/2019 11:58:35 P	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 103 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:30:00 AM

 Lab ID:
 1910E04-022
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0041	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
Tetrachloroethene (PCE)	ND	0.0032	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
trans-1,2-DCE	ND	0.0037	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
trans-1,3-Dichloropropene	ND	0.0043	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
1,2,3-Trichlorobenzene	ND	0.0036	0.081	mg/Kg	1	10/29/2019 11:58:35 F	A64063
1,2,4-Trichlorobenzene	ND	0.0041	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
1,1,1-Trichloroethane	ND	0.0037	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
1,1,2-Trichloroethane	ND	0.0029	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
Trichloroethene (TCE)	ND	0.0047	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
Trichlorofluoromethane	ND	0.014	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
1,2,3-Trichloropropane	ND	0.0066	0.081	mg/Kg	1	10/29/2019 11:58:35 F	A64063
Vinyl chloride	ND	0.0027	0.041	mg/Kg	1	10/29/2019 11:58:35 F	A64063
Xylenes, Total	ND	0.010	0.081	mg/Kg	1	10/29/2019 11:58:35 F	A64063
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/29/2019 11:58:35 F	A64063
Surr: 1,2-Dichloroethane-d4	95.2		70-130	%Rec	1	10/29/2019 11:58:35 F	A64063
Surr: Toluene-d8	97.2		70-130	%Rec	1	10/29/2019 11:58:35 F	A64063
Surr: 4-Bromofluorobenzene	89.7		70-130	%Rec	1	10/29/2019 11:58:35 F	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 104 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:45:00 AM

 Lab ID:
 1910E04-023
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.3		mg/Kg	1	10/30/2019 7:33:14 PM	48459
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	10/30/2019 7:33:14 PM	48459
Surr: DNOP	102	0	70-130		%Rec	1	10/30/2019 7:33:14 PM	48459
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.96	3.2		mg/Kg	1	10/30/2019 9:38:44 PM	G64077
Surr: BFB	92.0	0	77.4-118		%Rec	1	10/30/2019 9:38:44 PM	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0042	0.0018	0.033	J	mg/Kg	1	11/4/2019 7:14:14 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.1		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Barium	170	0.047	0.20		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Beryllium	1.4	0.019	0.30		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Chromium	16	0.16	0.61		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Cobalt	6.3	0.21	0.61		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Iron	22000	74	250		mg/Kg	100	11/20/2019 4:50:19 PM	48519
Lead	1.7	0.49	0.51		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Manganese	310	0.042	0.20		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Nickel	14	0.30	1.0		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Selenium	ND	2.5	5.1		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Silver	ND	0.065	0.51		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Vanadium	25	0.13	5.1		mg/Kg	2	11/19/2019 6:31:21 PM	48519
Zinc	21	0.80	5.1		mg/Kg	2	11/19/2019 6:31:21 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.24	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Acenaphthylene	ND	0.22	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Aniline	ND	0.26	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Anthracene	ND	0.22	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Azobenzene	ND	0.28	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benz(a)anthracene	ND	0.19	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benzo(a)pyrene	ND	0.18	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benzo(b)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benzo(g,h,i)perylene	ND	0.17	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benzo(k)fluoranthene	ND	0.18	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benzoic acid	ND	0.21	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	48494
Benzyl alcohol	ND	0.25	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 105 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:45:00 AM

 Lab ID:
 1910E04-023
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	
Bis(2-chloroethoxy)methane	ND	0.30	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Bis(2-chloroethyl)ether	ND	0.25	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Bis(2-chloroisopropyl)ether	ND	0.23	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Bis(2-ethylhexyl)phthalate	ND	0.29	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
4-Bromophenyl phenyl ether	ND	0.24	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Butyl benzyl phthalate	ND	0.21	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Carbazole	ND	0.24	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
4-Chloro-3-methylphenol	ND	0.31	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
4-Chloroaniline	ND	0.29	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	<i>l</i> 48494
2-Chloronaphthalene	ND	0.25	0.51		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
2-Chlorophenol	ND	0.25	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
4-Chlorophenyl phenyl ether	ND	0.22	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
Chrysene	ND	0.18	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	<i>l</i> 48494
Di-n-butyl phthalate	ND	0.30	0.81		mg/Kg	1	11/7/2019 4:07:35 PM	<i>l</i> 48494
Di-n-octyl phthalate	ND	0.21	0.81		mg/Kg	1	11/7/2019 4:07:35 PM	<i>l</i> 48494
Dibenz(a,h)anthracene	ND	0.18	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
Dibenzofuran	ND	0.26	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
1,2-Dichlorobenzene	ND	0.24	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
1,3-Dichlorobenzene	ND	0.21	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
1,4-Dichlorobenzene	ND	0.22	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
3,3´-Dichlorobenzidine	ND	0.18	0.51		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Diethyl phthalate	ND	0.29	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Dimethyl phthalate	ND	0.27	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
2,4-Dichlorophenol	ND	0.23	0.81		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
2,4-Dimethylphenol	ND	0.22	0.61		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
4,6-Dinitro-2-methylphenol	ND	0.19	0.81		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
2,4-Dinitrophenol	ND	0.15	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
2,4-Dinitrotoluene	ND	0.24	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
2,6-Dinitrotoluene	ND	0.27	1.0		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Fluoranthene	ND	0.23	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494
Fluorene	ND	0.23	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Hexachlorobenzene	ND	0.25	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Hexachlorobutadiene	ND	0.28	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Hexachlorocyclopentadiene	ND	0.23	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Hexachloroethane	ND	0.23	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Indeno(1,2,3-cd)pyrene	ND	0.20	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
Isophorone	ND	0.30	0.81		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
1-Methylnaphthalene	ND	0.30	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	Л 48494
2-Methylnaphthalene	ND	0.29	0.40		mg/Kg	1	11/7/2019 4:07:35 PM	A 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 106 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:45:00 AM

 Lab ID:
 1910E04-023
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.24	0.81	mg/Kg	1	11/7/2019 4:07:35 PM	48494
3+4-Methylphenol	ND	0.25	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
N-Nitrosodi-n-propylamine	ND	0.29	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
N-Nitrosodiphenylamine	ND	0.21	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Naphthalene	ND	0.31	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
2-Nitroaniline	ND	0.29	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
3-Nitroaniline	ND	0.28	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
4-Nitroaniline	ND	0.26	0.81	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Nitrobenzene	ND	0.28	0.81	mg/Kg	1	11/7/2019 4:07:35 PM	48494
2-Nitrophenol	ND	0.28	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
4-Nitrophenol	ND	0.27	0.51	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Pentachlorophenol	ND	0.21	0.81	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Phenanthrene	ND	0.22	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Phenol	ND	0.25	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Pyrene	ND	0.19	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Pyridine	ND	0.24	0.81	mg/Kg	1	11/7/2019 4:07:35 PM	48494
1,2,4-Trichlorobenzene	ND	0.31	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
2,4,5-Trichlorophenol	ND	0.26	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
2,4,6-Trichlorophenol	ND	0.21	0.40	mg/Kg	1	11/7/2019 4:07:35 PM	48494
Surr: 2-Fluorophenol	65.1		26.7-85.9	%Rec	1	11/7/2019 4:07:35 PM	48494
Surr: Phenol-d5	68.6		18.5-101	%Rec	1	11/7/2019 4:07:35 PM	48494
Surr: 2,4,6-Tribromophenol	73.8		35.8-85.6	%Rec	1	11/7/2019 4:07:35 PM	48494
Surr: Nitrobenzene-d5	74.9		40.8-95.2	%Rec	1	11/7/2019 4:07:35 PM	48494
Surr: 2-Fluorobiphenyl	75.4		34.7-85.2	%Rec	1	11/7/2019 4:07:35 PM	48494
Surr: 4-Terphenyl-d14	80.0		37.4-91.3	%Rec	1	11/7/2019 4:07:35 PM	48494
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0026	0.016	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Toluene	ND	0.0030	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Ethylbenzene	ND	0.0019	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Methyl tert-butyl ether (MTBE)	ND	0.0076	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2,4-Trimethylbenzene	ND	0.0029	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,3,5-Trimethylbenzene	ND	0.0031	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2-Dichloroethane (EDC)	ND	0.0033	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2-Dibromoethane (EDB)	ND	0.0029	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Naphthalene	ND	0.0064	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1-Methylnaphthalene	ND	0.018	0.13	mg/Kg	1	10/30/2019 12:28:04 A	A64063
2-Methylnaphthalene	ND	0.014	0.13	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Acetone	ND	0.026	0.48	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Bromobenzene	ND	0.0031	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 107 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:45:00 AM

 Lab ID:
 1910E04-023
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0029	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Bromoform	ND	0.0029	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Bromomethane	ND	0.0077	0.096	mg/Kg	1	10/30/2019 12:28:04 A	A64063
2-Butanone	ND	0.037	0.32	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Carbon disulfide	ND	0.011	0.32	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Carbon tetrachloride	ND	0.0030	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Chlorobenzene	ND	0.0041	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Chloroethane	ND	0.0047	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Chloroform	ND	0.0026	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Chloromethane	ND	0.0030	0.096	mg/Kg	1	10/30/2019 12:28:04 A	A64063
2-Chlorotoluene	ND	0.0028	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
4-Chlorotoluene	ND	0.0026	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
cis-1,2-DCE	ND	0.0044	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
cis-1,3-Dichloropropene	ND	0.0027	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2-Dibromo-3-chloropropane	ND	0.0033	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Dibromochloromethane	ND	0.0023	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Dibromomethane	ND	0.0034	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2-Dichlorobenzene	ND	0.0026	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,3-Dichlorobenzene	ND	0.0028	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,4-Dichlorobenzene	ND	0.0027	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Dichlorodifluoromethane	ND	0.0074	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,1-Dichloroethane	ND	0.0020	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,1-Dichloroethene	ND	0.013	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2-Dichloropropane	ND	0.0023	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,3-Dichloropropane	ND	0.0034	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
2,2-Dichloropropane	ND	0.010	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,1-Dichloropropene	ND	0.0029	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Hexachlorobutadiene	ND	0.0032	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
2-Hexanone	ND	0.0053	0.32	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Isopropylbenzene	ND	0.0023	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
4-Isopropyltoluene	ND	0.0026	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
4-Methyl-2-pentanone	ND	0.0060	0.32	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Methylene chloride	ND	0.0056	0.096	mg/Kg	1	10/30/2019 12:28:04 A	A64063
n-Butylbenzene	ND	0.0030	0.096	mg/Kg	1	10/30/2019 12:28:04 A	A64063
n-Propylbenzene	ND	0.0025	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
sec-Butylbenzene	ND	0.0036	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Styrene	ND	0.0025	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
tert-Butylbenzene	ND	0.0030	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,1,1,2-Tetrachloroethane	ND	0.0022	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 108 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 11:45:00 AM

 Lab ID:
 1910E04-023
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0032	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Tetrachloroethene (PCE)	ND	0.0025	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
trans-1,2-DCE	ND	0.0029	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
trans-1,3-Dichloropropene	ND	0.0034	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2,3-Trichlorobenzene	ND	0.0028	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2,4-Trichlorobenzene	ND	0.0032	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,1,1-Trichloroethane	ND	0.0029	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,1,2-Trichloroethane	ND	0.0022	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Trichloroethene (TCE)	ND	0.0037	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Trichlorofluoromethane	ND	0.011	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
1,2,3-Trichloropropane	ND	0.0052	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Vinyl chloride	ND	0.0021	0.032	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Xylenes, Total	ND	0.0080	0.064	mg/Kg	1	10/30/2019 12:28:04 A	A64063
Surr: Dibromofluoromethane	111		70-130	%Rec	1	10/30/2019 12:28:04 A	A64063
Surr: 1,2-Dichloroethane-d4	95.7		70-130	%Rec	1	10/30/2019 12:28:04 A	A64063
Surr: Toluene-d8	98.5		70-130	%Rec	1	10/30/2019 12:28:04 A	A64063
Surr: 4-Bromofluorobenzene	90.1		70-130	%Rec	1	10/30/2019 12:28:04 A	A64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 109 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:00:00 PM

 Lab ID:
 1910E04-024
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.5		mg/Kg	1	10/30/2019 9:00:47 PM	48459
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	10/30/2019 9:00:47 PM	48459
Surr: DNOP	96.1	0	70-130		%Rec	1	10/30/2019 9:00:47 PM	48459
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.91	3.0		mg/Kg	1	10/30/2019 10:01:26 P	G64077
Surr: BFB	92.1	0	77.4-118		%Rec	1	10/30/2019 10:01:26 P	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0028	0.0018	0.033	J	mg/Kg	1	11/4/2019 7:16:14 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.0		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Arsenic	ND	2.9	5.0		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Barium	230	0.047	0.20		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Beryllium	1.3	0.019	0.30		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Chromium	14	0.16	0.60		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Cobalt	5.7	0.21	0.60		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Iron	18000	73	250		mg/Kg	100	11/20/2019 4:51:54 PM	48519
Lead	2.7	0.49	0.50		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Manganese	320	0.042	0.20		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Nickel	13	0.30	1.0		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Silver	ND	0.065	0.50		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Vanadium	22	0.13	5.0		mg/Kg	2	11/19/2019 6:34:29 PM	48519
Zinc	18	0.80	5.0		mg/Kg	2	11/19/2019 6:34:29 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Aniline	ND	0.13	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Anthracene	ND	0.10	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Azobenzene	ND	0.14	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benz(a)anthracene	ND	0.094	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benzo(a)pyrene	ND	0.087	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benzo(b)fluoranthene	ND	0.087	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benzo(g,h,i)perylene	ND	0.084	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benzo(k)fluoranthene	ND	0.089	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benzoic acid	ND	0.10	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	48494
Benzyl alcohol	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 110 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:00:00 PM

 Lab ID:
 1910E04-024
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.14	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Bis(2-chloroisopropyl)ether	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.14	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
4-Bromophenyl phenyl ether	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Butyl benzyl phthalate	ND	0.10	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Carbazole	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
4-Chloro-3-methylphenol	ND	0.15	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
4-Chloroaniline	ND	0.14	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2-Chlorophenol	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Chrysene	ND	0.086	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Di-n-butyl phthalate	0.20	0.15	0.39	J	mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Di-n-octyl phthalate	ND	0.10	0.39		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Dibenz(a,h)anthracene	ND	0.089	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Dibenzofuran	ND	0.13	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
1,2-Dichlorobenzene	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
1,3-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
1,4-Dichlorobenzene	ND	0.10	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
3,3'-Dichlorobenzidine	ND	0.087	0.24		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Diethyl phthalate	ND	0.14	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Dimethyl phthalate	ND	0.13	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2,4-Dichlorophenol	ND	0.11	0.39		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.090	0.39		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2,4-Dinitrophenol	ND	0.071	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2,4-Dinitrotoluene	ND	0.12	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2,6-Dinitrotoluene	ND	0.13	0.49		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Fluoranthene	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Fluorene	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Hexachlorobenzene	ND	0.12	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Hexachlorocyclopentadiene	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Indeno(1,2,3-cd)pyrene	ND	0.097	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
Isophorone	ND	0.14	0.39		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494
2-Methylnaphthalene	ND	0.14	0.20		mg/Kg	1	11/7/2019 4:36:19 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 111 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:00:00 PM

 Lab ID:
 1910E04-024
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed l	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.12	0.39	mg/Kg	1	11/7/2019 4:36:19 PM	48494
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
N-Nitrosodiphenylamine	ND	0.10	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Naphthalene	ND	0.15	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
4-Nitroaniline	ND	0.12	0.39	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Nitrobenzene	ND	0.14	0.39	mg/Kg	1	11/7/2019 4:36:19 PM	48494
2-Nitrophenol	ND	0.13	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
4-Nitrophenol	ND	0.13	0.24	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Pentachlorophenol	ND	0.10	0.39	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Phenanthrene	ND	0.11	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Phenol	ND	0.12	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Pyrene	ND	0.092	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Pyridine	ND	0.12	0.39	mg/Kg	1	11/7/2019 4:36:19 PM	48494
1,2,4-Trichlorobenzene	ND	0.15	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
2,4,6-Trichlorophenol	ND	0.10	0.20	mg/Kg	1	11/7/2019 4:36:19 PM	48494
Surr: 2-Fluorophenol	51.4	2	26.7-85.9	%Rec	1	11/7/2019 4:36:19 PM	48494
Surr: Phenol-d5	60.0		18.5-101	%Rec	1	11/7/2019 4:36:19 PM	48494
Surr: 2,4,6-Tribromophenol	75.2	;	35.8-85.6	%Rec	1	11/7/2019 4:36:19 PM	48494
Surr: Nitrobenzene-d5	60.5	4	40.8-95.2	%Rec	1	11/7/2019 4:36:19 PM	48494
Surr: 2-Fluorobiphenyl	66.2	;	34.7-85.2	%Rec	1	11/7/2019 4:36:19 PM	48494
Surr: 4-Terphenyl-d14	77.0	;	37.4-91.3	%Rec	1	11/7/2019 4:36:19 PM	48494
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0025	0.015	mg/Kg	1	10/30/2019 12:57:35 A	B64063
Toluene	ND	0.0029	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
Ethylbenzene	ND	0.0017	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
Methyl tert-butyl ether (MTBE)	ND	0.0071	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
1,2,4-Trimethylbenzene	ND	0.0027	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
1,3,5-Trimethylbenzene	ND	0.0029	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
1,2-Dichloroethane (EDC)	ND	0.0031	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
1,2-Dibromoethane (EDB)	ND	0.0027	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063
Naphthalene	ND	0.0060	0.060	mg/Kg	1	10/30/2019 12:57:35 A	B64063
1-Methylnaphthalene	ND	0.017	0.12	mg/Kg	1	10/30/2019 12:57:35 A	B64063
2-Methylnaphthalene	ND	0.013	0.12	mg/Kg	1	10/30/2019 12:57:35 A	B64063
Acetone	ND	0.025	0.45	mg/Kg	1	10/30/2019 12:57:35 A	B64063
Bromobenzene	ND	0.0029	0.030	mg/Kg	1	10/30/2019 12:57:35 A	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 112 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-11 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:00:00 PM

 Lab ID:
 1910E04-024
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 8260B: VOLATILES							Analyst: DJF				
Bromodichloromethane	ND	0.0027	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Bromoform	ND	0.0027	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Bromomethane	ND	0.0072	0.090		mg/Kg	1	10/30/2019 12:57:35	A B64063			
2-Butanone	ND	0.035	0.30		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Carbon disulfide	ND	0.0099	0.30		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Carbon tetrachloride	ND	0.0028	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Chlorobenzene	ND	0.0038	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Chloroethane	ND	0.0044	0.060		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Chloroform	ND	0.0024	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Chloromethane	ND	0.0029	0.090		mg/Kg	1	10/30/2019 12:57:35	A B64063			
2-Chlorotoluene	ND	0.0026	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
4-Chlorotoluene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
cis-1,2-DCE	ND	0.0041	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
cis-1,3-Dichloropropene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,2-Dibromo-3-chloropropane	ND	0.0031	0.060		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Dibromochloromethane	ND	0.0021	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Dibromomethane	ND	0.0032	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,2-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,3-Dichlorobenzene	ND	0.0026	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,4-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Dichlorodifluoromethane	ND	0.0070	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,1-Dichloroethane	ND	0.0019	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,1-Dichloroethene	ND	0.012	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,2-Dichloropropane	ND	0.0022	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,3-Dichloropropane	ND	0.0032	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
2,2-Dichloropropane	ND	0.0097	0.060		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,1-Dichloropropene	ND	0.0027	0.060		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Hexachlorobutadiene	ND	0.0030	0.060		mg/Kg	1	10/30/2019 12:57:35	A B64063			
2-Hexanone	ND	0.0050	0.30		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Isopropylbenzene	ND	0.0022	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
4-Isopropyltoluene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
4-Methyl-2-pentanone	ND	0.0057	0.30		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Methylene chloride	ND	0.0053	0.090		mg/Kg	1	10/30/2019 12:57:35	A B64063			
n-Butylbenzene	ND	0.0028	0.090		mg/Kg	1	10/30/2019 12:57:35	A B64063			
n-Propylbenzene	ND	0.0024	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
sec-Butylbenzene	ND	0.0034	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
Styrene	ND	0.0024	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
tert-Butylbenzene	ND	0.0028	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			
1,1,1,2-Tetrachloroethane	ND	0.0020	0.030		mg/Kg	1	10/30/2019 12:57:35	A B64063			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 113 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-11 (2-3')

Project: SWMU 13

Collection Date: 10/25/2019 12:00:00 PM

Lab ID: 1910E04-024 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual U	nits	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ l	=
1,1,2,2-Tetrachloroethane	ND	0.0030	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
Tetrachloroethene (PCE)	ND	0.0024	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
trans-1,2-DCE	ND	0.0027	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
trans-1,3-Dichloropropene	ND	0.0032	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
1,2,3-Trichlorobenzene	ND	0.0026	0.060	m	g/Kg	1	10/30/2019 12:57:35	A B64063
1,2,4-Trichlorobenzene	ND	0.0030	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
1,1,1-Trichloroethane	ND	0.0027	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
1,1,2-Trichloroethane	ND	0.0021	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
Trichloroethene (TCE)	ND	0.0035	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
Trichlorofluoromethane	ND	0.010	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
1,2,3-Trichloropropane	ND	0.0048	0.060	m	g/Kg	1	10/30/2019 12:57:35	A B64063
Vinyl chloride	ND	0.0020	0.030	m	g/Kg	1	10/30/2019 12:57:35	A B64063
Xylenes, Total	ND	0.0076	0.060	m	g/Kg	1	10/30/2019 12:57:35	A B64063
Surr: Dibromofluoromethane	112		70-130	%	Rec	1	10/30/2019 12:57:35	A B64063
Surr: 1,2-Dichloroethane-d4	97.2		70-130	%	Rec	1	10/30/2019 12:57:35	A B64063
Surr: Toluene-d8	97.6		70-130	%	Rec	1	10/30/2019 12:57:35	A B64063
Surr: 4-Bromofluorobenzene	92.4		70-130	%	Rec	1	10/30/2019 12:57:35	A B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 114 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:55:00 PM

 Lab ID:
 1910E04-025
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: BRM	
Diesel Range Organics (DRO)	39	1.9	9.6	mg/Kg	1	10/31/2019 10:13:56 P	48459
Motor Oil Range Organics (MRO)	65	48	48	mg/Kg	1	10/31/2019 10:13:56 P	48459
Surr: DNOP	99.2	0	70-130	%Rec	1	10/31/2019 10:13:56 P	48459
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.4	mg/Kg	1	10/30/2019 10:24:03 P	G64077
Surr: BFB	89.7	0	77.4-118	%Rec	1	10/30/2019 10:24:03 P	G64077
EPA METHOD 7471: MERCURY						Analyst: pmf	
Mercury	0.056	0.0018	0.033	mg/Kg	1	11/4/2019 7:18:14 PM	48570
EPA METHOD 6010B: SOIL METALS						Analyst: pmf	
Antimony	ND	0.74	5.0	mg/Kg	2	11/20/2019 4:53:29 PM	48519
Arsenic	ND	2.9	5.0	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Barium	340	0.047	0.20	mg/Kg	2	11/20/2019 4:53:29 PM	48519
Beryllium	1.1	0.018	0.30	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Cadmium	ND	0.049	0.20	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Chromium	15	0.16	0.60	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Cobalt	5.4	0.21	0.60	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Iron	17000	73	250	mg/Kg	100	11/20/2019 5:15:46 PM	48519
Lead	3.5	0.49	0.50	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Manganese	520	0.10	0.50	mg/Kg	5	11/20/2019 5:09:25 PM	48519
Nickel	11	0.30	1.0	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Selenium	ND	2.5	5.0	mg/Kg	2	11/20/2019 4:53:29 PM	48519
Silver	ND	0.064	0.50	mg/Kg	2	11/20/2019 4:53:29 PM	48519
Vanadium	26	0.13	5.0	mg/Kg	2	11/19/2019 7:06:14 PM	48519
Zinc	34	0.80	5.0	mg/Kg	2	11/19/2019 7:06:14 PM	48519
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
Acenaphthene	ND	0.24	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Acenaphthylene	ND	0.22	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Aniline	ND	0.25	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Anthracene	ND	0.21	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Azobenzene	ND	0.28	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benz(a)anthracene	ND	0.19	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benzo(a)pyrene	ND	0.18	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benzo(b)fluoranthene	ND	0.17	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benzo(g,h,i)perylene	ND	0.17	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benzo(k)fluoranthene	ND	0.18	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benzoic acid	ND	0.20	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Benzyl alcohol	ND	0.24	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 115 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:55:00 PM

 Lab ID:
 1910E04-025
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (-
Bis(2-chloroethoxy)methane	ND	0.29	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Bis(2-chloroethyl)ether	ND	0.24	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Bis(2-chloroisopropyl)ether	ND	0.22	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Bis(2-ethylhexyl)phthalate	ND	0.28	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	48494
4-Bromophenyl phenyl ether	ND	0.23	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Butyl benzyl phthalate	ND	0.20	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Carbazole	ND	0.23	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
4-Chloro-3-methylphenol	ND	0.30	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
4-Chloroaniline	ND	0.28	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2-Chloronaphthalene	ND	0.25	0.49	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2-Chlorophenol	ND	0.25	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
4-Chlorophenyl phenyl ether	ND	0.21	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Chrysene	ND	0.17	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Di-n-butyl phthalate	ND	0.29	0.79	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Di-n-octyl phthalate	ND	0.20	0.79	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Dibenz(a,h)anthracene	ND	0.18	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Dibenzofuran	ND	0.26	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
1,2-Dichlorobenzene	ND	0.24	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
1,3-Dichlorobenzene	ND	0.21	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
1,4-Dichlorobenzene	ND	0.21	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
3,3´-Dichlorobenzidine	ND	0.18	0.49	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Diethyl phthalate	ND	0.28	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Dimethyl phthalate	ND	0.26	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2,4-Dichlorophenol	ND	0.23	0.79	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2,4-Dimethylphenol	ND	0.22	0.59	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
4,6-Dinitro-2-methylphenol	ND	0.18	0.79	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2,4-Dinitrophenol	ND	0.14	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2,4-Dinitrotoluene	ND	0.23	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	48494
2,6-Dinitrotoluene	ND	0.26	0.99	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Fluoranthene	ND	0.22	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Fluorene	ND	0.22	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Hexachlorobenzene	ND	0.24	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Hexachlorobutadiene	ND	0.27	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Hexachlorocyclopentadiene	ND	0.23	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Hexachloroethane	ND	0.22	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	48494
Indeno(1,2,3-cd)pyrene	ND	0.20	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
Isophorone	ND	0.29	0.79	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
1-Methylnaphthalene	ND	0.29	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494
2-Methylnaphthalene	ND	0.29	0.39	mg/Kg	1	11/7/2019 5:05:04 PM	1 48494

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 116 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:55:00 PM

 Lab ID:
 1910E04-025
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	0.23	0.79		mg/Kg	1	11/7/2019 5:05:04 PM	48494
3+4-Methylphenol	ND	0.24	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
N-Nitrosodi-n-propylamine	ND	0.28	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
N-Nitrosodiphenylamine	ND	0.21	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Naphthalene	ND	0.30	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
2-Nitroaniline	ND	0.28	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
3-Nitroaniline	ND	0.27	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
4-Nitroaniline	ND	0.25	0.79		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Nitrobenzene	ND	0.27	0.79		mg/Kg	1	11/7/2019 5:05:04 PM	48494
2-Nitrophenol	ND	0.27	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
4-Nitrophenol	ND	0.27	0.49		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Pentachlorophenol	ND	0.20	0.79		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Phenanthrene	ND	0.21	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Phenol	ND	0.25	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Pyrene	ND	0.19	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Pyridine	ND	0.24	0.79		mg/Kg	1	11/7/2019 5:05:04 PM	48494
1,2,4-Trichlorobenzene	ND	0.31	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
2,4,5-Trichlorophenol	ND	0.26	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
2,4,6-Trichlorophenol	ND	0.21	0.39		mg/Kg	1	11/7/2019 5:05:04 PM	48494
Surr: 2-Fluorophenol	64.2	2	26.7-85.9		%Rec	1	11/7/2019 5:05:04 PM	48494
Surr: Phenol-d5	71.6		18.5-101		%Rec	1	11/7/2019 5:05:04 PM	48494
Surr: 2,4,6-Tribromophenol	71.4	;	35.8-85.6		%Rec	1	11/7/2019 5:05:04 PM	48494
Surr: Nitrobenzene-d5	71.5	4	40.8-95.2		%Rec	1	11/7/2019 5:05:04 PM	48494
Surr: 2-Fluorobiphenyl	76.1	;	34.7-85.2		%Rec	1	11/7/2019 5:05:04 PM	48494
Surr: 4-Terphenyl-d14	79.6	;	37.4-91.3		%Rec	1	11/7/2019 5:05:04 PM	48494
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0028	0.017		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
Toluene	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
Ethylbenzene	ND	0.0020	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
Methyl tert-butyl ether (MTBE)	ND	0.0080	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
1,2,4-Trimethylbenzene	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
1,3,5-Trimethylbenzene	ND	0.0033	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
1,2-Dichloroethane (EDC)	ND	0.0034	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
1,2-Dibromoethane (EDB)	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
Naphthalene	ND	0.0068	0.068		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
1-Methylnaphthalene	ND	0.019	0.14		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
2-Methylnaphthalene	ND	0.015	0.14		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
Acetone	ND	0.028	0.51		mg/Kg	1	10/30/2019 2:25:51 AM	B64063
Bromobenzene	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:25:51 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 117 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 12:55:00 PM

 Lab ID:
 1910E04-025
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ I	=
Bromodichloromethane	ND	0.0031	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Bromoform	ND	0.0031	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Bromomethane	ND	0.0082	0.10	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
2-Butanone	ND	0.039	0.34	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Carbon disulfide	ND	0.011	0.34	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Carbon tetrachloride	ND	0.0032	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Chlorobenzene	ND	0.0043	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Chloroethane	ND	0.0050	0.068	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Chloroform	ND	0.0027	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Chloromethane	ND	0.0032	0.10	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
2-Chlorotoluene	ND	0.0029	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
4-Chlorotoluene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
cis-1,2-DCE	ND	0.0046	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
cis-1,3-Dichloropropene	ND	0.0029	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,2-Dibromo-3-chloropropane	ND	0.0035	0.068	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Dibromochloromethane	ND	0.0024	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Dibromomethane	ND	0.0036	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,2-Dichlorobenzene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,3-Dichlorobenzene	ND	0.0029	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,4-Dichlorobenzene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Dichlorodifluoromethane	ND	0.0078	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,1-Dichloroethane	ND	0.0022	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,1-Dichloroethene	ND	0.014	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,2-Dichloropropane	ND	0.0025	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,3-Dichloropropane	ND	0.0037	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
2,2-Dichloropropane	ND	0.011	0.068	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,1-Dichloropropene	ND	0.0031	0.068	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Hexachlorobutadiene	ND	0.0034	0.068	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
2-Hexanone	ND	0.0056	0.34	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Isopropylbenzene	ND	0.0024	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
4-Isopropyltoluene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
4-Methyl-2-pentanone	ND	0.0064	0.34	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Methylene chloride	ND	0.0060	0.10	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
n-Butylbenzene	ND	0.0032	0.10	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
n-Propylbenzene	ND	0.0027	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
sec-Butylbenzene	ND	0.0038	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
Styrene	ND	0.0027	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
tert-Butylbenzene	ND	0.0032	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063
1,1,1,2-Tetrachloroethane	ND	0.0023	0.034	mg/Kg	1	10/30/2019 2:25:51 A	M B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 118 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-12 (0-0.5')

Project: SWMU 13

Collection Date: 10/25/2019 12:55:00 PM

Lab ID: 1910E04-025 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: D .	JF
1,1,2,2-Tetrachloroethane	ND	0.0034	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
Tetrachloroethene (PCE)	ND	0.0027	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
trans-1,2-DCE	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
trans-1,3-Dichloropropene	ND	0.0036	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
1,2,3-Trichlorobenzene	ND	0.0030	0.068		mg/Kg	1	10/30/2019 2:25:51	AM B64063
1,2,4-Trichlorobenzene	ND	0.0034	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
1,1,1-Trichloroethane	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
1,1,2-Trichloroethane	ND	0.0024	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
Trichloroethene (TCE)	ND	0.0039	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
Trichlorofluoromethane	ND	0.011	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
1,2,3-Trichloropropane	ND	0.0055	0.068		mg/Kg	1	10/30/2019 2:25:51	AM B64063
Vinyl chloride	ND	0.0022	0.034		mg/Kg	1	10/30/2019 2:25:51	AM B64063
Xylenes, Total	ND	0.0085	0.068		mg/Kg	1	10/30/2019 2:25:51	AM B64063
Surr: Dibromofluoromethane	105		70-130		%Rec	1	10/30/2019 2:25:51	AM B64063
Surr: 1,2-Dichloroethane-d4	91.7		70-130		%Rec	1	10/30/2019 2:25:51	AM B64063
Surr: Toluene-d8	98.9		70-130		%Rec	1	10/30/2019 2:25:51	AM B64063
Surr: 4-Bromofluorobenzene	89.2		70-130		%Rec	1	10/30/2019 2:25:51	AM B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 119 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0.5-1.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:10:00 PM

 Lab ID:
 1910E04-026
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	320	9.8	49		mg/Kg	5	10/31/2019 11:01:31 P	48459
Motor Oil Range Organics (MRO)	250	240	240		mg/Kg	5	10/31/2019 11:01:31 P	48459
Surr: DNOP	82.0	0	70-130		%Rec	5	10/31/2019 11:01:31 P	48459
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.4		mg/Kg	1	10/30/2019 10:46:45 P	G64077
Surr: BFB	92.3	0	77.4-118		%Rec	1	10/30/2019 10:46:45 P	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.25	0.0018	0.033		mg/Kg	1	11/4/2019 7:20:14 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.0		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Arsenic	ND	2.9	5.0		mg/Kg	2	11/19/2019 7:12:33 PM	
Barium	260	0.046	0.20		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Beryllium	1.2	0.018	0.30		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Chromium	27	0.16	0.60		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Cobalt	5.4	0.21	0.60		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Iron	18000	73	250		mg/Kg	100	11/20/2019 5:17:20 PM	48519
Lead	ND	0.49	0.50		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Manganese	270	0.041	0.20		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Nickel	12	0.30	1.0		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Silver	ND	0.064	0.50		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Vanadium	30	0.13	5.0		mg/Kg	2	11/19/2019 7:12:33 PM	48519
Zinc	66	0.79	5.0		mg/Kg	2	11/19/2019 7:12:33 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Aniline	ND	1.3	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Anthracene	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benz(a)anthracene	ND	0.95	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benzo(a)pyrene	ND	0.87	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benzo(b)fluoranthene	ND	0.87	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benzo(g,h,i)perylene	ND	0.84	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benzo(k)fluoranthene	ND	0.89	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benzoic acid	ND	1.0	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 120 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-12 (0.5-1.5')

Project: SWMU 13

Collection Date: 10/25/2019 1:10:00 PM

Lab ID: 1910E04-026 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Bis(2-ethylhexyl)phthalate	ND	1.4	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Carbazole	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
4-Chloro-3-methylphenol	ND	1.5	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
4-Chloroaniline	ND	1.4	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2-Chloronaphthalene	ND	1.2	2.5	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Chrysene	ND	0.87	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Di-n-butyl phthalate	ND	1.5	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Di-n-octyl phthalate	ND	1.0	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Dibenz(a,h)anthracene	ND	0.89	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
1,3-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
1,4-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
3,3´-Dichlorobenzidine	ND	0.87	2.5	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2,4-Dichlorophenol	ND	1.1	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2,4-Dimethylphenol	ND	1.1	2.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
4,6-Dinitro-2-methylphenol	ND	0.91	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2,4-Dinitrophenol	ND	0.71	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2,4-Dinitrotoluene	ND	1.2	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2,6-Dinitrotoluene	ND	1.3	4.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Fluorene	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Indeno(1,2,3-cd)pyrene	ND	0.98	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
Isophorone	ND	1.4	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536
2-Methylnaphthalene	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	A 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 121 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0.5-1.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:10:00 PM

 Lab ID:
 1910E04-026
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	1.2	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
N-Nitrosodiphenylamine	ND	1.0	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
4-Nitroaniline	ND	1.3	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Nitrobenzene	ND	1.4	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
2-Nitrophenol	ND	1.3	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
4-Nitrophenol	ND	1.3	2.5	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Pentachlorophenol	ND	1.0	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Phenol	ND	1.2	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Pyrene	ND	0.92	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Pyridine	ND	1.2	3.9	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
1,2,4-Trichlorobenzene	ND	1.5	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
2,4,6-Trichlorophenol	ND	1.0	2.0	D	mg/Kg	1	11/7/2019 5:33:46 PM	48536
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	11/7/2019 5:33:46 PM	48536
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	11/7/2019 5:33:46 PM	48536
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	11/7/2019 5:33:46 PM	48536
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	11/7/2019 5:33:46 PM	48536
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	11/7/2019 5:33:46 PM	48536
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	11/7/2019 5:33:46 PM	48536
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0027	0.017		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
Toluene	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
Ethylbenzene	ND	0.0019	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
Methyl tert-butyl ether (MTBE)	ND	0.0080	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
1,2,4-Trimethylbenzene	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
1,3,5-Trimethylbenzene	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
1,2-Dichloroethane (EDC)	ND	0.0034	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
1,2-Dibromoethane (EDB)	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
Naphthalene	ND	0.0067	0.067		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
1-Methylnaphthalene	ND	0.019	0.13		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
2-Methylnaphthalene	ND	0.015	0.13		mg/Kg	1	10/30/2019 2:55:06 AM	B64063
Acetone	ND	0.028	0.50		mg/Kg	1	10/30/2019 2:55:06 AM	
Bromobenzene	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 122 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (0.5-1.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:10:00 PM

 Lab ID:
 1910E04-026
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0031	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Bromoform	ND	0.0030	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Bromomethane	ND	0.0081	0.10		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
2-Butanone	ND	0.039	0.34		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Carbon disulfide	ND	0.011	0.34		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Carbon tetrachloride	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Chlorobenzene	ND	0.0043	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Chloroethane	ND	0.0049	0.067		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Chloroform	ND	0.0027	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Chloromethane	ND	0.0032	0.10		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
2-Chlorotoluene	ND	0.0029	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
4-Chlorotoluene	ND	0.0027	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
cis-1,2-DCE	ND	0.0046	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
cis-1,3-Dichloropropene	ND	0.0028	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,2-Dibromo-3-chloropropane	ND	0.0034	0.067		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Dibromochloromethane	ND	0.0024	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Dibromomethane	ND	0.0036	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,2-Dichlorobenzene	ND	0.0027	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,3-Dichlorobenzene	ND	0.0029	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,4-Dichlorobenzene	ND	0.0028	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Dichlorodifluoromethane	ND	0.0078	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,1-Dichloroethane	ND	0.0021	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,1-Dichloroethene	ND	0.013	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,2-Dichloropropane	ND	0.0024	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,3-Dichloropropane	ND	0.0036	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
2,2-Dichloropropane	ND	0.011	0.067		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,1-Dichloropropene	ND	0.0031	0.067		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Hexachlorobutadiene	ND	0.0034	0.067		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
2-Hexanone	ND	0.0056	0.34		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Isopropylbenzene	ND	0.0024	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
4-Isopropyltoluene	ND	0.0028	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
4-Methyl-2-pentanone	ND	0.0063	0.34		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Methylene chloride	0.0095	0.0059	0.10	J	mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
n-Butylbenzene	ND	0.0031	0.10		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
n-Propylbenzene	ND	0.0027	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
sec-Butylbenzene	ND	0.0038	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
Styrene	ND	0.0026	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
tert-Butylbenzene	ND	0.0032	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063
1,1,1,2-Tetrachloroethane	ND	0.0023	0.034		mg/Kg	1	10/30/2019 2:55:06 AM	1 B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 123 of 195

Lab Order 1910E04

Collection Date: 10/25/2019 1:10:00 PM

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

SWMU 13

Project:

CLIENT: Marathon Client Sample ID: SWMU 13-12 (0.5-1.5')

Lab ID: 1910E04-026 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,1,2,2-Tetrachloroethane	ND	0.0034	0.034	mg/Kg	1	10/30/2019 2:55:06 /	AM B64063
Tetrachloroethene (PCE)	ND	0.0027	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
trans-1,2-DCE	ND	0.0031	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
trans-1,3-Dichloropropene	ND	0.0035	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
1,2,3-Trichlorobenzene	ND	0.0029	0.067	mg/Kg	1	10/30/2019 2:55:06	AM B64063
1,2,4-Trichlorobenzene	ND	0.0034	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
1,1,1-Trichloroethane	ND	0.0030	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
1,1,2-Trichloroethane	ND	0.0024	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
Trichloroethene (TCE)	ND	0.0039	0.034	mg/Kg	1	10/30/2019 2:55:06	AM B64063
Trichlorofluoromethane	ND	0.011	0.034	mg/Kg	1	10/30/2019 2:55:06 /	AM B64063
1,2,3-Trichloropropane	ND	0.0054	0.067	mg/Kg	1	10/30/2019 2:55:06 /	AM B64063
Vinyl chloride	ND	0.0022	0.034	mg/Kg	1	10/30/2019 2:55:06 /	AM B64063
Xylenes, Total	ND	0.0085	0.067	mg/Kg	1	10/30/2019 2:55:06 /	AM B64063
Surr: Dibromofluoromethane	107		70-130	%Rec	1	10/30/2019 2:55:06 /	AM B64063
Surr: 1,2-Dichloroethane-d4	92.6		70-130	%Rec	1	10/30/2019 2:55:06 /	AM B64063
Surr: Toluene-d8	95.9		70-130	%Rec	1	10/30/2019 2:55:06 /	AM B64063
Surr: 4-Bromofluorobenzene	90.5		70-130	%Rec	1	10/30/2019 2:55:06	AM B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 124 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:25:00 PM

 Lab ID:
 1910E04-027
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	16	1.8	9.2		mg/Kg	1	10/31/2019 11:25:27 P	48459
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	10/31/2019 11:25:27 P	48459
Surr: DNOP	92.8	0	70-130		%Rec	1	10/31/2019 11:25:27 P	48459
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.4		mg/Kg	1	10/30/2019 11:09:26 P	G64077
Surr: BFB	91.8	0	77.4-118		%Rec	1	10/30/2019 11:09:26 P	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.033	0.0018	0.033	J	mg/Kg	1	11/4/2019 7:22:16 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.75	5.1		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 7:15:43 PM	
Barium	330	0.047	0.20		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Beryllium	1.5	0.019	0.30		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Chromium	19	0.16	0.61		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Cobalt	6.9	0.21	0.61		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Iron	22000	74	250		mg/Kg	100	11/20/2019 5:18:54 PM	48519
Lead	0.51	0.49	0.51		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Manganese	380	0.042	0.20		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Nickel	15	0.30	1.0		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Selenium	ND	2.5	5.1		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Silver	ND	0.065	0.51		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Vanadium	31	0.14	5.1		mg/Kg	2	11/19/2019 7:15:43 PM	48519
Zinc	28	0.80	5.1		mg/Kg	2	11/19/2019 7:15:43 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.23	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Acenaphthylene	ND	0.21	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Aniline	ND	0.25	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Anthracene	ND	0.21	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Azobenzene	ND	0.27	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benz(a)anthracene	ND	0.19	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benzo(a)pyrene	ND	0.17	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benzo(b)fluoranthene	ND	0.17	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benzo(g,h,i)perylene	ND	0.17	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benzo(k)fluoranthene	ND	0.18	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benzoic acid	ND	0.20	0.96		mg/Kg	1	11/7/2019 6:02:29 PM	48536
Benzyl alcohol	ND	0.24	0.39		mg/Kg	1	11/7/2019 6:02:29 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 125 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-12 (1.5-2')

Project: SWMU 13

Collection Date: 10/25/2019 1:25:00 PM

Lab ID: 1910E04-027 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.29	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Bis(2-chloroethyl)ether	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Bis(2-chloroisopropyl)ether	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Bis(2-ethylhexyl)phthalate	ND	0.28	0.96	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
4-Bromophenyl phenyl ether	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Butyl benzyl phthalate	ND	0.20	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Carbazole	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
4-Chloro-3-methylphenol	ND	0.30	0.96	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
4-Chloroaniline	ND	0.27	0.96	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2-Chloronaphthalene	ND	0.24	0.48	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2-Chlorophenol	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
4-Chlorophenyl phenyl ether	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Chrysene	ND	0.17	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Di-n-butyl phthalate	ND	0.29	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Di-n-octyl phthalate	ND	0.20	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Dibenz(a,h)anthracene	ND	0.18	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Dibenzofuran	ND	0.25	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
1,2-Dichlorobenzene	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
1,3-Dichlorobenzene	ND	0.20	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
1,4-Dichlorobenzene	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
3,3´-Dichlorobenzidine	ND	0.17	0.48	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Diethyl phthalate	ND	0.28	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Dimethyl phthalate	ND	0.26	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2,4-Dichlorophenol	ND	0.22	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2,4-Dimethylphenol	ND	0.21	0.58	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
4,6-Dinitro-2-methylphenol	ND	0.18	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2,4-Dinitrophenol	ND	0.14	0.96	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2,4-Dinitrotoluene	ND	0.23	0.96	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2,6-Dinitrotoluene	ND	0.25	0.96	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Fluoranthene	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Fluorene	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Hexachlorobenzene	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Hexachlorobutadiene	ND	0.27	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Hexachlorocyclopentadiene	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Hexachloroethane	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Indeno(1,2,3-cd)pyrene	ND	0.19	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
Isophorone	ND	0.28	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
1-Methylnaphthalene	ND	0.29	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536
2-Methylnaphthalene	ND	0.28	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	A 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 126 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:25:00 PM

 Lab ID:
 1910E04-027
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
2-Methylphenol	ND	0.23	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	48536
3+4-Methylphenol	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
N-Nitrosodi-n-propylamine	ND	0.28	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
N-Nitrosodiphenylamine	ND	0.20	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Naphthalene	ND	0.29	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
2-Nitroaniline	ND	0.28	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
3-Nitroaniline	ND	0.27	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
4-Nitroaniline	ND	0.25	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Nitrobenzene	ND	0.27	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	48536
2-Nitrophenol	ND	0.26	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
4-Nitrophenol	ND	0.26	0.48	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Pentachlorophenol	ND	0.20	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Phenanthrene	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Phenol	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Pyrene	ND	0.18	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Pyridine	ND	0.23	0.77	mg/Kg	1	11/7/2019 6:02:29 PM	48536
1,2,4-Trichlorobenzene	ND	0.30	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
2,4,5-Trichlorophenol	ND	0.25	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
2,4,6-Trichlorophenol	ND	0.20	0.39	mg/Kg	1	11/7/2019 6:02:29 PM	48536
Surr: 2-Fluorophenol	59.9		26.7-85.9	%Rec	1	11/7/2019 6:02:29 PM	48536
Surr: Phenol-d5	67.3		18.5-101	%Rec	1	11/7/2019 6:02:29 PM	48536
Surr: 2,4,6-Tribromophenol	69.0		35.8-85.6	%Rec	1	11/7/2019 6:02:29 PM	48536
Surr: Nitrobenzene-d5	73.1		40.8-95.2	%Rec	1	11/7/2019 6:02:29 PM	48536
Surr: 2-Fluorobiphenyl	73.7		34.7-85.2	%Rec	1	11/7/2019 6:02:29 PM	48536
Surr: 4-Terphenyl-d14	65.1		37.4-91.3	%Rec	1	11/7/2019 6:02:29 PM	48536
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0028	0.017	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Toluene	ND	0.0032	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Ethylbenzene	ND	0.0020	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Methyl tert-butyl ether (MTBE)	ND	0.0080	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2,4-Trimethylbenzene	ND	0.0031	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,3,5-Trimethylbenzene	ND	0.0033	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2-Dichloroethane (EDC)	ND	0.0034	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2-Dibromoethane (EDB)	ND	0.0031	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Naphthalene	ND	0.0067	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1-Methylnaphthalene	ND	0.019	0.13	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
2-Methylnaphthalene	ND	0.015	0.13	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Acetone	ND	0.028	0.50	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Bromobenzene	ND	0.0032	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 127 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:25:00 PM

 Lab ID:
 1910E04-027
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Bromodichloromethane	ND	0.0031	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Bromoform	ND	0.0030	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Bromomethane	ND	0.0081	0.10	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
2-Butanone	ND	0.039	0.34	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Carbon disulfide	ND	0.011	0.34	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Carbon tetrachloride	ND	0.0032	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Chlorobenzene	ND	0.0043	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Chloroethane	ND	0.0050	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Chloroform	ND	0.0027	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Chloromethane	ND	0.0032	0.10	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
2-Chlorotoluene	ND	0.0029	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
4-Chlorotoluene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
cis-1,2-DCE	ND	0.0046	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
cis-1,3-Dichloropropene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2-Dibromo-3-chloropropane	ND	0.0034	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Dibromochloromethane	ND	0.0024	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Dibromomethane	ND	0.0036	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2-Dichlorobenzene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,3-Dichlorobenzene	ND	0.0029	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,4-Dichlorobenzene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Dichlorodifluoromethane	ND	0.0078	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,1-Dichloroethane	ND	0.0022	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,1-Dichloroethene	ND	0.013	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2-Dichloropropane	ND	0.0024	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,3-Dichloropropane	ND	0.0036	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
2,2-Dichloropropane	ND	0.011	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,1-Dichloropropene	ND	0.0031	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Hexachlorobutadiene	ND	0.0034	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
2-Hexanone	ND	0.0056	0.34	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Isopropylbenzene	ND	0.0024	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
4-Isopropyltoluene	ND	0.0028	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
4-Methyl-2-pentanone	ND	0.0063	0.34	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Methylene chloride	ND	0.0059	0.10	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
n-Butylbenzene	ND	0.0031	0.10	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
n-Propylbenzene	ND	0.0027	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
sec-Butylbenzene	ND	0.0038	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Styrene	ND	0.0026	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
tert-Butylbenzene	ND	0.0032	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,1,1,2-Tetrachloroethane	ND	0.0023	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 128 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-12 (1.5-2')

Project: SWMU 13

Collection Date: 10/25/2019 1:25:00 PM

Lab ID: 1910E04-027 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0034	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Tetrachloroethene (PCE)	ND	0.0027	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
trans-1,2-DCE	ND	0.0031	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
trans-1,3-Dichloropropene	ND	0.0036	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2,3-Trichlorobenzene	ND	0.0030	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2,4-Trichlorobenzene	ND	0.0034	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,1,1-Trichloroethane	ND	0.0030	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,1,2-Trichloroethane	ND	0.0024	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Trichloroethene (TCE)	ND	0.0039	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Trichlorofluoromethane	ND	0.011	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
1,2,3-Trichloropropane	ND	0.0054	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Vinyl chloride	ND	0.0022	0.034	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Xylenes, Total	ND	0.0085	0.067	mg/Kg	1	10/30/2019 3:24:12 AM	B64063
Surr: Dibromofluoromethane	109		70-130	%Rec	1	10/30/2019 3:24:12 AM	B64063
Surr: 1,2-Dichloroethane-d4	94.4		70-130	%Rec	1	10/30/2019 3:24:12 AM	B64063
Surr: Toluene-d8	102		70-130	%Rec	1	10/30/2019 3:24:12 AM	B64063
Surr: 4-Bromofluorobenzene	89.5		70-130	%Rec	1	10/30/2019 3:24:12 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 129 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:35:00 PM

 Lab ID:
 1910E04-028
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.6	8.1		mg/Kg	1	10/30/2019 10:28:11 P	48459
Motor Oil Range Organics (MRO)	ND	41	41		mg/Kg	1	10/30/2019 10:28:11 P	48459
Surr: DNOP	94.0	0	70-130		%Rec	1	10/30/2019 10:28:11 P	48459
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.89	2.9		mg/Kg	1	10/30/2019 11:32:05 P	G64077
Surr: BFB	96.2	0	77.4-118		%Rec	1	10/30/2019 11:32:05 P	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0044	0.0018	0.033	J	mg/Kg	1	11/4/2019 7:28:27 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.76	5.1		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Barium	250	0.048	0.21		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Beryllium	1.5	0.019	0.31		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Cadmium	ND	0.050	0.21		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Chromium	18	0.16	0.62		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Cobalt	6.9	0.22	0.62		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Iron	23000	75	260		mg/Kg	100	11/20/2019 5:20:29 PM	48519
Lead	ND	0.50	0.51		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Manganese	360	0.043	0.21		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Nickel	14	0.31	1.0		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Selenium	ND	2.6	5.1		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Silver	ND	0.066	0.51		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Vanadium	30	0.14	5.1		mg/Kg	2	11/19/2019 7:18:52 PM	48519
Zinc	24	0.82	5.1		mg/Kg	2	11/19/2019 7:18:52 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.23	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Acenaphthylene	ND	0.21	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Aniline	ND	0.25	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Anthracene	ND	0.21	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Azobenzene	ND	0.27	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benz(a)anthracene	ND	0.19	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benzo(a)pyrene	ND	0.17	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benzo(b)fluoranthene	ND	0.17	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benzo(g,h,i)perylene	ND	0.17	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benzo(k)fluoranthene	ND	0.18	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benzoic acid	ND	0.20	0.98		mg/Kg	1	11/7/2019 6:31:11 PM	48536
Benzyl alcohol	ND	0.24	0.39		mg/Kg	1	11/7/2019 6:31:11 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 130 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:35:00 PM

 Lab ID:
 1910E04-028
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	;
Bis(2-chloroethoxy)methane	ND	0.29	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Bis(2-chloroethyl)ether	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Bis(2-chloroisopropyl)ether	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Bis(2-ethylhexyl)phthalate	ND	0.28	0.98	mg/Kg	1	11/7/2019 6:31:11 PM	48536
4-Bromophenyl phenyl ether	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Butyl benzyl phthalate	ND	0.20	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Carbazole	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
4-Chloro-3-methylphenol	ND	0.30	0.98	mg/Kg	1	11/7/2019 6:31:11 PM	48536
4-Chloroaniline	ND	0.28	0.98	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2-Chloronaphthalene	ND	0.24	0.49	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2-Chlorophenol	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
4-Chlorophenyl phenyl ether	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Chrysene	ND	0.17	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Di-n-butyl phthalate	ND	0.29	0.78	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Di-n-octyl phthalate	ND	0.20	0.78	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Dibenz(a,h)anthracene	ND	0.18	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Dibenzofuran	ND	0.26	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
1,2-Dichlorobenzene	ND	0.23	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
1,3-Dichlorobenzene	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
1,4-Dichlorobenzene	ND	0.21	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
3,3´-Dichlorobenzidine	ND	0.17	0.49	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Diethyl phthalate	ND	0.28	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Dimethyl phthalate	ND	0.26	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2,4-Dichlorophenol	ND	0.23	0.78	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2,4-Dimethylphenol	ND	0.22	0.59	mg/Kg	1	11/7/2019 6:31:11 PM	48536
4,6-Dinitro-2-methylphenol	ND	0.18	0.78	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2,4-Dinitrophenol	ND	0.14	0.98	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2,4-Dinitrotoluene	ND	0.23	0.98	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2,6-Dinitrotoluene	ND	0.26	0.98	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Fluoranthene	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Fluorene	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Hexachlorobenzene	ND	0.24	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Hexachlorobutadiene	ND	0.27	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Hexachlorocyclopentadiene	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Hexachloroethane	ND	0.22	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Indeno(1,2,3-cd)pyrene	ND	0.19	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
Isophorone	ND	0.29	0.78	mg/Kg	1	11/7/2019 6:31:11 PM	48536
1-Methylnaphthalene	ND	0.29	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536
2-Methylnaphthalene	ND	0.28	0.39	mg/Kg	1	11/7/2019 6:31:11 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 131 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-12 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 1:35:00 PM

 Lab ID:
 1910E04-028
 Matrix: MEOH (SOIL)
 Received Date: 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Unit	s DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	;
2-Methylphenol	ND	0.23	0.78	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
3+4-Methylphenol	ND	0.24	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
N-Nitrosodi-n-propylamine	ND	0.28	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
N-Nitrosodiphenylamine	ND	0.21	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Naphthalene	ND	0.30	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
2-Nitroaniline	ND	0.28	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
3-Nitroaniline	ND	0.27	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
4-Nitroaniline	ND	0.25	0.78	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Nitrobenzene	ND	0.27	0.78	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
2-Nitrophenol	ND	0.27	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
4-Nitrophenol	ND	0.27	0.49	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Pentachlorophenol	ND	0.20	0.78	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Phenanthrene	ND	0.21	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Phenol	ND	0.24	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Pyrene	ND	0.18	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Pyridine	ND	0.24	0.78	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
1,2,4-Trichlorobenzene	ND	0.30	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
2,4,5-Trichlorophenol	ND	0.25	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
2,4,6-Trichlorophenol	ND	0.21	0.39	mg/k	(g 1	11/7/2019 6:31:11 PM	48536
Surr: 2-Fluorophenol	74.2		26.7-85.9	%Re	c 1	11/7/2019 6:31:11 PM	48536
Surr: Phenol-d5	75.1		18.5-101	%Re	c 1	11/7/2019 6:31:11 PM	48536
Surr: 2,4,6-Tribromophenol	72.1		35.8-85.6	%Re	c 1	11/7/2019 6:31:11 PM	48536
Surr: Nitrobenzene-d5	76.2		40.8-95.2	%Re	c 1	11/7/2019 6:31:11 PM	48536
Surr: 2-Fluorobiphenyl	71.6		34.7-85.2	%Re	c 1	11/7/2019 6:31:11 PM	48536
Surr: 4-Terphenyl-d14	69.0		37.4-91.3	%Re	c 1	11/7/2019 6:31:11 PM	48536
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
Benzene	ND	0.0024	0.015	mg/k	(g 1	10/30/2019 3:53:14 AM	M B64063
Toluene	ND	0.0028	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	M B64063
Ethylbenzene	ND	0.0017	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	/I B64063
Methyl tert-butyl ether (MTBE)	ND	0.0070	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	M B64063
1,2,4-Trimethylbenzene	ND	0.0027	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	/I B64063
1,3,5-Trimethylbenzene	ND	0.0028	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	/I B64063
1,2-Dichloroethane (EDC)	ND	0.0030	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	/I B64063
1,2-Dibromoethane (EDB)	ND	0.0027	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	/I B64063
Naphthalene	ND	0.0059	0.059	mg/k	(g 1	10/30/2019 3:53:14 AM	/I B64063
1-Methylnaphthalene	ND	0.017	0.12	mg/k	(g 1	10/30/2019 3:53:14 AM	M B64063
2-Methylnaphthalene	ND	0.013	0.12	mg/k	(g 1	10/30/2019 3:53:14 AM	M B64063
Acetone	ND	0.024	0.44	mg/k	(g 1	10/30/2019 3:53:14 AM	M B64063
Bromobenzene	ND	0.0028	0.029	mg/k	(g 1	10/30/2019 3:53:14 AM	И В64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 132 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-12 (2-3')

Project: SWMU 13

Collection Date: 10/25/2019 1:35:00 PM

Lab ID: 1910E04-028 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	
Bromodichloromethane	ND	0.0027	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
Bromoform	ND	0.0027	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Bromomethane	ND	0.0071	0.088		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
2-Butanone	ND	0.034	0.29		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Carbon disulfide	ND	0.0097	0.29		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Carbon tetrachloride	ND	0.0028	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Chlorobenzene	ND	0.0038	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Chloroethane	ND	0.0043	0.059		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Chloroform	ND	0.0024	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
Chloromethane	ND	0.0028	0.088		mg/Kg	1	10/30/2019 3:53:14	AM B64063
2-Chlorotoluene	ND	0.0026	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
4-Chlorotoluene	ND	0.0024	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
cis-1,2-DCE	ND	0.0040	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
cis-1,3-Dichloropropene	ND	0.0025	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
1,2-Dibromo-3-chloropropane	ND	0.0030	0.059		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Dibromochloromethane	ND	0.0021	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Dibromomethane	ND	0.0032	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
1,2-Dichlorobenzene	ND	0.0024	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
1,3-Dichlorobenzene	ND	0.0026	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
1,4-Dichlorobenzene	ND	0.0025	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
Dichlorodifluoromethane	ND	0.0068	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
1,1-Dichloroethane	ND	0.0019	0.029		mg/Kg	1	10/30/2019 3:53:14 A	AM B64063
1,1-Dichloroethene	ND	0.012	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
1,2-Dichloropropane	ND	0.0021	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
1,3-Dichloropropane	ND	0.0032	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
2,2-Dichloropropane	ND	0.0096	0.059		mg/Kg	1	10/30/2019 3:53:14	AM B64063
1,1-Dichloropropene	ND	0.0027	0.059		mg/Kg	1	10/30/2019 3:53:14	AM B64063
Hexachlorobutadiene	ND	0.0030	0.059		mg/Kg	1	10/30/2019 3:53:14	AM B64063
2-Hexanone	ND	0.0049	0.29		mg/Kg	1	10/30/2019 3:53:14	AM B64063
Isopropylbenzene	ND	0.0021	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
4-Isopropyltoluene	ND	0.0024	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
4-Methyl-2-pentanone	ND	0.0056	0.29		mg/Kg	1	10/30/2019 3:53:14	AM B64063
Methylene chloride	ND	0.0052	0.088		mg/Kg	1	10/30/2019 3:53:14	AM B64063
n-Butylbenzene	ND	0.0027	0.088		mg/Kg	1	10/30/2019 3:53:14	AM B64063
n-Propylbenzene	ND	0.0023	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
sec-Butylbenzene	ND	0.0033	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
Styrene	ND	0.0023	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
tert-Butylbenzene	ND	0.0028	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063
1,1,1,2-Tetrachloroethane	ND	0.0020	0.029		mg/Kg	1	10/30/2019 3:53:14	AM B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 133 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-12 (2-3')

Project: SWMU 13

Collection Date: 10/25/2019 1:35:00 PM

Lab ID: 1910E04-028 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Un	its	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: D	F
1,1,2,2-Tetrachloroethane	ND	0.0030	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
Tetrachloroethene (PCE)	ND	0.0024	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
trans-1,2-DCE	ND	0.0027	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
trans-1,3-Dichloropropene	ND	0.0031	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
1,2,3-Trichlorobenzene	ND	0.0026	0.059	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
1,2,4-Trichlorobenzene	ND	0.0030	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
1,1,1-Trichloroethane	ND	0.0027	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
1,1,2-Trichloroethane	ND	0.0021	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
Trichloroethene (TCE)	ND	0.0034	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
Trichlorofluoromethane	ND	0.010	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
1,2,3-Trichloropropane	ND	0.0048	0.059	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
Vinyl chloride	ND	0.0019	0.029	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
Xylenes, Total	ND	0.0074	0.059	mg.	/Kg	1	10/30/2019 3:53:14	AM B64063
Surr: Dibromofluoromethane	106		70-130	%R	ec	1	10/30/2019 3:53:14	AM B64063
Surr: 1,2-Dichloroethane-d4	92.5		70-130	%R	ec	1	10/30/2019 3:53:14	AM B64063
Surr: Toluene-d8	99.0		70-130	%R	ec	1	10/30/2019 3:53:14	AM B64063
Surr: 4-Bromofluorobenzene	89.4		70-130	%R	ec	1	10/30/2019 3:53:14	AM B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 134 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: DUP05Project:SWMU 13Collection Date: 10/25/2019

Lab ID: 1910E04-029 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	790	20	98		mg/Kg	10	10/31/2019 11:49:13 P	48459
Motor Oil Range Organics (MRO)	530	490	490		mg/Kg	10	10/31/2019 11:49:13 P	48459
Surr: DNOP	0	0	70-130	S	%Rec	10	10/31/2019 11:49:13 P	48459
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	4.5	0.86	2.9		mg/Kg	1	10/30/2019 11:54:43 P	G64077
Surr: BFB	150	0	77.4-118	S	%Rec	1	10/30/2019 11:54:43 P	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.33	0.0036	0.066		mg/Kg	2	11/4/2019 7:32:38 PM	48570
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.0		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Arsenic	ND	2.9	5.0		mg/Kg	2	11/19/2019 7:27:15 PM	
Barium	320	0.046	0.20		mg/Kg	2	11/19/2019 7:27:15 PM	
Beryllium	1.1	0.018	0.30		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Chromium	26	0.16	0.60		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Cobalt	5.3	0.21	0.60		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Iron	14000	73	250		mg/Kg	100	11/20/2019 5:22:02 PM	48519
Lead	ND	0.49	0.50		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Manganese	270	0.042	0.20		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Nickel	11	0.30	1.0		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Silver	ND	0.064	0.50		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Vanadium	28	0.13	5.0		mg/Kg	2	11/19/2019 7:27:15 PM	48519
Zinc	77	0.79	5.0		mg/Kg	2	11/19/2019 7:27:15 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Acenaphthylene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Aniline	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Anthracene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Azobenzene	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benz(a)anthracene	ND	0.90	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benzo(a)pyrene	ND	0.83	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benzo(b)fluoranthene	ND	0.83	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benzo(g,h,i)perylene	ND	0.80	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benzo(k)fluoranthene	ND	0.85	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benzoic acid	ND	0.97	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Benzyl alcohol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 135 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP05

Project: SWMU 13 Collection Date: 10/25/2019

Lab ID: 1910E04-029 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (
Bis(2-chloroethoxy)methane	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Bis(2-chloroethyl)ether	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	1 48536
Bis(2-chloroisopropyl)ether	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	1 48536
Bis(2-ethylhexyl)phthalate	ND	1.3	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4-Bromophenyl phenyl ether	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Butyl benzyl phthalate	ND	0.96	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Carbazole	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4-Chloro-3-methylphenol	ND	1.4	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4-Chloroaniline	ND	1.3	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2-Chloronaphthalene	ND	1.2	2.3	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2-Chlorophenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4-Chlorophenyl phenyl ether	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Chrysene	ND	0.82	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Di-n-butyl phthalate	ND	1.4	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Di-n-octyl phthalate	ND	0.95	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Dibenz(a,h)anthracene	ND	0.85	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	1 48536
Dibenzofuran	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
1,2-Dichlorobenzene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
1,3-Dichlorobenzene	ND	0.98	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
1,4-Dichlorobenzene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
3,3´-Dichlorobenzidine	ND	0.83	2.3	D	mg/Kg	1	11/8/2019 1:51:57 PM	1 48536
Diethyl phthalate	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Dimethyl phthalate	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,4-Dichlorophenol	ND	1.1	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,4-Dimethylphenol	ND	1.0	2.8	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4,6-Dinitro-2-methylphenol	ND	0.86	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,4-Dinitrophenol	ND	0.68	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,4-Dinitrotoluene	ND	1.1	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,6-Dinitrotoluene	ND	1.2	4.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Fluoranthene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Fluorene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Hexachlorobenzene	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Hexachlorobutadiene	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Hexachlorocyclopentadiene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Hexachloroethane	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Indeno(1,2,3-cd)pyrene	ND	0.93	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Isophorone	ND	1.4	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
1-Methylnaphthalene	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2-Methylnaphthalene	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	1 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 136 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP05

Project: SWMU 13 Collection Date: 10/25/2019

Lab ID: 1910E04-029 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	1.1	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
3+4-Methylphenol	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
N-Nitrosodi-n-propylamine	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
N-Nitrosodiphenylamine	ND	0.98	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Naphthalene	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2-Nitroaniline	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
3-Nitroaniline	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4-Nitroaniline	ND	1.2	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Nitrobenzene	ND	1.3	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2-Nitrophenol	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
4-Nitrophenol	ND	1.3	2.3	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Pentachlorophenol	ND	0.96	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Phenanthrene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Phenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Pyrene	ND	0.88	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Pyridine	ND	1.1	3.7	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
1,2,4-Trichlorobenzene	ND	1.5	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,4,5-Trichlorophenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
2,4,6-Trichlorophenol	ND	0.98	1.9	D	mg/Kg	1	11/8/2019 1:51:57 PM	48536
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	11/8/2019 1:51:57 PM	48536
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	11/8/2019 1:51:57 PM	48536
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	11/8/2019 1:51:57 PM	48536
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	11/8/2019 1:51:57 PM	48536
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	11/8/2019 1:51:57 PM	48536
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	11/8/2019 1:51:57 PM	48536
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0023	0.014		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
Toluene	ND	0.0027	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
Ethylbenzene	ND	0.0017	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
Methyl tert-butyl ether (MTBE)	ND	0.0068	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
1,2,4-Trimethylbenzene	ND	0.0026	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
1,3,5-Trimethylbenzene	ND	0.0028	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
1,2-Dichloroethane (EDC)	ND	0.0029	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
1,2-Dibromoethane (EDB)	ND	0.0026	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
Naphthalene	ND	0.0057	0.057		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
1-Methylnaphthalene	ND	0.016	0.11		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
2-Methylnaphthalene	ND	0.012	0.11		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
Acetone	ND	0.024	0.43		mg/Kg	1	10/30/2019 4:22:11 AM	B64063
Bromobenzene	ND	0.0027	0.029		mg/Kg	1	10/30/2019 4:22:11 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 137 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP05

Project: SWMU 13 Collection Date: 10/25/2019

Lab ID: 1910E04-029 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: D.	JF
Bromodichloromethane	ND	0.0026	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Bromoform	ND	0.0026	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Bromomethane	ND	0.0069	0.086		mg/Kg	1	10/30/2019 4:22:11	AM B64063
2-Butanone	ND	0.033	0.29		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Carbon disulfide	ND	0.0094	0.29		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Carbon tetrachloride	ND	0.0027	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Chlorobenzene	ND	0.0037	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Chloroethane	ND	0.0042	0.057		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Chloroform	ND	0.0023	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Chloromethane	ND	0.0027	0.086		mg/Kg	1	10/30/2019 4:22:11	AM B64063
2-Chlorotoluene	ND	0.0025	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
4-Chlorotoluene	ND	0.0023	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
cis-1,2-DCE	ND	0.0039	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
cis-1,3-Dichloropropene	ND	0.0024	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,2-Dibromo-3-chloropropane	ND	0.0029	0.057		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Dibromochloromethane	ND	0.0020	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Dibromomethane	ND	0.0031	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,2-Dichlorobenzene	ND	0.0023	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,3-Dichlorobenzene	ND	0.0025	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,4-Dichlorobenzene	ND	0.0024	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Dichlorodifluoromethane	ND	0.0066	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,1-Dichloroethane	ND	0.0018	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,1-Dichloroethene	ND	0.011	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,2-Dichloropropane	ND	0.0021	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,3-Dichloropropane	ND	0.0031	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
2,2-Dichloropropane	ND	0.0093	0.057		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,1-Dichloropropene	ND	0.0026	0.057		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Hexachlorobutadiene	ND	0.0029	0.057		mg/Kg	1	10/30/2019 4:22:11	AM B64063
2-Hexanone	ND	0.0047	0.29		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Isopropylbenzene	ND	0.0021	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
4-Isopropyltoluene	ND	0.0024	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
4-Methyl-2-pentanone	ND	0.0054	0.29		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Methylene chloride	ND	0.0050	0.086		mg/Kg	1	10/30/2019 4:22:11	AM B64063
n-Butylbenzene	ND	0.0027	0.086		mg/Kg	1	10/30/2019 4:22:11	AM B64063
n-Propylbenzene	ND	0.0023	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
sec-Butylbenzene	ND	0.0032	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
Styrene	ND	0.0022	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
tert-Butylbenzene	ND	0.0027	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063
1,1,1,2-Tetrachloroethane	ND	0.0019	0.029		mg/Kg	1	10/30/2019 4:22:11	AM B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 138 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: DUP05

Project: SWMU 13 Collection Date: 10/25/2019

Lab ID: 1910E04-029 **Matrix:** MEOH (SOIL) **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID	
EPA METHOD 8260B: VOLATILES						Analyst: DJF		
1,1,2,2-Tetrachloroethane	ND	0.0029	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
Tetrachloroethene (PCE)	ND	0.0023	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
trans-1,2-DCE	ND	0.0026	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
trans-1,3-Dichloropropene	ND	0.0030	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
1,2,3-Trichlorobenzene	ND	0.0025	0.057	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
1,2,4-Trichlorobenzene	ND	0.0029	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
1,1,1-Trichloroethane	ND	0.0026	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
1,1,2-Trichloroethane	ND	0.0020	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
Trichloroethene (TCE)	ND	0.0033	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
Trichlorofluoromethane	ND	0.0097	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
1,2,3-Trichloropropane	ND	0.0046	0.057	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
Vinyl chloride	ND	0.0019	0.029	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
Xylenes, Total	ND	0.0072	0.057	mg/Kg	1	10/30/2019 4:22:11	AM B64063	
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/30/2019 4:22:11	AM B64063	
Surr: 1,2-Dichloroethane-d4	94.0		70-130	%Rec	1	10/30/2019 4:22:11	AM B64063	
Surr: Toluene-d8	98.8		70-130	%Rec	1	10/30/2019 4:22:11	AM B64063	
Surr: 4-Bromofluorobenzene	108		70-130	%Rec	1	10/30/2019 4:22:11	AM B64063	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 139 of 195

Lab Order 1910E04

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: SWMU 13 Collection Date:

Lab ID: 1910E04-030 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID	
EPA METHOD 8260B: VOLATILES						Analyst: DJF		
Benzene	ND	0.0041	0.025	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Toluene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Ethylbenzene	ND	0.0029	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Naphthalene	ND	0.010	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Acetone	ND	0.041	0.75	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Bromodichloromethane	ND	0.0046	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Bromoform	ND	0.0045	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Bromomethane	ND	0.012	0.15	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
2-Butanone	ND	0.058	0.50	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Carbon disulfide	ND	0.017	0.50	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Chloroethane	ND	0.0074	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Chloroform	ND	0.0040	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Chloromethane	ND	0.0048	0.15	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
2-Chlorotoluene	ND	0.0044	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,4-Dichlorobenzene	ND	0.0042	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	
2,2-Dichloropropane	ND	0.016	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 140 of 195

Lab Order **1910E04**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: SWMU 13 Collection Date:

Lab ID: 1910E04-030 **Matrix:** MEOH BLAN **Received Date:** 10/25/2019 4:55:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	_
1,1-Dichloropropene	ND	0.0046	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Hexachlorobutadiene	ND	0.0051	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
2-Hexanone	ND	0.0083	0.50	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
4-Methyl-2-pentanone	ND	0.0094	0.50	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Methylene chloride	ND	0.0088	0.15	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
n-Butylbenzene	ND	0.0047	0.15	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
n-Propylbenzene	ND	0.0040	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Styrene	ND	0.0039	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
trans-1,2-DCE	ND	0.0046	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
trans-1,3-Dichloropropene	ND	0.0053	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,2,3-Trichlorobenzene	ND	0.0044	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,2,4-Trichlorobenzene	ND	0.0051	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Trichloroethene (TCE)	ND	0.0058	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
1,2,3-Trichloropropane	ND	0.0081	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Vinyl chloride	ND	0.0033	0.050	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Xylenes, Total	ND	0.013	0.10	mg/Kg	1	10/30/2019 4:51:04 AM	B64063
Surr: Dibromofluoromethane	106		70-130	%Rec	1	10/30/2019 4:51:04 AM	B64063
Surr: 1,2-Dichloroethane-d4	90.7		70-130	%Rec	1	10/30/2019 4:51:04 AM	B64063
Surr: Toluene-d8	99.9		70-130	%Rec	1	10/30/2019 4:51:04 AM	B64063
Surr: 4-Bromofluorobenzene	88.5		70-130	%Rec	1	10/30/2019 4:51:04 AM	B64063

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 141 of 195

ANALYTICAL REPORT

November 08, 2019

Hall Environmental Analysis Laboratory

Sample Delivery Group: L1155340 Samples Received: 10/30/2019

Project Number:

Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

Jason Romer

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
1910E04-001B SWMU 13-6 (17-18') L1155340-01	8
1910E04-002B SWMU 13-7 (0-0.5') L1155340-02	9
1910E04-003B SWMU 13-7 (1.5-2') L1155340-03	10
1910E04-005B SWMU 13-7 (4-6') L1155340-04	11
1910E04-006B SWMU 13-7 (10-12') L1155340-05	12
1910E04-007B SWMU 13-7 (12-13") L1155340-06	13
1910E04-008B SWMU 13-7 (17.5-18') L1155340-07	14
1910E04-009B SWMU 13-8 (0-0.5') L1155340-08	15
1910E04-010B SWMU 13-8 (1.5-2') L1155340-09	16
1910E04-011B SWMU 13-8 (2-3') L1155340-10	17
1910E04-012B SWMU 13-9 (0-0.5') L1155340-11	18
1910E04-013B SWMU 13-9 (1.5-2') L1155340-12	19
1910E04-014B SWMU 13-9 (2-3') L1155340-13	20
1910E04-015B DUP03 L1155340-14	21
1910E04-016B DUP04 L1155340-15	22
1910E04-018E EB102419 L1155340-16	23
1910E04-019B SWMU 13-10 (0-0.5') L1155340-17	24
1910E04-020B SWMU 13-10 (1.5-2') L1155340-18	25
1910E04-021B SWMU 13-10 (2-3') L1155340-19	26
1910E04-022B SWMU 13-11 (0-0.5') L1155340-20	27
1910E04-023B SWMU 13-11 (1.5-2') L1155340-21	28
1910E04-024B SWMU 13-11 (2-3') L1155340-22	29
1910E04-025B SWMU 13-12 (0-0.5') L1155340-23	30
1910E04-026B SWMU 13-12 (0.5-1.5') L1155340-24	31
1910E04-027B SWMU 13-12 (1.5-2') L1155340-25	32
1910E04-028B SWMU 13-12 (2-3') L1155340-26	33
1910E04-029B DUP05 L1155340-27	34
Qc: Quality Control Summary	35
Wet Chemistry by Method 4500CN E-2011	35
Wet Chemistry by Method 9012B	36
GI: Glossary of Terms	39
Al: Accreditations & Locations	40
Sc: Sample Chain of Custody	41

SAMPLE SUMMARY

ONE	LAR	NAT	ONV	VIDE

1910E04-001B SWMU 13-6 (17-18') L1	155340-01 Solid		Collected by	10/24/19 09:30	10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:00	JER	Mt. Juliet, TN
			Callogtod by	Callo at a d data /time	Dogowod do	to Itima o

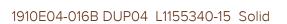
1910E04-001B SWMU 13-6 (17-18') L1155340-	-01 Solid		Collected by	Collected date/time 10/24/19 09:30	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:00	JER	Mt. Juliet, TN
1910E04-002B SWMU 13-7 (0-0.5') L1155340	0-02 Solid		Collected by	Collected date/time 10/24/19 10:45	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:01	JER	Mt. Juliet, TN
1910E04-003B SWMU 13-7 (1.5-2') L1155340-	-03 Solid		Collected by	Collected date/time 10/24/19 11:10	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:02	JER	Mt. Juliet, TN
1910E04-005B SWMU 13-7 (4-6') L1155340-0	04 Solid		Collected by	Collected date/time 10/24/19 13:05	Received date/time 10/30/19 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:03	JER	Mt. Juliet, TN
910E04-006B SWMU 13-7 (10-12') L1155340	10E04-006B SWMU 13-7 (10-12') L1155340-05 Solid			Collected date/time 10/24/19 13:15	Received date/time 10/30/19 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:04	JER	Mt. Juliet, TN
910E04-007B SWMU 13-7 (12-13") L1155340	-06 Solid		Collected by	Collected date/time 10/24/19 13:25	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:05	JER	Mt. Juliet, TN
910E04-008B SWMU 13-7 (17.5-18') L115534	10-07 Solid		Collected by	Collected date/time 10/24/19 13:30	Received date/time 10/30/19 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:06	JER	Mt. Juliet, TN
1910E04-009B SWMU 13-8 (0-0.5') L115534(0-08 Solid		Collected by	Collected date/time 10/24/19 14:35	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:10	JER	Mt. Juliet, TN

SAMPLE SUMMARY

ONE	1 A D	NIATIO	
	IAB	NATIO	171771171

ONE	LAB.	NAI	IONW	IDE.

			Callacted by	Collected date/time	Received da	to/time
1910E04-010B SWMU 13-8 (1.5-2') L1155340-09 Sc	olid		Collected by	10/24/19 14:45	10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:12	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
1910E04-011B SWMU 13-8 (2-3') L1155340-10 Solid				10/24/19 14:50	10/30/19 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:13	JER	Mt. Juliet, TN
1910E04-012B SWMU 13-9 (0-0.5') L1155340-11 Sol	lid		Collected by	Collected date/time 10/24/19 15:35	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1376270	10	11/07/19 14:00	11/07/19 17:55	JER	Mt. Juliet, TN
1910E04-013B SWMU 13-9 (1.5-2') L1155340-12 Sol	id		Collected by	Collected date/time 10/24/19 15:45	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:15	JER	Mt. Juliet, TN
1910E04-014B SWMU 13-9 (2-3') L1155340-13 Solic	1		Collected by	Collected date/time 10/24/19 15:55	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375250	1	11/05/19 17:06	11/06/19 17:16	JER	Mt. Juliet, TN
1910E04-015B DUP03 L1155340-14 Solid			Collected by	Collected date/time 10/24/19 00:00	Received da 10/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location



Wet Chemistry by Method 9012B

Method

			date/time	date/time		
Wet Chemistry by Method 9012B	WG1375558	1	11/06/19 08:00	11/06/19 13:15	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	e/time
1910E04-018E FR102419 1155340-16 \WW				10/24/19 13:45 10/30/19 08:3		0

Dilution

WG1375250

Batch

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 4500CN E-2011	WG1375056	1	11/05/19 15:00	11/06/19 15:53	JER	Mt. Juliet, TN

11/05/19 17:06

Collected by

Preparation

11/06/19 17:17

10/24/19 00:00

Analysis

JER

10/30/19 08:30

Analyst

Collected date/time Received date/time

Mt. Juliet, TN

Location

SAMPLE SUMMARY

ONE	LAB.	ΝΔΤ	ION'	WIDE
OINL	LAD.		1011	VVIDL

ONE	LAB.	NAI	ION	VIDE.

Method

Method

Wet Chemistry by Method 9012B

Wet Chemistry by Method 9012B

Batch

Batch

WG1375558

WG1375558

Collected by

Preparation

11/06/19 08:00

Collected by

Preparation

11/06/19 08:00

date/time

date/time

Dilution

1

Dilution

1

Collected date/time

10/25/19 12:55

Analysis

date/time

11/06/19 13:24

10/25/19 13:10

Analysis

date/time

11/06/19 13:27

Collected date/time

Received date/time

Location

Mt. Juliet, TN

Location

Mt. Juliet, TN

10/30/19 08:30

Analyst

JER

Received date/time

10/30/19 08:30

Analyst

JER

1910E04-025B SWMU 13-12 (0-0.5') L1155340-23 Solid

1910E04-026B SWMU 13-12 (0.5-1.5') L1155340-24 Solid

			Collected by	Collected date/time	Received da	te/time
1910E04-027B SWMU 13-12 (1.5-2') L1155340-25	Solid			10/25/19 13:25	10/30/19 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1375558	1	11/06/19 08:00	11/06/19 13:28	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
1910E04-028B SWMU 13-12 (2-3') L1155340-26	Solid			10/25/19 13:35	10/30/19 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1375558	1	11/06/19 08:00	11/06/19 13:29	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
1910E04-029B DUP05 L1155340-27 Solid				10/25/19 00:00	10/30/19 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9012B	WG1375558	1	11/06/19 08:00	11/06/19 13:30	JER	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager 1910E04-001B SWMU 13-6 (17-18')

Collected date/time: 10/24/19 09:30

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

果

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:00	WG1375250

1910E04-002B SWMU 13-7 (0-0.5') Collected date/time: 10/24/19 10:45

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

果

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 17:01	WG1375250	

1910E04-003B SWMU 13-7 (1.5-2')

Collected date/time: 10/24/19 11:10

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:02	WG1375250

1910E04-005B SWMU 13-7 (4-6')

Collected date/time: 10/24/19 13:05

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 17:03	WG1375250	

1910E04-006B SWMU 13-7 (10-12') Collected date/time: 10/24/19 13:15

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:04	WG1375250

1910E04-007B SWMU 13-7 (12-13") Collected date/time: 10/24/19 13:25

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

. .

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	11/06/2019 17:05	WG1375250	

1910E04-008B SWMU 13-7 (17.5-18')

Collected date/time: 10/24/19 13:30

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:06	WG1375250

1910E04-009B SWMU 13-8 (0-0.5') Collected date/time: 10/24/19 14:35

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	1.19	P1	0.250	1	11/06/2019 17:10	WG1375250

1910E04-010B SWMU 13-8 (1.5-2')

Collected date/time: 10/24/19 14:45

SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:12	WG1375250

1910E04-011B SWMU 13-8 (2-3') Collected date/time: 10/24/19 14:50

SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

LIS-10 ONE LAB. NATION

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:13	WG1375250

1910E04-012B SWMU 13-9 (0-0.5') Collected date/time: 10/24/19 15:35

SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	8.05		2.50	10	11/07/2019 17:55	WG1376270	

1910E04-013B SWMU 13-9 (1.5-2')

Collected date/time: 10/24/19 15:45

SAMPLE RESULTS - 12

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 17:15	WG1375250

1910E04-014B SWMU 13-9 (2-3') Collected date/time: 10/24/19 15:55

SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 17:16	WG1375250	

1910E04-015B DUP03 Collected date/time: 10/24/19 00:00

SAMPLE RESULTS - 14

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 17:17	WG1375250	

1910E04-016B DUP04 Collected date/time: 10/24/19 00:00

SAMPLE RESULTS - 15

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 13:15	WG1375558	

1910E04-018E EB102419
Collected date/time: 10/24/19 13:45

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Cyanide	ND	J6	0.00500	1	11/06/2019 15:53	WG1375056	

1910E04-019B SWMU 13-10 (0-0.5')

Collected date/time: 10/25/19 10:00

SAMPLE RESULTS - 17

ONE LAB. NATIONWIDE.

製

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	0.692		0.250	1	11/06/2019 13:16	WG1375558

1910E04-020B SWMU 13-10 (1.5-2')

Collected date/time: 10/25/19 10:15

SAMPLE RESULTS - 18

ONE LAB. NATIONWIDE.

製

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 13:17	WG1375558	

1910E04-021B SWMU 13-10 (2-3')

Collected date/time: 10/25/19 10:30

SAMPLE RESULTS - 19

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 13:18	WG1375558	

1910E04-022B SWMU 13-11 (0-0.5') Collected date/time: 10/25/19 11:30

SAMPLE RESULTS - 20

ONE LAB. NATIONWIDE.

. 4

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	1.17		0.250	1	11/06/2019 13:21	WG1375558	

1910E04-023B SWMU 13-11 (1.5-2') Collected date/time: 10/25/19 11:45

SAMPLE RESULTS - 21

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 13:22	WG1375558

1910E04-024B SWMU 13-11 (2-3')

Collected date/time: 10/25/19 12:00

SAMPLE RESULTS - 22

ONE LAB. NATIONWIDE.

製

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	11/06/2019 13:23	WG1375558	

1910E04-025B SWMU 13-12 (0-0.5')

Collected date/time: 10/25/19 12:55

SAMPLE RESULTS - 23

ONE LAB. NATIONWIDE.

0 - 23 ONE LAB. NATION

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND	J6	0.250	1	11/06/2019 13:24	WG1375558

1910E04-026B SWMU 13-12 (0.5-1.5')

SAMPLE RESULTS - 24

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 9012B

Collected date/time: 10/25/19 13:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	0.435		0.250	1	11/06/2019 13:27	WG1375558	

1910E04-027B SWMU 13-12 (1.5-2')

Collected date/time: 10/25/19 13:25

SAMPLE RESULTS - 25

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	11/06/2019 13:28	WG1375558

1910E04-028B SWMU 13-12 (2-3')

Collected date/time: 10/25/19 13:35

SAMPLE RESULTS - 26

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	11/06/2019 13:29	WG1375558	

1910E04-029B DUP05 Collected date/time: 10/25/19 00:00

SAMPLE RESULTS - 27

ONE LAB. NATIONWIDE.

果

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	0.392		0.250	1	11/06/2019 13:30	WG1375558

C

SS

Ų.

Method Blank (MB)

	MB MDL	l/gm l/gm	0.00180 0.00500
34	MB Result MB Qualifier	mg/l	
(MB) R3469134-1 11/06/19 15:34	2	Analyte	Cyanide

L1155017-01 Original Sample (OS) • Duplicate (DUP)

		DUP Qualifier Limits	%	20
/ /	6/19 15:47	Original Result DUP Result Dilution DUP RPD	%	1 0.000
) R3469134-3 11/0	ult DUP Result	l/gm	0.000
	15:46 • (DUP	Original Res	l/gm	ND
	(OS) L1155017-01 11/06/19 15:46 • (DUP) R3469134-3 11/06/19 15:47		Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

₹

Š

Sc

L1155479-03 Original Sample (OS) • Duplicate (DUP)

11/06/19 16:06
OUP) R3469134-8
06/19 16:05 • (D
L1155479-03 11/0
(SO)

00		0
		0
DUP Qualifier Limits	%	20
Dilution DUP RPD	%	0.000
Result DUP Result	l/gm	0.000
Original Result	l/gm	QN
	Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469134-2 11/06/19 15:39	9 15:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	l/gm	l/gm	%	%	
Cyanide	0.100	0.0907	90.7	85.0-115	

L1155184-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

L1155340-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1155340-16 11/06/19 15:53 • (MS) R3469134-6 11/06/19 15:54 • (MSD) R3469134-7	19 15:53 • (MS) R3	469134-6 11/0t	5/19 15:54 • (M	ISD) R3469134-7	7 11/06/19 15:55	īĊ						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	mg/l	l/gm	l/gm	%	%		%			%	%
Cyanide	0.100	ND	0.0735	0.0688	73.5	68.8	-	75.0-125	97	9[6.61	20

PROJECT:

QUALITY CONTROL SUMMARY

L1155340-01,02,03,04,05,06,07,08,09,10,12,13,14

ONE LAB. NATIONWIDE.

SS

Ų.

g

 $\overline{\mathbb{Q}}$

₹

Š

Sc

Method Blank (MB)

Melioa Bialik (MB)	(0			
(MB) R3469178-1 11/06/19 16:45	9 16:45			
	MB Result	MB Qualifier	I MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cyanide	n		0.0390	0.250

L1155312-13 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	20
1/19 16:52	Original Result DUP Result Dilution DUP RPD	%	1 0.000
२३४६९१७४-३ ११/०६	ilt DUP Result	mg/kg	0.000
06/19 16:51 • (DUP) F	Original Resu	mg/kg	QN
(OS) L1155312-13 11/06/19 16:51 • (DUP) R3469178-3 11/06/19 16:52		Analyte	Cyanide

L1155340-08 Original Sample (OS) • Duplicate (DUP)

	DUP RPD Limits	%	20
	DUP Qualifier		되
17:11	Dilution DUP RPD	%	1 31.8
P) R3469178-6 11/C	Original Result DUP Result	mg/kg	0.863
1/06/19 17:10 • (DUI	Original Res	mg/kg	1.19
(OS) L1155340-08 11/06/19 17:10 • (DUP) R3469178-6 11/06/19 17:11		Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469178-2 11/06/19 16:46	9 16:46				
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cvanide	2.50	2.37	95.0	50.0-150	

L1155312-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155312-16 11/06/19 16:57 • (MS) R3469178-4 11/06/19 16:58 • (MSD) R3469178-5	16:57 • (MS) R34	169178-4 11/06/	19 16:58 • (MS)	D) R3469178-5	11/06/19 16:59							
	Spike Amount	Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	1.06	2.30	2.31	74.8	75.2	_	75.0-125	96		0.295	20

L1155340-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1155340-14 11/06/19 17:17 • (MS) R3469178-7 11/06/19 17:18 • (MSD) R3469178-8	5/19 17:17 • (MS) R34	.69178-7 11/06,	19 17:18 • (MSE) R3469178-8	11/06/19 17:19							
	Spike Amount Original Result MS Result	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier F	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		6	%	%
Cyanide	1.67	ND	1.50	1.55	90.2	93.0	-	75.0-125		(1)	3.04	20

PROJECT:

QUALITY CONTROL SUMMARY L1155340-15,17,18,19,20,21,22,23,24,25,26,27

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

Method Blank (MB)

	. MB RDL	mg/kg	0.250
	M	mg/kg	0.0390
	MB MDL	Ε	
	MB Qualifier MB	Ш	
(MB) R3469026-1 11/06/19 13:09		mg/kg	n

L1155314-01 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	20
6/19 13:14	Original Result DUP Result Dilution DUP RPD	%	1 0.000
R3469026-3 11/0	ult DUP Result	mg/kg	0.000
5/19 13:13 • (DUP)	Original Resi	mg/kg	QN
(OS) L1155314-01 11/06/19 13:13 • (DUP) R3469026-3 11/06/19 13:14		Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

Š

Sc

₹

SS

Ų.

L1156516-01 Original Sample (OS) • Duplicate (DUP)

6
9
9
E
ထု
9
02
8
16
32
α
<u>a</u>
\supset
0
÷
4
33
1 61/9
19 1/
1 61/9
1 11/06/19 13
-01 11/06/19 1
16-01 11/06/19 13
516-01 11/06/19 13
516-01 11/06/19 13
6516-01 11/06/19 13
1156516-01 11/06/19 13
) L1156516-01 11/06/19 13
15) L1156516-01 11/06/19 13

5	Dilution DUP RPD	DOP Qualifier Limits
	%	%
	0.000	20

Laboratory Control Sample (LCS)

.CS) R3469026-2 11/06/19 13:10	1/06/19 13:10				
	Spike Amount	t LCS Result	LCS Rec.	Rec. Limits	.CS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Syanide	2.50	2.38	95.3	50.0-150	

L1155340-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
	RPD	%	12.3
	MSD Qualifier		90
	MS Qualifier		
	Rec. Limits	%	75.0-125
	Dilution		_
13:26	MSD Rec.	%	8.99
(6-5 11/06/19	MS Rec.	%	77.0
(MSD) R346902	MSD Result	mg/kg	1.31
06/19 13:25 •	MS Result	mg/kg	1.48
469026-4 11/	Original Result	mg/kg	ND
/19 13:24 • (MS) R3	Spike Amount Original Result MS Result	mg/kg	1.67
(OS) L1155340-23 11/06/19 13:24 (MS) R3469026-4 11/06/19 13:25 (MSD) R3469026-5 11/06/19 13:26		Analyte	Cyanide

L1155857-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155857-01 11/06/19 13:37 • (MS) R3469026-6 11/06/19 13:38 • (MSD) R3469026-7	36/19 13:37 • (MS) R3	469026-6 11/C	1) • 82:38 • (1)	MSD) R3469026	5-7 11/06/19 13:39	3:39						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	QN	1.45	1.54	73.2	78.4	_	75.0-125	<u>9</u> [5.85	20

PROJECT:

SDG: L1155340

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

Method Blank (MB)

	MB RDL	mg/kg	0.250	
	MB MDL	mg/kg	0.0390	
	MB Qualifier			
(MB) R3469670-1 11/07/19 17:18	MB Result	mg/kg	n	
(MB) R34696		Analyte	Cyanide	

L1155811-02 Original Sample (OS) • Duplicate (DUP)

		DUP Qualifier Limits	%	20
/ \	07/19 17:24	Original Result DUP Result Dilution DUP RPD	%	0.000
	R3469670-3 11/0	It DUP Result	mg/kg	0.0785
	(OS) L1155811-02 11/07/19 17:23 • (DUP) R3469670-3 11/07/19 17:24	Original Resu	mg/kg	ND
	(OS) L1155811-02 11/		Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

₹

Š

Sc

SS

Ų.

L1157218-01 Original Sample (OS) • Duplicate (DUP)

	DUP RPD Limits	%	20
	DUP Qualifier		
	DUP RPD	%	0.000
/07/19 17:51	lt Dilution DU		-
469670-8 11	DUP Result	mg/kg	0.000
7/19 17:50 • (DUP) R3469670-8 11/07/19 17:51	Original Result DUP Result	mg/kg	Q
(OS) L1157218-01 11/07/19		Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469670-2 11/07/19 17:19	19 17:19				
	Spike Amount LCS Result		LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.58	103	50.0-150	

L1156475-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
	RPD	%	3.52
	MSD Qualifier		
	MS Qualifier		
	Rec. Limits	%	75.0-125
	Dilution		_
7:34	ult MS Rec. MSD Rec.	%	88.1
0-5 11/07/19 1	MS Rec.	%	85.0
MSD) R346967(MSD Result	mg/kg	1.47
1) • 85:71 61/70/	It MS Result	mg/kg	1.42
3469670-4 11	Original Resu	mg/kg	n
7/19 17:32 • (MS) RE	Spike Amount Original Result MS Result	mg/kg	1.67
(OS) L1156475-03 11/07/19 17:32 • (MS) R3469670-4 11/07/19 17:33 • (MSD) R34696		Analyte	Cyanide

L1156476-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1156476-01 1	OS) L1156476-01 11/07/19 17:44 • (MS) R3469670-6 11/07/19 17:45 • (MSD) R3469670-7	169670-6 11/0	M) • 17:45 • (M	SD) R3469670	-7 11/07/19 17:47	.47						
	Spike Amount	Spike Amount Original Result MS Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.47	0.0905	88.0	5.43	_	75.0-125		<u> 13 J6</u>	177	20

DATE/TIME: 11/08/19 09:01

SDG: L1155340

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
10	T

J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD PAGE: 1

OF:

Hall Environmental Analysis Laboratory Albuquerque, NM 87109 4901 Hawkins NE

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

ADDRESS: CITY, STAT						(000)		(000-00) (010)	
CITY,		12065 Lebanon Rd			ACCOUNT #:		EMAIL:		
	STATE, ZIP. Mt. J.	CITY, STATE, ZIP. Mt. Juliet, TN 37122							
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION	# CONTAINERS	ANALYTICA	ANALYTICAL COMMENTS	
-		1910E04-001B SWMU 13-6 (17-18')	40ZGU	Soil	10/24/2019 9:30:00 AM	1 Total CN 2 L	20.cl	5117	10-1165511
2		1910E04-002B SWMU 13-7 (0-0.5')	40ZGU	MeOH	10/24/2019 10:45:00 AM 1 Total CN	1 Total CN	1 28 10	10/28/14	69
m	1910E04-003B	1910E04-003B SWMU 13-7 (1.5-2')	40ZGU	MeOH	10/24/2019 11:10:00 AM 1 Total CN	1 Total CN			03
4	Part of	1910E04-005B SWMU 13-7 (4-6')	40ZGU	MeOH	10/24/2019 1:05:00 PM	1 Total CN			60
2	1910E04-006B	1910E04-006B SWMU 13-7 (10-12')	40ZGU	MeOH	10/24/2019 1:15:00 PM	1 Total CN			65
9	1910E04-007B	1910E04-007B SWMU 13-7 (12-13")	40ZGU	Soil	10/24/2019 1:25:00 PM	1 Total CN			90
7		1910E04-008B SWMU 13-7 (17.5-18')	40ZGU	_	10/24/2019 1:30:00 PM	1 Total CN		1707	10
80	1910E04-009B	1910E04-009B SWMU 13-8 (0-0.5')	40ZGU	MeOH	10/24/2019 2:35:00 PM	1 Total CN			30
6	100	1910E04-010B SWMU 13-8 (1.5-2')	40ZGU	MeOH	10/24/2019 2:45:00 PM	1 Total CN			60
10		1910E04-011B SWMU 13-8 (2-3')	40ZGU	MeOH	10/24/2019 2:50:00 PM	1 Total CN			01
=		1910E04-012B SWMU 13-9 (0-0.5')	40ZGU	MeOH	10/24/2019 3:35:00 PM	1 Total CN			1
12		1910E04-013B SWMU 13-9 (1.5-2')	40ZGU	MeOH	10/24/2019 3:45:00 PM	1 Total CN			13
13	7	1910E04-014B SWMU 13-9 (2-3')	40ZGU	MeOH	10/24/2019 3:55:00 PM	1 Total CN			13

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

RAD SCREEN: <0.5 mR/hr

Relinquished By:	1/	Date: Time;	Time;	Received By:	Date:	Pate 120/16 Time 2	30	REPORT TRANSMITTAL DESIRED:
	-	10/28/2019	9:18 AM	1	2	201	2	THAD POOD (Apple apple)
Relinquished By:		Date:	Time:	Received By:	Date:	Time:	1	
Relinquished By:		Date:	Time:	Received By:	Date:	Time:		POKLAB USE ONLY
F. A.F.	Stan	Standard	рисп	Next BD	□ Cla buc	3rd BD		Temp of samples
ivi			Heav					Comments:

CASI DELL IIZU YOUR

CHAIN OF CUSTODY RECORD PAGE:

OF:

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

SUBC	SUB CONTRATOR: ESC PACE	PACE COMPANY: ESC PACE	ACE		PHONE:	(800) 767-5859	FAX: (615) 758-5859	6
ADDRESS:		12065 Lebanon Rd			ACCOUNT #:		EMAIL:	
CITY,	STATE, ZIP. Mt. J.	CITY, STATE, ZIP. Mt. Juliet, TN 37122						
Malli	SAMPLE	CLENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION	#CONTAINERS	ANALYTICAL COMMENTS	(TS
14	191	PUP	40ZGU		10/24/2019	1 Total CN 2V G	h	1.1155340-10
15	1910E04-016B DUP04	DUP04	40ZGU		10/24/2019	1 Total CN	LB 10/28/12	6'
16	1910E04-018E EB102419	EB102419	500AMBHDP Aqueous		10/24/2019 1:45:00 PM	1 Total CN - 7,2		, ·
17	1910E04-019B	1910E04-019B SWMU 13-10 (0-0.5')	40ZGU		10/25/2019 10:00:00 AM 1 Total CN	1 Total CN		()
18	1910E04-020B	SWMU 13-10 (1.5-2')	40ZGU		10/25/2019 10:15:00 AM 1 Total CN	1 Total CN		00
19	1910E04-021B	SWMU 13-10 (2-3')	40ZGU		10/25/2019 10:30:00 AM 1 Total CN	1 Total CN		191
20	1910E04-022B	SWMU 13-11 (0-0.5')	40ZGU	MeOH	10/25/2019 11:30:00 AM 1 Total CN	1 Total CN		20
21	1910E04-023B	SWMU 13-11 (1.5-2')	40ZGU		10/25/2019 11:45:00 AM 1 Total CN	1 Total CN		31
22		1910E04-024B SWMU 13-11 (2-3')	40ZGU		10/25/2019 12:00:00 PM 1 Total CN	1 Total CN		22
23		1910E04-025B SWMU 13-12 (0-0.5')	40ZGU		10/25/2019 12:55:00 PM 1 Total CN	1 Total CN		33
24		1910E04-026B SWMU 13-12 (0.5-1.5')	40ZGU		10/25/2019 1:10:00 PM	1 Total CN		24
. 25		1910E04-027B SWMU 13-12 (1.5-2')	40ZGU	MeOH	10/25/2019 1:25:00 PM	1 Total CN		35
26		1910E04-028B SWMU 13-12 (2-3')	40ZGU	MeOH	10/25/2019 1:35:00 PM	1 Total CN	74	2
)

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

RAD SCREEN: <0.5 mR/hr

	REPORT TRANSMITTAL DESIRED:
JEC (0/2/14)	TAIL ONLINE
wed By: FOR LAB USE ONLY	
wed By: Term of samples 25-2-20 Attempt to Cool?	30ol?

RUSH

Standard

TAT:

Time: Time:

9:18 AM

Date: 10/28/2019

Date: Date:

Relinquished By: Relinquished By:

Relinquished By:

CHAIN OF CUSTODY RECORD PAGE: 3

OF:

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107

Website: www.hallenvironmental.com

ADDRESS: 12065 Lebanon Rd CITY, STATE, ZIP: Mt. Juliet, TN 37122 ##	# C(
CITY, STATE, ZIP: Mt. Juliet, TN 37122	# Cs
# CO	# CC
BOTTLE COLLECTION NO SAMPLE ID TYPE MATRIX DATE NO SAMPLE ID TYPE MATRIX DATE NO SAMPLE ID TYPE NATRIX DATE NO SAMPLE ID TYPE NATRIX NATRIX DATE NO SAMPLE ID TYPE NATRIX	MATRIX
1910E04-029B DUP05 1 Total CN LV L	MeOH 10/25/2019 1

RAD SCREEN: <0.5 mR/hr

SPECIAL INSTRUCTIONS / COMMENTS:

Dalinganiahad Den	41	Date.	Time:	Received By:	Date:	Time	REPORT TRANSMITTAL DESIRED.	
Kemiquistica by.	3	10/28/2019	10/28/2019 9:18 AM	" WEST	16/36/19 5 30	2 2	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE	
Relinquished By:		Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY	
Relinguished By:		Date:	Time:	Received By:	Date:	Time:	Term of samples 2.8 -,2-2.4 Attempt to Cool?	
TAT:	Stand	Standard	RUSH	Next BD 2nd BD	3rd BD			

Pace Analytical National Center for Testing & Innovation	ation	
Cooler Receipt Form		
Client: HALLENYANM	N1155340	2340
Cooler Received/Opened On: 10 / 3/19 Temperature:	5.6	
Received By: Adam Burns		
Signature: (4)//		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?	1	
Bottles arrive intact?	1	
Correct bottles used?	1	
Sufficient volume sent?	١	
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?		

QC SUMMARY REPORT

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Project:	SWMU 1	3										
Sample ID:	1910E04-001AMS	TestCode: EPA Method 8015M/D: Diesel Range Organics										
Client ID:	SWMU 13-6 (17-18	RunNo: 64089										
Prep Date:	10/29/2019	Analysis Da	ate: 10	0/31/2019	SeqNo: 2193197			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	45	9.8	49.12	0	91.3	57	142				
Surr: DNOP		4.5		4.912		92.3	70	130				
Sample ID:	nple ID: 1910E04-001AMSD SampType: MSD					TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID:	ID: SWMU 13-6 (17-18') Batch ID: 48458				F	RunNo: 64089						
Prep Date:	e: 10/29/2019 Analysis Date: 10/31/2019				\$	SeqNo: 2	193198	Units: mg/k	ζg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	43	9.4	46.90	0	90.6	57	142	5.30	20		
Surr: DNOP		4.4		4.690		94.6	70	130	0	0		
Sample ID:	1910E04-023AMS	3	TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID:	lient ID: SWMU 13-11 (1.5-2') Batch ID: 48459					RunNo: 64089						
Prep Date:	: 10/29/2019 Analysis Date: 10/30/2019				5	SeqNo: 2193203 Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	78	8.9	44.44	0	177	57	142			S	
Surr: DNOP		4.5		4.444		101	70	130				
Sample ID:	TestCode: EPA Method 8015M/D: Diesel Range Organics											
Client ID: SWMU 13-11 (1.5-2') Batch ID: 48459					F	RunNo: 6	4089					
Prep Date:	10/29/2019	2019 Analysis Date: 10/30/2019				SeqNo: 2	193204	Units: mg/k	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	42	9.0	45.25	0	93.9	57	142	59.5	20	R	
Surr: DNOP		4.4		4.525		97.9	70	130	0	0		
Sample ID:	LCS-48458	SampTy	/pe: LC	s	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID:	LCSS Batch ID: 48458				RunNo: 64089							
Prep Date:	10/29/2019	Analysis Da)/31/2019	SeqNo: 2193220			Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	46	10	50.00	0	92.3	63.9	124				
Surr: DNOP		4.6		5.000		91.2	70	130				
Sample ID:	LCS-48459	SampTy	/pe: LC	s	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID:	LCSS	Batch	ID: 484	459	RunNo: 64089							
Prep Date:	10/29/2019	SeqNo: 2193221 Units: mg/Kg										

Qualifiers:

Analyte

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

PQL

Result

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

HighLimit

%RPD

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Limit

Page 142 of 195

RPDLimit

Qual

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Project: SWMU	J 13	
Sample ID: LCS-48459	SampType: LCS TestCode: EPA Method 80	15M/D: Diesel Range Organics
Client ID: LCSS	Batch ID: 48459 RunNo: 64089	
Prep Date: 10/29/2019	Analysis Date: 10/30/2019 SeqNo: 2193221 Ur	nits: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit F	HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	47 10 50.00 0 93.7 63.9	124
Surr: DNOP	4.4 5.000 87.0 70	130
Sample ID: MB-48458	SampType: MBLK TestCode: EPA Method 80	15M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 48458 RunNo: 64089	
Prep Date: 10/29/2019	Analysis Date: 10/31/2019 SeqNo: 2193222 Ur	nits: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit F	HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	ND 10	
Motor Oil Range Organics (MRO)	ND 50	
Surr: DNOP	10 10.00 102 70	130
Sample ID: MB-48459	SampType: MBLK TestCode: EPA Method 80	15M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 48459 RunNo: 64089	
Prep Date: 10/29/2019	Analysis Date: 10/30/2019 SeqNo: 2193223 Ur	nits: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit F	HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	ND 10	
Motor Oil Range Organics (MRO)	ND 50	
Surr: DNOP	9.3 10.00 93.4 70	130
Sample ID: LCS-48574	SampType: LCS TestCode: EPA Method 80	15M/D: Diesel Range Organics
Client ID: LCSS	Batch ID: 48574 RunNo: 64223	
Prep Date: 11/4/2019	Analysis Date: 11/5/2019 SeqNo: 2197824 Ur	nits: %Rec
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit H	HighLimit %RPD RPDLimit Qual
Surr: DNOP	4.2 5.000 83.4 70	130
Sample ID: MB-48574	SampType: MBLK TestCode: EPA Method 80°	15M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 48574 RunNo: 64223	
Prep Date: 11/4/2019	Analysis Date: 11/5/2019 SeqNo: 2197825 Ur	nits: %Rec
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit F	HighLimit %RPD RPDLimit Qual
Surr: DNOP	9.1 10.00 91.3 70	130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 143 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48464	SampT	ype: LC	s	Tes	tCode: El	е				
Client ID: LCSW	Batch	n ID: 484	464	F	RunNo: 6	4071				
Prep Date: 10/29/2019	Analysis D	ate: 10)/30/2019	S	SeqNo: 2	192326	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.3	1.0	5.000	0	106	71.8	135			
Surr: DNOP	0.44		0.5000		88.0	70	130			
Sample ID: MB-48464	SampT	vpe: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	9	•

Sample ID: MB-48464	Sampi	ype: IVIE	SLK	restcode: EPA Method 8015M/D: Diesei Range					9	
Client ID: PBW	Batch	ID: 484	464	F	RunNo: 6	4071				
Prep Date: 10/29/2019	Analysis D	ate: 10	/30/2019	SeqNo: 2192327 Units: mg/						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	1.0								
Motor Oil Range Organics (MRO)	ND	5.0								
Surr: DNOP	0.87		1.000		87.0	70	130			

Sample ID: MB-48464	SampT	уре: МЕ	BLK	TestCode: EPA Method 8015M/D: Diesel Range						
Client ID: PBW	Batch	ID: 48	464	F	RunNo: 6	4124				
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	S	SeqNo: 2	194394	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	1.0								
Motor Oil Range Organics (MRO)	ND	5.0								

Diesel Range Organics (DRO)	ND	1.0			
Motor Oil Range Organics (MRO)	ND	5.0			
Surr: DNOP	1.1	1.000	111	70	130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Project:	SWMU	13									
Sample ID	: RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID:	PBS	Batch	n ID: G 6	4058	F	RunNo: 6	4058				
Prep Date:	:	Analysis D	oate: 10	0/29/2019	5	SeqNo: 2	191371	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Ran Surr: BFB	ge Organics (GRO)	ND 1000	5.0	1000		99.7	77.4	118			
Sample ID	: 2.5UG GRO LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID:	LCSS	Batch	n ID: G 6	4058	F	RunNo: 6	4058				
Prep Date:	:	Analysis D)ate: 10	0/29/2019	8	SeqNo: 2	191372	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	ge Organics (GRO)	23 1200	5.0	25.00 1000	0	93.2 116	80 77.4	120 118			
	: 1910E04-002AMS		ype: MS					8015D: Gaso	oline Rang	е	
	SWMU 13-7 (0-0.5	•	n ID: G6			RunNo: 6		lloitor/le	7		
Prep Date:		Analysis D				SeqNo: 2		Units: mg/k	•		
Analyte	ge Organics (GRO)	Result 12	PQL 2.9	SPK value 14.72	SPK Ref Val	%REC 84.0	LowLimit 69.1	HighLimit 142	%RPD	RPDLimit	Qual
Odsonine Itali											
Surr: BFB	3. 3. 3. ()	630	2.0	588.9	Ü	108	77.4	118			
	: 1910E04-002AMS	630	ype: M \$	588.9		108	77.4		oline Rang	<u> </u>	
Sample ID		630 SD SampT		588.9 SD	Tes	108	77.4 PA Method	118	oline Rang	e	
Sample ID	: 1910E04-002AMS SWMU 13-7 (0-0.9	630 SD SampT	ype: M \$	588.9 SD 64058	Tes	108 tCode: El	77.4 PA Method 4076	118		e	
Sample ID Client ID:	: 1910E04-002AMS SWMU 13-7 (0-0.9	630 SampT 5') Batch	Type: M\$ on ID: G6 Date: 10	588.9 64058 0/30/2019	Tes	tCode: EI	77.4 PA Method 4076 193022	118 8015D: Gas o		e RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Gasoline Range	: 1910E04-002AMS SWMU 13-7 (0-0.9	630 SampT 5') Batch Analysis D Result 13	Type: M\$ on ID: G6 Date: 10	588.9 64058 0/30/2019 SPK value 14.72	Tes F	tCode: El RunNo: 6 SeqNo: 2 %REC 86.9	77.4 PA Method 4076 193022 LowLimit 69.1	8015D: Gaso Units: mg/k HighLimit 142	%RPD 3.37	RPDLimit 20	Qual
Sample ID Client ID: Prep Date: Analyte	: 1910E04-002AMS SWMU 13-7 (0-0.9	630 SampT 5') Batch Analysis D Result	Type: MS on ID: G6 Date: 10	588.9 64058 0/30/2019 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 6 SeqNo: 2 %REC	77.4 PA Method 4076 193022 LowLimit	8015D: Gaso Units: mg/k	(g %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID	: 1910E04-002AMS SWMU 13-7 (0-0.9 ge Organics (GRO)	630 SampT 5') Batch Analysis D Result 13 650 SampT	Type: MS Type: MS Type: MS Type: MS Type: MS	588.9 64058 0/30/2019 SPK value 14.72 588.9	Tes F S SPK Ref Val 0	108 tCode: El RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: El	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method	8015D: Gaso Units: mg/k HighLimit 142	%RPD 3.37 0	RPDLimit 20 0	Qual
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID:	: 1910E04-002AMS SWMU 13-7 (0-0.9) ge Organics (GRO) : MB-48446 PBS	630 SampT 5') Batch Analysis D Result 13 650 SampT Batch	Type: MS Date: 10 PQL 2.9 Type: ME	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446	Tes F SPK Ref Val 0 Tes	tCode: El RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: El	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076	118 8015D: Gaso Units: mg/k HighLimit 142 118 8015D: Gaso	%RPD 3.37 0	RPDLimit 20 0	Qual
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID:	: 1910E04-002AMS SWMU 13-7 (0-0.9 ge Organics (GRO)	630 SampT 5') Batch Analysis D Result 13 650 SampT	Type: MS Date: 10 PQL 2.9 Type: ME	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446	Tes F SPK Ref Val 0 Tes	108 tCode: El RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: El	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076	8015D: Gaso Units: mg/k HighLimit 142 118	%RPD 3.37 0	RPDLimit 20 0	Qual
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID: Prep Date: Analyte	: 1910E04-002AMS SWMU 13-7 (0-0.9) ge Organics (GRO) : MB-48446 PBS : 10/29/2019	630 SampT 5') Batch Analysis D Result 13 650 SampT Batch Analysis D	Type: MS Date: 10 PQL 2.9 Type: ME Date: 10 PQL PQL PQL PQL PQL PQL	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446 0/30/2019	Tes F SPK Ref Val 0 Tes	tCode: El RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: El	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076	118 8015D: Gaso Units: mg/k HighLimit 142 118 8015D: Gaso	%RPD 3.37 0	RPDLimit 20 0	Qual
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID: Prep Date: Analyte	: 1910E04-002AMS SWMU 13-7 (0-0.9) ge Organics (GRO) : MB-48446 PBS	630 SampT 5') Batch Analysis D Result 13 650 SampT Batch Analysis D	Type: MS a ID: Ge Date: 10 PQL 2.9 Type: ME Type: MS	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446 0/30/2019	Tes SPK Ref Val 0 Tes	tCode: EI RunNo: 6- SeqNo: 2 %REC 86.9 110 tCode: EI RunNo: 6- SeqNo: 2	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076 193023	118 8015D: Gaso Units: mg/k HighLimit 142 118 8015D: Gaso Units: mg/k	%RPD 3.37 0 Diline Rang	RPDLimit 20 0	
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	: 1910E04-002AMS SWMU 13-7 (0-0.9) ge Organics (GRO) : MB-48446 PBS : 10/29/2019	630 SampT 5') Batch Analysis D Result 13 650 SampT Batch Analysis D Result ND 1000	Type: MS Date: 10 PQL 2.9 Type: ME Date: 10 PQL PQL PQL PQL PQL PQL	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446 0/30/2019 SPK value	Tes F SPK Ref Val 0 Tes F SPK Ref Val	108 tCode: EI RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: EI RunNo: 6 SeqNo: 2 %REC 99.9	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076 193023 LowLimit 77.4	HighLimit Units: mg/k HighLimit 142 118 8015D: Gasc Units: mg/k HighLimit	%RPD 3.37 0 bline Rang %g %RPD	RPDLimit 20 0 e RPDLimit	
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	: 1910E04-002AMS SWMU 13-7 (0-0.9) ge Organics (GRO) : MB-48446 PBS : 10/29/2019 ge Organics (GRO)	630 SampT 5') Batch Analysis D Result 13 650 SampT Batch Analysis D Result ND 1000 SampT	Fype: MS PQL 2.9 Fype: ME Type: ME Type: ME PQL PQL 5.0	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446 0/30/2019 SPK value 1000	Tes SPK Ref Val 0 Tes SPK Ref Val	108 tCode: EI RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: EI RunNo: 6 SeqNo: 2 %REC 99.9	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076 193023 LowLimit 77.4 PA Method	118 8015D: Gaso Units: mg/k HighLimit 142 118 8015D: Gaso Units: mg/k HighLimit	%RPD 3.37 0 bline Rang %g %RPD	RPDLimit 20 0 e RPDLimit	
Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID	: 1910E04-002AMS SWMU 13-7 (0-0.9) ge Organics (GRO) : MB-48446 PBS : 10/29/2019 ge Organics (GRO) : LCS-48446 LCSS	630 SampT 5') Batch Analysis D Result 13 650 SampT Batch Analysis D Result ND 1000 SampT	Type: MS PQL 2.9 Type: ME Type: ME Type: ME Type: ME Type: ME Type: LO Type: LO Type: LO Type: LO	588.9 64058 0/30/2019 SPK value 14.72 588.9 BLK 446 0/30/2019 SPK value 1000	Tes F SPK Ref Val 0 Tes SPK Ref Val Tes	108 tCode: EI RunNo: 6 SeqNo: 2 %REC 86.9 110 tCode: EI RunNo: 6 SeqNo: 2 %REC 99.9	77.4 PA Method 4076 193022 LowLimit 69.1 77.4 PA Method 4076 193023 LowLimit 77.4 PA Method 4076	118 8015D: Gaso Units: mg/k HighLimit 142 118 8015D: Gaso Units: mg/k HighLimit	%RPD 3.37 0 oline Rang %RPD white Rang	RPDLimit 20 0 e RPDLimit	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 145 of 195

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Project: SWMU	13									
Sample ID: LCS-48446	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batcl	n ID: 48	446	F	RunNo: 6	4076				
Prep Date: 10/29/2019	Analysis D	ate: 10	0/30/2019	9	SeqNo: 2	193024	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23	5.0	25.00	0	91.5	80	120			
Surr: BFB	1100		1000		108	77.4	118			
Sample ID: RB	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batcl	n ID: Ge	64077	F	RunNo: 6	4077				
Prep Date:	Analysis D	oate: 10	0/30/2019	5	SeqNo: 2	193126	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	990		1000		98.7	77.4	118			
Sample ID: 2.5UG GRO LCS	Samp1	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batcl	n ID: G 6	64077	F	RunNo: 6	4077				
Prep Date:	Analysis D	oate: 10	0/30/2019	S	SeqNo: 2	193135	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	97.6	80	120			
Surr: BFB	1100		1000		113	77.4	118			
Sample ID: 1910E04-022AM	S SampT	уре: М	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: SWMU 13-11 (0-	0.5') Batcl	n ID: G 6	64077	F	RunNo: 6	4077				
Prep Date:	Analysis D	oate: 10	0/30/2019	9	SeqNo: 2	193138	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	18	4.1	20.33	0	87.2	69.1	142			
Surr: BFB	830		813.0		102	77.4	118			
Sample ID: 1910E04-022AM	SD SampT	ype: M \$	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: SWMU 13-11 (0-	0.5') Batcl	n ID: G	64077	F	RunNo: 6	4077				
Prep Date:	Analysis D	oate: 10	0/30/2019	\$	SeqNo: 2	193140	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	17	4.1	20.33	0	85.9	69.1	142	1.48	20	
Surr: BFB	810		813.0		100	77.4	118	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 146 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R64171 RunNo: 64171

Prep Date: Analysis Date: 11/1/2019 SeqNo: 2195897 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 97.4 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R64171 RunNo: 64171

Prep Date: Analysis Date: 11/1/2019 SeqNo: 2195898 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.39 0.050 0.5000 0 77.4 73.6 119 Surr: BFB 22 20.00 109 65.8 143

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: A64063 RunNo: 64063

Client ID: Batch ID: A64063 RunNo: 64063 Prep Date: Analysis Date: 10/29/2019 SeqNo: 2191749 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Benzene ND 0.025 Toluene ND 0.050 ND 0.050 Ethylbenzene Methyl tert-butyl ether (MTBE) ND 0.050 1,2,4-Trimethylbenzene ND 0.050 1,3,5-Trimethylbenzene ND 0.050 1,2-Dichloroethane (EDC) ND 0.050 1,2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 ND 0.20 1-Methylnaphthalene 2-Methylnaphthalene ND 0.20 ND 0.75 Acetone ND 0.050 Bromobenzene Bromodichloromethane ND 0.050 Bromoform ND 0.050 Bromomethane ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chloroethane ND 0.10 Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 ND 1,2-Dibromo-3-chloropropane 0.10 Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 ND 1,3-Dichlorobenzene 0.050 1,4-Dichlorobenzene ND 0.050 ND Dichlorodifluoromethane 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050 1,3-Dichloropropane ND 0.050 2,2-Dichloropropane ND 0.10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 148 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb	Samp1	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: PBS	Batcl	n ID: A6	4063	F	RunNo: 64	4063				
Prep Date:	Analysis D	Date: 10	0/29/2019	5	SeqNo: 2	191749	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.53		0.5000		106	70	130			
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.9	70	130			
Surr: Toluene-d8	0.50		0.5000		100	70	130			
Surr: 4-Bromofluorobenzene	0.45		0.5000		89.4	70	130			

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: EF	iles					
Client ID: LCSS	Batch	1D: A6	4063	F	RunNo: 64	4063					
Prep Date:						191750	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.98	0.025	1.000	0	98.3	68	135				
Toluene Toluene	0.98 0.91	0.025 0.050	1.000 1.000	0 0	98.3 91.1	68 70	135 130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 149 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 100ng lcs SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: A64063 RunNo: 64063 Prep Date: Analysis Date: 10/29/2019 SeqNo: 2191750 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 51.1 1,1-Dichloroethene 0.96 0.050 1.000 0 96.5 139 Trichloroethene (TCE) 0.89 0.050 1.000 0 89.5 70 130 93.4 70 Surr: Dibromofluoromethane 0.47 0.5000 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.8 70 130 Surr: Toluene-d8 0.47 0.5000 94.1 70 130 Surr: 4-Bromofluorobenzene 0.46 0.5000 92.9 70 130

Sample ID: 1910e04-002ams SampType: MS TestCode: EPA Method 8260B: Volatiles Client ID: SWMU 13-7 (0-0.5') Batch ID: A64063 RunNo: 64063 Prep Date: Analysis Date: 10/29/2019 SeqNo: 2191752 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** PQL LowLimit HighLimit Analyte Result Qual Benzene 0.59 0.015 0.5889 100 57.1 141 0.5889 0 99.2 70 0.58 0.029 130 Toluene 0.029 0.5889 0 95.7 70 Chlorobenzene 0.56 130 1,1-Dichloroethene 0.57 0.029 0.5889 0 96.8 38.5 141 Trichloroethene (TCE) 0.54 0.029 0.5889 0 92.5 70 130 Surr: Dibromofluoromethane 0.27 0.2944 91.3 70 130 Surr: 1,2-Dichloroethane-d4 70 0.28 0.2944 94.9 130 Surr: Toluene-d8 0.28 0.2944 96.3 70 130 Surr: 4-Bromofluorobenzene 0.26 0.2944 88.7 70 130

Sample ID: 1910e04-002amso	s SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: SWMU 13-7 (0-0.5	5') Batcl	h ID: A6	4063	F	RunNo: 6	4063				
Prep Date:	Analysis D	Date: 10	0/29/2019	8	SeqNo: 2	191753	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.56	0.015	0.5889	0	95.7	57.1	141	4.36	20	
Toluene	0.55	0.029	0.5889	0	94.0	70	130	5.44	20	
Chlorobenzene	0.55	0.029	0.5889	0	93.4	70	130	2.50	20	
1,1-Dichloroethene	0.54	0.029	0.5889	0	92.3	38.5	141	4.82	20	
Trichloroethene (TCE)	0.53	0.029	0.5889	0	89.5	70	130	3.27	20	
Surr: Dibromofluoromethane	0.28		0.2944		94.3	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.28		0.2944		94.0	70	130	0	0	
Surr: Toluene-d8	0.29		0.2944		98.2	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.28		0.2944		96.2	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 150 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910E04

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: rb1 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS	Batch	n ID: B6	4063	F	RunNo: 64	4063				
Prep Date:	Analysis D	oate: 10	/29/2019	8	SeqNo: 2	191776	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 151 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb1	SampT	Туре: МЕ	3LK	K TestCode: EPA Method 8260B: Volatiles						
Client ID: PBS	Batch	h ID: B6	4063	F	RunNo: 64	4063				ļ
Prep Date:	Analysis D)ate: 10)/29/2019	5	SeqNo: 2	.191776	Units: mg/K	ίg		I
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.55		0.5000		110	70	130			
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		96.2	70	130			
Surr: Toluene-d8	0.51		0.5000		102	70				
Surr: 4-Bromofluorobenzene	0.44		0.5000		87.4	70	130			
Sample ID: 100ng lcs2	SampT	Type: LC	;s	Tes	tCode: E	PA Method	1 8260B: Volat	tiles		
Client ID: LCSS	Batch	h ID: B6	4063	F	RunNo: 64	4063				

Qualifiers:

Chlorobenzene

Prep Date:

Analyte

Benzene

Toluene

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

Analysis Date: 10/29/2019

PQL

0.025

0.050

0.050

Result

1.0

0.94

0.87

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

SeqNo: 2191777

LowLimit

68

70

70

%REC

100

93.5

87.3

Units: mg/Kg

135

130

130

%RPD

HighLimit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

0

0

SPK value SPK Ref Val

1.000

1.000

1.000

Page 152 of 195

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 100ng lcs2 SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: **B64063** RunNo: 64063 Prep Date: Analysis Date: 10/29/2019 SeqNo: 2191777 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 51.1 1,1-Dichloroethene 0.96 0.050 1.000 0 95.9 139 Trichloroethene (TCE) 0.92 0.050 1.000 0 91.6 70 130 94.1 70 Surr: Dibromofluoromethane 0.47 0.5000 130 Surr: 1,2-Dichloroethane-d4 0.47 0.5000 93.3 70 130 Surr: Toluene-d8 0.48 0.5000 96.6 70 130 Surr: 4-Bromofluorobenzene 0.46 0.5000 92.5 70 130

Sample ID: 1910e04-024ams SampType: MS TestCode: EPA Method 8260B: Volatiles Client ID: SWMU 13-11 (2-3') Batch ID: **B64063** RunNo: 64063 Prep Date: Analysis Date: 10/30/2019 SeqNo: 2191779 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** PQL LowLimit HighLimit Analyte Result Qual Benzene 0.60 0.015 0.5992 101 57.1 141 0 92.6 70 0.55 0.030 0.5992 130 Toluene 0.030 0.5992 0 95.0 70 Chlorobenzene 0.57 130 1,1-Dichloroethene 0.57 0.030 0.5992 0 95.1 38.5 141 Trichloroethene (TCE) 0.54 0.030 0.5992 0 89.3 70 130 Surr: Dibromofluoromethane 0.28 0.2996 93.1 70 130 Surr: 1,2-Dichloroethane-d4 96.1 70 0.29 0.2996 130 Surr: Toluene-d8 0.28 0.2996 92.1 70 130 Surr: 4-Bromofluorobenzene 0.27 0.2996 89.4 130 70

Sample ID: 1910e04-024amsd	SampT	ype: MS	SD	TestCode: EPA Method 8260B: Volatiles						
Client ID: SWMU 13-11 (2-3')	Batch	ID: B6	4063	F	RunNo: 6	4063				
Prep Date:	Analysis D	ate: 10	/30/2019	S	SeqNo: 2	191780	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.57	0.015	0.5992	0	95.9	57.1	141	4.96	20	
Toluene	0.53	0.030	0.5992	0	89.2	70	130	3.73	20	
Chlorobenzene	0.55	0.030	0.5992	0	91.0	70	130	4.32	20	
1,1-Dichloroethene	0.55	0.030	0.5992	0	91.1	38.5	141	4.20	20	
Trichloroethene (TCE)	0.53	0.030	0.5992	0	88.8	70	130	0.520	20	
Surr: Dibromofluoromethane	0.29		0.2996		95.6	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.30		0.2996		101	70	130	0	0	
Surr: Toluene-d8	0.28		0.2996		94.1	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.27		0.2996		90.7	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 153 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: 48446 RunNo: 64109

Client ID: PBS	Batcl	h ID: 48	446	F	RunNo: 6	4109				
Prep Date: 10/29/2019	Analysis D	Date: 10	0/30/2019	;	SeqNo: 2	194198	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 154 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446	SampT	ype: MBLK	TestCode: EPA Method 8260B: Volatiles						
Client ID: PBS	Batcl	h ID: 48446		RunNo: 64109					
Prep Date: 10/29/2019	Analysis D	Date: 10/30/2019)	SeqNo: 219419	8 Units: mg/k	(g			
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC Lowl	Limit HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloropropene	ND	0.10							
Hexachlorobutadiene	ND	0.10							
2-Hexanone	ND	0.50							
Isopropylbenzene	ND	0.050							
4-Isopropyltoluene	ND	0.050							
4-Methyl-2-pentanone	ND	0.50							
Methylene chloride	ND	0.15							
n-Butylbenzene	ND	0.15							
n-Propylbenzene	ND	0.050							
sec-Butylbenzene	ND	0.050							
Styrene	ND	0.050							
tert-Butylbenzene	ND	0.050							
1,1,1,2-Tetrachloroethane	ND	0.050							
1,1,2,2-Tetrachloroethane	ND	0.050							
Tetrachloroethene (PCE)	ND	0.050							
trans-1,2-DCE	ND	0.050							
trans-1,3-Dichloropropene	ND	0.050							
1,2,3-Trichlorobenzene	ND	0.10							
1,2,4-Trichlorobenzene	ND	0.050							
1,1,1-Trichloroethane	ND	0.050							
1,1,2-Trichloroethane	ND	0.050							
Trichloroethene (TCE)	ND	0.050							
Trichlorofluoromethane	ND	0.050							
1,2,3-Trichloropropane	ND	0.10							
Vinyl chloride	ND	0.050							
Xylenes, Total	ND	0.10							
Surr: Dibromofluoromethane	0.54	0.5	000	107	70 130				
Surr: 1,2-Dichloroethane-d4	0.46	0.5	000	93.0	70 130				
Surr: Toluene-d8	0.49	0.50	000	98.5	70 130				
Surr: 4-Bromofluorobenzene	0.46	0.50	000	92.1	70 130				
Comple ID: les 49446	Campī	Typo: LCS	To	TootCodo: EDA Mothad 9260D: Valatilas					

Sample ID: Ics-48446	SampType: LCS				tCode: El	iles				
Client ID: LCSS	Batcl	n ID: 484	146	F	RunNo: 64	4109				
Prep Date: 10/29/2019	Analysis D	ate: 10	/30/2019	S	SeqNo: 2194199 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	98.8	68	135			
Toluene	0.96	0.050	1.000	0	95.8	70	130			
	0.00	0.000		-		_				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 155 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48446 Client ID: LCSS	·	Type: LC h ID: 48 4			tCode: El		8260B: Vola	tiles		
Prep Date: 10/29/2019	Analysis D	Date: 10	/30/2019	5	SeqNo: 2	194199	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.94	0.050	1.000	0	93.8	51.1	139			
Trichloroethene (TCE)	0.94	0.050	1.000	0	93.9	70	130			
Surr: Dibromofluoromethane	0.48		0.5000		95.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.4	70	130			
Surr: Toluene-d8	0.48		0.5000		95.6	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		88.7	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910E04

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: 100ng lcs	SampT	ype: LC	S	TestCode: EPA Method 8260B: VOLATILES								
Client ID: LCSW	Batch	n ID: R6	4075	F	RunNo: 6	4075						
Prep Date:	Analysis D	Analysis Date: 10/29/2019			SeqNo: 2	192371	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	19	1.0	20.00	0	96.5	70	130					
Toluene	19	1.0	20.00	0	93.8	70	130					
Chlorobenzene	20	1.0	20.00	0	99.5	70	130					
1,1-Dichloroethene	17	1.0	20.00	0	84.9	70	130					
Trichloroethene (TCE)	17	1.0	20.00	0	84.3	70	130					
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.1	70	130					
Surr: 4-Bromofluorobenzene	9.1		10.00		90.9	70	130					
Surr: Dibromofluoromethane	10		10.00		101	70	130					
Surr: Toluene-d8	9.9		10.00		99.1	70	130					

Sample ID: rb	SampTy	/pe: ME	BLK	Test							
Client ID: PBW	Batch	ID: R6	4075	R	RunNo: 6	4075					
Prep Date:	Date: Analysis Date: 10/29/2019				SeqNo: 2	192402	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									

Toluene	ND	1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0
2-Chlorotoluene	ND	1.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 157 of 195

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1910E04

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: rb

Client ID: PBW RunNo: **64075** Batch ID: R64075

TestCode: EPA Method 8260B: VOLATILES

Analysis Data: 40/20/2040

Prep Date:	Analysis [Date: 10	0/29/2019	5	SeqNo: 2	192402	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
-,=,=										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 158 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb Client ID: PBW	·	SampType: MBLK Batch ID: R64075			tCode: El	PA Method	ATILES			
Prep Date:		Analysis Date: 10/29/2019			SeqNo: 2192402 Units: μg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.4	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		93.8	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.0	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS Batch ID: 48455 RunNo: 64136

Ciletti ID. PB3	Balcii ID. 46433		г	Kuriino. 6 4	4130					
Prep Date: 10/29/2019	Analysis D	Date: 10	0/31/2019	5	SeqNo: 2	194553	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	0.16	0.40								J
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3'-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								
-										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 160 of 195

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48455

Client ID: **PBS** Batch ID: **48455** RunNo: **64136**

TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS	Batci	1 ID: 48	455	ŀ	Runno: 6	4136					
Prep Date: 10/29/2019	Analysis D	Date: 10	0/31/2019	;	SeqNo: 2	194553	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2,4-Dinitrotoluene	ND	0.50									
2,6-Dinitrotoluene	ND	0.50									
Fluoranthene	ND	0.20									
Fluorene	ND	0.20									
Hexachlorobenzene	ND	0.20									
Hexachlorobutadiene	ND	0.20									
Hexachlorocyclopentadiene	ND	0.20									
Hexachloroethane	ND	0.20									
Indeno(1,2,3-cd)pyrene	ND	0.20									
Isophorone	ND	0.40									
1-Methylnaphthalene	ND	0.20									
2-Methylnaphthalene	ND	0.20									
2-Methylphenol	ND	0.40									
3+4-Methylphenol	ND	0.20									
N-Nitrosodi-n-propylamine	ND	0.20									
N-Nitrosodiphenylamine	ND	0.20									
Naphthalene	ND	0.20									
2-Nitroaniline	ND	0.20									
3-Nitroaniline	ND	0.20									
4-Nitroaniline	ND	0.40									
Nitrobenzene	ND	0.40									
2-Nitrophenol	ND	0.20									
4-Nitrophenol	ND	0.25									
Pentachlorophenol	ND	0.40									
Phenanthrene	ND	0.20									
Phenol	ND	0.20									
Pyrene	ND	0.20									
Pyridine	ND	0.40									
1,2,4-Trichlorobenzene	ND	0.20									
2,4,5-Trichlorophenol	ND	0.20									
2,4,6-Trichlorophenol	ND	0.20									
Surr: 2-Fluorophenol	2.3		3.330		69.5	26.7	85.9				
Surr: Phenol-d5	2.4		3.330		71.3	18.5	101				
Surr: 2,4,6-Tribromophenol	2.2		3.330		66.0	35.8	85.6				
Surr: Nitrobenzene-d5	1.2		1.670		74.7	40.8	95.2				
Surr: 2-Fluorobiphenyl	1.2		1.670		69.1	34.7	85.2				
Surr: 4-Terphenyl-d14	1.5		1.670		90.2	37.4	91.3				

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 161 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48455	SampT	ype: LC	S	Tes	tCode: El	PA Method	8270C: Sem	volatiles		
Client ID: LCSS	Batch	n ID: 484	455	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	5	SeqNo: 2194554 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.3	0.20	1.670	0	75.4	46	89.5			
4-Chloro-3-methylphenol	2.6	0.50	3.330	0	78.8	44.1	101			
2-Chlorophenol	2.5	0.20	3.330	0	74.9	47	91			
1,4-Dichlorobenzene	1.2	0.20	1.670	0	72.1	41.4	85.8			
2,4-Dinitrotoluene	1.1	0.50	1.670	0	65.5	37.4	82			
N-Nitrosodi-n-propylamine	1.4	0.20	1.670	0	86.6	47.8	92.9			
4-Nitrophenol	2.4	0.25	3.330	0	71.5	45	94.3			
Pentachlorophenol	2.0	0.40	3.330	0	60.3	31.7	76.9			
Phenol	2.9	0.20	3.330	0	87.0	49.4	92.5			
Pyrene	1.2	0.20	1.670	0	69.1	52.9	82.7			
1,2,4-Trichlorobenzene	1.2	0.20	1.670	0	71.1	43.6	98.1			
Surr: 2-Fluorophenol	2.3		3.330		68.5	26.7	85.9			
Surr: Phenol-d5	2.5		3.330		74.8	18.5	101			
Surr: 2,4,6-Tribromophenol	2.4		3.330		70.7	35.8	85.6			
Surr: Nitrobenzene-d5	1.3		1.670		78.1	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		73.2	34.7	85.2			
Surr: 4-Terphenyl-d14	1.3		1.670		76.0	37.4	91.3			

Sample ID: mb-48494	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 484	494	F	RunNo: 6	4211				
Prep Date: 10/30/2019	Analysis D	ate: 11	/4/2019	8	SeqNo: 2	197233	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 162 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48494 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS Batch ID: 48494 RunNo: 64211

Client ID: PBS	Batch	ID: 484	494	F	RunNo: 6	4211				
Prep Date: 10/30/2019	Analysis D	ate: 11	/4/2019	5	SeqNo: 2	197233	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	0.25	0.40								J
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3'-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								
2,4-Dinitrotoluene	ND	0.50								
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
• •										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 163 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48494	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBS	Batch	1D: 48 4	194	F	RunNo: 6	4211				
Prep Date: 10/30/2019	Analysis Date: 11/4/2019		5	SeqNo: 2	197233	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.3		3.330		68.2	26.7	85.9			
Surr: Phenol-d5	2.3		3.330		70.0	18.5	101			
Surr: 2,4,6-Tribromophenol	2.3		3.330		68.6	35.8	85.6			
Surr: Nitrobenzene-d5	1.3		1.670		77.8	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		69.2	34.7	85.2			
Surr: 4-Terphenyl-d14	1.4		1.670		81.1	37.4	91.3			

Sample ID: Ics-48494	SampT	ype: LC	S	TestCode: EPA Method 8270C: Semivolatil						
Client ID: LCSS	Batch	n ID: 484	494	F	RunNo: 64	4211				
Prep Date: 10/30/2019	Analysis Date: 11/4/2019			S	SeqNo: 2197234 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.4	0.20	1.670	0	82.8	46	89.5			
4-Chloro-3-methylphenol	2.8	0.50	3.330	0	84.3	44.1	101			
2-Chlorophenol	2.4	0.20	3.330	0	71.9	47	91			
1,4-Dichlorobenzene	1.2	0.20	1.670	0	71.4	41.4	85.8			
2,4-Dinitrotoluene	1.2	0.50	1.670	0	74.8	37.4	82			
N-Nitrosodi-n-propylamine	1.4	0.20	1.670	0	82.5	47.8	92.9			
4-Nitrophenol	2.6	0.25	3.330	0	77.0	45	94.3			
Pentachlorophenol	2.2	0.40	3.330	0	64.6	31.7	76.9			
Phenol	2.6	0.20	3.330	0	79.2	49.4	92.5			
Pyrene	1.3	0.20	1.670	0	77.8	52.9	82.7			
1,2,4-Trichlorobenzene	1.2	0.20	1.670	0	74.0	43.6	98.1			
Surr: 2-Fluorophenol	2.2		3.330		65.5	26.7	85.9			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Page 164 of 195

D Sample Diluted Due to Matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48494 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS Batch ID: 48494 RunNo: 64211

Prep Date: 10/30/2019 Analysis Date: 11/4/2019 SeqNo: 2197234 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

ı	7 11 101 1 10		. ~-	O	,		·g=	
	Surr: Phenol-d5	2.4		3.330	71.9	18.5	101	
	Surr: 2,4,6-Tribromophenol	2.5		3.330	76.2	35.8	85.6	
	Surr: Nitrobenzene-d5	1.3		1.670	79.2	40.8	95.2	
	Surr: 2-Fluorobiphenyl	1.3		1.670	77.1	34.7	85.2	
	Surr: 4-Terphenyl-d14	1.4		1.670	83.8	37.4	91.3	

Sample ID: 1910E04-003Ams SampType: MS TestCode: EPA Method 8270C: Semivolatiles

Client ID: SWMU 13-7 (1.5-2') Batch ID: 48494 RunNo: 64211

Prep Date: 10/30/2019 Analysis Date: 11/4/2019 SeqNo: 2197236 Units: mg/Kg

Analysis D	Date: 1 1	1/4/2019	SeqNo: 2197236		Units: mg/Kg				
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0.99	0.20	1.653	0	59.9	28	113			
2.3	0.49	3.296	0	69.6	28.8	121			
2.0	0.20	3.296	0	59.5	15.4	115			
0.66	0.20	1.653	0	39.9	15	107			
1.1	0.49	1.653	0	68.6	29.9	100			
1.1	0.20	1.653	0	66.5	23.5	120			
2.4	0.25	3.296	0	71.3	42.3	125			
1.8	0.40	3.296	0	55.7	23.4	114			
2.2	0.20	3.296	0	67.2	16.3	117			
0.78	0.20	1.653	0	47.0	34.2	122			
0.81	0.20	1.653	0	48.8	16.3	117			
1.6		3.296		47.4	26.7	85.9			
2.0		3.296		59.6	18.5	101			
2.0		3.296		59.3	35.8	85.6			
0.98		1.653		59.1	40.8	95.2			
0.83		1.653		50.1	34.7	85.2			
1.1		1.653		69.2	37.4	91.3			
	Result 0.99 2.3 2.0 0.66 1.1 1.1 2.4 1.8 2.2 0.78 0.81 1.6 2.0 2.0 0.98 0.83	Result PQL 0.99 0.20 2.3 0.49 2.0 0.20 0.66 0.20 1.1 0.49 1.1 0.20 2.4 0.25 1.8 0.40 2.2 0.20 0.78 0.20 0.81 0.20 1.6 2.0 2.0 0.98 0.83 0.83	Result PQL SPK value 0.99 0.20 1.653 2.3 0.49 3.296 0.66 0.20 1.653 1.1 0.49 1.653 1.1 0.49 1.653 2.4 0.25 3.296 1.8 0.40 3.296 2.2 0.20 3.296 0.78 0.20 1.653 1.6 3.296 2.0 3.296 2.0 3.296 2.0 3.296 0.98 1.653 0.83 1.653	Result PQL SPK value SPK Ref Val 0.99 0.20 1.653 0 2.3 0.49 3.296 0 2.0 0.20 3.296 0 0.66 0.20 1.653 0 1.1 0.49 1.653 0 1.1 0.20 1.653 0 2.4 0.25 3.296 0 1.8 0.40 3.296 0 2.2 0.20 3.296 0 0.78 0.20 1.653 0 0.81 0.20 1.653 0 1.6 3.296 0 2.0 3.296 0 2.0 3.296 0 2.0 3.296 0 0.98 1.653 0 0.83 1.653 0	Result PQL SPK value SPK Ref Val %REC 0.99 0.20 1.653 0 59.9 2.3 0.49 3.296 0 69.6 2.0 0.20 3.296 0 59.5 0.66 0.20 1.653 0 39.9 1.1 0.49 1.653 0 68.6 1.1 0.20 1.653 0 66.5 2.4 0.25 3.296 0 71.3 1.8 0.40 3.296 0 55.7 2.2 0.20 3.296 0 67.2 0.78 0.20 1.653 0 47.0 0.81 0.20 1.653 0 48.8 1.6 3.296 47.4 59.6 2.0 3.296 59.6 59.3 0.98 1.653 59.1 0.83 1.653 50.1	Result PQL SPK value SPK Ref Val %REC LowLimit 0.99 0.20 1.653 0 59.9 28 2.3 0.49 3.296 0 69.6 28.8 2.0 0.20 3.296 0 59.5 15.4 0.66 0.20 1.653 0 39.9 15 1.1 0.49 1.653 0 68.6 29.9 1.1 0.20 1.653 0 66.5 23.5 2.4 0.25 3.296 0 71.3 42.3 1.8 0.40 3.296 0 55.7 23.4 2.2 0.20 3.296 0 67.2 16.3 0.78 0.20 1.653 0 47.0 34.2 0.81 0.20 1.653 0 48.8 16.3 1.6 3.296 59.6 18.5 2.0 3.296 59.6 18.5 2.0	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.99 0.20 1.653 0 59.9 28 113 2.3 0.49 3.296 0 69.6 28.8 121 2.0 0.20 3.296 0 59.5 15.4 115 0.66 0.20 1.653 0 39.9 15 107 1.1 0.49 1.653 0 68.6 29.9 100 1.1 0.20 1.653 0 66.5 23.5 120 2.4 0.25 3.296 0 71.3 42.3 125 1.8 0.40 3.296 0 55.7 23.4 114 2.2 0.20 3.296 0 67.2 16.3 117 0.78 0.20 1.653 0 47.0 34.2 122 0.81 0.20 1.653 0 47.4 26.7 85.9	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.99 0.20 1.653 0 59.9 28 113 2.3 0.49 3.296 0 69.6 28.8 121 2.0 0.20 3.296 0 59.5 15.4 115 0.66 0.20 1.653 0 39.9 15 107 1.1 0.49 1.653 0 68.6 29.9 100 1.1 0.20 1.653 0 66.5 23.5 120 2.4 0.25 3.296 0 71.3 42.3 125 1.8 0.40 3.296 0 55.7 23.4 114 2.2 0.20 3.296 0 67.2 16.3 117 0.78 0.20 1.653 0 47.0 34.2 122 0.81 0.20 1.653 0 48.8 16.3	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.99 0.20 1.653 0 59.9 28 113 2.3 0.49 3.296 0 69.6 28.8 121 2.0 0.20 3.296 0 59.5 15.4 115 0.66 0.20 1.653 0 39.9 15 107 1.1 0.49 1.653 0 68.6 29.9 100 1.1 0.20 1.653 0 66.5 23.5 120 2.4 0.25 3.296 0 71.3 42.3 125 1.8 0.40 3.296 0 55.7 23.4 114 2.2 0.20 3.296 0 67.2 16.3 117 0.78 0.20 1.653 0 47.0 34.2 122 0.81 0.20 1.653 0 48.8<

Sample ID: 1910E04-003Amsd SampType: MSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: **SWMU 13-7 (1.5-2')** Batch ID: **48494** RunNo: **64211**

Prep Date: 10/30/2019	Analysis Date: 11/4/2019			SeqNo: 2197237 Units: mg/Kg				(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.2	0.20	1.661	0	70.0	28	113	16.0	33.1	
4-Chloro-3-methylphenol	2.5	0.50	3.311	0	74.0	28.8	121	6.67	39	
2-Chlorophenol	2.3	0.20	3.311	0	68.3	15.4	115	14.2	27.1	
1,4-Dichlorobenzene	0.78	0.20	1.661	0	46.7	15	107	16.2	26.3	
2,4-Dinitrotoluene	1.2	0.50	1.661	0	70.1	29.9	100	2.65	51.5	
N-Nitrosodi-n-propylamine	1.2	0.20	1.661	0	72.9	23.5	120	9.68	22.8	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 165 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 1910E04-003Amsd SampType: MSD TestCode: EPA Method 8270C: Semivolatiles Client ID: SWMU 13-7 (1.5-2') Batch ID: 48494 RunNo: 64211 Prep Date: 10/30/2019 Analysis Date: 11/4/2019 SeqNo: 2197237 Units: mg/Kg PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual 4-Nitrophenol 2.4 0.25 3.311 0 73.1 42.3 125 2.89 52.9 Pentachlorophenol 1.9 0.40 3.311 0 57.7 23.4 114 4.12 52.1 0.20 0 74.9 16.3 Phenol 2.5 3.311 117 11.4 28.8 Pyrene 0.96 0.20 1.661 0 57.9 34.2 122 21.3 37.1 1,2,4-Trichlorobenzene 0.99 0.20 1.661 0 59.5 16.3 117 20.3 28.4 Surr: 2-Fluorophenol 1.9 58.4 26.7 85.9 0 0 3.311 Surr: Phenol-d5 2.2 3.311 65.8 18.5 101 0 0 Surr: 2,4,6-Tribromophenol 2.0 3.311 59.6 35.8 85.6 0 O Surr: Nitrobenzene-d5 1.2 1.661 73.4 40.8 95.2 0 0 Surr: 2-Fluorobiphenyl 0.97 58.5 34.7 85.2 0 0 1.661 Surr: 4-Terphenyl-d14 1.661 73.0 37.4 91.3 0 1.2

Sample ID: MB-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBS Batch ID: 48455 RunNo: 64267 Prep Date: 10/29/2019 Analysis Date: 11/6/2019 SeqNo: 2199506 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Acenaphthene 0.030 0.20 ND 0.20 Acenaphthylene Aniline ND 0.20 Anthracene ND 0.20 Azobenzene ND 0.20 Benz(a)anthracene ND 0.20 Benzo(a)pyrene ND 0.20 Benzo(b)fluoranthene ND 0.20 Benzo(g,h,i)perylene ND 0.20 Benzo(k)fluoranthene ND 0.20 Benzoic acid ND 0.50 Benzyl alcohol 0.015 0.20 J ND Bis(2-chloroethoxy)methane 0.20 Bis(2-chloroethyl)ether ND 0.20 Bis(2-chloroisopropyl)ether ND 0.20 Bis(2-ethylhexyl)phthalate 0.14 0.50 ND 4-Bromophenyl phenyl ether 0.20 Butyl benzyl phthalate ND 0.20 0.20 Carbazole ND 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 166 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48455 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles PBS Client ID: Batch ID: 48455 RunNo: 64267 Prep Date: 10/29/2019 Analysis Date: 11/6/2019 SeqNo: 2199506 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 ND 0.20 Chrysene Di-n-butyl phthalate 0.18 0.40 J Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 Dibenzofuran ND 0.20 1,2-Dichlorobenzene ND 0.20 1,3-Dichlorobenzene ND 0.20 ND 0.20 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine ND 0.25 Diethyl phthalate 0.20 0.11 0.036 0.20 Dimethyl phthalate 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 ND 2,4-Dinitrophenol 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene ND 0.20 ND Fluorene 0.20 Hexachlorobenzene ND 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 Hexachloroethane ND 0.20 ND 0.20 Indeno(1,2,3-cd)pyrene Isophorone ND 0.40 ND 1-Methylnaphthalene 0.20 2-Methylnaphthalene ND 0.20 2-Methylphenol ND 0.40 3+4-Methylphenol ND 0.20 ND N-Nitrosodi-n-propylamine 0.20 0.030 N-Nitrosodiphenylamine 0.20 0.20 Naphthalene ND 2-Nitroaniline ND 0.20 3-Nitroaniline 0.019 0.20 4-Nitroaniline ND 0.40 Nitrobenzene ND 0.40 2-Nitrophenol ND 0.20

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 167 of 195

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48455	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 484	455	F	RunNo: 64	4267				
Prep Date: 10/29/2019	Analysis D	ate: 11	1/6/2019	\$	SeqNo: 2	199506	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	0.0082	0.20								J
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.6		3.330		76.8	26.7	85.9			
Surr: Phenol-d5	2.6		3.330		79.5	18.5	101			
Surr: 2,4,6-Tribromophenol	1.7		3.330		52.3	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		71.3	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.0		1.670		59.7	34.7	85.2			
Surr: 4-Terphenyl-d14	1.4		1.670		85.6	37.4	91.3			

Client ID: PBS	Batch	n ID: 484	494	RunNo: 64267						
Prep Date: 10/30/2019	Analysis D)ate: 11	/6/2019	SeqNo: 2199507			Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	0.0015	0.20								J
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	0.017	0.20								J
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	0.15	0.50								J
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Sample ID: MB-48494

B Analyte detected in the associated Method Blank

TestCode: EPA Method 8270C: Semivolatiles

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 168 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48494 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles PBS Client ID: Batch ID: 48494 RunNo: 64267 Prep Date: 10/30/2019 Analysis Date: 11/6/2019 SeqNo: 2199507 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Carbazole ND 0.20 4-Chloro-3-methylphenol 0.0054 0.50 J 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether 0.012 0.20 J Chrysene ND 0.20 Di-n-butyl phthalate 0.24 0.40 J Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 Dibenzofuran ND 0.20 ND 0.20 1,2-Dichlorobenzene ND 0.20 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 0.20 3,3'-Dichlorobenzidine ND 0.25 Diethyl phthalate 0.11 0.20 J 0.035 Dimethyl phthalate 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene ND 0.20 Fluorene 0.027 0.20 J ND 0.20 Hexachlorobenzene Hexachlorobutadiene ND 0.20 ND Hexachlorocyclopentadiene 0.20 Hexachloroethane ND 0.20 ND 0.20 Indeno(1,2,3-cd)pyrene Isophorone ND 0.40 ND 1-Methylnaphthalene 0.20 2-Methylnaphthalene ND 0.20 2-Methylphenol 0.40 ND 3+4-Methylphenol ND 0.20 N-Nitrosodi-n-propylamine ND 0.20 N-Nitrosodiphenylamine ND 0.20 Naphthalene ND 0.20 2-Nitroaniline ND 0.20

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 169 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48494	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 484	494	F	RunNo: 6	4267				
Prep Date: 10/30/2019	Analysis D	Date: 11	/6/2019	\$	SeqNo: 2	199507	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
3-Nitroaniline	0.029	0.20								J
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	0.015	0.20								J
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.5		3.330		75.8	26.7	85.9			
Surr: Phenol-d5	2.7		3.330		82.1	18.5	101			
Surr: 2,4,6-Tribromophenol	1.7		3.330		50.7	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		73.2	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.1		1.670		64.5	34.7	85.2			
Surr: 4-Terphenyl-d14	1.2		1.670		72.7	37.4	91.3			

Sample ID: MB-48536	SampT	уре: МЕ	BLK	Tes	tCode: El	volatiles				
Client ID: PBS	Batch	n ID: 48	536	F	RunNo: 6	4267				
Prep Date: 11/1/2019	Analysis D	Analysis Date: 11/6/2019			SeqNo: 2	199508	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	0.00064	0.20								J
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	0.014	0.20								J
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 170 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48536 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBS Batch ID: 48536 RunNo: 64267 Prep Date: 11/1/2019 Analysis Date: 11/6/2019 SeqNo: 2199508 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Bis(2-chloroisopropyl)ether ND 0.20 Bis(2-ethylhexyl)phthalate 0.14 0.50 J 4-Bromophenyl phenyl ether ND 0.20 Butyl benzyl phthalate ND 0.20 Carbazole ND 0.20 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 ND 0.20 Chrysene 0.20 0.40 J Di-n-butyl phthalate ND 0.40 Di-n-octyl phthalate Dibenz(a,h)anthracene ND 0.20 Dibenzofuran ND 0.20 1,2-Dichlorobenzene ND 0.20 ND 1,3-Dichlorobenzene 0.20 1,4-Dichlorobenzene ND 0.20 3,3'-Dichlorobenzidine ND 0.25 Diethyl phthalate 0.12 0.20 ND Dimethyl phthalate 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 ND Fluoranthene 0.20 Fluorene ND 0.20 ND 0.20 Hexachlorobenzene Hexachlorobutadiene ND 0.20 ND Hexachlorocyclopentadiene 0.20 Hexachloroethane ND 0.20 0.20 Indeno(1,2,3-cd)pyrene ND Isophorone ND 0.40 1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.20 2-Methylphenol ND 0.40 3+4-Methylphenol ND 0.20

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 171 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48536	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles	:S						
Client ID: PBS	Batch	n ID: 48	536	F	RunNo: 64	4267									
Prep Date: 11/1/2019	Analysis D	oate: 11	1/6/2019	\$	SeqNo: 2	199508	Units: mg/K	(g							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
N-Nitrosodi-n-propylamine	ND	0.20													
N-Nitrosodiphenylamine	ND	0.20													
Naphthalene	ND	0.20													
2-Nitroaniline	ND	0.20													
3-Nitroaniline	0.028	0.20								J					
4-Nitroaniline	ND	0.40													
Nitrobenzene	ND	0.40													
2-Nitrophenol	ND	0.20													
4-Nitrophenol	ND	0.25													
Pentachlorophenol	ND	0.40													
Phenanthrene	ND	0.20													
Phenol	0.0044	0.20								J					
Pyrene	ND	0.20													
Pyridine	ND	0.40													
1,2,4-Trichlorobenzene	ND	0.20													
2,4,5-Trichlorophenol	ND	0.20													
2,4,6-Trichlorophenol	ND	0.20													
Surr: 2-Fluorophenol	2.1		3.330		63.6	26.7	85.9								
Surr: Phenol-d5	2.2		3.330		67.0	18.5	101								
Surr: 2,4,6-Tribromophenol	1.6		3.330		48.6	35.8	85.6								
Surr: Nitrobenzene-d5	1.1		1.670		63.0	40.8	95.2								
Surr: 2-Fluorobiphenyl	0.90		1.670		54.0	34.7	85.2								
Surr: 4-Terphenyl-d14	0.98		1.670		58.6	37.4	91.3								
Sample ID: mb-48536	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8270C: Semivolatiles										

· ·											
Client ID: PBS	Batch	n ID: 48	536	R	RunNo: 64	4325					
Prep Date: 11/1/2019	Analysis D	ate: 11	1/7/2019	S	SeqNo: 2201376 Units: m			ı/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	ND	0.20									
Acenaphthylene	ND	0.20									
Aniline	ND	0.20									
Anthracene	ND	0.20									
Azobenzene	ND	0.20									
Benz(a)anthracene	ND	0.20									
Benzo(a)pyrene	ND	0.20									
Benzo(b)fluoranthene	ND	0.20									
Benzo(g,h,i)perylene	ND	0.20									
Benzo(k)fluoranthene	ND	0.20									

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 172 of 195

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48536

Client ID: PBS	Batch	ID: 485	36	F	RunNo: 6	4325				
Prep Date: 11/1/2019	Analysis D	ate: 11	/7/2019	5	SeqNo: 2	201376	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	0.22	0.40								J
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3'-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								
2,4-Dinitrotoluene	ND	0.50								
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								

TestCode: EPA Method 8270C: Semivolatiles

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 173 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48536	SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles									
Client ID: PBS	Batch	ID: 48	536	F	RunNo: 64	4325				
Prep Date: 11/1/2019	Analysis D	ate: 11	/7/2019	\$	SeqNo: 22	201376	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.2		3.330		65.2	26.7	85.9			
Surr: Phenol-d5	2.3		3.330		68.3	18.5	101			
Surr: 2,4,6-Tribromophenol	2.3		3.330		69.8	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		71.0	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		72.0	34.7	85.2			
Surr: 4-Terphenyl-d14	1.1		1.670		65.8	37.4	91.3			

Sample ID: Ics-48536	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS	Batch	1D: 48	536	F	RunNo: 64325					
Prep Date: 11/1/2019	Analysis D	ate: 11	/7/2019	8	SeqNo: 2	201377	Units: mg/K			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.2	0.20	1.670	0	73.9	46	89.5			
4-Chloro-3-methylphenol	2.7	0.50	3.330	0	80.7	44.1	101			
2-Chlorophenol	2.2	0.20	3.330	0	67.4	47	91			
1,4-Dichlorobenzene	1.1	0.20	1.670	0	64.7	41.4	85.8			
2,4-Dinitrotoluene	1.1	0.50	1.670	0	63.5	37.4	82			
N-Nitrosodi-n-propylamine	1.2	0.20	1.670	0	71.2	47.8	92.9			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 174 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48536	SampType: LCS			Tes	tCode: EF	PA Method	8270C: Semi	volatiles		
Client ID: LCSS	Batch	Batch ID: 48536			RunNo: 64					
Prep Date: 11/1/2019	Analysis Date: 11/7/2019			S	SeqNo: 22	201377	Units: mg/K	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Nitrophenol	2.5	0.25	3.330	0	73.8	45	94.3			
Pentachlorophenol	2.3	0.40	3.330	0	69.9	31.7	76.9			
Phenol	2.4	0.20	3.330	0	70.9	49.4	92.5			
Pyrene	1.3	0.20	1.670	0	75.3	52.9	82.7			
1,2,4-Trichlorobenzene	1.2	0.20	1.670	0	73.4	43.6	98.1			
Surr: 2-Fluorophenol	2.1		3.330		62.1	26.7	85.9			
Surr: Phenol-d5	2.2		3.330		67.2	18.5	101			
Surr: 2,4,6-Tribromophenol	2.5		3.330		76.3	35.8	85.6			
Surr: Nitrobenzene-d5	1.3		1.670		75.3	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		74.2	34.7	85.2			
Surr: 4-Terphenyl-d14	1.2		1.670		72.6	37.4	91.3			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 48439 RunNo: 64136

Client ID: PBW	Batch ID: 48439		۲	kunNo: 64	4136	36				
Prep Date: 10/29/2019	Analysis D	Date: 10)/31/2019	5	SeqNo: 21	194544	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 176 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 48439 RunNo: 64136

Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194544 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Prep Date: 10/29/2019	Analysis D	Date: 10)/31/2019	\$	SeqNo: 2	194544	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	130		200.0		66.6	15	101			
Surr: Phenol-d5	99		200.0		49.5	15	84.6			
Surr: 2,4,6-Tribromophenol	170		200.0		84.1	27.8	112			
Surr: Nitrobenzene-d5	93		100.0		92.9	33	113			
Surr: 2-Fluorobiphenyl	83		100.0		83.1	26.6	107			
Surr: 4-Terphenyl-d14	62		100.0		61.9	18.7	148			
					2					

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 177 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48439	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles										
Client ID: LCSW	Batch	n ID: 484	439	F	RunNo: 64136						
Prep Date: 10/29/2019	Analysis D	oate: 10)/31/2019	8	SeqNo: 2	194545	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	85	10	100.0	0	84.9	32.2	94				
4-Chloro-3-methylphenol	180	10	200.0	0	88.4	37.7	101				
2-Chlorophenol	170	10	200.0	0	83.6	32.6	90.1				
1,4-Dichlorobenzene	79	10	100.0	0	79.2	30	87.2				
2,4-Dinitrotoluene	72	10	100.0	0	72.2	35.9	85.8				
N-Nitrosodi-n-propylamine	97	10	100.0	0	97.0	37.1	108				
4-Nitrophenol	94	10	200.0	0	47.2	22.4	86.6				
Pentachlorophenol	140	20	200.0	0	70.0	31.6	91				
Phenol	110	10	200.0	0	57.2	21.7	84.9				
Pyrene	80	10	100.0	0	80.4	46.3	103				
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	30.2	88.3				
Surr: 2-Fluorophenol	130		200.0		66.0	15	101				
Surr: Phenol-d5	100		200.0		51.5	15	84.6				
Surr: 2,4,6-Tribromophenol	160		200.0		80.3	27.8	112				
Surr: Nitrobenzene-d5	91		100.0		91.3	33	113				
Surr: 2-Fluorobiphenyl	81		100.0		81.1	26.6	107				
Surr: 4-Terphenyl-d14	59		100.0		58.7	18.7	148				

Sample ID: Icsd-48439	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSS02	Batch	1D: 48 4	439	F	RunNo: 6	4136				
Prep Date: 10/29/2019	Analysis D	ate: 10	/31/2019	5	SeqNo: 2	194546	Units: µg/L			3 3 3 3 3 3 3 3 3
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	84	10	100.0	0	84.3	32.2	94	0.709	32.9	
4-Chloro-3-methylphenol	170	10	200.0	0	86.7	37.7	101	1.92	29.9	
2-Chlorophenol	160	10	200.0	0	80.9	32.6	90.1	3.33	28.5	
1,4-Dichlorobenzene	75	10	100.0	0	75.1	15	87.2	5.36	44.9	
2,4-Dinitrotoluene	77	10	100.0	0	77.1	35.9	85.8	6.51	28.5	
N-Nitrosodi-n-propylamine	92	10	100.0	0	92.3	37.1	108	4.97	29.9	
4-Nitrophenol	100	10	200.0	0	50.6	15	86.6	6.96	68	
Pentachlorophenol	140	20	200.0	0	68.3	31.6	91	2.40	39.5	
Phenol	110	10	200.0	0	53.0	15	84.9	7.69	44.2	
Pyrene	78	10	100.0	0	78.3	46.3	103	2.65	23.8	
1,2,4-Trichlorobenzene	75	10	100.0	0	75.4	15.7	88.3	3.31	38	
Surr: 2-Fluorophenol	120		200.0		61.9	15	101	0	0	
Surr: Phenol-d5	93		200.0		46.7	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	160		200.0		78.3	27.8	112	0	0	
Surr: Nitrobenzene-d5	92		100.0		92.3	33	113	0	0	
Surr: 2-Fluorobiphenyl	81		100.0		80.9	26.6	107	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 178 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Icsd-48439 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 48439 RunNo: 64136

Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194546 Units: μg/L

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 4-Terphenyl-d14 58 100.0 57.7 18.7 148 0 0

Client ID: PBW Batch ID: 48439 RunNo: 64213 Prep Date: 10/29/2019 Analysis Date: 11/4/2019 SeqNo: 2197264 Units: µg/L	Sample ID: MB-48439	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles						
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Acenaphthene ND 10 4	Client ID: PBW	Batch	ID: 48	439	F	RunNo: 6	4213				
Acenaphthene	Prep Date: 10/29/2019	Analysis D	ate: 11	1/4/2019	S	SeqNo: 2	197264	Units: µg/L			
Acenaphthylene ND 10 Anilina ND 10 Anilhracene ND 10 Azobenzene ND 10 Benza(a)anthracene ND 10 Benza(a)prene ND 10 Benza(phi)perplene ND 10 Benzy alpohalo 0.85 10 Benzy alpohalo 0.85 10 Bis(2-chloredry)pethene ND 10 Bis(2-chloredry)pether ND 10 Bis(2-chloredry)phthalate 4.1 10 Butyl benzyl phthalate ND 10 4-Chlorophenyl phenyl ether ND 10 4-Chlorophenyl phenyl ether ND 10 4-Chlorophenol	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aniline ND 10 Anthracene ND 10 Anthracene ND 10 Anthracene ND 10 Benzo(a)prine ND 10 Benzo(b)fluoranthene ND 10 Benzo(b)fluoranthene ND 10 Benzo(b)fluoranthene ND 10 Benzo(b)fluoranthene ND 10 Benzo(aid ND 20 Benzol acid ND 20 Benzol acid ND 10 Bis(2-chlorenthay)methane ND 10 Carbazole ND 10 Carba	Acenaphthene	ND	10								
Anthracene ND 10 Azobenzene ND 10 Benz(a)anthracene ND 10 Benzo(a)pryene ND 10 Benzo(b)fluoranthene ND 10 BisiQ-chlorothoxy)methane ND 10 BisiQ-chlorothoxy)methane ND 10 BisiQ-chlorospropylether ND 10 BisiQ-chlorospropylether ND 10 BisiQ-athylhexyl)phthalate 4.1 10 4-Bromphenyl phenyl ether ND 10 Carbazole ND 10 4-Chloroantine ND 10 4-Chloroantine ND 10 4-Chloroanthhalene ND 10 4-Chloroanthhalene ND 10 5-Chlorophenyl phenyl ether ND 10 5-Chlorophenyl phenyl ether ND 10 5-Chlorophenyl phenyl ether ND 10 5-Chlorophenol ND 10 5-Chlorophenyl phenyl ether ND 10 5-Chlorophenyl ether ND 10 5-Chlo	Acenaphthylene	ND	10								
Azobenzene ND 10 Benza(a)anthracene ND 10 Benza(a)apyrene ND 10 Benza(b)fluoranthene ND 10 Benza(b)fluoranthene ND 10 Benza(b,fluoranthene ND 10 Benza(b,fluoranthene ND 10 Benza(b,fluoranthene ND 10 Benza(acia ND 20 Benzyl alcohol 0.85 10 Bis/2-chloroethoxy)methane ND 10 Bis/2-chloroethoxy)methane ND 10 Bis/2-chloroethoxy)methane ND 10 Bis/2-chlorospropy/lether ND 10 Butyl benzyl phthalate 4.1 10 4-Bromphenyl phenyl ether ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 4-Chlorophenyl phenyl ether ND 10 5-Chlorophenol ND 10 6-Chlorophenol ND 10 7-Chlorophenol ND 10 8-Chlorophenol ND 10 9-Chlorophenol ND 10 9-C	Aniline	ND	10								
Benz(a)anthracene ND 10 Benza(a)apyrene ND 10 Benzo(b)fluoranthene ND 10 Benzo(b)fluoranthene ND 10 Benzo(k)fluoranthene ND 10 Benzo(k)fluoranthene ND 10 Benzy alcohol 0.85 10 Benzy alcohol 0.85 10 Bis(2-chlorethoxy)methane ND 10 Bis(2-chlorostoyphylether ND 10 Bis(2-chlorostoyphylether ND 10 Bis(2-chlorostoyphylether ND 10 Bis(2-chlorostoyphylether ND 10 Butyl benzyl phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 2-Chlorophenol ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10	Anthracene	ND	10								
Benzo(a)pyrene ND 10 10 10 10 10 10 10 1	Azobenzene	ND	10								
Benzo (s) filtoranthene ND 10 Benzo (s, h, i) perylene ND 10 Benzo (s, k) filtoranthene ND 10 Benzoic acid ND 20 Benzy al alcohol 0.85 10 Bis (2-chlorethoxy) methane ND 10 Bis (2-chlorosity) either ND 10 Bis (2-chlorosity) plether ND 10 Bis (2-chlorosity) plether ND 10 Bis (2-chlorosity) plether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 2-Chlorophenol ND 10 4-Chlorophenyl plether ND 10 2-Chlorophenol ND 10 4-Chlorophenyl plethyl either ND 10 4-Chlorophenyl plethyl either ND 10 Di-n-otyl phthalate ND 10 Di-n-otyl phthalate ND	Benz(a)anthracene	ND	10								
Benzo (g,h.i) perylene ND 10 Benzo (k) fluoranthene ND 10 Benzo (acid ND 20 Benzyl alcohol 0.85 10 Bis(2-chloroethoxy) methane ND 10 Bis(2-chloroethy) jether ND 10 Bis(2-chlorosporpy) bether ND 10 Bis(2-ethylhexy) phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 4-Chlorophenol ND 10 4-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate ND 10 Di-n-butyl phthalate ND	Benzo(a)pyrene	ND	10								
Benzo(k)fluoranthene ND 10 Benzoic acid ND 20 Benzyl alcohol 0.85 10 Bis(2-chloroethoxy)methane ND 10 Bis(2-chloroethyl)ether ND 10 Bis(2-chlorospropyl)ether ND 10 Bis(2-ethylhexyl)phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 2-Chlorophenol ND 10 2-Chlorophenyl phenyl ether ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-octyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenz(a, h)anthracene ND 10 Dibenz(a, h)anthracene ND 10 Dibenz(a, h)anthracene ND	Benzo(b)fluoranthene	ND	10								
Benzoic acid ND 20 Benzyl alcohol 0.85 10 Bis(2-chloroethoxy)methane ND 10 Bis(2-chloroisporyl)ether ND 10 Bis(2-chloroisporypyl)ether ND 10 4-Chloroisporypyl)ether ND 10 4-Chloroisporypyl)ether ND 10 4-Chloroisporypyl)ether ND 10 4-Chloroisporypyl)ether ND 10 2-Chlorophenol ND 10 4-Chloroisporypyl)ether ND 10 Chrysene ND 10 Chrysene ND 10 Dienz(a, h)authracene ND </td <td>Benzo(g,h,i)perylene</td> <td>ND</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzo(g,h,i)perylene	ND	10								
Benzyl alcohol 0.85 10 10 Bis(2-chloroethoxy)methane ND 10 10 Bis(2-chloroethyl)ether ND 10 Bis(2-chloroisopropyl)ether ND 10 Bis(2-chlyhexyl)phthalate 4.1 10 J 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 2-Chlorophenol ND 10 4-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 4-Chlorophenyl phenyl ether ND 10 10 10 10 10 10 10 1	Benzo(k)fluoranthene	ND	10								
Bis(2-chloroethoxy)methane ND 10 Bis(2-chloroethyl)ether ND 10 Bis(2-chloroisopropyl)ether ND 10 Bis(2-ethylhexyl)phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloro-3-methylphenol ND 10 2-Chlorophenol ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-octyl phthalate ND 10 Di-n-octyl phthalate ND 10 Di-n-octyl phthalate ND 10 Dibenzofuran ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Benzoic acid	ND	20								
Bis(2-chloroethyl)ether ND 10 Bis(2-chloroisopropyl)ether ND 10 Bis(2-ethylhexyl)phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chlorophenol ND 10 4-Chlorophenyl ether ND 10 4-Chlorophenyl phenyl ether ND 10 5-n-butyl phthalate ND 10 Di-n-cotyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Benzyl alcohol	0.85	10								J
Bis(2-chloroisopropyl)ether ND 10 Bis(2-ethylhexyl)phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 4-Chlorophenyl phenyl ether ND 10 Di-n-butyl phthalate 3.1 10 Di-n-cotyl phthalate ND 10 Dibenzofuran ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Bis(2-chloroethoxy)methane	ND	10								
Bis(2-ethylhexyl)phthalate 4.1 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Bis(2-chloroethyl)ether	ND	10								
4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenzofuran ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Bis(2-chloroisopropyl)ether	ND	10								
Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenzofuran ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Bis(2-ethylhexyl)phthalate	4.1	10								J
Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-obtyl phthalate 3.1 10 J Dibenzofuj phthalate ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	4-Bromophenyl phenyl ether	ND	10								
4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Butyl benzyl phthalate	ND	10								
4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Carbazole	ND	10								
2-Chlorophanol ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 J Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	4-Chloro-3-methylphenol	ND	10								
2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 J Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	4-Chloroaniline	ND	10								
4-Chlorophenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate 3.1 10 J Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	2-Chloronaphthalene	ND	10								
Chrysene ND 10 Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	2-Chlorophenol	ND	10								
Di-n-butyl phthalate 3.1 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	4-Chlorophenyl phenyl ether	ND	10								
Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Chrysene	ND	10								
Dibenz(a,h)anthracene ND 10 Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Di-n-butyl phthalate	3.1	10								J
Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Di-n-octyl phthalate		10								
1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10	Dibenz(a,h)anthracene	ND	10								
1,3-Dichlorobenzene ND 10	Dibenzofuran										
	1,2-Dichlorobenzene		10								
1,4-Dichlorobenzene ND 10	1,3-Dichlorobenzene	ND	10								
	1,4-Dichlorobenzene	ND	10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 179 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48439 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 48439 RunNo: 64213

Client ID: PBW	Batcl	h ID: 48	439	RunNo: 64213						
Prep Date: 10/29/2019	Analysis D	Date: 11	1/4/2019	5	SeqNo: 2	197264	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 180 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48439	SampTy	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	Batch ID: 48439			RunNo: 6	4213					
Prep Date: 10/29/2019	Analysis Da	ate: 1 1	1/4/2019	9	SeqNo: 2	197264	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 2-Fluorophenol	140		200.0		68.6	15	101				
Surr: Phenol-d5	100		200.0		50.1	15	84.6				
Surr: 2,4,6-Tribromophenol	160		200.0		80.4	27.8	112				
Surr: Nitrobenzene-d5	84		100.0		84.5	33	113				
Surr: 2-Fluorobiphenyl	73		100.0		73.4	26.6	107				
Surr: 4-Terphenyl-d14	64		100.0		64.4	18.7	148				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Project: SWMU				
Sample ID: MB-48571	SampType: MBLK	TestCode: EPA Method	7471: Mercury	
Client ID: PBS	Batch ID: 48571	RunNo: 64207		
Prep Date: 11/4/2019	Analysis Date: 11/4/2019	SeqNo: 2197008	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.033			
Sample ID: LCSLL-48571	SampType: LCSLL	TestCode: EPA Method	7471: Mercury	
Client ID: BatchQC	Batch ID: 48571	RunNo: 64207		
Prep Date: 11/4/2019	Analysis Date: 11/4/2019	SeqNo: 2197009	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.0050 0.033 0.006660	0 75.6 70	130	J
Sample ID: LCS-48571	SampType: LCS	TestCode: EPA Method	7471: Mercury	
Client ID: LCSS	Batch ID: 48571	RunNo: 64207		
Prep Date: 11/4/2019	Analysis Date: 11/4/2019	SeqNo: 2197010	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.17 0.033 0.1667	0 101 80	120	
Sample ID: MB-48570	SampType: MBLK	TestCode: EPA Method	7471: Mercury	
Client ID: PBS	Batch ID: 48570	RunNo: 64207		
Prep Date: 11/4/2019	Analysis Date: 11/4/2019	SeqNo: 2197011	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.033			
Sample ID: LCSLL-48570	SampType: LCSLL	TestCode: EPA Method	7471: Mercury	
Client ID: BatchQC	Batch ID: 48570	RunNo: 64207		
Prep Date: 11/4/2019	Analysis Date: 11/4/2019	SeqNo: 2197012	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.0053 0.033 0.006660	0 80.1 70	130	J
Sample ID: LCS-48570	SampType: LCS	TestCode: EPA Method	7471: Mercury	
Client ID: LCSS	Batch ID: 48570	RunNo: 64207		
Prep Date: 11/4/2019	Analysis Date: 11/4/2019	SeqNo: 2197013	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.17 0.033 0.1667	0 102 80	120	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 182 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

J

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48664 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 48664 RunNo: 64358

Prep Date: 11/7/2019 Analysis Date: 11/8/2019 SeqNo: 2202576 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.00012 0.00020

Sample ID: LCS-48664 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 48664 RunNo: 64358

Prep Date: 11/7/2019 Analysis Date: 11/8/2019 SeqNo: 2202577 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 93.6 80 120

Sample ID: 1910E04-018DMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: EB102419 Batch ID: 48664 RunNo: 64358

Prep Date: 11/7/2019 Analysis Date: 11/8/2019 SeqNo: 2202579 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0.0001145 90.8 75 125

Sample ID: 1910E04-018DMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: **EB102419** Batch ID: **48664** RunNo: **64358**

Prep Date: 11/7/2019 Analysis Date: 11/8/2019 SeqNo: 2202580 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0.0001145 95.8 75 125 5.23 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 183 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48433	SampType: MBLK			Tes	tCode: El	Metals					
Client ID: PBS	Batch	Batch ID: 48433			RunNo: 64206						
Prep Date: 10/28/2019	Analysis D	oate: 11	1/4/2019	5	SeqNo: 2	196928	Units: mg/K	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony	ND	2.5									
Arsenic	ND	2.5									
Barium	ND	0.10									
Beryllium	ND	0.15									
Cadmium	0.025	0.10								J	
Chromium	0.12	0.30								J	
Cobalt	ND	0.30									
Manganese	0.079	0.10								J	
Nickel	ND	0.50									
Selenium	ND	2.5									
Silver	ND	0.25									
Vanadium	ND	2.5									
Zinc	0.92	2.5								J	

Sample ID: LCS-48433	SampT	SampType: LCS TestCode: EPA Met					6010B: Soil	Metals		
Client ID: LCSS	Batcl	h ID: 484	433	F	4206					
Prep Date: 10/28/2019	Analysis D	Date: 11	1/4/2019	S	SeqNo: 2	196930	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	25	2.5	25.00	0	101	80	120			
Arsenic	24	2.5	25.00	0	97.8	80	120			
Barium	24	0.10	25.00	0	96.0	80	120			
Beryllium	26	0.15	25.00	0	103	80	120			
Cadmium	24	0.10	25.00	0	96.6	80	120			
Chromium	24	0.30	25.00	0	96.9	80	120			
Cobalt	24	0.30	25.00	0	95.7	80	120			
Manganese	25	0.10	25.00	0	99.4	80	120			
Nickel	24	0.50	25.00	0	96.0	80	120			
Selenium	24	2.5	25.00	0	96.0	80	120			
Silver	4.9	0.25	5.000	0	98.4	80	120			
Vanadium	25	2.5	25.00	0	99.9	80	120			
Zinc	25	2.5	25.00	0	98.7	80	120			

Sample ID: MB-48434	SampType: N	IBLK	TestCode: EPA Method 6010B: Soil Metals						
Client ID: PBS	Batch ID: 4	8434	R	RunNo: 64	4206				
Prep Date: 10/28/2019	Analysis Date:	S	SeqNo: 2	196946	Units: mg/Kg				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND 2.5	5							
Arsenic	ND 2.5	5							

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 184 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910E04

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: MB-48434	SampType: MBLK			Tes						
Client ID: PBS	Batch	Batch ID: 48434			lunNo: 6	4206				
Prep Date: 10/28/2019	Analysis Date: 11/4/2019			S	SeqNo: 2	196946	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.044	0.10								J
Chromium	ND	0.30								
Cobalt	ND	0.30								
Manganese	0.052	0.10								J
Nickel	ND	0.50								
Selenium	ND	2.5								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	0.74	2.5								J

Sample ID: LCS-48434	SampT	ype: LC	s	TestCode: EPA Method 6010B: Soil Metals						
Client ID: LCSS	Batch	n ID: 484	434	F	RunNo: 6					
Prep Date: 10/28/2019	Analysis D	ate: 11	1/4/2019	S	SeqNo: 2	196951	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	25	2.5	25.00	0	100	80	120			
Arsenic	25	2.5	25.00	0	102	80	120			
Barium	24	0.10	25.00	0	94.7	80	120			
Beryllium	26	0.15	25.00	0	104	80	120			
Cadmium	24	0.10	25.00	0	96.6	80	120			
Chromium	24	0.30	25.00	0	95.9	80	120			
Cobalt	24	0.30	25.00	0	96.7	80	120			
Manganese	25	0.10	25.00	0	99.0	80	120			
Nickel	24	0.50	25.00	0	96.5	80	120			
Selenium	25	2.5	25.00	0	101	80	120			
Silver	4.7	0.25	5.000	0	93.7	80	120			
Vanadium	24	2.5	25.00	0	98.0	80	120			
Zinc	25	2.5	25.00	0	99.2	80	120			

Sample ID: MB-48519 SampType: MBLK				Tes	tCode: El					
Client ID: PBS	Batch	Batch ID: 48519			tunNo: 6	4206				
Prep Date: 10/31/2019	Analysis D	Analysis Date: 11/4/2019			SeqNo: 2	196952	Units: mg/K			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 185 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48519 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals Client ID: PBS Batch ID: 48519 RunNo: 64206 Prep Date: 10/31/2019 Analysis Date: 11/4/2019 SeqNo: 2196952 Units: mg/Kg Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Cadmium 0.033 0.10 J Chromium ND 0.30 Cobalt ND 0.30 Iron 1.7 2.5 Manganese 0.021 0.10 Nickel ND 0.50 Selenium ND 2.5 Silver ND 0.25 Vanadium ND 2.5 Zinc 0.40 2.5

Sample ID: LCS-48519	SampType: LCS Test					PA Method	6010B: Soil	Metals		
Client ID: LCSS	Batch	n ID: 48	519	R	4206					
Prep Date: 10/31/2019	Analysis D	ate: 11	/4/2019	S	SeqNo: 2	196954	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	24	2.5	25.00	0	97.6	80	120			
Arsenic	25	2.5	25.00	0	99.6	80	120			
Barium	24	0.10	25.00	0	95.0	80	120			
Beryllium	26	0.15	25.00	0	103	80	120			
Cadmium	24	0.10	25.00	0	95.1	80	120			
Chromium	24	0.30	25.00	0	96.4	80	120			
Cobalt	24	0.30	25.00	0	97.2	80	120			
Iron	26	2.5	25.00	0	102	80	120			
Manganese	25	0.10	25.00	0	99.3	80	120			
Nickel	24	0.50	25.00	0	96.4	80	120			
Selenium	25	2.5	25.00	0	98.6	80	120			
Silver	4.6	0.25	5.000	0	92.7	80	120			
Vanadium	25	2.5	25.00	0	99.2	80	120			
Zinc	24	2.5	25.00	0	97.8	80	120			

Sample ID: MB-48433	SampType: MBLK			Tes							
Client ID: PBS	Batch ID: 48433			F	RunNo: 6	4206					
Prep Date: 10/28/2019	Analysis Date: 11/4/2019			5	SeqNo: 2197455			g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Lead	0.24	0.25		•		•	•	•	•	J	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 186 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Project:	Marathon SWMU 1										
Sample ID: I	LCS-48433	SampT	ype: LC	s	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID:	LCSS	Batch	ID: 48	433	F	RunNo: 6	4206				
Prep Date:	10/28/2019	Analysis D	ate: 1 1	1/4/2019	5	SeqNo: 2	197457	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		25	0.25	25.00	0	99.7	80	120			
Sample ID: I	MB-48519	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID: I	PBS	Batch	ID: 48	519	F	RunNo: 6	4206				
Prep Date:	10/31/2019	Analysis D	ate: 1 1	1/4/2019	5	SeqNo: 2	197458	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		ND	0.25								
Sample ID: I	LCS-48519	SampT	ype: LC	s	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID:	LCSS	Batch	ID: 48	519	F	RunNo: 6	4206				
Prep Date:	10/31/2019	Analysis D	ate: 1 1	1/4/2019	5	SeqNo: 2	197462	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		24	0.25	25.00	0	97.9	80	120			
Sample ID: I	MB-48433	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID: I	PBS	Batch	ID: 48	433	F	RunNo: 6	4334				
Prep Date:	10/28/2019	Analysis D	ate: 1 1	1/7/2019	5	SeqNo: 2	201997	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron		5.0	2.5								
Sample ID: I	LCS-48433	SampT	ype: LC	S	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID:	LCSS	Batch	ID: 48	433	F	RunNo: 6	4334				
Prep Date:	10/28/2019	Analysis D	ate: 1 1	1/7/2019	9	SeqNo: 2	201999	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron		26	2.5	25.00	0	104	80	120			В
Sample ID: I	MB-48434	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID:		•	ID: 48			RunNo: 6					
Prep Date:	10/28/2019	Analysis D				SeqNo: 2		Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron		5.2	2.5							<u> </u>	<u> </u>
Lead		ND	0.25								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48434 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 48434 RunNo: 64334

Prep Date: 10/28/2019 Analysis Date: 11/7/2019 SeqNo: 2202002 Units: mg/Kg

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result В Iron 25 2.5 25.00 0 100 80 120 Lead 24 0.25 25.00 0 97.6 80 120

Sample ID: MB-48604 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 48604 RunNo: 64594

Prep Date: 11/5/2019 Analysis Date: 11/18/2019 SeqNo: 2212240 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.050	0.10								J
Chromium	ND	0.30								
Cobalt	ND	0.30								
Iron	2.1	2.5								J
Lead	0.25	0.25								
Manganese	0.050	0.10								J
Nickel	0.25	0.50								J
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	ND	2.5								

Sample ID: LCS-48604 SampType: LCS				TestCode: EPA Method 6010B: Soil Metals						
Client ID: LCSS	Batch ID: 48604			F	RunNo: 6	4594				
Prep Date: 11/5/2019	Analysis D	ate: 11	/18/2019	5	SeqNo: 2	212242	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	24	2.5	25.00	0	97.6	80	120			
Arsenic	24	2.5	25.00	0	94.0	80	120			
Barium	24	0.10	25.00	0	95.4	80	120			
Beryllium	24	0.15	25.00	0	97.4	80	120			
Cadmium	24	0.10	25.00	0	95.8	80	120			
Chromium	24	0.30	25.00	0	94.0	80	120			
Cobalt	23	0.30	25.00	0	92.0	80	120			
Iron	29	2.5	25.00	0	115	80	120			
Lead	24	0.25	25.00	0	97.4	80	120			
Manganese	24	0.10	25.00	0	94.0	80	120			

Qualifiers:

Nickel

Silver

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

23

5.1

0.50

0.25

25.00

5.000

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

92.8

102

80

80

120

120

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

0

0

Page 188 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910E04

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: LCS-48604 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 48604 RunNo: 64594

Prep Date: 11/5/2019 Analysis Date: 11/18/2019 SeqNo: 2212242 Units: mg/Kg

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 96.8 Vanadium 24 2.5 25.00 0 80 120 Zinc 23 2.5 25.00 0 91.2 80 120

Sample ID: 1910E04-011AMS TestCode: EPA Method 6010B: Soil Metals SampType: MS

Client ID: SWMU 13-8 (2-3') Batch ID: 48434 RunNo: 64624

Prop Doto: 40/20/2010 Analysis Data: 44/40/2040 Coallo: 2242460 Unito: ma///a

Prep Date: 10/28/2019	Analysis L)ate: 1 1	1/19/2019	٤	seqNo: 22	213460	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	20	4.8	24.00	0	85.2	75	125		<u>.</u>	
Beryllium	24	0.29	24.00	1.320	93.7	75	125			
Cadmium	21	0.19	24.00	0	86.0	75	125			
Chromium	39	0.58	24.00	14.11	103	75	125			
Cobalt	27	0.58	24.00	5.786	89.1	75	125			
Lead	23	0.48	24.00	3.045	82.1	75	125			
Nickel	35	0.96	24.00	13.20	90.6	75	125			
Vanadium	48	4.8	24.00	22.53	107	75	125			
Zinc	41	4.8	24.00	18.98	90.9	75	125			

Sample ID: 1910E04-011AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: SWMU 13-8 (2-3') Batch ID: 48434 RunNo: 64624

Prep Date: 10/28/2019	Analysis Date: 11/19/2019			\$	SeqNo: 2213461 Units: mg/Kg			(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	22	5.0	24.89	0	90.4	75	125	9.53	20	
Beryllium	25	0.30	24.89	1.320	96.7	75	125	6.40	20	
Cadmium	22	0.20	24.89	0	89.6	75	125	7.71	20	
Chromium	41	0.60	24.89	14.11	106	75	125	4.11	20	
Cobalt	29	0.60	24.89	5.786	92.0	75	125	5.37	20	
Lead	23	0.50	24.89	3.045	82.2	75	125	3.19	20	
Nickel	37	1.0	24.89	13.20	95.0	75	125	5.25	20	
Vanadium	49	5.0	24.89	22.53	108	75	125	2.41	20	
Zinc	43	5.0	24.89	18.98	94.9	75	125	4.32	20	

Sample ID: 1910E04-025AMS TestCode: EPA Method 6010B: Soil Metals SampType: MS

Client ID: SWMU 13-12 (0-0.5') Batch ID: 48519 RunNo: 64624

40/04/0040 0------

Prep Date: 10/31/2019	Analysis D	ate: 11	/19/2019	5	eqNo: 2	213519	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	23	5.1	25.37	0	88.8	75	125				
Beryllium	26	0.30	25.37	1.106	99.2	75	125				

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 189 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 1910E04-025AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: **SWMU 13-12 (0-0.5')** Batch ID: **48519** RunNo: **64624**

Prep Date: 10/31/2019 Analysis Date: 11/19/2019 SeqNo: 2213519 Units: mg/Kg

Prep Date: 10/31/2019	Analysis L	oate: 11	/19/2019	٤	seqNo: 2	213519	Units: mg/K	.g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cadmium	23	0.20	25.37	0	92.4	75	125			_
Chromium	43	0.61	25.37	15.28	111	75	125			
Cobalt	30	0.61	25.37	5.430	95.0	75	125			
Lead	26	0.51	25.37	3.519	89.3	75	125			
Nickel	37	1.0	25.37	11.26	101	75	125			
Vanadium	54	5.1	25.37	25.64	111	75	125			
Zinc	65	5.1	25.37	34.29	120	75	125			

Sample ID: 1910E04-025AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: **SWMU 13-12 (0-0.5')** Batch ID: **48519** RunNo: **64624**

Prep Date: 10/31/2019 Analysis Date: 11/19/2019 SeqNo: 2213520 Units: mg/Kg

1 10p Date. 10/31/2019	Analysis Date. 11/19/2019			Ocq110. 2213320 Onits. III			Office. Hig/F	. ilig/Ng				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Arsenic	21	4.9	24.62	0	85.6	75	125	6.67	20			
Beryllium	23	0.30	24.62	1.106	90.7	75	125	11.4	20			
Cadmium	21	0.20	24.62	0	84.0	75	125	12.5	20			
Chromium	40	0.59	24.62	15.28	102	75	125	7.05	20			
Cobalt	27	0.59	24.62	5.430	86.7	75	125	9.74	20			
Lead	24	0.49	24.62	3.519	81.3	75	125	10.6	20			
Nickel	34	0.98	24.62	11.26	91.9	75	125	8.37	20			
Vanadium	50	4.9	24.62	25.64	98.7	75	125	7.43	20			
Zinc	59	4.9	24.62	34.29	101	75	125	9.12	20			

Sample ID: 1910E04-025AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: **SWMU 13-12 (0-0.5')** Batch ID: **48519** RunNo: **64665**

Prep Date: 10/31/2019 Analysis Date: 11/20/2019 SeqNo: 2215368 Units: mg/Kg

Prep Date: 1	0/31/2019	Analysis D	ate: 11	/20/2019	3	seqino: 2	215368	Units: mg/K	.g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	5.1	25.37	0	0	75	125			S
Barium		370	0.20	25.37	342.8	110	75	125			
Selenium		16	5.1	25.37	0	62.4	75	125			S
Silver		3.2	0.51	5.075	0	62.3	75	125			S

Sample ID: 1910E04-025AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: **SWMU 13-12 (0-0.5')** Batch ID: **48519** RunNo: **64665**

Prep Date: 10/31/2019 Analysis Date: 11/20/2019 SeqNo: 2215369 Units: mg/Kg

Prep Date:	10/31/2019	Analysis D	ate: 11	/20/2019	S	seqNo: 22	215369	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony		ND	4.9	24.62	0	0	75	125	0	20	S	
Barium		320	0.20	24.62	342.8	-78.4	75	125	13.6	20	S	
	Analyte Antimony	Analyte Antimony	Analyte Result Antimony ND	Analyte Result PQL Antimony ND 4.9	Analyte Result PQL SPK value Antimony ND 4.9 24.62	Analyte Result PQL SPK value SPK Ref Val Antimony ND 4.9 24.62 0	Analyte Result PQL SPK value SPK Ref Val %REC Antimony ND 4.9 24.62 0 0	Analyte Result PQL SPK value SPK Ref Val %REC LowLimit Antimony ND 4.9 24.62 0 0 75	Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Antimony ND 4.9 24.62 0 0 75 125	Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Antimony ND 4.9 24.62 0 0 75 125 0	Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Antimony ND 4.9 24.62 0 0 75 125 0 20	Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Antimony ND 4.9 24.62 0 0 75 125 0 20 S

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 190 of 195

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Project:	SWMU 1	3									
Sample ID:	1910E04-025AMSE	S ampT	ype: M \$	SD	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID:	SWMU 13-12 (0-0.5	5') Batch	n ID: 48	519	F	RunNo: 64	4665				
Prep Date:	10/31/2019	Analysis D	ate: 1 1	1/20/2019	9	SeqNo: 2	215369	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Selenium		13	4.9	24.62	0	53.3	75	125	18.6	20	S
Silver		2.7	0.49	4.925	0	54.0	75	125	17.4	20	S
Sample ID:	1910E04-025APS	SampT	ype: PS	;	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID:	SWMU 13-12 (0-0.5	5') Batch	n ID: 48	519	F	RunNo: 64	4665				
Prep Date:		Analysis D	ate: 11	1/20/2019	8	SeqNo: 2	215370	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		38	5.0	50.28	0	75.5	80	120			S
Barium		380	0.20	50.28	342.8	75.3	80	120			S
Selenium		35	5.0	50.28	0	69.1	80	120			S
Silver		7.6	0.50	10.06	0	76.0	80	120			S
Sample ID:	1910E04-025AMS	SampT	ype: M \$	6	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID:	SWMU 13-12 (0-0.	5') Batch	n ID: 48	519	F	RunNo: 6	4665				
Prep Date:	10/31/2019	Analysis D	ate: 1 1	1/20/2019	S	SeqNo: 2	215375	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Manganese		540	0.51	25.37	522.7	50.7	75	125			S
Sample ID:	1910E04-025AMSI	S ampT	ype: M \$	SD	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID:	SWMU 13-12 (0-0.5	5') Batch	n ID: 48	519	F	RunNo: 64	4665				
Prep Date:	10/31/2019	Analysis D	ate: 1 1	1/20/2019	8	SeqNo: 2	215376	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Manganese		470	0.49	24.62	522.7	-210	75	125	12.8	20	S
Sample ID:	1910E04-025APS	SampT	ype: PS	;	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID:	SWMU 13-12 (0-0.5	5') Batch	n ID: 48	519	F	RunNo: 64	4665				
Prep Date:		Analysis D	ate: 1 1	1/20/2019	5	SeqNo: 2	215377	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Manganese		650	0.50	131.9	522.7	96.2	80	120			
Sample ID:	1910E04-011AMS	SampT	ype: M \$	3	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID:	SWMU 13-8 (2-3')	Batch	n ID: 48	434	F	RunNo: 64	4693				
Prep Date:	10/28/2019	Analysis D	ate: 1 1	1/21/2019	8	SeqNo: 2	216926	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
A . C		ND	4.0	04.00				405			

Qualifiers:

Antimony

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

4.8

24.00

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

0

75

125

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

Page 191 of 195

S

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 1910E04-011AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: SWMU 13-8 (2-3') Batch ID: 48434 RunNo: 64693

Prep Date: 10/28/2019 Analysis Date: 11/21/2019 SeqNo: 2216927 Units: mg/Kg

PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual S Antimony ND 5.0 24.89 Λ 75 125 Λ 20

Sample ID: 1910E04-011AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals SWMU 13-8 (2-3') Client ID: Batch ID: 48434 RunNo: 64742 Prep Date: 10/28/2019 Analysis Date: 11/22/2019 SeqNo: 2218488 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Barium 250 0.19 24.00 266.3 -82.0 75 125 S S Manganese 330 0.19 24.00 291.6 153 75 125 75 Selenium 20 4.8 24.00 O 84.5 125 Silver 2.5 0.48 4.801 0 53.0 75 S 125

Sample ID: 1910E04-011AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: SWMU 13-8 (2-3') Batch ID: 48434 RunNo: 64742

Prep Date: 10/28/2019 Analysis Date: 11/22/2019 SeqNo: 2218489 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.20 266.3 75 20 S Barium 270 24.89 16.8 125 9.23 300 0.20 24.89 291.6 33.8 75 125 8.99 20 S Manganese Selenium 22 5.0 24.89 0 88.6 75 125 8.34 20 Silver 4.978 0 75 20 S 28 0.50 55.6 125 8 48

Sample ID: 1910E04-011PS SampType: PS TestCode: EPA Method 6010B: Soil Metals

Client ID: BatchQC Batch ID: 48434 RunNo: 64742

Prep Date: Analysis Date: 11/22/2019 SeqNo: 2218490 Units: mg/Kg SPK value SPK Ref Val %REC LowLimit PQL HighLimit %RPD **RPDLimit** Qual Analyte Result 0.20 266.3 112 80 Barium 320 50.75 120 Manganese 350 0.20 50.75 291.6 106 80 120 S Silver 7.0 0.51 10.15 69.3 80 120

Sample ID: MB-48977 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 48977 RunNo: 64789

Prep Date: 11/22/2019 Analysis Date: 11/25/2019 SeqNo: 2220399 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Selenium ND 2.5

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 192 of 195

Hall Environmental Analysis Laboratory, Inc.

21

WO#: 1910E04

05-Dec-19

Client: Marathon **Project:** SWMU 13

Selenium

Sample ID: LCS-48977 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

25.00

Client ID: LCSS Batch ID: 48977 RunNo: 64789

2.5

Analysis Date: 11/25/2019 Prep Date: 11/22/2019 SeqNo: 2220401 Units: mg/Kg

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0

83.2

80

120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 193 of 195

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND 0.0012

ND

0.49

0.020

0.5000

0.0020

0.010 0.0050

0.050

WO#: **1910E04**

J

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 48486 RunNo: 64273 Prep Date: 10/30/2019 Analysis Date: 11/6/2019 SeqNo: 2199636 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Antimony ND 0.050 Arsenic ND 0.020 Barium ND 0.020 Beryllium ND 0.0030 Cadmium ND 0.0020 ND 0.0060 Chromium Cobalt ND 0.0060 ND 0.020 Iron

Sample ID: LCS-48486 TestCode: EPA 6010B: Total Recoverable Metals SampType: LCS Client ID: LCSW Batch ID: 48486 RunNo: 64273 10/30/2019 Prep Date: Analysis Date: 11/6/2019 SeqNo: 2199638 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Antimony 0.51 0.050 0.5000 102 80 120 0 99.8 80 120 Arsenic 0.50 0.020 0.5000 Barium 0.48 0.020 0.5000 0 96.6 80 120 Beryllium 0.0030 0.5000 0 103 80 120 0.52 101 Cadmium 0.51 0.0020 0.5000 0 80 120 0 99.3 Chromium 0.50 0.0060 0.5000 80 120 Cobalt 0.51 0.0060 0.5000 0 101 80 120 Iron 0.51 0.020 0.5000 0 102 80 120 0.50 0.0020 0 101 120 Manganese 0.5000 80 Nickel 0.49 0.010 0.5000 0 98.1 80 120 0.095 Silver 0 0.0050 0.1000 94.6 80 120 Vanadium 0.51 0.050 0.5000 0 101 80 120

Sample ID: MB-48486	SampType: MBLK	TestCode: EPA 6010B:	Total Recoverable Metals
Client ID: PBW	Batch ID: 48486	RunNo: 64389	
Prep Date: 10/30/2019	Analysis Date: 11/11/2019	SeqNo: 2203942	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Lead	0.0043 0.0050		J

0

Qualifiers:

Zinc

Manganese

Vanadium

Nickel

Silver

Zinc

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

98.7

80

120

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 194 of 195

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E04**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 48486 RunNo: 64389

Prep Date: 10/30/2019 Analysis Date: 11/11/2019 SeqNo: 2203944 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.51 0.0050 0.5000 0 101 80 120

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 48486 RunNo: 64501

Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208275 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 48486 RunNo: 64501

Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208277 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.51 0.0050 0.5000 0 103 80 12

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 195 of 195

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	MARATHON GA	ALLUP Wor	k Order Nui	mber: 1910	E04	·	Rcpti	No: 1
Received By:	Leah Baca	10/25/	2019 4:55:0	00 PM		Lad B	nen	
Completed By:	Leah Baca	10/28/	2019 8:40:	50 AM		Lab B	2.4.	
Reviewed By:	LB	/o /	28 4			Laab	lle.	
Chain of Cus	stod <u>y</u>							
1. Is Chain of C	ustody complete?			Yes	✓	No □	Not Present	
2. How was the	sample delivered	?		Clien	<u>t</u>			
<u>Log In</u>								
3. Was an atten	npt made to cool to	he samples?		Yes	✓	No 🗆	NA 🗆	
4. Were all sam	ples received at a	temperature of >0° C	to 6. 0 °C	Yes	✓	No 🗌	NA 🗆	
5. Sample(s) in	proper container(s	5)?		Yes	✓	No 🗌		
6. Sufficient sam	nple volume for inc	licated test(s)?		Yes	Y	No 🗆		
7. Are samples (except VOA and (ONG) properly presen	red?	Yes	✓	No 🗌		
8. Was preserva	itive added to bottl	es?		Yes		No 🗹	NA 🗌	
9. VOA vials hav	/e zero headspace)?		Yes	✓	No 🗆	No VOA Vials	
10. Were any sar	mple containers re	ceived broken?		Yes		No 🗹	# of preserved	
	ork match bottle la ancies on chain of			Yes	Y	No 🗌	bottles checked for pH:	or (12)unless noted)
		on Chain of Custody?	,	Yes	✓	No 🗆	Adjusted?	NO
	t analyses were re	•			<u>~</u>	No 🗆		
14. Were all holdi	ng times able to boustomer for author	e met?			✓	No 🗆	Checked by:	DAD 10/28/19
	ling (if applica	·					\	
		pancies with this order	?	Yes	П	No 🗆	NA 🗹	
	Notified:		Date				*	
By Who	gr		Via:	b	ii 🗀 i	Phone 🔲 Fa	: x	
Regard	ing:				·· ·		X	
Client II	nstructions:				***************************************			
16. Additional re	marks:	14						
17. <u>Cooler Infor</u>	mation							
Cooler No	Temp ºC Co	ondition Seal Intact	Seal No	Seal Da	te	Signed By		
1	1.8 Goo	d Yes			The state of the s		M- 00	
2	1.5 Goo	~_·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
3	3.1 Goo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				TOTAL TOTAL TO VERIEN OLD SECOND SECOND	9770000	
4	2.0 Goo	d Yes						

1 OF 10

}	HALL ENVIRONMENTAL ANALYSTS LABODATODY	2								(. Ν.	0 人)	/ir Bubbles	1										See attached sheet for Analytical Methods			
	1 	5	90	<u>6</u>	_			-		ə	oju	Cya	bns sisteM	×		X	×	×	 	<u>×</u>	×			Sal M			
	Ź	5 8	Albuquerane NM 87109		rax 505-345-4107	ţ				•	(∧	ΌΛ	-imə&) 07S8	×			×			X				al XIII			E
	ဂ္ဂ ဒ	<u>֡</u>	בי ב בי פו	֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֡֓֡֓֜֜֡֓֜֓֡֓֡֓֡֓֜֡֡֡֓֜֜֡֓֜֜֡֡֡֜֜֜֡֓֜֡֡֡֡֡֡	5-0 45-1	senk							40V) 809S	1	*		X		X	X		×	×	An			
	5,		2 6	֓֞֞֜֜֞֜֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡	S S S	s Re(ioitee¶ 1808											ᅙ	Ų		
	Z				<u> </u>	Analysis Request		('0	S''C)-L	ON.		CRA 8 Me	-										shee	~	. v.	2
	ح بر ج بر		į ,		0	Ans			(SI	NIS	072		0188) HAC											۾ ڦِ	ا ن		2
1	TATE A		N SU		5-C								EDB (Metho											ttack	الا الا الا	6	
,	I	(awk.	70	-01 -04					(81	. ≯ p	odjaM) H9T	-									-	9 5	يدر ج يدر ج		
			4901 Hawkins NF	7	iei. 505-545-59/5		(ОЯІ	W/C	DR	/O	1Đ)	88108 H9T	×			×			X				S to	บี ภา	2.2	i
		i	4	: ⊦	_								BTEX+MTB	 -										Remarks:	allu Talyet Allalyles انه کی گیا		
		<u> </u>		7	i			()	208] 3)s,{	∃W. T	L+3	ATM+X3T8											 		-%	
										7055				-601	<u></u>	\dashv	200		-)	003		 7	-00H	is is) [165	
										1-1-95		remar 16	HEAL No.				ı			1			1	F 	I۳		-
				'			<u>9</u>			919-1	وا	3	品。01/0											Date lo/clg		10/25	
	إ	က					Moo			je - 6	8	See												- 0	-		
	Rush	Project Name: SWMU 13					ger: Brian Moore			Tracy Payne - 919-561-7055		Ι.	ative e	at	兼	11	7		*		7	14	ታ				
Time:		SWA				;	<u>.</u>			racy	☐ Yes	ature	Preservative Type	Neat	神神	NEAT	NEAT	NEAT	MEOH	NEAT	NEAT	MEOH	HOZH		ر	,	
		me:								╒		in pe								 }-				D			:
Turn-Around	X Standard	ct Na		# 5			ct Ma			ler:		le Te	Container Type and #	8 oz Jar 🏖	林林	12	TAR	AR-1	1	TAR-	1K-1	ù	1	ived by:	λq ps	. 7	
Į. L	×S	Proje		Project #:			Project Mana			Sampler:	On Ice:	Sample Temperature:	Con	8 oz	芽	402 JARY	BOZIAR-2	402-TAR-1	VIAL-2	Sezane-2	402 JAK-1	VIAL -2	VIAL-	Received by:	Received by:	egthinspace = egt	
	۵.		i			ĺ			n()	<u> </u>		1		2				- 1						<u> </u>	- -		
ord	ly l		oad						lidatic				est l	1-18			-0.5		ļ	2,		}	BLANK				
ecc	mpa		gR	_			8 E		≡\ \a				edn	9	,	į	160			.57			Bu				
×	ပြီ		ssin	8730			enm		4 (F.				e F	(3-	-	1	13-	-	<u></u>	3-77	\neg	1	747	•			•
po	l ma		Cro	Gallup, NM 87301	745	(45)	petro		X Level 4 (Full Validation)				Sample Request ID	SWMU 13-6 (17-18')			SWMU13-7(0-0.5')			SWMU13-7(1.5-2")			77	- \	`		7
ust	tro	ery	iant	an.	0 90	200	thon		×					Ŝ			ż			Sui			N		- A	,	
1 -C	n Pe	Refin	92 Giant Crossing Road	Gall	05 7	202-1-c0c	mare				EXCEL		Matrix	Soil	1	_				\rightarrow	\rightarrow		MEDH M.	inquist	Relinquished by:	-d	
Chain-of-Custody Record	Client: Marathon Petroleum Company LP	Gallup Refinery			4	0	Email: Bmoore1@marathonpetroleum.com	ge:						1 1	_		6			 	\dashv			<u>원</u> '	₩		\
hai	Mai	Gal	Mailing Address:	!	*		Bmo	QA/QC Package:	dard	<u>,,</u>	X EDD (Type)		Time	0830			5/101		1	0111		1	1	Date: Time: 10/25/p /35.6	igi j	2635	
O	lent:		ailing			rione #.	nail:	√QC I	□ Standard	□ Other	EDD	*	Date	10/24/10	\prod	_		\dashv		\dashv	7			o N	. i	4/19	
	디		Σ		1	Ξ	Ш	ð			×			ι <u>δ</u> ,			1	ļ]		>	26 2€	Dat	1/22/11	

2 or 10

0 to 1	FNVIDONMENTAL	ANALYSIS I ABORATORY	al com	Albuquerque NM 87109	Fax 505-345-4107	uest	-			piu	VO)	ov) 8005.	28 ×	×	×	×××	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×××	×××		Analytical Methods	
•	HAII ENVID	ANALYSTS	www hallenvironmental com	4901 Hawkins NE - Albuguerdu		nal		([†] OS' [†]	(SMIS	1.8 1.4(d 50 10 10 10 10 10 10 10 10 10 10 10 10 10	DB (Metho AH (8310 o CRA 8 Me (P.Cl.	1T 13 49 58									e attac Analyte	0.1 1.5 0.4
				4901	Tel 5			(Ajuo	s(8)	NB PH	L+3	8TM+X3T 8TM+X3T 83108 HC	.B .B			X = X			×	X		Remarks: and Targ	: :
			9				Moore		racy Payna - 019-551-7055	No.	see remarks		1910 ESUS			<u> ሳ</u> 00 -	ra ngon unggy		- U03	<i>\$00</i> -	7	10/25/11 (355	Date Time
ļ	d Time:	d □ Rush	Te: SWMU 13				ager: Brian Moore		Tracy Dave	Yes		≨	Neat	МеОН	NEAT		NEAT	MEDH	NEAT	NEAT		The state of the s	
	Turn-Around T	X Standard	Project Name:	T	Project #:		Project Manag		Sampler	On Co	Sample Temperature:	Container Type and #	8 oz Jar - 2	Vial - 2	HOZ JARY	BORTAR-2	402.TAR-1	VAL-2	Brazzak-1	BOETAR-1	VIAL-2	Received by:	Received by:
	Chain-or-Custody Record	Marathon Petroleum Company LP	Gallup Refinery	92 Giant Crossing Road	Gallup, NM 87301	505-726-9745	Email: Bmoore1@marathonpetroleum.com	(controlled Notice X		EXCEL		Matrix Sample Request ID	Soil Swm 13-7(4-6')		**	SWMU 13-7(10-12')		7	SWMU 13-7 (12-13')	V SWMU13-7 (17.5-18')	5014	Relinquished by:	Relipquished by:
, מוֹסִיקְ	Cnain-C	Client: Maratho	Gallup	Mailing Address:		Phone #:	Email: Bmoore1(QA/QC Package:	Other	Type)		Date Time	10/21/19 1305		*	/3/5		1	1325		10/24/10/330	Date: Time: Re 1945/1955	_

	HALL ENVIRONMENTAL	X Standard Rush	Project Name: SWMU 13	4901 Hawkins NE - Albuquerque, NM 87109	.,	1el. 505-545-397	Analysis Request	((0,4,504)	Sampler Trace Barrer 8 G G G G G G G G G G G G G G G G G G	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	They be so	(G > bd >	Container Preservative HEAL No. Type and # Type PAH (8310 Pestic ROR A 8 Method PAH (8310 Pestic PAH (8310 P	8 oz Jar-2 Neat X X X	Vial - 2 MeOH X	402 JAR-1 NEAT T X	8 OR TARK-2 NEAT -010 X X X	402JaR-1 NEAT	. MEOH I	Bart - Oil X X X X	402 JAR-1 NERT	VZAL-2 MEOH — X	Received by: National Nethods Remarks: See attached sheet for Analytical Methods See attached sheet for	Received by: Received by: Time Live 0.1 = 1.3 C
			bject Name: SWMU 13		olect #:	Ject #.		bject Manager: Brian Moore		Track Barre	a Hacy raylle -	☑ Yes □	oerature: < e_o	Preservative Type	Neat									A STATE OF THE STA	
		Marathon Petroleum Company LP x	Gallup Refinery	ress: 92 Giant Crossing Road	Gallup, NM 87301		505-726-9745	Email: Bmoore1@marathonpetroleum.com	ige: X Level 4 (Full Validation)	•		EXCEL	38	Matrix Sample Request ID	1435 Soil BWML 13-8 (0-6.5')		h / /	SWMU 13-8 (1.5-2')		^ <i>/</i> /	/ SMMU 13-8 (2-3')		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Relinquished by:	Refinquished by:
7	פוס	Client: Ma	Ga	Mailing Address:			Phone #:	Email: Bmc	QA/QC Package:	1		X EDD (Type)		Date Time	19/42/01		N .	1445		7	091		7	Date: Time: 1925/19 1355	1925/M 1C55

4 of 20

 	■ HALL ENVIRONMENTAL	☐ ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	I. 505-345-3975 Fax 505-345-4107	Analysis		(*os	SW	38083 1)	.81 .40 .57 .8\.8	od 4 or 8 or 8 idessign ov ov ov	1 8015B (Methors) (Methors) (Methors) (As 10 Methors) (As 10 M	ТРН ВОБ 808 8270 808 8270 Меt	×	X	X	XXX	X	×	××××	×	×	Remarks: See aftached sheet for Analytical Methods	7 9 9 .	3.7	2,1
	round Time:	X Standard Rush	Name: SWMU 13	490	Tel.		Project Manager: Brian Moore			Tracy Payne - 919-561-7055	☑ Yes □ No	Temperature: See reww上は 山	Preservative Type	37. 2002	Neat	- 2 MeOH	ar-1 NEAT		AR-1 NEAT	MEOH	NEAT - UIU	R-1 NEAT		Date Time			-
_	Chain-oi-custody Record	Client: Marathon Petroleum Company LP X Star	Gallup Refinery Project Name	Mailing Address: 92 Giant Crossing Road	Gallup, NM 87301 Project #:	Phone #: 505-726-9745	Email: Bmoore1@marathonpetroleum.com Project	QA/QC Package:	☐ Standard X Level 4 (Full Validation)	□ Other	Type) EXCEL		Date Time Matrix Sample Request ID		10/4/9 1535 Soil SWMU 13-9 (0-0.51) 8 oz Jar - 2	/	1-80 402 Jak-1	1545 SWMU 13-9(1.5-2') 802 INR-2		2-1AI/ 1 / 1/AL-2	1555 SWMU 13-9 (2-3') BORIAR-Z		V 1 1 VAL-2	Relinqui	135 11-1	10/25/19 1655 Received by:	

5 of 10

0 to 1	FNVTBONMENTAL	ANALYSIS I ABORATORY	www.hallenvironmental.com	- Albuquerate NM 87109	Fax 505-345-4107	Analysis Request				780 ar	8 \	CÀS	RCRA 8 Me Aniona (F,Cl.) 8081 Pestici 8270 (Semi- Metals and	×××	×	×	XXX	×	×		×		See attached sheet for Analytical Methods et Analytes.	7.5 2.0	
		ANA	- Avevey	4901 Hawkins NE	Tel. 505-345-3975			nly)	V/O	1(G:	PP- 18.	9 P 7 P (GI L+3	BTEX+MTB B2108 HqT TPH (Metho EDB (Metho	×			×						Remarks: See attache and Target Analytes	1. C.	
							oore		8 05	Tracy Payne - 919-561-7055	- NE	<i>lemarks</i>	HEAL NO.	,			JI)-			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tio-		Date Time Rer 10/25/19 (355 and	Date Time 10/135	
	d Time:	d □ Rush_	Project Name: SWMU 13		į		Project Manager: Brian Moore			Tracy Payne	☑ Yes	nperature: See	Preservative Type	Neat	МеОН	NEAT	NEAT	NEAT	MEOH		MEOH		A.	T	
	Turn-Around	X Standard	Project Nam	·	Project #:	-1	Project Man			Sampler:	On Ice:	Sample Tem	Container Type and #	8 oz Jar - 2	Vial - 2	4 CETAR-1	8 OPETAR-2	402JAR-1	VIAL-2		VIAL-1		Received by:	Received by:	
	Chain-of-Custody Record	Marathon Petroleum Company LP	Gallup Refinery	Mailing Address: 92 Giant Crossing Road	Gallup, NM 87301	5(Email: Bmoore1@marathonpetroleum.com	QA/QC Package:	ndard X Level 4 (Full Validation)	er	X EDD (Type) EXCEL		Time Matrix Sample Request ID	- Soil DuPo3		7	т ривон		7 7		- MEDH MEOH BLANK		Time: 1	Time: Relinquished by: 1655 D	
•		Client:		Mailing		Phone #:	Email:	QA/QC	☐ Standard	□ Other	X EDC		Date	61/2401	,			+	>		9/mg/		Date:	19/25/19	

6 of 10

Air Bubbles (Y or N) **ANALYSIS LABORATORY** HALL ENVIRONMENTAL Remarks: See attached sheet for Analytical Methods Cyanide × 4901 Hawkins NE - Albuquerque, NM 87109 Metals - Total × Fax 505-345-4107 (AOV-ima2) 0728 www.hallenvironmental.com × **Analysis Request** (AOV) **B08**S8 × 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) RCRA 8 Metals Tel. 505-345-3975 (SMI20728 to 0158) HA9 EDB (Method 504.1) 27 (Nethod 418.1) TPH 8015B (GRO/DRO/MRO) × × BTEX+MTBE+TPH(Gas only) BTEX+MTBE+TMB's(8021) 1925/A 1855 Tracy Payne - 919-561-7055 1382 1910509 ×10, remarks HEAL No. 10/22/14 Project Manager: Brian Moore Se Project Name: SWMU 13 ☐ Rush Preservative HNO3 NaOH Neat Neat ᄗ Sample Temperature: ⊠ Yes Turn-Around Time: X Standard Container Type and # 40ml voa - 5 amber - 1 plastic - 1 plastic - 1 250 m amber -1 liter 250 ml 500 m Project #: Sampler: eceived by eived by On Ice: X Level 4 (Full Validation) Client: Marathon Petroleum Company LP Sample Request ID EB102419 Chain-of-Custody Record Mailing Address: 92 Giant Crossing Road Email: Bmoore1@marathonpetroleum.com Gallup, NM 87301 505-726-9745 Relinquished by: elinquished by: Gallup Refinery EXCEL Matrix Water 1345 QA/QC Package: Time 1925/14 (355 X EDD (Type) 1655 □ Standard Time: Phone #: 1924/9 □ Other Date 4/5261

7 OF 20

HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	(¢	O/MR((1.1) (1.1) (1.1) (1.2)	(GRC) d 418 d 504 d 504 h(O ₃ ,h ides / (A)	BTEX+MTB TPH 8015B TPH (Methorer EDB (Methorer BDB (8310 PCRA 8 Me Anions (F,Cl 8081 Pestion R260B (VO. 8260B (VO. 8260B (VO.	XXX	×	×	XXX	×	×	×××	×	×	Remarks: See attached sheet for Analytical Methods and Target Analytes.	3.1	0.7
Turn-Around Time:	X Standard Rush	Project Name: SWMU 13		Project #:		Project Manager: Brian Moore	(1208)	Sampler: Tracy Payne - 919-561-7055	On loe Mr Yes I No + H Samule Temperature 520 0 mm (CX III	tive	8 oz Jar - 2 Neat	Vial - 2 MeOH	-	+-		+	_	MEOH	Herane-1 NEAT	 M 10/15/1 (355	Received by: Date Time	
Chain-of-Custody Record	Client: Marathon Petroleum Company LP		Mailing Address: 92 Giant Crossing Road	Gallup, NM 87301	Phone #: 505-726-9745	moore1@marathonpetroleum.com	QA/QC Package:	Other	Type) EXCEL	Date Time Matrix Sample Request ID	1%5/2, 2, 2, Soil 2, 2, 2, 2, 2, 1)	2001		(, 2, 3, 0, (1, 5, 2, 1)	CIO	7	(3.2) A 13-10 (3.2.)		1 1 1	Date: Time: Relinquished by:	Date: Time: Relinguished by:	

HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	(v (o	OS'*04 (SM) (SM)	H(G:	177 814 814 827 8 7,80 18 8	d CS) (CS) (CS) (CS) (CS) (CS) (CS) (CS)	BTEX+MT TPH 8015I TPH 8015I TPH (Meth PPH (8310 RCRA 8 M Anions (F.0 8081 Pesti 8081 Pesti 8081 Pesti 8270 (Sen Metals an	 	X	×	×××	×	×	× × × ×	×	>	Remarks: See attached sheet for Analytical Methods	and Target Analytes.	N.	2.1 2.0
Turn-Around Time:	X Standard ☐ Rush	Project Name: SWMU 13		Project #:		Project Manager: Brian Moore	8021)	Sampler. Tracy Payne - 919-561-7055	On ice: Ves. El No	Temperature. See Cervic Kg	Container Preservative HEAL No X Type and # Type 1410509	8 oz Jar - 2 Neat -()32	Vial - 2 MeOH	1 - 0 et - 12	-	MEON		 			 Time	स्र	Received by: Date Time	
Chain-of-Custody Record	Client: Marathon Petroleum Company LP	Gallup Refinery	Mailing Address: 92 Giant Crossing Road	Gallup, NM 87301	Phone #: 505-726-9745	Imoore1@marathonpetroleum.com	QA/QC Package:		Type) EXCEL		Date Time Matrix Sample Request ID	19/5/2 112 Soil August 17 (2-5,5)	OCI			7-5-15 11-51 DWWS		6 12.11 (2.21)	The state of the s	7 4	ime: Relinquished by:	16	Time: Befindwished by:	The state of the s

hain-of-Custody Record	Time	HALL ENVIRONMENTAL
Client: Marathon Petroleum Company LP	X Standard Rush	ANALYSIS LABORATORY
Gallup Refinery	Project Name: SWMU 13	www.hallenvironmental.com
Mailing Address: 92 Giant Crossing Road		4901 Hawkins NE - Albuquerque, NM 87109
Gallup, NM 87301	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #: 505-726-9745		Analysis Request
Email: Bmoore1@marathonpetroleum.com	Project Manager: Brian Moore	(v (O
QA/QC Package:		oul;
☐ Standard X Level 4 (Full Validation)		S(80)
□ Other	r Iracy Payn	100 (v.
X EDD (Type) EXCEL	On ice. 💢 Yes 🖾 No	418 5047 5047 5047 5047
	Sample Temperature: 500 1000 KS	4 C)
Date Time Matrix Sample Request ID	Container Preservative HEAL No. Type and # Type 1 A 10 EGH	BTEX+MTI BTEX+MTI TPH 80158 TPH (Meth TPH (8310 PAH (8310 RCRA 8 M Anions (F,C 8081 Pesti 8270 (Sen 8270 (Sen Metals and
(9/2/2) Soil Soil Summer 12 (2.6.5)	8 oz Jar - 2 Neat	
/	Vial - 2 MeOH	×
	-	×
(2.5.)	D Just And 2	×××××××××××××××××××××××××××××××××××××××
13.0 DWMB 13-12.0.3-1-3.	MAN Z MEDIA	
		×
122 6 C. Mari 13-12/16-21)		XXXX
	MEDH	X
1	~	×
Relinc	Received by: Marker Time	Remarks: See attached sheet for Analytical Methods and Target Analytes.
19,355	T old	\top
Date: Time: Refinquished by: 10/25/th 1655	-17	. 1. %
7		0.2 1.2

Chain-of-Custody Record	Turn-Around Time:	HALL ENVIRONMENTAL
Client: Marathon Petroleum Company LP	X Standard	ANALYSIS LABORATORY
Gallup Refinery	Project Name: SWMU 13	www.hallenvironmental.com
Mailing Address: 92 Giant Crossing Road		4901 Hawkins NE - Albuquerque, NM 87109
Gallup, NM 87301	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #: 505-726-9745		Analysis Request
moore'	Project Manager: Brian Moore	(Þ.
QA/QC Package:		(S
☐ Standard X Level 4 (Full Validation)	Somelor Track David - 919-561-7055	(GaseD) (I) (SM) (SM) (SM) (SM)
		Hq. 1.8.1 1.8.1 1.00 2.70 8.1.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
X EDD (1ype) EXCEL	Tompscatting Can	(GH 50)
	Sample temperature See (Chro. E.)	18E thoodt thoo thoo the thoo thoo thoo thoo thoo
Date Time Matrix Sample Request ID	Container Preservative HEAL No. Type and # Type 1年日 No. Type	BTEX+MT TPH 801: TPH 801: TPH (Met PAH (831 PAH
19/25/21-21 Soil 6 12 (2-3')	8 oz Jar-2 Neat - 678	×××
	Vial-2 MeOH	X
	Waster Near	X
1	. 4	XXX
COLOR		×
	ļ	×
	1	
1925/10 - MENYME OH BANK	VIAL-1 MEOH -030	X
Date: Time: Relinquished by. West, 355	Received by:	Remarks: See attached she and Target Analytes.
Date: Time: Relipquished by:	Repeived by: Date Time	1.6 - 6.1 - 1.5 - 1
_		0. ,

SWMU 13 - Soil and Equipment Blank Analytical Requirements

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese)

Inorganic Analytical Methods

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

SWMU 13 - Soil and Equipment Blank Analytical Requirements

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese)

Inorganic Analytical Methods

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
lron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 05, 2019

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: SWMU 13 OrderNo.: 1910E49

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 7 sample(s) on 10/29/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 2:55:00 PM

 Lab ID:
 1910E49-001
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O						Analyst: BRM		
Diesel Range Organics (DRO)	5500	180	900		mg/Kg	100	10/31/2019 1:25:46 PM	48461
Motor Oil Range Organics (MRO)	5400	4500	4500		mg/Kg	100	10/31/2019 1:25:46 PM	48461
Surr: DNOP	0	0	70-130	S	%Rec	100	10/31/2019 1:25:46 PM	48461
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.0	3.3		mg/Kg	1	10/31/2019 12:17:19 A	G64077
Surr: BFB	103	0	77.4-118		%Rec	1	10/31/2019 12:17:19 A	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.25	0.0091	0.17		mg/Kg	5	11/7/2019 5:56:07 PM	48648
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.74	5.0		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Arsenic	ND	2.9	5.0		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Barium	290	0.047	0.20		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Beryllium	1.3	0.019	0.30		mg/Kg	2	11/19/2019 7:33:31 PM	
Cadmium	ND	0.049	0.20		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Chromium	28	0.16	0.61		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Cobalt	6.8	0.21	0.61		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Iron	20000	73	250		mg/Kg	100	11/20/2019 5:32:59 PM	48519
Lead	ND	0.49	0.50		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Manganese	330	0.042	0.20		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Nickel	12	0.30	1.0		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Silver	ND	0.065	0.50		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Vanadium	33	0.13	5.0		mg/Kg	2	11/19/2019 7:33:31 PM	48519
Zinc	60	0.80	5.0		mg/Kg	2	11/19/2019 7:33:31 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Acenaphthylene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Aniline	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Anthracene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Azobenzene	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benz(a)anthracene	ND	0.92	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benzo(a)pyrene	ND	0.85	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benzo(b)fluoranthene	ND	0.84	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benzo(g,h,i)perylene	ND	0.82	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benzo(k)fluoranthene	ND	0.87	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benzoic acid	ND	0.98	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Benzyl alcohol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 2:55:00 PM

 Lab ID:
 1910E49-001
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC			
Bis(2-chloroethoxy)methane	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Bis(2-chloroethyl)ether	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Bis(2-chloroisopropyl)ether	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Bis(2-ethylhexyl)phthalate	ND	1.4	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
4-Bromophenyl phenyl ether	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Butyl benzyl phthalate	ND	0.97	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Carbazole	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
4-Chloro-3-methylphenol	ND	1.5	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
4-Chloroaniline	ND	1.3	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2-Chloronaphthalene	ND	1.2	2.4	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2-Chlorophenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
4-Chlorophenyl phenyl ether	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Chrysene	4.1	0.84	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Di-n-butyl phthalate	ND	1.4	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Di-n-octyl phthalate	ND	0.97	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Dibenz(a,h)anthracene	ND	0.87	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Dibenzofuran	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
1,2-Dichlorobenzene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
1,3-Dichlorobenzene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
1,4-Dichlorobenzene	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
3,3´-Dichlorobenzidine	ND	0.85	2.4	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Diethyl phthalate	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Dimethyl phthalate	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2,4-Dichlorophenol	ND	1.1	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2,4-Dimethylphenol	ND	1.0	2.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
4,6-Dinitro-2-methylphenol	ND	0.88	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2,4-Dinitrophenol	ND	0.69	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2,4-Dinitrotoluene	ND	1.1	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2,6-Dinitrotoluene	ND	1.3	4.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Fluoranthene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Fluorene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Hexachlorobenzene	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Hexachlorobutadiene	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Hexachlorocyclopentadiene	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Hexachloroethane	ND	1.1	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Indeno(1,2,3-cd)pyrene	ND	0.95	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
Isophorone	ND	1.4	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
1-Methylnaphthalene	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PN	A 48536		
2-Methylnaphthalene	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	A 48536		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 2:55:00 PM

 Lab ID:
 1910E49-001
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDI	. RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
2-Methylphenol	ND	1.1	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
3+4-Methylphenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
N-Nitrosodi-n-propylamine	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
N-Nitrosodiphenylamine	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Naphthalene	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
2-Nitroaniline	ND	1.4	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
3-Nitroaniline	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
4-Nitroaniline	ND	1.2	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Nitrobenzene	ND	1.3	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
2-Nitrophenol	ND	1.3	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
4-Nitrophenol	ND	1.3	2.4	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Pentachlorophenol	ND	0.98	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Phenanthrene	4.5	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Phenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Pyrene	ND	0.89	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Pyridine	ND	1.1	3.8	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
1,2,4-Trichlorobenzene	ND	1.5	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
2,4,5-Trichlorophenol	ND	1.2	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
2,4,6-Trichlorophenol	ND	1.0	1.9	D	mg/Kg	1	11/8/2019 2:20:55 PM	48536
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	11/8/2019 2:20:55 PM	48536
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	11/8/2019 2:20:55 PM	48536
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	11/8/2019 2:20:55 PM	48536
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	11/8/2019 2:20:55 PM	48536
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	11/8/2019 2:20:55 PM	48536
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	11/8/2019 2:20:55 PM	48536
EPA METHOD 8260B: VOLATILES							Analyst: DJF	=
Benzene	ND	0.0027	0.016		mg/Kg	1	10/30/2019 10:49:16 F	48446
Toluene	ND	0.0031	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
Ethylbenzene	ND	0.0019	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
Methyl tert-butyl ether (MTBE)	ND	0.0078	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
1,2,4-Trimethylbenzene	ND	0.0030	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
1,3,5-Trimethylbenzene	ND	0.0032	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
1,2-Dichloroethane (EDC)	ND	0.0034	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
1,2-Dibromoethane (EDB)	ND	0.0030	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446
Naphthalene	ND	0.0066	0.066		mg/Kg	1	10/30/2019 10:49:16 F	48446
1-Methylnaphthalene	0.030	0.019	0.13	J	mg/Kg	1	10/30/2019 10:49:16 F	48446
2-Methylnaphthalene	0.023	0.014	0.13	J	mg/Kg	1	10/30/2019 10:49:16 F	48446
Acetone	ND	0.027	0.49		mg/Kg	1	10/30/2019 10:49:16 F	48446
Bromobenzene	ND	0.0032	0.033		mg/Kg	1	10/30/2019 10:49:16 F	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 2:55:00 PM

 Lab ID:
 1910E49-001
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	=
Bromodichloromethane	ND	0.0030	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Bromoform	ND	0.0030	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Bromomethane	ND	0.0079	0.099		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
2-Butanone	0.067	0.038	0.33	J	mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Carbon disulfide	ND	0.011	0.33		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Carbon tetrachloride	ND	0.0031	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Chlorobenzene	ND	0.0042	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Chloroethane	ND	0.0049	0.066		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Chloroform	ND	0.0026	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Chloromethane	ND	0.0032	0.099		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
2-Chlorotoluene	ND	0.0029	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
4-Chlorotoluene	ND	0.0027	0.033		mg/Kg	1	10/30/2019 10:49:16	P 48446
cis-1,2-DCE	ND	0.0045	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
cis-1,3-Dichloropropene	ND	0.0028	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,2-Dibromo-3-chloropropane	ND	0.0034	0.066		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Dibromochloromethane	ND	0.0023	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Dibromomethane	ND	0.0035	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,2-Dichlorobenzene	ND	0.0027	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,3-Dichlorobenzene	ND	0.0029	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,4-Dichlorobenzene	ND	0.0028	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Dichlorodifluoromethane	ND	0.0076	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,1-Dichloroethane	ND	0.0021	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,1-Dichloroethene	ND	0.013	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,2-Dichloropropane	ND	0.0024	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,3-Dichloropropane	ND	0.0036	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
2,2-Dichloropropane	ND	0.011	0.066		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,1-Dichloropropene	ND	0.0030	0.066		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Hexachlorobutadiene	0.0085	0.0034	0.066	J	mg/Kg	1	10/30/2019 10:49:16	P 48446
2-Hexanone	ND	0.0055	0.33		mg/Kg	1	10/30/2019 10:49:16	P 48446
Isopropylbenzene	ND	0.0024	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
4-Isopropyltoluene	ND	0.0027	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
4-Methyl-2-pentanone	ND	0.0062	0.33		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Methylene chloride	0.0093	0.0058	0.099	J	mg/Kg	1	10/30/2019 10:49:16 I	P 48446
n-Butylbenzene	ND	0.0031	0.099		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
n-Propylbenzene	ND	0.0026	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
sec-Butylbenzene	ND	0.0037	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
Styrene	ND	0.0026	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
tert-Butylbenzene	ND	0.0031	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446
1,1,1,2-Tetrachloroethane	ND	0.0022	0.033		mg/Kg	1	10/30/2019 10:49:16 I	P 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-13 (0-0.5')Project:SWMU 13Collection Date: 10/25/2019 2:55:00 PM

Lab ID: 1910E49-001 **Matrix:** MEOH (SOIL) **Received Date:** 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	:
1,1,2,2-Tetrachloroethane	ND	0.0033	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
Tetrachloroethene (PCE)	ND	0.0026	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
trans-1,2-DCE	ND	0.0030	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
trans-1,3-Dichloropropene	ND	0.0035	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
1,2,3-Trichlorobenzene	ND	0.0029	0.066	mg/Kg	1	10/30/2019 10:49:16 F	48446
1,2,4-Trichlorobenzene	ND	0.0033	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
1,1,1-Trichloroethane	ND	0.0030	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
1,1,2-Trichloroethane	ND	0.0023	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
Trichloroethene (TCE)	ND	0.0038	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
Trichlorofluoromethane	ND	0.011	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
1,2,3-Trichloropropane	ND	0.0053	0.066	mg/Kg	1	10/30/2019 10:49:16 F	48446
Vinyl chloride	ND	0.0022	0.033	mg/Kg	1	10/30/2019 10:49:16 F	48446
Xylenes, Total	ND	0.0083	0.066	mg/Kg	1	10/30/2019 10:49:16 F	48446
Surr: Dibromofluoromethane	110		70-130	%Rec	1	10/30/2019 10:49:16 F	48446
Surr: 1,2-Dichloroethane-d4	91.3		70-130	%Rec	1	10/30/2019 10:49:16 F	48446
Surr: Toluene-d8	97.5		70-130	%Rec	1	10/30/2019 10:49:16 F	48446
Surr: 4-Bromofluorobenzene	88.3		70-130	%Rec	1	10/30/2019 10:49:16 F	P 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-13 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:05:00 PM

 Lab ID:
 1910E49-002
 Matrix: SOIL
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	500	21	110		mg/Kg	10	11/4/2019 9:07:20 AM	48543
Motor Oil Range Organics (MRO)	ND	530	530	D	mg/Kg	10	11/4/2019 9:07:20 AM	48543
Surr: DNOP	0	0	70-130	S	%Rec	10	11/4/2019 9:07:20 AM	48543
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.4	4.7		mg/Kg	1	10/31/2019 8:46:56 AM	48453
Surr: BFB	152	0	77.4-118	s	%Rec	1	10/31/2019 8:46:56 AM	48453
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0056	0.0018	0.033	J	mg/Kg	1	11/7/2019 5:00:57 PM	48648
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.75	5.1		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 7:36:40 PM	
Barium	170	0.047	0.20		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Beryllium	1.4	0.019	0.31		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Cadmium	ND	0.050	0.20		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Chromium	22	0.16	0.61		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Cobalt	6.8	0.22	0.61		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Iron	21000	74	260		mg/Kg	100	11/20/2019 5:34:34 PM	48519
Lead	2.1	0.50	0.51		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Manganese	380	0.042	0.20		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Nickel	15	0.30	1.0		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Selenium	ND	2.6	5.1		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Silver	ND	0.066	0.51		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Vanadium	30	0.14	5.1		mg/Kg	2	11/19/2019 7:36:40 PM	48519
Zinc	31	0.81	5.1		mg/Kg	2	11/19/2019 7:36:40 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Aniline	ND	1.3	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Anthracene	ND	1.0	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benz(a)anthracene	ND	0.94	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benzo(a)pyrene	ND	0.87	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benzo(b)fluoranthene	ND	0.87	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benzo(g,h,i)perylene	ND	0.84	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benzo(k)fluoranthene	ND	0.89	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benzoic acid	ND	1.0	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-13 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:05:00 PM

 Lab ID:
 1910E49-002
 Matrix: SOIL
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (
Bis(2-chloroethoxy)methane	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Bis(2-ethylhexyl)phthalate	ND	1.4	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Carbazole	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4-Chloro-3-methylphenol	ND	1.5	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4-Chloroaniline	ND	1.4	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2-Chloronaphthalene	ND	1.2	2.5	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Chrysene	ND	0.86	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Di-n-butyl phthalate	ND	1.5	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Di-n-octyl phthalate	ND	1.0	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Dibenz(a,h)anthracene	ND	0.89	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
1,3-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
1,4-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
3,3'-Dichlorobenzidine	ND	0.87	2.5	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
2,4-Dichlorophenol	ND	1.1	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
2,4-Dimethylphenol	ND	1.1	2.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4,6-Dinitro-2-methylphenol	ND	0.91	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
2,4-Dinitrophenol	ND	0.71	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2,4-Dinitrotoluene	ND	1.2	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2,6-Dinitrotoluene	ND	1.3	4.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Fluorene	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Indeno(1,2,3-cd)pyrene	ND	0.98	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
Isophorone	ND	1.4	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536
2-Methylnaphthalene	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	1 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910E49**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/5/2019

CLIENT: Marathon Client Sample ID: SWMU 13-13 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:05:00 PM

 Lab ID:
 1910E49-002
 Matrix: SOIL
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
2-Methylphenol	ND	1.2	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
N-Nitrosodiphenylamine	ND	1.0	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4-Nitroaniline	ND	1.3	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Nitrobenzene	ND	1.4	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2-Nitrophenol	ND	1.3	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
4-Nitrophenol	ND	1.3	2.5	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Pentachlorophenol	ND	1.0	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Phenanthrene	2.2	1.1	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Phenol	ND	1.2	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Pyrene	ND	0.92	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Pyridine	ND	1.2	3.9	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
1,2,4-Trichlorobenzene	ND	1.5	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
2,4,6-Trichlorophenol	ND	1.0	2.0	D	mg/Kg	1	11/8/2019 2:49:52 PM	48536
Surr: 2-Fluorophenol	0		26.7-85.9	SD	%Rec	1	11/8/2019 2:49:52 PM	48536
Surr: Phenol-d5	0		18.5-101	SD	%Rec	1	11/8/2019 2:49:52 PM	48536
Surr: 2,4,6-Tribromophenol	0		35.8-85.6	SD	%Rec	1	11/8/2019 2:49:52 PM	48536
Surr: Nitrobenzene-d5	0		40.8-95.2	SD	%Rec	1	11/8/2019 2:49:52 PM	48536
Surr: 2-Fluorobiphenyl	0		34.7-85.2	SD	%Rec	1	11/8/2019 2:49:52 PM	48536
Surr: 4-Terphenyl-d14	0		37.4-91.3	SD	%Rec	1	11/8/2019 2:49:52 PM	48536
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.0039	0.024		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Toluene	ND	0.0045	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Ethylbenzene	ND	0.0027	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Methyl tert-butyl ether (MTBE)	ND	0.011	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,2,4-Trimethylbenzene	0.088	0.0043	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,3,5-Trimethylbenzene	0.026	0.0046	0.047	J	mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,2-Dichloroethane (EDC)	ND	0.0048	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,2-Dibromoethane (EDB)	ND	0.0043	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Naphthalene	0.066	0.0095	0.094	J	mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1-Methylnaphthalene	0.58	0.027	0.19		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
2-Methylnaphthalene	0.24	0.021	0.19		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Acetone	0.15	0.039	0.71	J	mg/Kg	1	10/31/2019 3:45:37 PM	
Bromobenzene	ND	0.0045	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-13 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:05:00 PM

 Lab ID:
 1910E49-002
 Matrix: SOIL
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ l	 F
Bromodichloromethane	ND	0.0043	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Bromoform	ND	0.0043	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Bromomethane	ND	0.011	0.14		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
2-Butanone	ND	0.055	0.47		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Carbon disulfide	0.061	0.016	0.47	J	mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Carbon tetrachloride	ND	0.0045	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Chlorobenzene	ND	0.0060	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Chloroethane	ND	0.0070	0.094		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Chloroform	ND	0.0038	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Chloromethane	ND	0.0045	0.14		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
2-Chlorotoluene	ND	0.0041	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
4-Chlorotoluene	ND	0.0039	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
cis-1,2-DCE	ND	0.0065	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
cis-1,3-Dichloropropene	ND	0.0040	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,2-Dibromo-3-chloropropane	ND	0.0048	0.094		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Dibromochloromethane	ND	0.0033	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Dibromomethane	ND	0.0051	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,2-Dichlorobenzene	ND	0.0039	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,3-Dichlorobenzene	ND	0.0041	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,4-Dichlorobenzene	ND	0.0039	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Dichlorodifluoromethane	ND	0.011	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,1-Dichloroethane	ND	0.0030	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,1-Dichloroethene	ND	0.019	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,2-Dichloropropane	ND	0.0034	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,3-Dichloropropane	ND	0.0051	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
2,2-Dichloropropane	ND	0.015	0.094		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,1-Dichloropropene	ND	0.0043	0.094		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Hexachlorobutadiene	ND	0.0048	0.094		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
2-Hexanone	ND	0.0078	0.47		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Isopropylbenzene	ND	0.0034	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
4-Isopropyltoluene	0.0040	0.0039	0.047	J	mg/Kg	1	10/31/2019 3:45:37 P	M 48453
4-Methyl-2-pentanone	ND	0.0089	0.47		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Methylene chloride	ND	0.0083	0.14		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
n-Butylbenzene	0.012	0.0044	0.14	J	mg/Kg	1	10/31/2019 3:45:37 P	M 48453
n-Propylbenzene	0.0093	0.0038	0.047	J	mg/Kg	1	10/31/2019 3:45:37 P	M 48453
sec-Butylbenzene	0.0083	0.0053	0.047	J	mg/Kg	1	10/31/2019 3:45:37 P	M 48453
Styrene	ND	0.0037	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
tert-Butylbenzene	ND	0.0045	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453
1,1,1,2-Tetrachloroethane	ND	0.0032	0.047		mg/Kg	1	10/31/2019 3:45:37 P	M 48453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-13 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:05:00 PM

 Lab ID:
 1910E49-002
 Matrix: SOIL
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1,2,2-Tetrachloroethane	ND	0.0048	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Tetrachloroethene (PCE)	ND	0.0038	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
trans-1,2-DCE	ND	0.0043	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
trans-1,3-Dichloropropene	ND	0.0050	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,2,3-Trichlorobenzene	ND	0.0041	0.094		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,2,4-Trichlorobenzene	ND	0.0048	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,1,1-Trichloroethane	ND	0.0043	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,1,2-Trichloroethane	ND	0.0033	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Trichloroethene (TCE)	ND	0.0055	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Trichlorofluoromethane	ND	0.016	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
1,2,3-Trichloropropane	ND	0.0076	0.094		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Vinyl chloride	ND	0.0031	0.047		mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Xylenes, Total	0.016	0.012	0.094	J	mg/Kg	1	10/31/2019 3:45:37 PM	1 48453
Surr: Dibromofluoromethane	108		70-130		%Rec	1	10/31/2019 3:45:37 PM	1 48453
Surr: 1,2-Dichloroethane-d4	97.9		70-130		%Rec	1	10/31/2019 3:45:37 PM	1 48453
Surr: Toluene-d8	96.6		70-130		%Rec	1	10/31/2019 3:45:37 PM	1 48453
Surr: 4-Bromofluorobenzene	91.2		70-130		%Rec	1	10/31/2019 3:45:37 PM	1 48453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:20:00 PM

 Lab ID:
 1910E49-003
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	550	20	98		mg/Kg	10	11/4/2019 9:16:28 AM	48543
Motor Oil Range Organics (MRO)	ND	490	490	D	mg/Kg	10	11/4/2019 9:16:28 AM	48543
Surr: DNOP	0	0	70-130	S	%Rec	10	11/4/2019 9:16:28 AM	48543
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.92	3.0		mg/Kg	1	10/31/2019 9:10:13 AM	48491
Surr: BFB	156	0	77.4-118	s	%Rec	1	10/31/2019 9:10:13 AM	48491
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.047	0.0018	0.033		mg/Kg	1	11/7/2019 5:02:58 PM	48648
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.73	5.0		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Arsenic	ND	2.8	5.0		mg/Kg	2	11/19/2019 7:39:50 PM	
Barium	190	0.046	0.20		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Beryllium	1.4	0.018	0.30		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Cadmium	ND	0.048	0.20		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Chromium	20	0.16	0.60		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Cobalt	6.3	0.21	0.60		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Iron	20000	72	250		mg/Kg	100	11/20/2019 5:36:09 PM	48519
Lead	0.99	0.48	0.50		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Manganese	280	0.041	0.20		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Nickel	13	0.30	0.99		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Selenium	ND	2.5	5.0		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Silver	ND	0.064	0.50		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Vanadium	28	0.13	5.0		mg/Kg	2	11/19/2019 7:39:50 PM	48519
Zinc	29	0.79	5.0		mg/Kg	2	11/19/2019 7:39:50 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Acenaphthylene	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Aniline	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Anthracene	ND	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Azobenzene	ND	0.13	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benz(a)anthracene	ND	0.093	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benzo(a)pyrene	ND	0.085	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benzo(b)fluoranthene	ND	0.085	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benzo(g,h,i)perylene	ND	0.082	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benzo(k)fluoranthene	ND	0.087	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benzoic acid	ND	0.099	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:20:00 PM

 Lab ID:
 1910E49-003
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD	C
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Bis(2-chloroethyl)ether	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Bis(2-ethylhexyl)phthalate	ND	0.14	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Butyl benzyl phthalate	ND	0.098	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Carbazole	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4-Chloro-3-methylphenol	ND	0.15	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4-Chloroaniline	ND	0.14	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2-Chloronaphthalene	ND	0.12	0.24		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4-Chlorophenyl phenyl ether	ND	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Chrysene	0.13	0.085	0.19	J	mg/Kg	1	11/8/2019 3:18:48 PM	48536
Di-n-butyl phthalate	0.17	0.14	0.38	J	mg/Kg	1	11/8/2019 3:18:48 PM	48536
Di-n-octyl phthalate	ND	0.098	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Dibenz(a,h)anthracene	ND	0.087	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Dibenzofuran	ND	0.13	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
1,2-Dichlorobenzene	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
1,3-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
1,4-Dichlorobenzene	ND	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
3,3´-Dichlorobenzidine	ND	0.085	0.24		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Diethyl phthalate	ND	0.14	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Dimethyl phthalate	ND	0.13	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,4-Dichlorophenol	ND	0.11	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,4-Dimethylphenol	ND	0.11	0.29		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4,6-Dinitro-2-methylphenol	ND	0.089	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,4-Dinitrophenol	ND	0.070	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,4-Dinitrotoluene	ND	0.11	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,6-Dinitrotoluene	ND	0.13	0.48		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Fluoranthene	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Fluorene	0.25	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Hexachlorobenzene	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Hexachlorobutadiene	ND	0.13	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Hexachloroethane	ND	0.11	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Indeno(1,2,3-cd)pyrene	ND	0.096	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Isophorone	ND	0.14	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
1-Methylnaphthalene	0.54	0.14	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2-Methylnaphthalene	0.37	0.14	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:20:00 PM

 Lab ID:
 1910E49-003
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	;
2-Methylphenol	ND	0.11	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
3+4-Methylphenol	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
N-Nitrosodi-n-propylamine	ND	0.14	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
N-Nitrosodiphenylamine	ND	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Naphthalene	ND	0.15	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2-Nitroaniline	ND	0.14	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
3-Nitroaniline	ND	0.13	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4-Nitroaniline	ND	0.12	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Nitrobenzene	ND	0.13	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2-Nitrophenol	ND	0.13	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
4-Nitrophenol	ND	0.13	0.24		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Pentachlorophenol	ND	0.099	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Phenanthrene	0.81	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Phenol	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Pyrene	0.14	0.090	0.19	J	mg/Kg	1	11/8/2019 3:18:48 PM	48536
Pyridine	ND	0.12	0.38		mg/Kg	1	11/8/2019 3:18:48 PM	48536
1,2,4-Trichlorobenzene	ND	0.15	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,4,5-Trichlorophenol	ND	0.12	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
2,4,6-Trichlorophenol	ND	0.10	0.19		mg/Kg	1	11/8/2019 3:18:48 PM	48536
Surr: 2-Fluorophenol	58.1		26.7-85.9		%Rec	1	11/8/2019 3:18:48 PM	48536
Surr: Phenol-d5	64.8		18.5-101		%Rec	1	11/8/2019 3:18:48 PM	48536
Surr: 2,4,6-Tribromophenol	64.6		35.8-85.6		%Rec	1	11/8/2019 3:18:48 PM	48536
Surr: Nitrobenzene-d5	68.0		40.8-95.2		%Rec	1	11/8/2019 3:18:48 PM	48536
Surr: 2-Fluorobiphenyl	73.8		34.7-85.2		%Rec	1	11/8/2019 3:18:48 PM	48536
Surr: 4-Terphenyl-d14	59.9		37.4-91.3		%Rec	1	11/8/2019 3:18:48 PM	48536
EPA METHOD 8260B: VOLATILES							Analyst: DJF	;
Benzene	ND	0.0025	0.015		mg/Kg	1	10/30/2019 11:17:57 F	48446
Toluene	ND	0.0029	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Ethylbenzene	ND	0.0018	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Methyl tert-butyl ether (MTBE)	ND	0.0072	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,2,4-Trimethylbenzene	0.051	0.0028	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,3,5-Trimethylbenzene	0.017	0.0029	0.030	J	mg/Kg	1	10/30/2019 11:17:57 F	48446
1,2-Dichloroethane (EDC)	ND	0.0031	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,2-Dibromoethane (EDB)	ND	0.0028	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Naphthalene	0.018	0.0061	0.060	J	mg/Kg	1	10/30/2019 11:17:57 F	48446
1-Methylnaphthalene	0.26	0.017	0.12		mg/Kg	1	10/30/2019 11:17:57 F	48446
2-Methylnaphthalene	0.16	0.013	0.12		mg/Kg	1	10/30/2019 11:17:57 F	48446
Acetone	ND	0.025	0.45		mg/Kg	1	10/30/2019 11:17:57 F	48446
Bromobenzene	ND	0.0029	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910E49**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-13 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 3:20:00 PM

 Lab ID:
 1910E49-003
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	:
Bromodichloromethane	ND	0.0028	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Bromoform	ND	0.0027	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Bromomethane	ND	0.0073	0.091		mg/Kg	1	10/30/2019 11:17:57 F	48446
2-Butanone	ND	0.035	0.30		mg/Kg	1	10/30/2019 11:17:57 F	48446
Carbon disulfide	ND	0.010	0.30		mg/Kg	1	10/30/2019 11:17:57 F	48446
Carbon tetrachloride	ND	0.0029	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Chlorobenzene	ND	0.0039	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Chloroethane	ND	0.0045	0.060		mg/Kg	1	10/30/2019 11:17:57 F	48446
Chloroform	ND	0.0024	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Chloromethane	ND	0.0029	0.091		mg/Kg	1	10/30/2019 11:17:57 F	48446
2-Chlorotoluene	ND	0.0026	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
4-Chlorotoluene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
cis-1,2-DCE	ND	0.0041	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
cis-1,3-Dichloropropene	ND	0.0026	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,2-Dibromo-3-chloropropane	ND	0.0031	0.060		mg/Kg	1	10/30/2019 11:17:57 F	48446
Dibromochloromethane	ND	0.0021	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Dibromomethane	ND	0.0033	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,2-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,3-Dichlorobenzene	ND	0.0026	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,4-Dichlorobenzene	ND	0.0025	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
Dichlorodifluoromethane	ND	0.0070	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,1-Dichloroethane	ND	0.0019	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,1-Dichloroethene	ND	0.012	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,2-Dichloropropane	ND	0.0022	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,3-Dichloropropane	ND	0.0033	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
2,2-Dichloropropane	ND	0.0098	0.060		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,1-Dichloropropene	ND	0.0028	0.060		mg/Kg	1	10/30/2019 11:17:57 F	48446
Hexachlorobutadiene	ND	0.0031	0.060		mg/Kg	1	10/30/2019 11:17:57 F	48446
2-Hexanone	ND	0.0050	0.30		mg/Kg	1	10/30/2019 11:17:57 F	48446
Isopropylbenzene	ND	0.0022	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
4-Isopropyltoluene	0.0027	0.0025	0.030	J	mg/Kg	1	10/30/2019 11:17:57 F	48446
4-Methyl-2-pentanone	ND	0.0057	0.30		mg/Kg	1	10/30/2019 11:17:57 F	48446
Methylene chloride	ND	0.0053	0.091		mg/Kg	1	10/30/2019 11:17:57 F	48446
n-Butylbenzene	0.0084	0.0028	0.091	J	mg/Kg	1	10/30/2019 11:17:57 F	48446
n-Propylbenzene	0.0064	0.0024	0.030	J	mg/Kg	1	10/30/2019 11:17:57 F	48446
sec-Butylbenzene	0.0064	0.0034	0.030	J	mg/Kg	1	10/30/2019 11:17:57 F	48446
Styrene	ND	0.0024	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
tert-Butylbenzene	ND	0.0029	0.030		mg/Kg	1	10/30/2019 11:17:57 F	48446
1,1,1,2-Tetrachloroethane	ND	0.0020	0.030		mg/Kg	1	10/30/2019 11:17:57 F	P 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-13 (2-3')Project:SWMU 13Collection Date: 10/25/2019 3:20:00 PM

Lab ID: 1910E49-003 **Matrix:** MEOH (SOIL) **Received Date:** 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	=
1,1,2,2-Tetrachloroethane	ND	0.0031	0.030		mg/Kg	1	10/30/2019 11:17:57 I	9 48446
Tetrachloroethene (PCE)	ND	0.0024	0.030		mg/Kg	1	10/30/2019 11:17:57 I	P 48446
trans-1,2-DCE	ND	0.0028	0.030		mg/Kg	1	10/30/2019 11:17:57 I	P 48446
trans-1,3-Dichloropropene	ND	0.0032	0.030		mg/Kg	1	10/30/2019 11:17:57	48446
1,2,3-Trichlorobenzene	ND	0.0027	0.060		mg/Kg	1	10/30/2019 11:17:57	48446
1,2,4-Trichlorobenzene	ND	0.0031	0.030		mg/Kg	1	10/30/2019 11:17:57	48446
1,1,1-Trichloroethane	ND	0.0027	0.030		mg/Kg	1	10/30/2019 11:17:57 I	P 48446
1,1,2-Trichloroethane	ND	0.0021	0.030		mg/Kg	1	10/30/2019 11:17:57 I	P 48446
Trichloroethene (TCE)	ND	0.0035	0.030		mg/Kg	1	10/30/2019 11:17:57 I	P 48446
Trichlorofluoromethane	ND	0.010	0.030		mg/Kg	1	10/30/2019 11:17:57	48446
1,2,3-Trichloropropane	ND	0.0049	0.060		mg/Kg	1	10/30/2019 11:17:57	48446
Vinyl chloride	ND	0.0020	0.030		mg/Kg	1	10/30/2019 11:17:57	48446
Xylenes, Total	0.012	0.0076	0.060	J	mg/Kg	1	10/30/2019 11:17:57 I	P 48446
Surr: Dibromofluoromethane	110		70-130		%Rec	1	10/30/2019 11:17:57 I	9 48446
Surr: 1,2-Dichloroethane-d4	91.6		70-130		%Rec	1	10/30/2019 11:17:57 I	9 48446
Surr: Toluene-d8	102		70-130		%Rec	1	10/30/2019 11:17:57 [48446
Surr: 4-Bromofluorobenzene	90.8		70-130		%Rec	1	10/30/2019 11:17:57 I	9 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:20:00 PM

 Lab ID:
 1910E49-004
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: BRM	
Diesel Range Organics (DRO)	620	4.2	21	mg/Kg	, 2	11/4/2019 4:07:29 PM	48543
Motor Oil Range Organics (MRO)	380	100	100	mg/Kg	, 2	11/4/2019 4:07:29 PM	48543
Surr: DNOP	111	0	70-130	%Rec	2	11/4/2019 4:07:29 PM	48543
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.84	2.8	mg/Kg	, 1	10/31/2019 1:02:30 AM	G64077
Surr: BFB	94.8	0	77.4-118	%Rec		10/31/2019 1:02:30 AM	G64077
EPA METHOD 7471: MERCURY						Analyst: pmf	
Mercury	0.070	0.0018	0.033	mg/Kg	j 1	11/7/2019 5:04:59 PM	48648
EPA METHOD 6010B: SOIL METALS						Analyst: pmf	
Antimony	ND	0.71	4.8	mg/Kg	2	11/19/2019 7:49:36 PM	48519
Arsenic	ND	2.7	4.8	mg/Kg		11/19/2019 7:49:36 PM	
Barium	260	0.045	0.19	mg/Kg	, 2	11/19/2019 7:49:36 PM	48519
Beryllium	1.1	0.018	0.29	mg/Kg	, 2	11/19/2019 7:49:36 PM	48519
Cadmium	ND	0.047	0.19	mg/Kg	, 2	11/19/2019 7:49:36 PM	48519
Chromium	20	0.15	0.58	mg/Kg	j 2	11/19/2019 7:49:36 PM	48519
Cobalt	5.9	0.20	0.58	mg/Kg	j 2	11/19/2019 7:49:36 PM	48519
Iron	17000	70	240	mg/Kg	100	11/20/2019 5:37:43 PM	48519
Lead	ND	0.47	0.48	mg/Kg	j 2	11/19/2019 7:49:36 PM	48519
Manganese	290	0.040	0.19	mg/Kg	2	11/19/2019 7:49:36 PM	48519
Nickel	11	0.29	0.96	mg/Ko	2	11/19/2019 7:49:36 PM	48519
Selenium	ND	2.4	4.8	mg/Ko	2	11/21/2019 7:51:13 PM	48519
Silver	ND	0.062	0.48	mg/Kg	2	11/19/2019 7:49:36 PM	48519
Vanadium	27	0.13	4.8	mg/Ko	j 2	11/19/2019 7:49:36 PM	48519
Zinc	62	0.76	4.8	mg/Kg	2	11/19/2019 7:49:36 PM	48519
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
Acenaphthene	ND	0.23	0.38	mg/Kg	j 1	11/8/2019 3:47:47 PM	48536
Acenaphthylene	ND	0.21	0.38	mg/Kg	g 1	11/8/2019 3:47:47 PM	48536
Aniline	ND	0.24	0.38	mg/Kg	g 1	11/8/2019 3:47:47 PM	48536
Anthracene	ND	0.20	0.38	mg/Kg	g 1	11/8/2019 3:47:47 PM	48536
Azobenzene	ND	0.27	0.38	mg/Kg	j 1	11/8/2019 3:47:47 PM	48536
Benz(a)anthracene	ND	0.18	0.38	mg/Kg	g 1	11/8/2019 3:47:47 PM	48536
Benzo(a)pyrene	ND	0.17	0.38	mg/Kg	g 1	11/8/2019 3:47:47 PM	48536
Benzo(b)fluoranthene	ND	0.17	0.38	mg/Ko	j 1	11/8/2019 3:47:47 PM	48536
Benzo(g,h,i)perylene	ND	0.16	0.38	mg/Kg	g 1	11/8/2019 3:47:47 PM	48536
Benzo(k)fluoranthene	ND	0.17	0.38	mg/Ko	g 1	11/8/2019 3:47:47 PM	48536
Benzoic acid	ND	0.20	0.95	mg/Kg	j 1	11/8/2019 3:47:47 PM	48536
Benzyl alcohol	ND	0.24	0.38	mg/Kg	j 1	11/8/2019 3:47:47 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:20:00 PM

 Lab ID:
 1910E49-004
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	С
Bis(2-chloroethoxy)methane	ND	0.28	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Bis(2-chloroethyl)ether	ND	0.23	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Bis(2-chloroisopropyl)ether	ND	0.22	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Bis(2-ethylhexyl)phthalate	ND	0.27	0.95	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
4-Bromophenyl phenyl ether	ND	0.22	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
Butyl benzyl phthalate	ND	0.19	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Carbazole	ND	0.22	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
4-Chloro-3-methylphenol	ND	0.29	0.95	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
4-Chloroaniline	ND	0.27	0.95	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
2-Chloronaphthalene	ND	0.24	0.48	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
2-Chlorophenol	ND	0.24	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
4-Chlorophenyl phenyl ether	ND	0.21	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Chrysene	ND	0.17	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Di-n-butyl phthalate	ND	0.28	0.76	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Di-n-octyl phthalate	ND	0.19	0.76	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Dibenz(a,h)anthracene	ND	0.17	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
Dibenzofuran	ND	0.25	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
1,2-Dichlorobenzene	ND	0.23	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
1,3-Dichlorobenzene	ND	0.20	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
1,4-Dichlorobenzene	ND	0.20	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
3,3´-Dichlorobenzidine	ND	0.17	0.48	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
Diethyl phthalate	ND	0.27	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
Dimethyl phthalate	ND	0.25	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	И 48536
2,4-Dichlorophenol	ND	0.22	0.76	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
2,4-Dimethylphenol	ND	0.21	0.57	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
4,6-Dinitro-2-methylphenol	ND	0.18	0.76	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
2,4-Dinitrophenol	ND	0.14	0.95	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
2,4-Dinitrotoluene	ND	0.22	0.95	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
2,6-Dinitrotoluene	ND	0.25	0.95	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Fluoranthene	ND	0.21	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Fluorene	ND	0.22	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Hexachlorobenzene	ND	0.24	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Hexachlorobutadiene	ND	0.27	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Hexachlorocyclopentadiene	ND	0.22	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Hexachloroethane	ND	0.21	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536
Indeno(1,2,3-cd)pyrene	ND	0.19	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
Isophorone	ND	0.28	0.76	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
1-Methylnaphthalene	ND	0.28	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	A 48536
2-Methylnaphthalene	ND	0.28	0.38	mg/Kg	1	11/8/2019 3:47:47 PM	M 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:20:00 PM

 Lab ID:
 1910E49-004
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JD (;
2-Methylphenol	ND	0.23	0.76		mg/Kg	1	11/8/2019 3:47:47 PM	48536
3+4-Methylphenol	ND	0.23	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
N-Nitrosodi-n-propylamine	ND	0.27	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
N-Nitrosodiphenylamine	ND	0.20	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Naphthalene	ND	0.29	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
2-Nitroaniline	ND	0.27	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
3-Nitroaniline	ND	0.26	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
4-Nitroaniline	ND	0.24	0.76		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Nitrobenzene	ND	0.26	0.76		mg/Kg	1	11/8/2019 3:47:47 PM	48536
2-Nitrophenol	ND	0.26	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
4-Nitrophenol	ND	0.26	0.48		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Pentachlorophenol	ND	0.20	0.76		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Phenanthrene	ND	0.21	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Phenol	ND	0.24	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Pyrene	ND	0.18	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Pyridine	ND	0.23	0.76		mg/Kg	1	11/8/2019 3:47:47 PM	48536
1,2,4-Trichlorobenzene	ND	0.30	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
2,4,5-Trichlorophenol	ND	0.25	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
2,4,6-Trichlorophenol	ND	0.20	0.38		mg/Kg	1	11/8/2019 3:47:47 PM	48536
Surr: 2-Fluorophenol	31.2		26.7-85.9		%Rec	1	11/8/2019 3:47:47 PM	48536
Surr: Phenol-d5	37.9		18.5-101		%Rec	1	11/8/2019 3:47:47 PM	48536
Surr: 2,4,6-Tribromophenol	42.0		35.8-85.6		%Rec	1	11/8/2019 3:47:47 PM	48536
Surr: Nitrobenzene-d5	34.3		40.8-95.2	S	%Rec	1	11/8/2019 3:47:47 PM	48536
Surr: 2-Fluorobiphenyl	39.8		34.7-85.2		%Rec	1	11/8/2019 3:47:47 PM	48536
Surr: 4-Terphenyl-d14	32.7		37.4-91.3	S	%Rec	1	11/8/2019 3:47:47 PM	l 48536
EPA METHOD 8260B: VOLATILES							Analyst: DJF	•
Benzene	ND	0.0023	0.014		mg/Kg	1	10/30/2019 11:46:38 F	48446
Toluene	ND	0.0027	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Ethylbenzene	ND	0.0016	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Methyl tert-butyl ether (MTBE)	ND	0.0066	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2,4-Trimethylbenzene	ND	0.0025	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,3,5-Trimethylbenzene	ND	0.0027	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2-Dichloroethane (EDC)	ND	0.0028	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2-Dibromoethane (EDB)	ND	0.0025	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Naphthalene	ND	0.0056	0.056		mg/Kg	1	10/30/2019 11:46:38 F	48446
1-Methylnaphthalene	0.019	0.016	0.11	J	mg/Kg	1	10/30/2019 11:46:38 F	48446
2-Methylnaphthalene	ND	0.012	0.11		mg/Kg	1	10/30/2019 11:46:38 F	48446
Acetone	ND	0.023	0.42		mg/Kg	1	10/30/2019 11:46:38 F	48446
Bromobenzene	ND	0.0027	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 66

Lab Order **1910E49**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (0-0.5')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:20:00 PM

 Lab ID:
 1910E49-004
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0025	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Bromoform	ND	0.0025	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Bromomethane	ND	0.0067	0.084		mg/Kg	1	10/30/2019 11:46:38 F	48446
2-Butanone	ND	0.032	0.28		mg/Kg	1	10/30/2019 11:46:38 F	48446
Carbon disulfide	ND	0.0092	0.28		mg/Kg	1	10/30/2019 11:46:38 F	48446
Carbon tetrachloride	ND	0.0026	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Chlorobenzene	ND	0.0036	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Chloroethane	ND	0.0041	0.056		mg/Kg	1	10/30/2019 11:46:38 F	48446
Chloroform	ND	0.0022	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Chloromethane	ND	0.0027	0.084		mg/Kg	1	10/30/2019 11:46:38 F	48446
2-Chlorotoluene	ND	0.0024	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
4-Chlorotoluene	ND	0.0023	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
cis-1,2-DCE	ND	0.0038	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
cis-1,3-Dichloropropene	ND	0.0023	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2-Dibromo-3-chloropropane	ND	0.0029	0.056		mg/Kg	1	10/30/2019 11:46:38 F	48446
Dibromochloromethane	ND	0.0020	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Dibromomethane	ND	0.0030	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2-Dichlorobenzene	ND	0.0023	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,3-Dichlorobenzene	ND	0.0024	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,4-Dichlorobenzene	ND	0.0023	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Dichlorodifluoromethane	ND	0.0065	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,1-Dichloroethane	ND	0.0018	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,1-Dichloroethene	ND	0.011	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2-Dichloropropane	ND	0.0020	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,3-Dichloropropane	ND	0.0030	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
2,2-Dichloropropane	ND	0.0091	0.056		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,1-Dichloropropene	ND	0.0025	0.056		mg/Kg	1	10/30/2019 11:46:38 F	48446
Hexachlorobutadiene	ND	0.0028	0.056		mg/Kg	1	10/30/2019 11:46:38 F	48446
2-Hexanone	ND	0.0046	0.28		mg/Kg	1	10/30/2019 11:46:38 F	48446
Isopropylbenzene	ND	0.0020	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
4-Isopropyltoluene	0.016	0.0023	0.028	J	mg/Kg	1	10/30/2019 11:46:38 F	48446
4-Methyl-2-pentanone	ND	0.0053	0.28		mg/Kg	1	10/30/2019 11:46:38 F	48446
Methylene chloride	ND	0.0049	0.084		mg/Kg	1	10/30/2019 11:46:38 F	48446
n-Butylbenzene	ND	0.0026	0.084		mg/Kg	1	10/30/2019 11:46:38 F	48446
n-Propylbenzene	ND	0.0022	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
sec-Butylbenzene	ND	0.0031	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
Styrene	ND	0.0022	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
tert-Butylbenzene	ND	0.0026	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446
1,1,1,2-Tetrachloroethane	ND	0.0019	0.028		mg/Kg	1	10/30/2019 11:46:38 F	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-14 (0-0.5')

Project: SWMU 13

Collection Date: 10/25/2019 4:20:00 PM

Lab ID: 1910E49-004 **Matrix:** MEOH (SOIL) **Received Date:** 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
1,1,2,2-Tetrachloroethane	ND	0.0028	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
Tetrachloroethene (PCE)	ND	0.0022	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
trans-1,2-DCE	ND	0.0025	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
trans-1,3-Dichloropropene	ND	0.0029	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2,3-Trichlorobenzene	ND	0.0024	0.056	mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2,4-Trichlorobenzene	ND	0.0028	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
1,1,1-Trichloroethane	ND	0.0025	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
1,1,2-Trichloroethane	ND	0.0020	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
Trichloroethene (TCE)	ND	0.0032	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
Trichlorofluoromethane	ND	0.0094	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
1,2,3-Trichloropropane	ND	0.0045	0.056	mg/Kg	1	10/30/2019 11:46:38 F	48446
Vinyl chloride	ND	0.0018	0.028	mg/Kg	1	10/30/2019 11:46:38 F	48446
Xylenes, Total	ND	0.0070	0.056	mg/Kg	1	10/30/2019 11:46:38 F	48446
Surr: Dibromofluoromethane	108		70-130	%Rec	1	10/30/2019 11:46:38 F	48446
Surr: 1,2-Dichloroethane-d4	91.9		70-130	%Rec	1	10/30/2019 11:46:38 F	48446
Surr: Toluene-d8	98.2		70-130	%Rec	1	10/30/2019 11:46:38 F	48446
Surr: 4-Bromofluorobenzene	84.5		70-130	%Rec	1	10/30/2019 11:46:38 F	9 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:30:00 PM

 Lab ID:
 1910E49-005
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	20	1.8	8.8		mg/Kg	1	11/4/2019 9:34:49 AM	48543
Motor Oil Range Organics (MRO)	ND	44	44		mg/Kg	1	11/4/2019 9:34:49 AM	48543
Surr: DNOP	109	0	70-130		%Rec	1	11/4/2019 9:34:49 AM	48543
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.80	2.7		mg/Kg	1	10/31/2019 1:25:08 AM	G64077
Surr: BFB	112	0	77.4-118		%Rec	1	10/31/2019 1:25:08 AM	G64077
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.017	0.0018	0.033	J	mg/Kg	1	11/7/2019 5:07:00 PM	48648
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.71	4.8		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Arsenic	ND	2.8	4.8		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Barium	240	0.045	0.19		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Beryllium	1.1	0.018	0.29		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Cadmium	ND	0.047	0.19		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Chromium	12	0.15	0.58		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Cobalt	5.1	0.20	0.58		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Iron	15000	70	240		mg/Kg	100	11/20/2019 5:39:16 PM	48519
Lead	2.4	0.47	0.48		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Manganese	220	0.040	0.19		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Nickel	11	0.29	0.97		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Selenium	ND	2.4	4.8		mg/Kg	2	11/21/2019 7:52:37 PM	48519
Silver	ND	0.062	0.48		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Vanadium	21	0.13	4.8		mg/Kg	2	11/19/2019 7:52:45 PM	48519
Zinc	17	0.76	4.8		mg/Kg	2	11/19/2019 7:52:45 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.11	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Acenaphthylene	ND	0.10	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Aniline	ND	0.12	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Anthracene	ND	0.10	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Azobenzene	ND	0.13	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benz(a)anthracene	ND	0.091	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benzo(a)pyrene	ND	0.084	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benzo(b)fluoranthene	ND	0.083	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benzo(g,h,i)perylene	ND	0.081	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benzo(k)fluoranthene	ND	0.085	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benzoic acid	ND	0.097	0.47		mg/Kg	1	11/8/2019 4:16:47 PM	48536
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/8/2019 4:16:47 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:30:00 PM

 Lab ID:
 1910E49-005
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Bis(2-chloroethyl)ether	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Bis(2-ethylhexyl)phthalate	ND	0.14	0.47	mg/Kg	1	11/8/2019 4:16:47 PM	48536
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Butyl benzyl phthalate	ND	0.096	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Carbazole	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
4-Chloro-3-methylphenol	ND	0.14	0.47	mg/Kg	1	11/8/2019 4:16:47 PM	48536
4-Chloroaniline	ND	0.13	0.47	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2-Chloronaphthalene	ND	0.12	0.24	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
4-Chlorophenyl phenyl ether	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Chrysene	ND	0.083	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Di-n-butyl phthalate	ND	0.14	0.38	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Di-n-octyl phthalate	ND	0.096	0.38	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Dibenz(a,h)anthracene	ND	0.085	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Dibenzofuran	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
1,2-Dichlorobenzene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
1,3-Dichlorobenzene	ND	0.099	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
1,4-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
3,3´-Dichlorobenzidine	ND	0.084	0.24	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Diethyl phthalate	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Dimethyl phthalate	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2,4-Dichlorophenol	ND	0.11	0.38	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2,4-Dimethylphenol	ND	0.10	0.28	mg/Kg	1	11/8/2019 4:16:47 PM	48536
4,6-Dinitro-2-methylphenol	ND	0.087	0.38	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2,4-Dinitrophenol	ND	0.068	0.47	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2,4-Dinitrotoluene	ND	0.11	0.47	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2,6-Dinitrotoluene	ND	0.12	0.47	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Fluoranthene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Fluorene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Hexachlorobenzene	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Hexachlorobutadiene	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Hexachloroethane	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Indeno(1,2,3-cd)pyrene	ND	0.094	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
Isophorone	ND	0.14	0.38	mg/Kg	1	11/8/2019 4:16:47 PM	48536
1-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	48536
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	l 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1910E49**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/5/2019

CLIENT: Marathon

Client Sample ID: SWMU 13-14 (1.5-2')

Project: SWMU 13

Collection Date: 10/25/2019 4:30:00 PM

Lab ID: 1910E49-005 **Matrix:** MEOH (SOIL) **Received Date:** 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
2-Methylphenol	ND	0.11	0.38	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
N-Nitrosodi-n-propylamine	ND	0.13	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
N-Nitrosodiphenylamine	ND	0.099	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Naphthalene	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:16:47 PM	1 48536
2-Nitroaniline	ND	0.13	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
3-Nitroaniline	ND	0.13	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
4-Nitroaniline	ND	0.12	0.38	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Nitrobenzene	ND	0.13	0.38	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
2-Nitrophenol	ND	0.13	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
4-Nitrophenol	ND	0.13	0.24	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Pentachlorophenol	ND	0.097	0.38	mg/Ko	j 1	11/8/2019 4:16:47 PM	1 48536
Phenanthrene	ND	0.10	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Phenol	ND	0.12	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Pyrene	ND	0.088	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Pyridine	ND	0.11	0.38	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
2,4,5-Trichlorophenol	ND	0.12	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
2,4,6-Trichlorophenol	ND	0.099	0.19	mg/Kg	j 1	11/8/2019 4:16:47 PM	1 48536
Surr: 2-Fluorophenol	59.2		26.7-85.9	%Rec	1	11/8/2019 4:16:47 PM	1 48536
Surr: Phenol-d5	62.9		18.5-101	%Rec	1	11/8/2019 4:16:47 PM	1 48536
Surr: 2,4,6-Tribromophenol	70.1		35.8-85.6	%Red	1	11/8/2019 4:16:47 PM	48536
Surr: Nitrobenzene-d5	69.2		40.8-95.2	%Red	1	11/8/2019 4:16:47 PM	48536
Surr: 2-Fluorobiphenyl	64.7		34.7-85.2	%Red	1	11/8/2019 4:16:47 PM	48536
Surr: 4-Terphenyl-d14	62.5		37.4-91.3	%Red	1	11/8/2019 4:16:47 PM	1 48536
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
Benzene	ND	0.0022	0.013	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
Toluene	ND	0.0025	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
Ethylbenzene	ND	0.0015	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
Methyl tert-butyl ether (MTBE)	ND	0.0063	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
1,2,4-Trimethylbenzene	ND	0.0024	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
1,3,5-Trimethylbenzene	ND	0.0026	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
1,2-Dichloroethane (EDC)	ND	0.0027	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
1,2-Dibromoethane (EDB)	ND	0.0024	0.027	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
Naphthalene	ND	0.0053	0.053	mg/Kg	j 1	10/31/2019 12:15:16	A 48446
1-Methylnaphthalene	ND	0.015	0.11	mg/Kg	1	10/31/2019 12:15:16	A 48446
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg		10/31/2019 12:15:16	A 48446
Acetone	ND	0.022	0.40	mg/Ko	j 1	10/31/2019 12:15:16	A 48446
Bromobenzene	ND	0.0025	0.027	mg/Ko	g 1	10/31/2019 12:15:16	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (1.5-2')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:30:00 PM

 Lab ID:
 1910E49-005
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Bromodichloromethane	ND	0.0024	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Bromoform	ND	0.0024	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Bromomethane	ND	0.0064	0.080		mg/Kg	1	10/31/2019 12:15:16 A	48446
2-Butanone	0.039	0.031	0.27	J	mg/Kg	1	10/31/2019 12:15:16 A	48446
Carbon disulfide	ND	0.0088	0.27		mg/Kg	1	10/31/2019 12:15:16 A	48446
Carbon tetrachloride	ND	0.0025	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Chlorobenzene	ND	0.0034	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Chloroethane	ND	0.0039	0.053		mg/Kg	1	10/31/2019 12:15:16 A	48446
Chloroform	ND	0.0021	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Chloromethane	ND	0.0025	0.080		mg/Kg	1	10/31/2019 12:15:16 A	48446
2-Chlorotoluene	ND	0.0023	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
4-Chlorotoluene	ND	0.0022	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
cis-1,2-DCE	ND	0.0036	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
cis-1,3-Dichloropropene	ND	0.0022	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,2-Dibromo-3-chloropropane	ND	0.0027	0.053		mg/Kg	1	10/31/2019 12:15:16 A	48446
Dibromochloromethane	ND	0.0019	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Dibromomethane	ND	0.0029	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,2-Dichlorobenzene	ND	0.0022	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,3-Dichlorobenzene	ND	0.0023	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,4-Dichlorobenzene	ND	0.0022	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Dichlorodifluoromethane	ND	0.0062	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,1-Dichloroethane	ND	0.0017	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,1-Dichloroethene	ND	0.011	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,2-Dichloropropane	ND	0.0019	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,3-Dichloropropane	ND	0.0029	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
2,2-Dichloropropane	ND	0.0086	0.053		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,1-Dichloropropene	ND	0.0024	0.053		mg/Kg	1	10/31/2019 12:15:16 A	48446
Hexachlorobutadiene	ND	0.0027	0.053		mg/Kg	1	10/31/2019 12:15:16 A	48446
2-Hexanone	ND	0.0044	0.27		mg/Kg	1	10/31/2019 12:15:16 A	48446
Isopropylbenzene	ND	0.0019	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
4-Isopropyltoluene	ND	0.0022	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
4-Methyl-2-pentanone	ND	0.0050	0.27		mg/Kg	1	10/31/2019 12:15:16 A	48446
Methylene chloride	ND	0.0047	0.080		mg/Kg	1	10/31/2019 12:15:16 A	48446
n-Butylbenzene	ND	0.0025	0.080		mg/Kg	1	10/31/2019 12:15:16 A	48446
n-Propylbenzene	ND	0.0021	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
sec-Butylbenzene	ND	0.0030	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
Styrene	ND	0.0021	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
tert-Butylbenzene	ND	0.0025	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446
1,1,1,2-Tetrachloroethane	ND	0.0018	0.027		mg/Kg	1	10/31/2019 12:15:16 A	48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: SWMU 13-14 (1.5-2')

Project: SWMU 13

Collection Date: 10/25/2019 4:30:00 PM

Lab ID: 1910E49-005 **Matrix:** MEOH (SOIL) **Received Date:** 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
1,1,2,2-Tetrachloroethane	ND	0.0027	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
Tetrachloroethene (PCE)	ND	0.0021	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
trans-1,2-DCE	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
trans-1,3-Dichloropropene	ND	0.0028	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
1,2,3-Trichlorobenzene	ND	0.0023	0.053	mg/Kg	1	10/31/2019 12:15:16	A 48446
1,2,4-Trichlorobenzene	ND	0.0027	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
1,1,1-Trichloroethane	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
1,1,2-Trichloroethane	ND	0.0019	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
Trichloroethene (TCE)	ND	0.0031	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
Trichlorofluoromethane	ND	0.0090	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
1,2,3-Trichloropropane	ND	0.0043	0.053	mg/Kg	1	10/31/2019 12:15:16	A 48446
Vinyl chloride	ND	0.0017	0.027	mg/Kg	1	10/31/2019 12:15:16	A 48446
Xylenes, Total	ND	0.0067	0.053	mg/Kg	1	10/31/2019 12:15:16	A 48446
Surr: Dibromofluoromethane	109		70-130	%Rec	1	10/31/2019 12:15:16	A 48446
Surr: 1,2-Dichloroethane-d4	89.7		70-130	%Rec	1	10/31/2019 12:15:16	A 48446
Surr: Toluene-d8	95.0		70-130	%Rec	1	10/31/2019 12:15:16	A 48446
Surr: 4-Bromofluorobenzene	87.1		70-130	%Rec	1	10/31/2019 12:15:16	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:40:00 PM

 Lab ID:
 1910E49-006
 Matrix:
 MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	13	2.0	10		mg/Kg	1	11/4/2019 9:43:58 AM	48543
Motor Oil Range Organics (MRO)	ND	51	51		mg/Kg	1	11/4/2019 9:43:58 AM	48543
Surr: DNOP	111	0	70-130		%Rec	1	11/4/2019 9:43:58 AM	48543
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.81	2.7		mg/Kg	1	10/31/2019 9:33:31 AM	48491
Surr: BFB	113	0	77.4-118		%Rec	1	10/31/2019 9:33:31 AM	48491
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.0086	0.0018	0.033	J	mg/Kg	1	11/7/2019 5:09:01 PM	48648
EPA METHOD 6010B: SOIL METALS							Analyst: pmf	
Antimony	ND	0.75	5.1		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Arsenic	ND	2.9	5.1		mg/Kg	2	11/19/2019 7:55:54 PM	
Barium	260	0.048	0.21		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Beryllium	1.1	0.019	0.31		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Cadmium	ND	0.050	0.21		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Chromium	12	0.16	0.62		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Cobalt	5.4	0.22	0.62		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Iron	17000	75	260		mg/Kg	100	11/20/2019 5:40:50 PM	48519
Lead	2.3	0.50	0.51		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Manganese	240	0.043	0.21		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Nickel	12	0.31	1.0		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Selenium	ND	2.6	5.1		mg/Kg	2	11/21/2019 7:54:02 PM	48519
Silver	ND	0.066	0.51		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Vanadium	22	0.14	5.1		mg/Kg	2	11/19/2019 7:55:54 PM	48519
Zinc	17	0.81	5.1		mg/Kg	2	11/19/2019 7:55:54 PM	48519
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	0.11	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Acenaphthylene	ND	0.10	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Aniline	ND	0.12	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Anthracene	ND	0.10	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Azobenzene	ND	0.13	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benz(a)anthracene	ND	0.090	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benzo(a)pyrene	ND	0.083	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benzo(b)fluoranthene	ND	0.083	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benzo(g,h,i)perylene	ND	0.080	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benzo(k)fluoranthene	ND	0.085	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benzoic acid	ND	0.097	0.47		mg/Kg	1	11/8/2019 4:45:41 PM	48536
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	11/8/2019 4:45:41 PM	48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 66

Lab Order **1910E49**

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:40:00 PM

 Lab ID:
 1910E49-006
 Matrix:
 MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD	C
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Bis(2-chloroethyl)ether	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Bis(2-ethylhexyl)phthalate	ND	0.13	0.47	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Butyl benzyl phthalate	ND	0.096	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Carbazole	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
4-Chloro-3-methylphenol	ND	0.14	0.47	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
4-Chloroaniline	ND	0.13	0.47	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2-Chloronaphthalene	ND	0.12	0.23	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
4-Chlorophenyl phenyl ether	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Chrysene	ND	0.083	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Di-n-butyl phthalate	ND	0.14	0.38	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Di-n-octyl phthalate	ND	0.096	0.38	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Dibenz(a,h)anthracene	ND	0.085	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Dibenzofuran	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
1,2-Dichlorobenzene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
1,3-Dichlorobenzene	ND	0.099	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
1,4-Dichlorobenzene	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
3,3´-Dichlorobenzidine	ND	0.083	0.23	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Diethyl phthalate	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Dimethyl phthalate	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2,4-Dichlorophenol	ND	0.11	0.38	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2,4-Dimethylphenol	ND	0.10	0.28	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
4,6-Dinitro-2-methylphenol	ND	0.087	0.38	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2,4-Dinitrophenol	ND	0.068	0.47	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2,4-Dinitrotoluene	ND	0.11	0.47	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2,6-Dinitrotoluene	ND	0.12	0.47	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Fluoranthene	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Fluorene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Hexachlorobenzene	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Hexachlorobutadiene	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Hexachloroethane	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Indeno(1,2,3-cd)pyrene	ND	0.093	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
Isophorone	ND	0.14	0.38	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
1-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:45:41 PI	M 48536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:40:00 PM

 Lab ID:
 1910E49-006
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
2-Methylphenol	ND	0.11	0.38	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
3+4-Methylphenol	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
N-Nitrosodi-n-propylamine	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
N-Nitrosodiphenylamine	ND	0.099	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Naphthalene	ND	0.14	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
2-Nitroaniline	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
4-Nitroaniline	ND	0.12	0.38	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Nitrobenzene	ND	0.13	0.38	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
4-Nitrophenol	ND	0.13	0.23	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Pentachlorophenol	ND	0.097	0.38	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Phenanthrene	ND	0.10	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Phenol	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Pyrene	ND	0.088	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Pyridine	ND	0.11	0.38	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
1,2,4-Trichlorobenzene	ND	0.15	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
2,4,5-Trichlorophenol	ND	0.12	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
2,4,6-Trichlorophenol	ND	0.098	0.19	mg/Kg	1	11/8/2019 4:45:41 PM	1 48536
Surr: 2-Fluorophenol	56.3		26.7-85.9	%Rec	1	11/8/2019 4:45:41 PM	1 48536
Surr: Phenol-d5	59.2		18.5-101	%Rec	1	11/8/2019 4:45:41 PM	1 48536
Surr: 2,4,6-Tribromophenol	68.0		35.8-85.6	%Rec	1	11/8/2019 4:45:41 PM	1 48536
Surr: Nitrobenzene-d5	57.3		40.8-95.2	%Rec	1	11/8/2019 4:45:41 PM	1 48536
Surr: 2-Fluorobiphenyl	59.1		34.7-85.2	%Rec	1	11/8/2019 4:45:41 PM	1 48536
Surr: 4-Terphenyl-d14	63.4		37.4-91.3	%Rec	1	11/8/2019 4:45:41 PM	1 48536
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
Benzene	ND	0.0022	0.013	mg/Kg	1	10/31/2019 12:43:55	A 48446
Toluene	ND	0.0026	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Ethylbenzene	ND	0.0016	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Methyl tert-butyl ether (MTBE)	ND	0.0063	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2,4-Trimethylbenzene	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,3,5-Trimethylbenzene	ND	0.0026	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2-Dichloroethane (EDC)	ND	0.0027	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2-Dibromoethane (EDB)	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Naphthalene	ND	0.0054	0.054	mg/Kg	1	10/31/2019 12:43:55	A 48446
1-Methylnaphthalene	ND	0.015	0.11	mg/Kg	1	10/31/2019 12:43:55	A 48446
2-Methylnaphthalene	ND	0.012	0.11	mg/Kg	1	10/31/2019 12:43:55	A 48446
Acetone	ND	0.022	0.40	mg/Kg	1	10/31/2019 12:43:55	A 48446
Bromobenzene	ND	0.0026	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Marathon
 Client Sample ID: SWMU 13-14 (2-3')

 Project:
 SWMU 13
 Collection Date: 10/25/2019 4:40:00 PM

 Lab ID:
 1910E49-006
 Matrix: MEOH (SOIL)
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
Bromodichloromethane	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Bromoform	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:43:55 /	48446
Bromomethane	ND	0.0065	0.080	mg/Kg	1	10/31/2019 12:43:55 /	48446
2-Butanone	ND	0.031	0.27	mg/Kg	1	10/31/2019 12:43:55	A 48446
Carbon disulfide	ND	0.0088	0.27	mg/Kg	1	10/31/2019 12:43:55	48446
Carbon tetrachloride	ND	0.0025	0.027	mg/Kg	1	10/31/2019 12:43:55	48446
Chlorobenzene	ND	0.0034	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
Chloroethane	ND	0.0039	0.054	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
Chloroform	ND	0.0022	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
Chloromethane	ND	0.0026	0.080	mg/Kg	1	10/31/2019 12:43:55	A 48446
2-Chlorotoluene	ND	0.0023	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
4-Chlorotoluene	ND	0.0022	0.027	mg/Kg	1	10/31/2019 12:43:55	48446
cis-1,2-DCE	ND	0.0037	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
cis-1,3-Dichloropropene	ND	0.0023	0.027	mg/Kg	1	10/31/2019 12:43:55 /	48446
1,2-Dibromo-3-chloropropane	ND	0.0027	0.054	mg/Kg	1	10/31/2019 12:43:55 /	48446
Dibromochloromethane	ND	0.0019	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Dibromomethane	ND	0.0029	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2-Dichlorobenzene	ND	0.0022	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,3-Dichlorobenzene	ND	0.0023	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
1,4-Dichlorobenzene	ND	0.0022	0.027	mg/Kg	1	10/31/2019 12:43:55 /	48446
Dichlorodifluoromethane	ND	0.0062	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
1,1-Dichloroethane	ND	0.0017	0.027	mg/Kg	1	10/31/2019 12:43:55	48446
1,1-Dichloroethene	ND	0.011	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2-Dichloropropane	ND	0.0019	0.027	mg/Kg	1	10/31/2019 12:43:55 /	48446
1,3-Dichloropropane	ND	0.0029	0.027	mg/Kg	1	10/31/2019 12:43:55 /	48446
2,2-Dichloropropane	ND	0.0087	0.054	mg/Kg	1	10/31/2019 12:43:55 /	48446
1,1-Dichloropropene	ND	0.0024	0.054	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
Hexachlorobutadiene	ND	0.0027	0.054	mg/Kg	1	10/31/2019 12:43:55	A 48446
2-Hexanone	ND	0.0044	0.27	mg/Kg	1	10/31/2019 12:43:55	A 48446
Isopropylbenzene	ND	0.0019	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
4-Isopropyltoluene	ND	0.0022	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
4-Methyl-2-pentanone	ND	0.0051	0.27	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
Methylene chloride	ND	0.0047	0.080	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
n-Butylbenzene	ND	0.0025	0.080	mg/Kg	1	10/31/2019 12:43:55	A 48446
n-Propylbenzene	ND	0.0021	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
sec-Butylbenzene	ND	0.0030	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446
Styrene	ND	0.0021	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
tert-Butylbenzene	ND	0.0025	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,1,1,2-Tetrachloroethane	ND	0.0018	0.027	mg/Kg	1	10/31/2019 12:43:55 /	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: SWMU 13-14 (2-3')Project:SWMU 13Collection Date: 10/25/2019 4:40:00 PM

Lab ID: 1910E49-006 **Matrix:** MEOH (SOIL) **Received Date:** 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	=
1,1,2,2-Tetrachloroethane	ND	0.0027	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Tetrachloroethene (PCE)	ND	0.0021	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
trans-1,2-DCE	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
trans-1,3-Dichloropropene	ND	0.0028	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2,3-Trichlorobenzene	ND	0.0024	0.054	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2,4-Trichlorobenzene	ND	0.0027	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,1,1-Trichloroethane	ND	0.0024	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,1,2-Trichloroethane	ND	0.0019	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Trichloroethene (TCE)	ND	0.0031	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Trichlorofluoromethane	ND	0.0091	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
1,2,3-Trichloropropane	ND	0.0043	0.054	mg/Kg	1	10/31/2019 12:43:55	A 48446
Vinyl chloride	ND	0.0017	0.027	mg/Kg	1	10/31/2019 12:43:55	A 48446
Xylenes, Total	ND	0.0067	0.054	mg/Kg	1	10/31/2019 12:43:55	A 48446
Surr: Dibromofluoromethane	108		70-130	%Rec	1	10/31/2019 12:43:55	A 48446
Surr: 1,2-Dichloroethane-d4	91.2		70-130	%Rec	1	10/31/2019 12:43:55	A 48446
Surr: Toluene-d8	96.7		70-130	%Rec	1	10/31/2019 12:43:55	A 48446
Surr: 4-Bromofluorobenzene	88.2		70-130	%Rec	1	10/31/2019 12:43:55	A 48446

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102519

 Project:
 SWMU 13
 Collection Date: 10/25/2019 6:15:00 PM

 Lab ID:
 1910E49-007
 Matrix: AQUEOUS
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE							Analyst: BRM	
Diesel Range Organics (DRO)	ND	0.35	1.0		mg/L	1	10/30/2019 5:16:13 PM	l 48464
Motor Oil Range Organics (MRO)	ND	5.0	5.0		mg/L	1	10/30/2019 5:16:13 PM	l 48464
Surr: DNOP	104	0	70-130		%Rec	1	10/30/2019 5:16:13 PM	l 48464
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00013	0.000038	0.00020	J	mg/L	1	11/8/2019 3:02:39 PM	48664
EPA 6010B: TOTAL RECOVERABLE META	ALS						Analyst: pmf	
Antimony	ND	0.0081	0.050		mg/L	1	11/14/2019 5:26:45 PM	l 48486
Arsenic	ND	0.015	0.020		mg/L	1	11/25/2019 4:16:32 PM	l 48486
Barium	ND	0.0012	0.020		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Beryllium	ND	0.00025	0.0030		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Cadmium	ND	0.00055	0.0020		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Chromium	ND	0.00086	0.0060		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Cobalt	ND	0.0012	0.0060		mg/L	1	11/14/2019 5:26:45 PM	l 48486
Iron	0.016	0.0093	0.020	J	mg/L	1	11/13/2019 8:06:26 PM	l 48486
Lead	ND	0.0035	0.0050		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Manganese	ND	0.00041	0.0020		mg/L	1	11/14/2019 5:26:45 PM	l 48486
Nickel	ND	0.0028	0.010		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Selenium	ND	0.035	0.050		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Silver	ND	0.00055	0.0050		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Vanadium	ND	0.00086	0.050		mg/L	1	11/13/2019 8:06:26 PM	l 48486
Zinc	ND	0.011	0.020		mg/L	1	11/13/2019 8:06:26 PM	l 48486
EPA METHOD 8270C: SEMIVOLATILES							Analyst: JDC	
Acenaphthene	ND	3.0	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Acenaphthylene	ND	2.4	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Aniline	ND	3.6	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Anthracene	ND	2.7	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Azobenzene	ND	3.3	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Benz(a)anthracene	ND	3.6	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Benzo(a)pyrene	ND	3.5	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Benzo(b)fluoranthene	ND	3.4	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Benzo(g,h,i)perylene	ND	2.2	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Benzo(k)fluoranthene	ND	2.9	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Benzoic acid	ND	11	20		μg/L	1	11/2/2019 8:30:17 AM	48505
Benzyl alcohol	ND	2.4	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Bis(2-chloroethoxy)methane	ND	2.6	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Bis(2-chloroethyl)ether	ND	3.2	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Bis(2-chloroisopropyl)ether	ND	3.9	10		μg/L	1	11/2/2019 8:30:17 AM	48505
Bis(2-ethylhexyl)phthalate	ND	4.3	10		μg/L	1	11/2/2019 8:30:17 AM	48505

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 31 of 66

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102519

 Project:
 SWMU 13
 Collection Date: 10/25/2019 6:15:00 PM

 Lab ID:
 1910E49-007
 Matrix: AQUEOUS
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JD (
4-Bromophenyl phenyl ether	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
Butyl benzyl phthalate	ND	3.3	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Carbazole	ND	2.9	10	μg/L	1	11/2/2019 8:30:17 AM	48505
4-Chloro-3-methylphenol	ND	3.4	10	μg/L	1	11/2/2019 8:30:17 AM	48505
4-Chloroaniline	ND	2.3	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2-Chloronaphthalene	ND	3.1	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2-Chlorophenol	ND	2.7	10	μg/L	1	11/2/2019 8:30:17 AM	48505
4-Chlorophenyl phenyl ether	ND	2.4	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Chrysene	ND	2.8	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Di-n-butyl phthalate	ND	2.7	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Di-n-octyl phthalate	ND	3.5	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Dibenz(a,h)anthracene	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
Dibenzofuran	ND	3.2	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
1,2-Dichlorobenzene	ND	4.8	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
1,3-Dichlorobenzene	ND	5.3	10	μg/L	1	11/2/2019 8:30:17 AM	48505
1,4-Dichlorobenzene	ND	4.4	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
3,3´-Dichlorobenzidine	ND	2.8	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
Diethyl phthalate	ND	2.9	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Dimethyl phthalate	ND	3.2	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2,4-Dichlorophenol	ND	2.9	20	μg/L	1	11/2/2019 8:30:17 AM	48505
2,4-Dimethylphenol	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
4,6-Dinitro-2-methylphenol	ND	2.9	20	μg/L	1	11/2/2019 8:30:17 AM	1 48505
2,4-Dinitrophenol	ND	2.6	20	μg/L	1	11/2/2019 8:30:17 AM	1 48505
2,4-Dinitrotoluene	ND	3.8	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
2,6-Dinitrotoluene	ND	2.4	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
Fluoranthene	ND	2.4	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505
Fluorene	ND	2.9	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Hexachlorobenzene	ND	3.1	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Hexachlorobutadiene	ND	4.7	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Hexachlorocyclopentadiene	ND	3.6	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Hexachloroethane	ND	4.8	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Indeno(1,2,3-cd)pyrene	ND	2.7	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Isophorone	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
1-Methylnaphthalene	ND	3.1	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2-Methylnaphthalene	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2-Methylphenol	ND	2.9	10	μg/L	1	11/2/2019 8:30:17 AM	48505
3+4-Methylphenol	ND	3.6	10	μg/L	1	11/2/2019 8:30:17 AM	48505
N-Nitrosodi-n-propylamine	ND	6.5	10	μg/L	1	11/2/2019 8:30:17 AM	48505
N-Nitrosodimethylamine	ND	5.0	10	μg/L	1	11/2/2019 8:30:17 AM	1 48505

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102519

 Project:
 SWMU 13
 Collection Date: 10/25/2019 6:15:00 PM

 Lab ID:
 1910E49-007
 Matrix: AQUEOUS
 Received Date: 10/29/2019 9:15:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC	
N-Nitrosodiphenylamine	ND	2.4	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Naphthalene	ND	4.1	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2-Nitroaniline	ND	3.2	10	μg/L	1	11/2/2019 8:30:17 AM	48505
3-Nitroaniline	ND	3.2	10	μg/L	1	11/2/2019 8:30:17 AM	48505
4-Nitroaniline	ND	2.7	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Nitrobenzene	ND	2.8	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2-Nitrophenol	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
4-Nitrophenol	ND	7.6	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Pentachlorophenol	ND	2.7	20	μg/L	1	11/2/2019 8:30:17 AM	48505
Phenanthrene	ND	2.8	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Phenol	ND	8.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Pyrene	ND	2.5	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Pyridine	ND	9.6	10	μg/L	1	11/2/2019 8:30:17 AM	48505
1,2,4-Trichlorobenzene	ND	4.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2,4,5-Trichlorophenol	ND	3.0	10	μg/L	1	11/2/2019 8:30:17 AM	48505
2,4,6-Trichlorophenol	ND	2.3	10	μg/L	1	11/2/2019 8:30:17 AM	48505
Surr: 2-Fluorophenol	29.1	0	15-101	%Rec	1	11/2/2019 8:30:17 AM	48505
Surr: Phenol-d5	23.6	0	15-84.6	%Rec	1	11/2/2019 8:30:17 AM	48505
Surr: 2,4,6-Tribromophenol	48.6	0	27.8-112	%Rec	1	11/2/2019 8:30:17 AM	48505
Surr: Nitrobenzene-d5	40.9	0	33-113	%Rec	1	11/2/2019 8:30:17 AM	48505
Surr: 2-Fluorobiphenyl	40.0	0	26.6-107	%Rec	1	11/2/2019 8:30:17 AM	48505
Surr: 4-Terphenyl-d14	50.4	0	18.7-148	%Rec	1	11/2/2019 8:30:17 AM	48505
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Benzene	ND	0.17	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
Toluene	ND	0.35	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
Ethylbenzene	ND	0.13	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
Naphthalene	ND	0.28	2.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
Acetone	ND	1.2	10	μg/L	1	10/30/2019 7:43:59 AM	R64075
Bromobenzene	ND	0.24	1.0	μg/L	1	10/30/2019 7:43:59 AM	R64075
Bromodichloromethane	ND	0.13	1.0	μg/L	1	10/30/2019 7:43:59 AM	
Bromoform	ND	0.29	1.0	μg/L	1	10/30/2019 7:43:59 AM	
Bromomethane	ND	0.27	3.0	μg/L	1	10/30/2019 7:43:59 AM	R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102519

 Project:
 SWMU 13
 Collection Date: 10/25/2019 6:15:00 PM

 Lab ID:
 1910E49-007
 Matrix: AQUEOUS
 Received Date: 10/29/2019 9:15:00 AM

Result **MDL** DF **Date Analyzed Batch ID** Analyses RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 2.1 10 10/30/2019 7:43:59 AM R64075 2-Butanone µg/L 1 Carbon disulfide ND 0.45 10 μg/L 1 10/30/2019 7:43:59 AM R64075 Carbon Tetrachloride ND 0.14 1.0 10/30/2019 7:43:59 AM R64075 µg/L 1 ND 0.19 10/30/2019 7:43:59 AM R64075 Chlorobenzene 1.0 µg/L 1 0.18 ND 10/30/2019 7:43:59 AM R64075 Chloroethane 2.0 µg/L 1 Chloroform ND 0.12 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 ND 0.32 3.0 1 10/30/2019 7:43:59 AM R64075 Chloromethane µg/L 2-Chlorotoluene ND 0.25 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 0.23 1 4-Chlorotoluene ND 1.0 µg/L 10/30/2019 7:43:59 AM R64075 cis-1.2-DCE ND 0.19 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 cis-1,3-Dichloropropene ND 0.14 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 10/30/2019 7:43:59 AM R64075 Dibromochloromethane ND 0.24 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 Dibromomethane ND 0.21 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 ND 0.30 1 10/30/2019 7:43:59 AM 1,2-Dichlorobenzene 1.0 µg/L ND 0.25 1 10/30/2019 7:43:59 AM R64075 1,3-Dichlorobenzene 1.0 µg/L 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 ND 0.26 R64075 Dichlorodifluoromethane 1.0 µg/L 1 10/30/2019 7:43:59 AM 1.1-Dichloroethane ND 0.14 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 ND 0.21 1 1,2-Dichloropropane 1.0 µg/L 10/30/2019 7:43:59 AM R64075 1,3-Dichloropropane ND 0.20 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 ND 0.23 2.0 1 10/30/2019 7:43:59 AM R64075 2,2-Dichloropropane µg/L ND 0.16 1 1,1-Dichloropropene 1.0 µg/L 10/30/2019 7:43:59 AM R64075 ND 0.31 Hexachlorobutadiene 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 2-Hexanone ND 1.5 10 µg/L 1 10/30/2019 7:43:59 AM ND 0.19 1 10/30/2019 7:43:59 AM R64075 Isopropylbenzene 1.0 µg/L 4-Isopropyltoluene ND 0.22 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 ND 0.71 1 4-Methyl-2-pentanone 10 µg/L 10/30/2019 7:43:59 AM R64075 Methylene Chloride ND 0.15 3.0 µg/L 1 10/30/2019 7:43:59 AM R64075 n-Butylbenzene ND 0.23 3.0 µg/L 1 10/30/2019 7:43:59 AM R64075 n-Propylbenzene ND 0.21 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 sec-Butylbenzene ND 0.25 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 ND Styrene 0.19 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 tert-Butylbenzene ND 0.21 1 10/30/2019 7:43:59 AM R64075 1.0 µg/L 1,1,1,2-Tetrachloroethane ND 0.21 1.0 µg/L 1 10/30/2019 7:43:59 AM R64075 1 1,1,2,2-Tetrachloroethane ND 0.55 2.0 µg/L 10/30/2019 7:43:59 AM Tetrachloroethene (PCE) ND 0.15 1 10/30/2019 7:43:59 AM R64075 1.0 µg/L trans-1,2-DCE ND 0.18 1.0 μg/L 10/30/2019 7:43:59 AM R64075

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 66

Lab Order 1910E49

Date Reported: 12/5/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB102519

 Project:
 SWMU 13
 Collection Date: 10/25/2019 6:15:00 PM

 Lab ID:
 1910E49-007
 Matrix: AQUEOUS
 Received Date: 10/29/2019 9:15:00 AM

Result **MDL Qual Units** DF **Date Analyzed Analyses** RL**Batch ID EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 10/30/2019 7:43:59 AM R64075 trans-1.3-Dichloropropene 0.17 1.0 µg/L 1 1,2,3-Trichlorobenzene ND 0.30 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 1,2,4-Trichlorobenzene ND 0.20 1.0 10/30/2019 7:43:59 AM R64075 µg/L 1 1,1,1-Trichloroethane ND 0.17 μg/L 10/30/2019 7:43:59 AM R64075 1.0 1 0.22 10/30/2019 7:43:59 AM R64075 1,1,2-Trichloroethane ND 1.0 μg/L 1 0.17 Trichloroethene (TCE) ND 1.0 μg/L 1 10/30/2019 7:43:59 AM R64075 Trichlorofluoromethane ND 0.19 μg/L 1 10/30/2019 7:43:59 AM R64075 1.0 1,2,3-Trichloropropane ND 0.30 2.0 μg/L 1 10/30/2019 7:43:59 AM R64075 0.18 1 Vinyl chloride ND 1.0 µg/L 10/30/2019 7:43:59 AM R64075 Xylenes, Total ND 0.45 1.5 μg/L 1 10/30/2019 7:43:59 AM R64075 0 Surr: 1,2-Dichloroethane-d4 94.9 70-130 %Rec 1 10/30/2019 7:43:59 AM R64075 Surr: 4-Bromofluorobenzene 93.5 0 70-130 %Rec 1 10/30/2019 7:43:59 AM R64075 Surr: Dibromofluoromethane 100 0 70-130 %Rec 1 10/30/2019 7:43:59 AM R64075 Surr: Toluene-d8 101 0 70-130 1 10/30/2019 7:43:59 AM R64075 %Rec **EPA METHOD 8015D: GASOLINE RANGE** Analyst: **JMR** Gasoline Range Organics (GRO) 0.019 11/5/2019 5:19:47 AM ND 0.050 mg/L 1 G64230 Surr: BFB 95.8 0 70-130 %Rec 1 11/5/2019 5:19:47 AM G64230

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL REPORT

November 07, 2019

Hall Environmental Analysis Laboratory

Sample Delivery Group: L1155857 Samples Received: 10/31/2019

Project Number:

Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By:

Jason Romer

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
1910E49-001B SWMU 13-13 (0-0.5') L1155857-01	5
1910E49-002B SWMU 13-13 (1.5-2') L1155857-02	6
1910E49-003B SWMU 13-13 (2-3') L1155857-03	7
1910E49-004B SWMU 13-14 (0-0.5') L1155857-04	8
1910E49-005B SWMU 13-14 (1.5-2') L1155857-05	9
1910E49-006B SWMU 13-14 (2.3') L1155857-06	10
1910E49-007E EB102519 L1155857-07	11
Qc: Quality Control Summary	12
Wet Chemistry by Method 4500CN E-2011	12
Wet Chemistry by Method 9012B	13
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

PAGE:

2 of 18

SAMPLE SUMMARY

ONE	LAB.	NAI	IONWIDE.

			Collected by	Collected date/time	Received dat	te/time
1910E49-001B SWMU 13-13 (0-0.5') L1155857-01	Solid			10/25/19 14:55	10/31/19 09:0	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375558	1	11/06/19 08:00	11/06/19 13:37	JER	Mt. Juliet, TN
1910E49-002B SWMU 13-13 (1.5-2') L1155857-02	Solid		Collected by	Collected date/time 10/25/19 15:05	Received data 10/31/19 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375561	1	11/06/19 09:07	11/06/19 18:16	JER	Mt. Juliet, TN
1910E49-003B SWMU 13-13 (2-3') L1155857-03 S	Solid		Collected by	Collected date/time 10/25/19 15:20	Received data 10/31/19 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375561	1	11/06/19 09:07	11/06/19 18:17	JER	Mt. Juliet, TN
1910E49-004B SWMU 13-14 (0-0.5') L1155857-04	l Solid		Collected by	Collected date/time 10/25/19 16:20	Received data 10/31/19 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375561	1	11/06/19 09:07	11/06/19 18:18	JER	Mt. Juliet, TN
1910E49-005B SWMU 13-14 (1.5-2') L1155857-05	Solid		Collected by	Collected date/time 10/25/19 16:30	Received dat 10/31/19 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375561	1	11/06/19 09:07	11/06/19 18:19	JER	Mt. Juliet, TN
1910E49-006B SWMU 13-14 (2.3') L1155857-06 S	Solid		Collected by	Collected date/time 10/25/19 16:40	Received dat 10/31/19 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9012B	WG1375561	1	11/06/19 09:07	11/06/19 18:20	JER	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time

Batch

WG1375056

Dilution

1

Preparation

11/05/19 15:00

date/time

10/31/19 09:00

Location

Mt. Juliet, TN

Analyst

JER

10/25/19 18:15

Analysis

date/time

11/06/19 16:07

1910E49-007E EB102519 L1155857-07 GW

Wet Chemistry by Method 4500CN E-2011

Method

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²T-

Jason Romer Project Manager 1910E49-001B SWMU 13-13 (0-0.5') Collected date/time: 10/25/19 14:55

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

果

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND	J6	0.250	1	11/06/2019 13:37	WG1375558	

1910E49-002B SWMU 13-13 (1.5-2')

Collected date/time: 10/25/19 15:05

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	0.455		0.250	1	11/06/2019 18:16	WG1375561	

1910E49-003B SWMU 13-13 (2-3')

Collected date/time: 10/25/19 15:20

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

	Result	Qualifier RDI	Di	ilution	Analysis	<u>Batch</u>
Analyte	mg/kg	mg	kg		date / time	
Cyanide	ND	0.2	50 1		11/06/2019 18:17	WG1375561

1910E49-004B SWMU 13-14 (0-0.5')
Collected date/time: 10/25/19 16:20

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

*

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	0.277		0.250	1	11/06/2019 18:18	WG1375561	

1910E49-005B SWMU 13-14 (1.5-2')

Collected date/time: 10/25/19 16:30

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cvanide	ND		0.250	1	11/06/2019 18:19	WG1375561

1910E49-006B SWMU 13-14 (2.3')

Collected date/time: 10/25/19 16:40

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

米

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	11/06/2019 18:20	WG1375561	

1910E49-007E EB102519 Collected date/time: 10/25/19 18:15

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Cyanide	ND		0.00500	1	11/06/2019 16:07	WG1375056	

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500CN E-2011

_
<u>m</u>
\geq
Y
a
<u>т</u>
D O
Ě
Φ
\geq

	MB RDL	mg/l	0.00500
	MB Qualifier MB MDL	l/gm	0.00180
1/06/19 15:34	MB Result MB G	l/gm	n
(MB) R3469134-1 11/06/19 15:34		Analyte	Cyanide

L1155017-01 Original Sample (OS) • Duplicate (DUP)

	DUP Quairfier Limits	%	20
6/19 15:47	Dilution DUP RPD	%	0.000
) R3469134-3 11/0	Original Result DUP Result	l/gm	0.000
'06/19 15:46 • (DUP	Original Res	l/gm	QN
(OS) L1155017-01 11/06/19 15:46 • (DUP) R3469134-3 11/06/19 15:47		Analyte	Cyanide

L1155479-03 Original Sample (OS) • Duplicate (DUP)

	<u>DUP Qualifier</u> DUP RPD Limits	%	20
9	DUP RPD	%	0.000
1/06/19 16:06	Dilution		_
R3469134-8 1	DUP Result	l/gm	0.000
(OS) L1155479-03 11/06/19 16:05 • (DUP) R3469134-8	Original Result DUP Result	l/gm	QN
(OS) L1155479-03		Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469134-2 11/06/19 15:39	15:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	l/gm	%	%	
Cyanide	0.100	0.0907	90.7	85.0-115	

L1155184-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155184-01 11/06/19 15:48 • (MS) R3469134-4 11/06/19 15:49 • (MSD) R3469134-5	15:48 • (MS) R3	469134-4 11/06/	/19 15:49 • (MS	SD) R3469134-5	11/06/19 15:50	0						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	l/gm	l/gm	l/gm	%	%		%			%	%
Cyanide	0.100	ND	0.0764	0.0753	76.4	75.3	-	75.0-125			1.45	20

L1155340-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155340-16 11/((OS) L1155340-16 11/06/19 15:53 • (MS) R3469134-6 11/06/19 15:54 • (MSD) R3469134-7	469134-6 11/C)6/19 15:54 • (N	1SD) R3469134-	-7 11/06/19 15:55	55						
	Spike Amount Original Result MS Result	Original Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	l/gm	l/gm	mg/l	%	%		%			%	%
Cyanide	0.100	ND	0.0735	0.0688	73.5	8.89	-	75.0-125	<u> </u>	91	6.61	20

ر ح

Ss

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

	MB MDL mg/kg 0.0390	MB Qualifier MB MDL mg/kg 0.0390	MB RDL mg/kg
--	---------------------------	----------------------------------	-----------------

L1155314-01 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	20
6/19 13:14	Dilution DUP RPD	%	1 0.000
1 R3469026-3 11/0	Original Result DUP Result	mg/kg	0.000
(DUP) • 13:13 • (DUP)	Original Res	mg/kg	QN
(OS) L1155314-01 11/06/19 13:13 • (DUP) R3469026-3 11/06/19 13:14		Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

₹

Sc

Ss

ر ح

Š

L1156516-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1156516-01 11/06/19 13:41 • (DUP) R3469026-8 11/06/19 13:42

DUP Qualifier Limits	%	20
Dilution DUP RPD	%	1 0.000
sult DUP Result	mg/kg	0.000
Original Result	mg/kg	QN
	Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469026-2 11/06/19 13:10	19 13:10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.38	95.3	50.0-150	

L1155340-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155340-23 11/06/19 13:24 • (MS) R3469026-4 11/06/19 13:25 • (MSD) R34690	19 13:24 • (MS) RE	3469026-4 11/C	16/19 13:25 • (N	MSD) R346902	126-5 11/06/19 13:26	3:26						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.48	1.31	77.0	8.99	-	75.0-125		Je	12.3	20

L1155857-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1155857-01 1	OS) L1155857-01 11/06/19 13:37 • (MS) R3469026-6 11/06/19 13:38 • (MSD) R3469026-7	469026-6 11/1	06/19 13:38 • (A	ASD) R3469026	5-7 11/06/19 13:39	3:39						
	Spike Amount Original Result MS Result	Original Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier F	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		0,	%	%
Cyanide	1.67	ND	1.45	1.54	73.2	78.4	-	75.0-125	<u>9</u> F		5.85	20

PROJECT:

		MB RDL	mg/kg	0.250
		MB MDL	mg/kg	0.0390
		MB Qualifier		
Method Blank (MB)	MB) R3469205-1 11/06/19 18:11	MB Result	mg/kg	n
Method E	(MB) R34692		Analyte	Cyanide

L1156084-01 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	<u>P1</u> 20
/06/19 18:24	Dilution DUP RPD	%	1 36.4
OUP) R3469205-3 11,	Original Result DUP Result	mg/kg	0.881
OS) L1156084-01 11/06/19 18:23 • (DUP) R3469205-3 11/06/19 18:24	Original I	mg/kg	0.609
(OS) L1156(Analyte	Cyanide

g

 $\overline{\mathbb{Q}}$

₹

Š

Sc

Ss

Ų.

L1156467-01 Original Sample (OS) • Duplicate (DUP)

	DUP Qualifier Limits	%	20
5/19 18:36	Dilution DUP RPD	%	28.7
OS) L1156467-01 11/06/19 18:35 • (DUP) R3469205-6 11/06/19 18:36	Original Result DUP Result D	mg/kg	0.285
1/06/19 18:35 • (DUF	Original Res	mg/kg	0.213
(OS) L1156467-01 1		Analyte	Cyanide

Laboratory Control Sample (LCS)

(LCS) R3469205-2 11/06/1	11/06/19 18:12				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.46	98.6	50.0-150	

L1156084-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
	MSD Qualifier RPD	%	6.71
	MS Qualifier		97
	n Rec. Limits	%	75.0-125
	Dilution		-
18:27	MSD Rec.	%	76.4
:05-5 11/06/19 18:27	MS Rec.	%	71.4
. (MSD) R34692	MSD Result	mg/kg	1.27
11/06/19 18:26 •	ult MS Result	mg/kg	1.19
3469205-4	Spike Amount Original Result MS Result	mg/kg	QN
6/19 18:25 • (MS) F	Spike Amount	mg/kg	1.67
(OS) L1156084-02 11/06/19 18:25 • (MS) R3469205-4 11/06/19 18:26 • (MSD) R3469205-5		Analyte	Cyanide

L1156467-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1156467-02 11/06/19 18:37 • (MS) R3469205-7 11/06/19 18:38 • (MSD) R3469205-	6/19 18:37 • (MS) RE	3469205-7 11/C)6/19 18:38 • (A	MSD) R346920!	5-8 11/06/19 18:39	18:39						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	It MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	0.0557	1.35	1.39	77.6	80.3	_	75.0-125			3.29	20

SDG: L1155857

DATE/TIME: 11/07/19 13:16

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Apple viations and	Deminions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD PAGE: 1

OF: 1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 FAX: 505-345-4107 Website: www.hallenvironmental.com TEL: 505-345-3975

(800) 767-5859
CONTAIN
ERS
10/25/2019 2:55:00 PM 1 Lv.4 Total Cyanide
10/25/2019 3:05:00 PM 1 Lv.4 Total Cyanide
10/25/2019 3:20:00 PM 1 Lv.4 Total Cyanide
10/25/2019 4:20:00 PM 1 Lv.4 Total Cyanide
10/25/2019 4:30:00 PM 1 Lv.4 Total Cyanide
10/25/2019 4:40:00 PM 1 Lv.4 Total Cyanide
500AMBHDP Aqueous 10/25/2019 6:15:00 PM 1 Lv.4 Total Cyanide

RAD SCREEN: <0.5 mR/hr

SPECIAL INSTRUCTIONS / COMMENTS:

Relinquished By:	1/	Date:	쁜	Received By.	Date:	Time:	REPORT TRANSMITTAL DESIRED:
	1	10/29/2019	10:35 AM				☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAII. ☐ ONLINE
Relinquished By:		Date:	Time:	Received By:	Date:	Time:	A TAX ADITAL TAXA
Relinquished By:		Date:	Time:	Retired Brunn	00-19" PJ-18"	T. 100	Thurn of samulas (2) 17-25-0 C Attainer to Cod 9
TAT:	Stand	Standard 🗌	RUSH	Next BD	2nd BD 3rd BD		Comments:

עליר וללא והמע

Na +R

1 tatal

Pace Analytical National Center for Testing & Innovation	/ation	
Cooler Receipt Form		
Client:	1,115685,	1
Cooler Received/Opened On: [0/3/19 Temperature:		
Signature:		1/2
Receipt Check List NP	Yes	o _N
COC Seal Present / Intact?		
COC Signed / Accurate?	>	
Bottles arrive intact?		
Correct bottles used?) \	
Sufficient volume sent?	/	
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?		

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Project: SWMU	13									
Sample ID: LCS-48461	SampT	ype: LC	s	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: LCSS	Batch ID: 48461			F	RunNo: 64124					
Prep Date: 10/29/2019	Analysis D	ate: 10)/31/2019	S	SeqNo: 2	194392	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	94.8	63.9	124			
Surr: DNOP	4.4		5.000		87.5	70	130			
Sample ID: MB-48461	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics				
Client ID: PBS	Batch ID: 48461			F	unNo: 6	4124				
Prep Date: 10/29/2019	Analysis Date: 10/31/2019		SeqNo: 2194393 Units			Units: mg/k	s: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	10		10.00		101	70	130			
Sample ID: MB-48543	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	ID: 48	543	F	RunNo: 64192					
Prep Date: 11/1/2019	Analysis D	ate: 11	/4/2019	SeqNo: 2196675			Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	11		10.00		107	70	130			
Sample ID: LCS-48543	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics									

Prep Date: 11/1/2019	Analysis D	ate: 1 1	/4/2019	S	SeqNo: 2	197911	Units: mg/K	(g	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Diesel Range Organics (DRO)	44	10	50.00	0	87.0	63.9	124		
Surr: DNOP	4.3		5.000		85.1	70	130		

Batch ID: 48543

Qualifiers:

Client ID: LCSS

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

RunNo: 64227

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Qual

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

Analysis Date: 10/31/2019

PQL

1.0

5.0

1.000

Result

ND

ND

1.1

WO#: **1910E49**

05-Dec-19

Project: SWMU	13									
Sample ID: LCS-48464	SampT	ype: LC	<u>===</u>	Tes	tCode: El	PA Method				
Client ID: LCSW	Batch	n ID: 484	464	F	RunNo: 6 4	4071				
Prep Date: 10/29/2019	Analysis D	ate: 10)/30/2019	S	SeqNo: 21	192326	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.3	1.0	5.000	0	106	71.8	135			
Surr: DNOP	0.44		0.5000		88.0	70	130			
Sample ID: MB-48464	SampT	SampType: MBLK			tCode: EI	PA Method	8015M/D: Die:	sel Range		
Client ID: PBW	Batch	n ID: 484	464	F	RunNo: 64071					
Prep Date: 10/29/2019	Analysis D	ate: 10)/30/2019	S	SeqNo: 2192327					
A b	Result PQL SPK value		00110 1111				0/ 000	DDD1: "	Ougl	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	1.0		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLIMIT	Quai
· · · · · · · · · · · · · · · · · · ·				SPK Ref Val	%REC	LowLimit	HighLimit	<u> </u>	RPDLIMIT	Quai
Diesel Range Organics (DRO)	ND	1.0		SPK Ref Val	%REC 87.0	LowLimit 70	HighLimit	%RPD	RPDLIMIT	Quai
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	ND ND 0.87	1.0	1.000		87.0	70	Ţ.			Qual

SPK value SPK Ref Val %REC LowLimit

SeqNo: 2194394

111

Units: mg/L

HighLimit

130

70

%RPD

RPDLimit

Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Prep Date: 10/29/2019

Diesel Range Organics (DRO)

Surr: DNOP

Motor Oil Range Organics (MRO)

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Project: SWMU	3								
Sample ID: MB-48446	SampType: MBL	K	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch ID: 4844	6	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis Date: 10/3	0/2019	S	SeqNo: 2	193023	Units: %Red	:		
Analyte	Result PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	1000	1000		99.9	77.4	118			
Sample ID: LCS-48446	SampType: LCS		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID: 4844	6	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis Date: 10/3	0/2019	S	SeqNo: 2	193024	Units: %Red	;		
Analyte	Result PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	1100	1000		108	77.4	118			
Sample ID: MB-48453	SampType: MBL	K	Tes	tCode: E	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch ID: 4845	3	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis Date: 10/3	1/2019	S	SeqNo: 2	193052	Units: mg/K	g		
Analyte	Result PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	1000	1000		100	77.4	118			
Sample ID: LCS-48453	SampType: LCS		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batch ID: 4845	3	F	RunNo: 64	4076				
Prep Date: 10/29/2019	Analysis Date: 10/3	0/2019	S	SeqNo: 2	193053	Units: mg/K	g		
Analyte	Result PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	21 5.0	25.00	0	84.4	80	120			
Surr: BFB	1100	1000		109	77.4	118			
Sample ID: RB	SampType: MBL	K	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch ID: G640)77	F	RunNo: 64	4077				
Prep Date:	Analysis Date: 10/3	0/2019	S	SeqNo: 2	193126	Units: mg/K	g		
Analyte	Result PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	990	1000		98.7	77.4	118			
Sample ID: 2.5UG GRO LCS	SampType: LCS		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batch ID: G640	77	F	RunNo: 64	4077				
Prep Date:	Analysis Date: 10/3	0/2019	S	SeqNo: 2	193135	Units: mg/K	g		
Analyte	Result PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Casalina Danna Omenica (CDO)	24 5.0	25.00	0	97.6	80	120			
Gasoline Range Organics (GRO) Surr: BFB	1100	1000		113	77.4	118			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48491 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: 48491 RunNo: 64127

Prep Date: 10/30/2019 Analysis Date: 10/31/2019 SeqNo: 2194628 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 1000 1000 100 77.4 118

Sample ID: LCS-48491 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 48491 RunNo: 64127

Prep Date: 10/30/2019 Analysis Date: 10/31/2019 SeqNo: 2194629 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 22
 5.0
 25.00
 0
 89.4
 80
 120

 Surr: BFB
 1100
 1000
 112
 77.4
 118

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 39 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: 48446 RunNo: 64109

Client ID: PBS	Batch ID: 48446			RunNo: 64109						
Prep Date: 10/29/2019	Analysis D	Date: 10	0/30/2019	;	SeqNo: 2	194198	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48446	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: PBS	Batcl	n ID: 484	446	F	RunNo: 64	4109				
Prep Date: 10/29/2019	Analysis D	oate: 10	/30/2019	S	SeqNo: 2	194198	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.54		0.5000		107	70	130			
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		93.0	70	130			
Surr: Toluene-d8	0.49		0.5000		98.5	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.5000		92.1	70	130			

Sample ID: Ics-48446	ample ID: Ics-48446 SampType: LCS TestCode: EPA Method 8260B: Volatiles									
Client ID: LCSS	F	RunNo: 64	4109							
Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2194199 Units: mg/Kg							g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	98.8	68	135			
Benzene Toluene	0.99 0.96	0.025 0.050	1.000 1.000	0 0	98.8 95.8	68 70	135 130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 41 of 66

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48453

Sample ID: Ics-48446 SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: 48446 RunNo: 64109 Prep Date: 10/29/2019 Analysis Date: 10/30/2019 SeqNo: 2194199 Units: mg/Kg Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result 51.1 1,1-Dichloroethene 0.94 0.050 1.000 0 93.8 139 Trichloroethene (TCE) 0.94 0.050 1.000 0 93.9 70 130 Surr: Dibromofluoromethane 0.5000 95.9 70 0.48 130 Surr: 1,2-Dichloroethane-d4 0.46 0.5000 92.4 70 130 Surr: Toluene-d8 0.48 0.5000 95.6 70 130 Surr: 4-Bromofluorobenzene 0.44 0.5000 88.7 70 130

TestCode: EPA Method 8260B: Volatiles

		71								
Client ID: PBS	Client ID: PBS Batch ID: 48453			F	RunNo: 6	4109				
Prep Date: 10/29/2019	Analysis [Date: 10	0/30/2019	9	SeqNo: 2	194214	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	0.086	0.50								J
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48453 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Client ID: PBS Batch ID: 48453 RunNo: 64109

Client ID: PBS	Batch ID: 48453		RunNo: 64109							
Prep Date: 10/29/2019	Analysis [Date: 10	0/30/2019	;	SeqNo: 2	194214	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.55		0.5000		110	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 43 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Chent.	Maramon
Project:	SWMU 13

Sample ID: mb-48453	SampType: M	IBLK	Test						
Client ID: PBS	Batch ID: 4	Batch ID: 48453 RunNo: 64109							
Prep Date: 10/29/2019	Analysis Date: 1	10/30/2019	S	SeqNo: 21	194214	Units: mg/Kg	.g		
Analyte	Result PQL	. SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.50	0.5000		100	70	130			
Surr: Toluene-d8	0.48	0.5000		96.4	70	130			
Surr: 4-Bromofluorobenzene	0.46	0.5000		91.2	70	130			
Sample ID: Ics-48453	SampType: L	.cs	Test	Code: E	PA Method	l 8260B: Volati	iles		
Client ID: LCSS	Batch ID: 4	8453	R	RunNo: 64	4109				
Prep Date: 10/29/2019	Analysis Date: 1	10/30/2019	S	SeqNo: 21	194215	Units: mg/Kg	.g		
1	D 1: DOI	0.014	001/0 /1//						

Prep Date: 10/29/2019	Analysis D	Date: 10	0/30/2019	SeqNo: 2194215 Units: m				(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	1.000	0	99.6	68	135			
Toluene	0.91	0.050	1.000	0	91.5	70	130			
Chlorobenzene	0.89	0.050	1.000	0	89.5	70	130			
1,1-Dichloroethene	0.93	0.050	1.000	0	93.0	51.1	139			
Trichloroethene (TCE)	0.90	0.050	1.000	0	89.5	70	130			
Surr: Dibromofluoromethane	0.47		0.5000		93.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		90.9	70	130			
Surr: Toluene-d8	0.46		0.5000		91.3	70	130			
Surr: 4-Bromofluorobenzene	0.43		0.5000		86.5	70	130			

Sample ID:	1910e49-002ams	Samp i ype:	MS I	estCode: EPA Method	8260B: Volatiles
Client ID:	SWMU 13-13 (1.5-2')	Batch ID:	48453	RunNo: 64139	
Prep Date:	10/29/2019 A	nalysis Date:	10/31/2019	SeqNo: 2194706	Units: mg/Kg

1 10p Bate. 10/25/2015	7 thaiyolo L	Juio. I	//31/2013	,	204110. Z	134700	Ormo. Ing/i	' 9		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	0.9940	0	104	57.1	141			
Toluene	1.0	0.050	0.9940	0	106	70	130			
Chlorobenzene	0.87	0.050	0.9940	0	87.6	70	130			
1,1-Dichloroethene	0.93	0.050	0.9940	0	93.1	38.5	141			
Trichloroethene (TCE)	0.97	0.050	0.9940	0	97.6	70	130			
Surr: Dibromofluoromethane	0.47		0.4970		94.7	70	130			
Surr: 1,2-Dichloroethane-d4	0.47		0.4970		94.0	70	130			
Surr: Toluene-d8	0.51		0.4970		104	70	130			
Surr: 4-Bromofluorobenzene	0.47		0.4970		94.7	70	130			

Sample ID: 1910e49-002amsd	SampT	уре: М	SD	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: SWMU 13-13 (1.5-	2') Batch	n ID: 484	453	F	RunNo: 6	4139				
Prep Date: 10/29/2019	Analysis D	oate: 10)/31/2019	S	SeqNo: 2	194707	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.90	0.024	0.9560	0	94.1	57.1	141	13.6	20	_

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 44 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 1910e49-002amsd SampType: MSD TestCode: EPA Method 8260B: Volatiles

Client ID: **SWMU 13-13 (1.5-2')** Batch ID: **48453** RunNo: **64139**

Prep Date: 10/29/2019 Analysis Date: 10/31/2019 SeqNo: 2194707 Units: mg/Kg

Prep Date: 10/29/2019	Analysis L	oate: 10	/31/2019	5	seqino: 2	194/0/	Units: mg/K	.g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	0.91	0.048	0.9560	0	95.1	70	130	14.3	20	
Chlorobenzene	0.75	0.048	0.9560	0	78.9	70	130	14.3	20	
1,1-Dichloroethene	0.87	0.048	0.9560	0	90.6	38.5	141	6.57	20	
Trichloroethene (TCE)	0.82	0.048	0.9560	0	85.6	70	130	17.0	20	
Surr: Dibromofluoromethane	0.44		0.4780		93.0	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.44		0.4780		92.8	70	130	0	0	
Surr: Toluene-d8	0.49		0.4780		103	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.45		0.4780		95.1	70	130	0	0	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batcl	n ID: R6	4075	F	RunNo: 6	4075				
Prep Date:	Analysis D	Date: 10)/29/2019	9	SeqNo: 2	192371	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.5	70	130			
Toluene	19	1.0	20.00	0	93.8	70	130			
Chlorobenzene	20	1.0	20.00	0	99.5	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	84.9	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	84.3	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.1	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		90.9	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.9		10.00		99.1	70	130			

Sample ID: rb	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES
Client ID: PBW	Batch ID: R64075	RunNo: 64075
Prep Date:	Analysis Date: 10/29/2019	SeqNo: 2192402 Units: μg/L
Analyte	Result PQL SPK value SPK Ref	Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0
2-Chlorotoluene	ND	1.0

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb

Client ID: PBW Batch ID: R64075 RunNo: 64075

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batcl	h ID: R6	4075	F	RunNo: 6 4	4075				
Prep Date:	Analysis D	Date: 10)/29/2019	5	SeqNo: 2	192402	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: rb	SampT	уре: МЕ	BLK	Test						
Client ID: PBW	Batch	n ID: R6	4075	R	RunNo: 6 4	1075				
Prep Date:	Analysis D	oate: 10	/29/2019	S	SeqNo: 2	192402	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.4	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		93.8	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.0	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48536 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles PBS Client ID: Batch ID: 48536 RunNo: 64267 Prep Date: 11/1/2019 Analysis Date: 11/6/2019 SeqNo: 2199508 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Acenaphthene ND 0.20 Acenaphthylene ND 0.20 ND 0.20 Aniline Anthracene ND 0.20 Azobenzene 0.00064 0.20 J Benz(a)anthracene ND 0.20 Benzo(a)pyrene ND 0.20 Benzo(b)fluoranthene ND 0.20 Benzo(g,h,i)perylene ND 0.20 Benzo(k)fluoranthene ND 0.20 Benzoic acid ND 0.50 0.014 0.20 J Benzyl alcohol ND 0.20 Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether ND 0.20 Bis(2-chloroisopropyl)ether ND 0.20 Bis(2-ethylhexyl)phthalate 0.14 0.50 J ND 4-Bromophenyl phenyl ether 0.20 Butyl benzyl phthalate ND 0.20 Carbazole ND 0.20 4-Chloro-3-methylphenol ND 0.50 ND 4-Chloroaniline 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 Chrysene ND 0.20 0.20 0.40 Di-n-butyl phthalate J Di-n-octyl phthalate ND 0.40 ND Dibenz(a,h)anthracene 0.20 Dibenzofuran ND 0.20 1,2-Dichlorobenzene ND 0.20 1,3-Dichlorobenzene ND 0.20 ND 1,4-Dichlorobenzene 0.20 3,3'-Dichlorobenzidine ND 0.25 Diethyl phthalate 0.20 J 0.12 Dimethyl phthalate ND 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48536 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles PBS Batch ID: 48536 Client ID: RunNo: 64267 Prep Date: 11/1/2019 Analysis Date: 11/6/2019 SeqNo: 2199508 Units: mg/Kg PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit 2,4-Dinitrotoluene ND 0.50 2.6-Dinitrotoluene ND 0.50 ND 0.20 Fluoranthene Fluorene ND 0.20 Hexachlorobenzene ND 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 Hexachloroethane ND 0.20 Indeno(1,2,3-cd)pyrene ND 0.20 ND 0.40 Isophorone 1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.20 0.40 2-Methylphenol ND 3+4-Methylphenol ND 0.20 N-Nitrosodi-n-propylamine ND 0.20 N-Nitrosodiphenylamine ND 0.20 ND Naphthalene 0.20 2-Nitroaniline ND 0.20 3-Nitroaniline 0.028 0.20 J 4-Nitroaniline ND 0.40 ND Nitrobenzene 0.40 2-Nitrophenol ND 0.20 4-Nitrophenol ND 0.25 Pentachlorophenol ND 0.40 Phenanthrene ND 0.20 Phenol 0.0044 0.20 Pyrene ND 0.20 ND 0.40 Pyridine 1,2,4-Trichlorobenzene ND 0.20 2,4,5-Trichlorophenol 0.20 ND 2,4,6-Trichlorophenol ND 0.20 85.9 Surr: 2-Fluorophenol 2.1 3.330 63.6 26.7 67.0 Surr: Phenol-d5 2.2 3.330 18.5 101 Surr: 2,4,6-Tribromophenol 85.6 1.6 3.330 48.6 35.8 Surr: Nitrobenzene-d5 1.1 1.670 63.0 40.8 95.2 Surr: 2-Fluorobiphenyl 0.90 1.670 54.0 34.7 85.2 Surr: 4-Terphenyl-d14 0.98 1.670 58.6 37.4 91.3

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48536 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS Batch ID: 48536 RunNo: 64325

Client ID: PBS	Batch ID: 48536			RunNo: 64325						
Prep Date: 11/1/2019	Analysis D	Analysis Date: 11/7/2019		5	SeqNo: 2	201376	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	0.22	0.40								J
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3'-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								
•										

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48536

Client ID: **PBS** Batch ID: **48536** RunNo: **64325**

TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBS	Batci	1 ID: 48	536	ŀ	Runno: 6	4325				
Prep Date: 11/1/2019	Analysis D	Analysis Date: 11/7/2019		;	SeqNo: 2	201376	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	0.50								
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.2		3.330		65.2	26.7	85.9			
Surr: Phenol-d5	2.3		3.330		68.3	18.5	101			
Surr: 2,4,6-Tribromophenol	2.3		3.330		69.8	35.8	85.6			
Surr: Nitrobenzene-d5	1.2		1.670		71.0	40.8	95.2			
Surr: 2-Fluorobiphenyl	1.2		1.670		72.0	34.7	85.2			
Surr: 4-Terphenyl-d14	1.1		1.670		65.8	37.4	91.3			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48536 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSS Batch ID: 48536 RunNo: 64325 Prep Date: 11/1/2019 Analysis Date: 11/7/2019 SeqNo: 2201377 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Acenaphthene 1.2 0.20 1.670 0 73.9 46 89.5 4-Chloro-3-methylphenol 2.7 0.50 3.330 0 80.7 44.1 101 2.2 0.20 3.330 0 67.4 47 2-Chlorophenol 91 1,4-Dichlorobenzene 1.1 0.20 1.670 0 64.7 41.4 85.8 0 2,4-Dinitrotoluene 1.1 0.50 1.670 63.5 37.4 82 N-Nitrosodi-n-propylamine 1.2 0.20 0 71.2 47.8 92.9 1.670 4-Nitrophenol 2.5 0.25 3.330 0 73.8 45 94.3 76.9 Pentachlorophenol 2.3 0.40 3.330 0 69.9 31.7 Phenol 2.4 0.20 3.330 0 70.9 49.4 92.5 1.3 0.20 1.670 0 75.3 52.9 82.7 Pyrene 1,2,4-Trichlorobenzene 1.2 0.20 1.670 73.4 43.6 98.1 Surr: 2-Fluorophenol 2.1 3.330 62.1 26.7 85.9 2.2 67.2 101 Surr: Phenol-d5 3.330 18.5 Surr: 2,4,6-Tribromophenol 2.5 3.330 76.3 35.8 85.6 Surr: Nitrobenzene-d5 1.3 1.670 75.3 40.8 95.2 Surr: 2-Fluorobiphenyl 1.2 1.670 74.2 34.7 85.2 Surr: 4-Terphenyl-d14 1.2 72.6 37.4 91.3 1.670

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: mb-48505 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 48505 RunNo: 64172

Client ID. PBW		11D. 40 :			Kuriino. 6 4					
Prep Date: 10/31/2019	Analysis D	ate: 11	/2/2019	S	SeqNo: 21	195943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	22	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 54 of 66

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1910E49

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: mb-48505

Client ID: PBW Batch ID: 48505 RunNo: 64172

TestCode: EPA Method 8270C: Semivolatiles

Prep Date: 10/31/2019	Analysis D	ate: 11	/2/2019	S	SeqNo: 2 1	195943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	87		200.0		43.7	15	101			
Surr: Phenol-d5	71		200.0		35.7	15	84.6			
Surr: 2,4,6-Tribromophenol	120		200.0		62.1	27.8	112			
Surr: Nitrobenzene-d5	62		100.0		62.0	33	113			
Surr: 2-Fluorobiphenyl	55		100.0		55.3	26.6	107			
Surr: 4-Terphenyl-d14	48		100.0		48.3	18.7	148			

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 55 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Ics-48505	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSW	Batch	n ID: 48	505	F	RunNo: 64	4172				
Prep Date: 10/31/2019	Analysis D	ate: 11	/2/2019	S	SeqNo: 2	195944	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	70	10	100.0	0	69.7	32.2	94			
4-Chloro-3-methylphenol	150	10	200.0	0	73.8	37.7	101			
2-Chlorophenol	130	10	200.0	0	63.3	32.6	90.1			
1,4-Dichlorobenzene	54	10	100.0	0	54.1	30	87.2			
2,4-Dinitrotoluene	66	10	100.0	0	65.9	35.9	85.8			
N-Nitrosodi-n-propylamine	73	10	100.0	0	72.5	37.1	108			
4-Nitrophenol	90	10	200.0	0	45.0	22.4	86.6			
Pentachlorophenol	120	20	200.0	0	62.5	31.6	91			
Phenol	82	10	200.0	0	41.0	21.7	84.9			
Pyrene	73	10	100.0	0	72.7	46.3	103			
1,2,4-Trichlorobenzene	61	10	100.0	0	60.6	30.2	88.3			
Surr: 2-Fluorophenol	89		200.0		44.4	15	101			
Surr: Phenol-d5	76		200.0		38.2	15	84.6			
Surr: 2,4,6-Tribromophenol	140		200.0		68.0	27.8	112			
Surr: Nitrobenzene-d5	65		100.0		65.2	33	113			
Surr: 2-Fluorobiphenyl	64		100.0		63.7	26.6	107			
Surr: 4-Terphenyl-d14	59		100.0		58.5	18.7	148			

Sample ID: Icsd-48505	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSS02	Batch	ID: 48	505	F	RunNo: 64	4172				
Prep Date: 10/31/2019	Analysis D	ate: 11	/2/2019	8	SeqNo: 2	195945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	52	10	100.0	0	51.9	32.2	94	29.2	32.9	
4-Chloro-3-methylphenol	110	10	200.0	0	57.0	37.7	101	25.7	29.9	
2-Chlorophenol	89	10	200.0	0	44.4	32.6	90.1	35.0	28.5	R
1,4-Dichlorobenzene	38	10	100.0	0	38.4	15	87.2	34.1	44.9	
2,4-Dinitrotoluene	51	10	100.0	0	51.4	35.9	85.8	24.8	28.5	
N-Nitrosodi-n-propylamine	50	10	100.0	0	50.0	37.1	108	36.7	29.9	R
4-Nitrophenol	72	10	200.0	0	36.1	15	86.6	21.9	68	
Pentachlorophenol	97	20	200.0	0	48.5	31.6	91	25.1	39.5	
Phenol	57	10	200.0	0	28.6	15	84.9	35.5	44.2	
Pyrene	61	10	100.0	0	61.2	46.3	103	17.1	23.8	
1,2,4-Trichlorobenzene	45	10	100.0	0	44.9	15.7	88.3	29.8	38	
Surr: 2-Fluorophenol	62		200.0		31.2	15	101	0	0	
Surr: Phenol-d5	53		200.0		26.4	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	110		200.0		54.5	27.8	112	0	0	
Surr: Nitrobenzene-d5	47		100.0		47.0	33	113	0	0	
Surr: 2-Fluorobiphenyl	44		100.0		44.2	26.6	107	0	0	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: Icsd-48505 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 48505 RunNo: 64172

Prep Date: 10/31/2019 Analysis Date: 11/2/2019 SeqNo: 2195945 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: 4-Terphenyl-d14 59 100.0 58.8 18.7 148 0 0

Sample ID: MB-48505	SampTy	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles							
Client ID: PBW	Batch ID: 48505			RunNo: 64213								
Prep Date: 10/31/2019	Analysis Date: 11/4/2019		SeqNo: 2197265			Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Acenaphthene	ND	10										
Acenaphthylene	ND	10										
Aniline	ND	10										
Anthracene	ND	10										
Azobenzene	ND	10										
Benz(a)anthracene	ND	10										
Benzo(a)pyrene	ND	10										
Benzo(b)fluoranthene	ND	10										
Benzo(g,h,i)perylene	ND	10										
Benzo(k)fluoranthene	ND	10										
Benzoic acid	ND	20										
Benzyl alcohol	0.89	10								J		
Bis(2-chloroethoxy)methane	ND	10										
Bis(2-chloroethyl)ether	ND	10										
Bis(2-chloroisopropyl)ether	ND	10										
Bis(2-ethylhexyl)phthalate	3.9	10								J		
4-Bromophenyl phenyl ether	ND	10										
Butyl benzyl phthalate	ND	10										
Carbazole	ND	10										
4-Chloro-3-methylphenol	0.28	10								J		
4-Chloroaniline	ND	10										
2-Chloronaphthalene	ND	10										
2-Chlorophenol	ND	10										
4-Chlorophenyl phenyl ether	ND	10										
Chrysene	ND	10										
Di-n-butyl phthalate	3.0	10								J		
Di-n-octyl phthalate	ND	10										
Dibenz(a,h)anthracene	ND	10										
Dibenzofuran	ND	10										
1,2-Dichlorobenzene	ND	10										
1,3-Dichlorobenzene	ND	10										
1,4-Dichlorobenzene	ND	10										

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48505 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 48505 RunNo: 64213 Prep Date: 10/31/2019 Analysis Date: 11/4/2019 SeqNo: 2197265 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 3,3'-Dichlorobenzidine ND 10 Diethyl phthalate 2.1 10 J Dimethyl phthalate ND 10 2,4-Dichlorophenol ND 20 2,4-Dimethylphenol ND 10 4,6-Dinitro-2-methylphenol ND 20 2,4-Dinitrophenol ND 20 2.4-Dinitrotoluene ND 10 2,6-Dinitrotoluene ND 10 ND 10 Fluoranthene ND 10 Fluorene 10 ND Hexachlorobenzene ND 10 Hexachlorobutadiene Hexachlorocyclopentadiene ND 10 Hexachloroethane ND 10 10 Indeno(1,2,3-cd)pyrene ND ND 10 Isophorone 1-Methylnaphthalene ND 10 2-Methylnaphthalene ND 10 2-Methylphenol ND 10 ND 3+4-Methylphenol 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10 N-Nitrosodiphenylamine ND 10 Naphthalene ND 10 2-Nitroaniline ND 10 3-Nitroaniline ND 10 ND 10 4-Nitroaniline Nitrobenzene ND 10 2-Nitrophenol ND 10 4-Nitrophenol ND 10 ND Pentachlorophenol 20 10 Phenanthrene ND ND 10 Phenol Pyrene ND 10 Pyridine ND 10 1,2,4-Trichlorobenzene ND 10 2,4,5-Trichlorophenol ND 10

Qualifiers:

2,4,6-Trichlorophenol

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

10

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48505	SampType: MBLK			Tes						
Client ID: PBW	Batch ID: 48505			RunNo: 64213						
Prep Date: 10/31/2019	Analysis Date: 11/4/2019		SeqNo: 2197265			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	86		200.0		42.8	15	101			
Surr: Phenol-d5	67		200.0		33.6	15	84.6			
Surr: 2,4,6-Tribromophenol	130		200.0		64.0	27.8	112			
Surr: Nitrobenzene-d5	59		100.0		58.9	33	113			
Surr: 2-Fluorobiphenyl	55		100.0		55.4	26.6	107			
Surr: 4-Terphenyl-d14	50		100.0		50.2	18.7	148			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1910E49

05-Dec-19

Client: Marathon **Project:** SWMU 13

Sample ID: MB-48648 SampType: MBLK TestCode: EPA Method 7471: Mercury Client ID: PBS

Batch ID: 48648 RunNo: 64322

Prep Date: 11/7/2019 Analysis Date: 11/7/2019 SeqNo: 2201157 Units: mq/Kq

PQL SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result HighLimit Qual

Mercury ND 0.033

Sample ID: LCSLL-48648 SampType: LCSLL TestCode: EPA Method 7471: Mercury

Client ID: BatchQC Batch ID: 48648 RunNo: 64322

Prep Date: 11/7/2019 Analysis Date: 11/7/2019 SeqNo: 2201158 Units: mg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual 0.0053 Mercury 0.033 0.006660 79.0 130

Sample ID: LCS-48648 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 48648 RunNo: 64322

Prep Date: 11/7/2019 Analysis Date: 11/7/2019 SeqNo: 2201159 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

0.16 0.033 0.1667 97.6 Mercury

Sample ID: 1910E49-001AMS SampType: MS TestCode: EPA Method 7471: Mercury

Client ID: SWMU 13-13 (0-0.5') Batch ID: 48648 RunNo: 64322

Prep Date: 11/7/2019 Analysis Date: 11/7/2019 SeqNo: 2201204 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

S Mercury 0.51 0.16 0.1663 309 80 120

Sample ID: 1910E49-001AMSD SampType: MSD TestCode: EPA Method 7471: Mercury

Client ID: SWMU 13-13 (0-0.5') Batch ID: 48648 RunNo: 64322

Prep Date: 11/7/2019 Analysis Date: 11/7/2019 SeqNo: 2201205 Units: mg/Kg

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.64 0.16 0.1647 387 80 20 RS Mercury 120 21.5

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 60 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48664 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 48664 RunNo: 64358

Prep Date: 11/7/2019 Analysis Date: 11/8/2019 SeqNo: 2202576 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.00012 0.00020 J

Sample ID: LCS-48664 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 48664 RunNo: 64358

Prep Date: 11/7/2019 Analysis Date: 11/8/2019 SeqNo: 2202577 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 93.6 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 61 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48519 Client ID: PBS		ype: ME n ID: 48			tCode: El RunNo: 6		6010B: Soil I	Vietals		
Prep Date: 10/31/2019	Analysis D	oate: 11	/4/2019	8	SeqNo: 2	196952	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.033	0.10								J
Chromium	ND	0.30								
Cobalt	ND	0.30								
Iron	1.7	2.5								J
Manganese	0.021	0.10								J
Nickel	ND	0.50								
Selenium	ND	2.5								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	0.40	2.5								J

Sample ID: LCS-48519	SampT	Type: LC	S	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID: LCSS	Batch	h ID: 48	519	F	RunNo: 64	4206				
Prep Date: 10/31/2019	Analysis D)ate: 11	/4/2019	8	SeqNo: 21	196954	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	24	2.5	25.00	0	97.6	80	120			
Arsenic	25	2.5	25.00	0	99.6	80	120			
Barium	24	0.10	25.00	0	95.0	80	120			
Beryllium	26	0.15	25.00	0	103	80	120			
Cadmium	24	0.10	25.00	0	95.1	80	120			
Chromium	24	0.30	25.00	0	96.4	80	120			
Cobalt	24	0.30	25.00	0	97.2	80	120			
Iron	26	2.5	25.00	0	102	80	120			
Manganese	25	0.10	25.00	0	99.3	80	120			
Nickel	24	0.50	25.00	0	96.4	80	120			
Selenium	25	2.5	25.00	0	98.6	80	120			
Silver	4.6	0.25	5.000	0	92.7	80	120			
Vanadium	25	2.5	25.00	0	99.2	80	120			
Zinc	24	2.5	25.00	0	97.8	80	120			

Sample ID: MB-48519	SampType: MBLK	TestCode: EPA Method 6010B: Soil Metals	
Client ID: PBS	Batch ID: 48519	RunNo: 64206	
Prep Date: 10/31/2019	Analysis Date: 11/4/2019	SeqNo: 2197458 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 62 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48519 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 48519 RunNo: 64206

Prep Date: 10/31/2019 Analysis Date: 11/4/2019 SeqNo: 2197458 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.25

Sample ID: LCS-48519 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 48519 RunNo: 64206

Prep Date: 10/31/2019 Analysis Date: 11/4/2019 SeqNo: 2197462 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 24 0.25 25.00 0 97.9 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 63 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 48486 RunNo: 64273 Prep Date: 10/30/2019 Analysis Date: 11/6/2019 SeqNo: 2199636 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Antimony ND 0.050 Arsenic ND 0.020 ND 0.020 Barium Beryllium ND 0.0030 Cadmium ND 0.0020 Chromium ND 0.0060 Cobalt ND 0.0060 ND 0.020 Iron Manganese ND 0.0020 Nickel ND 0.010 Silver ND 0.0050 J Vanadium 0.0012 0.050 ND 0.020 Zinc

Sample ID: LCS-48486	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: LCSW	Bato	ch ID: 484	486	R	RunNo: 64	4273				
Prep Date: 10/30/2019	Analysis	Date: 11	1/6/2019	S	SeqNo: 2	199638	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.51	0.050	0.5000	0	102	80	120			
Arsenic	0.50	0.020	0.5000	0	99.8	80	120			
Barium	0.48	0.020	0.5000	0	96.6	80	120			
Beryllium	0.52	0.0030	0.5000	0	103	80	120			
Cadmium	0.51	0.0020	0.5000	0	101	80	120			
Chromium	0.50	0.0060	0.5000	0	99.3	80	120			
Cobalt	0.51	0.0060	0.5000	0	101	80	120			
Iron	0.51	0.020	0.5000	0	102	80	120			
Manganese	0.50	0.0020	0.5000	0	101	80	120			
Nickel	0.49	0.010	0.5000	0	98.1	80	120			
Silver	0.095	0.0050	0.1000	0	94.6	80	120			
Vanadium	0.51	0.050	0.5000	0	101	80	120			
Zinc	0.49	0.020	0.5000	0	98.7	80	120			

Sample ID: MB-48486	SampType: MBLK	TestCode: EPA 6010B: Total Recoverable Metals
Client ID: PBW	Batch ID: 48486	RunNo: 64389
Prep Date: 10/30/2019	Analysis Date: 11/11/2019	SeqNo: 2203942 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Lead	0.0043 0.0050	J

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 64 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 48486 RunNo: 64389

Prep Date: 10/30/2019 Analysis Date: 11/11/2019 SeqNo: 2203944 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.51 0.0050 0.5000 0 101 80 120

Sample ID: MB-48486 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 48486 RunNo: 64501

Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208275 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Sample ID: LCS-48486 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 48486 RunNo: 64501

Prep Date: 10/30/2019 Analysis Date: 11/13/2019 SeqNo: 2208277 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.51 0.0050 0.5000 0 103 80 12

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 65 of 66

Hall Environmental Analysis Laboratory, Inc.

WO#: **1910E49**

05-Dec-19

Client: Marathon
Project: SWMU 13

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G64230 RunNo: 64230

Prep Date: Analysis Date: 11/4/2019 SeqNo: 2197977 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Gasoline Range Organics (GRO) 0 0.46 0.050 0.5000 91.6 70 130

 Gasoline Range Organics (GRO)
 0.46
 0.050
 0.5000
 0
 91.6
 70
 130

 Surr: BFB
 9.5
 10.00
 95.5
 70
 130

Sample ID: rb1 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G64230 RunNo: 64230

Prep Date: Analysis Date: 11/4/2019 SeqNo: 2197979 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.3 10.00 93.0 70 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 66 of 66

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name:	MARA	ATHON GALLUP	Work Order N	umber: 191	0E49			RcptN	o: 1	
Received By:	-	Rojus 1 Baca	10/29/2019 9:15 10/29/2019 10:2			Lad	Rae	_		
Reviewed By:	YC.	10/29/19				Larja	1.000			
Chain of Cus	stody									
1. Is Chain of C	Sustody	complete?		Yes	\checkmark	No		Not Present		
2. How was the	sample	delivered?		<u>Cou</u>	<u>rier</u>					
<u>Log In</u>	•									
Was an atter	npt mad	e to cool the samples	?	Yes	✓	No [na 🗆		
4. Were all sam	ples rec	eived at a temperatur	e of >0° C to 6.0°C	Yes	✓	No [NA 🗆		
5. Sample(s) in	proper o	container(s)?		Yes	V	No [
6. Sufficient san	nple volu	ıme for indicated test	(s)?	Yes	✓	No [
7. Are samples	(except \	VOA and ONG) prope	rly preserved?	Yes	~	No [
8. Was preserva	tive add	led to bottles?		Yes		No 🖪	1	NA 🗆		
9. VOA vials hav	/e zero h	neadspace?		Yes	✓	No [No VOA Vials		
IO. Were any sar	nple cor	ntainers received brok	en?	Yes		No E	~	# of preserved		
1. Does paperwo (Note discrepa		th bottle labels?		Yes	✓	No [ם 	bottles checked for pH:	r £12 un!	ess noted)
		identified on Chain o	f Custody?	Yes	✓	No [_	Adjusted?	N	0
3. Is it clear wha	t analys	es were requested?		Yes	✓	No [ם	/_		
		s able to be met? for authorization.)		Yes	✓	No [efiecked by:	MH	10/29/
pecial Handl	ing (if	applicable)								
15. Was client no	tified of	all discrepancies with	this order?	Yes		No [NA 🗹		
Person	Notified		Da	ite [*** **********************************				
By Who		***************************************	Via	a: ⊡eMa	ail 🔲	Phone 🗌 F	=ax	☐ In Person		
Regard Client I	ing: nstructio	ns:	** - ** *** *** *** *** *** *** *** ***	n 100 (00 1 10 10 10 10 10 10 10 10 10 10 10 10						
16. Additional rei	marks:						*********			
7. <u>Cooler Infor</u>	mation									
Cooler No 1	····· Carlina remiero	p °C Condition	Seal Intact Seal No es	Seal D	ate 🔠	Signed By	l ige ste			
		The state of the s		**************************************		**************************************		•		

1 or 3

Chain-of-	Chain-of-Custody Record	Turn-Around Time:	Time:				H	_	HALL ENVIRONMENTAL	/IR	Z	Σ	Ž	A	
Marathon I	Client: Marathon Petroleum Company LP	X Standard	□ Rush				A	AL	ANALYSIS LABORATORY	7	BO	2	5	Ϋ́	•
Gallup Refinery	inery	Project Name	Project Name: SWMU 13				**	v.halk	www.hallenvironmental.com	menta	l.com				
Address: 92	Mailing Address: 92 Giant Crossing Road				46	<u>6</u>	4901 Hawkins NE - Albuquerque, NM 87109	빌	Albuq	erque	NN.	87109			
Ö	Gallup, NM 87301	Project #:			1	Tel. 50	505-345-3975	975	Fax	505-	505-345-4107	107			
Phone #: 505-	505-726-9745							Ar	Analysis	Rednest	est				
Bmoore1@m	Bmoore1@marathonpetroleum.com	Project Mana	Project Manager: Brian Moore	loore	(,	(0			(†						
QA/QC Package:	X Level 4 (Full Validation)					O/MR	<u></u>	(SN	08'*0						
□ Other		Sampler.	Tracy Payn	Tracy Payne - 919-561-7055		אםו					((N
X EDD (Type) EXCEL	Æ	On Ice	K			ово				/ sər					10 Y,
-		Sample remperature	3)) B				ioio) se
Fime Matrix	rix Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 1910 EYG	BTEX+MT	2108 H9T	TPH (Meti	158) HAG	RCRA 8 N	8081 Pes	V) 80828 198) 0728	Metals an			Air Bubble
10/25/01/455 Soil	il quimi 13-13 (0-0.5')	/ 8 oz Jar - 2	Neat	100-		×					×	×			
		Vial - 2	MeOH								×				
->	-3	4 cs. TAR- 1.	NEAT									X			
1505	4WM112-13/16-2) 8cm (7ac-2	NEAT	700-		×					×	X			
		Vial-2	MEOH		-						×				
	7	4 of JAR-1		1								×			
15.70	GAMM 1 12-13 (0-3')	SOUTAR-2		500-		×					쉿	X			
		VIA1 -2	MEDH								X				
	7	HOSTAR-1	NEAT									×			
*															
Date: Time: Reling	Relinquished by:	Received by:	Cure ou	Date Time 10 24 19 9/15	Remarks. and Targ	ks: S arge	Remarks. See attached sheet for Analytical Methods and Target Analytes.	ache ⁄tes.	she(et for	Anal	ytical	Metl	spou	
ime:	Relinquished by:	Received by:		Date Time											

2 0 3

ENVIRONMENTAL	ANALYSIS LABORATORY							(N	JÖ,	, γ) s	əlddu8 niA											attached sheet for Analytical Methods nalytes.	
N E	3		Albuquerque, NM 87109	20							Metals an	×		X	X		X	X		X	:	/tica	
Z	80	E O	NM 8	Fax 505-345-4107	j,				AO		ne2) 0728	×			X			X			\dashv	nal)	
RO	3	intal.	que,	5-34	anba	S	90 d	ZO00	/ Si		iseg 1808 (VC	<u>×</u>	×		X	×		<u> </u>	$\stackrel{\mathcal{S}}{\rightarrow}$	-	_ (ior A	
7	S	onme	quer	1X 5(is Re						D,∃) anoinA										-	eet	
Z	2	envir	Albu	Ψ,	Analysis Request						M 8 AROR	<u> </u>										d Sh	
		www.hallenvironmental.com	Щ	375	Ā		(SI	NIS0	428	10	01E8) HA9											iche tes.	
HALL	Ž	ww	ins	45-39		;		(t.	7 09	ро	EDB (Meth											atta naly	
•	•		4901 Hawkins NE	Tel. 505-345-3975		:					rtPH (Meth											See et Ar	
			901	Fel. 5					· ·		35108 H9T	X		_	X		ļ	X				rks: Farg	
			4	-		(,			-		BTEX+MTB BTEX+MTB				-							Remarks: See attache and Target Analytes	
			<u></u>				(160	T	N _T		3TM+V3TB			 	 								
		3				Moore		ne - 919-561-7055	□ No	3-0-c3	HEAL No.	40 9 -			570-			910-				10/29/19 9/15	Date Time
Time:	□ Rush	SWMU 13				ger: Brian Moore		Tracy Payne	P-Yes	perature. O	Preservative Type	Neat	MeOH	N FAR	NEAT	MEDH	NEAT	NEA-1	MEOH	NEAT		(atrier	
Turn-Around	X Standard	Project Name		Project #:		Project Mana		Sampler:	On Ice:	Tem	Container Type and #	8 oz Jar - 2	Vial - 2	4 TAP-1	Are TAR-7	VAN - 2	1 - 2 - 1 - 1 - 1 - 1 - 1	8 ce IAR-2	VIAL-2	LoganaR-1		Received by	Received by:
Chain-of-Custody Record	Marathon Petroleum Company LP		92 Giant Crossing Road	Gallup, NM 87301	15	Email: Bmoore1@marathonpetroleum.com		A Level 4 (Full Validation)			Sample Request ID	12-14(0-05		->	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			GMMI 12-14 (2-3')	2	 			
što	oleu	>	it C	Ž	-974	oube	-	บ ๕			Sa	177	Ž		41.45			7	5			\ \ \ [d by:
of-Cus	ion Petr	Gallup Refinery		Gallup	505-726-9745	1@marath		•	EXCEL		Matrix	Soil								 		Relinquished by	Relinquished by:
hain-	Marath	Gallup	Mailing Address:		344	Bmoore	QA/QC Package:	ر معرم	X EDD (Type)		Time	1925/0 16.00	79		17.20	3		0 77				Date: Time:	Time:
ပ	Client:		Mailing		Phone #	Email:	QAQCI	☐ Standard	X EDD		Date	19/25/0								+		Date:	Date:

				L													;		
٦	hain	-ot-Cr	Chain-of-Custody Record	T	Turn-Around Time:	Time:					•	Ш	2	Ž	Ž	<u>Ц</u>	2	<	
Client:	Marat	hon Pet	Client: Marathon Petroleum Company LP		X Standard	□ Rush				. Q	Ž	֡֝֝֝֓֞֝֞֝֓֞֝֝֓֞֝֝֓֞֝֟֝֝֓֓֓֓֓֓֓֓֓֝֟֝֝֡֝֡֝֡֝֡֝֡֝֡֝֝֡֝֡֝	. SIS	3	ANALYSIS LABORATORY	3	j	K	. >-
	Gallu	Gallup Refinery	ery .	_	Project Name:	SWMU 13				İ	www	www.hallenvironmental.com	/ironr	 Jentaj	mos.) !	, 		•
Wailing	Address	s: 92 Gi	Mailing Address: 92 Giant Crossing Road						4901 Hawkins NE	-Tawk	ns N		pndne	erque,	Albuquerque, NM 87109	7109	•		
		Gallu	Gallup, NM 87301	ď	Project #:				Tel. 5	05-3	505-345-3975		Fax	505-3	505-345-4107	07			
Phone #:	#:	505-72	505-726-9745			i						Anal	ysis }	Analysis Request	sst				
Email:		∍1@marat	Bmoore1@marathonpetroleum.com	<u>-</u>	roject Manaç	Project Manager: Brian Moore	Moore							- 9					
aA/QC □ Star	aA/QC Package: □ Standard		X Level 4 (Full Validation)	—— (iio								(SI	([†] 0S' [†] 0	bCB₁ĕ					
□ Other _	i is		•		Sampler:	Tracy Payne	ie - 919-561-7055					NIS()d, <u>s</u> (280					(1
X EDL	X EDD (Type)_	EXCEL		10		⊕ Yes	□ No)N'ε	8 / 8	(A				A 10
				[Ö	Tem		2-0-0-5						ON') Y)
Date	Time	Matrix	Sample Request ID		Container Type and #	Preservative Type	HEAL No.	BTM+X3T8	8TM+X3T8 88168 H9T	TPH (Metho	EDB (Metho	PAH (8310 RCRA 8 Me	IO,4) anoinA	S081 Pestic	(OV) 80828 im98) 0728	Metals - To	Cyanide		Air Bubbles
25/19	25/91615	Water	EBIO2519		40ml voa - 5	HCI	£00-		×			-				 			
					250 ml amber - 1	Neat			×										
					1 liter amber - t	Neat									×				
					250 ml plastic - 1	HNO ₃										×			
>	\rightarrow	->	->	***	500 ml plastic - 1	NaOH	1										×		
											ļ <u></u>								
															-				
																<u> </u>			
)ate: 728/19	728/19 0100		ed by:	Re	Received by:	Part sa)	2	Remarks: and Targ		see a	See attached et Analytes.	Ŋ.	heet	for 4	sheet for Analytical Methods	tical	Met	hod	
)ate:	Time:	Kelinquished by	ed by:	<u>~</u>	Received by:		Date Time												

SWMU 13 - Soil and Equipment Blank Analytical Requirements

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese)

Inorganic Analytical Methods

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 60 1 0/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 60 1 0/6020
Manganese	SW-846 method 6010/6020

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 13, 2020

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: SWMU 13 OrderNo.: 1911232

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 8 sample(s) on 11/6/2019 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued December 23, 2019.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: SWMU 13-2-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 8:00:00 AM

 Lab ID:
 1911232-001
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	0.50	0.13	0.40		mg/L	1	11/12/2019 1:27:01 PM	48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 1:27:01 PM	48696
Surr: DNOP	127	0	81.5-152		%Rec	1	11/12/2019 1:27:01 PM	48696
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	0.35	0.021	0.050		mg/L	1	11/12/2019 11:17:49 P	G64438
Surr: BFB	2710	0	65.8-143	S	%Rec	1	11/12/2019 11:17:49 P	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	
Fluoride	ND	0.14	0.50		mg/L	5	11/7/2019 7:19:18 PM	R64329
Chloride	5700	250	250	*	mg/L	500	11/8/2019 7:46:07 PM	R64346
Nitrogen, Nitrite (As N)	ND	0.11	2.0		mg/L	20	11/7/2019 7:31:38 PM	R64329
Nitrogen, Nitrate (As N)	10	0.030	0.50	*	mg/L	5	11/7/2019 7:19:18 PM	R64329
Sulfate	780	5.0	10	*	mg/L	20	11/7/2019 7:31:38 PM	R64329
EPA METHOD 200.7: DISSOLVED METALS	;						Analyst: bcv	
Barium	0.076	0.00065	0.0020		mg/L	1	11/21/2019 10:56:40 A	A64680
Beryllium	ND	0.00028	0.0020		mg/L	1	11/21/2019 10:56:40 A	A64680
Cadmium	ND	0.00055	0.0020		mg/L	1	11/21/2019 10:56:40 A	A64680
Calcium	1300	1.2	20		mg/L	20	11/21/2019 11:07:46 A	A64680
Chromium	ND	0.0015	0.0060		mg/L	1	11/21/2019 10:56:40 A	A64680
Cobalt	0.0064	0.0031	0.0060		mg/L	1	11/21/2019 10:56:40 A	A64680
Iron	0.021	0.0087	0.020		mg/L	1	11/21/2019 10:56:40 A	A64680
Magnesium	250	0.25	5.0		mg/L	5	11/21/2019 10:58:52 A	A64680
Manganese	12	0.0058	0.040	*	mg/L	20	11/21/2019 11:07:46 A	A64680
Nickel	0.22	0.0040	0.010	*	mg/L	1	11/21/2019 10:56:40 A	A64680
Potassium	7.8	0.16	1.0		mg/L	1	11/21/2019 10:56:40 A	
Silver	0.025	0.00094	0.0050		mg/L	1	11/21/2019 10:56:40 A	
Sodium	2700	21	50		mg/L	50	11/21/2019 11:39:13 A	
Vanadium	0.0050	0.0020	0.050	J	mg/L	1	11/21/2019 10:56:40 A	A64680
Zinc	0.013	0.0023	0.010		mg/L	1	11/21/2019 10:56:40 A	A64680
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	0.73	0.00049	0.0020		mg/L	1	11/27/2019 5:05:54 PM	48748
Beryllium	0.0067	0.00022	0.0020	*	mg/L	1	11/27/2019 5:05:54 PM	48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 5:05:54 PM	48748
Chromium	0.017	0.0012	0.0060		mg/L	1	11/27/2019 5:05:54 PM	48748
Cobalt	0.020	0.0012	0.0060		mg/L	1	11/27/2019 5:05:54 PM	
Iron	18	0.12	0.40	*	mg/L	20	11/27/2019 5:07:56 PM	
Manganese	14	0.0012	0.040	*	mg/L	20	11/27/2019 5:07:56 PM	
Nickel	0.22	0.0015	0.010	*	mg/L	1	11/27/2019 5:05:54 PM	48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: SWMU 13-2-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 8:00:00 AM

 Lab ID:
 1911232-001
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	0.019	0.0014	0.0050		mg/L	1	11/27/2019 5:05:54 PM	48748
Vanadium	0.050	0.00054	0.050		mg/L	1	11/27/2019 5:05:54 PM	48748
Zinc	0.028	0.0058	0.010		mg/L	1	11/27/2019 5:05:54 PM	48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.0019	0.0050		mg/L	5	11/11/2019 10:59:40 A	B64381
Arsenic	0.0044	0.00010	0.0010		mg/L	1	11/8/2019 12:49:29 PM	B64363
Lead	ND	0.00027	0.0025		mg/L	5	11/8/2019 1:40:18 PM	B64363
Selenium	0.0022	0.00017	0.0010		mg/L	1	11/8/2019 12:49:29 PM	B64363
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 1:51:57 PM	48748
Arsenic	0.0095	0.0016	0.0050		mg/L	5	11/18/2019 1:51:57 PM	
Lead	0.044	0.00013	0.0025	*	mg/L	5	11/18/2019 1:51:57 PM	48748
Selenium	0.0078	0.0024	0.0050		mg/L	5	11/18/2019 1:51:57 PM	48748
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	0.000061	0.000038	0.00020	J	mg/L	1	11/20/2019 5:25:15 PM	48912
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Benzene	ND	0.83	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Toluene	ND	1.8	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Ethylbenzene	ND	0.66	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Methyl tert-butyl ether (MTBE)	21	2.3	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
1,2,4-Trimethylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
1,3,5-Trimethylbenzene	ND	0.94	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
1,2-Dichloroethane (EDC)	ND	0.97	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
1,2-Dibromoethane (EDB)	ND	0.83	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Naphthalene	ND	1.4	10	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
1-Methylnaphthalene	ND	1.6	20	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
2-Methylnaphthalene	ND	1.7	20	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Acetone	ND	6.0	50	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Bromobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Bromodichloromethane	ND	0.67	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Bromoform	ND	1.4	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Bromomethane	ND	1.4	15	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
2-Butanone	ND	10	50	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Carbon disulfide	ND	2.3	50	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Carbon Tetrachloride	ND	0.70	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Chlorobenzene	ND	0.97	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	R64405
Chloroethane	ND	0.89	10	D	μg/L	5	11/11/2019 4:02:37 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: SWMU 13-2-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 8:00:00 AM

 Lab ID:
 1911232-001
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	2
Chloroform	ND	0.61	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	Л R64405
Chloromethane	ND	1.6	15	D	μg/L	5	11/11/2019 4:02:37 PM	Л R64405
2-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
4-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
cis-1,2-DCE	ND	0.95	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
cis-1,3-Dichloropropene	ND	0.69	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
Dibromochloromethane	ND	1.2	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
Dibromomethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,2-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,3-Dichlorobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,4-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
Dichlorodifluoromethane	ND	1.3	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,1-Dichloroethane	ND	0.70	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
1,1-Dichloroethene	ND	1.0	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
1,2-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
1,3-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
2,2-Dichloropropane	ND	1.2	10	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
1,1-Dichloropropene	ND	0.81	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
Hexachlorobutadiene	ND	1.5	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	Л R64405
2-Hexanone	ND	7.7	50	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
Isopropylbenzene	ND	0.96	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
4-Isopropyltoluene	ND	1.1	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
4-Methyl-2-pentanone	ND	3.6	50	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
Methylene Chloride	ND	0.77	15	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
n-Butylbenzene	ND	1.1	15	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
n-Propylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
sec-Butylbenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
Styrene	ND	0.96	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
tert-Butylbenzene	ND	1.0	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,1,2,2-Tetrachloroethane	ND	2.7	10	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
Tetrachloroethene (PCE)	ND	0.75	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
trans-1,2-DCE	ND	0.90	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
trans-1,3-Dichloropropene	ND	0.83	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
1,2,3-Trichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	/ R64405
1,2,4-Trichlorobenzene	ND	0.98	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	A R64405
1,1,1-Trichloroethane	ND	0.86	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	Л R64405
1,1,2-Trichloroethane	ND	1.1	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	л R64405
Trichloroethene (TCE)	ND	0.83	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	И R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order 1911232

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-2-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 8:00:00 AM

 Lab ID:
 1911232-001
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	R
Trichlorofluoromethane	ND	0.95	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	M R64405
Vinyl chloride	ND	0.90	5.0	D	μg/L	5	11/11/2019 4:02:37 PM	M R64405
Xylenes, Total	ND	2.3	7.5	D	μg/L	5	11/11/2019 4:02:37 PM	M R64405
Surr: 1,2-Dichloroethane-d4	91.0	0	70-130	D	%Rec	5	11/11/2019 4:02:37 PM	M R64405
Surr: 4-Bromofluorobenzene	98.6	0	70-130	D	%Rec	5	11/11/2019 4:02:37 PM	M R64405
Surr: Dibromofluoromethane	105	0	70-130	D	%Rec	5	11/11/2019 4:02:37 PM	M R64405
Surr: Toluene-d8	94.1	0	70-130	D	%Rec	5	11/11/2019 4:02:37 PM	M R64405
SM2320B: ALKALINITY							Analyst: JRR	1
Bicarbonate (As CaCO3)	525.8	20.00	20.00		mg/L Ca	a 1	11/7/2019 7:24:37 PM	R64333
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/7/2019 7:24:37 PM	R64333
Total Alkalinity (as CaCO3)	525.8	20.00	20.00		mg/L Ca	a 1	11/7/2019 7:24:37 PM	R64333
SM2540C MOD: TOTAL DISSOLVED SO	LIDS						Analyst: KS	
Total Dissolved Solids	12300	200	200	*D	mg/L	1	11/12/2019 12:12:00 F	48684

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Received Date: 11/6/2019 4:10:00 PM

Hall Environmental Analysis Laboratory, Inc. Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: SWMU 13-3-GW

Project: SWMU 13 Collection Date: 11/6/2019 9:10:00 AM Matrix: AQUEOUS

Result DF **Analyses MDL** RL **Qual Units Date Analyzed Batch ID EPA METHOD 8015D: DIESEL RANGE** Analyst: CLP Diesel Range Organics (DRO) 0.61 0.13 0.40 mg/L 1 11/12/2019 1:51:16 PM 48696 ND 2.5 Motor Oil Range Organics (MRO) 2.5 mg/L 1 11/12/2019 1:51:16 PM 48696 Surr: DNOP 120 0 81.5-152 %Rec 1 11/12/2019 1:51:16 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) 0.45 0.021 0.050 11/12/2019 12:14:48 P mg/L 1 G64438 Surr: BFB 2830 0 65.8-143 S %Rec 1 11/12/2019 12:14:48 P G64438 **EPA METHOD 300.0: ANIONS** Analyst: MRA 11/7/2019 8:08:40 PM Fluoride ND 0.14 0.50 5 R64329 mg/L Chloride 5900 250 250 mg/L 500 11/8/2019 7:58:31 PM R64346 Nitrogen, Nitrite (As N) ND 0.11 2.0 20 11/7/2019 8:21:01 PM R64329 mg/L Nitrogen, Nitrate (As N) 0.56 0.030 0.50 mg/L 5 11/7/2019 8:08:40 PM R64329 Sulfate 20 R64329 660 5.0 10 mg/L 11/7/2019 8:21:01 PM **EPA METHOD 200.7: DISSOLVED METALS** Analyst: bcv Barium 0.074 0.00065 0.0020 mg/L 1 11/21/2019 11:10:05 A A64680 Beryllium ND 0.00028 0.0020 mg/L 1 11/21/2019 11:10:05 A A64680 Cadmium 0.00055 1 11/21/2019 11:10:05 A ND 0.0020 mg/L A64680 Calcium 1200 mg/L 50 11/21/2019 11:14:24 A A64680 3.1 50 Chromium ND 0.0015 0.0060 mg/L 1 11/21/2019 11:10:05 A A64680 Cobalt 0.027 0.0031 0.0060 11/21/2019 11:10:05 A A64680 mg/L 1 Iron 0.067 0.0087 0.020 mg/L 1 11/21/2019 11:10:05 A A64680 Magnesium 210 0.25 5.0 mg/L 5 11/21/2019 11:12:16 A A64680 mg/L Manganese 26 0.014 50 11/21/2019 11:14:24 A A64680 0.10Nickel 0.37 0.0040 0.010 mg/L 1 11/21/2019 11:10:05 A A64680 Potassium 3.1 0.16 mg/L 1 11/21/2019 11:10:05 A A64680 1.0 Silver 0.022 0.00094 0.0050 mg/L 1 11/21/2019 11:10:05 A A64680 Sodium 2800 21 50 11/21/2019 11:14:24 A A64680 mg/L 50 Vanadium 0.0055 0.0020 0.050 11/21/2019 11:10:05 A A64680 mg/L 1 0.0023 J 11/21/2019 11:10:05 A A64680 Zinc 0.0095 0.010 mg/L 1 **EPA METHOD 200.7: TOTAL METALS** Analyst: ELS Barium 0.077 0.00049 0.0020 mg/L 1 11/27/2019 5:12:01 PM 48748 Beryllium 0.00057 0.00022 0.0020 J 1 11/27/2019 5:12:01 PM 48748 mg/L Cadmium ND 0.00074 0.0020 mg/L 1 11/27/2019 5:12:01 PM Chromium ND 0.0012 0.0060 mg/L 1 11/27/2019 5:12:01 PM 48748 Cobalt 0.025 0.0012 0.0060 mg/L 1 11/27/2019 5:12:01 PM 1 Iron 0.17 0.0061 0.020 mg/L 11/27/2019 5:12:01 PM Manganese 25 0.0030 0.10 mg/L 50 11/27/2019 5:16:08 PM 48748 Nickel 0.34 0.0015 0.010 mg/L 1 11/27/2019 5:12:01 PM 48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Lab ID:

1911232-002

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 44

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-3-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 9:10:00 AM

 Lab ID:
 1911232-002
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	0.017	0.0014	0.0050		mg/L	1	11/27/2019 5:12:01 PM	A 48748
Vanadium	0.0071	0.00054	0.050	J	mg/L	1	11/27/2019 5:12:01 PM	A 48748
Zinc	ND	0.0058	0.010		mg/L	1	11/27/2019 5:12:01 PM	A 48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.0019	0.0050		mg/L	5	11/11/2019 11:02:18 A	B64381
Arsenic	0.0061	0.00010	0.0010		mg/L	1	11/8/2019 12:52:06 PM	M B64363
Lead	0.0011	0.00027	0.0025	J	mg/L	5	11/8/2019 1:42:56 PM	B64363
Selenium	0.0017	0.00017	0.0010		mg/L	1	11/8/2019 12:52:06 PM	M B64363
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 2:02:37 PN	A 48748
Arsenic	0.0069	0.0016	0.0050		mg/L	5	11/18/2019 2:02:37 PN	
Lead	0.0011	0.00013	0.0025	J	mg/L	5	11/18/2019 2:02:37 PN	A 48748
Selenium	ND	0.0024	0.0050		mg/L	5	11/18/2019 2:02:37 PM	A 48748
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	ND	0.000038	0.00020		mg/L	1	11/20/2019 5:31:14 PN	/ 48912
Mercury	ND	0.00019	0.0010		mg/L	5	11/20/2019 6:27:42 PN	
EPA METHOD 8260B: VOLATILES					9/=		Analyst: JMR	
Benzene	ND	0.83	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	
Toluene	ND	1.8	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	
Ethylbenzene	ND	0.66	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	
Methyl tert-butyl ether (MTBE)	21	2.3	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	
1,2,4-Trimethylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 5:28:18 PN	
1,3,5-Trimethylbenzene	ND	0.94	5.0	D	μg/L	5	11/11/2019 5:28:18 PN	
1,2-Dichloroethane (EDC)	ND	0.97	5.0	D	μg/L	5	11/11/2019 5:28:18 PN	
1,2-Dibromoethane (EDB)	ND	0.83	5.0	D	μg/L	5	11/11/2019 5:28:18 PN	
Naphthalene	ND	1.4	10	D	μg/L	5	11/11/2019 5:28:18 PN	/ R64405
1-Methylnaphthalene	ND	1.6	20	D	μg/L	5	11/11/2019 5:28:18 PN	/ R64405
2-Methylnaphthalene	ND	1.7	20	D	μg/L	5	11/11/2019 5:28:18 PM	/ R64405
Acetone	ND	6.0	50	D	μg/L	5	11/11/2019 5:28:18 PM	M R64405
Bromobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	M R64405
Bromodichloromethane	ND	0.67	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	M R64405
Bromoform	ND	1.4	5.0	D	μg/L	5	11/11/2019 5:28:18 PN	M R64405
Bromomethane	ND	1.4	15	D	μg/L	5	11/11/2019 5:28:18 PM	/ R64405
2-Butanone	ND	10	50	D	μg/L	5	11/11/2019 5:28:18 PM	M R64405
Carbon disulfide	ND	2.3	50	D	μg/L	5	11/11/2019 5:28:18 PM	M R64405
Carbon Tetrachloride	ND	0.70	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	/ R64405
Chlorobenzene	ND	0.97	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	M R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: SWMU 13-3-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 9:10:00 AM

 Lab ID:
 1911232-002
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Chloroethane	ND	0.89	10	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
Chloroform	ND	0.61	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
Chloromethane	ND	1.6	15	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
2-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
4-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
cis-1,2-DCE	ND	0.95	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
cis-1,3-Dichloropropene	ND	0.69	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
Dibromochloromethane	ND	1.2	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
Dibromomethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,2-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
1,3-Dichlorobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
1,4-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
Dichlorodifluoromethane	ND	1.3	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
1,1-Dichloroethane	ND	0.70	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
1,1-Dichloroethene	ND	1.0	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
1,2-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,3-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
2,2-Dichloropropane	ND	1.2	10	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
1,1-Dichloropropene	ND	0.81	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
Hexachlorobutadiene	ND	1.5	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
2-Hexanone	ND	7.7	50	D	μg/L	5	11/11/2019 5:28:18 PM	l R64405
Isopropylbenzene	ND	0.96	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
4-Isopropyltoluene	ND	1.1	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
4-Methyl-2-pentanone	ND	3.6	50	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
Methylene Chloride	ND	0.77	15	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
n-Butylbenzene	ND	1.1	15	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
n-Propylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
sec-Butylbenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
Styrene	ND	0.96	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
tert-Butylbenzene	ND	1.0	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,1,2,2-Tetrachloroethane	ND	2.7	10	D	μg/L	5	11/11/2019 5:28:18 PM	1 R64405
Tetrachloroethene (PCE)	ND	0.75	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
trans-1,2-DCE	ND	0.90	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
trans-1,3-Dichloropropene	ND	0.83	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,2,3-Trichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,2,4-Trichlorobenzene	ND	0.98	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,1,1-Trichloroethane	ND	0.86	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405
1,1,2-Trichloroethane	ND	1.1	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	I R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order 1911232

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-3-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 9:10:00 AM

 Lab ID:
 1911232-002
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Trichloroethene (TCE)	ND	0.83	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	R64405
Trichlorofluoromethane	ND	0.95	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	R64405
Vinyl chloride	ND	0.90	5.0	D	μg/L	5	11/11/2019 5:28:18 PM	R64405
Xylenes, Total	ND	2.3	7.5	D	μg/L	5	11/11/2019 5:28:18 PM	R64405
Surr: 1,2-Dichloroethane-d4	94.2	0	70-130	D	%Rec	5	11/11/2019 5:28:18 PM	R64405
Surr: 4-Bromofluorobenzene	99.4	0	70-130	D	%Rec	5	11/11/2019 5:28:18 PM	R64405
Surr: Dibromofluoromethane	109	0	70-130	D	%Rec	5	11/11/2019 5:28:18 PM	R64405
Surr: Toluene-d8	96.1	0	70-130	D	%Rec	5	11/11/2019 5:28:18 PM	R64405
SM2320B: ALKALINITY							Analyst: JRR	
Bicarbonate (As CaCO3)	602.2	20.00	20.00		mg/L Ca	a 1	11/7/2019 7:47:47 PM	R64333
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/7/2019 7:47:47 PM	R64333
Total Alkalinity (as CaCO3)	602.2	20.00	20.00		mg/L Ca	a 1	11/7/2019 7:47:47 PM	R64333
SM2540C MOD: TOTAL DISSOLVED SOLI	DS						Analyst: KS	
Total Dissolved Solids	11900	200	200	*D	mg/L	1	11/12/2019 12:12:00 P	48684

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 11:30:00 AM

 Lab ID:
 1911232-003
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	11/12/2019 2:15:26 PM	48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 2:15:26 PM	48696
Surr: DNOP	111	0	81.5-152		%Rec	1	11/12/2019 2:15:26 PM	48696
EPA METHOD 8015D: GASOLINE RANGI	=						Analyst: NSB	
Gasoline Range Organics (GRO)	0.10	0.021	0.050		mg/L	1	11/12/2019 1:23:31 PM	G64438
Surr: BFB	748	0	65.8-143	S	%Rec	1	11/12/2019 1:23:31 PM	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	
Fluoride	ND	0.14	0.50		mg/L	5	11/7/2019 8:33:21 PM	R64329
Chloride	5200	250	250	*	mg/L	500	11/8/2019 8:10:55 PM	R64346
Nitrogen, Nitrite (As N)	ND	0.11	2.0		mg/L	20	11/7/2019 8:45:42 PM	R64329
Nitrogen, Nitrate (As N)	1.6	0.030	0.50		mg/L	5	11/7/2019 8:33:21 PM	R64329
Sulfate	1200	33	250	*	mg/L	500	11/8/2019 8:10:55 PM	R64346
EPA METHOD 200.7: DISSOLVED METAI	LS						Analyst: bcv	
Barium	0.059	0.00065	0.0020		mg/L	1	11/21/2019 11:16:41 A	A64680
Beryllium	0.00034	0.00028	0.0020	J	mg/L	1	11/21/2019 11:16:41 A	A64680
Cadmium	ND	0.00055	0.0020		mg/L	1	11/21/2019 11:16:41 A	A64680
Calcium	1600	1.2	20		mg/L	20	11/21/2019 11:21:01 A	A64680
Chromium	ND	0.0015	0.0060		mg/L	1	11/21/2019 11:16:41 A	A64680
Cobalt	ND	0.0031	0.0060		mg/L	1	11/21/2019 11:16:41 A	A64680
Iron	0.011	0.0087	0.020	J	mg/L	1	11/21/2019 11:16:41 A	A64680
Magnesium	290	0.25	5.0		mg/L	5	11/21/2019 11:18:53 A	A64680
Manganese	12	0.0058	0.040	*	mg/L	20	11/21/2019 11:21:01 A	A64680
Nickel	0.075	0.0040	0.010		mg/L	1	11/21/2019 11:16:41 A	A64680
Potassium	4.0	0.16	1.0		mg/L	1	11/21/2019 11:16:41 A	A64680
Silver	0.029	0.00094	0.0050		mg/L	1	11/21/2019 11:16:41 A	A64680
Sodium	2400	21	50		mg/L	50	11/21/2019 11:41:28 A	A64680
Vanadium	0.0071	0.0020	0.050	J	mg/L	1	11/21/2019 11:16:41 A	A64680
Zinc	0.0070	0.0023	0.010	J	mg/L	1	11/21/2019 11:16:41 A	A64680
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	0.19	0.00049	0.0020		mg/L	1	11/27/2019 5:18:17 PM	48748
Beryllium	0.0013	0.00022	0.0020	J	mg/L	1	11/27/2019 5:18:17 PM	48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 5:18:17 PM	48748
Chromium	0.0044	0.0012	0.0060	J	mg/L	1	11/27/2019 5:18:17 PM	48748
Cobalt	0.0025	0.0012	0.0060	J	mg/L	1	11/27/2019 5:18:17 PM	
Iron	3.3	0.030	0.10	*	mg/L	5	11/27/2019 5:20:13 PM	
Manganese	8.6	0.0012	0.040	*	mg/L	20	11/27/2019 5:22:14 PM	
Nickel	0.056	0.0015	0.010		mg/L	1	11/27/2019 5:18:17 PM	48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 44

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 11:30:00 AM

 Lab ID:
 1911232-003
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	0.023	0.0014	0.0050		mg/L	1	11/27/2019 5:18:17 PM	48748
Vanadium	0.016	0.00054	0.050	J	mg/L	1	11/27/2019 5:18:17 PM	48748
Zinc	ND	0.0058	0.010		mg/L	1	11/27/2019 5:18:17 PM	48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.0019	0.0050		mg/L	5	11/11/2019 11:04:56 A	B64381
Arsenic	0.0027	0.00050	0.0050	J	mg/L	5	11/8/2019 1:45:33 PM	B64363
Lead	ND	0.00027	0.0025		mg/L	5	11/8/2019 1:45:33 PM	B64363
Selenium	ND	0.00086	0.0050		mg/L	5	11/8/2019 1:45:33 PM	B64363
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 2:04:44 PM	48748
Arsenic	0.0034	0.0016	0.0050	J	mg/L	5	11/18/2019 2:04:44 PM	48748
Lead	0.0041	0.00013	0.0025		mg/L	5	11/18/2019 2:04:44 PM	48748
Selenium	ND	0.0024	0.0050		mg/L	5	11/18/2019 2:04:44 PM	48748
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	ND	0.000038	0.00020		mg/L	1	11/20/2019 5:37:56 PM	48912
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Benzene	ND	0.17	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Toluene	ND	0.35	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Ethylbenzene	ND	0.13	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Methyl tert-butyl ether (MTBE)	15	0.46	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Naphthalene	ND	0.28	2.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Acetone	ND	1.2	10		μg/L	1	11/11/2019 5:56:48 PM	R64405
Bromobenzene	ND	0.24	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Bromodichloromethane	ND	0.13	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Bromoform	ND	0.29	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Bromomethane	ND	0.27	3.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
2-Butanone	ND	2.1	10		μg/L	1	11/11/2019 5:56:48 PM	R64405
Carbon disulfide	ND	0.45	10		μg/L	1	11/11/2019 5:56:48 PM	R64405
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Chlorobenzene	ND	0.19	1.0		μg/L	1	11/11/2019 5:56:48 PM	R64405
Chloroethane	ND	0.18	2.0		μg/L	1	11/11/2019 5:56:48 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: SWMU 13-4-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 11:30:00 AM

 Lab ID:
 1911232-003
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR	}
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 5:56:48 PN	/ R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 5:56:48 PM	/I R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 5:56:48 PN	/ R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 5:56:48 PN	/ R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 5:56:48 PM	/ R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 44

Analytical Report

Lab Order 1911232

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SWMU 13-4-GW

 Project:
 SWMU 13
 Collection Date: 11/6/2019 11:30:00 AM

 Lab ID:
 1911232-003
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	· · · · · · · · · · · · · · · · · · ·
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	11/11/2019 5:56:48 PM	л R64405
Vinyl chloride	ND	0.18	1.0		μg/L	1	11/11/2019 5:56:48 PM	Л R64405
Xylenes, Total	ND	0.45	1.5		μg/L	1	11/11/2019 5:56:48 PM	/I R64405
Surr: 1,2-Dichloroethane-d4	92.2	0	70-130		%Rec	1	11/11/2019 5:56:48 PM	/I R64405
Surr: 4-Bromofluorobenzene	101	0	70-130		%Rec	1	11/11/2019 5:56:48 PM	/I R64405
Surr: Dibromofluoromethane	108	0	70-130		%Rec	1	11/11/2019 5:56:48 PM	/I R64405
Surr: Toluene-d8	94.2	0	70-130		%Rec	1	11/11/2019 5:56:48 PM	Л R64405
SM2320B: ALKALINITY							Analyst: JRR	!
Bicarbonate (As CaCO3)	597.3	20.00	20.00		mg/L Ca	a 1	11/7/2019 8:13:28 PM	R64333
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/7/2019 8:13:28 PM	R64333
Total Alkalinity (as CaCO3)	597.3	20.00	20.00		mg/L Ca	a 1	11/7/2019 8:13:28 PM	R64333
SM2540C MOD: TOTAL DISSOLVED SC	LIDS						Analyst: KS	
Total Dissolved Solids	12200	200	200	*D	mg/L	1	11/12/2019 12:12:00 F	48684

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 44

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT:MarathonClient Sample ID: DUP01Project:SWMU 13Collection Date: 11/6/2019

Lab ID: 1911232-004 **Matrix:** AQUEOUS **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	0.37	0.13	0.40	J	mg/L	1	11/12/2019 2:39:50 PM	48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 2:39:50 PM	48696
Surr: DNOP	120	0	81.5-152		%Rec	1	11/12/2019 2:39:50 PM	48696
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	0.45	0.021	0.050		mg/L	1	11/12/2019 11:40:32 P	G64438
Surr: BFB	2770	0	65.8-143	S	%Rec	1	11/12/2019 11:40:32 P	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	
Fluoride	ND	0.14	0.50		mg/L	5	11/7/2019 8:58:02 PM	R64329
Chloride	5700	250	250	*	mg/L	500	11/8/2019 8:23:19 PM	R64346
Nitrogen, Nitrite (As N)	ND	0.11	2.0		mg/L	20	11/7/2019 9:10:24 PM	R64329
Nitrogen, Nitrate (As N)	0.80	0.030	0.50		mg/L	5	11/7/2019 8:58:02 PM	R64329
Sulfate	680	5.0	10	*	mg/L	20	11/7/2019 9:10:24 PM	R64329
EPA METHOD 200.7: DISSOLVED METALS	S						Analyst: bcv	
Barium	0.071	0.00065	0.0020		mg/L	1	11/21/2019 11:23:15 A	A64680
Beryllium	0.00035	0.00028	0.0020	J	mg/L	1	11/21/2019 11:23:15 A	A64680
Cadmium	ND	0.00055	0.0020		mg/L	1	11/21/2019 11:23:15 A	A64680
Calcium	1200	3.1	50		mg/L	50	11/21/2019 11:27:48 A	A64680
Chromium	ND	0.0015	0.0060		mg/L	1	11/21/2019 11:23:15 A	A64680
Cobalt	0.025	0.0031	0.0060		mg/L	1	11/21/2019 11:23:15 A	A64680
Iron	0.10	0.0087	0.020		mg/L	1	11/21/2019 11:23:15 A	A64680
Magnesium	210	0.25	5.0		mg/L	5	11/21/2019 11:25:39 A	A64680
Manganese	26	0.014	0.10	*	mg/L	50	11/21/2019 11:27:48 A	A64680
Nickel	0.34	0.0040	0.010	*	mg/L	1	11/21/2019 11:23:15 A	A64680
Potassium	3.1	0.16	1.0		mg/L	1	11/21/2019 11:23:15 A	A64680
Silver	0.022	0.00094	0.0050		mg/L	1	11/21/2019 11:23:15 A	A64680
Sodium	2700	21	50		mg/L	50	11/21/2019 11:27:48 A	A64680
Vanadium	0.0055	0.0020	0.050	J	mg/L	1	11/21/2019 11:23:15 A	A64680
Zinc	0.0087	0.0023	0.010	J	mg/L	1	11/21/2019 11:23:15 A	A64680
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	0.077	0.00049	0.0020		mg/L	1	11/27/2019 5:30:43 PM	48748
Beryllium	0.00062	0.00022	0.0020	J	mg/L	1	11/27/2019 5:30:43 PM	48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 5:30:43 PM	48748
Chromium	ND	0.0012	0.0060		mg/L	1	11/27/2019 5:30:43 PM	48748
Cobalt	0.024	0.0012	0.0060		mg/L	1	11/27/2019 5:30:43 PM	48748
Iron	0.22	0.0061	0.020		mg/L	1	11/27/2019 5:30:43 PM	48748
Manganese	24	0.0030	0.10	*	mg/L	50	11/27/2019 5:34:59 PM	48748
Nickel	0.34	0.0015	0.010	*	mg/L	1	11/27/2019 5:30:43 PM	48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: DUP01

Project: SWMU 13 Collection Date: 11/6/2019

Lab ID: 1911232-004 **Matrix:** AQUEOUS **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	0.017	0.0014	0.0050		mg/L	1	11/27/2019 5:30:43 PM	48748
Vanadium	0.0075	0.00054	0.050	J	mg/L	1	11/27/2019 5:30:43 PM	48748
Zinc	ND	0.0058	0.010		mg/L	1	11/27/2019 5:30:43 PM	48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.0019	0.0050		mg/L	5	11/11/2019 11:07:34 A	B64381
Arsenic	0.0055	0.00050	0.0050		mg/L	5	11/8/2019 2:27:41 PM	B64363
Lead	0.0011	0.00027	0.0025	J	mg/L	5	11/8/2019 2:27:41 PM	B64363
Selenium	0.00098	0.00086	0.0050	J	mg/L	5	11/8/2019 2:27:41 PM	B64363
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 2:06:52 PM	48748
Arsenic	0.0070	0.0016	0.0050		mg/L	5	11/18/2019 2:06:52 PM	48748
Lead	0.0011	0.00013	0.0025	J	mg/L	5	11/18/2019 2:06:52 PM	48748
Selenium	ND	0.0024	0.0050		mg/L	5	11/18/2019 2:06:52 PM	48748
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	ND	0.000038	0.00020		mg/L	1	11/20/2019 5:40:11 PM	48912
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Benzene	ND	0.83	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Toluene	ND	1.8	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Ethylbenzene	ND	0.66	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Methyl tert-butyl ether (MTBE)	22	2.3	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2,4-Trimethylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,3,5-Trimethylbenzene	ND	0.94	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2-Dichloroethane (EDC)	ND	0.97	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2-Dibromoethane (EDB)	ND	0.83	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Naphthalene	ND	1.4	10	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1-Methylnaphthalene	ND	1.6	20	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
2-Methylnaphthalene	ND	1.7	20	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Acetone	ND	6.0	50	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Bromobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Bromodichloromethane	ND	0.67	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Bromoform	ND	1.4	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Bromomethane	ND	1.4	15	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
2-Butanone	ND	10	50	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Carbon disulfide	ND	2.3	50	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Carbon Tetrachloride	ND	0.70	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Chlorobenzene	ND	0.97	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Chloroethane	ND	0.89	10	D	μg/L	5	11/11/2019 6:25:20 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon

Client Sample ID: DUP01

Project: SWMU 13

Collection Date: 11/6/2019

Lab ID: 1911232-004 **Matrix:** AQUEOUS **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Chloroform	ND	0.61	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Chloromethane	ND	1.6	15	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
2-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
4-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
cis-1,2-DCE	ND	0.95	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
cis-1,3-Dichloropropene	ND	0.69	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Dibromochloromethane	ND	1.2	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Dibromomethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,3-Dichlorobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,4-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Dichlorodifluoromethane	ND	1.3	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1-Dichloroethane	ND	0.70	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1-Dichloroethene	ND	1.0	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,3-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
2,2-Dichloropropane	ND	1.2	10	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1-Dichloropropene	ND	0.81	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Hexachlorobutadiene	ND	1.5	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
2-Hexanone	ND	7.7	50	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Isopropylbenzene	ND	0.96	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
4-Isopropyltoluene	ND	1.1	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
4-Methyl-2-pentanone	ND	3.6	50	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Methylene Chloride	ND	0.77	15	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
n-Butylbenzene	ND	1.1	15	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
n-Propylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
sec-Butylbenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Styrene	ND	0.96	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
tert-Butylbenzene	ND	1.0	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1,2,2-Tetrachloroethane	ND	2.7	10	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Tetrachloroethene (PCE)	ND	0.75	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
trans-1,2-DCE	ND	0.90	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
trans-1,3-Dichloropropene	ND	0.83	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2,3-Trichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,2,4-Trichlorobenzene	ND	0.98	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1,1-Trichloroethane	ND	0.86	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
1,1,2-Trichloroethane	ND	1.1	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405
Trichloroethene (TCE)	ND	0.83	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 44

Analytical Report

Lab Order **1911232**

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: DUP01

Project: SWMU 13

Collection Date: 11/6/2019

Lab ID: 1911232-004 **Matrix:** AQUEOUS **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8260B: VOLATILES							Analyst: JMR			
Trichlorofluoromethane	ND	0.95	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	/ R64405		
Vinyl chloride	ND	0.90	5.0	D	μg/L	5	11/11/2019 6:25:20 PM	/I R64405		
Xylenes, Total	ND	2.3	7.5	D	μg/L	5	11/11/2019 6:25:20 PM	/I R64405		
Surr: 1,2-Dichloroethane-d4	91.7	0	70-130	D	%Rec	5	11/11/2019 6:25:20 PM	/I R64405		
Surr: 4-Bromofluorobenzene	103	0	70-130	D	%Rec	5	11/11/2019 6:25:20 PM	/I R64405		
Surr: Dibromofluoromethane	106	0	70-130	D	%Rec	5	11/11/2019 6:25:20 PM	/I R64405		
Surr: Toluene-d8	97.0	0	70-130	D	%Rec	5	11/11/2019 6:25:20 PM	/I R64405		
SM2320B: ALKALINITY							Analyst: JRR			
Bicarbonate (As CaCO3)	597.6	20.00	20.00		mg/L Ca	a 1	11/7/2019 8:38:55 PM	R64333		
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/7/2019 8:38:55 PM	R64333		
Total Alkalinity (as CaCO3)	597.6	20.00	20.00		mg/L Ca	a 1	11/7/2019 8:38:55 PM	R64333		
SM2540C MOD: TOTAL DISSOLVED SO	LIDS						Analyst: KS			
Total Dissolved Solids	11900	200	200	*D	mg/L	1	11/12/2019 12:12:00 F	48684		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: EB01

 Project:
 SWMU 13
 Collection Date: 11/6/2019 12:55:00 PM

 Lab ID:
 1911232-005
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	11/12/2019 3:04:00 PM	48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 3:04:00 PM	48696
Surr: DNOP	122	0	81.5-152		%Rec	1	11/12/2019 3:04:00 PM	48696
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.021	0.050		mg/L	1	11/12/2019 2:09:19 PM	G64438
Surr: BFB	98.4	0	65.8-143		%Rec	1	11/12/2019 2:09:19 PM	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	
Fluoride	ND	0.029	0.10		mg/L	1	11/7/2019 9:22:45 PM	R64329
Chloride	0.27	0.25	0.50	J	mg/L	1	11/7/2019 9:22:45 PM	R64329
Nitrogen, Nitrite (As N)	ND	0.0054	0.10		mg/L	1	11/7/2019 9:22:45 PM	R64329
Nitrogen, Nitrate (As N)	ND	0.0061	0.10		mg/L	1	11/7/2019 9:22:45 PM	R64329
Sulfate	ND	0.25	0.50		mg/L	1	11/7/2019 9:22:45 PM	R64329
EPA METHOD 200.7: DISSOLVED METALS	3						Analyst: bcv	
Barium	ND	0.00065	0.0020		mg/L	1	11/21/2019 11:36:49 A	A64680
Beryllium	ND	0.00028	0.0020		mg/L	1	11/21/2019 11:36:49 A	A64680
Cadmium	ND	0.00055	0.0020		mg/L	1	11/21/2019 11:36:49 A	A64680
Calcium	ND	0.062	1.0		mg/L	1	11/21/2019 11:36:49 A	A64680
Chromium	ND	0.0015	0.0060		mg/L	1	11/21/2019 11:36:49 A	A64680
Cobalt	ND	0.0031	0.0060		mg/L	1	11/21/2019 11:36:49 A	A64680
Iron	ND	0.0087	0.020		mg/L	1	11/21/2019 11:36:49 A	A64680
Magnesium	ND	0.050	1.0		mg/L	1	11/21/2019 11:36:49 A	A64680
Manganese	0.00049	0.00029	0.0020	J	mg/L	1	11/21/2019 11:36:49 A	A64680
Nickel	ND	0.0040	0.010		mg/L	1	11/21/2019 11:36:49 A	A64680
Potassium	ND	0.16	1.0		mg/L	1	11/21/2019 11:36:49 A	A64680
Silver	ND	0.00094	0.0050		mg/L	1	11/21/2019 11:36:49 A	A64680
Sodium	0.56	0.42	1.0	J	mg/L	1	11/21/2019 11:36:49 A	A64680
Vanadium	ND	0.0020	0.050		mg/L	1	11/21/2019 11:36:49 A	A64680
Zinc	0.010	0.0023	0.010		mg/L	1	11/21/2019 11:36:49 A	A64680
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	ND	0.00049	0.0020		mg/L	1	11/27/2019 5:37:04 PM	48748
Beryllium	ND	0.00022	0.0020		mg/L	1	11/27/2019 5:37:04 PM	48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 5:37:04 PM	48748
Chromium	ND	0.0012	0.0060		mg/L	1	11/27/2019 5:37:04 PM	48748
Cobalt	ND	0.0012	0.0060		mg/L	1	11/27/2019 5:37:04 PM	48748
Iron	ND	0.0061	0.020		mg/L	1	11/27/2019 5:37:04 PM	48748
Manganese	0.00048	0.000060	0.0020	J	mg/L	1	11/27/2019 5:37:04 PM	
Nickel	ND	0.0015	0.010		mg/L	1	11/27/2019 5:37:04 PM	48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: EB01

 Project:
 SWMU 13
 Collection Date: 11/6/2019 12:55:00 PM

 Lab ID:
 1911232-005
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	ND	0.0014	0.0050		mg/L	1	11/27/2019 5:37:04 PM	48748
Vanadium	ND	0.00054	0.050		mg/L	1	11/27/2019 5:37:04 PM	48748
Zinc	ND	0.0058	0.010		mg/L	1	11/27/2019 5:37:04 PM	48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.00039	0.0010		mg/L	1	11/8/2019 1:08:44 PM	B64363
Arsenic	ND	0.00010	0.0010		mg/L	1	11/8/2019 1:08:44 PM	B64363
Lead	ND	0.000055	0.00050		mg/L	1	11/8/2019 1:08:44 PM	B64363
Selenium	ND	0.00017	0.0010		mg/L	1	11/8/2019 1:08:44 PM	B64363
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00016	0.0010		mg/L	1	11/15/2019 12:45:06 P	48748
Arsenic	ND	0.00031	0.0010		mg/L	1	11/15/2019 12:45:06 P	48748
Lead	ND	0.000026	0.00050		mg/L	1	11/15/2019 12:45:06 P	48748
Selenium	ND	0.00048	0.0010		mg/L	1	11/15/2019 12:45:06 P	48748
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	0.000062	0.000038	0.00020	J	mg/L	1	11/20/2019 5:42:26 PM	48912
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Benzene	0.17	0.17	1.0	J	μg/L	1	11/11/2019 6:53:55 PM	R64405
Toluene	0.42	0.35	1.0	J	μg/L	1	11/11/2019 6:53:55 PM	R64405
Ethylbenzene	ND	0.13	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Naphthalene	ND	0.28	2.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Acetone	ND	1.2	10		μg/L	1	11/11/2019 6:53:55 PM	R64405
Bromobenzene	ND	0.24	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Bromodichloromethane	ND	0.13	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Bromoform	ND	0.29	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Bromomethane	ND	0.27	3.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
2-Butanone	ND	2.1	10		μg/L	1	11/11/2019 6:53:55 PM	R64405
Carbon disulfide	ND	0.45	10		μg/L	1	11/11/2019 6:53:55 PM	R64405
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Chlorobenzene	ND	0.19	1.0		μg/L	1	11/11/2019 6:53:55 PM	R64405
Chloroethane	ND	0.18	2.0		μg/L	1	11/11/2019 6:53:55 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 44

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: EB01

 Project:
 SWMU 13
 Collection Date: 11/6/2019 12:55:00 PM

 Lab ID:
 1911232-005
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR	
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 6:53:55 PM	R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 6:53:55 PM	R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 6:53:55 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 44

Analytical Report

Lab Order 1911232

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: EB01

 Project:
 SWMU 13
 Collection Date: 11/6/2019 12:55:00 PM

 Lab ID:
 1911232-005
 Matrix: AQUEOUS
 Received Date: 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR	
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 6:53:55 PM	1 R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 6:53:55 PM	1 R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 6:53:55 PM	1 R64405
Surr: 1,2-Dichloroethane-d4	91.0	0	70-130	%Rec	1	11/11/2019 6:53:55 PM	1 R64405
Surr: 4-Bromofluorobenzene	90.5	0	70-130	%Rec	1	11/11/2019 6:53:55 PM	1 R64405
Surr: Dibromofluoromethane	107	0	70-130	%Rec	1	11/11/2019 6:53:55 PM	1 R64405
Surr: Toluene-d8	98.6	0	70-130	%Rec	1	11/11/2019 6:53:55 PM	1 R64405
SM2320B: ALKALINITY						Analyst: JRR	
Bicarbonate (As CaCO3)	ND	20.00	20.00	mg/L C	a 1	11/7/2019 9:04:18 PM	R64333
Carbonate (As CaCO3)	ND	2.000	2.000	mg/L C	a 1	11/7/2019 9:04:18 PM	R64333
Total Alkalinity (as CaCO3)	ND	20.00	20.00	mg/L C	a 1	11/7/2019 9:04:18 PM	R64333
SM2540C MOD: TOTAL DISSOLVED SO	LIDS					Analyst: KS	
Total Dissolved Solids	ND	20.0	20.0	mg/L	1	11/12/2019 12:12:00 P	48684

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: Trip Blank-1

Project: SWMU 13 Collection Date:

Lab ID: 1911232-006 **Matrix:** TRIP BLANK **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSE	3
Gasoline Range Organics (GRO)	ND	0.021	0.050	mg/L	1	11/12/2019 2:32:16 PM	M G64438
Surr: BFB	101	0	65.8-143	%Rec	1	11/12/2019 2:32:16 PM	И G64438
EPA METHOD 8260B: VOLATILES						Analyst: JMF	₹
Benzene	ND	0.17	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Toluene	ND	0.35	1.0	μg/L	1	11/11/2019 2:36:43 PM	
Ethylbenzene	ND	0.13	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Naphthalene	ND	0.28	2.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Acetone	ND	1.2	10	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Bromobenzene	ND	0.24	1.0	μg/L	1	11/11/2019 2:36:43 PM	
Bromodichloromethane	ND	0.13	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Bromoform	ND	0.29	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Bromomethane	ND	0.27	3.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
2-Butanone	ND	2.1	10	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Carbon disulfide	ND	0.45	10	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Chlorobenzene	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Chloroethane	ND	0.18	2.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 PM	√ R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 2:36:43 PM	√ R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 2:36:43 PM	√ R64405
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 2:36:43 PM	M R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 2:36:43 PM	√ R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 2:36:43 PM	√ R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 PM	√ R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 44

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: Trip Blank-1

Project: SWMU 13 Collection Date:

Lab ID: 1911232-006 **Matrix:** TRIP BLANK **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JM	IR
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
1,2,3-Trichloropropane	ND	0.30	2.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 2:36:43 F	PM R64405
Surr: 1,2-Dichloroethane-d4	91.1	0	70-130	%Rec	1	11/11/2019 2:36:43 F	PM R64405
Surr: 4-Bromofluorobenzene	89.3	0	70-130	%Rec	1	11/11/2019 2:36:43 F	PM R64405
Surr: Dibromofluoromethane	105	0	70-130	%Rec	1	11/11/2019 2:36:43 F	PM R64405
Surr: Toluene-d8	98.4	0	70-130	%Rec	1	11/11/2019 2:36:43 F	PM R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: Trip Blank-2

Project: SWMU 13 Collection Date:

Lab ID: 1911232-007 **Matrix:** TRIP BLANK **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NS	В
Gasoline Range Organics (GRO)	ND	0.021	0.050	mg/L	1	11/12/2019 2:55:13 P	M G64438
Surr: BFB	101	0	65.8-143	%Rec	1	11/12/2019 2:55:13 P	M G64438
EPA METHOD 8260B: VOLATILES						Analyst: JM	R
Benzene	ND	0.17	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Toluene	ND	0.35	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Ethylbenzene	ND	0.13	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	11/11/2019 3:05:18 P	
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Naphthalene	ND	0.28	2.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Acetone	ND	1.2	10	μg/L	1	11/11/2019 3:05:18 P	M R64405
Bromobenzene	ND	0.24	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Bromodichloromethane	ND	0.13	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Bromoform	ND	0.29	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Bromomethane	ND	0.27	3.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
2-Butanone	ND	2.1	10	μg/L	1	11/11/2019 3:05:18 P	M R64405
Carbon disulfide	ND	0.45	10	μg/L	1	11/11/2019 3:05:18 P	M R64405
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Chlorobenzene	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Chloroethane	ND	0.18	2.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 3:05:18 P	
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 P	M R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 44

Lab Order **1911232**

Date Reported: 1/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Project:

SWMU 13

Client Sample ID: Trip Blank-2

Collection Date:

Lab ID: 1911232-007 **Matrix:** TRIP BLANK **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR	
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
1,2,3-Trichloropropane	ND	0.30	2.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 3:05:18 PM	1 R64405
Surr: 1,2-Dichloroethane-d4	91.2	0	70-130	%Rec	1	11/11/2019 3:05:18 PM	1 R64405
Surr: 4-Bromofluorobenzene	90.1	0	70-130	%Rec	1	11/11/2019 3:05:18 PM	1 R64405
Surr: Dibromofluoromethane	107	0	70-130	%Rec	1	11/11/2019 3:05:18 PM	1 R64405
Surr: Toluene-d8	98.3	0	70-130	%Rec	1	11/11/2019 3:05:18 PM	1 R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1911232**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: Trip Blank-3

Project: SWMU 13 Collection Date:

Lab ID: 1911232-008 **Matrix:** TRIP BLANK **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NS	3
Gasoline Range Organics (GRO)	ND	0.021	0.050	mg/L	1	11/12/2019 3:18:07 PI	M G64438
Surr: BFB	98.1	0	65.8-143	%Rec	1	11/12/2019 3:18:07 PI	M G64438
EPA METHOD 8260B: VOLATILES						Analyst: JMF	₹
Benzene	ND	0.17	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Toluene	ND	0.35	1.0	μg/L	1	11/11/2019 3:33:55 PI	
Ethylbenzene	ND	0.13	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Naphthalene	ND	0.28	2.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Acetone	ND	1.2	10	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Bromobenzene	ND	0.24	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Bromodichloromethane	ND	0.13	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Bromoform	ND	0.29	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Bromomethane	ND	0.27	3.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
2-Butanone	ND	2.1	10	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Carbon disulfide	ND	0.45	10	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Chlorobenzene	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Chloroethane	ND	0.18	2.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PI	M R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 44

Lab Order **1911232**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/13/2020

CLIENT: Marathon Client Sample ID: Trip Blank-3

Project: SWMU 13 Collection Date:

Lab ID: 1911232-008 **Matrix:** TRIP BLANK **Received Date:** 11/6/2019 4:10:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR	
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 3:33:55 PM	R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 3:33:55 PM	R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
1,2,3-Trichloropropane	ND	0.30	2.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 3:33:55 PM	R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 3:33:55 PM	R64405
Surr: 1,2-Dichloroethane-d4	89.7	0	70-130	%Rec	1	11/11/2019 3:33:55 PM	R64405
Surr: 4-Bromofluorobenzene	91.0	0	70-130	%Rec	1	11/11/2019 3:33:55 PM	R64405
Surr: Dibromofluoromethane	108	0	70-130	%Rec	1	11/11/2019 3:33:55 PM	R64405
Surr: Toluene-d8	96.9	0	70-130	%Rec	1	11/11/2019 3:33:55 PM	R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB

Address: 4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn: ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Project Summary

Sample Summary

Anatek Sample ID	Client Sample ID	Matrix	Collection I	Date/Time	Received Da	ate/Time
191108050-001	1911232-001F / SWMU 13-2-GW	Water	11/6/2019	8:00 AM	11/8/2019	11:43 AM
191108050-002	1911232-001G / SWMU 13-2-GW	Water	11/6/2019	8:00 AM	11/8/2019	11:43 AM
191108050-003	1911232-002F / SWMU 13-3-GW	Water	11/6/2019	9:10 AM	11/8/2019	11:43 AM
191108050-004	1911232-002G / SWMU 13-3-GW	Water	11/6/2019	9:10 AM	11/8/2019	11:43 AM
191108050-005	1911232-003F / SWMU 13-4-GW	Water	11/6/2019	11:30 AM	11/8/2019	11:43 AM
191108050-006	1911232-003G / SWMU 13-4-GW	Water	11/6/2019	11:30 AM	11/8/2019	11:43 AM
191108050-007	1911232-004F / DUP01	Water	11/6/2019		11/8/2019	11:43 AM
191108050-008	1911232-004G / DUP01	Water	11/6/2019		11/8/2019	11:43 AM
191108050-009	1911232-005F / EB01	Water	11/6/2019	12:55 PM	11/8/2019	11:43 AM
191108050-010	1911232-005G / EB01	Water	11/6/2019	12:55 PM	11/8/2019	11:43 AM

QA/QC Summary

QC Parameter	Yes / No (if No, see Comments below)
Sample Holding Time Valid?	Yes
2. Instrument Tunes Valid?	Yes
3. Method Blank(s) Valid?	Yes
4. Internal Standard Response(s) Valid?	Yes
5. Initial Calibration Curve(s) Valid?	Yes
6. Continuing Calibration(s) Valid?	Yes
7. Surrogate Recoveries Valid?	Yes
8. QC Sample Recoveries Valid?	Yes
Comments:	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

ALBUQUERQUE, NM 87109

1911232

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191108050-001

Sampling Date 11/6/2019

Date/Time Received 11/8/2019 11:43 AM

Client Sample ID

1911232-001F / SWMU 13-2-GW

Sampling Time 8:00 AM

Matrix Comments

Water

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.0263	mg/L	0.01	11/15/2019 1:00:00 PM	ВКР	EPA 335.4	

Sample Number

191108050-003

11/6/2019 Sampling Date

Date/Time Received 11/8/2019

Client Sample ID

1911232-002F / SWMU 13-3-GW

1911232-003F / SWMU 13-4-GW

Sampling Time 9:10 AM

Matrix

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.0312	mg/L	0.01	11/15/2019 1:00:00 PM	BKP	EPA 335.4	

Sample Number

191108050-005

Sampling Date

11/6/2019

11:43 AM Date/Time Received 11/8/2019

Sampling Time 11:30 AM

Client Sample ID Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.0251	mg/L	0.01	11/15/2019 1:00:00 PM	ВКР	EPA 335.4	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Result

0.0308

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

0.01

Sample Number Client Sample ID

Parameter

Cyanide

191108050-007

1911232-004F / DUP01

Sampling Date 11/6/2019

Date/Time Received 11/8/2019 11:43 AM

Sampling Time

Matrix

Water

Comments

Units PQL **Analysis Date** Analyst

11/15/2019 1:00:00 PM

Method BKP

Qualifier EPA 335.4

Sample Number Client Sample ID 191108050-009

1911232-005F / EB01

Sampling Date 11/6/2019

mg/L

Date/Time Received 11/8/2019 11:43 AM

Sampling Time 12:55 PM

Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/L	0.01	11/15/2019 1:00:00 PM	ВКР	EPA 335.4	

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911232

Attn:

ALBUQUERQUE, NM 87109 ANDY FREEMAN

Analytical Results Report

Quality Control Data

Lab Control Sample										
Parameter	LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date
Cyanide	0.516	mg/L	0	5	103.2	.90	-110	11/15	5/2019	11/15/2019
Matrix Spike			7.5					_		
Sample Number Parameter		Sample	MS	Date		MS	0/ 0	AR	1	
191114010-003 Cyanide		Result ND	Result	Unit		Spike	%Rec	%Rec		
131114010-003 Gyanide		ND	0.527	mg/		0.5	105.4	80-120	11/15/2019	11/15/2019
Matrix Spike Duplicate										
Parameter	MSD	11200	MSD	04.5			AR		127.	
	Result	Units	Spike			%RPD	%RPD			Analysis Date
Cyanide	0.530	mg/L	0.5	10	6.0	0.6	0-20	11/	15/2019	11/15/2019
Method Blank										
Parameter		Res	sult	Ui	nits		PQL	Pr	ep Date	Analysis Date
Cyanide		ND		m	g/L		0.01		15/2019	11/15/2019

AR Acceptable Range
ND Not Detected
PQL Practical Quantitati

PQL Practical Quantitation Limit
RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911232

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191108050-002

Sampling Date 11/6/2019

Date/Time Received

11/8/201911:43 AM

Client Sample ID

1911232-001G / SWMU 13-2-GW

Matrix

Sampling Time 8:00 AM

Extraction Date 11/12/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/9/2019 9:42:00 PM	TGT	EPA 8270D	
1,4-Dioxane	4.71	ug/L	1	12/3/2019 7:41:00 PM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/3/2019 7:41:00 PM	TGT	EPA 8270D	

Sample Number	191108050-002			
Surrogate	Standard	Method	Percent Recovery	Control Limits
1,4-Dioxane	e-d8	EPA 8270D	65.5	39-111
Terphenyl-c	114	EPA 8270D	84.4	22-133

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-004

Sampling Date 11

11/6/2019

Date/Time Received

11/8/201911:43 AM

Client Sample ID

1911232-002G / SWMU 13-3-GW Water S

N Sampling Time 9:10 AM Extraction Date 11/12/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/9/2019 11:14:00 PM	TGT	EPA 8270D	
1,4-Dioxane	6.43	ug/L	1	12/3/2019 9:15:00 PM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/3/2019 9:15:00 PM	TGT	EPA 8270D	

Sample Number	191108050-004			
Surrogate	Standard	Method	Percent Recovery	Control Limits
1,4-Dioxane	e-d8	EPA 8270D	58.2	39-111
Terphenyl-c	114	EPA 8270D	87.6	22-133

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911232

Attn:

ALBUQUERQUE, NM 87109 ANDY FREEMAN

Analytical Results Report

Sample Number

191108050-006

Sampling Date

11/6/2019

Date/Time Received

11/8/201911:43 AM

Client Sample ID Matrix

1911232-003G / SWMU 13-4-GW Water

Sampling Time 11:30 AM

11/12/2019 **Extraction Date**

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/9/2019 10:05:00 PM	TGT	EPA 8270D	
1,4-Dioxane	4.01	ug/L	1	12/3/2019 8:04:00 PM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/3/2019 8:04:00 PM	TGT	EPA 8270D	

Sample Number	191108050-006			
Surrogate	Standard	Method	Percent Recovery	Control Limits
1,4-Dioxane	e-d8	EPA 8270D	66.0	39-111
Terphenyl-c	114	EPA 8270D	89.6	22-133

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

11/6/2019

Sample Number Client Sample ID 191108050-008

Sampling Date

Date/Time Received 11/8/201911:43 AM

1911232-004G / DUP01

Matrix

Water

Sampling Time

Extraction Date

11/12/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/9/2019 10:51:00 PM	TGT	EPA 8270D	
1,4-Dioxane	7.54	ug/L	1	12/3/2019 8:51:00 PM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/3/2019 8:51:00 PM	TGT	EPA 8270D	

Sample Number	191108050-008			
Surrogate	Standard	Method	Percent Recovery	Control Limits
1,4-Dioxane	e-d8	EPA 8270D	67.4	39-111
Terphenyl-c	114	EPA 8270D	82.4	22-133

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911232

Extraction Date

Attn:

ALBUQUERQUE, NM 87109

ANDY FREEMAN

Analytical Results Report

Sample Number

191108050-010

Sampling Date

11/6/2019

Date/Time Received 11/8/201911:43 AM

Client Sample ID

1911232-005G / EB01

11/12/2019

Matrix

Water

Sampling Time 12:55 PM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/9/2019 10:28:00 PM	TGT	EPA 8270D	
1,4-Dioxane	ND	ug/L	1	12/3/2019 8:28:00 PM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/3/2019 8:28:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number

191108050-010

Surrogate Standard 1,4-Dioxane-d8 Terphenyl-d14

Method **EPA 8270D EPA 8270D**

Percent Recovery 65.4 90.4

Control Limits 39-111 22-133

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911232

11/12/2019

0.01

12/9/2019

Attn:

ALBUQUERQUE, NM 87109 ANDY FREEMAN

> **Analytical Results Report Quality Control Data**

Lab Control Sample								
Parameter	LCS Result	t	Units	LCS Spik	e %Rec	AR %Rec	Prep Date	Analysis Date
Dibenz[a,h]anthracene	5.04		ug/L	5	100.8	52-140	11/12/2019	12/9/2019
1,4-Dioxane	7.47		ug/L	10	74.7	45-135	11/12/2019	12/3/2019
Lab Control Sample Duplicate								
Parameter	LCSD	11.4.	-	SD		AR	2011-000	4 7 7 1 1 2 1 1 1 1 1 1
1,4-Dioxane	Result	Units	- 1-	ike %Re		10111	Prep Date	Analysis Date
Dibenz[a,h]anthracene	7.44	ug/L	1		10.5		11/12/2019	12/3/2019
Dibenz[a,n]antinacene	4.64	ug/L	5	92.	8.3	0-20	11/12/2019	12/9/2019
Method Blank								
Parameter			Result		Units	PQL	Prep Date	Analysis Date
1,4-Dioxane			ND		ug/L	0.5	11/12/2019	12/3/2019
Benzoic acid			ND		ug/L	0.5	11/12/2019	12/3/2019
						77.7	1000000000	

ND

ug/L

AR	Acceptable Range
ND	Not Detected
PQL	Practical Quantitation Limit
RPD	Relative Percentage Difference

Dibenz[a,h]anthracene

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-002

Sampling Date

11/6/2019

Date/Time Received Extraction Date 11/8/201911:43 AM

11/12/2019

Client Sample ID Matrix 1911232-001G / SWMU 13-2-GW

Sampling Time 8:00 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
1,2-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	-12/2/2019 6:26:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

Attn:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-002

Sampling Date

11/6/2019

Date/Time Received Extraction Date 11/8/201911:43 AM

11/12/2019

Client Sample ID Matrix 1911232-001G / SWMU 13-2-GW Water S

Sampling Time 8:00 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Acenaphthylene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Benzyl alcohol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	0.55	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/2/2019 6;26:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Di-n-butylphthalate	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Fluorene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address: 4

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-002

Sampling Date

11/6/2019

Date/Time Received Extraction Date 11/8/201911:43 AM

11/12/2019

Client Sample ID

1911232-001G / SWMU 13-2-GW Water S

Sampling Time 8:00 AM

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Isophorone	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/2/2019 6:26:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number 191108050-002			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	98.2	43-120
2-Fluorobiphenyl	EPA 8270D	111.2	55-127
2-Fluorophenol	EPA 8270D	77.8	41-119
Nitrobenzene-d5	EPA 8270D	85.6	55-120
Phenol-d5	EPA 8270D	82.0	52-115
Terphenyl-d14	EPA 8270D	83.6	22-135

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-004

Sampling Date

11/6/2019

Date/Time Received

11/8/201911:43 AM

Client Sample ID

1911232-002G / SWMU 13-3-GW Water S

Sampling Time 9:10 AM

Extraction Date 11/12

11/12/2019

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	5 10 11 12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
1,2-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB

Address: 4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn: ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-004

Sampling Date

11/6/2019

Date/Time Received Extraction Date 11/8/201911:43 AM

11/12/2019

Client Sample ID Matrix 1911232-002G / SWMU 13-3-GW Water S

Sampling Time 9:10 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthylene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Benzyl alcohol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	0.51	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Di-n-butylphthalate	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Fluorene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
ndeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/2/2019 8:14:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

-

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

Batch #:

1911232

200

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191108050-004

Sampling Date

11/6/2019

Date/Time Received

Extraction Date

11/8/201911:43 AM

11/12/2019

Client Sample ID Matrix 1911232-002G / SWMU 13-3-GW Water

Sampling Time 9:10 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Isophorone	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/2/2019 8:14:00 PM	TGT	EPA 8270D	

Surrogate Data

Method	Percent Recovery	Control Limits
EPA 8270D	103.4	43-120
EPA 8270D	108.4	55-127
EPA 8270D	76.0	41-119
EPA 8270D	83.2	55-120
EPA 8270D	80.4	52-115
EPA 8270D	78.0	22-135
	EPA 8270D EPA 8270D EPA 8270D EPA 8270D EPA 8270D	EPA 8270D 103.4 EPA 8270D 108.4 EPA 8270D 76.0 EPA 8270D 83.2 EPA 8270D 80.4

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-006

Sampling Date

11/6/2019

Date/Time Received **Extraction Date**

11/8/201911:43 AM

11/12/2019

Client Sample ID Matrix

1911232-003G / SWMU 13-4-GW Water

Sampling Time 11:30 AM

C	o	m	ır	n	e	n	ts
_	v	••	٠.		·		40

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
1,2-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-006

Sampling Date

11/6/2019

Date/Time Received

11/8/201911:43 AM

Client Sample ID Matrix 1911232-003G / SWMU 13-4-GW Water S

-

Sampling Time 11:30 AM

Extraction Date 11/12/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthylene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Benzyl alcohol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	0.90	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0,5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Di-n-butylphthalate	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
luorene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/2/2019 6:53:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-006

Sampling Date

11/6/2019

Date/Time Received

11/8/201911:43 AM

Client Sample ID

1911232-003G / SWMU 13-4-GW Water S

Sampling Time 11:30 AM

Extraction Date 11

11/12/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Isophorone	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/2/2019 6:53:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number 191108050-006			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	109.2	43-120
2-Fluorobiphenyl	EPA 8270D	110.4	55-127
2-Fluorophenol	EPA 8270D	78.6	41-119
Nitrobenzene-d5	EPA 8270D	86.0	55-120
Phenol-d5	EPA 8270D	79.4	52-115
Terphenyl-d14	EPA 8270D	90.4	22-135

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number Client Sample ID 191108050-008

1911232-004G / DUP01

Sampling Date

11/6/2019

Date/Time Received 11/8/201911:43 AM

Matrix

Water

Sampling Time

Extraction Date 11/1

11/12/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
1,2-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/2/2019 7;47:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/2/2019 7;47:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/2/2019 7;47:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
1,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
I-Bromophenyl-phenylether	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
-Chloro-3-methylphenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
-Chlorophenyl-phenylether	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
-Nitroaniline	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
-Nitrophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number

191108050-008

Sampling Date

11/6/2019

Date/Time Received

Extraction Date

11/8/201911:43 AM

11/12/2019

Client Sample ID Matrix

Comments

1911232-004G / DUP01 Water

Sampling Time

Parameter Result Units PQL **Analysis Date** Method Qualifier Analyst Acenaphthylene ND 12/2/2019 7:47:00 PM ug/L 0.5 TGT **EPA 8270D** Aniline ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Anthracene ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Benzo(ghi)perylene ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Benzo[a]anthracene ND ug/L 0.1 12/2/2019 7:47:00 PM TGT **EPA 8270D** Benzo[a]pyrene ND ug/L 0.1 12/2/2019 7:47:00 PM **TGT EPA 8270D** Benzo[b]fluoranthene 12/2/2019 7:47:00 PM ND ug/L 0.1 TGT **EPA 8270D** Benzo[k]fluoranthene ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Benzyl alcohol ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** bis(2-Chloroethoxy)methane ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** bis(2-chloroisopropyl)ether ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** bis(2-Ethylhexyl)phthalate ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Butylbenzylphthalate 0.70 ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Carbazole ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Chrysene ND 0.5 ug/L 12/2/2019 7:47:00 PM TGT **EPA 8270D** 12/2/2019 7:47:00 PM Dibenz[a,h]anthracene ND ug/L 0.5 TGT **EPA 8270D** Dibenzofuran ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Diethylphthalate ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Dimethylphthalate ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Di-n-butylphthalate ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Di-n-octylphthalate ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Fluoranthene ND 0.5 12/2/2019 7:47:00 PM ug/L TGT **EPA 8270D** Fluorene ND 0.5 12/2/2019 7:47:00 PM ug/L **TGT EPA 8270D** Hexachlorobenzene ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Hexachlorobutadiene ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Hexachlorocyclopentadiene ND ug/L 0.5 12/2/2019 7:47:00 PM **TGT EPA 8270D** Hexachloroethane ND ug/L 0.5 12/2/2019 7:47:00 PM TGT **EPA 8270D** Indeno[1,2,3-cd]pyrene ND ug/L 0.2 12/2/2019 7:47:00 PM **TGT EPA 8270D**

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

Batch #:

1911232

Attn:

ALBUQUERQUE, NM 87109

ANDY FREEMAN

Analytical Results Report

11/6/2019

Sample Number

191108050-008

Sampling Date

Date/Time Received

11/8/201911:43 AM

Client Sample ID

1911232-004G / DUP01 Water

Sampling Time

Extraction Date 11/12/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Isophorone	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/2/2019 7:47:00 PM	TGT	EPA 8270D	

Surrogate Data

ample Number 191108050-008			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	106.8	43-120
2-Fluorobiphenyl	EPA 8270D	105.6	55-127
2-Fluorophenol	EPA 8270D	77.6	41-119
Nitrobenzene-d5	EPA 8270D	84.0	55-120
Phenol-d5	EPA 8270D	88.4	52-115
Terphenyl-d14	EPA 8270D	81.2	22-135

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number Client Sample ID 191108050-010

Sampling Date

11/6/2019

Date/Time Received

11/8/201911:43 AM

1911232-005G / EB01 Matrix Water

Sampling Time 12:55 PM

Extraction Date 11/12/2019

Comments

Parameter	Result	ult Units		Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	TALL SECTION
1,2-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address: 4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191108050

Project Name:

1911232

Analytical Results Report

Sample Number Client Sample ID 191108050-010

Water

Sampling Date

11/6/2019

Date/Time Received **Extraction Date**

11/8/201911:43 AM

1911232-005G / EB01

Sampling Time 12:55 PM

11/12/2019

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthylene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/2/2019 7;20:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Benzyl alcohol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
ois(2-Chloroethoxy)methane	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
ois(2-chloroisopropyl)ether	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
pis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Di-n-butylphthalate	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Fluorene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
ndeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/2/2019 7:20:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911232

4....

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191108050-010

Sampling Date

11/6/2019 Date/Time Received

11/8/201911:43 AM

Client Sample ID

1911232-005G / EB01 Water

Sampling Time 12:55 PM

Extraction Date 11/12/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Isophorone	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/2/2019 7:20:00 PM	TGT	EPA 8270D	

Surrogate Data

imple Number 191108050-010			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	89.8	43-120
2-Fluorobiphenyl	EPA 8270D	104.4	55-127
2-Fluorophenol	EPA 8270D	75.8	41-119
Nitrobenzene-d5	EPA 8270D	80.4	55-120
Phenol-d5	EPA 8270D	82.0	52-115
Terphenyl-d14	EPA 8270D	78.0	22-135

Authorized Signature

Todd Taruscio, Lab Manager

MCL EPA's Maximum Contaminant Level ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Project Name:

1911232

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

_ab Control Sample							
Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Pyrene	5.52	ug/L	5	110.4	45-139	11/12/2019	12/2/2019
Phenol	4.19	ug/L	5	83.8	45-134	11/12/2019	12/2/2019
Pentachlorophenol	4.35	ug/L	5	87.0	22-138	11/12/2019	12/2/2019
Naphthalene	4.01	ug/L	5	80.2	53-120	11/12/2019	12/2/2019
bis(2-Ethylhexyl)phthalate	5.42	ug/L	5	108.4	51-149	11/12/2019	12/2/2019
Benzo[a]pyrene	4.74	ug/L	5	94.8	63-120	11/12/2019	12/2/2019
Acenaphthene	4.46	ug/L	5	89.2	45-129	11/12/2019	12/2/2019
4-Nitrophenol	3.71	ug/L	5	74.2	19-141	11/12/2019	12/2/2019
4-Chloro-3-methylphenol	4.41	ug/L	5	88.2	42-139	11/12/2019	12/2/2019
2-Methylnaphthalene	3.90	ug/L	5	78.0	56-128	11/12/2019	12/2/2019
2-Chlorophenol	3.98	ug/L	5	79.6	50-131	11/12/2019	12/2/2019
2,4-Dinitrotoluene	4.75	ug/L	5	95.0	42-143	11/12/2019	12/2/2019
1-Methylnaphthalene	3.91	ug/L	5	78.2	57-124	11/12/2019	12/2/2019
1,4-Dichlorobenzene	3.24	ug/L	5	64.8	28-108	11/12/2019	12/2/2019
1,2,4-Trichlorobenzene	3.44	ug/L	5	68.8	33-109	11/12/2019	12/2/2019

Lab Control Sample Duplicate								
Parameter	LCSD Result	Units	LCSD Spike	%Rec	%RPD	AR %RPD	Prep Date	Analysis Date
Pyrene	5.42	ug/L	5	108.4	1.8	0-20	11/12/2019	12/2/2019
Phenol	4.26	ug/L	5	85.2	1.7	0-25	11/12/2019	12/2/2019
Pentachlorophenol	4.30	ug/L	5	86.0	1.2	0-39	11/12/2019	12/2/2019
Naphthalene	4.22	ug/L	5	84.4	5.1	0-20	11/12/2019	12/2/2019
bis(2-Ethylhexyl)phthalate	6.22	ug/L	5	124.4	13.7	0-43	11/12/2019	12/2/2019
Benzo[a]pyrene	4.88	ug/L	5	97.6	2.9	0-20	11/12/2019	12/2/2019
Acenaphthene	4.60	ug/L	5	92.0	3.1	0-22	11/12/2019	12/2/2019
4-Nitrophenol	3.88	ug/L	5	77.6	4.5	0-51	11/12/2019	12/2/2019
4-Chloro-3-methylphenol	4.40	ug/L	5	88.0	0.2	0-20	11/12/2019	12/2/2019
2-Methylnaphthalene	4.06	ug/L	5	81.2	4.0	0-24	11/12/2019	12/2/2019
2-Chlorophenol	4.00	ug/L	5	80.0	0.5	0-24	11/12/2019	12/2/2019
2,4-Dinitrotoluene	4.82	ug/L	5	96.4	1.5	0-20	11/12/2019	12/2/2019
1-Methylnaphthalene	4.11	ug/L	5	82.2	5.0	0-20	11/12/2019	12/2/2019
1,4-Dichlorobenzene	3.40	ug/L	5	68.0	4.8	0-31	11/12/2019	12/2/2019
1.2,4-Trichlorobenzene	3.64	ug/L	5	72.8	5.6	0-33	11/12/2019	12/2/2019

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB

Address: 4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn: ANDY FREEMAN

Batch #: 191108050
Project Name: 1911232

Analytical Results Report

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
1,2,4-Trichlorobenzene	ND	ug/L	0.5	11/12/2019	12/2/2019
1,2-Dichlorobenzene	ND	ug/L	0.5	11/12/2019	12/2/2019
1,3-Dichlorobenzene	ND	ug/L	0.5	11/12/2019	12/2/2019
1,4-Dichlorobenzene	ND	ug/L	0.5	11/12/2019	12/2/2019
1-Methylnaphthalene	ND	ug/L	0.5	11/12/2019	12/2/2019
2,4,5-Trichlorophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2,4,6-Trichlorophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2,4-Dichlorophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2,4-Dimethylphenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2,4-Dinitrophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2,4-Dinitrotoluene	ND	ug/L	0.5	11/12/2019	12/2/2019
2,6-Dinitrotoluene	ND	ug/L	0.5	11/12/2019	12/2/2019
2-Chloronaphthalene	ND	ug/L	0.5	11/12/2019	12/2/2019
2-Chlorophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2-Methylnaphthalene	ND	ug/L	0.5	11/12/2019	12/2/2019
2-Methylphenol	ND	ug/L	0.5	11/12/2019	12/2/2019
2-Nitroaniline	ND	ug/L	0.5	11/12/2019	12/2/2019
2-Nitrophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
3,3'-Dichlorobenzidine	ND	ug/L	0.5	11/12/2019	12/2/2019
3+4-Methylphenol	ND	ug/L	0.5	11/12/2019	12/2/2019
3-Nitroaniline	ND	ug/L	0.5	11/12/2019	12/2/2019
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	11/12/2019	12/2/2019
4-Bromophenyl-phenylether	ND	ug/L	0.5	11/12/2019	12/2/2019
4-Chloro-3-methylphenol	ND	ug/L	0.5	11/12/2019	12/2/2019
4-Chlorophenyl-phenylether	ND	ug/L	0.5	11/12/2019	12/2/2019
4-Nitroaniline	ND	ug/L	0.5	11/12/2019	12/2/2019
4-Nitrophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
Acenaphthene	ND	ug/L	0.5	11/12/2019	12/2/2019
Acenaphthylene	ND	ug/L	0.5	11/12/2019	12/2/2019
Aniline	ND	ug/L	0.5	11/12/2019	12/2/2019
Anthracene	ND	ug/L	0.5	11/12/2019	12/2/2019
Benzo(ghi)perylene	ND	ug/L	0.5	11/12/2019	12/2/2019
Benzo[a]anthracene	ND	ug/L	0.5	11/12/2019	12/2/2019
Benzo[a]pyrene	ND	ug/L	0.5	11/12/2019	12/2/2019
Benzo[b]fluoranthene	ND	ug/L	0.5	11/12/2019	12/2/2019
Benzo[k]fluoranthene	ND	ug/L	0.5	11/12/2019	12/2/2019
Benzyl alcohol	ND	ug/L	0.5	11/12/2019	12/2/2019

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191108050

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911232

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	11/12/2019	12/2/2019
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	11/12/2019	12/2/2019
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	11/12/2019	12/2/2019
Butylbenzylphthalate	ND	ug/L	0.5	11/12/2019	12/2/2019
Carbazole	ND	ug/L	0.5	11/12/2019	12/2/2019
Chrysene	ND	ug/L	0.5	11/12/2019	12/2/2019
Dibenz[a,h]anthracene	ND	ug/L	0.5	11/12/2019	12/2/2019
Dibenzofuran	ND	ug/L	0.5	11/12/2019	12/2/2019
Diethylphthalate	ND	ug/L	0.5	11/12/2019	12/2/2019
Dimethylphthalate	ND	ug/L	0.5	11/12/2019	12/2/2019
Di-n-butylphthalate	ND	ug/L	0.5	11/12/2019	12/2/2019
Di-n-octylphthalate	ND	ug/L	0.5	11/12/2019	12/2/2019
Fluoranthene	ND	ug/L	0.5	11/12/2019	12/2/2019
Fluorene	ND	ug/L	0.5	11/12/2019	12/2/2019
Hexachlorobenzene	ND	ug/L	0.5	11/12/2019	12/2/2019
Hexachlorobutadiene	ND	ug/L	0.5	11/12/2019	12/2/2019
Hexachlorocyclopentadiene	ND	ug/L	0.5	11/12/2019	12/2/2019
Hexachloroethane	ND	ug/L	0.5	11/12/2019	12/2/2019
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.5	11/12/2019	12/2/2019
Isophorone	ND	ug/L	0.5	11/12/2019	12/2/2019
Naphthalene	ND	ug/L	0.5	11/12/2019	12/2/2019
Nitrobenzene	ND	ug/L	0.5	11/12/2019	12/2/2019
n-Nitrosodiphenylamine	ND	ug/L	0.5	11/12/2019	12/2/2019
Pentachlorophenol	ND	ug/L	0.5	11/12/2019	12/2/2019
Phenanthrene	ND	ug/L	0.5	11/12/2019	12/2/2019
Phenol	ND	ug/L	0.5	11/12/2019	12/2/2019
Pyrene	ND	ug/L	0.5	11/12/2019	12/2/2019
Pyridine	ND	ug/L	0.5	11/12/2019	12/2/2019

AR ND Acceptable Range

PQL

Not Detected

RPD

Practical Quantitation Limit Relative Percentage Difference

Comments:

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

1.0

0.050

0.010

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals Client ID: PBW Batch ID: A64680 RunNo: 64680 Prep Date: Analysis Date: 11/21/2019 SeqNo: 2216014 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Barium ND 0.0020 Beryllium ND 0.0020 ND 0.0020 Cadmium Calcium ND 1.0 Chromium ND 0.0060 Cobalt ND 0.0060 ND 0.020 ND Magnesium 1.0 Manganese ND 0.0020 Nickel ND 0.010 Potassium ND 1.0 Silver ND 0.0050

Sample ID: LLLCS-A	Samp	Type: LC	SLL	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: BatchQC	Bato	ch ID: A6	4680	F	RunNo: 64	4680				
Prep Date:	Analysis	Date: 1 1	1/21/2019	8	SeqNo: 2	216015	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.0022	0.0020	0.002000	0	111	50	150			
Beryllium	0.0019	0.0020	0.002000	0	95.2	50	150			J
Cadmium	0.0021	0.0020	0.002000	0	103	50	150			
Calcium	0.52	1.0	0.5000	0	105	50	150			J
Chromium	0.0067	0.0060	0.006000	0	112	50	150			
Cobalt	0.0061	0.0060	0.006000	0	102	50	150			
Iron	0.021	0.020	0.02000	0	105	50	150			
Magnesium	0.53	1.0	0.5000	0	107	50	150			J
Manganese	0.0020	0.0020	0.002000	0	102	50	150			
Nickel	0.0062	0.010	0.005000	0	124	50	150			J
Potassium	0.49	1.0	0.5000	0	97.7	50	150			J
Silver	0.0045	0.0050	0.005000	0	90.5	50	150			J
Sodium	0.47	1.0	0.5000	0	93.1	50	150			J
Vanadium	0.011	0.050	0.01000	0	113	50	150			J
Zinc	0.0096	0.010	0.01000	0	95.9	50	150			J

Qualifiers:

Sodium Vanadium

Zinc

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 27 of 44

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: LCS-A	Samp	Type: LC	s	Tes	tCode: El	PA Method	200.7: Dissol	ved Metal	s	
Client ID: LCSW	Bato	ch ID: A6	4680	F	RunNo: 64	4680				
Prep Date:	Analysis	Date: 11	/21/2019	S	SeqNo: 2	216016	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.50	0.0020	0.5000	0	99.9	85	115			
Beryllium	0.50	0.0020	0.5000	0	101	85	115			
Cadmium	0.51	0.0020	0.5000	0	103	85	115			
Calcium	50	1.0	50.00	0	101	85	115			
Chromium	0.49	0.0060	0.5000	0	98.0	85	115			
Cobalt	0.50	0.0060	0.5000	0	99.5	85	115			
Iron	0.52	0.020	0.5000	0	104	85	115			
Magnesium	52	1.0	50.00	0	103	85	115			
Manganese	0.50	0.0020	0.5000	0	99.0	85	115			
Nickel	0.50	0.010	0.5000	0	99.7	85	115			
Potassium	51	1.0	50.00	0	101	85	115			
Silver	0.10	0.0050	0.1000	0	101	85	115			
Sodium	51	1.0	50.00	0	103	85	115			
Vanadium	0.51	0.050	0.5000	0	102	85	115			
Zinc	0.50	0.010	0.5000	0	99.0	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: MB-48748 SampType: MBLK TestCode: EPA Method 200.7: Total Metals

Client ID: PBW Batch ID: 48748 RunNo: 64458

Prep Date: 11/12/2019 Analysis Date: 11/13/2019 SeqNo: 2206830 Units: mg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.0020								
Beryllium	ND	0.0020								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Cobalt	ND	0.0060								
Iron	0.0095	0.020								J
Manganese	0.00015	0.0020								J
Nickel	ND	0.010								
Silver	ND	0.0050								
Vanadium	ND	0.050								
Zinc	ND	0.010								

Sample ID: LCSLL-48748	SampType: LCSLL TestCode: EPA Method					PA Method	200.7: Total N	/letals		
Client ID: BatchQC	Bato	h ID: 487	748	F	RunNo: 64					
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			S	SeqNo: 2	206835	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.0019	0.0020	0.002000	0	93.2	50	150			J
Beryllium	0.0021	0.0020	0.002000	0	105	50	150			
Cadmium	0.0019	0.0020	0.002000	0	96.3	50	150			J
Chromium	0.0059	0.0060	0.006000	0	98.2	50	150			J
Cobalt	0.0070	0.0060	0.006000	0	117	50	150			
Iron	0.025	0.020	0.02000	0	123	50	150			
Manganese	0.0020	0.0020	0.002000	0	102	50	150			
Nickel	0.0044	0.010	0.005000	0	88.1	50	150			J
Silver	0.0045	0.0050	0.005000	0	89.7	50	150			J
Vanadium	0.0096	0.050	0.01000	0	96.5	50	150			J
Zinc	0.0092	0.010	0.01000	0	92.4	50	150			J

Sample ID: LCS-48748 Client ID: LCSW	•	Type: LC		TestCode: EPA Method 200.7: Total Metals RunNo: 64458						
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			5	SeqNo: 2	206836	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.0020	0.5000	0	96.2	85	115			
Beryllium	0.50	0.0020	0.5000	0	101	85	115			
Cadmium	0.47	0.0020	0.5000	0	94.5	85	115			
Chromium	0.47	0.0060	0.5000	0	93.4	85	115			
Cobalt	0.45	0.0060	0.5000	0	89.1	85	115			
Iron	0.51	0.020	0.5000	0	103	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 44

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48748 SampType: LCS Client ID: LCSW Batch ID: 48748				TestCode: EPA Method 200.7: Total Metals RunNo: 64458						
Prep Date: 11/12/2019	Analysis	Date: 11	/13/2019	SeqNo: 2206836			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Manganese	0.48	0.0020	0.5000	0	95.7	85	115			
Nickel	0.45	0.010	0.5000	0	90.4	85	115			
Silver	0.097	0.0050	0.1000	0	96.8	85	115			
Vanadium	0.51	0.050	0.5000	0	101	85	115			
Zinc	0.46	0.010	0.5000	0	93.0	85	115			

Sample ID: MB-48748	Samp	Туре: МЕ	BLK	TestCode: EPA Method 200.7: Total Metals							
Client ID: PBW	Batch ID: 48748			F	RunNo: 64458						
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			\$	SeqNo: 2	206858	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	ND	0.0020									
Beryllium	ND	0.0020									
Cadmium	ND	0.0020									
Chromium	ND	0.0060									
Cobalt	ND	0.0060									
Iron	ND	0.020									
Manganese	0.000089	0.0020								J	
Nickel	0.0023	0.010								J	
Silver	ND	0.0050									
Vanadium	ND	0.050									
Zinc	ND	0.010									

Sample ID: LCSLL-48748	Samp	TestCode: EPA Method					200.7: Total N	letals		
Client ID: BatchQC	Bato	h ID: 487	748	F	RunNo: 64	4458				
Prep Date: 11/12/2019	Analysis I	Date: 11	/13/2019	8	SeqNo: 2	206859	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.0020	0.0020	0.002000	0	99.4	50	150			J
Beryllium	0.0020	0.0020	0.002000	0	101	50	150			
Cadmium	0.0021	0.0020	0.002000	0	104	50	150			
Chromium	0.0058	0.0060	0.006000	0	96.3	50	150			J
Cobalt	0.0062	0.0060	0.006000	0	103	50	150			
Iron	0.020	0.020	0.02000	0	97.8	50	150			J
Manganese	0.0021	0.0020	0.002000	0	106	50	150			
Nickel	0.0056	0.010	0.005000	0	112	50	150			J
Silver	0.0047	0.0050	0.005000	0	93.2	50	150			J
Vanadium	0.0094	0.050	0.01000	0	93.9	50	150			J
Zinc	0.010	0.010	0.01000	0	101	50	150			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 44

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: LCS-48748	Samp	Type: LC	S	Tes						
Client ID: LCSW	Bato	h ID: 487	748	F	RunNo: 6	4458				
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			S	SeqNo: 2	206860	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.49	0.0020	0.5000	0	97.8	85	115			
Beryllium	0.50	0.0020	0.5000	0	101	85	115			
Cadmium	0.50	0.0020	0.5000	0	100	85	115			
Chromium	0.48	0.0060	0.5000	0	96.9	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.4	85	115			
Iron	0.49	0.020	0.5000	0	98.9	85	115			
Manganese	0.49	0.0020	0.5000	0	98.5	85	115			
Nickel	0.48	0.010	0.5000	0	96.3	85	115			
Silver	0.10	0.0050	0.1000	0	103	85	115			
Vanadium	0.50	0.050	0.5000	0	99.8	85	115			
Zinc	0.47	0.010	0.5000	0	94.4	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Marathon

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Sample ID: MB	Samp	оТуре: МЕ	BLK	Tes	tCode: El	PA 200.8: [Dissolved Met	als		
Client ID: PBW	Bat	tch ID: B6	4363	F	RunNo: 64	4363				
Prep Date:	Analysis	Date: 11	1/8/2019	5	SeqNo: 2	202696	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.00043	0.0010								J
Arsenic	ND	0.0010								
Lead	ND	0.00050								
Selenium	ND	0.0010								
Sample ID: LLLCS	Samp	oType: LC	SLL	Tes						
Client ID: BatchQC	Batch ID: B64363			F						
Prep Date:	Analysis	Date: 11	1/8/2019	SeqNo: 2202697		Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.0010	0.0010	0.001000	0	103	50	150			
Arsenic	0.00091	0.0010	0.001000	0	90.7	50	150			J
Lead	0.00050	0.00050	0.0005000	0	101	50	150			
Selenium	0.00080	0.0010	0.001000	0	80.5	50	150			J
Sample ID: LCS	Samp	oType: LC	s	Tes	tCode: El	PA 200.8: [Dissolved Met	als		
Client ID: LCSW	Bat	ch ID: B6	4363	F	RunNo: 64	4363				
Prep Date:	Analysis	Date: 11	1/8/2019	8	SeqNo: 2	202698	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.024	0.0010	0.02500	0	94.4	85	115			
Arsenic	0.024	0.0010	0.02500	0	97.7	85	115			
	0.012	0.00050	0.01250	0	96.7	85	115			
Lead						0.5	115			
Lead Selenium	0.024	0.0010	0.02500	0	96.3	85	115			
	0.024	0.0010 pType: MS					Dissolved Met	als		

Sample ID:	1911232-005DMSD	SampType: MSD	TestCode: EPA 200.8: Dissolved Metals
Client ID:	EB01	Batch ID: B64363	RunNo: 64363

0.02500

0.02500

0.01250

0.02500

SPK value SPK Ref Val

Prep Date: Analysis Date: 11/8/2019 SeqNo: 2202757 Units: mg/L

Analysis Date: 11/8/2019

PQL

0.0010

0.0010

0.0010

0.012 0.00050

Result

0.024

0.023

0.022

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

0

0

0

0

Qualifiers:

Prep Date:

Analyte

Antimony

Arsenic

Selenium

Lead

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

SeqNo: **2202756**

LowLimit

70

70

70

70

%REC

96.2

93.5

93.8

88.5

Units: mg/L

HighLimit

130

130

130

130

%RPD

RPDLimit

Qual

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 32 of 44

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: 1911232-005DMSE	Tes									
Client ID: EB01	Bat	ch ID: B6	4363	F	RunNo: 64363					
Prep Date:	Analysis Date: 11/8/2019			8	SeqNo: 2202757 Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.025	0.0010	0.02500	0	99.4	70	130	3.36	20	
Arsenic	0.023	0.0010	0.02500	0	93.9	70	130	0.405	20	
Lead	0.012	0.00050	0.01250	0	94.3	70	130	0.546	20	
Selenium	0.022	0.0010	0.02500	0	89.4	70	130	0.959	20	
Sample ID: MB	Samp	Туре: МЕ	: MBLK TestCode: EPA				Dissolved Met	als		
Client ID: PBW	Bat	ch ID: B6	4381	F	RunNo: 64381					
Prep Date:	Analysis Date: 11/11/2019			8	SeqNo: 2	203764	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	0.0010	•		•	•		•		

Sample ID: LLLCS	SampType: LCSLL	TestCode: EPA 200.8:	Dissolved Metals		
Client ID: BatchQC	Batch ID: B64381	RunNo: 64381			
Prep Date:	Analysis Date: 11/11/2019	SeqNo: 2203765	Units: mg/L		
Analyte	Result PQL SPK val	e SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit (Qual
Antimony	0.00071 0.0010 0.0010	0 0 70.7 50	150		J

Sample ID: LCS	SampType: LCS			Tes	TestCode: EPA 200.8: Dissolved Metals					
Client ID: LCSW	Bato	Batch ID: B64381			RunNo: 6	4381				
Prep Date:	Analysis Date: 11/11/2019			8	SeqNo: 2	203766	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.024	0.0010	0.02500	0	97.1	85	115			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client:	Marathon
Project:	SWMU 13

Sample ID: MB-48748 SampType: MBLK			Tes	tCode: 20	00.8 ICPMS	Metals:Total				
Client ID: PBW	Batch ID: 48748			F	RunNo: 6	4504				
Prep Date: 11/12/2019	Analysis	Date: 1	1/14/2019	8	SeqNo: 2	208379	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	0.0010								
Arsenic	ND	0.0010								
Lead	ND	0.00050								
Selenium	ND	0.0010								

Sample ID: MSLCSLL-48748 SampType: LCSLL			SLL	Tes	tCode: 20					
Client ID: BatchQC	Bat	ch ID: 48	748	F	RunNo: 6	4504				
Prep Date: 11/12/2019	Analysis	Date: 11	I/14/2019	9	SeqNo: 2	208380	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.00097	0.0010	0.001000	0	96.7	50	150			J
Arsenic	0.00098	0.0010	0.001000	0	98.2	50	150			J
Lead	0.00050	0.00050	0.0005000	0	100	50	150			
Selenium	0.0012	0.0010	0.001000	0	122	50	150			

Sample ID: MSLCS-48748	SampType: LCS			Tes	tCode: 20	0.8 ICPMS				
Client ID: LCSW	Batch ID: 48748			F	RunNo: 6	4504				
Prep Date: 11/12/2019	Analysis	Date: 11	/14/2019	9	SeqNo: 2	208381	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.027	0.0010	0.02500	0	109	85	115			
Arsenic	0.025	0.0010	0.02500	0	98.8	85	115			
Lead	0.013	0.00050	0.01250	0	100	85	115			
Selenium	0.026	0.0010	0.02500	0	103	85	115			

Sample ID: 1911232-001EMS	SLL Samp	Type: MS	SLL	Tes	tCode: 20	00.8 ICPMS	Metals:Total			
Client ID: SWMU 13-2-GW	Bato	Batch ID: 48748			RunNo: 64	4589				
Prep Date: 11/12/2019	Analysis I	Date: 1 1	1/18/2019	9	SeqNo: 2	211836	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.0024	0.0050	0.02500	0	9.67	70	130			JS
Arsenic	0.033	0.0050	0.02500	0.009479	95.3	70	130			
Lead	0.053	0.0025	0.01250	0.04444	67.2	70	130			S
Selenium	0.033	0.0050	0.02500	0.007830	99.9	70	130			

Sample ID: 1911232-001EMSI	TestCode: 200.8 ICPMS Metals:Total									
Client ID: SWMU 13-2-GW	Batch	ID: 48	748	F	RunNo: 6	4589				
Prep Date: 11/12/2019	Analysis Date: 11/18/2019			9	SeqNo: 2	211837	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 34 of 44

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: 1911232-001EMSDL SampType: MSDLL TestCode: 200.8 ICPMS Metals:Total

Client ID: **SWMU 13-2-GW** Batch ID: **48748** RunNo: **64589**

Prep Date: 11/12/2019 Analysis Date: 11/18/2019 SegNo: 2211837 Units: mg/L

Frep Date.	11/12/2019	Analysis Date. 11/16/2019				begino. Z	211037	Offics. mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony		0.0023	0.0050	0.02500	0	9.00	70	130	7.12	20	JS	
Arsenic		0.034	0.0050	0.02500	0.009479	98.5	70	130	2.33	20		
Lead		0.053	0.0025	0.01250	0.04444	72.3	70	130	1.21	20		
Selenium		0.028	0.0050	0.02500	0.007830	80.2	70	130	16.2	20		

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1911232

13-Jan-20

Client: Project:	Marathor SWMU 1									
Sample ID:	MB-48912	SampType: M	BLK	Tes	tCode: El	PA Method	245.1: Mercu	ry		
Client ID:	PBW	Batch ID: 48	912	F	lunNo: 6	4663		-		
Prep Date:	11/20/2019	Analysis Date: 1	1/20/2019	5	SeqNo: 2	215294	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury	(0.000039 0.00020								J
Sample ID:	LCS-48912	SampType: L(s	Tes	tCode: El	PA Method	245.1: Mercu	ry		
Client ID:	LCSW	Batch ID: 48	912	F	lunNo: 6	4663				
Prep Date:	11/20/2019	Analysis Date: 1	1/20/2019	9	SeqNo: 2	215295	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0050 0.00020	0.005000	0	99.4	80	120			
Sample ID:	1911232-002EMS	SampType: M	S	Tes	tCode: El	PA Method	245.1: Mercu	ry		
Client ID:	SWMU 13-3-GW	Batch ID: 48			lunNo: 6			,		
Prep Date:	11/20/2019	Analysis Date: 1	1/20/2019		SeqNo: 2		Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0034 0.00020		0	68.4	75	125			S
Sample ID:	1911232-002EMSI	SampType: M	SD	Tes	tCode: El	PA Method	245.1: Mercu	rv		
•	SWMU 13-3-GW	Batch ID: 48			lunNo: 6			. ,		
Prep Date:	11/20/2019	Analysis Date: 1	1/20/2019	5	SeqNo: 2	215300	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0033 0.00020	0.005000	0	66.6	75	125	2.56	20	S
Sample ID:	1911232-002EMS	SampType: M	s	Tes	tCode: El	PA Method	245.1: Mercu	rv		
· ·	SWMU 13-3-GW	Batch ID: 48		TestCode: EPA Method 245.1: Mercury RunNo: 64663						
Prep Date:		Analysis Date: 1			SeqNo: 2		Units: mg/L			
Analyte		Result PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0038 0.0010		0	75.4	75	125	,,,,,,,	Denint	3001
Sample ID:	1911232-002EMSI	SampType: M	SD	Tes	tCode: Fl	PA Method	245.1: Mercu	rv		
	SWMU 13-3-GW	Batch ID: 48			unNo: 6			.,		
D D	44/00/0040		4/00/0040				Llatia d			

Qualifiers:

Analyte Mercury

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix Н

Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

Analysis Date: 11/20/2019

PQL

0.0010

0.005000

Result

0.0040

PQL Practical Quanitative Limit

Prep Date: 11/20/2019

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

SeqNo: 2215325

80.8

Units: mg/L

HighLimit

Value above quantitation range

Analyte detected below quantitation limits Sample pH Not In Range

RL Reporting Limit

SPK value SPK Ref Val %REC LowLimit

Page 36 of 44

RPDLimit

Qual

%RPD

6.93

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Project:	Marathon SWMU 13										
Sample ID: MB		SampTy	/pe: m k	olk	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: PBW		Batch	ID: R6	4329	F	RunNo: 6	4329				
Prep Date:	,	Analysis Da	ate: 1 1	1/7/2019	5	SeqNo: 2	201585	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		ND	0.10								
Chloride		ND	0.50								
Nitrogen, Nitrite (As N)		ND	0.10								
Nitrogen, Nitrate (As N)		ND	0.10								
Sulfate		ND	0.50								
Sample ID: LCS		SampTy	/pe: lcs	3	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW		Batch	ID: R6	4329	F	RunNo: 6	4329				
Prep Date:	,	Analysis Da	ate: 1 1	1/7/2019	\$	SeqNo: 2	201586	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		0.50	0.10	0.5000	0	99.1	90	110			
Chloride		4.6	0.50	5.000	0	92.5	90	110			
Nitrogen, Nitrite (As N)		0.91	0.10	1.000	0	91.4	90	110			
Nitrogen, Nitrate (As N)		2.4	0.10	2.500	0	96.6	90	110			
Sulfate		9.4	0.50	10.00	0	93.7	90	110			
Sample ID: MB		SampTy	/pe: m k	olk	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: PBW		Batch	ID: R6	4346	F	RunNo: 6	4346				
Prep Date:	,	Analysis Da	ate: 11	1/8/2019	9	SeqNo: 2	203722	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Sulfate		ND	0.50								
Sample ID: LCS-B		SampTy	/pe: lcs	.	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: LCSW		Batch	ID: R6	4346	F	RunNo: 6	4346				
Prep Date:	,	Analysis Da	ate: 1 1	1/8/2019	S	SeqNo: 2	203724	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		5.0	0.50	5.000	0	99.2	90	110			
Sulfate		9.8	0.50	10.00	0	98.5	90	110			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: MB-48696 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 48696 RunNo: 64417

Prep Date: 11/11/2019 Analysis Date: 11/12/2019 SeqNo: 2204732 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40

Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.56 0.5000 113 81.5 152

Sample ID: LCS-48696 SampType: LCS TestCode: EPA Method 8015D: Diesel Range

Client ID: LCSW Batch ID: 48696 RunNo: 64417

Prep Date: 11/11/2019 Analysis Date: 11/12/2019 SeqNo: 2204733 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 3.0
 0.40
 2.500
 0
 121
 82
 138

 Surr: DNOP
 0.28
 0.2500
 112
 81.5
 152

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G64438 RunNo: 64438

Prep Date: Analysis Date: 11/12/2019 SeqNo: 2205878 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 22 20.00 110 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G64438 RunNo: 64438

Prep Date: Analysis Date: 11/12/2019 SeqNo: 2205879 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.47 0.050 0.5000 0 94.3 73.6 119 Surr: BFB 25 20.00 126 65.8 143

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 39 of 44

Hall Environmental Analysis Laboratory, Inc.

WO#: 1911232

13-Jan-20

Client: Marathon **Project:** SWMU 13

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: R6	4405	F	RunNo: 6	4405				
Prep Date:	Analysis D	ate: 11	/11/2019	8	SeqNo: 2	204291	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	70	130			
Toluene	19	1.0	20.00	0	92.8	70	130			
Chlorobenzene	20	1.0	20.00	0	98.2	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	92.2	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	91.4	70	130			
Surr: 1,2-Dichloroethane-d4	8.9		10.00		88.5	70	130			
Surr: 4-Bromofluorobenzene	9.0		10.00		89.8	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.4		10.00		94.4	70	130			

Sample ID.	1911232-001a ms	Samp rype. WS	resicode. EPA Wethod 6260B: VOLATILES
Client ID:	SWMU 13-2-GW	Batch ID: R64405	RunNo: 64405

Prep Date:	Analysis D)ate: 11	I/11/2019	9	SeqNo: 2	204295	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	110	5.0	100.0	0	109	70	130			
Toluene	94	5.0	100.0	0	94.1	70	130			
Chlorobenzene	100	5.0	100.0	0	101	70	130			
1,1-Dichloroethene	96	5.0	100.0	0	95.8	70	130			
Trichloroethene (TCE)	96	5.0	100.0	0	95.6	70	130			
Surr: 1,2-Dichloroethane-d4	46		50.00		92.8	70	130			
Surr: 4-Bromofluorobenzene	50		50.00		101	70	130			
Surr: Dibromofluoromethane	56		50.00		111	70	130			
Surr: Toluene-d8	47		50.00		94.2	70	130			

Sample ID: 1911232-001a ms	d SampTy	ype: MS	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: SWMU 13-2-GW	Batch	ID: R6	4405	F	RunNo: 6	4405				
Prep Date:	Analysis Da	ate: 1 1	I/11/2019	5	SeqNo: 2	204296	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	100	5.0	100.0	0	103	70	130	5.30	20	
Toluene	89	5.0	100.0	0	89.1	70	130	5.39	20	
Chlorobenzene	96	5.0	100.0	0	96.2	70	130	4.77	20	
1,1-Dichloroethene	91	5.0	100.0	0	91.0	70	130	5.12	20	
Trichloroethene (TCE)	89	5.0	100.0	0	89.1	70	130	6.95	20	
Surr: 1.2-Dichloroethane-d4	47		50.00		93.2	70	130	0	0	

50.00

50.00

50.00

Qual	ifiers:		
*	\$7.1	 C	

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

51

55

46

103

109

91.9

70

70

70

130

130

130

0

0

0

0

0

D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1911232

13-Jan-20

Client: Marathon **Project:** SWMU 13

Sample ID: rb1

RunNo: **64405** Client ID: PBW Batch ID: R64405

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batcl	n ID: R6	4405	F	RunNo: 6	4405				
Prep Date:	Analysis D	Date: 11	1/11/2019	;	SeqNo: 2	204322	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

TestCode: EPA Method 8260B: VOLATILES Sample ID: rb1 SampType: MBLK Client ID: PBW Batch ID: R64405 RunNo: 64405 Prep Date: Analysis Date: 11/11/2019 SeqNo: 2204322 Units: µg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result 1,1-Dichloropropene ND 1.0 Hexachlorobutadiene ND 1.0 ND 10 2-Hexanone Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 4-Methyl-2-pentanone ND 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Styrene ND 1.0 ND 1.0 tert-Butylbenzene ND 1,1,1,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 ND trans-1,3-Dichloropropene 1.0 1,2,3-Trichlorobenzene ND 1.0 1,2,4-Trichlorobenzene ND 1.0 1,1,1-Trichloroethane ND 1.0 ND 1,1,2-Trichloroethane 1.0 Trichloroethene (TCE) ND 1.0 Trichlorofluoromethane ND 1.0 1,2,3-Trichloropropane ND 2.0 Vinyl chloride ND 1.0 Xylenes, Total ND 1.5 Surr: 1,2-Dichloroethane-d4 8.9 10.00 88.6 70 130 Surr: 4-Bromofluorobenzene 10.00 91.3 70 130 9.1 Surr: Dibromofluoromethane 10 10.00 102 70 130 Surr: Toluene-d8 9.9 10.00 99.1 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R64333 RunNo: 64333

Prep Date: Analysis Date: 11/7/2019 SeqNo: 2201902 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R64333 RunNo: 64333

Prep Date: Analysis Date: 11/7/2019 SeqNo: 2201903 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.16 20.00 80.00 0 96.4 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R64333 RunNo: 64333

Prep Date: Analysis Date: 11/7/2019 SeqNo: 2201925 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R64333 RunNo: 64333

Prep Date: Analysis Date: 11/7/2019 SeqNo: 2201926 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.72 20.00 80.00 0 98.4 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911232**

13-Jan-20

Client: Marathon
Project: SWMU 13

Sample ID: MB-48684 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 48684 RunNo: 64424

Prep Date: 11/8/2019 Analysis Date: 11/12/2019 SeqNo: 2205537 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-48684 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 48684 RunNo: 64424

Prep Date: 11/8/2019 Analysis Date: 11/12/2019 SeqNo: 2205538 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1060 20.0 1000 0 106 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 44 of 44

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	MARATHO	ON GALLUP	Work Orde	er Number:	191	1232			RcptNo: 1
Received By:	Yazmine	Garduno	11/6/2019 4	:10:00 PM			Magnir	u lefndui	T
Completed By	Leah Bac	a	11/7/2019 9	48:43 AM			1 ,	CO	
Reviewed By:	2B		4/7/19	. 10. 10 7 111			Look)Dae	4
Chain of Cu	stody								
1. Is Chain of	Custody comp	olete?			Yes	~	No		Not Present
2. How was th	e sample deli	vered?			Clier	<u>ıt</u>			
Log In									
3. Was an atte	empt made to	cool the samp	les?		Yes	V	No		NA 🗆
4. Were all sar	mples received	d at a tempera	ture of >0° C to 6.0)°C	Yes	V	No		NA 🗆
5. Sample(s) in	n proper conta	iner(s)?			Yes	V	No		
6. Sufficient sa	mple volume t	for indicated te	est(s)?		Yes	V	No		
7. Are samples	(except VOA	and ONG) pro	perly preserved?		Yes	V	No		
8. Was preserv					Yes		No	V	NA 🗆
9. VOA vials ha	ave zero head:	space?			Yes	V	No		No VOA Vials
10. Were any sa	ample containe	ers received b	roken?		Yes		No	V	
11. Does paperv (Note discrep		ttle labels? ain of custody)		,	Yes	V	No		# of preserved bottles checked 5 for pH:
2. Are matrices					Yes	V	No		Adjusted?
3. Is it clear wh	at analyses we	ere requested	?	165	Yes	V	No		2/0 -1 1 -
4. Were all hold	ling times able customer for a				Yes	~	No		Checked by: Y6 117119
Special Hand									
15. Was client n			vith this order?		Yes		No		NA 🗹
Person	n Notified:			Date				manufacture.	
By Wh	iom:			Via:	еМа	ii 🖂 i	Phone	Fax	☐ In Person
Regard	ding:				***				
Client	Instructions:								
16. Additional re	emarks:								
17. Cooler Info	rmation								
Cooler No	o Temp °C	Condition	Seal Intact Sea	I No Se	al Da	te	Signed E	Ву	
1	1.0	Good	Yes					•	
2	8.9	Good	Yes						
3	8.1	Good	Yes						

- 04 5

Air Bubbles (Y or N) **ANALYSIS LABORATORY** Cyanide × HALL ENVIRONMENTAL Time / /O Remarks: See attached sheet for Analytical Methods Alkalinity × 8.3-0.2= 4. Fotal Dissolved Solids × 4901 Hawkins NE - Albuquerque, NM 87109 **snoinA** × × Fax 505-345-4107 Cations www.hallenvironmental.com × **Analysis Request** Metals - Total and Dissolved × × (AOV-ima2) 07S8 × (AOV) 808S8 1.2-0.2=1.0 RCRA 8 Metals Tel. 505-345-3975 (2MI20728 10 0188) HAG and Target Analytes. EDB (Method 504.1) TPH (Method 418.1) ТРН 8015В (GRO/DRO/МRO) × × BTEX+MTBE+TPH(Gas only) BTEX+MTBE+TMB's(8021) Tracy Payne - 919-561-7055 200 HEAL No. 1911737 Bendre, Date B Project Manager: Brian Moore Project Name: SWMU 13 □ Rush Preservative 11/01/9 H₂SO₄ HNO₃ HNO₃ Neat Neat Neat NaOH 되 Sample Temperature: Turn-Around Time: X Standard 40ml voa - 5 Type and # Container amber - 1 plastic - 1 plastic - 1 amber - 1 plastic - 1 plastic - 1 plastic - 1 250 ml 1 liter 250 ml Project #: 500 ml Received by: 125 ml 125 ml 500 ml Sampler: On Ice: 13-2-6W Client: Marathon Petroleum Company LP X Level 4 (Full Validation) Sample Request ID Chain-of-Custody Record Mailing Address: 92 Giant Crossing Road Email: Bmoore1@marathonpetroleum.com Gallup, NM 87301 SYMI Varnes Reis 505-726-9745 Relinquished by: Relinquished by: Gallup Refinery Water EXCE Matrix > □ Other ______X EDD (Type) __ QA/QC Package: Time 888 □ Standard Phone #: Date 1.0.19 11-6-19 Date:

S 40 2

O	hain	-of-Cu	Chain-of-Custody Record	Turn-Around	Time:										' !		1
Client:	Mara	thon Pet	Client: Marathon Petroleum Company LP	× Standard	□ Rush				ANAL	AL	STS	HALL ENVIKONMENTAL ANALYSIS LABORATORY	BO	RA		A &	
	Gallu	Gallup Refinery	iry	Project Name: SWMU 13	SWMU 1	8	<u>K</u>		*	v.halle	nviron	www.hallenvironmental.com	Com				
Mailing	Mailing Address:		92 Giant Crossing Road				94	4901 Hawkins NE -	wkins	/ - 当	Albuqu	Albuquerque, NM 87109	N N	7109			
		Gallu	Gallup, NM 87301	Project #:			_	Tel. 505	505-345-3975	975	Fax	505-345-4107	5-410	70			
Phone #:	#:	505-72	505-726-9745							Ans	alysis	Analysis Request	st			B	
Email:	Bmoor	e1@marat	Email: Bmoore1@marathonpetroleum.com	Project Mana	ger: Brian Moore	Moore						-			H	H	
QA/QC Packa	QA/QC Package:		X Level 4 (Full Validation)							(SV		Devloss			S		
□ Other	75			Sampler:	Tracy Payne	ne - 919-561-7055		אם		IISC		i Di			oilo		(1
X EDD	X EDD (Type)	EXCEL		On Ice:		ON 🗆		ОЯ					21112		S P		V 10
				Tem		Lemarks		(၉)			_				əvic) (Y
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	atm+xata atm+xata	88108 H9T	TPH (Metho	0168) HAG	RCRA 8 Me	imə2) 0728 oT - alstəM	Cations	anoinA	Total Disso	Alkalinity Cyanide	Air Bubbles
11.6.19	01:10	Water	SWHU 13-3-6W	40ml voa - 5	HCI	700-		×			×						
	_	_		250 ml amber - 1	Neat			×									
				1 liter amber - 3	Neat							×					
				250 ml plastic - 1	HNO ₃							×	7-0				
				125 ml plastic - 1	HNO ₃							×	×				
	-			125 ml plastic - 1	H ₂ SO ₄									×			
				500 ml plastic - 1	Neat									×	×	×	
->	->	>	->	500 ml plastic - 1	NaOH	-										×	
																-	
Date: 11-6-19	Time: 1335	Relinquished by:	Relinquished by:	Received by:	Wie!	Date Time	Remarks: See attached sheet for Analytical Methods and Target Analytes.	s. Se arget,	e atta Analy	ched es.	sheet	for Ana	nalyt 3 - C	lytical M -0.2=	Aeth &	spo	
	Time:	Relinquished by:	:Ad be	Received by:	100	Date//Tir		1 7	7,	0.0	- 15	0			5		
61/9)	7:10	2	yene Visil	MAK	000	olal bildin		of to	2	P	-						

3 or 5

Gallup Refinery Gallup, NM 87301 ##: 505-726-9745 Bmoore1@marathonpetroleum.com Package: Time Matrix Sample Request ID Time: Reinquished by: Gallup, NM 87301 Project Name Project Name Project Mana Project	Chain-of-Custody Record	Turn-Around	Time:										/ ዩ ነ	3	1
Callup Refinery Address 92 Giant Crossing Road Gallup Refinery ## 506-278-5916 Project Name: SVMU 13 ## 506-278-5917 Frax 605-345-44107 ## 506-245-3917 Frax 605-345-44107		X Standard					ANA	L E	SIS	S A	S S	AE R		A &	
Callup, NM 87301 Project #:	Gallup Refinery	Project Name	1.00			athe	WWW	hallen	vironm	pletal	80				
The Sob-345-3075 Fax 505-345-3075 Fax 505-3					49	01 Hav	/kins N	1	pndne	due.	N	7109			
Binoore (@marenthoneetroleum.com Project Manager Brian Moore Binoore (@marenthoneetroleum.com Project Manager Brian Moore Binoore (@marenthoneetroleum.com Project Manager Brian Moore Binoore (@marenthoneetroleum.com Binoore (@marenthoneetroleum.	Gallup, NM 87301	Project #:			<u> </u>	el. 505-	345-39		Fax 5	05-34	5-410	70			
Project Manager Brian Moore Broozet@manager Brian Moore								Anal		sanba	**			H	
Time Matrix Sample Request ID Type and # Tracy Payme - 919-561-7065 Container Preservative Type and # Time Matrix Sample Request ID Type and # Type and		Project Mana		ore		(k			-	-	
Time Matrix Sample Request ID Container Preservative HEAL No. 17:90 HEAL No. 17:00 HEAL NO. 17:0						ОЯМ\		(s		oevlos			-		
	Other	Sampler:	Tracy Payne -	919-561-7055	_		()	WIS		siQ			spilo		(
Time Matrix Sample Request ID Type and # Type and Type and # Type and Type Analytea Methods 11.30 Water Gwaru i3-4-6-6-w 40min va - 5 for a type and Type Analytea Methods 12	EDD (Type)	On Ice:	,	No	_		.40						es p		N J
Time Matrix Sample Request D Type and # Type		Sample Temp		Jark)	_)g p		_				ρeν		o Y)
	Time Matrix	Container Type and #	Preservative Type	HEAL NO.		The property of	EDB (Metho	THE R. P. LEWIS CO., LANSING			Cations	snoinA			
Neat	11:30 Water SWMU	40ml voa - 5	HCI	- 003		×			×						
Time: Reinquished by: Received	-	250 ml amber - 1	Neat			×									
Plastic - 1		1	Neat							×					
125 ml		250 ml plastic - 1	HNO3							×					
125 ml H ₂ SO ₄ Neat Neat		125 ml plastic - 1	HNO3							×	×				
Soo mil Neat NaOH		125 ml plastic - 1	H ₂ SO ₄									×			
10 10 10 10 10 10 10 10			Neat	,								×		_	
Time: Relinquished by: Received by: Receiv			NaOH	(×	
Time: Relinquished by: 13:35 Jappes Refs 13:45 Time: Relinquished by: Received by													-		
13:32 James Res. Time: Relinquished by: Received by: 4/.0 13:40 14/.0 14/.0 15.10 14/.0 15.10 14/.0 15.10 16/.0 16/	Time:	Received by:			Remark		attac	ned s	heet 1	or An	lalyti	cal	-Veth	spo	
Time: Relinquished by: 1	13:33 James 1		Vig. 1 11	16/19 2:10	and Ta	rget A	nalyte	S.	(,	7	8	_		
and the state of t	Time:	Received by:	11/11/11	ے _ پو	9.1	-0.7	2 00		7	5	1	ò	_		
			3								-				1

4 0 5

1		-					-		,	IA 7	J ()	Air Bubbles			-					2012			
0	3	ANALYSIS LABORATORY									-	Alkalinity Cyanide							×	×	spo		
P P	Ę						H	S	סוומ) S I	οeνι	Total Disso							×		leth		
0	Ī	. ≾		60						5 1		anoinA	-					×	×		<u> </u> <u> </u> ≥	5	
-	2	Ö	,	87,	1107		-					Cations					×	^	^		ytic	"	
1	Č	B	2	Ž	345-4	est		pənjos	sid	pui	e [e:	Metals - Tol				×	×				Inal	0	
	Ō		grad	rone	505-345-4107	Request						im92) 0728			×						for /	8-3-0.	
	>	IS	Long	Albuquerque NM 87109	Fax 5	ALC: UNKNOWN	Т					8260B (VO	×								eet i	80	
	ENVIDONMENTAL	Z	www hallenvironmental com			Analysis					_	RCRA 8 Me									See attached sheet for Analytical Methods et Analytes.		
			l ed	4901 Hawkins NE -	975	Ā		(SI	NIS	270	8 10	01E8) HAG									shec es.	-	-
	HALL	Z	WWW	N Sui	505-345-3975				(1	.40	9 p	EDB (Wetho									attac	-0.7=1.0	
	7	. •		awk	5-34				()	.81	⊅ p	odteM) H9T									An	江江	
		HE	Ø,	01 H	Tel. 50		_(O/MRO	DBC	105	(GF	B2108 H9T	×	×								1-2-0-2-1)
				49	ĭ			s ouly)	(Gs	На.	L+3	8TEX+MT8									Remarks: and Targ	7.6	-
_								(120	8)s'8	.WE	L+3	BTEX+MTB									Remand		
		-1							55			2									0		
									919-561-7055			1EAL NO.	-							(Time 2,70	Time	-
									-561		57	HEAL NO.	P00								70	-	
							ore		919	% _	700	Ī	ŧ								Date	Date	
		ر	က				Mo		ne -		Lehnark										``	In It of I fe	2
		□ Rush	SWMU 13				nager: Brian Moore		Tracy Payne			i, i	77	# H	at	3	3	04	at	Ī	1	=	-
1	.: Э		WN				Br		acy	☑ Yes	ature	eservat Type	HCI	Neat	Neat	HNO ₃	HNO3	H ₂ SO ₄	Neat	NaOH	1	2	2
	Turn-Around Time:	D					ager		Ë	D	Sample Temperature:		DIE.		312					1.5	_ `	2	>
	onu(X Standard	Project Name:		#				L.		Ten	Container Type and #	a - 5	= \[\]	1 liter amber -3	E	E .	E :	الا ; 1-1	٦ <u>۲</u>	.; by	ked-6y.	
	n-Ar	Star	ject		Project #:		Project Ma		Sampler:	On Ice:	nple	onta pe a	40ml voa -	250 ml amber -	1 liter imber	250 ml plastic -	125 ml plastic - 1	125 ml plastic -	500 ml plastic -	500 ml plastic - '	Received by:	S sed	
L	=	×	Pro		Pro		Pro		Sar	ő	Sal	οŞ	40	, <u>,</u> <u>,</u>	a	, <u>a</u>	, <u>q</u>	, Iq) d	, Id	Sec.	Kec.	
		٩	,					(uo				₽											
	S	ny		oad				lidat				Sample Request ID	4										
	ပ္ထ	npa		g R	_		com	= \ \ \ a				nbə	DUP01									1	
1	2	Co		sin	730		enm.	Fu (Fu				e Y	5							->		1	1
	ğ	E		ros	8	45	etrole	vel 4				dui									2	,	1
	sto	olei	7	nt C	Z,	-97	onpe	X Level 4 (Full Validation)				Sa									E. S.	þ.	
	3	Petr	ineı	92 Giant Crossing Road	Gallup, NM 87301	726	arath	45		山		. ×	er								ished A.C.	ished (X
	<u>of</u> -	on	Ref		ၓၱ	505-726-9745	@m			EXCEL		Matrix	Water	-						->	Relinquished By James 2	Relinquished by:	1
	Ė	Marathon Petroleum Company LP	Gallup Refinery	ess.			ore1	ige:		(e)		<u>ə</u>											
	Chain-of-Custody Record	Ma	Gal	Addr			Bmoore1@marathonpetroleum.com	Packa	L	(Typ		Time	1								Time: 1335	Time:	1:1
(ပ	Client:		Mailing Address:		Phone #:	Email:	QA/QC Package:	□ Other	X EDD (Type)		Date	19									5	
		ਹੋ		Ma		P	ᇤ	& D		×		Δ	11-9-11							->	Date:	Date:	1

N P

7 9 7	HALL ENVIDONMENTAL		www.bellenvironmontoloom	MF - Albumerane NM 27100	10	nalysis		pənlos	ai <u>d</u>	(A bri	(als)	PAH (8310 of PAH (8310 of PAH) (8310 of PAH) of PAH	×		×	×	×	×	× × ×	×	ched sheet for Analytical Methods es.	1.0 8.3-0.2:8.1
	I	Z		4901 Hawkins NF	Tel 505-345-3975		-	s ouly)	(Ga	.81	фр (е Е (BTEX+MTB TPH 8015B TPH (Metho HGT DB (Metho	×	×							Remarks: See attached and Target Analytes.	1.2 -0.2 = 1
	Turn-Around Time:	X Standard	Project Name: SWMU 13		Project #:		Project Manager: Brian Moore		Sampler: Tracy Payne - 919-561-7055	No	Temperature: PRIMONKI	Container Preservative HEAL No. X Type and #	40ml voa - 5 HCI 0(1)5	250 ml Neat	1 liter amber - 3 Neat	250 ml HNO ₃	125 ml HNO ₃	125 ml H ₂ SO ₄	500 ml Neat	500 ml NaOH plastic - 1	Date Time	Received by: Date Time
	Chain-or-Custody Record	Client: Marathon Petroleum Company LP	ery	92 Giant Crossing Road	Gallup, NM 87301	505-726-9745	thonpetroleum.com	X Level 4 (Full Validation)				Sample Request ID	EBOL							7	elinquished by: James Reis	d by:
	Chain-of-Ci	Slient: Marathon Pe	Gallup Refinery	Mailing Address: 92 Gi	Gallt	Phone #: 505-72	Email: Bmoore1@marathonpetroleum.com	QA/QC Package:	□ Other	X EDD (Type) EXCEL		Date Time Matrix	11-6-19 12:55 Water	_						7 7	Date: Time: Relinquished by 11-6-19 1340 James	Date: Time: Relinquished by:

SWMU 13 - Groundwater and Equipment Blank Analytical Requirements

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese) Total and Dissolved

Inorganic Analytical Methods

	Analyte	Analytical Method
-	Antimony +	SW-846 method 6010/6020
	Arsenic 🛩	SW-846 method 6010/6020
_	Ba <mark>r</mark> ium ∔	SW-846 method 6010/6020
	Beryllium ►	SW-846 method 6010/6020
_	Cadmium +	SW-846 method 6010/6020
_	Chromium +	SW-846 method 6010/6020
_	Cobalt 4	SW-846 method 6010/6020
	Cyanide	SW-846 method 335.4/335.2 mod
-	Lead +	SW-846 method 6010/6020
	Mercury -	SW-846 method 7470/7471
	Nickel →	SW-846 method 6010/6020
-	Selenium +	SW-846 method 6010/6020
_	Silver +	SW-846 method 6010/6020
	Va <mark>n</mark> adium ∤	SW-846 method 6010/6020
	Zinc +	SW-846 method 6010/6020
	Iron 4	SW-846 method 6010/6020
	Manganese 4	SW-846 method 6010/6020

SWMU 13 - Groundwater and Equipment Blank Analytical Requirements

General Chemistry Parameters

Analyte	Analytical Method
Total Dissolved Solids	SM-2510B
Carbonate	SM-2320B
Bicarbonate	SM-2320B
Chloride	EPA method 300.0
Fluoride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium 1	EPA method 6010/6020
Magnesium	EPA method 6010/6020
Sodium 1	EPA method 6010/6020
Potassium ,	EPA method 6010/6020
Nitrate	EPA method 300.0
Nitrite	EPA method 300.0

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 23, 2019

Brian Moore Marathon Petroleum 92 Giant Crossing Rd Gallup, NM 87301 TEL: FAX

RE: SWMU 13 OrderNo.: 1911310

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 6 sample(s) on 11/7/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1911310**

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-5-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 8:15:00 AM

 Lab ID:
 1911310-001
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	0.28	0.13	0.40	J	mg/L	1	11/12/2019 3:28:11 PN	1 48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 3:28:11 PN	1 48696
Surr: DNOP	119	0	81.5-152		%Rec	1	11/12/2019 3:28:11 PN	1 48696
EPA METHOD 8015D: GASOLINE RANGE	=						Analyst: NSB	
Gasoline Range Organics (GRO)	0.33	0.021	0.050		mg/L	1	11/13/2019 12:03:16 A	G64438
Surr: BFB	1610	0	65.8-143	s	%Rec	1	11/13/2019 12:03:16 A	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	١
Fluoride	ND	0.14	0.50		mg/L	5	11/8/2019 2:29:24 PM	R64345
Chloride	6100	250	250	*	mg/L	500	11/11/2019 9:22:16 PN	1 R64409
Nitrogen, Nitrite (As N)	ND	0.11	2.0		mg/L	20	11/8/2019 2:41:49 PM	R64345
Nitrogen, Nitrate (As N)	0.17	0.030	0.50	J	mg/L	5	11/8/2019 2:29:24 PM	R64345
Sulfate	550	1.3	10	*	mg/L	20	11/8/2019 2:41:49 PM	R64345
EPA METHOD 200.7: DISSOLVED METAI	LS						Analyst: bcv	
Barium	0.089	0.00065	0.0020		mg/L	1	11/22/2019 9:12:56 AN	1 A64708
Beryllium	0.00062	0.00028	0.0020	J	mg/L	1	11/22/2019 9:12:56 AN	1 A64708
Cadmium	ND	0.00055	0.0020		mg/L	1	11/22/2019 9:12:56 AN	1 A64708
Calcium	1300	3.1	50		mg/L	50	11/22/2019 9:17:15 AN	1 A64708
Chromium	ND	0.0015	0.0060		mg/L	1	11/22/2019 9:12:56 AN	1 A64708
Cobalt	0.014	0.0031	0.0060		mg/L	1	11/22/2019 9:12:56 AM	1 A64708
Iron	0.094	0.0087	0.020		mg/L	1	11/22/2019 9:12:56 AM	1 A64708
Magnesium	230	0.25	5.0		mg/L	5	11/22/2019 9:15:08 AN	1 A64708
Manganese	27	0.014	0.10	*	mg/L	50	11/22/2019 9:17:15 AN	1 A64708
Nickel	0.25	0.0040	0.010	*	mg/L	1	11/22/2019 9:12:56 AN	1 A64708
Potassium	3.2	0.16	1.0		mg/L	1	11/22/2019 9:12:56 AN	1 A64708
Silver	0.021	0.00094	0.0050		mg/L	1	11/22/2019 9:12:56 AN	
Sodium	2800	21	50		mg/L	50	11/22/2019 9:17:15 AN	
Vanadium	0.0037	0.0020	0.050	J	mg/L	1	11/22/2019 9:12:56 AN	
Zinc	0.0096	0.0023	0.010	J	mg/L	1	11/22/2019 9:12:56 AN	1 A64708
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	0.088	0.00049	0.0020		mg/L	1	11/27/2019 5:39:10 PM	1 48748
Beryllium	0.00064	0.00022	0.0020	J	mg/L	1	11/27/2019 5:39:10 PM	1 48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 5:39:10 PM	1 48748
Chromium	ND	0.0012	0.0060		mg/L	1	11/27/2019 5:39:10 PN	1 48748
Cobalt	0.013	0.0012	0.0060		mg/L	1	11/27/2019 5:39:10 PN	
Iron	0.15	0.0061	0.020		mg/L	1	11/27/2019 5:39:10 PN	
Manganese	27	0.0030	0.10	*	mg/L	50	11/27/2019 5:57:53 PN	
Nickel	0.24	0.0015	0.010	*	mg/L	1	11/27/2019 5:39:10 PM	1 48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 41

Lab Order **1911310**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2019

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-5-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 8:15:00 AM

 Lab ID:
 1911310-001
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	0.019	0.0014	0.0050		mg/L	1	11/27/2019 5:39:10 PM	1 48748
Vanadium	0.0054	0.00054	0.050	J	mg/L	1	11/27/2019 5:39:10 PM	1 48748
Zinc	ND	0.0058	0.010		mg/L	1	11/27/2019 5:39:10 PM	1 48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.0019	0.0050		mg/L	5	11/12/2019 1:19:18 PM	A64450
Arsenic	0.0047	0.00050	0.0050	J	mg/L	5	11/12/2019 1:19:18 PM	A64450
Lead	0.00081	0.00027	0.0025	J	mg/L	5	11/12/2019 1:19:18 PM	A64450
Selenium	ND	0.00086	0.0050		mg/L	5	11/12/2019 1:19:18 PM	A64450
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 2:08:59 PM	1 48748
Arsenic	0.0051	0.0016	0.0050		mg/L	5	11/18/2019 2:08:59 PM	
Lead	0.00080	0.00013	0.0025	J	mg/L	5	11/18/2019 2:08:59 PM	1 48748
Selenium	ND	0.0024	0.0050	-	mg/L	5	11/18/2019 2:08:59 PM	
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	ND	0.000038	0.00020		mg/L	1	11/20/2019 6:09:40 PM	1 48912
EPA METHOD 8260B: VOLATILES							Analyst: CCN	1
Benzene	0.89	0.33	2.0	J	μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Toluene	ND	0.70	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Ethylbenzene	ND	0.26	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Methyl tert-butyl ether (MTBE)	36	0.91	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
1,2,4-Trimethylbenzene	ND	0.43	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
1,3,5-Trimethylbenzene	ND	0.38	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
1,2-Dichloroethane (EDC)	ND	0.39	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
1,2-Dibromoethane (EDB)	ND	0.33	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Naphthalene	ND	0.55	4.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
1-Methylnaphthalene	1.7	0.63	8.0	J	μg/L	2	11/14/2019 8:14:00 PM	1 R64499
2-Methylnaphthalene	ND	0.69	8.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Acetone	4.5	2.4	20	J	μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Bromobenzene	ND	0.49	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Bromodichloromethane	ND	0.27	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Bromoform	ND	0.58	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Bromomethane	ND	0.55	6.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
2-Butanone	ND	4.2	20		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Carbon disulfide	ND	0.91	20		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Carbon Tetrachloride	ND	0.28	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Chlorobenzene	ND	0.39	2.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499
Chloroethane	ND	0.36	4.0		μg/L	2	11/14/2019 8:14:00 PM	1 R64499

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-5-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 8:15:00 AM

 Lab ID:
 1911310-001
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: CCN	1
Chloroform	ND	0.24	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Chloromethane	ND	0.64	6.0	μg/L	2	11/14/2019 8:14:00 PM	л R64499
2-Chlorotoluene	ND	0.49	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
4-Chlorotoluene	ND	0.47	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
cis-1,2-DCE	ND	0.38	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
cis-1,3-Dichloropropene	ND	0.28	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Dibromochloromethane	ND	0.48	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Dibromomethane	ND	0.42	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,2-Dichlorobenzene	ND	0.59	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,3-Dichlorobenzene	ND	0.50	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,4-Dichlorobenzene	ND	0.59	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Dichlorodifluoromethane	ND	0.52	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,1-Dichloroethane	ND	0.28	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,1-Dichloroethene	ND	0.41	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,2-Dichloropropane	ND	0.42	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,3-Dichloropropane	ND	0.40	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
2,2-Dichloropropane	ND	0.47	4.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,1-Dichloropropene	ND	0.33	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Hexachlorobutadiene	ND	0.62	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
2-Hexanone	ND	3.1	20	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Isopropylbenzene	ND	0.38	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
4-Isopropyltoluene	ND	0.43	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
4-Methyl-2-pentanone	ND	1.4	20	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Methylene Chloride	ND	0.31	6.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
n-Butylbenzene	ND	0.46	6.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
n-Propylbenzene	ND	0.43	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
sec-Butylbenzene	ND	0.50	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Styrene	ND	0.38	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
tert-Butylbenzene	ND	0.41	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,1,1,2-Tetrachloroethane	ND	0.41	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,1,2,2-Tetrachloroethane	ND	1.1	4.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
Tetrachloroethene (PCE)	ND	0.30	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
trans-1,2-DCE	ND	0.36	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
trans-1,3-Dichloropropene	ND	0.33	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,2,3-Trichlorobenzene	ND	0.60	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,2,4-Trichlorobenzene	ND	0.39	2.0	μg/L	2	11/14/2019 8:14:00 PM	/ R64499
1,1,1-Trichloroethane	ND	0.35	2.0	μg/L	2	11/14/2019 8:14:00 PM	л R64499
1,1,2-Trichloroethane	ND	0.43	2.0	μg/L	2	11/14/2019 8:14:00 PM	л R64499
Trichloroethene (TCE)	ND	0.33	2.0	μg/L	2	11/14/2019 8:14:00 PM	И R64499

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-5-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 8:15:00 AM

 Lab ID:
 1911310-001
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: CO	СМ
Trichlorofluoromethane	ND	0.38	2.0		μg/L	2	11/14/2019 8:14:00	PM R64499
Vinyl chloride	ND	0.36	2.0		μg/L	2	11/14/2019 8:14:00	PM R64499
Xylenes, Total	ND	0.91	3.0		μg/L	2	11/14/2019 8:14:00	PM R64499
Surr: 1,2-Dichloroethane-d4	101	0	70-130		%Rec	2	11/14/2019 8:14:00	PM R64499
Surr: 4-Bromofluorobenzene	98.9	0	70-130		%Rec	2	11/14/2019 8:14:00	PM R64499
Surr: Dibromofluoromethane	98.0	0	70-130		%Rec	2	11/14/2019 8:14:00	PM R64499
Surr: Toluene-d8	98.0	0	70-130		%Rec	2	11/14/2019 8:14:00	PM R64499
SM2320B: ALKALINITY							Analyst: JR	R.
Bicarbonate (As CaCO3)	578.6	20.00	20.00		mg/L Ca	a 1	11/11/2019 3:02:55	PM R64428
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/11/2019 3:02:55	PM R64428
Total Alkalinity (as CaCO3)	578.6	20.00	20.00		mg/L Ca	a 1	11/11/2019 3:02:55	PM R64428
SM2540C MOD: TOTAL DISSOLVED SO	LIDS						Analyst: JN	ΛΤ
Total Dissolved Solids	13000	200	200	*D	mg/L	1	11/14/2019 9:12:00	AM 48734

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-6-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 9:30:00 AM

 Lab ID:
 1911310-002
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	11/12/2019 3:52:19 PM	1 48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 3:52:19 PM	1 48696
Surr: DNOP	125	0	81.5-152		%Rec	1	11/12/2019 3:52:19 PM	1 48696
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	0.042	0.021	0.050	J	mg/L	1	11/13/2019 12:25:57 A	G64438
Surr: BFB	363	0	65.8-143	S	%Rec	1	11/13/2019 12:25:57 A	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	
Fluoride	ND	0.14	0.50		mg/L	5	11/8/2019 2:54:13 PM	R64345
Chloride	3200	250	250	*	mg/L	500	11/11/2019 9:34:41 PM	
Nitrogen, Nitrite (As N)	ND	0.11	2.0		mg/L	20	11/8/2019 3:06:38 PM	R64345
Nitrogen, Nitrate (As N)	ND	0.030	0.50		mg/L	5	11/8/2019 2:54:13 PM	R64345
Sulfate	1200	33	250	*	mg/L	500	11/11/2019 9:34:41 PM	R64409
EPA METHOD 200.7: DISSOLVED METALS	S						Analyst: bcv	
Barium	0.035	0.00065	0.0020		mg/L	1	11/22/2019 9:19:29 AM	A64708
Beryllium	0.00032	0.00028	0.0020	J	mg/L	1	11/22/2019 9:19:29 AM	A64708
Cadmium	ND	0.00055	0.0020		mg/L	1	11/22/2019 9:19:29 AM	A64708
Calcium	1200	3.1	50		mg/L	50	11/22/2019 9:30:38 AM	A64708
Chromium	ND	0.0015	0.0060		mg/L	1	11/22/2019 9:19:29 AM	A64708
Cobalt	ND	0.0031	0.0060		mg/L	1	11/22/2019 9:19:29 AM	A64708
Iron	0.018	0.0087	0.020	J	mg/L	1	11/22/2019 9:19:29 AM	I A64708
Magnesium	190	0.25	5.0		mg/L	5	11/22/2019 9:28:31 AM	I A64708
Manganese	4.4	0.0014	0.010	*	mg/L	5	11/22/2019 9:28:31 AM	I A64708
Nickel	0.013	0.0040	0.010		mg/L	1	11/22/2019 9:19:29 AM	I A64708
Potassium	2.6	0.16	1.0		mg/L	1	11/22/2019 9:19:29 AM	I A64708
Silver	0.020	0.00094	0.0050		mg/L	1	11/22/2019 9:19:29 AM	I A64708
Sodium	1700	21	50		mg/L	50	11/22/2019 9:30:38 AM	I A64708
Vanadium	0.0050	0.0020	0.050	J	mg/L	1	11/22/2019 9:19:29 AM	I A64708
Zinc	0.013	0.0023	0.010		mg/L	1	11/22/2019 9:19:29 AM	A64708
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	0.22	0.00049	0.0020		mg/L	1	11/27/2019 6:00:02 PM	1 48748
Beryllium	0.0020	0.00022	0.0020		mg/L	1	11/27/2019 6:00:02 PM	1 48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 6:00:02 PM	1 48748
Chromium	0.0053	0.0012	0.0060	J	mg/L	1	11/27/2019 6:00:02 PM	1 48748
Cobalt	0.0020	0.0012	0.0060	J	mg/L	1	11/27/2019 6:00:02 PM	1 48748
Iron	7.9	0.061	0.20	*	mg/L	10	11/27/2019 6:01:58 PM	1 48748
Manganese	4.7	0.00060	0.020	*	mg/L	10	11/27/2019 6:01:58 PM	1 48748
Nickel	0.025	0.0015	0.010		mg/L	1	11/27/2019 6:00:02 PM	1 48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1911310**

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-6-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 9:30:00 AM

 Lab ID:
 1911310-002
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Silver	0.017	0.0014	0.0050		mg/L	1	11/27/2019 6:00:02 PM	1 48748
Vanadium	0.024	0.00054	0.050	J	mg/L	1	11/27/2019 6:00:02 PM	1 48748
Zinc	0.014	0.0058	0.010		mg/L	1	11/27/2019 6:00:02 PN	1 48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Antimony	ND	0.00039	0.0010		mg/L	1	11/12/2019 1:21:56 PM	A64450
Arsenic	0.0016	0.00010	0.0010		mg/L	1	11/12/2019 1:21:56 PM	A64450
Lead	ND	0.00027	0.0025		mg/L	5	11/12/2019 1:24:33 PN	A64450
Selenium	0.00059	0.00017	0.0010	J	mg/L	1	11/12/2019 1:21:56 PM	A64450
200.8 ICPMS METALS:TOTAL							Analyst: ELS	
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 2:11:07 PM	1 48748
Arsenic	0.0030	0.0016	0.0050	J	mg/L	5	11/18/2019 2:11:07 PN	
Lead	0.0090	0.00013	0.0025		mg/L	5	11/18/2019 2:11:07 PN	1 48748
Selenium	ND	0.0024	0.0050		mg/L	5	11/18/2019 2:11:07 PM	1 48748
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	ND	0.000038	0.00020		mg/L	1	11/20/2019 6:16:31 PM	1 48912
EPA METHOD 8260B: VOLATILES							Analyst: JMR	!
Benzene	ND	0.33	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Toluene	ND	0.70	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Ethylbenzene	ND	0.26	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Methyl tert-butyl ether (MTBE)	6.8	0.91	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
1,2,4-Trimethylbenzene	ND	0.43	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
1,3,5-Trimethylbenzene	ND	0.38	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
1,2-Dichloroethane (EDC)	ND	0.39	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
1,2-Dibromoethane (EDB)	ND	0.33	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Naphthalene	ND	0.55	4.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
1-Methylnaphthalene	ND	0.63	8.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
2-Methylnaphthalene	ND	0.69	8.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Acetone	ND	2.4	20		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Bromobenzene	ND	0.49	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Bromodichloromethane	ND	0.27	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Bromoform	ND	0.58	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Bromomethane	ND	0.55	6.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
2-Butanone	ND	4.2	20		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Carbon disulfide	ND	0.91	20		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Carbon Tetrachloride	ND	0.28	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Chlorobenzene	ND	0.39	2.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405
Chloroethane	ND	0.36	4.0		μg/L	2	11/11/2019 7:51:02 PM	1 R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-6-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 9:30:00 AM

 Lab ID:
 1911310-002
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR	
Chloroform	ND	0.24	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Chloromethane	ND	0.64	6.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
2-Chlorotoluene	ND	0.49	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
4-Chlorotoluene	ND	0.47	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
cis-1,2-DCE	ND	0.38	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
cis-1,3-Dichloropropene	ND	0.28	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Dibromochloromethane	ND	0.48	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Dibromomethane	ND	0.42	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,2-Dichlorobenzene	ND	0.59	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,3-Dichlorobenzene	ND	0.50	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,4-Dichlorobenzene	ND	0.59	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Dichlorodifluoromethane	ND	0.52	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1-Dichloroethane	ND	0.28	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1-Dichloroethene	ND	0.41	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,2-Dichloropropane	ND	0.42	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,3-Dichloropropane	ND	0.40	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
2,2-Dichloropropane	ND	0.47	4.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1-Dichloropropene	ND	0.33	2.0	μg/L	2	11/11/2019 7:51:02 PM	I R64405
Hexachlorobutadiene	ND	0.62	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
2-Hexanone	ND	3.1	20	μg/L	2	11/11/2019 7:51:02 PM	I R64405
Isopropylbenzene	ND	0.38	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
4-Isopropyltoluene	ND	0.43	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
4-Methyl-2-pentanone	ND	1.4	20	μg/L	2	11/11/2019 7:51:02 PM	R64405
Methylene Chloride	ND	0.31	6.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
n-Butylbenzene	ND	0.46	6.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
n-Propylbenzene	ND	0.43	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
sec-Butylbenzene	ND	0.50	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Styrene	ND	0.38	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
tert-Butylbenzene	ND	0.41	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1,1,2-Tetrachloroethane	ND	0.41	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1,2,2-Tetrachloroethane	ND	1.1	4.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Tetrachloroethene (PCE)	ND	0.30	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
trans-1,2-DCE	ND	0.36	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
trans-1,3-Dichloropropene	ND	0.33	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,2,3-Trichlorobenzene	ND	0.60	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,2,4-Trichlorobenzene	ND	0.39	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1,1-Trichloroethane	ND	0.35	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
1,1,2-Trichloroethane	ND	0.43	2.0	μg/L	2	11/11/2019 7:51:02 PM	R64405
Trichloroethene (TCE)	ND	0.33	2.0	μg/L	2	11/11/2019 7:51:02 PM	I R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-6-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 9:30:00 AM

 Lab ID:
 1911310-002
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JN	/IR
Trichlorofluoromethane	ND	0.38	2.0		μg/L	2	11/11/2019 7:51:02	PM R64405
Vinyl chloride	ND	0.36	2.0		μg/L	2	11/11/2019 7:51:02	PM R64405
Xylenes, Total	ND	0.91	3.0		μg/L	2	11/11/2019 7:51:02	PM R64405
Surr: 1,2-Dichloroethane-d4	91.1	0	70-130		%Rec	2	11/11/2019 7:51:02	PM R64405
Surr: 4-Bromofluorobenzene	86.6	0	70-130		%Rec	2	11/11/2019 7:51:02	PM R64405
Surr: Dibromofluoromethane	107	0	70-130		%Rec	2	11/11/2019 7:51:02	PM R64405
Surr: Toluene-d8	94.2	0	70-130		%Rec	2	11/11/2019 7:51:02	PM R64405
SM2320B: ALKALINITY							Analyst: JR	RR
Bicarbonate (As CaCO3)	493.7	20.00	20.00		mg/L Ca	a 1	11/11/2019 3:28:39	PM R64428
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/11/2019 3:28:39	PM R64428
Total Alkalinity (as CaCO3)	493.7	20.00	20.00		mg/L Ca	a 1	11/11/2019 3:28:39	PM R64428
SM2540C MOD: TOTAL DISSOLVED SO	LIDS						Analyst: JN	ΛT
Total Dissolved Solids	9450	200	200	*D	mg/L	1	11/14/2019 9:12:00	AM 48734

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-7-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 10:20:00 AM

 Lab ID:
 1911310-003
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	0.53	0.13	0.40		mg/L	1	11/12/2019 4:16:29 PM	l 48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 4:16:29 PM	l 48696
Surr: DNOP	115	0	81.5-152		%Rec	1	11/12/2019 4:16:29 PM	l 48696
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	0.73	0.021	0.050		mg/L	1	11/13/2019 12:48:41 A	G64438
Surr: BFB	2410	0	65.8-143	s	%Rec	1	11/13/2019 12:48:41 A	G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	.
Fluoride	12	0.14	0.50	*	mg/L	5	11/8/2019 3:19:03 PM	R64345
Chloride	5900	250	250	*	mg/L	500	11/11/2019 9:47:06 PM	R64409
Nitrogen, Nitrite (As N)	ND	0.11	2.0		mg/L	20	11/8/2019 3:31:28 PM	R64345
Nitrogen, Nitrate (As N)	ND	0.030	0.50		mg/L	5	11/8/2019 3:19:03 PM	R64345
Sulfate	240	0.33	2.5		mg/L	5	11/8/2019 3:19:03 PM	R64345
EPA METHOD 200.7: DISSOLVED METALS	;						Analyst: bcv	
Barium	0.31	0.00065	0.0020		mg/L	1	11/22/2019 9:32:46 AM	A64708
Beryllium	ND	0.00028	0.0020		mg/L	1	11/22/2019 9:32:46 AM	A64708
Cadmium	ND	0.00055	0.0020		mg/L	1	11/22/2019 9:32:46 AM	A64708
Calcium	530	0.62	10		mg/L	10	11/22/2019 9:34:56 AM	A64708
Chromium	0.0024	0.0015	0.0060	J	mg/L	1	11/22/2019 9:32:46 AM	A64708
Cobalt	0.0031	0.0031	0.0060	J	mg/L	1	11/22/2019 9:32:46 AM	A64708
Iron	1.6	0.087	0.20	*	mg/L	10	11/22/2019 9:34:56 AM	A64708
Magnesium	150	0.50	10		mg/L	10	11/22/2019 9:34:56 AM	A64708
Manganese	5.9	0.0029	0.020	*	mg/L	10	11/22/2019 9:34:56 AM	A64708
Nickel	0.045	0.0040	0.010		mg/L	1	11/22/2019 9:32:46 AM	A64708
Potassium	40	0.16	1.0		mg/L	1	11/22/2019 9:32:46 AM	A64708
Silver	0.0094	0.00094	0.0050		mg/L	1	11/22/2019 9:32:46 AM	
Sodium	3400	42	100		mg/L	100	11/22/2019 9:37:10 AM	
Vanadium	0.0099	0.0020	0.050	J	mg/L	1	11/22/2019 9:32:46 AM	
Zinc	0.014	0.0023	0.010		mg/L	1	11/22/2019 9:32:46 AM	A64708
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	0.62	0.00049	0.0020		mg/L	1	11/27/2019 6:06:06 PM	l 48748
Beryllium	0.0025	0.00022	0.0020		mg/L	1	11/27/2019 6:06:06 PM	1 48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 6:06:06 PM	
Chromium	0.043	0.0012	0.0060		mg/L	1	11/27/2019 6:06:06 PM	
Cobalt	0.0081	0.0012	0.0060		mg/L	1	11/27/2019 6:06:06 PM	
Iron	20	0.30	1.0	*	mg/L	50	11/27/2019 6:10:02 PM	
Manganese	6.3	0.00060	0.020	*	mg/L	10	11/27/2019 6:08:02 PM	
Nickel	0.062	0.0015	0.010		mg/L	1	11/27/2019 6:06:06 PM	l 48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-7-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 10:20:00 AM

 Lab ID:
 1911310-003
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: EL	.s
Silver	0.0064	0.0014	0.0050		mg/L	1	11/27/2019 6:06:06 I	PM 48748
Vanadium	0.044	0.00054	0.050	J	mg/L	1	11/27/2019 6:06:06 I	PM 48748
Zinc	0.028	0.0058	0.010		mg/L	1	11/27/2019 6:06:06 I	PM 48748
EPA 200.8: DISSOLVED METALS							Analyst: EL	.s
Antimony	ND	0.0019	0.0050		mg/L	5	11/12/2019 1:29:49 I	PM A64450
Arsenic	0.014	0.00010	0.0010	*	mg/L	1	11/12/2019 1:27:11 I	PM A64450
Lead	0.00038	0.00027	0.0025	J	mg/L	5	11/12/2019 1:29:49 I	PM A64450
Selenium	0.0067	0.00017	0.0010		mg/L	1	11/12/2019 1:27:11	PM A64450
200.8 ICPMS METALS:TOTAL							Analyst: EL	.S
Antimony	ND	0.00078	0.0050		mg/L	5	11/18/2019 2:13:15 I	PM 48748
Arsenic	0.022	0.0016	0.0050	*	mg/L	5	11/18/2019 2:13:15	PM 48748
Lead	0.013	0.00013	0.0025		mg/L	5	11/18/2019 2:13:15 I	PM 48748
Selenium	0.0076	0.0024	0.0050		mg/L	5	11/18/2019 2:13:15 I	
EPA METHOD 245.1: MERCURY					•		Analyst: rd	е
Mercury	ND	0.000038	0.00020		mg/L	1	11/20/2019 6:18:44 I	PM 48912
EPA METHOD 8260B: VOLATILES							Analyst: JN	IR
Benzene	1.0	0.83	5.0	JD	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Toluene	ND	1.8	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Ethylbenzene	ND	0.66	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Methyl tert-butyl ether (MTBE)	ND	2.3	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
1,2,4-Trimethylbenzene	2.3	1.1	5.0	JD	μg/L	5	11/11/2019 8:19:36 I	PM R64405
1,3,5-Trimethylbenzene	ND	0.94	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
1,2-Dichloroethane (EDC)	ND	0.97	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
1,2-Dibromoethane (EDB)	ND	0.83	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Naphthalene	ND	1.4	10	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
1-Methylnaphthalene	6.0	1.6	20	JD	μg/L	5	11/11/2019 8:19:36 I	PM R64405
2-Methylnaphthalene	ND	1.7	20	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Acetone	18	6.0	50	JD	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Bromobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Bromodichloromethane	ND	0.67	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Bromoform	ND	1.4	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Bromomethane	ND	1.4	15	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
2-Butanone	ND	10	50	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Carbon disulfide	ND	2.3	50	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Carbon Tetrachloride	ND	0.70	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Chlorobenzene	ND	0.97	5.0	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405
Chloroethane	ND	0.89	10	D	μg/L	5	11/11/2019 8:19:36 I	PM R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-7-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 10:20:00 AM

 Lab ID:
 1911310-003
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8260B: VOLATILES							Analyst: JMR			
Chloroform	ND	0.61	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Chloromethane	ND	1.6	15	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
2-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
4-Chlorotoluene	ND	1.2	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
cis-1,2-DCE	ND	0.95	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
cis-1,3-Dichloropropene	ND	0.69	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Dibromochloromethane	ND	1.2	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Dibromomethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,2-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,3-Dichlorobenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,4-Dichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Dichlorodifluoromethane	ND	1.3	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,1-Dichloroethane	ND	0.70	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,1-Dichloroethene	ND	1.0	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
1,2-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
1,3-Dichloropropane	ND	1.0	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
2,2-Dichloropropane	ND	1.2	10	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
1,1-Dichloropropene	ND	0.81	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
Hexachlorobutadiene	ND	1.5	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
2-Hexanone	ND	7.7	50	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
Isopropylbenzene	ND	0.96	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
4-Isopropyltoluene	ND	1.1	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
4-Methyl-2-pentanone	ND	3.6	50	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Methylene Chloride	ND	0.77	15	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
n-Butylbenzene	ND	1.1	15	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
n-Propylbenzene	ND	1.1	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
sec-Butylbenzene	ND	1.2	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Styrene	ND	0.96	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
tert-Butylbenzene	ND	1.0	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,1,2,2-Tetrachloroethane	ND	2.7	10	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Tetrachloroethene (PCE)	ND	0.75	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
trans-1,2-DCE	ND	0.90	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
trans-1,3-Dichloropropene	ND	0.83	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,2,3-Trichlorobenzene	ND	1.5	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,2,4-Trichlorobenzene	ND	0.98	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
1,1,1-Trichloroethane	ND	0.86	5.0	D	μg/L	5	11/11/2019 8:19:36 PN	1 R64405		
1,1,2-Trichloroethane	ND	1.1	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		
Trichloroethene (TCE)	ND	0.83	5.0	D	μg/L	5	11/11/2019 8:19:36 PM	1 R64405		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: SWMU 13-7-GW

 Project:
 SWMU 13
 Collection Date: 11/7/2019 10:20:00 AM

 Lab ID:
 1911310-003
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JN	/IR
Trichlorofluoromethane	ND	0.95	5.0	D	μg/L	5	11/11/2019 8:19:36	PM R64405
Vinyl chloride	ND	0.90	5.0	D	μg/L	5	11/11/2019 8:19:36	PM R64405
Xylenes, Total	ND	2.3	7.5	D	μg/L	5	11/11/2019 8:19:36	PM R64405
Surr: 1,2-Dichloroethane-d4	94.9	0	70-130	D	%Rec	5	11/11/2019 8:19:36	PM R64405
Surr: 4-Bromofluorobenzene	99.6	0	70-130	D	%Rec	5	11/11/2019 8:19:36	PM R64405
Surr: Dibromofluoromethane	112	0	70-130	D	%Rec	5	11/11/2019 8:19:36	PM R64405
Surr: Toluene-d8	94.8	0	70-130	D	%Rec	5	11/11/2019 8:19:36	PM R64405
SM2320B: ALKALINITY							Analyst: JF	RR
Bicarbonate (As CaCO3)	1172	20.00	20.00		mg/L Ca	a 1	11/11/2019 3:50:27	PM R64428
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	11/11/2019 3:50:27	PM R64428
Total Alkalinity (as CaCO3)	1172	20.00	20.00		mg/L Ca	a 1	11/11/2019 3:50:27	PM R64428
SM2540C MOD: TOTAL DISSOLVED SC	LIDS						Analyst: JN	ΛT
Total Dissolved Solids	11600	200	200	*D	mg/L	1	11/14/2019 9:12:00	AM 48734

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: EB02

 Project:
 SWMU 13
 Collection Date: 11/7/2019 11:45:00 AM

 Lab ID:
 1911310-004
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: CLP	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	11/12/2019 4:40:37 PM	1 48696
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	11/12/2019 4:40:37 PM	1 48696
Surr: DNOP	120	0	81.5-152		%Rec	1	11/12/2019 4:40:37 PM	1 48696
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	}
Gasoline Range Organics (GRO)	ND	0.021	0.050		mg/L	1	11/13/2019 1:11:25 AM	1 G64438
Surr: BFB	97.2	0	65.8-143		%Rec	1	11/13/2019 1:11:25 AM	1 G64438
EPA METHOD 300.0: ANIONS							Analyst: MRA	١
Fluoride	ND	0.029	0.10		mg/L	1	11/8/2019 3:43:53 PM	R64345
Chloride	ND	0.50	0.50		mg/L	1	11/8/2019 3:43:53 PM	R64345
Nitrogen, Nitrite (As N)	ND	0.0054	0.10		mg/L	1	11/8/2019 3:43:53 PM	R64345
Nitrogen, Nitrate (As N)	ND	0.0061	0.10		mg/L	1	11/8/2019 3:43:53 PM	R64345
Sulfate	ND	0.067	0.50		mg/L	1	11/8/2019 3:43:53 PM	R64345
EPA METHOD 200.7: DISSOLVED METALS							Analyst: bcv	
Barium	ND	0.00065	0.0020		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Beryllium	ND	0.00028	0.0020		mg/L	1	11/22/2019 9:39:30 AM	A64708
Cadmium	ND	0.00055	0.0020		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Calcium	ND	0.062	1.0		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Chromium	ND	0.0015	0.0060		mg/L	1	11/22/2019 9:39:30 AM	A64708
Cobalt	ND	0.0031	0.0060		mg/L	1	11/22/2019 9:39:30 AM	A64708
Iron	ND	0.0087	0.020		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Magnesium	ND	0.050	1.0		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Manganese	ND	0.00029	0.0020		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Nickel	ND	0.0040	0.010		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Potassium	ND	0.16	1.0		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Silver	ND	0.00094	0.0050		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Sodium	0.59	0.42	1.0	J	mg/L	1	11/22/2019 9:39:30 AM	1 A64708
Vanadium	ND	0.0020	0.050		mg/L	1	11/22/2019 9:39:30 AM	
Zinc	0.013	0.0023	0.010		mg/L	1	11/22/2019 9:39:30 AM	1 A64708
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	
Barium	ND	0.00049	0.0020		mg/L	1	11/27/2019 6:12:12 PM	1 48748
Beryllium	ND	0.00022	0.0020		mg/L	1	11/27/2019 6:12:12 PM	1 48748
Cadmium	ND	0.00074	0.0020		mg/L	1	11/27/2019 6:12:12 PM	1 48748
Chromium	ND	0.0012	0.0060		mg/L	1	11/27/2019 6:12:12 PM	1 48748
Cobalt	ND	0.0012	0.0060		mg/L	1	11/27/2019 6:12:12 PM	1 48748
Iron	ND	0.0061	0.020		mg/L	1	11/27/2019 6:12:12 PM	1 48748
Manganese	0.00027	0.000060	0.0020	J	mg/L	1	11/27/2019 6:12:12 PM	1 48748
Nickel	0.0016	0.0015	0.010	J	mg/L	1	11/27/2019 6:12:12 PM	1 48748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: EB02

 Project:
 SWMU 13
 Collection Date: 11/7/2019 11:45:00 AM

 Lab ID:
 1911310-004
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 200.7: TOTAL METALS							Analyst: ELS	3
Silver	ND	0.0014	0.0050		mg/L	1	11/27/2019 6:12:12 P	M 48748
Vanadium	ND	0.00054	0.050		mg/L	1	11/27/2019 6:12:12 P	M 48748
Zinc	ND	0.0058	0.010		mg/L	1	11/27/2019 6:12:12 P	M 48748
EPA 200.8: DISSOLVED METALS							Analyst: ELS	6
Antimony	ND	0.00039	0.0010		mg/L	1	11/12/2019 1:32:27 P	M A64450
Arsenic	ND	0.00010	0.0010		mg/L	1	11/12/2019 1:32:27 P	M A64450
Lead	ND	0.000055	0.00050		mg/L	1	11/12/2019 1:32:27 P	M A64450
Selenium	ND	0.00017	0.0010		mg/L	1	11/12/2019 1:32:27 P	M A64450
200.8 ICPMS METALS:TOTAL							Analyst: ELS	3
Antimony	ND	0.00016	0.0010		mg/L	1	11/15/2019 12:53:36	9 48748
Arsenic	ND	0.00031	0.0010		mg/L	1	11/15/2019 12:53:36	
Lead	ND	0.000026	0.00050		mg/L	1	11/15/2019 12:53:36	9 48748
Selenium	ND	0.00048	0.0010		mg/L	1	11/15/2019 12:53:36	
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	0.000049	0.000038	0.00020	J	mg/L	1	11/20/2019 6:20:57 P	M 48912
EPA METHOD 8260B: VOLATILES							Analyst: JM I	₹
Benzene	ND	0.17	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Toluene	ND	0.35	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Ethylbenzene	ND	0.13	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Naphthalene	ND	0.28	2.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Acetone	ND	1.2	10		μg/L	1	11/11/2019 8:48:09 P	M R64405
Bromobenzene	ND	0.24	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Bromodichloromethane	ND	0.13	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Bromoform	ND	0.29	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Bromomethane	ND	0.27	3.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
2-Butanone	ND	2.1	10		μg/L	1	11/11/2019 8:48:09 P	M R64405
Carbon disulfide	ND	0.45	10		μg/L	1	11/11/2019 8:48:09 P	M R64405
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Chlorobenzene	ND	0.19	1.0		μg/L	1	11/11/2019 8:48:09 P	M R64405
Chloroethane	ND	0.18	2.0		μg/L	1	11/11/2019 8:48:09 P	M R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 41

Lab Order **1911310**

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: EB02

 Project:
 SWMU 13
 Collection Date: 11/7/2019 11:45:00 AM

 Lab ID:
 1911310-004
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed B	atch ID	
EPA METHOD 8260B: VOLATILES						Analyst: JMR		
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 8:48:09 PM	R64405	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 41

Lab Order **1911310**

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: EB02

 Project:
 SWMU 13
 Collection Date: 11/7/2019 11:45:00 AM

 Lab ID:
 1911310-004
 Matrix: AQUEOUS
 Received Date: 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMR
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 8:48:09 PM R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 8:48:09 PM R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 8:48:09 PM R64405
Surr: 1,2-Dichloroethane-d4	93.6	0	70-130	%Rec	1	11/11/2019 8:48:09 PM R64405
Surr: 4-Bromofluorobenzene	87.8	0	70-130	%Rec	1	11/11/2019 8:48:09 PM R64405
Surr: Dibromofluoromethane	108	0	70-130	%Rec	1	11/11/2019 8:48:09 PM R64405
Surr: Toluene-d8	97.3	0	70-130	%Rec	1	11/11/2019 8:48:09 PM R64405
SM2320B: ALKALINITY						Analyst: JRR
Bicarbonate (As CaCO3)	ND	20.00	20.00	mg/L Ca	a 1	11/11/2019 4:32:47 PM R64428
Carbonate (As CaCO3)	ND	2.000	2.000	mg/L Ca	a 1	11/11/2019 4:32:47 PM R64428
Total Alkalinity (as CaCO3)	ND	20.00	20.00	mg/L Ca	a 1	11/11/2019 4:32:47 PM R64428
SM2540C MOD: TOTAL DISSOLVED SOLIE	os					Analyst: JMT
Total Dissolved Solids	ND	20.0	20.0	mg/L	1	11/14/2019 9:12:00 AM 48734

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: Trip Blank-1

Project: SWMU 13 Collection Date:

Lab ID: 1911310-005 **Matrix:** TRIP BLANK **Received Date:** 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NS I	В
Gasoline Range Organics (GRO)	ND	0.021	0.050	mg/L	1	11/13/2019 1:34:10 A	M G64438
Surr: BFB	96.9	0	65.8-143	%Rec	1	11/13/2019 1:34:10 A	M G64438
EPA METHOD 8260B: VOLATILES						Analyst: JM I	R
Benzene	ND	0.17	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Toluene	ND	0.35	1.0	μg/L	1	11/11/2019 9:16:41 P	
Ethylbenzene	ND	0.13	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 P	
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Naphthalene	ND	0.28	2.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Acetone	ND	1.2	10	μg/L	1	11/11/2019 9:16:41 P	M R64405
Bromobenzene	ND	0.24	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Bromodichloromethane	ND	0.13	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Bromoform	ND	0.29	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Bromomethane	ND	0.27	3.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
2-Butanone	ND	2.1	10	μg/L	1	11/11/2019 9:16:41 P	M R64405
Carbon disulfide	ND	0.45	10	μg/L	1	11/11/2019 9:16:41 P	M R64405
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Chlorobenzene	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Chloroethane	ND	0.18	2.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 P	M R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 41

Lab Order 1911310

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2019

CLIENT: Marathon Petroleum Client Sample ID: Trip Blank-1

Project: SWMU 13 Collection Date:

Lab ID: 1911310-005 **Matrix:** TRIP BLANK **Received Date:** 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JM	R
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 9:16:41 F	M R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 9:16:41 F	M R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 9:16:41 F	M R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 9:16:41 F	M R64405
Surr: 1,2-Dichloroethane-d4	90.7	0	70-130	%Rec	1	11/11/2019 9:16:41 F	M R64405
Surr: 4-Bromofluorobenzene	88.9	0	70-130	%Rec	1	11/11/2019 9:16:41 F	M R64405
Surr: Dibromofluoromethane	109	0	70-130	%Rec	1	11/11/2019 9:16:41 F	M R64405
Surr: Toluene-d8	96.0	0	70-130	%Rec	1	11/11/2019 9:16:41 F	PM R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1911310

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2019

CLIENT: Marathon Petroleum Client Sample ID: Trip Blank-2

Project: SWMU 13 Collection Date:

Lab ID: 1911310-006 **Matrix:** TRIP BLANK **Received Date:** 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB	<u> </u>
Gasoline Range Organics (GRO)	ND	0.021	0.050	mg/L	1	11/13/2019 1:56:49 AM	1 G64438
Surr: BFB	96.9	0	65.8-143	%Rec	1	11/13/2019 1:56:49 AM	1 G64438
EPA METHOD 8260B: VOLATILES						Analyst: JMR	!
Benzene	ND	0.17	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Toluene	ND	0.35	1.0	μg/L	1	11/11/2019 9:45:16 PM	
Ethylbenzene	ND	0.13	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Naphthalene	ND	0.28	2.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Acetone	ND	1.2	10	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Bromobenzene	ND	0.24	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Bromodichloromethane	ND	0.13	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Bromoform	ND	0.29	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Bromomethane	ND	0.27	3.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
2-Butanone	ND	2.1	10	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Carbon disulfide	ND	0.45	10	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Chlorobenzene	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Chloroethane	ND	0.18	2.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Chloroform	ND	0.12	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Chloromethane	ND	0.32	3.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Dibromochloromethane	ND	0.24	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Dibromomethane	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	1 R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 41

Lab Order 1911310

Date Reported: 12/23/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Petroleum Client Sample ID: Trip Blank-2

Project: SWMU 13 Collection Date:

Lab ID: 1911310-006 **Matrix:** TRIP BLANK **Received Date:** 11/7/2019 2:58:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMF	2
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
2-Hexanone	ND	1.5	10	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Isopropylbenzene	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Methylene Chloride	ND	0.15	3.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
n-Butylbenzene	ND	0.23	3.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
n-Propylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Styrene	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	11/11/2019 9:45:16 PM	/I R64405
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
trans-1,3-Dichloropropene	ND	0.17	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,2,3-Trichlorobenzene	ND	0.30	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,2,4-Trichlorobenzene	ND	0.20	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,1,1-Trichloroethane	ND	0.17	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
1,1,2-Trichloroethane	ND	0.22	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Trichloroethene (TCE)	ND	0.17	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Trichlorofluoromethane	ND	0.19	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Vinyl chloride	ND	0.18	1.0	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Xylenes, Total	ND	0.45	1.5	μg/L	1	11/11/2019 9:45:16 PM	/ R64405
Surr: 1,2-Dichloroethane-d4	91.5	0	70-130	%Rec	1	11/11/2019 9:45:16 PM	/ R64405
Surr: 4-Bromofluorobenzene	90.5	0	70-130	%Rec	1	11/11/2019 9:45:16 PM	/ R64405
Surr: Dibromofluoromethane	108	0	70-130	%Rec	1	11/11/2019 9:45:16 PM	/ R64405
Surr: Toluene-d8	97.1	0	70-130	%Rec	1	11/11/2019 9:45:16 PM	/ R64405

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1911310

Attn:

ANDY FREEMAN

Project Summary

The samples listed on the following page(s) were received for analysis at Anatek Labs, Inc. The analytical report is attached. All test results reported below comply with and meet current TNI standards, other applicable regulatory standards, and the Anatek Labs, Inc. Quality Assurance Manual, unless otherwise noted in the report.

The results in this report relate only to the samples analyzed. All soil and solid results are reported on a dryweight basis unless otherwise noted. An estimation of uncertainty is available upon request.

This report shall not be reproduced, except in full, without the written consent of Anatek Labs, Inc.

For questions about this report, please contact Justin Doty at 208-883-2839.

Authorized Signature

Todd Taruscio, Lab Manager

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911310

Attn:

ANDY FREEMAN

Project Summary

Sample Summary

Anatek Sample ID	Client Sample ID	Matrix	Collection I	Date/Time	Received Da	ate/Time
191112049-001	1911310-001F / SWMU 13-5-GW	Water	11/7/2019	8:15 AM	11/12/2019	2:43 PM
191112049-002	1911310-001G / SWMU 13-5-GW	Water	11/7/2019	8:15 AM	11/12/2019	2:43 PM
191112049-003	1911310-002F / SWMU 13-6-GW	Water	11/7/2019	9:30 AM	11/12/2019	2:43 PM
191112049-004	1911310-002G / SWMU 13-6-GW	Water	11/7/2019	9:30 AM	11/12/2019	2:43 PM
191112049-005	1911310-003F / SWMU 13-7-GW	Water	11/7/2019	10:20 AM	11/12/2019	2:43 PM
191112049-006	1911310-003G / SWMU 13-7-GW	Water	11/7/2019	10:20 AM	11/12/2019	2:43 PM
191112049-007	1911310-004F / EB02	Water	11/7/2019	11:45 AM	11/12/2019	2:43 PM
191112049-008	1911310-004G / EB02	Water	11/7/2019	11:45 AM	11/12/2019	2:43 PM

QA/QC Summary

QC Parameter	Yes / No (if No, see Comments below)
1. Sample Holding Time Valid?	Yes
2. Instrument Tunes Valid?	Yes
3. Method Blank(s) Valid?	Yes
4. Internal Standard Response(s) Valid?	No
5. Initial Calibration Curve(s) Valid?	Yes
6. Continuing Calibration(s) Valid?	Yes
7. Surrogate Recoveries Valid?	No
8. QC Sample Recoveries Valid?	Yes

Comments:

One of the four SVOC samples had low internal standard response and was qualified - Surrogate recovery was above laboratory and method acceptance limits (potential chemist error thus data for this analyte is suspect).

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191112049-001

Sampling Date 11/7/2019

Date/Time Received 11/12/2019 2:43 PM

Client Sample ID

1911310-001F / SWMU 13-5-GW

Sampling Time 8:15 AM

Matrix

Water

Service .

Comments	S		

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.0325	ma/L	0.01	11/15/2019 1:00:00 PM	BKP	FPA 335 4	

Sample Number

191112049-003

Sampling Date 11/7/2019

Date/Time Received 11/12/2019 2:43 PM

Client Sample ID Matrix 1911310-002F / SWMU 13-6-GW

Sampling Time 9:30 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.0203	mg/L	0.01	11/15/2019 1:00:00 PM	ВКР	EPA 335.4	

Sample Number

191112049-005

1911310-003F / SWMU 13-7-GW

Sampling Date 11/7/2019

Date/Time Received 11/12/2019 2:43 PM

Sampling Time 10:20 AM

Client Sample ID Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.0203	mg/L	0.01	11/15/2019 1:00:00 PM	ВКР	EPA 335.4	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-007

1911310-004F / EB02

Sampling Date 11/7/2019

Date/Time Received 11/12/2019 2:43 PM

Sampling Time 11:45 AM

Client Sample ID Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/L	0.01	11/21/2019 9:00:00 AM	ВКР	EPA 335.4	

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND PQL Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911310

Attn:

ALBUQUERQUE, NM 87109 ANDY FREEMAN

Analytical Results Report

Quality Control Data

Lab Control Sample										
Parameter	LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date
Cyanide	0.528	mg/L	. 0	.5	105.6	90	-110	10000	/2019	11/21/2019
Cyanide	0.516	mg/L	0	.5	103.2	90)-110	11/15	5/2019	11/15/2019
Matrix Spike										
Sample Number Parameter		Sample	MS		2.0	MS	112	AR	20020	Mir-located
191112049-007 Cyanide		Result ND	Result 0.517	Uni		Spike	%Rec	%Rec	Prep Date	그 그 이번에 깨끗하다 당하였다.
191114010-003 Cyanide		ND	0.517	mg/ mg/		0.5	103.4 105.4	80-120 80-120	11/20/2019	
Matrix Calles Deciliant						0.2.1		55 125	7.0.10.120.10	1110/2010
Matrix Spike Duplicate	MSD		MSD				40			
Parameter	Result	Units	Spike	%F	Rec	%RPD	AR %RPD	Pre	p Date	Analysis Date
Cyanide	0.520	mg/L	0.5		4.0	0.6	0-20		20/2019	11/21/2019
Cyanide	0.530	mg/L	0.5	10	6.0	0.6	0-20	11/1	5/2019	11/15/2019
Method Blank										
Parameter		Res	sult	U	nits		PQL	Pr	ep Date	Analysis Date
Cyanide		ND)	m	ıg/L		0.01		20/2019	11/21/2019
Cyanide		ND	1		ıg/L		0.01	11/	15/2019	11/15/2019

AR Acceptable Range ND Not Detected

PQL Practical Quantitation Limit RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191112049-002

Sampling Date

Sampling Time 8:15 AM

11/7/2019

Date/Time Received

Analyst

11/12/2012:43 PM

Qualifier

Client Sample ID

1911310-001G / SWMU 13-5-GW

SW .

ND

6.05

ND

Bed St.

PQL

Extraction Date

Method

11/14/2019

Matrix Comments

 ug/L
 0.025
 12/9/2019 11:37:00 PM
 TGT
 EPA 8270D

 ug/L
 1
 12/3/2019 11:35:00 PM
 TGT
 EPA 8270D

 ug/L
 1
 12/3/2019 11:35:00 PM
 TGT
 EPA 8270D

 ug/L
 1
 12/3/2019 11:35:00 PM
 TGT
 EPA 8270D

Analysis Date

Surrogate Data

Sample Number 191112049-002

Terphenyl-d14

1,4-Dioxane

Benzoic acid

Surrogate Standard 1,4-Dioxane-d8

Dibenz[a,h]anthracene

Method EPA 8270D EPA 8270D

Percent Recovery 58.3 90.4 Control Limits 39-111 22-133

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D

Project Name:

1911310

Audiess

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191112049-004

Sampling Date

11/7/2019

Date/Time Received

11/12/2012:43 PM

Client Sample ID

1911310-002G / SWMU 13-6-GW Water S

Sampling Time 9:30 AM

Extraction Date 11/14/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/10/2019 12:01:00 AM	TGT	EPA 8270D	
1,4-Dioxane	3.88	ug/L	1	12/3/2019 11:58:00 PM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/3/2019 11:58:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number	191112049-004				
Surrogate	Standard	Method	Percent Recovery	Control Limits	
1,4-Dioxane	e-d8	EPA 8270D	74.7	39-111	
Terphenyl-d14		EPA 8270D	87.6	22-133	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

191112049

Address:

4901 HAWKINS NE SUITE D

Project Name:

Batch #:

1911310

Attn:

ALBUQUERQUE, NM 87109 ANDY FREEMAN

Analytical Results Report

Sample Number

191112049-006

Sampling Date

11/7/2019

Date/Time Received

11/12/2012:43 PM

Client Sample ID Matrix

1911310-003G / SWMU 13-7-GW Water

Sampling Time 10:20 AM

Extraction Date 11/14/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/10/2019 2:18:00 AM	TGT	EPA 8270D	
1,4-Dioxane	11.9	ug/L	1	12/4/2019 1:31:00 AM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/4/2019 1:31:00 AM	TGT	EPA 8270D	

Surrogate Data

191112049-006 Sample Number

Terphenyl-d14

Surrogate Standard 1,4-Dioxane-d8

Method **EPA 8270D EPA 8270D** Percent Recovery 85.5 119.6

Control Limits 39-111 22-133

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

191112049

Address:

4901 HAWKINS NE SUITE D

Batch #:

ALBUQUERQUE, NM 87109

Project Name:

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191112049-008

Sampling Date 11/7/2019 Date/Time Received 11/12/2012:43 PM

Client Sample ID

1911310-004G / EB02

Water

Sampling Time 11:45 AM

Extraction Date 11/14/2019

Matrix Co

m	m	er	nt:	S

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dibenz[a,h]anthracene	ND	ug/L	0.025	12/10/2019 12:23:00 AM	TGT	EPA 8270D	
1,4-Dioxane	ND	ug/L	1	12/4/2019 12:45:00 AM	TGT	EPA 8270D	
Benzoic acid	ND	ug/L	1	12/4/2019 12:45:00 AM	TGT	EPA 8270D	

Surrogate Data

Sample Number	191112049-008
Surrogate :	Standard
1,4-Dioxane	e-d8
Ternhenyl	11.1

Meth	od
EPA	8270D
EPA	8270D

Percent Recover
62.0
94.4

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 **Project Name:**

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Quality Control Data

Lab Control Sample								
Parameter	LCS Result	Units	L	CS Spike	%Rec	AR %Rec	Prep Date	Analysis Dat
Dibenz[a,h]anthracene	5.29	ug/L		5	105.8	52-140	11/14/2019	12/9/2019
1,4-Dioxane	7.15	ug/L	10		71.5	45-135	11/14/2019	11/18/2019
Lab Control Sample Duplicate								
Parameter	LCSD Result	Units	LCSD Spike	%Rec	%RPD	AR %RPD	Prep Date	Analysis Date
Dibenz[a,h]anthracene	5.49	ug/L	5	109.8	3.7	0-20	11/14/2019	12/9/2019
1.4-Dioxane	5.97	ug/L	10	59.7	18.0	0-25	11/14/2019	11/18/2019

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
1,4-Dioxane	ND	ug/L	0.5	11/14/2019	11/18/2019
Benzoic acid	ND	ug/L	0.5	11/14/2019	11/18/2019
Dibenz[a,h]anthracene	ND	ug/L	0.01	11/14/2019	12/9/2019

AR

Acceptable Range

ND

Not Detected

PQL RPD Practical Quantitation Limit Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-002

Sampling Date

11/7/2019

Date/Time Received Extraction Date 11/12/2012:43 PM

11/14/2019

Client Sample ID Matrix 1911310-001G / SWMU 13-5-GW Water S

Sampling Time 8:15 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
1,2-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-002

Sampling Date

11/7/2019

Date/Time Received Extraction Date 11/12/2012:43 PM

11/14/2019

Client Sample ID

1911310-001G / SWMU 13-5-GW Water S

Sampling Time 8:15 AM

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Acenaphthylene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Benzyl alcohol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Di-n-butylphthalate	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Fluorene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-002

Sampling Date

11/7/2019

Date/Time Received Extraction Date 11/12/2012:43 PM

Client Sample ID

1911310-001G / SWMU 13-5-GW

Sampling Time 8:15 AM

11/14/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Isophorone	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/9/2019 8;41:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/9/2019 8:41:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number 191112049-002			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	107.4	43-120
2-Fluorobiphenyl	EPA 8270D	110.0	55-127
2-Fluorophenol	EPA 8270D	78.6	41-119
Nitrobenzene-d5	EPA 8270D	84.0	55-120
Phenol-d5	EPA 8270D	81.2	52-115
Terphenyl-d14	EPA 8270D	86.4	22-135

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-004

Sampling Date

11/7/2019

Date/Time Received

11/12/2012:43 PM

Client Sample ID Matrix 1911310-002G / SWMU 13-6-GW Water S

Sampling Time 9:30 AM

Extraction Date 11/1

11/14/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
1,2-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0,2	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0,5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-004

Sampling Date

11/7/2019

Date/Time Received

11/12/2012:43 PM

Client Sample ID Matrix

1911310-002G / SWMU 13-6-GW

Sampling Time 9:30 AM

Extraction Date 11/14/2019

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthylene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Benzyl alcohol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Dibenz[a.h]anthracene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Di-n-buty/phthalate	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Fluorene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/9/2019 9:08:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-004

Sampling Date

11/7/2019

Date/Time Received

11/12/2012:43 PM

Client Sample ID

1911310-002G / SWMU 13-6-GW Water

Sampling Time 9:30 AM

Extraction Date

11/14/2019

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Isophorone	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/9/2019 9:08:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number 191112049-004			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	101.2	43-120
2-Fluorobiphenyl	EPA 8270D	118.0	55-127
2-Fluorophenol	EPA 8270D	91.6	41-119
Nitrobenzene-d5	EPA 8270D	92.4	55-120
Phenol-d5	EPA 8270D	92.0	52-115
Terphenyl-d14	EPA 8270D	82.8	22-135

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address: 4901

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-006

Sampling Date

11/7/2019

Date/Time Received Extraction Date 11/12/2012:43 PM

11/14/2019

Client Sample ID Matrix 1911310-003G / SWMU 13-7-GW Water S

Sampling Time 10:20 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
1,2-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
1,3-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
1,4-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
1-Methylnaphthalene	3.26	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,4-Dichlorophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,4-Dimethylphenol	1.47	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,4-Dinitrophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,4-Dinitrotoluene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2,6-Dinitrotoluene	ND	ug/L	0.2	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2-Chloronaphthalene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2-Chlorophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2-Methylphenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2-Nitroaniline	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
2-Nitrophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
3+4-Methylphenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
3-Nitroaniline	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
4-Chloro-3-methylphenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
4-Chlorophenyl-phenylether	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
4-Nitroaniline	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
4-Nitrophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Acenaphthene	0.97	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-006

Sampling Date

11/7/2019

Date/Time Received **Extraction Date**

11/12/2012:43 PM

Client Sample ID

1911310-003G / SWMU 13-7-GW Water

Sampling Time 10:20 AM

11/14/2019

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Acenaphthylene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Aniline	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Anthracene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Benzo(ghi)perylene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Benzo[a]anthracene	ND	ug/L	0.1	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Benzo[a]pyrene	ND	ug/L	0.1	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Benzo[b]fluoranthene	ND	ug/L	0.1	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Benzo[k]fluoranthene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Benzyl alcohol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Butylbenzylphthalate	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Carbazole	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Chrysene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Dibenzofuran	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Diethylphthalate	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Dimethylphthalate	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Di-n-butylphthalate	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Di-n-octylphthalate	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Fluoranthene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Fluorene	0.50	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Hexachlorobenzene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Hexachlorobutadiene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Hexachloroethane	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number

191112049-006

Sampling Date

11/7/2019

Date/Time Received Extraction Date 11/12/2012:43 PM

Client Sample ID

1911310-003G / SWMU 13-7-GW Water S

Sampling Time 1

10:20 AM

11/14/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Isophorone	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Naphthalene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Nitrobenzene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Pentachlorophenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Phenanthrene	0.38	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20 . J
Phenol	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Pyrene	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20
Pyridine	ND	ug/L	0.5	12/9/2019 10:56:00 PM	TGT	EPA 8270D	S20

Surrogate Data

Sample Number	191112049-006			
Surrogate	Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribro	omophenol	EPA 8270D	144.6	43-120
2-Fluorobip	phenyl	EPA 8270D	158.8	55-127
2-Fluoroph	enol	EPA 8270D	110.4	41-119
Nitrobenze	ne-d5	EPA 8270D	116.8	55-120
Phenol-d5		EPA 8270D	108.4	52-115
Terphenyl-	d14	EPA 8270D	111.2	22-135

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn: ANDY FREEMAN Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number Client Sample ID

Address:

191112049-008

Sampling Date

11/7/2019

Date/Time Received **Extraction Date**

11/12/2012:43 PM

11/14/2019

1911310-004G / EB02 Matrix

Water

Sampling Time 11:45 AM

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2,4-Trichlorobenzene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1,2-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1,3-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1,4-Dichlorobenzene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,4,5-Trichlorophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,4,6-Trichlorophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,4-Dichlorophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,4-Dimethylphenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,4-Dinitrophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,4-Dinitrotoluene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2,6-Dinitrotoluene	ND	ug/L	0.2	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2-Chloronaphthalene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2-Chlorophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2-Methylnaphthalene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2-Methylphenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2-Nitroaniline	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
2-Nitrophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
3,3'-Dichlorobenzidine	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
3+4-Methylphenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
3-Nitroaniline	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1,6-Dinitro-2-methylphenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
4-Bromophenyl-phenylether	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1-Chloro-3-methylphenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
1-Chlorophenyl-phenylether	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
4-Nitroaniline	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
4-Nitrophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Acenaphthene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

191112049

Project Name:

1911310

Analytical Results Report

Sample Number Client Sample ID 191112049-008

Sampling Date

11/7/2019

Date/Time Received

11/12/2012:43 PM

le ID 1911310-004G / EB02 Water

Sampling Time 11:45 AM

Extraction Date 11/14/2019

Comments

Matrix

Parameter	nmeter Result Units PQL Analysis Dat		Analysis Date	Analyst	Method	Qualifier	
Acenaphthylene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Aniline	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Anthracene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Benzo(ghi)perylene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.1	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.1	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.1	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Benzyl alcohol	1.51	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Butylbenzylphthalate	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Carbazole	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Chrysene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Dibenz[a,h]anthracene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Dibenzofuran	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Diethylphthalate	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Dimethylphthalate	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Di-n-butylphthalate	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Di-n-octylphthalate	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Fluoranthene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Fluorene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Hexachlorobenzene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Hexachlorobutadiene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Hexachlorocyclopentadiene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Hexachloroethane	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.2	12/9/2019 9:35:00 PM	TGT	EPA 8270D	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

191112049-008

Sampling Date 11/7/2019 Date/Time Received

11/12/2012:43 PM

Client Sample ID

1911310-004G / EB02 Water

Sampling Time 11:45 AM

Extraction Date 11/14/2019

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Isophorone	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Naphthalene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Nitrobenzene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
n-Nitrosodiphenylamine	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Phenanthrene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Phenol	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Pyrene	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	
Pyridine	ND	ug/L	0.5	12/9/2019 9:35:00 PM	TGT	EPA 8270D	

Surrogate Data

Sample Number 191112049-008			
Surrogate Standard	Method	Percent Recovery	Control Limits
2,4,6-Tribromophenol	EPA 8270D	100.2	43-120
2-Fluorobiphenyl	EPA 8270D	120.4	55-127
2-Fluorophenol	EPA 8270D	85.8	41-119
Nitrobenzene-d5	EPA 8270D	94.0	55-120
Phenol-d5	EPA 8270D	90.4	52-115
Terphenyl-d14	EPA 8270D	84.0	22-135

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND Not Detected PQL

Practical Quantitation Limit

S20

Surrogate recovery was above laboratory and method acceptance limits. Potential chemist error thus data for this anayte is suspect.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address: 4901 HAWKINS NE SUITE D Project Name:

1911310

ALBUQUERQUE, NM 87109 Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

ab Control Sample							
Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Pyrene	5.66	ug/L	5	113.2	45-139	11/14/2019	12/2/2019
Phenol	4.39	ug/L	5	87.8	45-134	11/14/2019	12/2/2019
Pentachlorophenol	4.64	ug/L	5	92.8	22-138	11/14/2019	12/2/2019
Naphthalene	4.23	ug/L	5	84.6	53-120	11/14/2019	12/2/2019
bis(2-Ethylhexyl)phthalate	5.64	ug/L	5	112.8	51-149	11/14/2019	12/2/2019
Benzo[a]pyrene	5.07	ug/L	5	101.4	63-120	11/14/2019	12/2/2019
Acenaphthene	4.74	ug/L	5	94.8	45-129	11/14/2019	12/2/2019
4-Nitrophenol	4.19	ug/L	5	83.8	19-141	11/14/2019	12/2/2019
4-Chloro-3-methylphenol	4.69	ug/L	5	93.8	42-139	11/14/2019	12/2/2019
2-Methylnaphthalene	4,18	ug/L	-5	83.6	56-128	11/14/2019	12/2/2019
2-Chlorophenol	4.16	ug/L	5	83.2	50-131	11/14/2019	12/2/2019
2,4-Dinitrotoluene	5.00	ug/L	5	100.0	42-143	11/14/2019	12/2/2019
1-Methylnaphthalene	4.19	ug/L	5	83.8	57-124	11/14/2019	12/2/2019
1,4-Dichlorobenzene	3.43	ug/L	5	68.6	28-108	11/14/2019	12/2/2019
1,2,4-Trichlorobenzene	3.67	ug/L	5	73.4	33-109	11/14/2019	12/2/2019

Lab Control Sample Duplicate								
Parameter	LCSD Result	Units	LCSD Spike	%Rec	%RPD	AR %RPD	Prep Date	Analysis Date
Pyrene	5.78	ug/L	5	115.6	2.1	0-20	11/14/2019	12/2/2019
Phenol	4.40	ug/L	5	88.0	0.2	0-25	11/14/2019	12/2/2019
Pentachlorophenol	4.43	ug/L	5	88.6	4.6	0-39	11/14/2019	12/2/2019
Naphthalene	4.31	ug/L	5	86.2	1.9	0-20	11/14/2019	12/2/2019
bis(2-Ethylhexyl)phthalate	5.95	ug/L	5	119.0	5.3	0-43	11/14/2019	12/2/2019
Benzo[a]pyrene	4.91	ug/L	5	98.2	3.2	0-20	11/14/2019	12/2/2019
Acenaphthene	4.84	ug/L	5	96.8	2.1	0-22	11/14/2019	12/2/2019
4-Nitrophenol	3.63	ug/L	5	72.6	14.3	0-51	11/14/2019	12/2/2019
4-Chloro-3-methylphenol	4.50	ug/L	5	90.0	4.1	0-20	11/14/2019	12/2/2019
2-Methylnaphthalene	4.19	ug/L	5	83.8	0.2	0-24	11/14/2019	12/2/2019
2-Chlorophenol	4.24	ug/L	5	84.8	1.9	0-24	11/14/2019	12/2/2019
2,4-Dinitrotoluene	4.87	ug/L	5	97.4	2.6	0-20	11/14/2019	12/2/2019
1-Methylnaphthalene	4.23	ug/L	5	84.6	1.0	0-20	11/14/2019	12/2/2019
1,4-Dichlorobenzene	3.50	ug/L	5	70.0	2.0	0-31	11/14/2019	12/2/2019
1,2,4-Trichlorobenzene	3.77	ug/L	5	75.4	2.7	0-33	11/14/2019	12/2/2019

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
1.2.4-Trichlorobenzene	ND	ug/L	0.5	11/14/2019	12/2/2019
1,2-Dichlorobenzene	ND	ug/L	0.5	11/14/2019	12/2/2019
1,3-Dichlorobenzene	ND	ug/L	0.5	11/14/2019	12/2/2019
1,4-Dichlorobenzene	ND	ug/L	0.5	11/14/2019	12/2/2019
1-Methylnaphthalene	ND	ug/L	0.5	11/14/2019	12/2/2019
2,4,5-Trichlorophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2,4,6-Trichlorophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2,4-Dichlorophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2.4-Dimethylphenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2.4-Dinitrophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2,4-Dinitrotoluene	ND	ug/L	0.5	11/14/2019	12/2/2019
2,6-Dinitrotoluene	ND	ug/L	0.5	11/14/2019	12/2/2019
2-Chloronaphthalene	ND	ug/L	0.5	11/14/2019	12/2/2019
2-Chlorophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2-Methylnaphthalene	ND	ug/L	0.5	11/14/2019	12/2/2019
2-Methylphenol	ND	ug/L	0.5	11/14/2019	12/2/2019
2-Nitroaniline	ND	ug/L	0.5	11/14/2019	12/2/2019
2-Nitrophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
3,3'-Dichlorobenzidine	ND	ug/L	0.5	11/14/2019	12/2/2019
3+4-Methylphenol	ND	ug/L	0.5	11/14/2019	12/2/2019
3-Nitroaniline	ND	ug/L	0.5	11/14/2019	12/2/2019
4,6-Dinitro-2-methylphenol	ND	ug/L	0.5	11/14/2019	12/2/2019
4-Bromophenyl-phenylether	ND	ug/L	0.5	11/14/2019	12/2/2019
4-Chloro-3-methylphenol	ND	ug/L	0.5	11/14/2019	12/2/2019
4-Chlorophenyl-phenylether	ND	ug/L	0.5	11/14/2019	12/2/2019
4-Nitroaniline	ND	ug/L	0.5	11/14/2019	12/2/2019
4-Nitrophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
Acenaphthene	ND	ug/L	0.5	11/14/2019	12/2/2019
Acenaphthylene	ND	ug/L	0.5	11/14/2019	12/2/2019
Aniline	ND	ug/L	0.5	11/14/2019	12/2/2019
Anthracene	ND	ug/L	0.5	11/14/2019	12/2/2019
Benzo(ghi)perylene	ND	ug/L	0.5	11/14/2019	12/2/2019
Benzo[a]anthracene	ND	ug/L	0.5	11/14/2019	12/2/2019
Benzo[a]pyrene	ND	ug/L	0.5	11/14/2019	12/2/2019
Benzo[b]fluoranthene	ND	ug/L	0.5	11/14/2019	12/2/2019
Benzo[k]fluoranthene	ND	ug/L	0.5	11/14/2019	12/2/2019
Benzyl alcohol	ND	ug/L	0.5	11/14/2019	12/2/2019

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

191112049

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1911310

Attn:

ANDY FREEMAN

Analytical Results Report

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
bis(2-Chloroethoxy)methane	ND	ug/L	0.5	11/14/2019	12/2/2019
bis(2-chloroisopropyl)ether	ND	ug/L	0.5	11/14/2019	12/2/2019
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.5	11/14/2019	12/2/2019
Butylbenzylphthalate	ND	ug/L	0.5	11/14/2019	12/2/2019
Carbazole	ND	ug/L	0.5	11/14/2019	12/2/2019
Chrysene	ND	ug/L	0.5	11/14/2019	12/2/2019
Dibenz[a,h]anthracene	ND	ug/L	0.5	11/14/2019	12/2/2019
Dibenzofuran	ND	ug/L	0.5	11/14/2019	12/2/2019
Diethylphthalate	ND	ug/L	0.5	11/14/2019	12/2/2019
Dimethylphthalate	ND	ug/L	0.5	11/14/2019	12/2/2019
Di-n-butylphthalate	ND	ug/L	0.5	11/14/2019	12/2/2019
Di-n-octylphthalate	ND	ug/L	0.5	11/14/2019	12/2/2019
Fluoranthene	ND	ug/L	0.5	11/14/2019	12/2/2019
Fluorene	ND	ug/L	0.5	11/14/2019	12/2/2019
Hexachlorobenzene	ND	ug/L	0.5	11/14/2019	12/2/2019
Hexachlorobutadiene	ND	ug/L	0.5	11/14/2019	12/2/2019
Hexachlorocyclopentadiene	ND	ug/L	0.5	11/14/2019	12/2/2019
Hexachloroethane	ND	ug/L	0.5	11/14/2019	12/2/2019
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.5	11/14/2019	12/2/2019
Isophorone	ND	ug/L	0.5	11/14/2019	12/2/2019
Naphthalene	ND	ug/L	0.5	11/14/2019	12/2/2019
Nitrobenzene	ND	ug/L	0.5	11/14/2019	12/2/2019
n-Nitrosodiphenylamine	ND	ug/L	0.5	11/14/2019	12/2/2019
Pentachlorophenol	ND	ug/L	0.5	11/14/2019	12/2/2019
Phenanthrene	ND	ug/L	0.5	11/14/2019	12/2/2019
Phenol	ND	ug/L	0.5	11/14/2019	12/2/2019
Pyrene	ND	ug/L	0.5	11/14/2019	12/2/2019
Pyridine	ND	ug/L	0.5	11/14/2019	12/2/2019

AR Acceptable Range ND Not Detected

PQL Practical Quantitation Limit RPD Relative Percentage Difference

Comments:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals Client ID: PBW Batch ID: A64708 RunNo: 64708 Prep Date: Analysis Date: 11/22/2019 SeqNo: 2217285 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Barium ND 0.0020 Beryllium ND 0.0020

Calcium ND 1.0 Chromium ND 0.0060 Cobalt ND 0.0060 Iron ND 0.020
Cobalt ND 0.0060
Iron ND 0.020
Magnesium ND 1.0
Manganese ND 0.0020
Nickel ND 0.010
Potassium ND 1.0
Silver ND 0.0050
Sodium ND 1.0
Vanadium ND 0.050
Zinc ND 0.010

Sample ID: LLLCS-A	Samp	Type: LC	SLL	Tes	tCode: El	PA Method	200.7: Dissol	200.7: Dissolved Metals			
Client ID: BatchQC	Bato	h ID: A64	4708	R	RunNo: 64	4708					
Prep Date:	Analysis	Date: 11	/22/2019	S	SeqNo: 2	217286	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.0021	0.0020	0.002000	0	104	50	150				
Beryllium	0.0018	0.0020	0.002000	0	90.2	50	150			J	
Cadmium	0.0022	0.0020	0.002000	0	109	50	150				
Calcium	0.55	1.0	0.5000	0	110	50	150			J	
Chromium	0.0068	0.0060	0.006000	0	113	50	150				
Cobalt	0.0063	0.0060	0.006000	0	105	50	150				
Iron	0.021	0.020	0.02000	0	104	50	150				
Magnesium	0.52	1.0	0.5000	0	105	50	150			J	
Manganese	0.0020	0.0020	0.002000	0	102	50	150				
Nickel	0.0066	0.010	0.005000	0	132	50	150			J	
Potassium	0.52	1.0	0.5000	0	104	50	150			J	
Silver	0.0039	0.0050	0.005000	0	78.7	50	150			J	
Sodium	0.63	1.0	0.5000	0	127	50	150			J	
Vanadium	0.0094	0.050	0.01000	0	93.6	50	150			J	
Zinc	0.011	0.010	0.01000	0	111	50	150				

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 21 of 41

Hall Environmental Analysis Laboratory, Inc.

SampType: MS

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: 1911310-004DMS

Sample ID: LCS-A	SampType: LCS TestCode: EPA Metho					PA Method	200.7: Dissol	ved Metal	s	
Client ID: LCSW	Bato	Batch ID: A64708			RunNo: 64	4708				
Prep Date:	Analysis	Date: 11	/22/2019	8	SeqNo: 22	217287	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.50	0.0020	0.5000	0	101	85	115			
Beryllium	0.51	0.0020	0.5000	0	102	85	115			
Cadmium	0.51	0.0020	0.5000	0	102	85	115			
Calcium	52	1.0	50.00	0	103	85	115			
Chromium	0.50	0.0060	0.5000	0	99.7	85	115			
Cobalt	0.49	0.0060	0.5000	0	97.8	85	115			
Iron	0.50	0.020	0.5000	0	101	85	115			
Magnesium	50	1.0	50.00	0	101	85	115			
Manganese	0.50	0.0020	0.5000	0	100	85	115			
Nickel	0.50	0.010	0.5000	0	99.4	85	115			
Potassium	50	1.0	50.00	0	99.3	85	115			
Silver	0.11	0.0050	0.1000	0	105	85	115			
Sodium	49	1.0	50.00	0	97.4	85	115			
Vanadium	0.51	0.050	0.5000	0	102	85	115			
Zinc	0.50	0.010	0.5000	0	99.5	85	115			

		. , ,	-								
Client ID: EB02	Bato	ch ID: A6	4708	F							
Prep Date:	Analysis Date: 11/22/2019			SeqNo: 2217304			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.52	0.0020	0.5000	0	103	70	130				
Beryllium	0.52	0.0020	0.5000	0	104	70	130				
Cadmium	0.52	0.0020	0.5000	0	104	70	130				
Calcium	52	1.0	50.00	0	104	70	130				
Chromium	0.50	0.0060	0.5000	0	100	70	130				
Cobalt	0.50	0.0060	0.5000	0	101	70	130				
Iron	0.50	0.020	0.5000	0	99.4	70	130				
Magnesium	49	1.0	50.00	0	98.6	70	130				
Manganese	0.50	0.0020	0.5000	0	101	70	130				
Nickel	0.51	0.010	0.5000	0	103	70	130				
Potassium	49	1.0	50.00	0	98.0	70	130				
Silver	0.11	0.0050	0.1000	0	105	70	130				
Sodium	48	1.0	50.00	0.5944	95.4	70	130				
Vanadium	0.51	0.050	0.5000	0	103	70	130				
Zinc	0.53	0.010	0.5000	0.01337	103	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

TestCode: EPA Method 200.7: Dissolved Metals

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: 1911310-004DMSD SampType: MSD TestCode: EPA Method 200.7: Dissolved Metals Client ID: EB02 Batch ID: A64708 RunNo: 64708 Analysis Date: 11/22/2019 Prep Date: SeqNo: 2217305 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Barium 0.52 0.0020 0.5000 0 104 70 130 0.470 20 Beryllium 0.53 0.0020 0.5000 0 106 70 130 1.47 20 0.52 0.5000 0 105 70 20 Cadmium 0.0020 130 0.342 Calcium 52 1.0 50.00 0 105 70 130 0.441 20 Chromium 0.50 0.0060 0.5000 0 101 70 130 0.371 20 Cobalt 0.50 0.0060 0.5000 0 101 70 130 0.362 20 0.51 0.020 0.5000 0 103 70 130 3.03 20 50 50.00 0 99.2 70 130 0.571 20 Magnesium 1.0 Manganese 0.51 0.0020 0.5000 0 102 70 130 1.44 20 Nickel 0.51 0.010 0.5000 0 103 70 130 0.275 20 49 50.00 0 98.4 70 130 0.478 20 Potassium 1.0 107 20 0.0050 0.1000 0 70 130 1.53 Silver 0.11 48 0.5944 95.7 70 0.324 20 Sodium 1.0 50.00 130 Vanadium 0.51 0.050 0.5000 0 102 70 130 0.331 20 Zinc 0.53 0.010 0.5000 0.01337 104 70 130 1.11 20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

0.0050

0.050

0.010

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB-48748 SampType: MBLK TestCode: EPA Method 200.7: Total Metals Client ID: PBW Batch ID: 48748 RunNo: 64458 Prep Date: 11/12/2019 Analysis Date: 11/13/2019 SeqNo: 2206830 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Barium ND 0.0020 Beryllium ND 0.0020 ND 0.0020 Cadmium Chromium ND 0.0060 Cobalt ND 0.0060 0.020 0.0095 Iron Manganese 0.00015 0.0020 Nickel ND 0.010

Sample ID: LCSLL-48748	Samp	Type: LC	SLL	Tes						
Client ID: BatchQC	Bato	h ID: 487	748	F	RunNo: 64					
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			S	SeqNo: 2	206835	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.0019	0.0020	0.002000	0	93.2	50	150			J
Beryllium	0.0021	0.0020	0.002000	0	105	50	150			
Cadmium	0.0019	0.0020	0.002000	0	96.3	50	150			J
Chromium	0.0059	0.0060	0.006000	0	98.2	50	150			J
Cobalt	0.0070	0.0060	0.006000	0	117	50	150			
Iron	0.025	0.020	0.02000	0	123	50	150			
Manganese	0.0020	0.0020	0.002000	0	102	50	150			
Nickel	0.0044	0.010	0.005000	0	88.1	50	150			J
Silver	0.0045	0.0050	0.005000	0	89.7	50	150			J
Vanadium	0.0096	0.050	0.01000	0	96.5	50	150			J
Zinc	0.0092	0.010	0.01000	0	92.4	50	150			J

Sample ID: LCS-48748	SampType: LCS TestCode: EPA Method					PA Method	200.7: Total M	/letals			
Client ID: LCSW	Batcl	h ID: 487	748	F	RunNo: 64458						
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			9	SeqNo: 2	206836	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.48	0.0020	0.5000	0	96.2	85	115				
Beryllium	0.50	0.0020	0.5000	0	101	85	115				
Cadmium	0.47	0.0020	0.5000	0	94.5	85	115				
Chromium	0.47	0.0060	0.5000	0	93.4	85	115				
Cobalt	0.45	0.0060	0.5000	0	89.1	85	115				
Iron	0.51	0.020	0.5000	0	103	85	115				

Qualifiers:

Silver

Zinc

Vanadium

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: LCS-48748 SampType: LCS				TestCode: EPA Method 200.7: Total Metals							
Client ID: LCSW	Bato	h ID: 487	748	RunNo: 64458							
Prep Date: 11/12/2019	Analysis	Date: 11	/13/2019	S	SeqNo: 2	206836	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Manganese	0.48	0.0020	0.5000	0	95.7	85	115				
Nickel	0.45	0.010	0.5000	0	90.4	85	115				
Silver	0.097	0.0050	0.1000	0	96.8	85	115				
Vanadium	0.51	0.050	0.5000	0	101	85	115				
Zinc	0.46	0.010	0.5000	0	93.0	85	115				

Sample ID: MB-48748	Samp	BLK	TestCode: EPA Method 200.7: Total Metals							
Client ID: PBW	Bato	Batch ID: 48748			RunNo: 6	4458				
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			S	SeqNo: 2:	206858	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.0020								
Beryllium	ND	0.0020								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Cobalt	ND	0.0060								
Iron	ND	0.020								
Manganese	0.000089	0.0020								J
Nickel	0.0023	0.010								J
Silver	ND	0.0050								
Vanadium	ND	0.050								
Zinc	ND	0.010								

Sample ID: LCSLL-48748	SampType: LCSLL TestCode: EPA N					PA Method	200.7: Total N	letals		
Client ID: BatchQC	Bato	h ID: 487	748	F	RunNo: 64					
Prep Date: 11/12/2019	Analysis I	Date: 11	/13/2019	8	SeqNo: 2	206859	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.0020	0.0020	0.002000	0	99.4	50	150			J
Beryllium	0.0020	0.0020	0.002000	0	101	50	150			
Cadmium	0.0021	0.0020	0.002000	0	104	50	150			
Chromium	0.0058	0.0060	0.006000	0	96.3	50	150			J
Cobalt	0.0062	0.0060	0.006000	0	103	50	150			
Iron	0.020	0.020	0.02000	0	97.8	50	150			J
Manganese	0.0021	0.0020	0.002000	0	106	50	150			
Nickel	0.0056	0.010	0.005000	0	112	50	150			J
Silver	0.0047	0.0050	0.005000	0	93.2	50	150			J
Vanadium	0.0094	0.050	0.01000	0	93.9	50	150			J
Zinc	0.010	0.010	0.01000	0	101	50	150			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: LCS-48748	Samp	Type: LC	S	Tes	tCode: El	PA Method	200.7: Total I	/letals		
Client ID: LCSW	Bato	ch ID: 487	748	R	RunNo: 6	4458				
Prep Date: 11/12/2019	Analysis Date: 11/13/2019			S	SeqNo: 2:	206860	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.49	0.0020	0.5000	0	97.8	85	115			
Beryllium	0.50	0.0020	0.5000	0	101	85	115			
Cadmium	0.50	0.0020	0.5000	0	100	85	115			
Chromium	0.48	0.0060	0.5000	0	96.9	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.4	85	115			
Iron	0.49	0.020	0.5000	0	98.9	85	115			
Manganese	0.49	0.0020	0.5000	0	98.5	85	115			
Nickel	0.48	0.010	0.5000	0	96.3	85	115			
Silver	0.10	0.0050	0.1000	0	103	85	115			
Vanadium	0.50	0.050	0.5000	0	99.8	85	115			
Zinc	0.47	0.010	0.5000	0	94.4	85	115			

Sample ID: 1911310-001EMS	Samp	Type: MS	5	Tes	tCode: El	PA Method	200.7: Total N	l letals		
Client ID: SWMU 13-5-GW	Bato	h ID: 487	748	F	RunNo: 64	4829				
Prep Date: 11/12/2019	Analysis I	Date: 11	/27/2019	8	SeqNo: 2	222293	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.53	0.0020	0.5000	0.08822	87.8	70	130			
Beryllium	0.45	0.0020	0.5000	0.0006372	89.7	70	130			
Cadmium	0.48	0.0020	0.5000	0	96.6	70	130			
Chromium	0.42	0.0060	0.5000	0	83.5	70	130			
Cobalt	0.41	0.0060	0.5000	0.01303	79.5	70	130			
Iron	0.67	0.020	0.5000	0.1516	104	70	130			
Nickel	0.64	0.010	0.5000	0.2419	80.5	70	130			
Silver	0.13	0.0050	0.1000	0.01869	110	70	130			
Vanadium	0.47	0.050	0.5000	0.005434	93.7	70	130			
Zinc	0.38	0.010	0.5000	0	76.4	70	130			

Sample ID: 1911310-001EMSI Client ID: SWMU 13-5-GW		Type: MS			TestCode: EPA Method 200.7: Total Metals RunNo: 64829							
Prep Date: 11/12/2019	Analysis	Date: 11	/27/2019	S	SeqNo: 2	222294	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Barium	0.54	0.0020	0.5000	0.08822	90.2	70	130	2.29	20			
Beryllium	0.46	0.0020	0.5000	0.0006372	91.6	70	130	2.10	20			
Cadmium	0.49	0.0020	0.5000	0	99.0	70	130	2.40	20			
Chromium	0.42	0.0060	0.5000	0	84.8	70	130	1.57	20			
Cobalt	0.42	0.0060	0.5000	0.01303	81.4	70	130	2.31	20			
Iron	0.67	0.020	0.5000	0.1516	105	70	130	0.224	20			
Nickel	0.66	0.010	0.5000	0.2419	82.9	70	130	1.87	20			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 26 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: 1911310-001EMSD SampType: MSD TestCode: EPA Method 200.7: Total Metals

Client ID: **SWMU 13-5-GW** Batch ID: **48748** RunNo: **64829**

Prep Date: 11/12/2019 Analysis Date: 11/27/2019 SeqNo: 2222294 Units: mg/L

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ,									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Silver	0.13	0.0050	0.1000	0.01869	112	70	130	1.57	20	
Vanadium	0.48	0.050	0.5000	0.005434	95.9	70	130	2.22	20	
Zinc	0.39	0.010	0.5000	0	77.8	70	130	1.79	20	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

Hall Environmental Analysis Laboratory, Inc.

0.0011

0.0010

0.001000

WO#: 1911310

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals

Client ID: PBW Batch ID: A64450 RunNo: 64450

Prep Date: Analysis Date: 11/12/2019 SeqNo: 2206343 Units: mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual

Antimony ND 0.0010 Arsenic ND 0.0010 Lead ND 0.00050 Selenium ND 0.0010

Sample ID: LLLCS TestCode: EPA 200.8: Dissolved Metals SampType: LCSLL Client ID: **BatchQC** Batch ID: A64450 RunNo: 64450 Prep Date: Analysis Date: 11/12/2019 SeqNo: 2206345 Units: mg/L HighLimit POI SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result Qual Antimony 0.00085 0.0010 0.001000 0 84.6 50 150 J 0 0.00096 0.0010 96.4 50 150 J Arsenic 0.001000 Lead 0.00052 0.00050 0.0005000 0 104 50 150 0

107

50

150

Sample ID: LCS SampType: LCS TestCode: EPA 200.8: Dissolved Metals Client ID: LCSW Batch ID: A64450 RunNo: 64450 Prep Date: Analysis Date: 11/12/2019 SeqNo: 2206347 Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual 0.025 0.0010 0.02500 0 99.1 85 115 Antimony Arsenic 0.025 0.0010 0.02500 0 98.5 85 115 0 0.012 0.00050 99.9 85 Lead 0.01250 115 Selenium 0.026 0.0010 0.02500 0 102 85 115

Qualifiers:

Selenium

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 28 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB-48748 SampType: MBLK TestCode: 200.8 ICPMS Metals:Total

Client ID: PBW Batch ID: 48748 RunNo: 64504

Prep Date: 11/12/2019 Analysis Date: 11/14/2019 SeqNo: 2208379 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Antimony
 ND
 0.0010

 Arsenic
 ND
 0.0010

 Lead
 ND
 0.00050

 Selenium
 ND
 0.0010

Sample ID: MSLCSLL-48748 SampType: LCSLL TestCode: 200.8 ICPMS Metals:Total

Client ID: BatchQC Batch ID: 48748 RunNo: 64504

Prep Date: 11/12/2019 Analysis Date: 11/14/2019 SeqNo: 2208380 Units: mg/L

POI SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Antimony 0.00097 0.0010 0.001000 0 96.7 50 150 J 0 0.00098 0.0010 98.2 50 150 J Arsenic 0.001000 Lead 0.00050 0.00050 0.0005000 0 100 50 150 0.0012 0 50 Selenium 0.0010 0.001000 122 150

Sample ID: MSLCS-48748 SampType: LCS TestCode: 200.8 ICPMS Metals:Total

Client ID: LCSW Batch ID: 48748 RunNo: 64504

Prep Date: 11/12/2019 Analysis Date: 11/14/2019 SeqNo: 2208381 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual 0.027 0.0010 0.02500 0 109 85 115 Antimony Arsenic 0.025 0.0010 0.02500 0 98.8 85 115 0 100 0.013 0.00050 85 Lead 0.01250 115 Selenium 0.026 0.0010 0.02500 0 103 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 29 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB-48912 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: PBW Batch ID: 48912 RunNo: 64663

Prep Date: 11/20/2019 Analysis Date: 11/20/2019 SeqNo: 2215294 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.000039 0.00020 J

Sample ID: LCS-48912 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 48912 RunNo: 64663

Prep Date: 11/20/2019 Analysis Date: 11/20/2019 SeqNo: 2215295 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0050 0.00020 0.005000 0 99.4 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 30 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R64345 RunNo: 64345 Prep Date: Analysis Date: 11/8/2019 SeqNo: 2203184 Units: mg/L PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual Fluoride ND 0.10 Chloride ND 0.50 Nitrogen, Nitrite (As N) ND 0.10 Nitrogen, Nitrate (As N) ND 0.10 Sulfate ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R64345 RunNo: 64345 Prep Date: Analysis Date: 11/8/2019 SeqNo: 2203185 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.50 0.10 0.5000 100 90 Fluoride 0 110 Chloride 4.7 0.50 5.000 0 93.1 90 110 0 92.8 90 Nitrogen, Nitrite (As N) 0.93 0.10 1.000 110 0 97.3 Nitrogen, Nitrate (As N) 2.4 0.10 2.500 90 110 Sulfate 9.4 0.50 10.00 O 94.1 90 110

Sample ID: 1911310-004CMS TestCode: EPA Method 300.0: Anions SampType: ms Client ID: EB02 Batch ID: R64345 RunNo: 64345 Prep Date: Analysis Date: 11/8/2019 SeqNo: 2203218 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.10 106 58.2 Fluoride 0.53 0.5000 131 O 0.50 5.000 0 95.8 89.9 117 Chloride 4.8 0 95.2 76.7 Nitrogen, Nitrite (As N) 0.95 0.10 1.000 110 Nitrogen, Nitrate (As N) 2.5 0.10 2.500 0 100 89.3 114 Sulfate n 96.8 9.7 0.50 10.00 90.3 117

Sample ID: 1911310-004CMSD SampType: msd TestCode: EPA Method 300.0: Anions Client ID: EB02 Batch ID: R64345 RunNo: 64345 Prep Date: Analysis Date: 11/8/2019 SeqNo: 2203219 Units: mg/L SPK value SPK Ref Val %REC **RPDLimit** Analyte Result PQL LowLimit HighLimit %RPD Qual Fluoride 0.53 0.10 0.5000 0 106 58.2 0.394 20 131 Chloride 4.8 0.50 5.000 0 96.3 89.9 117 0.528 20 Nitrogen, Nitrite (As N) 0.96 0.10 1.000 0 95.6 76.7 110 0.407 20 Nitrogen, Nitrate (As N) 2.5 0.10 2.500 0 101 89.3 114 0.508 20 Sulfate 0 9.7 0.50 10.00 97.3 90.3 0.480 20 117

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 31 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

Qual

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R64409 RunNo: 64409

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2204410 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Chloride
 ND
 0.50

 Sulfate
 ND
 0.50

Sample ID: LCS-B SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R64409 RunNo: 64409

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2204416 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** 90 Chloride 4.6 0.50 5.000 0 91.9 110 Sulfate 9.3 0.50 10.00 0 93.0 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB-48696 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 48696 RunNo: 64417

Prep Date: 11/11/2019 Analysis Date: 11/12/2019 SeqNo: 2204732 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.56 0.5000 113 81.5 152

Sample ID: LCS-48696 SampType: LCS TestCode: EPA Method 8015D: Diesel Range

Client ID: LCSW Batch ID: 48696 RunNo: 64417

Prep Date: 11/11/2019 Analysis Date: 11/12/2019 SeqNo: 2204733 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 3.0
 0.40
 2.500
 0
 121
 82
 138

 Surr: DNOP
 0.28
 0.2500
 112
 81.5
 152

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Surr: BFB

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G64438 RunNo: 64438

Prep Date: Analysis Date: 11/12/2019 SeqNo: 2205878 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 22 20.00 110 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G64438 RunNo: 64438

25

Prep Date: Analysis Date: 11/12/2019 SeqNo: 2205879 Units: mg/L

20.00

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.47 0.050 0.5000 0 94.3 73.6 119

126

65.8

143

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	ATILES				
Client ID: LCSW	Batch	n ID: R6	4405	F	RunNo: 6	4405				
Prep Date:	Analysis D	nalysis Date: 11/11/2019			SeqNo: 2	204291	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	70	130			
Toluene	19	1.0	20.00	0	92.8	70	130			
Chlorobenzene	20	1.0	20.00	0	98.2	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	92.2	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	91.4	70	130			
Surr: 1,2-Dichloroethane-d4	8.9		10.00		88.5	70	130			
Surr: 4-Bromofluorobenzene	9.0		10.00		89.8	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.4		10.00		94.4	70	130			

Sample ID: rb1	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES
Client ID: PBW	Batch ID: R64405	RunNo: 64405
Prep Date:	Analysis Date: 11/11/2019	SeqNo: 2204322 Units: μg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 35 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

TestCode: EPA Method 8260B: VOLATILES Sample ID: rb1 SampType: MBLK Client ID: PBW Batch ID: R64405 RunNo: 64405 Prep Date: Analysis Date: 11/11/2019 SeqNo: 2204322 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 4-Chlorotoluene ND 1.0 cis-1.2-DCE ND 1.0 ND cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 ND 1.0 Dichlorodifluoromethane 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 ND 1,2-Dichloropropane 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 1,1-Dichloropropene ND 1.0 ND Hexachlorobutadiene 1.0 2-Hexanone ND 10 Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 ND 4-Methyl-2-pentanone 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 ND 1.0 Styrene tert-Butylbenzene ND 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 ND 1.0 trans-1,3-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 ND 1,2,4-Trichlorobenzene 1.0 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 Trichloroethene (TCE) ND 1.0 Trichlorofluoromethane ND 1.0

Qualifiers:

1,2,3-Trichloropropane

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

2.0

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: rb1	SampT	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch ID: R64405			F	RunNo: 6	4405					
Prep Date:	Analysis Date: 11/11/2019			5	204322	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	8.9		10.00		88.6	70	130				
Surr: 4-Bromofluorobenzene	9.1		10.00		91.3	70	130				
Surr: Dibromofluoromethane	10		10.00		102	70	130				
Surr: Toluene-d8	9.9		10.00		99.1	70	130				

Sample ID: 100ng lcs2	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batcl	h ID: R6	4499	F	RunNo: 6	4499				
Prep Date:	Analysis D	Date: 11	1/14/2019	5	SeqNo: 2	209538	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.0	70	130			
Toluene	19	1.0	20.00	0	97.0	70	130			
Chlorobenzene	20	1.0	20.00	0	99.8	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	93.7	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	93.8	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.8	70	130			
Surr: Dibromofluoromethane	10		10.00		99.8	70	130			
Surr: Toluene-d8	9.8		10.00		98.1	70	130			

Sample ID: rb2	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: R6	4499	F	RunNo: 6	4499				
Prep Date:	Analysis D	ate: 11	1/14/2019	5	SeqNo: 2	209539	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 37 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: rb2 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: R64499 RunNo: 64499 Prep Date: Analysis Date: 11/14/2019 SeqNo: 2209539 Units: µg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND Bromodichloromethane 1.0

2.0	110		
Bromoform	ND	1.0	
Bromomethane	ND	3.0	
2-Butanone	ND	10	
Carbon disulfide	ND	10	
Carbon Tetrachloride	ND	1.0	
Chlorobenzene	ND	1.0	
Chloroethane	ND	2.0	
Chloroform	ND	1.0	
Chloromethane	ND	3.0	
2-Chlorotoluene	ND	1.0	
4-Chlorotoluene	ND	1.0	
cis-1,2-DCE	ND	1.0	
cis-1,3-Dichloropropene	ND	1.0	
1,2-Dibromo-3-chloropropane	ND	2.0	
Dibromochloromethane	ND	1.0	
Dibromomethane	ND	1.0	
1,2-Dichlorobenzene	ND	1.0	
1,3-Dichlorobenzene	ND	1.0	
1,4-Dichlorobenzene	ND	1.0	
Dichlorodifluoromethane	ND	1.0	
1,1-Dichloroethane	ND	1.0	
1,1-Dichloroethene	ND	1.0	
1,2-Dichloropropane	ND	1.0	
1,3-Dichloropropane	ND	1.0	
2,2-Dichloropropane	ND	2.0	
1,1-Dichloropropene	ND	1.0	
Hexachlorobutadiene	ND	1.0	
2-Hexanone	ND	10	
Isopropylbenzene	ND	1.0	
4-Isopropyltoluene	ND	1.0	
4-Methyl-2-pentanone	ND	10	
Methylene Chloride	ND	3.0	
n-Butylbenzene	ND	3.0	
n-Propylbenzene	ND	1.0	
sec-Butylbenzene	ND	1.0	
Styrene	ND	1.0	
tert-Butylbenzene	ND	1.0	
1,1,1,2-Tetrachloroethane	ND	1.0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: rb2	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: R6	4499	F	RunNo: 64	4499				
Prep Date:	Analysis D)ate: 11	/14/2019	S	SeqNo: 2	209539	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		106	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R64428 RunNo: 64428

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2205475 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R64428 RunNo: 64428

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2205476 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.24 20.00 80.00 0 96.6 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R64428 RunNo: 64428

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2205498 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R64428 RunNo: 64428

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2205499 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.80 20.00 80.00 0 97.3 90 110

Sample ID: mb-3 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R64428 RunNo: 64428

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2205521 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-3 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R64428 RunNo: 64428

Prep Date: Analysis Date: 11/11/2019 SeqNo: 2205522 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 77.88 20.00 80.00 0 97.4 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 40 of 41

Hall Environmental Analysis Laboratory, Inc.

WO#: **1911310**

23-Dec-19

Client: Marathon Petroleum

Project: SWMU 13

Sample ID: MB-48734 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 48734 RunNo: 64490

Prep Date: 11/12/2019 Analysis Date: 11/14/2019 SeqNo: 2207771 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-48734 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 48734 RunNo: 64490

Prep Date: 11/12/2019 Analysis Date: 11/14/2019 SeqNo: 2207772 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: MARATHON GALLUP Work Order Number: 1911310 RcptNo: 1 Received By: Isaiah Ortiz 11/7/2019 2:58:00 PM Completed By: 11/7/2019 5:41:12 PM Leah Baca Reviewed By: 300 unp. DAD 11/11/19 Chain of Custody Yes 🗸 No 🗌 1. Is Chain of Custody complete? Not Present 2 How was the sample delivered? Client Log In No 🗌 NA 🗌 3. Was an attempt made to cool the samples? Yes 🗸 No _ 4. Were all samples received at a temperature of >0° C to 6.0°C NA 🗌 Yes 🗸 No 🗌 5. Sample(s) in proper container(s)? Yes 🗸 Yes 🗸 No _ 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? Yes V NA 🗌 Yes No V 8. Was preservative added to bottles? Yes V 9. VOA vials have zero headspace? No No VOA Vials Yes 🗆 10. Were any sample containers received broken? No V # of preserved bottles checked Yes 🗸 No 🗌 for pH: 11. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🗸 No 🗌 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 🗌 13. Is it clear what analyses were requested? Checked by: 0 11/11/15 No 🗌 Yes 🗸 14. Were all holding times able to be met? (If no, notify customer for authorization.) 30 upreferred: 46 11/8/19 1130 Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes NA V No Person Notified: Date By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1 3.0 Good Yes

3.3

Good

Yes

2

1 or 4

HALL ENVISONMENTAL	LABORATORY						S				Total Dissor Alkalinity Cyanide Air Bubbles							×	×		Remarks: See attached sheet for Analytical Methods			
1	RA		Albuquerque, NM 87109	07							enoinA						×	×			tical			
2	BC	www.hallenvironmental.com	MN	Fax 505-345-4107	st	-	DANIOS	SIC	nur	ומו פ	Metals - To				×	×					- Nalv			
0			rque,	05-3	Analysis Request	H.	JONIOS	oid.	_		ima2) 0728			×	^	^					For A	in L		
	ANALYSIS	ronm	ndne	ax 5	sis R						8260B (VO	×								×	eet		V.	J
	YS Y	lenvi	Alb	т.	naly					slat	RCRA 8 Me							i es			dsh		3.0.5	9
=	A	w.hal	Ä	975	4		(SI				01£8) HA9										che	tes.	1	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z	*	4901 Hawkins NE	Tel. 505-345-3975							EDB (Metho										atta	and Target Analytes	3.1-0.1/cF/	
			Haw	505-3			0.11111	_			odieM) H9T										See	et A	9	
		1.4	1901	Tel.		_					BTM+X3T8 B2108 H9T	×	×								- ks	arg	3.1	
											BTK+X3T8										ema	nd	-	
	Ì						1700	T		1, 10	GIV NOIG	1								co	100			
								705			. j	100-	100					_	1	-(35	Time	1458	Time	
								9-561		3	HEAL NO.		,						1	1/2/1/81			[
						loore		e - 91	% □	mark	191									eg.	Date	"Ilahu	Date	
nd Time:	□ Rush	SWMU 13				er: Brian N		Tracy Payne - 919-561-7055	Yes Yes	2	Preservative Type	HCI	Neat	Neat	HNO3	HNO ₃	H ₂ SO ₄	Neat	NaOH	HCI		lint		
Turn-Around 1	X Standard	Project Name: SWMU 13		Project #:		Project Manager: Brian Moore		Sampler:	On Ice:	Sample Temperature:	Container Type and #	40ml voa - 5	250 ml amber - 1	1 liter amber - 3		125 ml plastic - 1	125 ml plastic - 1	500 ml plastic - 1	500 ml plastic - 1	40mlvoa-3	Received by:	9	Received by:	
Chain-of-Custody Record	Marathon Petroleum Company LP		92 Giant Crossing Road	Gallup, NM 87301	45	Email: Bmoore1@marathonpetroleum.com	X Level 4 (Full Validation)				Sample Request ID	SWMU 13-5-6W							→	Trip Blank		Reis		
ust	etrole	nery	Siant	llup, N	505-726-9745	rathonp	×		EL .												Relinquished by:	James	Relinquished by:	
of-C	hon P	3 Refil	3: 92 (Gal	505-7	1@mai			EXCEL		Matrix	Water							->	Water			Relinqui	
hain	Marat	Gallup Refinery	Mailing Address:		÷1.	Bmoore	ackage:		(Type)		Time	9180	_						->	1	Time:	1458	Time:	
S	Client:		Mailing.		Phone #:	Email:	QA/QC Package:	□ Other	X EDD (Type)		Date	7-19	_						~	11-7-19		1.7.19	Date:	

	ENVIRONMENTAL	LABORATORY		o)				S				Total Disso Alkalinity Cyanide Air Bubbles							×	×	o contraction of the contraction	kemarks, see attached sheet for Ariarytical Methods and Tardet Analytes		
	Z	OR	_	Albuquerane. NM 87109	10.1	4107							Cations					×	×	×		143	Iyuca		
1	0	AB	www.hallenvironmental.com	N N	,	Fax 505-345-4107	lest	p	evios	siQ	pu	(១) ទ	Metals - To				×	×				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>S</u>		
	IR		(1)	eran		505	Analysis Request				(A	OV-	im92) 0728			×						4	5		
	2	SIS	ironi	nbno	ביים ליים	Fax	/sis					(4	8260B (VO	×									D	i i	
	Ш	7	allen	A -		0	Anal						RCRA 8 Me									7	0 D	0	
	HALL	ANALYSIS	w.h.	NE.	100	397			(SI				01£8) HA9									1 3	vtes	-	-
	I	A	\$	wkins	245	-345							TPH (Metho									+ + 5	Anal	1/0	,
				4901 Hawkins NE		Tel. 505-345-3975		(()/MRO	_			82108 H9T	×	×							- 3	de Co	0.0	
				490	2 7	<u>e</u>							BTM+X3T8										Tar.	3.1	
ŀ		NO.							_		_	_	8TM+X3T8										and and		
								Aoore		e - 919-561-7055		Emark	HEAL No.	700-	-							Date Time		//oste Time / 3.1 -0.1 /cf/ 3.0	
Time.	ime:	□ Rush	SWMU 13					ger: Brian N		Tracy Payne	₽ Yes	-	Preservative Type	HCI	Neat	Neat	HNO ₃	HNO3	H ₂ SO ₄	Neat	NaOH		1:1	clear	
- Carrow Carrow	l urn-Around I ime:	X Standard	Project Name: SWMU 13		Project #	Floject #.		Project Manager: Brian Moore		Sampler:	1	Temp	Container Type and #	40ml voa - 5	250 ml amber - 1	1 liter amber - 3	250 ml plastic - 1	125 ml plastic - 1	125 ml plastic - 1	500 ml plastic - 1	500 ml plastic - 1	Received by:	1	Received by:	
Propod Whota	Criain-oi-custody Record	Client: Marathon Petroleum Company LP	ry	92 Giant Crossing Road	n NM 87304	Gallup, MM 6/301	5-9745	Email: Bmoore1@marathonpetroleum.com	X I evel 4 (Full Validation)	,			Sample Request ID	SWMU 13-6-6W							→	d by:	. 0	d by:	
, J	n - i - i - i - i - i - i - i - i - i -	hon Pet	Gallup Refinery		Gallin	Callu	505-726-9745	1@marath			EXCEL		Matrix	Water	1						->	Relinguished by:	۲.	Relinquished by:	
hoin	lla lli	Marat	Gallup	Mailing Address:			#:	Bmoore	QA/QC Package:	ā	X EDD (Tvpe)		Time	0830	_						→	Time.		Time:	
		Client:		Mailing			Phone #:	Email:	QA/QC Packa	Other	X EDL		Date	61-6-1	_						→	Date:	1.7.19	Date:	

	. >							()	/ 1c	(人)	Cyanide Air Bubbles								×					
HALL ENVIRONMENTAL	ANALYSIS LABORATORY										Alkalinity							×			See attached sheet for Analytical Methods			
Z	Ĕ		- 2				,	sbilo	S P	θΛĮ	Total Disso							×			Met			
T	5		Albuquerque, NM 87109	1							anoinA						×	×			20			
Ž	0	mo	M 8	505-345-4107							Cations					×					alvt			
C	AE	www.hallenvironmental.com	e, N	-345	Analysis Request	p	evlos	Dis	pur	tal s	Metals - To				×	×					An			
		ment	erqu		Req				(A	ΟΛ-	im92) 0728			×							t for			
3	Sis	iron	nbno	Fax	sis					(A	8260B (VO	×									Jee'		J	١.
Ц	įΣ	llenv	AK		ınaly					slats	RCRA 8 Me										o p		31.01 kr/ 20°	3.3.0
-	A	N.ha	N.	505-345-3975	٥		(S				01£8) HA9										che	tes.	7	
4	Z	W	ins l	45-3				(1	.40	g po	EDB (Metho										atta	laly	五	7
-	. 4		lawk	05-3				(1	.81	t po	odłeM) HGT										9	t A	0	Ó
		W.	4901 Hawkins NE	Tel. 5		_((/WRC	рво	105	(GF	82108 H9T	×	×								 .v.	and Target Analytes	3.	3.4-0.1/5
			49	ř		((fluo s	(Gas	Hd.	L+3	BTM+X3T8										Remarks:	d Ta		i
					W		(120	8)s's	IM.	L+3	BTM+X3T8										Re	and	-	7
	1							25				500								٩		y.		
								-70			o N	10)								900	Time	1458	Time	
								-561		1	HEAL No.	-								,		8		
					Ш	ore		919	oN 🗆	25k	堂										Date	1/2	Date	
		6				Mod		- e		Cemarks												11/2/19		
	Rush	Project Name: SWMU 13				Project Manager: Brian Moore		Tracy Payne - 919-561-7055			Ę	-	<u> </u>	ı,	3	3	04	#	ī			- 6		
.e.		M				Bri		C	₽ Yes	ture	Serva	HCI	Neat	Neat	HNO3	HNO ₃	H ₂ SO ₄	Neat	NaOH		dl-	eleint		
nd Time:		e. S				ager:		Tra	B	Sample Temperature:	Pre						_		-			3		
punc	X Standard	Vam		**.		Mana		١,.	Roy	Tem	ner nd #	a - 5	= -	r-3		= 7	= 7	- T	- T		:kc	,	.yc	
Turn-Aroun	Stan	ect I		Project #:		ect I		Sampler:	e e	ple	Container Type and #	40ml voa -	250 ml amber - 1	1 liter amber -	250 ml plastic -	125 ml plastic -	125 ml plastic -	500 ml plastic -	500 ml plastic -		Received by:	9	Received by:	
Tur	×	Proj		Proj		Proj		San	On Ice:	San	Co Typ	40n	an	, "	2 pla	1 pla	1 pla	5 pla	5 pla		Rece	()	Rece	
	Ъ						Í				D	3												
ō	ly L		ad				-	nalle			st I	-6												
၀	par		R			om	10/2	A Level 4 (ruii vaiidatioii)			Sample Request ID	SWMU 13-7-6W												
Re	mo		ing	301		nm.c		B L			. Re	Ñ	_						->	Trip Blank				
>	n C		SSO	187	2	role	-	<u>1)</u> 4			nple	Z								816		·~		
50	lenı		Ç	Z	974	npet	-	ע			San	3								NP	. <u>`</u>	.3	. .	
nS	tro	ery	ian	Gallup, NM 87301	505-726-9745	atho	>	<	ب						<u> </u>					-	Relinquished by	James Ris	Relinquished by:	
Y	n Pe	efin	2 G	Gall	2-5	mar			EXCEL		Matrix	Water	_			-				->	sinbuis	Ame	induis	
Chain-of-Custody Record	Client: Marathon Petroleum Company LP	Gallup Refinery	Mailing Address: 92 Giant Crossing Road		50	Email: Bmoore1@marathonpetroleum.com						3									Reli		Rel	
ain	arai	allu	dres			JOOL	kage	5	(pe)		Time	20	_						->	,	.e.	14:58	je:	
Sh	Σ	Ö	g Ad		#:	Bn	QA/QC Package:	□ Starruaru	X EDD (Type)			1.7.19 1020									Time:		Time:	
	lient:		ailin		Phone #:	mail:	AVQC	Other	EDI		Date	7.19	_						->	11.7.19	Date:	1.19	Date:	
	O		Σ		Б	Ш	Q [×			-								=	Õ	1	ľ	

カッカ

	. >					-			(N	OL	Y)	Cyanide Air Bubbles								×		n		
<	S S											Alkalinity							×		7	0		
2	Ĕ							spil	05	р	θΛΙΟ	Total Disso	1.						×		1	<u> </u>		
	1 2		7109	2								enoinA						×	×		3	2		
Ž	ő	mo	M 8	505-345-4107	1							Cations					×				1	aly		
0	A	tal.co	le, N	-345	nest	þ	olve	ssiC] p	gu	lete	Metals - To				×	×				<	2		
- 2		men	lerqu	505	Req					(AC	ΟΛ-!	m92) 0728			×						3	0		
Ž	Si	viron	Albuquerque, NM 87109	Fax	ysis							8260B (VO	×									9	. 1	,
HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4		Analysis Request							RCRA 8 Me										see attached sheet for Analytical Methods et Analytes.	3.05	3.4-01/69 3.3
=	3	w.h	N	Tel. 505-345-3975			(01E8) HAG										ytes	W .	T
ì	A	*	4901 Hawkins NE	345-								EDB (Metho									1	arks: See alla Target Analy	s.ike	16
			Haw	505		-	0) 114					TPH (Metho										et A	Ø.	Ø
			106	Te.	H							HELENOR HOTE	×	×									3.	1.7
			4						_			3TM+X3T8 3TM+X3T8	-								-	Remarks: and Tarc		
	-					_	(10	208)5	B,e	MT	*=* 	HTEX+MTE												-10
								1	022				500							(وا	1458	اغ ا	
									1-10		-//	HEAL No.	1								i E B		Time	
						a		3	2-2	•	oks	HEA									a ta	•7	ate	
						oor		1	. 3	oN □	7												300	
	Rush	13				N M			a) ne		3	ě						4		_		1	3	
		M				3ria		9	2	SS	ie:	Preservative Type	모	Neat	Neat	HNO3	HNO3	H ₂ SO ₄	Neat	NaOH		-	3	
Turn-Around Time:		Project Name: SWMU 13				Project Manager: Brian Moore			I racy Payne - 919-561-7055	☑ Yes	Sample Temperature:	Pres	_	Z	Z	I	I	Ή,	Z	Ž		_		
pur	ard	ame		1,5		anaç					emp	# # F	-5		4									
-Aro	X Standard	S S		Project #:		oct M			pler.	ë.	ple T	Container Type and #	40ml voa - 5	250 ml amber -	1 liter amber - 3	250 ml plastic -	125 ml plastic - 1	125 ml plastic -	500 ml plastic -	500 ml plastic -	Received by:		Received by:	
Turn	×	Proje		Proje		Proje			Sampler.	On Ice:	Sam	Cor	40m	am am	1 an	25 plas	12 plas	12 plas	50 plas	50 pla	igoa	1-	Recei	
	0								-															
P	y LI		ad		11			datio	1			Sample Request ID								100				
00	pan		Ro			шс		Valid				dne	EB02			1 - 1				-				
Re	mo		ing	301		ım.c		(Full				Re	EB						_	>				
>	υC		oss	187	10	rolen		9 6				nple										ķ	2	
toc	leui		t Cr	Gallup, NM 87301	974	npeti		X Level 4 (Full Validation)				San									}	ر ما	2 3	
ns	etro	lery	ian	lup,	26-	atho		×		ایر		v	_								1		3 hed to	
f-C	n P	efir	32 G	Gal	505-726-9745	mar				EXCEL		Matrix	Water	_				_	_	~~	Delinanished by:	James Rois	Relinquished by:	
9-	tho	lp R	SS: 6		20	re1@	äi						>								O O			-
Chain-of-Custody Record	lara	Gallup Refinery	ddres			moor	ckage	pa		ype)		Time	5411	_			_			->	Time.	14:58	Time:	
Ch	Client: Marathon Petroleum Company LP	O	Mailing Address: 92 Giant Crossing Road		e #:	Email: Bmoore1@marathonpetroleum.com	QA/QC Package:	□ Standard	ther	X EDD (Type)											F			
	Clien		Maili		Phone #:	Emai	QA/Q	S	Other	X EL		Date	61.2.	_	-					->	Date.	1.7.19	Date:	

SWMU 13 - Groundwater and Equipment Blank Analytical Requirements

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.
- Inorganics (Skinner List Metals + Iron + Manganese) Total and Dissolved

Inorganic Analytical Methods

	Analyte	Analytical Method
-	Antimony	SW-846 method 6010/6020
	Arsenic	SW-846 method 6010/6020
-	Barium	SW-846 method 6010/6020
-	Beryllium	SW-846 method 6010/6020
-	Cadmium	SW-846 method 6010/6020
-	Chromium	SW-846 method 6010/6020
	Cobalt	SW-846 method 6010/6020
-	Cyanide	SW-846 method 335.4/335.2 mod
	Lead	SW-846 method 6010/6020
-	Mercury	SW-846 method 7470/7471
-	Nickel	SW-846 method 6010/6020
-	Selenium	SW-846 method 6010/6020
	Silver	SW-846 method 6010/6020
	Vanadium	SW-846 method 6010/6020
-	Zinc	SW-846 method 6010/6020
-	Iron	SW-846 method 6010/6020
	Manganese	SW-846 method 6010/6020

SWMU 13 - Groundwater and Equipment Blank Analytical Requirements

General Chemistry Parameters

Analyte	Analytical Method
Total Dissolved Solids	SM-2510B
Carbonate	SM-2320B
Bicarbonate	SM-2320B
Chloride	EPA method 300.0
Fluoride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	EPA method 6010/6020
Magnesium	EPA method 6010/6020
Sodium	EPA method 6010/6020
Potassium	EPA method 6010/6020
Nitrate	EPA method 300.0
Nitrite	EPA method 300.0

Semivolatiles Limits * Report only these compounds. MDL must be met.

Dibenz(a,h)anthracene will be analzyed by Hall by Method 8310

	New Mexico WQCC Standards	NMED Tap Water	NMED TapW_ key	EPA Screening Levels.Ta p Water	EPA TapW_ key	MCL	MDL	Analytical Method
1,2,4-Trichlorobenzene		1.15E+01	С	1.20E+00	С	70	4.04	8270
1,2-Dichlorobenzene	600	3.70E+02	n	3.00E+02	n	600	4.77	8270
1,3-Dichlorobenzene			-	-	-	_	5.27	8270
1,4-Dichlorobenzene	75	4.82E+00	C	4.80E-01	С	75	4.42	8270
1,4-Dioxane	-	4.59E+00	С	4.60E-01	С	-	2.00	8270/8270SIN
1-Methylnaphthalene	-	1.14E+01	С	1.10E+00	С		3.07	8270
2,4,5-Trichlorophenol	-	1.17E+03	n	1.20E+03	n	_	2.97	8270
2,4,6-Trichlorophenol		1.19E+01	n	4.10E+00	C**	-	2.33	8270
2,4-Dichlorophenol		4.53E+01	n	4.60E+01	n		2.92	8270
2,4-Dimethylphenol	-	3.54E+02	n	3.60E+02	n	-	2.97	8270
2,4-Dinitrophenol	-	3.87E+01	n	3.90E+01	n	-	2.59	8270
2,4-Dinitrotoluene		2.37E+00	С	2.40E-01	С	_	2.00	8270
2,6-Dinitrotoluene		4.85E-01	n	4.90E-02	С		0.20	8270
2-Chloronaphthalene		7.33E+02	n	7.50E+02	n	_	3.07	8270
2-Chiorophenol	-	9.10E+01	n	9.10E+01	n	-	2.69	8270
2-Methylnaphthalene		3.51E+01	n	3.60E+01	n	-	3.02	8270
2-Methylphenol	-	-	-	9.30E+02	n	-	2.86	8270
2-Nitroaniline	-	= -	_	1.90E+02	n	_	3.17	8270
2-Nitrophenol	-	-	-	-	-	-	2.97	8270
3,3 '-Dichlorobenzidine	-	1.25E+00	С	1.30E-01	С	-	1.00	8270
3+4-Methylphenol	-	-	-	9.30E+02	n	-	3.58	8270
3-Nitroaniline	-	-	-	-	-	-	3.24	8270
4,6-Dinitro-2-methylphenol		1.52E+00	n	-	-	-	1.00	8270
4-Bromophenyl phenyl ether		_	-	-	-	_	3.00	8270
4-Chloro-3-methylphenol	-		-	-	-	-	3.41	8270
4-Chlorophenyl phenyl ether		-	-/-	-	-	-	2.44	8270
4-Nitroaniline			-	3.80E+00	C*	-	2.69	8270
4-Nitrophenol		-	-	-	-	-	7.57	8270
Acenaphthene	-	5.35E+02	n	5.30E+02	n	-	2.96	8270
Acenaphthylene		-			-	-	2.40	8270
Aniline	-	-	-	1.30E+01	c*	-	3.58	8270
Anthracene	-	1.72E+03	n	1.80E+03	n	-	2.66	8270
Benz(a)anthracene	-	1.20E-01	С	3.00E-02	С	_	0.10	8270
Benzo(a)pyrene	0.2	2.51E-01	С	2.50E-02	С	0.2	0.10	8270
Benzo(b)fluoranthene		3.43E-01	С	2.50E-01	С	-	0.10	8270
Benzo(g,h,i)perylene		-	-		-	-	2.23	8270
Benzo(k)fluoranthene		3.43E+00	С	2.50E+00	С	-	2.88	8270
Benzoic acid	- 1	-		7.50E+04	n	-	10.72	8270
Benzyl alcohol	-	4		2.00E+03	n	-	2.36	8270
Bis(2-chloroethoxy)methane		.=		5.90E+01	n	_	2.60	8270

Bis(2-chloroisopropyl)ether	-	9.81E+00	С		-	1	3.86	8270
Bis(2-ethylhexyl)phthalate	Ave.	5.56E+01	С	5.60E+00	C*	6	4.30	8270
Butyl benzyl phthalate	-		14	1.60E+01	С		3.33	8270
Carbazole				l Leije	-	-	2.89	8270
Chrysene	-	3.43E+01	С	2.50E+01	С	-	2.79	8270
Dibenz(a,h)anthracene	-	3.43E-02	С	2.50E-02	С		0.03	8310
Dibenzofuran			_	7.90E+00	n		3.19	8270
Diethyl phthalate	-	1.48E+04	n	1.50E+04	n	_	2.87	8270
Dimethyl phthalate	-	6.12E+02	n	-		-	3.24	8270
Di-n-butyl phthalate	***	8.85E+02	n		-	-	2.71	8270
Dí-n-octyl phthalate	-		-	-	-	-	3.52	8270
Fluoranthene	\ -	8.02E+02	n	8.00E+02	n		2.41	8270
Fluorene	-	2.88E+02	n	2.90E+02	n		2.89	8270
Hexachlorobenzene	-	9.76E-02	С	9.80E-03	С	1	1.00	8270
Hexachlorobutadiene	-	1.39E+00	С	1.40E-01	C*	1.2	1.00	8270
Hexachlorocyclopentadiene	-	4.11E-01	n	4.10E-01	n	50	3.58	8270
Hexachloroethane	_	3.28E+00	С	3.30E-01	C**	-	2.00	8270
ndeno(1,2,3-cd)pyrene	-	3.43E-01	С	2.50E-01	С	-	0.20	8270
sophorone	-	7.81E+02	С	7.80E+01	С	-	3.05	8270
Naphthalene	-	1.65E+00	С	1.70E-01	C*	-	1.00	8270
Vitrobenzene	-	1.40E+00	С	1.40E-01	С	_	1.00	8270
N-Nitrosodiphenylamine	-	1.22E+02	С	1.20E+01	С	-	2.38	8270
Phenanthrene	-	1.70E+02	n	-	-	_	2.78	8270
Pentachlorophenol	1	4.13E-01	С	4.10E-02	С	1	1.00	8270
Phenol	-	5.76E+03	n	5.80E+03	n	-	8.04	8270
Pyrene		1.17E+02	n	1.20E+02	n	-	2.50	8270
Pyridine	-	-	_	2.00E+01	n	_	9.60	8270