GW - 1

AGWMR

2019

2019 Groundwater Remediation and Monitoring Annual Report

January - December 2019

Bloomfield Terminal
Western Refining Southwest, Inc.
#50 Rd 4990
Bloomfield, New Mexico 87413

Submitted: April 2020

Prepared for
New Mexico Oil Conservation Division and
New Mexico Environment Department – Hazardous Waste Bureau

Table of Contents

		cronyms	
EXE	CUTI	IVE SUMMARY	iii
SEC	TION	l 1.0	1
INTE	RODU	JCTION	1
	1.1	Site Location and Description	
	1.2	History of Facility Modifications and Improvements	
		1.2.1 Previous Owner's Activities	3
		1.2.2 Bloomfield Refining Activities	3
SEC	TION	l 2.0	
		OF ACTIVITIES	
	2.1	Groundwater and Surface Water Monitoring Activities	
		2.1.1 Fluid Measurements	
		2.1.2 Groundwater Field Parameters	11
		2.1.3 Terminal Complex Sampling	11
		2.1.4 North Boundary Barrier Sampling	13
		2.1.5 San Juan River Bluff Sampling	14
		2.1.6 San Juan River Terrace Sampling	15
		2.1.7 Outfall and Seep Inspections	
	2.2	Total Fluids Recovery Systems	
		2.2.1 Groundwater Recovery System	
		2.2.2 North Boundary Barrier Wall Collection System	
		2.2.3 Hammond Ditch Recovery System	18
		2.2.4 River Terrace Remediation System	
		2.2.5 East Outfall Recovery System	
_	2.3	Waste Disposal	
		l 3.0	
RES		S SUMMARY	_
	3.1	Groundwater and Surface Water Monitoring	20
		3.1.1 Fluid Level Measurements	
		3.1.2 Groundwater Field Measurements	
		3.1.3 Terminal Complex Sampling	
		3.1.4 North Boundary Barrier Sampling	
		3.1.5 San Juan River Bluff Sampling	
		3.1.6 San Juan River Terrace Sampling	
	0.0	3.1.7 Outfall and Seep Inspections	
	3.2	Separate-Phase Hydrocarbons	
	3.3	Total Fluids Recovery Systems	
		3.3.1 Groundwater Recovery System	
		3.3.2 North Boundary Barrier Wall Collection System	
		3.3.3 Hammond Ditch Recovery System	
	0.4	3.3.4 East Outfall Recovery System	
oe o	3.4	Waste Disposal	
		N 4.0	
CON		SIONS	
	4.1	Groundwater Monitoring	
	4.2	Outfall and Seep Inspections	
0-0	4.3	Total Fluids Recovery Systems	
$S \vdash C$	- 1 1/7N		
		l 5.0 NCFS	38 38

List of Tables

Table 1	Fluid Level Measurements Summary
Table 2	Groundwater Field Parameter Summary
Table 3	Terminal Wells Analytical Summary
Table 4	Cross-Gradient Wells Analytical Summary
Table 5	Downgradient Wells Analytical Summary
Table 6	RCRA Wells Analytical Summary
Table 7	Collection and Observation Wells Analytical Summary
Table 8	Outfalls Analytical Summary
Table 9	Seeps Analytical Summary
Table 10	San Juan River Analytical Summary
Table 11	Wastewater Volumes
Table 12	Hazardous Waste Summary

List of Figures

igure 1	Site Location Map
Figure 2	Well Location Map
Figure 3	San Juan River Area Location Map
igure 4	Groundwater Elevation and Flow Direction – April 2019
Figure 5	Groundwater Elevation and Flow Direction – August 2019
Figure 6	Product Thickness Map – April 2019
Figure 7	Product Thickness Map – August 2019
Figure 8	BTEX and MTBE Concentration Map – April 2019
Figure 9	BTEX and MTBE Concentration Map – August 2019
Figure 10	Chloride, Sulfate, Nitrate, & TDS Concentration Map April 2019
Figure 11	Naphthalene Concentration Map August 2019
igure 12	Chloride Concentration Map August 2019
Figure 13	Sulfate Concentration Map August 2019
igure 14	Nitrate Concentration Map August 2019
Figure 15	TDS Concentration Map August 2019
Figure 16	Wells Sampled April 2019
Figure 17	Wells Sampled August 2019

List of Appendices

Appendix A Analytical Reports Appendix B Data Validation

List of Acronyms

```
benzene, toluene, ethylbenzene, and xylene (BTEX)
below grade level (bgl)
diesel range organics (DRO)
dissolved oxygen (D.O.)
Environmental Protection Agency (EPA)
feet (ft)
gallons per minute (gpm)
gasoline range organics (GRO)
New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB)
New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division
(EMNRD-OCD)
investigation derived waste (IDW)
liters (L)
maximum contaminant level (MCL)
methyl tert-butyl ether (MTBE)
micrograms per liter (ug/L)
micro Siemens per centimeter (uS/cm)
milligrams per liter (mg/L)
millivolts (mV)
monitoring well (MW)
New Mexico Administrative Code (NMAC)
Oxidation reduction potential (ORP)
parts per million (ppm)
photoionization detector (PID)
polyvinyl chloride (PVC)
pounds per square inch (psi)
Resource Conservation and Recovery Act (RCRA)
Semi-volatile organic compounds (SVOCs)
separate phase hydrocarbon (SPH)
Standard cubic feet per minute (scfm)
Temporary piezometer (TP)
top of casing (TOC)
total dissolved solids (TDS)
```

List of Acronyms (continued)

total petroleum hydrocarbon (TPH)
toxicity characteristic leaching procedure (TCLP)
volatile organic compounds (VOC)
Wastewater Treatment System (WWTS)
Water Quality Control Commission (WQCC)

EXECUTIVE SUMMARY

This Annual Report includes a summary of activities conducted at the Bloomfield Terminal in 2019 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order (NMED, 2007) issued by the New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB), and Section 2.F. of Discharge Permit GW-001 (NMOCD, 2017) issued by the New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (EMNRD-OCD). This report includes a summary of sampling activities, total fluids recovery, and remediation monitoring activities conducted in 2019.

Groundwater Measurements

Depth-to-groundwater and depth-to-product measurements were taken from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2019 and August 2019, respectively. The field measurements were taken a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. Groundwater elevation contours show that groundwater generally flows in a northwest direction, with groundwater under the former process areas flowing towards the north boundary barrier wall and Hammond Ditch collection system.

When compared to the 2018 fluid level measurements, the measurements collected in 2019 indicated a reduction in the SPH thickness in the wells MW-20, MW-41, MW-72, RW-19, and RW-28.

Groundwater and Surface Water Monitoring

Groundwater and surface water monitoring activities conducted in 2019 included the collection of groundwater samples and field data from the following four areas of the facility:

- Terminal Complex includes Terminal, Cross-Gradient, Downgradient, and RCRA Wells;
- North Boundary Barrier includes observation and collection wells;
- San Juan River Bluff includes Outfall and Seep locations; and
- San Juan River Terrace includes San Juan River samples.

Sampling associated with the Bioventing System located at the River Terrace is summarized in the *River Terrace Voluntary Corrective Measures Bioventing System Annual Report*, which is submitted in March of each year. Groundwater and surface water monitoring activities conducted in April and August 2019 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014 and Discharge Permit GW-001.

Groundwater concentrations above respective screening levels are primarily localized near the former refinery process units and tank farm. No major changes were observed in the groundwater concentrations. The north boundary barrier wall and active groundwater recovery systems within the facility provide hydraulic capture of the impacted groundwater, and thus eliminate the concern of impacts to the San Juan River.

Outfall and Seep Inspections

Weekly visual inspections of Seeps 1, 2, 3, and 5 and along the San Juan River Bluff, which includes the East Fork area, were conducted in 2019. Visual inspection results and samples collected along the San Juan River as part of the groundwater monitoring program for the Bloomfield Terminal indicate that there has been no impact to the San Juan River.

Total Fluids Recovery Systems

The Bloomfield Terminal operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the Terminal Complex;
- North Boundary Barrier Collection System;
- Hammond Ditch Recovery System;
- River Terrace Remediation System; and
- East Outfall Recovery System.

All fluids recovered from these systems, with the exception of the River Terrace Remediation System, are pumped to the on-site Waste Water Treatment Plant for treatment prior to disposal through the on-site injection well or evaporation ponds. Groundwater recovered at the River Terrace Remediation System is treated through two granular activated carbon units and discharged to the raw water ponds.

SECTION 1.0 INTRODUCTION

1.1 Site Location and Description

Owner: San Juan Refining Company, a New Mexico Corporation

1250 Washington Street Tempe, Arizona 85281

Operator: Western Refining Southwest, Inc.

(Formerly Giant Industries Arizona, Inc.), an Arizona Corporation

1250 Washington Street Tempe, Arizona 85281

Facility: Bloomfield Terminal (physical address)

50 Road 4990

Bloomfield, New Mexico 87413

Western Refining Southwest, Inc. (postal address)

P.O. Box 159

Bloomfield, New Mexico 87413

US EPA ID: NMD089416416

SIC Code: 5171

The former Bloomfield Refinery facility is currently owned by San Juan Refining Company, a New Mexico corporation, and operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc., an Arizona corporation. The facility had an approximate refining capacity of 18,000 barrels per day before refining operations were terminated in November 2009. Various process units operated at the facility, which included crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydrotreating. Products produced at the refinery included gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and liquid petroleum gas (LPG).

The Bloomfield Terminal ("Terminal") is a crude oil and petroleum product transfer and storage facility that includes truck loading and unloading. The Terminal stores and transfers crude oil, petroleum products (e.g., naphtha, unleaded gasoline, diesel, and kerosene) and ethanol. The purpose of the facility is to transfer crude oil and petroleum products between pipelines, trucks and storage tanks. Crude oil and petroleum products arrive by pipeline or tank trucks. The tank farm is a system of storage tanks used throughout the Terminal to hold and store crude oil, petroleum products, fuel additives, and water. These tanks are located above ground and range

in size from 110,000 barrels to less than 1,000 barrels. Pumps, valves, and piping systems are used throughout the Terminal to transfer various liquids among tankage and loading racks. Several tank truck loading racks are used to load out petroleum products and receive crude oil and gasoline additives.

The Terminal is located on approximately 263 acres south of Bloomfield, New Mexico in San Juan County (Figure 1). The Terminal complex is bisected by County Road 4990 (Sullivan Road), which runs east-west (Figure 2). The part of the Terminal tankage located north of County Road 4990 includes the following general areas:

- Office Area (buildings, warehouse, maintenance, storage yard)
- Parking Lots
- Diesel Unloading
- Wastewater Treatment Unit (WWTU)
- Tank Farm Area
- Used Equipment Laydown Area
- Firefighting Training Area
- Former Refinery Units
- Class I Injection Well
- Raw Water Ponds

The remainder of the Terminal facility, regional business office, transportation maintenance facility, and the evaporation ponds are located on a 25-acre site south of County Road 4990 and includes the following general areas:

- Terminal Office and Parking Lot
- Crude Oil Unloading Station
- Product Loading and Unloading Station
- Storage Tank Area
- Regional Office and Parking Lot
- Transportation Maintenance Truck Shop and Truck Parking Lot
- Wastewater Evaporation Ponds
- 90-day Hazardous Waste Bay

The Bloomfield facility is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt, and clay that grades to course sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation

is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

1.2 History of Facility Modifications and Improvements

1.2.1 Previous Owner's Activities

Local entrepreneur, Kimball Campbell, constructed the crude topping unit that eventually became the Bloomfield Refinery facility in the late 1950s. O.L. Garretson bought the facility in the early 1960s, renamed it Plateau, Inc. and sold it in 1964 to Suburban Propane of New Jersey.

Operationally, the facility had steadily evolved through a series of improvements, modifications and expansions. Suburban upgraded the facility in 1966, increasing the Crude Unit throughput to 4,100 barrels per calendar day (bpcd) and adding 1,850 bpcd Reformer and Naphtha Hydrotreater. In 1975, the Crude Unit was expanded to 8,400 bpcd.

In 1979, the Crude Unit was expanded again to 16,800 bpcd (later demonstrated to have a hydraulic capacity in excess of 18,000 bpcd). A Fluidized Catalytic Cracker (FCC) with a nominal capacity of 6,000 bpcd, an Unsaturated Gas Plant and a Treater Unit were also added at that time. The capacity of the Reformer / Hydrotreater was increased to 2,250 bpcd. The FCC was upgraded in 1982 to conform to State and Federal air quality standards.

1.2.2 Bloomfield Refining Activities

Bloomfield Refining Company (BRC) acquired the facility from Suburban Propane (Plateau) on October 31, 1984. The current owner of the facility is San Juan Refining Company. Western Refining Southwest, Inc. is the facility operator.

Over the years, there have been many improvements made to facility operations and equipment. These improvements are summarized below.

<u>1986</u>

Relocated the spent caustic tank onto a concrete pad with retaining walls.

1987

- Upgraded the Reformer and increased its capacity to 3,600 barrels per day (bpd).
 Modified the Laboratory and Treater Unit and increased tank storage capacity.
- Cleaned up the North and South bone yards.
- Decommissioned and dismantled old Tanks 6 and 7.
- Relocated the API recovered oil Tank 8 and Tank 9 to concrete pads with concrete retaining walls.
- Established a systematic inspection, maintenance, and repair program for tanks.

<u>1988</u>

- Added a 2,000 bpd Catalytic Polymerization Unit. Removed the facility's two underground storage tanks and replaced them with aboveground storage tanks.
- Completed installation of a Cathodic Protection System for the Tank Farm and underground piping.
- Rebuilt the process area sewer system and added curbed, concrete paving to the unpaved process areas.

<u>1989</u>

- Increased Reformer throughput to 4,000 bpd.
- Activated the groundwater hydrocarbon recovery system.
- Constructed the first double-lined Evaporation Pond as part of Refinery's Discharge Plan improvements.

1990

- Constructed the second double-lined Evaporation Pond as part of the Refinery's Discharge Plan improvements.
- Constructed a drum storage shed and converted to bulk chemical usage, where possible, in order to minimize the use of drummed chemicals.

1991

- Revamped the burner fuel sales rack with concrete paving and curbing.
- Submitted the permit application for a Class 1 Disposal Well.
- Upgraded the groundwater hydrocarbon recovery system.

1992

• Submitted an air quality permit application. The application included a proposal to install a Diesel Hydrodesulphurization (HDS) Unit and a Sulfur Recovery Unit (SRU) in order to comply with new EPA low-sulfur diesel regulations and decrease air emissions.

1993

 Began a program under a Consent Agreement with the United Stated Environment Protection Agency (USEPA) to conduct Interim Measures (IM), a RCRA Facility Investigation (RFI) and a Corrective Measures Study (CMS) addressing groundwater contamination.

- Replaced portions of the underground cooling water piping.
- Added concrete paving around the API Separator.
- Installed the HDS Unit and SRU.

<u> 1994</u>

- Completed installation of the Class 1 Injection Well.
- Retrofitted the Aeration Lagoons with two additional liners.
- Installed a floating cover for the API Separator.
- Closed the clay-lined evaporation ponds and spray evaporation area.

1995

- Improved the diking south of the Refinery to further reduce storm water runoff.
- Began implementation of additional corrective measures for groundwater cleanup as determined from the CMS.

1998

 Converted the former evaporation ponds on the east side of the Refinery to raw water storage ponds.

1999

Installed sheet pilings and a bentonite slurry wall adjacent to the San Juan River, North
of the process units, in order to intercept a small hydrocarbon seep that had been
detected in the area.

2001

 Initiated a program to inoculate the Aeration Lagoons with sludge-consuming microorganisms.

2002

 A concrete liner was installed on the Hammond Ditch. At that time, Giant constructed the Hammond Ditch French Drain Recovery System to address contamination under the ditch.

2003

Several monitoring wells were converted into recovery wells to further enhance the
continuing ground water remediation efforts. MW-45, MW-46 & MW-47 were installed to
facilitate sample collection. East Outfall #1 Recovery System was set up to return
impacted water back to the refinery.

2004

 Monitoring wells MW-48, MW-49 and eight temporary piezometers were installed as part of Voluntary River Terrace Investigation activities.

- Several temporary piezometers were drilled on the north side of Hammond Ditch to determine the surface elevation of the Nacimiento Formation. Design of a slurry wall to be constructed on the north side of Hammond Ditch was completed.
- Lined containments were constructed in the draws north of Hammond Ditch in order to collect potentially contaminated groundwater which discharged to the land surface.
- Sewer lines were replaced in the Treater and FCC.

<u>2005</u>

- The North Boundary Barrier Wall installation was completed March 2005. Fourteen observation wells were installed on the north side of the slurry wall and fifteen collection wells were installed on the south side of the slurry wall in April 2005.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.
- In April, five more temporary piezometers were installed at the River Terrace. In August, Dewatering Wells (DW-1 and DW-2) and thirteen bioventing wells were drilled and construction of the River Terrace Bioventing Project was initiated.

2006

- The River Terrace Bioventing System was put on-line in January 2006. Monitoring data from that project is submitted in a separate report to the regulatory agencies.
- During the week of February 13, 2006 seven sump wells were installed along the bluff north of the barrier wall. These wells were drilled in accordance with the North Barrier Wall Work Plan which was submitted to OCD February 7, 2006.
- Fluids extraction from the observation and collection wells, the north draws, and the sump wells continued throughout 2006.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.

2007

- On May 31, 2007, Giant Industries, Inc. became a wholly-owned subsidiary of Western Refining, Inc. of El Paso, Texas.
- Construction of the Ammonia Refrigeration Unit (ARU) was completed and the system put on line by March 2007. This unit is used to recover propane from hydrogen streams.
- Construction of the Benzene Stripper was completed and the system put in service by October 2007. This unit is used to strip benzene from process waste water.
- Discharge piping was installed at RW #1 to increase the recovery capacity of the well.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall (Seeps 1-9) were upgraded periodically.

2008

• The Facility-Wide Groundwater Monitoring Plan (Revised May 2008) was approved and implemented in the latter half of 2008.

- In September, Group No. 2 RCRA Site Investigation activities commenced. Areas included in Group No. 2 are SWMU No. 2, SWMU No. 8, SWMU No. 9, SWMU No. 11, and SWMU No. 18.
- As part of the Closure Plan North and South Aeration Lagoons the ponds were drained, cleaned out, inspected, repaired, and put back in service. This process started in October 2008 and was completed in February 2009.

2009

- In March, monitoring wells were installed around the Aeration Lagoons to satisfy Group No. 1 RCRA site investigation requirements. Group No. 3 Site Investigation activities began in April. This group includes SWMU No. 4, SWMU No. 5, AOC No. 22, AOC No. 23, AOC No. 24, AOC No. 25, and AOC No. 26.
- On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Refinery. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

2010

- In January 2010, due to analytical results indicating high benzene levels, piping was installed to permanently route discharge water from Tank 33 to the API Separator.
- In August, Group No. 4 and Group No. 5 investigation field activities were conducted which included the installation of three monitoring wells.

2011

In August 2012, Group No. 6 RCRA Investigation activities were conducted, which
involved soil sampling within each of the Seep Areas located along the northwest portion
of the facility.

2012

- In January 2012 the group 8 RCRA Investigation activities commenced, which involved soil sampling within SMWU No. 3 – Underground Piping Currently in Use, and SWMU No. 6 – Abandoned Underground Piping.
- On October 12, 2012, NMED Hazardous Waste Bureau approved a Work Plan submitted by Western dated October 9, 2012 authorizing Western to optimize the remediation efforts at the River Terrace. Optimization activities conducted in 2012 included the removal of approximately 250 cubic yards of impacted clay-type soil from the River Terrace, and conversion of a portion of the biovent system to an air sparging system in efforts to target the most impacted groundwater area located within the southwest corner of the River Terrace.
- In the third quarter 2012, Western commenced work that involves enhancement of the total fluids recovery system. This work involves transitioning five monitoring wells (MW-20, MW-55, MW-56, MW-57, and MW-58) and one recovery well (RW-3) to operational total fluids recovery wells. RW-3 was returned to operation by the fourth quarter 2012. Operation of the monitoring wells located near the aeration lagoons is expected to begin in April 2013.

2013

- In the first quarter 2013, Western completed work that involves enhancement of the total fluids recovery system. This work involved transitioning five monitoring wells to active total fluids recovery wells (MW-20, MW-55, MW-56, MW-57, and MW-58). Operation of the monitoring wells located near the aeration lagoons has commenced.
- In June 2013, Western removed two former diesel dispenser pumps, storage tank, associated piping, former fueling pad and approximately 500 cubic yards of soil. Soil samples confirmed all the impacted soil was removed from the immediate vicinity of the former diesel fueling pumps.
- In 2013 Western replaced Tank 37, Tank 38 and Tank 34 with new equivalent tanks.
 Tank 37 and Tank 34 containments were also lined.
- Well MW-70 was developed on May 22, 2013 and baseline samples were collected on June 13, 2013.

2014

- In 2014 Western Refining preformed an environmental site investigation for the SWMUs designated as Group 9 and SWMU No. 27 Wastewater Collection System. Group 9 includes SWMU No. 12 (API Separator), SWMU No. 13 (Process Area) and SWMU No. 14 (Tanks 3, 4, and 5)
- In August 2014, NMED was notified of a significant rain event that resulted in severe flash flooding in the Bloomfield, New Mexico area. The storm caused the Hammond ditch to reverse flow directions, resulting in the entire roadway along the north boundary barrier to fill with water. The significant run-off along the river bluff resulted in Seep 4, Seep 6, Seep 7, Seep 8 and Seep 9 to permanently erode away due to the heavy surface run-off. Prior to the flooding event, these locations were no longer actively collecting seep water due to the existence of the north boundary barrier, and had previously been investigated as part of the 2007 Consent Order. Therefore as of August 2014, the only existing catchment locations are Seep 1, Seep 2, Seep 3, and Seep 5.

2015

• In 2015 routine groundwater and surface water sampling were conducted per the approved Facility-Wide Groundwater Monitoring Plan.

2016

Routine groundwater and surface water sampling were conducted in 2016.

<u>2017</u>

- The terminal operated as usual in 2017 without any deviations from normal operations.
- There were no reportable leaks, spills, or releases in 2017. There was no indication of expanding groundwater contamination and routine corrective action was implemented to address the known plume.
- Fluids were observed in the leachate collection system in the North and South Evaporation ponds, as was also previously observed in prior years since the ponds were constructed. A summary of the fluids was previously provided in correspondence to the OCD dated June 23, 2017.

- Information on the volume of water placed in the evaporation ponds and ultimately disposed in the injection well is provided in the Annual Report for the injection well. The new injection well was put into service in 2017, the details of which are provided in the Annual Report for the injection well.
- Routine groundwater and surface water sampling were conducted in 2017.
- Discharge Permit GW-001 was renewed on June 8, 2017.

<u>2018</u>

- The terminal operated as usual in 2018 without any deviations from normal operations.
- On May 17, 2018 a release of slop oil was discovered at a culvert that crosses beneath County Road 4990. The material described as slop oil consists of petroleum products that originate at the truck loading rack and crude oil that originates at the crude oil unloading rack. The pipeline was evacuated of hydrocarbons and free liquids were removed. Impacted soils were removed and the excavation was backfilled due to potential traffic hazards along the immediately adjacent county road. In October 2018 an Investigation Work Plan was submitted to OCD and NMED.
- Routine groundwater and surface water sampling were conducted in April and August 2018.

2019

- The terminal operated as usual in 2019 without any deviations from normal operations.
- Routine groundwater and surface water sampling were conducted in April and August 2019.

SECTION 2.0 SCOPE OF ACTIVITIES

This Annual Report includes a summary of activities conducted at the Bloomfield Terminal in 2019 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order issued by the NMED-HWB, and Section 2.F. of Discharge Permit GW-001 issued to the Bloomfield Terminal by the EMNDR-OCD. This report includes a summary of sampling activities, total fluids recovery, and remediation monitoring activities conducted in 2019.

2.1 Groundwater and Surface Water Monitoring Activities

Groundwater and surface water monitoring activities conducted in 2019 include the collection of groundwater and surface water samples and field data from the following four areas of the facility:

- Terminal Complex;
- North Boundary Barrier;
- San Juan River Bluff; and
- San Juan River Terrace.

Monitoring activities conducted in April and August 2019 followed the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014. Detailed information regarding groundwater and surface water analyses conducted in 2019 is included in Section 3.1.

2.1.1 Fluid Measurements

Depth-to-groundwater and depth-to-product measurements were collected from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2019 and August 2019, respectively. All fluid level measurements were collected using a Geotech Interface Probe that measures to an accuracy of 0.01 feet. The field measurements were collected a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. A summary of the fluid measurements collected is provided in Section 3.1.1.

2.1.2 Groundwater Field Parameters

Prior to collecting groundwater samples, each well was purged a minimum of three well volumes. Groundwater field parameters (temperature, pH, and conductivity) were collected after purging one well volume. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. A summary of the field measurements collected is provided in Section 3.1.2. In addition, field parameters were collected at the outfalls and seeps when sufficient water was present.

2.1.3 Terminal Complex Sampling

Groundwater samples were collected from specified wells located within the Terminal Complex during the Semi-Annual Sampling Event and Annual Sampling Event conducted in April 2019 and August 2019, respectively, with the exception of wells that contained evidence of SPH, wells that exhibited a sheen during purging, wells that were dry, or wells that did not contain enough water to collect a sample. Figure 16 and Figure 17 show the location of the wells sampled during each sampling event. A summary of the analytical results is provided in Section 3.1.3.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2019:

- Terminal Wells: MW-52;
- Cross-Gradient Wells: MW-1 and MW-13;
- Downgradient Wells: MW-12, MW-35, MW-37, and MW-38.

Groundwater samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory (HEAL) and analyzed for the following:

- Volatile organic compounds (VOCs) Target List benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tert-butyl ether (MTBE) by EPA Method 8260B; and
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Motor Oil Range Organics (MRO) by EPA Modified Method 8015B (Terminal Well MW-52 and Downgradient Well MW-35 are not scheduled for TPH analysis).

Terminal Well MW-20 was not sampled due to the presence of measurable SPH during the gauging event. Groundwater samples were not collected from Terminal Well MW-30 due to the presence of a hydrocarbon sheen during the purging of the well for sampling. Cross-Gradient Well MW-33 was not sampled due to the insufficient volume of groundwater. Background Well MW-6 was dry and was not sampled.

No RCRA Investigation Wells are scheduled for sampling during the Semi-Annual Sampling Event conducted in April.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2019:

- Terminal Wells: MW-29, MW-31, MW-44, and MW-52;
- Cross-Gradient Wells: MW-1, MW-13, MW-27, and MW-32;
- Downgradient Wells: MW-11, MW-12, MW-34, MW-35, MW-37, and MW-38; and
- RCRA Investigation Wells: MW-53, MW-59, MW-62, MW-63, MW-64, MW-67, MW-68, and MW-70.

Groundwater samples collected during the Annual Sampling Event were submitted to HEAL and analyzed for the following:

- VOCs by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

Groundwater samples were not collected from Terminal Wells RW-9, MW-20, RW-28, and RW-43 due to the presence of SPH during the facility-wide gauging event. Groundwater samples were not collected from Terminal Wells RW-1, MW-4, RW-15, RW-18, MW-21, MW-30, MW-40, RW-23, and RW-42 due to the presence of a hydrocarbon sheen during the purging of the well for sampling.

Cross-Gradient Well MW-26 was not sampled due to the presence of SPH during the facility-wide gauging event. Cross-Gradient Well MW-33 was not sampled due to the insufficient volume of groundwater.

Groundwater samples were not collected from RCRA Investigation Wells MW-57, MW-58, MW-61, and MW-66 due to the presence of SPH during the facility-wide gauging event. Groundwater samples were not collected from RCRA Investigation Wells MW-54, MW-55, MW-56, and MW-65 due to the presence of a hydrocarbon sheen during the purging of the well for sampling. Groundwater samples were not collected from RCRA Investigation Wells MW-60 and MW-69 due to an insufficient volume of groundwater.

Background Wells MW-3, MW-5, and MW-6 were dry and were not sampled.

2.1.4 North Boundary Barrier Sampling

Groundwater samples were collected from observation wells and specified collection wells in April 2019 and August 2019, with the exception of wells that contained evidence of SPH, wells that were dry, or wells that did not contain enough water to collect a sample. Figure 16 and Figure 17 shows the location of the North Boundary Barrier wells that were sampled in April 2019 and August 2019, respectively. A summary of the groundwater results is provided in Section 3.1.4.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2019:

- Collection Wells: CW 0+60 and CW 25+95; and
- Observation Wells: OW 8+10, OW 19+50, OW 22+00, OW 23+90, and OW 25+70.

Groundwater samples collected in April 2019 were submitted to HEAL and analyzed for the following:

- VOCs-BTEX and MTBE only by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

Groundwater samples were not collected from Observation Wells OW 0+60, OW 1+50, OW 3+85, OW 11+15, OW 16+60, and OW 23+10 due to the presence of a hydrocarbon sheen during the purging of the wells for sampling.

Observation Well OW 14+10 was dry and was not sampled. Groundwater samples were not collected from Observation Wells OW 5+50 and OW 6+70. These wells did not yield enough water after purging to sample.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2019:

- Collection Wells: CW 0+60 and CW 25+95; and
- Observation Wells: OW 8+10, OW 19+50, OW 22+00, OW 23+90, and OW 25+70.

Groundwater samples collected during the Annual Sampling Event were submitted to HEAL and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

Groundwater samples were not collected from Observation Wells OW 3+85, OW 11+15, OW 16+60, and OW 23+10 due to the presence of a hydrocarbon sheen during the purging of the wells for sampling.

Observation Wells OW 1+50, OW 6+70, and OW 14+10 were dry and were not sampled. Groundwater samples were not collected from Observation Wells OW 0+60 and OW 5+50. These wells did not yield enough water after purging to sample.

2.1.5 San Juan River Bluff Sampling

San Juan River Bluff sampling includes the collection of water samples at the outfall locations along the eastern portion of the facility, and at the seeps located along the western portion of the facility. Figure 3 shows the outfall and seep locations. A summary of the analytical results is provided in Section 3.1.5.

Semi-Annual Sampling Event

Water samples were collected from the East Outfall #2 and East Outfall #3 locations during the 2019 Semi-Annual Sampling Event.

Water samples collected were submitted to HEAL and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

Surface water samples were not collected from Seep 1, Seep 2, Seep 3 and Seep 5 due to the absence of an active discharge at each location.

Annual Sampling Event

Water samples were collected from the East Outfall #2 and East Outfall #3 locations during the 2019 Annual Sampling Event.

Water samples collected were submitted to HEAL and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

Surface water samples were not collected from Seep 1, Seep 2, Seep 3, and Seep 5 due to the absence of an active discharge at each location.

2.1.6 San Juan River Terrace Sampling

San Juan River Terrace sampling includes the collection of surface water samples at four locations along the San Juan River and the collection of groundwater samples at the San Juan River Terrace. A summary of activities conducted and groundwater samples collected that are associated with the bioventing system located at the San Juan River Terrace are included in the previously submitted *River Terrace Voluntary Corrective Measures Bioventing System Report*

dated February 2020. Therefore sampling activities associated with the Bioventing System are not included in this report.

Figure 3 shows the approximate surface water sample locations along the San Juan River. A summary of the surface water analytical results is provided in Section 3.1.6.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2019:

• San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Semi-Annual Sampling Event were submitted to HEAL and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0;
- Carbon dioxide;
- Specific conductance; and
- Total dissolved solids.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2019:

San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Annual Sampling Event were submitted to HEAL and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;

- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0;
- Specific conductance; and
- Total dissolved solids.

2.1.7 Outfall and Seep Inspections

Weekly visual inspections of Seep 1, Seep 2, Seep 3, and Seep 5 along the San Juan River Bluff, which includes the East Fork area, were conducted in 2019. Figure 3 shows the location of the outfalls and seeps. A summary of the inspections performed is provided in Section 3.1.7.

2.2 Total Fluids Recovery Systems

2.2.1 Groundwater Recovery System

The Bloomfield Facility operates a total fluids pumping system used to recover SPH and hydrocarbon impacted groundwater for treatment and disposal. This is accomplished by actively pumping wells within the groundwater impacted area. Recovered fluids are pumped to the on-site API separator for product recovery. The remaining recovered fluid is pumped through the WWTS prior to disposal. The groundwater recovery system was operational throughout 2019. The wells that operated as active recovery wells in 2019 are RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, RW-19, MW-20, RW-22, RW-23, RW-28, RW-42, MW-55, MW-56, MW-57, MW-58, and MW-69. Figure 2 shows the location of the recovery wells within the Facility. An operational summary of the groundwater recovery system is included in Section 3.3.1.

2.2.2 North Boundary Barrier Wall Collection System

The North Boundary Barrier Wall, which was installed by April 2005, consists of a 2,700 foot long bentonite slurry wall that extends two to five feet into the Nacimiento Formation. The primary purpose of the wall is to prevent the migration of hydrocarbon-impacted groundwater towards the San Juan River. The collection system consists of 15 collection wells positioned along the facility-side of the barrier wall. For every collection well, there was also an observation well installed along the river-side of the barrier wall. Bloomfield Terminal personnel continued to monitor fluid levels on both sides of the barrier wall in 2019 by collecting depth-towater and depth-to-product measurements. Figure 2 shows the location of the collection wells

and observation wells along the North Boundary Barrier Wall. A summary of the data collected along the North Boundary Barrier Wall is provided in Section 3.3.2.

2.2.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System consists of recovery Tank 37, located along the western portion of the facility, and a French Drain system that was constructed below the concrete-lined Hammond ditch. Tank 37 collects groundwater from two 8-inch influent lines connected to the perforated sub-drain (the French Drain) beneath the Hammond Irrigation Canal. Tank 37 is equipped with a liquid level float control system and dedicated flow meter. Recovered water from Tank 37 is automatically pumped through a flow meter to the API Separator. The location of Tank 37 is shown on Figure 3.

The Hammond Ditch Recovery System serves as a hydraulic relief mechanism for groundwater that mounds along the Facility-side of the north barrier wall. Figure 3 shows the location of Tank 37. A summary of operational data for the Hammond Ditch Recovery System is included in Section 3.3.3.

2.2.4 River Terrace Remediation System

The River Terrace Bioventing System commenced operation in January 2006. A summary of activities associated with the River Terrace Bioventing System are submitted separately to the agencies in March of each year.

2.2.5 East Outfall Recovery System

Outfall 1 is equipped with a holding tank and automatic pumping system. Water from Outfall 1 discharges into Tank 38 directly and then is pumped to the on-site WWTS prior to disposal. Figure 3 shows the location of Tank 38.

The flow rate of recovered water entering Tank 38 is dependent upon the operation of the Hammond Ditch, which is located just south of Tank 38. A summary of the operational data of the East Outfall Recovery System for 2019 is included in Section 3.3.4.

2.3 Waste Disposal

Western Refining indefinitely suspended refining operations at the Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting

equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through the on-site Class I injection well or evaporation ponds.

Significantly less waste is routinely generated since the suspension of refining operations in November 2009. The on-site landfill is no longer operational, and therefore all operational waste generated is properly characterized and disposed of off-site. Additional information regarding waste disposal activities is provided in Section 3.5.

SECTION 3.0 RESULTS SUMMARY

The following is a summary of the data collected, visual inspections conducted, and analytical results received during monitoring and testing performed in 2019. Figure 8 and Figure 9 provide a summary of the BTEX concentrations detected during the April 2019 and August 2019 sampling events, respectively. Figure 10 shows the analytical results for chloride, sulfate, nitrate, and total dissolved solids (TDS) for April 2019. Figures 11 through 15 depict the analytical results for naphthalene, chloride, sulfate, nitrate, and TDS for August 2019.

3.1 Groundwater and Surface Water Monitoring

A summary of the groundwater and surface water analytical results for samples collected over the past few years are included in Table 3 through Table 10. Screening levels used to evaluate the groundwater condition at the Bloomfield Terminal are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Sample results included in the analytical summary tables that exceed the respective regulatory screening levels are highlighted in yellow, while all detected results are bolded. An electronic copy of the respective analytical reports is included in Appendix A. The analytical reports contain the respective quality assurance/quality control data reviews and validation. Included in Appendix B is a summary of the quality assurance/quality control data reviews and validation.

3.1.1 Fluid Level Measurements

Depth-to-groundwater and depth-to-product measurements were collected at all facility monitoring wells, recovery wells, observation wells, and collection wells in April and August 2019. Additional fluid measurements were collected at the sump wells periodically throughout the year to monitor fluid levels along the north side of the facility. The fluid pumping wells were turned off and the groundwater was allowed to stabilize for a minimum of 48-hours prior to the collection of fluid levels within the Bloomfield Terminal during both the April and August sampling events. Figure 2 shows the location of the wells within the facility.

Using the fluid level measurements collected in April and August 2019, groundwater potentiometric surface elevations were calculated. The groundwater elevation data was used to develop groundwater potentiometric surface maps, which show the general direction of groundwater flow within the facility. Table 1 provides a summary of the fluid level measurements collected in 2019. Figure 4 and Figure 5 represent the groundwater contours

developed from data collected in April 2019 and August 2019, respectively. The groundwater potentiometric surface contours show that groundwater generally flows in a northwest direction. A discussion of the SPH data collected is provided in Section 3.2 of this report.

3.1.2 Groundwater Field Measurements

Prior to collecting groundwater samples, each well was purged of a minimum of three well volumes using a disposable bailer. Groundwater field parameters (temperature, pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and total dissolved solids (TDS)) were collected every two gallons or after purging one well volume, whichever was less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. The field parameters were collected using a YSI Professional Plus instrument. Field equipment calibration procedures performed prior to each sampling event are summarized in Section 4 of the Facility-Wide Groundwater Monitoring Plan. Table 2 provides a summary of the groundwater field parameters collected during the April 2019 and August 2019 sampling events. Field parameters were also collected from water samples collected at the East Outfalls, Seeps, and the San Juan River locations.

3.1.3 Terminal Complex Sampling

Terminal Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the exception of the sample collected from MW-31 in August. The following exceedances were reported:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 56 ug/L. The detected concentration was 330 ug/L.
- 1-Methylnaphthalene was detected above the respective screening level of 11 ug/L. The detected concentration was 78 ug/L.
- 2-Methylnaphthalene was detected above the respective screening level of 36 ug/L. The detected concentration was 74 ug/L.
- Benzene was detected above the respective screening level of 5 ug/L. The detected concentration was 1,500 ug/L.
- Ethylbenzene was detected above the respective screening level of 700 ug/L. The detected concentration was 710 ug/L.
- Naphthalene was detected above the respective screening level of 1.65 ug/L. The concentration detected was 160 ug/L.
- Xylenes were detected above the respective screening level of 620 ug/L. The detected concentration was 1,200 ug/L.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the following exceptions:

- Chloride was detected above the screening level of 250 mg/L at MW-52 in August 2019 with a detected concentration of 830 mg/L.
- Nitrite and nitrate were reported as a combined concentration in one sample where the
 applicable screening level for nitrite (1.0 mg/L) and nitrate (10 mg/L), were exceeded.
 This occurred in the sample collected at MW-52 with a reported combined concentration
 of 39 mg/L.
- Sulfate was detected above the screening level of 600 mg/L at MW-44 and MW-52 in August 2019 with detected concentrations of 3,500 mg/L and 1,400 mg/L, respectively.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with exception of arsenic. Arsenic was detected above the respective screening level of 0.01 mg/L at MW-44. The detected concentration above the screening level was 0.017 mg/L in August 2019.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with exception of manganese. Manganese was detected above the respective screening level of 0.2 mg/L at MW-29, MW-31, and MW-44. The detected concentrations above the screening levels ranged between 0.43 mg/L and 1.1 mg/L, with the highest concentration detected at MW-29 in August 2019.

Total petroleum hydrocarbons were detected above the laboratory detection limits in the GRO and DRO analyses in MW-31. DRO was detected above the screening level of 0.0167 mg/L at a concentration of 1.1 mg/L in August 2019. GRO was detected above the screening level of 0.0101 mg/L at a concentration of 11 mg/L in August 2019.

A summary of the analytical results for samples collected at the Terminal Complex Wells is provided in Table 3.

Cross-Gradient Wells

No volatile organic compounds were detected above the laboratory detection limits in samples collected in 2019.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the following exceptions:

 Chloride was detected above the respective screening level of 250 mg/L at MW-27 and MW-32 at concentrations of 960 mg/L and 740 mg/L, respectively, in August 2019.

- Nitrite and nitrate were reported as a combined concentration in two samples where the
 applicable screening level for nitrite (1.0 mg/L), was exceeded. This occurred in the
 samples collected at MW-13 and MW-32 with a reported combined concentrations of 1.8
 mg/L and 37 mg/L, respectively.
- Nitrate exceeded the screening level of 10 mg/L in one sample collect at MW-32 in August 2019 with a reported concentration of 37 mg/L.
- Sulfate was detected above the respective screening level of 600 mg/L at MW-13, MW-27, and MW-32. The detected concentrations ranged between 1,100 mg/L and 2,900 mg/L, with the highest concentration detected at MW-27 in August 2019.

There were no total metals constituents detected above their respective screening levels in samples collected in 2019.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the following exceptions:

- Manganese was detected above the respective screening level of 0.2 mg/L at MW-13 and MW-27. The detected concentrations were 1.5 mg/L and 1.8 mg/L, respectively; and
- Iron was detected above the respective screening level of 1 mg/L at MW-27 in August 2019 with a reported concentration of 1.1 mg/L.

Total petroleum hydrocarbons were detected in one sample collected at MW-27 for the DRO fraction at a concentration of 0.23 mg/L vs. the screening level of 0.0167 mg/L.

A summary of the analytical results for samples collected at the Cross-Gradient Wells is provided in Table 4.

Downgradient Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the screening level of 56 ug/L at MW-11 at a concentration of 110 ug/L;
- 1-Methylnaphthalene was detected above the respective screening level of 11 ug/L at MW-11 with a concentration of 18 ug/L in August 2019;
- Benzene was detected in samples collected at MW-11 at 8 ug/L, which exceeds the screening level of 5 ug/L; and
- Naphthalene was detected above the respective screening level of 1.65 ug/L at MW-11.
 The detected concentration was 99 ug/L.

Semi-volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019 with the exception of the concentration of 1-methylnaphthalene in MW-11. The detected concentration was 34 ug/L which exceeded the screening level of 11 ug/L.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the exception of the sulfate concentration in MW-37. The detected concentration was 1,200 mg/L in August 2019 which exceeds the screening level of 600 mg/L.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/L at MW-35 (0.016 mg/L);
 and
- Chromium was detected above the screening level of 0.05 mg/L at MW-12 (0.31 mg/L).

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/L at MW-34 (0.027 mg/L) and MW-35 (0.037 mg/L);
- Barium was detected above the screening level of 1.0 mg/L at MW-35 (1.1 mg/L);
- Iron was detected above the respective screening level of 1.0 mg/L at MW-11 (6.5 mg/L), MW-34 (2.5 mg/L), and MW-35 (1.9 mg/L); and
- Manganese was detected above the respective screening level of 0.2 mg/L at MW-11 MW-34, MW-35, MW-37, and MW-38. The detected concentrations above the screening level ranged between 2.0 mg/L and 3.6 mg/L, with the highest concentration detected at MW-34 in August 2019.

Total petroleum hydrocarbons were detected in the DRO and GRO fractions. The DRO fraction was detected at concentrations above the screening level of 0.0167 mg/L in the samples from MW-11, MW-35, and MW-38. The concentrations reported were 0.52 mg/L (MW-11), 0.26 mg/L (MW-35) and 0.43 mg/L (MW-38). The GRO fraction was detected at concentrations above the screening level of 0.0101 mg/L in the samples from MW-11, MW-35 and MW-38. The concentrations reported were 2.4 mg/L (MW-11), 0.35 mg/L (MW-35), and 0.052 mg/L (MW-38).

A summary of the analytical results for samples collected at the Downgradient Wells is provided in Table 5.

RCRA Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in August 2019, with the following exceptions:

- 1,2-Dichloroethane was detected above the respective screening level of 1.71 ug/L at MW-59 with a concentration of 10 ug/L;
- Benzene was detected above the respective screening level of 5 ug/L at MW-59 with a concentration of 7.5 ug/L; and
- MTBE was detected above the respective screening level of 100 ug/L at MW-59 with a concentration of 830 ug/L.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in August 2019, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/L at MW-53, MW-64, and MW-70. The detected concentrations above the screening level ranged between 340 mg/L and 920 mg/L. The highest concentration was detected at MW-53;
- Nitrite was detected above the respective screening level of 1 mg/L at MW-53, MW-63, MW-64, MW-67, and MW-68, with concentrations ranging from 3.8 mg/L to 66 mg/L. The highest concentration was detected at MW-63;
- Nitrate was detected above the respective screening level of 10 mg/L at MW-53, MW-63, and MW-64, with concentrations ranging from 14 mg/L to 66 mg/L. The highest concentration was detected at MW-63; and
- Sulfate was detected above the respective screening level of 600 mg/L at MW-53, MW-62, MW-63, MW-64, and MW-70. The detected concentrations ranged between 960 mg/L and 4,000 mg/L, with the highest concentration detected at MW-62.

None of the total metals analyses indicated concentrations of constituents detected above their respective screening levels in samples collected in August 2019.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in August 2019, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/L in groundwater sample collected at MW-59 (0.027 mg/L);
- Iron was detected above the respective screening level of 1.0 mg/L at MW-59 (7.6 mg/L) and MW-70 (5.3 mg/L); and
- Manganese was detected above the respective screening level of 0.2 mg/L at MW-53, MW-59, MW-62, MW-63, and MW-70. The detected concentrations ranged between 0.30 mg/L and 1.6 mg/L, with the highest concentration detected at MW-70.

Total petroleum hydrocarbons were below the laboratory detection limit in the DRO and GRO fractions except for the sample from MW-59. The DRO concentration exceeded the screening level of 0.0167 mg/L in groundwater sample collected at MW-59 (0.31 mg/L). The GRO concentration exceeded the screening level of 0.0101 mg/L in groundwater sample collected at MW-59 (1.2 mg/L).

A summary of the analytical results for samples collected at the RCRA Wells in August 2019 is provided in Table 6.

3.1.4 North Boundary Barrier Sampling

Collection Wells

No volatile organic compounds were detected above their respective screening levels in samples collected in 2019. Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO and DRO fractions. The DRO concentrations reported in the following samples exceeded the screening level of 0.0167 mg/L:

- CW 0+60 1.7 mg/L April 2019; and
- CW 0+60 0.70 mg/L August 2019.

The GRO concentrations reported in the following samples exceeded the screening level of 0.0101 mg/L:

- CW 0+60 3.1 mg/L April 2019; and
- CW 25+95 0.36 mg/L April 2019.

A summary of the analytical results for samples collected at the collection wells in 2019 is provided in Table 7.

Observation Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019 with the exception of the April 2019 sample from OW 19+50. The MTBE concentration (0.130 mg/L) in the sample exceeded the screening level of 0.100 mg/L.

The DRO concentrations reported in the following samples exceeded the screening level of 0.0167 mg/L:

- OW 8+10 0.44 mg/L April 2019; and
- OW 19+50 0.19 mg/L August 2019.

The GRO concentrations reported in the following samples exceeded the screening level of 0.0101 mg/L.

- OW 19+50 0.077 mg/L April 2019;
- OW 23+90 0.027 mg/L August 2019;
- OW 25+70 0.12 mg/L April 2019; and
- OW 25+70 0.052 mg/L August 2019.

A summary of the analytical results for samples collected at the collection wells in 2019 is provided in Table 7.

3.1.5 San Juan River Bluff Sampling

Outfalls

Samples were collected from East Outfall #2 and East Outfall #3 in April and August 2019. A summary of the analytical results for samples collected at East Outfall #2 and East Outfall #3 in 2019 is provided in Table 8.

Volatile organic compounds were not detected in samples collected in 2019. General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2019 with the exception of nitrite concentrations. The nitrite concentrations reported in the following samples exceeded the screening level of 1 mg/L:

- East Outfall #2 1.5 mg/L August 2019; and
- East Outfall #3 1.6 mg/L August 2019.

For the total metals analyses, none of the metals were detected at a concentration above the screening levels in April and August 2019. All dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in April and August 2019.

Seeps

The seep locations were dry in April and August 2019 and were therefore not sampled. A summary of the analytical results for samples previously collected at the seeps is provided in Table 9.

3.1.6 San Juan River Terrace Sampling

Sample locations related to the bioventing system are discussed in a separate report, and therefore are not included in this submittal. However, surface water samples were collected at four locations along the San Juan River in 2019. Samples were collected in April 2019 and August 2019 upstream of the Terminal, north of MW-46, north of MW-45, and downstream of the Terminal. A summary of the analytical results for samples is provided in Table 10.

Volatile organic compounds were not detected above laboratory detection limits in any of the samples for 2019. Similarly, Total Petroleum Hydrocarbons were not detected above laboratory detection limits in surface water samples collected for 2019. General chemistry parameters detected above the laboratory detection limits were below their respective screening levels in samples collected in 2019.

Total and dissolved metal constituents detected above the laboratory detection limits were below their respective screening levels in samples collected in 2019. Figure 3 shows the location of the San Juan River samples in relation to the Bloomfield Terminal.

3.1.7 Outfall and Seep Inspections

Weekly visual inspections of Seep 1, Seep 2, Seep 3, and Seep 5 and along the San Juan River Bluff, including the East Fork area, were conducted in 2019. Inspections of the draws north of the barrier wall and analysis of samples of water collected in the seeps indicate that the barrier wall is preventing migration of contaminated groundwater toward the San Juan River.

Visual inspection of the East Fork area indicates that the flow rate at this seep location has decreased to less than 1 gallon/minute. The flow rate at this location does not appear to be impacted by the operation of the Hammond Ditch. Figure 3 shows the location of the outfalls and seeps in relation to the Bloomfield Terminal.

3.2 Separate-Phase Hydrocarbons

Field measurements collected in April and August 2019 were also used to determine product thickness in areas where SPH was detected. In April 2019, SPH was identified in 17 wells. The product thickness detected ranged between 0.01 feet and 0.47 feet, with the most product detected at monitor well MW-58. In August 2019, SPH was identified in 16 wells. The product thickness ranged between 0.02 feet and 0.70 feet, with the most product detected at monitor well MW-77. Figure 6 and Figure 7 show a summary of the product thickness detected in April 2019 and August 2019, respectively.

Product had been detected in the groundwater prior to suspension of refining operations in November 2009. Review of the past 10 years of data collected shows SPH to be present in four general areas of the facility; the Terminals Area, the Tank Farm Area, the former Refinery Process Area, and the North Boundary Barrier Area. The following is a brief summary of the SPH trends observed as reported each year. A review of the historic SPH measurements collected are included in the Facility-Wide Groundwater Monitoring Plan dated December 2007 and in subsequent Annual Groundwater Remediation and Monitoring Reports submitted in April of each year.

Terminals Area

The area historically referred to as the "Terminals Area" is located south of County Road 4990. Primary operations in this area include product loading and unloading, crude unloading, and product storage. At the Terminal Area, SPH has been localized to two wells (MW-61 and MW-66). These wells were installed in 2009 as part of the on-going RCRA investigation activities. In the most recent measurement in August 2019, 0.31 feet of SPH was observed in MW-61. The SPH thickness at MW-61 has fluctuated between 0.21 feet and 0.98 feet. At MW-66, located west of Tank 45, the amount of SPH has fluctuated between 0.0 feet and 0.32 feet, with 0.06 feet measured most recently in August 2019. During the August 2019 sampling activities, a sheen was observed on the purged water for MW-65. This is the first occurrence of a sheen being observed in MW-65. The well was not sampled.

Tank Farm Area

The Tank Farm Area is located in the eastern portion of the facility, north of County Road 4990. This area is equipped with four total fluids recovery wells located along the center dike area

(RW-14, RW-15, RW-16, and RW-17). Recovery wells RW-14 and RW-16 are equipped with electrical submersible pumps, while RW-15 and RW-17 are equipped with dedicated pneumatic pumps that operate on a timer. All fluids pumped from these wells are routed to the on-site WWTP for product recovery and treatment. In recovery well RW-14, SPH was detected during the April 2019 gauging event (0.29 feet) and August 2019 gauging event (0.07 feet). No SPH was detected in RW-15, RW-16, and RW-17 during the April and August 2019 gauging events.

Former Refinery Process Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater that exists at the Bloomfield facility. Several monitoring wells located within the vicinity of the former refinery process area have shown detectable amounts of SPH prior to the suspension of refinery operations in November 2009. Total fluids recovery wells, as well as the French drain fluids collection system located below the Hammond Ditch in this area, provide hydraulic relief and enhance product recovery efforts.

Two wells within the warehouse area have shown detectable SPH. Monitoring well MW-54, which was installed in 2008, has shown decreasing levels of SPH since 2010. In August 2016, MW-54 contained only approximately 0.01 feet of SPH and no SPH was measured in 2019. Recovery well RW-1 is an active total fluids recovery well. This well operates at a constant flowrate of approximately 2 gpm. The amount of SPH at RW-1 has fluctuated since 2008, with no SPH measured during 2019.

Two active recovery wells (RW-2 and RW-3) are located along the southern property boundary and are equipped with dedicated pneumatic total fluids pumps. SPH was detected in RW-2 during the April 2019 gauging event (0.15 feet) and during the August 2019 gauging event (0.21 feet). SPH has only been detected in RW-2 during one gauging event in the past. In August 2014 the SPH thickness was recorded as 0.10 feet. RW-3 has shown traces of SPH prior to returning to operation in 2012, with SPH detected at 0.05 feet or less. No measurable SPH was detected in RW-3 in 2019.

Monitoring well MW-41, located adjacent to the former crude process unit, has shown fluctuating levels of SPH over the years. The range of SPH detected has been between 0.0 feet and 1.18 feet since 2007. SPH was not detected during the April 2019 gauging event. In

August 2019, 0.02 feet of SPH was measured in MW-41. The SPH thickness measurements in 2019 were less than the 2018 measurements.

The SPH level at RW-42, an active recovery well located upgradient of MW-41, has also fluctuated over time. The amount of SPH has ranged between 0.00 feet and 0.90 feet since 2007. SPH has not been detected in RW-42 since August 2015.

In the area near the WWTP and north of the former process units there are several wells in which SPH has been detected over the years. It is expected to see SPH levels fluctuate in this area due to the numerous active recovery wells, as well as, the existence of the north boundary barrier providing hydraulic control for all groundwater beneath the former process areas. To further enhance the product recovery efforts in this area, work has been done to equip five existing monitoring wells with dedicated pneumatic pumps for total fluids recovery. Monitoring wells MW-55, MW-56, MW-57, MW-58, and MW-20 have been converted to recovery wells. These wells are located in the area where SPH is currently most prevalent. The wells have been operational as of 2013 and continued to operate through 2019. In MW-20, the SPH thickness measurements in 2019 were less than the 2018 SPH measurements.

When compared to the 2018 fluid level measurements, the measurements collected in 2019 indicated a reduction in the SPH thickness in the wells MW-72, RW-19, and RW-28.

North Boundary Barrier Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater within the Bloomfield facility. Monitoring wells and observation wells located along the river-side of the slurry wall have shown intermittent detections of SPH. The greatest of which was 0.08 feet in April 2014 in MW-45; however, no SPH has been detected in excess of 0.01 feet since that time. The amount of groundwater detected in these wells is significantly less than the wells located on the facility-side of the wall, giving proof that the hydraulic barrier is effective. The intermittent detections of SPH are believed to be the residual effect of SPH in the area that existed prior to installation of the slurry wall.

Collection well CW 11+15 is located south of monitoring well MW-45 on the south side of the barrier wall. The range of SPH detected has been between 0.0 feet and 1.95 feet since April

2014. SPH was detected during the April 2019 gauging event (0.03 feet) and in the August 2019 gauging event (0.06 feet).

Collection CW 8+45 is located west of collection well CW 11+15. SPH was detected during the April 2019 gauging event (0.03 feet) and in the August 2019 gauging event (0.11 feet). No SPH was detected in this well during gauging events from 2011 through 2018.

SPH was not detected in the Observations Wells during the April 2019 and August 2019 gauging event. A hydrocarbon sheen was observed on some of the wells during the well purging activities prior to sampling. These wells include:

- Semi-Annual Event OW 0+60, OW 1+50, OW 3+85, OW 11+15, OW 16+60, and OW 23+10; and
- Annual Event OW 3+85, OW 11+15, OW 16+60, and OW 23+10.

3.3 Total Fluids Recovery Systems

3.3.1 Groundwater Recovery System

In 2019, 19 wells operated as total fluids recovery wells. The wells used for total fluids recovery were RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, RW-19, MW-20, RW-22, RW-23, RW-28, RW-42, MW-55, MW-56, MW-57, MW-58, and MW-69. In the past, Marathon estimated the total gallons pumped (SPH and groundwater) from the recovery wells on an annual basis. The recovery wells are not equipped with individual flow meters. Most wells are equipped with pneumatic pumps that run on a timer system. Based on the timer setting and field verified flow rates, the total gallons pumped per well over time was calculated. The wells are routinely checked to make sure they are in service and to make any repairs, as necessary, to return wells to service. Because it is not possible to know with certainty how long an individual pump may have been out of service between inspections, Marathon has not attempted to estimate the annual recovery volumes for the wells.

3.3.2 North Boundary Barrier Wall Collection System

Depth-to-groundwater measurements collected in April 2019 and August 2019 indicate that the barrier wall continues to provide a hydraulic barrier for groundwater below the facility. Based on the data collected in 2019, six of the fourteen observation wells contain little to no fluid (i.e., measuring less than 0.5 ft of fluid in the well at any one time). Of the 13 well pairs (i.e.,

observation and collection wells on opposite sides of the slurry wall) where water is present in the observation wells, the average difference in water level elevations across the slurry wall is 3.55 feet. This difference in water level elevations immediately across the slurry wall is further evidence of its continued effectiveness.

Table 1 provides a summary of the fluids level measurements collected from the wells along the north boundary barrier wall.

3.3.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System serves as a hydraulic relief system for groundwater accumulating within the western portion of the Terminal on the up-gradient side of the slurry wall. All water recovered through the Hammond Ditch French drain west of the pipeline easement discharges to Tank 37, which is then transferred to the API separator for product recovery. The location of Tank 37 is shown on Figures 2 and 3. Terminal Operators inspect the operation of recovery system and Tank 37 daily and record the amount of water recovered in the tank using a flow meter located on the discharge end of the Tank 37 transfer pump. In 2019, the total volume of fluids recovered at Tank 37 was approximately 15,882 barrels. The flow meter was not working in January 2019 and was replaced on February 7, 2019. The volume of fluids recovered at Tank 37 in 2018 was 20,393 barrels.

3.3.4 East Outfall Recovery System

Water recovered through the Hammond Ditch French drain east of the pipeline easement discharges through three outfalls (i.e., Outfall 1, Outfall 2 and Outfall 3). Total fluids from Outfall 1 is recovered via Tank 38 and transferred to the WWTS for treatment prior to disposal through the on-site injection well. Figures 2 and 3 show the location of Tank 38.

Tank 38 piping is equipped with a flow meter to measure the total gallons transferred to the WWTP. In 2019, the total fluid volume recovered at Tank 38 was approximately 196,862 barrels. The volume of fluids recovered at Tank 38 in 2018 was 106,349 barrels.

3.4 Waste Disposal

Western Refining indefinitely suspended refining operations at the Bloomfield Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities

and facility operations is treated through the on-site WWTS. Treated water is then disposed of through an on-site Class I non-hazardous injection well and/or two on-site evaporations ponds. The monthly and annual cumulative volumes of water discharged to the evaporation ponds are summarized in Table 11.

Significantly less waste is routinely generated since the suspension of refining operations in November 2009. The on-site landfill is no longer operational, and therefore all operational waste generated is properly characterized and disposed of off-site. A total of 20,880 pounds of waste were disposed off-site in 2019. A summary of the hazardous waste associated with terminal operations disposal activities is provided in Table 12.

SECTION 4.0 CONCLUSIONS

The following is a summary of conclusions based on monitoring and inspection data collected in 2019.

4.1 Groundwater Monitoring

Marathon has in-place a Facility-Wide Groundwater Monitoring Program that is updated annually as required under the 2007 Consent Order issued by NMED-HWB. Updates to this program include incorporation of additional wells installed as part of on-going completed RCRA Investigation activities. Such updates are proposed for agency approval in June of each year. Screening levels used to evaluate the groundwater condition at the Bloomfield Terminal are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Tables 3 through 10 include the applicable screening level for each respective analyte. Sample results included in the analytical summary tables that exceed the respective screening levels are highlighted in yellow and all detected results are bolded. Figure 8 and Figure 9 shows a summary of the BTEX and MTBE concentrations detected sitewide during the April 2019 and August 2019 sampling events, respectively. Figures 10 shows the results for chloride, sulfate, nitrate, and total dissolved solids (TDS) for April 2019. Figures 11 through 15 show the analytical results for naphthalene, chloride, sulfate, nitrate, and TDS for August 2019.

Depth-to-groundwater and depth-to-product measurements were collected at all facility monitoring wells, recovery wells, observation wells, collection wells and sump wells in 2019. Groundwater elevation contours show that groundwater flows in the general northwest direction, with the groundwater under the process areas flowing towards the north boundary barrier wall and Hammond Ditch Collection System.

When compared to the 2018 fluid level measurements, the measurements collected in 2019 indicated a reduction in the SPH thickness in the wells MW-20, MW-41, MW-72, RW-19, and RW-28.

Groundwater Quality

Based on the analytical results for groundwater monitoring collected in 2019, no major changes were observed in the groundwater concentrations. The following constituents were detected at concentrations in groundwater above their respective most conservative screening levels.

- Organic Compounds
 - 1,2,4-Trimethylbenzene;
 - 1,2-Dichloroethane;
 - 1-Methylnaphthalene;
 - 2-Methylnaphthalene;
 - Naphthalene;
 - o Benzene;
 - Ethylbenzene;
 - MTBE;
 - Xylenes;
 - o Diesel Range Organics; and
 - Gasoline Range Organics.
- General Chemistry
 - o Chloride;
 - Nitrate;
 - Nitrite; and
 - Sulfate.
- Total Metals;
 - o Arsenic; and
 - o Chromium.
- Dissolved Metals
 - o Arsenic;
 - o Barium;
 - o Iron; and
 - Manganese.

An investigation of naturally occurring (i.e., background) concentrations of constituents in groundwater was initiated in January 2012, with the last submission to NMED in January 2015. As of February 2020, NMED has not yet responded to the January 2015 *Investigation Report Background Concentrations*, thus background concentrations are not yet available for comparison to detected results.

4.2 Outfall and Seep Inspections

Weekly visual inspections of the seeps and along the San Juan River Bluff, which includes the East Fork Area, were conducted in 2019. No visual sheens or odors were identified during the inspections. Fluid in the seeps is most often prevalent during the spring, corresponding with the times of higher precipitation. None of the seeps had sufficient discharge to allow for sample collection in April or August 2019.

4.3 Total Fluids Recovery Systems

The Bloomfield Terminal operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the Terminal Complex;
- North Boundary Barrier Collection System;
- Hammond Ditch Recovery System;
- River Terrace Remediation System; and
- East Outfall Recovery System.

All fluids recovered from these systems, with the exception of the effluent from the River Terrace Remediation System, are pumped to the on-site WWTS for treatment prior to disposal through the on-site injection well or evaporation ponds. Water from the River Terrace is treated separately and is re-used as plant water for facility operations.

SECTION 5.0 REFERENCES

- Groundwater Technology, Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico.
- NMED, 2007, State of New Mexico Environment Department v. San Juan Refining Company and Giant Industries, Inc.; Order July 27, 2007.
- NMOCD, 2017, New Mexico Oil Conservation Division, Discharge Permit Renewal (GW-001) Bloomfield Refinery, June 8, 2017.

TABLES

Well ID	Date	Measuring Point	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater	SPH Thickness
	20.00	Elevation (ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation (ft amsl)	(ft)
	08/19/19	5519.21	21.41	NPP	17.02	5502.19	NPP
	04/02/19	5519.21	21.34	NPP	17.40	5501.81	NPP
	08/01/18	5519.21	21.40	NPP	18.16	5501.05	NPP
	04/16/18	5519.21	21.41	NPP	17.68	5501.53	NPP
MW-01	08/22/17	5519.21	21.41	NPP	17.35	5501.86	NPP
10100-01	04/18/17	5519.21	21.56	NPP	17.62	5501.59	NPP
	08/15/16	5519.21	21.56	NPP	16.83	5502.38	NPP
	04/15/16	5519.21	21.56	NPP	17.23	5501.98	NPP
	08/18/15	5519.21	21.56	NPP	16.95	5502.26	NPP
	04/20/15	5519.21	21.56	NPP	16.95	5502.26	NPP
	08/19/19	5539.27	36.57	NPP	NWP	NWP	NPP
	04/01/19	5539.27	36.44	NPP	NWP	NWP	NPP
	08/01/18	5539.27	36.50	NPP	36.50	5502.77	NPP
	04/16/18	5539.27	36.50	NPP	36.50	5502.77	NPP
MW-03	08/22/17	5539.27	36.46	NPP	36.46	5502.81	NPP
10100-05	04/18/17	5539.27	36.75	NPP	NWP	NWP	NPP
	08/15/16	5539.27	36.75	NPP	36.29	5502.98	NPP
	04/15/16	5539.27	36.75	NPP	36.33	5502.94	NPP
	08/18/15	5539.27	36.75	NPP	36.13	5503.14	NPP
	04/27/15	5539.27	36.75	NPP	36.25	5503.02	NPP
	08/20/19	5527.78	29.78	NPP	27.42	5500.36	NPP
	04/01/19	5527.78	29.78	NPP	27.28	5500.50	NPP
	08/01/18	5527.78	29.77	NPP	27.47	5500.31	NPP
	04/16/18	5527.78	29.76	NPP	27.31	5500.47	NPP
MW-04	08/22/17	5527.78	29.82	NPP	27.10	5500.68	NPP
	04/17/17	5527.78	30.48	NPP	27.85	5499.93	NPP
	08/15/16	5527.78	30.48	NPP	27.21	5500.57	NPP
	04/15/16	5527.78	30.48	NPP	27.10	5500.68	NPP
	08/25/15	5527.78	30.48	NPP	27.94	5499.84	NPP
	04/27/15	5527.78	30.48	NPP	27.12	5500.66	NPP
	08/19/19	5548.56	31.16	NPP	NWP	NWP	NPP
	04/02/19	5548.56	31.12	NPP	NWP	NWP	NPP
	08/02/18	5548.56	31.15	NPP	NWP	NWP	NPP
	04/16/18	5548.56	31.15	NPP	NWP	NWP	NPP
MW-05	08/22/17	5548.56	37.20	NPP	NWP	NWP	NPP
	04/18/17	5548.56	37.20	NPP	NWP	NWP	NPP
	08/16/16	5548.56	37.20	NPP	NWP	NWP	NPP
	04/18/16	5548.56	37.20	NPP	NWP	NWP	NPP
	08/13/15	5548.56	37.20	NPP	NWP	NWP	NPP
	04/27/15	5548.56	37.20	NPP	NWP	NWP	NPP
	08/19/19	5554.61	47.49	NPP	NWP	NWP	NPP
	04/02/19	5554.61	47.39	NPP	NWP	NWP	NPP
	08/02/18	5554.61 5554.61	47.45 47.45	NPP	NWP	NWP	NPP NPP
	04/16/18		47.45	NPP	NWP	NWP	
MW-06	08/22/17	5554.61	48.00	NPP	NWP	NWP	NPP
	04/18/17	5554.61 5554.61	48.00	NPP NPP	NWP	NWP	NPP NPP
	08/16/16	5554.61	48.00	NPP	NWP NWP	NWP NWP	NPP
	08/13/15	5554.61	48.00	NPP	NWP	NWP	NPP
		5554.61	48.00				
	04/27/15	5554.61	48.00	NPP	NWP	NWP	NPP

Well ID	Date	Measuring Point	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater	SPH Thickness
Well ID	Dute	Elevation (ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation (ft amsl)	(ft)
	08/20/19	5527.66	62.08	NPP	28.03	5499.63	NPP
	04/01/19	5527.66	62.03	NPP	27.65	5500.01	NPP
	08/01/18	5527.66	62.09	NPP	27.79	5499.87	NPP
	04/16/18	5527.66	62.08	NPP	27.40	5500.26	NPP
N/N/ 07	08/22/17	5527.66	62.05	NPP	27.62	5500.04	NPP
MW-07	04/17/17	5527.66	62.61	NPP	27.28	5500.38	NPP
	08/15/16	5527.66	62.61	NPP	27.74	5499.92	NPP
	04/15/16	5527.66	62.61	NPP	27.31	5500.35	NPP
	08/13/15	5527.66	62.61	NPP	27.75	5499.91	NPP
	04/27/15	5527.66	62.61	NPP	27.43	5500.23	NPP
	08/19/19	5534.58	34.92	NPP	31.53	5503.05	NPP
	04/01/19	5534.58	34.72	NPP	32.07	5502.51	NPP
	08/01/18	5534.58	34.73	NPP	32.40	5502.18	NPP
	04/16/18	5534.58	34.78	NPP	32.22	5502.36	NPP
MW-08	08/22/17	5534.58	34.75	NPP	31.92	5502.66	NPP
10100-00	04/18/17	5534.58	35.93	NPP	31.92	5502.66	NPP
	08/16/16	5534.58	35.93	NPP	34.75	5499.83	NPP
	04/15/16	5534.58	35.93	NPP	31.62	5502.96	NPP
	08/13/15	5534.58	35.93	NPP	31.42	5503.16	NPP
	04/27/15	5534.58	35.93	NPP	31.54	5503.04	NPP
	08/19/19	5510.31	21.82	NPP	12.47	5497.84	NPP
	04/02/19	5510.31	21.77	NPP	11.59	5498.72	NPP
	08/02/18	5510.31	21.80	NPP	12.28	5498.03	NPP
	04/16/18	5510.31	21.81	NPP	12.12	5498.19	NPP
MW-11	08/23/17	5510.31	22.32	NPP	12.11	5498.20	NPP
IVIVV	04/18/17	5510.31	22.94	NPP	11.49	5498.82	NPP
	08/16/16	5510.31	22.94	NPP	11.11	5499.20	NPP
	04/18/16	5510.31	22.94	NPP	11.89	5498.42	NPP
	08/19/15	5510.31	22.94	NPP	11.25	5499.06	NPP
	04/20/15	5510.31	22.94	NPP	11.30	5499.01	NPP
	08/19/19	5501.61	13.45	NPP	10.14	5491.47	NPP
	04/02/19	5501.61	13.25	NPP	10.15	5491.46	NPP
	08/02/18	5501.61	13.15	NPP	10.30	5491.31	NPP
	04/16/18	5501.61	13.15	NPP	10.65	5490.96	NPP
MW-12	08/25/17	5501.61	13.36	NPP	10.29	5491.32	NPP
	04/18/17	5501.61	14.98	NPP	10.04	5491.57	NPP
	08/16/16	5501.61	14.98	NPP	9.49	5492.12	NPP
	04/18/16	5501.61	14.98	NPP	10.02	5500.29	NPP
	08/19/15	5501.61	14.98	NPP	8.52	5501.79	NPP
	04/20/15	5501.61	14.98	NPP	8.55	5501.76	NPP
	08/19/19	5542.04	52.91	NPP	40.99	5501.05	NPP
	04/02/19	5542.04	52.77	NPP	40.99	5501.05	NPP
	08/02/18	5542.04	52.89	NPP	40.85	5501.19	NPP
	04/16/18	5542.04	52.90	NPP	40.75	5501.29	NPP
MW-13	08/23/17	5542.04	52.85	NPP	40.65	5501.39	NPP
	04/18/17	5542.04	52.89	NPP	40.59	5501.45	NPP
	08/16/16	5542.04	52.89	NPP	40.67	5501.37	NPP
	04/18/16	5542.04	52.89	NPP	40.51	5501.53	NPP
	08/18/15	5542.04	52.89	NPP	40.53	5501.51	NPP
	04/20/15	5542.04	52.89	NPP	40.68	5501.36	NPP

=		Measuring Point	Total Well	Depth To	Depth To	Corrected Groundwater	SPH
Well ID	Date	Elevation (ft amsl)	Depth (ft below TOC)	Product (ft below TOC)	Water (ft below TOC)	Elevation (ft amsl)	Thickness (ft)
	08/20/19	5519.90	27.18	20.67	20.82	5499.20	0.15
	04/01/19	5519.90	27.10	20.71	21.05	5499.12	0.34
	08/01/18	5519.90	27.11	20.78	21.32	5499.01	0.54
	04/16/18	5519.90	27.12	20.73	21.13	5499.09	0.40
	08/22/17	5519.90	27.13	20.65	20.94	5499.19	0.29
MW-20	04/17/17	5519.90	27.13	20.60	20.87	5499.25	0.27
	08/16/16	5519.90	27.13	20.60	20.64	5499.29	0.04
	04/15/16	5519.90	27.13	20.60	21.20	5499.18	0.60
	08/13/15	5519.90	27.13	20.60	20.65	5499.29	0.05
	04/27/15	5519.90	27.13	NPP	20.73	5499.17	NPP
	08/19/19	5521.99	30.54	NPP	21.62	5500.37	NPP
	04/01/19	5521.99	30.45	NPP	21.70	5500.29	NPP
	08/01/18	5521.99	30.46	NPP	21.94	5500.05	NPP
	04/16/18	5521.99	30.46	NPP	21.88	5500.11	NPP
	08/22/17	5521.99	30.44	NPP	21.60	5500.39	NPP
MW-21	04/18/17	5521.99	30.38	NPP	21.58	5500.41	NPP
	08/15/16	5521.99	30.38	NPP	21.21	5500.78	NPP
	04/15/16	5521.99	30.38	NPP	21.68	5500.31	NPP
	08/13/15	5521.99	30.38	21.32	21.33	5500.67	0.01
	04/27/15	5521.99	30.38	NPP	21.54	5500.45	NPP
	08/19/19	5533.99	41.31	NPP	33.24	5500.75	NPP
	04/02/19	5533.99	41.20	NPP	33.23	5500.76	NPP
	08/02/18	5533.99	41.23	NPP	33.18	5500.81	NPP
	04/16/18	5533.99	41.24	NPP	33.06	5500.93	NPP
NAVA 05	08/23/17	5533.99	41.20	NPP	32.90	5501.09	NPP
MW-25	04/18/17	5533.99	41.20	NPP	32.84	5501.15	NPP
	08/16/16	5533.99	41.20	NPP	30.01	5503.98	NPP
	04/18/16	5533.99	41.20	NPP	32.86	5501.13	NPP
	08/13/15	5533.99	41.20	NPP	32.82	5501.17	NPP
	04/27/15	5533.99	41.20	NPP	33.95	5500.04	NPP
	08/19/19	5517.88	25.19	17.90	17.94	5499.97	0.04
	04/02/19	5517.88	25.11	NPP	17.79	5500.09	NPP
	08/02/18	5517.88	25.12	17.85	17.88	5500.02	0.03
	04/16/18	5517.88	25.12	17.73	17.76	5500.14	0.03
MW-26	08/23/17	5517.88	25.11	17.60	17.67	5500.27	0.07
1V1VV-ZU	04/18/17	5517.88	25.11	17.45	17.50	5500.42	0.05
	08/16/16	5517.88	25.11	17.55	17.65	5500.31	0.10
	04/18/16	5517.88	25.11	17.51	17.65	5500.34	0.14
	08/13/15	5517.88	25.11	17.31	17.55	5500.52	0.24
	04/20/15	5517.88	25.11	17.48	17.72	5500.35	0.24
	08/19/19	5518.67	24.46	NPP	22.78	5495.89	NPP
	04/02/19	5518.67	24.31	NPP	22.44	5496.23	NPP
	08/02/18	5518.67	24.32	NPP	22.41	5496.26	NPP
	04/16/18	5518.67	24.32	NPP	20.88	5497.79	NPP
MW-27	08/23/17	5518.67	24.21	NPP	19.73	5498.94	NPP
v ∠1	04/18/17	5518.67	24.42	NPP	18.87	5499.80	NPP
	08/16/16	5518.67	24.42	NPP	19.10	5499.57	NPP
	04/18/16	5518.67	24.42	NPP	18.91	5499.76	NPP
	08/18/15	5518.67	24.42	NPP	18.62	5500.05	NPP
	04/20/15	5518.67	24.42	NPP	18.86	5499.81	NPP

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5524.97	28.62	NPP	22.83	5502.14	NPP
	04/01/19	5524.97	28.58	NPP	23.23	5501.74	NPP
	08/01/18	5524.97	28.60	NPP	23.66	5501.31	NPP
	04/16/18	5524.97	28.65	NPP	23.45	5501.52	NPP
MM 20	08/22/17	5524.97	28.69	NPP	23.11	5501.86	NPP
MW-29	04/18/17	5524.97	28.62	NPP	23.23	5501.74	NPP
	08/15/16	5524.97	28.62	NPP	22.68	5502.29	NPP
	04/15/16	5524.97	28.62	NPP	23.04	5501.93	NPP
	08/24/15	5524.97	28.62	NPP	22.70	5502.27	NPP
	04/27/15	5524.97	28.62	NPP	22.83	5502.14	NPP
	08/19/19	5536.83	40.23	NPP	33.85	5502.98	NPP
	04/01/19	5536.83	40.00	NPP	34.32	5502.51	NPP
	08/01/18	5536.83	40.19	NPP	34.35	5502.48	NPP
	04/16/18	5536.83	40.22	34.29	34.30	5502.54	0.01
MM 20	08/22/17	5536.83	40.12	NPP	33.99	5502.84	NPP
MW-30	04/18/17	5536.83	40.13	NPP	34.07	5502.76	NPP
	08/15/16	5536.83	40.13	NPP	33.84	5502.99	NPP
	04/15/16	5536.83	40.13	NPP	33.92	5502.91	NPP
	08/24/15	5536.83	40.13	NPP	33.69	5503.14	NPP
	04/20/15	5536.83	40.13	NPP	33.82	5503.01	NPP
	08/19/19	5536.24	39.25	NPP	34.61	5501.63	NPP
	04/02/19	5536.24	39.17	NPP	34.63	5501.61	NPP
	08/02/18	5536.24	39.19	NPP	34.44	5501.80	NPP
	04/16/18	5536.24	39.18	NPP	34.30	5501.94	NPP
NAVA 04	08/22/17	5536.24	39.16	NPP	34.20	5502.04	NPP
MW-31	04/18/17	5536.24	39.16	NPP	34.16	5502.08	NPP
	08/16/16	5536.24	39.16	NPP	34.30	5501.94	NPP
	04/18/16	5536.24	39.16	NPP	34.13	5502.11	NPP
	08/24/15	5536.24	39.16	NPP	34.15	5502.09	NPP
	04/27/15	5536.24	39.16	NPP	34.34	5501.90	NPP
	08/19/19	5525.64	27.57	NPP	25.64	5500.00	NPP
	04/02/19	5525.64	27.53	NPP	25.61	5500.03	NPP
	08/02/18	5525.64	27.55	NPP	25.54	5500.10	NPP
	04/16/18	5525.64	27.53	NPP	25.45	5500.19	NPP
MW-32	08/23/17	5525.64	27.54	NPP	25.30	5500.34	NPP
10100-32	04/18/17	5525.64	27.51	NPP	25.31	5500.33	NPP
	08/16/16	5525.64	27.51	NPP	25.37	5500.27	NPP
	04/18/16	5525.64	27.51	NPP	25.25	5500.39	NPP
	08/08/15	5525.64	27.51	NPP	25.18	5500.46	NPP
	04/20/15	5525.64	27.51	NPP	25.30	5500.34	NPP
	08/19/19	5521.79	25.55	NPP	24.01	5497.78	NPP
	04/02/19	5521.79	25.50	NPP	23.59	5498.20	NPP
	08/02/18	5521.79	25.51	NPP	24.38	5497.41	NPP
	04/16/18	5521.79	25.51	NPP	22.78	5499.01	NPP
MW-33	08/23/17	5521.79	25.50	NPP	22.56	5499.23	NPP
10100-33	04/18/17	5521.79	25.51	NPP	22.50	5499.29	NPP
	08/16/16	5521.79	25.51	NPP	22.78	5499.01	NPP
	04/18/16	5521.79	25.51	NPP	22.54	5499.25	NPP
	08/18/15	5521.79	25.51	NPP	22.39	5499.40	NPP
	04/20/15	5521.79	25.51	NPP	22.35	5499.44	NPP

		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point Elevation	Depth	Product	Water	Groundwater Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5511.63	20.99	NPP	15.03	5496.60	NPP
İ	04/02/19	5511.63	20.94	NPP	14.53	5497.10	NPP
	08/02/18	5511.63	20.96	NPP	14.95	5496.68	NPP
Í	04/16/18	5511.63	20.96	NPP	14.87	5496.76	NPP
	08/23/17	5511.63	20.97	NPP	14.55	5497.08	NPP
MW-34	04/18/17	5511.63	20.96	NPP	14.55	5497.08	NPP
İ	08/16/16	5511.63	20.96	NPP	14.05	5497.58	NPP
İ	04/18/16	5511.63	20.96	NPP	14.57	5497.06	NPP
İ	08/19/15	5511.63	20.96	NPP	13.90	5497.73	NPP
İ	04/20/15	5511.63	20.96	NPP	13.83	5497.80	NPP
	08/19/19	5518.95	25.71	NPP	22.82	5496.13	NPP
İ	04/02/19	5518.95	25.62	NPP	22.44	5496.51	NPP
İ	08/02/18	5518.95	25.92	NPP	22.72	5496.23	NPP
İ	04/16/18	5518.95	25.65	NPP	22.68	5496.27	NPP
104/05	08/23/17	5518.95	25.62	NPP	22.32	5496.63	NPP
MW-35	04/18/17	5518.95	26.45	NPP	22.45	5496.50	NPP
İ	08/16/16	5518.95	26.45	NPP	22.04	5496.91	NPP
İ	04/18/16	5518.95	26.45	NPP	22.44	5496.51	NPP
İ	08/19/15	5518.95	26.45	NPP	21.83	5497.12	NPP
İ	04/20/15	5518.95	26.45	NPP	22.85	5496.10	NPP
	08/19/19	5516.95	22.94	NPP	20.98	5495.97	NPP
İ	04/02/19	5516.95	22.86	NPP	20.87	5496.08	NPP
İ	08/02/18	5516.95	23.06	NPP	21.01	5495.94	NPP
İ	04/16/18	5516.95	23.08	NPP	21.16	5495.79	NPP
	08/23/17	5516.95	23.06	NPP	20.77	5496.18	NPP
MW-36	04/18/17	5516.95	23.26	NPP	20.86	5496.09	NPP
İ	08/16/16	5516.95	23.26	NPP	20.18	5496.77	NPP
İ	04/18/16	5516.95	23.26	NPP	20.95	5496.00	NPP
İ	08/13/15	5516.95	23.26	NPP	20.16	5496.79	NPP
İ	04/27/15	5516.95	23.26	NPP	19.87	5497.08	NPP
	08/19/19	5519.62	27.44	NPP	23.79	5495.83	NPP
İ	04/02/19	5519.62	27.36	NPP	23.56	5496.06	NPP
İ	08/02/18	5519.62	27.37	NPP	23.77	5495.85	NPP
İ	04/16/18	5519.62	27.39	NPP	23.80	5495.82	NPP
	08/23/17	5519.62	27.35	NPP	23.44	5496.18	NPP
MW-37	04/18/17	5519.62	27.58	NPP	23.60	5496.02	NPP
1	08/16/16	5519.62	27.58	NPP	23.21	5496.41	NPP
İ	04/18/16	5519.62	27.58	NPP	23.66	5495.96	NPP
İ	08/19/15	5519.62	27.58	NPP	23.06	5496.56	NPP
1	04/20/15	5519.62	27.58	NPP	23.13	5496.49	NPP
	08/19/19	5519.19	26.74	NPP	23.73	5495.46	NPP
1	04/02/19	5519.19	26.65	NPP	23.60	5495.59	NPP
1	08/02/18	5519.19	26.84	NPP	23.90	5495.29	NPP
1	04/16/18	5519.19	26.84	NPP	23.89	5495.30	NPP
	08/22/17	5519.19	26.82	NPP	23.57	5495.62	NPP
MW-38	04/18/17	5519.19	26.82	NPP	23.59	5495.60	NPP
1	08/16/16	5519.19	26.82	NPP	23.13	5496.06	NPP
1	04/18/16	5519.19	26.82	NPP	23.64	5495.55	NPP
1	08/19/15	5519.19	26.82	NPP	23.19	5496.00	NPP
i	04/20/15	5519.19	26.82	NPP	23.08	5496.11	NPP

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/20/19	5520.83	38.41	NPP	25.72	5495.11	NPP
	04/01/19	5520.83	38.32	NPP	25.42	5495.41	NPP
	08/01/18	5520.83	38.34	NPP	25.70	5495.13	NPP
	04/16/18	5520.83	38.34	NPP	25.50	5495.33	NPP
	08/22/17	5520.83	38.31	NPP	25.73	5495.10	NPP
MW-39	04/17/17	5520.83	38.34	NPP	25.53	5495.30	NPP
	08/16/16	5520.83	38.34	NPP	25.80	5495.03	NPP
	04/15/16	5520.83	38.34	NPP	25.60	5495.23	NPP
	08/13/15	5520.83	38.34	NPP	25.78	5495.05	NPP
	04/27/15	5520.83	38.34	NPP	25.75	5495.08	NPP
	08/20/19	5527.31	29.79	NPP	27.93	5499.38	NPP
	04/01/19	5527.31	29.73	NPP	27.73	5499.58	NPP
	08/01/18	5527.31	29.62	NPP	28.33	5498.98	NPP
	04/16/18	5527.31	29.61	NPP	27.92	5499.39	NPP
	08/22/17	5527.31	30.07	NPP	27.94	5499.37	NPP
MW-40	04/17/17	5527.31	30.07	NPP	27.86	5499.45	NPP
	08/16/16	5527.31	30.07	NPP	28.14	5499.17	NPP
	04/15/16	5527.31	30.07	NPP	28.25	5499.06	NPP
	08/13/15	5527.31	30.07	28.08	28.09	5499.23	0.01
	04/27/15	5527.31	30.07	NPP	28.08	5499.23	NPP
	08/20/19	5526.41	31.21	26.35	26.37	5500.06	0.02
	04/01/19	5526.41	31.21	NPP	26.09	5500.32	NPP
	08/01/18	5526.41	31.25	26.85	26.95	5499.54	0.10
	04/16/18	5526.41	31.25	26.51	26.58	5499.89	0.07
	08/22/17	5526.41	31.62	26.38	26.49	5500.01	0.11
MW-41	04/17/17	5526.41	31.62	NPP	26.21	5500.20	NPP
	08/16/16	5526.41	31.62	NPP	28.14	5498.27	NPP
	04/15/16	5526.41	31.62	26.55	26.66	5499.84	0.11
	08/13/15	5526.41	31.62	26.43	26.67	5499.93	0.24
	04/27/15	5526.41	31.62	26.59	26.80	5499.78	0.21
	08/19/19	5535.44	50.99	NPP	34.55	5500.89	NPP
	04/01/19	5535.44	50.92	NPP	34.39	5501.05	NPP
	08/01/18	5535.44	50.96	NPP	34.35	5501.09	NPP
	04/16/18	5535.44	50.98	NPP	34.10	5501.34	NPP
NANA 44	08/22/17	5535.44	50.91	NPP	34.18	5501.26	NPP
MW-44	04/18/17	5535.44	50.91	NPP	34.05	5501.39	NPP
	08/16/16	5535.44	50.91	NPP	34.32	5501.12	NPP
	04/15/16	5535.44	50.91	NPP	33.98	5501.46	NPP
	08/24/15	5535.44	50.91	NPP	34.30	5501.14	NPP
	04/27/15	5535.44	50.91	NPP	34.98	5500.46	NPP
	08/19/19	5506.36	16.79	NPP	11.88	5494.48	NPP
	04/02/19	5506.36	16.66	NPP	11.96	5494.40	NPP
	08/01/18	5506.36	16.71	11.95	11.96	5494.41	0.01
	04/17/18	5506.36	16.71	NPP	11.96	5494.40	NPP
N/\\/ 4E	08/22/17	5506.36	16.74	NPP	11.83	5494.53	NPP
MW-45	04/17/17	5506.36	16.92	NPP	11.81	5494.55	NPP
	08/16/16	5506.36	16.92	NPP	11.78	5494.58	NPP
	04/15/16	5506.36	16.92	NPP	11.88	5494.48	NPP
	08/13/15	5506.36	16.92	NPP	11.85	5494.51	NPP
	04/27/15	5506.36	16.92	NPP	11.95	5494.41	NPP

		Measuring	Total Well	Double To	Depth To	Corrected	SPH
Well ID	Date	Point	Depth	Depth To Product	Water	Groundwater	Thickness
Well 15	Date	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	09/10/10	(ft amsl)	, ,	, ,	NWP	(ft amsl)	NPP
ļ	08/19/19 04/02/19	5504.65 5504.65	10.19 10.00	NPP NPP	NWP	NWP NWP	NPP
ļ	08/01/18	5504.65	10.00	NPP	NWP	NWP	NPP
ļ	04/17/18	5504.65	10.10	NPP	10.10	5494.55	NPP
ļ	04/17/18	5504.65	10.09	NPP	10.08	5494.57	NPP
MW-46	04/17/17	5504.65	10.39	NPP	NWP	NWP	NPP
ļ	08/15/16	5504.65	10.39	NPP	NWP	NWP	NPP
ļ	04/15/16	5504.65	10.39	NPP	10.03	5494.62	NPP
ļ	08/13/15	5504.65	10.39	NPP	9.94	5494.71	NPP
ļ	04/27/15	5504.65	10.39	NPP	9.94	5494.71	NPP
	08/19/19	5506.77	14.18	NPP	13.42	5493.35	NPP
ļ	04/02/19	5506.77	14.10	NPP	12.85	5493.92	NPP
	08/01/18	5506.77	14.11	NPP	13.30	5493.47	NPP
	04/17/18	5506.77	14.12	NPP	13.17	5493.60	NPP
	08/23/17	5506.77	14.12	NPP	12.96	5493.81	NPP
MW-47	04/17/17	5506.77	14.11	NPP	12.60	5494.17	NPP
ļ	08/15/16	5506.77	14.28	NPP	12.14	5494.63	NPP
ļ	04/15/16	5506.77	14.28	NPP	12.55	5494.22	NPP
	08/13/15	5506.77	14.28	NPP	11.82	5494.95	NPP
ļ	04/21/15	5506.77	14.28	NPP	12.23	5494.54	NPP
	08/19/19	5518.79	22.02	NPP	16.73	5502.06	NPP
	04/01/49	5518.79	21.94	NPP	17.14	5501.65	NPP
	08/01/18	5518.79	22.11	NPP	18.02	5500.77	NPP
ļ	04/16/18	5518.79	22.07	NPP	17.30	5501.49	NPP
	08/22/17	5518.79	22.07	NPP	17.04	5501.75	NPP
MW-50	04/18/17	5518.79	20.00	NPP	17.42	5501.37	NPP
ļ	08/15/16	5518.79	20.00	NPP	16.50	5502.29	NPP
ļ	04/15/16	5518.79	20.00	NPP	16.87	5501.92	NPP
	08/13/15	5518.79	20.00	NPP	16.62	5502.17	NPP
ļ	04/27/15	5518.79	20.00	NPP	16.67	5502.12	NPP
	08/19/19	5515.58	22.05	NPP	14.36	5501.22	NPP
	04/01/19	5515.58	22.11	NPP	14.74	5500.84	NPP
	08/01/18	5515.58	22.13	NPP	15.31	5500.27	NPP
ļ	04/16/18	5515.58	22.14	NPP	15.00	5500.58	NPP
A 4) A / - /	08/22/17	5515.58	22.11	NPP	14.01	5501.57	NPP
MW-51	04/18/17	5515.58	20.00	NPP	14.93	5500.65	NPP
	08/15/16	5515.58	20.00	NPP	14.18	5501.40	NPP
	04/15/16	5515.58	20.00	NPP	14.79	5500.79	NPP
	08/13/15	5515.58	20.00	NPP	14.37	5501.21	NPP
	04/27/15	5515.58	20.00	NPP	14.52	5501.06	NPP
	08/19/19	5538.63	41.73	NPP	36.13	5502.50	NPP
	04/01/19	5538.63	41.66	NPP	36.65	5501.98	NPP
	08/01/18	5538.63	41.72	NPP	36.92	5501.71	NPP
	04/16/18	5538.63	41.71	NPP	36.78	5501.85	NPP
NAVA 50	08/22/17	5538.63	41.68	NPP	36.45	5502.18	NPP
MW-52	04/18/17	5538.63	41.00	NPP	36.49	5502.14	NPP
	08/16/16	5538.63	41.00	NPP	36.17	5502.46	NPP
	04/15/16	5538.63	41.00	NPP	36.19	5502.44	NPP
	08/13/15	5538.63	41.00	NPP	36.00	5502.63	NPP
	04/20/15	5538.63	41.00	NPP	36.05	5502.58	NPP

Well ID	Date	Measuring Point	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater	SPH Thickness
Well ID	Date	Elevation (ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation (ft amsl)	(ft)
	08/19/19	5541.32	43.59	NPP	38.91	5502.41	NPP
	04/01/19	5541.32	43.53	NPP	39.26	5502.06	NPP
	08/01/18	5541.32	43.55	NPP	39.40	5501.92	NPP
	04/16/18	5541.32	43.55	NPP	39.29	5502.03	NPP
MANA/ FO	08/22/17	5541.32	43.50	NPP	39.03	5502.29	NPP
MW-53	04/18/17	5541.32	41.50	NPP	38.99	5502.33	NPP
	08/16/16	5541.32	41.50	NPP	38.90	5502.42	NPP
	04/15/16	5541.32	41.50	NPP	38.85	5502.47	NPP
	08/13/15	5541.32	41.50	NPP	38.68	5502.64	NPP
	04/27/15	5541.32	41.50	NPP	38.80	5502.52	NPP
	08/19/19	5530.08	41.21	NPP	31.79	5498.29	NPP
	04/01/19	5530.08	41.32	NPP	31.53	5498.55	NPP
	08/01/18	5530.08	41.28	NPP	32.26	5497.82	NPP
	04/16/18	5530.08	41.24	NPP	31.83	5498.25	NPP
MW-54	08/22/17	5530.08	41.20	NPP	31.98	5498.10	NPP
IVIVV-54	04/17/17	5530.08	38.00	NPP	31.73	5498.35	NPP
	08/16/16	5530.08	38.00	31.87	31.88	5498.21	0.01
	04/15/16	5530.08	38.00	32.46	32.52	5497.61	0.06
	08/13/15	5530.08	38.00	32.40	32.45	5497.67	0.05
	04/27/15	5530.08	38.00	32.02	32.05	5498.05	0.03
	08/20/19	5519.84	25.98	NPP	21.85	5497.99	NPP
	04/01/19	5519.84	25.87	NPP	21.76	5498.08	NPP
	08/01/18	5519.84	26.19	NPP	21.80	5498.04	NPP
	04/16/18	5519.84	26.18	NPP	21.75	5498.09	NPP
NA\A/ ==	08/22/17	5519.84	24.18	NPP	21.61	5498.23	NPP
MW-55	04/17/17	5519.84	27.25	NPP	21.63	5498.21	NPP
	08/15/16	5519.84	27.25	NPP	21.74	5498.10	NPP
	04/15/16	5519.84	27.25	NPP	21.71	5498.13	NPP
	08/13/15	5519.84	27.25	22.08	22.09	5497.76	0.01
	04/27/15	5519.84	27.25	21.85	21.88	5497.98	0.03
	08/20/19	5519.31	23.66	NPP	18.02	5501.29	NPP
	04/01/19	5519.31	23.72	NPP	18.16	5501.15	NPP
	08/01/18	5519.31	23.76	18.33	18.42	5500.96	0.09
	04/16/18	5519.31	23.76	NPP	18.25	5501.06	NPP
MW-56	08/22/17	5519.31	23.75	NPP	18.05	5501.26	NPP
10100-30	04/17/17	5519.31	23.75	NPP	17.88	5501.43	NPP
	08/15/16	5519.31	23.75	NPP	17.85	5501.46	NPP
	04/15/16	5519.31	23.75	NPP	18.03	5501.28	NPP
	08/13/15	5519.31	23.75	17.86	17.87	5501.45	0.01
	04/27/15	5519.31	23.75	18.04	18.05	5501.27	0.01
	08/20/19	5521.17	23.93	19.35	19.65	5501.76	0.30
	04/01/19	5521.17	23.93	19.52	19.78	5501.60	0.26
	08/01/18	5521.17	23.95	19.74	19.76	5501.43	0.02
	04/16/18	5521.17	23.95	19.65	19.66	5501.52	0.01
MW-57	08/22/17	5521.17	24.25	19.43	19.44	5501.74	0.01
	04/17/17	5521.17	24.25	NPP	19.37	5501.80	NPP
	08/15/16	5521.17	24.25	NPP	19.29	5501.88	NPP
	04/15/16	5521.17	24.25	NPP	19.46	5501.71	NPP
	08/13/15	5521.17	24.25	19.42	19.43	5501.75	0.01
	04/27/15	5521.17	24.25	19.42	19.43	5501.75	0.01

		Measuring Point	Total Well	Depth To	Depth To	Corrected Groundwater	SPH
Well ID	Date	Elevation (ft amsl)	Depth (ft below TOC)	Product (ft below TOC)	Water (ft below TOC)	Elevation (ft amsl)	Thickness (ft)
	08/20/19	5520.29	27.35	20.85	20.88	5499.43	0.03
	04/01/19	5520.29	27.35	20.99	21.46	5499.21	0.47
	08/01/18	5520.29	27.35	NPP	21.15	5499.14	NPP
	04/16/18	5520.29	27.35	NPP	21.03	5499.26	NPP
	08/22/17	5520.29	27.00	20.83	20.84	5499.46	0.01
MW-58	04/17/17	5520.29	27.00	NPP	20.78	5499.51	NPP
	08/15/16	5520.29	27.00	20.9	20.93	5499.38	0.03
	04/15/16	5520.29	27.00	20.9	21.06	5499.36	0.16
	08/13/15	5520.29	27.00	20.8	20.83	5499.48	0.03
	04/27/15	5520.29	27.00	20.97	21.75	5499.16	0.78
	08/19/19	5545.20	46.93	NPP	43.75	5501.45	NPP
	04/02/19	5545.20	46.86	NPP	43.79	5501.41	NPP
	08/02/18	5545.20	46.88	NPP	43.62	5501.58	NPP
	04/16/18	5545.20	46.88	NPP	43.49	5501.71	NPP
	08/22/17	5545.20	46.85	NPP	43.43	5501.77	NPP
MW-59	04/18/17	5545.20	44.25	NPP	43.37	5501.83	NPP
	08/16/16	5545.20	44.25	NPP	43.52	5501.68	NPP
	04/18/16	5545.20	44.25	NPP	43.36	5501.84	NPP
	08/13/15	5545.20	44.25	NPP	43.42	5501.78	NPP
	04/27/15	5545.20	44.25	NPP	43.55	5501.65	NPP
	08/19/19	5543.71	43.43	NPP	42.98	5500.73	NPP
	04/02/19	5543.71	43.31	NPP	42.92	5500.79	NPP
	08/02/18	5543.71	43.38	NPP	42.88	5500.83	NPP
	04/16/18	5543.71	43.38	NPP	42.74	5500.97	NPP
	08/22/17	5543.71	43.36	NPP	42.65	5501.06	NPP
MW-60	04/18/17	5543.71	43.33	NPP	42.58	5501.13	NPP
	08/16/16	5543.71	43.33	NPP	42.72	5500.99	NPP
	04/18/16	5543.71	43.33	NPP	42.55	5501.16	NPP
	08/13/15	5543.71	43.33	NPP	42.62	5501.09	NPP
	04/27/15	5543.71	43.33	NPP	42.76	5500.95	NPP
	08/19/19	5539.41	40.60	36.72	37.03	5502.63	0.31
	04/02/19	5539.41	40.45	37.01	37.35	5502.33	0.34
	08/02/18	5539.41	40.50	36.93	37.23	5502.42	0.30
	04/17/18	5539.41	40.50	36.80	37.04	5502.56	0.24
A 4) A 1 G 1	08/22/17	5539.41	40.45	36.60	36.81	5502.77	0.21
MW-61	04/18/17	5539.41	40.25	36.59	36.80	5502.78	0.21
	08/16/16	5539.41	40.25	36.60	36.93	5502.74	0.33
	04/18/16	5539.41	40.25	36.60	36.86	5502.76	0.26
	08/13/15	5539.41	40.25	36.38	36.70	5502.97	0.32
	04/27/15	5539.41	40.25	36.60	36.96	5502.74	0.36
	08/19/19	5561.32	61.09	NPP	56.61	5504.71	NPP
	04/02/19	5561.32	60.93	NPP	56.51	5504.81	NPP
	08/02/18	5561.32	61.29	NPP	56.65	5504.67	NPP
	04/16/18	5561.32	61.24	NPP	56.52	5504.80	NPP
NAVA / 00	08/22/17	5561.32	61.25	NPP	56.71	5504.61	NPP
MW-62	04/18/17	5561.32	58.25	NPP	56.53	5504.79	NPP
	08/16/16	5561.32	58.25	NPP	56.51	5504.81	NPP
	04/18/16	5561.32	58.25	NPP	56.57	5504.75	NPP
	08/13/15	5561.32	58.25	NPP	56.59	5504.73	NPP
	04/27/15	5561.32	58.25	NPP	56.33	5504.99	NPP

		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point	Depth	Product	Water	Groundwater	Thickness
		Elevation (ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation (ft amsl)	(ft)
	08/19/19	5547.26	47.72	NPP	45.20	5502.06	NPP
	04/02/19	5547.26	47.64	NPP	45.31	5501.95	NPP
	08/02/18	5547.26	47.83	NPP	45.17	5502.09	NPP
	04/16/18	5547.26	47.79	NPP	45.02	5502.24	NPP
	08/22/17	5547.26	47.81	NPP	44.92	5502.34	NPP
MW-63	04/18/17	5547.26	46.00	NPP	44.87	5502.39	NPP
	08/16/16	5547.26	46.00	NPP	40.01	5507.25	NPP
	04/18/16	5547.26	46.00	NPP	44.87	5502.39	NPP
	08/13/15	5547.26	46.00	NPP	44.84	5502.42	NPP
	04/27/15	5547.26	46.00	NPP	45.03	5502.23	NPP
	08/19/19	5552.29	52.42	NPP	50.41	5501.88	NPP
	04/02/19	5552.29	52.33	NPP	50.49	5501.80	NPP
	08/02/18	5552.29	52.36	NPP	50.38	5501.91	NPP
	04/16/18	5552.29	52.35	NPP	50.25	5502.04	NPP
	08/22/17	5552.29	52.32	NPP	50.19	5502.10	NPP
MW-64	04/18/17	5552.29	52.25	NPP	44.87	5507.42	NPP
	08/16/16	5552.29	52.25	NPP	50.26	5502.03	NPP
	04/18/16	5552.29	52.25	NPP	50.11	5502.18	NPP
	08/13/15	5552.29	52.25	NPP	50.17	5502.12	NPP
	04/27/15	5552.29	52.25	NPP	50.27	5502.02	NPP
	08/19/19	5539.62	44.28	NPP	37.07	5502.55	NPP
	04/02/19	5539.62	44.19	NPP	37.37	5502.25	NPP
	08/02/18	5539.62	44.21	NPP	37.35	5502.27	NPP
	04/17/18	5539.62	44.21	NPP	37.22	5502.40	NPP
NAVA 05	08/22/17	5539.62	44.22	NPP	37.03	5502.59	NPP
MW-65	04/18/17	5539.62	44.25	NPP	36.98	5502.64	NPP
	08/16/16	5539.62	44.25	NPP	36.93	5502.69	NPP
	04/18/16	5539.62	44.25	NPP	36.94	5502.68	NPP
	08/13/15	5539.62	44.25	NPP	36.70	5502.92	NPP
	04/27/15	5539.62	44.25	NPP	37.50	5502.12	NPP
	08/19/19	5544.62	45.57	41.89	41.95	5502.72	0.06
	04/02/19	5544.62	45.49	42.16	42.24	5502.44	0.08
	08/02/18	5544.62	45.48	42.10	42.17	5502.51	0.07
	04/16/18	5544.62	45.48	41.97	42.01	5502.64	0.04
MW-66	08/22/17	5544.62	45.49	41.81	41.82	5502.81	0.01
10100-00	04/18/17	5544.62	43.25	NPP	41.77	5502.85	NPP
	08/16/16	5544.62	43.25	41.82	41.83	5502.80	0.01
	04/18/16	5544.62	43.25	NPP	41.75	5502.87	NPP
	08/13/15	5544.62	43.25	41.57	41.58	5503.05	0.01
	04/27/15	5544.62	43.25	NPP	41.81	5502.81	NPP
	08/19/19	5523.31	26.12	NPP	21.09	5502.22	NPP
	04/01/19	5523.31	26.21	NPP	21.37	5501.94	NPP
	08/01/18	5523.31	26.23	NPP	22.08	5501.23	NPP
	04/16/18	5523.31	26.22	NPP	21.60	5501.71	NPP
MW-67	08/22/17	5523.31	26.18	NPP	21.37	5501.94	NPP
	04/18/17	5523.31	25.14	NPP	21.53	5501.78	NPP
	08/16/16	5523.31	25.14	NPP	20.94	5502.37	NPP
	04/15/16	5523.31	25.14	NPP	21.25	5502.06	NPP
	08/13/15	5523.31	25.14	NPP	21.02	5502.29	NPP
	04/27/15	5523.31	25.14	NPP	21.10	5502.21	NPP

Well ID	Date	Measuring Point	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater	SPH Thickness
Well ID	Dute	Elevation (ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation (ft amsl)	(ft)
	08/19/19	5517.37	21.07	NPP	16.53	5500.84	NPP
	04/01/19	5517.37	21.08	NPP	16.93	5500.44	NPP
	08/01/18	5517.37	21.10	NPP	17.33	5500.04	NPP
	04/16/18	5517.37	21.10	NPP	17.13	5500.24	NPP
MW-68	08/22/17	5517.37	21.10	NPP	16.72	5500.65	NPP
IVIVV-00	04/18/17	5517.37	20.58	NPP	16.91	5500.46	NPP
	08/15/16	5517.37	20.58	NPP	16.20	5501.17	NPP
	04/15/16	5517.37	20.58	NPP	16.66	5500.71	NPP
	08/13/15	5517.37	20.58	NPP	16.23	5501.14	NPP
	04/27/15	5517.37	20.58	NPP	16.40	5500.97	NPP
	08/19/19	5508.51	11.95	NPP	NWP	NWP	NPP
	04/02/19	5508.51	12.02	NPP	11.97	5496.54	NPP
	08/18/18	5508.51	12.01	NPP	11.95	5496.56	NPP
	04/17/18	5508.51	12.01	NPP	11.94	5496.57	NPP
MW-69	08/22/17	5508.51	NM	NM	NM	NM	NM
10100 05	04/17/17	5508.51	12.08	NPP	11.90	5496.61	NPP
	08/15/16	5508.51	12.08	NPP	11.89	5496.62	NPP
	04/15/16	5508.51	12.08	NPP	11.89	5496.62	NPP
	08/13/15	5508.51	12.08	NPP	NWP	NWP	NPP
	04/27/15	5508.51	12.08	NPP	11.81	5496.70	NPP
	08/19/19	5527.96	28.71	NPP	25.19	5502.77	NPP
	04/01/19	5527.96	28.89	NPP	25.84	5502.12	NPP
	08/01/18	5527.96	28.94	NPP	26.36	5501.60	NPP
	04/16/18	5527.96	28.93	NPP	26.16	5501.80	NPP
MW-70	08/22/17	5527.96	28.89	NPP	25.83	5502.13	NPP
	04/18/17	5527.96	26.25	NPP	25.99	5501.97	NPP
	08/15/16	5508.51	26.25	NPP	25.43	5483.08	NPP
	04/15/16	5508.51	26.25	NPP	25.63	5482.88	NPP
	08/13/15	5527.96	26.25	NPP	25.29	5502.67	NPP
	04/27/15	5527.96	26.25	NPP	25.46	5502.50	NPP
	08/20/19	5529.08	38.09	NPP	29.86	5499.22	NPP
	04/01/19	5529.08	37.96	30.05	30.06	5499.03	0.01
	08/01/18	5529.08	37.98	30.20	30.24	5498.87	0.04
	04/16/18	5529.08	37.98	29.96	29.97	5499.12	0.01
MW-71	08/22/17	5529.08	37.96	NPP	29.85	5499.23	NPP
	04/17/17	5529.08	38.95	NPP	29.91	5499.17	NPP
	08/16/16	5529.08	38.95	30.14	30.26	5498.92	0.12
	04/15/16	5529.08	38.95	30.12	30.16	5498.95	0.04
	08/13/15	5529.08	38.95	30.05	30.15	5499.01	0.10
	04/28/15	5529.08	38.95	30.22	30.35	5498.83	0.13
	08/20/19	5528.54	34.85	28.38	28.51	5500.13	0.13
	04/01/19 08/01/18	5528.54	34.85	28.46	28.56	5500.06	0.10 1.20
	04/16/18	5528.54 5528.54	34.94 34.95	28.78 28.55	29.98 28.71	5499.52 5499.96	0.16
	08/22/17	5528.54	34.91	28.33	28.37	5500.20	0.16
MW-72	04/17/17	5528.54	34.94	28.30	28.48	5500.20	0.04
	08/16/16	5528.54	34.94	28.51	28.90	5499.95	0.18
	04/15/16	5528.54	34.94	NPP	28.93	5499.95	NPP
	08/13/15	5528.54	34.94	NPP	28.66	5499.88	NPP
	04/28/15	3320.34	34.94	NPP	28.66	5499.88	NPP

		Measuring Point	Total Well	Depth To	Depth To	Corrected Groundwater	SPH
Well ID	Date	Elevation	Depth (ft below TOC)	Product (ft below TOC)	Water (ft below TOC)	Elevation	Thickness (ft)
	08/20/19	(ft amsl) 5528.92	36.83	NPP	29.42	(ft amsl) 5499.50	NPP
	04/01/19	5528.92	36.75	NPP	29.42	5499.32	NPP
	08/01/18	5528.92	36.79	NPP	29.77	5499.15	NPP
	04/16/18	5528.92	36.78	NPP	29.53	5499.39	NPP
	08/22/17	5528.92	36.76	NPP	29.39	5499.53	NPP
MW-73	04/17/17	5528.92	36.66	NPP	29.33	5499.59	NPP
	08/16/16	5528.92	36.66	NPP	29.71	5499.21	NPP
	04/15/16	5528.92	36.66	NPP	29.58	5499.34	NPP
	04/13/16	5528.92	36.66	NPP	29.61	5499.31	NPP
	04/28/15	5528.92	36.66	NPP	29.80	5499.12	NPP
	04/20/13	5528.92	33.85	NPP	28.83	5500.09	NPP
	04/01/19	5528.92	33.94	NPP	28.95	5499.97	NPP
	08/01/18	5528.92	33.93	NPP	29.09	5499.83	NPP
	04/16/18	5528.92	33.94	NPP	28.87	5500.05	NPP
	08/22/17		33.94	NPP	28.75	5500.05	NPP
MW-74	06/22/17	5528.92		NPP	28.63		NPP
	08/16/16	5528.92	33.91	NPP		5500.29	NPP
		5528.92	33.91	NPP	28.95	5499.97	NPP
	04/15/16	5528.92	33.91		28.87	5500.05	
	08/13/15	5528.92	33.91	NPP	28.79	5500.13	NPP
	04/28/15	5528.55	33.91	29.00	29.04	5499.54	0.04
	08/20/19	5528.76	32.25	NPP	28.43	5500.33	NPP
	04/01/19	5528.76	31.95	NPP	28.43	5500.33	NPP
	08/01/18	5528.76	32.18	NPP	28.66	5500.10	NPP
	04/16/18	5528.76	32.18	NPP	28.46	5500.30	NPP
MW-75	08/23/17	5528.76	32.25	NPP	28.21	5500.55	NPP
	04/17/17	5528.76	32.25	NPP	28.13	5500.63	NPP
	08/15/16	5528.76	32.25	NPP	28.37	5500.39	NPP
	04/15/16	5528.76	32.25	NPP	28.35	5500.41	NPP
	08/13/15	5528.76	32.25	28.15	28.16	5500.61	0.01
	04/28/15	5528.76	32.25	28.40	28.41	5500.36	0.01
	08/20/19	5528.61	34.14	NPP	28.65	5499.96	NPP
	04/01/19	5528.61	34.01	NPP	28.33	5500.28	NPP
	08/01/18	5528.61	34.10	NPP	29.14	5499.47	NPP
	04/16/18	5528.61	34.09 34.09	NPP	28.84	5499.77	NPP
MW-76	08/22/17	5528.61	34.09	NPP NPP	28.70	5499.91	NPP NPP
		5528.61	34.16		28.54	5500.07	
	08/15/16	5528.61		NPP	28.79	5499.82	NPP NPP
	04/15/16	5528.61	34.16	NPP NPP	28.84	5499.77	
	08/13/15	5528.61	34.16		28.48	5500.13	NPP
	04/28/15	5528.61	34.16	NPP	28.97	5499.64	NPP 0.70
	08/19/19	5527.59	34.23	28.42	29.12	5499.03	0.70
	04/01/19	5527.59	34.27	28.31	28.68	5499.21	0.37
	08/01/18	5527.59	34.30	28.95	29.57	5498.52	0.62
	04/16/18	5527.59	34.30	28.48	29.23	5498.96	0.75
MW-77	08/23/17	5527.59	34.30	28.63	29.22	5498.84	0.59
	04/17/17	5527.59	34.30	28.54	29.12	5498.93	0.58
	08/15/16	5527.59	34.30	28.80	29.44	5498.66	0.64
	04/15/16	5527.59	34.30	29.05	29.56	5498.44	0.51
	08/13/15	5527.59	34.30	28.93	29.50	5498.55	0.57
	04/28/15	5527.59	34.30	28.86	29.44	5498.61	0.58

		Measuring	Total Mall	Double To	Donth To	Corrected	CDII
Well ID	Date	Point	Total Well Depth	Depth To Product	Depth To Water	Groundwater	SPH Thickness
Well ib	Date	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	08/19/19	(ft amsl) 5510.77	22.70	NPP	11.52	(ft amsl) 5499.25	NPP
	04/02/19	5510.77	22.70	NPP	10.60	5500.17	NPP
				NPP			NPP
	08/02/18	5510.77 5510.77	22.75 22.75	NPP	11.66 11.52	5499.11 5499.25	NPP
			22.73	NPP	11.34		NPP
P-03	08/23/17	5510.77 5510.77	_	NPP		5499.43 5500.24	NPP
	04/18/17		22.73	NPP	10.53		NPP
	08/16/16	5510.77	22.73		10.40	5500.37	
	04/18/16	5510.77	22.73	NPP	11.55	5499.22	NPP
	08/13/15	5510.77	22.73	NPP	10.71	5500.06	NPP
	04/27/15	5510.77	22.73	NPP	11.09	5499.68	NPP
	08/19/19	5517.80	80.63	NPP	77.37	5440.43	NPP
	04/02/19	5517.80	80.54	NPP	77.32	5440.48	NPP
	08/02/18	5517.80	80.55	NPP	77.35	5440.45	NPP
BCK-1	04/20/18	5517.80	80.55	NPP	77.35	5440.45	NPP
BCK-1	08/13/15	5517.80	79.00	NPP	77.43	5440.37	NPP
	04/27/15	5517.80	79.00	NPP	77.30	5440.50	NPP
	08/18/14	5517.80	79.00	NPP	77.37	5440.43	NPP
	08/05/13	5517.80	79.00	NPP	77.28	5440.52	NPP
	04/08/13	5517.80	79.00	NPP	77.15	5440.65	NPP
	08/19/19	5620.14	46.99	NPP	26.23	5593.91	NPP
	04/02/19	5620.14	46.90	NPP	25.13	5595.01	NPP
	08/02/18	5620.14	46.95	NPP	25.85	5594.29	NPP
DOI(0	04/20/18	5620.14	46.95	NPP	25.10	5595.04	NPP
BCK-2	08/13/15	5620.14	46.97	NPP	26.10	5594.04	NPP
	04/27/15	5620.14	46.97	NPP	25.57	5594.57	NPP
	08/18/14	5620.14	46.97	NPP	28.10	5592.04	NPP
	08/05/13	5620.14	46.97	NPP	26.52	5593.62	NPP
	04/08/13	5620.14	46.97	NPP	25.58	5594.56	NPP
	08/19/19	5529.34	40.73	NPP	30.63	5498.71	NPP
	04/01/19	5529.34	40.75	NPP	30.33	5499.01	NPP
	08/01/18	5529.34	40.93	NPP	31.12	5498.22	NPP
	04/16/18	5529.34	40.91	NPP	30.80	5498.54	NPP
RW-01	08/22/17	5529.34	40.80	NPP	30.84	5498.50	NPP
	04/17/17	5529.34	40.80	NPP	30.52	5498.82	NPP
	08/16/16	5529.34	40.80	30.6	30.71	5498.72	0.11
	04/15/16	5529.34	40.80	NPP	31.31	5498.03	NPP
	08/13/15	5529.34	40.80	30.77	30.78	5498.57	0.01
	04/27/15	5529.34	40.80	NPP	30.83	5498.51	NPP
	08/20/19	5526.94	35.23	26.59	26.80	5500.31	0.21
	04/01/19	5526.94	35.03	26.45	26.60	5500.46	0.15
	08/01/18	5526.94	35.00	NPP	26.72	5500.22	NPP
	04/16/18	5526.94	35.10	NPP	26.55	5500.39	NPP
RW-02	08/22/17	5526.94	35.86	NPP	26.35	5500.59	NPP
	04/17/17	5526.94	35.86	NPP	26.08	5500.86	NPP
	08/15/16	5526.94	35.86	NPP	26.43	5500.51	NPP
	04/15/16	5526.94	35.86	NPP	26.35	5500.59	NPP
	08/13/15	5526.94	35.86	NPP	26.26	5500.68	NPP
	04/27/15	5526.94	35.86	NPP	26.37	5500.57	NPP

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5520.35	33.81	NPP	21.69	5498.66	NPP
	04/02/19	5520.35	33.81	NPP	21.21	5499.14	NPP
	08/01/18	5520.35	33.75	NPP	22.08	5498.27	NPP
	04/16/18	5520.35	33.78	NPP	21.72	5498.63	NPP
RW-03	08/22/17	5520.35	34.57	NM	NM	NM	NM
KW-03	04/17/17	5520.35	34.57	NPP	21.33	5499.02	NPP
	08/16/16	5520.35	34.57	NPP	21.34	5499.01	NPP
	04/15/16	5520.35	34.57	NPP	22.25	5498.10	NPP
	08/13/15	5520.35	34.57	NPP	22.02	5498.33	NPP
	04/27/15	5520.35	34.57	NPP	21.59	5498.76	NPP
	08/20/19	5523.21	33.55	24.65	24.68	5498.55	0.03
	04/01/19	5523.21	33.44	24.69	24.70	5498.52	0.01
	08/01/18	5523.21	33.54	24.73	24.74	5498.48	0.01
	04/16/18	5523.21	33.55	NPP	24.65	5498.56	NPP
RW-09	08/22/17	5523.21	34.04	24.55	24.58	5498.65	0.03
KVV-09	04/17/17	5523.21	34.04	24.55	24.56	5498.66	0.01
	08/16/16	5523.21	34.04	24.64	24.67	5498.56	NPP
	04/15/16	5523.21	34.04	24.64	24.67	5498.56	0.03
	08/13/15	5523.21	34.04	24.64	24.70	5498.56	0.06
	04/27/15	5523.21	34.04	24.77	24.87	5498.42	0.10
	08/19/19	5537.50	41.91	34.88	34.95	5502.61	0.07
	04/01/19	5537.50	41.77	35.39	35.68	5502.05	0.29
	08/01/18	5537.50	41.92	NPP	35.65	5501.85	NPP
	04/16/18	5537.50	41.92	35.49	35.50	5502.01	0.01
RW-14	08/22/17	5537.50	41.94	NPP	35.07	5502.43	NPP
KVV-14	04/17/17	5537.50	41.94	35.13	35.59	5502.28	0.46
	08/15/16	5537.50	41.94	34.79	34.83	5502.70	0.04
	04/15/16	5537.50	41.94	34.79	36.09	5502.45	1.30
	08/13/15	5537.50	41.94	NPP	34.92	5502.58	NPP
	04/27/15	5537.50	41.94	NPP	34.95	5502.55	NPP
	08/19/19	5536.83	42.25	NPP	34.88	5501.95	NPP
	04/01/19	5536.83	42.20	NPP	35.20	5501.63	NPP
	08/01/18	5536.83	42.22	NPP	35.40	5501.43	NPP
	04/16/18	5536.83	42.22	NPP	35.25	5501.58	NPP
RW-15	08/22/17	5536.83	43.43	NPP	34.85	5501.98	NPP
1144-10	04/18/17	5536.83	43.43	NPP	34.90	5501.93	NPP
	08/15/16	5536.83	43.43	NPP	34.68	5502.15	NPP
	04/15/16	5536.83	43.43	NPP	34.89	5501.75	NPP
	08/13/15	5536.83	43.43	NPP	34.46	5501.71	NPP
	04/27/15	5536.83	43.43	NPP	34.75	5501.86	NPP
	08/19/19	5535.45	43.13	NPP	34.12	5501.33	NPP
	04/01/19	5535.45	43.05	NPP	34.32	5501.13	NPP
	08/01/18	5535.45	43.13	NPP	34.42	5501.03	NPP
	04/16/18	5535.45	43.16	NPP	34.26	5501.19	NPP
RW-16	08/22/17	5535.45	41.48	NPP	33.94	5501.51	NPP
10	04/18/17	5535.45	41.48	NPP	33.90	5501.55	NPP
	08/15/16	5535.45	41.48	NPP	33.85	5501.60	NPP
	04/15/16	5535.45	41.48	33.87	33.90	5501.57	0.03
	08/13/15	5535.45	41.48	33.30	35.50	5501.71	2.20
	04/27/15	5535.45	41.48	33.83	34.15	5501.56	0.32

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5533.84	38.05	NPP	33.08	5500.76	NPP
	04/01/19	5533.84	38.37	NPP	32.15	5501.69	NPP
	08/01/18	5533.84	39.88	NPP	33.28	5500.56	NPP
	04/16/18	5533.84	40.10	NPP	33.08	5500.76	NPP
RW-17	08/22/17	5533.84	41.89	NPP	32.85	5500.99	NPP
1244-17	04/18/17	5533.84	41.89	NPP	32.76	5501.08	NPP
	08/15/16	5533.84	41.89	NPP	32.94	5500.90	NPP
	04/15/16	5533.84	41.89	NPP	32.89	5500.95	NPP
	08/13/15	5533.84	41.89	32.67	32.68	5501.17	0.01
	04/27/15	5533.84	41.89	33.04	33.08	5500.79	0.04
	08/20/19	5529.38	37.71	NPP	29.83	5499.55	NPP
	04/01/19	5529.38	34.38	NPP	30.07	5499.31	NPP
	08/01/18	5529.38	34.40	NPP	30.08	5499.30	NPP
	04/16/18	5529.38	34.40	NPP	29.87	5499.51	NPP
RW-18	08/23/17	5529.38	37.58	NPP	29.76	5499.62	NPP
1444-10	04/17/17	5529.38	37.58	NPP	29.71	5499.67	NPP
	08/16/16	5529.38	37.58	NPP	32.92	5496.46	NPP
	04/15/16	5529.38	37.58	NPP	29.84	5499.54	NPP
	08/13/15	5529.38	37.58	NPP	29.88	5499.50	NPP
	04/27/15	5529.38	37.58	NPP	30.02	5499.36	NPP
	08/20/19	5530.51	35.84	NPP	30.11	5500.40	NPP
	04/01/19	5530.51	35.70	30.11	30.12	5500.40	0.01
	08/01/18	5530.51	35.70	30.21	31.46	5500.05	1.25
	04/16/18	5530.51	35.60	30.10	30.37	5500.36	0.27
RW-19	08/23/17	5530.51	36.64	NPP	29.86	5500.65	NPP
1000	04/17/17	5530.51	36.64	29.70	30.65	5500.62	0.95
	08/15/16	5530.51	36.64	NPP	31.16	5499.35	NPP
	04/15/16	5530.51	36.64	NPP	30.04	5500.47	NPP
	08/13/15	5530.51	36.64	NPP	29.96	5500.55	NPP
	04/27/15	5530.51	36.64	NPP	30.15	5500.36	NPP
	08/20/19	5524.44	35.35	NPP	25.75	5498.69	NPP
	04/01/19	5524.44	35.30	NPP	25.60	5498.84	NPP
	08/01/18	5524.44	35.32	NPP	25.65	5498.79	NPP
	04/16/18	5524.44	35.33	NPP	25.51	5498.93	NPP
RW-22	08/22/17	5524.44	35.60	NPP	25.36	5499.08	NPP
	04/17/17	5524.44	35.60	25.37	25.39	5499.07	0.02
	08/16/16	5524.44	35.60	25.51	25.74	5498.88	0.23
	04/15/16	5524.44	35.60	25.50	25.73	5498.89	0.23
	08/13/15	5524.44	35.60	25.50	25.55	5498.93	0.05
	04/27/15	5524.44	35.60	25.70	25.80	5498.72	0.10
	08/20/19	5521.38	35.55	NPP	23.18	5498.20	NPP
	04/01/19	5521.38	35.55	23.14	23.16	5498.24	0.02
	08/01/18	5521.38	35.55	23.21	23.25	5498.16	0.04
	04/16/18	5521.38	35.55	23.20	23.25	5498.17	0.05
RW-23	08/22/17	5521.38	35.53	NPP	23.09	5498.29	NPP
	04/17/17	5521.38	35.53	23.06	23.15	5498.30	0.09
	08/16/16	5521.38	35.53	22.81	22.93	5498.55	0.12
	04/15/16	5521.38	35.53	23.13	23.39	5498.20	0.26
	08/13/15	5521.38	35.53	23.80	23.82	5497.58	0.02
	04/27/15	5521.38	35.53	NPP	23.70	5497.68	NPP

		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point	Depth	Product	Water	Groundwater	Thickness
	Duto	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	08/19/19	(ft amsl) 5527.93	37.07	28.71	28.99	(ft amsl) 5499.16	0.28
	04/01/19	5527.93	36.98	29.16	29.19	5499.16	0.28
	08/01/19		37.00	29.16			0.03
	04/16/18	5527.93 5527.93	37.00	29.19	29.98 28.95	5498.58 5498.99	0.79
	08/22/17	5527.93	36.99	29.09	29.79	5498.70	0.01
RW-28	04/18/17	5527.93	36.99	28.96	30.07	5498.75	1.11
	08/16/16	5527.93	36.99	29.10	29.36	5498.78	0.26
	04/15/16	5527.93	36.99	29.05	29.06	5498.88	0.20
	08/13/15	5527.93	36.99	26.92	26.93	5501.01	0.01
	04/27/15	5527.93	36.99	29.18	29.76	5498.63	0.58
	08/20/19	5527.48	32.14	NPP	27.05	5500.43	NPP
	04/01/19	5527.48	31.95	NPP	27.06	5500.42	NPP
	08/01/18	5527.48	31.97	NPP	27.36	5500.12	NPP
	04/16/18	5527.48	31.95	NPP	27.11	5500.37	NPP
	08/23/17	5527.48	31.95	NPP	27.00	5500.48	NPP
RW-42	04/17/17	5527.48	32.02	NPP	26.96	5500.52	NPP
	08/15/16	5527.48	32.02	NPP	27.10	5500.38	NPP
	04/15/16	5527.48	32.02	NPP	27.03	5500.45	NPP
	08/13/15	5527.48	32.02	26.92	26.93	5500.56	0.01
	04/27/15	5527.48	32.02	27.15	27.18	5500.32	0.03
	08/20/19	5520.02	24.25	20.38	20.49	5499.62	0.11
	04/01/19	5520.02	24.16	20.58	20.73	5499.41	0.15
	08/01/18	5520.02	24.19	20.72	20.74	5499.30	0.02
	04/16/18	5520.02	24.18	NPP	20.60	5499.42	NPP
	08/22/17	5520.02	24.20	NPP	20.40	5499.62	NPP
RW-43	04/17/17	5520.02	24.03	NPP	20.45	5499.57	NPP
	08/15/16	5520.02	24.03	NPP	20.44	5499.58	NPP
	04/15/16	5520.02	24.03	NPP	20.51	5499.51	NPP
	08/13/15	5520.02	24.03	20.30	20.33	5499.71	0.03
	04/27/15	5520.02	24.03	20.53	20.75	5499.45	0.22
	08/19/19	5506.62	12.33	NPP	12.05	5494.57	NPP
	04/02/19	5506.62	12.29	NPP	11.62	5495.00	NPP
	08/01/18	5506.62	12.30	NPP	12.10	5494.52	NPP
	04/17/18	5506.62	12.29	NPP	11.95	5494.67	NPP
014/ 0 00	08/23/17	5506.62	12.03	NPP	11.91	5494.71	NPP
OW 0+60	04/18/17	5506.62	12.26	NPP	11.66	5494.96	NPP
	08/16/16	5506.62	12.26	NPP	11.14	5495.48	NPP
	04/15/16	5506.62	12.26	NPP	11.78	5494.84	NPP
	08/13/15	5506.62	12.26	NPP	10.77	5495.85	NPP
	04/21/15	5506.62	12.26	NPP	11.24	5495.38	NPP
	08/19/19	5508.03	14.43	NPP	NWP	NWP	NPP
	04/02/19	5508.03	14.36	NPP	13.72	5494.31	NPP
	08/01/18	5508.03	14.38	14.33	NWP	NWP	NPP
	04/17/18	5508.03	14.36	14.23	14.25	5493.80	0.02
OW 1.50	08/23/17	5508.03	14.37	NPP	14.05	5493.98	NPP
OW 1+50	04/18/17	5508.03	14.36	NPP	13.74	5494.29	NPP
	08/16/16	5508.03	14.36	NPP	13.06	5494.97	NPP
	04/15/16	5508.03	14.36	NPP	13.72	5494.31	NPP
	08/13/15	5508.03	14.36	NPP	12.62	5495.41	NPP
	04/21/15	5508.03	14.36	NPP	13.24	5494.79	NPP

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5507.31	15.15	NPP	14.07	5493.24	NPP
	04/02/19	5507.31	15.10	NPP	13.45	5493.86	NPP
OW 3+85	08/01/18	5507.31	15.10	NPP	13.92	5493.39	NPP
	04/17/18	5507.31	15.08	NPP	13.73	5493.58	NPP
	08/23/17	5507.31	15.08	NPP	13.56	5493.75	NPP
OW 3+03	04/17/17	5507.31	15.06	NPP	13.14	5494.17	NPP
	08/15/16	5507.31	15.06	NPP	12.83	5494.48	NPP
	04/15/16	5507.31	15.06	NPP	13.15	5494.16	NPP
	08/13/15	5507.31	15.06	NPP	12.31	5495.00	NPP
	04/21/15	5507.31	15.06	NPP	12.80	5494.51	NPP
	08/19/19	5507.59	13.81	NPP	13.49	5494.10	NPP
	04/02/19	5507.59	13.78	NPP	13.65	5493.94	NPP
	08/01/18	5507.59	13.78	NPP	13.57	5494.02	NPP
	04/17/18	5507.59	13.78	NPP	13.65	5493.94	NPP
OW 5+50	08/23/17	5507.59	13.77	NPP	13.41	5494.18	NPP
000 3+30	04/17/17	5507.59	13.67	NPP	13.42	5494.17	NPP
	08/15/16	5507.59	13.67	NPP	13.29	5494.30	NPP
	04/15/16	5507.59	13.67	NPP	13.43	5494.16	NPP
	08/13/15	5507.59	13.67	NPP	13.32	5494.27	NPP
	04/21/15	5507.59	13.67	NPP	13.28	5494.31	NPP
	08/19/19	5504.78	16.50	NPP	NWP	NWP	NPP
	04/02/19	5504.78	16.46	NPP	16.45	5488.33	NPP
	08/01/18	5504.78	16.47	NPP	NWP	NWP	NPP
	04/17/18	5504.78	16.47	NPP	NWP	NWP	NPP
OW 6+70	08/24/17	5504.78	16.48	NPP	NWP	NWP	NPP
OW 0170	04/17/17	5504.78	14.67	NPP	NWP	NWP	NPP
	08/15/16	5504.78	14.67	NPP	NWP	NWP	NPP
	04/15/16	5504.78	14.67	NPP	NWP	NWP	NPP
	08/13/15	5504.78	14.67	NPP	NWP	NWP	NPP
	04/21/15	5504.78	14.67	NPP	NWP	NWP	NPP
	08/19/19	5506.53	16.10	NPP	15.09	5491.44	NPP
	04/02/19	5506.53	16.02	NPP	13.58	5492.95	NPP
	08/01/18	5506.53	16.02	NPP	15.54	5490.99	NPP
	04/17/18	5506.53	16.03	NPP	15.55	5490.98	NPP
OW 8+10	08/24/17	5506.53	16.01	NPP	15.25	5491.28	NPP
011 0110	04/17/17	5506.53	15.99	NPP	13.99	5492.54	NPP
	08/15/16	5504.78	15.99	NPP	14.69	5490.09	NPP
	04/15/16	5504.78	15.99	NPP	NWP	NWP	NPP
	08/13/15	5506.53	15.99	NPP	NWP	NWP	NPP
	04/21/15	5506.53	15.99	NPP	NWP	NWP	NPP
	08/19/19	5506.70	16.65	NPP	12.63	5494.07	NPP
	04/02/19	5506.70	16.59	NPP	12.74	5493.96	NPP
	08/01/18	5506.70	16.60	NPP	12.65	5494.05	NPP
	04/17/18	5506.70	16.60	NPP	12.64	5494.06	NPP
OW 11+15	08/24/17	5506.70	16.59	NPP	12.53	5494.17	NPP
	04/17/17	5506.70	16.59	NPP	12.56	5494.14	NPP
	08/15/16	5506.70	16.59	NPP	12.53	5494.17	NPP
	04/15/16	5506.70	16.59	NPP	12.65	5494.05	NPP
	08/13/15	5506.70	16.59	NPP	12.47	5494.23	NPP
	04/21/15	5506.70	16.59	NPP	12.59	5494.11	NPP

		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point	Depth	Product	Water	Groundwater	Thickness
		Elevation (ft.omo/)	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	08/19/19	(ft amsl) 5508.14	13.03	NPP	NWP	(ft amsl) NWP	NPP
	04/02/19	5508.14	12.98	NPP	NWP	NWP	NPP
	08/01/18	5508.14	12.99	NPP	NWP	NWP	NPP
	04/17/18	5508.14	12.97	NPP	NWP	NWP	NPP
	08/24/17	5508.14	12.96	NPP	NWP	NWP	NPP
OW 14+10	04/17/17	5508.14	12.96	NPP	NWP	NWP	NPP
	08/15/16	5508.14	12.96	NPP	NWP	NWP	NPP
	04/15/16	5508.14	12.96	NPP	NWP	NWP	NPP
	08/13/15	5508.14	12.96	NPP	NWP	NWP	NPP
	04/21/15	5508.14	12.96	NPP	NWP	NWP	NPP
	08/19/19	5508.43	15.30	NPP	12.84	5495.59	NPP
	04/02/19	5508.43	15.25	NPP	12.71	5495.72	NPP
	08/01/18	5508.43	15.25	NPP	12.98	5495.45	NPP
	04/17/18	5508.43	15.25	NPP	13.43	5495.00	NPP
	08/24/17	5508.43	15.25	NPP	13.05	5495.38	NPP
OW 16+60	04/17/17	5508.43	15.21	NPP	12.73	5495.70	NPP
	08/15/16	5508.43	15.21	NPP	13.04	5495.39	NPP
	04/15/16	5508.43	15.21	NPP	13.06	5495.37	NPP
	08/13/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	04/21/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	08/19/19	5508.03	13.05	NPP	11.94	5496.09	NPP
	04/02/19	5508.03	13.01	NPP	12.08	5495.95	NPP
	08/01/18	5508.03	13.00	NPP	NWP	NWP	NPP
	04/17/18	5508.03	13.00	NPP	NWP	NWP	NPP
014/40.50	08/24/17	5508.03	13.00	NPP	12.88	5495.15	NPP
OW 19+50	04/17/17	5508.03	13.00	NPP	11.85	5496.18	NPP
	08/15/16	5508.03	13.00	NPP	12.95	5495.08	NPP
	04/15/16	5508.03	13.00	NPP	12.69	5495.34	NPP
	08/13/15	5508.03	13.00	NPP	NWP	NWP	NPP
	04/21/15	5508.03	13.00	NPP	12.92	5495.11	NPP
	08/19/19	5506.91	14.22	NPP	13.12	5493.79	NPP
	04/02/19	5506.91	14.17	NPP	10.67	5496.24	NPP
	08/01/18	5506.91	14.18	NPP	13.32	5493.59	NPP
	04/17/18	5506.91	14.17	NPP	12.39	5494.52	NPP
OW 22+00	08/24/17	5506.91	14.15	NPP	12.91	5494.00	NPP
OW 22100	04/17/17	5506.91	14.16	NPP	10.59	5496.32	NPP
	08/15/16	5506.91	14.16	NPP	10.88	5496.03	NPP
	04/15/16	5506.91	14.16	NPP	12.05	5494.86	NPP
	08/13/15	5506.91	14.16	NPP	10.80	5496.11	NPP
	04/21/15	5506.91	14.16	NPP	11.37	5495.54	NPP
	08/19/19	5514.12	18.41	NPP	16.78	5497.34	NPP
OW 23+10	04/02/19	5514.12	18.34	NPP	16.53	5497.59	NPP
	08/01/18	5514.12	18.35	NPP	16.75	5497.37	NPP
	04/17/18	5514.12	18.35	NPP	16.58	5497.54	NPP
	08/24/17	5514.12	18.34	NPP	16.65	5497.47	NPP
	04/17/17	5514.12	18.34	NPP	16.46	5497.66	NPP
	08/15/16	5514.12	18.34	NPP	16.37	5497.75	NPP
	04/15/16	5514.12	18.34	NPP	16.48	5497.64	NPP
	08/13/15	5514.12	18.34	NPP	16.46	5497.66	NPP
	04/21/15	5514.12	18.34	NPP	16.40	5497.72	NPP

		Measuring	Total Wall	Donth To	Donth To	Corrected	CDU
Well ID	Date	Point	Total Well Depth	Depth To Product	Depth To Water	Groundwater	SPH Thickness
Well ID	Duto	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	08/19/19	(ft amsl) 5515.18	18.15	NPP	17.71	(ft amsl) 5497.47	NPP
	04/02/19	5515.18	18.10	NPP	17.45	5497.73	NPP
	08/01/18	5515.18	18.10	NPP	17.58	5497.60	NPP
	04/17/18	5515.18	18.08	NPP	17.42	5497.76	NPP
	08/24/17	5515.18	18.01	NPP	17.47	5497.71	NPP
OW 23+90	04/17/17	5515.18	18.01	NPP	17.37	5497.81	NPP
	08/15/16	5515.18	18.01	NPP	17.25	5497.93	NPP
	04/15/16	5515.18	18.01	NPP	17.34	5497.84	NPP
	08/13/15	5515.18	18.01	NPP	17.30	5497.88	NPP
	04/21/15	5515.18	18.01	NPP	17.28	5497.90	NPP
	08/19/19	5509.00	14.05	NPP	11.25	5497.75	NPP
	04/02/19	5509.00	14.00	NPP	11.10	5497.90	NPP
	08/01/18	5509.00	13.98	NPP	11.20	5497.80	NPP
	04/17/18	5509.00	13.98	NPP	11.10	5497.90	NPP
	08/24/17	5509.00	14.00	NPP	11.17	5497.83	NPP
OW 25+70	04/17/17	5509.00	13.98	NPP	10.97	5498.03	NPP
	08/15/16	5509.00	13.98	NPP	10.90	5498.10	NPP
	04/15/16	5509.00	13.98	NPP	10.97	5498.03	NPP
	08/13/15	5509.00	13.98	NPP	10.97	5498.03	NPP
	04/21/15	5509.00	13.98	NPP	10.92	5498.08	NPP
	08/19/19	5506.68	14.04	NPP	8.39	5498.29	NPP
	04/02/19	5506.68	13.97	NPP	7.92	5498.76	NPP
	08/01/18	5506.68	14.10	NPP	8.76	5497.92	NPP
	04/17/18		13.98	NPP	8.41		NPP
	08/22/17	5506.68 5506.68	14.09	NPP	8.49	5498.27 5498.19	NPP
CW 0+60	04/18/17	5506.68	14.09	NPP	8.00	5498.68	NPP
	08/16/16	5506.68	14.09	NPP	7.99	5498.69	NPP
	04/15/16	5506.68	14.09	NPP	8.88	5497.80	NPP
	08/13/15	5506.68	14.09	NPP	8.23	5498.45	NPP
	04/21/15	5506.68	14.09	NPP	8.24	5498.44	NPP
	08/19/19	5505.13	13.31	NPP	6.70	5498.43	NPP
	04/02/19	5505.13	13.25	NPP	6.38	5498.75	NPP
	08/01/18	5505.13	13.40	NPP	7.05	5498.08	NPP
	04/17/18	5505.13	13.35	NPP	6.75	5498.38	NPP
	08/23/17	5505.13	13.38	NPP	6.80	5498.33	NPP
CW 1+50	04/18/17	5505.13	13.74	NPP	6.51	5498.62	NPP
	08/16/16	5505.13	13.74	NPP	6.59	5498.54	NPP
	04/15/16	5505.13	13.74	NPP	7.22	5497.91	NPP
	08/13/15	5505.13	13.74	NPP	6.84	5498.29	NPP
	04/21/15	5505.13	13.74	NPP	6.77	5498.36	NPP
	08/19/19	5503.87	13.74	NPP	5.55	5498.32	NPP
	04/02/19	5503.87	13.10	NPP	5.48	5498.39	NPP
	08/01/18	5503.87	13.10	NPP	5.45	5498.42	NPP
	04/17/18	5503.87	13.12	NPP	5.65	5498.22	NPP
	08/23/17	5503.87	13.12	NPP	5.60	5498.27	NPP
CW 3+85	04/17/17	5503.87	13.11	NPP	5.48	5498.39	NPP
	08/15/16	5503.87	13.11	NPP	5.52	5498.35	NPP
	04/15/16			NPP			NPP
	08/13/15	5503.87	13.11	NPP	5.91 5.70	5497.96 5498.17	NPP
	04/21/15	5503.87	13.11	NPP		5498.17	NPP
	04/21/15	5503.87	13.11	INPP	5.60	5498.27	INPP

		Measuring	Total Wall	Donth To	Donth To	Corrected	SPH
Well ID	Date	Point	Total Well Depth	Depth To Product	Depth To Water	Groundwater	SPH Thickness
Well ID	Dute	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	08/19/19	(ft amsl)	• •	NPP	, ,	(ft amsl)	NPP
	04/02/19	5503.76 5503.76	12.31 12.22	NPP	6.43	5497.33 5497.43	NPP
				NPP			NPP
	08/01/18 04/17/18	5503.76 5503.76	12.25 12.23	NPP	6.55 6.40	5497.21 5497.36	NPP
			12.23	NPP			NPP
CW 5+50	08/23/17	5503.76 5503.76	12.27	NPP	6.45	5497.31 5497.40	NPP
	08/15/16	5503.76	12.27	NPP	6.30	5497.46	NPP
	04/15/16	5503.76	12.27	NPP	6.39	5497.40	NPP
	08/13/15	5503.76	12.27	NPP	6.38	5497.38	NPP
	04/21/15	5503.76	12.27	NPP	6.35	5497.41	NPP
	08/19/19	5503.84	6.75	NPP	NWP	NWP	NPP
	04/02/19	5503.84	6.75	NPP	6.65	5497.19	NPP
					NWP		NPP
	08/01/18 04/17/18	5503.84	6.80	NPP NPP	6.72	NWP 5497.12	NPP
	08/24/17	5503.84 5503.84	11.50	NPP	6.72	5497.12	NPP
CW 6+70	04/17/17		11.45	NPP	6.61		NPP
	08/15/16	5503.84 5503.84	11.45	NPP	6.54	5497.23 5497.30	NPP
	04/15/16	5503.84	11.45	NPP	6.61	5497.23	NPP
				NPP			NPP
	08/13/15 04/21/15	5503.84	11.45 11.45	NPP	6.38	5497.46 5497.21	NPP
		5503.84		NPP	7.71		NPP
	08/19/19	5504.02	11.39	NPP	7.71	5496.31	NPP
	04/02/19 08/01/18	5504.02 5504.02	11.35 11.37	NPP	7.87	5496.38 5496.15	NPP
			11.35	NPP			NPP
	04/17/18 08/24/17	5504.02 5504.02	11.35	NPP	7.70 7.69	5496.32 5496.33	NPP
CW 8+10	04/17/17	5504.02	11.63	NPP	7.45	5496.57	NPP
	08/15/16	5504.02	11.63	NPP	7.45	5496.67	NPP
	04/15/16	5504.02	11.63	NPP	7.56	5496.46	NPP
	08/13/15	5504.02	11.63	NPP	7.48	5496.54	NPP
	04/21/15	5504.02	11.63	NPP	7.43	5496.59	NPP
	08/19/19	5503.80	12.71	7.99	8.10	5495.79	0.11
	04/02/19	5503.80	12.63	7.96	7.99	5495.83	0.03
	08/01/18	5503.80	12.61	NPP	8.15	5495.65	NPP
	04/17/18	5503.80	12.61	NPP	7.95	5495.85	NPP
	08/24/17	5503.80	12.60	NPP	7.92	5495.88	NPP
CW 8+45	04/17/17	5503.80	12.60	NPP	7.67	5496.13	NPP
	08/15/16	5503.80	12.60	NPP	7.51	5496.29	NPP
	04/15/16	5503.80	12.60	NPP	7.70	5496.10	NPP
	08/13/15	5503.80	12.60	NPP	7.65	5496.15	NPP
	04/21/15	5503.80	12.60	NPP	7.68	5496.12	NPP
	08/19/19	5503.95	12.35	5.91	5.97	5498.03	0.06
	04/02/19	5503.95	12.26	5.91	5.94	5498.03	0.03
	08/01/18	5503.95	12.29	6.10	6.14	5497.84	0.04
	04/17/18	5503.95	12.29	NPP	6.00	5497.95	NPP
	08/24/17	5503.95	12.40	5.91	6.13	5498.00	0.22
CW 11+15	04/17/17	5503.95	12.27	5.81	6.23	5498.06	0.42
	08/15/16	5503.95	12.27	NPP	5.99	5497.96	NPP
	04/15/16	5503.95	12.27	5.91	6.36	5497.95	0.45
	08/13/15	5503.95	12.27	5.87	6.85	5497.88	0.98
	04/21/15	5503.95	12.27	5.97	7.05	5497.76	1.08
	, .0			J		2.00	

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5504.39	13.12	NPP	6.52	5497.87	NPP
	04/02/19	5504.39	13.04	NPP	6.35	5498.04	NPP
	08/01/18	5504.39	13.04	NPP	6.48	5497.91	NPP
	04/17/18	5504.39	13.04	NPP	6.52	5497.87	NPP
0)4/ 4 4 40	08/24/17	5504.39	13.05	NPP	6.50	5497.89	NPP
CW 14+10	04/17/17	5504.39	13.05	NPP	6.39	5498.00	NPP
	08/15/16	5504.39	13.05	NPP	6.29	5498.10	NPP
	04/15/16	5504.39	13.05	NPP	6.25	5498.14	NPP
	08/13/15	5504.39	13.05	NPP	6.44	5497.95	NPP
	04/21/15	5504.39	13.05	NPP	6.38	5498.01	NPP
	08/19/19	5504.32	12.97	NPP	7.39	5496.93	NPP
	04/02/19	5504.32	12.92	NPP	6.23	5498.09	NPP
	08/01/18	5504.32	12.88	NPP	6.30	5498.02	NPP
	04/17/18	5504.32	12.88	NPP	6.33	5497.99	NPP
0)4/40.00	08/24/17	5504.32	12.86	NPP	6.24	5498.08	NPP
CW 16+60	04/17/17	5504.32	12.86	NPP	6.20	5498.12	NPP
	08/15/16	5504.32	12.86	NPP	6.09	5498.23	NPP
	04/15/16	5504.32	12.86	NPP	6.20	5498.12	NPP
	08/13/15	5504.32	12.86	NPP	6.23	5498.09	NPP
	04/21/15	5504.32	12.86	NPP	6.18	5498.14	NPP
	08/19/19	5504.52	10.05	NPP	6.39	5498.13	NPP
	04/02/19	5504.52	10.00	NPP	6.24	5498.28	NPP
	08/01/18	5504.52	9.97	NPP	6.30	5498.22	NPP
	04/17/18	5504.52	9.97	NPP	6.30	5498.22	NPP
C)M 40 . F0	08/24/17	5504.52	9.99	NPP	6.25	5498.27	NPP
CW 19+50	04/17/17	5504.52	9.99	NPP	6.18	5498.34	NPP
	08/15/16	5504.52	9.99	NPP	6.18	5498.34	NPP
	04/15/16	5504.52	9.99	NPP	6.16	5498.36	NPP
	08/13/15	5504.52	9.99	NPP	6.23	5498.29	NPP
	04/21/15	5504.52	9.99	NPP	6.24	5498.28	NPP
	08/19/19	5508.04	12.43	NPP	8.83	5499.21	NPP
	04/02/19	5508.04	12.35	NPP	8.84	5499.20	NPP
	08/01/18	5508.04	12.35	NPP	8.96	5499.08	NPP
	04/17/18	5508.04	12.35	NPP	8.91	5499.13	NPP
CW 22+00	08/24/17	5508.04	12.34	NPP	8.81	5499.23	NPP
OW 22100	04/17/17	5508.04	12.34	NPP	8.71	5499.33	NPP
	08/15/16	5508.04	12.34	NPP	8.57	5499.47	NPP
	04/15/16	5508.04	12.34	NPP	8.73	5499.31	NPP
	08/13/15	5508.04	12.34	NPP	8.56	5499.48	NPP
	04/21/15	5508.04	12.34	NPP	8.69	5499.35	NPP
	08/19/19	5510.04	14.82	NPP	10.33	5499.71	NPP
	04/02/19	5510.04	14.64	NPP	10.40	5499.64	NPP
	08/01/18	5510.04	14.80	NPP	10.60	5499.44	NPP
	04/17/18	5510.04	14.80	NPP	10.55	5499.49	NPP
CW 23+10	08/24/17	5510.04	14.65	NPP	7.77	5502.27	NPP
3 20. 10	04/17/17	5510.04	14.65	NPP	10.32	5499.72	NPP
	08/15/16	5508.04	14.65	NPP	10.14	5497.90	NPP
	04/15/16	5508.04	14.65	NPP	10.31	5497.73	NPP
	08/13/15	5510.04	14.65	NPP	10.10	5499.94	NPP
	04/21/15	5510.04	14.65	NPP	10.28	5499.76	NPP

		Measuring				Corrected				
W-II ID	D-1-	Point	Total Well	Depth To	Depth To	Groundwater	SPH			
Well ID	Date	Elevation	Depth (ft below TOC)	Product (ft below TOC)	Water (ft below TOC)	Elevation	Thickness (ft)			
		(ft amsl)	(It below TOC)	,	(It below TOC)	(ft amsl)				
	08/19/19	5507.32	11.81	NPP	7.79	5499.53	NPP			
	04/02/19	5507.32	11.77	NPP	7.85	5499.47	NPP			
	08/01/18	5507.32	11.70	NPP	7.95	5499.37	NPP			
	04/17/18	5507.32	11.71	NPP	7.95	5499.37	NPP			
CW 23+90	08/24/17	5507.32	11.72	NPP	8.10	5499.22	NPP			
CW 23+90	04/17/17	5507.32	11.72	NPP	7.77	5499.55	NPP			
	08/15/16	5507.32	11.72	NPP	7.61	5499.71	NPP			
	04/15/16	5507.32	11.72	NPP	7.82	5499.50	NPP			
	08/13/15	5507.32	11.72	NPP	7.54	5499.78	NPP			
	04/21/15	5507.32	11.72	NPP	7.74	5499.58	NPP			
	08/19/19	5505.90	12.32	NPP	7.35	5498.55	NPP			
	04/04/19	5505.90	12.25	NPP	7.31	5498.59	NPP			
	08/01/18	5505.90	12.26	NPP	7.35	5498.55	NPP			
	04/17/18	5505.90	12.26	NPP	7.30	5498.60	NPP			
CW 25+95	08/24/17	5505.90	12.25	NPP	7.25	5498.65	NPP			
OW 23133	04/17/17	5505.90	12.25	NPP	7.21	5498.69	NPP			
	08/15/16	5505.90	12.25	NPP	7.15	5498.75	NPP			
	04/15/16	5505.90	12.25	NPP	8.10	5497.80	NPP			
_	08/13/15	5505.90	12.25	Active Recovery Well						
	04/21/15	5505.90	12.25		Active Reco	overy Well				
	08/19/19	5508.27	53.17	NPP	52.59	5455.68	NPP			
	04/02/19	5508.27	53.07	NPP	52.57	5455.70	NPP			
	08/01/18	5508.27	53.10	NPP	52.60	5455.67	NPP			
	04/17/18	5508.27	53.10	NPP	52.60	5455.67	NPP			
	08/24/17	5508.27	53.08	NPP	52.58	5455.69	NPP			
*SW1-0206	04/17/17	5508.27	53.08	NPP	52.58	5455.69	NPP			
0111 0200	08/15/16	5508.27	53.08	NPP	52.61	5455.66	NPP			
	04/15/16	5508.27	53.08	NPP	52.58	5455.69	NPP			
	08/12/15	5508.27	53.08	NPP	52.62	5455.65	NPP			
	05/19/15	5508.27	53.08	NPP	52.63	5455.64	NPP			
	04/27/15	5508.27	53.08	NPP	52.61	5455.66	NPP			
	03/05/15	5508.27	53.08	NPP	52.61	5455.66	NPP			
	08/19/19	5508.27	27.80	NPP	25.32	5482.95	NPP			
	04/02/19	5508.27	27.70	NPP	24.77	5483.50	NPP			
	08/01/18	5508.27	27.72	NPP	24.87	5483.40	NPP			
	04/17/18	5508.27	27.70	NPP	24.56	5483.71	NPP			
	08/24/17	5508.27	27.69	NPP	24.80	5483.47	NPP			
*SW2-0206	04/17/17	5508.27	27.69	NPP	24.90	5483.37	NPP			
3VVZ-0206	08/15/16	5508.27	27.69	NPP	25.43	5482.84	NPP			
	04/15/16	5508.27	27.69	NPP	25.38	5482.89	NPP			
	08/12/15	5507.75	27.69	NPP	25.80	5481.95	NPP			
	05/19/15	5507.75	27.69	NPP	25.74	5482.01	NPP			
	04/27/15	5507.75	27.69	NPP	25.69	5482.06	NPP			
	03/05/15	5507.75	27.69	NPP	25.48	5482.27	NPP			

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater Elevation	SPH Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/19	5505.29	52.62	NPP	27.03	5478.26	NPP
	04/02/19	5505.29	52.54	NPP	26.61	5478.68	NPP
	08/01/18	5505.29	52.58	NPP	26.90	5478.39	NPP
	04/17/18	5505.29	52.58	NPP	26.50	5478.79	NPP
	08/24/17	5505.29	52.56	NPP	26.42	5478.87	NPP
*SW3-	04/17/17	5505.29	52.56	NPP	26.55	5478.74	NPP
0206	08/15/16	5505.29	52.56	NPP	26.36	5478.93	NPP
	04/15/16	5505.29	52.56	NPP	26.56	5478.73	NPP
	08/12/15	5505.29	52.56	NPP	26.53	5478.76	NPP
	05/19/15	5505.29	52.56	NPP	26.62	5478.67	NPP
	04/27/15	5505.29	52.56	NPP	26.64	5478.65	NPP
	03/05/15	5505.29	52.56	NPP	26.53	5478.76	NPP
	08/19/19	5504.45	42.40	NPP	33.60	5470.85	NPP
	04/02/19	5504.45	42.33	NPP	32.88	5471.57	NPP
	08/01/18	5504.45	42.35	NPP	33.10	5471.35	NPP
	04/17/18	5504.45	42.35	NPP	32.70	5471.75	NPP
	08/24/17	5504.45	42.34	NPP	33.09	5471.36	NPP
*SW4-	04/17/17	5504.45	42.34	NPP	32.72	5471.73	NPP
0206	08/15/16	5504.45	42.34	NPP	33.08	5471.37	NPP
	04/15/16	5504.45	42.34	NPP	32.71	5471.74	NPP
	08/12/15	5504.45	42.34	NPP	33.08	5471.37	NPP
	05/19/15	5504.45	42.34	NPP	32.81	5471.64	NPP
	04/27/15	5504.45	42.34	NPP	32.78	5471.67	NPP
	03/05/15	5504.45	42.34	NPP	32.75	5471.70	NPP
	08/19/19	5514.34	52.34	NPP	33.99	5480.35	NPP
	04/02/19	5514.34	52.18	NPP	33.38	5480.96	NPP
	08/01/18	5514.34	52.25	NPP	34.26	5480.08	NPP
	04/17/18	5514.34	52.27	NPP	33.85	5480.49	NPP
	08/24/17	5514.34	52.24	NPP	34.04	5480.30	NPP
*SW5-	04/17/17	5514.34	52.24	NPP	33.29	5481.05	NPP
0206	08/15/16	5514.34	52.24	NPP	34.03	5480.31	NPP
	04/15/16	5514.34	52.24	NPP	33.93	5480.41	NPP
	08/12/15	5514.34	52.24	NPP	34.20	5480.14	NPP
	05/19/15	5514.34	52.24	NPP	33.82	5480.52	NPP
	04/27/15	5514.34	52.24	NPP	33.73	5480.61	NPP
	03/05/15	5514.34	52.24	NPP	33.78	5480.56	NPP
	08/19/19	5519.72	47.35	NPP	40.43	5479.29	NPP
	04/02/19	5519.72	47.41	NPP	38.68	5481.04	NPP
	08/01/18	5519.72	47.43	NPP	39.75	5479.97	NPP
	04/17/18	5519.72	47.44	NPP	38.52	5481.20	NPP
*SW6- 0206	08/24/17	5519.72	47.43	NPP	40.92	5478.80	NPP
	04/17/17	5519.72	47.41	NPP	39.06	5480.66	NPP
	08/15/16	5519.72	47.41	NPP	NWP	NWP	NPP
	04/15/16	5519.72	47.41	NPP	39.40	5480.32	NPP
	08/12/15	5519.72	47.41	NPP	41.65	5478.07	NPP
	05/12/15	5519.72	47.41	NPP	40.88	5478.84	NPP
	04/27/15	5519.72	47.41	NPP	40.74	5478.98	NPP
	03/05/15	5519.72	47.41	NPP	40.23	5479.49	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/19/19	5517.63	32.11	NPP	20.99	5496.64	NPP
	04/02/19	5517.63	32.05	NPP	20.53	5497.10	NPP
	08/01/18	5517.63	32.08	NPP	20.95	5496.68	NPP
	04/17/18	5517.63	32.07	NPP	20.56	5497.07	NPP
	08/24/17	5517.63	32.00	NPP	20.71	5496.92	NPP
*SW7-	04/17/17	5517.63	32.95	NPP	20.83	5496.80	NPP
0206	08/15/16	5517.63	32.95	NPP	20.76	5496.87	NPP
	04/15/16	5517.63	32.95	NPP	20.48	5497.15	NPP
	08/12/15	5517.63	32.95	NPP	20.84	5496.79	NPP
	05/19/15	5517.63	32.95	NPP	20.67	5496.96	NPP
	04/27/15	5517.63	32.95	NPP	20.73	5496.90	NPP
	03/05/15	5517.63	32.95	NPP	20.39	5497.24	NPP

Notes:

*SW = Wells sampled during significant rain events only

ft = feet

amsl = above mean sea level
NPP = No Product Present
NWP = No Water Present

SPH = Separate Phase Hydrocarbon

NM = Not Measured

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
Terminal Wells							
MW-04	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	2438	1.556	5.15	-104.6	6.91	63.84
	08/24/15	2706	1759	2.23	-110.7	7.05	63.56
MW-08	2019	well is not scheduled to be sampled					
	2018	well is not scheduled to be sampled					
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	2514	1.633	4.14	43.2	7.68	57.78
	08/22/16	2149	1.398	2.72	107.2	8.04	59.41
	04/20/16	ns	ns	ns	ns	ns	ns
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
MW-20	08/20/19	ns	ns	ns	ns	ns	ns
	04/01/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
MW-21	08/20/19	ns	ns	ns	ns	ns	ns
	08/13/18	3933	2554	0.59	-68.3	7.01	61.10
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	4165	2.704	1.83	52.8	7.32	61.16
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/23/19	940	735	1.25	158.0	6.91	61.50
	08/08/18	1840	1202	2.29	200.0	7.07	62.60
	08/24/17	2305	1638	1.80	71.6	7.09	63.95
MW-29	04/21/17	ns	ns	ns	ns	ns	ns
10100-29	08/23/16	1021	663	4.63	56.0	7.52	68.73
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	961	624	1.81	-16.0	7.49	61.70
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	04/04/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
MM 20	08/24/17	ns	ns	ns	ns	ns	ns
MW-30	04/21/17	3338	2168	5.17	-61.4	7.28	53.78
	08/23/16	2757	1784	4.05	-247.5	7.08	62.52
	04/21/16	3582	2329	2.19	-260.5	7.75	64.46
	08/24/15	3009	1957	1.79	-236.3	7.19	62.18
	04/20/15	ns	ns	ns	ns	ns	ns
	08/22/19	2428	1794	2.15	-139.7	7.01	65.10
	08/07/18	2797	1820	1.09	-143.8	7.08	65.40
	08/25/17	2647	1722	1.49	-63.1	7.25	62.60
MW-31	04/21/17	ns	ns	ns	ns	ns	ns
10100-31	08/22/16	3048	1983	2.11	7.8	8.10	63.37
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
M/A/ 40	04/21/17	ns	ns	ns	ns	ns	ns
MW-40	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/22/19	5228	3958	2.14	-4.4	6.71	63.40
	08/07/18	6072	3945	2.08	134.4	7.04	63.30
	08/24/17	2919	1974	2.00	-6.0	7.10	63.53
MW-44	04/21/17	ns	ns	ns	ns	ns	ns
10100-44	08/23/16	3460	2.253	5.87	-15.8	7.30	61.32
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	5750	3740	1.93	-97.8	7.26	61.28
	04/20/15	ns	ns	ns	ns	ns	ns
	08/23/19	4519	3530	2.30	19.9	6.70	61.00
	08/08/18	5589	3581	1.33	187.2	6.77	61.90
	04/18/18	4916	3198	2.33	141.0	6.99	58.60
MW-52	08/24/17	4891	3180	2.10	180.0	6.88	62.00
	04/21/17	4912	3193	3.87	120.6	7.30	58.60
	08/22/16	5336	3469.000	2.81	109.6	7.63	60.04
	08/17/15	4172	2713	1.92	62.7	7.02	59.24
	08/19/19	ns	ns	ns	ns	ns	ns
	08/09/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
DW 04	04/21/17	ns	ns	ns	ns	ns	ns
RW-01	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-09	04/21/17	ns	ns	ns	ns	ns	ns
RVV-09	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
D\\\ 4E	04/21/17	ns	ns	ns	ns	ns	ns
RW-15	08/23/16	2472	1.601	6.48	-123.8	7.67	61.15
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-18	04/21/17	ns	ns	ns	ns	ns	ns
KVV-10	08/23/16	3666	2.383	0.66	4.6	7.49	63.02
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-23	04/21/17	ns	ns	ns	ns	ns	ns
KVV-23	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/19/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-28	04/21/17	ns	ns	ns	ns	ns	ns
KVV-20	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-42	04/21/17	ns	ns	ns	ns	ns	ns
KVV-42	08/24/16	2325	1.511	5.07	-228.7	7.60	64.02
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-43	04/21/17	ns	ns	ns	ns	ns	ns
1/1/49	08/24/16	2904	1888	2.10	-151.1	9.50	67.91
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
Cross-Gradient W	ells						
	08/21/19	676	526	0.65	75.7	7.12	61.40
	04/03/19	905	592	3.80	124.2	6.97	54.50
	08/06/18	872	592	3.40	168.0	7.11	60.70
	04/18/18	796	520	2.91	102.7	7.19	53.20
MW-01	08/25/17	765	496	2.08	126.1	7.35	64.57
10100-01	04/20/17	827	538	3.01	233.4	7.99	57.65
	08/19/16	685	444	3.81	57.4	8.09	62.83
	04/21/16	863	561	3.57	32.3	8.41	56.24
	08/18/15	852	555	2.10	47.4	7.74	63.74
	04/20/15	992	646	4.80	86.9	7.62	55.40
	08/21/19	3140	2418	2.14	144.9	7.07	62.40
	04/03/19	3747	2437	1.77	133.0	7.14	61.50
	08/06/18	4038	2620	0.90	170.6	7.07	62.30
	04/18/18	3556	2314	1.61	129.0	7.11	61.10
MW-13	08/25/17	3528	2294	1.81	114.7	7.10	62.03
10100-13	04/20/17	3561	2314	1.86	195.6	7.45	63.41
	08/19/16	3560	2314	2.30	84.7	7.84	62.51
	04/21/16	3698	2404	1.66	0.0	7.46	63.61
	08/18/15	3986	2591	1.99	28.8	7.28	65.12
	04/20/15	4588	2981	3.17	80.6	7.19	61.70
	08/19/19	ns	ns	ns	ns	ns	ns
	08/02/18	ns	ns	ns	ns	ns	ns
	08/28/17	ns	ns	ns	ns	ns	ns
MW-26	04/20/17	ns	ns	ns	ns	ns	ns
10100-20	08/17/16	ns	ns	ns	ns	ns	ns
	04/21/16	ns	ns	ns	ns	ns	ns
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/19	6774	5057	2.59	-103.0	6.95	64.80
	08/21/19	6421	4849	6.96	105.7	6.90	63.90
	08/06/18	8295	5395	1.55	262.3	7.03	65.70
	08/28/17	5587	3633	1.28	-49.2	7.05	63.10
MW-27	04/21/16	ns	ns	ns	ns	ns	ns
	08/19/16	5598	3640	2.30	-122.5	7.79	60.80
	04/21/16	ns	ns	ns	ns	ns	ns
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/21/19	4297	3373	13.13	97.1	7.69	60.70
	08/06/18	5818	3777	6.98	232.8	7.64	60.00
	08/28/17	4694	3055	7.20	144.6	7.44	64.10
MW-32	04/21/16	ns	ns	ns	ns	ns	ns
10100-32	08/19/16	5094	3309	6.86	77.7	8.32	58.73
	04/21/16	ns	ns	ns	ns	ns	ns
	08/18/15	5171	3363	8.00	41.5	7.71	60.50
	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/19	4188	3120	6.38	149.3	7.59	64.60
	04/03/19	4754	3094	3.71	141.6	7.74	59.50
	08/06/18	5539	3601	2.55	2461.0	7.52	65.50
	04/18/18	5003	3243	3.32	145.0	7.58	59.50
MW-33	08/28/17	4947	3211	4.20	146.4	7.24	65.10
10100-33	04/20/17	5288	3439	5.64	180.0	7.91	60.19
	08/19/16	5280	3429	6.11	70.1	8.49	60.62
	04/22/16	ns	ns	ns	ns	ns	ns
	08/18/15	5594	3633	4.84	42.7	7.45	62.96
	04/20/15	6078	3950	7.37	76.4	7.76	60.08
Downgradient We	ells						
	08/21/19	2328	1774	3.64	-95.5	7.14	63.00
	08/06/18	3014	1956	3.69	-62.6	7.05	61.70
	08/29/17	2847	1850	1.48	-74.17	6.74	65.03
B 00 07 4 4	04/20/16	ns	ns	ns	ns	ns	ns
MW-11	08/18/16	2203	1432	1.77	-61.3	7.66	64.99
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	2221	1443	2.28	-99.3	7.06	62.84
	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/19	365	274	4.90	-84.2	6.90	64.40
	04/03/19	765	500	3.42	130.0	7.72	51.80
	08/06/18	459	298	1.17	226.1	7.24	65.50
	04/18/18	1183	773	4.60	84.4	7.44	54.40
MANA 40	08/28/17	405	2639	3.48	124.9	7.28	69.30
MW-12	04/20/17	633	411	4.26	151.3	7.99	53.78
	08/18/16	402	261	2.55	42.2	9.49	65.93
	04/22/16	653	425	5.62	49.5	8.33	55.28
	08/19/15	763	496	3.25	32.7	7.65	65.72
	04/20/15	691	449	6.54	84.8	7.67	51.74

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/21/19	2430	1833	1.51	-87.8	7.07	62.60
	08/06/18	3240	2041	2.95	-35.1	7.11	63.90
	08/29/17	2853	1854	1.81	-84.3	7.03	63.13
MW-34	04/20/16	ns	ns	ns	ns	ns	ns
10100-34	08/18/16	2789	1814	2.05	-77.5	7.88	60.58
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	2289	1489	1.54	-110.8	7.26	60.80
	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/19	2044	1599	1.36	-87.6	7.09	60.90
	04/03/19	2352	1526	2.58	-76.4	7.08	58.50
	08/06/18	2714	1762	1.16	-50.7	7.11	62.00
	04/18/18	2100	1365	1.19	-78.7	7.12	58.60
NAVA 05	08/29/17	2480	1610	1.55	-91.3	7.10	62.13
MW-35	04/20/17	2059	1337	1.97	-16.5	7.64	59.99
	08/18/16	2331	1515	1.97	-86.7	8.01	59.90
	04/22/16	2001	1300	1.69	-106.9	7.64	59.60
	08/19/15	2116	1374	1.30	-103.4	7.28	60.32
	04/20/15	2054	1335	2.41	-70.2	7.37	58.40
	08/21/19	2765	2125	2.35	-100.6	7.27	62.30
	04/03/19	2898	1885	2.94	17.1	7.41	59.20
	08/06/18	2717	1762	2.25	-50.4	7.35	63.90
	04/18/18	2200	1450	2.14	-63.2	7.59	58.90
MW-37	08/29/17	2855	1859	2.40	-106.7	7.36	63.25
10100-37	04/20/17	2296	1490	3.42	8.1	7.64	58.91
	08/18/16	2518	1635	3.31	-67.1	8.12	59.90
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	2417	1571	3.62	-118.1	7.61	60.50
	04/20/15	2730	1772	2.98	22.1	7.58	60.20
	08/21/19	1461	1131	0.77	-85.8	7.09	60.90
	04/03/19	1616	1053	2.67	-75.8	7.42	59.00
	08/06/18	1922	1248	2.20	-54.2	7.19	62.50
	04/18/18	1589	1034	1.37	-104.0	7.29	58.50
MW-38	08/29/17	1610	1047	2.00	-95.0	7.18	64.80
10100-20	04/20/17	1560	1014	2.37	34.9	8.06	59.48
	08/18/16	1085	705	3.11	-46.5	8.42	60.26
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	1171	761	2.01	-124.7	7.55	59.00
	04/20/15	1395	906	3.13	10.1	7.76	59.48

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
RCRA Investigation	on Wells						
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
MW-50	2017	ns	ns	ns	ns	ns	ns
	08/23/16	590	0.383	4.99	-123.3	8.38	61.06
	08/17/15	ns	ns	ns	ns	ns	ns
	2019	ns	ns	ns	ns	ns	ns
	08/03/18	652	423	1.57	214.1	7.25	60.80
MW-51	08/23/17	729	429	4.09	172.0	7.32	62.90
	08/23/16	1180	732	5.92	-38.6	7.67	62.12
	08/17/15	723	470	2.55	70.2	7.31	58.76
	08/23/19	4658	3620	1.56	152.7	7.06	51.40
	08/03/18	5438	3536	1.38	229.9	7.25	61.50
MW-53	08/23/17	5204	3395	1.43	189.4	7.28	60.40
	08/24/16	4393	2868	4.99	27.5	7.40	59.49
	08/17/15	5470	3556	2.31	96.0	7.14	59.78
	08/20/19	ns	ns	ns	ns	ns	ns
	08/09/18	ns	ns	ns	ns	ns	ns
MW-54	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
MW-55	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
MW-56	08/24/17	ns	ns	ns	ns	ns	ns
	08/23/16	3032	1972	1.47	68.4	7.36	68.40
	08/17/15	ns	ns	ns	ns	ns	ns
	08/20/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
MW-57	08/24/17	ns	ns	ns	ns	ns	ns
	08/24/16	3066	1994	2.99	-149.0	7.42	65.61
	08/17/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/20/19	ns	ns	ns	ns	ns	ns
	08/10/18	ns	ns	ns	ns	ns	ns
MW-58	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/22/19	3012	2301	1.91	-101.6	7.04	63.00
	08/03/18	3000	1956	1.10	-59.7	6.92	64.00
MW-59	08/22/17	2649	1720	1.32	-74.5	6.99	63.50
	08/22/16	3241	2106	2.34	70.3	7.83	62.15
	08/17/15	3381	220	1.30	-112.3	7.16	62.48
	08/19/19	ns	ns	ns	ns	ns	ns
	08/07/18	ns	ns	ns	ns	ns	ns
MW-60	08/22/17	4074	2653	3.41	169.5	7.15	64.50
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/19	ns	ns	ns	ns	ns	ns
	08/02/18	ns	ns	ns	ns	ns	ns
MW-61	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/22/19	6708	5057	2.75	58.3	6.86	63.00
	08/07/18	7891	5129	2.81	79.9	7.13	64.30
MW-62	08/23/17	7036	4569	2.06	50.8	7.00	62.90
	08/22/16	7905	5139	2.18	120.3	8.00	62.06
	08/17/15	7273	473	2.03	48.1	7.05	61.46
	08/22/19	4595	3380	2.87	103.0	6.90	66.20
MANA CO	08/08/18	4005	2605	6.99	154.5	6.99	65.20
MW-63	08/22/17	3530	2310	1.20	112.1	25.88	65.60
	08/17/15	4931	320	0.80	57.8	6.84	64.64
	08/22/19	5248	4017	5.32	95.3	7.11	62.80
	08/08/18	6353	4128	5.94	159.2	7.13	61.60
MW-64	08/22/17	3946	3866	5.29	154.6	6.95	65.77
	08/22/16	6658	4329	6.29	131.2	7.83	62.11
	08/17/15	6310	410	6.16	68.3	7.04	63.38
	08/22/19	1983	1384	0.65	-42.5	7.29	68.40
	08/07/18	3172	4898	2.25	-80.4	7.03	68.00
MW-65	08/22/17	4861	3172	1.06	-64.9	7.05	65.90
	08/22/16	5228	3398	1.83	-21.8	7.75	63.32
	08/17/15	4861	316	1.83	-182.3	7.10	63.38

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/19	ns	ns	ns	ns	ns	ns
	08/02/18	ns	ns	ns	ns	ns	ns
MW-66	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/23/19	1089	852	2.07	93.5	6.72	61.00
	08/03/18	1977	1287	1.37	250.0	7.12	60.90
MW-67	08/23/17	1359	1040	1.60	143.8	7.17	63.13
	08/24/16	1078	714	5.87	5.4	7.52	59.79
	08/17/15	1320	860	2.71	73.0	7.24	59.48
	08/23/19	1182	910	4.21	76.1	6.89	62.50
	08/03/18	1431	930	1.53	208.0	7.03	60.90
MW-68	08/23/17	1190	762	2.10	174.9	7.06	52.67
	08/24/16	1210	785	5.45	29.0	7.71	62.18
	08/17/15	1257	819	2.36	69.8	7.30	62.42
	08/19/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
MW-69	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/22/19	5095	3907	1.91	-69.7	6.88	62.60
	08/07/18	5598	3647	2.61	-24.6	6.92	66.20
MW-70	08/23/17	5387	3516	1.88	-69.6	6.79	62.60
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	6258	407	3.21	-49.5	6.89	60.68
North Boundary E	Barrier Wells						
	08/26/19	1784	1287	1.33	-80.3	6.63	67.5
	04/03/19	1840	1196	1.25	-60.01	6.80	51.8
	08/09/18	1451	940	0.79	-57.2	6.76	67.3
	04/18/18	1123	728	1.57	-50.3	6.75	55.4
	08/28/17	886	576	1.46	-66.17	6.83	67.03
CW 0+60	04/27/17	911	593	3.47	-56.2	6.99	53.92
	08/17/16	878	570	2.84	47.78	6.91	70.55
	04/19/16	571	371	1.84	-63.41	7.17	54.99
	08/25/15	914	592	1.34	-94.9	7.04	68.54
	04/20/15	733	477	2.83	-80.2	7.54	58.58

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/26/19	1519	1111	0.30	-240.9	7.14	66.60
	04/04/19	1992	1294	3.61	-14.1	7.24	54.50
	08/09/18	2815	1833	0.94	-216.9	7.40	67.10
	04/18/18	1679	1092	1.04	-81.3	7.61	56.10
CW 25+95	08/28/17	1989	1294	0.80	-254.4	7.20	69.60
CW 25+95	04/28/17	1759	1125	4.08	-211.4	7.43	53.95
	08/17/16	1511	982	1.35	44.3	7.25	68.40
	04/21/16	1721	1177	0.68	-222.0	7.87	62.24
	08/26/15	np	np	np	np	np	np
	04/20/15	1547	1008	1.95	-193.1	7.54	59.30
	08/19/19	ns	ns	ns	ns	ns	ns
	04/03/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
OW 0+60	08/28/17	ns	ns	ns	ns	ns	ns
OVV 0+60	04/27/17	np	np	np	np	np	np
	08/17/16	1208	785	1.15	22.9	7.55	70.00
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1014	659	1.03	-135.1	6.96	68.78
	04/20/15	ns	ns	ns	ns	ns	ns
	08/19/19	ns	ns	ns	ns	ns	ns
	04/03/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
OW 1+50	08/28/17	ns	ns	ns	ns	ns	ns
OW 1+30	04/27/17	np	np	np	np	np	np
	08/17/16	1225	797	1.70	-96.7	7.40	70.41
	04/19/16	758	493	1.65	-87.9	6.63	57.11
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/26/19	ns	ns	ns	ns	ns	ns
	04/03/19	ns	ns	ns	ns	ns	ns
	08/09/18	ns	ns	ns	ns	ns	ns
	04/19/18	2800	1846	1.42	-111.7	7.20	56.90
OW 3+85	08/28/17	ns	ns	ns	ns	ns	ns
OVV 3+00	04/27/17	2355	1532	1.10	-18.7	7.41	13.05
	08/17/16	2776	1804	1.33	-215.3	7.09	67.70
	04/19/16	2471	1606	1.84	-74.55	6.92	55.67
	08/25/15	2522	1638	0.86	-263.9	7.15	67.16
	04/20/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/19/19	ns	ns	ns	ns	ns	ns
	04/02/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
OW 5+50	08/28/17	ns	ns	ns	ns	ns	ns
OW 5+50	04/27/17	np	np	np	np	np	np
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/19/19	ns	ns	ns	ns	ns	ns
	04/02/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
OW 6+70	08/28/17	ns	ns	ns	ns	ns	ns
	04/17/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	08/26/19	3817	2743	2.26	122.9	6.93	67.90
	04/04/19	3751	2457	2.28	141.5	7.38	55.00
	08/09/18	ns	ns	ns	ns	ns	ns
	04/19/18	ns	ns	ns	ns	ns	ns
OW 8+10	08/28/17	3663	2381	1.99	129.0	6.89	68.03
OVV 6+10	04/27/17	4183	2719	3.16	137.0	7.83	55.94
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/26/19	ns	ns	ns	ns	ns	ns
	04/04/19	ns	ns	ns	ns	ns	ns
	08/09/18	ns	ns	ns	ns	ns	ns
	04/19/18	2233	1443	0.67	-85.1	7.09	59.80
OW 44 : 45	08/28/17	ns	ns	ns	ns	ns	ns
OW 11+15	04/27/17	2399	1558	2.78	67.6	7.56	55.99
	08/17/16	2171	1414	0.78	152.9	6.65	68.23
	04/19/16	1284	834	3.49	52.2	7.68	57.66
	08/25/15	2452	1593	0.86	-208.4	6.98	66.38
	04/20/15	2672	1738	1.34	-99.6	7.16	58.52

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (° F)
	08/19/19	ns	ns	ns	ns	ns	ns
	04/02/19	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/19/18	ns	ns	ns	ns	ns	ns
OW 14+10	08/28/17	ns	ns	ns	ns	ns	ns
0 14+10	04/17/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/26/19	ns	ns	ns	ns	ns	ns
	04/04/19	ns	ns	ns	ns	ns	ns
	08/09/18	ns	ns	ns	ns	ns	ns
	04/19/18	4102	2665	1.02	-122.0	7.29	61.80
OW 16+60	08/28/17	ns	ns	ns	ns	ns	ns
OW 16+60	04/27/17	3481	2262	3.01	-26.6	7.32	57.43
	08/17/16	3749	2438	1.43	-249.4	7.77	69.32
	04/19/16	2973	2334	2.80	-116.2	7.52	59.62
	08/25/15	3936	2557	0.77	-219.3	7.16	68.84
	04/20/15	4057	2635	1.65	-211.1	7.24	60.98
	08/26/19	5123	3692	2.26	123.6	7.19	67.70
	04/04/19	2580	1671	2.57	165.9	7.55	55.80
	08/01/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
OW 19+50	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	np	np	np	np	np	np
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	08/26/19	3358	2411	2.30	128.1	7.01	68.10
	04/04/19	1148	748	3.75	157.3	7.70	53.80
	08/09/18	ns	ns	ns	ns	ns	ns
	04/19/18	3451	2243	2.43	114.5	7.15	57.40
OW 00:00	08/28/17	2840	1846	3.21	179.6	7.08	70.00
OW 22+00	04/28/17	3264	1875	7.90	123.8	6.28	54.37
	08/17/16	1913	1242	6.99	185.7	7.40	72.55
	04/19/16	2205	1434	6.71	15.0	8.01	57.38
	08/25/15	3048	1983	3.28	18.1	7.41	67.88
	04/20/15	3102	2017	4.57	24.8	7.56	57.62

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/26/19	ns	ns	ns	ns	ns	ns
	04/04/19	2101	1365	2.53	148.9	7.59	58.60
	08/09/18	2111	1372	1.20	207.8	7.32	70.10
	04/19/18	1939	1255	3.03	116.2	7.53	61.30
OW 23+10	08/28/17	ns	ns	ns	ns	ns	ns
OW 23+10	04/28/17	1860	1200	7.34	70.7	7.18	56.04
	08/17/16	1589	1036	1.89	-61.8	8.28	70.16
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1676	1090	1.57	-83.5	7.36	68.78
	04/20/15	1985	1289	2.22	-102.5	7.50	58.76
	08/26/19	1868	1313	2.02	151.8	7.06	69.80
	04/04/19	1866	1209	3.27	143.6	7.82	60.40
	08/09/18	ns	ns	ns	ns	ns	ns
	04/18/18	ns	ns	ns	ns	ns	ns
OW 23+90	08/28/17	ns	ns	ns	ns	ns	ns
OW 25+90	04/28/17	np	np	np	np	np	np
	08/17/16	ns	ns	ns	ns	ns	ns
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1396	908	3.50	-10.3	7.53	67.34
	04/20/15	1263	821	6.56	-1.9	7.74	59.36
	08/26/19	1536	1085	1.84	-72.7	7.08	69.10
	04/04/19	1604	1040	2.30	-9.0	7.49	55.00
	08/09/18	2487	1612	1.98	26.0	7.12	69.90
	04/19/18	1354	877	2.00	-51.7	7.39	57.90
OW 25+70	08/28/17	2205	1432	1.76	-45.0	7.19	71.07
OVV 25+70	04/28/17	2318	1340	6.99	-20.4	7.18	55.32
	08/17/16	1431	930	1.72	-73.8	8.08	69.59
	04/21/16	1947	1265	2.22	-72.8	8.24	57.56
	08/25/15	1600	1040	1.62	-113.4	7.33	69.32
	04/20/15	1529	995	2.08	-110.0	7.32	56.96

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
San Juan River Bl	uff						
	08/15/19	985	676	6.31	62.7	7.17	70.00
	04/04/19	1166	754	12.09	159.3	7.62	54.30
	08/10/18	650	423	5.80	179.4	7.51	63.60
	04/20/18	820	619	6.52	181.2	7.45	61.10
	08/30/17	1111	722	6.76	180.0	7.41	70.00
Outfall No. 2	04/21/17	785	507	6.66	180.7	7.77	58.64
	08/17/16	ns	ns	ns	ns	ns	ns
	05/18/16	306	1989	6.78	94.9	6.25	55.22
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	1064	693	9.80	4.4	7.98	51.80
	08/15/19	915	656	6.40	42.5	7.32	68.00
	04/04/19	1151	748	13.48	170.6	7.70	53.10
	08/09/18	380	247	4.21	226.1	7.38	68.20
	04/20/18	437	277	5.29	190.9	7.25	55.90
	08/30/17	467	284	5.94	170.7	7.17	61.90
**Outfall No. 3	04/21/17	820	533	5.77	144.7	7.90	56.30
	08/19/16	297	193	9.33	38.0	8.79	61.16
	05/18/16	306	1989	8.67	96.4	6.84	51.98
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	307	199	7.84	23.7	7.87	60.02
	04/21/15	422	275	10.48	59.2	7.95	53.66
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**Seep 1	04/21/17	3245	2106	5.43	238.1	7.63	57.20
Зеер і	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	5072	3296	4.99	49.7	6.54	53.60
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**Seep 2	04/21/17	ns	ns	ns	ns	ns	ns
Geep 2	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**Seep 3	04/21/17	ns	ns	ns	ns	ns	ns
Зеер 3	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
**Coop 4	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 4	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**Seep 5	04/21/17	ns	ns	ns	ns	ns	ns
	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
** C 000 6	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 6	04/12/14	8810	5727	13.46	105.2	7.24	44.84
	08/06/13	28663	18631	90.40	153.6	6.68	66.26
	04/24/13	9510	6180	129.16	219.0	7.07	42.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	7291	6851	12.60	121.6	7.61	48.02

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
**Coop 7	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 7	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
**Seep 8	08/26/14	ns	ns	ns	ns	ns	ns
Occp o	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
**Seep 9	08/26/14	ns	ns	ns	ns	ns	ns
0000	04/12/14	5271	3.4255	12.90	43.9	7.73	43.10
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	5644	3670	136.90	214.3	7.35	35.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	3004	2841	7.62	139.4	7.64	47.48
	08/16/19	241	207	10.18	67.5	8.01	54.20
	04/05/19	427	278	7.69	110.7	8.24	54.50
	08/02/18	454	294	8.85	173.7	7.60	68.50
	04/20/18	360	235	9.70	181.1	8.39	59.90
**Upstream	08/30/17	192	125	12.16	170.0	8.26	66.10
,	04/21/17	382	248	9.21	182.9	8.69	55.22
	08/19/16	290	189	8.90	22.6	8.94	64.04
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	169	110	9.28	23.6	7.98	57.74
	04/22/15	540	351	13.08	34.2	8.16	58.64

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/16/19	231	195	9.89	115.4	8.04	54.90
	04/05/19	417	271	8.66	145.6	8.13	52.70
	08/02/18	314	205	8.97	211.4	7.87	65.00
	04/20/18	320	210	8.25	201.5	8.03	60.10
**North of MW-45	08/30/17	335	218	7.86	182.7	8.27	72.70
NOTHI OF WIVE 45	04/21/17	314	204	7.77	230.9	8.49	59.72
	08/19/16	293	191	9.40	37.8	9.67	60.08
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	498	324	12.93	33.4	8.03	60.08
	08/16/19	236	195	10.80	99.5	7.73	56.60
	04/05/19	239	155	7.48	134.0	8.30	55.60
	08/02/18	309	202	8.77	213.2	7.29	67.60
	04/20/18	340	219	7.95	207.5	8.45	62.30
**North of MW-46	08/30/17	330	215	7.74	191.7	8.20	69.10
NOTHI OF WIVE-46	04/21/17	490	319	8.74	269.6	8.66	60.62
	08/19/16	296	192	8.75	45.1	9.02	60.98
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	500	325	13.71	20.3	8.24	60.26
	08/16/19	250	194	10.69	65.1	7.52	60.00
	04/05/19	494	321	7.78	169.1	8.06	55.60
	08/02/18	302	196	8.22	244.9	7.38	65.60
	04/20/18	319	200	7.98	181.1	7.92	61.10
**Downstroom	08/30/17	325	211	6.31	173.6	8.13	69.10
**Downstream	04/21/17	437	284	8.34	263.4	8.85	61.52
	08/19/16	290	189	8.76	20.5	8.90	63.86
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	315	205	9.81	14.7	8.13	57.20
	04/22/15	536	348	12.39	35.7	8.16	59.72

TABLE 2
Groundwater Field Parameter Summary
2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
Background Wells	1						
	08/19/19	ns	ns	ns	ns	ns	ns
	04/02/18	ns	ns	ns	ns	ns	ns
	08/01/18	ns	ns	ns	ns	ns	ns
	04/16/18	ns	ns	ns	ns	ns	ns
**MW-03	08/30/17	ns	ns	ns	ns	ns	ns
10100-03	04/18/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
	08/19/19	ns	ns	ns	ns	ns	ns
	04/02/19	ns	ns	ns	ns	ns	ns
	08/02/18	ns	ns	ns	ns	ns	ns
	04/16/18	ns	ns	ns	ns	ns	ns
******	08/30/17	ns	ns	ns	ns	ns	ns
**MW-05	04/18/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
	08/19/19	ns	ns	ns	ns	ns	ns
	04/02/19	ns	ns	ns	ns	ns	ns
	08/02/18	ns	ns	ns	ns	ns	ns
	04/16/18	ns	ns	ns	ns	ns	ns
******	08/30/17	ns	ns	ns	ns	ns	ns
**MW-06	04/18/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
MW BCK1	2017	ns	ns	ns	ns	ns	ns
IVIVV DOINT	2016	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns

TABLE 2 Groundwater Field Parameter Summary 2019 Groundwater Remediation and Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Dissolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	2019	ns	ns	ns	ns	ns	ns
	2018	ns	ns	ns	ns	ns	ns
MW BCK2	2017	ns	ns	ns	ns	ns	ns
IVIVV BCK2	2016	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns

Notes:

ns = no sample

np = no purge parameters, low water volume

* = Field result was confirmed with field notes.

^{** =} Discrete sample reading

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening		**RW-1			MW-4			1 par	W-8	**RW-9			RW-15			**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
	Levels	Source	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-16	W-8 Aug-13	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-19	Aug-19	Aug-19
Volatile Organic Compounds (uc			Aug-19	Aug-19	_ Aug-10	Aug-17	Aug-10	Lug-13	Aug-10	Aug-13	Aug-19	Aug-19	_ Aug-10	Aug-17	_ Aug-10	Aug-13	Aug-13	Aug-19	Aug-19	Aug-13	Aug-13
1,1,1,2-Tetrachloroethane	5.74	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,1,1-Trichloroethane	5	(3)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,1,2,2-Tetrachloroethane	10	(3)					< 2.0	< 2.0	< 2.0	< 2.0					< 200	< 40					
1,1,2-Trichloroethane	5	(3)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,1-Dichloroethane	25	(3)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,1-Dichloroethene	7	(3)					< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0					< 10 < 10	< 20 < 20					
1,2,3-Trichlorobenzene	7	(1)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
1,2,3-Trichloropropane	0.01	(4)					< 2.0	< 2.0	< 2.0	< 2.0					< 200	< 40					
1,2,4-Trichlorobenzene	11.55	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
1,2,4-Trimethylbenzene	56	(1)					1.7	4.1	1.0	8.0					2100	650					
1,2-Dibromo-3-chloropropane	0.2	(2)					< 2.0	< 2.0	< 2.0	< 2.0					< 200	< 40					
1,2-Dibromoethane (EDB)	0.05	(3)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,2-Dichlorobenzene	302 1.71	(4)					< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0					< 100 < 10	< 20 < 20					
1,2-Dichloropropane	4.376	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,3,5-Trimethylbenzene	60	(1)					< 1.0	< 1.0	< 1.0	2.0					200	92					
1,3-Dichlorobenzene	-						< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
1,3-Dichloropropane	370	(1)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
1,4-Dichlorobenzene	75	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
1-Methylnaphthalene	11	(5)					22	21	< 4.0	< 4.0					< 400	< 80					
2,2-Dichloropropane	- 5565	(4)					< 2.0	< 2.0	< 2.0	< 2.0					< 20	< 40					
2-Butanone 2-Chlorotoluene	5565 240	(4)					< 10 < 1.0	< 10 < 1.0	< 10 < 1.0	< 10 < 1.0					< 100 < 100	< 200 < 20					
2-Hexanone	-	(1)					< 1.0	< 10	< 1.0	< 1.0					< 100	< 200					
2-Methylnaphthalene	36	(1)					35	37	< 4.0	< 4.0					< 400	95					
4-Chlorotoluene	250	(1)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
4-Isopropyltoluene	-						< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
4-Methyl-2-pentanone	-						< 10	< 10	< 10	< 10					< 100	< 200					
Acetone	14064	(4)					< 10	< 10	< 10	< 10					< 100	< 200					
Benzene Bromobenzene	5 62	(3)					37 < 1.0	210 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0					1800 < 100	1200 < 20					
Bromodichloromethane	1.34	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
Bromoform	33	(5)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
Bromomethane	7.545	(4)					< 3.0	< 3.0	< 3.0	< 3.0					< 30	< 60					
Carbon disulfide	810	(4)					< 10	< 10	< 10	< 10					< 100	< 200					
Carbon Tetrachloride	5	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Chlorobenzene	100	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Chloroethane Chloroform	20900	(4)					< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0					< 20 < 10	< 40 < 20					
Chloromethane	20.3	(4)					< 3.0	< 3.0	< 3.0	< 3.0					< 30	< 60					
cis-1,2-DCE	70	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
cis-1,3-Dichloropropene	4.7	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Dibromochloromethane	1.68	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Dibromomethane	8.3	(1)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Dichlorodifluoromethane	197	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Ethylbenzene Hexachlorobutadiene	700 1.39	(3)					7 < 1.0	17 < 1.0	<1.0 < 1.0	1.2 < 1.0					2400 < 100	610 < 20					
Isopropylbenzene	447	(4)					40	49	< 1.0	< 1.0					100	23					
Methyl tert-butyl ether (MTBE)	100	(3)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	110					
Methylene Chloride	5	(2)					< 3.0	< 3.0	< 3.0	< 3.0					< 30	< 60					
Naphthalene	1.65	(4)					71	78	< 2.0	< 2.0					500	170					
n-Butylbenzene	1000	(1)					< 3.0	< 3.0	< 3.0	< 3.0					< 300	< 60					
n-Propylbenzene	660	(1)					33	39	<1.0	1.2					350	59					
sec-Butylbenzene Styrene	2000 100	(1)					5.7 < 1.0	7.7 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0					< 100 < 10	< 20 < 20					
tert-Butylbenzene	690	(1)					1.2	1.2	< 1.0	< 1.0					< 100	< 20					
Tetrachloroethene (PCE)	5	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 100	< 20					
Toluene	1000	(3)					< 1.0	< 1.0	< 1.0	< 1.0					18	740					
trans-1,2-DCE	100	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
trans-1,3-Dichloropropene	4.71	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Trichloroethene (TCE)	5	(2)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Trichlorofluoromethane	1136	(4)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Vinyl chloride	2	(3)					< 1.0	< 1.0	< 1.0	< 1.0					< 10	< 20					
Xylenes, Total	620	(3)					11	11	<1.5	3.6					1300	1000					

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening		**RW-1			MW-4			1 M	W-8	**RW-9			RW-15			**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
	Levels	Source	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-16	Aug-13	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-19	Aug-19	Aug-19
Semi-Volatile Organic Compou			, .ug 13	, .ag 10	,ag 10	,ag 17	, .ag 10	, ag 10	, ag 10	,ag 10	ray 10	rug 10	, .ug-10	, .ug 11	,y 10	, .ag 10	, ag 10	, ag 10	, ag 10	7.ug 10	7.ag 13
1,2,4-Trichlorobenzene	70	(2)																			
1,2-Dichlorobenzene	600	(2)																			
1,3-Dichlorobenzene	-	(-)																			
1,4-Dichlorobenzene	75	(2)																			
1-Methylnaphthalene	11	(5)																			
2,4,5-Trichlorophenol	1166	(4)																			
2,4,6-Trichlorophenol	11.9	(4)																			
2,4-Dichlorophenol	45.3	(4)																			
2,4-Dimethylphenol	354	(4)																			
2,4-Dinitrophenol	38.7	(4)																			
2,4-Dinitrotoluene	2.375	(4)																			
2,6-Dinitrotoluene	0.485	(4)																			
2-Chloronaphthalene	733	(4)																			
2-Chlorophenol	91	(4)																			
2-Methylnaphthalene	36	(1)																			
2-Methylphenol	930	(1)																			
2-Nitroaniline	190	(1)																			
2-Nitrophenol	-																				
3,3´-Dichlorobenzidine	1.25	(4)																			
3+4-Methylphenol	930	(1)																			
3-Nitroaniline 4,6-Dinitro-2-methylphenol	1.52	(4)																			
4-Bromophenyl phenyl ether	-	(4)																			
4-Chloro-3-methylphenol																					
4-Chloroaniline	3.7	(5)																			
4-Chlorophenyl phenyl ether	-	(0)																			
4-Nitroaniline	38	(5)																			
4-Nitrophenol	-																				
Acenaphthene	535	(4)																			
Acenaphthylene	-																				
Aniline	130	(5)																			
Anthracene	1721	(4)																			
Azobenzene	1.2	(5)																			
Benzo(a)anthracene	0.1199	(4)																			
Benzo(a)pyrene Benzo(b)fluoranthene	0.2	(2)																			
Benzo(g,h,i)perylene	-	(4)																			
Benzo(k)fluoranthene	3.43	(4)																			
Benzoic acid	75000	(1)																			
Benzyl alcohol	2000	(1)																			
Bis(2-chloroethoxy)methane	59	(1)																			
Bis(2-chloroethyl)ether	0.137	(4)																			
Bis(2-chloroisopropyl)ether	9.81	(4)																			
Bis(2-ethylhexyl)phthalate	6	(2)																			
Butyl benzyl phthalate	160	(5)																			
Carbazole	-	4.00																			
Chrysene	34.3171	(4)																			
Dibenz(a,h)anthracene Dibenzofuran	0.0343	(4)																			
Diethyl phthalate	14800	(4)																			
Dimethyl phthalate	-	(4)																			
Di-n-butyl phthalate	885	(4)																			
Di-n-octyl phthalate	-	(.)																			
Fluoranthene	802	(4)																			
Fluorene	288	(4)																			
Hexachlorobenzene	0.0976	(4)																			
Hexachlorobutadiene	1.387	(4)																			
Hexachlorocyclopentadiene	0.411	(4)																			
Hexachloroethane	3.2842	(4)																			
Indeno(1,2,3-cd)pyrene	0.3432	(4)																			
Isophorone	781	(4)																			
Naphthalene Nitrobenzene	1.65 1.4	(4)																			
N-Nitrosodimethylamine	0.0049	(4)																			
N-Nitrosodi-n-propylamine	0.0049	(5)																			
N-Nitrosodiphenylamine	121.922	(4)																			
		(· /																			

TABLE 3 Terminal Wells Analytical Summary 2019 Groundwater Remediation and Monitoring Annual Report

	Screening		**RW-1			MW-4			1 54	W-8	**RW-9			RW-15			**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
	Levels	Source	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-16	Aug-13		Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-19	Aug-19	Aug-19
Pentachlorophenol	0.4129	(4)	Aug-19	Aug-19	Aug-10	Aug-17	Aug-16	Aug-15	Aug-10	Aug-13	Aug-19	Aug-19	Aug-10	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-19	Aug-19	Aug-19
Phenanthrene	170.4146	(4)																			
Phenol	5761	(4)																			
Pyrene	117	(4)																			
Pyridine	20	(1)																			
General Chemistry (mg/L)		(-/																			
Fluoride	1.6	(3)					< 0.50	0.29	0.61	0.67					< 0.50	< 0.50					
Chloride	250	(3)					270	250	160	120					330	480					
Nitrite	1	(3)					< 0.50	< 0.10	13.0	0.88					< 0.50	< 0.50					
Bromide	-						4.6	< 0.10	0.78	0.86					8.5	6.3					
Nitrate	10	(3)					< 0.50	0.74	13.0	13					< 0.50	< 0.50					
Phosphorus	-						< 2.5	< 0.50	<0.5	< 2.5					< 2.5	< 2.5					
Sulfate	600	(3)					< 2.5	1	700	990					19	< 2.5					
Carbon Dioxide (CO ₂₎	-						1200	1100	190	61					1200	1200					
Alkalinity (CaCO ₃)	-						1176	1148	198	31					1248	1221					
Bicarbonate (CaCO ₃)	-						1176	1148	198	31					1248	1221					
Total Metals (mg/L)																					
Arsenic	0.01	(3)					< 0.020	< 0.020	0.02	< 0.020					< 0.020	< 0.020					
Barium	2.0	(3)					2.5	2	0.063	0.021					1.4	1.5					
Cadmium	0.005	(3)					< 0.0020	< 0.0020	< 0.0020	< 0.0020					< 0.0020	< 0.0020					
Chromium	0.05	(3)					0.071	< 0.0060	2	0.46					< 0.0060	< 0.0060					
Lead	0.015	(3)					0.012	0.005	< 0.005	< 0.0010					0.0085	< 0.0050					
Selenium	0.05	(3)					< 0.050	< 0.050	< 0.050	0.084					< 0.050	< 0.050					
Silver	0.05	(3)					< 0.0050	< 0.0050	< 0.0050	< 0.025					< 0.0050	< 0.0050					
Mercury	0.002	(3)					< 0.00020	< 0.00020	0.0029	0.0012					< 0.00020	< 0.00020					
Dissolved Metals (mg/L)																					
Arsenic	0.01	(3)					< 0.020	< 0.020	< 0.020	< 0.0050					< 0.020	< 0.020					
Barium	1.0	(3)					2.3	2.3	<0.02	0.012					1.2	1.6					
Cadmium	0.005	(3)					< 0.0020	< 0.0020	< 0.0020	< 0.0020					< 0.0020	< 0.0020					
Calcium	-						170	170	180	140					150	170					
Chromium	0.05	(3)					0.011	< 0.0060	0.016	0.019					< 0.0060	< 0.0060					
Copper	1	(3)					0.16	< 0.0060	<0.006	0.0076					0.0098	< 0.0060					
Iron	1	(3)					43	6.2	1.4	2.5					12	48					
Lead	0.015	(3)					0.014	0.0065	<0.005	< 0.0010					0.0077	< 0.0050					
Magnesium	-	(0)					61	66	30	31					45	49					
Manganese	0.2	(3)					8.6	3.5	0.54	2.7					3.1	3					
Potassium	- 0.05	(2)					4.7	4.3	2.9	3.1					3.7	3.7					
Selenium	0.05	(3)					< 0.050	< 0.050	< 0.050	0.04					< 0.050	< 0.050					
Silver	0.05	(3)					< 0.0050	< 0.0050	< 0.0050	< 0.0050 250					< 0.0050	< 0.0050					
Sodium	- 0.02	(2)					380	360	290	0.001					560	560					
Uranium Zinc	0.03	(3)					< 0.10 0.033	< 0.10 0.024	< 0.10 < 0.02	0.001					< 0.10 1.3	< 0.10 0.15					
Total Petroleum Hydrocarbons		(3)					0.033	0.024	<0.02	0.076					1.3	U.15					
Diesel Range Organics	0.0167	(6)					1.3	2.1	<0.2	<0.20					100	20					
Gasoline Range Organics	0.0107	(6)					6.1	14	<0.2	0.083					29	16					
Motor Oil Range Organics	0.0858	(6)					< 2.5	< 2.5	<2.5	<2.5					44	12					
motor on runge organics	0.0000	(0)					` 2.0	` 2.0	\ <u>-</u> .0	\L.U	l	l			-	-					

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (4) NMLD rap water Screening Level Nisk Assessment Guidance for Site investigations and Remediation (1)
 (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- = Analysis not required and/or well contains separate phase
- = Analytical result exceeds the respective screening level.
- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
- ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

Volatile Organic Compounds (ug/L) 1,1,1,2-Tetrachloroethane 5.74 1,1,1-Trichloroethane 5 1,1,2,2-Tetrachloroethane 10 1,1,2-Trichloroethane 5 1,1-Dichloroethane 5 1,1-Dichloroethane 7 1,1-Dichloroethane 7 1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichlorobenzene 7 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dichloroethane (EDB) 0.05 1,2-Dichloroethane (EDB) 1.71 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichloropropane 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone -	(4) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (1) (2) (3) (4) (4) (4) (1) (1) (2) (5)	Aug-19 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	 Aug-18 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 	MW-29 Aug-17 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aug-16 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	 Aug-15 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0 < 1.0 	Aug-19	 		MW- Aug-17	 Apr-17	<pre>< 100 < 100 < 100 < 200 < 100 < 100 < 100</pre>	Apr-16	<pre>< 100 < 100 < 200 < 100</pre>	Apr-15	<pre>< 10 < 10 < 10 < 20 < 10</pre>	< 10 < 10 < 20 < 10	MW-31 Aug-17 < 10 < 10 < 20	< 10 < 10 < 10 < 20	< 20 < 20
Volatile Organic Compounds (ug/L) 1,1,1,2-Tetrachloroethane 5.74 1,1,1-Trichloroethane 5 1,1,2-Tetrachloroethane 10 1,1,2-Trichloroethane 5 1,1-Dichloroethane 25 1,1-Dichloroethene 7 1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloropthane (EDC) 1.71 1,2-Dichloropthane (EDC) 1.71 1,3-Dichloropropane 4.376 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphtha	(3) (3) (3) (3) (3) (3) (1) (4) (4) (1) (2) (3) (4) (4) (4) (4) (1) (1) (2)	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0 < 1.0	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		 	 	 		< 100 < 100 < 200 < 100		< 100 < 100 < 200		< 10 < 10 < 20	< 10 < 10 < 20	< 10 < 10	< 10 < 10	< 20 < 20
1,1,1,2-Tetrachloroethane 5.74 1,1,1-Trichloroethane 5 1,1,2,2-Tetrachloroethane 10 1,1,2-Trichloroethane 5 1,1-Dichloroethane 25 1,1-Dichloroethane 7 1,1-Dichloroptopene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichlorobenzene 0.01 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(3) (3) (3) (3) (3) (3) (1) (4) (4) (1) (2) (3) (4) (4) (4) (4) (1) (1) (2)	<1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		 	 	 		< 100 < 200 < 100		< 100 < 200		< 10 < 20	< 10 < 20	< 10	< 10	< 20
1,1,1-Trichloroethane 5 1,1,2,2-Tetrachloroethane 10 1,1,2-Trichloroethane 5 1,1-Dichloroethane 25 1,1-Dichloropropene - 1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichlorobenzene 4.376 1,3-Dichloropropane 4.376 1,3-Dichlorobenzene - 1,3-Dichlorobenzene - 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(3) (3) (3) (3) (3) (3) (1) (4) (4) (1) (2) (3) (4) (4) (4) (4) (1) (1) (2)	<1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	 	 	 			< 100 < 200 < 100		< 100 < 200		< 10 < 20	< 10 < 20	< 10	< 10	< 20
1,1,2-Trichloroethane 5 1,1-Dichloroethane 25 1,1-Dichloroethene 7 1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichlorobenzene 4.376 1,3-Dichloropropane 4.376 1,3-Dichlorobenzene - 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(3) (3) (3) (3) (3) (1) (4) (4) (1) (2) (3) (4) (4) (4) (4) (1) (1) (2)	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 2.0 < 1.0 < 2.0	<1.0 <1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0	 	 				< 100						< 20	< 20	-
1,1-Dichloroethane 25 1,1-Dichloroethene 7 1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichlorobenzene 4.376 1,3-Dichloropropane 4.376 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(3) (3) (1) (4) (4) (1) (2) (3) (4) (4) (4) (1) (1) (2)	<1.0 <1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0	<1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <2.0	<1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0		 						< 100		< 10	< 10			< 40
1,1-Dichloroethene 7 1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichlorobenzene 4.376 1,3-Dichloropropane 4.376 1,3-Dichlorobenzene - 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(3) (1) (4) (4) (1) (2) (3) (4) (4) (4) (4) (1) (1) (2)	<1.0 <1.0 <1.0 <1.0 <2.0 <1.0 0.38 J <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <2.0	<1.0 <1.0 <1.0 <2.0 <1.0 <1.0	 	 				< 100						< 10	< 10	< 20
1,1-Dichloropropene - 1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichlorobenzene 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(1) (4) (4) (1) (2) (3) (4) (4) (4) (1) (1)	<1.0 <1.0 <1.0 <2.0 <1.0 0.38 J <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 2.0	<1.0 <1.0 <2.0 <1.0 <1.0 <2.0	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0	 	 						< 100		< 10	< 10	< 10	< 10	< 20
1,2,3-Trichlorobenzene 7 1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(4) (4) (1) (2) (3) (4) (4) (4) (1) (1)	<1.0 <2.0 <1.0 0.38 J <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 2.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 2.0	< 1.0 < 2.0 < 1.0 < 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,2,3-Trichloropropane 0.01 1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloroptopane 4.376 1,3-Dichloropropane 60 1,3-Dichlorobenzene - 1,3-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(4) (4) (1) (2) (3) (4) (4) (4) (1) (1)	<2.0 <1.0 0.38 J <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	< 2.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0	< 2.0 < 1.0 < 1.0 < 2.0 < 1.0	< 2.0 < 1.0 < 1.0 < 2.0	< 2.0 < 1.0 < 1.0						< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,2,4-Trichlorobenzene 11.55 1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(4) (1) (2) (3) (4) (4) (4) (1) (1)	< 1.0 0.38 J < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 2.0 < 1.0	< 1.0 < 1.0 < 2.0	< 1.0 < 1.0						< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,2,4-Trimethylbenzene 56 1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichlorothane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3-Dichloropropane 60 1,3-Dichlorobenzene - 1,3-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone -	(1) (2) (3) (4) (4) (4) (4) (1)	0.38 J < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0 < 1.0 < 1.0	< 1.0 < 2.0 < 1.0	< 1.0 < 2.0	< 1.0						< 200		< 200		< 20	< 20	< 20	< 20	< 40
1,2-Dibromo-3-chloropropane 0.2 1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3-5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(2) (3) (4) (4) (4) (4) (1) (1)	< 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 2.0 < 1.0 < 1.0 < 1.0	< 2.0 < 1.0	< 2.0			 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,2-Dibromoethane (EDB) 0.05 1,2-Dichlorobenzene 302 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichloropropane 370 1,3-Dichloropropane 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone -	(3) (4) (4) (4) (1) (1) (1) (2)	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0				 				4200		3000		330	940	230	600	1700
1,2-Dichlorobenzene 302 1,2-Dichloroethane (EDC) 1.71 1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(4) (4) (4) (1) (1) (1) (2)	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0			< 2.0		 				< 200		< 200		< 20	< 20	< 20	< 20	< 40
1,2-Dichloroethane (EDC) 1,2-Dichloropropane 4,376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane 2-Butanone 2-Butanone 2-Hexanone 2-Methylnaphthalene 36	(4) (4) (1) (1) (1) (2)	< 1.0 < 1.0 < 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0		 				< 100 < 100		< 100 < 100		< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 20 < 20
1,2-Dichloropropane 4.376 1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(4) (1) (1) (2)	< 1.0 < 1.0 < 1.0		< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,3,5-Trimethylbenzene 60 1,3-Dichlorobenzene - 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(1)	< 1.0 < 1.0	\ \ 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,3-Dichlorobenzene 1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 2-Hexanone - 2-Methylnaphthalene 36	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				860		740		33	24	1.4 J	< 10	82
1,3-Dichloropropane 370 1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(2)		< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
1,4-Dichlorobenzene 75 1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
1-Methylnaphthalene 11 2,2-Dichloropropane - 2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		 				< 400		< 400		78	45	19 J	41	< 80
2-Butanone 5565 2-Chlorotoluene 240 2-Hexanone - 2-Methylnaphthalene 36		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		 				< 200		< 200		< 20	< 20	< 20	< 20	< 40
2-Hexanone - 2-Methylnaphthalene 36	(4)	< 10	< 10	< 10	< 10	< 10		 				< 1000		< 1000		< 100	< 100	< 100	< 100	< 200
2-Methylnaphthalene 36	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
		< 10	< 10	< 10	< 10	< 10		 				< 1000		< 1000		< 100	< 100	< 100	< 100	< 200
	(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		 				< 400		< 400		74	45	12	< 40	96
4-Chlorotoluene 250	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	12 J	< 10	< 20
4-Isopropyltoluene -		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		2.6	3.1 J	< 10	< 10	< 20
4-Methyl-2-pentanone -	(4)	< 10	< 10	< 10	< 10	< 10		 				< 1000		< 1000		< 100	< 100	< 100	< 100	< 200
Acetone 14064	(4)	< 10	< 10	2.2 J	< 10	< 10		 				< 1000		< 1000		< 100	< 100	< 100	< 100	< 200
Benzene 5	(3)	0.36 J	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0		 			2900	2700	3000	4200		1500	1500	320	270	3900
Bromobenzene 62 Bromodichloromethane 1.34	(1)	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0		 				< 100 < 100		< 100 < 100		< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 20 < 20
Bromoform 33	(5)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Bromomethane 7.545	(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		 				< 300		< 300		< 30	< 30	< 30	< 30	< 60
Carbon disulfide 810	(4)	< 10	< 10	< 10	< 10	< 10		 				< 1000		< 1000		< 100	< 100	< 100	< 100	< 200
Carbon Tetrachloride 5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Chlorobenzene 100	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Chloroethane 20900	(4)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		 				< 200		< 200		< 20	< 20	< 20	< 20	< 40
Chloroform 2.29	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Chloromethane 20.3	(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		 				< 300		< 300		< 30	< 30	< 30	< 30	< 60
cis-1,2-DCE 70	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
cis-1,3-Dichloropropene 4.7	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Dibromochloromethane 1.68	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Dibromomethane 8.3	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Dichlorodifluoromethane 197	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Ethylbenzene 700	(3)	0.18 J	< 1.0	< 1.0	< 1.0	< 1.0		 			5700	4400	4700	4000		710	820	170	240	1600
Hexachlorobutadiene 1.39	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Isopropylbenzene 447	(4)	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0		 				190		110		55	63	27	37	100
Methyl tert-butyl ether (MTBE) 100 Methylene Chloride 5	(3)	0.51 J < 3.0	0.67 J < 3.0	0.56 J < 3.0	< 3.0	< 1.0 < 3.0		 			< 100	< 100 < 300	< 100	< 100 < 300		< 10 < 30	< 10 < 30	< 10 < 30	< 10	< 20 < 60
Naphthalene 1.65	(2)	0.30 J	< 3.0	< 3.0	< 3.0	< 3.0		 				< 300 700		< 300 600		< 30 160	< 30 160	50	< 30 74	210
n-Butylbenzene 1000	(1)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		 				< 300		< 300		<3.0	16 J	4.2 J	< 30	< 60
n-Propylbenzene 660	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				710		470		190	210	68	130	290
sec-Butylbenzene 2000	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		35	26	11	24	42
Styrene 100	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		0.27	< 10	< 10	< 10	< 20
tert-Butylbenzene 690	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		2.4	< 10	< 10	< 10	< 20
Tetrachloroethene (PCE) 5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Toluene 1000	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 			1000	1800	1300	13000		390	760	51	< 10	3500
trans-1,2-DCE 100	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
trans-1,3-Dichloropropene 4.71	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Trichloroethene (TCE) 5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				< 100		< 100		< 10	< 10	< 10	< 10	< 20
Trichlorofluoromethane 1136	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		 				100		- 100		40	< 10	< 10	< 10	- 20
Vinyl chloride 2		< 1.0										< 100		< 100		< 10	_ \ 10			< 20
Xylenes, Total 620	(3)	< 1.5	< 1.0 < 1.5	< 1.0 < 1.5	< 1.0 < 1.5	< 1.0 < 1.5		 			17000	< 100 < 100 14000	13000	< 100 < 100 16000		< 10 < 10 1200	< 10 < 10	< 10 < 10	< 10	< 20 < 20 3800

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening				MW-29							MW-	.30							MW-31		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Λυα-10	Apr-10	Aug-18	Apr-18			Aug-16	Apr-16	Λυα-15	Apr-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Semi-Volatile Organic Compoun			Aug-19	Aug-16	Aug-17	Aug-16	Aug-15	Aug-19	Apr-19	Aug-16	Api-10	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-13	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15
1,2,4-Trichlorobenzene	70	(2)																	l			
1,2-Dichlorobenzene	600	(2)																				
1,3-Dichlorobenzene	-	(2)																				
1,4-Dichlorobenzene	75	(2)																				
1-Methylnaphthalene	11	(5)																				
2,4,5-Trichlorophenol	1166	(4)																				
2,4,6-Trichlorophenol	11.9	(4)																				
2,4-Dichlorophenol	45.3	(4)																				
2,4-Dimethylphenol	354	(4)																				
2,4-Dinitrophenol	38.7	(4)																				
2,4-Dinitrotoluene	2.375	(4)																				
2,6-Dinitrotoluene	0.485	(4)																				
2-Chloronaphthalene	733	(4)																				
2-Chlorophenol	91	(4)																				
2-Methylnaphthalene	36	(1)																				
2-Methylphenol	930	(1)																				
2-Nitroaniline	190	(1)																				
2-Nitrophenol	-																					
3,3'-Dichlorobenzidine	1.25	(4)																				
3+4-Methylphenol	930	(1)																				
3-Nitroaniline	-																					
4,6-Dinitro-2-methylphenol	1.52	(4)																				
4-Bromophenyl phenyl ether	-																					
4-Chloro-3-methylphenol	-																					
4-Chloroaniline	3.7	(5)																				
4-Chlorophenyl phenyl ether	-																					
4-Nitroaniline	38	(5)																				
4-Nitrophenol	-																					
Acenaphthene	535	(4)																				
Acenaphthylene	•																					
Aniline	130	(5)																				
Anthracene	1721	(4)																				
Azobenzene	1.2	(5)																				
Benzo(a)anthracene Benzo(a)pyrene	0.1199 0.2	(4)																				
Benzo(b)fluoranthene	0.3432	(4)																				
Benzo(g,h,i)perylene	-	(4)																				
Benzo(k)fluoranthene	3.43	(4)																				
Benzoic acid	75000	(1)																				
Benzyl alcohol	2000	(1)																				
Bis(2-chloroethoxy)methane	59	(1)																				
Bis(2-chloroethyl)ether	0.137	(4)																				
Bis(2-chloroisopropyl)ether	9.81	(4)																				
Bis(2-ethylhexyl)phthalate	6	(2)																				
Butyl benzyl phthalate	160	(5)																				
Carbazole	-																					
Chrysene	34.3171	(4)																				
Dibenz(a,h)anthracene	0.0343	(4)																				
Dibenzofuran	- 4.4000	(4)																				
Diethyl phthalate	14800	(4)																				
Dimethyl phthalate	- 005	(4)																				
Di-n-butyl phthalate Di-n-octyl phthalate	885	(4)																				
Fluoranthene	802	(4)																				
Fluorene	288	(4) (4)																				
Hexachlorobenzene	0.0976	(4)																				
Hexachlorobutadiene	1.387	(4)																				
Hexachlorocyclopentadiene	0.411	(4)																				
Hexachloroethane	3.2842	(4)																				
Indeno(1,2,3-cd)pyrene	0.3432	(4)																				
Isophorone	781	(4)																				
Naphthalene	1.65	(4)																				
Nitrobenzene	1.4	(4)																				
N-Nitrosodimethylamine	0.0049	(4)																				
N-Nitrosodi-n-propylamine	0.11	(5)																				
N-Nitrosodiphenylamine	121.922	(4)																				

TABLE 3 Terminal Wells Analytical Summary 2019 Groundwater Remediation and Monitoring Annual Report

	Screening				MW-29							MW-	-30							MW-31		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Pentachlorophenol	0.4129	(4)	Aug-19	Aug-10	Aug-17	Aug-10	Aug-13	Aug-19				Aug-17	Apr-17			Aug-13		Aug-19				Aug-15
Phenanthrene	170.4146	(4)																				
Phenol	5761	(4)																				
Pyrene	117	(4)																				
Pyridine	20	(1)																				
General Chemistry (mg/L)		(' /																				
Fluoride	1.6	(3)	0.14	<0.50	0.22	0.32	0.26							< 0.50		< 0.10		<0.50	< 0.10	< 0.10	< 0.10	< 0.10
Chloride	250	(3)	40	110	110	45	33							230		230		130	170	170	220	200
Nitrite	1	(3)	0.92	7.1	< 0.10	< 0.10	< 0.10							< 0.50		< 2.0		0.13 J	< 1.0	< 1.0	< 1.0	< 0.10
Bromide	-	(-)	0.28	0.87	0.98	0.38	0.34							3.8		< 0.10		2.9	1.7	1.7	< 0.10	< 0.10
Nitrate	10	(3)	7.1	7.1	5.0	1.2	0.5							< 0.50		1		0.13 J	< 1.0	< 1.0	< 1.0	0.63
Phosphorus	-	(-)	<2.5 H	1.4 JH	< 0.50	< 0.50	< 0.50							< 2.5		< 0.50		<2.5 H	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(3)	210	320	350	180	160							69		36		79	78	78	160	17
Carbon Dioxide (CO ₂₎	-		250	280	300	260	230							1300		1400		960	1100 H	1100	1000	1100
Alkalinity (CaCO ₃)	-		266.8	309.2	318.6	284.2	250.8							1403		1493		1073	1217	1164	1115	1264
Bicarbonate (CaCO ₃)	-		266.8	309.2	318.6	284.2	250.8							1403		1493		1073	1217	1164	1115	1264
Total Metals (mg/L)			200.0	309.2	310.0	204.2	230.0							1403		1493		1073	1217	1104	1113	1204
Arsenic	0.01	(3)	<0.020	0.0022	< 0.050	< 0.020	< 0.020							< 0.020		< 0.020		<0.020	<0.020	0.015 J	< 0.020	< 0.020
Barium	2.0	(3)	0.066	0.0022	0.049	0.020	0.041							0.74		1.1		0.92	0.90	0.37	0.020	1.4
Cadmium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020							< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	0.0020	< 0.0020							0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Lead	0.03	(3)	0.0072	0.00031 J	< 0.0050	< 0.0050	< 0.0050							0.019		< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.013	(3)	<0.050	0.000313	< 0.050	< 0.050	< 0.050							< 0.050		< 0.050		< 0.050	< 0.0050	< 0.0050	< 0.0000	< 0.050
Silver	0.05	(3)	0.00066	0.0017	< 0.0050	< 0.0050	< 0.0050							< 0.0050		< 0.0050		0.0020 J	0.0033 J	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	0.00012J	0.00005J	< 0.00020	< 0.0000	< 0.0000							< 0.0000	_	< 0.00020		0.000082J				< 0.00020
Dissolved Metals (mg/L)	0.002	(0)	0.000120	0.000000	\ 0.00020	\ 0.000Z0	V 0.00020							V 0.00020		V 0.00020		0.0000020	1 0.00020	1 0.00020	0.00020	1 0.00020
Arsenic	0.01	(3)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020							< 0.020		< 0.020		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Barium	1.0	(3)	0.014	0.031	0.03	0.023	< 0.020							0.56		1		0.87	0.89	0.76	0.58	1.4
Cadmium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020							< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-	(0)	75	130	130	83	74							150		160		110	110	100	110	110
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060							< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060							< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)	< 0.020	< 0.020	< 0.020	0.12	< 0.020							7.4		1.5		0.035	0.097	0.14	1,2	0.26
Lead	0.015	(3)	<0.0050	0.0053	< 0.0050	< 0.0050	< 0.0050							0.0066		0.0074		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Magnesium	-	(-)	17	30	28	18	17							36		52		37	38	32	38	45
Manganese	0.2	(3)	1.1	2,6	2.7	1.4	1.3							1.2		2.9		0.63	0.65	0.42	0.4	1.1
Potassium	-	(-)	1.8	2.7	2.6	2.1	2.2							3.3		3.5		3.8	4.0	3.7	4.1	4.4
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050							< 0.050		< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050							< 0.0050		< 0.0050		0.0016 J	0.0032	< 0.0050	< 0.0050	< 0.0050
Sodium	-	. ,	120	190	180	120	99							590		560		480	480	480	540	500
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10							< 0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Zinc	10	(3)	0.016	0.020	0.035	< 0.020	0.022							0.031		0.034		0.011 J	< 0.020	0.01 J	< 0.020	0.031
Total Petroleum Hydrocarbons																						
Diesel Range Organics	0.0167	(6)	< 0.40	< 0.40	< 0.20	0.28	< 0.20							71		7.7		1.1	0.64	0.71	1.1	4.2
Gasoline Range Organics	0.0101	(6)	<0.050	0.024 J	< 0.050	< 0.050	< 0.050							100		120		11	18	3.1	3.5	45
Motor Oil Range Organics	0.0858	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5							< 25		< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
 - = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- --- = Analysis not required and/or well contains separate phase
- = Analytical result exceeds the respective screening level.
- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
- ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening				MW-40				RV	V-42				RW-43					MW-44		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Volatile Organic Compounds (u			Aug-13	Aug-10	Aug-17	Aug-10	Aug-10	Aug-13	Aug-10	Aug-17	Aug-10	Aug-13	Aug-10	Aug-17	Aug-10	Aug-10	Aug-13	Aug-10	Aug-17	Aug-10	Aug-13
1,1,1,2-Tetrachloroethane	5.74	(4)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1.1.1-Trichloroethane	5	(3)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,1,2,2-Tetrachloroethane	10	(3)				< 100					< 20				< 100		< 2.0	< 2.0	< 2.0	< 2.0	< 4.0
1,1,2-Trichloroethane	5	(3)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,1-Dichloroethane	25	(3)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,1-Dichloroethene	7	(3)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,1-Dichloropropene	-	(3)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,2,3-Trichlorobenzene	7	(1)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,2,3-Trichloropropane	0.01	(4)				< 100					< 20				< 100		< 2.0	< 2.0	< 2.0	< 2.0	< 4.0
1,2,4-Trichlorobenzene	11.55	(4)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,2,4-Trimethylbenzene	56	(1)				< 50					120				770		< 1.0	< 1.0	< 1.0	1.1	< 2.0
1,2-Dibromo-3-chloropropane	0.2	(2)				< 100					< 20				< 100		< 2.0	< 2.0	< 2.0	< 2.0	< 4.0
1,2-Dibromoethane (EDB)	0.05	(3)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,2-Distribution (LDB)	302	(4)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,2-Dichloroethane (EDC)	1.71	(4)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,2-Dichloropropane	4.376	(4)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,3,5-Trimethylbenzene	60	(1)				< 50					13				180		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,3-Dichlorobenzene	-	(1)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,3-Dichloropropane	370	(1)				< 50					< 10				< 50 < 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,4-Dichlorobenzene	75	(2)				< 50					< 10				< 50 < 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
1,4-Dichlorobenzene	11	(5)				< 200					160				< 200		< 1.0	< 1.0	< 1.0	< 4.0	< 8.0
		(5)				< 100					< 20				< 100		< 1.0	< 1.0	< 1.0	< 2.0	
2,2-Dichloropropane 2-Butanone	5565	(4)				< 500					< 100				< 500		< 1.0	< 1.0	< 1.0	< 10	< 4.0 < 20
2-Chlorotoluene	240																< 10	< 10		-	< 2.0
2-Uniordidate 2-Hexanone	-	(1)				< 50 < 500					< 10				< 50 < 500			< 1.0	< 10 < 1.0	< 1.0 < 10	< 2.0
	36	(4)									< 100						< 1.0				
2-Methylnaphthalene 4-Chlorotoluene	250	(1)				< 200 < 50					220				< 200 < 50		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 4.0 < 1.0	< 8.0 < 2.0
	250	(1)							-		< 10										
4-Isopropyltoluene	-					< 50					< 10				< 50		< 1.0	< 1.0 < 3.0	< 1.0	< 1.0	< 2.0 < 20
4-Methyl-2-pentanone	- 14004	(4)				< 500					< 100				< 500		< 3.0		< 3.0	< 10	
Acetone	14064	(4)				< 500					< 100				< 500		< 10	< 10	< 10	< 10	< 20
Benzene	5	(3)				< 50					6300				2600		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
Bromobenzene	62	(1)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
Bromodichloromethane	1.34	(4)				< 50					< 10				< 50		< 2.0	< 2.0	< 2.0	< 1.0	< 2.0
Bromoform	33 7.545	(5)				< 50					< 10				< 50		< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0	< 2.0 < 6.0
Bromomethane		(4)				< 150					< 30				< 150						
Carbon disulfide	810	(4)				< 500					< 100				< 500		< 1.0	< 1.0	< 1.0	< 10	< 20
Carbon Tetrachloride Chlorobenzene	5 100	(2)				< 50 < 50					< 10 < 10				< 50 < 50		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0
	20900	(2)				< 100									< 100		< 1.0	< 1.0		< 2.0	< 4.0
Chloroethane Chloroform	2.29	(4)				< 50					< 20 < 10				< 50		< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 4.0
	20.3	(4)				< 150					< 30				< 150		< 1.0	< 1.0	< 1.0	< 3.0	< 6.0
Chloromethane		(4)																< 1.0			
cis-1,2-DCE	70 4.7	(2)				< 50 < 50					< 10 < 10				< 50 < 50		< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0
cis-1,3-Dichloropropene		(4)																			< 2.0
Dibromochloromethane Dibromomethane	1.68 8.3	(4)				< 50 < 50					< 10 < 10				< 50 < 50		< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 1.0	< 2.0 < 2.0
Dichlorodifluoromethane	197	(1)				< 50					< 10				< 50		< 3.0	< 3.0	< 3.0	< 1.0	< 2.0
Ethylbenzene	700	(4)				< 50					160				320		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
Hexachlorobutadiene	1.39	(3)				< 50					< 10				< 50		< 2.0	< 2.0	< 2.0	< 1.0	< 2.0
Isopropylbenzene	447					55					65				< 50 89		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
Methyl tert-butyl ether (MTBE)	100	(4)				< 50					14				670		1.0	1.1	0.98J	< 1.0	< 2.0
Methylene Chloride	5					< 150					< 30				< 150		< 1.0	< 1.0	< 1.0	< 3.0	< 6.0
Naphthalene	1.65	(2)				110					300				< 150 370		< 1.0	< 1.0	< 1.0	< 3.0	< 4.0
n-Butylbenzene	1000	(4)				< 150					< 30				< 150		< 1.0	< 1.0	< 1.0	< 3.0	< 4.0
n-Butylbenzene	660	(1)				63					110				< 150 84		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
sec-Butylbenzene	2000	(1)				< 50					170				< 50			< 1.0	< 1.0	< 1.0	< 2.0
Sec-Butylbenzene Styrene	100	(1)				< 50					< 10				< 50 < 50		< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 2.0
		(2)			_						< 10										
tert-Butylbenzene Tetrachloroethene (PCE)	690	(1)				< 50									< 50		< 1.0	< 1.0 < 4.0	< 1.0	< 1.0	< 2.0
	5	(2)				< 50					< 10				< 50		< 4.0		< 4.0	< 1.0	< 2.0
Toluene	1000	(3)				< 50					< 10				51		< 2.0	< 2.0	< 2.0	< 1.0	< 2.0
trans-1,2-DCE	100	(2)				< 50					< 10				< 50		< 10	< 10	< 10	< 1.0	< 2.0
trans-1,3-Dichloropropene	4.71	(4)				< 50					< 10				< 50		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0
Trichloroethene (TCE)	5	(2)				< 50					< 10				< 50		< 10	< 10	< 10	< 1.0	< 2.0
Trichlorofluoromethane	1136	(4)				< 50					< 10				< 50		< 4.0	< 4.0	< 4.0	< 1.0	< 2.0
Vinyl chloride	620	(3)				< 50 < 75					< 10 41				< 50		< 1.0 < 1.5	< 1.0 < 1.5	< 1.0 < 1.5	< 1.0	< 2.0 < 3.0
Xylenes, Total															1100		- 15	- 15	- 15	< 1.5	1 270

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening				MW-40				RV	V-42				RW-43					MW-44		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Semi-Volatile Organic Compour	nds (ua/L)			,g .v	, g ,,	,			,	,	,			-9 ''	,	,		,		,	
1,2,4-Trichlorobenzene	70	(2)																			
1,2-Dichlorobenzene	600	(2)																			
1,3-Dichlorobenzene	-																				
1,4-Dichlorobenzene	75	(2)																			
1-Methylnaphthalene	11	(5)																			
2,4,5-Trichlorophenol	1166	(4)																			
2,4,6-Trichlorophenol	11.9	(4)																			
2,4-Dichlorophenol	45.3	(4)																			
2,4-Dimethylphenol	354	(4)																			
2,4-Dinitrophenol	38.7	(4)																			
2,4-Dinitrotoluene	2.375	(4)																			
2,6-Dinitrotoluene	0.485	(4)																			
2-Chloronaphthalene	733	(4)																			
2-Chlorophenol	91	(4)																			
2-Methylnaphthalene	36	(1)																			
2-Methylphenol 2-Nitroaniline	930 190	(1)																			
2-Nitrophenol	-	(1)																			
3,3´-Dichlorobenzidine	1.25	(4)																			
3+4-Methylphenol	930	(1)																			
3-Nitroaniline	-	(1)																			
4,6-Dinitro-2-methylphenol	1.52	(4)																			
4-Bromophenyl phenyl ether	-	(.,																			
4-Chloro-3-methylphenol	-																				
4-Chloroaniline	3.7	(5)																			
4-Chlorophenyl phenyl ether	-																				
4-Nitroaniline	38	(5)																			
4-Nitrophenol	-																				
Acenaphthene	535	(4)																			
Acenaphthylene	-																				
Aniline	130	(5)																			
Anthracene	1721	(4)																			
Azobenzene	1.2	(5)																			
Benzo(a)anthracene	0.1199	(4)																			
Benzo(a)pyrene	0.2	(2)																			
Benzo(b)fluoranthene	0.3432	(4)																			
Benzo(g,h,i)perylene	- 2.42	(4)																			
Benzo(k)fluoranthene	3.43 75000	(4)																			
Benzoic acid Benzyl alcohol	2000	(1)																			
Bis(2-chloroethoxy)methane	59	(1)																			
Bis(2-chloroethyl)ether	0.137	(4)																			
Bis(2-chloroisopropyl)ether	9.81	(4)																			
Bis(2-ethylhexyl)phthalate	6	(2)																			
Butyl benzyl phthalate	160	(5)																			
Carbazole	-	(-)																			
Chrysene	34.3171	(4)																			
Dibenz(a,h)anthracene	0.0343	(4)																			
Dibenzofuran	-																				
Diethyl phthalate	14800	(4)																			
Dimethyl phthalate	-																				
Di-n-butyl phthalate	885	(4)																			
Di-n-octyl phthalate	-																				
Fluoranthene	802	(4)																			
Fluorene	288	(4)																			
Hexachlorobenzene	0.0976	(4)																			
Hexachlorobutadiene	1.387	(4)																			
Hexachlorocyclopentadiene	0.411	(4)																			
Hexachloroethane	3.2842	(4)																			
Indeno(1,2,3-cd)pyrene	0.3432	(4)																			
Isophorone	781	(4)																			
Naphthalene Nitrobenzene	1.65 1.4	(4)																			
N-Nitrosodimethylamine	0.0049	(4)																			
N-Nitrosodi-n-propylamine	0.0049	(4)																			
N-Nitrosodiphenylamine	121.922	(5) (4)																	 		
in-initrosouiprieriyiamine	121.922	(4)																			

TABLE 3 Terminal Wells Analytical Summary 2019 Groundwater Remediation and Monitoring Annual Report

	Screening				MW-40				RW	V-42				RW-43					MW-44		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Pentachlorophenol	0.4129	(4)	Aug-19		Aug-17	Aug-10	Aug-13	Aug-19	Aug-10			Aug-19			Aug-10	Aug-15	Aug-19	Aug-10			
Phenanthrene	170.4146	(4)																			
Phenol	5761	(4)																			
Pyrene	117	(4)																			
Pyridine	20	(1)																			
General Chemistry (mg/L)		(-)																	ı		
Fluoride	1.6	(3)				< 0.50					0.62				< 0.50		< 0.50	< 0.50	< 0.10	0.6	< 0.10
Chloride	250	(3)				290					260				390		50	48	46	56	55
Nitrite	1	(3)				< 0.50					< 0.50				< 0.50		0.11	0.079 J	< 1.0	< 0.10	< 0.10
Bromide	-					5					4.6				3.9		<0.50	0.16	0.14	0.18	0.47
Nitrate	10	(3)				< 0.50					< 0.50				< 0.50		0.11	0.050 J	< 1.0	< 0.10	0.13
Phosphorus	-					< 2.5					3.4				3.1		<10 H	< 10	< 10	< 10	< 10
Sulfate	600	(3)				< 2.5					< 2.5				6.9		3500	3000	3000	3000	3000
Carbon Dioxide (CO ₂₎	-					1200					1100				1100		340	350	350	360	340
Alkalinity (CaCO ₃)	-					1190					1130				1165		371.1	373.5	371.8	376.3	377.6
Bicarbonate (CaCO ₃)	_					1190					1130				1165		371.1	373.5	371.8	376.3	377.6
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-					1190					1130				1103		3/ 1.1	3/3.3	37 1.0	370.3	311.0
Total Metals (mg/L) Arsenic	0.01	(2)		1	1	- 0.020				I	0.094		l	l	- 0.020		0.017 J	40.020	0.026	< 0.020	< 0.020
Barium	2.0	(3)				< 0.020 2.3					13				< 0.020 13		0.017 3	<0.020 0.068	0.026 0.066	0.020	0.020
Cadmium	0.005	(3)				< 0.0020					< 0.0020				< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.005	(3)				0.0020					0.16				0.0020		0.0020 0.0072	0.0020	0.0020 0.0062	0.0020 0.026	0.0020
Lead	0.03	(3)				0.0098					0.10				0.055		0.0072	< 0.0050	< 0.0050	< 0.0050	0.029
Selenium	0.015	(3)				< 0.050					< 0.050				< 0.050		< 0.050	< 0.050	< 0.0000	< 0.050	< 0.050
Silver	0.05	(3)				0.014					< 0.0050				< 0.0050		0.0056	0.013	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)				< 0.00020					< 0.0000				< 0.0000		0.00014 J	0.000085J	< 0.0000	< 0.0000	
Dissolved Metals (mg/L)	0.002	(0)				< 0.000Z0					₹ 0.00020				₹ 0.00020		0.000140	0.000000	< 0.00020	< 0.00020	₹ 0.00020
Arsenic	0.01	(3)				< 0.020					< 0.020				< 0.020		<0.020	<0.020	0.034	< 0.020	< 0.020
Barium	1.0	(3)				1.8					6.4				1.1		0.0096	0.01	0.011J	0.02	< 0.020
Cadmium	0.005	(3)				< 0.0020					< 0.0020				< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-	(-)				97					120				180		470	480	480	480	470
Chromium	0.05	(3)				< 0.0060					0.014				0.27		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)				< 0.0060					< 0.0060				0.017		0.0024 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)				4.9					69				27		0.014 J	0.029	0.032	2.9	0.036
Lead	0.015	(3)				< 0.0050					0.036				0.015		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Magnesium	-					44					74				63		59	58	58	59	59
Manganese	0.2	(3)				2.3					4				6.5		0.43	0.68	0.79	1.2	0.99
Potassium	-					3.5					5.4				14		7.6	7.2	7.1	7.9	7.9
Selenium	0.05	(3)				< 0.050					< 0.050				< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)				< 0.0050					< 0.0050				< 0.0050		0.0063	0.014	< 0.0050	< 0.0050	< 0.0050
Sodium	-					440					400				440		880	850	910	990	960
Uranium	0.03	(3)				< 0.10					< 0.10				< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Zinc	10	(3)				0.031					0.17				3		0.024	< 0.020	0.032	0.056	< 0.020
Total Petroleum Hydrocarbons																					
Diesel Range Organics	0.0167	(6)				110					85				1200		< 0.40	< 0.40	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	0.0101	(6)				4.9					24				27		< 0.050	0.026 J	< 0.050	0.057	< 0.050
Motor Oil Range Organics	0.0858	(6)				< 25					< 25				< 250		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- --- = Analysis not required and/or well contains separate phase
- = Analytical result exceeds the respective screening level.
- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
- ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	Cauraa				¹ MW-52			
	Levels	Source	Aug-19	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds (u	ıg/L)								
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	5	(3)	< 1.0	< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0	< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5	(3)	< 1.0	< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	25	(3)	< 1.0	< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	7	(3)	< 1.0	< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-		< 1.0	< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	7	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	0.01	(4)	< 2.0	< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	11.55	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene	56	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0	< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	0.05	(3)	< 1.0	< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene	302 1.71	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC) 1,2-Dichloropropane	4.376	(4)	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	
1,3,5-Trimethylbenzene	60	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene	-	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	370	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	75	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene	11	(5)	< 4.0	< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	-	(3)	< 2.0	< 2.0		< 2.0		< 2.0	
2-Butanone	5565	(4)	< 10	< 10		< 10		< 10	
2-Chlorotoluene	240	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
2-Hexanone	-	(.)	< 10	< 10		< 10		< 10	
2-Methylnaphthalene	36	(1)	< 4.0	< 4.0		< 4.0		< 4.0	
4-Chlorotoluene	250	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-	(- /	< 1.0	< 1.0		< 1.0		< 1.0	
4-Methyl-2-pentanone	-		< 10	< 10		< 10		< 10	
Acetone	14064	(4)	<0.010	2.5 J		< 10		< 10	
Benzene	5	(3)	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Bromobenzene	62	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
Bromodichloromethane	1.34	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Bromoform	33	(5)	< 1.0	< 1.0		< 1.0		< 1.0	
Bromomethane	7.545	(4)	< 3.0	< 3.0		< 3.0		< 3.0	
Carbon disulfide	810	(4)	< 10	< 10		< 10		< 10	
Carbon Tetrachloride	5	(2)	< 1.0	< 1.0		< 1.0		< 1.0	
Chlorobenzene	100	(2)	< 1.0	< 1.0		< 1.0		< 1.0	
Chloroethane	20900	(4)	< 2.0	< 2.0		< 2.0		< 2.0	
Chloroform	2.29	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Chloromethane	20.3	(4)	< 3.0	< 3.0		< 3.0		< 3.0	
cis-1,2-DCE	70	(2)	< 1.0	< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene	4.7	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Dibromochloromethane	1.68	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Dibromomethane	8.3	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane	197	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Ethylbenzene	700	(3)	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Hexachlorobutadiene	1.39	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Isopropylbenzene	447	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
Methyl tert-butyl ether (MTBE)	100	(3)	0.57 J	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Methylene Chloride	5	(2)	< 3.0	< 3.0		< 3.0		< 3.0	
Naphthalene	1.65	(4)	< 2.0	< 2.0		< 2.0		< 2.0	
n-Butylbenzene	1000	(1)	< 3.0	< 3.0		< 3.0		< 3.0	
n-Propylbenzene	660	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
sec-Butylbenzene	2000	(1)	< 1.0	< 1.0		< 1.0		< 1.0	
Styrene tert-Rutylbenzene	100	(2)	< 1.0	< 1.0		< 1.0		< 1.0	
tert-Butylbenzene Tetrachloroethene (PCE)	690 5	(1)	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	
		(2)							
Toluene trans-1,2-DCE	1000	(3)	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
trans-1,3-Dichloropropene	100 4.71	(2)	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	
Trichloroethene (TCE)	5	(4)	< 1.0	< 1.0		< 1.0		< 1.0	
` /	1136	(2) (4)	< 1.0	< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane			- 1.U	\ 1.0		\ I.U		\ \ I.U	
Trichlorofluoromethane Vinyl chloride	2	(3)	< 1.0	< 1.0		< 1.0		< 1.0	

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	Source				¹ MW-52			
	Levels	Source	Aug-19	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
emi-Volatile Organic Compou	ınds (ug/L)								
1,2,4-Trichlorobenzene	70	(2)				< 10			
1,2-Dichlorobenzene	600	(2)				< 10			
1,3-Dichlorobenzene	-					< 10			
1,4-Dichlorobenzene	75	(2)				< 10			
1-Methylnaphthalene	11	(5)				< 10			
2,4,5-Trichlorophenol	1166	(4)				< 10			
2,4,6-Trichlorophenol	11.9	(4)				< 10			
2,4-Dichlorophenol	45.3	(4)				< 20			
2,4-Dimethylphenol	354	(4)				< 10			
2,4-Dinitrophenol	38.7	(4)				< 20			
2,4-Dinitrotoluene	2.375	(4)				< 10			
2,6-Dinitrotoluene	0.485	(4)				< 10			
2-Chloronaphthalene	733	(4)				< 10			
2-Chlorophenol	91	(4)				< 10			
2-Methylnaphthalene	36	(1)				< 10			
2-Methylphenol	930	(1)				< 10			
2-Nitroaniline	190	(1)				< 10			
2-Nitrophenol	-	. ,				< 10			
3,3'-Dichlorobenzidine	1.25	(4)				< 10			
3+4-Methylphenol	930	(1)				< 10			
3-Nitroaniline	-	(-)				< 10			
4,6-Dinitro-2-methylphenol	1.52	(4)				< 20			
4-Bromophenyl phenyl ether	-	(- /				< 10			
4-Chloro-3-methylphenol	-					< 10			
4-Chloroaniline	3.7	(5)				< 10			
4-Chlorophenyl phenyl ether	-	(0)				< 10			
4-Nitroaniline	38	(5)				< 10			
4-Nitrophenol	-	(0)				< 10			
Acenaphthene	535	(4)				< 10			
Acenaphthylene	-	(4)				< 10			
Acenaphthylene	130	(5)				< 10			
	1721	(5)				< 10			
Anthracene	1.2	(4)							
Azobenzene		(5)				< 10			
Benzo(a)anthracene	0.1199	(4)				< 10			
Benzo(a)pyrene	0.2	(2)				< 10			
Benzo(b)fluoranthene	0.3432	(4)				< 10			
Benzo(g,h,i)perylene	-	(4)				< 10			
Benzo(k)fluoranthene	3.43	(4)				< 10			
Benzoic acid	75000	(1)				< 20			
Benzyl alcohol	2000	(1)				< 10			
Bis(2-chloroethoxy)methane	59	(1)				< 10			
Bis(2-chloroethyl)ether	0.137	(4)				< 10			
Bis(2-chloroisopropyl)ether	9.81	(4)				< 10			
Bis(2-ethylhexyl)phthalate	6	(2)				< 10			
Butyl benzyl phthalate	160	(5)				< 10			
Carbazole	-					< 10			
Chrysene	34.3171	(4)				< 10			
Dibenz(a,h)anthracene	0.0343	(4)				< 10			
Dibenzofuran	-					< 10			
Diethyl phthalate	14800	(4)				< 10			
Dimethyl phthalate	-					< 10			
Di-n-butyl phthalate	885	(4)				< 10			
Di-n-octyl phthalate	-					< 10			
Fluoranthene	802	(4)				< 10			
Fluorene	288	(4)				< 10			
Hexachlorobenzene	0.0976	(4)				< 10			
Hexachlorobutadiene	1.387	(4)				< 10			
Hexachlorocyclopentadiene	0.411	(4)				< 10			
Hexachloroethane	3.2842	(4)				< 10			
Indeno(1,2,3-cd)pyrene	0.3432	(4)				< 10			
Isophorone	781	(4)				< 10			
Naphthalene	1.65	(4)				< 10			
Nitrobenzene	1.4	(4)				< 10			
N-Nitrosodimethylamine	0.0049	(4)				< 10			
N-Nitrosodi-n-propylamine	0.0043	(5)				< 10			
14 1410 00001-11-propylatilitie	121.922	(4)				< 10			

TABLE 3
Terminal Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

Levels Levels Pentachlorophenol 0.4129 (4)		Screening					¹ MW-52			
Pentachlorophenol 0.4129 (4)		•	Source	A.u. 10	A 47	Ans 47		A 4C	A 45	A 4 E
Phenanthrene 170.4146 (4)	Ponto ablancab an al		(4)	Aug-19	Aug-17			•	Aug-15	Apr-15
Phenol 5761 (4)		*****								
Pyrene 117							-			
Pyridine							-			
General Chemistry (mg/L)	,						_			
Fluoride	,	20	(1)				< 10			
Chloride 250 (3) 830 750 640 560 Nitrite 1 (3) 39 42.0 42 < 2.0	, , , ,	4.0	(0)	0.50	0.00		0.50		0.44	
Nitrite									_	
Bromide										
Nitrate		ı	(3)						-	
Phosphorus		-	(0)							
Sulfate 600 (3) 1400 1200 1400 1100		-	(3)							
Carbon Dioxide (CO ₂)	-		(0)							
Alkalinity (CaCO ₃) - 358.2 203.2 175 207.5 Bicarbonate (CaCO ₃) - 358.2 203.2 175 207.5		600	(3)							
Bicarbonate (CaCO ₃)	(2)	-		340	220		180		200	
Total Metals (mg/L)	Alkalinity (CaCO ₃)	-		358.2	203.2		175		207.5	
Arsenic 0.01 (3) < 0.020 < 0.050 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0020 < 0.0020 < 0.0020 <td>Bicarbonate (CaCO₃)</td> <td>-</td> <td></td> <td>358.2</td> <td>203.2</td> <td></td> <td>175</td> <td></td> <td>207.5</td> <td></td>	Bicarbonate (CaCO ₃)	-		358.2	203.2		175		207.5	
Arsenic 0.01 (3) < 0.020 < 0.050 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0020 < 0.0020 < 0.0020 <td>Total Metals (mg/L)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total Metals (mg/L)									
Barium 2.0 (3) 0.057 0.24 0.14 0.099 Cadmium 0.005 (3) < 0.0020 < 0.0020 < 0.0020 < 0.0020 Chromium 0.05 (3) < 0.0060 0.0056 J < 0.0060 < 0.0060 Lead 0.015 (3) < 0.0045 J < 0.0050 < 0.0059 < 0.0050 Selenium 0.05 (3) < 0.050 < 0.050 < 0.065 < 0.0669 Silver 0.05 (3) 0.0023 J < 0.0050 < 0.0050 < 0.0050 Mercury 0.002 (3) 0.00013 J 0.00020 < 0.00020 < 0.00020 Dissolved Metals (mg/L)		0.01	(3)	< 0.020	< 0.050		< 0.020		< 0.020	
Cadmium 0.005 (3) < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.020 <										
Chromium 0.05 (3) <0.0060 0.0056 J < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.00020 < 0.0020 < 0.0020 < 0.020 < 0.0220 < 0.0020 < 0.0020 < 0.0020 <		-			_		_			
Lead 0.015 (3) 0.0045 J < 0.0050 0.0059 < 0.0050 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0										
Selenium 0.05 (3) < 0.050 < 0.050 0.065 0.069 Silver 0.05 (3) 0.0023 J < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020<										
Silver 0.05 (3) 0.0023 J < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050										
Mercury 0.002 (3) 0.00013 J 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.022 0.0020 0.022 0.0020 0.022 0.0020 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0										
Dissolved Metals (mg/L)										
Arsenic 0.01 (3) <0.020 <0.10 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050			(-)							
Barium 1.0 (3) 0.032 0.015 J 0.021 < 0.020 Cadmium 0.005 (3) < 0.0020		0.01	(3)	<0.020	< 0.10		< 0.020		< 0.020	
Cadmium 0.005 (3) < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0020 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050	Barium	1.0			0.015 J					
Calcium - 160 360 380 320 Chromium 0.05 (3) < 0.0060	Cadmium	0.005								
Chromium 0.05 (3) < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 <			(-)							
Copper 1 (3) < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.00		0.05	(3)							
Iron 1 (3) <0.020 0.0079 J 3.9 2.2 Lead 0.015 (3) <0.0050		1		< 0.0060	< 0.0060		< 0.0060		< 0.0060	
Lead 0.015 (3) < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 77 77 3.9 5.7 3.9 100 5.7 3.9 100 5.6 4.7 3.8 4.8 5.6 4.7 9.057 0.09 0.09 0.09 0.09 0.09 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050		1		<0.020	0.0079 J		3.9		2.2	
Magnesium - 31 90 100 77 Manganese 0.2 (3) 0.15 2.2 5.7 3.9 Potassium - 3.8 4.8 5.6 4.7 Selenium 0.05 (3) <0.050	Lead	0.015		< 0.0050	< 0.0050		< 0.0050		< 0.0050	
Potassium - 3.8 4.8 5.6 4.7 Selenium 0.05 (3) < 0.050			(-)							
Potassium - 3.8 4.8 5.6 4.7 Selenium 0.05 (3) < 0.050	0	0.2	(3)	0.15	2.2		5.7		3.9	
Selenium 0.05 (3) < 0.050 < 0.050 0.057 0.09 Silver 0.05 (3) 0.0020 J < 0.0050		-	(-)	3.8	4.8		5.6		4.7	
Silver 0.05 (3) 0.0020 J < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 560 560 560 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.066 Zinc 10 (3) 0.044 0.033 0.2 0.066	Selenium	0.05	(3)	< 0.050	< 0.050		0.057		0.09	
Sodium - 72 640 650 560 Uranium 0.03 (3) < 0.10							< 0.0050		< 0.0050	
Uranium 0.03 (3) < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10			(-)							
Zinc 10 (3) 0.044 0.033 0.2 0.066		0.03	(3)							
	-		\5/							
			(6)	< 0.40	< 0.20		< 0.20		< 0.20	
	9 9		. ,							
	0 0									

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- --- = Analysis not required and/or well contains separate phase
- = Analytical result exceeds the respective screening level.
- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
- = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	0					MW-1	l									MW	'-13				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds (ug	g/L)																					
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	25	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	7	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	7	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	0.01	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	11.55	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene	56	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	0.05	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene	302	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC)	1.71	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane	4.376	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3,5-Trimethylbenzene	60	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene	-		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	370	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	75	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene	11	(5)	< 4.0		0.51 J		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	-		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
2-Butanone	5565	(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
2-Chlorotoluene	240	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
2-Hexanone	-		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
2-Methylnaphthalene	36	(1)	< 4.0		0.75 J		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
4-Chlorotoluene	250	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-	ì	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Methyl-2-pentanone	-		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
Acetone	14064	(4)	<10		< 10		2.2 J		< 10		< 10		<10		<10		3.2 J		< 10		< 10	
Benzene	5	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	62	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromodichloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromoform	33	(5)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromomethane	7.545	(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Carbon disulfide	810	(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
Carbon Tetrachloride		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chlorobenzene	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloroethane	20900	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
Chloroform	2.29	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloromethane	20.3	(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
cis-1,2-DCE	70	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene	4.7	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromochloromethane	1.68	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromomethane	8.3	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane	197	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Ethylbenzene	700	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	1.39	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Isopropylbenzene	447	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
isopropyinerizerie	771	(¬)	\ 1.0		\ 1.U		\ 1.U		\ 1.U		\ 1.0		\ 1.0		\ 1.0		\ 1.U	1	\ 1.0		\ 1.U	

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening						MW-1										MW-	-13				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Methyl tert-butyl ether (MTBE)	100	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.72 J	< 1.0	0.51 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride	5	(2)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Naphthalene	1.65	(4)	< 2.0		0.59 J		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
n-Butylbenzene	1000	(1)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
n-Propylbenzene	660	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
sec-Butylbenzene	2000	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Styrene	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
tert-Butylbenzene	690	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Tetrachloroethene (PCE)	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Toluene	1000	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
trans-1,3-Dichloropropene	4.71	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane	1136	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Vinyl chloride	2	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Xylenes, Total	620	(3)	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Semi-Volatile Organic Compour	nds (ug/L)																					
1,2,4-Trichlorobenzene	70	(2)																				
1,2-Dichlorobenzene		(2)																				
1,3-Dichlorobenzene	-																					
1,4-Dichlorobenzene	75	(2)																				
1-Methylnaphthalene	11	(5)																				
2,4,5-Trichlorophenol	1166	(4)																				
2,4,6-Trichlorophenol	11.9	(4)																				
2,4-Dichlorophenol	45.3	(4)																				
2,4-Dimethylphenol	354	(4)																				
2,4-Dinitrophenol	38.7	(4)																				
2,4-Dinitrotoluene	2.375	(4)																				
2,6-Dinitrotoluene	0.485	(4)																				
2-Chloronaphthalene	733	(4)																				
2-Chlorophenol	91	(4)																				
2-Methylnaphthalene	36	(1)																				
2-Methylphenol	930	(1)																				
2-Nitroaniline	190	(1)																				
2-Nitrophenol	-																					
3,3´-Dichlorobenzidine		(4)																				
3+4-Methylphenol	930	(1)																				
3-Nitroaniline																						
4,6-Dinitro-2-methylphenol	1.52	(4)																				
4-Bromophenyl phenyl ether																						
4-Chloro-3-methylphenol																						
4-Chloroaniline	3.7	(5)																				
4-Chlorophenyl phenyl ether																						
4-Nitroaniline	38	(5)																				
4-Nitrophenol																						
Acenaphthene	535	(4)																				
Acenaphthylene																						
Aniline		(5)																				
Anthracene	1721	(4)																				
Azobenzene	1.2	(5)																				

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

							MW-1										MW-	13				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Benzo(a)anthracene	0.1199	(4)																				
Benzo(a)pyrene	0.2	(2)																				
Benzo(b)fluoranthene	0.3432	(4)																				
Benzo(g,h,i)perylene	-																					
Benzo(k)fluoranthene	3.43	(4)																				
Benzoic acid	75000	(1)																				
Benzyl alcohol	2000	(1)																				
Bis(2-chloroethoxy)methane	59	(1)																				
Bis(2-chloroethyl)ether	0.137	(4)																				
Bis(2-chloroisopropyl)ether	9.81	(4)																				
Bis(2-ethylhexyl)phthalate	6	(2)																				
Butyl benzyl phthalate	160	(5)																				
Carbazole	-																					
Chrysene	34.3171	(4)																				
Dibenz(a,h)anthracene	0.0343	(4)																				
Dibenzofuran	-																					
Diethyl phthalate	14800	(4)																				
Dimethyl phthalate	-																					
Di-n-butyl phthalate	885	(4)																				
Di-n-octyl phthalate	-																					
Fluoranthene	802	(4)																				
Fluorene	288	(4)																				
Hexachlorobenzene	0.0976	(4)																				
Hexachlorobutadiene	1.387	(4)																				
Hexachlorocyclopentadiene	0.411	(4)																				
Hexachloroethane	3.2842	(4)																				
Indeno(1,2,3-cd)pyrene	0.3432	(4)																				
Isophorone	781	(4)																				
Naphthalene	1.65	(4)																				
Nitrobenzene	1.4	(4)																				
N-Nitrosodimethylamine	0.0049	(4)																				
N-Nitrosodi-n-propylamine	0.11	(5)																				
N-Nitrosodiphenylamine	121.922	(4)																				
Pentachlorophenol	0.4129	(4)																				
Phenanthrene	170.4146	(4)																				
Phenol	5761	(4)																				
Pyrene	117	(4)																				
Pyridine	20	(1)											-									
General Chemistry (mg/L)																						
Fluoride	1.6	(3)	<0.50		0.32		0.32		0.45		0.51		<0.50		< 0.10		< 0.10		< 0.10		< 0.10	
Chloride	250	(3)	10		15		15		11		11		180		230		240		230		170	
Nitrite	1	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 0.10		1.8		3.5		2.7		1.8		0.16	
Bromide	-		<0.50		0.12		0.12		< 0.10		< 0.10		2.3		2.9		2.9		3		1.2	
Nitrate	10	(3)	<1.0		0.78 J		0.78 J		< 1.0		0.54		1.8		3.5		2.7		1.8		0.25	
Phosphorus	-		< 2.5 H		< 0.50		< 0.50		< 0.50		< 0.50		< 2.5 H		< 0.50		< 0.50		< 0.50		< 0.50	
Sulfate	600	(3)	120		110		110		84		110		1100		920		860		850		1100	
Carbon Dioxide (CO ₂)	-		280 H		320		280		240		230		860		890		950		950		890	
Alkalinity (CaCO ₃)	-		297.3		355.9		301.8		266.4		246.5		875.1		954.5		958.8		954.3		909.4	
Bicarbonate (CaCO ₃)	-		297.3		355.9		301.8		266.4		246.5		875.1		954.5		958.8		954.3		909.4	

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	Cauras					MW-1										MW-	13				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Total Metals (mg/L)					<u> </u>										<u> </u>							
Arsenic	0.01	(3)	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020	
Barium	2.0	(3)	0.070		0.13		0.061		0.28		0.031		0.026		0.028		0.025		0.052		0.022	
Cadmium	0.005	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		0.011		0.017		0.0027 J		0.059		< 0.0060	
Lead	0.015	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		<0.0050		0.0079		< 0.0050		< 0.0050		< 0.0050	
Mercury	0.002	(3)	< 0.00020		0.000083 J		0.000067 J		< 0.00020		< 0.00020		<0.010		0.000074 J		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/L)																					•	
Arsenic	0.01	(3)	<0.020		<0.020		0.0096 J		< 0.020		< 0.020		< 0.020		< 0.020		0.013 J		< 0.020		< 0.020	
Barium	1.0	(3)	0.036		0.036		0.036		0.022		0.031		0.022		0.022		0.024		0.022		0.023	
Cadmium	0.005	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-		86		90		83		65		77		270		250		230		230		260	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		0.0027		< 0.0060		< 0.0060		< 0.0060	
Iron	1	(3)	<0.020		0.030		0.012 J		0.22		< 0.020		< 0.020		< 0.020		< 0.020		0.044		< 0.020	
Lead	0.015	(3)	0.0051		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Magnesium	-		18		19		19		16		17		96		81		84		82		96	
Manganese	0.2	(3)	0.012		0.037		0.016		0.2		0.037		1.5		1.6		1.3		0.95		0.6	
Potassium	-		2.1		1.9		2.4		2.8		2.2		3.8		3.4		3.6		4		4.1	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.25		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		0.0024		< 0.0050		< 0.0050		< 0.0050		<0.0050		0.0051		< 0.0050		< 0.0050		< 0.0050	
Sodium	-		60		57		73		81		68		530		570		530		540		570	
Uranium	0.03	(3)	< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10	
Zinc	10	(3)	<0.020		0.15		0.031		0.024		0.027		<0.020		0.040		0.017 J		< 0.020		0.027	
Total Petroleum Hydrocarbons (mg/L)																					
Diesel Range Organics	0.0167	(6)	< 0.40	< 0.40	< 0.20	< 0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.40		< 0.40		< 0.20		< 0.20		0.28	
Gasoline Range Organics	0.0101	(6)	< 0.050	< 0.050	0.024 J	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	<0.050		0.033 J		< 0.050		< 0.050		< 0.050	
Motor Oil Range Organics	0.0858	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5		<2.5		<2.5		< 2.5		< 2.5	

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)

O) INIVILID OC	50 (dulic 2013)
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.
1	= 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening		**MW-26			MW-27				MW-32					
Levels		Source	Aug-19	Aug-18	Aug-17	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Volatile Organic Compounds (ug/L)		710.9 10	19 . 0	<u> </u>	7.4.9	7 to g . c		1 7.4.9 .4	79	7.4.9 .0	1 214.9 .0	, g	7.4.9 .0	710.9 10	
1,1,1,2-Tetrachloroethane	5.74	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	5	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	10	(3)				< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,1,2-Trichloroethane	5	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	25	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	7	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	-	(0)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	7	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	0.01	(4)				< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2,4-Trichlorobenzene	11.55	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	56	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	0.2	(2)				< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2-Dibromoethane (EDB)	0.05	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	302	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane (EDC)	1.71	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	4.376	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	60	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	-	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	370	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	75	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	11	(5)				< 4.0	< 4.0	< 4.0	< 8.0	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
2,2-Dichloropropane	- ''	(3)				< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
2-Butanone	5565	(4)				< 10	< 10	< 10	< 20	< 20	< 10	< 10	< 10	< 10	< 10
2-Chlorotoluene	240	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	-	(1)				< 10	< 10	< 1.0	< 20	< 20	< 1.0	< 1.0	< 1.0	< 1.0	< 10
2-Methylnaphthalene	36	(1)				< 4.0	< 4.0	< 4.0	< 8.0	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
4-Chlorotoluene	250	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	-	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Methyl-2-pentanone	-					< 10	< 10	< 1.0	< 20	< 20	< 1.0	< 1.0	< 1.0	< 1.0	< 10
Acetone	14064	(4)				< 10	< 10	< 10	< 20	< 20	< 10	< 10	< 10	< 10	< 10
Benzene	5	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	62	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	1.34					< 1.0		< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	33	(4)					< 1.0		< 2.0	< 2.0				< 1.0	
Bromomethane	7.545	(5)				< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0	< 6.0	< 6.0	< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0	< 3.0	< 1.0
	810	(4)				< 10	< 10	< 10	< 20	< 20	< 10				< 3.0 < 10
Carbon disulfide		(4)										< 10	< 10	< 10	
Carbon Tetrachloride	5	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	100	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	20900	(4)				< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Chloroform	2.29	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	20.3	(4)				< 3.0	< 3.0	< 3.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
cis-1,2-DCE	70	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	4.7	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	1.68	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	8.3	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	197	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	700	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	1.39	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	447	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening			**MW-26				MW-27					MW-32		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Methyl tert-butyl ether (MTBE)	100	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride	5	(2)				< 3.0	< 3.0	< 3.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Naphthalene	1.65	(4)				< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
n-Butylbenzene	1000	(1)				< 3.0	< 3.0	< 3.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene	660	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	2000	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	100	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	690	(1)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene (PCE)	5	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	1000	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	100	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	4.71	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (TCE)	5	(2)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	1136	(4)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	2	(3)				< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, Total	620	(3)				< 1.5	< 1.5	< 1.5	< 3.0	< 3.0	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Semi-Volatile Organic Compound		(-)													
1,2,4-Trichlorobenzene	70	(2)													
1,2-Dichlorobenzene	600	(2)													
1,3-Dichlorobenzene	-	(-/													
1,4-Dichlorobenzene	75	(2)													
1-Methylnaphthalene	11	(5)													
2,4,5-Trichlorophenol	1166	(4)													
2,4,6-Trichlorophenol	11.9	(4)													
2,4-Dichlorophenol	45.3	(4)													
2,4-Dimethylphenol	354	(4)													
2,4-Dinitrophenol	38.7	(4)													
2,4-Dinitrotoluene	2.375	(4)													
2,6-Dinitrotoluene	0.485	(4)													
2-Chloronaphthalene	733	(4)													
2-Chlorophenol	91	(4)													
2-Methylnaphthalene	36	(1)													
2-Methylphenol	930	(1)													
2-Nitroaniline	190	(1)													
2-Nitrophenol	-	(1)													
3,3´-Dichlorobenzidine	1.25	(4)													
3+4-Methylphenol	930	(1)													
3-Nitroaniline	-	(1)													
4,6-Dinitro-2-methylphenol	1.52	(4)													
4-Bromophenyl phenyl ether	1.02	(4)													
4-Chloro-3-methylphenol															
4-Chloroaniline	3.7	(5)													
4-Chlorophenyl phenyl ether	- -	(3)													
4-Chlorophenyl phenyl ether 4-Nitroaniline	38	(5)													
4-Nitrophenol	- -	(3)													
Acenaphthene	535	(4)													
-	-	(4)													
Acenaphthylene	130	(5)													
Aniline Anthracene	1721	(5)													
		(4)		 											
Azobenzene	1.2	(5)													

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening			**MW-26				MW-27					MW-32		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Benzo(a)anthracene	0.1199	(4)													
Benzo(a)pyrene	0.2	(2)													
Benzo(b)fluoranthene	0.3432	(4)													
Benzo(g,h,i)perylene	-	(. /													
Benzo(k)fluoranthene	3.43	(4)													
Benzoic acid	75000	(1)													
Benzyl alcohol	2000	(1)													
Bis(2-chloroethoxy)methane	59	(1)													
Bis(2-chloroethyl)ether	0.137	(4)													
Bis(2-chloroisopropyl)ether	9.81	(4)													
Bis(2-ethylhexyl)phthalate	6	(2)													
Butyl benzyl phthalate	160	(5)													
Carbazole	-	(0)													
Chrysene	34.3171	(4)													
Dibenz(a,h)anthracene	0.0343	(4)													
Dibenzofuran	-	(4)													
Diethyl phthalate	14800	(4)													
	-	(4)													
Dimethyl phthalate Di-n-butyl phthalate	885	(4)													
		(4)													
Di-n-octyl phthalate	-	(4)													
Fluoranthene	802	(4)													
Fluorene	288	(4)													
Hexachlorobenzene	0.0976	(4)													
Hexachlorobutadiene	1.387	(4)													
Hexachlorocyclopentadiene	0.411	(4)													
Hexachloroethane	3.2842	(4)													
Indeno(1,2,3-cd)pyrene	0.3432	(4)													
Isophorone	781	(4)													
Naphthalene	1.65	(4)													
Nitrobenzene	1.4	(4)													
N-Nitrosodimethylamine	0.0049	(4)													
N-Nitrosodi-n-propylamine	0.11	(5)													
N-Nitrosodiphenylamine	121.922	(4)													
Pentachlorophenol	0.4129	(4)													
Phenanthrene		(4)													
Phenol	5761	(4)													
Pyrene	117	(4)													
Pyridine	20	(1)													
General Chemistry (mg/L)															
Fluoride	1.6	(3)				0.11 J	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
Chloride	250	(3)				960	870	440	360	450	740	680	630	630	530
Nitrite	1	(3)				<1.0	<1.0	< 0.50	< 1.0	< 0.50	37	43	< 2.0	40	< 2.0
Bromide	-					9.5	8.4	4.7	3.2	4.4	4.4	4.3	5.8	4.4	4.5
Nitrate	10	(3)				<1.0	<1.0	< 0.50	< 1.0	< 0.50	37	43	47	40	55
Phosphorus	-					<2.5 H	<10 H	< 2.5	< 10	< 2.5	<10 H	<10 H	< 0.50	< 10	< 10
Sulfate	600	(3)				2900	3100	2800	2700	2200	1800	1600	1600	1600	1400
Carbon Dioxide (CO ₂)	-					230 H	260	380	400	490	160 H	170 H	170	170	180
Alkalinity (CaCO ₃)	-					250.6	264	395.6	408.9	527.8	178.6	180.7	188.4	186.9	201.7
Bicarbonate (CaCO ₃)	-					250.6	264	395.6	408.9	527.8	178.6	180.7	188.4	186.9	201.7

	Screening	Source		**MW-26				MW-27					MW-32		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Total Metals (mg/L)															
Arsenic	0.01	(3)				<0.020	<0.020	< 0.20	< 0.020	< 0.020	< 0.020	< 0.020	< 0.20	< 0.020	< 0.020
Barium	2.0	(3)				0.059	0.066	0.073	0.17	0.068	0.024	<0.020	0.019	0.033	< 0.020
Cadmium	0.005	(3)				< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)				< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Lead	0.015	(3)				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.05	(3)				< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)				0.0086	0.022	< 0.0050	< 0.0050	< 0.0050	0.0045 J	0.011	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)				0.000055J	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.000054J	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/L)															
Arsenic	0.01	(3)				<0.020	<0.020	0.023	< 0.020	< 0.020	< 0.020	< 0.020	0.012 J	< 0.020	< 0.020
Barium	1.0	(3)				0.045	0.050	0.034	0.044	0.054	0.018 J	< 0.020	0.018 J	< 0.020	< 0.020
Cadmium	0.005	(3)				< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-					670	740	690	550	590	320	320	340	340	310
Chromium	0.05	(3)				< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)				< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)				1.1	0.89	1.3	0.74	0.13	<0.020	<0.020	0.0052 J	< 0.020	< 0.020
Lead	0.015	(3)				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Magnesium	-					110	110	99	92	93	50	47	48	50	45
Manganese	0.2	(3)				1.8	0.75	2.1	2.7	6	<0.0020	<0.0020	0.00085 J	< 0.0020	< 0.0020
Potassium	-					6.0	3.7	4.0	5.3	5.8	3.7	3.4	3.6	4	3.9
Selenium	0.05	(3)				< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)				0.0086	0.018	< 0.0050	< 0.0050	< 0.0050	0.0049 J	0.0082	0.0039 J	< 0.0050	< 0.0050
Sodium	-					870	890	800	720	730	800	770	800	810	750
Uranium	0.03	(3)				< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 10	< 10	< 0.10	< 0.10	< 0.10
Zinc	10	(3)				0.015 J	<0.020	0.014 J	< 0.020	< 0.020	0.020	< 0.020	0.025	< 0.020	0.023
Total Petroleum Hydrocarbons (mg/L)														
Diesel Range Organics	0.0167	(6)				0.23 J	3.2	3.2	2.2	3.9	< 0.40	< 0.40	< 0.20	< 0.20	0.28
Gasoline Range Organics	0.0101	(6)				< 0.050	< 0.050	< 0.050	0.2	0.25	< 0.050	< 0.050	< 0.050	< 0.050	0.19
Motor Oil Range Organics	0.0858	(6)				< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (Decembe
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds

(6) NMED 3	SSG (June 2019)
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.
1	= 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
**	= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate ph

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening						MW	-33				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
olatile Organic Compounds (uç]/L)			<u> </u>				<u> </u>		<u> </u>		<u> </u>
1,1,1,2-Tetrachloroethane	5.74	(4)					< 1.0		< 1.0			
1,1,1-Trichloroethane	5	(3)					< 1.0		< 1.0			
1,1,2,2-Tetrachloroethane	10	(3)					< 2.0		< 2.0			
1,1,2-Trichloroethane	5	(3)					< 1.0		< 1.0			
1,1-Dichloroethane	25	(3)					< 1.0		< 1.0			
1,1-Dichloroethene	7	(3)					< 1.0		< 1.0			
1,1-Dichloropropene	-						< 1.0		< 1.0			
1,2,3-Trichlorobenzene	7	(1)					< 1.0		< 1.0			
1,2,3-Trichloropropane	0.01	(4)					< 2.0		< 2.0			
1,2,4-Trichlorobenzene	11.55	(4)					< 1.0		< 1.0			
1,2,4-Trimethylbenzene	56	(1)					< 1.0		< 1.0			
1,2-Dibromo-3-chloropropane	0.2	(2)					< 2.0		< 2.0			
1,2-Dibromoethane (EDB)	0.05	(3)					< 1.0		< 1.0			
1,2-Dichlorobenzene	302	(4)					< 1.0		< 1.0			
1,2-Dichloroethane (EDC)	1.71	(4)					< 1.0		< 1.0			
1,2-Dichloropropane	4.376	(4)					< 1.0		< 1.0			
1,3,5-Trimethylbenzene	60	(1)					< 1.0		< 1.0			
1,3-Dichlorobenzene	-	(.)					< 1.0		< 1.0			
1,3-Dichloropropane	370	(1)					< 1.0		< 1.0			
1,4-Dichlorobenzene	75	(2)					< 1.0		< 1.0			
1-Methylnaphthalene	11	(5)					< 4.0		< 4.0			
2,2-Dichloropropane	11	(3)					< 2.0		< 2.0			
2-Butanone	5565	(4)					< 10		< 10			
2-Chlorotoluene	240	(4)					< 1.0		< 1.0			
		(1)										
2-Hexanone	-	(4)					< 10		< 10			
2-Methylnaphthalene	36	(1)					< 4.0		< 4.0			
4-Chlorotoluene	250	(1)					< 1.0		< 1.0			
4-Isopropyltoluene	-						< 1.0		< 1.0			
4-Methyl-2-pentanone	-	(4)					< 10		< 10			
Acetone	14064	(4)					< 10		< 10			
Benzene	5	(3)					< 1.0	<1.0	< 1.0	<1.0		<1.0
Bromobenzene	62	(1)					< 1.0		< 1.0			
Bromodichloromethane	1.34	(4)					< 1.0		< 1.0			
Bromoform	33	(5)					< 1.0		< 1.0			
Bromomethane	7.545	(4)					< 3.0		< 3.0			
Carbon disulfide	810	(4)					< 10		< 10			
Carbon Tetrachloride	5	(2)					< 1.0		< 1.0			
Chlorobenzene	100	(2)					< 1.0		< 1.0			
Chloroethane	20900	(4)					< 2.0		< 2.0			
Chloroform	2.29	(4)					< 1.0		< 1.0			
Chloromethane	20.3	(4)					< 3.0		< 3.0			
cis-1,2-DCE	70	(2)					< 1.0		< 1.0			
cis-1,3-Dichloropropene	4.7	(4)					< 1.0		< 1.0			
Dibromochloromethane	1.68	(4)					< 1.0		< 1.0			
Dibromomethane	8.3	(1)					< 1.0		< 1.0			
Dichlorodifluoromethane	197	(4)					< 1.0		< 1.0			
Ethylbenzene	700	(3)					< 1.0	<1.0	< 1.0	<1.0		<1.0
Hexachlorobutadiene	1.39	(4)					< 1.0		< 1.0			
Isopropylbenzene	447	(4)					< 1.0		< 1.0			

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	C					MW-	-33				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Methyl tert-butyl ether (MTBE)	100	(3)					< 1.0	<1.0	< 1.0	<1.0		<1.0
Methylene Chloride	5	(2)					< 3.0		< 3.0			
Naphthalene	1.65	(4)					< 2.0		< 2.0			
n-Butylbenzene	1000	(1)					< 3.0		< 3.0			
n-Propylbenzene	660	(1)					< 1.0		< 1.0			
sec-Butylbenzene	2000	(1)					< 1.0		< 1.0			
Styrene	100	(2)					< 1.0		< 1.0			
tert-Butylbenzene	690	(1)					< 1.0		< 1.0			
Tetrachloroethene (PCE)	5	(2)					< 1.0		< 1.0			
Toluene	1000	(3)					< 1.0	<1.0	< 1.0	<1.0		<1.0
trans-1,2-DCE	100	(2)					< 1.0		< 1.0			
trans-1,3-Dichloropropene	4.71	(4)					< 1.0		< 1.0			
Trichloroethene (TCE)	5	(2)					< 1.0		< 1.0			
Trichlorofluoromethane	1136	(4)					< 1.0		< 1.0			
Vinyl chloride	2	(3)					< 1.0		< 1.0			
Xylenes, Total	620	(3)					< 1.5	<1.5	< 1.5	<1.5		<1.5
Semi-Volatile Organic Compoun		(-)										
1,2,4-Trichlorobenzene	70	(2)										
1,2-Dichlorobenzene	600	(2)										
1,3-Dichlorobenzene	-	(-/										
1,4-Dichlorobenzene	75	(2)										
1-Methylnaphthalene	11	(5)										
2,4,5-Trichlorophenol	1166	(4)										
2,4,6-Trichlorophenol	11.9	(4)										
2,4-Dichlorophenol	45.3	(4)										
2,4-Dimethylphenol	354	(4)										
2,4-Dinitrophenol	38.7	(4)										
2,4-Dinitrotoluene	2.375	(4)										
2,6-Dinitrotoluene	0.485	(4)										
2-Chloronaphthalene	733	(4)										
2-Chlorophenol	91	(4)										
2-Methylnaphthalene	36	(1)										
2-Methylphenol	930	(1)										
2-Nitroaniline	190	(1)										
2-Nitrophenol	190	(1)										
3,3´-Dichlorobenzidine	1.25	(4)										-
3+4-Methylphenol	930	(4)										
3-Nitroaniline	930	(1)										
	1.52	(4)										
4,6-Dinitro-2-methylphenol		(4)										
4-Bromophenyl phenyl ether	-											
4-Chloro-3-methylphenol 4-Chloroaniline	- 2.7	(F)										
	3.7	(5)										
4-Chlorophenyl phenyl ether	-	(5)										
4-Nitroaniline	38	(5)										
4-Nitrophenol	-	(4)										
Acenaphthene	535	(4)										
Acenaphthylene	-	(=)										
Aniline	130	(5)										
Anthracene	1721	(4)										
Azobenzene	1.2	(5)										

TABLE 4
Cross-Gradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening						MW-	-33				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Benzo(a)anthracene	0.1199	(4)										
Benzo(a)pyrene	0.2	(2)										
Benzo(b)fluoranthene	0.3432	(4)										
Benzo(g,h,i)perylene	-											
Benzo(k)fluoranthene	3.43	(4)										
Benzoic acid	75000	(1)										
Benzyl alcohol	2000	(1)										
Bis(2-chloroethoxy)methane	59	(1)										
Bis(2-chloroethyl)ether	0.137	(4)										
Bis(2-chloroisopropyl)ether	9.81	(4)										
Bis(2-ethylhexyl)phthalate	6	(2)										
Butyl benzyl phthalate	160	(5)										
Carbazole	-	(0)										
Chrysene	34.3171	(4)										
Dibenz(a,h)anthracene	0.0343	(4)										
Dibenzofuran	-	(+)										
Diethyl phthalate	14800	(4)										
Dimethyl phthalate	14000	(+)										
Di-n-butyl phthalate	885	(4)										
Di-n-octyl phthalate	000	(4)										
Fluoranthene	802	(4)										
		(4)										
Fluorene	288	(4)										
Hexachlorobenzene	0.0976	(4)										
Hexachlorobutadiene	1.387	(4)										
Hexachlorocyclopentadiene	0.411	(4)										
Hexachloroethane	3.2842	(4)										
Indeno(1,2,3-cd)pyrene	0.3432	(4)										
Isophorone	781	(4)										
Naphthalene	1.65	(4)										
Nitrobenzene	1.4	(4)										
N-Nitrosodimethylamine	0.0049	(4)										
N-Nitrosodi-n-propylamine	0.11	(5)										
N-Nitrosodiphenylamine	121.922	(4)										
Pentachlorophenol	0.4129	(4)										
Phenanthrene	170.4146	(4)										
Phenol	5761	(4)										
Pyrene	117	(4)										
Pyridine	20	(1)										
General Chemistry (mg/L)												
Fluoride	1.6	(3)					LW		0.51			
Chloride	250	(3)					LW		250			
Nitrite	1	(3)					LW		40			
Bromide	-						LW		1.4			
Nitrate	10	(3)					LW		40			
Phosphorus	-						LW		< 10			
Sulfate	600	(3)					LW		2500			
Carbon Dioxide (CO ₂)	-						LW		110			
Alkalinity (CaCO ₃)	-						LW		125.5			
Bicarbonate (CaCO ₃)	-						LW		125.5			

	Screening	Source					MW-	-33				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Total Metals (mg/L)												
Arsenic	0.01	(3)					LW		< 0.020			
Barium	2.0	(3)					LW		0.021			
Cadmium	0.005	(3)					LW		< 0.0020			
Chromium	0.05	(3)					LW		< 0.0060			
Lead	0.015	(3)					LW		< 0.0050			
Selenium	0.05	(3)					LW		0.063			
Silver	0.05	(3)					LW		< 0.0050			
Mercury	0.002	(3)					LW		< 0.00020			
Dissolved Metals (mg/L)												
Arsenic	0.01	(3)					LW		< 0.020			
Barium	1.0	(3)					LW		< 0.020			
Cadmium	0.005	(3)					LW		< 0.0020			
Calcium	-						LW		480			
Chromium	0.05	(3)					LW		< 0.0060			
Copper	1	(3)					LW		< 0.0060			
Iron	1	(3)					LW		< 0.020			
Lead	0.015	(3)					LW		< 0.0050			
Magnesium	-						LW		69			
Manganese	0.2	(3)					LW		< 0.0020			
Potassium	-						LW		5.5			
Selenium	0.05	(3)					LW		0.097			
Silver	0.05	(3)					LW		< 0.0050			
Sodium	-						LW		820			
Uranium	0.03	(3)					LW		< 0.10			
Zinc	10	(3)					LW		< 0.020			
Total Petroleum Hydrocarbons (mg/L)											
Diesel Range Organics	0.0167	(6)					< 0.20	< 0.20	< 0.20	<0.20		<0.20
Gasoline Range Organics	0.0101	(6)					< 0.050	< 0.050	< 0.050	< 0.050		< 0.050
Motor Oil Range Organics	0.0858	(6)					< 2.5	< 2.5	< 2.5	< 2.5		< 2.5

Notes:

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 1
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remedia

= Columns hidden when there are 4 or more consecutive years recorded that analysis was ne

- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- No screening level available

 * Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

 --- = Analysis not required and/or well contains separate phase

 = Analytical result exceeds the respective screening level.

 1 = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

Scre	eening	Source			MW-11							MW-	-12							MW-34		
Le	evels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Volatile Organic Compounds (ug/L)		•	•	Ť	Ť		Ĭ			Ĭ		Ť						Ĭ				
1,1,1,2-Tetrachloroethane 5	5.74	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	5	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,1,2-Trichloroethane	5	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	25	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	7	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	-		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	7	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	0.01	(4)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2,4-Trichlorobenzene 11	1.55	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	56	(1)	110	67	97	120	390	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	0.2	(2)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
, , ,	0.05	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	302	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
. , , ,	1.71	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	.376	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
, ,	60	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,6 21611616261126116	-	4.13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	370	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
·	75	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
7 1	11	(5)	18	15	15	17	16	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
2,2-Dichloropropane	-	(1)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	565	(4)	< 10	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10	< 10
	240	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	-	(4)	< 10	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10	< 10
7 .	36	(1)	28	25	17	23	18	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	0.28 J	< 4.0	< 4.0	< 4.0
	250	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	-		3.0	1.9	1.6	3.5	5	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Methyl-2-pentanone	4064	(4)	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10	< 10 < 10		< 10		< 10 < 10		< 10 < 10		< 10 < 10		< 10	< 10 8.0 J	< 10 < 10	< 10 < 10	< 10
	5	(4)	< 10 8	< 10 66	< 10 29	19 9.9	< 10 14	< 1.0	< 1.0	< 10 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10 < 1.0	< 1.0	< 1.0	< 1.0	< 10 < 1.0
	62	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1.34	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	33	(5)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	.545	(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
	810	(4)	< 10	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10	< 10
	5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	100	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	0900	(4)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	2.29	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	20.3	(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
	70	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
·	4.7	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1.68	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	8.3	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	197	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	700	(3)	<1.0	0.68 J	0.5 J	< 1.0	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
·	1.39	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	447	(4)	81	63	58	59	62	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	3.8	3.8	2.6	4.6

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	_			MW-11							MW-	.12							MW-34		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Methyl tert-butyl ether (MTBE)	100	(3)	< 1.0	1.3	2.4	2.5	2 Aug-13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.57 J	0.48 J	< 1.0	< 1.0
Methylene Chloride	5	(2)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Naphthalene	1.65	(4)	99	98	80	70	71	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
n-Butylbenzene	1000	(1)	3.3	2.1 J	1.9 J	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	< 3.0	0.24 J	< 3.0	< 3.0
n-Propylbenzene	660	(1)	86	70	63	64	54	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0	<1.0	2.4	1.5	2.8
sec-Butylbenzene	2000	(1)	13	9.1	7.8	12	12	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	0.40 J	1.9	2.6	4.5
Styrene	100	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	690	(1)	2.5	2	1.9	2.4	2.5	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		1.4	1.7	1.6	1.7	1.7
Tetrachloroethene (PCE)	5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	1000	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	1000	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	4.71	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (TCE)	5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	1136	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	2	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, Total	620	(3)	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Semi-Volatile Organic Compounds ((3)	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	₹ 1.5	<1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
1,2,4-Trichlorobenzene	70	(2)	< 10	<50		< 10		< 10	I	< 10				< 10								
1,2-Dichlorobenzene	600	(2)	< 10	<50		< 10		< 10		< 10				< 10								
1,3-Dichlorobenzene		(2)	< 10	<50		< 10		< 10		< 10				< 10	_							
1,4-Dichlorobenzene	75	(2)	< 10	<50 <50		< 10		< 10		< 10				< 10								
·	75	(2)	34	<50 <50		25		< 10						< 10								
1-Methylnaphthalene	11	(5)				< 10		< 10		< 10				< 10								
2,4,5-Trichlorophenol	1166	(4)	< 10	<50 <50		-				< 10												
2,4,6-Trichlorophenol	11.9	(4)	< 10 < 20	<100		< 10 < 20		< 10 < 20		< 10				< 10 < 20								
2,4-Dichlorophenol	45.3 354	(4)		<50				< 10		< 20 < 10												
2,4-Dimethylphenol		(4)	< 10 < 20	<100		< 10 < 20		< 20						< 10 < 20								
2,4-Dinitrophenol 2,4-Dinitrotoluene	38.7	(4)	< 10			< 10		< 10		< 20 < 10				< 10								
·	2.375	(4)		<50 <50																		
2,6-Dinitrotoluene	0.485	(4)	< 10	<50 <50		< 10		< 10		< 10				< 10								
2-Chloronaphthalene	733	(4)	< 10	<50 <50		< 10		< 10 < 10		< 10				< 10								
2-Chlorophenol	91	(4)	< 10			< 10				< 10				< 10								
2-Methylnaphthalene	36	(1)	24	<50		11		< 10		< 10				< 10								
2-Methylphenol	930	(1)	< 10	<50		< 10		< 10		< 10				< 10								
2-Nitroaniline	190	(1)	< 10	<50		< 10		< 10		< 10				< 10								
2-Nitrophenol	4.05	(4)	< 10	<50		< 10		< 10		< 10				< 10								
3,3´-Dichlorobenzidine	1.25	(4)	< 10	<50		< 10		< 10		< 10				< 10								
3+4-Methylphenol	930	(1)	< 10	<50		17		< 10		< 10				< 10								
3-Nitroaniline	- 4.50	(4)	< 10	<50		< 10		< 10		< 10				< 10								
4,6-Dinitro-2-methylphenol	1.52	(4)	< 20	<100		< 20		< 20		< 20				< 20								
4-Bromophenyl phenyl ether	-		< 10	<50		< 10		< 10		< 10				< 10								
4-Chloro-3-methylphenol	- 7	(5)	< 10	<50		< 10		< 10		< 10				< 10								
4-Chloroaniline	3.7	(5)	< 10	<50		< 10		< 10		< 10				< 10								
4-Chlorophenyl phenyl ether	-	(5)	< 10	<50		< 10		< 10		< 10				< 10								
4-Nitroaniline	38	(5)	< 10	<50		< 10		< 10		< 10				< 10								
4-Nitrophenol	-	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Acenaphthene	535	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Acenaphthylene	-	(E)	< 10	<50		< 10		< 10		< 10				< 10								
Aniline	130	(5)	< 10	<50		< 10		< 10		< 10				< 10								
Anthracene	1721	(4)	< 10	<50		< 10		< 10		< 10				< 10								

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

s	creening				MW-11							MW-	12							MW-34		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Apr-19	Aug-18	Apr-18			Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Azobenzene	1.2	(5)	< 10	<50		< 10		< 10		< 10				< 10								
	0.1199	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Benzo(a)pyrene	0.2	(2)	< 10	<50		< 10		< 10		< 10				< 10								
	0.3432	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Benzo(g,h,i)perylene	-	(-)	< 10	<50		< 10		< 10		< 10				< 10								
Benzo(k)fluoranthene	3.43	(4)	< 10	<50		< 10		< 10		< 10				< 10								
, ,	75000	(1)	< 20	<100		< 20		< 20		< 20				< 20								
Benzyl alcohol	2000	(1)	< 10	<50		< 10		< 10		< 10				< 10								
Bis(2-chloroethoxy)methane	59	(1)	< 10	<50		< 10		< 10		< 10				< 10								
Bis(2-chloroethyl)ether	0.137	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Bis(2-chloroisopropyl)ether	9.81	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Bis(2-ethylhexyl)phthalate	6	(2)	< 10	<50		< 10		< 10		< 10				< 10								
Butyl benzyl phthalate	160	(5)	< 10	<50		< 10		< 10		< 10				< 10								
Carbazole	-	(3)	< 10	<50		< 10		< 10		< 10				< 10								
	34.3171	(4)	< 10	<50		< 10		< 10		< 10				< 10								
·	0.0343	(4)	< 10	<50 <50		< 10		< 10		< 10				< 10								
Diberiz(a,ri)antinacene	-	(4)	< 10	<50		< 10		< 10	_	< 10				< 10								
Diethyl phthalate	14800	(4)	< 10	<50 <50		< 10		< 10		< 10				< 10								
Dimethyl phthalate	-	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Di-n-butyl phthalate	885	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Di-n-octyl phthalate		(4)	< 10	<50 <50		< 10		< 10		< 10				< 10								
	802	(4)		<50 <50				< 10														
Fluoranthene Fluorene	288	(4)	< 10 < 10	<50 <50		< 10 < 10		< 10		< 10 < 10				< 10 < 10								
		(4)	< 10	<50 <50						< 10				< 10								
	0.0976	(4)		<50 <50		< 10		< 10		< 10				-								
Hexachlorobutadiene Hexachlorocyclopentadiene	1.387	(4)	< 10 < 10	<50 <50		< 10 < 10		< 10 < 10		< 10				< 10 < 10								
7 .	0.411	(4)																				
	3.2842	(4)	< 10 < 10	<50 <50		< 10 < 10		< 10		< 10				< 10 < 10								
	0.3432	(4)						< 10		< 10												
Isophorone	781	(4)	< 10	<50 61		< 10		< 10		< 10 < 10				< 10								
Naphthalene	1.65	(4)	85	-		43		< 10						< 10								
Nitrobenzene	1.4	(4)	< 10	<50		< 10		< 10		< 10				< 10								
	0.0049	(4)	< 10	<50		< 10		< 10		< 10				< 10								
N-Nitrosodi-n-propylamine	0.11	(5)	< 10	<50		< 10		< 10		< 10				< 10								
	121.922	(4)	< 10	<50		< 10		< 10		< 10				< 10								
• •	0.4129	(4)	< 20	<100		< 20		< 20		< 20				< 20								
	170.4146	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Pyropo	5761	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Pyrene	117	(4)	< 10	<50		< 10		< 10		< 10				< 10								
Pyridine Pyridine Chemistry (mg/L)	20	(1)	< 10	<50		< 10		< 10		< 10				< 10								
Fluoride	1.6	(2)	<0.50	0.28 J	0.37 J	0.41	0.25	0.34 J		0.31		0.22		0.45		0.62		0.64	0.55	0.54	0.38	0.56
Chloride	250	(3)	<0.50 240	0.28 J 220	210	120	0.35	5.7		3.5		0.33 3.4		0.45 4.7		0.63		0.64 250	240	240	260	
	200	(3)	<0.50	<1.0		< 1.0	78	0.08 J		<1.0		< 0.10		< 1.0		< 0.10		<0.50	< 1.0	< 0.50	< 1.0	190
Nitrite	ı	(3)		3.5	< 0.50		< 0.10												3.5			< 0.10
Bromide	- 10	(2)	3.8 <0.50	<1.0	3.2 < 0.50	0.92 < 1.0	0.15 0.15	<0.50 0.08 J		<0.10 <1.0		0.041 J 0.030 J		< 0.10 < 1.0		< 0.10 0.11		3.4 <0.50	< 1.0	3.5 < 0.50	2.2 < 1.0	0.7 0.27
Nitrate	10	(3)		< 2.5																	< 2.5	< 0.50
Phosphorus	- 600	(2)	< 2.5		< 2.5	2.8	< 0.50	< 0.50 H		< 0.50 H		< 0.50		< 0.50		< 0.50		< 2.5	< 2.5	< 2.5		
Sulfate Carbon Diovido (CO.)	600	(3)	6.9	2.2 J	1.3 J	7.6	5.7	57		45		44		48		79		30	30	3.6	340	23
Carbon Dioxide (CO ₂)	-		970 H	900	1100	1000	1000	140		140		140		130		130		1100 H	870 H	1000	930	820
Alkalinity (CaCO ₃)	-		1084	1006	1140	1082	1038	154.4		155.4		155.6		149		148.4		1152	970	1088	979	876
Bicarbonate (CaCO ₃)	-		1084	1006	1140	1082	1038	154.4		155.4		155.6		149		148.4		1152	970	1088	979	876

	Screening	Source			MW-11							MW-	12							MW-34		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Total Metals (mg/L)																						
Arsenic	0.01	(3)	<0.020	<0.020	0.026	0.047	0.035	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		<0.020	0.015	0.032	< 0.020	< 0.020
Barium	2.0	(3)	0.99	0.75	0.75	0.96	0.92	0.071		0.064		0.043		0.36		0.13		0.17	0.42	0.93	0.56	0.78
Cadmium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.31		0.14		0.015		0.058		0.34		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Lead	0.015	(3)	0.014	< 0.0050	< 0.0050	0.028	0.0075	0.0069		< 0.0050		< 0.0050		0.019		0.0064		0.0087	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.0050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	< 0.050	< 0.0050	< 0.050	< 0.050
Silver	0.05	(3)	<0.0050	0.0040 J	< 0.050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		<0.0050	0.0035 J	< 0.050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.00020	0.000087 J	< 0.00020	< 0.00020	< 0.00020	0.000079J		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020	0.000092 J	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/L)																						
Arsenic	0.01	(3)	<0.020	0.021	0.017 J	0.033	< 0.020	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		0.027	< 0.020	< 0.020	< 0.020	< 0.020
Barium	1.0	(3)	0.97	0.74	0.7	0.86	0.85	0.045		0.038		0.044		0.27		0.047		0.14	0.38	0.91	0.4	0.73
Cadmium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-		130	120	130	87	96	50		42		46		58		48		140	120	120	150	93
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0036		< 0.0060		< 0.0060		0.089		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	0.015	< 0.0060	< 0.0060		< 0.0060		< 0.0060		0.023		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)	6.5	1.9	4.2	18	9.6	0.02		< 0.020		< 0.020		9.2		< 0.020		2.5	3	3.2	4.5	2.8
Lead	0.015	(3)	0.0068	< 0.0050	< 0.0050	0.027	0.006	0.0054		< 0.0050		< 0.0050		0.032		< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.005
Magnesium	-	(-)	31	27	27	21	22	7.3		6.5		6.9		11		6.9		23	23	20	30	16
Manganese	0.2	(3)	2.2	2	2.1	1.8	1.5	0.0095		0.0077		0.0066		2.1		0.03		3.6	3.8	3.7	3.6	3.2
Potassium		(-)	1.9	1.8	1.7	2.8	1.5	0.57		<1.0		0.58 J		1.6		< 1.0		1.3	1.2	1.1	2.1	1.3
Selenium	0.05	(3)	<0.050	<0.050	0.043 J	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	<0.0050	0.0031 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		<0.0050	0.0027	< 0.0050	< 0.0050	< 0.0050
Sodium		(-)	490	440	440	410	390	29		31		30		32		31		490	440	440	490	380
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Zinc	10	(3)	<0.020	<0.020	0.093	0.063	< 0.020	0.017		<0.020		0.047		0.1		< 0.020		<0.020	0.046	0.041	< 0.020	< 0.020
Total Petroleum Hydrocarbons (mg/		(0)	0.50	0.45		4.0	4.5	0.46	0.46	0.40	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.40			0.00	0.50
Diesel Range Organics	0.0167	(6)	0.52	0.45	1.4	1.8	1.5	< 0.40	<0.40	< 0.40	<0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.40	0.4	1.1	0.89	0.56
Gasoline Range Organics	0.0101	(6)	2.4	1.3	0.98	1.4	2.4	< 0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<2.5	1.2	1.1	0.87	1.3
Motor Oil Range Organics	0.0858	(6)	<2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- No screening level available

 * Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

 --- = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
 - = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	Source					MW-	-35									MW-	-37				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds (ug/L)																					
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	25	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	7	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane		(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene		(1)	< 1.0		< 1.0		0.77 J		25		19		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane		(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3,5-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	75	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene	11	(5)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	-		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
2-Butanone	5565	(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
2-Chlorotoluene	240	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
2-Hexanone	-		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
2-Methylnaphthalene	36	(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
4-Chlorotoluene	250	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-		< 1.0		< 1.0		< 1.0		1.1		1.1		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Methyl-2-pentanone			< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
Acetone	14064	(4)	4.7 J		11		< 10		< 10		< 10		< 10		< 10		1.0 J		< 10		< 10	
Benzene	5	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromodichloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromoform		(5)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromomethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Carbon disulfide		(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
Carbon Tetrachloride		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloroethane		(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
Chloroform		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloromethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
cis-1,2-DCE		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromochloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromomethane		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Ethylbenzene		(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Isopropylbenzene	447	(4)	< 1.0		< 1.0		2.3		4.7		1.5		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

s	creening	_					MW-	35									MW-	.37				
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18		Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18		Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Methyl tert-butyl ether (MTBE)	100	(3)	0.62 J	< 1.0	< 1.0	< 1.0	0.6 J	0.0012	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride	5	(2)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Naphthalene	1.65	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
n-Butylbenzene	1000	(1)	< 3.0		< 3.0		0.15 J		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
n-Propylbenzene	660	(1)	< 1.0		< 1.0		1.8		4.1		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
sec-Butylbenzene	2000	(1)	< 1.0		< 1.0		1.3		3.6		1.1		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Styrene	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
tert-Butylbenzene	690	(1)	1.4		< 1.0		1.4		1.9		< 1.0		< 1.0		< 1.0		0.14 J		< 1.0		< 1.0	
Tetrachloroethene (PCE)	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Toluene	1000	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
trans-1,3-Dichloropropene	4.71	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane	1136	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Vinyl chloride	2	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Xylenes, Total	620	(3)	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Semi-Volatile Organic Compounds (up		(0)	V 1.0	V1.0	V 1.0	VI.0	V 1.0	VI.0	V 1.0	V1.0	V 1.0	V1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	\ 1.0
1,2,4-Trichlorobenzene	70	(2)																				
1,2-Dichlorobenzene	600	(2)																				
1,3-Dichlorobenzene	-	(=)																				
1,4-Dichlorobenzene	75	(2)																				
1-Methylnaphthalene	11	(5)																				
2,4,5-Trichlorophenol	1166	(4)																				
2,4,6-Trichlorophenol	11.9	(4)																				
2,4-Dichlorophenol	45.3	(4)																				
2,4-Dimethylphenol	354	(4)																				
2,4-Dinitrophenol	38.7	(4)																				
2,4-Dinitrotoluene	2.375	(4)																				
2,6-Dinitrotoluene	0.485	(4)																				
2-Chloronaphthalene	733	(4)																				
2-Chlorophenol	91	(4)																				
2-Methylnaphthalene	36	(1)																				
2-Methylphenol	930	(1)																				
2-Nitroaniline	190	(1)																				
2-Nitrophenol	-	(1)																				
3,3´-Dichlorobenzidine	1.25	(4)																				
3+4-Methylphenol	930	(1)																				
3-Nitroaniline	-	(*/																				
4,6-Dinitro-2-methylphenol	1.52	(4)																				
4-Bromophenyl phenyl ether	-	\.,																				
4-Chloro-3-methylphenol	-																					
4-Chloroaniline	3.7	(5)																				
4-Chlorophenyl phenyl ether	-	(-/																				
4-Nitroaniline	38	(5)																				
4-Nitrophenol	-	(3)																				
Acenaphthene	535	(4)																				
Acenaphthylene	-	(' /																				
Aniline	130	(5)																				
Anthracene	1721	(4)																				
Antinacene	1141	(+)																				

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	_					MW-	35									MW-	.37				
	Levels	Source	Aug-19	Δnr-19	Aug-18	Apr-18	Aug-17		Aug-16	Apr-16	Aug-15	Anr-15	Aug-19	Apr-19	Aug-18	Δnr-18		Apr-17	Aug-16	Δnr-16	Aug-15	Apr-15
Azobenzene	1.2	(5)															Aug 17		Aug 10			
Benzo(a)anthracene	0.1199	(4)																				
Benzo(a)pyrene	0.2	(2)																				
Benzo(b)fluoranthene	0.3432	(4)																				
Benzo(g,h,i)perylene	-	(+)																				
Benzo(k)fluoranthene	3.43	(4)																				
Benzoic acid	75000	(1)																				
Benzyl alcohol	2000	(1)																				
Bis(2-chloroethoxy)methane	59	(1)																				
Bis(2-chloroethyl)ether	0.137	(4)																				
Bis(2-chloroisopropyl)ether	9.81	(4)																				
Bis(2-ethylhexyl)phthalate	6	(2)																				
Butyl benzyl phthalate	160	(5)																				
Carbazole	-	(5)																				
	34.3171	(4)																				
Chrysene Dibenz(a,h)anthracene		(4)																				
	0.0343	(4)																				
Dibenzofuran	- 44000	(4)																				
Diethyl phthalate	14800	(4)																				
Dimethyl phthalate	-	(4)																				
Di-n-butyl phthalate	885	(4)																				
Di-n-octyl phthalate	-	(4)																				
Fluoranthene	802	(4)																				
Fluorene	288	(4)																				
Hexachlorobenzene	0.0976	(4)																				
Hexachlorobutadiene	1.387	(4)																				
Hexachlorocyclopentadiene	0.411	(4)																				
Hexachloroethane	3.2842	(4)																				
Indeno(1,2,3-cd)pyrene	0.3432	(4)																				
Isophorone	781	(4)																				
Naphthalene	1.65	(4)																				
Nitrobenzene	1.4	(4)																				
N-Nitrosodimethylamine	0.0049	(4)																				
N-Nitrosodi-n-propylamine	0.11	(5)																				
N-Nitrosodiphenylamine	121.922	(4)																				
Pentachlorophenol	0.4129	(4)																				
Phenanthrene		(4)																				
Phenol	5761	(4)																				
Pyrene	117	(4)																				
Pyridine	20	(1)																				
General Chemistry (mg/L)																						
Fluoride	1.6	(3)	0.61		<0.50		0.46		0.47		0.55		0.51		0.44		0.45		0.6		0.59	
Chloride	250	(3)	210		210		220		240		180		220		180		150		220		220	
Nitrite	1	(3)	<1.0		<1.0		< 0.10		< 1.0		< 0.10		0.18 J		<1.0		0.25 J		< 1.0		< 0.10	
Bromide	-		2.9		2.8		0.71		2.2		0.74		3.0		2.6		2.5		2.9		1.2	
Nitrate	10	(3)	<1.0		<1.0		0.022 J		< 1.0		0.25		0.18 J		<1.0		0.25 J		< 1.0		< 0.10	
Phosphorus	-		<2.5 H		<2.5 H		< 0.50		< 0.50		< 0.50		<2.5 H		<0.50 H		< 2.5		< 0.50		< 0.50	
Sulfate	600	(3)	91		16		1.5		14		11		1200		420		720		270		110	
Carbon Dioxide (CO ₂)	-		920 H		940 H		830		850		790		520 H		640 H		450		690		770	
Alkalinity (CaCO ₃)	-		1005		1004		905.4		905		845		572.6		703		503.5		766.7		855.5	
Bicarbonate (CaCO ₃)	-		1005		1004		905.4		905		845		572.6		703		503.5		766.7		855.5	
bicarbonate (CaCO ₃)	-		1000		1004		303.4		300		040		312.0		103		303.3		700.7		655.5	

													-									
,	Screening	Source					MW-3	35									MW-	37				
	Levels	304.00	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Total Metals (mg/L)																						
Arsenic	0.01	(3)	0.016 J		<0.020		0.076		0.047		0.11		<0.020		<0.020		0.019 J		< 0.020		< 0.020	
Barium	2.0	(3)	1.2		0.94		0.92		1.3		1.6		0.17		0.10		0.49		0.27		0.42	
Cadmium	0.005	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	0.0038 J		<0.0060		0.016		< 0.0060		< 0.0060		0.0040 J		<0.0060		0.022		< 0.0060		< 0.0060	
Lead	0.015	(3)	0.0042 J		<0.0050		0.005 J		0.0098		< 0.0050		< 0.0050		< 0.0050		< 0.0050		0.0068		< 0.0050	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	0.00077		< 0.0050		< 0.0050		< 0.0050		< 0.0050		0.0024 J		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Mercury	0.002	(3)	0.00012 J		<0.00020		0.000044 J		< 0.00020		< 0.00020		0.00007 J		< 0.00020		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/L)																						
Arsenic	0.01	(3)	0.037		< 0.020		0.036		0.038		0.038		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020	
Barium	1.0	(3)	1.1		0.79		0.57		0.82		1.6		0.053		0.079		0.11		0.22		0.4	
Cadmium	0.005	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-		140		120		120		120		110		220		120		110		86		92	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		0.0024 J		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Iron	1	(3)	1.9		0.13		1.7		3.4		0.1		0.63		0.20		0.13		1.6		< 0.020	
Lead	0.015	(3)	0.0061		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Magnesium	-		24		22		21		21		21		41		21		21		19		21	
Manganese	0.2	(3)	2.4		1.9		1.8		2.5		2.4		2.0		1.1		0.89		0.96		1	
Potassium	-		3.0		2.9		2.9		2.8		2.5		3.6		2.7		2.7		2.9		2.8	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	0.0017 J		< 0.0050		< 0.0050		< 0.0050		< 0.0050		0.0030 J		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Sodium	-		400		380		370		380		340		530		430		460		460		420	
Uranium	0.03	(3)	< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10		< 0.10	
Zinc	10	(3)	0.021		<0.020		0.037		< 0.020		0.023		0.015 J		<0.020		0.018 J		< 0.020		< 0.020	
Total Petroleum Hydrocarbons (mg/L	_)																					
Diesel Range Organics	0.0167	(6)	0.26 J		<0.40		0.5	0.44	0.62	0.55	0.38	0.55	<0.40	<0.40	< 0.40	<0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.45
Gasoline Range Organics	0.0101	(6)	0.35		0.30		0.34	0.81	0.52	0.25	0.54	0.25	< 0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	0.0858	(6)	< 2.5		< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5	< 2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- = No screening level available

 * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

 --- = Analysis not required and/or well contains separate phase

 = Analytical result exceeds the respective screening level.

 ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	Source					MW-38					
	Levels	Source	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds (ug/L)			Ŭ									
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	25	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	7	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-	(-)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	7	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	0.01	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	11.55	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene	56	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	0.05	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene	302	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC)	1.71	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane	4.376	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3,5-Trimethylbenzene	60	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene	-	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	370	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	75	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene	11	(5)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
	11	(5)				+				_		_
2,2-Dichloropropane	-	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
2-Butanone	5565	(4)	< 10		< 10		< 10		< 10		< 10	
2-Chlorotoluene	240	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
2-Hexanone	-	(4)	< 10		< 10		< 10		< 10		< 10	
2-Methylnaphthalene	36	(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
4-Chlorotoluene	250	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Methyl-2-pentanone	-	(1)	< 10		< 10		< 10		< 10		< 10	
Acetone	14064	(4)	2.6 J		2.6 J		2.6 J		< 10		< 10	
Benzene	5	(3)	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Bromobenzene	62	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromodichloromethane	1.34	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromoform	33	(5)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromomethane	7.545	(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Carbon disulfide	810	(4)	< 10		< 10		< 10		< 10		< 10	
Carbon Tetrachloride	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chlorobenzene	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloroethane	20900	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
Chloroform	2.29	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloromethane	20.3	(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
cis-1,2-DCE	70	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene	4.7	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromochloromethane	1.68	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromomethane	8.3	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane	197	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Ethylbenzene	700	(3)	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Hexachlorobutadiene	1.39	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Isopropylbenzene	447	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening						MW 20				•	
	Levels	Source	A.u. 10	Apr 10	Aug 10	Anz 10	MW-38	Apr 17	Aug 16	Apr 16	A.v. 45	Apr 15
Methyl tert-butyl ether (MTBE)	100	(2)	Aug-19 0.65 J	Apr-19 < 1.0	Aug-18 < 1.0	Apr-18 < 1.0	Aug-17 0.41 J	Apr-17 < 1.0	Aug-16 < 1.0	Apr-16 < 1.0	Aug-15 < 1.0	Apr-15 < 1.0
Methylene Chloride	5	(3)	< 3.0		< 3.0	< 1.0	< 3.0	< 1.0 	< 3.0	< 1.0 	< 3.0	
Naphthalene	1.65	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
n-Butylbenzene	1000	(1)	< 1.0		< 1.0		< 1.0		< 3.0		< 3.0	
,	660			_			< 3.0				< 1.0	
n-Propylbenzene	2000	(1)	< 3.0 < 1.0		< 3.0 < 1.0		< 1.0		< 1.0 < 1.0		< 1.0	
sec-Butylbenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Styrene	100 690	(2)	0.57 J	_							< 1.0	
tert-Butylbenzene Tetrachloroethene (PCE)	5	(1) (2)	< 1.0		< 1.0 < 1.0		0.48 J < 1.0		< 1.0 < 1.0		< 1.0	
`	1000			<1.0		<1.0		<1.0	< 1.0		< 1.0	<1.0
Toluene trans-1,2-DCE	1000	(3)	< 1.0 < 1.0	<1.0	< 1.0 < 1.0	<1.0	< 1.0 < 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
		(2)		_		_						
trans-1,3-Dichloropropene	4.71	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5 1136	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Vinyl chloride	2 620	(3)	< 1.0	4.5	< 1.0	4.5	< 1.0	4.5	< 1.0	4.5	< 1.0	4.5
Xylenes, Total		(3)	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5
Semi-Volatile Organic Compounds		(0)	40		40				40			
1,2,4-Trichlorobenzene	70	(2)	< 10		< 10				< 10			
1,2-Dichlorobenzene	600	(2)	< 10		< 10				< 10			
1,3-Dichlorobenzene	-	(0)	< 10		< 10				< 10			
1,4-Dichlorobenzene	75	(2)	< 10		< 10				< 10			
1-Methylnaphthalene	11	(5)	< 10		< 10				< 10			
2,4,5-Trichlorophenol	1166	(4)	< 10		< 10				< 10			
2,4,6-Trichlorophenol	11.9	(4)	< 10		< 10				< 10			
2,4-Dichlorophenol	45.3	(4)	< 20		< 20				< 20			
2,4-Dimethylphenol	354	(4)	< 10		< 10				< 10			
2,4-Dinitrophenol	38.7	(4)	< 20		< 20				< 20			
2,4-Dinitrotoluene	2.375	(4)	< 10		< 10				< 10			
2,6-Dinitrotoluene	0.485	(4)	< 10		< 10				< 10			
2-Chloronaphthalene	733	(4)	< 10		< 10				< 10			
2-Chlorophenol	91	(4)	< 10		< 10				< 10			
2-Methylnaphthalene	36	(1)	< 10		< 10				< 10			
2-Methylphenol	930	(1)	< 10		< 10				< 10			
2-Nitroaniline	190	(1)	< 10		< 10				< 10			
2-Nitrophenol	-	(1)	< 10		< 10				< 10			
3,3´-Dichlorobenzidine	1.25	(4)	< 10		< 10				< 10			
3+4-Methylphenol	930	(1)	< 10		< 10				< 10			
3-Nitroaniline	-	4.13	< 10		< 10				< 10			
4,6-Dinitro-2-methylphenol	1.52	(4)	< 20		< 20				< 20			
4-Bromophenyl phenyl ether	-		< 10		< 10				< 10			
4-Chloro-3-methylphenol	-	(5)	< 10		< 10				< 10			
4-Chloroaniline	3.7	(5)	< 10		< 10				< 10			
4-Chlorophenyl phenyl ether	-	4	< 10		< 10				< 10			
4-Nitroaniline	38	(5)	< 10		< 10				< 10			
4-Nitrophenol	-		< 10		< 10				< 10			
Acenaphthene	535	(4)	< 10		< 10				< 10			
Acenaphthylene	-		< 10		< 10				< 10			
Aniline	130	(5)	< 10		< 10				< 10			
Anthracene	1721	(4)	< 10		< 10				< 10			

TABLE 5
Downgradient Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening						MM/ 20			_	•	
	Levels	Source	Aug. 40	Ams 40	Aug 40	Ans 40	MW-38	A m = 47	Aug 40	Ame 40	Aug 45	A 11 . 4 . 5
A-ah au		(5)	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Azobenzene	1.2 0.1199	(5)	< 10		< 10				< 10			
Benzo(a)anthracene	0.1199	(4)	< 10		< 10				< 10			
Benzo(a)pyrene	0.2	(2)	< 10		< 10				< 10			
Benzo(b)fluoranthene		(4)	< 10		< 10				< 10			
Benzo(g,h,i)perylene	3.43	(4)	< 10 < 10		< 10 < 10				< 10 < 10			
Benzo(k)fluoranthene	75000	(4)	< 20		< 20				< 20			
Benzoic acid	2000	(1)	< 10		< 10				< 10			
Benzyl alcohol	59	(1)	< 10		< 10				< 10			
Bis(2-chloroethoxy)methane	0.137	(1)	< 10		< 10							
Bis(2-chloroethyl)ether	9.81	(4)	< 10		< 10				< 10 < 10			
Bis(2-chloroisopropyl)ether		(4)			< 10							
Bis(2-ethylhexyl)phthalate	6 160	(2)	< 10						< 10			
Butyl benzyl phthalate	-	(5)	< 10		< 10				< 10			
Carbazole		(4)	< 10		< 10				< 10			
Chrysene Dibenz(a,h)anthracene	34.3171 0.0343	(4)	< 10 < 10		< 10 < 10				< 10 < 10			
	0.0343	(4)	< 10		< 10				< 10			
Dibenzofuran	1 1000	(4)	< 10		< 10				< 10			
Diethyl phthalate	14800	(4)	< 10						< 10			
Dimethyl phthalate	-	(4)			< 10							
Di-n-butyl phthalate	885	(4)	< 10		< 10				< 10			
Di-n-octyl phthalate	-	(4)	< 10		< 10				< 10			
Fluoranthene	802	(4)	< 10		< 10				< 10			
Fluorene	288	(4)	< 10		< 10				< 10			
Hexachlorobenzene	0.0976	(4)	< 10		< 10				< 10			
Hexachlorobutadiene	1.387	(4)	< 10		< 10				< 10			
Hexachlorocyclopentadiene	0.411	(4)	< 10		< 10				< 10			
Hexachloroethane	3.2842	(4)	< 10		< 10				< 10			
Indeno(1,2,3-cd)pyrene	0.3432	(4)	< 10		< 10				< 10			
Isophorone	781	(4)	< 10		< 10				< 10			
Naphthalene	1.65	(4)	< 10		< 10				< 10			
Nitrobenzene	1.4	(4)	< 10		< 10				< 10			
N-Nitrosodimethylamine	0.0049	(4)	< 10		< 10				< 10			
N-Nitrosodi-n-propylamine	0.11	(5)	< 10		< 10				< 10			
N-Nitrosodiphenylamine	121.922	(4)	< 10		< 10				< 10			
Pentachlorophenol	0.4129	(4)	< 20		< 20				< 20			
Phenanthrene	170.4146	(4)	< 10		< 10				< 10			
Phenol	5761	(4)	< 10		< 10				< 10			
Pyrene	117	(4)	< 10		< 10				< 10			
Pyridine	20	(1)	< 10		< 10				< 10			
General Chemistry (mg/L)		4-1										
Fluoride	1.6	(3)	0.6		0.4		0.53		0.64		0.84	
Chloride	250	(3)	170		140		100		75		30	
Nitrite	1	(3)	0.097 J		<1.0		0.17 J		< 1.0		< 0.10	
Bromide	-	41.	2.3		1.9		1.4		0.98		0.38	
Nitrate	10	(3)	0.097 J		<1.0		0.17 J		< 1.0		< 0.10	
Phosphorus	-		<2.5 H		<0.50 H		< 2.5		< 0.50		< 0.50	
Sulfate	600	(3)	13		21		3.4		4.6		30	
Carbon Dioxide (CO ₂)	-		620 H		630 H		530		450		310	
Alkalinity (CaCO ₃)	-		686.8		682.4		587.7		497		345.6	
Bicarbonate (CaCO ₃)	-		686.8		682.4		587.7		497		345.6	
biodiboliate (0a003)			0.00		JU2.4		301.1		431		J4J.0	

•											-	
	Screening	Source					MW-38					
	Levels	Oouroo	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Total Metals (mg/L)												
Arsenic	0.01	(3)	< 0.020		<0.020		0.015 J		< 0.020		< 0.020	
Barium	2.0	(3)	0.56		0.57		0.69		0.6		0.16	
Cadmium	0.005	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	0.0070		<0.0060		0.042		< 0.0060		< 0.0060	
Lead	0.015	(3)	< 0.0050		< 0.0050		< 0.0050		0.0093		< 0.0050	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Mercury	0.002	(3)	0.000044 J		<0.00020		< 0.000039 J		< 0.00020		< 0.00020	
Dissolved Metals (mg/L)												
Arsenic	0.01	(3)	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020	
Barium	1.0	(3)	0.55		0.52		0.43		0.55		0.16	
Cadmium	0.005	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-		130		120		100		98		37	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		0.033		< 0.0060	
Iron	1	(3)	0.18		0.13		0.16		13		0.032	
Lead	0.015	(3)	< 0.0050		< 0.0050		< 0.0050		0.014		< 0.0050	
Magnesium	-		21		20		16		16		6	
Manganese	0.2	(3)	2.8		2.7		2.4		3		0.93	
Potassium	-		2.3		2.2		1.9		2.8		1.1	
Selenium	0.05	(3)	< 0.050		< 0.050		0.030 J		< 0.050		< 0.050	
Silver	0.05	(3)	0.0018 J		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Sodium	-		220		210		190		180		130	
Uranium	0.03	(3)	< 0.10		< 0.10		< 0.10		< 0.10		< 0.10	
Zinc	10	(3)	0.025		<0.020		0.034		0.053		0.022	
Total Petroleum Hydrocarbons (mg/	'L)											
Diesel Range Organics	0.0167	(6)	< 0.40	0.43	< 0.40	<0.40	< 0.20	<0.20	0.28	<0.20	< 0.20	<0.20
Gasoline Range Organics	0.0101	(6)	0.052	<0.050	0.18	0.058	0.047 J	<0.050	< 0.050	<0.050	< 0.050	<0.050
Motor Oil Range Organics	0.0858	(6)	< 2.5	<2.5	< 2.5	<2.5	<2.5	<2.5	< 2.5	<2.5	< 2.5	<2.5

Notes:

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)

(0)	(******
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.

= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

		1	1						BB14 F4					1414/ FO			********	
	Screening Levels	Source	A.u. 47		/-50	A.c. 44	A 40	A 40	MW-51	A 4C	A 45	A.u. 40	A.u. 40	MW-53	A 4C	A 4 E	**MW-54	**MW-55
Volatile Organic Compounds			Aug-17	Aug-16	Aug-15	Aug-14	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19
1,1,1,2-Tetrachloroethane	<u> </u>	(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 2.0	< 1.0	< 1.0		
1,1,1-Trichloroethane	5	(3)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,1,2,2-Tetrachloroethane	10	(3)		< 2.0					< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		
1,1,2-Trichloroethane	5	(3)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,1-Dichloroethane	25	(3)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,1-Dichloroethene	7	(3)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,1-Dichloropropene	7	(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		(1)		< 1.0 < 2.0					< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0		< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0		
1,2,4-Trichlorobenzene		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,2,4-Trimethylbenzene	56	(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,2-Dibromo-3-chloropropane	0.2	(2)		< 2.0					< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		
1,2-Dibromoethane (EDB)	0.05	(3)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,2-Dichlorobenzene	302	(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,2-Dichloroethane (EDC)	1.71	(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,2-Dichloropropane		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	- 60	(1)		< 1.0 < 1.0					< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		
1,3-Dichloropenzene		(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1,4-Dichlorobenzene	75	(2)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
1-Methylnaphthalene	11	(5)		< 4.0					< 4.0	< 4.0	< 4.0	< 4.0		< 4.0	< 4.0	< 4.0		
2,2-Dichloropropane				< 2.0					< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		
2-Butanone	5565	(4)		< 10					< 10	< 10	< 10	< 10		< 10	< 10	< 10		
2-Chlorotoluene	240	(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
2-Hexanone	-	(1)		< 10					< 10	< 10	< 10	< 10		< 10	< 10	< 10		
2-Methylnaphthalene	36	(1)		< 4.0					< 4.0	< 4.0	< 4.0	< 4.0		< 4.0	< 4.0	< 4.0		
4-Chlorotoluene 4-Isopropyltoluene	250	(1)		< 1.0 < 1.0					< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		
4-Methyl-2-pentanone				< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Acetone		(4)		< 10					1.6 J	< 10	< 10	< 10		3.2 J	< 10	< 10		
Benzene	5	(3)		< 1.0				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Bromobenzene	62	(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Bromodichloromethane		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Bromoform	33	(5)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Bromomethane	-	(4)		< 3.0					< 3.0	< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		
Carbon disulfide Carbon Tetrachloride	810 5	(4)		< 10 < 1.0					< 10 < 1.0	< 10 < 1.0	< 10 < 1.0	< 10 < 1.0		< 10 < 1.0	< 10 < 1.0	< 10 < 1.0		
Carbon Tetrachionde Chlorobenzene	100	(2)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Chloroethane	-	(4)		< 2.0					< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		
Chloroform	2.29	(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Chloromethane		(4)		< 3.0					< 3.0	< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		
cis-1,2-DCE	70	(2)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
cis-1,3-Dichloropropene		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Dibromochloromethane		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Dibromomethane		(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Dichlorodifluoromethane		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Ethylbenzene Hexachlorobutadiene		(3)		< 1.0 < 1.0				< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		
Isopropylbenzene		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Methyl tert-butyl ether (MTBE)	100	(3)		< 1.0				< 1.0	< 1.0	< 1.0	< 1.0	0.69 J	< 1.0	0.63 J	< 1.0	< 1.0		
Methylene Chloride		(2)		< 3.0					< 3.0	< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		
Naphthalene	1.65	(4)		< 2.0					< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		
n-Butylbenzene		(1)		< 3.0					< 3.0	< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		
n-Propylbenzene		(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
sec-Butylbenzene	<u> </u>	(1)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Styrene		(2)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
tert-Butylbenzene Tetrachloroethene (PCE)		(1)		< 1.0 < 1.0					< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		
Toluene		(3)		< 1.0				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
trans-1,2-DCE		(2)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
trans-1,3-Dichloropropene		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Trichloroethene (TCE)		(2)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Trichlorofluoromethane		(4)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Vinyl chloride		(3)		< 1.0					< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		
Xylenes, Total	620	(3)		< 1.5				< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5		

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening			MW	/-50				MW-51					MW-53			**MW-54	**MW-55
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19
Semi-Volatile Organic Compo	unds (ua/L))	Aug II	Aug 10	Aug 10	Aug 14	Aug 10	Aug 10	Aug II	Aug 10	Aug 10	Aug 13	Aug 10	Aug II	Aug IV	Aug 10	Aug 10	Aug 10
1,2,4-Trichlorobenzene		(2)		< 10				< 10		< 10						< 10		
1,2-Dichlorobenzene	600	(2)		< 10				< 10		< 10						< 10		
1,3-Dichlorobenzene	-			< 10				< 10		< 10						< 10		
1,4-Dichlorobenzene	75	(2)		< 10				< 10		< 10						< 10		
1-Methylnaphthalene	11	(5)		< 10				< 10		< 10						< 10		
2,4,5-Trichlorophenol	1166	(4)		< 10				< 10		< 10						< 10		
2,4,6-Trichlorophenol	11.9	(4)		< 10				< 10		< 10						< 10		
2,4-Dichlorophenol	45.3	(4)		< 20				< 20		< 20						< 20		
2,4-Dimethylphenol		(4)		< 10				< 10		< 10						< 10		
2,4-Dinitrophenol	38.7	(4)		< 20				< 20		< 20						< 20		
2,4-Dinitrotoluene		(4)		< 10				< 10		< 10						< 10		
2,6-Dinitrotoluene		(4)		< 10				< 10		< 10						< 10		
2-Chloronaphthalene		(4)		< 10				< 10		< 10						< 10		
2-Chlorophenol	91	(4)		< 10				< 10		< 10						< 10		
2-Methylnaphthalene		(1)		< 10				< 10		< 10						< 10		
2-Methylphenol		(1)		< 10				< 10		< 10						< 10		
2-Nitroaniline	190	(1)		< 10				< 10		< 10						< 10		
2-Nitrophenol	-	(4)		< 10				< 10		< 10						< 10		
3,3´-Dichlorobenzidine		(4)		< 10				< 10		< 10						< 10		
3+4-Methylphenol	930	(1)		< 10				< 10		< 10						< 10		
3-Nitroaniline 4,6-Dinitro-2-methylphenol		(4)		< 10				< 10		< 10						< 10		
	1.52	(4)		< 20 < 10				< 20		< 20 < 10						< 20 < 10		
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	-			< 10				< 10 < 10		< 10						< 10		
4-Chloro-3-methylphenol	3.7	(5)		< 10				< 10		< 10						< 10		
4-Chlorophenyl phenyl ether	-	(3)		< 10				< 10		< 10						< 10		
4-Nitroaniline	38	(5)		< 10				< 10		< 10						< 10		
4-Nitrophenol	-	(3)		< 10				< 10		< 10						< 10		
Acenaphthene		(4)		< 10				< 10		< 10						< 10		
Acenaphthylene	-	(-)		< 10				< 10		< 10						< 10		
Aniline	130	(5)		< 10				< 10		< 10						< 10		
Anthracene		(4)		< 10				< 10		< 10						< 10		
Azobenzene		(5)		< 10				< 10		< 10						< 10		
Benzo(a)anthracene		(4)		< 10				< 10		< 10						< 10		
Benzo(a)pyrene		(2)		< 10				< 10		< 10						< 10		
Benzo(b)fluoranthene		(4)		< 10				< 10		< 10						< 10		
Benzo(g,h,i)perylene	-			< 10				< 10		< 10						< 10		
Benzo(k)fluoranthene	3.43	(4)		< 10				< 10		< 10						< 10		
Benzoic acid	75000	(1)		< 20				< 20		< 20						< 20		
Benzyl alcohol	2000	(1)		< 10				< 10		< 10						< 10		
Bis(2-chloroethoxy)methane	59	(1)		< 10				< 10		< 10						< 10		
Bis(2-chloroethyl)ether		(4)		< 10				< 10		< 10						< 10		
Bis(2-chloroisopropyl)ether	9.81	(4)		< 10				< 10		< 10						< 10		
Bis(2-ethylhexyl)phthalate	6	(2)		< 10				< 10		< 10						12		
Butyl benzyl phthalate		(5)		< 10				< 10		< 10						< 10		
Carbazole				< 10				< 10		< 10						< 10		
Chrysene		(4)		< 10				< 10		< 10						< 10		
Dibenz(a,h)anthracene		(4)		< 10				< 10		< 10						< 10		
Dibenzofuran		4.13		< 10				< 10		< 10						< 10		
Diethyl phthalate		(4)		< 10				< 10		< 10						< 10		
Dimethyl phthalate		(4)		< 10				< 10		< 10						< 10		
Di-n-butyl phthalate		(4)		< 10				< 10		< 10						< 10		
Di-n-octyl phthalate		(4)		< 10				< 10		< 10						< 10		
Fluoranthene		(4)		< 10				< 10		< 10						< 10		
Fluorene Hexachlorobenzene		(4)		< 10				< 10		< 10						< 10		
		(4)		< 10				< 10		< 10						< 10		
Hexachlorobutadiene		(4)		< 10 < 10				< 10		< 10						< 10		
Hexachlorocyclopentadiene Hexachloroethane		(4)		< 10				< 10 < 10		< 10 < 10						< 10 < 10		
Indeno(1,2,3-cd)pyrene		(4)		< 10				< 10		< 10						< 10		
Indeno(1,2,3-cd)pyrene		(4)		< 10				< 10		< 10						< 10		
isopilototte	101	(4)		<u> </u>				<u> </u>		< 10						<u> </u>		

	Screening			MW	-50				MW-51					MW-53			**MW-54	**MW-55
	Levels	Source	Aug 17		Aug-15	Aug 14	Aug-19	Aug 10		Aug-16	Aug 15	Aug 10	Aug 19		Aug 16	Aug 15		
Nowhthologo		(4)	Aug-17	Aug-16		Aug-14		Aug-18	Aug-17		Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19
Naphthalene	1.65	(4)		< 10				< 10		< 10						< 10		
Nitrobenzene	1.4	(4)		< 10				< 10		< 10						< 10		
N-Nitrosodimethylamine	0.0049	(4)		< 10				< 10		< 10						< 10		
N-Nitrosodi-n-propylamine	0.11	(5)		< 10				< 10		< 10						< 10		
N-Nitrosodiphenylamine	121.922	(4)		< 10				< 10		< 10						< 10		
Pentachlorophenol	0.4129	(4)		< 20				< 20		< 20						< 20		
Phenanthrene	170.4146	(4)		< 10				< 10		< 10						< 10		
Phenol	5761	(4)		< 10				< 10		< 10						< 10		
Pyrene	117	(4)		< 10				< 10		< 10						< 10		
Pyridine	20	(1)		< 10				< 10		< 10						< 10		
General Chemistry (mg/L)		(=)																
Fluoride	1.6	(3)		0.23				0.40	0.37	0.5	0.52	<0.050	< 2.0	< 0.10	< 0.10	< 0.10		
Chloride	250	(3)		4.5				8.3	11	11	8.3	920	890	1000	920	960		
Nitrite	1	(3)		< 0.10				<1.0	< 0.10	< 0.10	< 0.10	14	15	< 2.0	< 2.0	< 2.0		
Bromide	-			< 0.10				< 0.10	< 0.10	0.15	< 0.10	1.8	2.2	2.2	3	2.1		
Nitrate	10	(3)		0.23				<1.0	0.44	1.7	0.34	14	15	12	12	9.3		
Phosphorus	-			< 0.50				< 0.50	< 0.50	< 0.50	< 0.50	<2.5 H	< 0.50	< 0.50	< 0.50	< 10		
Sulfate	600	(3)		37				12	45	120	43	960	900	1100	980	1000		
Carbon Dioxide (CO ₂₎	-			230				230	270	220	240	320	330	300	300	290		
Alkalinity (CaCO ₃)	-			255.9				254.1	287.7	243	264.9	350.9	350.6	331.1	329.8	318.5		
Bicarbonate (CaCO ₃)				255.9				254.1	287.7	243	264.9				329.8	318.5		
	-			255.9				234.1	201.1	243	204.9	350.9	350.6	331.1	329.0	310.3		
Total Metals (mg/L)	2.21	(0)						2 222	2.25	0.000								
Arsenic	0.01	(3)		< 0.020				< 0.020	< 0.050	< 0.020	< 0.020	< 0.020	< 0.020	< 0.050	< 0.020	< 0.020		
Barium	2.0	(3)		0.31				0.17	0.12	0.12	0.11	0.28	< 0.020	0.12	0.051	0.64		
Cadmium	0.005	(3)		< 0.0020				< 0.0020	< 0.0020			< 0.0020	< 0.0020	< 0.0020		< 0.0020		
Chromium	0.05	(3)		0.0092				< 0.0060	< 0.0060			0.0040 J	< 0.0060	0.0034 J		0.012		
Lead	0.015	(3)		0.0059				< 0.0050	< 0.0050			0.0043 J	< 0.0050	< 0.0050		0.01		
Selenium	0.05	(3)		< 0.050				< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0050		
Silver	0.05	(3)		< 0.0050						< 0.0050		0.0040 J	0.01	< 0.0050		< 0.050		
Mercury	0.002	(3)		< 0.00020				< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.00015 J	< 0.00020	< 0.00020	< 0.00020	< 0.00020		
Dissolved Metals (mg/L)																		
Arsenic	0.01	(3)		< 0.020				0.020	0.015 J	< 0.020	< 0.020	< 0.020	< 0.020	0.052	< 0.020	< 0.020		
Barium	1.0	(3)		0.077				0.12	0.11	0.063	0.05	0.011 J	< 0.020	0.013 J	< 0.020	0.026		
Cadmium	0.005	(3)		< 0.0020				< 0.0020				< 0.0020	< 0.0020	< 0.0020		< 0.0020		
Calcium	-			65				60	71	91	63	330	380	380	390	360		
Chromium	0.05	(3)		< 0.0060				< 0.0060	< 0.0060			< 0.0060	< 0.0060	< 0.0060		< 0.0060		
Copper	1	(3)		< 0.0060				< 0.0060	< 0.0060			0.0034 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060		
Iron	1	(3)		0.2				0.075	0.037	0.15	0.041	<0.020	<0.020	0.0065 J	< 0.020	0.21		
Lead	0.015	(3)		< 0.0050				0.0086	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
Magnesium	-			14				12	14	18	13	50	52	54	56	54		
Manganese	0.2	(3)		1.6				2.5	2.4	0.95	0.77	0.30	0.48	0.57	0.61	0.41		
Potassium	-			1.9				1.5	1.7	1.8	1.7	4.4	4.1	4.6	5	5.3		
Selenium	0.05	(3)		< 0.050				< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		
Silver	0.05	(3)		< 0.0050				< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0043 J	0.011	< 0.0050	< 0.0050	< 0.0050		
Sodium	-			41				37	40	51	47	720	770	770	780	800		
Uranium	0.03	(3)		< 0.10				< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Zinc	10	(3)		0.021				< 0.020	0.016 J		< 0.020	0.022	<0.020	0.026	0.025	0.028		
Total Petroleum Hydrocarbons		,		· · · ·														
Diesel Range Organics	0.0167	(6)		< 0.20				< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.40	< 0.20	< 0.20	< 0.20		
Gasoline Range Organics	0.0101	(6)		< 0.050				< 0.050	< 0.050			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		
Motor Oil Range Organics																		
Motor Oil Range Organics	0.0858	(6)		< 2.5				< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		

Notes:

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)

,	
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.

= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Caraanina				MANA EC					MIN ET			**MW-58			MANA FO				*******	
	Screening Levels	Source	Aug-19	Aug-18	MW-56 Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	MW-57 Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-18	MW-59 Aug-17	Aug-16	Aug-15	Aug-19	**MW-60 Aug-18	Aug-17
Volatile Organic Compounds			Aug-19	Aug-10	Aug-17	Aug-16	Aug-15	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15	Aug-19	Aug-16	Aug-17
1,1,1,2-Tetrachloroethane	5.74	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,1,1-Trichloroethane	5	(3)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,1,2,2-Tetrachloroethane	10	(3)				< 2.0					< 20			< 2.0		< 2.0	< 2.0	< 2.0			< 2.0
1,1,2-Trichloroethane	5	(3)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,1-Dichloroethane	25	(3)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,1-Dichloroethene	7	(3)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,1-Dichloropropene 1.2.3-Trichlorobenzene	7	(1)				< 1.0					< 10 < 10			< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0			< 1.0 < 1.0
1,2,3-Trichloropropane	0.01	(4)				< 2.0					< 20			< 2.0		< 2.0	< 2.0	< 2.0			< 2.0
1,2,4-Trichlorobenzene	11.55	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,2,4-Trimethylbenzene	56	(1)				300					37			<1.0		0.35 J	< 1.0	< 1.0			0.24 J
1,2-Dibromo-3-chloropropane	0.2	(2)				< 2.0					< 20			< 2.0		< 2.0	< 2.0	< 2.0			< 2.0
1,2-Dibromoethane (EDB)	0.05	(3)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,2-Dichlorobenzene	302	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,2-Dichloroethane (EDC)	1.71	(4)				< 1.0					< 10			10		38	25	18			< 1.0
1,2-Dichloropropane 1,3,5-Trimethylbenzene	4.376 60	(4)				< 1.0 97					< 10 16			< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0			< 1.0 < 1.0
1,3-Dichlorobenzene	-	(1)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,3-Dichloropropane	370	(1)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1,4-Dichlorobenzene	75	(2)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
1-Methylnaphthalene	11	(5)				19					100			< 4.0		< 4.0	< 4.0	< 4.0			0.51 J
2,2-Dichloropropane	-					< 2.0					< 20			< 2.0		< 2.0	< 2.0	< 2.0			< 2.0
2-Butanone	5565	(4)				26					< 100			< 10		< 10	< 10	< 10			< 10
2-Chlorotoluene	240	(1)				< 1.0					< 10			< 1.0		< 1.0	< 1.0 < 10	< 1.0			< 1.0
2-Hexanone 2-Methylnaphthalene	36	(1)				< 10 26					< 100 95			< 10 < 4.0		< 10 < 4.0	< 4.0	< 10 < 4.0			< 10 0.32 J
4-Chlorotoluene	250	(1)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
4-Isopropyltoluene	-	(.)				11					< 10			0.53 J		0.84 J	1.5	< 1.0			< 1.0
4-Methyl-2-pentanone	-					< 10					< 100			< 10		< 10	< 10	< 10			< 10
Acetone	14064	(4)				150					< 100			< 10		4.9 J	< 10	< 10			< 10
Benzene	5	(3)				180					2900			7.5	23	24	7.7	7.3			0.30 J
Bromobenzene	62	(1)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Bromodichloromethane Bromoform	1.34	(4) (5)				< 1.0 < 1.0					< 10 < 10			< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0			< 1.0 < 1.0
Bromomethane	7.545	(4)				< 3.0					< 30			< 3.0		< 3.0	< 3.0	< 3.0			< 3.0
Carbon disulfide	810	(4)				< 10					< 100			< 10		< 10	< 10	< 10			< 10
Carbon Tetrachloride	5	(2)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Chlorobenzene	100	(2)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Chloroethane	20900	(4)				< 2.0					< 20			< 2.0		< 2.0	< 2.0	< 2.0			< 2.0
Chloroform	2.29	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Chloromethane	20.3	(4)				< 3.0					< 30			< 3.0		< 3.0	< 3.0	< 3.0			< 3.0
cis-1,2-DCE cis-1,3-Dichloropropene	70 4.7	(2)				< 1.0 < 1.0					< 10 < 10			< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0			< 1.0 < 1.0
Dibromochloromethane	1.68	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Dibromomethane	8.3	(1)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Dichlorodifluoromethane	197	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Ethylbenzene	700	(3)				88					270			64	76	40	65	29			0.14 J
Hexachlorobutadiene	1.39	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Isopropylbenzene	447	(4)				13					40			14	1400	8.4	12	5			< 1.0
Methyl tert-butyl ether (MTBE) Methylene Chloride	100 5	(3)				380 < 3.0					33 < 30			830 < 3.0	1400	1900 < 3.0	1200 < 3.0	1400 < 3.0			< 1.0 < 3.0
Naphthalene	1.65	(4)				< 3.0 52					160			< 2.0		0.53 J	2.8	< 2.0			< 2.0
n-Butylbenzene	1000	(1)				10					< 30			2.8 J		2.3 J	< 3.0	< 3.0			< 3.0
n-Propylbenzene	660	(1)				19					53			21		7.8	12	4.4			< 1.0
sec-Butylbenzene	2000	(1)				7.8					< 10			4.7		4.9	5.4	4.5			< 1.0
Styrene	100	(2)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
tert-Butylbenzene	690	(1)				< 1.0					< 10			0.46 J		0.56 J	< 1.0	< 1.0			< 1.0
Tetrachloroethene (PCE)	5	(2)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Toluene trans-1,2-DCE	1000	(3)				1.4					< 10			< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0			< 1.0
trans-1,3-Dichloropropene	4.71	(2) (4)				< 1.0 < 1.0					< 10 < 10			< 1.0 < 1.0		< 1.0	< 1.0 < 1.0	< 1.0			< 1.0 < 1.0
Trichloroethene (TCE)	5	(2)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Trichlorofluoromethane	1136	(4)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Vinyl chloride	2	(3)				< 1.0					< 10			< 1.0		< 1.0	< 1.0	< 1.0			< 1.0
Xylenes, Total	620	(3)				210					57			< 1.5	< 1.5	< 1.5	< 1.5	< 1.5			< 1.5

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening	Source			MW-56					MW-57			**MW-58			MW-59				**MW-60	
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17
Semi-Volatile Organic Compou	unds (ug/L)																				
1,2,4-Trichlorobenzene	70	(2)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
1,2-Dichlorobenzene	600	(2)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
1,3-Dichlorobenzene	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
1,4-Dichlorobenzene	75	(2)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
1-Methylnaphthalene	11	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2,4,5-Trichlorophenol	1166	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2,4,6-Trichlorophenol	11.9	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2,4-Dichlorophenol	45.3	(4)				< 20					< 100			< 20	< 20	< 100	< 20				< 20
2,4-Dimethylphenol	354	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2,4-Dinitrophenol	38.7	(4)				< 20					< 100			< 20	< 20	< 100	< 20				< 20
2,4-Dinitrotoluene	2.375	(4)				< 10					< 50 < 50			< 10	< 10	< 50 < 50	< 10				< 10
2,6-Dinitrotoluene 2-Chloronaphthalene	0.485	(4)				< 10 < 10					< 50 < 50			< 10 < 10	< 10 < 10	< 50 < 50	< 10 < 10				< 10
2-Chlorophenol	733 91	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10 < 10
2-Methylnaphthalene	36	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2-Methylphenol	930	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2-Metryphenol 2-Nitroaniline	190	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
2-Nitrophenol	-	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
3,3´-Dichlorobenzidine	1.25	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
3+4-Methylphenol	930	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
3-Nitroaniline	-	(.,				< 10					< 50			< 10	< 10	< 50	< 10				< 10
4,6-Dinitro-2-methylphenol	1.52	(4)				< 20					< 100			< 20	< 20	< 100	< 20				< 20
4-Bromophenyl phenyl ether	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
4-Chloro-3-methylphenol	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
4-Chloroaniline	3.7	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
4-Chlorophenyl phenyl ether	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
4-Nitroaniline	38	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
4-Nitrophenol	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
Acenaphthene	535	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Acenaphthylene	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
Aniline	130	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Anthracene	1721	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Azobenzene	1.2	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Benzo(a)anthracene	0.1199	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Benzo(a)pyrene	0.2	(2)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Benzo(b)fluoranthene	0.3432	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Benzo(g,h,i)perylene	-					< 10					< 50			< 10	< 10	< 50	< 10				< 10
Benzo(k)fluoranthene	3.43	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Benzoic acid	75000	(1)				< 20					< 100			< 20	< 20	36 J	< 20				10 J
Benzyl alcohol	2000	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Bis(2-chloroethoxy)methane	59	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Bis(2-chloroethyl)ether	0.137	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Bis(2-chloroisopropyl)ether	9.81	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	6 160	(2)				< 10 < 10					< 50 < 50			< 10 < 10	< 10 < 10	< 50 < 50	< 10 < 10				< 10 < 10
Carbazole	-	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Chrysene		(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Dibenz(a,h)anthracene	0.0343	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Dibenzofuran	-	(+)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Diethyl phthalate	14800	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Dimethyl phthalate	-	(+)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Di-n-butyl phthalate	885	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Di-n-octyl phthalate	-	(*)				26					83			< 10	< 10	< 50	< 10				< 10
Fluoranthene	802	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Fluorene	288	(4)				< 10					76			< 10	< 10	< 50	< 10				< 10
Hexachlorobenzene	0.0976	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Hexachlorobutadiene	1.387	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Hexachlorocyclopentadiene	0.411	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Hexachloroethane	3.2842	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Indeno(1,2,3-cd)pyrene	0.3432	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Isophorone	781	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
		,																			

	Screening				MW-56					MW-57			**MW-58			MW-59				**MW-60	
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17
Naphthalene	1.65	(4)				16					240			< 10	< 10	< 50	< 10				< 10
Nitrobenzene	1.4	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
N-Nitrosodimethylamine	0.0049	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
N-Nitrosodi-n-propylamine	0.11	(5)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
N-Nitrosodiphenylamine	121.922	(4)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
Pentachlorophenol	0.4129	(4)				< 20					< 100			< 20	< 20	< 100	< 20				< 20
Phenanthrene		(4)				< 10					150			< 10	< 10	< 50	< 10				< 10
Phenol	5761	· ,				< 10					< 50			< 10	< 10	< 50	< 10				< 10
		(4)									< 50			< 10		< 50					
Pyrene	117	(4)				< 10					< 50				< 10 < 10	< 50	< 10 < 10				< 10 < 10
Pyridine	20	(1)				< 10					< 50			< 10	< 10	< 50	< 10				< 10
General Chemistry (mg/L)	4.0	(0)				0.50			T	I	0.50			0.50	0.40	0.50	0.40	0.40			0.40
Fluoride	1.6	(3)				< 0.50					< 0.50			<0.50	< 0.10	< 0.50	< 0.10	< 0.10			< 0.10
Chloride	250	(3)				370					340			240	190	200	190	240			190
Nitrite	1	(3)				< 0.50					< 0.50			0.32 J	<1.0	< 0.50	< 0.10	< 0.10			< 0.10
Bromide	-	(-)				5					2.8			3.1	3.1	3.4	< 0.10	1.2			3.8
Nitrate	10	(3)				< 0.50					< 0.50			0.32 J	<1.0	0.26 J	0.6	0.28			26
Phosphorus	-					< 2.5					3.1			< 0.50	< 0.50	< 2.5	< 0.50	< 0.50			< 0.50
Sulfate	600	(3)				7.9					< 2.5			180	180	170	200	780			1300
Carbon Dioxide (CO ₂₎	-					890					940			1100	1000	1000	1000	940			720
Alkalinity (CaCO ₃)	-					952.6					981.8			1050	1050	1105	1094	1035			786.2
Bicarbonate (CaCO ₃)	-					952.6					981.8			1050	1050	1105	1094	1035			786.2
Total Metals (mg/L)																					
Arsenic	0.01	(3)				< 0.020					< 0.020			< 0.020	< 0.020	< 0.050	< 0.020	0.022			< 0.050
Barium	2.0	(3)				2.4					2.1			0.11	0.12	0.11	0.17	0.21			0.033
Cadmium	0.005	(3)				< 0.0020					< 0.0020			< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020
Chromium	0.05	(3)				< 0.0060					< 0.0060			< 0.0060	< 0.0060			< 0.0060			0.0031 J
Lead	0.015	(3)				< 0.0050					< 0.0050			< 0.0050	< 0.0050		< 0.0050				< 0.0050
Selenium	0.05	(3)				< 0.050					< 0.050			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050			< 0.050
Silver	0.05	(3)				< 0.0050					< 0.0050			0.0018 J							< 0.0050
Mercury	0.002	(3)				< 0.00020					< 0.00020							0.00020			0.000054
Dissolved Metals (mg/L)	0.002	(0)				10.00020					10.00020				1 0.00020	1 0.00020	1 0.00020	7 10.00020			
Arsenic	0.01	(3)				< 0.020					< 0.020			0.027	<0.020	0.032	< 0.020	< 0.020			0.054
Barium	1.0	(3)				2.1					1.9			0.073	0.073	0.083	0.076	0.055			0.023
Cadmium	0.005	(3)				< 0.0020					< 0.0020			< 0.0020	< 0.0020						< 0.0020
Calcium	-	(3)				110					120			200	170	160	200	250			230
Chromium	0.05	(3)				< 0.0060					< 0.0060			< 0.0060	< 0.0060		< 0.0060				< 0.0060
		(3)				0.000 0.082					< 0.0060	-		< 0.0060						-	0.0060 0.0027 J
Copper	1	(3)																			
Iron	1 0.015	(3)				28 < 0.0050					2.6 < 0.0050			7.6 < 0.0050	7.5 0.0090	6.9 < 0.0050	5.2	4.3			0.0048 J < 0.0050
Lead	0.015	(3)				< 0.0050															
Magnesium	-	(0)				50					44			62	50	49	56	69			88
Manganese	0.2	(3)				2.8					3.3			1.5	1.5	1.8	1.9	1.9			0.0011 J
Potassium	-	(-)				4.4					4.1			3.3	3	2.8	3.7	3.6			4
Selenium	0.05	(3)				< 0.050					< 0.0050			< 0.050	0.11	< 0.050	< 0.050	< 0.050			< 0.050
Silver	0.05	(3)				< 0.0050					< 0.050							< 0.0050			< 0.0050
Sodium	-					460					410			480	430	390	480	470			660
Uranium	0.03	(3)				< 0.10					< 0.10			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			< 0.10
Zinc	10	(3)				0.55					0.081			0.025	<0.020	0.022	0.021	0.036			0.036
Total Petroleum Hydrocarbons																					
Diesel Range Organics	0.0167	(6)				93					17			0.31 J	<0.40	0.75	0.85	0.32			< 0.20
Gasoline Range Organics	0.0101	(6)				29					520			1.2	2.3	1.0	1.8	1.1			< 0.050
Motor Oil Range Organics		(6)				< 25					< 250			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5			< 2.5

Notes:

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)

(-)	
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.

** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

No. Proceedings Proceedings Proceedings Proceedings Process Pr		Sercening				**MW-61					MW-62					MW-63					MW-64					MW-65		
Winter W		Screening	Source	Aug 10	Aug 10		Aug 16	Aug 15	Aug 10	Aug 10		Aug 16	Aug 15	Aug 10	Aug 10		Aug 16	Aug 15	Aug 10	Aug 10		Aug 16	Aug 15	Aug 10	Aug 10		Aug 16	Aug 15
11.1/2-fract-momber 1.7 10	Volatile Organic Compounds			Aug-19	Aug-16	Aug-17	Aug-10	Aug-15	Aug-19	Aug-16	Aug-17	Aug-10	Aug-15	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15
11. (Interpretation 2			(4)						-10	< 1.0	< 1.0	< 1.0	< 1.0	<10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-20		<i>-</i> 10	- 20	< 20	< 20
1.13 Framework and			_ ` _																								< 20	< 20
1.17-Trickmonland 1.17	, ,																									_	< 40	< 40
1 December 15			_ ,																								< 20	< 20
1.50 convergence 1	1,1-Dichloroethane	25							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 10	< 20	< 20	< 20
Control Cont	1,1-Dichloroethene	7	(3)						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
12-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	1,1-Dichloropropene	-							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
12-Printerpresses 155 (4)	1,2,3-Trichlorobenzene	7	(1)						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
12-2	1,2,3-Trichloropropane	0.01	(4)						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 20	< 40	< 40	< 40
1.2 Person Schrift of 15	· ·								< 1.0																		< 20	< 20
12 Decomposation 150 0.55 0.																											480	860
12-Octionstantines 200 101																							-				< 40	< 40
12 Demonstration (ECC) 17 60	, , ,		_ , ,																								< 20	< 20
The Deleteropropose A 378 0	,																				_						< 20	< 20
1.35-Trimolphoteness 0 10 1.0																												200
1.3. Decimans properties 1																											< 20	< 20 < 20
13-Debetroproposes 370 (1)		-	(1)																									< 20
1.4D-Ordentendermanner 75 20	.,	370	(1)		_																						< 20	< 20
14-bitelyreptrepter 1 (6)			_ ` _																		_						< 20	< 20
22-Discharge Conference					_																						130	120
Planament September Sept			(0)																							_	< 40	< 40
2-Chientestumen 240 (1)	, , ,		(4)																								< 200	< 200
2-Heannorm									< 1.0		< 1.0										< 1.0				< 10		< 20	< 20
4-Chiecosphoreme	2-Hexanone	-							< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 20		< 100	< 200	< 200	< 200
Company Comp	2-Methylnaphthalene	36	(1)						< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	0.37 J	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 8.0		12 J	6.8 J	< 80	< 80
## Albelly/Expensiones	4-Chlorotoluene	250	(1)						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
Acctoms 14064 (4)	4-Isopropyltoluene	-							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		12	11 J	< 20	< 20
Benzene 5 (0)	4-Methyl-2-pentanone								< 10	< 10	< 10		< 10		< 10		< 10	< 10	< 10	< 10	< 10	< 10					< 200	< 200
Bromodenmane 62 (1) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0			_ ` /								_																< 200	< 200
Bromode/informerhane 1.34 (4)																_					-						5700	7800
Bromform 33 5																					_						< 20	< 20
Bromomethan 7545 (4)																											< 20	< 20
Carbon disulfide 810			_ , ,																									< 20
Carbon Fetrachhoride 5 (2)																												< 60 < 200
Chicorebrane 100 (2)																											< 200	< 200
Chlorothane 20900 (4)																											< 20	< 20
Chlorofem 2.29 (4)			_ , ,																								< 40	< 40
Chloromethenae 20.3 (4)																										-	< 20	< 20
cist_2DCE 70 (2)																										_	< 60	< 60
Dibromochiomethane 1.88 (4)	cis-1,2-DCE															_					_					_	< 20	< 20
Dibromochiomethane 1.88 (4)	cis-1,3-Dichloropropene	4.7	(4)						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
Dibromethane 8.3 (1) .									< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
Dichlorodifluormethane 197 (4)	Dibromomethane	8.3							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
Hexachlorobutadiene 1.39 (4) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < < 1.0 < 1.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0	Dichlorodifluoromethane	197	(4)						< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
Supproplemente 447 (4)	3																								1800		1200	1900
Methyl tert-butyl ether (MTBE) 100 (3) 4 cm 4 cm			(4)																								< 20	< 20
Methylene Chloride 5 (2)																											72	88
Naphthalene 1.65 (4)																		-									490	1400
n-Butylbenzene 1000 (1)																											< 60	< 60
n-Propylbenzene 660 (1)																											46	210
Sec-Butylbenzene 2000 (1)																										_		< 60 250
Styrene 100 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	.,										_					_					_					_	< 20	< 20
tert-Butylbenzene 690 (1) < 1.0	· _																										< 20	< 20
Tetrachloroethene (PCE) 5 (2)																					_						< 20	< 20
Toluene 1000 (3) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 7.6 J < 20 < 2 <	,																										< 20	< 20
trans-1,2-DCE 100 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 10 < 20 < 2 <	. ,																										< 20	< 20
trans-1,3-Dichloropropene 4.71 (4) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0																											< 20	< 20
Trichloroethene (TCE) 5 (2) <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 20</td> <td>< 20</td>																											< 20	< 20
Trichlorofluoromethane 1136 (4) < 1.0																					< 1.0				< 10		< 20	< 20
Vinyl chloride 2 (3) <-1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	Trichlorofluoromethane	1136							< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
	Vinyl chloride	2							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0		< 10	< 20	< 20	< 20
Xylenes, Total 620 (3) <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5	Xylenes, Total	620	(3)						< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 3.0		580	79	65	150

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Caraanina				**MW-61					MW-62					MW-63					MW-64					MW-65		
	Screening Levels	Source	Διια-19	Δυσ-18		Aug-16 A	ug-15	Aug-19	Aug-18		Aug-16	Aug-15	Aug-19	Διια-18		Δυα-16	Aug-15	Δυσ-19	Aug-18		Aug-16	Aug-15	Aug-19	Aug-18		Δυα-16	Aug-15
Semi-Volatile Organic Compou			Aug-19	Aug-10	Aug-17	Aug-10 A	ug-13	Aug-13	Aug-10	Aug-17	Aug-10	Aug-13	Aug-13	Aug-10	Aug-17	Aug-10	Aug-13	Aug-13	Aug-10	Aug-17	Aug-10	Aug-13	Aug-19	Aug-10	Aug-17	Aug-10	Aug-13
1,2,4-Trichlorobenzene	70	(2)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
1,2-Dichlorobenzene	600	(2)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
1,3-Dichlorobenzene	-									< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
1,4-Dichlorobenzene	75	(2)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
1-Methylnaphthalene	11	(5)								< 10	< 10				< 10	< 10				< 10	< 10			100	100	14	
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	1166 11.9	(4)								< 10 < 10	< 10				< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10			< 10 < 10	< 50 < 50	< 10 < 10	
2,4-Dichlorophenol	45.3	(4)								< 20	< 10 < 20				< 20	< 20				< 20	< 20			< 20	< 100	< 20	
2,4-Dimethylphenol	354	(4)								< 10	< 10				< 10	< 10				< 10	< 10			21	< 50	< 10	
2,4-Dinitrophenol	38.7	(4)								< 20	< 20				< 20	< 20				< 20	< 20			< 20	< 100	< 20	
2,4-Dinitrotoluene	2.375	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
2,6-Dinitrotoluene	0.485	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
2-Chloronaphthalene	733	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
2-Chlorophenol	91	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
2-Methylnaphthalene	36	(1)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
2-Methylphenol 2-Nitroaniline	930 190	(1)								< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10			< 10 < 10	< 50 < 50	< 10 < 10	
2-Nitrophenol	-	(1)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
3,3´-Dichlorobenzidine	1.25	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
3+4-Methylphenol	930	(1)								< 10	< 10				< 10	< 10				< 10	< 10			10	< 50	< 10	
3-Nitroaniline	-									< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
4,6-Dinitro-2-methylphenol	1.52	(4)								< 20	< 20				< 20	< 20				< 20	< 20			< 20	< 100	< 20	
4-Bromophenyl phenyl ether	-									< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
4-Chloro-3-methylphenol	-	/=\								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
4-Chloroaniline	3.7	(5)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
4-Chlorophenyl phenyl ether 4-Nitroaniline	38	(5)								< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10			< 10 < 10	< 50 < 50	< 10 < 10	
4-Nitrophenol	-	(5)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Acenaphthene	535	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Acenaphthylene	-	(-)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Aniline	130	(5)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Anthracene	1721	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Azobenzene	1.2	(5)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Benzo(a)anthracene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Benzo(a)pyrene	0.2	(2)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Benzo(b)fluoranthene	0.3432	(4)								< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10			< 10 < 10	< 50 < 50	< 10 < 10	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	3.43	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Benzoic acid	75000	(1)								11 J	< 20				18 J	< 20				8.3 J	< 20			< 20	92 J	< 20	
Benzyl alcohol	2000	(1)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Bis(2-chloroethoxy)methane	59	(1)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Bis(2-chloroethyl)ether	0.137	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Bis(2-chloroisopropyl)ether	9.81	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Bis(2-ethylhexyl)phthalate	6	(2)								< 10	< 10				4.9 J	< 10				< 10	< 10			< 10	< 50	< 10	
Butyl benzyl phthalate Carbazole	160	(5)								< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10			< 10 < 10	< 50 < 50	< 10 < 10	
Chrysene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50 < 50	< 10	
Dibenz(a,h)anthracene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Dibenzofuran	-	(')								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Diethyl phthalate	14800	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Dimethyl phthalate	-									< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Di-n-butyl phthalate	885	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Di-n-octyl phthalate	-	4.13								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Fluoranthene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Fluorene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Hexachlorobenzene		(4)								< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10				< 10 < 10	< 10 < 10			< 10 < 10	< 50 < 50	< 10 < 10	
Hexachlorobutadiene Hexachlorocyclopentadiene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50 < 50	< 10	
Hexachloroethane		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Indeno(1,2,3-cd)pyrene		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Isophorone		(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
· '																											

	Screening				**MW-61					MW-62					MW-63					MW-64					MW-65		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18		Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Naphthalene	1.65	(4)								< 10	< 10				< 10	< 10				< 10	< 10			21	19 J	< 10	
Nitrobenzene	1.4	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
N-Nitrosodimethylamine	0.0049	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
N-Nitrosodi-n-propylamine	0.11	(5)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
N-Nitrosodiphenylamine	121.922	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Pentachlorophenol	0.4129	(4)								< 20	< 20				< 20	< 20				< 20	< 20			< 20	< 100	< 20	
Phenanthrene	170.4146	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Phenol	5761	(4)								< 10	< 10				< 10	< 10				< 10	< 10			13	22 J	< 10	
Pyrene	117	(4)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
Pyridine	20	(1)								< 10	< 10				< 10	< 10				< 10	< 10			< 10	< 50	< 10	
General Chemistry (mg/L)																											
Fluoride	1.6	(3)						<0.50	<0.50	< 0.10	< 2.0	< 0.10	<0.50	< 0.10	< 0.10	0.16	< 0.10	<0.50	<2.0	< 0.10	< 10	< 0.10		<0.50	< 0.10	< 0.50	< 0.50
Chloride	250	(3)						12	11	13	14	14	160	92	110	100	270	860	840	790	860	940		200	230	220	210
Nitrite	1	(3)						0.076 J	0.068 J	0.016 J	< 1.0	< 0.10	66	0.057	0.13	< 0.10	< 0.10	45	< 2.0	< 2.0	< 10	< 2.0		<0.50	< 0.10	< 0.50	< 0.50
Bromide	-	(5)						<0.50	0.22	0.071 J	< 0.10	< 0.10	3.2	1.2	1.8	1.5	4	2.4	2.5	3.5	5.1	3.4		5	0.99	4.2	4.5
Nitrate	10	(3)						0.076 J	0.078 J	0.094 J	< 1.0	< 0.10	66	32	35	39	78	45	52	55	58	40		0.21 J	0.035 J	< 0.50	< 0.50
Phosphorus	-	(0)						< 10 H	6.7 J	< 10	< 10	< 10	<2.5 H	5.3 J	< 0.50	< 0.50	< 10	<2.5 H	5.7 J	< 0.50	< 50	< 10		3	< 0.50	< 2.5	< 2.5
Sulfate	600	(3)						4000	3600	3700	4000	4000	2200	1200	1300	1200	1700	1500	1500	1500	1500	1500		560	1400	1600	970
Carbon Dioxide (CO ₂₎	-							590 H	600 H	580	500	520	600 H	610	580	470	480	270	270	260	260	260		1200	1100	860	1300
Alkalinity (CaCO ₃)	-							630.2	622.9	626.3	550	573.9	593.4	616.5	597	500.7	522.5	276.5	275.2	276.3	279	287.7		1305	1177	946	1335
Bicarbonate (CaCO ₃)	-							630.2	622.9	626.3	550	573.9	593.4	616.5	597	500.7	522.5	276.5	275.2	276.3	279	287.7		1305	1177	946	1335
Total Metals (mg/L)										•					•	•										·	
Arsenic	0.01	(3)						< 0.020	< 0.020	< 0.050	< 0.020	< 0.020	< 0.020	< 0.020	< 0.050	< 0.020	< 0.020	<0.020	<0.020	<0.010	< 0.020	< 0.020		<0.020	< 0.050	0.02	< 0.020
Barium	2.0	(3)						0.017 J	0.030	0.033	0.33	< 0.020	0.35	0.12	0.019 J	0.28	< 0.020	0.35	0.29	0.12	0.095	0.077		0.061	0.058	0.11	0.21
Cadmium	0.005	(3)						< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)						< 0.0060	< 0.0060	< 0.0060	0.0071	< 0.0060	0.0099	0.0048 J	< 0.0060	0.016	< 0.0060	0.011	0.0097	0.0050 J	< 0.0060	< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060
Lead	0.015	(3)						< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0088	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.05	(3)						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)						0.0061	0.013	< 0.0050	< 0.0050	< 0.0050	0.0027 J	0.0064	< 0.0050	< 0.0050	< 0.0050	0.0032 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.0065	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)						0.00012 J	0.000066 J	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.00021	0.00012J	< 0.00020	< 0.00020	< 0.00020		0.000075J	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/L)																											
Arsenic	0.01	(3)						<0.020	<0.020	0.046			<0.020	<0.020			< 0.020	<0.020	<0.020		< 0.020			<0.020	0.049	< 0.020	
Barium	1.0	(3)						0.0091 J	0.011 J	0.01 J	< 0.020	< 0.020	0.013 J	0.011	< 0.020	0.023	< 0.020	0.0098 J	0.011 J		0.024	< 0.020		0.12	0.039	0.045	0.2
Cadmium	0.005	(3)						< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020					< 0.0020	< 0.0020					< 0.0020	< 0.0020	< 0.0020	
Calcium	-							440	450	450	450	470	420	330	310	320	470	440	450	480	500	530		200	350	370	270
Chromium	0.05	(3)						< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060				< 0.0060	< 0.0060		< 0.0060			< 0.0060	< 0.0060	< 0.0060	
Copper	1	(3)						0.0023 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0043 J	< 0.0060					< 0.0060					< 0.0060	< 0.0060	< 0.0060	
Iron	1	(3)						<0.020	0.015 J	0.0046 J	1.3	0.15	<0.020	0.054	< 0.020	3.9	< 0.020	0.027	0.057	0.025	1.8	< 0.020		5.3	7.1	6.7	7
Lead	0.015	(3)						< 0.0050	< 0.0050	< 0.0050		< 0.0050	<0.0050	0.0059	< 0.0050									< 0.0050		< 0.0050	
Magnesium	-	(0)						39	37	38	38	38	180	110	110	99	130	67	66	73	78	72		95	120	110	97
Manganese	0.2	(3)						1.4	1.5	1.8	1.2	1.4	0.55	0.48	0.5	0.73	0.81		0.0015 J		0.037	< 0.0020		1.5	3.2	2.7	1.8
Potassium	0.05	(2)						8.8	9	9.1	10	9.5	4.5	3.7	3.7	4.1	4.6	4.4	4.5	4.7	5.5	5.1		3.6	3.8	4.1	3.6
Selenium	0.05	(3)						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050		0.032	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)		-				0.0058	0.012	< 0.0050		< 0.0050			< 0.0050		< 0.0050			< 0.0050	-	< 0.0050		0.0045	740	< 0.0050	
Sodium	0.03	(2)		-				1400	1400	1400 < 0.10	1600	1500	540	380	460	420	580	780 < 0.10	800 < 0.10	830	830 - 0.10	850 < 0.10		550 - 0.10		< 0.10	680
Uranium Zinc	0.03 10	(3)						< 0.10 0.024	< 0.10 < 0.020	0.02	< 0.10 0.051			< 0.10 < 0.020		< 0.10 0.1	0.03			< 0.10	0.038	< 0.10		< 0.10 < 0.020		< 0.10	
Total Petroleum Hydrocarbon		(3)						0.024	\U.U2U	0.02	0.001	0.020	0.023	< 0.020	0.02	V.1	0.03	0.013	< 0.020	0.020	0.030	\ 0.020		<0.020	0.12	< 0.020	0.022
Diesel Range Organics	_ ` • /	(6)						< 0.40	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.40	< 0.40	< 0.20	< 0.20	< 0.20		2.8	4.4	4.8	7.7
Gasoline Range Organics		(6)						<0.050	0.023 J	< 0.20	< 0.20		<0.050			< 0.20	< 0.20	<0.40		< 0.20				29	23	20	19
Motor Oil Range Organics	0.0858	(6)						< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5				< 2.5	< 2.5					< 2.5	< 2.5	< 2.5	< 2.5
wotor on range organics	0.0000	(0)						\ 2.0	\ 2.0	\ 2.0	\ Z.U	\ Z.U	\ 2.0	\ Z.U	` 2.0	\ 2.0	` \ 2.0	` 2.0	\ Z.U	\ Z.U	\ 2.0	\ 2.0	-	\ <u>L.</u> U	\ Z.U	` 2.0	` 2.0

Notes:

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)

(O) INVILLE	000 (0010 2010)
-	= No screening level available = No screening level available
*	= Laboratory analyzed for combined Nitrate = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains = Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective s = Analytical result exceeds the respective screening level.
	.,

= Columns hidden when there are 4 or mor = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

		I																I					
	Screening	Source			**MW-66					MW-67					MW-68			**MW-69			MW-70		
Valatila Camania Camana da (Levels		Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Volatile Organic Compounds (1,1,1,2-Tetrachloroethane	ug/∟) 5.74	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1.1.1-Trichloroethane	5	(3)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,1,2,2-Tetrachloroethane	10	(3)						< 2.0		< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0
1,1,2-Trichloroethane	5	(3)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,1-Dichloroethane	25	(3)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,1-Dichloroethene	7	(3)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,1-Dichloropropene	-							< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,2,3-Trichlorobenzene	7	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,2,3-Trichloropropane	0.01	(4)						< 2.0		< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	11.55 56	(4)						< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0
1,2-Dibromo-3-chloropropane	0.2	(2)						< 2.0		< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0
1,2-Dibromoethane (EDB)	0.05	(3)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,2-Dichlorobenzene	302	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,2-Dichloroethane (EDC)	1.71	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,2-Dichloropropane	4.376	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,3,5-Trimethylbenzene	60	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,3-Dichlorobenzene	-	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,3-Dichloropropane	370	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
1,4-Dichlorobenzene 1-Methylnaphthalene	75 11	(2)						< 1.0 < 4.0		< 1.0 < 4.0	< 1.0 < 4.0	< 1.0 < 4.0	< 1.0 < 4.0		< 1.0 < 4.0	< 1.0 < 4.0	< 1.0 < 4.0		< 1.0 < 4.0	< 1.0 < 4.0	< 1.0 < 4.0		< 1.0 < 4.0
2,2-Dichloropropane	-	(3)						< 2.0		< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0
2-Butanone	5565	(4)						< 10		< 10	< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10
2-Chlorotoluene	240	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
2-Hexanone	-	` _						< 10		< 10	< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10
2-Methylnaphthalene	36	(1)						< 4.0		< 4.0	< 4.0	< 4.0	< 4.0		< 4.0	< 4.0	< 4.0		< 4.0	< 4.0	< 4.0		< 4.0
4-Chlorotoluene	250	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
4-Isopropyltoluene	-							< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
4-Methyl-2-pentanone	14004	(4)						< 10		< 10	< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10
Acetone Benzene	14064	(4)						<10 < 1.0	< 1.0	2.9 J < 1.0	< 10	< 10 < 1.0	< 10 < 1.0	< 1.0	1.4 J < 1.0	< 10 < 1.0	< 10 < 1.0		< 10 < 1.0	< 10 < 1.0	2.7 J < 1.0		< 10 < 1.0
Bromobenzene	62	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Bromodichloromethane	1.34	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Bromoform	33	(5)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Bromomethane	7.545	(4)						< 3.0		< 3.0	< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		< 3.0
Carbon disulfide	810	(4)						< 10		< 10	< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10
Carbon Tetrachloride	5	(2)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Chlorobenzene	100	(2)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Chloroethane	20900	(4)						< 2.0		< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0
Chloroform Chloromethane	2.29	(4)						< 1.0 < 3.0		< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0		< 1.0 < 3.0	< 1.0 < 3.0	< 1.0		< 1.0 < 3.0	< 1.0 < 3.0	< 1.0 < 3.0		< 1.0 < 3.0
cis-1,2-DCE	70	(2)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
cis-1,3-Dichloropropene	4.7	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Dibromochloromethane	1.68	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Dibromomethane	8.3	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Dichlorodifluoromethane	197	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Ethylbenzene	700	(3)						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Hexachlorobutadiene	1.39	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Isopropylbenzene	447	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0 < 1.0	< 1.0		< 1.0	< 1.0	< 1.0 0.40 J		< 1.0
Methyl tert-butyl ether (MTBE) Methylene Chloride	100 5	(3)						< 1.0 < 3.0	< 1.0	< 1.0 < 3.0	< 3.0	< 1.0	0.47 J < 3.0	< 1.0	< 1.0 < 3.0	< 3.0	< 1.0		0.54 J < 3.0	< 1.0 < 3.0	< 3.0		< 1.0 < 3.0
Naphthalene	1.65	(4)						< 3.0		< 3.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0		< 2.0
n-Butylbenzene	1000	(1)						< 1.0		< 1.0	< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		< 3.0	< 3.0	< 3.0		< 3.0
n-Propylbenzene	660	(1)						< 2.0		< 2.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
sec-Butylbenzene	2000	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Styrene	100	(2)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
tert-Butylbenzene	690	(1)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Tetrachloroethene (PCE)	5	(2)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Toluene	1000	(3)						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
trans-1,2-DCE trans-1,3-Dichloropropene	100 4.71	(2)						< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0
Trichloroethene (TCE)	5	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Trichlorofluoromethane	1136	(4)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Vinyl chloride	2	(3)						< 1.0		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0
Xylenes, Total	620	(3)						< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5		< 1.5
Ayieries, roldi	020	(0)						\ 1.0	\ 1.J	\ 1.J	\ 1.0	\ 1.5	\ 1.0	\ 1.0	\ 1.0	\ 1.0	\ 1.0		\ 1.0	\ 1.0	\ 1.0		\ 1.0

TABLE 6
RCRA Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

	Screening				**MW-66					MW-67					MW-68			**MW-69			MW-70		
	Levels	Source	Aug 10	Aug-18		Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18		Aug-16	Aug-15		Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Semi-Volatile Organic Compou			Aug-19	Aug-10	Aug-1/	Aug-16	Aug-13	Aug-19	Aug-16	Aug-17	Aug-10	Aug-15	Aug-19	Aug-16	Aug-17	Aug-10	Aug-13	Aug-19	Aug-19	Aug-16	Aug-17	Aug-16	Aug-15
1,2,4-Trichlorobenzene	70	(2)									< 10					< 10				< 10	< 10		
1,2-Dichlorobenzene	600	(2)									< 10					< 10				< 10	< 10		
1,3-Dichlorobenzene	-	(-/									< 10					< 10				< 10	< 10		
1,4-Dichlorobenzene	75	(2)									< 10					< 10				< 10	< 10		
1-Methylnaphthalene	11	(5)									< 10					< 10				< 10	< 10		
2,4,5-Trichlorophenol	1166	(4)									< 10					< 10				< 10	< 10		
2,4,6-Trichlorophenol	11.9	(4)									< 10					< 10				< 10	< 10		
2,4-Dichlorophenol	45.3	(4)									< 20					< 20				< 20	< 20		
2,4-Dimethylphenol	354	(4)									< 10					< 10				< 10	< 10		
2,4-Dinitrophenol	38.7	(4)									< 20					< 20				< 20	< 20		
2,4-Dinitrotoluene	2.375	(4)									< 10					< 10				< 10	< 10		
2,6-Dinitrotoluene	0.485	(4)									< 10					< 10				< 10	< 10		
2-Chloronaphthalene	733	(4)									< 10					< 10				< 10	< 10		
2-Chlorophenol	91	(4)									< 10					< 10				< 10	< 10		
2-Methylnaphthalene	36	(1)									< 10					< 10				< 10	< 10		
2-Methylphenol	930	(1)									< 10					< 10				< 10	< 10		
2-Nitroaniline	190	(1)									< 10					< 10				< 10	< 10		
2-Nitrophenol 3,3´-Dichlorobenzidine	1.25	(4)									< 10 < 10					< 10 < 10				< 10	< 10 < 10		
		(4)																		< 10			
3+4-Methylphenol 3-Nitroaniline	930	(1)									< 10 < 10					< 10 < 10				< 10 < 10	< 10 < 10		
4,6-Dinitro-2-methylphenol	1.52	(4)									< 20					< 20				< 20	< 20		
4-Bromophenyl phenyl ether	-	(+)									< 10					< 10				< 10	< 10		
4-Chloro-3-methylphenol	-										< 10					< 10				< 10	< 10		
4-Chloroaniline	3.7	(5)									< 10					< 10				< 10	< 10		
4-Chlorophenyl phenyl ether	-	(0)									< 10					< 10				< 10	< 10		
4-Nitroaniline	38	(5)									< 10					< 10				< 10	< 10		
4-Nitrophenol	-	(0)									< 10					< 10				< 10	< 10		
Acenaphthene	535	(4)									< 10					< 10				< 10	< 10		
Acenaphthylene	-										< 10					< 10				< 10	< 10		
Aniline	130	(5)									< 10					< 10				< 10	< 10		
Anthracene	1721	(4)									< 10					< 10				< 10	< 10		
Azobenzene	1.2	(5)									< 10					< 10				< 10	< 10		
Benzo(a)anthracene	0.1199	(4)									< 10					< 10				< 10	< 10		
Benzo(a)pyrene	0.2	(2)									< 10					< 10				< 10	< 10		
Benzo(b)fluoranthene	0.3432	(4)									< 10					< 10				< 10	< 10		
Benzo(g,h,i)perylene	-										< 10					< 10				< 10	< 10		
Benzo(k)fluoranthene	3.43	(4)									< 10					< 10				< 10	< 10		
Benzoic acid	75000	(1)									< 20					< 20				6.7 J	6.7 J		
Benzyl alcohol	2000	(1)									< 10					< 10				< 10	< 10		
Bis(2-chloroethoxy)methane	59	(1)									< 10					< 10				< 10	< 10		
Bis(2-chloroethyl)ether	0.137	(4)									< 10					< 10				< 10	< 10		
Bis(2-chloroisopropyl)ether	9.81	(4)									< 10					< 10				< 10	< 10		
Bis(2-ethylhexyl)phthalate	6	(2)									< 10					< 10 < 10				< 10 < 10	< 10 < 10		
Butyl benzyl phthalate Carbazole	160	(5)									< 10 < 10					< 10				< 10	< 10		
Chrysene		(4)									< 10					< 10				< 10	< 10		
Dibenz(a,h)anthracene	0.0343	(4)									< 10					< 10				< 10	< 10		
Dibenzofuran	-	(-7)									< 10					< 10				< 10	< 10		
Diethyl phthalate	14800	(4)									< 10					< 10				< 10	< 10		
Dimethyl phthalate	-	(')									< 10					< 10				< 10	< 10		
Di-n-butyl phthalate	885	(4)									< 10					< 10				< 10	< 10		
Di-n-octyl phthalate	-	(·)									< 10					< 10				< 10	< 10		
Fluoranthene	802	(4)									< 10					< 10				< 10	< 10		
Fluorene	288	(4)									< 10					< 10				< 10	< 10		
Hexachlorobenzene	0.0976	(4)									< 10					< 10				< 10	< 10		
Hexachlorobutadiene	1.387	(4)									< 10					< 10				< 10	< 10		
Hexachlorocyclopentadiene	0.411	(4)									< 10					< 10				< 10	< 10		
Hexachloroethane	3.2842	(4)									< 10					< 10				< 10	< 10		
Indeno(1,2,3-cd)pyrene	0.3432	(4)									< 10					< 10				< 10	< 10		
Isophorone	781	(4)									< 10					< 10				< 10	< 10		
		. ,	-								-					-					-		

	Screening				**MW-66					MW-67					MW-68			**MW-69			MW-70		
	Levels	Source	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15	Aug-19	Aug-19	Aug-18	Aug-17	Aug-16	Aug-15
Naphthalene	1.65	(4)	Aug-19		Aug-17			Aug-19		Aug-17	< 10	Aug-15	Aug-19			< 10	Aug-15	Aug-19	Aug-19	< 10	< 10	Aug-16	Aug-15
Nitrobenzene	1.4	(4)									< 10					< 10				< 10	< 10		
N-Nitrosodimethylamine	0.0049	(4)									< 10					< 10				< 10	< 10		
N-Nitrosodi-n-propylamine	0.11	(5)									< 10					< 10				< 10	< 10		
N-Nitrosodiphenylamine	121.922	(4)									< 10					< 10				< 10	< 10		
Pentachlorophenol	0.4129	(4)									< 20					< 20				< 20	< 20		
Phenanthrene	170.4146	(4)									< 10					< 10				< 10	< 10		
Phenol	5761	(4)									< 10					< 10				< 10	< 10		
Pyrene	117	(4)									< 10					< 10				< 10	< 10		
Pyridine	20	(1)									< 10					< 10				< 10	< 10		
General Chemistry (mg/L)		(-/				1																	
Fluoride	1.6	(3)						0.52	0.62	0.87	< 0.10	0.62	0.24 J	0.27	0.26	0.41	0.35		0.26 J	<0.50	0.45 J		0.7
Chloride	250	(3)						17	14	12	12	14	50	60	52	38	42		340	280	330		420
Nitrite	1	(3)						3.8	8.6	< 0.10	< 0.10	< 0.10	6.8	4.5	< 0.10	< 0.10	< 0.10		0.33	< 0.50	< 0.50		< 0.50
Bromide	-	(-/						<0.50	0.16	0.15	0.16	0.13	<0.50	0.23	0.22	0.21	0.23		1.6	1.6	1.7		2.4
Nitrate	10	(3)						3.8	8.6	13	9.9	13	6.8	4.5	7.6	5.6	7.6		0.33	0.23	< 0.50		< 0.50
Phosphorus	-	(-/						<2.5 H	< 0.50	< 0.50	< 0.50	< 0.50	<2.5 H	< 0.50	< 0.50	< 0.50	< 0.50		< 2.5 H	< 2.5	< 2.5		< 2.5
Sulfate	600	(3)						260	240	180	270	240	260	200	250	260	280		2100	1900	1900		2400
Carbon Dioxide (CO ₂₎	-	(-)						340	330	320	290	310	220	250	220	210	180		790	790	830		780
Alkalinity (CaCO ₃)	_							351.6	351.6	345.5	314.7	342.5	238.3	264.4	236.7	236.3	200.2		785.4	811.5	804.5		809.4
* 1														_									
Bicarbonate (CaCO ₃)	-							351.6	351.6	345.5	314.7	342.5	238.3	264.4	236.7	236.3	200.2		785.4	811.5	804.5		809.4
Total Metals (mg/L)																							
Arsenic	0.01	(3)						< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.050	< 0.020	< 0.020		<0.020	<0.020	< 0.25		< 0.020
Barium	2.0	(3)						0.057	0.081	0.05	0.23	0.12	0.15	0.038	0.053	0.28	0.038		0.15	0.23	0.19		0.023
Cadmium	0.005	(3)						< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020		< 0.0020
Chromium	0.05	(3)						< 0.0060			0.0089	< 0.0060	0.0049 J			0.012	< 0.0060		<0.0060	0.011	0.0086		< 0.0060
Lead	0.015	(3)						0.0045 J			0.005	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050		< 0.0050
Selenium	0.05	(3)						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050		< 0.050
Silver	0.05	(3)								< 0.0050		< 0.0050		< 0.0050			< 0.0050		0.0051	0.0044 J			< 0.0050
Mercury	0.002	(3)						0.00013 J	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.00015 J	< 0.00020	< 0.00020	< 0.00020	< 0.00020		0.00012 J	0.00010 J	< 0.00020		< 0.00020
Dissolved Metals (mg/L)	0.04	(0)				1	ı	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000		0.000
Arsenic	0.01	(3)						< 0.020	< 0.020	0.022	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020		<0.020	<0.020	0.028		< 0.020
Barium	1.0	(3)						0.032	0.026	0.031	0.043	0.039	0.019 J	0.027	0.023	0.029	0.022		0.013 J	0.014 J	0.016 J		0.024
Cadmium	0.005	(3)						< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020			< 0.0020
Calcium	-	(2)						160	130	130	140	150	100	130	100	90	93		610	560	620		640
Chromium Copper	0.05	(3)						< 0.0060 < 0.0060			< 0.0060 < 0.0060	< 0.0060 < 0.0060	< 0.0060 < 0.0060	< 0.0060 < 0.0060	< 0.0060 < 0.0060	< 0.0060 < 0.0060	< 0.0060 < 0.0060		< 0.0060 0.0037 J	< 0.0060 < 0.0060	< 0.0060 < 0.0060		< 0.0060 < 0.0060
Iron	1	(3)						< 0.0060	< 0.0000	< 0.020	0.000	< 0.0000	< 0.0000	< 0.0000	< 0.0000	0.0060	< 0.0000		5.3	9.6	25		8.5
Lead	0.015	(3)						< 0.020	< 0.020		< 0.0050	< 0.020	< 0.020		< 0.020	< 0.0050	< 0.020		< 0.0050	< 0.0050	< 0.0050		< 0.0050
Magnesium	-	(3)						31	27	27	28	31	28	27	25	21	24		150	110	130		180
Manganese	0.2	(3)						0.15	0.16	0.14	0.4	0.38	0.00059 J		0.0028	0.06	0.0045		1.6	1.8	2.3		4.3
Potassium	-	(3)						3.8	2.8	3.8	3.4	3	2.7	2.8	3.0	2.7	2.6		3.5	4.0	3.5		4.2
Selenium	0.05	(3)						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050		< 0.050
Silver	0.05	(3)								< 0.0050				< 0.0050					0.0071	0.015	< 0.0050		< 0.0050
Sodium	-	(3)						72	80	68	79	74	100	120	110	110	110		610	530	580		730
Uranium	0.03	(3)						< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10		< 0.10
Zinc	10	(3)						0.044	< 0.020		< 0.020	0.025		<0.020	0.026	< 0.020			0.017 J				0.028
Total Petroleum Hydrocarbons		(3)						5.311	10.020		. 0.020	3.320		10.020		1 0.020	3.321		3.5	10.020	J.J. 1		- 5.520
Diesel Range Organics	0.0167	(6)						< 0.40	< 0.40	< 0.20	0.64	0.21	< 0.40	< 0.40	< 0.20	< 0.20	< 0.20		< 0.40	< 0.40	< 0.20		< 0.20
Gasoline Range Organics	0.0101	(6)							< 0.050		< 0.050	< 0.050		< 0.050	< 0.050	< 0.050			<0.050	0.034 J			< 0.050
Motor Oil Range Organics	0.0858	(6)						< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5	<2.5	<2.5	< 2.5	< 2.5		< 2.5	< 2.5	< 2.5		< 2.5
motor on runge organics	0.0000	(0)						1 12.0	` 2.0	` 2.0	` 2.0	` 2.0	`~0	\U	~L.U	` 2.0	` 2.0		` 2.0	` 2.0	` 2.0		_ ` 2.0

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED SSG (June 2019)
- = No screening level available = No screening level available
- * = Laboratory analyzed for combined Nitrate = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- --- = Analysis not required and/or well contains = Analysis not required and/or well contains separate phase
- = Analytical result exceeds the respective s = Analytical result exceeds the respective screening level.
- ** = Columns hidden when there are 4 or more = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 7
Collection and Observation Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

Constituents	6						CW	0+60									CW 2	5+95				
Constituents	3		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compour	nds (mg/l	L)																				
Benzene	0.005	(1)	0.001 J	0.0021	0.0007 J	0.0012	< 1.0	< 0.001	<0.001	0.0025	0.0012	0.0016	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0071	0.0039	0.110	0.210
Toluene	1.000	(1)	<0.001	<0.001	<0.001	<0.001	< 1.0	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.005	<0.001	< 0.005	<0.050
Ethylbenzene	0.700	(1)	0.0041	0.004	0.0018	0.0037	0.0035	0.0031	0.0018	0.0023	< 0.001	0.0017	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.005	<0.001	< 0.005	<0.050
Xylene	0.620	(1)	0.0013 J	0.0018	<0.0015	0.0015	< 1.5	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0075	<0.0015	< 0.0075	<0.075
MTBE	0.100	(1)	0.0011	0.0012	<0.001	<0.001	< 1.0	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	0.00067 J	< 0.001	0.00089 J	< 0.001	< 0.001	< 0.001	< 0.005	<0.001	< 0.005	<0.050
Total Petroleum Hydrocar	bons (mo	g/L)																				
Diesel Range Organics	0.0167	(2)	0.70	1.7	0.33 J	1.2	1.2	1.4	0.83	0.73	1.7	1.4	<0.40	<0.40	<0.40	<0.40	< 0.20	<0.20	<0.20	<0.20	1.3	<0.20
Gasoline Range Organics	0.0101	(2)		3.1			3.2				0.51	2.7		0.36	0.44		0.18				1.7	0.88
Motor Oil Range Organics	0.0858	(2)	<2.5	<2.5	<2.5	< 2.5	< 2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5	<2.5	<2.5	<2.5	< 2.5	<2.5	< 2.5	< 2.5	3.1	< 2.5
																				·		

Constituents					OW	0+60									OW 1	4+10				
Constituents	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds (mg/L)																				
Benzene 0.005 (1)						0.00007J	< 0.001		< 0.001	<0.001										
Toluene 1.000 (1)						0.00043J	< 0.001		< 0.001	< 0.001										
Ethylbenzene 0.700 (1)						0.00058J	< 0.001		< 0.001	< 0.001										
Xylene 0.620 (1)						0.0025	< 0.0015		< 0.0015	<0.0015										
MTBE 0.100 (1)						< 0.001	< 0.001		< 0.001	< 0.001										
Total Petroleum Hydrocarbons (mg/L)																				
Diesel Range Organics 0.0167 (2)						13	1.3		1.7	3.2										
Gasoline Range Organics 0.0101 (2)						2.1	0.7		0.38	0.3										
Motor Oil Range Organics 0.0858 (2)						< 5	< 2.5		< 2.5	< 2.5										

Constituent							OW	1+50									OW ²	16+60				
Constituent	3		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compou	nds (mg/	L)																				
Benzene	0.005	(1)						< 0.001	< 0.001	<0.005								0.000084J	<0.010	<0.010	< 0.001	<0.00 5
Toluene	1.000	(1)						< 0.001	< 0.001	<0.005								< 0.001	<0.010	<0.010	< 0.001	<0.010
Ethylbenzene	0.700	(1)						< 0.001	< 0.001	<0.005								0.0011	<0.010	<0.010	0.0017	<0.010
Xylene	0.620	(1)						0.0025	< 0.0015	<0.0075								0.00048J	<0.0 15	<0.0 15	< 0.0015	<0.0 15
MTBE	0.100	(1)						< 0.001	< 0.001	<0.005								0.39	0.41	0.28	0.41	0.460
Total Petroleum Hydrocar	rbons (m	g/L)																				
Diesel Range Organics	0.0167	(2)						13	4.2	2.5								86	3.8	28.0	5.0	12
Gasoline Range Organics	0.0101	(2)						2.1	2.9	3.2								1.5	1.5	1.8	1.00	1.8
Motor Oil Range Organics	0.0858	(2)						< 5	< 2.5	<2.5								<5	<2.5	<2.5	< 2.5	< 2.5

TABLE 7
Collection and Observation Wells Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

Constituents	•						OW	3+85									OW 1	9+50				
Constituents	3		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compour	nds (mg/l	_)																				
Benzene	0.005	(1)				< 0.001		< 0.001	<0.010	<0.010	< 0.001		< 0.001	< 0.001				< 0.001				
Toluene	1.000	(1)				< 0.001		< 0.001	<0.010	<0.010	< 0.001		< 0.001	< 0.001				< 0.001				
Ethylbenzene	0.700	(1)				< 0.001		0.00067J	0.011	0.011	< 0.001		< 0.001	< 0.001				< 0.001				
Xylene	0.620	(1)				< 0.015		< 0.0015	<0.0015	<0.0015	< 0.015		< 0.0015	< 0.0015				< 0.0015				
MTBE	0.100	(1)				< 0.001		< 0.001	<0.010	<0.010	< 0.001		0.0051	0.130				0.0025				
Total Petroleum Hydrocar	bons (mo	g/L)																				
Diesel Range Organics	0.0167	(2)				7.9		75	9	56	12.0		0.19 J	<0.40				7.9				
Gasoline Range Organics	0.0101	(2)				<2.5		4.2	3.1	14	4.7		<2.5	0.077				< 0.050				
Motor Oil Range Organics	0.0858	(2)				3.7		7.2	<2.5	<25	< 2.5		<0.050	<2.5				<5				

Constituents	e						OW	5+50									OW 2	22+00				
Constituents	3		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compour	nds (mg/	L)																				
Benzene	0.005	(1)						< 0.001					< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Toluene	1.000	(1)						< 0.001					< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ethylbenzene	0.700	(1)						< 0.001					< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Xylene	0.620	(1)						< 0.0015					< 0.0015	< 0.0015		< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015
MTBE	0.100	(1)						0.00039J					0.0012	< 0.001		0.0059	0.0057	0.00029J	< 0.001	0.018	< 0.001	<0.001
Total Petroleum Hydrocar	bons (m	g/L)																				
Diesel Range Organics	0.0167	(2)						370					<0.40	<0.40		< 0.40	< 0.20	3.1	< 0.20	< 0.20	< 0.20	0.24
Gasoline Range Organics	0.0101	(2)						0.12					<0.05	<0.05		<0.05	<0.05	< 0.050	<0.05	< 0.05	< 0.05	< 0.050
Motor Oil Range Organics	0.0858	(2)						70					<2.5	<2.5		<2.5	<2.5	<5	<2.5	<2.5	< 2.5	< 2.5

Constituent							OW	6+70									OW 2	23+10				
Constituent	.5		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compour	nds (mg/	L)																				
Benzene	0.005	(1)													< 0.001			< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Toluene	1.000	(1)													< 0.001			< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ethylbenzene	0.700	(1)													< 0.001			< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Xylene	0.620	(1)													< 0.0015			< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015
MTBE	0.100	(1)													0.00045 J			0.0014	< 0.001	0.012	< 0.001	<0.001
Total Petroleum Hydrocar	rbons (m	g/L)																				
Diesel Range Organics	0.0167	(2)													<0.40			1.8	0.27	< 0.20	0.52	< 0.20
Gasoline Range Organics	0.0101	(2)													0.12			0.084	<0.05	< 0.05	< 0.05	< 0.050
Motor Oil Range Organics	0.0858	(2)													<2.5			<5	<2.5	<2.5	< 2.5	< 2.5

TABLE 7 Collection and Observation Wells Analytical Summary 2019 Groundwater Remediation and Monitoring Annual Report

Constituent	e						OW	8+10									OW 2	23+90				
Constituent	3		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compount	nds (mg/	L)																				
Benzene	0.005	(1)	< 0.001	< 0.001			< 0.001	< 0.001	< 0.001				< 0.001	< 0.001				< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Toluene	1.000	(1)	< 0.001	< 0.001			< 0.001	< 0.001	< 0.001				< 0.001	< 0.001				< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ethylbenzene	0.700	(1)	< 0.001	< 0.001			< 0.001	< 0.001	< 0.001				< 0.001	< 0.001				< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Xylene	0.620	(1)	< 0.0015	< 0.0015			< 0.0015	< 0.0015	< 0.0015				< 0.0015	< 0.0015				< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015
MTBE	0.100	(1)	0.0016	0.0054			0.0012	0.0018	0.0047				< 0.001	< 0.001				0.0004J	< 0.001	< 0.001	< 0.001	<0.001
Total Petroleum Hydrocar	rbons (m	g/L)																				
Diesel Range Organics	0.0167	(2)	< 0.40	0.44			0.22	5.7	< 0.20									1.4	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	0.0101	(2)	< 0.050	<0.05			< 0.05	<0.05	<0.05				0.027 J					< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	0.0858	(2)	<2.5	<2.5			<5	<5	<2.5									<5	<2.5	<2.5	< 2.5	< 2.5

Constituent	_						OW 1	11+15									OW 2	5+70				
Constituent	S		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compou	nds (mg/	L)													•							
Benzene	0.005	(1)						4.4	3.9	3.8	2.5	1.7	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Toluene	1.000	(1)						0.0014J	< 0.020	< 0.020	< 0.020	< 0.050	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ethylbenzene	0.700	(1)						0.0096J	< 0.020	< 0.020	< 0.020	< 0.050	< 0.001	0.0013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Xylene	0.620	(1)						< 0.030	< 0.030	< 0.030	< 0.030	< 0.075	0.49 J	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	0.0026	< 0.0015	< 0.0015	<0.0015
MTBE	0.100	(1)						0.32	0.31	0.22	0.48	0.64	< 0.001	< 0.001	0.0004 J	< 0.001	0.0014	0.0027	< 0.001	< 0.001	< 0.001	<0.001
Total Petroleum Hydrocai	rbons (m	g/L)																				
Diesel Range Organics	0.0167	(2)						120	540	110	54	94	<0.40	<0.40	<0.40	< 0.40	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	0.0101	(2)						13	12	14	4.5	0.3	0.052	0.12	0.14	0.10	0.091	0.10	0.078	0.13	< 0.05	0.12
Motor Oil Range Organics	0.0858	(2)						<50	<25	<25	< 25	< 25	<2.5	<2.5	<2.5	< 2.5	< 2.5	<5	<2.5	<2.5	< 2.5	< 2.5

Notes:

(1) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)

(2) NMED SSG (June 2019)

- = No screening level available

* = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

--- = Analysis not required and/or well contains separate phase

= Analytical result exceeds the respective screening level.

= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 8
Outfalls Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

Comptitue	.4-					E	ast Outfall #	#2								East O	utfall #3				
Constituen	its		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	May-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	May-16	Aug-15	Apr-15
Volatile Organic Compo	ounds (m	g/L)																			
Benzene	0.005	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	1.000	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.620	(3)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015
MTBE	0.100	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
General Chemistry (mg/	/L)																				
Fluoride	1.6	(3)	0.48 J	<0.50	0.43		0.42	0.46	0.18	0.17	0.52	0.35	<0.50	0.16		0.18	0.23	0.19	0.18	0.18	0.22
Chloride	250	(3)	12	15	4.4		9.5	8.4	3.4	2.7	8.6	14	14	3.1		4.1	18	3.4	3.8	3.6	4.4
Nitrite	1	(3)	1.5	<0.50	<1.0		1.6	1.4	< 0.10	< 0.10	0.13	1.6	<0.50	0.48 J		0.59 J	2.4	< 1.0	< 0.10	< 0.10	< 0.10
Bromide	-	-	<0.50	<0.50	0.074 J		0.13	< 0.10	< 0.10	< 0.10	< 0.10	0.12	<0.50	0.041 J		0.036 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nitrate	10	(3)	1.5	3.5	<1.0		1.6	1.4	0.17	0.54	0.71	1.6	3.3	0.48 J		0.59 J	2.4	< 1.0	0.22	0.47	0.21
Phosphorus	-	-	<2.5 H	<2.5	0.64 H		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50 H	<2.5	0.33 JH		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(3)	220	250	58		190	89	45	42	88	190	250	44		51	120	48	44	47	54
Carbon Dioxide (CO ₂)	-	-	300 H	310	210	330	310	320	90	78	-	290	300	86	300	110	240	84	87	85	-
Alkalinity (CaCO ₃)		_	333.2	323	233.9	354.6	343.7	343.1	97.96	85.24	344.8	324.4	318.1	93.12	319.9	126.5	253.5	94	95.28	95.16	111
Bicarbonate (CaCO ₃)		_	333.2	323	233.9	354.6	343.7	343.1	97.96	85.24	344.8	324.4	318.1	93.12	319.9	126.5	253.5	94	95.28	95.16	111
Total Metals (mg/L)		-	333.2	323	233.3	334.0	343.7	343.1	37.30	03.24	344.0	324.4	310.1	93.12	313.3	120.5	233.3	34	93.20	93.10	1111
Arsenic	0.01	(3)	< 0.020	< 0.020	< 0.020	< 0.020	0.02	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Barium	2.0	(3)	0.064	0.077	0.060	0.11	0.23	0.066	0.09	0.063	0.087	0.048	0.063	0.07	0.10	0.076	0.08	0.072	0.074	0.065	0.063
Cadmium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
	0.015	· ,	< 0.0050	< 0.0050	<0.0050	0.0054	< 0.0050	< 0.0050	0.0057	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	0.0052	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Lead		(3)																	-		
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	0.0027 J	< 0.0050	<0.0050	0.0056	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0023 J	< 0.0050	< 0.0050	0.0059	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.00020	< 0.00020	0.000085 J	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.000060 J	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/L	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	0.001	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	0.001	< 0.020
Arsenic		(2)																			
Barium	1.0	(3)	0.063	0.082	0.055	0.065	0.095	0.066	0.068	0.06	0.089	0.049	0.064	0.065	0.09	0.067	0.08	0.069	0.072	0.062	0.062
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-	(2)	110	140	74	110	120	98	37	30	100	110	140	36	130	45	92	34	35	33	41
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0050	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.050	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0030 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)	0.0056 J	< 0.020	< 0.020	< 0.020	0.023	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.0066 J	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Lead	0.015	(2)	0.0075	< 0.0050	< 0.0050	< 0.0050	< 0.00020	< 0.0050	< 0.00050	< 0.00050	< 0.0050	0.0066	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	< 0.0050
Magnesium	-		25	27	14	22	26	21	6.2	5.2	21	25	26	6.2	25	8.2	16	6	5.8	5.9	7.1
Manganese	0.2	(3)	0.00074 J	<0.0020	0.0043	<0.0020	0.076	0.0054	0.009	0.0021	0.011	<0.0020	<0.0020	0.0013 J	<0.0020	0.0031	< 0.0020	0.0032	0.0028	0.0031	< 0.0020
Potassium	-		1.7	2.0	1.0	1.4	2.1	1.6	1.6	1.7	1.4	2.0	1.9	1.8	2.2	1.8	2.1	1.9	1.6	1.8	1.9
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050
Silver	0.05	(3)	0.0021 J	< 0.0050	0.0024 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0023 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Sodium	-		81	83	36	61	67	58	16	14	57	80	84	18	80	22	53	18	17	17	22
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.0050	< 0.10	0.0008	< 0.00050	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.0008	0.0007	< 0.10
Zinc		(3)	0.020 J	< 0.020	0.065	< 0.020	0.030	< 0.020	0.02	0.019	< 0.020	0.016 J	< 0.020	0.056	< 0.020	0.031	< 0.020	0.025	< 0.010	0.018	< 0.020

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
 - = No screening level available or result available
 - = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - = Analytical result exceeds the respective screening level.
 - ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 9
Seeps Analytical Summary
2019 Groundwater Remediation and Monitoring Annual Report

						See	p #1			
			Aug-18	May-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compou	nds (mg	/l):								
Benzene	0.005	(2)				<0.001		<0.001		<0.001
Toluene	0.750	(3)				<0.001		<0.001		<0.001
Ethylbenzene	0.700	(2)				<0.001		<0.001		<0.001
Xylene	0.620	(3)				<0.0015		<0.0015		<0.0015
MTBE	0.143	(4)				0.043		0.041		0.013
General Chemistry (mg/l)	:									
Fluoride	1.6	(3)		<0.50		<0.5		0.35		<1.0
Chloride	250	(3)		270		210		200		170
Nitrite	1.0	(2)		<0.50		<1.0		<1.0		<1.0
Bromide	-	-		3.9		3.2		2.6		3.3
Nitrate	10	(3)		<0.50		<1.0		<1.0		<1.0
Phosphorus	-	-		<10		< 2.5		< 2.5		<5.0
Sulfate	600	(3)		1000		1100		1300		1200
Carbon Dioxide (CO ₂)	-	-		430		470		450		390
Alkalinity (CaCO ₃)	-	-		453.2		507.1		479.6		433.1
Bicarbonate (CaCO ₃)	-	-		453.2		507.1		479.6		433.1

		See	p #2		
Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16
-					

				p #3			
Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
					<0.001		
					<0.001		
					<0.001		
					<0.0015		
					<0.001		
					0.22		
					260		
					<1.0		
					3.2		
					<1.0		
					<5		
					2500		
					330		
					365.4		
					365.4		

			Seep #6							
			Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds (mg/l):										
Benzene	0.005	(2)								
Toluene	0.750	(3)								
Ethylbenzene	0.700	(2)								
Xylene	0.620	(3)								
MTBE	0.143	(4)								
General Chemistry (mg/l)	:									
Fluoride	1.6	(3)								
Chloride	250	(3)								
Nitrite	1.0	(2)								
Bromide	-	-								
Nitrate	10	(3)								
Phosphorus	-	-								
Sulfate	600	(3)								
Carbon Dioxide (CO ₂)	-	-								
Alkalinity (CaCO ₃)	-	-								
Bicarbonate (CaCO ₃)	-	-								

Seep #9										
Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16					

- (1) EPA Regional Screening Levels (November 2019) -Tap Water
- (2) EPA Regional Screening Levels (April 2019) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018)
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (February 2019)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
 - = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
- ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 10 San Juan River Analytical Summary 2019 Groundwater Remediation and Monitoring Annual Report

Constituents				Upstream									North of MW-45									
Constituents	i		Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds	(mg/L):																					
Benzene	0.005	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	1.000	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylenes	0.620	(1)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015
MTBE	0.100	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarbon	· • ·																					
Diesel Range Organics	0.0167	(2)	<0.40	<0.40	<0.40	<0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.40	< 0.40	< 0.40	< 0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	0.0101	(2)	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	0.0858	(2)	<2.5	< 2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
General Chemistry (mg/L):																						
Fluoride	1.6	(1)	0.21 J	<1.0	0.13	0.15	0.13	0.17	0.16	0.2	0.17	0.21	0.19	<1.0	0.14	0.15	0.12	0.17	0.15	0.2	0.17	0.2
Chloride	250	(1)	3.6	5.4	2.5	2.8	3.4	3.5	2.7	3.3	3	4.3	3.6	5.5	2.7	2.8	2.8	3.5	2.7	3.3	2.9	3.8
Nitrite	1.0	(1)	0.13 J	<1.0	<0.10	<1.0	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	<1.0	<1.0	<1.0	<1.0	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10
Bromide	-	- (4)	<0.50	<1.0	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<1.0	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nitrate	10	(1)	0.13 J	<1.0	<0.10	<1.0	0.18	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	<1.0	<1.0	<1.0	<1.0	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10
Phosphorus	-	- (4)	<0.50 H	<0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50 H	<5 H	<0.50	<0.50 H	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(1)	49	92	43	50	46	73	49	75	54	110	50	94	42	49	45	71	48	78	52	92
Carbon Dioxide (CO ₂)	-	-	79 H	87 H		76	77	71	77	86			80 H	86 H		75 H	75	71	76	86		
Alkalinity (CaCO ₃)	-	-	87.56	95.56	82.16	84.2	85.68	91.24	86	95	91.56	99.56	88.72	95.48	82.08	84.32	84.16	91.12	84.8	95.44	91	99.68
Total Dissolved Solids	1000	(1)	245	278	294	235	181	167	178	240	204	232	187	271	205	210	176	166	180	246	200	267
Electric Conductivity	-	-	310	427	454	360	280	250	290	380	300	357	310	417	314	320	280	260	280	380	300	411
Total Metals (mg/L):																						
Arsenic	0.01	(1)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Barium	2.0	(1)	0.10	0.14	0.16	0.079	0.099	0.079	0.11	0.08	0.16	0.061	0.12	0.19	0.17	0.13	0.11	0.085	0.14	0.08	0.15	0.06
Cadmium	0.005	(1)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(1)	0.0026 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0015 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Lead	0.015	(1)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0043 J	< 0.0050	0.0056	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.05	(1)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(1)	0.00084 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.00077 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(1)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/L):																						
Arsenic	0.01	(1)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	0.001	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020		< 0.020	< 0.020	< 0.0010	< 0.0010	< 0.020
Barium	2	(1)	0.078	0.076	0.066	0.058	0.072	0.07	0.084	0.072	0.077	0.056	0.079	0.074	0.065	0.055	0.069	0.07	0.082	0.073	0.072	0.056
Cadmium	0.005	(1)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	- 0.05	- (4)	32	39	30	32	33	37	34	39	33	45	33	40	30	32	32	36	34	39	35	44
Conner	0.05	(1)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1.0	(1)	0.0033 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.011	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1.0	(1)	0.0089 J	0.074	<0.020	<0.020	0.015 J	< 0.020	0.29	< 0.020	0.062	< 0.020	0.0096 J	0.057	<0.020	<0.020	0.011 J	0.07	0.32	< 0.020	0.028	< 0.020
Lead	0.015		0.0063	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	
Magnesium	0.2	(1)	6.5	7.3	5.3	5.7	5.9	6.4	5.5	5.9	5.4	7.1	6.5	7.3	5.2	5.7	5.7	6.4	5.6	6.1	5.5	6.8
Manganese	0.2	(1)	0.0057	0.017	0.0022	0.0074	0.0095	0.021	0.03	0.012	0.01	0.034	0.0064	0.013	0.0028	0.0065	0.008	0.019	0.033	0.011	0.0037	0.01
Potassium	- 0.05	(4)	2.1	2.2	1.6	1.7	1.9	1.9	2.1	1.7	1.9	2.1	2.2	2.1	1.7	1.8	1.8	2	2.3	1.8	2	2.2
Selenium	0.05	(1)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.0010		< 0.050
Silver	0.05	(1)	0.0013 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050		< 0.0050
Sodium	- 0.02	(1)	17	29	15	20	17	26	19	26	19	39	17	30	15	20	16	25	20	27	18	34
Uranium	0.03	(1)	< 0.10	< 0.10 < 0.020	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.00076	0.00062	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.00076	0.00066	< 0.10
Zinc	10	(1)	0.021	<0.020	0.086	<0.020	0.033	< 0.020	0.024	0.016	0.021	< 0.020	0.018 J	< 0.020	0.11	< 0.020	0.031	< 0.020	< 0.020	0.014	0.018	0.05

Notes:

(1) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018) (2) NMED SSG (June 2019)

- = No screening level available

- = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

- = Analysis not required and/or well contains separate phase
 = Analytical result exceeds the respective screening level.

 ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 10 San Juan River Analytical Summary 2019 Groundwater Remediation and Monitoring Annual Report

Constituents							North of	MW-46					Downstream									
Constituents			Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-19	Apr-19	Aug-18	Apr-18	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15
Volatile Organic Compounds ((mg/L):																					
Benzene	0.005	(1)	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Toluene	1.000	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylenes	0.620	(1)	<0.0015	<0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	< 0.0015	<0.0015
MTBE	0.100	(1)	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarbons	\ \ \ \ /																					
Diesel Range Organics	0.0167	(2)	<0.40	<0.40	<0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.40	< 0.40	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	0.0101	(2)	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	0.0858	(2)	<2.5	< 2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
General Chemistry (mg/L):																						
Fluoride	1.6	(1)	0.19	<1.0	0.14	0.15	0.13	0.19	0.15	0.19	0.17	0.21	0.19	0.20	0.14	0.15	0.12	0.17	0.16	0.19	0.17	0.21
Chloride	250	(1)	3.5	6.2	2.5	3	2.9	4.4	2.7	3.5	2.9	3.8	3.6	5.5	2.5	2.9	2.8	3.7	2.7	3.4	3	3.9
Nitrite	1.0	(1)	<1.0	<1.0	<1.0	<1.0	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	0.13 J	<1.0	<1.0	<1.0	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10
Bromide	-	-	<0.10	<1.0	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<1.0	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nitrate	10	(1)	<1.0	<1.0	<1.0	<1.0	0.074 J	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	0.13 J	<1.0	<1.0	<1.0	0.082 J	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10
Phosphorus	-	-	<0.50 H	<5.0 H	<0.50	<0.50 H	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50 H	<5.0 H	<0.50	<0.50 H	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(1)	50	130	43	59	45	120	49	80	53	93	52	110	44	58	45	80	49	84	54	100
Carbon Dioxide (CO ₂)	-	-	80	92		78	75	72	77	86			80 H	89 H		77 H	75	72	77	87		
Alkalinity (CaCO ₃)	-	-	88.92	102.1	82.52	87.48	84.92	103.6	85	95	92	99.6	88.80	99.36	82.04	86.16	84.52	93	86	97	92.12	102.6
Total Dissolved Solids	1000	(1)	194	155	202	219	182	172	170	245	202	263	204	321	196	200	186	172	184	254	196	279
Electric Conductivity	-	-	310	239	309	340	280	260	280	380	310	405	310	494	302	319	280	260	290	400	300	429
Total Metals (mg/L):													,									
Arsenic	0.01	(1)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.02	< 0.020
Barium	2.0	(1)	0.15	0.14	0.13	0.074	0.086	0.082	0.11	0.078	0.17	0.057	0.15	0.19	0.11	0.078	0.091	0.078	0.12	0.082	0.130	0.058
Cadmium	0.005	(1)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020
Chromium	0.05	(1)	0.0046 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0024 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060
Lead	0.015	(1)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0058	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	0.0059	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050
Selenium	0.05	(1)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(1)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.00058 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050
Mercury	0.002	(1)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.0002	< 0.00020
Dissolved Metals (mg/L):																						
Arsenic	0.01	(1)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	< 0.0010	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	< 0.001	< 0.020
Barium	2	(1)	0.081	0.074	0.065	0.057	0.071	0.067	0.086	0.074	0.074	0.062	0.080	0.076	0.065	0.058	0.07	0.068	0.085	0.072	0.077	0.055
Cadmium	0.005	(1)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020
Calcium	-	-	34	47	31	35	33	48	34	40	36	44	33	44	31	35	33	40	34	41	34	47
Chromium	0.05	(1)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060
Copper	1.0	(1)	0.0062	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060
Iron	1.0	(1)	0.010 J	0.037	0.021	0.033	0.014 J	< 0.020	0.36	0.022	0.085	0.028	0.012 J	0.070	0.023	<0.020	0.010 J	< 0.020	0.31	0.031	0.086	< 0.020
Lead	0.015	(1)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.0005	< 0.0050
Magnesium	-	-	6.6	8	5.2	5.9	5.8	7.1	5.5	6.1	5.6	6.7	6.5	7.7	5.2	5.9	5.8	6.5	5.5	6.2	5.4	7.2
Manganese	0.2	(1)	0.0066	0.10	0.0079	0.044	0.0091	0.098	0.032	0.010	0.009	0.011	0.0053	0.026	0.0041	0.016	0.012	0.029	0.032	0.029	0.011	0.062
Potassium	-	-	2.3	2.2	1.7	1.7	1.9	2	2.2	1.9	2	2.2	2.2	2.2	1.6	1.7	1.8	1.9	2.3	1.9	1.9	2.1
Selenium	0.05	(1)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.001	< 0.050
Silver	0.05	(1)	0.0013 J	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050
Sodium	-	-	18	36	15	22	16	34	19	27	18	33	17	35	15	22	16	27	19	29	18	37
Uranium	0.03	(1)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.00078	0.00067	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.00084	0.0006	< 0.10
Zinc	10	(1)	0.034	< 0.020	0.081	< 0.020	0.031	0.02	< 0.020	0.024	0.028	0.023	0.026	< 0.020	0.040	< 0.020	0.033	< 0.020	< 0.020	0.013	0.03	< 0.020

Notes:

(1) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3103 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (December 2018) (2) NMED SSG (June 2019)

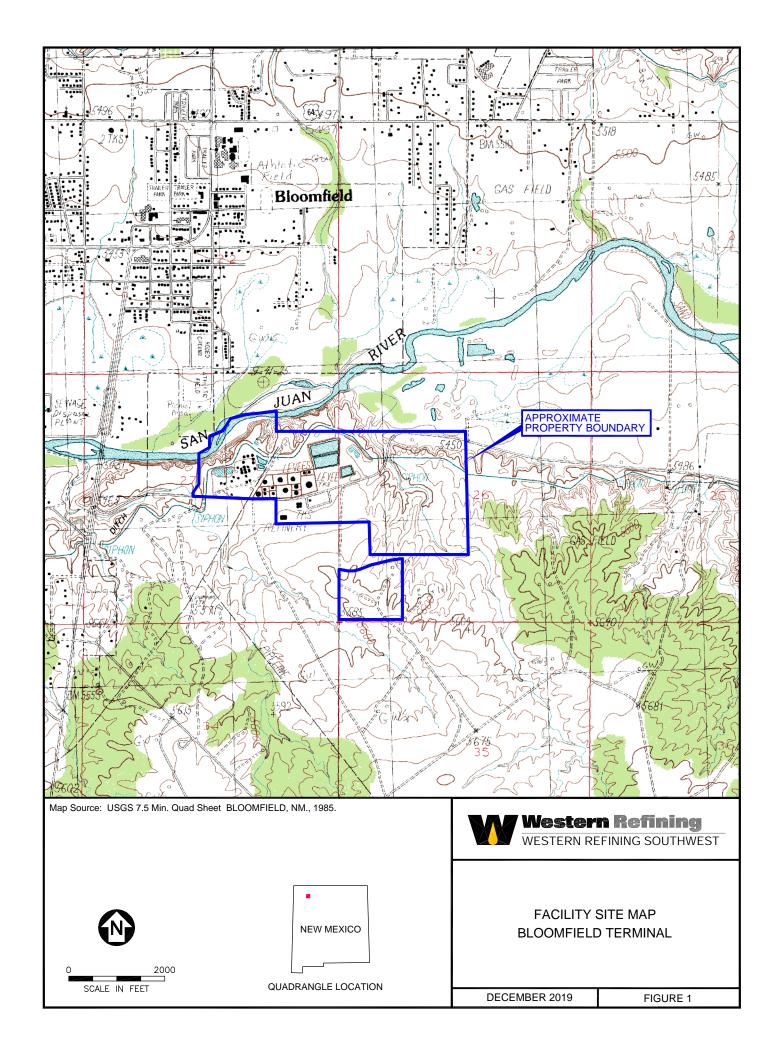
- = No screening level available

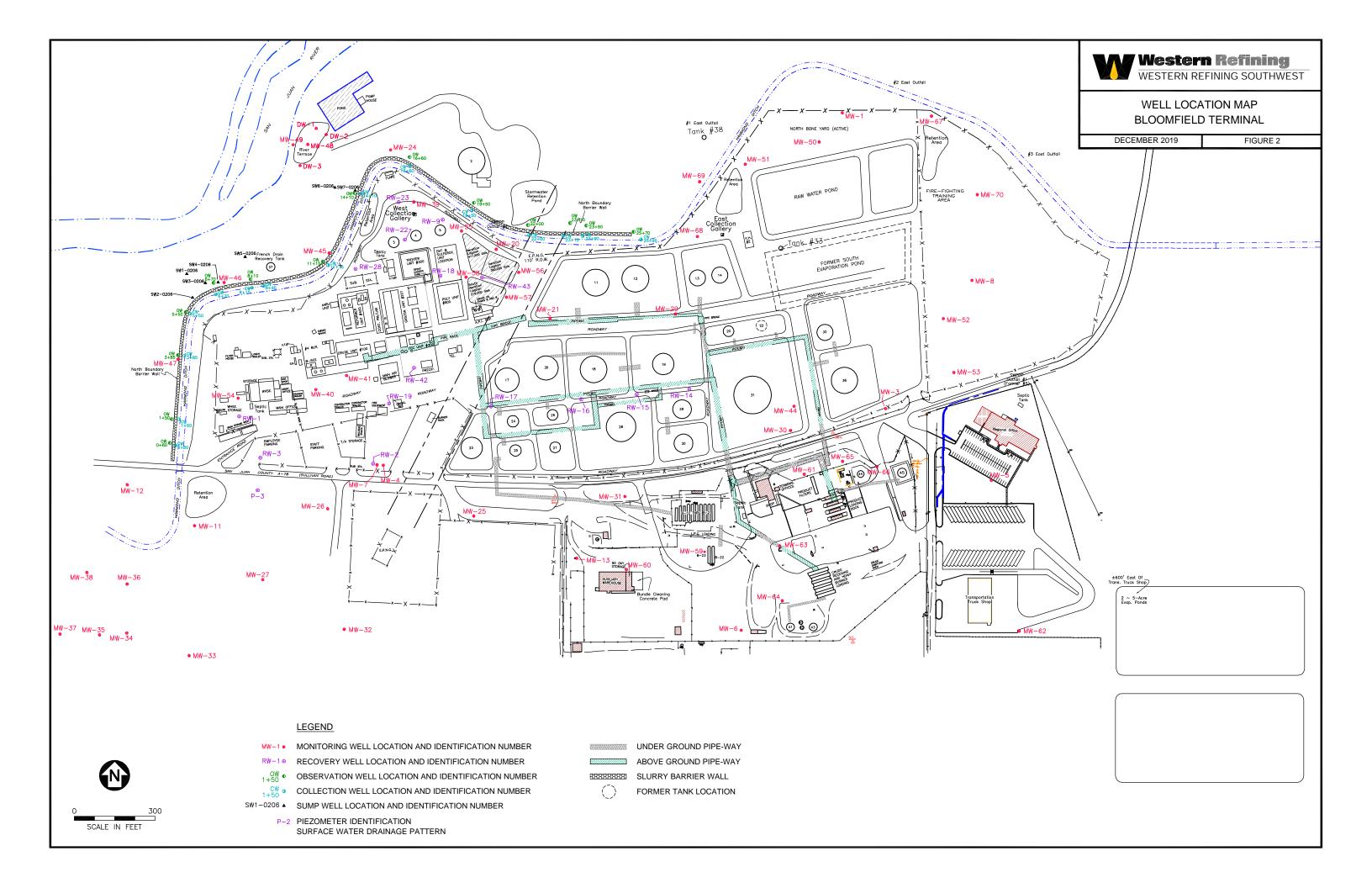
- = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

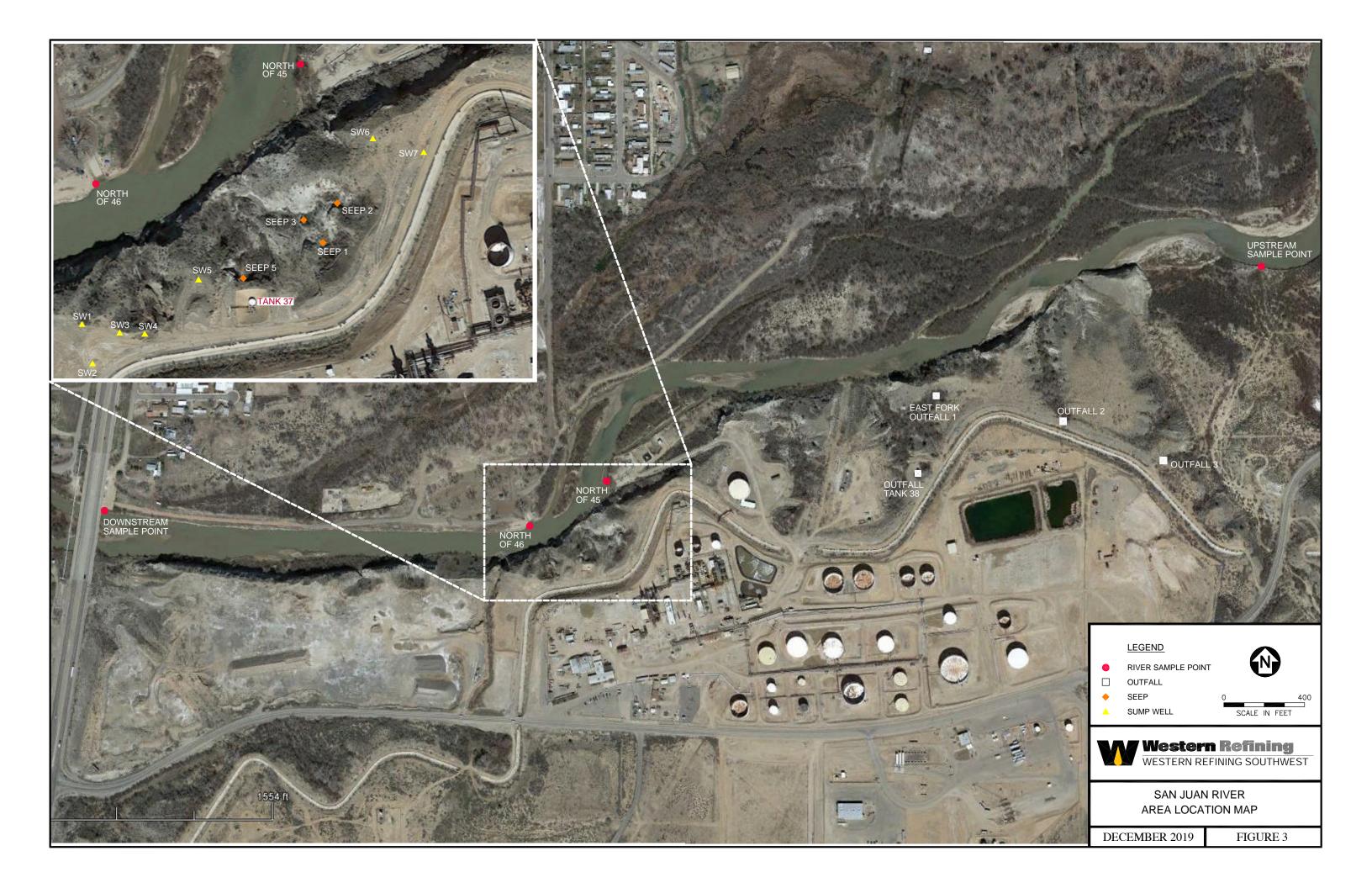
- = Analysis not required and/or well contains separate phase
 = Analytical result exceeds the respective screening level.

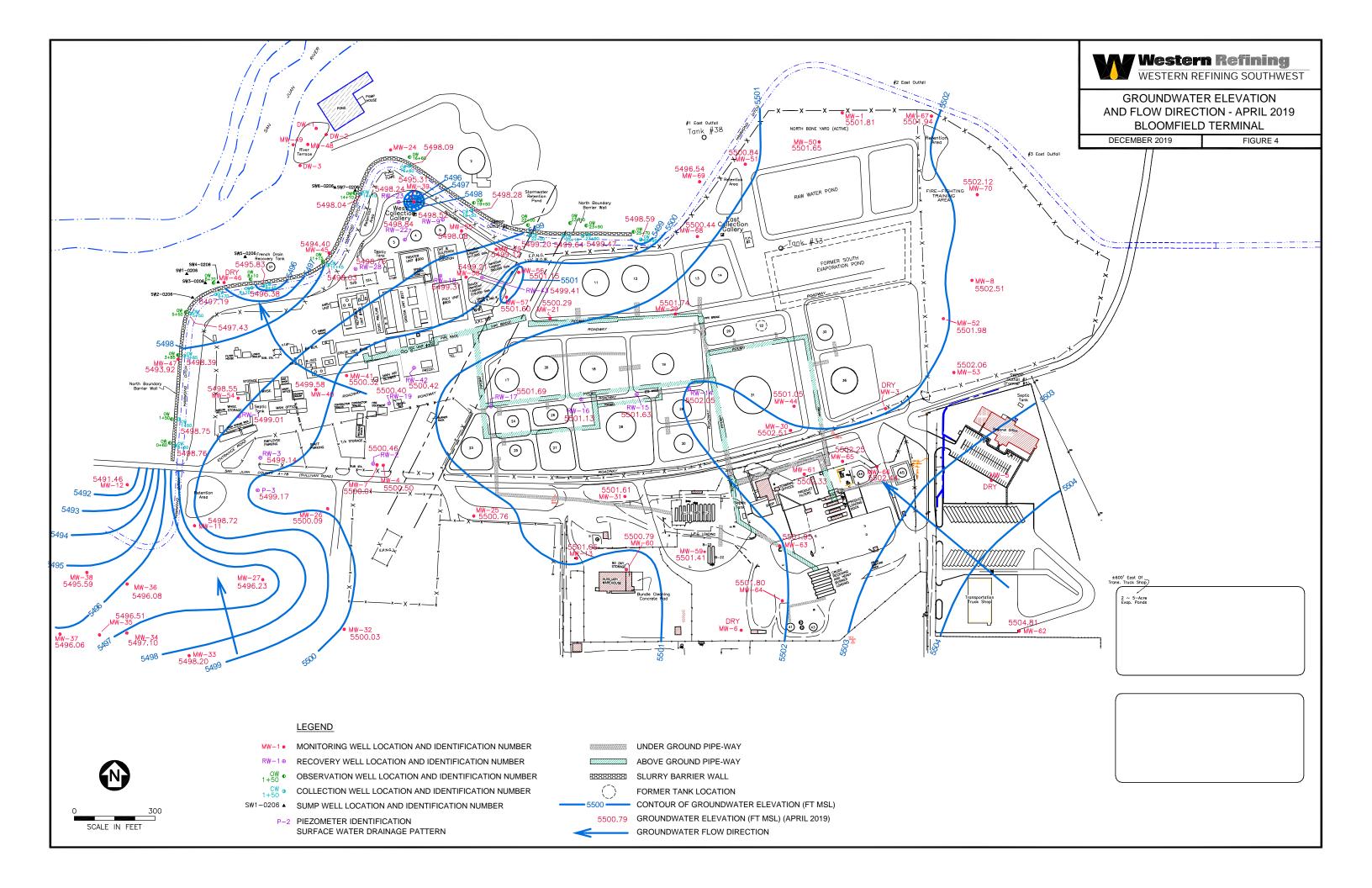
 ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

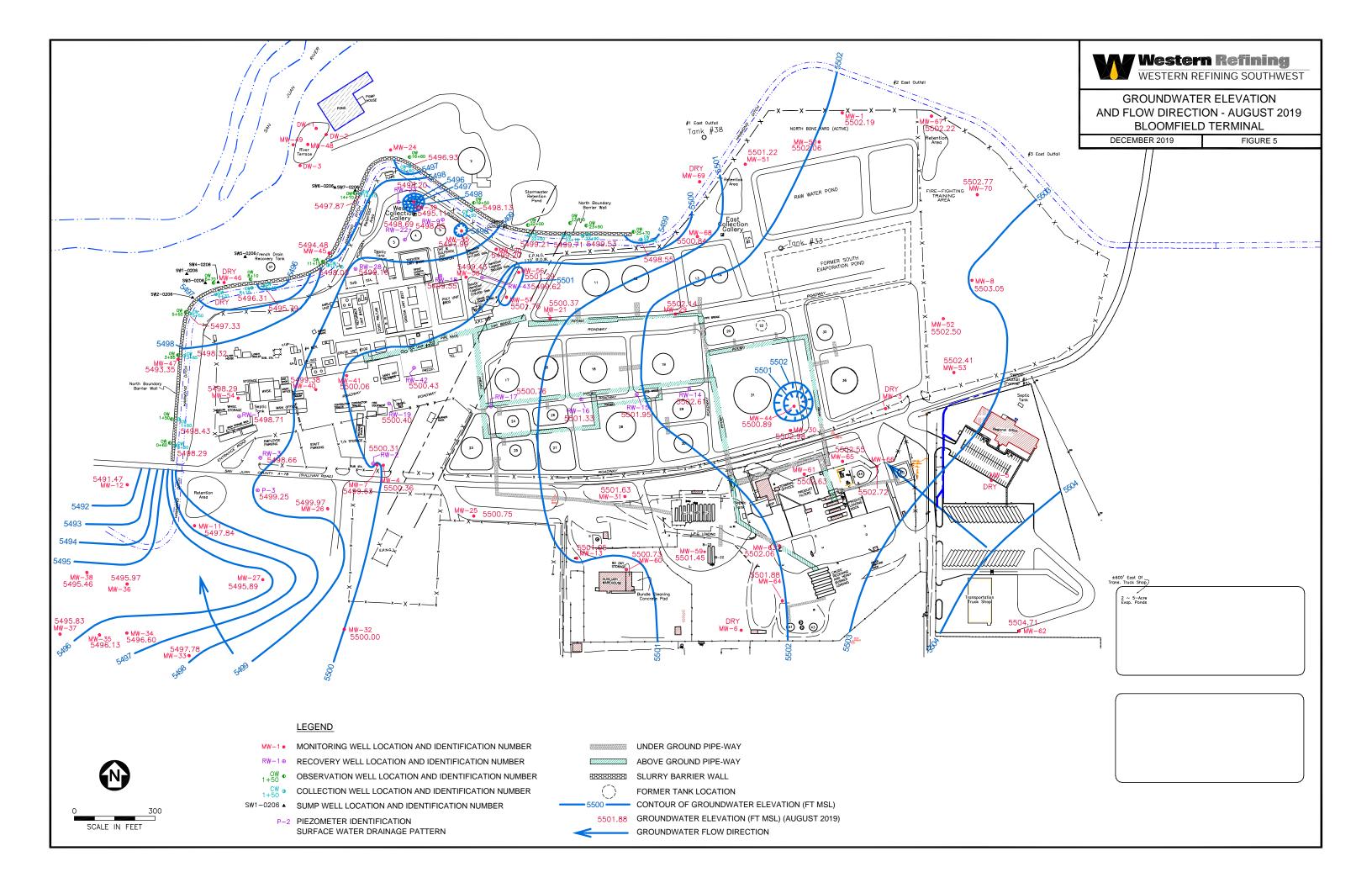
TABLE 11
Wastewater Volumes
2019 Groundwater Remediation and Monitoring Annual Report

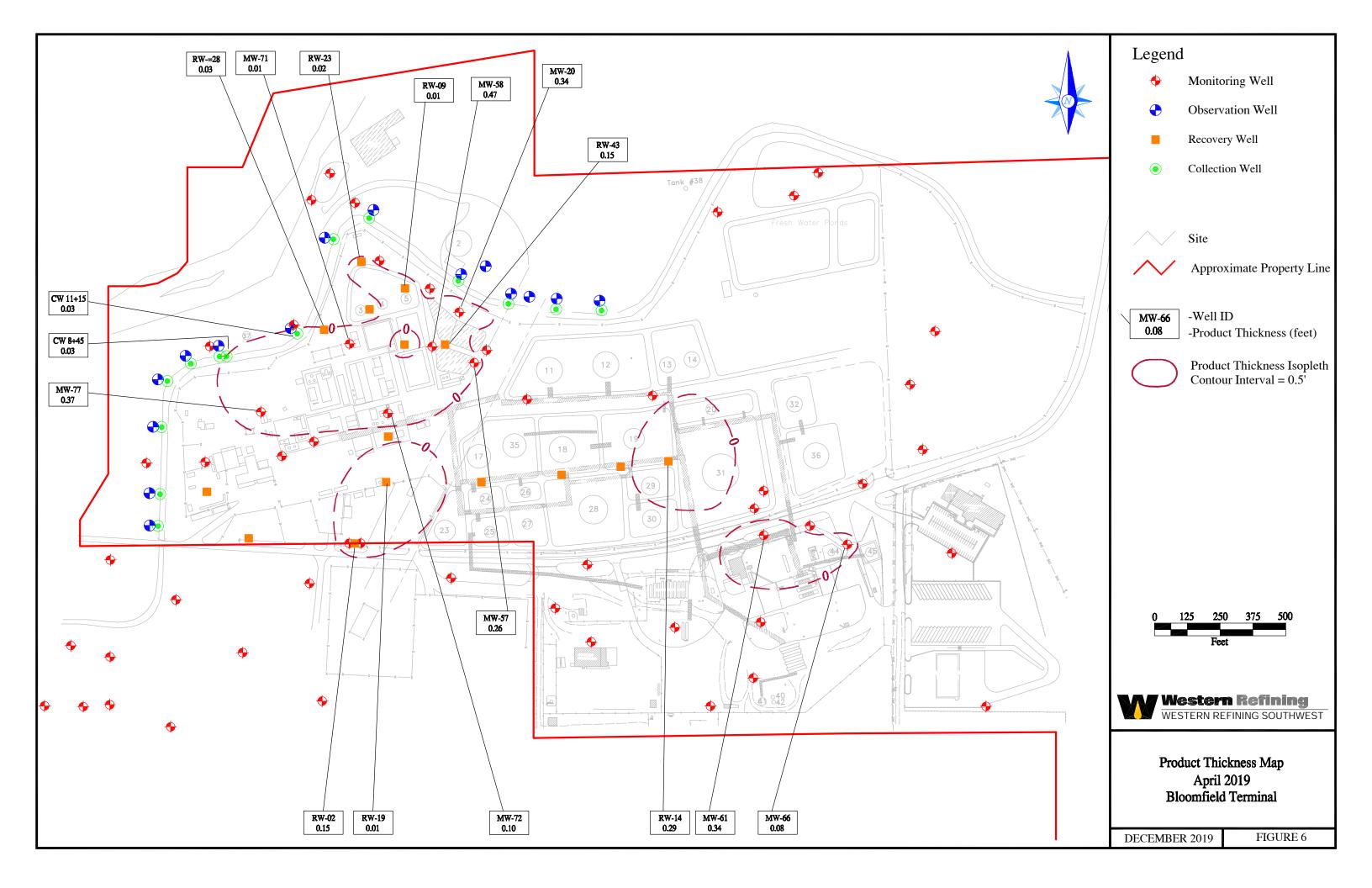

2019	API Monthly Total Gallons	API Monthly Total BBIs	Injection well Total (gallons)	Injection well Total BBLs	Discharge to Evaporation Ponds Total BBLs
January	673,000	16,024	218,274	5,197	10,827
February	789,000	18,786	210,252	5,006	13,780
March	1,156,000	27,524	165,858	3,949	23,575
April	885,000	21,071	170,856	4,068	17,003
May	1,411,000	33,595	0	0	33,595
June	1,259,000	29,976	7,938	189	29,787
July	1,059,000	25,214	0	0	25,214
August	1,076,000	25,619	0	0	25,619
September	991,000	23,595	81,690	1,945	21,650
October	920,000	21,905	0	0	21,905
November	1,225,000	29,167	119,826	2,853	26,314
December	1,424,000	33,905	7,091	169	33,736

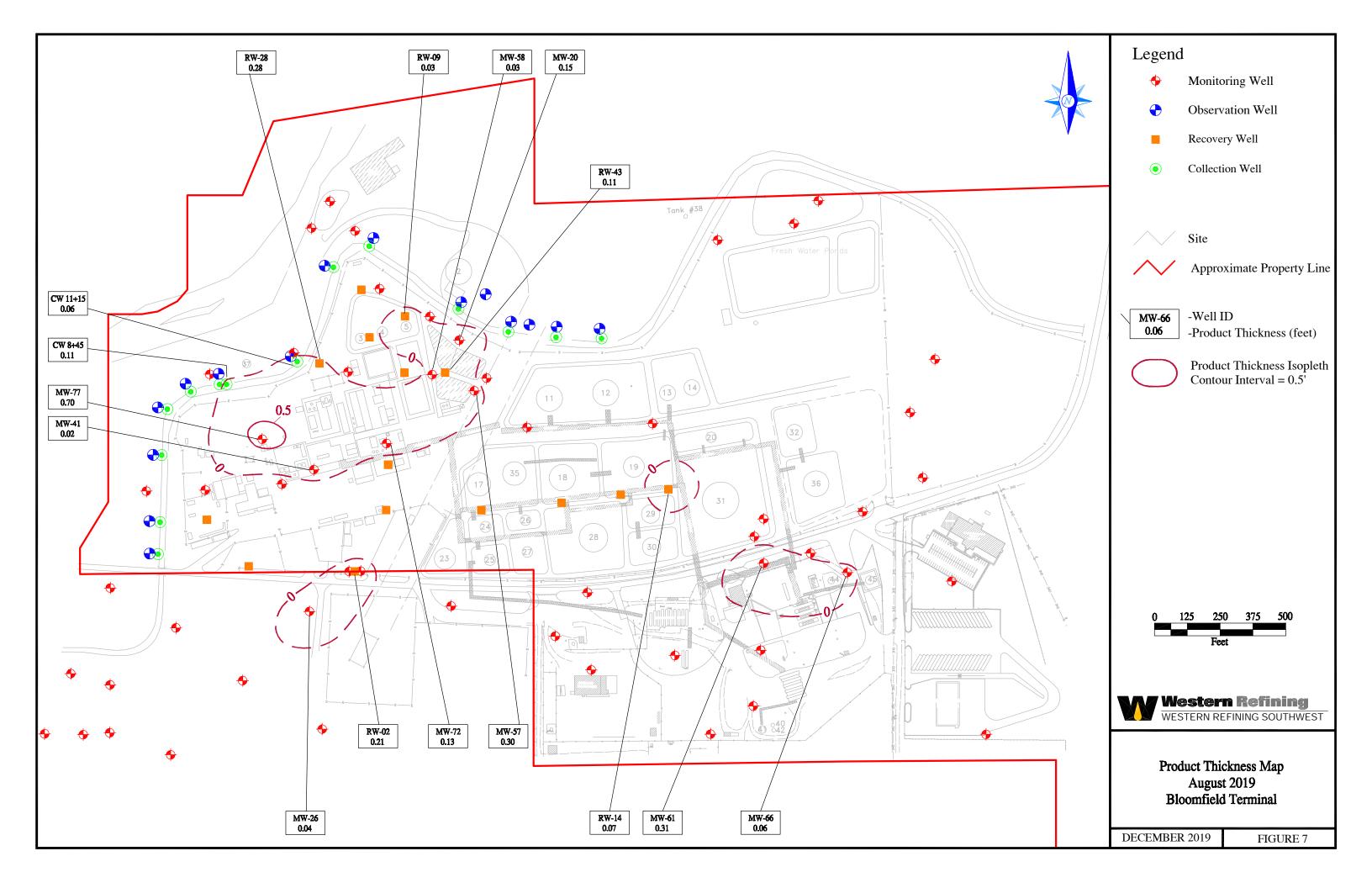

BBLs - barrels 283,005

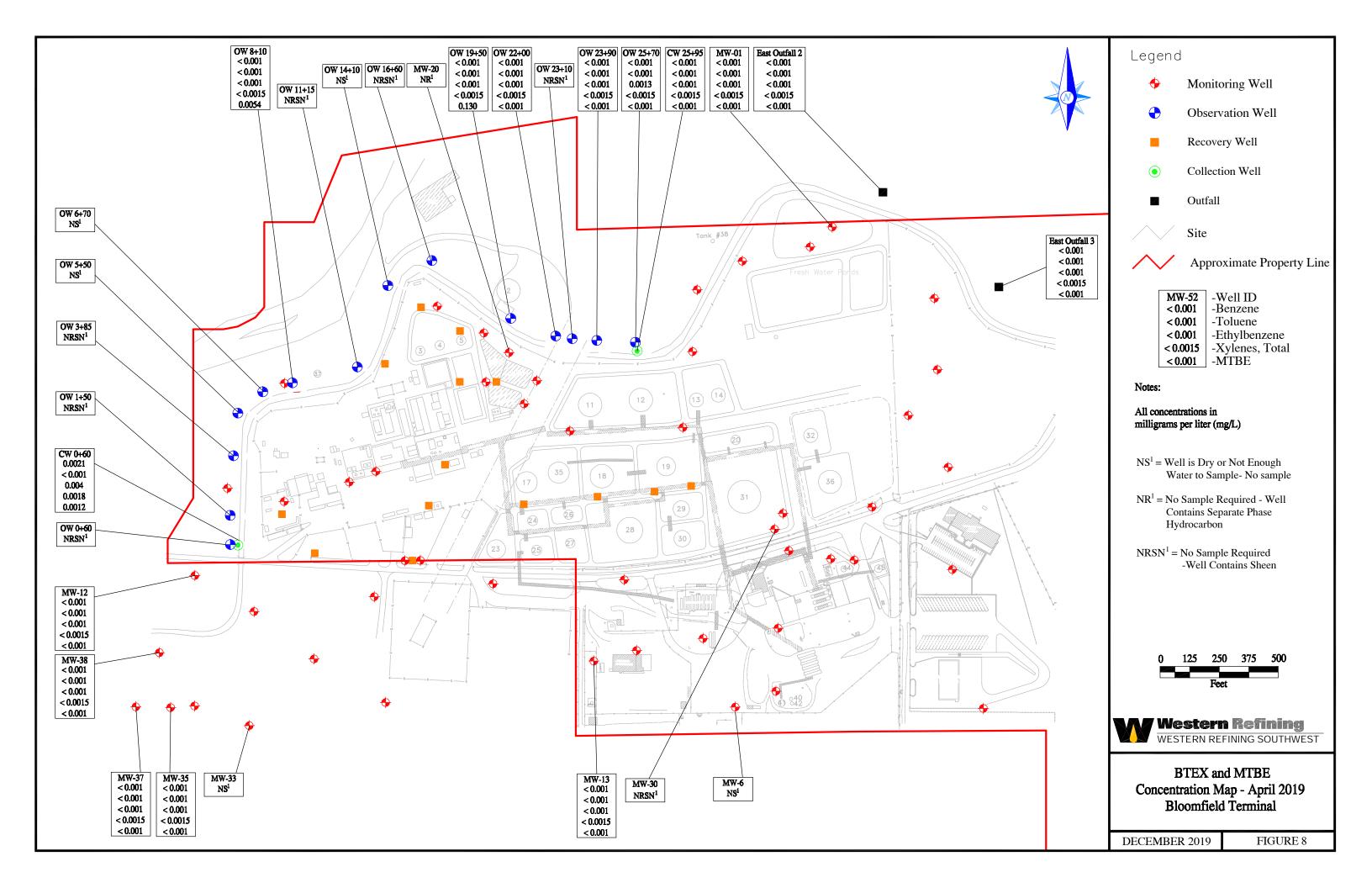

TABLE 12
Hazardous Waste Summary
2019 Groundwater Remediation and Monitoring Annual Report

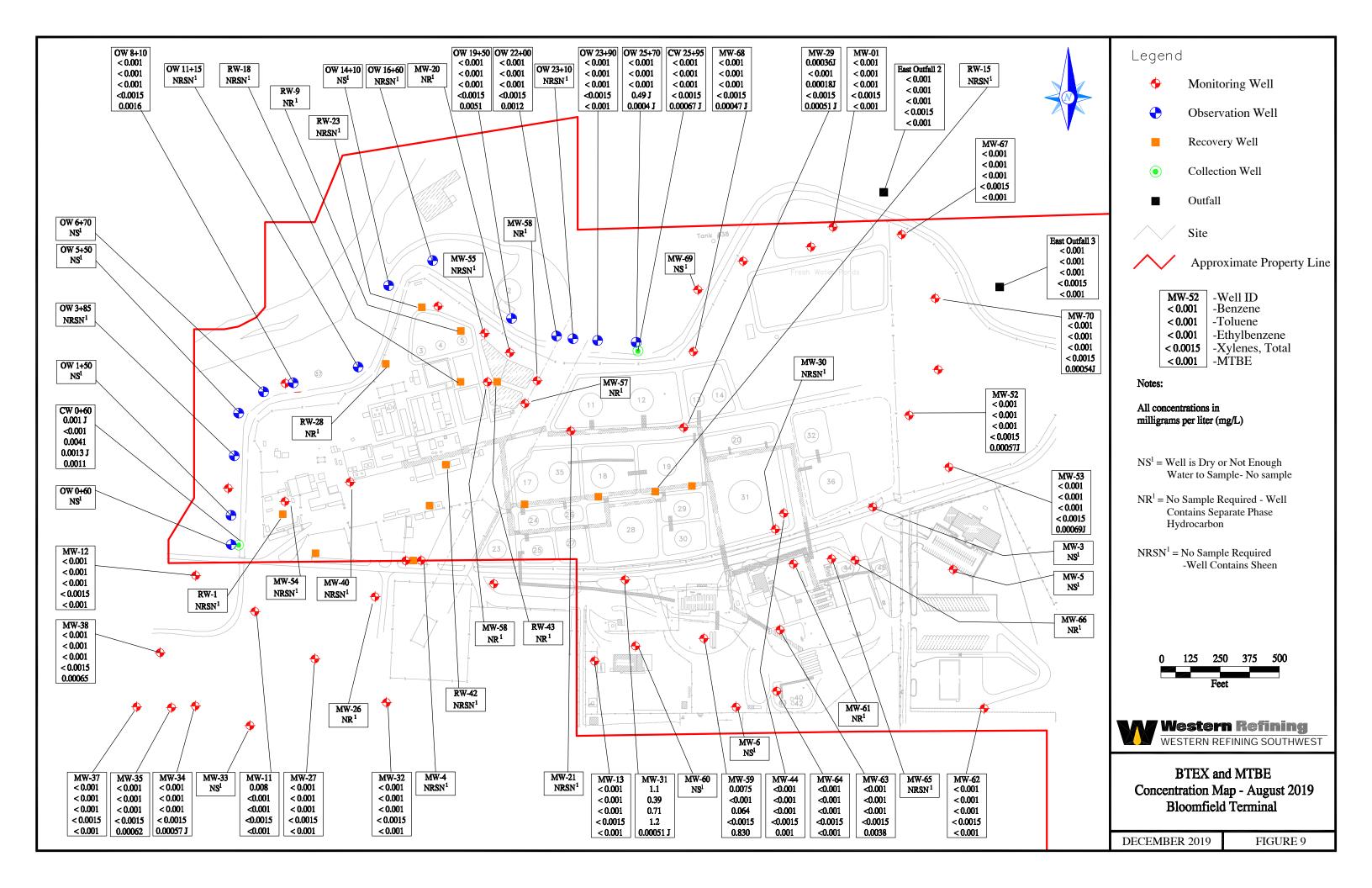

Biok up Doto	Manifest #	Description	Conta	ainers	Quantity	Destination	Treatment
Pick-up Date	Walliest #	Description	No.	Type	Quantity	Destination	rrealment
10/15/2019	13217105	Petroleum Impacted Sludge	5	drums	3520 lbs	Clean Harbors Deer Park, LLC 2027 Independence Parkway South La Porte, TX, 77571	Incineration
10/15/2019	13217105	Old Paints	2	drums	660 lbs	Clean Harbors Deer Park, LLC 2027 Independence Parkway South La Porte, TX, 77571	Incineration
12/11/2019	12017680	Used Glycol from VRU	7	totes	16700 lbs	Heritage Environmental Services 284 E. Storey Rd Coolidge, AZ 85128	Transfer Storage

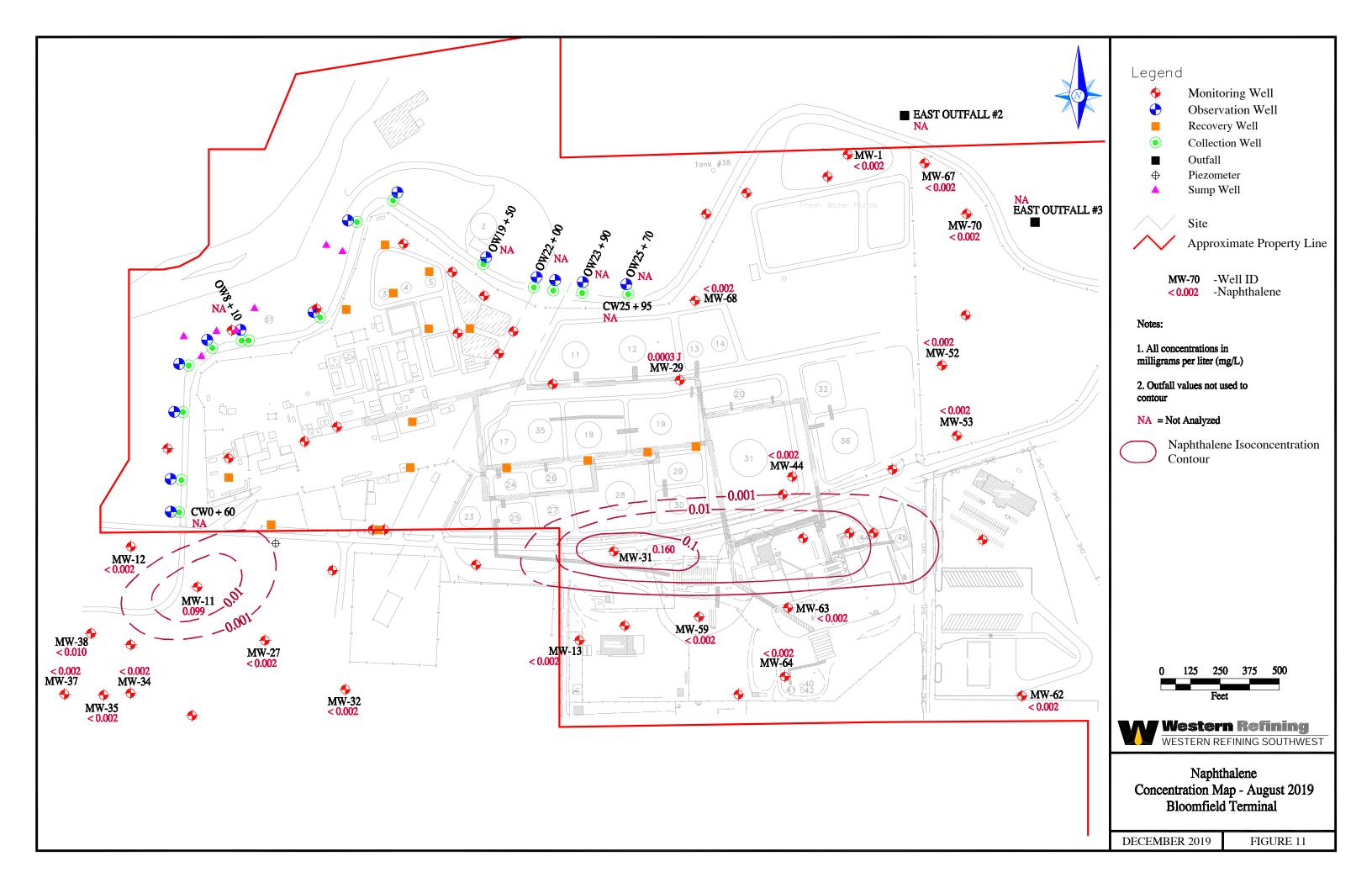

FIGURES

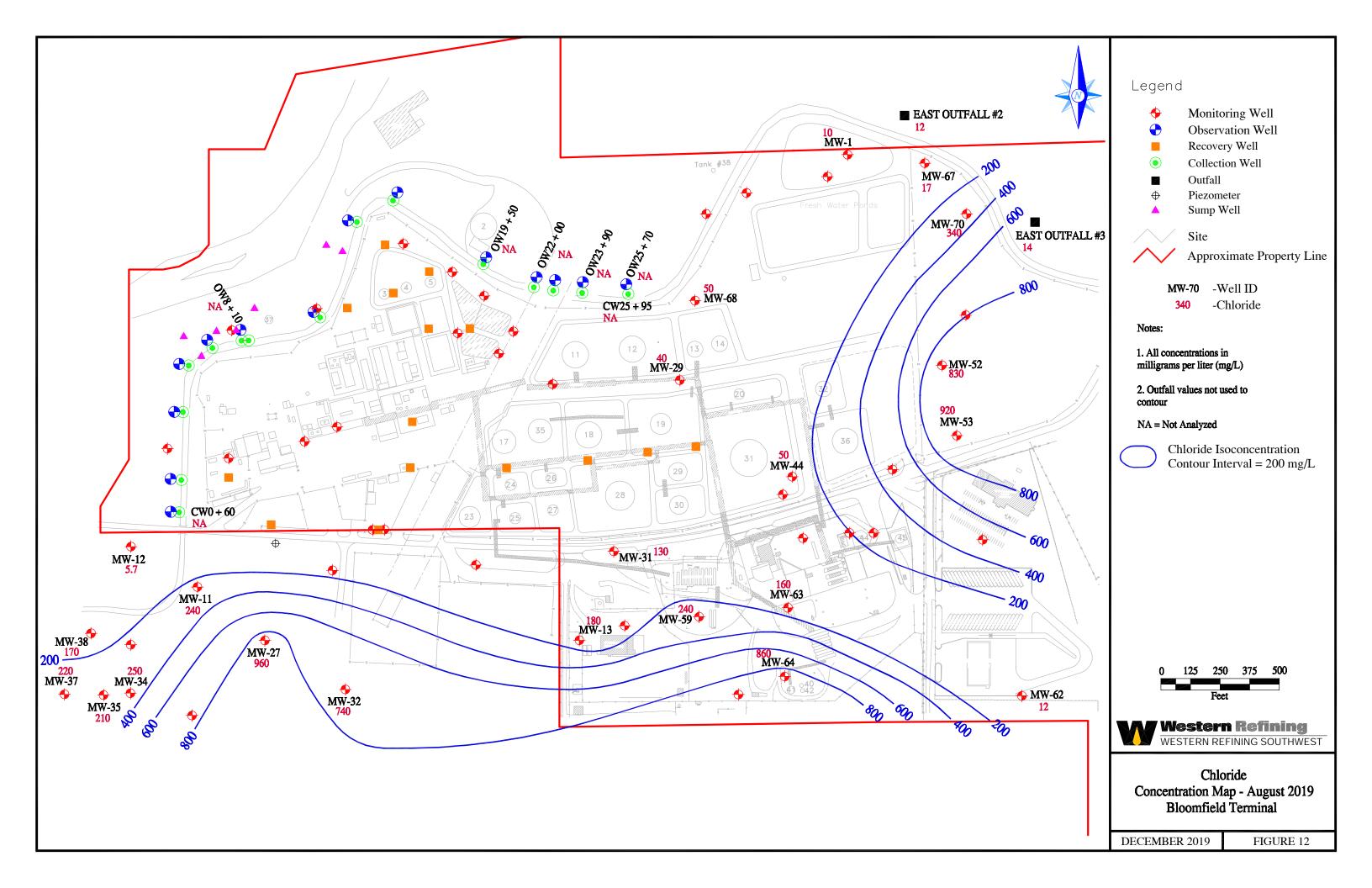


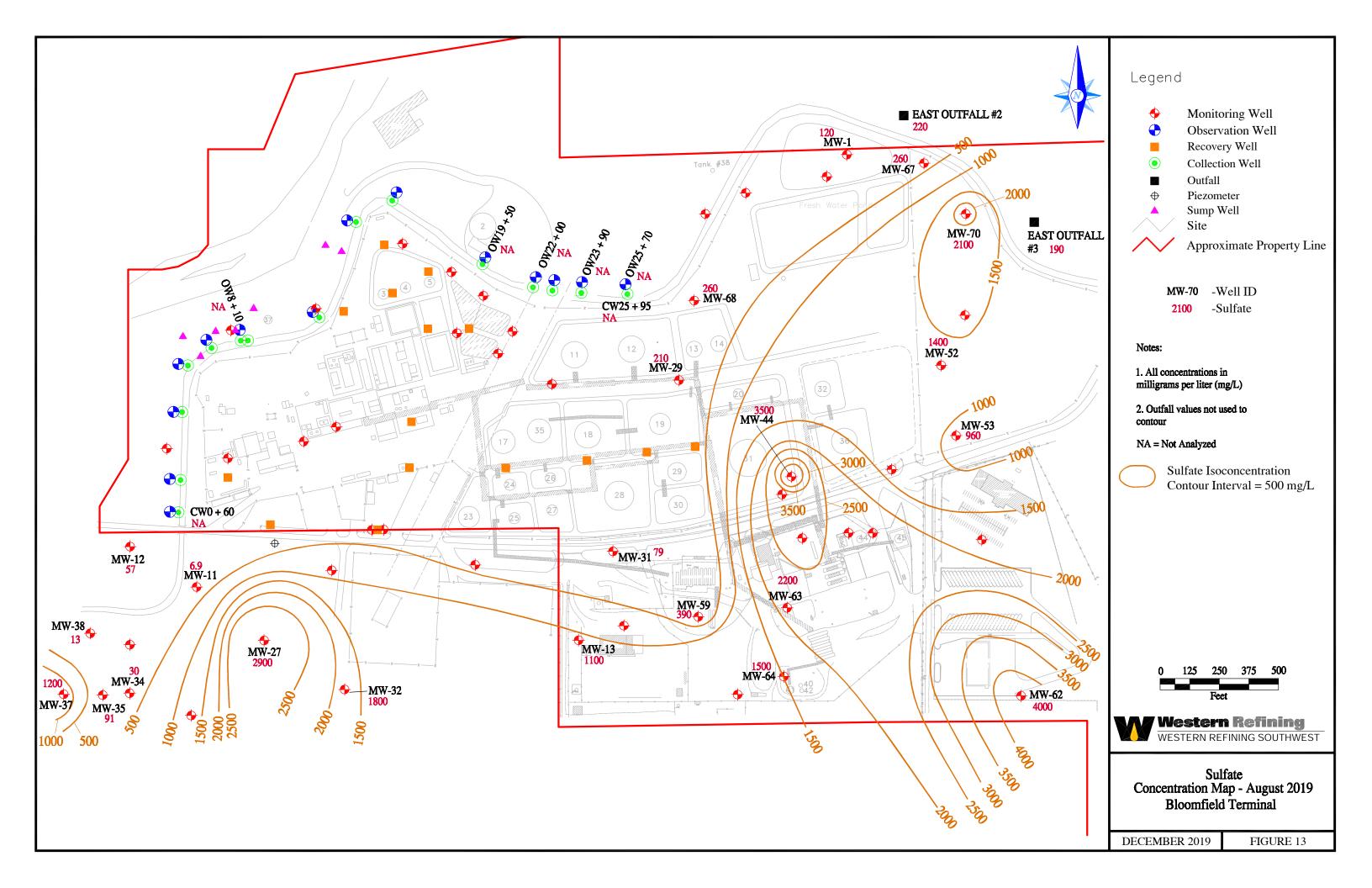


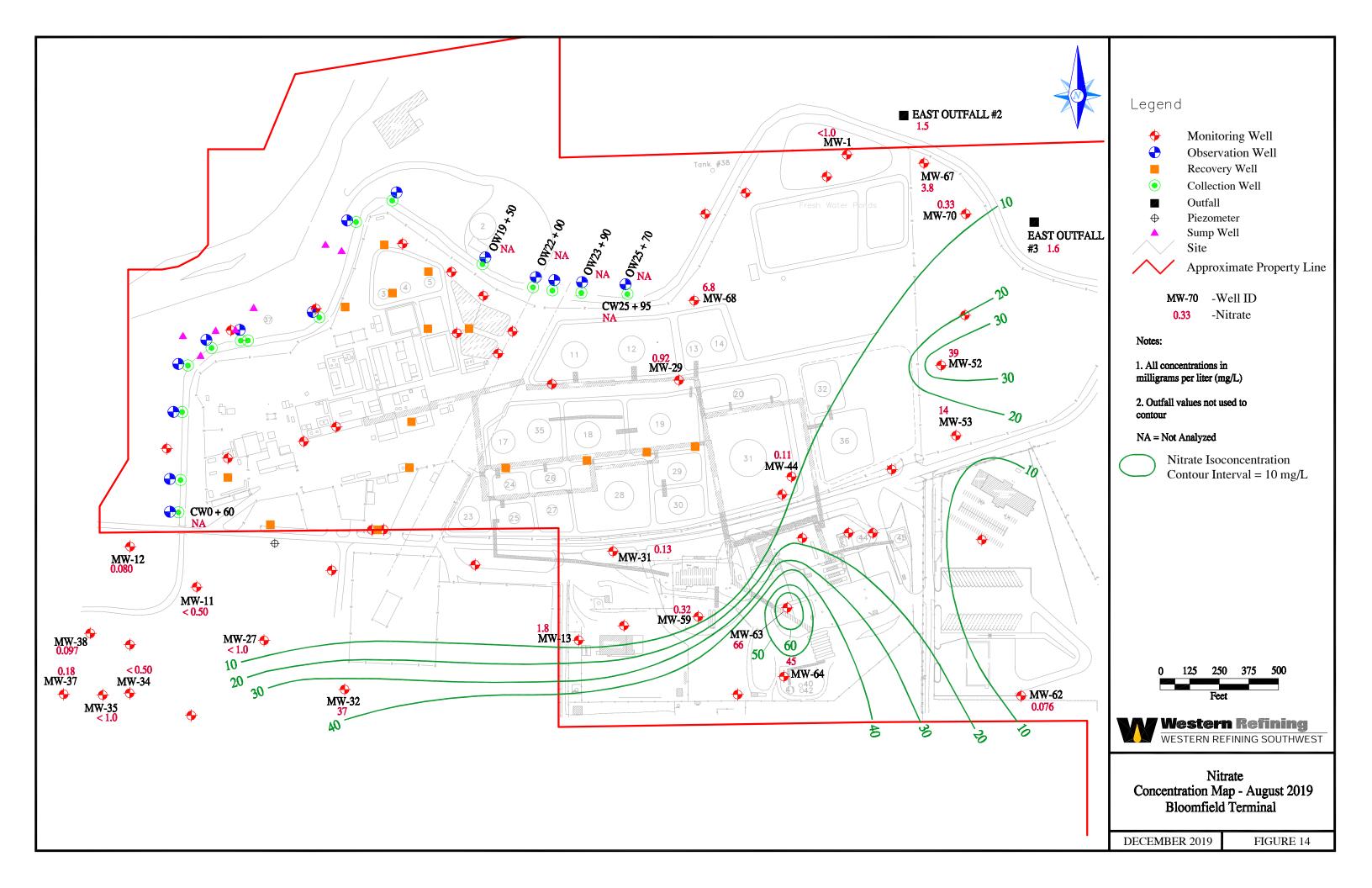


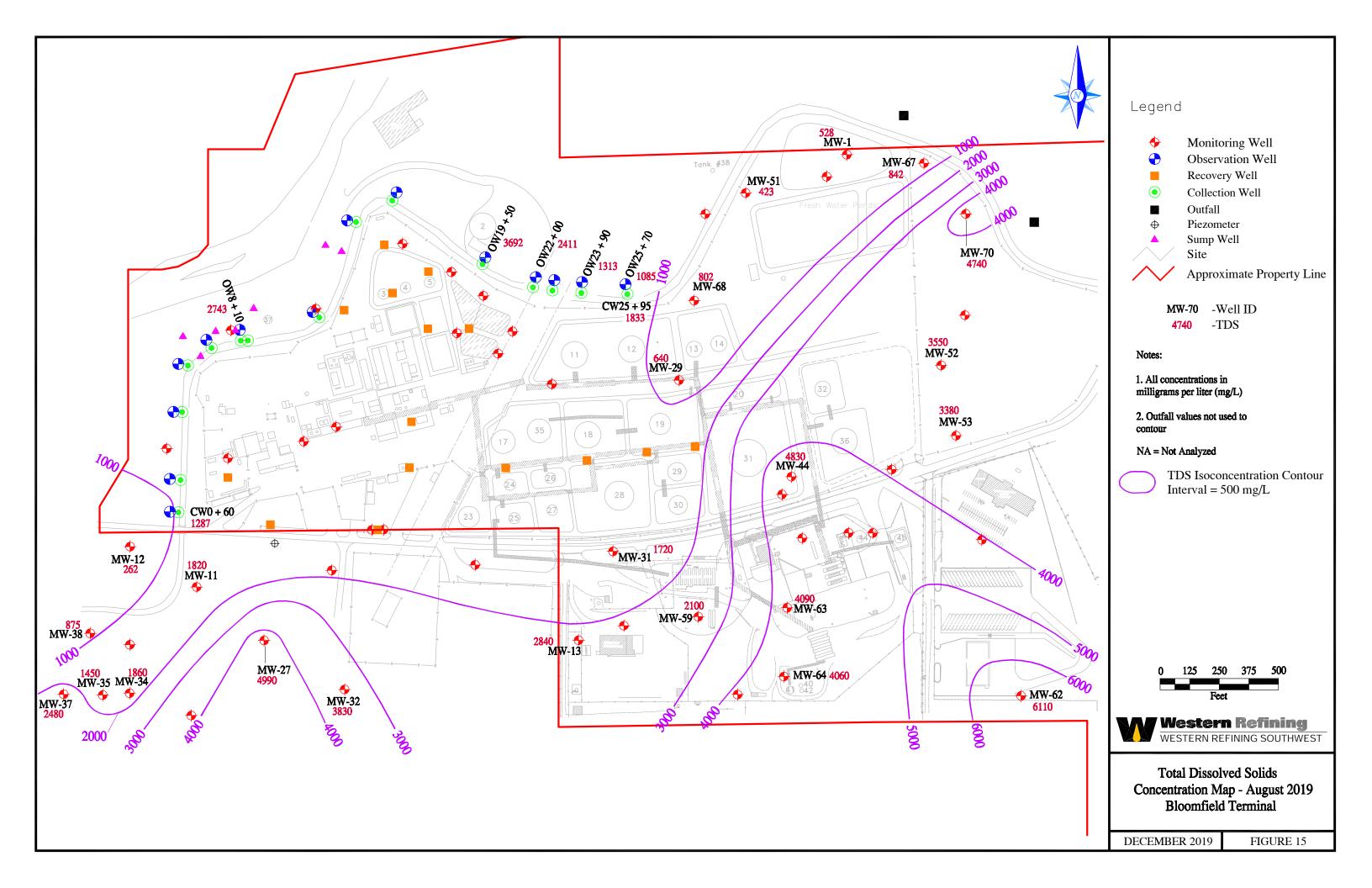


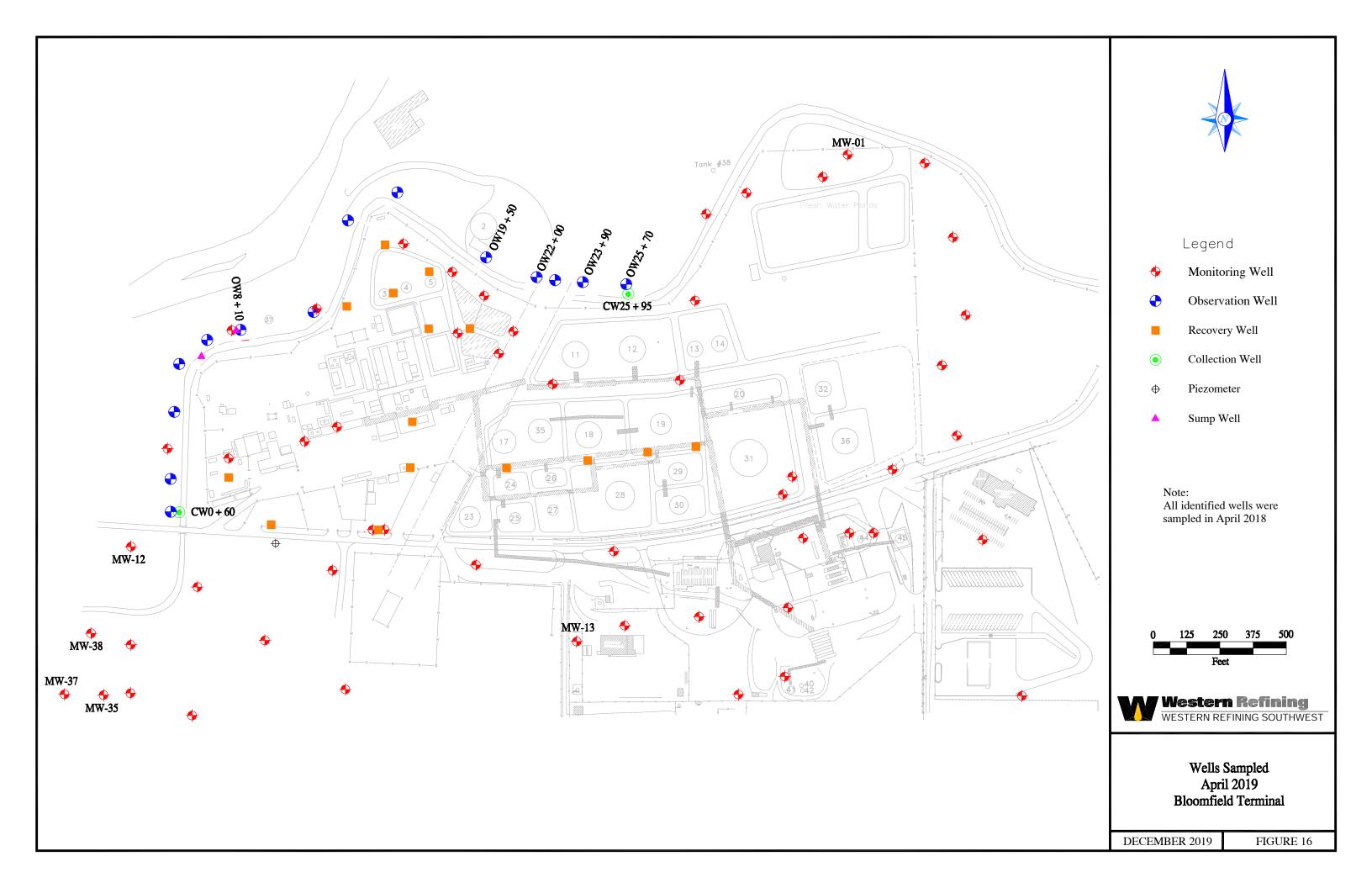


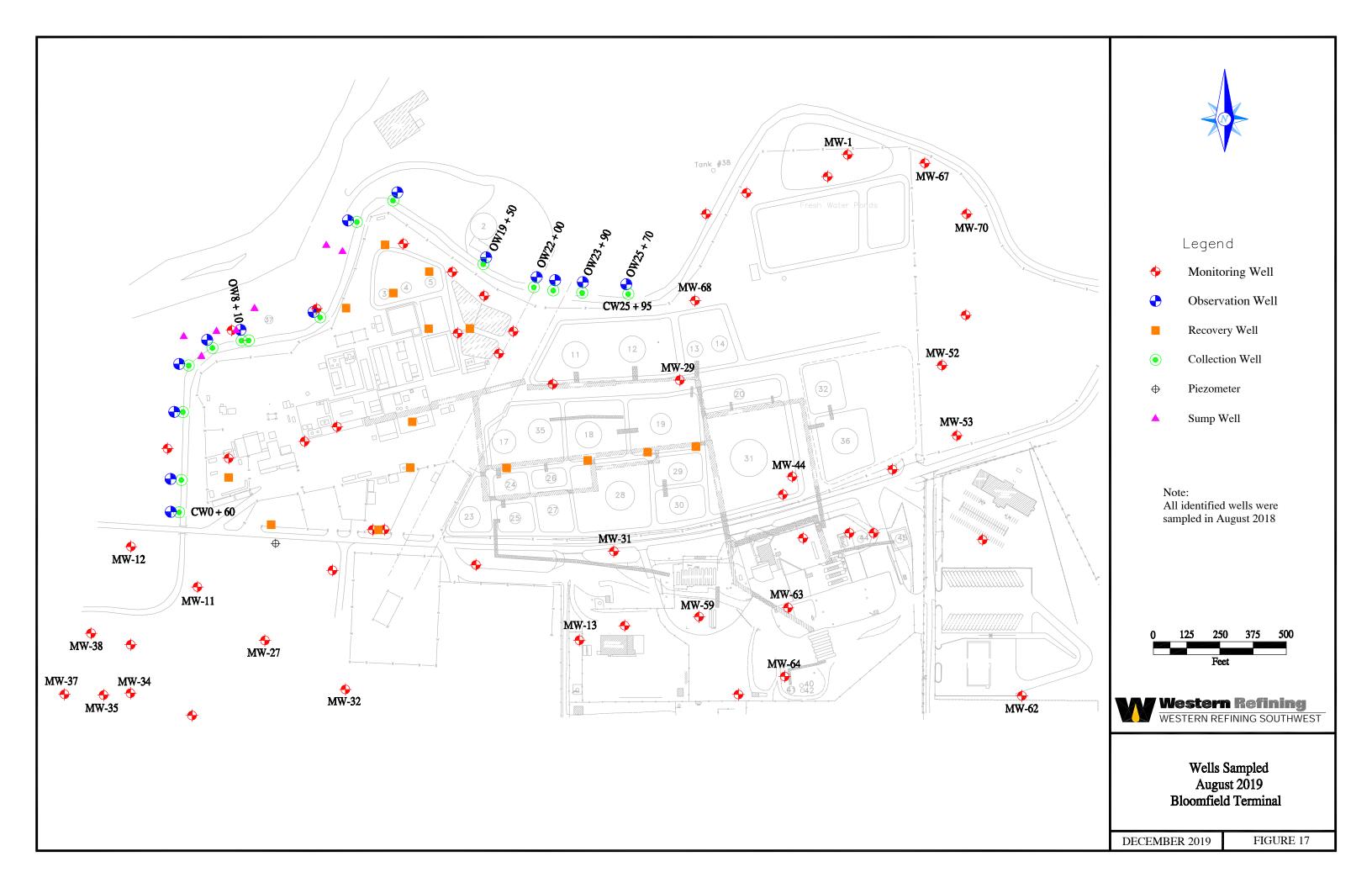












APPENDIX A ANALYTICAL REPORTS (included on attached CD)

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 15, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX: (505) 632-3911

RE: Cross Gradient Wells 4 3 19 OrderNo.: 1904276

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 6 sample(s) on 4/4/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Received Date: 4/4/2019 8:14:00 AM

Lab Order 1904276

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Cross Gradient Wells 4 3 19 **Collection Date:** 4/3/2019 8:45:00 AM **Project:** Matrix: AQUEOUS

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 12:05:03 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 12:05:03 PM	44215
Surr: DNOP	121	52.7-168	%Rec	1	4/11/2019 12:05:03 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 9:43:34 AM	G58973
Surr: BFB	92.5	72.8-125	%Rec	1	4/8/2019 9:43:34 AM	G58973
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 3:19:00 PM	AQ59003
Toluene	ND	1.0	μg/L	1	4/9/2019 3:19:00 PM	AQ59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 3:19:00 PM	AQ59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 3:19:00 PM	AQ59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 3:19:00 PM	AQ59003
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	1	4/9/2019 3:19:00 PM	AQ59003
Surr: 4-Bromofluorobenzene	96.0	70-130	%Rec	1	4/9/2019 3:19:00 PM	AQ59003
Surr: Dibromofluoromethane	104	70-130	%Rec	1	4/9/2019 3:19:00 PM	AQ59003
Surr: Toluene-d8	93.2	70-130	%Rec	1	4/9/2019 3:19:00 PM	AQ59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1904276-001

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904276**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Field Blank #1

Project: Cross Gradient Wells 4 3 19
 Collection Date: 4/3/2019 10:05:00 AM

 Lab ID: 1904276-002
 Matrix: AQUEOUS
 Received Date: 4/4/2019 8:14:00 AM

Analyses	Result	RL Q	RL Qual Units		DF Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analys	t: RAA	
Benzene	ND	1.0	μg/L	1	4/9/2019 3:43:00 PM	AQ59003	
Toluene	ND	1.0	μg/L	1	4/9/2019 3:43:00 PM	AQ59003	
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 3:43:00 PM	AQ59003	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 3:43:00 PM	AQ59003	
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 3:43:00 PM	AQ59003	
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	4/9/2019 3:43:00 PM	AQ59003	
Surr: 4-Bromofluorobenzene	96.8	70-130	%Rec	1	4/9/2019 3:43:00 PM	AQ59003	
Surr: Dibromofluoromethane	105	70-130	%Rec	1	4/9/2019 3:43:00 PM	AQ59003	
Surr: Toluene-d8	94.7	70-130	%Rec	1	4/9/2019 3:43:00 PM	AQ59003	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904276**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Equipment Blank #1

Project: Cross Gradient Wells 4 3 19
 Collection Date: 4/3/2019 10:10:00 AM

 Lab ID: 1904276-003
 Matrix: AQUEOUS
 Received Date: 4/4/2019 8:14:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 4:08:00 PM	AQ59003
Toluene	ND	1.0	μg/L	1	4/9/2019 4:08:00 PM	AQ59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 4:08:00 PM	AQ59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 4:08:00 PM	AQ59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 4:08:00 PM	AQ59003
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	4/9/2019 4:08:00 PM	AQ59003
Surr: 4-Bromofluorobenzene	98.4	70-130	%Rec	1	4/9/2019 4:08:00 PM	AQ59003
Surr: Dibromofluoromethane	103	70-130	%Rec	1	4/9/2019 4:08:00 PM	AQ59003
Surr: Toluene-d8	96.4	70-130	%Rec	1	4/9/2019 4:08:00 PM	AQ59000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Lab Order **1904276**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-35

Project: Cross Gradient Wells 4 3 19
 Collection Date: 4/3/2019 2:30:00 PM

 Lab ID: 1904276-004
 Matrix: AQUEOUS
 Received Date: 4/4/2019 8:14:00 AM

Analyses	Result	RL Q	RL Qual Units		Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 4:32:00 PM	AQ59003
Toluene	ND	1.0	μg/L	1	4/9/2019 4:32:00 PM	AQ59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 4:32:00 PM	AQ59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 4:32:00 PM	AQ59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 4:32:00 PM	AQ59003
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	4/9/2019 4:32:00 PM	AQ59003
Surr: 4-Bromofluorobenzene	97.3	70-130	%Rec	1	4/9/2019 4:32:00 PM	AQ59003
Surr: Dibromofluoromethane	102	70-130	%Rec	1	4/9/2019 4:32:00 PM	AQ59003
Surr: Toluene-d8	96.4	70-130	%Rec	1	4/9/2019 4:32:00 PM	AQ59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Lab Order **1904276**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-13

Project: Cross Gradient Wells 4 3 19 **Collection Date:** 4/3/2019 9:55:00 AM

Lab ID: 1904276-005 **Matrix:** AQUEOUS **Received Date:** 4/4/2019 8:14:00 AM

Analyses	Result RL Qual Uni				Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	:: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 4:56:00 PM	AQ59003
Toluene	ND	1.0	μg/L	1	4/9/2019 4:56:00 PM	AQ59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 4:56:00 PM	AQ59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 4:56:00 PM	AQ59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 4:56:00 PM	AQ59003
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	4/9/2019 4:56:00 PM	AQ59003
Surr: 4-Bromofluorobenzene	98.5	70-130	%Rec	1	4/9/2019 4:56:00 PM	AQ59003
Surr: Dibromofluoromethane	99.1	70-130	%Rec	1	4/9/2019 4:56:00 PM	AQ59003
Surr: Toluene-d8	94.9	70-130	%Rec	1	4/9/2019 4:56:00 PM	AQ59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904276**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: Cross Gradient Wells 4 3 19 **Collection Date:**

Lab ID: 1904276-006 **Matrix:** TRIP BLANK **Received Date:** 4/4/2019 8:14:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 5:20:00 PM	AQ59003
Toluene	ND	1.0	μg/L	1	4/9/2019 5:20:00 PM	AQ59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 5:20:00 PM	AQ59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 5:20:00 PM	AQ59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 5:20:00 PM	AQ59003
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	4/9/2019 5:20:00 PM	AQ59003
Surr: 4-Bromofluorobenzene	98.5	70-130	%Rec	1	4/9/2019 5:20:00 PM	AQ59003
Surr: Dibromofluoromethane	102	70-130	%Rec	1	4/9/2019 5:20:00 PM	AQ59003
Surr: Toluene-d8	95.1	70-130	%Rec	1	4/9/2019 5:20:00 PM	AQ59000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

0.31

0.2500

WO#: **1904276**

15-Apr-19

Project: Cross Gra	adient Wel	ls 4 3 1	9							
Sample ID: LCS-44215	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Diese	I Range		
Client ID: LCSW	Batch	1D: 44	215	F	RunNo: 5	9076				
Prep Date: 4/9/2019	Analysis D	ate: 4/	11/2019	5	SeqNo: 1	988558	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.1	0.40	2.500	0	125	66.7	148			
Surr: DNOP	0.29		0.2500		114	52.7	168			
Sample ID: MB-44215	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Diese	I Range		
Client ID: PBW	Batch	1D: 44	215	F	RunNo: 5	9076				
Prep Date: 4/9/2019	Analysis D	ate: 4/	11/2019	5	SeqNo: 1	988559	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.40								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.58		0.5000		116	52.7	168			
Sample ID: 1904276-001BMS	SampT	ype: M \$	6	Tes	tCode: El	PA Method	8015D: Diese	I Range		
Client ID: MW-1	Batch	1D: 44	215	F	RunNo: 5	9076				
Prep Date: 4/9/2019	Analysis D	ate: 4/	11/2019	5	SeqNo: 1	988656	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.3	0.40	2.500	0	132	68.3	147			
Surr: DNOP	0.32		0.2500		127	52.7	168			
Sample ID: 1904276-001BMS	D SampT	ype: M \$	SD	Tes	tCode: El	PA Method	8015D: Diese	I Range		
Client ID: MW-1	Batch	1D: 44	215	F	RunNo: 5	9076				
Prep Date: 4/9/2019	Analysis D	ate: 4/	11/2019	5	SeqNo: 1	988657	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.3	0.40	2.500	0	134	68.3	147	1.07	20	

Qualifiers:

Surr: DNOP

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

124

52.7

168

0

0

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904276**

15-Apr-19

Client: Western Refining Southwest, Inc.

Project: Cross Gradient Wells 4 3 19

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984235 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 92.4 72.8 125

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984237 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 77.7 0.46 0.050 0.5000 0 91.0 130 Surr: BFB 21 20.00 107 72.8 125

Qualifiers:

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1904276**

15-Apr-19

Project: Cro	oss Gradient We	lls 4 3 1	9							
Sample ID: 100ng lcs	Samp	Type: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	F	RunNo: 5	9003							
Prep Date:	Analysis [Date: 4/	9/2019	8	SeqNo: 1	985935	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	111	70	130			

Allalyte	Nesuit	I QL	of it value	of Killer var	/OINE C	LOWLIIIII	riigiiLiiiii	/01X1 D	INI DEIIIII	Quai
Benzene	22	1.0	20.00	0	111	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		108	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		99.2	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.5		10.00		95.0	70	130			
Sample ID: rb	Samp	Гуре: МЕ	BLK	Tes	tCode: EI	PA Method	8260B: VOL	ATILES		

Client ID: PBW	Batch	n ID: AC	59003	F	RunNo: 5	9003									
Prep Date:	Analysis D	ate: 4/	9/2019	S	SeqNo: 19	985936	Units: µg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	ND	1.0													
Toluene	ND	1.0													
Ethylbenzene	ND	1.0													
Methyl tert-butyl ether (MTBE)	ND	1.0													
Xylenes, Total	ND	1.5													
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130								
Surr: 4-Bromofluorobenzene	9.5		10.00		95.2	70	130								
Surr: Dibromofluoromethane	11		10.00		106	70	130								
Surr: Toluene-d8	9.5		10.00		95.1	70	130								

Sample ID: 1904276-001ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8260B: VOLA	ATILES		
Client ID: MW-1	Batch	n ID: AC	59003	F	RunNo: 5 9	9003				
Prep Date:	Analysis Date: 4/9/2019			9	SeqNo: 19	985937	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.1	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.6		10.00		95.9	70	130			

Sample ID: 1904276-001amsd	SampTy	ре: МS	SD	TestCode: EPA Method 8260B: VOLATILES									
Client ID: MW-1	Batch	ID: AC	59003	RunNo: 59003									
Prep Date:	Analysis Da	te: 4/	9/2019	S	SeqNo: 1	985938	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	22	1.0	20.00	0	110	70	130	2.44	20				

Qualifiers:

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

8 % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904276**

15-Apr-19

Client: Western Refining Southwest, Inc.

Project: Cross Gradient Wells 4 3 19

Sample ID: 1904276-001amsd	SampT	уре: МS	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES								
Client ID: MW-1	Batch	n ID: AQ	59003	RunNo: 59003												
Prep Date:	Analysis D	ate: 4/ 9	9/2019	S	SeqNo: 1	985938	Units: µg/L									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
Toluene	21	1.0	20.00	0	103	70	130	0.0678	20							
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130	0	0							
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130	0	0							
Surr: Dibromofluoromethane	10		10.00		105	70	130	0	0							
Surr: Toluene-d8	9.6		10.00		95.9	70	130	0	0							

Qualifiers:

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw Work Order Number: 1904276 RcptNo: 1 Received By: Yazmine Garduno 4/4/2019 8:14:00 AM Completed By: Erin Melendrez 4/4/2019 11:34:15 AM Reviewed By: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? Yes V No NA 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 NA 🗌 5. Sample(s) in proper container(s)? Yes 🗸 No Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? Yes No 🗌 8. Was preservative added to bottles? Yes No 🗸 NA 🗌 9. VOA vials have zero headspace? Yes 🗸 No 🗌 No VOA Vials 10. Were any sample containers received broken? Yes 🗌 No 🗸 # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) Adjusted? Yes 🗸 12. Are matrices correctly identified on Chain of Custody? No 🗌 13. Is it clear what analyses were requested? Yes 🗸 No 🗌 14. Were all holding times able to be met? Yes 🗸 Checked by: No 🔲 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No 🗌 NA 🗸 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Date Seal Intact Seal No Signed By 2.3 Good Yes 3.1 Good Yes

	ENVIRONMENTAL	ANALYSIS LABORATORY							1)	/ Jo) Y)	Air Bubbles										See Analytical Methods and Target Analytes.			
<u>[</u>		5	00	3		_																rget			
*	Σ	ָבָּׁ בָּ	Albuquerane NM 87109	4107						(A	ΟΛ-	-imə2) 0728										Tall			
1	0 5	MALYSIS LABO		Fax 505-345-4107	Jest	٨	luo :	38T	M, X			8260B (VO	-		X	X						anc			
				505	Regu		s'aC	5 PC	3083	3 / 5	səpi	oiteaq 1808										spor			=
	2			Fax	Analysis Request		([†] OS	S'*O	d,₅C)Ν' ^ε	ON'	IO,7) anoinA										Meth			
	Щ		į ,		Anal							RCRA 8 Me										cal			
	HALL		4901 Hawkins NF	Tel. 505-345-3975				(SN				01E8) HAG										alyti			
	I		wkins	-345								TPH (Metho										e An			
			T ų	505		-	IKO	N/O	-			TPH 8015B	×	×							-				
			490,	Tel.		-						BTM+X3T8										arks:		_	
												BTM+X3T8										Remarks:		9.14	MAIIR
		1						mo	5			9,										-	١,	7	10 U
		Vells						um.c	919-561-7055			HEAL NO.										Time	S F		7
		nt V		ıt				role	561-		3.70	HEA JAUT	5	1	25	7)					Date	15/19	V	
		adie	6	Eve	66		>	npet	119-	º □	3.	O O	9		7	7						۵ 15	,,	=	
	□ Rush	G	-	nual	8139		tne	atho		NO.0380	2	tive			,							-	7	7	
le.		Cross-Gradient Wells	4.3	Project #: Semi-Annual Event	4500081399		McCartney	gjmccartney@marathonpetroleum.com	Sampler: Tracy Payne	X Yes	Sample Temperature:	Preservative Type	무	Neat	HCL	HCL						-	3	Contr	
Ţ	p			em	# 4	nageı	٦.	ley@	raς	1	nper		Ş										z		
Turn-Around Time:	X Standard	Project Name:		# # 7	HEAL PO#	Project Manager:	Gregory J.	cartr	ler: T	i ii	le Tei	Container Type and #	40ml VOA-5	250 ml amber-1	40 ML VOA: 5	VOA						ed by:		S. S.	
Turn,	×	Projec	Date:	Projec	HEA	Projec	Greg	gjmc	Samp	On Ice:	Samp	Con	10ml	25(amb	10 ML	오						Received by:	7		\supset
			Τ						- 0,		0,		7		414	EQUIPMENT BLANK #1 40 A VOA-5						<u> </u>			
	t, n			_				lidati				est			X Y	PNK									
P. C.	Wes			7413				ıll Va				yequ	MW-1	MW-1	MAN	81								4	
02	딅			₩ W				4 (F				e F	M	M	D 8	TENT			2				1	Made	
þ	So	inal	06	Z,	338			X Level 4 (Full Validation)				Sample Request ID			FIELD BLANK	UIP						1		- 	
	nin (erm	3 49	field	1-2			×				S			Ĺ	A A						kg pk		E 27.	
f-Ci	n Refi	ield T	50 CF	Bloomfield, NM 87413	419-421-2338					EXCEL		Matrix	H ₂ O	H ₂ 0	H20	H20						Relinquished by:	Jelingiiiched	Muchul.	
Chain-of-Custody Record	Client: Western Refining Southwest, Inc.	Bloomfield Terminal	Mailing Address: 50 CR 4990		4	3X#:	kage:	Ģ				Time	255c	27	500	10101							0	0	
Ch	S	B	g Ad		#:	or F	3 Pac	andar	her	EDD (Type)			7 %	88			\dashv						Ť		
_	Client		Mailin		Phone #:	email or Fax#	QA/QC Package:	□ Standard	□ Other	X ED		Date	43/14	5780 b1/5/h	4/3/19	4/3/19						Date:	Jate.	4319	-

8 8 8

<u>ج</u>	2		Chain-of-Custody Record	Tirn-Around Time.	
5					HAII FNVTDONMENTAL
Client: V	Veste	rn Refii	Western Refining Southwest, Inc.	X Standard Rush	ANALYSIS I ABORATORY
Ш	3loom	Bloomfield Terminal	erminal	Project Name: Downgradient Wells	į
Mailing Address:	ddress	50 CR 4990		Date: 4-3-19	4901 Hawkins NE - Albuaueraue, NM 87109
		Bloom	Bloomfield, NM 87413	Project #: Semi-Annual Event	10
Phone #:		419-421-2338	1-2338	HEAL PO# 4500081399	nalysis
email or Fax#	-ax#:			Project Manager:	
QA/QC Package:	ckage:			Gregory J. McCartney	SB,e
□ Standard	ard		X Level 4 (Full Validation)	gjmccartney@marathonpetroleum.com	(S0Z)
□ Other				Sampler: Tracy Payne 919-561-7055	1 (G 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)
X EDD (Type)	Type)_	EXCEL		On Ice: A Yes	18. 04. 04. 04. 27(37) (A)
				Temp	(GF) (GF) (GF) (AO) (NO) (NO) (NO) (NO)
	Time	Matrix	Sample Request ID	Container Preservative HEAL No. Type and #	BTEX+MTB BTEX+MTB TPH 8015B TPH (Methorens (F,Cl) Anions (
1 6/5/4	1430	H ₂ 0	MW-35	40ml VOA-5 HCI - 00U	3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×
Date: Tir	Time: 1530	Relinquished by:	, (Received by: Muth July 4/3/19 1536	Remarks: See Analytical Methods and Target Analytes.
	Time: [8]	Refinquished by:	of over	by: O COUNTRY	A:W W/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/

12 P

I		>	ı							(1	N 10	(人	Air Bubbles										ies.		
)	ENVIRONMENTAL	ANALYSIS LABORATORY																					Analytical Methods and Target Analytes.		
5	Z	Z		60								_	30978		×								rget /		
	Σ	O	_	1871	1107		H				(\	_	imə2) 0728		~	_							Та		
1	ō	B	l.cor	≥ Z	345-4	est	Λ	uo :	38T	W '>		_	8260B (VO)	_									ano		
	K		enta	rane	. 202	Request	-			_		_	oite99 1808	_									spo		
	>	SI	ronn	Albuquerque, NM 87109	Fax 505-345-4107	sis R	_						IO,4) anoinA	_									leth		
		\\	www.hallenvironmental.com	Alb	ш	Analysis						stals	RCRA 8 Me										al N		
	HALL	A	v.hal	- 및	975	A			(SI	VISC	270	8 10	01£8) HAG										lytic		
	4	Z	M	ins	45-3					(1	.40	g po	EDB (Metho										Ana		
		4		-lawk	05-3								TPH (Metho										See		
				4901 Hawkins NE	Tel. 505-345-3975		_						83108 H9T												
				4	_		(_				BTM+X3T8										Remarks:		4
_							_	(17	208) s's	L	.+3	BTM+X3T8										Re		4/14/14
			10						mo	2			9										гime /53С	Time 8:19	5
			Vells						E.E.	-7055			HEAL NO											Time 8:	9
			nt M		nt				oleı	-192		v	HEAL 19047	10	9								Date 4/3/19	Date 15	7
			odie	ارم	Eve	6			pet	919-561	oN □	131	6	0	\approx								4.0	o F	
		-lysn	Ģra	-10	nal	139		tney	thor	Je 9		1.3.	e ×	H	1								13		
١.		□ Rush	Cross-Gradient Wells	3	Project #: Semi-Annual Event	4500081399		McCartney	gjmccartney@marathonpetroleum.com	Payı	On Ice: Yes	ure:	Preservative Type	무	ہے ا								Sel	1/1	-
Į.	<u> </u>			J	mi-/		ger:	Mc	@ 	cy I	X	érat	Pres T	-	꿒								ω_{ℓ}	3-	-
Time Arising Times	2	dard	Project Name:		Se	HEAL PO#	Project Manager:	Gregory J.	rtne	Tra		Lemp	d#	4-5	A-3								: ×	÷ ,	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X Standard	ect N	ä	ect #	ALF	ect N	gor	ccal	pler:	Ge:	ple 7	Container Type and #	40ml VOA-5	40 M. VOA-3								Received by:	Received by	
ŀ	5	×	Proj	Date:	Proje	HE/	Proje	Gre	gjm	Sam	On	Sam	S _T	40m	상								Recei	Recei	\bigcirc
		ن							on)				D												
7	3	r, n							lidati				Sample Request ID		岩									V	
Š	3	vest			413				II Val				edn	-13	BLANK						100			Cala	
۵		Ith			/I 87				(Fu				e R	MW-13										9	
ŧ	2	Sol	nal	0	N,	38			vel 4				ldun		RIP								- {	1	
+	ב ב	ing	rmi	499	Bloomfield, NM 87413	419-421-2338		ĺ	X Level 4 (Full Validation)				Sa		1								. y p	quished by: Wazlul	
٥	3	efin	J Te	SR	omf	-421					SEL		·Ě	0	0								uishe	uishec	
پ	5	E R	field	. 50	Blo	419					EXCE		Matrix	H ₂ O	H20								Relinquished by:	Relinquished by: Machine Machin)
Chain of Custody Doord		Western Refining Southwest, Inc.	Bloomfield Terminal	Mailing Address: 50 CR 4990			.#X	age:	~		pe)		Time	0455	1								Q		
4		Š	ă	g Adc		#	or Fa	Pack	ndar	ë) (Ty			=	1								Time:	Time:	
		Client:		lailin _e		Phone #:	email or Fax#:	QA/QC Package:	□ Standard	□ Other	X EDD (Type)		Date	43/19	61/E/h								ate: /19	Date: $\{\{\}_{l}^{\alpha}\}$	
	1	υŢ		2		Ι Φ.	ן סֿן	Ø		Ц	×	ı		انخزا	ا ب ر	1	I		١	1	1	I	43/19	ا ج ۵	

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2018 Western Refining Southwest, Inc. - Bloomfield Refinery

VOCs (EPA Method 8260B) (1) - Target List Benzene Toluene Ethylbenzene Xylenes Methyl tert butyl ether (MTBE) SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Toluene Ethylbenzene Xylenes Methyl tert butyl ether (MTBE) SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics - Motor Oil Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Ethylbenzene Xylenes Methyl tert butyl ether (MTBE) SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Xylenes Methyl tert butyl ether (MTBE) SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Methyl tert butyl ether (MTBE) SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
SVOCs - (EPA Method 8270) - Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Method List TPH-GRO (EPA Method 8015B) - Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Gasoline Range Organics TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
TPH-DRO (EPA Method 8015B) - Diesel Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Diesel Range Organics - Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Motor Oil Range Organics Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Total Carbon Dioxide (Laboratory Calculated) - Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Dissolved CO2 Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Specific Conductivity (EPA Method 120.1 or field measurement) - Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Specific conductance TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
TDS (EPA Method 160.1 or field measurement) - Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
- Total dissolved solids General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
General Chemistry - Anions (EPA Method 300.0) Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Fluoride Chloride Bromide Nitrogen, Nitrite (as N)
Chloride Bromide Nitrogen, Nitrite (as N)
Bromide Nitrogen, Nitrite (as N)
Nitrogen, Nitrite (as N)
VI. VI. 2 VI.
Nitrogen, Nitrate (as N)
Phosphorous, Orthophosphate (As P)
Sulfate
General Chemistry - Alkalinity (EPA Method 310.1)
Alkalinity, Total

Total Recoverable Metals (EPA Method 6010B/7470)

- Target List (not applicable to River Terrace Sampling Events)

Arsenic Lead
Barium Mercury
Cadmium Selenium
Chromium Silver

- Target List (for River Terrace Sampling Events Only)

Lead

Mercury (DW-1 ONLY)

Dissolved Metals (EPA Method 6010B / 7470)

- Target List (for Refinery Complex, Outfalls, and River)

Arsenic Manganese Barium Mercury Cadmium Potassium Calcium Selenium Chromium Silver Copper Sodium Iron Uranium Lead Zinc

TPH = total petroleum hydrocarbons

GRO = gasoline range organics

VOCs = volatile organic compounds

Magnesium

DRO = diesel range organics

TDS = total dissolved solids

NOTES:

Carbonate Bicarbonate

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 02, 2019

Gregory J. McCartney
Western Refining Southwest, Inc.
#50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: NBB Collection Wells OrderNo.: 1904357

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 8 sample(s) on 4/5/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: CW 0+60

 Project:
 NBB Collection Wells
 Collection Date: 4/3/2019 3:55:00 PM

 Lab ID:
 1904357-001
 Matrix: AQUEOUS
 Received Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015D: DIESEL RANGE						Analyst: Irm
Diesel Range Organics (DRO)	1.7	0.40		mg/L	1	4/11/2019 1:11:21 PM
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	4/11/2019 1:11:21 PM
Surr: DNOP	119	52.7-168		%Rec	1	4/11/2019 1:11:21 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	3.1	0.050		mg/L	1	4/8/2019 10:06:28 AM
Surr: BFB	1910	72.8-125	S	%Rec	1	4/8/2019 10:06:28 AM
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst: RAA
Benzene	2.1	1.0		μg/L	1	4/9/2019 5:44:00 PM
Toluene	ND	1.0		μg/L	1	4/9/2019 5:44:00 PM
Ethylbenzene	4.0	1.0		μg/L	1	4/9/2019 5:44:00 PM
Methyl tert-butyl ether (MTBE)	1.2	1.0		μg/L	1	4/9/2019 5:44:00 PM
Xylenes, Total	1.8	1.5		μg/L	1	4/9/2019 5:44:00 PM
Surr: 1,2-Dichloroethane-d4	93.5	70-130		%Rec	1	4/9/2019 5:44:00 PM
Surr: 4-Bromofluorobenzene	96.3	70-130		%Rec	1	4/9/2019 5:44:00 PM
Surr: Dibromofluoromethane	96.7	70-130		%Rec	1	4/9/2019 5:44:00 PM
Surr: Toluene-d8	163	70-130	S	%Rec	1	4/9/2019 5:44:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-12

Project:NBB Collection WellsCollection Date: 4/4/2019 8:30:00 AMLab ID:1904357-002Matrix: AQUEOUSReceived Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: DIESEL RANGE					Analyst: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 1:33:33 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 1:33:33 PM
Surr: DNOP	114	52.7-168	%Rec	1	4/11/2019 1:33:33 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 10:29:21 AM
Surr: BFB	85.3	72.8-125	%Rec	1	4/8/2019 10:29:21 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 6:08:00 PM
Toluene	ND	1.0	μg/L	1	4/9/2019 6:08:00 PM
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 6:08:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 6:08:00 PM
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 6:08:00 PM
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	4/9/2019 6:08:00 PM
Surr: 4-Bromofluorobenzene	97.9	70-130	%Rec	1	4/9/2019 6:08:00 PM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/9/2019 6:08:00 PM
Surr: Toluene-d8	94.7	70-130	%Rec	1	4/9/2019 6:08:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 21

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-38

Project:NBB Collection WellsCollection Date: 4/4/2019 8:50:00 AMLab ID:1904357-003Matrix: AQUEOUSReceived Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: DIESEL RANGE					Analyst: Irm
Diesel Range Organics (DRO)	0.43	0.40	mg/L	1	4/11/2019 1:55:35 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 1:55:35 PM
Surr: DNOP	116	52.7-168	%Rec	1	4/11/2019 1:55:35 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 10:52:11 AM
Surr: BFB	86.3	72.8-125	%Rec	1	4/8/2019 10:52:11 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 6:32:00 PM
Toluene	ND	1.0	μg/L	1	4/9/2019 6:32:00 PM
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 6:32:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 6:32:00 PM
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 6:32:00 PM
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	4/9/2019 6:32:00 PM
Surr: 4-Bromofluorobenzene	98.8	70-130	%Rec	1	4/9/2019 6:32:00 PM
Surr: Dibromofluoromethane	97.3	70-130	%Rec	1	4/9/2019 6:32:00 PM
Surr: Toluene-d8	94.7	70-130	%Rec	1	4/9/2019 6:32:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 21

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-37

Project:NBB Collection WellsCollection Date: 4/4/2019 9:10:00 AMLab ID:1904357-004Matrix: AQUEOUSReceived Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: DIESEL RANGE					Analyst: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 2:17:49 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 2:17:49 PM
Surr: DNOP	114	52.7-168	%Rec	1	4/11/2019 2:17:49 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 11:14:46 AM
Surr: BFB	89.2	72.8-125	%Rec	1	4/8/2019 11:14:46 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 6:57:00 PM
Toluene	ND	1.0	μg/L	1	4/9/2019 6:57:00 PM
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 6:57:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 6:57:00 PM
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 6:57:00 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/9/2019 6:57:00 PM
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	4/9/2019 6:57:00 PM
Surr: Dibromofluoromethane	99.7	70-130	%Rec	1	4/9/2019 6:57:00 PM
Surr: Toluene-d8	94.2	70-130	%Rec	1	4/9/2019 6:57:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 21

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: OW 25+70

Project:NBB Collection WellsCollection Date: 4/4/2019 12:15:00 PMLab ID:1904357-005Matrix: AQUEOUSReceived Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: DIESEL RANGE					Analyst: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 2:39:52 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 2:39:52 PM
Surr: DNOP	116	52.7-168	%Rec	1	4/11/2019 2:39:52 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	0.12	0.050	mg/L	1	4/8/2019 11:37:23 AM
Surr: BFB	91.8	72.8-125	%Rec	1	4/8/2019 11:37:23 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 7:21:00 PM
Toluene	ND	1.0	μg/L	1	4/9/2019 7:21:00 PM
Ethylbenzene	1.3	1.0	μg/L	1	4/9/2019 7:21:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 7:21:00 PM
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 7:21:00 PM
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	4/9/2019 7:21:00 PM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	4/9/2019 7:21:00 PM
Surr: Dibromofluoromethane	98.5	70-130	%Rec	1	4/9/2019 7:21:00 PM
Surr: Toluene-d8	95.8	70-130	%Rec	1	4/9/2019 7:21:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 21

Analytical Report

Lab Order **1904357**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/2/2019

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: NBB Collection Wells **Collection Date:**

Lab ID: 1904357-006 **Matrix:** AQUEOUS **Received Date:** 4/5/2019 8:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 11:59:57 AM
Surr: BFB	93.1	72.8-125	%Rec	1	4/8/2019 11:59:57 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 1:51:00 PM
Toluene	ND	1.0	μg/L	1	4/10/2019 1:51:00 PM
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 1:51:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 1:51:00 PM
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 1:51:00 PM
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	4/10/2019 1:51:00 PM
Surr: 4-Bromofluorobenzene	98.1	70-130	%Rec	1	4/10/2019 1:51:00 PM
Surr: Dibromofluoromethane	99.7	70-130	%Rec	1	4/10/2019 1:51:00 PM
Surr: Toluene-d8	93.8	70-130	%Rec	1	4/10/2019 1:51:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: East Outfall #2

NBB Collection Wells **Project:** Collection Date: 4/4/2019 1:30:00 PM 1904357-007 Received Date: 4/5/2019 8:30:00 AM Lab ID: Matrix: AQUEOUS

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Fluoride	ND	0.50	mg/L	5	4/5/2019 8:04:24 PM
Chloride	15	2.5	mg/L	5	4/5/2019 8:04:24 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	4/5/2019 8:04:24 PM
Bromide	ND	0.50	mg/L	5	4/5/2019 8:04:24 PM
Nitrogen, Nitrate (As N)	3.5	0.50	mg/L	5	4/5/2019 8:04:24 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	4/5/2019 8:04:24 PM
Sulfate	250	10	mg/L	20	4/5/2019 8:17:15 PM
EPA METHOD 7470: MERCURY					Analyst: pmf
Mercury	ND	0.00020	mg/L	1	4/9/2019 12:03:13 PM
EPA METHOD 7470: MERCURY					Analyst: pmf
Mercury	ND	0.00020	mg/L	1	4/9/2019 12:05:26 PM
EPA METHOD 6010B: DISSOLVED METALS					Analyst: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:32:16 PM
Barium	0.082	0.020	mg/L	1	4/11/2019 10:11:13 AM
Cadmium	ND	0.0020	mg/L	1	4/11/2019 10:11:13 AM
Calcium	140	5.0	mg/L	5	4/11/2019 10:13:07 AM
Chromium	ND	0.0060	mg/L	1	4/11/2019 10:11:13 AM
Copper	ND	0.0060	mg/L	1	4/11/2019 10:11:13 AM
Iron	ND	0.020	mg/L	1	4/11/2019 10:11:13 AM
Lead	ND	0.0050	mg/L	1	4/25/2019 3:32:16 PM
Magnesium	27	1.0	mg/L	1	4/11/2019 10:11:13 AM
Manganese	ND	0.0020	mg/L	1	4/11/2019 10:11:13 AM
Potassium	2.0	1.0	mg/L	1	4/11/2019 10:11:13 AM
Selenium	ND	0.050	mg/L	1	4/23/2019 12:04:23 PM
Silver	ND	0.0050	mg/L	1	4/11/2019 10:11:13 AM
Sodium	83	1.0	mg/L	1	4/11/2019 10:11:13 AM
Uranium	ND	0.10	mg/L	1	4/23/2019 12:04:23 PM
Zinc	ND	0.020	mg/L	1	4/25/2019 3:32:16 PM
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 2:59:49 PM
Barium	0.077	0.020	mg/L	1	4/11/2019 9:15:39 AM
Cadmium	ND	0.0020	mg/L	1	4/11/2019 9:15:39 AM
Chromium	ND	0.0060	mg/L	1	4/11/2019 9:15:39 AM
Lead	ND	0.0050	mg/L	1	4/25/2019 2:59:49 PM
Selenium	ND	0.050	mg/L	1	4/11/2019 9:15:39 AM
Silver	ND	0.0050	mg/L	1	4/11/2019 9:15:39 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 7 of 21

Analytical Report

Lab Order **1904357**

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: East Outfall #2

 Project:
 NBB Collection Wells
 Collection Date: 4/4/2019 1:30:00 PM

 Lab ID:
 1904357-007
 Matrix: AQUEOUS
 Received Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 2:15:00 PM
Toluene	ND	1.0	μg/L	1	4/10/2019 2:15:00 PM
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 2:15:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 2:15:00 PM
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 2:15:00 PM
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/10/2019 2:15:00 PM
Surr: 4-Bromofluorobenzene	97.4	70-130	%Rec	1	4/10/2019 2:15:00 PM
Surr: Dibromofluoromethane	99.3	70-130	%Rec	1	4/10/2019 2:15:00 PM
Surr: Toluene-d8	94.2	70-130	%Rec	1	4/10/2019 2:15:00 PM
SM 2540 C: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	748	20.0	* mg/L	1	4/10/2019 4:54:00 PM
CARBON DIOXIDE					Analyst: JRR
Total Carbon Dioxide	310	1.0	H mg CO	2/ 1	4/9/2019 11:50:05 AM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JRR
Conductivity	1100	5.0	µmhos.	/c 1	4/9/2019 11:50:05 AM
SM2320B: ALKALINITY					Analyst: JRR
Bicarbonate (As CaCO3)	323.0	20.00	mg/L C	a 1	4/9/2019 11:50:05 AM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	4/9/2019 11:50:05 AM
Total Alkalinity (as CaCO3)	323.0	20.00	mg/L C	a 1	4/9/2019 11:50:05 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 21

Date Reported: 5/2/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: East Outfall #3

NBB Collection Wells **Project:** Collection Date: 4/4/2019 2:00:00 PM 1904357-008 Lab ID: Matrix: AQUEOUS Received Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: MRA
Fluoride	ND	0.50	mg/L	5	4/5/2019 8:30:07 PM
Chloride	14	2.5	mg/L	5	4/5/2019 8:30:07 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	4/5/2019 8:30:07 PM
Bromide	ND	0.50	mg/L	5	4/5/2019 8:30:07 PM
Nitrogen, Nitrate (As N)	3.3	0.50	mg/L	5	4/5/2019 8:30:07 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	4/5/2019 8:30:07 PM
Sulfate	250	10	mg/L	20	4/5/2019 8:42:58 PM
EPA METHOD 7470: MERCURY					Analyst: pmf
Mercury	ND	0.00020	mg/L	1	4/9/2019 12:07:39 PM
EPA METHOD 7470: MERCURY					Analyst: pmf
Mercury	ND	0.00020	mg/L	1	4/9/2019 12:09:53 PM
EPA METHOD 6010B: DISSOLVED METALS					Analyst: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:34:12 PM
Barium	0.064	0.020	mg/L	1	4/11/2019 10:15:02 AM
Cadmium	ND	0.0020	mg/L	1	4/11/2019 10:15:02 AM
Calcium	140	5.0	mg/L	5	4/11/2019 10:16:54 AM
Chromium	ND	0.0060	mg/L	1	4/11/2019 10:15:02 AM
Copper	ND	0.0060	mg/L	1	4/11/2019 10:15:02 AM
Iron	ND	0.020	mg/L	1	4/11/2019 10:15:02 AM
Lead	ND	0.0050	mg/L	1	4/25/2019 3:34:12 PM
Magnesium	26	1.0	mg/L	1	4/11/2019 10:15:02 AM
Manganese	ND	0.0020	mg/L	1	4/11/2019 10:15:02 AM
Potassium	1.9	1.0	mg/L	1	4/11/2019 10:15:02 AM
Selenium	ND	0.050	mg/L	1	4/23/2019 12:06:15 PM
Silver	ND	0.0050	mg/L	1	4/11/2019 10:15:02 AM
Sodium	84	1.0	mg/L	1	4/11/2019 10:15:02 AM
Uranium	ND	0.10	mg/L	1	4/23/2019 12:06:15 PM
Zinc	ND	0.020	mg/L	1	4/25/2019 3:34:12 PM
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:01:40 PM
Barium	0.063	0.020	mg/L	1	4/11/2019 9:17:34 AM
Cadmium	ND	0.0020	mg/L	1	4/11/2019 9:17:34 AM
Chromium	ND	0.0060	mg/L	1	4/11/2019 9:17:34 AM
Lead	ND	0.0050	mg/L	1	4/25/2019 3:01:40 PM
Selenium	ND	0.050	mg/L	1	4/11/2019 9:17:34 AM
Silver	ND	0.0050	mg/L	1	4/11/2019 9:17:34 AM
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: RAA

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 9 of 21

Analytical Report

Lab Order **1904357**Date Reported: **5/2/2019**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** East Outfall #3

Project:NBB Collection WellsCollection Date: 4/4/2019 2:00:00 PMLab ID:1904357-008Matrix: AQUEOUSReceived Date: 4/5/2019 8:30:00 AM

Analyses	Result	RL Q	Qual Ur	its	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst: RAA
Benzene	ND	1.0	μς	_J /L	1	4/10/2019 2:39:00 PM
Toluene	ND	1.0	μί	J/L	1	4/10/2019 2:39:00 PM
Ethylbenzene	ND	1.0	μ	J/L	1	4/10/2019 2:39:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μί	J/L	1	4/10/2019 2:39:00 PM
Xylenes, Total	ND	1.5	μ	J/L	1	4/10/2019 2:39:00 PM
Surr: 1,2-Dichloroethane-d4	105	70-130	%	Rec	1	4/10/2019 2:39:00 PM
Surr: 4-Bromofluorobenzene	98.1	70-130	%	Rec	1	4/10/2019 2:39:00 PM
Surr: Dibromofluoromethane	100	70-130	%	Rec	1	4/10/2019 2:39:00 PM
Surr: Toluene-d8	94.6	70-130	%	Rec	1	4/10/2019 2:39:00 PM
SM 2540 C: TOTAL DISSOLVED SOLIDS						Analyst: KS
Total Dissolved Solids	738	20.0	* m	g/L	1	4/10/2019 4:54:00 PM
CARBON DIOXIDE						Analyst: JRR
Total Carbon Dioxide	300	1.0	H m	g CO2/	1	4/9/2019 12:05:39 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JRR
Conductivity	1100	5.0	μr	nhos/c	1	4/9/2019 12:05:39 PM
SM2320B: ALKALINITY						Analyst: JRR
Bicarbonate (As CaCO3)	318.1	20.00	m	g/L Ca	1	4/9/2019 12:05:39 PM
Carbonate (As CaCO3)	ND	2.000	m	g/L Ca	1	4/9/2019 12:05:39 PM
Total Alkalinity (as CaCO3)	318.1	20.00	m	g/L Ca	1	4/9/2019 12:05:39 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: MB-44220 SampType: MBLK TestCode: SM 2540 C: Total Dissolved Solids

Client ID: PBW Batch ID: 44220 RunNo: 59049

Prep Date: 4/9/2019 Analysis Date: 4/10/2019 SeqNo: 1987443 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-44220 SampType: LCS TestCode: SM 2540 C: Total Dissolved Solids

Client ID: LCSW Batch ID: 44220 RunNo: 59049

Prep Date: 4/9/2019 Analysis Date: 4/10/2019 SeqNo: 1987444 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1040 20.0 1000 0 104 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 21

Hall Environmental Analysis Laboratory, Inc.

ND

0.50

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: **R58949** RunNo: 58949 Prep Date: Analysis Date: 4/5/2019 SeqNo: 1982548 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Fluoride ND 0.10 Chloride ND 0.50 Nitrogen, Nitrite (As N) ND 0.10 Bromide ND 0.10 Nitrogen, Nitrate (As N) ND 0.10 Phosphorus, Orthophosphate (As P ND 0.50

Sample ID: LCS	SampT	ype: Ics	i	Tes	tCode: El	PA Method	3			
Client ID: LCSW	Batcl	n ID: R5	8949	F	RunNo: 5 8	8949				
Prep Date:	Analysis D	Date: 4/	5/2019	9	SeqNo: 19	982549	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.54	0.10	0.5000	0	109	90	110			
Chloride	5.0	0.50	5.000	0	100	90	110			
Nitrogen, Nitrite (As N)	0.98	0.10	1.000	0	97.6	90	110			
Bromide	2.5	0.10	2.500	0	102	90	110			
Nitrogen, Nitrate (As N)	2.7	0.10	2.500	0	106	90	110			
Phosphorus, Orthophosphate (As P	5.1	0.50	5.000	0	102	90	110			
Sulfate	10	0.50	10.00	0	102	90	110			

Qualifiers:

Sulfate

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 12 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: LCS-44215 SampType: LCS TestCode: EPA Method 8015D: Diesel Range Client ID: LCSW Batch ID: 44215 RunNo: 59076 Prep Date: 4/9/2019 Analysis Date: 4/11/2019 SeqNo: 1988558 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result

 Diesel Range Organics (DRO)
 3.1
 0.40
 2.500
 0
 125
 66.7
 148

 Surr: DNOP
 0.29
 0.2500
 114
 52.7
 168

Sample ID: MB-44215 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 44215 RunNo: 59076

Prep Date: 4/9/2019 Analysis Date: 4/11/2019 SeqNo: 1988559 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.58 0.5000 116 52.7 168

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984235 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 92.4 72.8 125

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G58973 RunNo: 58973

21

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984237 Units: mg/L

20.00

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 77.7 0.46 0.050 0.5000 0 91.0 130

107

72.8

125

Qualifiers:

Surr: BFB

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: 100ng Ics	SampT	ype: LC	s	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: LCSW	Batch	ID: R5	9003	F	RunNo: 5	9003				
Prep Date:	Analysis D	ate: 4/	9/2019	8	SeqNo: 1	985945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	111	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		108	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		99.2	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.5		10.00		95.0	70	130			

Sample ID: rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: PBW	Batch	1D: R5	9003	F	RunNo: 5 9	9003				
Prep Date:	Analysis D	ate: 4/	9/2019	S	SeqNo: 1	985946	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.2	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	9.5		10.00		95.1	70	130			

Sample ID: RB	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	ID: SL	59035	F	RunNo: 5	9035				
Prep Date:	Analysis D	ate: 4/	10/2019	S	SeqNo: 1	987559	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		99.6	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	9.3		10.00		93.2	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: Ics-1 99.0uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985996 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.00 0 101 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 16 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: MB-44195 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 44195 RunNo: 59010

Prep Date: 4/8/2019 Analysis Date: 4/9/2019 SeqNo: 1985400 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCS-44195 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 44195 RunNo: 59010

Prep Date: 4/8/2019 Analysis Date: 4/9/2019 SeqNo: 1985401 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.9 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A59145 RunNo: 59145

Prep Date:	Analysis	Date: 4/	11/2019	9	SeqNo: 19	991022	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.020		•	-		_		•	
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Copper	ND	0.0060								
Iron	ND	0.020								
Magnesium	ND	1.0								
Manganese	ND	0.0020								
Potassium	ND	1.0								
Silver	ND	0.0050								
Sodium	ND	1.0								

Sample ID: LCS-A	Samp	Type: LC	S	TestCode: EPA Method 6010B: Dissolved Metals						
Client ID: LCSW	Bato	ch ID: A5	9145	F	RunNo: 5	9145				
Prep Date:	Analysis	Date: 4/	11/2019	9	SeqNo: 1	991024	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.020	0.5000	0	95.5	80	120			
Cadmium	0.50	0.0020	0.5000	0	99.3	80	120			
Calcium	51	1.0	50.00	0	101	80	120			
Chromium	0.49	0.0060	0.5000	0	97.7	80	120			
Copper	0.51	0.0060	0.5000	0	101	80	120			
Iron	0.49	0.020	0.5000	0	98.6	80	120			
Magnesium	49	1.0	50.00	0	98.9	80	120			
Manganese	0.49	0.0020	0.5000	0	98.3	80	120			
Potassium	49	1.0	50.00	0	97.3	80	120			
Silver	0.10	0.0050	0.1000	0	99.8	80	120			
Sodium	48	1.0	50.00	0	97.0	80	120			

Sample ID: LCSD-A	Samp	Type: LC	SD	Tes	als					
Client ID: LCSS02	Bato	h ID: A5	9145	F	RunNo: 5	9145				
Prep Date:	Analysis	Date: 4/	11/2019	S	SeqNo: 1991025 Units: m					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.020	0.5000	0	95.7	80	120	0.193	20	
Cadmium	0.50	0.0020	0.5000	0	101	80	120	1.27	20	
Calcium	51	1.0	50.00	0	102	80	120	0.286	20	
Chromium	0.50	0.0060	0.5000	0	99.1	80	120	1.40	20	
Copper	0.51	0.0060	0.5000	0	102	80	120	0.919	20	
Iron	0.50	0.020	0.5000	0	100	80	120	1.43	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: LCSD-A	Samp	Type: LC	SD	TestCode: EPA Method 6010B: Dissolved Metals						
Client ID: LCSS02	Bato	h ID: A5	9145	F	RunNo: 5	9145				
Prep Date:	Analysis	Date: 4/	11/2019	9	SeqNo: 1	991025	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Magnesium	50	1.0	50.00	0	99.8	80	120	0.875	20	
Manganese	0.50	0.0020	0.5000	0	99.3	80	120	0.977	20	
Potassium	49	1.0	50.00	0	98.4	80	120	1.11	20	
Silver	0.10	0.0050	0.1000	0	99.9	80	120	0.113	20	
Sodium	49	1.0	50.00	0	97.4	80	120	0.465	20	
Sample ID: MB-A	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	6010B: Disso	lved Meta	als	
Client ID: PBW	Bato	h ID: A5	9359	F	RunNo: 5	9359				
Prep Date:	Analysis	Date: 4/	23/2019	5	SeqNo: 1	999259	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

 Selenium
 ND
 0.050

 Uranium
 ND
 0.10

ND

0.020

Sample ID: LCS-A	SampT	ype: LC	S	TestCode: EPA Method 6010B: Dissolved Metals							
Client ID: LCSW	Batch	ID: A5	9359	R	tunNo: 5 9	9359					
Prep Date:	Analysis D	ate: 4/	23/2019	S	SeqNo: 1999261						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Selenium	0.54	0.050	0.5000	0	107	80	120				
Uranium	0.50	0.10	0.5000	0	99.7	80	120				

Sample ID: MB-A	SampType: MBLK	TestCode: EPA N	Method 6010B: Dissolved Metals
Client ID: PBW	Batch ID: A59436	RunNo: 5943 6	6
Prep Date:	Analysis Date: 4/25/201	9 SeqNo: 2002	144 Units: mg/L
Analyte	Result PQL SPK	value SPK Ref Val %REC Lo	owLimit HighLimit %RPD RPDLimit Qual
Arsenic	ND 0.020		
Lead	ND 0.0050		

Sample ID: LCS-A	Samp	SampType: LCS				TestCode: EPA Method 6010B: Dissolved Metals							
Client ID: LCSW	Bato	h ID: A5	9436	F	RunNo: 5 9	9436							
Prep Date:	Analysis	Date: 4/	25/2019	S	SeqNo: 20	002145	Units: mg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Arsenic	0.55	0.020	0.5000	0	110	80	120						
Lead	0.54	0.0050	0.5000	0	109	80	120						
Zinc	0.54	0.020	0.5000	0	109	80	120						

Qualifiers:

Zinc

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: MB-44198 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 44198 RunNo: 59145

Prep Date: 4/8/2019 Analysis Date: 4/11/2019 SeqNo: 1991008 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Barium
 ND
 0.020

 Cadmium
 ND
 0.0020

 Chromium
 ND
 0.0060

 Selenium
 ND
 0.050

 Silver
 ND
 0.0050

Sample ID: LCS-44198	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: LCSW	Bato	h ID: 44	198	F	tunNo: 5	9145				
Prep Date: 4/8/2019	Analysis	Date: 4/	11/2019	S	SeqNo: 1	991009	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.020	0.5000	0	96.7	80	120			
Cadmium	0.50	0.0020	0.5000	0	100	80	120			
Chromium	0.49	0.0060	0.5000	0	98.7	80	120			
Selenium	0.53	0.050	0.5000	0	106	80	120			
Silver	0.10	0.0050	0.1000	0	102	80	120			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904357**

02-May-19

Client: Western Refining Southwest, Inc.

Project: NBB Collection Wells

Sample ID: mb-1 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985959 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Total Alkalinity (as CaCO3)

Sample ID: Ics-1 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985960 Units: mg/L CaCO3

80.00

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

95.2

110

Sample ID: mb-2 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R59004 RunNo: 59004

20.00

76.12

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985984 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985985 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.80 20.00 80.00 0 96.0 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 21 of 21

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Client Name: Western Refining Southw Work Order Number: 1904357 RcptNo: 1 Received By: **Anne Thorne** 4/5/2019 8:30:00 AM anne Am Completed By: Anne Thorne 4/5/2019 10:41:14 AM Reviewed By: Chain of Custody Yes 🔽 No 🗀 1. Is Chain of Custody complete? Not Present 2. How was the sample delivered? Courier Login No 🗌 3. Was an attempt made to cool the samples? Yes 🗸 NA 🗌 No 🗌 Were all samples received at a temperature of >0° C to 6.0°C Yes 🔽 NA 🗀 Sample(s) in proper container(s)? Yes 🗹 No 🗀 6. Sufficient sample volume for indicated test(s)? Yes 🗸 7. Are samples (except VOA and ONG) properly preserved? Yes 🗸 No 🗸 8. Was preservative added to bottles? Yes 🗌 NA 🗌 9. VOA vials have zero headspace? Yes 🗸 No No VOA Vials Yes 10. Were any sample containers received broken? No 🔽 # of preserved bottles checked for pH: Yes 🗹 No 🗌 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) nless noted) 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 🗌 Yes 🗸 13. Is it clear what analyses were requested? No 🗌

Yes 🔽

No 🗌

Special Handling (if applicable)

14. Were all holding times able to be met?

(If no, notify customer for authorization.)

15.	Was client notified of all	discrepancies with this order?	Yes	No 🗆	NA 🗸
	Person Notified:		Date		
	By Whom:		Via: ☐ eMail ☐ Pi	none E Fax	In Person
	Regarding:				
	Client Instructions:				

16. Additional remarks:

CUSTODY SEALS INTACT ON SAMPLE BOTTLES/at 4/5/19

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.0	Good	Yes			diamentali leren dalla.

I OF I

1 OF -	ENVIDONMENTAL	ANALYSIS LABORATORY	Com	. NM 87109	505-345-4107	est		luo :	381		(A	ΌΛ	8270 (Semi-										Target Analytes		
	ENVID	I VSTS I	www hallenvironmental com	4901 Hawkins NE - Albuquerque, NM 87109	; ; 5 Fax 505-;	nalysis		(₄ O8	O4.5	۹٬ _۶ ۵	N'ε	elst ON,	RCRA 8 Me Anions (F,Cl 8081 Pestici										Remarks: See Analytical Methods and Target Analytes		
			Avvava	kins NE	345-397		-		(SV	()	· Þ 0	g p	EDB (Metho				_						nalytics		
] [01 Haw	Tel. 505-345-3975		(.	ATNO	ED C				ı <mark>а) аз го</mark> в нчт odfəM) НЧТ		×						_	-	S: See A		
				49	Te					-			8TM+X3T8 8TM+X3T8									+	Remarks		
			Project Name: NBB - Collection Wells	19	Event	66			gjmccartney@marathonpetroleum.com				HEAL NO. 190 4357	102	102.	P-0410119							٧	Time 1	
	Time:	□ Rush	: NBB - Cc	4-3-19	mi-Annua	45000813	ger:	. McCartney	y@maratho	icy Payne	X.Yes	berature: $[.C]$	Preservative Type	HCI	Neat				•				/ / / / / / / / / / / / / / / / / / / /		
	Tum-Around Time:	X Standard	Project Name	Date:	Project #: Semi-Annual Event	HEAL PO# 4500081399	Project Manager:	Gregory J.	gjmccartne	Sampler: Tra	On Ice:	Tell	Container Type and #	40ml VOA-5	250 ml amber-1								Received by:	Received by:	
	Chain-of-Custody Record	Client: Western Refining Southwest, Inc.	rminal	4990	Bloomfield, NM 87413	-2338			X Level 4 (Full Validation)				Sample Request ID	CW 0+60	CW 0+60				:	***************************************	2		<u> </u>	Amot Wells	
	of-Cu	n Refin	Bloomfield Terminal	Mailing Address: 50 CR 4990	Bloomf	419-421-2338			•		EXCEL		Matrix	H ₂ 0	H ₂ O								Relinquished by:	Rejirquished by	
	hain-	Wester	Bloom	Address:	_		Fax#:	ackage:	lard		EDD (Type)		Time	1555	7			:					Time: R	$\overline{}$	
	<u>ပ</u>	Client:		Mailing /		Phone #:	email or Fax#	QA/QC Package:	□ Standard	□ Other	X EDD		Date	4/3/19	→					1			Date:		,

					ļ		-							9	l	Р -	_	
ပ်	ain	of-Cu	Chain-of-Custody Record	Turn-Around	Time:				2	-		CANATOONIMENTAL		Ž		Ì		
Client: N	Vester	rn Refir	Western Refining Southwest, Inc.	X Standard	□ Rush		Л		- <	7		<u> </u>	2 4	֓֞֝֟֝֓֟֝֓֟֝֟֝֓֟֟֝֓֓֓֟֟	V	<u> </u>	^	
6	loom	Bloomfield Terminal	rminal	Project Name:		Downgradient Wells				www.	www hallenvironmental com		ntal	E S	5)		
Mailing Address:	ddress.	50 CR 4990		Date:		<u>o</u>		4901	Hawki	IS NE	4901 Hawkins NE - Albuquerque, NM 87109	ndner	due, I	8 N	7109			
		Bloom	Bloomfield, NM 87413	Project #: Semi-Annual Event	mi-Annual	Event		Tel. 5	Tel. 505-345-3975	5-397	- -	Fax 5	505-345-4107	5-41(7(
Phone #:		419-421-2338	1-2338	HEAL PO#	4500081399	66					Analy		sanbe	;;				
email or Fax#:	ax#:			Project Manager:	jer:					_								
QA/QC Package:	ckage:			Gregory J.	McCartney	×												
□ Standard	ırd		X Level 4 (Full Validation)	gimccartne	/@maratho	gjmccartney@marathonpetroleum.com				(3)	(0)4							
□ Other _				Sampler: Tra	cy Payne	919-561-7055					1100							()
X EDD (Type)	'ype)	EXCEL		On Ice:	ĭ Yes	□ No												A 10
				Sample Temperature:	erature: /	2.97									-		_	入)
Date 7	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX+MTB	8TEX+MTB 83108 H9 T	TPH (Metho	EDB (Metho	RCRA 8 Me	Anions (F,Cl	8081 Pestic	-imə2) 0728		<u>-</u>		Air Bubbles
0 61/4/4	0830	H ₂ 0	MW-12	40ml VOA-5	Ю	707		×			<u> </u>							<u>'</u>
	-→	H ₂ O	MW-12	250 ml amber-1	Neat	405		×										Į.
										<u> </u>		 		<u> </u>	_		<u> </u>	
																		-
	,																	<u> </u>
														, i				
																\Box		
								+				+				_		T
										+		+	+		+	+	_	T
												+	+				_	Т
. 6		Relinquished by:		Received by:	Last	Date Time $4/4/19 + 1623$	Remarks:		see A	ınaly	See Analytical Methods	/letho	ds a	Dd T	and Target Analytes.	t Ans	alyte,	, i
Date: Tin 4/4/15 1		Refiriquished by:	- Veeler	Received by:	()	Date Time 204/05/19 0830		e.										
		ر))														1

12 P. 12

3	Turn-Around Time:	HALL	X Standard Rush ANALYSIS LABORATORY	Project Name: Downgradient Wells www.hallenvironmental com	4-4-19 4901 Hawk	Tel 505-345-3975	lel. 505-345-39/5 Fax	HEAL PO# 4500081399	((:Β.ε 2Ο [†])	ey@marathonpetroleum.com) (SE	() (1) (1) (1) (1)	No No No No No No No No	He He He He He He He He	BE++38 (God 'ood 'oot oot oot oot oot oot oot oot oot oo	Container Preservative HEAL No. + ATT TEXT Meth APP APP APP APP APP APP APP APP APP AP	88 × 88 × 88 × 88 × 88 × 88 × 88 × 88		amber-1 Neat $\sqrt{203}$ X							Date Time	Hoet Hall	Received by: Date Time
		Τ			50 CR 4990 D	Bloomfield, NM 87413		419-421-2338 H		9	X Level 4 (Full Validation)		Ø			Ø	Sample Request ID	MW-38	1000			:				1 111 111		1	
Chain-of-Custody Client: Western Refining So Bloomfield Terminal Mailing Address: 50 CR 4990 Bloomfield, NI Phone #: 419-421-2338 email or Fax#: QA/QC Package: Standard	Chain-of-C		t. Western Re	Bloomfield	ng Address: 50 C	Bloom			or Fax#:	3 Package:	andard	_	her	'ype			Time	08.50	3 -	H ₂ O							in p	لا	Time: Relinquished by:

4 04

- - -	FNVTDONMENTAL	ANALYSIS LABORATORY		4901 Hawkins NE - Albuquerque. NM 87109	1107					(-imə∂) 0∑sē										and Target Analytes.	
'		AB	www.hallenvironmental.com	e. N	Fax 505-345-4107	uest	λ	luo <u>:</u>	381	.W '			8260B (VO							\dashv	\dashv		s and	
	O L	5	ment	nerdu	505	Analysis Request							S081 Pestic										See Analytical Methods	
	Ź	S	i joji	Ibnai	Fax	lysis		(*OS	S' [†] O	d'z(O,7 (F,CI	-			 		_		\dashv		Met	
	_	<u> </u>	haller	∀ -	22	Ana			(SI	NIS(0168) HA9 PCRA 8 Me						 	_	\dashv	\blacksquare	rtical	
		Z	WWW.	ns NE	5-397								EDB (Metho								\dashv	\dashv	vnaly	
	I	<		ławki	505-345-3975					()	81	⊅ po	TPH (Metho								\exists		ee /	
				901 F	Tel. 5(86108 H9T	<u> </u>	×	 					\Box			
				4	_		(8TM+X3T8 8TM+X3T8					\dashv		_	_		Remarks:	
Γ		ļ	!		<u> </u>					Τ	T		0111.7710		<u></u>					\dashv	\dashv	-		1
		de la la la la la la la la la la la la la	Project Name: Downgradient Wells	-19	al Event	399		ıey	gjmccartney@marathonpetroleum.com	e 919-561-7055	□ No	.97	HEAL NO.	B	132				;				L $4/4/19$ [L)3 Date Time $04/05/4$	0.00
	Time:	□ Rush	e: Downgi	4	emi-Annual Event	<i>t</i> 4500081	iger:	i. McCartney	y@marath	acy Payne	域 Yes	perature.	Preservative Type	HC	Neat								west	
	Turn-Around	X Standard	Project Nam	Date:	Project #: Se	HEAL PO# 4500081399	Project Manager:	Gregory J	gjmccartne	Sampler: Tracy Payne	On Ice:	Ten	Container Type and #	40ml VOA-5	250 ml amber-1							:	Received by: Received by:	1100/
	Chain-of-Custody Record	Western Refining Southwest, Inc.	rminal	4990	Bloomfield, NM 87413	-2338			X Level 4 (Full Validation)				Sample Request ID	MW-37	MW-37								AY — Auished by: Ay — Auished by: Man L. Valde	
(ot-Cu	rn Refin	Bloomfield Terminal	Mailing Address: 50 CR 4990	Bloomfi	419-421-2338					EXCEL		Matrix	H ₂ O	H ₂ O								Relinquished by:	1 27.7
•	Jain	Veste	3loon	ddress			-ax#:	ıckage:	ard		Type)_		Time	0/60	_ -								Time: 11,12 S Time: 1832	3
(ט	Client: V	Ш	Mailing A		Phone #:	email or Fax#:	QA/QC Package:	☐ Standard	□ Other	X EDD (Type)		Date	24/20				_			+		Date:	

5 0 7

6 OF 7

1	-	<u>.</u> ≿	:							()	10) (Y)	Air Bubbles											
 -	ENVIRONMENTAL	ANALYSIS LABORATORY)					SIIO	,,,,,,,	, _ K	lle;	פונו	deneral Ch							<u> </u>		es es		
ō │		Ś		60									mədə nəə				×	×				 nalyte		
}	Σ	; 0	,) _	1871	1107								imə2) 0728		 			^				et Ar		
1	Č	ğ] <u> </u>	Z	505-345-4107	est	۸	Juo E	18T	w 'x			8260B (VO	×								Targ		
	2]	 enta	enba	505-3	sedn							oitseq 1808									and		
	}	SI	www.hallenvironmental.com	- Albuquerque, NM 87109	Fax (Analysis Request					sje	JəlV	l bevlossid			×						See Analytical Methods and Target Analytes		
		i Ş	lenvi	₽P	L-L-	naly		s	lste	M e	aple	:19 v	Total Reco		×					Ħ		 Met		
	=	V	 ∧.hai		975	A			(SV	VISC)728	3 10	01£8) HA9									tical		
	HAI	Z	- M	4901 Hawkins NE	Tel. 505-345-3975								EDB (Metho									hally		
			l	Haw	05-3								TPH (Metho									ee /		
				901	el. 5								=- 88108 H9T											
				4	_								BTEX+MTB									Remarks		
Г					Γ-			(1	208)s, <u>e</u>	I IMT	.+∃: 	BTM+X∃T8	_								- Re		
			er Bluff		nt				gjmccartney@marathonpetroleum.com	919-561-7055			HEAL NO. 1904357	702	767	7207	102	102				Date Time 4/4/19 /1623	Date Time つイ(の5/17 の330	
		l,	ın Rive	19	al Eve	399		ey	onpeti		oN □	2,0										ر ر و ۵		
	Time:	□ Rush	San Jua	4-4-	mi-Annu	4500081	ger:	I. McCartney	y@marath	icy Payne	X Yes	perature: /.	Preservative Type	HCI	HNO3	HNO3	H ₂ SO ₄	Neat				Lloet		
	Turn-Around	X Standard	Project Name: San Juan River Bluff	Date:	Project #: Semi-Annual Event	HEAL PO# 4500081399	Project Manager:	Gregory J	gjmccartne	Sampler: Tracy Payne	On Ice:	Sample Tem	Container Type and #	40ml VOA-5	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1				Received by:	Received by:	
	Chain-of-Custody Record	Client: Western Refining Southwest, Inc.	ıai	0	Bloomfield, NM 87413	38			X Level 4 (Full Validation)				Sample Request ID	East Outfall #2	East Outfall #2	East Outfall #2	East Outfall #2	East Outfall #2					Weele	
,	usto	fining	Bloomfield Terminal	Mailing Address: 50 CR 4990	mfield,	419-421-2338			X Le	į	Ä							. <u></u>	-			Relinquished by:	Kelinquished by:	
	<u>ا</u>	ern Re	mfield	ss: 50 (Bloo	419-		äi			EXCEL		Matrix	7 H ₂ O	H ₂ O	H ₂ O	H ₂ O	H ₂ O				Relinqu		ン
;	hair	West	Bloo	y Addres		#:	email or Fax#:	QA/QC Package:	ndard	er	EDD (Type)		Time	1330				->				Time: U23	Time: [832	
•		Client:		Mailing		Phone #:	email c	QA/QC	☐ Standard	□ Other	X EDI		Date	₹/\a				>				Date:	Date:	-

7 0 7

1		, >	I							(1	1 10	人)	Pir Bubbles										-	_	
4	HALL ENVIRONMENTAL	LABORATORY	; !				_								•								-		
9 	2		' I					suo	inA	۸ -	ıjsi	เพอ	General Ch		.		×	×					ytes		
	2 TT	2	 	Albuquerque, NM 87109				^z OC) / \	ijui	КЗI	IA -	Gen Chem					×					 See Analytical Methods and Target Analytes		
	Ž		E O	∑	505-345-4107	+							-im98) 0728										₫et		
	Č	} ₹	tal.c	e e	-346	Reduest	Λ	uo <u>s</u>	38T	W 'X	3TE	8 (4	8260B (VO	×									d Ta		
	71.	S	men	Jergi	505		_	s'8C)d 7	808	3 / 5	əbi	oitee¶ 1808										s an		
	Ź	İ	viron	pnar	Fax	ysis							Dissolved I			×							thod thod		
	Ш	ANALYSIS	www.hallenvironmental.com	ı	10	Analysis							Total Reco		×								₩		
] <	¥.	4901 Hawkins NE	505-345-3975				(SN				0168) HAG										-j y tici		
	Ì	Ì	¦	vkins	345-								EDB (Metho										Ana		
		·	_	Hav	505-		- (ΛVI.	A!/O				83108 H9T odjeM) H9T										 See		
				1901	Tel.								BTR+X=TB										is:		
				•									BTKX+MTB										Remarks:		
		1			Ţ			()		-,-,-	10.07	- •	QTA1.V119		_	~	>	8	. <u>.</u>				 ~ ~ 		
			.						CON	55				208	200	88	as	208					Time // 1/2	ğ me	
			3luf						m j	-70			HEAL NO. 1904357	ľ	10	,	,	1						119 ^{Time} 1330	
			er E		ä				role	561			HE/ OH										Date //1/9)ate (05,)
			Ŗ	0	K	66		>	npe	919-	% □	0	19] h) 04[
		□ Rush	uan		ual	3139		tne	tho	ne (`	tive		₆₀	8	4						3	1	
	<i>7</i> 15	™	ln J	7	Ann	3000		Car	nara	Pay	es	nre:	Preservative Type	НСІ	HNO3	HNO3	H ₂ SO ₄	Neat					3	, 7	
	Time:		Project Name: San Juan River Bluff	4-4-	Project #: Semi-Annual Event	HEAL PO# 4500081399	ger:	. McCartney	gjmccartney@marathonpetroleum.com	Sampler: Tracy Payne 919-561-7055	k Yes	Sample Temperature:	Pre		1	4	Н						+	72	
	Turn-Around	X Standard	lame		S	PO	Project Manager:		rtne	Tr		Tem	ner Id#	40ml VOA-5	<u>ا</u> ک	ار د ک	ր 1-1	= 1					ved by:	12/2	
	n-Arc	Stan	ect l	äi	ect #	AL.	ect 1	Gregory J	ıcca	pler	<u>8</u>) ple	Container Type and #	٧٥ اد	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1					Received by:	ived t	
	<u> </u>	×	Proj	Date:	Proj	里	Proj	<u>0</u>	gjm	San	On Ice:	San	ဂ္ဂ နှ	40n	2 pl	1 pl	L q	5 pl					Rece	Received by:	
		ن.							(uo				Ω												
	ğ	t, In							lidati				Sample Request ID	East Outfall #3	East Outfall #3	East Outfall #3	East Outfall #3	East Outfall #3						٨	
	ည္က	vest			413				∥ Val				nbə	ıtfal	ıtfal	ıtfal	ıtfal	itfal						\Rightarrow	
	쬬	ıthv			N 87				Fu				le R	ίŌ	t OL	t OL	t OL	Ď					[ale	
	þ	Sot	lal	0	Ž	88			vel 4				lduli	<u>=</u> ast	≣asi	≣ast	≣asi	East					, 1	7	
	sto	ing	Ē	50 CR 4990	eld	-23			X Level 4 (Full Validation)				Sa	_				_						luished by: MA	
	Ö	efin	Te	CR	ğ	421					山		Ϋ́	C	C	C	0	0						uished	
	Chain-of-Custody Record	Western Refining Southwest, Inc.	Bloomfield Terminal		Bloomfield, NM 87413	419-421-2338					EXCEL		Matrix	H ₂ O	H ₂ O	H ₂ O	H ₂ O	H ₂ O					Relinquished by:	Relinquished by: Change C	\supset
	Ë	ste	МОС	ress:			· · · · · · · · · · · · · · · · · · ·	age:	~		De)		Time	8										7	
	ha		ă	g Adc		#	or Fa	Pack	ndar	е	CTy.			1400			_	7					Time	Time:	
	٦	Client:		Mailing Address:		Phone #:	email or Fax#:	QA/QC Package:	□ Standard	□ Other	X EDD (Type)		Date	4/la			-	→					Date: Time:	Date: 4 9 4 9	<u>.</u>
	I	ں _ا		≥	l	Ι Φ.	0	Ø	Ц	L	×		_	74/			İ			[J	ا <u>حد</u> ت!		

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2018 Western Refining Southwest, Inc. - Bloomfield Refinery

VOCs (EPA Method 8260B) (1)
- Target List
Benzene
Toluene
Ethylbenzene
Xylenes
Methyl tert butyl ether (MTBE)
SVOCs - (EPA Method 8270)
- Method List
TPH-GRO (EPA Method 8015B)
- Gasoline Range Organics
TPH-DRO (EPA Method 8015B)
- Diesel Range Organics
- Motor Oil Range Organics
Total Carbon Dioxide (Laboratory Calculated)
- Dissolved CO2
Specific Conductivity (EPA Method 120.1 or field measurement)
- Specific conductance
TDS (EPA Method 160.1 or field measurement)
- Total dissolved solids
General Chemistry - Anions (EPA Method 300.0)
Fluoride
Chloride
Bromide
Nitrogen, Nitrite (as N)
Nitrogen, Nitrate (as N)
Phosphorous, Orthophosphate (As P)
Sulfate

General Chemistry - Alkalinity (EPA Method 310.1)

Total Recoverable Metals (EPA Method 6010B/7470)

- Target List (not applicable to River Terrace Sampling Events)

Arsenic Lead
Barium Mercury
Cadmium Selenium

Chromium Silver

- Target List (for River Terrace Sampling Events Only)

Lead

Mercury (DW-1 ONLY)

Dissolved Metals (EPA Method 6010B / 7470)

- Target List (for Refinery Complex, Outfalls, and River)

Arsenic Manganese Barium Mercury Cadmium Potassium Calcium Selenium Chromium Silver Copper Sodium Iron Uranium Lead Zinc

Magnesium

TPH = total petroleum hydrocarbons

GRO = gasoline range organics

VOCs = volatile organic compounds

DRO = diesel range organics

TDS = total dissolved solids

NOTES:

Alkalinity, Total Carbonate Bicarbonate

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 15, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX: (505) 632-3911

RE: NBB Observation Wells 4-5-19 OrderNo.: 1904419

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 8 sample(s) on 4/6/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1904419**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/15/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: OW 8+10

 Project:
 NBB Observation Wells 4-5-19
 Collection Date: 4/5/2019 7:40:00 AM

 Lab ID:
 1904419-001
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	0.44	0.40	mg/L	1	4/11/2019 3:02:04 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 3:02:04 PM	44215
Surr: DNOP	116	52.7-168	%Rec	1	4/11/2019 3:02:04 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 12:22:35 PM	G58973
Surr: BFB	92.9	72.8-125	%Rec	1	4/8/2019 12:22:35 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 7:45:00 PM	R59003
Toluene	ND	1.0	μg/L	1	4/9/2019 7:45:00 PM	R59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 7:45:00 PM	R59003
Methyl tert-butyl ether (MTBE)	5.4	1.0	μg/L	1	4/9/2019 7:45:00 PM	R59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 7:45:00 PM	R59003
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/9/2019 7:45:00 PM	R59003
Surr: 4-Bromofluorobenzene	97.9	70-130	%Rec	1	4/9/2019 7:45:00 PM	R59003
Surr: Dibromofluoromethane	99.9	70-130	%Rec	1	4/9/2019 7:45:00 PM	R59003
Surr: Toluene-d8	94.0	70-130	%Rec	1	4/9/2019 7:45:00 PM	R59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Lab Order **1904419**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/15/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: OW 19+50

 Project:
 NBB Observation Wells 4-5-19
 Collection Date: 4/5/2019 8:05:00 AM

 Lab ID:
 1904419-002
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 3:24:08 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 3:24:08 PM	44215
Surr: DNOP	118	52.7-168	%Rec	1	4/11/2019 3:24:08 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	0.077	0.050	mg/L	1	4/8/2019 12:45:29 PM	G58973
Surr: BFB	92.0	72.8-125	%Rec	1	4/8/2019 12:45:29 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 8:08:00 PM	R59003
Toluene	ND	1.0	μg/L	1	4/9/2019 8:08:00 PM	R59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 8:08:00 PM	R59003
Methyl tert-butyl ether (MTBE)	130	1.0	μg/L	1	4/9/2019 8:08:00 PM	R59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 8:08:00 PM	R59003
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/9/2019 8:08:00 PM	R59003
Surr: 4-Bromofluorobenzene	97.7	70-130	%Rec	1	4/9/2019 8:08:00 PM	R59003
Surr: Dibromofluoromethane	100	70-130	%Rec	1	4/9/2019 8:08:00 PM	R59003
Surr: Toluene-d8	94.6	70-130	%Rec	1	4/9/2019 8:08:00 PM	R59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904419**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: OW 22+00

Project: NBB Observation Wells 4-5-19 **Collection Date:** 4/5/2019 8:25:00 AM

Lab ID: 1904419-003 **Matrix:** AQUEOUS **Received Date:** 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 3:46:24 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 3:46:24 PM	44215
Surr: DNOP	118	52.7-168	%Rec	1	4/11/2019 3:46:24 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 1:08:07 PM	G58973
Surr: BFB	95.2	72.8-125	%Rec	1	4/8/2019 1:08:07 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 8:32:00 PM	R59003
Toluene	ND	1.0	μg/L	1	4/9/2019 8:32:00 PM	R59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 8:32:00 PM	R59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 8:32:00 PM	R59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 8:32:00 PM	R59003
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/9/2019 8:32:00 PM	R59003
Surr: 4-Bromofluorobenzene	96.9	70-130	%Rec	1	4/9/2019 8:32:00 PM	R59003
Surr: Dibromofluoromethane	100	70-130	%Rec	1	4/9/2019 8:32:00 PM	R59003
Surr: Toluene-d8	95.3	70-130	%Rec	1	4/9/2019 8:32:00 PM	R59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904419**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: OW 23+90

Project: NBB Observation Wells 4-5-19

Collection Date: 4/5/2019

Lab ID: 1904419-004 **Matrix:** AQUEOUS **Received Date:** 4/6/2019 10:45:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 8:56:00 PM	R59003
Toluene	ND	1.0	μg/L	1	4/9/2019 8:56:00 PM	R59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 8:56:00 PM	R59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 8:56:00 PM	R59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 8:56:00 PM	R59003
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	4/9/2019 8:56:00 PM	R59003
Surr: 4-Bromofluorobenzene	98.6	70-130	%Rec	1	4/9/2019 8:56:00 PM	R59003
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/9/2019 8:56:00 PM	R59003
Surr: Toluene-d8	95.9	70-130	%Rec	1	4/9/2019 8:56:00 PM	R59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Lab Order **1904419**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/15/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: CW 25+95

 Project:
 NBB Observation Wells 4-5-19
 Collection Date: 4/5/2019 9:10:00 AM

 Lab ID:
 1904419-005
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 4:08:37 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 4:08:37 PM	44215
Surr: DNOP	115	52.7-168	%Rec	1	4/11/2019 4:08:37 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	0.36	0.050	mg/L	1	4/8/2019 1:53:28 PM	G58973
Surr: BFB	108	72.8-125	%Rec	1	4/8/2019 1:53:28 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 9:20:00 PM	R59003
Toluene	ND	1.0	μg/L	1	4/9/2019 9:20:00 PM	R59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 9:20:00 PM	R59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 9:20:00 PM	R59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 9:20:00 PM	R59003
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	4/9/2019 9:20:00 PM	R59003
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	4/9/2019 9:20:00 PM	R59003
Surr: Dibromofluoromethane	96.5	70-130	%Rec	1	4/9/2019 9:20:00 PM	R59003
Surr: Toluene-d8	95.2	70-130	%Rec	1	4/9/2019 9:20:00 PM	R59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904419**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/15/2019

CLIENT:Western Refining Southwest, Inc.Client Sample ID: Duplicate #1Project:NBB Observation Wells 4-5-19Collection Date: 4/5/2019

Lab ID: 1904419-006 **Matrix:** AQUEOUS **Received Date:** 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 4:31:03 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 4:31:03 PM	44215
Surr: DNOP	114	52.7-168	%Rec	1	4/11/2019 4:31:03 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 2:16:08 PM	G58973
Surr: BFB	101	72.8-125	%Rec	1	4/8/2019 2:16:08 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 9:44:00 PM	R59003
Toluene	ND	1.0	μg/L	1	4/9/2019 9:44:00 PM	R59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 9:44:00 PM	R59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 9:44:00 PM	R59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 9:44:00 PM	R59003
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/9/2019 9:44:00 PM	R59003
Surr: 4-Bromofluorobenzene	97.2	70-130	%Rec	1	4/9/2019 9:44:00 PM	R59003
Surr: Dibromofluoromethane	99.3	70-130	%Rec	1	4/9/2019 9:44:00 PM	R59003
Surr: Toluene-d8	94.6	70-130	%Rec	1	4/9/2019 9:44:00 PM	R59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1904419**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/15/2019

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Field Blank #2

 Project:
 NBB Observation Wells 4-5-19
 Collection Date: 4/5/2019 9:25:00 AM

 Lab ID:
 1904419-007
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	4/11/2019 4:53:09 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/11/2019 4:53:09 PM	44215
Surr: DNOP	113	52.7-168	%Rec	1	4/11/2019 4:53:09 PM	44215
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 2:38:47 PM	G58973
Surr: BFB	100	72.8-125	%Rec	1	4/8/2019 2:38:47 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 10:08:00 PM	B59003
Toluene	ND	1.0	μg/L	1	4/9/2019 10:08:00 PM	B59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 10:08:00 PM	B59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 10:08:00 PM	B59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 10:08:00 PM	B59003
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/9/2019 10:08:00 PM	B59003
Surr: 4-Bromofluorobenzene	99.3	70-130	%Rec	1	4/9/2019 10:08:00 PM	B59003
Surr: Dibromofluoromethane	100	70-130	%Rec	1	4/9/2019 10:08:00 PM	B59003
Surr: Toluene-d8	95.4	70-130	%Rec	1	4/9/2019 10:08:00 PM	B59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Lab Order **1904419**

Date Reported: 4/15/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: NBB Observation Wells 4-5-19 **Collection Date:**

Lab ID: 1904419-008 **Matrix:** AQUEOUS **Received Date:** 4/6/2019 10:45:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	RAA
Benzene	ND	1.0	μg/L	1	4/9/2019 11:21:00 PM	B59003
Toluene	ND	1.0	μg/L	1	4/9/2019 11:21:00 PM	B59003
Ethylbenzene	ND	1.0	μg/L	1	4/9/2019 11:21:00 PM	B59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2019 11:21:00 PM	B59003
Xylenes, Total	ND	1.5	μg/L	1	4/9/2019 11:21:00 PM	B59003
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/9/2019 11:21:00 PM	B59003
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	1	4/9/2019 11:21:00 PM	B59003
Surr: Dibromofluoromethane	101	70-130	%Rec	1	4/9/2019 11:21:00 PM	B59003
Surr: Toluene-d8	93.4	70-130	%Rec	1	4/9/2019 11:21:00 PM	B59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit

Н

S % Recovery outside of range due to dilution or matrix

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904419**

15-Apr-19

Client: Western Refining Southwest, Inc.

Project: NBB Observation Wells 4-5-19

Sample ID: LCS-44215 SampType: LCS TestCode: EPA Method 8015D: Diesel Range
Client ID: LCSW Batch ID: 44215 RunNo: 59076

Prep Date: 4/9/2019 Analysis Date: 4/11/2019 SeqNo: 1988558 Units: mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Diesel Range Organics (DRO) 0.40 0 3.1 2.500 125 66.7 148

Surr: DNOP 0.29 0.2500 114 52.7 168

Sample ID: MB-44215 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 44215 RunNo: 59076

Prep Date: 4/9/2019 Analysis Date: 4/11/2019 SeqNo: 1988559 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.58 0.5000 116 52.7 168

Qualifiers:

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904419**

15-Apr-19

Client: Western Refining Southwest, Inc.

Project: NBB Observation Wells 4-5-19

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984235 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 92.4 72.8 125

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984237 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 77.7 0.46 0.050 0.5000 0 91.0 130 Surr: BFB 21 20.00 107 72.8 125

Qualifiers:

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1904419**

15-Apr-19

Client: Western Refining Southwest, Inc.
Project: NBB Observation Wells 4-5-19

Sample ID: 100ng Ics	SampT	SampType: LCS TestCode: EPA Method 82						s Short L	ist	
Client ID: LCSW	Batch	1D: R5	9003	F	RunNo: 5 9	9003				
Prep Date:	Analysis D	ate: 4/	9/2019	8	SeqNo: 1	985945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	111	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		108	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		99.2	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.5		10.00		95.0	70	130			

TestCode: EPA Method 8260: Volatiles Short List

Client ID: PBW	Batcl	h ID: R5	9003	F	RunNo: 5	9003				
Prep Date:	Analysis D	Date: 4/	9/2019	\$	SeqNo: 1	985946	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.2	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	9.5		10.00		95.1	70	130			

Sample ID: 1904419-007ams	SampT	SampType: MS TestCode: EPA Method 8260: Volatiles Short List								
Client ID: Field Blank #2	Batcl	n ID: B5	9003	F	RunNo: 5	9003				
Prep Date:	Analysis D	Date: 4/	9/2019	9	SeqNo: 1	985993	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Toluene	20	1.0	20.00	0	99.4	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.5	70	130			

Sample ID: 1904419-007amsd	SampTy	SampType: MSD TestCode: EPA Method 8260: Volatiles Short List								
Client ID: Field Blank #2	Batch	ID: B5	9003	F	RunNo: 5	9003				
Prep Date:	Analysis Da	ite: 4/	9/2019	S	SeqNo: 1	986004	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.1	70	130	4.98	20	

Qualifiers:

Sample ID: rb

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904419**

15-Apr-19

Client: Western Refining Southwest, Inc.

Project: NBB Observation Wells 4-5-19

Sample ID: 1904419-007amsd	SampT	SampType: MSD TestCode: EPA Method 8260: Volatiles Short List								
Client ID: Field Blank #2	Batch	Batch ID: B59003 RunNo: 59003								
Prep Date:	Analysis Da	ate: 4/ 9	9/2019	S	SeqNo: 1	986004	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	19	1.0	20.00	0	94.8	70	130	4.66	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.9		10.00		98.7	70	130	0	0	
Surr: Dibromofluoromethane	10		10.00		100	70	130	0	0	
Surr: Toluene-d8	9.4		10.00		94.4	70	130	0	0	

Sample ID: 100ng lcs2	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: LCSW	Batch	n ID: B5	9003	F	RunNo: 5 9	9003				
Prep Date:	Analysis D	ate: 4/	10/2019	5	SeqNo: 1	986087	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	112	70	130			
Toluene	22	1.0	20.00	0	108	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		99.8	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.2	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.1	70	130			
Surr: Toluene-d8	9.4		10.00		94.4	70	130			

Sample ID: rb2	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batcl	n ID: B5	9003	F	RunNo: 5 9	9003				
Prep Date:	Analysis D	Date: 4/	10/2019	S	SeqNo: 1	986088	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.2	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.2	70	130			

Qualifiers:

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw Work Order Number: 1904419 RcptNo: 1 Received By: Isaiah Ortiz 4/6/2019 10:45:00 AM Completed By: Isaiah Ortiz 4/6/2019 11:57:13 AM INOX 4/8/19 Reviewed By: 4-8-19 (B: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? Yes 🗸 No 🗌 NA 🗌 No 🗔 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 NA 🗌 5. Sample(s) in proper container(s)? Yes 🗸 No 🔲 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? No Yes No 🗸 8. Was preservative added to bottles? Yes NA L 9. VOA vials have zero headspace? Yes No No VOA Vials 🗸 10. Were any sample containers received broken? Yes No 🗸 # of preserved bottles checked No 🗌 for pH: 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) (<2 or >12 unless noted) Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 13. Is it clear what analyses were requested? Yes 🗸 No 14. Were all holding times able to be met? Checked by: Yes 🗸 No 🗌 nc (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes NA 🗸 No Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1 5.9 Good Yes 2 3.2 Good Yes 3 2.8 Good Yes

1 or 9

-	I	ORY								(1	10	(人)	Air Bubbles							10	alytes.	
<u>†</u>	HALL FINATEDAMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107		(1	SO4)	N/O	() () () () () () () ()	18. 04. 04. 07(2) 18. 18. 18.	(GI)	BTEX+MTE TPH 8015B TPH (Methor PPH (8310 PPH (×	×					3	Remarks: See Analytical Methods and Target Analytes	
			vation Wells		ent			(1		919-561-7055		3.2 5.28	HEAL NO. X+	, 100-	7						Date Time 4/5/19 /55C Date Time (6/19 1045	
and the second s	Time:	□ Rush	Project Name: NBB - Observation Wells	4-5-19	Project #: Semi-Annual Event	# 4500081399	ager:	Gregory J. McCartney	gjmccartney@marathonpetroleum.com	Sampler: Tracy Payne 919	Yes No	perature: 5.9 ~	Preservative Type	HCI	Neat						hlaste 4	
	Turn-Around	X Standard	Project Nam	Date:	Project #: Se	HEAL PO#	Project Manager:	Gregory J	gjmccartne	Sampler: Tr	On Ice:	Sample Temperature:	Container Type and #	40ml VOA-5	250 ml amber-1						Received by: Received by:	
	Chain-of-Custody Record	Client: Western Refining Southwest, Inc.	rminal	4990	Bloomfield, NM 87413	-2338			X Level 4 (Full Validation)				Sample Request ID	OW 8+10	OW 8+10						16/2: The World Callera	
	-of-Cus	ern Refin	Bloomfield Terminal	s: 50 CR 4990	Bloomfi	419-421-2338					EXCEL		Matrix	H ₂ O	H ₂ 0						Relinquished by: Refinquished by:)
	Chain	Slient: West	Blooi	Mailing Address:		Phone #:	email or Fax#:	QA/QC Package:	□ Standard	□ Other	X EDD (Type)		Date Time	4/5/19 0740	<i>→</i>	,				+	Uste: Time: US/4 [550 Date: Time:	

2 or 9

3 0 9

Client Western Refining Southwest, Inc. X Sandard Rush Project Neme NBB - Observation Wells	Chain-of-Custody Record	Turn-Around Time:	Time:	y.			:		i						.
Project Name.NBB - Observation Wells Project #: Semi-Annual Event Project #: Semi-Annua	Refining Southwest, In	ن					Ì		. E		¥				ړ پ
1, NM 8743	eld Terminal	Project Name		servation Wells			>	ww.h	allenvi	lonmer (ental.c) HO	5		,
Foliect #: Semi-Annual Event	50 CR 4990	Date:	Ň	9	4	901 H	awkin	s NE		ndner	dne, I	NM 8	7109		
HEAL PO# 4500081339	loomfield, NM 87413	Project #: Se	mi-Annual	Event	·	[el. 50	5-34	-3975		ax 5(05-34	5-410	22		
Container Cont	19-421-2338	HEAL PO#	450008138	66					Analy	sis Re	sanbe	st St			
Gregory J. McCartney Sampler Tracy Payne 919-561-7055 Sampler Tracy Payne 919-7055 Sampler Tracy Pa		Project Mana	ıger:			_				-	-	L			
Sampler Tracy Payne 919-561-7055		Gregory J.	. McCartne	>											
Sampler Tracy Payne 919-561-7055 Sampler Tracy Payne 919-561-7055 On lose Sampler Tracy Payne 919-561-7055 On lose Sample Temperature; Sqr	X Level 4 (Full Validat		y@maratho	npetroleum.com	_			(SV							
Ow 22+00 Sample Temperature: 5-9-1-5-2-6-6-7-6-7-6-7-6-7-6-7-6-7-6-7-6-7-6-7			acy Payne 9	119-561-7055			1000	- 01			_				\(\frac{1}{2}\)
Sample Temperature 5.9	EXCEL	On Ice:	₩ Yes	oN 🗆								_			
ample Request ID Container Type and # Type HEAL NO. AMTB </td <td></td> <td>Sample Tem</td> <td>6.</td> <td>3.2.5</td> <td></td> <td></td> <td>20, 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>70</td>		Sample Tem	6.	3.2.5			20, 3								70
OW 22+00 40ml VOA-5 HCI -003 X X X X X X X X X X X X X X X X X X		10 2 10	Preservative Type	HEAL NO.											111 0 .v
OW 22+00 250 ml Neat Image: Content of the content o		40ml VOA-5		-803		×					×				
Received by: Received by: Date Time Remarks: See Analytical Methods and April Stocked by: Date Time Received by: Date Time Received by: Date Time Date		250 ml amber-1	Neat	-		×									
Received by: Amaly Date Time Remarks: See Analytical Methods and April Apri															
Received by: Pate Time Remarks: See Analytical Methods and Pate Time Received by: Date Time															
Received by: Amal Hall All Issue Al															
Received by: Pate Time Pate Time Remarks: See Analytical Methods and Pate Time															
Received by: Pate Time Pate Time Remarks: See Analytical Methods and Pate Time															
Received by: Received by: Received by: Date Time Remarks: See Analytical Methods and Date Time Received by: All 19 1045															
Received by: Received by: Received by: Date Time Remarks: See Analytical Methods and Date Time Received by: Date Time Received by: Date Time A/6/19 / Dus															
Received by: Pate Time Remarks: See Analytical Methods and Received by: Pate Time Received by: Date Time Time Time Time Time Time Time Tim															
Received by: Received by: Received by: Date Time Remarks: See Analytical Methods and Ag/19/1550 Bate Time Aloukeu T Coore 4/6/19/1045															
Received by: Analytical Methods and Apply 1550 Received by: Date Time Accelved. $46/9 / 045$							-			-	_				
	11 3	Received by:	Loet.	6 6	Remar		ee Ar	ıalytic	ial Me	thod:	s and	Tarc	get An	alyte	vi.

4 or 9

5 0 9

ζ		, ,)) 	 -		
5		10-10-	cnain-or-custody Record	I urn-Around	I Ime:				Ī				FNVTRONMENTAL	2	L	F		
Client:	Weste	ın Refi	Client: Western Refining Southwest, Inc.	X Standard	□ Rush				•	ANALYSTS LABORATORY	Š	S		Ç		2	ַ גַ	
	Bloon	nfield T	Bloomfield Terminal	Project Name	NBB - Co	Project Name: NBB - Collection Wells			}	www.hallenvironmental.com	lenvir	onme	ntalic	<u> </u>)		
Mailing Address:	Address	s: 50 CF	50 CR 4990	Date:	4-5-	19	4	901 F	lawkin	4901 Hawkins NE - Albuquergue, NM 87109	- Albu	dnero	Ne. N	M 87	109			
		Bloom	Bloomfield, NM 87413	Project #: Semi-Annual Event	mi-Annual	Event		Tel. 5(5-345	Tel. 505-345-3975	ŭ	Fax 50	505-345-4107	-410				
Phone #:	ي	419-42	419-421-2338	HEAL PO# 4500081399	45000813	66				7	Analysis Request	is Re	quest					
email or Fax#:	Fax#:			Project Manager:	ger:			_				_	-		-			
QA/QC Package:	ackage:			Gregory J. McCartney	McCartne	, Y		Tables or										
□ Standard	lard		X Level 4 (Full Validation)	gjmccartne	y@maratho	gjmccartney@marathonpetroleum.com				(SN								
□ Other				Sampler: Tra	cy Payne	Sampler: Tracy Payne 919-561-7055		10	-	_								(1
X EDD (EDD (Type)_	EXCEL		On Ice:	W Yes	□ No								(A				V 10
				Tem	erature:5.9°	7.87 7.28 7								OV.				(Y (
														-im	- 6			sə
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 190419	M+X3T8 M+X3T8	83108 H9T	9M) H9T	EDB (We	RCRA 8	7) snoinA 299 1808	v) 80928	əS) 0728	8500B			Iddu8 1iA
4/5/19	0910	H ₂ O	CW 25+95	40ml VOA-5	HCI	500-		×		_	_	_	_					
\rightarrow	\rightarrow	H ₂ O	CW 25+95	250 ml amber-1	Neat			×										
4/2/19	ſ	H,0	DUPLICATE #1	40 MC1 (0A-5	HCL	- CO 6		×					×					
\rightarrow	1	H2D	\	250ML AMBER-1	NEAT	1		×										
45/19	0925	142 O	FIELD BLANK #Z	40 mc/68-5	HCC	-00J		×					×					
>	Ž	4,0	→	ZSOML AMBER-1	NEAT	1		X										
						ENN	4/8	19,										
1/8/19	1	H2D	TRIP BLANK	40MLYOR-3	HCL -	-008		. 1						//	V			
							H	4	100	0000	100	- L	4	-	1	Bell	5/12	
	Time:	<u>~</u>	:xq pa	Received by:	-	Date Time	Remarks: See Analytical Methods and	ks: Se	e Ana	lytical	Metho	ds an		get A	Target Analytes	SS.		
5-	(550)	$\overline{}$		/ Must	Local	1/5/11/556												
	Time:	Relinquished by:	-	Received by:		Date Time												
115/19		\$	Monday JOB Vers	2	Bonze	4/6/19 1045												
)																

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 14, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX: (505) 632-3911

RE: San Juan River 4-5-19 OrderNo.: 1904422

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 5 sample(s) on 4/6/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1904422**

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Upstream

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 10:40:00 AM

 Lab ID:
 1904422-001
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	: Irm
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	4/11/2019 5:15:25 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	4/11/2019 5:15:25 PM	44215
Surr: DNOP	119	52.7-168		%Rec	1	4/11/2019 5:15:25 PM	44215
CARBON DIOXIDE						Analyst	JRR
Total Carbon Dioxide	87	1.0	Н	mg CO2	/ 1	4/9/2019 12:20:38 PM	R59004
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	ND	1.0		mg/L	10	4/8/2019 4:53:19 PM	R58998
Chloride	5.4	5.0		mg/L	10	4/8/2019 4:53:19 PM	R58998
Bromide	ND	1.0		mg/L	10	4/8/2019 4:53:19 PM	R58998
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	4/8/2019 4:53:19 PM	R58998
Sulfate	92	5.0		mg/L	10	4/8/2019 4:53:19 PM	R58998
Nitrate+Nitrite as N	ND	1.0		mg/L	5	4/8/2019 6:36:12 PM	R58998
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	95.56	20.00		mg/L Ca	1	4/9/2019 12:20:38 PM	R59004
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	4/9/2019 12:20:38 PM	R59004
Total Alkalinity (as CaCO3)	95.56	20.00		mg/L Ca	1	4/9/2019 12:20:38 PM	R59004
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/9/2019 12:12:07 PM	44195
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/11/2019 3:46:58 PM	44282
EPA METHOD 6010B: DISSOLVED METALS						Analyst	rde
Arsenic	ND	0.020		mg/L	1	4/25/2019 3:42:02 PM	A59436
Barium	0.076	0.020		mg/L	1	4/11/2019 10:27:37 AM	A59145
Cadmium	ND	0.0020		mg/L	1	4/11/2019 10:27:37 AM	A59145
Calcium	39	1.0		mg/L	1	4/26/2019 2:41:20 PM	A59501
Chromium	ND	0.0060		mg/L	1	4/11/2019 10:27:37 AM	A59145
Copper	ND	0.0060		mg/L	1	4/11/2019 10:27:37 AM	A59145
Iron	0.074	0.020		mg/L	1	4/23/2019 12:08:08 PM	A59359
Lead	ND	0.0050		mg/L	1	4/25/2019 3:42:02 PM	A59436
Magnesium	7.3	1.0		mg/L	1	4/11/2019 10:27:37 AM	A59145
Manganese	0.017	0.0020		mg/L	1	4/23/2019 12:08:08 PM	A59359
Potassium	2.2	1.0		mg/L	1	4/11/2019 10:27:37 AM	
Selenium	ND	0.050		mg/L	1	4/23/2019 12:08:08 PM	
Silver	ND	0.0050		mg/L	1	4/11/2019 10:27:37 AM	
Sodium	29	1.0		mg/L	1	4/11/2019 10:27:37 AM	
Uranium	ND	0.10		mg/L	1	4/23/2019 12:08:08 PM	A59359

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 22

Lab Order **1904422**

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Upstream

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 10:40:00 AM

 Lab ID:
 1904422-001
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS					Analyst	: rde
Zinc	ND	0.020	mg/L	1	4/25/2019 3:42:02 PM	A59436
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst	: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:03:34 PM	44198
Barium	0.14	0.020	mg/L	1	4/11/2019 9:19:28 AM	44198
Cadmium	ND	0.0020	mg/L	1	4/11/2019 9:19:28 AM	44198
Chromium	ND	0.0060	mg/L	1	4/11/2019 9:19:28 AM	44198
Lead	ND	0.0050	mg/L	1	4/25/2019 3:03:34 PM	44198
Selenium	ND	0.050	mg/L	1	4/11/2019 9:19:28 AM	44198
Silver	ND	0.0050	mg/L	1	4/11/2019 9:19:28 AM	44198
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 3:24:11 PM	G58973
Surr: BFB	109	72.8-125	%Rec	1	4/8/2019 3:24:11 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 1:27:00 PM	SL59035
Toluene	ND	1.0	μg/L	1	4/10/2019 1:27:00 PM	SL59035
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 1:27:00 PM	SL59035
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 1:27:00 PM	SL59035
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 1:27:00 PM	SL59035
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/10/2019 1:27:00 PM	SL59035
Surr: 4-Bromofluorobenzene	97.9	70-130	%Rec	1	4/10/2019 1:27:00 PM	SL59035
Surr: Dibromofluoromethane	99.3	70-130	%Rec	1	4/10/2019 1:27:00 PM	SL59035
Surr: Toluene-d8	94.4	70-130	%Rec	1	4/10/2019 1:27:00 PM	SL59035

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 22

Lab Order **1904422**

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North of 45

Project: San Juan River 4-5-19
 Collection Date: 4/5/2019 11:45:00 AM

 Lab ID: 1904422-002
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst:	Irm
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	4/11/2019 5:37:34 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	4/11/2019 5:37:34 PM	44215
Surr: DNOP	114	52.7-168		%Rec	1	4/11/2019 5:37:34 PM	44215
CARBON DIOXIDE						Analyst	JRR
Total Carbon Dioxide	86	1.0	Н	mg CO2	′ 1	4/9/2019 12:29:23 PM	R59004
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Fluoride	ND	1.0		mg/L	10	4/8/2019 5:44:46 PM	R58998
Chloride	5.5	5.0		mg/L	10	4/8/2019 5:44:46 PM	R58998
Bromide	ND	1.0		mg/L	10	4/8/2019 5:44:46 PM	R58998
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	4/8/2019 5:44:46 PM	R58998
Sulfate	94	5.0		mg/L	10	4/8/2019 5:44:46 PM	R58998
Nitrate+Nitrite as N	ND	1.0		mg/L	5	4/8/2019 6:49:04 PM	R58998
SM2320B: ALKALINITY						Analyst:	JRR
Bicarbonate (As CaCO3)	95.48	20.00		mg/L Ca	1	4/9/2019 12:29:23 PM	R59004
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	4/9/2019 12:29:23 PM	R59004
Total Alkalinity (as CaCO3)	95.48	20.00		mg/L Ca	1	4/9/2019 12:29:23 PM	R59004
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/9/2019 12:18:53 PM	44195
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/11/2019 3:49:12 PM	44282
EPA METHOD 6010B: DISSOLVED METALS						Analyst	rde
Arsenic	ND	0.020		mg/L	1	4/25/2019 3:44:01 PM	A59436
Barium	0.074	0.020		mg/L	1	4/11/2019 10:31:28 AM	A59145
Cadmium	ND	0.0020		mg/L	1	4/11/2019 10:31:28 AM	A59145
Calcium	40	1.0		mg/L	1	4/26/2019 2:43:00 PM	A59501
Chromium	ND	0.0060		mg/L	1	4/11/2019 10:31:28 AM	A59145
Copper	ND	0.0060		mg/L	1	4/11/2019 10:31:28 AM	A59145
Iron	0.057	0.020		mg/L	1	4/23/2019 12:22:14 PM	A59359
Lead	ND	0.0050		mg/L	1	4/25/2019 3:44:01 PM	A59436
Magnesium	7.3	1.0		mg/L	1	4/11/2019 10:31:28 AM	A59145
Manganese	0.013	0.0020		mg/L	1	4/23/2019 12:22:14 PM	A59359
Potassium	2.1	1.0		mg/L	1	4/11/2019 10:31:28 AM	A59145
Selenium	ND	0.050		mg/L	1	4/23/2019 12:22:14 PM	
Silver	ND	0.0050		mg/L	1	4/11/2019 10:31:28 AM	
Sodium	30	1.0		mg/L	1	4/11/2019 10:31:28 AM	
Uranium	ND	0.10		mg/L	1	4/23/2019 12:22:14 PM	A59359

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 22

Lab Order 1904422

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North of 45

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 11:45:00 AM

 Lab ID:
 1904422-002
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS					Analyst	: rde
Zinc	ND	0.020	mg/L	1	4/25/2019 3:44:01 PM	A59436
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst	: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:08:51 PM	44198
Barium	0.19	0.020	mg/L	1	4/11/2019 9:24:36 AM	44198
Cadmium	ND	0.0020	mg/L	1	4/11/2019 9:24:36 AM	44198
Chromium	ND	0.0060	mg/L	1	4/11/2019 9:24:36 AM	44198
Lead	ND	0.0050	mg/L	1	4/25/2019 3:08:51 PM	44198
Selenium	ND	0.050	mg/L	1	4/11/2019 9:24:36 AM	44198
Silver	ND	0.0050	mg/L	1	4/11/2019 9:24:36 AM	44198
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 3:46:54 PM	G58973
Surr: BFB	110	72.8-125	%Rec	1	4/8/2019 3:46:54 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 1:46:00 AM	B59003
Toluene	ND	1.0	μg/L	1	4/10/2019 1:46:00 AM	B59003
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 1:46:00 AM	B59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 1:46:00 AM	B59003
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 1:46:00 AM	B59003
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/10/2019 1:46:00 AM	B59003
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	1	4/10/2019 1:46:00 AM	B59003
Surr: Dibromofluoromethane	100	70-130	%Rec	1	4/10/2019 1:46:00 AM	B59003
Surr: Toluene-d8	95.2	70-130	%Rec	1	4/10/2019 1:46:00 AM	B59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 22

Lab Order **1904422**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/14/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North of 46

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 12:15:00 PM

 Lab ID:
 1904422-003
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	Irm
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	4/11/2019 5:59:50 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	4/11/2019 5:59:50 PM	44215
Surr: DNOP	115	52.7-168		%Rec	1	4/11/2019 5:59:50 PM	44215
CARBON DIOXIDE						Analyst	JRR
Total Carbon Dioxide	92	1.0	Н	mg CO2	/ 1	4/9/2019 12:37:28 PM	R59004
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	ND	1.0		mg/L	10	4/8/2019 6:10:29 PM	R58998
Chloride	6.2	5.0		mg/L	10	4/8/2019 6:10:29 PM	R58998
Bromide	ND	1.0		mg/L	10	4/8/2019 6:10:29 PM	R58998
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	4/8/2019 6:10:29 PM	R58998
Sulfate	130	5.0		mg/L	10	4/8/2019 6:10:29 PM	R58998
Nitrate+Nitrite as N	ND	1.0		mg/L	5	4/8/2019 7:01:55 PM	R58998
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	102.1	20.00		mg/L Ca	1	4/9/2019 12:37:28 PM	R59004
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	4/9/2019 12:37:28 PM	R59004
Total Alkalinity (as CaCO3)	102.1	20.00		mg/L Ca	1	4/9/2019 12:37:28 PM	R59004
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/9/2019 12:25:47 PM	44195
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/11/2019 3:51:26 PM	44282
EPA METHOD 6010B: DISSOLVED METALS						Analyst	rde
Arsenic	ND	0.020		mg/L	1	4/25/2019 3:45:52 PM	A59436
Barium	0.074	0.020		mg/L	1	4/11/2019 10:35:11 AM	A59145
Cadmium	ND	0.0020		mg/L	1	4/11/2019 10:35:11 AM	A59145
Calcium	47	1.0		mg/L	1	4/26/2019 2:44:40 PM	A59501
Chromium	ND	0.0060		mg/L	1	4/11/2019 10:35:11 AM	A59145
Copper	ND	0.0060		mg/L	1	4/11/2019 10:35:11 AM	A59145
Iron	0.037	0.020		mg/L	1	4/23/2019 12:24:08 PM	A59359
Lead	ND	0.0050		mg/L	1	4/25/2019 3:45:52 PM	A59436
Magnesium	8.0	1.0		mg/L	1	4/11/2019 10:35:11 AM	A59145
Manganese	0.10	0.0020		mg/L	1	4/23/2019 12:24:08 PM	A59359
Potassium	2.2	1.0		mg/L	1	4/11/2019 10:35:11 AM	
Selenium	ND	0.050		mg/L	1	4/23/2019 12:24:08 PM	
Silver	ND	0.0050		mg/L	1	4/11/2019 10:35:11 AM	
Sodium	36	1.0		mg/L	1	4/11/2019 10:35:11 AM	
Uranium	ND	0.10		mg/L	1	4/23/2019 12:24:08 PM	A59359

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 22

Lab Order **1904422**

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North of 46

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 12:15:00 PM

 Lab ID:
 1904422-003
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS					Analyst	: rde
Zinc	ND	0.020	mg/L	1	4/25/2019 3:45:52 PM	A59436
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst	: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:18:07 PM	44198
Barium	0.14	0.020	mg/L	1	4/11/2019 9:26:15 AM	44198
Cadmium	ND	0.0020	mg/L	1	4/11/2019 9:26:15 AM	44198
Chromium	ND	0.0060	mg/L	1	4/11/2019 9:26:15 AM	44198
Lead	ND	0.0050	mg/L	1	4/25/2019 3:18:07 PM	44198
Selenium	ND	0.050	mg/L	1	4/11/2019 9:26:15 AM	44198
Silver	ND	0.0050	mg/L	1	4/11/2019 9:26:15 AM	44198
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 4:09:32 PM	G58973
Surr: BFB	108	72.8-125	%Rec	1	4/8/2019 4:09:32 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 2:11:00 AM	B59003
Toluene	ND	1.0	μg/L	1	4/10/2019 2:11:00 AM	B59003
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 2:11:00 AM	B59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 2:11:00 AM	B59003
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 2:11:00 AM	B59003
Surr: 1,2-Dichloroethane-d4	97.5	70-130	%Rec	1	4/10/2019 2:11:00 AM	B59003
Surr: 4-Bromofluorobenzene	99.0	70-130	%Rec	1	4/10/2019 2:11:00 AM	B59003
Surr: Dibromofluoromethane	98.0	70-130	%Rec	1	4/10/2019 2:11:00 AM	B59003
Surr: Toluene-d8	93.5	70-130	%Rec	1	4/10/2019 2:11:00 AM	B59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 22

Lab Order **1904422**

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Downstream

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 12:50:00 PM

 Lab ID:
 1904422-004
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	Irm
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	4/11/2019 6:21:56 PM	44215
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	4/11/2019 6:21:56 PM	44215
Surr: DNOP	118	52.7-168		%Rec	1	4/11/2019 6:21:56 PM	44215
CARBON DIOXIDE						Analyst	JRR
Total Carbon Dioxide	89	1.0	Н	mg CO2	/ 1	4/9/2019 12:45:40 PM	R59004
EPA METHOD 300.0: ANIONS						Analyst	smb
Fluoride	0.20	0.10		mg/L	1	4/11/2019 5:51:40 PM	R59098
Chloride	5.5	5.0		mg/L	10	4/8/2019 6:55:33 PM	R58999
Bromide	ND	1.0		mg/L	10	4/8/2019 6:55:33 PM	R58999
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	4/8/2019 6:55:33 PM	R58999
Sulfate	110	5.0		mg/L	10	4/8/2019 6:55:33 PM	R58999
Nitrate+Nitrite as N	ND	1.0		mg/L	5	4/8/2019 7:21:17 PM	R58999
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	99.36	20.00		mg/L Ca	1	4/9/2019 12:45:40 PM	R59004
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	4/9/2019 12:45:40 PM	R59004
Total Alkalinity (as CaCO3)	99.36	20.00		mg/L Ca	1	4/9/2019 12:45:40 PM	R59004
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/9/2019 12:28:03 PM	44195
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	4/11/2019 3:53:40 PM	44282
EPA METHOD 6010B: DISSOLVED METALS						Analyst	rde
Arsenic	ND	0.020		mg/L	1	4/25/2019 3:52:56 PM	A59436
Barium	0.076	0.020		mg/L	1	4/11/2019 10:38:58 AM	A59145
Cadmium	ND	0.0020		mg/L	1	4/11/2019 10:38:58 AM	A59145
Calcium	44	1.0		mg/L	1	4/26/2019 2:46:20 PM	A59501
Chromium	ND	0.0060		mg/L	1	4/11/2019 10:38:58 AM	A59145
Copper	ND	0.0060		mg/L	1	4/11/2019 10:38:58 AM	A59145
Iron	0.070	0.020		mg/L	1	4/23/2019 12:26:01 PM	A59359
Lead	ND	0.0050		mg/L	1	4/25/2019 3:52:56 PM	A59436
Magnesium	7.7	1.0		mg/L	1	4/11/2019 10:38:58 AM	A59145
Manganese	0.026	0.0020		mg/L	1	4/23/2019 12:26:01 PM	
Potassium	2.2	1.0		mg/L	1	4/11/2019 10:38:58 AM	A59145
Selenium	ND	0.050		mg/L	1	4/23/2019 12:26:01 PM	
Silver	ND	0.0050		mg/L	1	4/11/2019 10:38:58 AM	
Sodium	35	1.0		mg/L	1	4/11/2019 10:38:58 AM	
Uranium	ND	0.10		mg/L	1	4/23/2019 12:26:01 PM	A59359

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 22

Lab Order **1904422**

Date Reported: 5/14/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Downstream

 Project:
 San Juan River 4-5-19
 Collection Date: 4/5/2019 12:50:00 PM

 Lab ID:
 1904422-004
 Matrix: AQUEOUS
 Received Date: 4/6/2019 10:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS					Analyst	: rde
Zinc	ND	0.020	mg/L	1	4/25/2019 3:52:56 PM	A59436
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst	: rde
Arsenic	ND	0.020	mg/L	1	4/25/2019 3:19:51 PM	44198
Barium	0.19	0.020	mg/L	1	4/11/2019 9:34:13 AM	44198
Cadmium	ND	0.0020	mg/L	1	4/11/2019 9:34:13 AM	44198
Chromium	ND	0.0060	mg/L	1	4/11/2019 9:34:13 AM	44198
Lead	ND	0.0050	mg/L	1	4/25/2019 3:19:51 PM	44198
Selenium	ND	0.050	mg/L	1	4/11/2019 9:34:13 AM	44198
Silver	ND	0.0050	mg/L	1	4/11/2019 9:34:13 AM	44198
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2019 4:32:11 PM	G58973
Surr: BFB	109	72.8-125	%Rec	1	4/8/2019 4:32:11 PM	G58973
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 2:35:00 AM	B59003
Toluene	ND	1.0	μg/L	1	4/10/2019 2:35:00 AM	B59003
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 2:35:00 AM	B59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 2:35:00 AM	B59003
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 2:35:00 AM	B59003
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	4/10/2019 2:35:00 AM	B59003
Surr: 4-Bromofluorobenzene	96.2	70-130	%Rec	1	4/10/2019 2:35:00 AM	B59003
Surr: Dibromofluoromethane	98.9	70-130	%Rec	1	4/10/2019 2:35:00 AM	B59003
Surr: Toluene-d8	94.0	70-130	%Rec	1	4/10/2019 2:35:00 AM	B59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **1904422**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/14/2019

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: San Juan River 4-5-19 **Collection Date:**

Lab ID: 1904422-005 **Matrix:** TRIP BLANK **Received Date:** 4/6/2019 10:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	4/10/2019 2:59:00 AM	B59003
Toluene	ND	1.0	μg/L	1	4/10/2019 2:59:00 AM	B59003
Ethylbenzene	ND	1.0	μg/L	1	4/10/2019 2:59:00 AM	B59003
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/10/2019 2:59:00 AM	B59003
Xylenes, Total	ND	1.5	μg/L	1	4/10/2019 2:59:00 AM	B59003
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	4/10/2019 2:59:00 AM	B59003
Surr: 4-Bromofluorobenzene	97.0	70-130	%Rec	1	4/10/2019 2:59:00 AM	B59003
Surr: Dibromofluoromethane	100	70-130	%Rec	1	4/10/2019 2:59:00 AM	B59003
Surr: Toluene-d8	94.5	70-130	%Rec	1	4/10/2019 2:59:00 AM	B59003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 22

Hall Environmental Analysis Laboratory, Inc.

ND

ND

0.50

0.20

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: MB	SampType: mblk			Tes	TestCode: EPA Method 300.0: Anions					
Client ID: PBW	Batch ID: R58998			F	RunNo: 5	8998				
Prep Date:	Analysis Date: 4/8/2019			SeqNo: 1985185			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								
0				_						

Sample ID: LCS	SampType: Ics TestCode: EPA Method						300.0: Anions			
Client ID: LCSW	Batch	n ID: R5	8998	F	RunNo: 58	8998				
Prep Date:	Analysis D	ate: 4/	8/2019	5	SeqNo: 19	985187				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.53	0.10	0.5000	0	106	90	110			
Chloride	4.9	0.50	5.000	0	98.9	90	110			
Bromide	2.5	0.10	2.500	0	99.5	90	110			
Phosphorus, Orthophosphate (As P	5.0	0.50	5.000	0	99.0	90	110			
Sulfate	10	0.50	10.00	0	100	90	110			
Nitrate+Nitrite as N	3.6	0.20	3.500	0	102	90	110			

Sample ID: MB	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 300.0: Anions					
Client ID: PBW	Batch	n ID: R5	8999	F	RunNo: 5	8999				
Prep Date:	Analysis D	ate: 4/	8/2019	8	SeqNo: 1	985270	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Bromide	ND	0.10								

Sample ID: LCS	SampT	ype: LC	S	Tes	tCode: El	5				
Client ID: LCSW	Batch	n ID: R5	8999	F						
Prep Date:	Analysis D	ate: 4/	8/2019	S	SeqNo: 1	985271	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50	5.000	0	96.0	90	110			
Bromide	2.4	0.10	2.500	0	95.8	90	110			
Phosphorus, Orthophosphate (As P	4.8	0.50	5.000	0	96.3	90	110			
Sulfate	9.9	0.50	10.00	0	99.4	90	110			
Nitrate+Nitrite as N	3.5	0.20	3.500	0	99.5	90	110			

Qualifiers:

Sulfate

Nitrate+Nitrite as N

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R59098 RunNo: 59098

Prep Date: Analysis Date: 4/11/2019 SeqNo: 1989286 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Fluoride ND 0.10

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R59098 RunNo: 59098

Prep Date: Analysis Date: 4/11/2019 SeqNo: 1989287 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Fluoride 0.51 0.10 0.5000 0 103 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: LCS-44215 SampType: LCS TestCode: EPA Method 8015D: Diesel Range Client ID: LCSW Batch ID: 44215 RunNo: 59076 Prep Date: 4/9/2019 Analysis Date: 4/11/2019 SeqNo: 1988558 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Diesel Range Organics (DRO) 0.40 0 3.1 2.500 125 66.7 148 Surr: DNOP 0.29 0.2500 114 52.7 168

Sample ID: MB-44215 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: PBW Batch ID: 44215 RunNo: 59076 Prep Date: 4/9/2019 Analysis Date: 4/11/2019 SeqNo: 1988559 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Diesel Range Organics (DRO)	ND	0.40
Motor Oil Range Organics (MRO)	ND	2.5

Surr: DNOP 0.58 0.5000 116 52.7 168

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SegNo: 1984235 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 92.4 72.8 125

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G58973 RunNo: 58973

Prep Date: Analysis Date: 4/8/2019 SeqNo: 1984237 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 77.7 0.46 0.050 0.5000 0 91.0 130 Surr: BFB 21 20.00 107 72.8 125

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: 100ng lcs2	SampT	SampType: LCS TestCode: EPA Method 8					8260: Volatile	s Short L	.ist	
Client ID: LCSW	Batch	n ID: B5	9003	F	RunNo: 5 9	9003				
Prep Date:	Analysis Date: 4/10/2019			SeqNo: 1986087 Unit			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	112	70	130			
Toluene	22	1.0	20.00	0	108	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		99.8	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.2	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.1	70	130			
Surr: Toluene-d8	9.4		10.00		94.4	70	130			

Sample ID: rb2	SampT	уре: МЕ	BLK	Tes	TestCode: EPA Method 8260: Volatiles Short List					
Client ID: PBW	Batch	Batch ID: B59003			RunNo: 5	9003				
Prep Date:	Analysis Date: 4/10/2019			\$	SeqNo: 1986088 Units: μg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.2	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.2	70	130			

Sample ID: RB	SampT	уре: МЕ	BLK	Tes	TestCode: EPA Method 8260: Volatiles Short List					
Client ID: PBW	Batch	ID: SL	59035	F	RunNo: 5	9035				
Prep Date:	Analysis D	ate: 4/	10/2019	S	SeqNo: 19	987559	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0					_			
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		99.6	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	9.3		10.00		93.2	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: MB-44195 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: **PBW** Batch ID: **44195** RunNo: **59010**

Prep Date: 4/8/2019 Analysis Date: 4/9/2019 SeqNo: 1985400 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCS-44195 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 44195 RunNo: 59010

Prep Date: 4/8/2019 Analysis Date: 4/9/2019 SeqNo: 1985401 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.9 80 120

Sample ID: 1904422-001DMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: Upstream Batch ID: 44195 RunNo: 59010

Prep Date: 4/8/2019 Analysis Date: 4/9/2019 SeqNo: 1985407 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0052 0.00020 0.005000 .00009702 102 75 125

Sample ID: 1904422-001DMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: Upstream Batch ID: 44195 RunNo: 59010

Prep Date: 4/8/2019 Analysis Date: 4/9/2019 SeqNo: 1985408 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0054 0.00020 0.005000 .00009702 105 75 125 2.90 20

Mercury 0.00034 0.00020 0.0000000 00009702 105 75 125 2.90 20

Sample ID: MB-44282 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 44282 RunNo: 59086

Prep Date: 4/10/2019 Analysis Date: 4/11/2019 SeqNo: 1988693 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCS-44282 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 44282 RunNo: 59086

Prep Date: 4/10/2019 Analysis Date: 4/11/2019 SeqNo: 1988694 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0050 0.00020 0.005000 0 100 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1904422

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Mercury

Sample ID: LCSD-44282 SampType: LCSD TestCode: EPA Method 7470: Mercury

Client ID: LCSS02 Batch ID: 44282 RunNo: 59086

0.0048 0.00020

Prep Date: 4/10/2019 Analysis Date: 4/11/2019 SeqNo: 1988695 Units: mg/L

0.005000

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0

96.0

80

120

4.17

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 16 of 22

Hall Environmental Analysis Laboratory, Inc.

ND

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A59145 RunNo: 59145

1.0

Prep Date: Analysis Date: 4/11/2019 SeqNo: 1991022 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Barium ND 0.020 Cadmium ND 0.0020 ND 0.0060 Chromium 0.0060 Copper ND Magnesium ND 1.0 Potassium ND 1.0 Silver ND 0.0050

Sample ID: LCS-A	TestCode: EPA Method 6010B: Dissolved Metals										
Client ID: LCSW	Bato	ch ID: A5	9145	F	RunNo: 59145						
Prep Date:	Analysis	Date: 4/	11/2019	S	SeqNo: 1991024		Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.48	0.020	0.5000	0	95.5	80	120				
Cadmium	0.50	0.0020	0.5000	0	99.3	80	120				
Chromium	0.49	0.0060	0.5000	0	97.7	80	120				
Copper	0.51	0.0060	0.5000	0	101	80	120				
Magnesium	49	1.0	50.00	0	98.9	80	120				
Potassium	49	1.0	50.00	0	97.3	80	120				
Silver	0.10	0.0050	0.1000	0	99.8	80	120				
Sodium	48	1.0	50.00	0	97.0	80	120				

Sample ID: LCSD-A	SD	TestCode: EPA Method 6010B: Dissolved Metals									
Client ID: LCSS02	Bato	ch ID: A5	9145	F	RunNo: 59145						
Prep Date:	Analysis	Date: 4/	11/2019	S	SeqNo: 19	991025	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.48	0.020	0.5000	0	95.7	80	120	0.193	20		
Cadmium	0.50	0.0020	0.5000	0	101	80	120	1.27	20		
Chromium	0.50	0.0060	0.5000	0	99.1	80	120	1.40	20		
Copper	0.51	0.0060	0.5000	0	102	80	120	0.919	20		
Magnesium	50	1.0	50.00	0	99.8	80	120	0.875	20		
Potassium	49	1.0	50.00	0	98.4	80	120	1.11	20		
Silver	0.10	0.0050	0.1000	0	99.9	80	120	0.113	20		
Sodium	49	1.0	50.00	0	97.4	80	120	0.465	20		

Qualifiers:

Sodium

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client:	Western Refining Southwest, Inc.
---------	----------------------------------

Project: San Juan River 4-5-19

Sample ID: MB-A	SampType: MBLK			TestCode: EPA Method 6010B: Dissolved Metals						
Client ID: PBW	Batch ID: A59359			F	tunNo: 5	9359				
Prep Date:	Analysis	Date: 4/	23/2019	SeqNo: 1999259			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron	ND	0.020								
Manganese	ND	0.0020								
Selenium	ND	0.050								
Uranium	ND	0.10								
Sample ID: LCS-A	Samp	Type: LC	S	TestCode: EPA Method 6010B: Dissolved Metals						

Sample ID. LCS-A	Samp rype. LCS restcode. EPA Method (סטוטם: טומאט	ived weta	115	
Client ID: LCSW	Bato	h ID: A5	9359	F	RunNo: 59					
Prep Date:	Analysis	Date: 4/	23/2019	8	SeqNo: 19	999261	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron	0.54	0.020	0.5000	0	108	80	120			
Manganese	0.53	0.0020	0.5000	0	106	80	120			
Selenium	0.54	0.050	0.5000	0	107	80	120			
Uranium	0.50	0.10	0.5000	0	99.7	80	120			

Sample ID: MB-A	Samp1	Туре: МЕ	BLK	TestCode: EPA Method 6010B: Dissolved Metals							
Client ID: PBW	Batc	F	RunNo: 5	9436							
Prep Date:	Date: Analysis Date: 4/25/2019			S	SeqNo: 2	002144	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	ND	0.020									
Lead	ND	0.0050									
Zino	ND	0.020									

Sample ID: LCS-A	Samp	Type: LC	S	TestCode: EPA Method 6010B: Dissolved Metals						
Client ID: LCSW	Bato	h ID: A5 9	9436	R	tunNo: 59	9436				
Prep Date:	Analysis I	Date: 4/ 2	25/2019	S	002145	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.55	0.020	0.5000	0	110	80	120			
Lead	0.54	0.0050	0.5000	0	109	80	120			
Zinc	0.54	0.020	0.5000	0	109	80	120			

Sample ID: MB-A	SampT	BLK	Tes	TestCode: EPA Method 6010B: Dissolved Metals						
Client ID: PBW	Batch	Batch ID: A59501 RunNo: 59								
Prep Date:	Analysis Date: 4/26/2019			S	eqNo: 2	004645	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calairea	ИD	4.0	•		·					

Calcium ND 1.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

50

WO#: 1904422

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Calcium

Sample ID: LCSD-A SampType: LCSD TestCode: EPA Method 6010B: Dissolved Metals

Client ID: LCSS02 Batch ID: **A59501** RunNo: 59501

1.0

Analysis Date: 4/26/2019 SeqNo: 2004652 Prep Date: Units: mg/L

50.00

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0

99.6

80

120

0.837

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 19 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: MB-44198 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: **PBW** Batch ID: **44198** RunNo: **59145**

Prep Date: 4/8/2019 Analysis Date: 4/11/2019 SeqNo: 1991008 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Barium
 ND
 0.020

 Cadmium
 ND
 0.0020

 Chromium
 ND
 0.0060

 Selenium
 ND
 0.050

 Silver
 ND
 0.0050

Sample ID: LCS-44198 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals Client ID: LCSW Batch ID: 44198 RunNo: 59145 Analysis Date: 4/11/2019 SeqNo: 1991009 Prep Date: 4/8/2019 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Qual 0.5000 80 0.48 0.020 0 96.7 120 Barium Cadmium 0.50 0.0020 0.5000 0 100 80 120 0 98.7 80 0.49 0.0060 0.5000 120 Chromium 0 106 Selenium 0.53 0.050 0.5000 80 120 0.10 Silver 0.0050 0.1000 0 102 80 120

Sample ID: 1904422-001DMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals Client ID: Batch ID: 44198 RunNo: 59145 Upstream Prep Date: 4/8/2019 Analysis Date: 4/11/2019 SeqNo: 1991014 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 0.1394 95.4 75 0.62 0.020 125 0.5000 Barium Cadmium 0.50 0.0020 0.5000 101 75 125 0

125 99.7 Chromium 0.50 0.0060 0.5000 0.002916 75 Selenium 0.52 0.050 0.5000 0 104 75 125 Silver 0.10 0 0.0050 0.1000 102 75 125

Sample ID: 1904422-001DMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals

Client ID: Upstream Batch ID: 44198 RunNo: 59145

				-							
Prep Date: 4/8/2019	Analysis	Date: 4/	11/2019	5	SeqNo: 1	991015	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.63	0.020	0.5000	0.1394	98.5	75	125	2.46	20		
Cadmium	0.51	0.0020	0.5000	0	101	75	125	0.665	20		
Chromium	0.50	0.0060	0.5000	0.002916	99.7	75	125	0.0516	20		
Selenium	0.54	0.050	0.5000	0	107	75	125	3.38	20		
Silver	0.10	0.0050	0.1000	0	104	75	125	2.04	20		

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: 1904422-001DMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: Upstream Batch ID: 44198 RunNo: 59436

Prep Date: 4/8/2019 Analysis Date: 4/25/2019 SeqNo: 2002164 Units: mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result В Arsenic 0.53 0.020 0.5000 0 105 75 125 Lead 0.48 0.0050 0.5000 0 95.5 75 125

Sample ID: 1904422-001DMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals

Client ID: Upstream Batch ID: 44198 RunNo: 59436

Prep Date: 4/8/2019 Analysis Date: 4/25/2019 SeqNo: 2002165 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual 75 20 Arsenic 0.53 0.020 0.5000 0 105 125 0.127 В Lead 0.48 0.0050 0 95.9 75 0.413 20 0.5000 125

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904422**

14-May-19

Client: Western Refining Southwest, Inc.

Project: San Juan River 4-5-19

Sample ID: mb-1 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985959 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985960 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.12 20.00 80.00 0 95.2 90 110

Sample ID: mb-2 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985984 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R59004 RunNo: 59004

Prep Date: Analysis Date: 4/9/2019 SeqNo: 1985985 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.80 20.00 80.00 0 96.0 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 22

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

CI	ient Name:	Western R	efining South	w Work	Order Number:	190	4422			RcptN	o: 1	
Re	ceived By:	Isaiah Ori	tiz	4/6/201	9 10:45:00 AM			I	04			
Co	mpleted By:	Erin Mele	ndrez	4/8/201	9 8:26:46 AM			I, U, U	1			
Re	viewed By:	LB		11/1	9			1				
L	B:	JJC	4-8	-19								
Ch	ain of Cust	tody	1 0	1)								
	Is Chain of Cu		lete?			Yes	~	No [1	Not Present		
	How was the s					Cou						
Lo	og In											
023	Was an attem	pt made to o	cool the samp	les?		Yes	✓	No 🗆		NA \square		
							_		7	_		
4. V	Vere all samp	les received	at a tempera	ture of >0° C	to 6.0°C	Yes	V	No L	J	NA 🗌		
5. \$	Sample(s) in p	roper conta	iner(s)?			Yes	V	No 🗆]			
6. 5	Sufficient samp	ole volume f	or indicated te	est(s)?		Yes	✓	No 🗆]			
				operly preserve	ed?	Yes	V	No 🗆]			
	Vas preservat		15. 15	- F 7 F		Yes		No 🗸		NA 🗌		
9 \	OA vials have	zero heads	enace?			Yes	V	No 🗆	l N	o VOA Vials 🗌		
	Nere any sam			rokon?		Yes		No 🗹		O VOA VIAIS		
10. 1	vere any sam	ipie containe	ers received b	iokeii?		res		NO 💌	#	of preserved		
	oes paperwoi Note discrepa)		Yes	✓	No 🗆	,	ottles checked or pH:	12 0 >12 unle	ess noted)
	re matrices co					Yes	V	No 🗌		Adjusted?		
13. ls	s it clear what	analyses we	ere requested	?		Yes	✓	No 🗌				
	Vere all holdin If no, notify cu					Yes	V	No 🗆		Checked by:	MC	4-8-19
	cial Handli											
				vith this order?				., г	7			
15.			screpancies v	with this order?		Yes		No L		NA 🗸		
	Person N				Date:	-						
	By Whor				Via:] eM	ail [Phone Fa	ax 🗌	In Person		
	Regardir	-										
	Client In:	structions:	1									
16.	Additional rem	narks:										
17.	Cooler Inforn	<u>nation</u>										
	Cooler No	Temp °C	Condition	Seal Intact	Seal No S	eal D	ate	Signed By				
	1	5.9	Good	Yes								
	2	3.2	Good	Yes								
	3	2.8	Good	Yes								

6 or 9

1		. >				建				(1	1 10	人)	Air Bubbles										s S	7
,			1					ſλ	luin	YIKS	/ - '	шә	General Ch						×		_		alyte	
5	F						7						General Ch				×	×	_		_		t An	
ر ا	ū	2	5	109				-	0				Dissolved I				×						rge	
3	2	C) _E	7 87	505-345-4107								im92) 0728										and Target Analytes.	
	C			Ź	345-	lest		۱	381	.W'X	ЭТ	a (A	8260B (VO	×									and	
			nent:	erque	505-	Request		s'a)d 7	308	3 / 5	səpi	oiteaq 1808										spoo	
	FNVTRONMENTAL	5 L	ironr	nbno	Fax	sis		([†] OS	S'*O	d,₂C	Ν'ε	ON'	IO,4) enoinA										/leth	
	<u>u</u>	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109		ınal			I	ota	Τ :	tals	RCRA 8 Me			×							Analytical Methods	
	HAII		w.ha	Ш	Tel. 505-345-3975	A			(SN				01£8) HAG										alytic	
	9		*	kins	345-3							Trible Hill	EDB (Wetho										Ans	
	_			Haw	305-3		L						TPH (Metho										See	
				901	e. 5		_				. 50754653711	1/02/2007	82108 H9T	×	×									
				4	_		L					_	8TM+X3T8										Remarks:	
Г			1				_	(1	208)s's	LMI	_+3	BTM+X3T8										<u> </u>	4
									gjmccartney@marathonpetroleum.com	55		82	22						=				7 JSS D	20
									mne	1-70		3.7	HEAL NO.										1250	
			Ver	ſ	ent				trol	-56′	9	7.2	H)()	1					1				Sate Date Date Date	9
			San Juan River	0	Project #: Semi-Annual Event	66		Š	oube	919-561-7055	% □	3.6)	8									7 2	7
İ		□ Rush	Juai	1.	nua	813		rtne	atho			5	ative	_	ıt	3	23	24	ıt				3 %	5
	 		an	7 5	-An	4500081399		McCartney)mar	cy Payne	₩ Yes	Sample Temperature:	Preservative Type	당	Neat	HNO3	HNO3	H_2SO_4	Neat				Woller	5
j	d Time:	О		য	emi	# 46	ager	Σ.	ey@	acy	M	nper		10			51.00						7 5	
	Turn-Around	X Standard	Project Name		# S	HEAL PO#	Project Manager:	Gregory J.	artn	Sampler: Tra		Ten	Container Type and #	40ml VOA-5	E -7	ml ic-1	ml ic-1	ml ic-1	ш ic-1				13 3 G	1
'	rn-Ā	Sta	oject	Date:	oject	EAL	oject	rego	mcc	mple	On Ice:	mple	Container 「ype and #	m V	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1				Received by:	{
L		×	- A		P	Ξ	<u>P</u>	<u> </u>	gj	Sa	ō	Sa	0,7	40		<u>.</u>			<u>.</u>				1 S S 1-	1
=	_	2							X Level 4 (Full Validation)				□											
	0	st, lı			က				alida				nest	ш	E	E	ш	Е	E					
	00	wes			741				∑ N N				Sample Request ID	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream					
ב	Y	outh			8				4 (F				ole F	SdC	Jps	Jps	Jps	Jps	Jps					3
-	g	J So	inal	90	Z	338			evel				amp	_			1	_						≸
4	IST	ninç	erm	49	field	1-2;			×				S										in the property of the propert	MAC
(Chain-of-Custody Record	Western Refining Southwest, Inc.	Bloomfield Terminal	50 CR 4990	Bloomfield, NM 87413	419-421-2338					EXCEL		Matrix	H_2O	H ₂ 0	H ₂ 0	H ₂ O	H ₂ O	H ₂ O				Relinquished by:	300
4	ō	irn l	nfie		置	41		12140			Û		M	エ	エ	エ	エ	エ	エ				Relii	<u>}</u>
	<u>ا</u>	este	loon	Mailing Address:			ax#:	kage:	ō		ype)		Time	1040					_>	.			Time: [550 Time: 1814	
Ċ	جّا		B	g Ad		# 0	email or Fax#	QA/QC Package:	Standard	Other	EDD (Type)	99 86 9		7						-				5
•		Client:		Jailin		Phone #:	mail	MAG	□ Sta		X ED		Date	PASA					\rightarrow				15/19 Date:	-
	I	0	I	<	L	IЩ	ΙΦ	ا ن			~			ゴ	1	1			l	1	ı		トュルー	1

7 0 9

Bloomfield Terminal Project Name Bloomfield Terminal Project Name Bloomfield NM 87413 Project Name Bloomfield NM 87413 Project Name Projec	ر		ب	etody Popura	- ballou-Arall	- Time									•		户 기		2
Mestern Refining Southwest, Inc. X Sandard Rush Project Manne; San Juan River Mestern Refining Southwest, Inc. X Sandard Rush Project Manne; San Juan River Address: 60 CR 4.93 A	5		-io-	stody Record	i urn-Around	: Elme:				-	AL		> Z	IRC	Z	N N	F		
Project Name: San Juan River Address: 50 CR 4390		/este	rn Refii	ing Southwest, Inc.	X Standard	□ Rush					AN		SIS	5	80	2	0	R	
Project & Semi-Annual Event Proj	Ω	loom	ifield Te	rminal	Project Name	: San Juan	River				J.www	allen	ironm	ental.	COM				
Figure F	lling Ac	ddress	50 CR	4990	Date:	- 1	3	`	4901	Hawk	ns NE		enbno	rque,	NM 8	7109			
## 419-421-2338 HEAL Po# 4500081339 Pribad: Project Manager: Pro			Bloom	field, NM 87413	Project #: Se	mi-Annual	Event		Tel.	505-34	15-397	2	Fax 5	05-34	5-410	70			
Project Manager Project Ma	one #:		419-42	1-2338	HEAL PO#	45000813	66					nal	Street, Square	edne	st				
Container Cont	ail or F	ax#:			Project Mana	ger:			_				_	_			2	_	_
Time Matrix Sample Request ID Type and # Type Sample Transperature. Sign of the Sample Transpera	'QC Paα	ckage:			Gregory J.	McCartne	^											ſη	
Time Matrix Sample Request ID Container Preservative HEAL No. Type And Ho. And Hear A	Standa	ırd		X Level 4 (Full Validation)	gjmccartne	/@maratho	npetroleum.com				(3)(111111111111111111111111111111111111111	
Time Matrix Sample Request D Type and # Type EACEL	Other				Sampler: Tra	cy Payne 9	919-561-7055			7539) III -	(1
Time Matrix Sample Request ID Type and # Type Type and # Type Type and # Type Type and # Type Type and # Type Type and # Type Type Type and # Type Type and # Type Type and # Type Type and # Type Type and # Type Type and # Type Type and # Type Type Type and # Type	EDD (T	ype)_	EXCEL		On Ice:	■ Yes	oN □			700-20						sls		<i>/ - ·</i>	1 10
Time Matrix Sample Request ID Type and # Type					Sample Temp	erature: 5.4	8.2 7.25			83 0551						jəN		IIIa	(Y)
H2O North of 45 40ml VOA-5 HCl -002 X X X X X X X X X	Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.			1893 Markey Verillander						l bəvlossiQ		IIO IPIAIIAO	Rir Bubbles
H2O North of 45 amber-1 Neat X X		145	H ₂ 0	North of 45	40ml VOA-5	Ю	-002	-		-	-	-	₩	-	-		+-		
H ₂ O North of 45 Diastic-1 HNO ₃ HNO ₃ H ₂ O North of 45 Diastic-1 HNO ₃ H ₂ O North of 45 Diastic-1 H ₂ O ₄ H ₂ O North of 45 Diastic-1 Neat L ₂ O North of 45 Diastic-1 Neat L ₂ O			H ₂ O	North of 45	250 ml amber-1	Neat			×										
H2O North of 45 125 ml HNO3 HNO3 H2O North of 45 plastic-1 H2O4 H2			H ₂ O	North of 45	250 ml plastic-1	HNO3						×							
H20 North of 45 125 ml H2S04			H ₂ O	North of 45	125 ml plastic-1	HNO3										×	×		
H20 North of 45 500 ml Neat			H ₂ O	North of 45	125 ml plastic-1	H ₂ SO ₄											×		
Time: Relinquished by: Figure Figu	7	->	H ₂ O	North of 45	500 ml plastic-1	Neat													
Time: Relinquished by: 19 1819 Wurdun W																			
Time: Relinquished by: Figure Figure Fereived by: Fereive														+				-	
Time: Relinquished by: Figure Figure Feceived by: Feceive																			
Time: Relinquished by: 1550																			
Time: Refinquished by: 19 1819 Mustur Dalle T COURTS 4/6/19	0	me: 550	Relinquish	Jag px.	Received by:	that	161	Rema		See /	⁴naly	tical	Meth	e spo	I pu	arge	t An	alyte	ι,
	6	me: 819	Belinquishe	ed by:	Received by:	Courte	5												

9 or 9

١		. >	i							(1	10		SZ606 Air Bubbles										n N			
-	•							ίίγ	uile	/IK	/		General Ch						×	2	+	-	<u> </u>			
PP	FNVTPONMENTAL	ANALYSIS LABORATORY					2						General Ch				×	×				- <	and raiger Anaiytes			
		S		109	7								Devlossi				×				\top	18	20 D			
	Ž	Q	٤	M 87	410						(A	OΛ-	imə2) 0728									T F	5			
	C		al.cc	e, S	505-345-4107	uest	٨	ijuo :	38T	M,X	(3TE	∃ (A	8260B (VO	×								3				
			ment	erqu	505	Req	-	CB,2	7 P	808	3 / s	ebi	8081 Pestio									7000	no.			
	2	is	www.hallenvironmental.com	Albuquerque, NM 87109	Fax	Analysis Request		(°OS	' [†] Oc	∃, _S O	Ν'ε	ON'I	O,7) anoinA									104	Analytical Methods			
		¥ ¥	llenv	¥.		Analy							RCRA 8 Me			×										
		1	w.ha	Ä	505-345-3975	1		((SN	2500			01E8) HA9									- 1	alyu			
	9		*	kins	345-3								EDB (Metho									<	Ĭ			
				Haw	505-3		L,					700.0	TPH (Metho								_		מממ			
				4901 Hawkins NE -	Tel.		\vdash						83108 H9T	×	×						+	- 1				
				4				V.1	_				BTM+X3T8								-	-	кетакз			
Γ	_						_	(1))s'F	IMT	.+±	, BTM+X3T8					0.000				- 6			1	
									mo	2		3.	22									a	556	e e	1045	
1									m.	705		2.8	HEAL NO.									Time	3	Time	.533	
			1		ıţ				olei	-199		2.2	HEA OU	DOM						B		Date	10	Date	18	
			Rive	6	Eve	6			peti	919-561-7055	% □	3.2	, <u></u> <u></u> <u></u> <u> </u> <u> </u>	0-					,	0			4/5/19	٥	1/6/	•
		-lsh	lan	-	lal	139		ney	hou	le 9	8233	59.5	e >	•				_		-		\dashv	-1			
		□ Rush	n Ju	N	Inn	800		Sart	ara	ayr	SS	Ire: 3	Preservative Type	HCI	Neat	HNO3	HNO3	H ₂ SO ₄	Neat	HCL			Ž		10	
	Time:		Project Name: San Juan River	4-5-	Project #: Semi-Annual Event	HEAL PO# 4500081399	Jer:	. McCartney	gjmccartney@marathonpetroleum.com	Sampler: Tracy Payne	■ Yes	perature:	Pres(_	Z	ェ	エ	H	Z	工			3		COUNTRY	
	L pur	ard	ame:	•	Sei	#0	Project Manager:		tney	Tra		emp	# # T	A-5			_ =			JA-3		١.	7	į.	(
	-Arou	X Standard	ct N		ct #:	IL P	ct M	gor	ccar	oler:	ë.	ole T	Container Type and #	00	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1	40 MC VOA-3		yd bey	Mest	ed by	Q	
	Turn-Around	×S	Proje	Date:	Proje	HE/	Proje	Gregory J	gjm	Sam	On Ice:	Sample Tem	Cor	40ml VOA-5	25 am	25 pla	12 pla	12 pla	50 pla	와		Received by:	()	Received by:	14	
_													0									┪				
	힏	lnc							datio		Ĭ		Sample Request ID	Е	Е	Ε	Ε	Ε	ш							
	000	est,			113				Valid				enb	Downstream	Downstream	Downstream	Downstream	Downstream	Downstream	当					3	
	Re	thw			874				(Full				. Re	ınsı	/nst	mst	mst	ınsı	nst	BLANK					Jacker	
	N/C	oni	a E	_	Z	ω			el 4				nple	Dow	ООМ	NOC	NoC	Dow	ООМ					-		
	to	ng S	min	066	jd,	233			X Level 4 (Full Validation)				Sar	_	_	_	_			TRIP			1	ò.	3	
	Sm	fini	Teri	SR 4	mfie	121-			×		Н		×	_					_			Pade	1/1	shed	Matin b	
	Chain-of-Custody Record	Western Refining Southwest, Inc.	Bloomfield Terminal	50 CR 4990	Bloomfield, NM 87413	419-421-2338					EXCE		Matrix	H_2O	H ₂ 0	H ₂ 0	H ₂ 0	H ₂ 0	H_2O	H2O		Relinguished hv.	X	Relinquished by:	-5	1
	9-0	terr	mfi	1,000	a	4	ن.	је:		i.												ď		0 <u>7</u> 2₀		
	lai	Wes	Bloc	Mailing Address:			email or Fax#:	QA/QC Package:	□ Standard	1121	EDD (Type)		Time	1250		_			\rightarrow	1		Time.	1550	Time:	518]	
	ပ			ling 4		Phone #:	ii or	C P	stand	□ Other	DD (te	191					,	61			10	-		
		Client:		Mail		Pho	ema	QAX			×		Date	1/2/	-				\rightarrow	1/2/		Date	10	Date:	4/5/19	•
														7			3			W		729	6000	-	5	

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2018 Western Refining Southwest, Inc. - Bloomfield Refinery

VOCs (EPA Method 8260B) (1)
- Target List
Benzene
Toluene
Ethylbenzene
Xylenes
Methyl tert butyl ether (MTBE)
SVOCs - (EPA Method 8270)
- Method List
TPH-GRO (EPA Method 8015B)
- Gasoline Range Organics
TPH-DRO (EPA Method 8015B)
- Diesel Range Organics
- Motor Oil Range Organics
Total Carbon Dioxide (Laboratory Calculated)
- Dissolved CO2
Specific Conductivity (EPA Method 120.1 or field measurement)
- Specific conductance
TDS (EPA Method 160.1 or field measurement)
- Total dissolved solids
General Chemistry - Anions (EPA Method 300.0)
Fluoride
Chloride
Bromide
Nitrogen, Nitrite (as N)
Nitrogen, Nitrate (as N)
Phosphorous, Orthophosphate (As P)
Sulfate
General Chemistry - Alkalinity (EPA Method 310.1)
Alkalinity, Total
Carbonate

Total Recoverable Metals (E.	PA Method 6010B/7470)
- Target List (not applicable to	River Terrace Sampling Events)
Arsenic	Lead
Barium	Mercury
Cadmium	Selenium

Cadmium Selenium Chromium Silver

- Target List (for River Terrace Sampling Events Only)

Lead

Mercury (DW-1 ONLY)

Dissolved Metals (EPA Method 6010B / 7470)

- Target List (for Refinery Complex, Outfalls, and River)

Arsenic Manganese Barium Mercury Cadmium Potassium Calcium Selenium Chromium Silver Copper Sodium Iron Uranium Lead Zinc

TPH = total petroleum hydrocarbons

Magnesium

GRO = gasoline range organics

VOCs = volatile organic compounds

DRO = diesel range organics

TDS = total dissolved solids

NOTES:

Bicarbonate

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 10, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: San Juan River Bluff OrderNo.: 1908972

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 7 sample(s) on 8/17/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1908972

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: East Outfall #2

Project: San Juan River Bluff
 Collection Date: 8/15/2019 3:15:00 PM

 Lab ID: 1908972-001
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
CARBON DIOXIDE						Analyst:	JRR
Total Carbon Dioxide	300	1.0	Н	mg CO2/	1	8/19/2019 8:55:02 PM	R62234
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Fluoride	0.48	0.50	J	mg/L	5	9/4/2019 4:55:34 PM	R62635
Chloride	12	2.5		mg/L	5	9/4/2019 4:55:34 PM	R62635
Bromide	ND	0.50		mg/L	5	9/4/2019 4:55:34 PM	R62635
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	9/4/2019 4:55:34 PM	R62635
Sulfate	220	2.5		mg/L	5	9/4/2019 4:55:34 PM	R62635
Nitrate+Nitrite as N	1.5	1.0		mg/L	5	9/5/2019 1:01:46 PM	R62704
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	JRR
Conductivity	1000	5.0		µmhos/c	1	8/19/2019 8:55:02 PM	R62234
SM2320B: ALKALINITY						Analyst:	JRR
Bicarbonate (As CaCO3)	333.2	20.00		mg/L Ca	1	8/19/2019 8:55:02 PM	R62234
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/19/2019 8:55:02 PM	R62234
Total Alkalinity (as CaCO3)	333.2	20.00		mg/L Ca	1	8/19/2019 8:55:02 PM	R62234
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	JMT
Total Dissolved Solids	685	20.0	*	mg/L	1	8/21/2019 1:51:00 PM	46914
EPA METHOD 7470: MERCURY						Analyst:	pmf
Mercury	ND	0.00020		mg/L	1	8/20/2019 10:31:06 AM	46896
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 12:00:58 PM	A62357
Barium	0.063	0.020		mg/L	1	8/20/2019 10:32:07 AM	A62272
Cadmium	ND	0.0020		mg/L	1	8/20/2019 10:32:07 AM	A62272
Calcium	110	5.0		mg/L	5	8/22/2019 12:07:07 PM	A62357
Chromium	ND	0.0060		mg/L	1	8/20/2019 10:32:07 AM	A62272
Copper	ND	0.0060		mg/L	1	8/20/2019 10:32:07 AM	A62272
Iron	0.0056	0.020	J	mg/L	1	8/20/2019 10:32:07 AM	A62272
Lead	0.0075	0.0050		mg/L	1	8/20/2019 10:32:07 AM	A62272
Magnesium	25	1.0		mg/L	1	8/20/2019 10:32:07 AM	A62272
Manganese	0.00074	0.0020	J	mg/L	1	8/20/2019 10:32:07 AM	A62272
Potassium	1.7	1.0		mg/L	1	8/20/2019 10:32:07 AM	A62272
Selenium	ND	0.050		mg/L	1	8/20/2019 10:32:07 AM	A62272
Silver	0.0021	0.0050	J	mg/L	1	8/20/2019 10:32:07 AM	A62272
Sodium	81	1.0		mg/L	1	8/20/2019 10:32:07 AM	A62272
Uranium	ND	0.10		mg/L	1	8/20/2019 10:32:07 AM	A62272
Zinc	0.020	0.020	J	mg/L	1	8/20/2019 10:32:07 AM	A62272

EPA 6010B: TOTAL RECOVERABLE METALS Analyst: bcv

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 27

Lab Order **1908972**

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: East Outfall #2

Project: San Juan River Bluff
 Collection Date: 8/15/2019 3:15:00 PM

 Lab ID: 1908972-001
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst:	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 2:02:02 PM	46876
Barium	0.064	0.020		mg/L	1	8/22/2019 2:02:02 PM	46876
Cadmium	ND	0.0020		mg/L	1	8/22/2019 2:02:02 PM	46876
Chromium	ND	0.0060		mg/L	1	8/22/2019 2:02:02 PM	46876
Lead	ND	0.0050		mg/L	1	8/23/2019 9:37:17 AM	46876
Selenium	ND	0.050		mg/L	1	8/22/2019 2:02:02 PM	46876
Silver	0.0027	0.0050	J	mg/L	1	8/22/2019 2:02:02 PM	46876
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	ССМ
Benzene	ND	1.0		μg/L	1	8/22/2019 11:52:00 AM	SL_W62
Toluene	ND	1.0		μg/L	1	8/22/2019 11:52:00 AM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	8/22/2019 11:52:00 AM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2019 11:52:00 AM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	8/22/2019 11:52:00 AM	SL_W62
Surr: 1,2-Dichloroethane-d4	97.0	70-130		%Rec	1	8/22/2019 11:52:00 AM	SL_W62
Surr: 4-Bromofluorobenzene	98.8	70-130		%Rec	1	8/22/2019 11:52:00 AM	SL_W62
Surr: Dibromofluoromethane	95.9	70-130		%Rec	1	8/22/2019 11:52:00 AM	SL_W62
Surr: Toluene-d8	98.7	70-130		%Rec	1	8/22/2019 11:52:00 AM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 27

Lab Order 1908972

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: East Outfall #3

Project: San Juan River Bluff
 Collection Date: 8/15/2019 2:20:00 PM

 Lab ID: 1908972-002
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
CARBON DIOXIDE						Analyst	: JRR
Total Carbon Dioxide	290	1.0	Н	mg CO2/	1	8/19/2019 9:09:52 PM	R62234
EPA METHOD 300.0: ANIONS						Analyst	: MRA
Fluoride	0.35	0.10		mg/L	1	9/4/2019 5:21:19 PM	R62635
Chloride	14	0.50		mg/L	1	9/4/2019 5:21:19 PM	R62635
Bromide	0.12	0.10		mg/L	1	9/4/2019 5:21:19 PM	R62635
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	9/4/2019 5:21:19 PM	R62635
Sulfate	190	10		mg/L	20	9/4/2019 5:34:10 PM	R62635
Nitrate+Nitrite as N	1.6	1.0		mg/L	5	9/5/2019 1:14:38 PM	R62704
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: JRR
Conductivity	1000	5.0		µmhos/c	1	8/19/2019 9:09:52 PM	R62234
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	324.4	20.00		mg/L Ca	1	8/19/2019 9:09:52 PM	R62234
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/19/2019 9:09:52 PM	R62234
Total Alkalinity (as CaCO3)	324.4	20.00		mg/L Ca	1	8/19/2019 9:09:52 PM	R62234
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	673	20.0	*	mg/L	1	8/21/2019 1:51:00 PM	46914
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	8/20/2019 10:37:52 AM	46896
EPA METHOD 6010B: DISSOLVED METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 12:09:23 PM	A62357
Barium	0.049	0.020		mg/L	1	8/20/2019 10:44:37 AM	A62272
Cadmium	ND	0.0020		mg/L	1	8/20/2019 10:44:37 AM	A62272
Calcium	110	5.0		mg/L	5	8/22/2019 12:18:25 PM	A62357
Chromium	ND	0.0060		mg/L	1	8/20/2019 10:44:37 AM	A62272
Copper	0.0030	0.0060	J	mg/L	1	8/20/2019 10:44:37 AM	A62272
Iron	ND	0.020		mg/L	1	8/20/2019 10:44:37 AM	A62272
Lead	0.0066	0.0050		mg/L	1	8/20/2019 10:44:37 AM	
Magnesium	25	1.0		mg/L	1	8/20/2019 10:44:37 AM	
Manganese	ND	0.0020		mg/L	1	8/20/2019 10:44:37 AM	-
Potassium	2.0	1.0		mg/L	1	8/20/2019 10:44:37 AM	
Selenium	ND	0.050		mg/L	1	8/20/2019 10:44:37 AM	-
Silver	0.0023	0.0050	J	mg/L	1	8/20/2019 10:44:37 AM	-
Sodium	80	1.0		mg/L	1	8/20/2019 10:44:37 AM	-
Uranium	ND	0.10		mg/L	1	8/20/2019 10:44:37 AM	
Zinc	0.016	0.020	J	mg/L	1	8/20/2019 10:44:37 AM	A62272

EPA 6010B: TOTAL RECOVERABLE METALS

Analyst: **bcv**

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 27

Lab Order **1908972**

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: East Outfall #3

Project: San Juan River Bluff
 Collection Date: 8/15/2019 2:20:00 PM

 Lab ID: 1908972-002
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	: bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 2:10:05 PM	46876
Barium	0.048	0.020		mg/L	1	8/22/2019 2:10:05 PM	46876
Cadmium	ND	0.0020		mg/L	1	8/22/2019 2:10:05 PM	46876
Chromium	ND	0.0060		mg/L	1	8/22/2019 2:10:05 PM	46876
Lead	ND	0.0050		mg/L	1	8/23/2019 9:46:37 AM	46876
Selenium	ND	0.050		mg/L	1	8/22/2019 2:10:05 PM	46876
Silver	0.0023	0.0050	J	mg/L	1	8/22/2019 2:10:05 PM	46876
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	CCM
Benzene	ND	1.0		μg/L	1	8/22/2019 1:04:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	8/22/2019 1:04:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	8/22/2019 1:04:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2019 1:04:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	8/22/2019 1:04:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	99.9	70-130		%Rec	1	8/22/2019 1:04:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	96.1	70-130		%Rec	1	8/22/2019 1:04:00 PM	SL_W62
Surr: Dibromofluoromethane	97.2	70-130		%Rec	1	8/22/2019 1:04:00 PM	SL_W62
Surr: Toluene-d8	97.7	70-130		%Rec	1	8/22/2019 1:04:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 27

Lab Order **1908972**

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Upstream

Project: San Juan River Bluff
 Collection Date: 8/16/2019 8:25:00 AM

 Lab ID: 1908972-003
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst:	BRM
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	8/21/2019 3:51:29 PM	46918
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	8/21/2019 3:51:29 PM	46918
Surr: DNOP	86.3	52.7-168		%Rec	1	8/21/2019 3:51:29 PM	46918
CARBON DIOXIDE						Analyst:	JRR
Total Carbon Dioxide	79	1.0	Н	mg CO2	2/ 1	8/19/2019 9:24:28 PM	R62234
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Fluoride	0.21	0.50	J	mg/L	5	9/4/2019 5:47:02 PM	R62635
Chloride	3.6	2.5		mg/L	5	9/4/2019 5:47:02 PM	R62635
Bromide	ND	0.50		mg/L	5	9/4/2019 5:47:02 PM	R62635
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	9/4/2019 5:47:02 PM	R62635
Sulfate	49	2.5		mg/L	5	9/4/2019 5:47:02 PM	R62635
Nitrate+Nitrite as N	0.13	1.0	J	mg/L	5	9/5/2019 1:27:30 PM	R62704
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	JRR
Conductivity	310	5.0		µmhos/d	1	8/19/2019 9:24:28 PM	R62234
SM2320B: ALKALINITY						Analyst:	JRR
Bicarbonate (As CaCO3)	87.56	20.00		mg/L Ca	1	8/19/2019 9:24:28 PM	R62234
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/19/2019 9:24:28 PM	R62234
Total Alkalinity (as CaCO3)	87.56	20.00		mg/L Ca	1	8/19/2019 9:24:28 PM	R62234
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	JMT
Total Dissolved Solids	245	100	D	mg/L	1	8/21/2019 1:51:00 PM	46914
EPA METHOD 7470: MERCURY						Analyst:	pmf
Mercury	ND	0.00020		mg/L	1	8/20/2019 10:40:04 AM	46896
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 12:20:35 PM	A62357
Barium	0.078	0.020		mg/L	1	8/20/2019 10:46:47 AM	A62272
Cadmium	ND	0.0020		mg/L	1	8/20/2019 10:46:47 AM	A62272
Calcium	32	1.0		mg/L	1	8/22/2019 12:20:35 PM	A62357
Chromium	ND	0.0060		mg/L	1	8/20/2019 10:46:47 AM	A62272
Copper	0.0033	0.0060	J	mg/L	1	8/20/2019 10:46:47 AM	A62272
Iron	0.0089	0.020	J	mg/L	1	8/20/2019 10:46:47 AM	A62272
Lead	0.0063	0.0050		mg/L	1	8/20/2019 10:46:47 AM	A62272
Magnesium	6.5	1.0		mg/L	1	8/20/2019 10:46:47 AM	A62272
Manganese	0.0057	0.0020		mg/L	1	8/20/2019 10:46:47 AM	
Potassium	2.1	1.0		mg/L	1	8/20/2019 10:46:47 AM	A62272
Selenium	ND	0.050		mg/L	1	8/20/2019 10:46:47 AM	
Silver	0.0013	0.0050	J	mg/L	1	8/20/2019 10:46:47 AM	A62272

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 27

Lab Order **1908972**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/10/2019

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Upstream

Project: San Juan River Bluff
 Collection Date: 8/16/2019 8:25:00 AM

 Lab ID: 1908972-003
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Sodium	17	1.0		mg/L	1	8/20/2019 10:46:47 AM	A62272
Uranium	ND	0.10		mg/L	1	8/20/2019 10:46:47 AM	A62272
Zinc	0.021	0.020		mg/L	1	8/20/2019 10:46:47 AM	A62272
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 2:12:15 PM	46876
Barium	0.10	0.020		mg/L	1	8/22/2019 2:12:15 PM	46876
Cadmium	ND	0.0020		mg/L	1	8/22/2019 2:12:15 PM	46876
Chromium	0.0026	0.0060	J	mg/L	1	8/22/2019 2:12:15 PM	46876
Lead	ND	0.0050		mg/L	1	8/23/2019 9:48:09 AM	46876
Selenium	ND	0.050		mg/L	1	8/22/2019 2:12:15 PM	46876
Silver	0.00084	0.0050	J	mg/L	1	8/22/2019 2:12:15 PM	46876
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	8/26/2019 12:47:59 PM	A62420
Surr: BFB	90.1	65.8-143		%Rec	1	8/26/2019 12:47:59 PM	A62420
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	CCM
Benzene	ND	1.0		μg/L	1	8/22/2019 1:29:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	8/22/2019 1:29:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	8/22/2019 1:29:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2019 1:29:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	8/22/2019 1:29:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	97.3	70-130		%Rec	1	8/22/2019 1:29:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	98.6	70-130		%Rec	1	8/22/2019 1:29:00 PM	SL_W62
Surr: Dibromofluoromethane	96.8	70-130		%Rec	1	8/22/2019 1:29:00 PM	SL_W62
Surr: Toluene-d8	97.8	70-130		%Rec	1	8/22/2019 1:29:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 27

Lab Order **1908972**

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North of 45

Project: San Juan River Bluff
 Collection Date: 8/16/2019 9:30:00 AM

 Lab ID: 1908972-004
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	BRM
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	8/21/2019 5:04:34 PM	46918
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	8/21/2019 5:04:34 PM	46918
Surr: DNOP	96.0	52.7-168		%Rec	1	8/21/2019 5:04:34 PM	46918
CARBON DIOXIDE						Analyst	: JRR
Total Carbon Dioxide	80	1.0	Н	mg CO2	/ 1	8/19/2019 9:33:09 PM	R62234
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	0.19	0.10		mg/L	1	9/4/2019 6:12:46 PM	R62635
Chloride	3.6	0.50		mg/L	1	9/4/2019 6:12:46 PM	R62635
Bromide	ND	0.10		mg/L	1	9/4/2019 6:12:46 PM	R62635
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	9/4/2019 6:12:46 PM	R62635
Sulfate	50	10		mg/L	20	9/4/2019 6:25:38 PM	R62635
Nitrate+Nitrite as N	ND	1.0		mg/L	5	9/5/2019 1:40:22 PM	R62704
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	310	5.0		µmhos/c	: 1	8/19/2019 9:33:09 PM	R62234
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	88.72	20.00		mg/L Ca	1	8/19/2019 9:33:09 PM	R62234
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/19/2019 9:33:09 PM	R62234
Total Alkalinity (as CaCO3)	88.72	20.00		mg/L Ca	1	8/19/2019 9:33:09 PM	R62234
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	187	20.0		mg/L	1	8/21/2019 1:51:00 PM	46914
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	8/20/2019 10:42:16 AM	46896
EPA METHOD 6010B: DISSOLVED METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 12:22:43 PM	A62357
Barium	0.079	0.020		mg/L	1	8/20/2019 10:48:57 AM	A62272
Cadmium	ND	0.0020		mg/L	1	8/20/2019 10:48:57 AM	A62272
Calcium	33	1.0		mg/L	1	8/22/2019 12:22:43 PM	A62357
Chromium	ND	0.0060		mg/L	1	8/20/2019 10:48:57 AM	A62272
Copper	0.011	0.0060		mg/L	1	8/20/2019 10:48:57 AM	A62272
Iron	0.0096	0.020	J	mg/L	1	8/20/2019 10:48:57 AM	A62272
Lead	ND	0.0050		mg/L	1	8/20/2019 10:48:57 AM	A62272
Magnesium	6.5	1.0		mg/L	1	8/20/2019 10:48:57 AM	A62272
Manganese	0.0064	0.0020		mg/L	1	8/20/2019 10:48:57 AM	A62272
Potassium	2.2	1.0		mg/L	1	8/20/2019 10:48:57 AM	A62272
Selenium	ND	0.050		mg/L	1	8/20/2019 10:48:57 AM	A62272
Silver	ND	0.0050		mg/L	1	8/20/2019 10:48:57 AM	A62272

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 27

Lab Order **1908972**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/10/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North of 45

Project: San Juan River Bluff
 Collection Date: 8/16/2019 9:30:00 AM

 Lab ID: 1908972-004
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Sodium	17	1.0		mg/L	1	8/20/2019 10:48:57 AM	A62272
Uranium	ND	0.10		mg/L	1	8/20/2019 10:48:57 AM	A62272
Zinc	0.018	0.020	J	mg/L	1	8/20/2019 10:48:57 AM	A62272
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 2:14:15 PM	46876
Barium	0.12	0.020		mg/L	1	8/22/2019 2:14:15 PM	46876
Cadmium	ND	0.0020		mg/L	1	8/22/2019 2:14:15 PM	46876
Chromium	0.0015	0.0060	J	mg/L	1	8/22/2019 2:14:15 PM	46876
Lead	0.0043	0.0050	J	mg/L	1	8/23/2019 9:49:41 AM	46876
Selenium	ND	0.050		mg/L	1	8/22/2019 2:14:15 PM	46876
Silver	0.00077	0.0050	J	mg/L	1	8/22/2019 2:14:15 PM	46876
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	8/26/2019 1:10:59 PM	A62420
Surr: BFB	95.0	65.8-143		%Rec	1	8/26/2019 1:10:59 PM	A62420
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	CCM
Benzene	ND	1.0		μg/L	1	8/22/2019 1:53:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	8/22/2019 1:53:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	8/22/2019 1:53:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2019 1:53:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	8/22/2019 1:53:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	101	70-130		%Rec	1	8/22/2019 1:53:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	95.8	70-130		%Rec	1	8/22/2019 1:53:00 PM	SL_W62
Surr: Dibromofluoromethane	99.8	70-130		%Rec	1	8/22/2019 1:53:00 PM	SL_W62
Surr: Toluene-d8	97.4	70-130		%Rec	1	8/22/2019 1:53:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 27

Lab Order 1908972

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/10/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North Of 46

Project: San Juan River Bluff
 Collection Date: 8/16/2019 10:30:00 AM

 Lab ID: 1908972-005
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	BRM
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	8/21/2019 5:29:00 PM	46918
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	8/21/2019 5:29:00 PM	46918
Surr: DNOP	99.1	52.7-168		%Rec	1	8/21/2019 5:29:00 PM	46918
CARBON DIOXIDE						Analyst	JRR
Total Carbon Dioxide	80	1.0	Н	mg CO2/	1	8/19/2019 9:41:19 PM	R62234
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	0.19	0.10		mg/L	1	9/4/2019 7:04:53 PM	R62635
Chloride	3.5	0.50		mg/L	1	9/4/2019 7:04:53 PM	R62635
Bromide	ND	0.10		mg/L	1	9/4/2019 7:04:53 PM	R62635
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	9/4/2019 7:04:53 PM	R62635
Sulfate	50	10		mg/L	20	9/4/2019 7:17:14 PM	R62635
Nitrate+Nitrite as N	ND	1.0		mg/L	5	9/5/2019 1:53:15 PM	R62704
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	310	5.0		µmhos/c	1	8/19/2019 9:41:19 PM	R62234
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	88.92	20.00		mg/L Ca	1	8/19/2019 9:41:19 PM	R62234
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/19/2019 9:41:19 PM	R62234
Total Alkalinity (as CaCO3)	88.92	20.00		mg/L Ca	1	8/19/2019 9:41:19 PM	R62234
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	JMT
Total Dissolved Solids	194	20.0		mg/L	1	8/21/2019 1:51:00 PM	46914
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	8/20/2019 10:44:28 AM	46896
EPA METHOD 6010B: DISSOLVED METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 12:24:51 PM	A62357
Barium	0.081	0.020		mg/L	1	8/20/2019 10:51:05 AM	A62272
Cadmium	ND	0.0020		mg/L	1	8/20/2019 10:51:05 AM	A62272
Calcium	34	1.0		mg/L	1	8/22/2019 12:24:51 PM	A62357
Chromium	ND	0.0060		mg/L	1	8/20/2019 10:51:05 AM	A62272
Copper	0.0062	0.0060		mg/L	1	8/20/2019 10:51:05 AM	A62272
Iron	0.010	0.020	J	mg/L	1	8/20/2019 10:51:05 AM	A62272
Lead	ND	0.0050		mg/L	1	8/20/2019 10:51:05 AM	A62272
Magnesium	6.6	1.0		mg/L	1	8/20/2019 10:51:05 AM	A62272
Manganese	0.0066	0.0020		mg/L	1	8/20/2019 10:51:05 AM	A62272
Potassium	2.3	1.0		mg/L	1	8/20/2019 10:51:05 AM	
Selenium	ND	0.050		mg/L	1	8/20/2019 10:51:05 AM	-
Silver	0.0013	0.0050	J	mg/L	1	8/20/2019 10:51:05 AM	A62272

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 27

Lab Order 1908972

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/10/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: North Of 46

Project: San Juan River Bluff
 Collection Date: 8/16/2019 10:30:00 AM

 Lab ID: 1908972-005
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Sodium	18	1.0		mg/L	1	8/20/2019 10:51:05 AM	A62272
Uranium	ND	0.10		mg/L	1	8/20/2019 10:51:05 AM	A62272
Zinc	0.034	0.020		mg/L	1	8/20/2019 10:51:05 AM	A62272
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 2:16:15 PM	46876
Barium	0.15	0.020		mg/L	1	8/22/2019 2:16:15 PM	46876
Cadmium	ND	0.0020		mg/L	1	8/22/2019 2:16:15 PM	46876
Chromium	0.0046	0.0060	J	mg/L	1	8/22/2019 2:16:15 PM	46876
Lead	ND	0.0050		mg/L	1	8/23/2019 9:51:16 AM	46876
Selenium	ND	0.050		mg/L	1	8/22/2019 2:16:15 PM	46876
Silver	ND	0.0050		mg/L	1	8/22/2019 2:16:15 PM	46876
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	8/26/2019 1:33:58 PM	A62420
Surr: BFB	96.9	65.8-143		%Rec	1	8/26/2019 1:33:58 PM	A62420
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst:	CCM
Benzene	ND	1.0		μg/L	1	8/22/2019 2:17:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	8/22/2019 2:17:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	8/22/2019 2:17:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2019 2:17:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	8/22/2019 2:17:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	98.5	70-130		%Rec	1	8/22/2019 2:17:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	97.4	70-130		%Rec	1	8/22/2019 2:17:00 PM	SL_W62
Surr: Dibromofluoromethane	96.0	70-130		%Rec	1	8/22/2019 2:17:00 PM	SL_W62
Surr: Toluene-d8	97.5	70-130		%Rec	1	8/22/2019 2:17:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 27

Lab Order **1908972**

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Down Stream

Project: San Juan River Bluff
 Collection Date: 8/16/2019 11:15:00 AM

 Lab ID: 1908972-006
 Matrix: AQUEOUS
 Received Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst:	BRM
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	8/21/2019 5:53:22 PM	46918
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	8/21/2019 5:53:22 PM	46918
Surr: DNOP	91.9	52.7-168		%Rec	1	8/21/2019 5:53:22 PM	46918
CARBON DIOXIDE						Analyst:	JRR
Total Carbon Dioxide	80	1.0	Н	mg CO2	/ 1	8/19/2019 10:05:14 PM	R62234
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Fluoride	0.19	0.10		mg/L	1	9/4/2019 7:30:07 PM	R62635
Chloride	3.6	0.50		mg/L	1	9/4/2019 7:30:07 PM	R62635
Bromide	ND	0.10		mg/L	1	9/4/2019 7:30:07 PM	R62635
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	9/4/2019 7:30:07 PM	R62635
Sulfate	52	10		mg/L	20	9/4/2019 7:43:00 PM	R62635
Nitrate+Nitrite as N	0.13	1.0	J	mg/L	5	9/5/2019 2:06:08 PM	R62704
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	JRR
Conductivity	310	5.0		µmhos/c	1	8/19/2019 10:05:14 PM	R62234
SM2320B: ALKALINITY						Analyst:	JRR
Bicarbonate (As CaCO3)	88.80	20.00		mg/L Ca	1	8/19/2019 10:05:14 PM	R62234
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/19/2019 10:05:14 PM	R62234
Total Alkalinity (as CaCO3)	88.80	20.00		mg/L Ca	1	8/19/2019 10:05:14 PM	R62234
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	JMT
Total Dissolved Solids	204	40.0	D	mg/L	1	8/21/2019 1:51:00 PM	46914
EPA METHOD 7470: MERCURY						Analyst:	pmf
Mercury	ND	0.00020		mg/L	1	8/20/2019 10:51:18 AM	46896
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 12:26:59 PM	A62357
Barium	0.080	0.020		mg/L	1	8/20/2019 10:53:15 AM	A62272
Cadmium	ND	0.0020		mg/L	1	8/20/2019 10:53:15 AM	A62272
Calcium	33	1.0		mg/L	1	8/22/2019 12:26:59 PM	A62357
Chromium	ND	0.0060		mg/L	1	8/20/2019 10:53:15 AM	A62272
Copper	0.0060	0.0060		mg/L	1	8/20/2019 10:53:15 AM	A62272
Iron	0.012	0.020	J	mg/L	1	8/20/2019 10:53:15 AM	A62272
Lead	ND	0.0050		mg/L	1	8/20/2019 10:53:15 AM	A62272
Magnesium	6.5	1.0		mg/L	1	8/20/2019 10:53:15 AM	A62272
Manganese	0.0053	0.0020		mg/L	1	8/20/2019 10:53:15 AM	A62272
Potassium	2.2	1.0		mg/L	1	8/20/2019 10:53:15 AM	A62272
Selenium	ND	0.050		mg/L	1	8/20/2019 10:53:15 AM	
Silver	ND	0.0050		mg/L	1	8/20/2019 10:53:15 AM	A62272

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 27

Lab Order **1908972**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/10/2019

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Down Stream

Project:San Juan River BluffCollection Date: 8/16/2019 11:15:00 AMLab ID:1908972-006Matrix: AQUEOUSReceived Date: 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: DISSOLVED METALS						Analyst:	bcv
Sodium	17	1.0		mg/L	1	8/20/2019 10:53:15 AM	A62272
Uranium	ND	0.10		mg/L	1	8/20/2019 10:53:15 AM	A62272
Zinc	0.026	0.020		mg/L	1	8/20/2019 10:53:15 AM	A62272
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	bcv
Arsenic	ND	0.020		mg/L	1	8/22/2019 2:18:08 PM	46876
Barium	0.15	0.020		mg/L	1	8/22/2019 2:18:08 PM	46876
Cadmium	ND	0.0020		mg/L	1	8/22/2019 2:18:08 PM	46876
Chromium	0.0024	0.0060	J	mg/L	1	8/22/2019 2:18:08 PM	46876
Lead	ND	0.0050		mg/L	1	8/23/2019 9:52:47 AM	46876
Selenium	ND	0.050		mg/L	1	8/22/2019 2:18:08 PM	46876
Silver	0.00058	0.0050	J	mg/L	1	8/22/2019 2:18:08 PM	46876
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	8/26/2019 1:56:57 PM	A62420
Surr: BFB	96.0	65.8-143		%Rec	1	8/26/2019 1:56:57 PM	A62420
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst:	CCM
Benzene	ND	1.0		μg/L	1	8/22/2019 2:41:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	8/22/2019 2:41:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	8/22/2019 2:41:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2019 2:41:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	8/22/2019 2:41:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	99.7	70-130		%Rec	1	8/22/2019 2:41:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	96.8	70-130		%Rec	1	8/22/2019 2:41:00 PM	SL_W62
Surr: Dibromofluoromethane	97.0	70-130		%Rec	1	8/22/2019 2:41:00 PM	SL_W62
Surr: Toluene-d8	97.5	70-130		%Rec	1	8/22/2019 2:41:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 27

Lab Order 1908972

Date Reported: 9/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: San Juan River Bluff **Collection Date:**

Lab ID: 1908972-007 **Matrix:** AQUEOUS **Received Date:** 8/17/2019 8:40:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: CCM
Benzene	ND	1.0	μg/L	1	8/22/2019 3:06:00 PM	SL_W62
Toluene	ND	1.0	μg/L	1	8/22/2019 3:06:00 PM	SL_W62
Ethylbenzene	ND	1.0	μg/L	1	8/22/2019 3:06:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/22/2019 3:06:00 PM	SL_W62
Xylenes, Total	ND	1.5	μg/L	1	8/22/2019 3:06:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	98.3	70-130	%Rec	1	8/22/2019 3:06:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	8/22/2019 3:06:00 PM	SL_W62
Surr: Dibromofluoromethane	96.6	70-130	%Rec	1	8/22/2019 3:06:00 PM	SL_W62
Surr: Toluene-d8	97.8	70-130	%Rec	1	8/22/2019 3:06:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 27

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: LCS

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R62635 RunNo: 62635 Prep Date: Analysis Date: 9/4/2019 SeqNo: 2133704 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result HighLimit Qual Fluoride ND 0.10 Chloride ND 0.50 **Bromide** ND 0.10 Phosphorus, Orthophosphate (As P ND 0.50 Sulfate ND 0.50

Client ID: LCSW Batch ID: R62635 RunNo: 62635 Prep Date: Analysis Date: 9/4/2019 SeqNo: 2133705 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.5000 106 90 0.53 0.10 0 110 Fluoride Chloride 4.9 0.50 5.000 0 98.0 90 110 0 100 90 2.5 0.10 2.500 110 **Bromide** 0 97.2 Phosphorus, Orthophosphate (As P 4.9 0.50 5.000 90 110 Sulfate 9.9 0.50 10.00 0 98.9 90 110

TestCode: EPA Method 300.0: Anions

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R62704 RunNo: 62704 Prep Date: Analysis Date: 9/5/2019 SeqNo: 2135350 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Nitrate+Nitrite as N ND 0.20

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R62704 RunNo: 62704 SeqNo: 2135351 Prep Date: Analysis Date: 9/5/2019 Units: mg/L Result POI SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte LowLimit Qual Nitrate+Nitrite as N 3.500 99.5 3.5 0.20 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: 1908972-003EMS	SampT	SampType: MS TestCode: EPA Method 8015D: Diesel Range								
Client ID: Upstream	Batch	ID: 46 9	918	F	RunNo: 62	2286				
Prep Date: 8/20/2019	Analysis D	ate: 8/	21/2019	9	SeqNo: 2	117568	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.4	0.40	2.500	0	94.3	68.3	147			
	0.19		0.2500		76.9	52.7	168			
Surr: DNOP	0.19		0.2000							
Sample ID: 1908972-003EMS I) SampT	ype: MS	SD		tCode: EF		8015D: Diese	el Range		
Sample ID: 1908972-003EMSI Client ID: Upstream) SampT	iD: 46 9	SD 918	F		2286	8015D: Diese Units: mg/L	J		
Sample ID: 1908972-003EMSI Client ID: Upstream Prep Date: 8/20/2019	SampT Batch	iD: 46 9	SD 918 21/2019	F	RunNo: 62	2286		J	RPDLimit	Qual
Sample ID: 1908972-003EMSI Client ID: Upstream	SampT Batch Analysis D	n ID: 46 9 ate: 8/ 3	SD 918 21/2019	F	RunNo: 62 SeqNo: 2	2286 117569	Units: mg/L	J	RPDLimit 20	Qual

Sample ID: LCS-46918	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: LCSW	Batch	ID: 469	918	R	tunNo: 6	2286				
Prep Date: 8/20/2019	Analysis Da	ate: 8/ 2	21/2019	S	SeqNo: 2	117575	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.8	0.40	2.500	0	110	66.7	148			
Surr: DNOP	0.21		0.2500		85.9	52.7	168			

Sample ID: MB-46918	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	I Range			
Client ID: PBW	Batch	Batch ID: 46918 RunNo: 62286								
Prep Date: 8/20/2019	Analysis D	ate: 8/	21/2019	SeqNo: 2117576			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.40								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.47		0.5000		94.6	52.7	168			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: A62420 RunNo: 62420

Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122301 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 20 20.00 98.3 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: A62420 RunNo: 62420

23

Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122302 Units: mg/L

20.00

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.47 0.050 0.5000 0 93.7 73.6 119

116

65.8

143

Qualifiers:

Surr: BFB

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 16 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: 100ng Ics	SampT	ype: LC	s	Tes	TestCode: EPA Method 8260: Volatiles Short List					
Client ID: LCSW	Batch	n ID: SL	_W62329	F	RunNo: 6	2329				
Prep Date:	Analysis D	ate: 8/	22/2019	5	SeqNo: 2	120528	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.6	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.2	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.2	70	130			
Surr: Dibromofluoromethane	9.3		10.00		92.9	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			
Sample ID: rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	<u> </u>

Client ID: PBW	Batcl	h ID: SL	_W62329	F	RunNo: 6	2329				
Prep Date:	Analysis D	Date: 8/	22/2019	\$	SeqNo: 2	120529	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.7		10.00		96.8	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.1	70	130			
Surr: Dibromofluoromethane	9.7		10.00		96.8	70	130			
Surr: Toluene-d8	9.7		10.00		97.0	70	130			

Sample ID: 1908972-001ams	SampT	ype: MS	8	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: East Outfall #2	Batch	n ID: SL	_W62329	F	RunNo: 6	2329				
Prep Date:	Analysis D	ate: 8/	22/2019	5	SeqNo: 2	120531	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	95.5	70	130		_	
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.1	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.1	70	130			
Surr: Dibromofluoromethane	9.4		10.00		94.0	70	130			
Surr: Toluene-d8	9.9		10.00		98.6	70	130			

Sample ID: 1908972-001amsc	l SampT	уре: М S	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: East Outfall #2	Batch	ID: SL	_W62329	F	RunNo: 6	2329				
Prep Date:	Analysis D	ate: 8/	22/2019	8	SeqNo: 2	120532	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	91.9	70	130	3.83	20	_

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 27

Hall Environmental Analysis Laboratory, Inc.

9.9

9.6

9.8

WO#: 1908972

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

Sample ID: 1908972-001amsd SampType: MSD TestCode: EPA Method 8260: Volatiles Short List Client ID: East Outfall #2 Batch ID: SL_W62329 RunNo: 62329 SeqNo: 2120532 Prep Date: Analysis Date: 8/22/2019 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0 20 Toluene 20 1.0 20.00 99.0 70 130 3.78 Surr: 1,2-Dichloroethane-d4 9.8 10.00 98.2 70 130 0 0

99.1

95.9

97.9

70

70

70

130

130

130

0

0

0

0

0

0

10.00

10.00

10.00

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: Ics-1 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114534 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 100 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: MB-46896 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 46896 RunNo: 62263

Prep Date: 8/19/2019 Analysis Date: 8/20/2019 SeqNo: 2115305 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCS-46896 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 46896 RunNo: 62263

Prep Date: 8/19/2019 Analysis Date: 8/20/2019 SeqNo: 2115306 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 95.0 80 120

Sample ID: 1908972-001CMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: East Outfall #2 Batch ID: 46896 RunNo: 62263

Prep Date: **8/19/2019** Analysis Date: **8/20/2019** SeqNo: **2115308** Units: **mg/L**

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0050 0.00020 0.005000 0 100 75 129

Sample ID: 1908972-001CMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: East Outfall #2 Batch ID: 46896 RunNo: 62263

Prep Date: 8/19/2019 Analysis Date: 8/20/2019 SeqNo: 2115309 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0050 0.00020 0.005000 0 100 75 125 0 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908972

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A62272 RunNo: 62272

SampType: LCS

Prep Date:	Analysis I	Date: 8/	20/2019	S	SeqNo: 2	115454	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.020								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Copper	ND	0.0060								
Iron	ND	0.020								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Manganese	ND	0.0020								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								
Uranium	ND	0.10								
Zinc	ND	0.020								

TestCode: FPA Method 6010B: Dissolved Metals

Sample ID. LC3-A	Janip	Type. LC	3	163	resicode. EFA Method 6010B. Dissolved Metals					
Client ID: LCSW	Bato	h ID: A6	2272	F	RunNo: 6	2272				
Prep Date:	Analysis	Date: 8/	20/2019	8	SeqNo: 2	115456	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.50	0.020	0.5000	0	101	80	120			
Cadmium	0.52	0.0020	0.5000	0	104	80	120			
Chromium	0.51	0.0060	0.5000	0	102	80	120			
Copper	0.52	0.0060	0.5000	0	104	80	120			
Iron	0.52	0.020	0.5000	0	104	80	120			
Lead	0.51	0.0050	0.5000	0	101	80	120			
Magnesium	52	1.0	50.00	0	104	80	120			
Manganese	0.50	0.0020	0.5000	0	101	80	120			
Potassium	52	1.0	50.00	0	103	80	120			
Selenium	0.48	0.050	0.5000	0	96.6	80	120			
Silver	0.096	0.0050	0.1000	0	95.8	80	120			
Sodium	52	1.0	50.00	0	105	80	120			
Uranium	0.47	0.10	0.5000	0	94.5	80	120			
Zinc	0.51	0.020	0.5000	0	102	80	120			

Sample ID: 1908972-001DMS TestCode: EPA Method 6010B: Dissolved Metals SampType: MS

Batch ID: A62272 Client ID: East Outfall #2 RunNo: 62272

Prep Date: Analysis Date: 8/20/2019 SeqNo: 2115467 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Qualifiers:

Sample ID: I CS-A

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 21 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: 1908972-001DMS	Samp	Туре: МЅ	;	TestCode: EPA Method 6010B: Dissolved Metals						
Client ID: East Outfall #2	Bato	ch ID: A6	2272	F	RunNo: 6	2272				
Prep Date:	Analysis	Date: 8/	20/2019	\$	SeqNo: 2	115467	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.57	0.020	0.5000	0.06311	102	75	125			
Cadmium	0.53	0.0020	0.5000	0	107	75	125			
Chromium	0.52	0.0060	0.5000	0	104	75	125			
Copper	0.55	0.0060	0.5000	0	110	75	125			
Iron	0.52	0.020	0.5000	0.005602	103	75	125			
Lead	0.50	0.0050	0.5000	0.007466	99.0	75	125			
Magnesium	78	1.0	50.00	25.28	106	75	125			
Manganese	0.52	0.0020	0.5000	0.0007391	103	75	125			
Potassium	55	1.0	50.00	1.683	106	75	125			
Selenium	0.60	0.050	0.5000	0	121	75	125			
Silver	0.096	0.0050	0.1000	0.002143	94.2	75	125			
Uranium	0.44	0.10	0.5000	0	88.6	75	125			
Zinc	0.54	0.020	0.5000	0.01978	105	75	125			

Sample ID: 1908972-001DMSD	Samp	Type: MS	SD	Tes	tCode: EF	PA Method	6010B: Disso	Ived Meta	als	
Client ID: East Outfall #2	Bato	th ID: A6	2272	F	RunNo: 62	2272				
Prep Date:	Analysis I	Date: 8/ 2	20/2019	5	SeqNo: 2	115468	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.57	0.020	0.5000	0.06311	101	75	125	1.00	20	
Cadmium	0.52	0.0020	0.5000	0	105	75	125	2.20	20	
Chromium	0.51	0.0060	0.5000	0	102	75	125	1.85	20	
Copper	0.54	0.0060	0.5000	0	108	75	125	1.08	20	
Iron	0.52	0.020	0.5000	0.005602	102	75	125	0.878	20	
Lead	0.50	0.0050	0.5000	0.007466	98.7	75	125	0.295	20	
Magnesium	78	1.0	50.00	25.28	105	75	125	0.589	20	
Manganese	0.51	0.0020	0.5000	0.0007391	102	75	125	0.837	20	
Potassium	54	1.0	50.00	1.683	105	75	125	0.449	20	
Selenium	0.59	0.050	0.5000	0	118	75	125	1.92	20	
Silver	0.095	0.0050	0.1000	0.002143	92.8	75	125	1.45	20	
Uranium	0.43	0.10	0.5000	0	85.4	75	125	3.68	20	
Zinc	0.54	0.020	0.5000	0.01978	103	75	125	1.48	20	

Sample ID: MB-A	SampT	уре: МЕ	BLK	TestCode: EPA Method 6010B: Dissolved Metals							
Client ID: PBW	Batch	ID: A6	2357	R	tunNo: 6	2357					
Prep Date:	Analysis D	ate: 8/ 2	22/2019	S	SeqNo: 2	118867	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	ND	0.020									
Calcium	ND	1.0									

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 6010B: Dissolved Metals

Client ID: LCSW Batch ID: A62357 RunNo: 62357

Prep Date: Analysis Date: 8/22/2019 SegNo: 2118869 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.50 0.020 0.5000 0 101 80 120 Calcium 50 1.0 50.00 0 100 80 120

Sample ID: 1908972-001DMS SampType: MS TestCode: EPA Method 6010B: Dissolved Metals

Client ID: East Outfall #2 Batch ID: A62357 RunNo: 62357

Prep Date: Analysis Date: 8/22/2019 SeqNo: 2118884 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.52 0.020 0.5000 0 105 75 125

Sample ID: 1908972-001DMSD SampType: MSD TestCode: EPA Method 6010B: Dissolved Metals

Client ID: East Outfall #2 Batch ID: A62357 RunNo: 62357

Prep Date: Analysis Date: 8/22/2019 SeqNo: 2118885 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.51 0.020 0.5000 0 102 75 125 2.25 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: MB-46876 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 46876 RunNo: 62357

Prep Date: 8/19/2019 Analysis Date: 8/22/2019 SeqNo: 2118876 Units: mg/L

'	,				•		3				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	ND	0.020									
Barium	ND	0.020									
Cadmium	ND	0.0020									
Chromium	ND	0.0060									
Selenium	ND	0.050									
Silver	ND	0.0050									

Sample ID: LCS-46876	Samp	SampType: LCS TestCode: EPA 60						rable Meta	ıls	
Client ID: LCSW	Bato	ch ID: 46	876	F	RunNo: 6	2357				
Prep Date: 8/19/2019	Analysis	Date: 8/	22/2019	8	SeqNo: 2	118881	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.50	0.020	0.5000	0	99.4	80	120			
Barium	0.48	0.020	0.5000	0	95.9	80	120			
Cadmium	0.49	0.0020	0.5000	0	98.2	80	120			
Chromium	0.49	0.0060	0.5000	0	97.0	80	120			
Selenium	0.48	0.050	0.5000	0	95.4	80	120			
Silver	0.096	0.0050	0.1000	0	95.6	80	120			

Sample ID: 1908972-001CMS	SampType: MS TestCode: EPA 6010B: Total Recoverable Metals									
Client ID: East Outfall #2	Bato	h ID: 468	876	F	RunNo: 6	2357				
Prep Date: 8/19/2019	Analysis	Date: 8/	22/2019	S	SeqNo: 2	118944	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.49	0.020	0.5000	0	98.4	75	125			
Barium	0.54	0.020	0.5000	0.06406	95.1	75	125			
Cadmium	0.51	0.0020	0.5000	0	101	75	125			
Chromium	0.48	0.0060	0.5000	0	96.8	75	125			
Selenium	0.48	0.050	0.5000	0	96.4	75	125			
Silver	0.097	0.0050	0.1000	0.002689	94.3	75	125			

Sample ID: 1908972-001CMSI	ISD SampType: MSD			TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: East Outfall #2	Batch ID: 46876			RunNo: 62357						
Prep Date: 8/19/2019	Analysis Date: 8/22/2019			SeqNo: 2118945			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.020	0.5000	0	96.2	75	125	2.21	20	
Barium	0.54	0.020	0.5000	0.06406	94.5	75	125	0.615	20	
Cadmium	0.50	0.0020	0.5000	0	100	75	125	0.714	20	
Chromium	0.48	0.0060	0.5000	0	95.4	75	125	1.38	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908972

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: 1908972-001CMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals Client ID: East Outfall #2 Batch ID: 46876 RunNo: 62357 Prep Date: 8/19/2019 Analysis Date: 8/22/2019 SeqNo: 2118945 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual 0.45 0.050 0.5000 Λ 90.0 75 125 6.90 20

Selenium Silver 0.097 0.0050 0.1000 0.002689 93.8 75 125 0.509 20

Sample ID: MB-46876 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 46876 RunNo: 62376

Prep Date: 8/19/2019 Analysis Date: 8/23/2019 Units: mg/L SeqNo: 2120004

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Lead ND 0.0050

Sample ID: LCS-46876 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 46876 RunNo: 62376

Prep Date: 8/19/2019 Analysis Date: 8/23/2019 SeqNo: 2120006 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit

0.48 0.0050 96.0 120 0.5000 ٥ 80 Lead

Sample ID: 1908972-001CMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: East Outfall #2 Batch ID: 46876 RunNo: 62376

Prep Date: 8/19/2019 Analysis Date: 8/23/2019 SeqNo: 2120014 Units: mg/L

%RPD PQL SPK value SPK Ref Val %REC HighLimit **RPDLimit** Analyte Result LowLimit Qual

Lead 0.48 0.0050 0.5000 0.01108 94.0 75 125

Sample ID: 1908972-001CMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals

Client ID: East Outfall #2 Batch ID: 46876 RunNo: 62376

Prep Date: 8/19/2019 Analysis Date: 8/23/2019 SeqNo: 2120015 Units: mg/L

%RPD SPK value SPK Ref Val %REC **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual

0.48 0.0050 0.5000 0.01108 93.8 75 125 0.0234 20 Lead

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range Ε

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 25 of 27

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114558 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114559 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.64 20.00 80.00 0 95.8 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114581 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114582 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 73.08 20.00 80.00 0 91.4 90 110

Sample ID: mb-3 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114604 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-3 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62234 RunNo: 62234

Prep Date: Analysis Date: 8/19/2019 SeqNo: 2114605 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 73.68 20.00 80.00 0 92.1 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 26 of 27

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908972**

10-Sep-19

Client: Western Refining Southwest, Inc.

Project: San Juan River Bluff

Sample ID: MB-46914 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 46914 RunNo: 62301

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-46914 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 46914 RunNo: 62301

Prep Date: 8/20/2019 Analysis Date: 8/21/2019 SeqNo: 2117046 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 20.0 1000 0 102 80 120

Sample ID: 1908972-002BDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: East Outfall #3 Batch ID: 46914 RunNo: 62301

Prep Date: 8/20/2019 Analysis Date: 8/21/2019 SeqNo: 2117063 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 671 20.0 0.298 10 *

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 27 of 27

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Western Refining Southw	Work Order Nun	nber: 1908972		RcptNo	: 1
Received By:	Isaiah Ortiz	8/17/2019 8:40:00	АМ	ike my li	24	
Completed By:	Anne Thorne	8/19/2019 10:02:1	D AM	Anne No		
Reviewed By: D	AD 8/19/19			Ume Jr		
Chain of Cust	ody					
1. Is Chain of Cus			Yes 🗹	No 🗌	Not Present	
2. How was the s	ample delivered?		<u>Courier</u>		_	
Log In						
3. Was an attemp	t made to cool the samples?		Yes 🗹	No 🗌	NA 🗀	
4. Were all sample	es received at a temperature	of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	,
5. Sample(s) in pr	oper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample	le volume for indicated test(s)	?	Yes 🗸	No 🗆		·
7. Are samples (ex	cept VOA and ONG) properly	preserved?	Yes 🗸	No 🗌		
8. Was preservativ	re added to bottles?		Yes 🗌	No 🗹	NA 🗆	
9. VOA vials have	zero headspace?		Yes 🗹	No 🗌	No VOA Vials	
10. Were any samp	le containers received broker	1?	Yes 🗆	No 🗹	# of preserved	WY
	match bottle labels? cies on chain of custody)		Yes 🗹	No 🗆	bottles checked for pH:	>12 unless noted)
12. Are matrices cor	rectly identified on Chain of C	Custody?	Yes 🗹	No 🗌	Adjusted	NO_
	nalyses were requested?		Yes 🗹	No 🗆		A could
	times able to be met? comer for authorization.)		Yes 🗹	No 🗆	Checked by:	9:18:15
Special Handlin	g (if applicable)					
	ed of all discrepancies with the	nis order?	Yes 🗌	No 🗌	NA 🗹	
Person No	otified:	Date				
By Whom:		Via:	eMail P	none 🗌 Fax	☐ In Person	
Regarding	*					
Client Inst						
16. Additional rema	rks:					
17. Cooler Informa	TOTAL CO					
Cooler No	allander i de la la la la la la la la la la la la la	I Intact Seal No	Seal Date	Signed By		
<u> </u>	.3 Good Yes	***************************************				

C	hain	of-Ci	Chain-of-Custody Record	Turn-Around Time.	Time.		I											
Client	Wester	rn - Blo	Western - Bloomfield Terminal	X Standard	□ Rush				I	AL	HALL ENVIRONMENT	Şί	S :	Ž	1EP	Ę	7	
		:		Project Name	San Juan	Project Name: San Juan River Bluff			(WWW.hallenvironmental.com		LABORALOK T		5	2	Ž	
Mailing,	Mailing Address:		50 CR 4990	2019 Annu	ual Sampling Event	ng Event	7	1901 F	lawkii Jawkii	4901 Hawkins NE	ale -	Janer	Albuquerane, NM 87109	78 M	109			
		Bloom	Bloomfield, NM 87413	Project #:				Tel. 5	05-34	Tel. 505-345-3975		ax 5	Fax 505-345-4107	5-410	22			
Phone #:		419-42	419-421-2338		İ						nal	sis Re	Request	+				
Email	gimccart	ney@ma	Email: gjmccartney@marathonpetroleum.com	Project Manaç	ger: Gregor	Project Manager: Gregory McCartney	,	┡							_			
QA/QC Package:	ackage:											-100						
□ Standard	Jard		X Level 4 (Full Validation)							(SIV						IUA		
□ Other				Sampler:	Tracy Payne	e - 919-561-7055			۱)		_	-				· - K		(1
X EDD (Type)	(Type)	EXCEL			⊠ Yes	□ No			.81							ופנג		/ Jo
				Ten	nperature: 4,υ	-0,1(cF) 43°C			t b							шә		(人
			Ē						oqje					_		<u></u>		səl
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	N+X3T8 N+X3T8	08 HG	M) HG	M) 8QE	Fotal Re	vlossiC	9G 1808	S) 0728	HO nes	ls19n95		vir Bubb
8/15/9 1515	1515	H ₂ 0	East Outfall #2	40ml VOA-5	를 달	1582	+		-				+		+-	+		7
-		H ₂ 0	East Outfall #2	250 ml plastic-1	HNO3	(02)					×	<u> </u>				<u> </u>		1
		H ₂ 0	East Outfall #2	125 ml plastic-1	HNO3	183				-		×	ļ					
		H ₂ O	East Outfall #2	125 ml plastic-1	H ₂ SO ₄	102									 ^	×		
		H ₂ 0	East Outfall #2	500 ml plastic-1	Neat	100									×	×		
			-					<u></u>				<u> </u>						1
												-			+	+		
						The state of the s									<u> </u>			
								1										
Date: Time: 9/6/9 1535		Relinquished by:	\	Received by:	-	Date Time	Remarks:		ee An	alytic	See Analytical Methods and Target Analytes	e spo	nd Ta	ırget /	∖nalyt	es		
Date:		Refined by:	ed by:	Received by:	۶ ۲	(1) (1) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	_											
8/16/10 1756	1786		Mastra Wolake	Q 1	Courier	Course 6/17/19 0840												
-		<u> </u>				-												

													ļ	1	5	4	i
<u>ວ</u>	hain	-of-CL	Chain-of-Custody Record	Turn-Around Time:	Time:				Ī				Š	Ž	ENVIDONMENTAL		
Client:	Weste	ın - Bk	Client: Western - Bloomfield Terminal	X Standard	□ Rush				₹			S	AB	OR	Ā	1 8	
		İ		Project Name	San Juan	Project Name: San Juan River Bluff			¦ ≶	ww.ha	www.hallenvironmental.com	nmen	aí.con) -	, - -		_
Mailing Address:	Address		50 CR 4990	2019 Annu	2019 Annual Sampling Event	ig Event	4	901 H	4901 Hawkins NE	NE	- Albuc	Inerqu	Albuquerque, NM 87109	8710	တ		
		Bloom	Bloomfield, NM 87413	Project #:			<u>'</u>	Tel. 5(5-345	505-345-3975	Fax	. 505 ×	505-345-4107	.107			
Phone #:		419-42	419-421-2338	•						A	Analysis		Request		:		
Email: (yjmccar	rtney@ma	gimccartney@marathonpetroleum.com	Project Mana	ger: Gregor	Project Manager: Gregory McCartney		-	-				γl				
QA/QC Package:	ackage: ard		X Level 4 (Full Validation)							(SI	tals	PCB's	no 38	² 00/	suoin		
□ Other	-			Sampler	Tracy Payn	Tracy Payne - 919-561-7055					∍M -	280	LW "	Λin	1 - 1		(
X EDD (Type)	Type)	EXCEL	111 481		- Aryes	No □						_			nisi		Изс
				Sample Tem	Sample Temperature: 4-0.1	-016F) 4.2									เผอ) (Y
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 1908972	8TM+X3T8 8TM+X3T8	83108 H9T	TPH (Metho	EDB (Metho	Total Recor	oitea¶ r808	8560B (VO)	6en Chem	General Ch		Air Bubbles
8/15/19	1420	H ₂ 0	East Outfall #3	40ml VOA-5	ІЭН	202											
		H ₂ 0	East Outfall #3	250 ml plastic-1	HNO ₃	202					×					_	
		H ₂ 0	East Outfall #3	125 ml plastic-1	HNO ₃	702					×						
		H ₂ 0	East Outfall #3	125 ml plastic-1	H ₂ SO ₄	202									×		
->	\rightarrow	H ₂ 0	East Outfall #3	500 ml plastic-1	Neat	702								×	×		
									•								
														-			
										_							
										ļ				_		<u> </u>	
Date: Time:	ime: \539	Relinquished by:		Received by:	* 100(~)	Date Time $\mathcal{E}/\mu_{1,2}\mu_{2}/\zeta_{2}g$	Remarks		e Ans	alytical	See Analytical Methods and Target Analytes	ds and	l Targ	et Ana	alytes		
Date:	Time:	Relipquished by	ed by:	Received by:	GENTHOU	Date (

													ļ	0	9	9	
ပ	hain	of-Cr	Chain-of-Custody Record	Turn-Around Time:	Time:				Ī		2 U		ENVIDONMENTAL	Σ	2	×	
Client:		ım - Bk	Western - Bloomfield Terminal	X Standard	□ Rush				₹	ANALYSIS LABORATORY	֡֞֞֓֓֞֟֓֓֟֟֟֝֟֟֝֓֟֟֟֝֟֟		AB	OR		1 2	
				Project Name	Project Name: San Juan River	River			≥	www.hallenvironmental.com	 envirc	nemu	tal.com	 -	! !		_
Mailing	Mailing Address:	5: 50 CF	50 CR 4990	2019 Ann	2019 Annual Sampling Event	ig Event	4	901 F	4901 Hawkins NE	» NE	Albuc	nerar	Albuquerque, NM 87109	8710	_		
	Ī	Bloom	Bloomfield, NM 87413	Project #:			Ċ	Tel. 5(5-345	505-345-3975	Fax	x 505	505-345-4107	107			
Phone #:	.	419-42	419-421-2338							A	Analysis		Request				
Email:	gimccar	tney@ma	gimccartney@marathonpetroleum.com	Project Mana	ger: Gregor	Project Manager: Gregory McCartney						\vdash	A		7		
QA/QC F	QA/QC Package:										(108		ijuo		ဝ၁	ίλ	
□ Standard	dard		X Level 4 (Full Validation)							(SN			381		หูรเ	iuili	
□ Other	ا			Sampler:	Tracy Payn	Tracy Payne - 919-561-7055							.W'X		ıoir	/IKs	(1
X EDD	X EDD (Type)_	EXCEL		On Ice:	₽ Yes	oN 🗆									1A	/ - '	N 1c
				Sample Tem	Sample Temperature 44-0.\(CE	01/ce) 4.3.5									ะแอ	้เมอ) (Y (
															чэ	<u>ч</u> э	sə
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	EX+N -EX+P	108 H	∍M) H	M) 80	8 A져 2 I) anoi	94 18) 809	9 ^ 055	neral	neral	gqng .
						1403472	\rightarrow			_	-	\dashv	\dashv	\rightarrow	ອອ	eg	ηiΑ
8/6/PO825	0825	H ₂ 0	Upstream	40ml VOA-5	ЭH	7603		×					×				
`		H ₂ 0	Upstream	250 ml amber-1	Neat	263		×									
		H ₂ 0	Upstream	250 ml plastic-1	HNO3	502					×	;					<u> </u>
		H ₂ 0	Upstream	125 ml plastic-1	HNO3	203								×	×		
		H ₂ O	Upstream	125 ml plastic-1	H ₂ SO₄	7603									×		
\rightarrow	\rightarrow	H ₂ 0	Upstream	500 ml plastic-1	Neat	602										×	
											+					_	
											ļ					 	<u> </u>
19	Time: 539	Relinquished by:	ed by:	Received by:	Lobot.	Date Time 8/16/19 15.39	Remarks:		See Ar	Analytical Methods	al Me	thod		and Target Analytes.	et Ar	alyte	SS.
Date: 8//u/frg	Time: [756	Relinquished by	ed by:	Received by:	CONTRION	SINI 9											
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	. 1																

4 05 6

S	žir.	Of-Cir	Chain-of-Custody Record	Turn-Around	Time.		1							1) 	7 5		
5		5	Stody Incolu		<u>;</u>				Ì	HALL		ENVIRONMENTAL	02	Ž		E		
Client: V	Veste	ırn - Blo	Western - Bloomfield Terminal	X Standard	□ Rush				4	Ž		SI	3	80	Ž	0	! ≿	
				Project Name	San Juan River	ı River			} ≶	w.ha	www.hallenvironmental.com	onme	ntaí.c	Ë			: 	
Mailing Address:	ddress		50 CR 4990	2019 Annual Sampling Event	al Samplir	ng Event	4	4901 Hawkins NE	awkin	Ä K	- Albuquerque, NM 87109	Idneid	lue, N	IM 87	109			
		Bloom	Bloomfield, NM 87413	Project #:			_	Tel. 505-345-3975	5-345	-3975	ιĽ	Fax 50	505-345-4107	5-410	_			
Phone #:		419-42	419-421-2338							1	ınal	is Re	dnes	+				
Email: g	mccar	tney@ma	gimccartney@marathonpetroleum.com	Project Manag	ger: Gregor	Jer: Gregory McCartney										7		
QA/QC Package: □ Standard	ickage:		X Level 4 (Full Validation)			ı				(SI					00 80			
□ Other				Sampler:	Tracy Payne	le - 919-561-7055												(
X EDD (Type)	Type)	EXCEL		On Ice:	Yes	ļ ,								(A				N 10
				Sample Temperature: 4.4-0	erature: 4.4	-0.1(cr) 43°C								ΟV.				入)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative	HEAL No.	atm+x atm+x	8015B	(Metho	Metho (8310)	9M 8 A	ns (F,CI Pestic	B (VO	·imə2) (i bevio	eral Ch eral Ch		səlqqng
				i ype alid #	, ype	1908972)\Z8				∃ ıiA
8/16/19 0930	1930	H ₂ O	North of 45	40ml VOA-5	HCI	502		×				}	×]
		H ₂ O	North of 45	250 ml amber-1	Neat	702		×				[Ï
		H ₂ O	North of 45	250 ml plastic-1	HNO3	400					×							
		H ₂ O	North of 45	125 ml plastic-1	HNO ₃	h/2-									×	×		
		H ₂ O	North of 45	125 ml plastic-1	H ₂ SO₄	haz				 						×		
	>	H ₂ O	North of 45	500 ml plastic-1	Neat	tal		<u> </u>				<u> </u>				<u>×</u>		
•																		
										_			_		\dashv	\perp		Τ
									+			-			-			
Date: Ti	Time:	Relinquished by:	sd by:	Received by:		Date Time	Remarks:		See Ar	alyti	Analytical Methods	etho	ds ar		arget	and Target Analytes.] Ates	
) Jate:		Palina iishad hiv	of hu	December by:	- William	Poste Time												
6-	132	3	MAKS 1/ JOEANS (7													
				}		1												7

	LABORATORY	 					ity	nila				Seneral Ch						×					and Target Analytes.	
TAIL ENVISONMENT		! !	~			z	001	8su	oin	A- .	เล	Seneral Ch				×	×						et A	
	3		Albuquerque, NM 87109	20						sls	tə№	l bevlossi	1			×							arg	
	. O	Ë	8 ∑	Fax 505-345-4107	it					(A	ΟΛ-	-imə2) 0728	3										_ <u>5</u> _	
	₹	ital.o	ue, r	5-34	Request	—						3260B (VO	+-	· .										
	_	ധ	uerq	50.	Rec							Sold Pestic											thoc	
Ź	SI	Viror	bnq	Fax	Analysis		(°0S					lO,∃) anoin/	+										Me i	
	ANALYSIS	www.hallenvironmental.com	1		Ana							SCRA 8 Me	+	ļ .	×	·				_	_		Analytical Methods	
-	įĘ	¥.	Z Z	397				SM				0168) HAG	+								\dashv		alyt	
Ì	È	⋚	vkins	345-								onbally III	-								_	_	An	
		_	Hav	505-								LPH (Metho	_										See	
			4901 Hawkins NE	Tel. 505-345-3975								PH 8015B		×										
			4	•		'	-					8TEX+MTB	-						\dashv	_	-		Remarks:	
							()(208)ə,¤	INAT	.+ <u>-</u> :	I BTEX+MTB	1					,					<u>~</u>	
	í	liver	Event			Project Manager: Gregory McCartney			- 919-561-7055	□ No	-0.1(cr) 43°	HEAL NO.	7 65	500	705	502	302	168		[.		ļ	Date Time $\frac{3/ \nu /\rho}{ \Sigma }$	8/1 /d 08/0
	Rush	Juan R	pling			gory			Payne .			*	<u> </u>	+	<u> </u>)3	7	Ţ						ह जा
Time:		e: San J	ıal Sam			ıger: Gre			Tracy F	Ma Yes	mperature: ५ ५	Preservative Type	달	Neat	HNO3	FONH	[₹] OS ^z H	Neat					hee	- Columbi
Turn-Around Time	X Standard	Project Name: San Juan River	2019 Annual Sampling Event	Project #:		Project Mana			Sampler:	On Ice:	Sample Tem	Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1					Received by:	4
Chain-of-Custody Record	Client: Western - Bloomfield Terminal		4990	Bloomfield, NM 87413	-2338	Email: gjmccartney@marathonpetroleum.com		X Level 4 (Full Validation)				Sample Request ID	North of 46	North of 46	North of 46	North of 46	North of 46	North of 46						With Wests
-of-Cu	rn - Blo		: 50 CR 4990	Bloomf	419-421-2338	tney@mar		•		EXCEL		Matrix	H ₂ 0	H ₂ 0	H ₂ 0	H ₂ O	H ₂ 0	H ₂ O					Relinquished by:	<u>3</u>
hain	Weste		Mailing Address:		#:	gimccar	QA/QC Package:	ıdard	¥.	X EDD (Type)_		Time	1030					\					Time:	1756
S	Client:		Mailing		Phone #:	Email:	QA/QC I	☐ Standard	□ Other	X EDD		Date	0801 1448					->						Slich 9

6 of 6

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2014 Western Refining Southwest, Inc. - Bloomfield Terminal

	Cs (EPA Method 8260B) (1)
- Ta	rget List
	Benzene
	Toluene
	Ethylbenzene
	Xylenes
	Methyl tert butyl ether (MTBE)
SVO	Cs - (EPA Method 8270)
	- Method List
ГРН	I-GRO (EPA Method 8015B)
	- Gasoline Range Organics
ГРН	-DRO (EPA Method 8015B)
	- Diesel Range Organics
	- Motor Oil Range Organics
Γota	l Carbon Dioxide (Laboratory Calculated)
	- Dissolved CO2
Spec	ific Conductivity (EPA Method 120.1 or field measurement)
	- Specific conductance
<u>rds</u>	(EPA Method 160.1 or field measurement)
	- Total dissolved solids
Jene	eral Chemistry - Anions (EPA Method 300.0)
	Fluoride
	Chloride
	Bromide
	Nitrogen, Nitrite (as N)
	Nitrogen, Nitrate (as N)
	Phosphorous, Orthophosphate (As P)
	Sulfate
Jene	ral Chemistry - Alkalinity (EPA Method 310.1)
	Alkalinity, Total
	Carbonate
	Bicarbonate

Total Recoverable Metals (EPA	A Method 6010B/7470)								
- Target List (not applicable to R	Liver Terrace Sampling Events)								
Arsenic	Lead								
Barium	Mercury								
Cadmium	Selenium								
Chromium	Silver								
- Target List (for River Terrace S	Sampling Events Only)								
Lead ·	- '								
Mercury (DW-1 ONL	ĹŶ)								
Dissolved Metals (EPA Method									
 Target List (for Refinery Comp 	olex, Outfalls, and River)								
Arsenic Manganese									
Barium	Mercury								
Cadmium	Potassium								
Calcium	Selenium								
Chromium	Silver								
Copper	Sodium								
Iron	Uranium								
Lead	Ztnc								
Magnesium									

TPH = total petroleum hydrocarbons GRO = gasoline range organics VOCs = volatile organic compounds DRO = diesel range organics TDS = total dissolved solids

NOTES:

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 16, 2019

Gregory McCartney Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX: (505) 632-3911

RE: 2019 Annual GW Sampling Event OrderNo.: 1908D80

Dear Gregory McCartney:

Hall Environmental Analysis Laboratory received 9 sample(s) on 8/22/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 7:50:00 AM

Lab ID: 1908D80-001A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	В	atch ID
EPA METHOD 8015D: GASOLINE RANGE					Anal	yst:	RAA
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/27/2019 10:12:21	AM	GW6245
Surr: BFB	98.6	70-130	%Rec	1	8/27/2019 10:12:21		GW6245
EPA METHOD 8260B: VOLATILES					Anal	yst:	RAA
Benzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21		R62453
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Naphthalene	ND	2.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Acetone	ND	10	μg/L	1	8/27/2019 10:12:21	AM	R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 10:12:21	AM	R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 10:12:21	AM	R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21		R62453
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21		R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 10:12:21		R62453
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 10:12:21		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 7:50:00 AM

Lab ID: 1908D80-001A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	В	atch ID
EPA METHOD 8260B: VOLATILES					Anal	yst:	RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 10:12:21	AM	R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 10:12:21	AM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
tert-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 10:12:21	AM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 10:12:21	AM	R62453
Surr: 1,2-Dichloroethane-d4	93.7	70-130	%Rec	1	8/27/2019 10:12:21	AM	R62453
Surr: 4-Bromofluorobenzene	96.0	70-130	%Rec	1	8/27/2019 10:12:21	AM	R62453
Surr: Dibromofluoromethane	96.5	70-130	%Rec	1	8/27/2019 10:12:21	AM	R62453
Surr: Toluene-d8	98.7	70-130	%Rec	1	8/27/2019 10:12:21	AM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 7:50:00 AM

Lab ID: 1908D80-001B Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE					Anal	yst: JME
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	8/28/2019 7:24:03 F	PM 47076
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/28/2019 7:24:03 F	PM 47076
Surr: DNOP	112	52.7-168	%Rec	1	8/28/2019 7:24:03 F	PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 7:50:00 AM

Lab ID: 1908D80-001C Matrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID
CARBON DIOXIDE						Analys	t: JRR
Total Carbon Dioxide	280	1.0	Н	mg CO2/	1	8/26/2019 3:40:37 PM	R62429
EPA METHOD 300.0: ANIONS						Analys	t: MRA
Fluoride	ND	0.50		mg/L	5	9/7/2019 11:06:24 AM	R62756
Chloride	10	2.5		mg/L	5	9/7/2019 11:06:24 AM	R62756
Bromide	ND	0.50		mg/L	5	9/7/2019 11:06:24 AM	R62756
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	9/7/2019 11:06:24 AM	R62756
Sulfate	120	2.5		mg/L	5	9/7/2019 11:06:24 AM	R62756
Nitrate+Nitrite as N	ND	1.0		mg/L	5	9/7/2019 1:27:56 PM	R62756
SM2510B: SPECIFIC CONDUCTANCE						Analys	t: JRR
Conductivity	810	5.0		µmhos/c	1	8/26/2019 3:40:37 PM	R62429
SM2320B: ALKALINITY						Analys	t: JRR
Bicarbonate (As CaCO3)	297.3	20.00		mg/L Ca	1	8/26/2019 3:40:37 PM	R62429
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/26/2019 3:40:37 PM	R62429
Total Alkalinity (as CaCO3)	297.3	20.00		mg/L Ca	1	8/26/2019 3:40:37 PM	R62429
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analys	t: JMT
Total Dissolved Solids	528	20.0	*	mg/L	1	8/29/2019 8:45:00 AM	47078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 7:50:00 AM

Lab ID: 1908D80-001D Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 7470: MERCURY					Analyst: rde			
Mercury	ND	0.00020	mg/L	1	9/6/2019 4:48:58 PM	47323		
EPA 6010B: TOTAL RECOVERABLE METALS					Analy	/st: bcv		
Arsenic	ND	0.020	mg/L	1	8/27/2019 1:03:58 PI	M 47018		
Barium	0.070	0.020	mg/L	1	8/27/2019 12:14:45 F	PM 47018		
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:14:45 F	PM 47018		
Chromium	ND	0.0060	mg/L	1	8/27/2019 12:14:45 F	PM 47018		
Lead	ND	0.0050	mg/L	1	8/27/2019 12:14:45 F	PM 47018		
Selenium	ND	0.050	mg/L	1	8/27/2019 12:14:45 F	PM 47018		
Silver	ND	0.0050	mg/L	1	8/27/2019 12:14:45 F	PM 47018		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-1

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 7:50:00 AM

Lab ID: 1908D80-001E Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analys	st: rde
Mercury	ND	0.00020	mg/L	1	9/10/2019 5:52:50 PM	47378
EPA METHOD 6010B: DISSOLVED METALS					Analys	st: bcv
Arsenic	ND	0.020	mg/L	1	9/9/2019 8:54:37 AM	A62764
Barium	0.036	0.020	mg/L	1	9/9/2019 8:54:37 AM	A62764
Cadmium	ND	0.0020	mg/L	1	9/9/2019 8:54:37 AM	A62764
Calcium	86	1.0	mg/L	1	9/9/2019 8:54:37 AM	A62764
Chromium	ND	0.0060	mg/L	1	9/9/2019 8:54:37 AM	A62764
Copper	ND	0.0060	mg/L	1	9/9/2019 8:54:37 AM	A62764
Iron	ND	0.020	mg/L	1	9/9/2019 8:54:37 AM	A62764
Lead	0.0051	0.0050	mg/L	1	9/9/2019 8:54:37 AM	A62764
Magnesium	18	1.0	mg/L	1	9/9/2019 8:54:37 AM	A62764
Manganese	0.012	0.0020	mg/L	1	9/9/2019 8:54:37 AM	A62764
Potassium	2.1	1.0	mg/L	1	9/9/2019 8:54:37 AM	A62764
Selenium	ND	0.050	mg/L	1	9/9/2019 8:54:37 AM	A62764
Silver	ND	0.0050	mg/L	1	9/9/2019 8:54:37 AM	A62764
Sodium	60	1.0	mg/L	1	9/9/2019 8:54:37 AM	A62764
Uranium	ND	0.10	mg/L	1	9/9/2019 8:54:37 AM	A62764
Zinc	ND	0.020	mg/L	1	9/9/2019 8:54:37 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-13

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 9:10:00 AM

Lab ID: 1908D80-002A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analy	st: RAA
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/27/2019 11:38:39 A	M GW624
Surr: BFB	97.9	70-130	%Rec	1	8/27/2019 11:38:39 A	
EPA METHOD 8260B: VOLATILES					Analy	st: RAA
Benzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Naphthalene	ND	2.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Acetone	ND	10	μg/L	1	8/27/2019 11:38:39 A	M R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 11:38:39 A	M R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 11:38:39 A	M R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	M R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 11:38:39 A	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-13

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 9:10:00 AM

Lab ID: 1908D80-002A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Bat	tch ID
EPA METHOD 8260B: VOLATILES					Anal	yst: F	RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
tert-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 11:38:39	AM F	R62453
Surr: 1,2-Dichloroethane-d4	95.2	70-130	%Rec	1	8/27/2019 11:38:39	AM F	R62453
Surr: 4-Bromofluorobenzene	97.5	70-130	%Rec	1	8/27/2019 11:38:39	AM F	R62453
Surr: Dibromofluoromethane	97.9	70-130	%Rec	1	8/27/2019 11:38:39	AM F	R62453
Surr: Toluene-d8	97.7	70-130	%Rec	1	8/27/2019 11:38:39	AM F	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

9/16/2019

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

Client Sample ID: MW-13

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 9:10:00 AM

Lab ID: 1908D80-002B Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE					Anal	yst: JME
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	8/28/2019 8:37:58 F	PM 47076
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/28/2019 8:37:58 F	PM 47076
Surr: DNOP	112	52.7-168	%Rec	1	8/28/2019 8:37:58 F	PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

CLIENT:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-13

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 9:10:00 AM

Lab ID: 1908D80-002C Matrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID	
CARBON DIOXIDE						Analys	t: JRR	
Total Carbon Dioxide	860	1.0	Н	mg CO2/	1	8/26/2019 3:54:55 PM	R62429	
EPA METHOD 300.0: ANIONS						Analyst: MRA		
Fluoride	ND	0.50		mg/L	5	9/7/2019 11:32:07 AM	R62756	
Chloride	180	10		mg/L	20	9/7/2019 11:45:00 AM	R62756	
Bromide	2.3	0.50		mg/L	5	9/7/2019 11:32:07 AM	R62756	
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	9/7/2019 11:32:07 AM	R62756	
Sulfate	1100	25	*	mg/L	50	9/9/2019 5:45:29 PM	R62780	
Nitrate+Nitrite as N	1.8	1.0		mg/L	5	9/7/2019 1:40:49 PM	R62756	
SM2510B: SPECIFIC CONDUCTANCE						Analys	t: JRR	
Conductivity	3800	5.0		µmhos/c	1	8/26/2019 3:54:55 PM	R62429	
SM2320B: ALKALINITY						Analys	t: JRR	
Bicarbonate (As CaCO3)	875.1	20.00		mg/L Ca	1	8/26/2019 3:54:55 PM	R62429	
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/26/2019 3:54:55 PM	R62429	
Total Alkalinity (as CaCO3)	875.1	20.00		mg/L Ca	1	8/26/2019 3:54:55 PM	R62429	
SM2540C MOD: TOTAL DISSOLVED SOLIDS	SM2540C MOD: TOTAL DISSOLVED SOLIDS Analyst				t: JMT			
Total Dissolved Solids	2840	40.0	*D	mg/L	1	8/29/2019 8:45:00 AM	47078	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-13

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 9:10:00 AM

Lab ID: 1908D80-002D Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 7470: MERCURY					Analyst: rde			
Mercury	ND	0.0010	mg/L	5	9/6/2019 5:13:52 PM	47323		
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst: bcv			
Arsenic	ND	0.020	mg/L	1	8/27/2019 1:02:01 PM	<i>I</i> I 47018		
Barium	0.026	0.020	mg/L	1	8/27/2019 12:34:43 F	M 47018		
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:34:43 F	M 47018		
Chromium	0.011	0.0060	mg/L	1	8/27/2019 12:34:43 F	M 47018		
Lead	ND	0.0050	mg/L	1	8/27/2019 12:34:43 F	M 47018		
Selenium	ND	0.050	mg/L	1	8/27/2019 12:34:43 F	M 47018		
Silver	ND	0.0050	mg/L	1	8/27/2019 12:34:43 F	M 47018		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-13

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 9:10:00 AM

Lab ID: 1908D80-002E Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analys	st: rde
Mercury	ND	0.00020	mg/L	1	9/10/2019 5:59:37 PM	47378
EPA METHOD 6010B: DISSOLVED METALS					Analys	st: bcv
Arsenic	ND	0.020	mg/L	1	9/9/2019 8:58:18 AM	A62764
Barium	0.022	0.020	mg/L	1	9/9/2019 8:58:18 AM	A62764
Cadmium	ND	0.0020	mg/L	1	9/9/2019 8:58:18 AM	A62764
Calcium	270	5.0	mg/L	5	9/9/2019 9:00:15 AM	A62764
Chromium	ND	0.0060	mg/L	1	9/9/2019 8:58:18 AM	A62764
Copper	ND	0.0060	mg/L	1	9/9/2019 8:58:18 AM	A62764
Iron	ND	0.020	mg/L	1	9/9/2019 8:58:18 AM	A62764
Lead	ND	0.0050	mg/L	1	9/9/2019 8:58:18 AM	A62764
Magnesium	96	1.0	mg/L	1	9/9/2019 8:58:18 AM	A62764
Manganese	1.5	0.010	mg/L	5	9/9/2019 9:00:15 AM	A62764
Potassium	3.8	1.0	mg/L	1	9/9/2019 8:58:18 AM	A62764
Selenium	ND	0.050	mg/L	1	9/9/2019 8:58:18 AM	A62764
Silver	ND	0.0050	mg/L	1	9/9/2019 8:58:18 AM	A62764
Sodium	530	10	mg/L	10	9/9/2019 12:01:25 PM	A62764
Uranium	ND	0.10	mg/L	1	9/9/2019 8:58:18 AM	A62764
Zinc	ND	0.020	mg/L	1	9/9/2019 8:58:18 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event **Collection Date:**

Lab ID: 1908D80-003A Matrix: Aqueous

Toluene	Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
Toluene	EPA METHOD 8260B: VOLATILES					Analys	st: RAA
Toluene	Benzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Ethylbenzene	Toluene	ND	1.0		1	8/27/2019 1:05:11 PM	R62453
1,2,4-Trimethylbenzene	Ethylbenzene	ND	1.0		1	8/27/2019 1:05:11 PM	R62453
1,3,5-Trimethylbenzene	Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	ND	1.0		1	8/27/2019 1:05:11 PM	R62453
1,2-Dibromoethane (EDB)	1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Naphthalene	1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1-Methylnaphthalene	1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
2-Methylnaphthalene	Naphthalene	ND	2.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Acetone ND 10 μg/L 1 8/27/2019 1:05:11 PM R62 Bromobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Bromodichloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Bromoform ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Bromomethane ND 3.0 μg/L 1 8/27/2019 1:05:11 PM R62 2-Butanone ND 10 μg/L 1 8/27/2019 1:05:11 PM R62 Carbon disulfide ND 10 μg/L 1 8/27/2019 1:05:11 PM R62 Carbon Tetrachloride ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloroberzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloroberzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloroberthane ND 1.0 μg/L 1 <td< td=""><td>1-Methylnaphthalene</td><td>ND</td><td>4.0</td><td>μg/L</td><td>1</td><td>8/27/2019 1:05:11 PM</td><td>R62453</td></td<>	1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Bromobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Bromodichloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Bromoform ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Bromomethane ND 3.0 μg/L 1 8/27/2019 1:05:11 PM R62 2-Butanone ND 10 μg/L 1 8/27/2019 1:05:11 PM R62 Carbon disulfide ND 10 μg/L 1 8/27/2019 1:05:11 PM R62 Carbon Tetrachloride ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chlorotoluene ND 1.0 μg/L 1	2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Bromodichloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 R	Acetone	ND	10	μg/L	1	8/27/2019 1:05:11 PM	R62453
Bromoform ND 1.0	Bromobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Bromomethane	Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Bromomethane	Bromoform	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
2-Butanone ND 10 µg/L 1 8/27/2019 1:05:11 PM R62 Carbon disulfide ND 10 µg/L 1 8/27/2019 1:05:11 PM R62 Carbon Tetrachloride ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chloroform ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chloroform ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 2-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 µg/L 1 <	Bromomethane	ND	3.0		1	8/27/2019 1:05:11 PM	R62453
Carbon Tetrachloride ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloroethane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloroform ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chlorotoluene ND 3.0 μg/L 1 8/27/2019 1:05:11 PM R62 2-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 μg/L 1	2-Butanone	ND	10	μg/L	1	8/27/2019 1:05:11 PM	R62453
Chlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chloroethane ND 2.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chloroform ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chlorotoluene ND 3.0 µg/L 1 8/27/2019 1:05:11 PM R62 2-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 µg/L <	Carbon disulfide	ND	10	μg/L	1	8/27/2019 1:05:11 PM	R62453
Chloroethane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloroform ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Chloromethane ND 3.0 μg/L 1 8/27/2019 1:05:11 PM R62 2-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,3-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0	Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Chloroform ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Chloromethane ND 3.0 µg/L 1 8/27/2019 1:05:11 PM R62 2-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,3-Dichloropropene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloromethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND <td< td=""><td>Chlorobenzene</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td>8/27/2019 1:05:11 PM</td><td>R62453</td></td<>	Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Chloromethane ND 3.0 µg/L 1 8/27/2019 1:05:11 PM R62 2-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,3-Dichloropropene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobertene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND<	Chloroethane	ND	2.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
2-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,3-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromochloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromomethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichlo	Chloroform	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
4-Chlorotoluene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,2-DCE ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 cis-1,3-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromochloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromomethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Di	Chloromethane	ND	3.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
cis-1,2-DCE ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 cis-1,3-Dichloropropene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Dibromochloromethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Dibromomethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND <	2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
cis-1,3-Dichloropropene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dibromo-3-chloropropane ND 2.0 µg/L 1 8/27/2019 1:05:11 PM R62 Dibromochloromethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Dibromomethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 µg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND <td>4-Chlorotoluene</td> <td>ND</td> <td>1.0</td> <td>μg/L</td> <td>1</td> <td>8/27/2019 1:05:11 PM</td> <td>R62453</td>	4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromochloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromomethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Dibromochloromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dibromomethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND	cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Dibromomethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND <	1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,2-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 <t< td=""><td>Dibromochloromethane</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td>8/27/2019 1:05:11 PM</td><td>R62453</td></t<>	Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,3-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 <t< td=""><td>Dibromomethane</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td>8/27/2019 1:05:11 PM</td><td>R62453</td></t<>	Dibromomethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,4-Dichlorobenzene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Dichlorodifluoromethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,1-Dichloroethane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloroethene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,1-Dichloroethene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,2-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,3-Dichloropropane ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62 2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
2,2-Dichloropropane ND 2.0 μg/L 1 8/27/2019 1:05:11 PM R62 1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
1,1-Dichloropropene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
	2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
Hexachlorobutadiene ND 1.0 μg/L 1 8/27/2019 1:05:11 PM R62	1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453
	Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event **Collection Date:**

Lab ID: 1908D80-003A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analy	st: RAA
2-Hexanone	ND	10	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
tert-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 1:05:11 PM	1 R62453
Surr: 1,2-Dichloroethane-d4	97.1	70-130	%Rec	1	8/27/2019 1:05:11 PM	1 R62453
Surr: 4-Bromofluorobenzene	97.3	70-130	%Rec	1	8/27/2019 1:05:11 PM	1 R62453
Surr: Dibromofluoromethane	100	70-130	%Rec	1	8/27/2019 1:05:11 PM	1 R62453
Surr: Toluene-d8	103	70-130	%Rec	1	8/27/2019 1:05:11 PM	1 R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-34

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 1:15:00 PM

Lab ID: 1908D80-004A **Matrix:** Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: RAA
Gasoline Range Organics (GRO)	1.3	0.050	mg/L	1	8/27/2019 1:34:10 PM	GW6245
Surr: BFB	95.4	70-130	%Rec	1	8/27/2019 1:34:10 PM	GW6245
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Naphthalene	ND	2.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Acetone	ND	10	μg/L	1	8/27/2019 1:34:10 PM	R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 1:34:10 PM	R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 1:34:10 PM	R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-34

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 1:15:00 PM

Lab ID: 1908D80-004A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analys	st: RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 1:34:10 PM	R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 1:34:10 PM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
tert-Butylbenzene	1.4	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 1:34:10 PM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 1:34:10 PM	R62453
Surr: 1,2-Dichloroethane-d4	95.1	70-130	%Rec	1	8/27/2019 1:34:10 PM	R62453
Surr: 4-Bromofluorobenzene	89.5	70-130	%Rec	1	8/27/2019 1:34:10 PM	R62453
Surr: Dibromofluoromethane	97.1	70-130	%Rec	1	8/27/2019 1:34:10 PM	R62453
Surr: Toluene-d8	101	70-130	%Rec	1	8/27/2019 1:34:10 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-34

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 1:15:00 PM

Lab ID: 1908D80-004B Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE					Anal	yst: JME
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	8/28/2019 9:02:39 P	PM 47076
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/28/2019 9:02:39 P	PM 47076
Surr: DNOP	114	52.7-168	%Rec	1	8/28/2019 9:02:39 P	PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

9/16/2019

Hall Environmental Analysis Laboratory, Inc.

Date Reported:

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-34

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 1:15:00 PM

Lab ID: 1908D80-004C Matrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed I	Batch ID
CARBON DIOXIDE						Analyst	: JRR
Total Carbon Dioxide	1100	1.0	Н	mg CO2/	1	8/26/2019 4:27:01 PM	R62429
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	0.64	0.50		mg/L	5	8/23/2019 11:28:49 AM	R62406
Chloride	250	10	*	mg/L	20	8/23/2019 11:41:40 AM	R62406
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	8/23/2019 11:28:49 AM	R62406
Bromide	3.4	0.50		mg/L	5	8/23/2019 11:28:49 AM	R62406
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	8/23/2019 11:28:49 AM	R62406
Phosphorus, Orthophosphate (As P)	ND	2.5		mg/L	5	8/23/2019 11:28:49 AM	R62406
Sulfate	77	2.5		mg/L	5	8/23/2019 11:28:49 AM	R62406
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: JRR
Conductivity	2800	5.0		µmhos/c	1	8/26/2019 4:27:01 PM	R62429
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	1152	20.00		mg/L Ca	1	8/26/2019 4:27:01 PM	R62429
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/26/2019 4:27:01 PM	R62429
Total Alkalinity (as CaCO3)	1152	20.00		mg/L Ca	1	8/26/2019 4:27:01 PM	R62429
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	1860	100	*D	mg/L	1	8/29/2019 8:45:00 AM	47078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-34

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 1:15:00 PM

Lab ID: 1908D80-004D Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 7470: MERCURY					Analyst: rde			
Mercury	ND	0.00020	mg/L	1	9/6/2019 4:58:04 PM	47323		
EPA 6010B: TOTAL RECOVERABLE METALS					Analy	st: bcv		
Arsenic	ND	0.020	mg/L	1	8/27/2019 1:00:20 PM	M 47018		
Barium	0.17	0.020	mg/L	1	8/27/2019 12:36:43 F	PM 47018		
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:36:43 F	PM 47018		
Chromium	ND	0.0060	mg/L	1	8/27/2019 12:36:43 F	PM 47018		
Lead	0.0087	0.0050	mg/L	1	8/27/2019 12:36:43 F	PM 47018		
Selenium	ND	0.050	mg/L	1	8/27/2019 12:36:43 F	PM 47018		
Silver	ND	0.0050	mg/L	1	8/27/2019 12:36:43 F	PM 47018		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported:

Lab Order: **1908D80**

9/16/2019

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

CLIENT:

Client Sample ID: MW-34

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 1:15:00 PM

Lab ID: 1908D80-004E Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analys	t: rde
Mercury	ND	0.00020	mg/L	1	9/10/2019 6:01:54 PM	47378
EPA METHOD 6010B: DISSOLVED METALS					Analys	t: bcv
Arsenic	0.027	0.020	mg/L	1	9/9/2019 9:02:06 AM	A62764
Barium	0.14	0.020	mg/L	1	9/9/2019 9:02:06 AM	A62764
Cadmium	ND	0.0020	mg/L	1	9/9/2019 9:02:06 AM	A62764
Calcium	140	5.0	mg/L	5	9/9/2019 9:03:48 AM	A62764
Chromium	ND	0.0060	mg/L	1	9/9/2019 9:02:06 AM	A62764
Copper	ND	0.0060	mg/L	1	9/9/2019 9:02:06 AM	A62764
Iron	2.5	0.10	mg/L	5	9/9/2019 9:03:48 AM	A62764
Lead	ND	0.0050	mg/L	1	9/9/2019 9:02:06 AM	A62764
Magnesium	23	1.0	mg/L	1	9/9/2019 9:02:06 AM	A62764
Manganese	3.6	0.010	mg/L	5	9/9/2019 9:03:48 AM	A62764
Potassium	1.3	1.0	mg/L	1	9/9/2019 9:02:06 AM	A62764
Selenium	ND	0.050	mg/L	1	9/9/2019 9:02:06 AM	A62764
Silver	ND	0.0050	mg/L	1	9/9/2019 9:02:06 AM	A62764
Sodium	490	10	mg/L	10	9/9/2019 12:03:17 PM	A62764
Uranium	ND	0.10	mg/L	1	9/9/2019 9:02:06 AM	A62764
Zinc	ND	0.020	mg/L	1	9/9/2019 9:02:06 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analys	st: RAA
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/27/2019 2:03:09 PM	GW6245
Surr: BFB	98.9	70-130	%Rec	1	8/27/2019 2:03:09 PM	GW6245
EPA METHOD 8260B: VOLATILES					Analys	st: RAA
Benzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	
Naphthalene	ND	2.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Acetone	ND	10	μg/L	1	8/27/2019 2:03:09 PM	R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 2:03:09 PM	R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 2:03:09 PM	R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analy	st: RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 2:03:09 PM	R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 2:03:09 PM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
tert-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 2:03:09 PM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 2:03:09 PM	R62453
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	8/27/2019 2:03:09 PM	R62453
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	8/27/2019 2:03:09 PM	R62453
Surr: Dibromofluoromethane	102	70-130	%Rec	1	8/27/2019 2:03:09 PM	R62453
Surr: Toluene-d8	101	70-130	%Rec	1	8/27/2019 2:03:09 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005B Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE					Ana	lyst: JME
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	8/28/2019 9:27:27 F	PM 47076
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/28/2019 9:27:27 F	PM 47076
Surr: DNOP	99.8	52.7-168	%Rec	1	8/28/2019 9:27:27 F	PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005C Matrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed I	Batch ID
CARBON DIOXIDE						Analyst	: JRR
Total Carbon Dioxide	10	1.0	Н	mg CO2/	1	8/26/2019 5:06:04 PM	R62429
EPA METHOD 300.0: ANIONS						Analyst	: MRA
Fluoride	ND	0.10		mg/L	1	8/23/2019 11:54:32 AM	R62406
Chloride	ND	0.50		mg/L	1	8/23/2019 11:54:32 AM	R62406
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	8/23/2019 11:54:32 AM	R62406
Bromide	ND	0.10		mg/L	1	8/23/2019 11:54:32 AM	R62406
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	8/23/2019 11:54:32 AM	R62406
Phosphorus, Orthophosphate (As P)	ND	0.50		mg/L	1	8/23/2019 11:54:32 AM	R62406
Sulfate	ND	0.50		mg/L	1	8/23/2019 11:54:32 AM	R62406
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: JRR
Conductivity	ND	5.0		µmhos/c	1	8/26/2019 5:06:04 PM	R62429
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	ND	20.00		mg/L Ca	1	8/26/2019 5:06:04 PM	R62429
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/26/2019 5:06:04 PM	R62429
Total Alkalinity (as CaCO3)	ND	20.00		mg/L Ca	1	8/26/2019 5:06:04 PM	R62429
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	ND	20.0		mg/L	1	8/29/2019 8:45:00 AM	47078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005D Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Anal	yst: rde
Mercury	ND	0.00020	mg/L	1	9/6/2019 5:05:00 PM	47323
EPA 6010B: TOTAL RECOVERABLE METALS					Anal	yst: bcv
Arsenic	ND	0.020	mg/L	1	8/27/2019 12:54:33	PM 47018
Barium	ND	0.020	mg/L	1	8/27/2019 12:38:31	PM 47018
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:38:31	PM 47018
Chromium	ND	0.0060	mg/L	1	8/27/2019 12:38:31	PM 47018
Lead	ND	0.0050	mg/L	1	8/27/2019 12:38:31	PM 47018
Selenium	ND	0.050	mg/L	1	8/27/2019 12:38:31	PM 47018
Silver	ND	0.0050	mg/L	1	8/27/2019 12:38:31	PM 47018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005E Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analys	st: rde
Mercury	ND	0.00020	mg/L	1	9/10/2019 6:04:12 PM	47378
EPA METHOD 6010B: DISSOLVED METALS					Analys	st: bcv
Arsenic	ND	0.020	mg/L	1	9/9/2019 12:05:11 PM	A62764
Barium	ND	0.020	mg/L	1	9/9/2019 9:11:16 AM	A62764
Cadmium	ND	0.0020	mg/L	1	9/9/2019 9:11:16 AM	A62764
Calcium	ND	1.0	mg/L	1	9/9/2019 9:11:16 AM	A62764
Chromium	ND	0.0060	mg/L	1	9/9/2019 9:11:16 AM	A62764
Copper	ND	0.0060	mg/L	1	9/9/2019 9:11:16 AM	A62764
Iron	ND	0.020	mg/L	1	9/9/2019 9:11:16 AM	A62764
Lead	ND	0.0050	mg/L	1	9/9/2019 9:11:16 AM	A62764
Magnesium	ND	1.0	mg/L	1	9/9/2019 9:11:16 AM	A62764
Manganese	ND	0.0020	mg/L	1	9/9/2019 9:11:16 AM	A62764
Potassium	ND	1.0	mg/L	1	9/9/2019 9:11:16 AM	A62764
Selenium	ND	0.050	mg/L	1	9/9/2019 9:11:16 AM	A62764
Silver	ND	0.0050	mg/L	1	9/9/2019 9:11:16 AM	A62764
Sodium	ND	1.0	mg/L	1	9/9/2019 9:11:16 AM	A62764
Uranium	ND	0.10	mg/L	1	9/9/2019 9:11:16 AM	A62764
Zinc	0.025	0.020	mg/L	1	9/9/2019 9:11:16 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005F Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES					Analyst: DA l			
Acenaphthene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
Acenaphthylene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Aniline	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Anthracene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Azobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Benz(a)anthracene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Benzo(a)pyrene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Benzo(b)fluoranthene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Benzo(g,h,i)perylene	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Benzo(k)fluoranthene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Benzoic acid	ND	20	μg/L	1	8/29/2019 6:53:46 PM	47026		
Benzyl alcohol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Bis(2-chloroethyl)ether	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	8/29/2019 6:53:46 PM			
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
4-Bromophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Butyl benzyl phthalate	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Carbazole	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
4-Chloro-3-methylphenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
4-Chloroaniline	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
2-Chloronaphthalene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
2-Chlorophenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
Chrysene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Di-n-butyl phthalate	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Di-n-octyl phthalate	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Dibenz(a,h)anthracene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Dibenzofuran	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
1,2-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
1,3-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
1,4-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
3,3´-Dichlorobenzidine	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Diethyl phthalate	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Dimethyl phthalate	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,4-Dichlorophenol	ND	20	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,4-Dimethylphenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,4-Dinitrophenol	ND	20	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,4-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,6-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Blank #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:10:00 PM

Lab ID: 1908D80-005F Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES					Analyst: DAM			
Fluoranthene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Fluorene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Hexachlorobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Hexachlorobutadiene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Hexachloroethane	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Isophorone	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
1-Methylnaphthalene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
2-Methylnaphthalene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
2-Methylphenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
3+4-Methylphenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
N-Nitrosodimethylamine	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
N-Nitrosodiphenylamine	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Naphthalene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
2-Nitroaniline	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
3-Nitroaniline	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
4-Nitroaniline	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Nitrobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
2-Nitrophenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
4-Nitrophenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Pentachlorophenol	ND	20	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Phenanthrene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	1 47026		
Phenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
Pyrene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
Pyridine	ND	10	μg/L	1	8/29/2019 6:53:46 PM	l 47026		
1,2,4-Trichlorobenzene	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,4,5-Trichlorophenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
2,4,6-Trichlorophenol	ND	10	μg/L	1	8/29/2019 6:53:46 PM	47026		
Surr: 2-Fluorophenol	56.7	15-101	%Rec	1	8/29/2019 6:53:46 PM	l 47026		
Surr: Phenol-d5	41.4	15-84.6	%Rec	1	8/29/2019 6:53:46 PM	l 47026		
Surr: 2,4,6-Tribromophenol	60.3	27.8-112	%Rec	1	8/29/2019 6:53:46 PM	47026		
Surr: Nitrobenzene-d5	79.1	33-113	%Rec	1	8/29/2019 6:53:46 PM	47026		
Surr: 2-Fluorobiphenyl	65.1	26.6-107	%Rec	1	8/29/2019 6:53:46 PM	47026		
Surr: 4-Terphenyl-d14	64.6	18.7-148	%Rec	1	8/29/2019 6:53:46 PM	1 47026		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 9/16/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-11

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analys	st: RAA
Gasoline Range Organics (GRO)	2.4	0.050	mg/L	1	8/27/2019 2:32:10 PM	GW6245
Surr: BFB	101	70-130	%Rec	1	8/27/2019 2:32:10 PM	
EPA METHOD 8260B: VOLATILES					Analys	st: RAA
Benzene	8.0	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Toluene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,2,4-Trimethylbenzene	110	10	μg/L	10	8/28/2019 3:34:21 PM	
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Naphthalene	99	20	μg/L	10	8/28/2019 3:34:21 PM	
1-Methylnaphthalene	18	4.0	μg/L	1	8/27/2019 2:32:10 PM	
2-Methylnaphthalene	28	4.0	μg/L	1	8/27/2019 2:32:10 PM	
Acetone	ND	10	μg/L	1	8/27/2019 2:32:10 PM	
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Bromoform	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Bromomethane	ND	3.0	μg/L	1	8/27/2019 2:32:10 PM	
2-Butanone	ND	10	μg/L	1	8/27/2019 2:32:10 PM	
Carbon disulfide	ND	10	μg/L	1	8/27/2019 2:32:10 PM	
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
Chloroethane	ND	2.0	μg/L	1	8/27/2019 2:32:10 PM	
Chloroform	ND	1.0		1	8/27/2019 2:32:10 PM	
Chloromethane	ND	3.0	μg/L	1	8/27/2019 2:32:10 PM	
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
cis-1,2-DCE	ND	1.0	μg/L μg/L	1	8/27/2019 2:32:10 PM	
cis-1,3-DGE cis-1,3-Dichloropropene	ND ND	1.0		1	8/27/2019 2:32:10 PM	
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 2:32:10 PM	
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
	ND ND		μg/L	1		
Dibromomethane		1.0	μg/L		8/27/2019 2:32:10 PM	
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	1.0	μg/L	1	8/27/2019 2:32:10 PM 8/27/2019 2:32:10 PM	
·	ND ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,1-Dichloroethane		1.0	μg/L	1		
•	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-11

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analy	st: RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 2:32:10 PM	R62453
Isopropylbenzene	81	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
4-Isopropyltoluene	3.0	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 2:32:10 PM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
n-Butylbenzene	3.3	3.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
n-Propylbenzene	86	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
sec-Butylbenzene	13	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
tert-Butylbenzene	2.5	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 2:32:10 PM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 2:32:10 PM	R62453
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	8/27/2019 2:32:10 PM	R62453
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	8/27/2019 2:32:10 PM	R62453
Surr: Dibromofluoromethane	100	70-130	%Rec	1	8/27/2019 2:32:10 PM	R62453
Surr: Toluene-d8	105	70-130	%Rec	1	8/27/2019 2:32:10 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

9/16/2019

Hall Environmental Analysis Laboratory, Inc.

Date Reported:

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-11

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006B Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE					Anal	yst: JME
Diesel Range Organics (DRO)	0.52	0.40	mg/L	1	8/28/2019 9:52:13 P	PM 47076
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/28/2019 9:52:13 P	PM 47076
Surr: DNOP	111	52.7-168	%Rec	1	8/28/2019 9:52:13 P	PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-11

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006C Matrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed B	Batch ID
CARBON DIOXIDE						Analyst	JRR
Total Carbon Dioxide	970	2.5	Н	mg CO2/	2.5	8/28/2019 11:58:41 PM	R62496
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	ND	0.50		mg/L	5	8/23/2019 12:20:15 PM	R62406
Chloride	240	10		mg/L	20	8/23/2019 12:33:08 PM	R62406
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	8/23/2019 12:20:15 PM	R62406
Bromide	3.8	0.50		mg/L	5	8/23/2019 12:20:15 PM	R62406
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	8/23/2019 12:20:15 PM	R62406
Phosphorus, Orthophosphate (As P)	ND	2.5		mg/L	5	8/23/2019 12:20:15 PM	R62406
Sulfate	6.9	2.5		mg/L	5	8/23/2019 12:20:15 PM	R62406
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	2800	5.0		µmhos/c	1	8/26/2019 5:12:04 PM	R62429
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	1084	50.00		mg/L Ca	2.5	8/28/2019 11:58:41 PM	R62496
Carbonate (As CaCO3)	ND	5.000		mg/L Ca	2.5	8/28/2019 11:58:41 PM	R62496
Total Alkalinity (as CaCO3)	1084	50.00		mg/L Ca	2.5	8/28/2019 11:58:41 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	JMT
Total Dissolved Solids	1820	100	*D	mg/L	1	8/29/2019 8:45:00 AM	47078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-11

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006D Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analy	/st: rde
Mercury	ND	0.00020	mg/L	1	9/6/2019 5:07:19 PM	47323
EPA 6010B: TOTAL RECOVERABLE METALS					Analy	/st: bcv
Arsenic	ND	0.020	mg/L	1	8/27/2019 12:58:30 F	PM 47018
Barium	0.99	0.020	mg/L	1	8/27/2019 12:40:36 F	PM 47018
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:40:36 F	PM 47018
Chromium	ND	0.0060	mg/L	1	8/27/2019 12:40:36 F	PM 47018
Lead	0.014	0.0050	mg/L	1	8/27/2019 12:40:36 F	PM 47018
Selenium	ND	0.050	mg/L	1	8/27/2019 12:40:36 F	PM 47018
Silver	ND	0.0050	mg/L	1	8/27/2019 12:40:36 F	PM 47018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported:

Lab Order: **1908D80**

9/16/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-11

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006E Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analys	st: rde
Mercury	ND	0.00020	mg/L	1	9/11/2019 11:01:57 Al	M 47378
EPA METHOD 6010B: DISSOLVED METALS					Analys	st: bcv
Arsenic	ND	0.020	mg/L	1	9/9/2019 12:07:00 PM	A62764
Barium	0.97	0.020	mg/L	1	9/9/2019 9:14:58 AM	A62764
Cadmium	ND	0.0020	mg/L	1	9/9/2019 9:14:58 AM	A62764
Calcium	130	5.0	mg/L	5	9/9/2019 9:16:40 AM	A62764
Chromium	ND	0.0060	mg/L	1	9/9/2019 9:14:58 AM	A62764
Copper	ND	0.0060	mg/L	1	9/9/2019 9:14:58 AM	A62764
Iron	6.5	0.20	mg/L	10	9/11/2019 12:45:38 Pf	M A62841
Lead	0.0068	0.0050	mg/L	1	9/9/2019 9:14:58 AM	A62764
Magnesium	31	1.0	mg/L	1	9/9/2019 9:14:58 AM	A62764
Manganese	2.2	0.010	mg/L	5	9/9/2019 9:16:40 AM	A62764
Potassium	1.9	1.0	mg/L	1	9/9/2019 9:14:58 AM	A62764
Selenium	ND	0.050	mg/L	1	9/9/2019 9:14:58 AM	A62764
Silver	ND	0.0050	mg/L	1	9/9/2019 9:14:58 AM	A62764
Sodium	490	10	mg/L	10	9/9/2019 12:08:41 PM	A62764
Uranium	ND	0.10	mg/L	1	9/9/2019 9:14:58 AM	A62764
Zinc	ND	0.020	mg/L	1	9/9/2019 9:14:58 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported:

Lab Order: **1908D80**

9/16/2019

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

CLIENT:

Client Sample ID: MW-11

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006F Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES					Analys	st: DAM
Acenaphthene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Acenaphthylene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Aniline	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Anthracene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Azobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	
Benz(a)anthracene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Benzo(a)pyrene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Benzo(b)fluoranthene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Benzo(g,h,i)perylene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Benzo(k)fluoranthene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Benzoic acid	ND	20	μg/L	1	8/29/2019 7:24:15 PM	47026
Benzyl alcohol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Bis(2-chloroethyl)ether	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
4-Bromophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Butyl benzyl phthalate	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Carbazole	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
4-Chloro-3-methylphenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
4-Chloroaniline	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
2-Chloronaphthalene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
2-Chlorophenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Chrysene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Di-n-butyl phthalate	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Di-n-octyl phthalate	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Dibenz(a,h)anthracene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Dibenzofuran	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
1,2-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
1,3-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
1,4-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
3,3´-Dichlorobenzidine	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Diethyl phthalate	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
Dimethyl phthalate	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
2,4-Dichlorophenol	ND	20	μg/L	1	8/29/2019 7:24:15 PM	47026
2,4-Dimethylphenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	8/29/2019 7:24:15 PM	47026
2,4-Dinitrophenol	ND	20	μg/L	1	8/29/2019 7:24:15 PM	47026
2,4-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026
2,6-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-11

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 2:40:00 PM

Lab ID: 1908D80-006F Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES					Analyst: DAM			
Fluoranthene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Fluorene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Hexachlorobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Hexachlorobutadiene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Hexachloroethane	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Isophorone	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
1-Methylnaphthalene	34	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
2-Methylnaphthalene	24	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
2-Methylphenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
3+4-Methylphenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
N-Nitrosodimethylamine	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
N-Nitrosodiphenylamine	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Naphthalene	85	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
2-Nitroaniline	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
3-Nitroaniline	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
4-Nitroaniline	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Nitrobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
2-Nitrophenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
4-Nitrophenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Pentachlorophenol	ND	20	μg/L	1	8/29/2019 7:24:15 PM	47026		
Phenanthrene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Phenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Pyrene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Pyridine	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
1,2,4-Trichlorobenzene	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
2,4,5-Trichlorophenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
2,4,6-Trichlorophenol	ND	10	μg/L	1	8/29/2019 7:24:15 PM	47026		
Surr: 2-Fluorophenol	52.6	15-101	%Rec	1	8/29/2019 7:24:15 PM	47026		
Surr: Phenol-d5	44.3	15-84.6	%Rec	1	8/29/2019 7:24:15 PM	47026		
Surr: 2,4,6-Tribromophenol	65.6	27.8-112	%Rec	1	8/29/2019 7:24:15 PM	47026		
Surr: Nitrobenzene-d5	82.0	33-113	%Rec	1	8/29/2019 7:24:15 PM	47026		
Surr: 2-Fluorobiphenyl	73.9	26.6-107	%Rec	1	8/29/2019 7:24:15 PM	47026		
Surr: 4-Terphenyl-d14	69.6	18.7-148	%Rec	1	8/29/2019 7:24:15 PM	47026		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007AMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analy	st: RAA
Gasoline Range Organics (GRO)	1.8	0.050	mg/L	1	8/27/2019 3:01:13 PM	1 GW6245
Surr: BFB	102	70-130	%Rec	1	8/27/2019 3:01:13 PM	d GW6245
EPA METHOD 8260B: VOLATILES					Analy	st: RAA
Benzene	7.0	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,2,4-Trimethylbenzene	93	10	μg/L	10	8/28/2019 4:03:20 PM	1 R62453
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Naphthalene	92	2.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1-Methylnaphthalene	16	4.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
2-Methylnaphthalene	24	4.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Acetone	ND	10	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	1 R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007AMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analys	st: RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 3:01:13 PM	R62453
Isopropylbenzene	71	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
4-Isopropyltoluene	2.3	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 3:01:13 PM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
n-Propylbenzene	70	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
sec-Butylbenzene	10	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
tert-Butylbenzene	2.1	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 3:01:13 PM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 3:01:13 PM	R62453
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	1	8/27/2019 3:01:13 PM	R62453
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/27/2019 3:01:13 PM	R62453
Surr: Dibromofluoromethane	112	70-130	%Rec	1	8/27/2019 3:01:13 PM	R62453
Surr: Toluene-d8	105	70-130	%Rec	1	8/27/2019 3:01:13 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007BMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE					Anal	yst: JME
Diesel Range Organics (DRO)	0.53	0.40	mg/L	1	8/28/2019 10:16:49	PM 47076
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/28/2019 10:16:49	PM 47076
Surr: DNOP	114	52.7-168	%Rec	1	8/28/2019 10:16:49	PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007CMatrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed B	atch ID
CARBON DIOXIDE						Analyst:	JRR
Total Carbon Dioxide	960	2.5	Н	mg CO2/	2.5	8/29/2019 12:16:17 AM	R62496
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Fluoride	ND	0.50		mg/L	5	8/23/2019 12:45:59 PM	R62406
Chloride	250	10	*	mg/L	20	8/23/2019 12:58:51 PM	R62406
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	8/23/2019 12:45:59 PM	R62406
Bromide	3.9	0.50		mg/L	5	8/23/2019 12:45:59 PM	R62406
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	8/23/2019 12:45:59 PM	R62406
Phosphorus, Orthophosphate (As P)	ND	2.5		mg/L	5	8/23/2019 12:45:59 PM	R62406
Sulfate	9.6	2.5		mg/L	5	8/23/2019 12:45:59 PM	R62406
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	JRR
Conductivity	2900	5.0		µmhos/c	1	8/26/2019 5:50:01 PM	R62429
SM2320B: ALKALINITY						Analyst:	JRR
Bicarbonate (As CaCO3)	1073	50.00		mg/L Ca	2.5	8/29/2019 12:16:17 AM	R62496
Carbonate (As CaCO3)	ND	5.000		mg/L Ca	2.5	8/29/2019 12:16:17 AM	R62496
Total Alkalinity (as CaCO3)	1073	50.00		mg/L Ca	2.5	8/29/2019 12:16:17 AM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	JMT
Total Dissolved Solids	1800	100	*D	mg/L	1	8/29/2019 8:45:00 AM	47078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007DMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID	
EPA METHOD 7470: MERCURY					Analyst: rde		
Mercury	ND	0.00020	mg/L	1	9/6/2019 5:09:29 PM	47323	
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst: bcv		
Arsenic	ND	0.020	mg/L	1	8/27/2019 12:56:40 F	PM 47018	
Barium	1.0	0.020	mg/L	1	8/27/2019 12:42:24 F	PM 47018	
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:42:24 F	PM 47018	
Chromium	ND	0.0060	mg/L	1	8/27/2019 12:42:24 F	PM 47018	
Lead	0.0072	0.0050	mg/L	1	8/27/2019 12:42:24 F	PM 47018	
Selenium	ND	0.050	mg/L	1	8/27/2019 12:42:24 F	PM 47018	
Silver	ND	0.0050	mg/L	1	8/27/2019 12:42:24 F	PM 47018	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007EMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed I	Batch ID
EPA METHOD 7470: MERCURY					Analyst	: rde
Mercury	ND	0.00020	mg/L	1	9/11/2019 11:04:15 AM	47378
EPA METHOD 6010B: DISSOLVED METALS					Analyst	bcv
Arsenic	ND	0.020	mg/L	1	9/9/2019 12:10:22 PM	A62764
Barium	0.97	0.020	mg/L	1	9/9/2019 9:18:21 AM	A62764
Cadmium	ND	0.0020	mg/L	1	9/9/2019 9:18:21 AM	A62764
Calcium	140	5.0	mg/L	5	9/9/2019 9:20:02 AM	A62764
Chromium	ND	0.0060	mg/L	1	9/9/2019 9:18:21 AM	A62764
Copper	ND	0.0060	mg/L	1	9/9/2019 9:18:21 AM	A62764
Iron	6.5	0.20	mg/L	10	9/11/2019 12:47:34 PM	A62841
Lead	0.0080	0.0050	mg/L	1	9/9/2019 9:18:21 AM	A62764
Magnesium	31	1.0	mg/L	1	9/9/2019 9:18:21 AM	A62764
Manganese	2.2	0.010	mg/L	5	9/9/2019 9:20:02 AM	A62764
Potassium	1.9	1.0	mg/L	1	9/9/2019 9:18:21 AM	A62764
Selenium	ND	0.050	mg/L	1	9/9/2019 9:18:21 AM	A62764
Silver	ND	0.0050	mg/L	1	9/9/2019 9:18:21 AM	A62764
Sodium	500	10	mg/L	10	9/9/2019 12:12:03 PM	A62764
Uranium	ND	0.10	mg/L	1	9/9/2019 9:18:21 AM	A62764
Zinc	ND	0.020	mg/L	1	9/9/2019 9:18:21 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007FMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES					Analys	st: DAM
Acenaphthene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Acenaphthylene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	l 47026
Aniline	ND	10	μg/L	1	8/29/2019 7:54:42 PM	l 47026
Anthracene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Azobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benz(a)anthracene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benzo(a)pyrene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benzo(b)fluoranthene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benzo(g,h,i)perylene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benzo(k)fluoranthene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benzoic acid	ND	20	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Benzyl alcohol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Bis(2-chloroethyl)ether	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	8/29/2019 7:54:42 PM	l 47026
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
4-Bromophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Butyl benzyl phthalate	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Carbazole	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
4-Chloro-3-methylphenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
4-Chloroaniline	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2-Chloronaphthalene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2-Chlorophenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Chrysene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Di-n-butyl phthalate	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Di-n-octyl phthalate	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Dibenz(a,h)anthracene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Dibenzofuran	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
1,2-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
1,3-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
1,4-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
3,3´-Dichlorobenzidine	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Diethyl phthalate	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Dimethyl phthalate	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
2,4-Dichlorophenol	ND	20	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2,4-Dimethylphenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	8/29/2019 7:54:42 PM	47026
2,4-Dinitrophenol	ND	20	μg/L	1	8/29/2019 7:54:42 PM	47026
2,4-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
2,6-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DUPLICATE #1

Project:2019 Annual GW Sampling EventCollection Date: 8/21/2019Lab ID:1908D80-007FMatrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES					Analy	st: DAM
Fluoranthene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	l 47026
Fluorene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Hexachlorobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Hexachlorobutadiene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Hexachloroethane	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
Isophorone	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
1-Methylnaphthalene	32	10	μg/L	1	8/29/2019 7:54:42 PM	47026
2-Methylnaphthalene	20	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2-Methylphenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
3+4-Methylphenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
N-Nitrosodimethylamine	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
N-Nitrosodiphenylamine	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Naphthalene	72	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2-Nitroaniline	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
3-Nitroaniline	ND	10	μg/L	1	8/29/2019 7:54:42 PM	47026
4-Nitroaniline	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Nitrobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2-Nitrophenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
4-Nitrophenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Pentachlorophenol	ND	20	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Phenanthrene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Phenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Pyrene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Pyridine	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
1,2,4-Trichlorobenzene	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2,4,5-Trichlorophenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
2,4,6-Trichlorophenol	ND	10	μg/L	1	8/29/2019 7:54:42 PM	1 47026
Surr: 2-Fluorophenol	50.8	15-101	%Rec	1	8/29/2019 7:54:42 PM	1 47026
Surr: Phenol-d5	39.9	15-84.6	%Rec	1	8/29/2019 7:54:42 PM	1 47026
Surr: 2,4,6-Tribromophenol	60.2	27.8-112	%Rec	1	8/29/2019 7:54:42 PM	1 47026
Surr: Nitrobenzene-d5	79.3	33-113	%Rec	1	8/29/2019 7:54:42 PM	1 47026
Surr: 2-Fluorobiphenyl	70.7	26.6-107	%Rec	1	8/29/2019 7:54:42 PM	1 47026
Surr: 4-Terphenyl-d14	65.3	18.7-148	%Rec	1	8/29/2019 7:54:42 PM	1 47026

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TRIP BLANK

Project: 2019 Annual GW Sampling Event **Collection Date:**

Lab ID: 1908D80-008A **Matrix:** Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: RAA
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/27/2019 3:30:17 PM	GW6245
Surr: BFB	104	70-130	%Rec	1	8/27/2019 3:30:17 PM	GW6245
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Naphthalene	ND	2.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Acetone	ND	10	μg/L	1	8/27/2019 3:30:17 PM	R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 3:30:17 PM	R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 3:30:17 PM	R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2-Didiliotopiopalie	ND	1.0	μ 9 / L	'	0/21/2018 3.30.17 FW	1102400

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Collection Date:

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TRIP BLANK

Project: 2019 Annual GW Sampling Event

Lab ID: 1908D80-008A Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 3:30:17 PM	R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 3:30:17 PM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
tert-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 3:30:17 PM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 3:30:17 PM	R62453
Surr: 1,2-Dichloroethane-d4	94.0	70-130	%Rec	1	8/27/2019 3:30:17 PM	R62453
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	8/27/2019 3:30:17 PM	R62453
Surr: Dibromofluoromethane	97.0	70-130	%Rec	1	8/27/2019 3:30:17 PM	R62453
Surr: Toluene-d8	106	70-130	%Rec	1	8/27/2019 3:30:17 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 4:00:00 PM

Lab ID: 1908D80-009A **Matrix:** Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: RAA
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/27/2019 3:59:20 PM	GW6245
Surr: BFB	96.2	70-130	%Rec	1	8/27/2019 3:59:20 PM	GW6245
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Toluene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Ethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Naphthalene	ND	2.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
2-Methylnaphthalene	ND	4.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Acetone	ND	10	μg/L	1	8/27/2019 3:59:20 PM	R62453
Bromobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Bromodichloromethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Bromoform	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Bromomethane	ND	3.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
2-Butanone	ND	10	μg/L	1	8/27/2019 3:59:20 PM	R62453
Carbon disulfide	ND	10	μg/L	1	8/27/2019 3:59:20 PM	R62453
Carbon Tetrachloride	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Chlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Chloroethane	ND	2.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Chloroform	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Chloromethane	ND	3.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
2-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
4-Chlorotoluene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
cis-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Dibromochloromethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Dibromomethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1-Dichloroethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1-Dichloroethene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 4:00:00 PM

Lab ID: 1908D80-009A **Matrix:** Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES					Analys	st: RAA
1,3-Dichloropropane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
2,2-Dichloropropane	ND	2.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Hexachlorobutadiene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
2-Hexanone	ND	10	μg/L	1	8/27/2019 3:59:20 PM	R62453
Isopropylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
4-Isopropyltoluene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
4-Methyl-2-pentanone	ND	10	μg/L	1	8/27/2019 3:59:20 PM	R62453
Methylene Chloride	ND	3.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
n-Butylbenzene	ND	3.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
n-Propylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
sec-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Styrene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
tert-Butylbenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
trans-1,2-DCE	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Trichlorofluoromethane	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Vinyl chloride	ND	1.0	μg/L	1	8/27/2019 3:59:20 PM	R62453
Xylenes, Total	ND	1.5	μg/L	1	8/27/2019 3:59:20 PM	R62453
Surr: 1,2-Dichloroethane-d4	96.7	70-130	%Rec	1	8/27/2019 3:59:20 PM	R62453
Surr: 4-Bromofluorobenzene	92.5	70-130	%Rec	1	8/27/2019 3:59:20 PM	R62453
Surr: Dibromofluoromethane	98.7	70-130	%Rec	1	8/27/2019 3:59:20 PM	R62453
Surr: Toluene-d8	101	70-130	%Rec	1	8/27/2019 3:59:20 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - 8 % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 4:00:00 PM Lab ID: 1908D80-009B Matrix: Aqueous

Analyses Result **RL Qual Units DF** Date Analyzed **Batch ID EPA METHOD 8015D: DIESEL RANGE** Analyst: JME Diesel Range Organics (DRO) ND 0.40 mg/L 8/28/2019 10:41:37 PM 47076 Motor Oil Range Organics (MRO) 8/28/2019 10:41:37 PM 47076 ND 2.5 mg/L 1 Surr: DNOP 118 52.7-168 %Rec 8/28/2019 10:41:37 PM 47076

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported:

Lab Order: **1908D80**

9/16/2019

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

2019 Annual GW Sampling Event

1908D80-009C

Client Sample ID: EQUIPMENT BLANK #1

Collection Date: 8/21/2019 4:00:00 PM

Matrix: Aqueous

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID
CARBON DIOXIDE						Analys	st: JRR
Total Carbon Dioxide	9.6	1.0	Н	mg CO2/	1	8/26/2019 6:26:41 PM	R62429
EPA METHOD 300.0: ANIONS						Analys	st: MRA
Fluoride	ND	0.10		mg/L	1	8/23/2019 1:11:42 PM	R62406
Chloride	ND	0.50		mg/L	1	8/23/2019 1:11:42 PM	R62406
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	8/23/2019 1:11:42 PM	R62406
Bromide	ND	0.10		mg/L	1	8/23/2019 1:11:42 PM	R62406
Nitrogen, Nitrate (As N)	0.10	0.10		mg/L	1	8/23/2019 1:11:42 PM	R62406
Phosphorus, Orthophosphate (As P)	ND	0.50		mg/L	1	8/23/2019 1:11:42 PM	R62406
Sulfate	ND	0.50		mg/L	1	8/23/2019 1:11:42 PM	R62406
SM2510B: SPECIFIC CONDUCTANCE						Analys	st: JRR
Conductivity	ND	5.0		µmhos/c	1	8/26/2019 6:26:41 PM	R62429
SM2320B: ALKALINITY						Analys	st: JRR
Bicarbonate (As CaCO3)	ND	20.00		mg/L Ca	1	8/26/2019 6:26:41 PM	R62429
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	8/26/2019 6:26:41 PM	R62429
Total Alkalinity (as CaCO3)	ND	20.00		mg/L Ca	1	8/26/2019 6:26:41 PM	R62429
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analys	st: JMT
Total Dissolved Solids	ND	20.0		mg/L	1	8/29/2019 8:45:00 AM	47078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

CLIENT:

Project:

Lab ID:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 4:00:00 PM

Lab ID: 1908D80-009D Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 7470: MERCURY					Analy	/st: rde
Mercury	ND	0.00020	mg/L	1	9/6/2019 5:11:40 PM	47323
EPA 6010B: TOTAL RECOVERABLE METALS					Analy	/st: bcv
Arsenic	ND	0.020	mg/L	1	8/27/2019 12:50:25 F	PM 47018
Barium	ND	0.020	mg/L	1	8/27/2019 12:50:25 F	PM 47018
Cadmium	ND	0.0020	mg/L	1	8/27/2019 12:50:25 F	PM 47018
Chromium	ND	0.0060	mg/L	1	8/27/2019 12:50:25 F	PM 47018
Lead	ND	0.0050	mg/L	1	8/27/2019 12:50:25 F	PM 47018
Selenium	ND	0.050	mg/L	1	8/27/2019 12:50:25 F	PM 47018
Silver	ND	0.0050	mg/L	1	8/27/2019 12:50:25 F	PM 47018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 1908D80

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 4:00:00 PM Lab ID: 1908D80-009E Matrix: Aqueous

Analyses Result **RL Qual Units DF** Date Analyzed **Batch ID EPA METHOD 7470: MERCURY** Analyst: rde ND 0.00020 9/11/2019 11:06:27 AM 47378 mg/L **EPA METHOD 6010B: DISSOLVED METALS** Analyst: bcv 9/9/2019 12:13:44 PM Arsenic ND 0.020 mg/L A62764 1 Barium 0.020 1 9/9/2019 9:21:43 AM A62764 ND mg/L Cadmium ND 0.0020 mg/L 1 9/9/2019 9:21:43 AM A62764 Calcium 9/9/2019 9:21:43 AM ND 1.0 mg/L 1 A62764 ND Chromium 0.0060 mg/L 9/9/2019 9:21:43 AM 1 A62764 Copper ND 0.0060 mg/L 1 9/9/2019 9:21:43 AM A62764 Iron ND 0.020 mg/L 1 9/9/2019 9:21:43 AM A62764 Lead ND 0.0050 mg/L 1 9/9/2019 9:21:43 AM A62764 Magnesium ND 1.0 mg/L 1 9/9/2019 9:21:43 AM A62764 ND 0.0020 9/9/2019 9:21:43 AM Manganese mg/L 1 A62764 Potassium ND 1.0 mg/L 9/9/2019 9:21:43 AM A62764 ND Selenium 0.050 mg/L 1 9/9/2019 9:21:43 AM A62764 Silver ND 0.0050 mg/L 1 9/9/2019 9:21:43 AM A62764 Sodium ND mg/L 1 9/9/2019 9:21:43 AM 1.0 A62764

ND

0.022

0.10

0.020

mg/L

mg/L

1

9/9/2019 9:21:43 AM

9/9/2019 9:21:43 AM

A62764

A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Uranium

Zinc

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/21/2019 4:00:00 PM

Lab ID: 1908D80-009F Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES					Analys	st: DAM
Acenaphthene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Acenaphthylene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Aniline	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Anthracene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Azobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Benz(a)anthracene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Benzo(a)pyrene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Benzo(b)fluoranthene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Benzo(g,h,i)perylene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Benzo(k)fluoranthene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Benzoic acid	ND	20	μg/L	1	8/29/2019 8:25:06 PM	47026
Benzyl alcohol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Bis(2-chloroethyl)ether	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4-Bromophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Butyl benzyl phthalate	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Carbazole	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4-Chloro-3-methylphenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4-Chloroaniline	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2-Chloronaphthalene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2-Chlorophenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Chrysene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Di-n-butyl phthalate	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Di-n-octyl phthalate	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Dibenz(a,h)anthracene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Dibenzofuran	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
1,2-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
1,3-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
1,4-Dichlorobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
3,3´-Dichlorobenzidine	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Diethyl phthalate	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Dimethyl phthalate	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2,4-Dichlorophenol	ND	20	μg/L	1	8/29/2019 8:25:06 PM	47026
2,4-Dimethylphenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	8/29/2019 8:25:06 PM	47026
2,4-Dinitrophenol	ND	20	μg/L	1	8/29/2019 8:25:06 PM	47026
2,4-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2,6-Dinitrotoluene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/16/2019

CLIENT: Western Refining Southwest, Inc. Client Sample ID: EQUIPMENT BLANK #1

Project: 2019 Annual GW Sampling Event Collection Date: 8/21/2019 4:00:00 PM

Lab ID: 1908D80-009F Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES					Analys	st: DAM
Fluoranthene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Fluorene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Hexachlorobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Hexachlorobutadiene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Hexachloroethane	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Isophorone	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
1-Methylnaphthalene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2-Methylnaphthalene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2-Methylphenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
3+4-Methylphenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
N-Nitrosodimethylamine	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
N-Nitrosodiphenylamine	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Naphthalene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2-Nitroaniline	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
3-Nitroaniline	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4-Nitroaniline	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Nitrobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2-Nitrophenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
4-Nitrophenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Pentachlorophenol	ND	20	μg/L	1	8/29/2019 8:25:06 PM	47026
Phenanthrene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Phenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Pyrene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Pyridine	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
1,2,4-Trichlorobenzene	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2,4,5-Trichlorophenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
2,4,6-Trichlorophenol	ND	10	μg/L	1	8/29/2019 8:25:06 PM	47026
Surr: 2-Fluorophenol	45.0	15-101	%Rec	1	8/29/2019 8:25:06 PM	47026
Surr: Phenol-d5	33.6	15-84.6	%Rec	1	8/29/2019 8:25:06 PM	47026
Surr: 2,4,6-Tribromophenol	56.4	27.8-112	%Rec	1	8/29/2019 8:25:06 PM	47026
Surr: Nitrobenzene-d5	64.2	33-113	%Rec	1	8/29/2019 8:25:06 PM	47026
Surr: 2-Fluorobiphenyl	55.3	26.6-107	%Rec	1	8/29/2019 8:25:06 PM	47026
Surr: 4-Terphenyl-d14	59.8	18.7-148	%Rec	1	8/29/2019 8:25:06 PM	47026

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB	SampT	SampType: mblk			tCode: El	PA Method	300.0: Anions	;			
Client ID: PBW	Batch	n ID: R6	2406	F	RunNo: 6	2406					
Prep Date:	Analysis Date: 8/23/2019			SeqNo: 2121353			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	ND	0.10									
Chloride	ND	0.50									
Nitrogen, Nitrite (As N)	ND	0.10									
Bromide	ND	0.10									
Nitrogen, Nitrate (As N)	ND	0.10									
Phosphorus, Orthophosphate (As P	ND	0.50									
Sulfate	ND	0.50									

Sample ID: LCS	ample ID: LCS SampType: Ics					TestCode: EPA Method 300.0: Anions						
Client ID: LCSW	Batc	h ID: R6	2406	F	RunNo: 6	2406						
Prep Date:	Analysis D	Date: 8/	23/2019	5	SeqNo: 2	121354	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Fluoride	0.52	0.10	0.5000	0	104	90	110					
Chloride	4.9	0.50	5.000	0	97.1	90	110					
Nitrogen, Nitrite (As N)	0.94	0.10	1.000	0	94.3	90	110					
Bromide	2.4	0.10	2.500	0	97.6	90	110					
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	101	90	110					
Phosphorus, Orthophosphate (As P	4.8	0.50	5.000	0	96.0	90	110					
Sulfate	9.8	0.50	10.00	0	98.0	90	110					

Sample ID: MB	SampT	SampType: mblk			tCode: El	PA Method	300.0: Anions	3		
Client ID: PBW	Batch	1D: R6	2756	F	RunNo: 6	2756				
Prep Date:	Analysis D	ate: 9/	7/2019	5	SeqNo: 2	137528	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								_
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								

Sample ID: LCS	SampT	Type: Ics	;	Tes	TestCode: EPA Method 300.0: Anions						
Client ID: LCSW	Batch	h ID: R6	2756	F	RunNo: 6	2756					
Prep Date:	Analysis D	Date: 9/	7/2019	S	SeqNo: 2	137529	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	0.52	0.10	0.5000	0	105	90	110				
Chloride	4.8	0.50	5.000	0	96.6	90	110				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 55 of 75

Hall Environmental Analysis Laboratory, Inc.

Analysis Date: 9/9/2019

PQL

0.50

10.00

Result

10

WO#: 1908D80

16-Sep-19

Client: Western Refining Southwest, Inc. **Project:** 2019 Annual GW Sampling Event

Sample ID: LCS	SampType: Ics TestCode: EPA Metho						300.0: Anions	3		
Client ID: LCSW	Batcl	n ID: R6	2756	F	RunNo: 6	2756				
Prep Date:	Analysis D	ate: 9/	7/2019	S	SeqNo: 2	137529	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Bromide	2.5	0.10	2.500	0	98.7	90	110			
Phosphorus, Orthophosphate (As P	4.8	0.50	5.000	0	95.3	90	110			
Sulfate	9.7	0.50	10.00	0	97.0	90	110			
Nitrate+Nitrite as N	3.5	0.20	3.500	0	98.9	90	110			
Sample ID: MB	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	300.0: Anions	5		
Sample ID: MB Client ID: PBW	•	ype: ME			tCode: El RunNo: 6 2		300.0: Anions	3		
·	•	n ID: R6	2780	F		2780	300.0: Anions Units: mg/L	S		
Client ID: PBW	Batcl	n ID: R6	2780 9/2019	F	RunNo: 6 2	2780		%RPD	RPDLimit	Qual
Client ID: PBW Prep Date:	Batcl Analysis D	n ID: R6 Date: 9/	2780 9/2019	F	RunNo: 62 SeqNo: 2	2780 138812	Units: mg/L		RPDLimit	Qual
Client ID: PBW Prep Date: Analyte	Batcl Analysis E Result ND	n ID: R6 Date: 9/	2780 9/2019 SPK value	SPK Ref Val	RunNo: 6: 6eqNo: 2 ⁻ %REC	2780 138812 LowLimit	Units: mg/L	%RPD	RPDLimit	Qual

SPK value SPK Ref Val %REC LowLimit

0

102

SeqNo: 2138813

Units: mg/L

HighLimit

110

90

%RPD

RPDLimit

Qual

Qualifiers:

Prep Date:

Analyte

Sulfate

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Client:

Project:

Client ID: LCSW

Analyte

Surr: DNOP

Prep Date: 8/27/2019

Diesel Range Organics (DRO)

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

2019 Annual GW Sampling Event

Batch ID: 47076

Analysis Date: 8/28/2019

PQL

0.40

Result

2.5

0.24

WO#: **1908D80**

16-Sep-19

Sample ID: 1908D80-001BMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: MW-1 Batch ID: 47076 RunNo: 62454 Prep Date: 8/27/2019 Analysis Date: 8/28/2019 SeqNo: 2126290 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Diesel Range Organics (DRO) 0.40 0 2.7 2.500 109 68.3 147 Surr: DNOP 0.27 0.2500 108 52.7 168 Sample ID: 1908D80-001BMSD TestCode: EPA Method 8015D: Diesel Range SampType: MSD Client ID: MW-1 Batch ID: 47076 RunNo: 62454 Prep Date: 8/27/2019 Analysis Date: 8/28/2019 SeqNo: 2126291 Units: mg/L **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Diesel Range Organics (DRO) 0.40 2.8 2.500 0 110 68.3 147 1.07 20 Surr: DNOP 0.2500 52.7 0 0.27 108 168 Sample ID: LCS-47076 SampType: LCS TestCode: EPA Method 8015D: Diesel Range

RunNo: 62454

%REC

100

97.4

SeqNo: 2126320

LowLimit

66.7

52.7

Units: mg/L

HighLimit

148

168

%RPD

RPDLimit

Qual

Sample ID: MB-47076	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8015D: Diese	I Range		
Client ID: PBW	Batch	n ID: 47 0	076	F	RunNo: 6	2454				
Prep Date: 8/27/2019	Analysis D	ate: 8/	28/2019	S	SeqNo: 2	126322	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.40								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.50		0.5000		99.8	52.7	168			

0

SPK value SPK Ref Val

2.500

0.2500

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 100ng lcs	SampT	SampType: LCS TestCode: EPA Method 8260B: VOLATILES								
Client ID: LCSW	Batch	n ID: R6	2453	F	RunNo: 6	2453				
Prep Date:	Analysis D	ate: 8/	27/2019	S	SeqNo: 2	124995	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	89.9	70	130			
Toluene	19	1.0	20.00	0	92.9	70	130			
Chlorobenzene	19	1.0	20.00	0	92.7	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	84.1	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	85.5	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		93.5	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	9.4		10.00		94.0	70	130			
Surr: Toluene-d8	9.6		10.00		95.9	70	130			

Sample ID: 1908d80-001a ms	SampT	ype: MS	6	Tes	tCode: El	ATILES				
Client ID: MW-1	Batch	n ID: R6	2453	F	RunNo: 6	2453				
Prep Date:	Analysis D	oate: 8/ 2	27/2019	8	SeqNo: 2	124997	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	89.3	70	130			
Toluene	17	1.0	20.00	0	87.3	70	130			
Chlorobenzene	17	1.0	20.00	0	86.5	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	83.4	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	86.4	70	130			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.1	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.8	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.3	70	130			
Surr: Toluene-d8	9.5		10.00		94.8	70	130			

Sample ID: 1908d80-001a msd	SampT	ype: MS	SD	Tes	tCode: El	ATILES				
Client ID: MW-1	Batch	ID: R6	2453	F	RunNo: 6	2453				
Prep Date:	Analysis D	ate: 8/ 2	27/2019	8	SeqNo: 2	124998	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	89.0	70	130	0.355	20	
Toluene	18	1.0	20.00	0	88.9	70	130	1.78	20	
Chlorobenzene	18	1.0	20.00	0	89.1	70	130	3.03	20	
1,1-Dichloroethene	16	1.0	20.00	0	82.5	70	130	1.06	20	
Trichloroethene (TCE)	17	1.0	20.00	0	82.7	70	130	4.35	20	
Surr: 1,2-Dichloroethane-d4	9.8		10.00		97.6	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.9		10.00		99.1	70	130	0	0	
Surr: Dibromofluoromethane	10		10.00		102	70	130	0	0	
Surr: Toluene-d8	9.8		10.00		98.4	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 58 of 75

Sample ID: rb

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1908D80

16-Sep-19

Client: Western Refining Southwest, Inc. **Project:** 2019 Annual GW Sampling Event

Client ID: PBW Batch ID: R62453 RunNo: 62453

TestCode: EPA Method 8260B: VOLATILES

OHORRID. I DIV	Baton ib. NOZ-100			(dili 10. 0 /	100					
Prep Date:	Analysis Date: 8/27/2019		SeqNo: 2125016			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: rb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batch ID: R62453			RunNo: 62453								
Prep Date:	Analysis D	ate: 8/	27/2019	S	SeqNo: 2125016			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachloroethene (PCE)	ND	1.0										
trans-1,2-DCE	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0										
1,2,4-Trichlorobenzene	ND	1.0										
1,1,1-Trichloroethane	ND	1.0										
1,1,2-Trichloroethane	ND	1.0										
Trichloroethene (TCE)	ND	1.0										
Trichlorofluoromethane	ND	1.0										
1,2,3-Trichloropropane	ND	2.0										
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.4	70	130					
Surr: 4-Bromofluorobenzene	9.7		10.00		97.2	70	130					
Surr: Dibromofluoromethane	9.7		10.00		96.8	70	130					
Surr: Toluene-d8	9.8		10.00		98.4	70	130					

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-47026	SampT	ype: LC	S	Tes						
Client ID: LCSW	Batch	n ID: 47 0	026	F	RunNo: 6	2538				
Prep Date: 8/26/2019	Analysis D	Date: 8/ 2	29/2019	SeqNo: 2127567			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	66	10	100.0	0	66.0	32.2	94			
4-Chloro-3-methylphenol	140	10	200.0	0	68.6	37.7	101			
2-Chlorophenol	130	10	200.0	0	66.4	32.6	90.1			
1,4-Dichlorobenzene	57	10	100.0	0	56.9	30	87.2			
2,4-Dinitrotoluene	62	10	100.0	0	61.7	35.9	85.8			
N-Nitrosodi-n-propylamine	68	10	100.0	0	67.7	37.1	108			
4-Nitrophenol	110	10	200.0	0	54.5	22.4	86.6			
Pentachlorophenol	110	20	200.0	0	53.9	31.6	91			
Phenol	110	10	200.0	0	55.6	21.7	84.9			
Pyrene	61	10	100.0	0	61.1	46.3	103			
1,2,4-Trichlorobenzene	58	10	100.0	0	57.6	30.2	88.3			
Surr: 2-Fluorophenol	120		200.0		59.2	15	101			
Surr: Phenol-d5	120		200.0		58.0	15	84.6			
Surr: 2,4,6-Tribromophenol	120		200.0		58.0	27.8	112			
Surr: Nitrobenzene-d5	76		100.0		76.4	33	113			
Surr: 2-Fluorobiphenyl	64		100.0		63.7	26.6	107			
Surr: 4-Terphenyl-d14	61		100.0		60.6	18.7	148			

Sample ID: Icsd-47026	SampT	ype: LC	SD	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: LCSS02	Batch ID: 47026 Analysis Date: 8/29/2019			RunNo: 62538						
Prep Date: 8/26/2019				SeqNo: 2127570			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	84	10	100.0	0	84.5	32.2	94	24.6	32.9	
4-Chloro-3-methylphenol	170	10	200.0	0	85.5	37.7	101	21.9	29.9	
2-Chlorophenol	170	10	200.0	0	84.1	32.6	90.1	23.5	28.5	
1,4-Dichlorobenzene	72	10	100.0	0	71.8	15	87.2	23.2	44.9	
2,4-Dinitrotoluene	80	10	100.0	0	80.2	35.9	85.8	26.0	28.5	
N-Nitrosodi-n-propylamine	91	10	100.0	0	90.9	37.1	108	29.3	29.9	
4-Nitrophenol	120	10	200.0	0	58.5	15	86.6	7.19	68	
Pentachlorophenol	130	20	200.0	0	66.7	31.6	91	21.3	39.5	
Phenol	130	10	200.0	0	66.4	15	84.9	17.8	44.2	
Pyrene	75	10	100.0	0	75.3	46.3	103	20.9	23.8	
1,2,4-Trichlorobenzene	71	10	100.0	0	70.6	15.7	88.3	20.2	38	
Surr: 2-Fluorophenol	150		200.0		73.6	15	101	0	0	
Surr: Phenol-d5	140		200.0		68.1	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	140		200.0		72.2	27.8	112	0	0	
Surr: Nitrobenzene-d5	91		100.0		90.6	33	113	0	0	
Surr: 2-Fluorobiphenyl	77		100.0		77.4	26.6	107	0	0	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

10

10

10

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Icsd-47026 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 47026 RunNo: 62538

Prep Date: 8/26/2019 Analysis Date: 8/29/2019 SeqNo: 2127570 Units: μg/L

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Surr: 4-Terphenyl-d14 76 100.0 76.3 18.7 148 0 0

Sample ID: mb-47026 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 47026 RunNo: 62538 Prep Date: 8/26/2019 Analysis Date: 8/29/2019 SeqNo: 2127573 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result HighLimit Qual ND Acenaphthene 10 Acenaphthylene ND 10 Aniline ND 10 Anthracene ND 10 ND 10 Azobenzene

(-)-		
Benzo(a)pyrene	ND	10
Benzo(b)fluoranthene	ND	10
Benzo(g,h,i)perylene	ND	10
Benzo(k)fluoranthene	ND	10
Benzoic acid	ND	20
Benzyl alcohol	ND	10
Bis(2-chloroethoxy)methane	ND	10
Bis(2-chloroethyl)ether	ND	10
Bis(2-chloroisopropyl)ether	ND	10
Bis(2-ethylhexyl)phthalate	ND	10
4-Bromophenyl phenyl ether	ND	10
Butyl benzyl phthalate	ND	10
Carbazole	ND	10
4-Chloro-3-methylphenol	ND	10
4-Chloroaniline	ND	10
2-Chloronaphthalene	ND	10
2-Chlorophenol	ND	10
4-Chlorophenyl phenyl ether	ND	10
Chrysene	ND	10
Di-n-butyl phthalate	ND	10
Di-n-octyl phthalate	ND	10
Dibenz(a,h)anthracene	ND	10
Dibenzofuran	ND	10
1,2-Dichlorobenzene	ND	10

Qualifiers:

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Benz(a)anthracene

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47026 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 47026 RunNo: 62538 Prep Date: 8/26/2019 Analysis Date: 8/29/2019 SeqNo: 2127573 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 3,3'-Dichlorobenzidine ND 10 Diethyl phthalate ND 10 Dimethyl phthalate ND 10 2,4-Dichlorophenol ND 20 2,4-Dimethylphenol ND 10 4,6-Dinitro-2-methylphenol ND 20 2,4-Dinitrophenol ND 20 2,4-Dinitrotoluene ND 10 2,6-Dinitrotoluene ND 10 ND 10 Fluoranthene ND 10 Fluorene 10 ND Hexachlorobenzene ND 10 Hexachlorobutadiene Hexachlorocyclopentadiene ND 10 Hexachloroethane ND 10 10 Indeno(1,2,3-cd)pyrene ND ND 10 Isophorone 1-Methylnaphthalene ND 10 2-Methylnaphthalene ND 10 2-Methylphenol ND 10 ND 3+4-Methylphenol 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10 N-Nitrosodiphenylamine ND 10 Naphthalene ND 10 2-Nitroaniline ND 10 3-Nitroaniline ND 10 ND 10 4-Nitroaniline Nitrobenzene ND 10 2-Nitrophenol ND 10 4-Nitrophenol ND 10 ND Pentachlorophenol 20 ND 10 Phenanthrene ND 10 Phenol Pyrene ND 10 Pyridine ND 10 1,2,4-Trichlorobenzene ND 10 2,4,5-Trichlorophenol ND 10 2,4,6-Trichlorophenol ND 10

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47026 Client ID: PBW	SampT _y Batch	/pe: ME ID: 47 (tCode: El RunNo: 6		8270C: Semi	olatiles/		
Prep Date: 8/26/2019	Analysis Da	nalysis Date: 8/29/2019 Result POI SPK value S			SeqNo: 2	127573	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	120		200.0		58.6	15	101			
Surr: Phenol-d5	110		200.0		52.8	15	84.6			
Surr: 2,4,6-Tribromophenol	150		200.0		73.6	27.8	112			
Surr: Nitrobenzene-d5	82		100.0		82.3	33	113			
Surr: 2-Fluorobiphenyl	72		100.0		71.8	26.6	107			
Surr: 4-Terphenyl-d14	77		100.0		76.7	18.7	148			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-1 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62429 RunNo: 62429

Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122562 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 101 85 115

Sample ID: Ics-2 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62429 RunNo: 62429

Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122588 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 105 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 65 of 75

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client:		Refining Southwe								
Project:	2019 Ann	nual GW Samplin	g Event							
Sample ID:	MB-47323	SampType: M I	BLK	Tes	tCode: EF	PA Method	7470: Mercur	у		
Client ID:	PBW	Batch ID: 47	323	F	RunNo: 62	2727				
Prep Date:	9/6/2019	Analysis Date: 9/	/6/2019	\$	SeqNo: 21	136161	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND 0.00020								
Sample ID:	LCS-47323	SampType: L C	s	Tes	tCode: EF	PA Method	7470: Mercur	у		
Client ID:	LCSW	Batch ID: 47	323	F	RunNo: 62	2727				
Prep Date:	9/6/2019	Analysis Date: 9/	/6/2019	5	SeqNo: 21	136162	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0050 0.00020	0.005000	0	99.2	80	120			
Sample ID:	1908D80-002DMS	SampType: M	S	Tes	tCode: EF	PA Method	7470: Mercur	у		
Client ID:	MW-13	Batch ID: 47	323	F	RunNo: 62	2727				
Prep Date:	9/6/2019	Analysis Date: 9	/6/2019	5	SeqNo: 21	136175	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0037 0.0010	0.005000	0	74.5	75	125			S
Sample ID:	1908D80-002DMS	D SampType: M	SD	Tes	tCode: EF	PA Method	7470: Mercur	у		
Client ID:	MW-13	Batch ID: 47	323	F	RunNo: 62	2727				
Prep Date:	9/6/2019	Analysis Date: 9/	/6/2019	9	SeqNo: 2 1	136176	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0036 0.0010	0.005000	0	72.1	75	125	3.24	20	S
Sample ID:	MB-47378	SampType: MI	BLK	Tes	tCode: EF	PA Method	7470: Mercur	у		
Client ID:	PBW	Batch ID: 47	378	F	RunNo: 62	2816				
Prep Date:	9/10/2019	Analysis Date: 9	/10/2019	5	SeqNo: 21	140407	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND 0.00020								
Sample ID:	LCS-47378	SampType: LC	cs	Tes	tCode: EF	PA Method	7470: Mercur	у		
Client ID:	LCSW	Batch ID: 47	378	F	RunNo: 62	2816				
Prep Date:	9/10/2019	Analysis Date: 9	/10/2019	S	SeqNo: 2 1	140408	Units: mg/L			
1										

Qualifiers:

Analyte

Mercury

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Result

0.0051 0.00020

PQL

0.005000

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Limit

Page 66 of 75

RPDLimit

Qual

%RPD

HighLimit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

1.31

125

20

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 1908D80-001EMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: MW-1 Batch ID: 47378 RunNo: 62816

Prep Date: 9/10/2019 Analysis Date: 9/10/2019 SeqNo: 2140410 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0054 0.00020 0.005000 0 108 75 125

Sample ID: 1908D80-001EMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: MW-1 Batch ID: 47378 RunNo: 62816

0.0055 0.00020

Prep Date: 9/10/2019 Analysis Date: 9/10/2019 SeqNo: 2140411 Units: mg/L

0.005000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

110

Qualifiers:

Mercury

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 67 of 75

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

1.0

0.10

0.020

SampType: LCS

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals Client ID: PBW Batch ID: A62764 RunNo: 62764 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2137952 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Arsenic ND 0.020 Barium ND 0.020 ND 0.0020 Cadmium Calcium ND 1.0 Chromium ND 0.0060 ND 0.0060 Copper Iron ND 0.020 ND 0.0050 Lead Magnesium ND 1.0 ND 0.0020 Manganese Potassium ND 1.0 ND 0.050 Selenium ND 0.0050 Silver

Client ID: LCSW	Bato	ch ID: A6	2764	F	RunNo: 6	2764				
Prep Date:	Analysis	Date: 9/	9/2019	8	SeqNo: 2	137953	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.020	0.5000	0	95.6	80	120			
Barium	0.48	0.020	0.5000	0	95.1	80	120			
Cadmium	0.50	0.0020	0.5000	0	99.4	80	120			
Calcium	50	1.0	50.00	0	100	80	120			
Chromium	0.49	0.0060	0.5000	0	97.1	80	120			
Copper	0.50	0.0060	0.5000	0	100	80	120			
Iron	0.49	0.020	0.5000	0	98.6	80	120			
Lead	0.49	0.0050	0.5000	0	98.6	80	120			
Magnesium	50	1.0	50.00	0	100	80	120			
Manganese	0.48	0.0020	0.5000	0	97.0	80	120			
Potassium	50	1.0	50.00	0	99.3	80	120			
Selenium	0.48	0.050	0.5000	0	96.3	80	120			
Silver	0.10	0.0050	0.1000	0	99.8	80	120			
Sodium	50	1.0	50.00	0	99.6	80	120			
Uranium	0.46	0.10	0.5000	0	91.3	80	120			
Zinc	0.48	0.020	0.5000	0	96.5	80	120			

Qualifiers:

Sodium

Uranium

Sample ID: LCS-A

Zinc

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

TestCode: EPA Method 6010B: Dissolved Metals

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A62841 RunNo: 62841

Prep Date: Analysis Date: 9/11/2019 SeqNo: 2141041 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron ND 0.020

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 6010B: Dissolved Metals

Client ID: LCSW Batch ID: A62841 RunNo: 62841

Prep Date: Analysis Date: 9/11/2019 SeqNo: 2141042 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron 0.48 0.020 0.5000 0 95.5 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 69 of 75

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 1908D80-001DMS	Samp	Туре: МЅ)	TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: MW-1	Bato	h ID: 470	018	F	RunNo: 6	2461				
Prep Date: 8/23/2019	Analysis	Date: 8/ 2	27/2019	8	SeqNo: 2	124151	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.54	0.020	0.5000	0.06969	94.2	75	125			
Cadmium	0.50	0.0020	0.5000	0	100	75	125			
Chromium	0.49	0.0060	0.5000	0	97.1	75	125			
Lead	0.48	0.0050	0.5000	0	95.8	75	125			
Selenium	0.45	0.050	0.5000	0	89.8	75	125			
Silver	0.099	0.0050	0.1000	0.001404	97.6	75	125			

Sample ID: 1908D80-001DMS	D Samp	Type: MS	SD	Tes	tCode: El	PA 6010B: 1	Total Recover	able Meta	als	
Client ID: MW-1	Bato	h ID: 470	018	F	RunNo: 6	2461				
Prep Date: 8/23/2019	Analysis	Date: 8/ 2	27/2019	8	SeqNo: 2	124152	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.54	0.020	0.5000	0.06969	94.5	75	125	0.240	20	
Cadmium	0.50	0.0020	0.5000	0	101	75	125	0.808	20	
Chromium	0.49	0.0060	0.5000	0	97.7	75	125	0.553	20	
Lead	0.49	0.0050	0.5000	0	97.8	75	125	2.13	20	
Selenium	0.47	0.050	0.5000	0	93.1	75	125	3.65	20	
Silver	0.099	0.0050	0.1000	0.001404	97.7	75	125	0.0564	20	

Sample ID: MB-47018 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals												
	Client ID: PBW	Batc	h ID: 47 0	018	F	RunNo: 6	2461					
	Prep Date: 8/23/2019	Analysis [Date: 8/ 3	27/2019	8	SeqNo: 2	124174	Units: mg/L				
	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
	Arsenic	ND	0.020									
	Barium	ND	0.020									
	Cadmium	ND	0.0020									
	Chromium	ND	0.0060									

Sample ID: LCS-47018	SampType: LCS	TestCode: EPA 6010B: Total Rec
Selenium Silver	ND 0.050 ND 0.0050	
Lead	ND 0.0050	
Chromium	ND 0.0060	

Sample ID: LCS-47018	Samp	Type: LC	S	Tes	ıls					
Client ID: LCSW	Bato	h ID: 470	018	F	RunNo: 6	2461				
Prep Date: 8/23/2019	Analysis	Date: 8/ 3	27/2019	8	SeqNo: 2	124176	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.020	0.5000	0	96.5	80	120			
Barium	0.48	0.020	0.5000	0	95.7	80	120			
Cadmium	0.50	0.0020	0.5000	0	99.3	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 70 of 75

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: LCS-47018	Samp	Type: LC	S	TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: LCSW	Bato	h ID: 470	018	F	RunNo: 6	2461						
Prep Date: 8/23/2019	Analysis	Date: 8/ 3	27/2019	8	SeqNo: 2	124176	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Chromium	0.49	0.0060	0.5000	0	99.0	80	120					
Lead	0.48	0.0050	0.5000	0	96.4	80	120					
Selenium	0.49	0.050	0.5000	0	97.1	80	120					
Silver	0.097	0.0050	0.1000	0	97.4	80	120					

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Analysis Date: 8/27/2019

PQL

0.050

Result

0.48

9.9

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.
Project: 2019 Annual GW Sampling Event

Sample ID: 1908d80-002a m	s Samp1	Гуре: МS	3	TestCode: EPA Method 8015D: Gasoline Range						
Client ID: MW-13	Batc	h ID: GV	V62453	F	RunNo: 6	2453				
Prep Date:	Analysis D	Date: 8/ 2	27/2019	S	SeqNo: 2	126256	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.44	0.050	0.5000	0	87.5	70	130			
Surr: BFB	10		10.00		100	70	130			
Sample ID: 1908d80-002a m	sd Samp1	Гуре: МЅ	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: MW-13	Batc	h ID: GV	V62453	F	RunNo: 6	2453				
Prep Date:	Analysis D	Date: 8/ 2	27/2019	8	SeqNo: 2	126257	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.42	0.050	0.5000	0	84.4	70	130	3.58	20	
	0.12									
Surr: BFB	10		10.00		100	70	130	0	0	
Surr: BFB Sample ID: 2.5ug gro Ics	10	Гуре: LC		Tes			130 8015D: Gaso			

Sample ID: rb	SampT	уре: МЕ	BLK	Test	Code: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBW	Batch	n ID: GV	V62453	R	tunNo: 6	2453				
Prep Date:	Analysis D	ate: 8/ 2	27/2019	S	eqNo: 2	126273	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	0.050								
Surr: BFB	9.9		10.00		98.5	70	130			

0

SPK value SPK Ref Val %REC

0.5000

10.00

SeqNo: 2126272

95.3

99.0

LowLimit

70

70

Units: mg/L

HighLimit

130

130

%RPD

RPDLimit

Qual

Qualifiers:

Prep Date:

Surr: BFB

Gasoline Range Organics (GRO)

Analyte

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908D80

16-Sep-19

	ern Refining Southwest, Inc. Annual GW Sampling Event				
Sample ID: mb-1 alk	SampType: mblk	TestCode: SM2320B: A	Ikalinity		
Client ID: PBW	Batch ID: R62429	RunNo: 62429			
Prep Date:	Analysis Date: 8/26/2019	SeqNo: 2122487	Units: mg/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND 20.00				
Sample ID: Ics-1 alk	SampType: Ics	TestCode: SM2320B: A	Ikalinity		
Client ID: LCSW	Batch ID: R62429	RunNo: 62429			
Prep Date:	Analysis Date: 8/26/2019	SeqNo: 2122488	Units: mg/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	79.32 20.00 80.00	0 99.2 90	110		
Sample ID: mb-2 alk	SampType: mblk	TestCode: SM2320B: A	Ikalinity		
Client ID: PBW	Batch ID: R62429	RunNo: 62429			
Prep Date:	Analysis Date: 8/26/2019	SeqNo: 2122510	Units: mg/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND 20.00				
Sample ID: Ics-2 alk	SampType: Ics	TestCode: SM2320B: A	Ikalinity		
Client ID: LCSW	Batch ID: R62429	RunNo: 62429			
Prep Date:	Analysis Date: 8/26/2019	SeqNo: 2122511	Units: mg/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Analyte Total Alkalinity (as CaCO3)	Result PQL SPK value 79.64 20.00 80.00	SPK Ref Val %REC LowLimit 0 99.6 90	HighLimit %RPD 110	RPDLimit	Qual
•			110	RPDLimit	Qual
Total Alkalinity (as CaCO3)	79.64 20.00 80.00	0 99.6 90	110	RPDLimit	Qual
Total Alkalinity (as CaCO3) Sample ID: mb-3 alk	79.64 20.00 80.00 SampType: mblk	0 99.6 90 TestCode: SM2320B: A	110	RPDLimit	Qual
Total Alkalinity (as CaCO3) Sample ID: mb-3 alk Client ID: PBW	79.64 20.00 80.00 SampType: mblk Batch ID: R62429 Analysis Date: 8/26/2019	0 99.6 90 TestCode: SM2320B: A RunNo: 62429	110 Ikalinity Units: mg/L CaCO3		Qual
Total Alkalinity (as CaCO3) Sample ID: mb-3 alk Client ID: PBW Prep Date:	79.64 20.00 80.00 SampType: mblk Batch ID: R62429 Analysis Date: 8/26/2019	0 99.6 90 TestCode: SM2320B: A RunNo: 62429 SeqNo: 2122533	110 Ikalinity Units: mg/L CaCO3		
Total Alkalinity (as CaCO3) Sample ID: mb-3 alk Client ID: PBW Prep Date: Analyte	79.64 20.00 80.00 SampType: mblk Batch ID: R62429 Analysis Date: 8/26/2019 Result PQL SPK value	0 99.6 90 TestCode: SM2320B: A RunNo: 62429 SeqNo: 2122533	110 Ikalinity Units: mg/L CaCO3 HighLimit %RPD		
Total Alkalinity (as CaCO3) Sample ID: mb-3 alk Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3)	79.64 20.00 80.00 SampType: mblk Batch ID: R62429 Analysis Date: 8/26/2019 Result PQL SPK value ND 20.00	0 99.6 90 TestCode: SM2320B: A RunNo: 62429 SeqNo: 2122533 SPK Ref Val %REC LowLimit	110 Ikalinity Units: mg/L CaCO3 HighLimit %RPD		

Qualifiers:

Analyte

Total Alkalinity (as CaCO3)

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

Result

80.12

PQL

20.00

80.00

- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Limit **RPDLimit**

Qual

%RPD

HighLimit

110

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126078 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126079 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.96 20.00 80.00 0 98.7 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126101 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126102 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 80.56 20.00 80.00 0 101 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908D80**

16-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47078 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 47078 RunNo: 62492

Prep Date: 8/27/2019 Analysis Date: 8/29/2019 SeqNo: 2125816 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-47078 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 47078 RunNo: 62492

Prep Date: 8/27/2019 Analysis Date: 8/29/2019 SeqNo: 2125817 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1030 20.0 1000 0 103 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 75 of 75

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name:	Western Refining Sout	hw Work Order Numi	per: 1908D8	0	RcptNo:	1
Received By:	Leah Baca	8/22/2019 8:25:00 /	AM	/m/ Par	4	
Completed By	Anne Thorne	8/23/2019 8:14:27 /	AM.	Lood Bac Arne St.	,	
_	168/23/11	0.20.2010 0.14.277	441	Anne H		
Chain of Cu	stod <u>y</u>					
1. Is Chain of	Custody complete?		Yes 🗹	No 🗆	Not Present	
2. How was the	e sample delivered?		Courier			
Log In 3. Was an atte	mpt made to cool the sam	ples?	Yes 🗸	No 🗌	NA 🗆	
4. 386 11				.		
4. vvere all san	nples received at a temper	ature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗆	
5. Sample(s) ir	proper container(s)?		Yes 🗹	No 🗆		
6. Sufficient sa	mple volume for indicated	test(s)?	Yes 🗹	No 🗌		
7. Are samples	(except VOA and ONG) p	operly preserved?	Yes 🗸	No 🗌		
	ative added to bottles?		Yes	No 🗹	NA \square	
9. VOA vials ha	ve zero headspace?		Yes 🗸	No 🗀	No VOA Vials	
10. Were any sa	imple containers received	oroken?	Yes	No 🗹	# of preserved	
	ork match bottle labels? cancies on chain of custod	<i>(</i>)	Yes 🗹	No 🗌	bottles checked of pH:	>12 unless noted)
	correctly identified on Cha	•	Yes 🗸	No 🗀	Adjusted?	
13. Is it clear wha	at analyses were requeste	1?	Yes 🗸	No 🗌	•	
	ling times able to be met? customer for authorization.)	Yes 🗹	No 🗌	Checked by:	-08/23/19
	lling (if applicable)	•				
	otified of all discrepancies	with this order?	Yes 🗌	No 🗌	NA 🔽	
Persor	Notified:	Date				
By Wh	om:	Via:	eMail	☐ Phone ☐ Fax	n Person	
Regard	ding:					
Client	Instructions:					
16. Additional re	emarks:					l
CUSTO	ODY SEALS INTACT ON :	SAMPLE BOTTLES/at 8/23/	19			
17. Cooler Info			-			
Cooler No	Charles and the control of the contr	Seal Intact Seal No	Seal Date	Signed By		
1	4.3 Good	Yes	e a sai airtimenne ente mili .	ayaan waxaan ka fida da T	<u>.</u>	
2	2.8 Good	Yes				
3	0.8 Good	Yes				

1 or 67

Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling Event Sampling	Chain-of-Custody Record Western - Bloomfield Terminal	n-of-Custody Re	ustody Re		Turn-Around T					ΪĀ	HALL	HALL ENVI ANALYSIS		ABC	RONMENTAL LABORATORY	P P P	A A X	, k
10 10 10 10 10 10 10 10				Project Name:			nual GW			Š	ww.hal	lenviro	nmenta	al.com	_			
Tel. 505-345-407	Mailing Address: 50 CR 4990	50 CR 4990				Samplin	g Event	4	901 H	awkins			uerque	N N	87109			
1	Bloomfield, NM 87413 Project #:			Project #:						5-345-	3975	Fa)		345-4	107			
### Part Part	Phone #: 419-421-2338	419-421-2338	1-2338								A	nalysis	Redu	est				
1	gjmccartney@marathonpetroleum.com Project Manager	Project Manag	Project Manag			r. Grego	ry McCartney						_			7		
1	QA/QC Package: ☐ Standard		X Level 4 (Full Validation)								(SV						Hunty	
1	Sampler:	Sampler:	-	-	==	acy Payr	ne - 919-561-7055										/IKS	(1
### Semarks: See Analytical Methods and Target Analytes	X EDD (Type) EXCEL On Ice: 121	EXCEL On loe:	On Ice:		S.	Yes	□ No							(V			d - '	И то
### ### ##############################	Sample Temp		Sample Tempera	Sample Tempera	j	ature: 4.) 					_						Y)
	Time Matrix Sample Request ID Container Pre	Matrix Sample Request ID Container Type and #	Container Type and #	Container Pre Type and #	Pre	2.5 0.8 servative Type	FEAL HEAL					-					eneral Che	ir Bubbles
201 X X	2150 H ₂ O MW-1 40ml VOA-5	H ₂ O MW-1		40ml VOA-5		무	8	+-	+		-	 -	ــــ		-	+		/
201 201 Date Time Remarks: See Analytical Methods \$\langle \frac{1}{2} \langle \fra	H ₂ O MW-1 250 ml amber-1	MW-1		250 ml amber-1		Neat)P2		×								<u> </u>	
2α 2α		MW-1 250 ml plastic-1	250 ml plastic-1			HO3	702					×						
Date Time Remarks: See Analytical Methods Stalf f Oγ25	H ₂ O MW-1 125 ml H	MW-1 125 ml plastic-1	125 ml plastic-1		I	NO3)02								×	×		
Date Time Remarks: See Analytical Methods 8/2/1-1/1-3-0825	H ₂ O MW-1 125 ml _{plastic-1}	MW-1 125 ml plastic-1	125 ml plastic-1		_	l ₂ SO ₄	100									×		
Date Time Remarks: See Analytical Methods Statis Orzs	V H ₂ O MW-1 500 ml l plastic-1	MW-1 500 ml plastic-1	500 ml plastic-1		_	Neat	102										 	
Date Time Remarks: See Analytical Methods Statis Orzs							0 0 0 0 0 0 0 0 0											
Date Time Remarks: See Analytical Methods Statist Organisation						ļ				_ -				+	1		\perp	
Date Time Remarks: See Analytical Methods \$\int \lambda \lambda \rangle \text{Time} \\ \sqrt{\lambda \lambda \rangle} \\ \sqrt{\lambda \lambda \lambda \rangle} \\ \lambd					•									_		+	+	
Statistical Methods Statistical Methods Statistical Methods Statistical Methods														<u> </u>		+	+	
8/2/19 16 Date Tin 8/2/19	Relinquished by:	Relinquished by:	Received by:	┪.				Remark		je An	alytic	al Me	thods		Targe	et An	alyte	·
<u>ء</u> ء	towns.	Tallow I	tains	100	3	alto	l i											
•	Station 1830 Mily and Cast	Kelindulshed by:	علعمال-	received by:	K	اً ا	= ~											

2 OF W

	-		<u>:</u>										səlqqng										and Target Analytes.	
	FNVTRONMENTAL	ANALYSIS LABORATORY)				_						neral Ch	_			ļ. <u>-</u>		×			 	 Ana∄	
5	Z	4	• 1	6	<u>.</u>		^z	၀၁	ઋၭၬ	noir			neral Ch				×	×				\bot	get,	
7	Σ	. C		871(107								l bevioss	_			×	<u> </u>			- -	 _	_a di	
l	Z		Com	Σ	45-4	st					\ V		60B (VO , ime8) 07.		-	•		 		-		╄	and	
	Ğ		www.hallenvironmental.com	Albuquerane. NM 87109	Fax 505-345-4107	Analysis Request		s,g;	 Эд а	780	8/9		oitseq 18		<u> </u>							+		
	2	S) Muo	lanor	ax 5	is R							IO,7) anoir								_	_	-₩ #	
		S	envir	Albu		ıalys							9M 8 AAC			×							<u>≅</u>	
	=		.hall	ц Щ		A			(SV	VISC	270	8 10	01£8) HA	/d								T	lytic	
		Ž	*	4901 Hawkins NE	Tel. 505-345-3975					(1	.40	g po	odjeM) 80	13									Analytical Methods	
		. ~	ı	-Tawk	05-3								oH (Metho										See	
				901	<u>e</u> . 5								8015B		×							_		
				4	_								EX+MTB		-							igspace	L L Remarks:	
٢			<u>-</u>		_			<u> </u>	30S] 3)2'5	LWE		L TEX+MTB		1 . 1	1		,				+	<u> 8</u>	
							tney	ı		1-7055		1 = 4.3	いいい マッショ マッショ	80 1/22	202	282	202	202	702	603			Time // 2/>	76.30 Time
			I GW	event			McCar			919-56	2	0.0	١ .	108 080 1									Date	Date
	-	ų,	Jun	ng			5			/ne		4.3	1 4	2	-							+	-	
	Time:	□ Rush	2019 Aı	Sampling Event			er: Greg			Tracy Payne - 919-561-7055	ĭ Yes	perature:	2 Preservative ⁶ Type	달	Neat	HNO3	HNO3	H ₂ SO ₄	Neat	174				E E
		ard	ıme:				anage			┞		-mpe		19	<u> </u>	_	_		_			+	1 =	4
	Turn-Around	X Standard	Project Name: 2019 Annual GW		Project #:		Project Manager: Gregory McCartney			Sampler:	On Ice:	Sample Tem	Container Type and #	40ml VOA-5	250 ml	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1	40 Mc VOA-2			Received by:	Received by:
_									ation)			3	st ID											
	Chain-of-Custody Record	Client: Western - Bloomfield Terminal			87413		Email: gimccartney@marathonpetroleum.com		X Level 4 (Full Validation)				Sample Request ID	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	BLANK				
	stody	omfield		4990	Bloomfield, NM 87413	-2338	athonpetr		X Level 4				Sample							TRIP B			4 by:	
1	of-Cu	rn - Bloc		50 CR 4990	Bloomf	419-421-2338	ney@mar		-		EXCEL		Matrix	H ₂ O	H ₂ 0	H ₂ 0	H ₂ O	H ₂ O	H ₂ 0	- 0귀			Relinquished by:	Relinquished by
	hain-	Weste		Mailing Address:		##	gjmccart	QA/QC Package:	dard	<u>.</u>	EDD (Type)_		Time	0.60					_ - >	-			-	6 Filme:
1	ပ	Client:		Mailing		Phone #:	Email:	QAVQC	☐ Standard	□ Other	X EDD		Date	8/21/18					\rightarrow	8/2/9			Date: 8/21/2	· · · · ·

3 of 107

A National Content	ANALYSIS LABC Project Name: 2019 Annual GW Sampling Event	Project Name: 2019 Annual GW Sampling Event Sampling Event Project Manager: Gregory McCartney Sample Time Sampling Event Sampling Event Sampling Event Sampling Event Tel. 505- Tel. 505- Tel. 50	Chain-of-Custody Record	Turn-Around Time:				*				2		' <u> </u>		ļ.
Project Name: 2019 Annual GW Project Name: 2019 Annual GW Project Name: 2019 Annual GW Project Manager: Grapory McCartney Project Manager: Grapory McCartney Project Manager: Grapory McCartney Project Manager: Grapory McCartney Project Manager: Grapory McCartney Project Manager: Grapory McCartney Sample Temperature: 4/3 - 6/4 - 4/3 C	Project Name: 2019 Annual GW Sampling Event	Project Name: 2019 Annual GW Sampling Event	Client: Western - Bloomfield Terminal					HALL And	₩ ¥ <u>₩</u>	SIS	7 2	N	고 六	ק≝	IENT ZATO	IENTAL RATOR
Project #: Tacy Payne - 919-661-7055 Project #: Tacy Payne - 919-661-7055 Project #: Tacy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Payne - 919-661-7055 Project Manager: Gregory McCartney Container Tracy Project Manager: Gregory McCartney Container Tracy	Project #: Project #: Project #: Project #: Project #: Project #: Project #: Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project Manager: Gregory McCartney Project McCartney P	Project #: Pro			nual GW			www.	hallen	vironm	ental.	moo]) 		
Project #: Project #: Tracy Payne - 919-561-7055 Project Wanager: Gregory McCartney Project Manager: Gregory McCartney Sample: Tracy Payne - 919-561-7055 On loe:	Project #: Tracy Payne - 919-561-7055 Sampler: Track Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sampler: Track Payne - 919-561-7055 Sampler: Track Payne - 919-5	Project #: Tracy Payne - 919-561-7055 Project Manager Gregory McCartney Project Manager Gregory McCartney Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 On Ice:		Samplin	g Event	490	Haw	cins NI		ənbnq	rque,	ΣN	37109			
Project Manager Gregory McCartney	Sampler Tracy Payne - 919-561-7055 Sampler Tracy Payne - 919-561-7055 On loe:	Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne - 319-561-7055 Sampler Tracy Payne Tr		Project #:		Ţe.	505-3	45-39	22	Fax	505-34	15-41	07			
Sample: Tracy Payne - 919-561-7055 Sample: Tracy Payne - 919-561-7055 On Ice:	Sample: Tracy Payne - 919-561-7055	Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 On loe: Sampler: Tracy Payne - 919-561-7055 On loe: Sample Temperature: \$\frac{1}{2} \cdot \fr							Anal	ysis F	edne	st				
Sample Tracy Payne - 919-561-7055 Sample Tracy Payne - 919-561-7055 On loc:	Sampler: Tracy Payne - 919-561-7055 On loe:	Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sample Temperature: \$\frac{1}{2} \cdot \	gimccartney@marathonpetroleum.com	Project Manager: Grego	ry McCartney	┝	- (- 4			2		
Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sample Temperature:	Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sampler: Tracy Payne - 919-561-7055 Sample Temperature: \$\frac{4}{3} \cdot \frac{1}{6} \cdot \	Sample: Tracy Payne - 919-561-7055 Sample: Tracy Payne - 919-561-7055 On Ice: Sample Temperature: 4, 2, -C - C - C - C - C - C - C - C - C - C	X Level 4 (Full Validation)			(λjuo si					 bcB≀				linity	
Sample Temperature: \$\frac{\pi}{4}\frac{\pi}{2}\frac{\pi}	Sample Temperature: \$\begin{array}{c c c c c c c c c c c c c c c c c c c	Sample Temperature: 4/3 - 5/3 - 4/3 C Container Preservative: 4/3 - 5/3 - 4/3 C Type and # Type 1250 ml A0ml VOA-5 HCI 250 ml Aniors (F. C.I.NO ₃ NC) BTEX+MTBE+TPH A Priors (F. C.I.NO ₃ NC) BTEX+MTBE+TPH A Priors (F. C.I.NO ₃ NC) BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX+MTBE+TPH BTEX+MTBE+TPH A RESCRIPTOR OF 8270 BTEX-MTBE+TPH A RESCRIPTOR OF 8270 BTEX-MTBE+TPH A RESCRIPTOR OF 8270 BTEX-MTBE+TPH BTEX-MTBE+TPH A RESCRIPTOR OF 8270 BTEX-MTBE+TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH BTEX-MTBE-TPH B	•	-	- 919-561-7055	(Gs		(1			Z80'				/IKs	
Sample Temperature: 4, 3, -2, 0, -4, 3C Container Type and # Type Type and Type Type and Ty	Sample Temperature: 4, 3, -C ₁ , 0 - 4, 3C	Sample Temperature: \$\int_{\infty} \int_{\in			No	Lbh		.40			8/8	(A			<i>-</i> - '	1 10
Container Preservative Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type BELEX HCI	Container Preservative	Container Preservative			و	_+3		g po							шә	· //
HNO3 ZOU X X X X X X X X X X X X X X X X X X X	Neat	Neat	Sample Request ID		7 - 0 = 2.8°C 7 - 6 = 0.8°C HEAL NO. 1908 D 80	BTEX+MTB		EDB (Metho							General Ch	Air Bubbles
HNO3 ZO4 X HNO3 ZO4 HNO3 ZO4 HSO4 ZO4 Neat ZO4	HNO3 COUT HNO3 COUT H2SO4 COUT Neat Neat Date Time Remarks: See Analytical Methods and	Neat					_				<u> </u>					
HNO ₃	HNO3 COT HNO3 Neat N	HNO ₃ HNO ₃ CO 4 H ₂ SO ₄ Neat Ne			H022		<u> </u>									
HNO ₃	HNO ₃	HNO ₃ H ₂ SO ₄ Neat Neat			H02				×							-
H ₂ SO ₄	Neat	H ₂ SO ₄			B								×	×		
Neat Time	Neat — 204	Neat			1 07									×		
Date Time	Date Time Remarks: See Analytical Methods and	Date Time Remarks: See Analytical Methods and Study (825)			4002										×	
Date Time	Date Time Remarks: See Analytical Methods and	Date Time Remarks: See Analytical Methods and Date Time Da														
Pate Time	Date Time Remarks: See Analytical Methods and						\dashv		$\dashv \vdash$		++	\vdash			+	1 1
	A Jab 82/19 1630			Sacaivad hv.	aŭ.		_		_						-	

4 04

HAIL ENVIDONMENTAL	LABORATORY								/IK	/ - ·	шə	General Ch							×	 	and Target Analytes.	٠	
	X		109				<u> </u>	6 3 H	.oju			Dissolved N	 -				×	×		+	rget		
2	ij	, E	Albuqueraue, NM 87109	Fax 505-345-4107								-imə2) 0728			×		~	ļ		+	$\exists \Box$		
C	8	www.hallenvironmental.com	Ź	345-	lest						()	8560B (VO	X							+			
	_	<u> </u>	erau	505-	Request		CB,s)d Z	808	3 / 5	səp	8081 Pestic								+	Spo		
}	SI		ndn	e. X	sis		(ºos	°*O0	٦, <u>s</u> C	Ν'ε	ON	HO, T) snoinA		"-						\top	¶e∰		
Ü	בן צ	len (₹	-	Analysis			ľ	ota	Τē	slet	RCRA 8 Me				×					<u> </u>		
-	7	r ⊓ M.hal	ÿ	975	A		((SM	IISC	72	8 1c	01£8) HA9				_]≌		
4	ANALYSIS	;	4901 Hawkins NE	Tel. 505-345-3975								EDB (Metho	lacksquare								Analytical Methods		
	4	l	Haw	05-3			<u>.</u>					orteM) H9T	\vdash							┸	See,		
			9011	<u>e</u> 5								82108 H9T		×						\perp	1		
			4	_								8TM+X3T8	 					<u></u>			Remarks:		
		_		ı			(17	805)s¦8	I IMT	<u>+3</u>	L BTEX+MTB	\vdash							4			-\/,
						rtney			919-561-7055		4,20	2.8C 2.9C HEAL NO. 8 D80	205	205	2002	502	592	120	B		l≞	7620 Time	7/20 47
		ual GW	y Event			y McCal				oN □	4000	000									Date (0/21/14 Date	8/22/19
nd Time:	□ Rush	2019 Annual GW	Sampling Event			er: Gregor			Tracy Payne	₩ Yes	erature: 6/, a	2. 8 O. 8 O. 8 Type	HCI	NEAT	NEAT	HND.	FUNH	H2504	NEAT		1 1 1	LABE	J
Turn-Around	X Standard	Project Name:		Project #:		Project Manager: Gregory McCartney			Sampler:	On Ice:	Tem	Container Type and #	40 ML VOA-5	250MC AMBER-1	1 L Amber-1	250mL AASTK-1	125 ML PLASTIC-1	125ML AMSTIC-1	SCOME FLASTICAL		Received by:	Received by:	Lein
	rminal							II Validation)			107	Sample Request ID	BLANK #1								<u> </u>	186	
Chain-of-Custody Record	Western - Bloomfield Terminal		4990	Bloomfield, NM 87413	-2338	Email: ginccartney@marathonpetroleum.com		X Level 4 (Full Validation)			j	Sample R	FIELD P						1		1	lbv:	T. Park
-of-Cu	ırı - Blo		s: 50 CR 4990	Bloomf	419-421-2338	tney@mai		•		EXCEL		Matrix	420						7		Relinquished by	Relinduished by:	
hain	- 1		Mailing Address:		#:	gjmccar	QA/QC Package:	ndard	er	X EDD (Type)_	į	Time	ानाव						*		Time:	<u>_63</u> Time:	1601121198
	Client:		Mailin	İ	Phone #:	Email:	QAVQC	□ Standard	□ Other	X EDI		Date	b/\z/8						*		Date:	Date:	10

Air Bubbles (Y or N) Remarks: See Analytical Methods and Target Analytes. **ANALYSIS LABORATORY** HALL ENVIRONMENTAL 5 OF 18 General Chem. - Alkalinity × Seneral Chem.-Anionasas × × 4901 Hawkins NE - Albuquerque, NM 87109 Dissolved Metals × Fax 505-345-4107 (AOV-ima2) 07S8 × www.hallenvironmental.com **Analysis Request** (AOV) 80828 × 8081 Pesticides / 8082 PCB's Anions (F,Cl,NO₃,NO₂,PO₄,SO₄) RCRA 8 Metals Total × Tel. 505-345-3975 (SMIS0758 to 0158) HA9 EDB (Method 504.1) TPH (Method 418.1) TPH 8015B (GRO/DRO/MRO) × × BTEX+MTBE+TPH(Gas only) BTEX+MTBE+TMB's(8021) 900 200 B 200 99 Tracy Payne - 919-561-7055 200 B 1620 4.3-ck.00- 4.3C Time Project Manager: Gregory McCartney HEAL No. 19080 1 1/12/g Project Name: 2019 Annual GW Sampling Event Date 90 **2**□ 2.5 0.8 Preservative □ Rush HNO3 H₂SO₄ HNO3 Neat Neat Neat Type ᄗ Sample Temperature: ⊈ Yes Turn-Around Time amber 44 X Standard 40mil VOA-5 Type and # 1 liter奖 Container plastic-1 plastic-1 plastic-1 plastic-1 amber-1 125 ml 250 ml 250 ml 125 ml 500 ml Receixed by: ceived by Project #: Sampler: On Ice: X Level 4 (Full Validation) Sample Request ID Chain-of-Custody Record Client: Western - Bloomfield Terminal Email: gjmccartney@marathonpetroleum.com Bloomfield, NM 87413 MW-11 MW-11 **MW-11** MW-11 **MW-11** MW-11 MW-11 419-421-2338 Mailing Address: 50 CR 4990 uished by: Relinquished by Matrix EXCE H₂0 H₂O H₂0 H₂O P₂O P₂O H₂0 140 1630 QA/QC Package: X EDD (Type) Time Time: Time: □ Standard Phone #: □ Other 9/2/19 12/13/10 - PI Date Date:

6 OF ## 7

Chain-of-Custody Record	Turn-Around Time:				HAI	Ī	>	FNVTRONMENT	Z	<u> </u>	- -	•	
Client: Western - Bloomfield Terminal	X Standard			· ·	ANALYSIS LABORATORY	 	SI	_ ≤	80	7		S S	
	Project Name: 2019 Annual GW	MS.			www.	www.hallenvironmental.com	ironr	ental.) E		! !		
Mailing Address: 50 CR 4990	Sampling Event	ent	490	1 Haw	4901 Hawkins NE	- 1	enbn	Albuquerque, NM 87109	N N N	7109			
Bloomfield, NM 87413	Project #:	ļ	Tel	505-	Tel. 505-345-3975	ıo		Fax 505-345-4107	541	27			
Phone #: 419-421-2338						Inal	sis R	Request	st				
Email: gjmccartney@marathonpetroleum.com	Project Manager: Gregory McCartney	Cartney	┡	(1							7		
QA/QC Package:			(մլս				([†] O	s,8;				ry	
☐ Standard X Level 4 (Full Validation)			o se	W/O	(0)		S' [†] O	 БС				iiuil	
□ Other	Sampler: Tracy Payne - 91	919-561-7055	(G		(1		q, _s c	2808				/IK9	()
X EDD (Type) EXCEL			ΙДТ		` Þ 0		N'ε	8 / 5	(A	sje		/ - ·	A 10
	ر م	1243C	.+ 3		g po		ON'		•	JəN) (Y
Date Time Matrix Sample Request ID	2.8.2. or 19.0.1	-0 = 2.7°C HEAL NO, forth	8TM+X3T8 8TM+X3T8	BB108 H9T 	EDB (Metho	PAH (8310 BCRA 8 Me	IO,4) enoinA	8081 Pestic	-imə2) 0728	Dissolved I	General Ch	General Ch	Rir Bubbles
84/9 - H2O DURICATE #1	40 ML-5 HZL	5007		X				<u> </u>	ļ. —		_		'
	250ML AMBER-1 NEAT	727		X									
	AMBER-1 NEAT	201							X				
		102				X							
	PLASTIC HNOS	100								X	×		
	PLASTIC-1 Hz. 304	267									\overline{x}		
7 7 7	Scome NEAT	102						:				X	
		ļ						. 3]
94/9 - 420 TRIP BLANK	YOA-3 HCI	200	 					*			+	 	\Box
Pate: Time: Relinquished by:	Received by: Date	Time	Remarks:	See	See Analytical Methods and Target Analytes.	ical N	√leth(ods a	nd T	arge	\#\ ₩	alyte	S.
Date: Time: Refinquished by:													-
12/11/8301 (N W S		11/11/2 OF 25											

7 OF 7

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2014 Western Refining Southwest, Inc. - Bloomfield Terminal

VO	Cs (EPA Method 8260B) (1)
- Ta	rget List
	Benzene
	Toluene
	Ethylbenzene
	Xylenes
	Methyl tert butyl ether (MTBE)
SVC	OCs - (EPA Method 8270)
	- Method List
[PF	I-GRO (EPA Method 8015B)
	- Gasoline Range Organics
rpi:	I-DRO (EPA Method 8015B)
	- Diesel Range Organics
	- Motor Oil Range Organics
Cota	l Carbon Dioxide (Laboratory Calculated)
	- Dissolved CO2
Spec	ific Conductivity (EPA Method 120.1 or field measurement)
	- Specific conductance
'DS	(EPA Method 160.1 or field measurement)
	- Total dissolved solids
l en	eral Chemistry - Anions (EPA Method 300.0)
	Fluoride
	Chloride
	Bromide
	Nitrogen, Nitrite (as N)
	Nitrogen, Nitrate (as N)
	Phosphorous, Orthophosphate (As P)
	Sulfate
ene	eral Chemistry - Alkalinity (EPA Method 310.1)
	Alkalinity, Total
	Carbonate
	Bicarbonate

Total Recoverable Metals (EI	PA Method 6010B/7470)									
- Target List (not applicable to	River Terrace Sampling Events)									
Arsenic	Lead									
Barium	Mercury									
Cadmium	Selenium									
Chromium	Silver									
- Target List (for River Terrace	Sampling Events Only)									
Lead	· ·									
Mercury (DW-1 ON	LY)									
Dissolved Metals (EPA Metho										
- Target List (for Refinery Complex, Outfalls, and River) Arsenic Manganese										
Arsenic Manganese										
Barium	Mercury									
Cadmium	Potassium									
Calcium	Selenium									
Chromium	Silver									
Copper	Sodium									
Iron	Uranium									
Lead	Zinc									
Magnesium										

TPH = total petroleum hydrocarbons GRO = gasoline range organics VOCs = volatile organic compounds DRO = diesel range organics TDS = total dissolved solids

NOTES:

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 30, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX: (505) 632-3911

RE: 2019 Annual GW Sampling Event OrderNo.: 1908E25

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 7 sample(s) on 8/23/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com **Case Narrative**

WO#: **1908E25**Date: **9/30/2019**

CLIENT: Western Refining Southwest, Inc. **Project:** 2019 Annual GW Sampling Event

Analytical Notes Regarding EPA Method 8270: The method blank had poor surrogate recoveries.

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-32

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 7:20:00 AM

 Lab ID: 1908E25-001
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/28/2019 11:06:18 PM	1 47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/28/2019 11:06:18 PM	1 47076
Surr: DNOP	120	0	52.7-168		%Rec	1	8/28/2019 11:06:18 PM	1 47076
EPA METHOD 300.0: ANIONS							Analyst: CAS	
Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 10:15:09 AM	R62780
Chloride	740	25	25	*	mg/L	50	9/10/2019 5:29:20 PM	R62809
Bromide	4.4	0.089	0.50		mg/L	5	9/9/2019 10:15:09 AM	R62780
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 10:15:09 AM	R62780
Sulfate	1800	3.3	25	*	mg/L	50	9/10/2019 5:29:20 PM	R62809
Nitrate+Nitrite as N	37	0.097	2.0	*	mg/L	10	9/13/2019 1:04:29 PM	R62940
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.000054	0.000038	0.00020	J	mg/L	1	9/12/2019 2:01:18 PM	47428
EPA METHOD 6010B: DISSOLVED ME	TALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 12:25:00 PM	A62764
Barium	0.018	0.00056	0.020	J	mg/L	1	9/9/2019 9:34:34 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 9:34:34 AM	A62764
Calcium	320	0.60	10		mg/L	10	9/11/2019 1:00:05 PM	A62841
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 9:34:34 AM	A62764
Copper	ND	0.0023	0.0060		mg/L	1	9/9/2019 9:34:34 AM	A62764
Iron	ND	0.0054	0.020		mg/L	1	9/9/2019 9:34:34 AM	A62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 9:34:34 AM	A62764
Magnesium	50	0.061	1.0		mg/L	1	9/9/2019 9:34:34 AM	A62764
Manganese	ND	0.00026	0.0020		mg/L	1	9/9/2019 9:34:34 AM	A62764
Potassium	3.7	0.11	1.0		mg/L	1	9/9/2019 9:34:34 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 9:34:34 AM	A62764
Silver	0.0049	0.0013	0.0050	J	mg/L	1	9/9/2019 9:34:34 AM	A62764
Sodium	800	2.4	10		mg/L	10	9/9/2019 12:30:44 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 12:25:00 PM	A62764
Zinc	0.020	0.0026	0.020		mg/L	1	9/9/2019 9:34:34 AM	A62764
EPA 6010B: TOTAL RECOVERABLE N	METALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/5/2019 2:12:07 PM	47071
Barium	0.024	0.0012	0.020		mg/L	1	9/5/2019 2:12:07 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:12:07 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:12:07 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:12:07 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/5/2019 2:12:07 PM	47071
Silver	0.0045	0.00055	0.0050	J	mg/L	1	9/5/2019 2:12:07 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-32

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 7:20:00 AM

 Lab ID:
 1908E25-001
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Result **Qual Units** DF **Date Analyzed Batch ID Analyses MDL** RL**EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 1.0 8/27/2019 4:28:23 PM R62453 Benzene 0.17 µg/L 1 Toluene ND 0.35 1.0 μg/L 1 8/27/2019 4:28:23 PM R62453 Ethylbenzene ND 0.13 1.0 μg/L 1 8/27/2019 4:28:23 PM R62453 μg/L Methyl tert-butyl ether (MTBE) ND 0.46 8/27/2019 4:28:23 PM R62453 1.0 1 1,2,4-Trimethylbenzene ND 0.21 1 1.0 µg/L 8/27/2019 4:28:23 PM R62453 1.3.5-Trimethylbenzene ND 0.19 1.0 ua/L 1 8/27/2019 4:28:23 PM R62453 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/27/2019 4:28:23 PM R62453 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/27/2019 4:28:23 PM R62453 0.28 1 Naphthalene ND 2.0 µg/L 8/27/2019 4:28:23 PM R62453 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/27/2019 4:28:23 PM R62453 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/27/2019 4:28:23 PM R62453 Acetone ND 1.2 10 µg/L 1 8/27/2019 4:28:23 PM R62453 Bromobenzene ND 0.24 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/27/2019 4:28:23 PM R62453 ND 0.29 1 8/27/2019 4:28:23 PM R62453 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62453 Bromomethane µg/L 8/27/2019 4:28:23 PM 2-Butanone ND 2.1 10 µg/L 1 8/27/2019 4:28:23 PM R62453 ND Carbon disulfide 0.45 10 µg/L 1 8/27/2019 4:28:23 PM R62453 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 Chlorobenzene ND 0.19 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 Chloroethane ND 0.18 2.0 1 µg/L 8/27/2019 4:28:23 PM R62453 Chloroform ND 0.12 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 Chloromethane ND 0.32 3.0 1 R62453 µg/L 8/27/2019 4:28:23 PM 2-Chlorotoluene ND 0.25 8/27/2019 4:28:23 PM R62453 1.0 µg/L 1 ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 cis-1,3-Dichloropropene ND 0.14 μg/L 1 R62453 1.0 8/27/2019 4:28:23 PM 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/27/2019 4:28:23 PM R62453 Dibromochloromethane ND 0.24 1 1.0 µg/L 8/27/2019 4:28:23 PM R62453 8/27/2019 4:28:23 PM Dibromomethane ND 0.21 1.0 µg/L 1 R62453 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/27/2019 4:28:23 PM R62453 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 R62453 8/27/2019 4:28:23 PM 1,1-Dichloroethane ND 0.14 1 R62453 1.0 µg/L 8/27/2019 4:28:23 PM 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/27/2019 4:28:23 PM R62453 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/27/2019 4:28:23 PM R62453 1,3-Dichloropropane ND 0.20 μg/L 1 8/27/2019 4:28:23 PM R62453 1.0 2,2-Dichloropropane ND 0.23 2.0 µg/L 8/27/2019 4:28:23 PM R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-32

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 7:20:00 AM

 Lab ID: 1908E25-001
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
2-Hexanone	ND	1.5	10		μg/L	1	8/27/2019 4:28:23 PM	R62453
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/27/2019 4:28:23 PM	R62453
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Styrene	ND	0.19	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/27/2019 4:28:23 PM	R62453
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/27/2019 4:28:23 PM	R62453
Surr: 1,2-Dichloroethane-d4	94.8	0	70-130		%Rec	1	8/27/2019 4:28:23 PM	R62453
Surr: 4-Bromofluorobenzene	95.0	0	70-130		%Rec	1	8/27/2019 4:28:23 PM	R62453
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	8/27/2019 4:28:23 PM	R62453
Surr: Toluene-d8	102	0	70-130		%Rec	1	8/27/2019 4:28:23 PM	R62453
EPA METHOD 8015D: GASOLINE RANGE							Analyst: RAA	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/27/2019 4:28:23 PM	GW624
Surr: BFB	98.5	0	70-130		%Rec	1	8/27/2019 4:28:23 PM	GW624
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	160	0	1.0	Н	mg CO2	2/ 1	8/26/2019 7:09:06 PM	R62429
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	5300	5.0	5.0		µmhos/	c 1	8/26/2019 7:09:06 PM	R62429

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-32

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 7:20:00 AM

Lab ID: 1908E25-001 **Matrix:** AQUEOUS **Received Date:** 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	R
Bicarbonate (As CaCO3)	178.6	20.00	20.00		mg/L Ca	a 1	8/26/2019 7:09:06 PM	R62429
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/26/2019 7:09:06 PM	R62429
Total Alkalinity (as CaCO3)	178.6	20.00	20.00		mg/L Ca	a 1	8/26/2019 7:09:06 PM	R62429
SM2540C MOD: TOTAL DISSOLVED SOLID	S						Analyst: JM 1	Г
Total Dissolved Solids	3830	40.0	40.0	*D	mg/L	1	8/29/2019 1:58:00 PM	47121

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-27

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:00:00 AM

 Lab ID: 1908E25-002
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015D: DIESEL RANGE						Analyst: JME		
Diesel Range Organics (DRO)	0.23	0.13	0.40	J	mg/L	1	8/28/2019 11:30:56 PM	47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/28/2019 11:30:56 PM	47076
Surr: DNOP	123	0	52.7-168		%Rec	1	8/28/2019 11:30:56 PM	47076
EPA METHOD 300.0: ANIONS							Analyst: CAS	
Fluoride	0.11	0.073	0.50	J	mg/L	5	9/9/2019 11:06:37 AM	R62780
Chloride	960	50	50	*	mg/L	100	9/10/2019 5:41:44 PM	R62809
Bromide	9.5	0.089	0.50		mg/L	5	9/9/2019 11:06:37 AM	R62780
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 11:06:37 AM	R62780
Sulfate	2900	6.7	50	*	mg/L	100	9/10/2019 5:41:44 PM	R62809
Nitrate+Nitrite as N	ND	0.048	1.0		mg/L	5	9/9/2019 2:32:30 PM	R62780
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.000055	0.000038	0.00020	J	mg/L	1	9/12/2019 2:03:31 PM	47428
EPA 6010B: TOTAL RECOVERABLE ME	TALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/5/2019 2:17:07 PM	47071
Barium	0.059	0.0012	0.020		mg/L	1	9/5/2019 2:17:07 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:17:07 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:17:07 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:17:07 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/5/2019 2:17:07 PM	47071
Silver	0.0086	0.00055	0.0050		mg/L	1	9/5/2019 2:17:07 PM	47071
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	ND	0.17	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Toluene	ND	0.35	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Naphthalene	ND	0.28	2.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Acetone	ND	1.2	10		μg/L	1	8/27/2019 4:57:24 PM	R62453
Bromobenzene	ND	0.24	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Bromoform	ND	0.29	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Bromomethane	ND	0.27	3.0		μg/L	1	8/27/2019 4:57:24 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-27

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:00:00 AM

 Lab ID: 1908E25-002
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8260B: VOLATILES						Analyst: RAA			
2-Butanone	ND	2.1	10	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Carbon disulfide	ND	0.45	10	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Chlorobenzene	ND	0.19	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Chloroethane	ND	0.18	2.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Chloroform	ND	0.12	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Chloromethane	ND	0.32	3.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Dibromochloromethane	ND	0.24	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Dibromomethane	ND	0.21	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,1-Dichloropropene	ND	0.16	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Hexachlorobutadiene	ND	0.31	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
2-Hexanone	ND	1.5	10	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Isopropylbenzene	ND	0.19	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
4-Isopropyltoluene	ND	0.22	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
4-Methyl-2-pentanone	ND	0.71	10	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Methylene Chloride	ND	0.15	3.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
n-Butylbenzene	ND	0.23	3.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
n-Propylbenzene	ND	0.21	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
sec-Butylbenzene	ND	0.25	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Styrene	ND	0.19	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
tert-Butylbenzene	ND	0.21	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,1,1,2-Tetrachloroethane	ND	0.21	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
1,1,2,2-Tetrachloroethane	ND	0.55	2.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
Tetrachloroethene (PCE)	ND	0.15	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		
trans-1,2-DCE	ND	0.18	1.0	μg/L	1	8/27/2019 4:57:24 PM	R62453		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-27

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:00:00 AM

 Lab ID: 1908E25-002
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/27/2019 4:57:24 PM	R62453
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/27/2019 4:57:24 PM	R62453
Surr: 1,2-Dichloroethane-d4	96.2	0	70-130		%Rec	1	8/27/2019 4:57:24 PM	R62453
Surr: 4-Bromofluorobenzene	98.6	0	70-130		%Rec	1	8/27/2019 4:57:24 PM	R62453
Surr: Dibromofluoromethane	99.1	0	70-130		%Rec	1	8/27/2019 4:57:24 PM	R62453
Surr: Toluene-d8	100	0	70-130		%Rec	1	8/27/2019 4:57:24 PM	R62453
EPA METHOD 8015D: GASOLINE RANGE							Analyst: RAA	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/27/2019 4:57:24 PM	GW624
Surr: BFB	99.6	0	70-130		%Rec	1	8/27/2019 4:57:24 PM	GW624
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	230	0	1.0	Н	mg CO2	2/ 1	8/28/2019 10:34:42 PM	R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	7300	5.0	5.0		µmhos/	c 1	8/28/2019 10:34:42 PM	R62496
SM2320B: ALKALINITY							Analyst: JRR	
Bicarbonate (As CaCO3)	250.6	20.00	20.00		mg/L Ca	a 1	8/28/2019 10:34:42 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca		8/28/2019 10:34:42 PM	R62496
Total Alkalinity (as CaCO3)	250.6	20.00	20.00		mg/L Ca	a 1	8/28/2019 10:34:42 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOL	IDS						Analyst: JMT	
Total Dissolved Solids	4990	200	200	*D	mg/L	1	8/29/2019 1:58:00 PM	47121

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-38

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:45:00 AM

 Lab ID: 1908E25-003
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE						Analyst: JME	_	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/28/2019 11:55:33 PM	1 47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/28/2019 11:55:33 PM	1 47076
Surr: DNOP	129	0	52.7-168		%Rec	1	8/28/2019 11:55:33 PM	1 47076
EPA METHOD 300.0: ANIONS							Analyst: CAS	
Fluoride	0.61	0.073	0.50		mg/L	5	9/9/2019 11:58:05 AM	R62780
Chloride	170	10	10		mg/L	20	9/9/2019 12:10:56 PM	R62780
Bromide	2.3	0.089	0.50		mg/L	5	9/9/2019 11:58:05 AM	R62780
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 11:58:05 AM	R62780
Sulfate	13	0.33	2.5		mg/L	5	9/9/2019 11:58:05 AM	R62780
Nitrate+Nitrite as N	0.097	0.048	1.0	J	mg/L	5	9/9/2019 2:45:22 PM	R62780
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.000044	0.000038	0.00020	J	mg/L	1	9/12/2019 2:10:12 PM	47428
EPA METHOD 6010B: DISSOLVED ME	TALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 12:32:32 PM	A62764
Barium	0.55	0.00056	0.020		mg/L	1	9/9/2019 9:45:54 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 9:45:54 AM	A62764
Calcium	130	0.30	5.0		mg/L	5	9/9/2019 9:47:43 AM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 9:45:54 AM	A62764
Copper	ND	0.0023	0.0060		mg/L	1	9/9/2019 9:45:54 AM	A62764
Iron	0.18	0.0054	0.020		mg/L	1	9/9/2019 9:45:54 AM	A62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 9:45:54 AM	A62764
Magnesium	21	0.061	1.0		mg/L	1	9/9/2019 9:45:54 AM	A62764
Manganese	2.8	0.0013	0.010		mg/L	5	9/9/2019 9:47:43 AM	A62764
Potassium	2.3	0.11	1.0		mg/L	1	9/9/2019 9:45:54 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 9:45:54 AM	A62764
Silver	0.0018	0.0013	0.0050	J	mg/L	1	9/9/2019 9:45:54 AM	A62764
Sodium	220	1.2	5.0		mg/L	5	9/9/2019 9:47:43 AM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 9:45:54 AM	A62764
Zinc	0.025	0.0026	0.020		mg/L	1	9/9/2019 9:45:54 AM	A62764
EPA 6010B: TOTAL RECOVERABLE M	ETALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/5/2019 2:18:47 PM	47071
Barium	0.56	0.0012	0.020		mg/L	1	9/5/2019 2:18:47 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:18:47 PM	47071
Chromium	0.0070	0.00086	0.0060		mg/L	1	9/5/2019 2:18:47 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:18:47 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/5/2019 2:18:47 PM	47071
Silver	ND	0.00055	0.0050		mg/L	1	9/5/2019 2:18:47 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-38

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 8:45:00 AM

 Lab ID:
 1908E25-003
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: D A	M
Acenaphthene	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Acenaphthylene	ND	2.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Aniline	ND	3.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Anthracene	ND	2.7	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Azobenzene	ND	3.3	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Benz(a)anthracene	ND	3.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Benzo(a)pyrene	ND	3.5	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Benzo(b)fluoranthene	ND	3.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Benzo(g,h,i)perylene	ND	2.2	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Benzo(k)fluoranthene	ND	2.9	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Benzoic acid	ND	11	20	μg/L	1	9/5/2019 3:38:26 PM	47113
Benzyl alcohol	ND	2.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Bis(2-chloroethoxy)methane	ND	2.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Bis(2-chloroethyl)ether	ND	3.2	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Bis(2-chloroisopropyl)ether	ND	3.9	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Bis(2-ethylhexyl)phthalate	ND	4.3	10	μg/L	1	9/5/2019 3:38:26 PM	47113
4-Bromophenyl phenyl ether	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Butyl benzyl phthalate	ND	3.3	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Carbazole	ND	2.9	10	μg/L	1	9/5/2019 3:38:26 PM	47113
4-Chloro-3-methylphenol	ND	3.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113
4-Chloroaniline	ND	2.3	10	μg/L	1	9/5/2019 3:38:26 PM	47113
2-Chloronaphthalene	ND	3.1	10	μg/L	1	9/5/2019 3:38:26 PM	47113
2-Chlorophenol	ND	2.7	10	μg/L	1	9/5/2019 3:38:26 PM	47113
4-Chlorophenyl phenyl ether	ND	2.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Chrysene	ND	2.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Di-n-butyl phthalate	ND	2.7	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Di-n-octyl phthalate	ND	3.5	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Dibenz(a,h)anthracene	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Dibenzofuran	ND	3.2	10	μg/L	1	9/5/2019 3:38:26 PM	47113
1,2-Dichlorobenzene	ND	4.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113
1,3-Dichlorobenzene	ND	5.3	10	μg/L	1	9/5/2019 3:38:26 PM	47113
1,4-Dichlorobenzene	ND	4.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113
3,3´-Dichlorobenzidine	ND	2.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Diethyl phthalate	ND	2.9	10	μg/L	1	9/5/2019 3:38:26 PM	47113
Dimethyl phthalate	ND	3.2	10	μg/L	1	9/5/2019 3:38:26 PM	47113
2,4-Dichlorophenol	ND	2.9	20	μg/L	1	9/5/2019 3:38:26 PM	47113
2,4-Dimethylphenol	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113
4,6-Dinitro-2-methylphenol	ND	2.9	20	μg/L	1	9/5/2019 3:38:26 PM	47113
2,4-Dinitrophenol	ND	2.6	20	μg/L	1	9/5/2019 3:38:26 PM	47113

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-38

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:45:00 AM

 Lab ID: 1908E25-003
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	, RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DAM			
2,4-Dinitrotoluene	ND	3.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2,6-Dinitrotoluene	ND	2.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Fluoranthene	ND	2.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Fluorene	ND	2.9	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Hexachlorobenzene	ND	3.1	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Hexachlorobutadiene	ND	4.7	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Hexachlorocyclopentadiene	ND	3.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Hexachloroethane	ND	4.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Indeno(1,2,3-cd)pyrene	ND	2.7	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Isophorone	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
1-Methylnaphthalene	ND	3.1	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2-Methylnaphthalene	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2-Methylphenol	ND	2.9	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
3+4-Methylphenol	ND	3.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
N-Nitrosodi-n-propylamine	ND	6.5	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
N-Nitrosodimethylamine	ND	5.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
N-Nitrosodiphenylamine	ND	2.4	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Naphthalene	ND	4.1	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2-Nitroaniline	ND	3.2	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
3-Nitroaniline	ND	3.2	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
4-Nitroaniline	ND	2.7	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Nitrobenzene	ND	2.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2-Nitrophenol	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
4-Nitrophenol	ND	7.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Pentachlorophenol	ND	2.7	20	μg/L	1	9/5/2019 3:38:26 PM	47113		
Phenanthrene	ND	2.8	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Phenol	ND	8.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Pyrene	ND	2.5	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Pyridine	ND	9.6	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
1,2,4-Trichlorobenzene	ND	4.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2,4,5-Trichlorophenol	ND	3.0	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
2,4,6-Trichlorophenol	ND	2.3	10	μg/L	1	9/5/2019 3:38:26 PM	47113		
Surr: 2-Fluorophenol	42.7	0	15-101	%Rec	1	9/5/2019 3:38:26 PM	47113		
Surr: Phenol-d5	34.6	0	15-84.6	%Rec	1	9/5/2019 3:38:26 PM	47113		
Surr: 2,4,6-Tribromophenol	53.3	0	27.8-112	%Rec	1	9/5/2019 3:38:26 PM	47113		
Surr: Nitrobenzene-d5	81.0	0	33-113	%Rec	1	9/5/2019 3:38:26 PM	47113		
Surr: 2-Fluorobiphenyl	65.8	0	26.6-107	%Rec	1	9/5/2019 3:38:26 PM	47113		
Surr: 4-Terphenyl-d14	69.3	0	18.7-148	%Rec	1	9/5/2019 3:38:26 PM	47113		

EPA METHOD 8260B: VOLATILES

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 52

Analyst: RAA

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-38

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:45:00 AM

 Lab ID:
 1908E25-003
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Result **Qual Units** DF **Date Analyzed Batch ID Analyses MDL** RL**EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 1.0 8/27/2019 5:26:29 PM R62453 Benzene 0.17 µg/L 1 Toluene ND 0.35 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 Ethylbenzene ND 0.13 1.0 1 8/27/2019 5:26:29 PM R62453 µg/L μg/L Methyl tert-butyl ether (MTBE) 0.65 0.46 J 8/27/2019 5:26:29 PM R62453 1.0 1 1,2,4-Trimethylbenzene ND 0.21 1 1.0 µg/L 8/27/2019 5:26:29 PM R62453 1.3.5-Trimethylbenzene ND 0.19 1.0 ua/L 1 8/27/2019 5:26:29 PM R62453 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/27/2019 5:26:29 PM R62453 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 0.28 1 Naphthalene ND 2.0 µg/L 8/27/2019 5:26:29 PM R62453 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/27/2019 5:26:29 PM R62453 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Acetone ND 1.2 10 µg/L 1 8/27/2019 5:26:29 PM R62453 Bromobenzene ND 0.24 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 ND 0.29 1 8/27/2019 5:26:29 PM R62453 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62453 Bromomethane µg/L 8/27/2019 5:26:29 PM 2-Butanone ND 2.1 10 µg/L 1 8/27/2019 5:26:29 PM R62453 ND Carbon disulfide 0.45 10 µg/L 1 8/27/2019 5:26:29 PM R62453 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Chlorobenzene ND 0.19 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Chloroethane ND 0.18 2.0 1 µg/L 8/27/2019 5:26:29 PM R62453 Chloroform ND 0.12 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Chloromethane ND 0.32 3.0 1 8/27/2019 5:26:29 PM R62453 µg/L 2-Chlorotoluene ND 0.25 8/27/2019 5:26:29 PM R62453 1.0 µg/L 1 ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 cis-1,3-Dichloropropene ND 0.14 μg/L 1 R62453 1.0 8/27/2019 5:26:29 PM 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Dibromochloromethane ND 0.24 1 1.0 µg/L 8/27/2019 5:26:29 PM R62453 Dibromomethane ND 0.21 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 1,1-Dichloroethane ND 0.14 1 8/27/2019 5:26:29 PM R62453 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/27/2019 5:26:29 PM R62453 1,3-Dichloropropane ND 0.20 μg/L 1 8/27/2019 5:26:29 PM R62453 1.0 2,2-Dichloropropane ND 0.23 2.0 µg/L 8/27/2019 5:26:29 PM R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-38

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:45:00 AM

 Lab ID:
 1908E25-003
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Result **Qual Units** DF **Date Analyzed Batch ID Analyses MDL** RL**EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 0.16 8/27/2019 5:26:29 PM 1.1-Dichloropropene 1.0 µg/L 1 R62453 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 ND 1.5 10 1 8/27/2019 5:26:29 PM R62453 2-Hexanone µg/L Isopropylbenzene ND 0.19 8/27/2019 5:26:29 PM R62453 1.0 µg/L 1 4-Isopropyltoluene ND 0.22 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 4-Methyl-2-pentanone ND 0.71 10 ua/L 1 8/27/2019 5:26:29 PM R62453 Methylene Chloride ND 0.15 3.0 1 R62453 µg/L 8/27/2019 5:26:29 PM n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/27/2019 5:26:29 PM R62453 n-Propylbenzene 0.21 ND 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 sec-Butylbenzene ND 0.25 1.0 μg/L 1 8/27/2019 5:26:29 PM R62453 Styrene ND 0.19 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 tert-Butvlbenzene 0.57 0.21 1.0 J µg/L 1 8/27/2019 5:26:29 PM R62453 1,1,1,2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/27/2019 5:26:29 PM R62453 Tetrachloroethene (PCE) ND 0.15 1 8/27/2019 5:26:29 PM R62453 1.0 µg/L ND 0.18 1 R62453 trans-1,2-DCE 1.0 µg/L 8/27/2019 5:26:29 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 ND 0.30 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 ND 0.22 1 1,1,2-Trichloroethane 1.0 µg/L 8/27/2019 5:26:29 PM R62453 Trichloroethene (TCE) ND 0.17 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Trichlorofluoromethane ND 0.19 1 R62453 1.0 µg/L 8/27/2019 5:26:29 PM 1,2,3-Trichloropropane ND 0.30 2.0 8/27/2019 5:26:29 PM R62453 µg/L 1 ND 0.18 Vinyl chloride 1.0 µg/L 1 8/27/2019 5:26:29 PM R62453 Xylenes, Total ND 0.45 1.5 µg/L 1 8/27/2019 5:26:29 PM R62453 Surr: 1,2-Dichloroethane-d4 92.6 0 70-130 %Rec 1 R62453 8/27/2019 5:26:29 PM Surr: 4-Bromofluorobenzene 95.3 0 70-130 %Rec 1 8/27/2019 5:26:29 PM R62453 Surr: Dibromofluoromethane 0 1 98.8 70-130 %Rec 8/27/2019 5:26:29 PM R62453 Surr: Toluene-d8 101 0 70-130 %Rec 1 8/27/2019 5:26:29 PM R62453 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: RAA Gasoline Range Organics (GRO) 0.031 0.052 0.050 mg/L 8/27/2019 5:26:29 PM GW624 1 Surr: BFB 98.9 0 70-130 %Rec 1 8/27/2019 5:26:29 PM GW624 **CARBON DIOXIDE** Analyst: JRR **Total Carbon Dioxide** 620 0 1.0 Н mg CO2/ 1 8/26/2019 7:37:53 PM R62429 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: JRR 8/26/2019 7:37:53 PM Conductivity 1700 5.0 5.0 µmhos/c 1 R62429

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-38

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 8:45:00 AM

 Lab ID:
 1908E25-003
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses Result **MDL** RL**Qual Units** DF **Date Analyzed Batch ID SM2320B: ALKALINITY** Analyst: JRR Bicarbonate (As CaCO3) 20.00 20.00 mg/L Ca 1 8/26/2019 7:37:53 PM 686.8 R62429 Carbonate (As CaCO3) ND 2.000 2.000 mg/L Ca 1 8/26/2019 7:37:53 PM R62429 Total Alkalinity (as CaCO3) 686.8 20.00 20.00 mg/L Ca 1 8/26/2019 7:37:53 PM R62429 **SM2540C MOD: TOTAL DISSOLVED SOLIDS** Analyst: JMT **Total Dissolved Solids** 100 *D 8/29/2019 1:58:00 PM 875 100 mg/L 1 47121

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank
Project: 2019 Annual GW Sampling Event

Collection Date: 8/22/2019

Lab ID: 1908E25-004 **Matrix:** TRIP BLANK **Received Date:** 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	4
Benzene	ND	0.17	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Toluene	ND	0.35	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Ethylbenzene	ND	0.13	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Naphthalene	ND	0.28	2.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Acetone	ND	1.2	10	μg/L	1	8/27/2019 5:55:36 PM	R62453
Bromobenzene	ND	0.24	1.0	μg/L	1	8/27/2019 5:55:36 PM	
Bromodichloromethane	ND	0.13	1.0	μg/L	1	8/27/2019 5:55:36 PM	
Bromoform	ND	0.29	1.0	μg/L	1	8/27/2019 5:55:36 PM	
Bromomethane	ND	0.27	3.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
2-Butanone	ND	2.1	10	μg/L	1	8/27/2019 5:55:36 PM	R62453
Carbon disulfide	ND	0.45	10	μg/L	1	8/27/2019 5:55:36 PM	
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	8/27/2019 5:55:36 PM	
Chlorobenzene	ND	0.19	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Chloroethane	ND	0.18	2.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Chloroform	ND	0.12	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Chloromethane	ND	0.32	3.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Dibromochloromethane	ND	0.24	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Dibromomethane	ND	0.21	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	8/27/2019 5:55:36 PM	
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	8/27/2019 5:55:36 PM	
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	8/27/2019 5:55:36 PM	R62453
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	8/27/2019 5:55:36 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank
Project: 2019 Annual GW Sampling Event

Collection Date: 8/22/2019

Lab ID: 1908E25-004 **Matrix:** TRIP BLANK **Received Date:** 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	1
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
2-Hexanone	ND	1.5	10		μg/L	1	8/27/2019 5:55:36 PM	R62453
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/27/2019 5:55:36 PM	R62453
Methylene Chloride	0.18	0.15	3.0	J	μg/L	1	8/27/2019 5:55:36 PM	R62453
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Styrene	ND	0.19	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/27/2019 5:55:36 PM	R62453
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/27/2019 5:55:36 PM	R62453
Surr: 1,2-Dichloroethane-d4	95.6	0	70-130		%Rec	1	8/27/2019 5:55:36 PM	R62453
Surr: 4-Bromofluorobenzene	93.3	0	70-130		%Rec	1	8/27/2019 5:55:36 PM	R62453
Surr: Dibromofluoromethane	104	0	70-130		%Rec	1	8/27/2019 5:55:36 PM	R62453
Surr: Toluene-d8	105	0	70-130		%Rec	1	8/27/2019 5:55:36 PM	R62453
EPA METHOD 8015D: GASOLINE RANGE							Analyst: RAA	4
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/27/2019 5:55:36 PM	GW624
Surr: BFB	97.9	0	70-130		%Rec	1	8/27/2019 5:55:36 PM	GW624

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-37

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 9:10:00 AM

 Lab ID: 1908E25-005
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 12:20:19 AM	A 47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 12:20:19 AM	A 47076
Surr: DNOP	132	0	52.7-168		%Rec	1	8/29/2019 12:20:19 AM	<i>I</i> 47076
EPA METHOD 300.0: ANIONS							Analyst: CAS	;
Fluoride	0.51	0.073	0.50		mg/L	5	9/9/2019 12:23:48 PM	R62780
Chloride	220	10	10		mg/L	20	9/9/2019 12:36:41 PM	R62780
Bromide	3.0	0.089	0.50		mg/L	5	9/9/2019 12:23:48 PM	R62780
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 12:23:48 PM	R62780
Sulfate	1200	3.3	25	*	mg/L	50	9/10/2019 5:54:09 PM	R62809
Nitrate+Nitrite as N	0.18	0.048	1.0	J	mg/L	5	9/9/2019 2:58:14 PM	R62780
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.000070	0.000038	0.00020	J	mg/L	1	9/12/2019 2:12:28 PM	47428
EPA METHOD 6010B: DISSOLVED ME	TALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 12:34:22 PM	A62764
Barium	0.053	0.00056	0.020		mg/L	1	9/9/2019 9:49:32 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 9:49:32 AM	A62764
Calcium	220	0.30	5.0		mg/L	5	9/9/2019 9:51:12 AM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 9:49:32 AM	A62764
Copper	0.0024	0.0023	0.0060	J	mg/L	1	9/9/2019 9:49:32 AM	A62764
Iron	0.63	0.0054	0.020		mg/L	1	9/9/2019 9:49:32 AM	A62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 9:49:32 AM	A62764
Magnesium	41	0.061	1.0		mg/L	1	9/9/2019 9:49:32 AM	A62764
Manganese	2.0	0.0013	0.010		mg/L	5	9/9/2019 9:51:12 AM	A62764
Potassium	3.6	0.11	1.0		mg/L	1	9/9/2019 9:49:32 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 9:49:32 AM	A62764
Silver	0.0030	0.0013	0.0050	J	mg/L	1	9/9/2019 9:49:32 AM	A62764
Sodium	530	2.4	10		mg/L	10	9/9/2019 12:36:04 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 9:49:32 AM	A62764
Zinc	0.015	0.0026	0.020	J	mg/L	1	9/9/2019 9:49:32 AM	A62764
EPA 6010B: TOTAL RECOVERABLE M	ETALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/5/2019 2:22:15 PM	47071
Barium	0.17	0.0012	0.020		mg/L	1	9/5/2019 2:22:15 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:22:15 PM	47071
Chromium	0.0040	0.00086	0.0060	J	mg/L	1	9/5/2019 2:22:15 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:22:15 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/5/2019 2:22:15 PM	47071
Silver	0.0024	0.00055	0.0050	J	mg/L	1	9/5/2019 2:22:15 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-37

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 9:10:00 AM

 Lab ID: 1908E25-005
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	4
Benzene	ND	0.17	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Toluene	ND	0.35	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Ethylbenzene	ND	0.13	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Naphthalene	ND	0.28	2.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Acetone	ND	1.2	10	μg/L	1	8/27/2019 6:24:43 PM	R62453
Bromobenzene	ND	0.24	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Bromodichloromethane	ND	0.13	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Bromoform	ND	0.29	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Bromomethane	ND	0.27	3.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
2-Butanone	ND	2.1	10	μg/L	1	8/27/2019 6:24:43 PM	R62453
Carbon disulfide	ND	0.45	10	μg/L	1	8/27/2019 6:24:43 PM	R62453
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Chlorobenzene	ND	0.19	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Chloroethane	ND	0.18	2.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Chloroform	ND	0.12	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Chloromethane	ND	0.32	3.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Dibromochloromethane	ND	0.24	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Dibromomethane	ND	0.21	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	8/27/2019 6:24:43 PM	R62453
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	8/27/2019 6:24:43 PM	R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-37

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 9:10:00 AM

Lab ID: 1908E25-005 **Matrix:** AQUEOUS **Received Date:** 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	4
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
2-Hexanone	ND	1.5	10		μg/L	1	8/27/2019 6:24:43 PM	R62453
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/27/2019 6:24:43 PM	R62453
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Styrene	ND	0.19	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/27/2019 6:24:43 PM	R62453
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/27/2019 6:24:43 PM	R62453
Surr: 1,2-Dichloroethane-d4	93.2	0	70-130		%Rec	1	8/27/2019 6:24:43 PM	R62453
Surr: 4-Bromofluorobenzene	96.3	0	70-130		%Rec	1	8/27/2019 6:24:43 PM	R62453
Surr: Dibromofluoromethane	99.4	0	70-130		%Rec	1	8/27/2019 6:24:43 PM	R62453
Surr: Toluene-d8	99.1	0	70-130		%Rec	1	8/27/2019 6:24:43 PM	R62453
EPA METHOD 8015D: GASOLINE RANGE							Analyst: RAA	4
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/27/2019 6:24:43 PM	GW624
Surr: BFB	97.5	0	70-130		%Rec	1	8/27/2019 6:24:43 PM	GW624
CARBON DIOXIDE							Analyst: JRR	1
Total Carbon Dioxide	520	0	1.0	Н	mg CO2	2/ 1	8/26/2019 8:03:18 PM	R62429
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	2
Conductivity	3600	5.0	5.0		µmhos/	c 1	8/26/2019 8:03:18 PM	R62429

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-37

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 9:10:00 AM

Lab ID: 1908E25-005 **Matrix:** AQUEOUS **Received Date:** 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	₹
Bicarbonate (As CaCO3)	572.6	20.00	20.00		mg/L Ca	a 1	8/26/2019 8:03:18 PM	1 R62429
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/26/2019 8:03:18 PM	1 R62429
Total Alkalinity (as CaCO3)	572.6	20.00	20.00		mg/L Ca	a 1	8/26/2019 8:03:18 PM	1 R62429
SM2540C MOD: TOTAL DISSOLVED SOLID	S						Analyst: JM	Т
Total Dissolved Solids	2480	100	100	*D	mg/L	1	8/29/2019 1:58:00 PM	1 47121

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-35

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 9:40:00 AM

 Lab ID: 1908E25-006
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	0.26	0.13	0.40	J	mg/L	1	8/29/2019 12:44:57 AM	47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 12:44:57 AM	47076
Surr: DNOP	127	0	52.7-168		%Rec	1	8/29/2019 12:44:57 AM	47076
EPA METHOD 300.0: ANIONS							Analyst: CAS	
Fluoride	0.61	0.073	0.50		mg/L	5	9/9/2019 12:49:33 PM	R62780
Chloride	210	10	10		mg/L	20	9/9/2019 1:02:24 PM	R62780
Bromide	2.9	0.089	0.50		mg/L	5	9/9/2019 12:49:33 PM	R62780
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 12:49:33 PM	R62780
Sulfate	91	0.33	2.5		mg/L	5	9/9/2019 12:49:33 PM	R62780
Nitrate+Nitrite as N	ND	0.048	1.0		mg/L	5	9/9/2019 3:11:06 PM	R62780
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00012	0.000038	0.00020	J	mg/L	1	9/12/2019 2:14:43 PM	47428
EPA METHOD 6010B: DISSOLVED METAI	LS						Analyst: bcv	
Arsenic	0.037	0.019	0.020		mg/L	1	9/9/2019 9:58:36 AM	A62764
Barium	1.1	0.0028	0.10		mg/L	5	9/9/2019 10:00:19 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 9:58:36 AM	A62764
Calcium	140	0.30	5.0		mg/L	5	9/9/2019 10:00:19 AM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 9:58:36 AM	A62764
Copper	ND	0.0023	0.0060		mg/L	1	9/9/2019 9:58:36 AM	A62764
Iron	1.9	0.027	0.10		mg/L	5	9/9/2019 10:00:19 AM	A62764
Lead	0.0061	0.0048	0.0050		mg/L	1	9/9/2019 9:58:36 AM	A62764
Magnesium	24	0.061	1.0		mg/L	1	9/9/2019 9:58:36 AM	A62764
Manganese	2.4	0.0013	0.010		mg/L	5	9/9/2019 10:00:19 AM	A62764
Potassium	3.0	0.11	1.0		mg/L	1	9/9/2019 9:58:36 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 9:58:36 AM	A62764
Silver	0.0017	0.0013	0.0050	J	mg/L	1	9/9/2019 9:58:36 AM	A62764
Sodium	400	1.2	5.0		mg/L	5	9/9/2019 10:00:19 AM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 9:58:36 AM	A62764
Zinc	0.021	0.0026	0.020		mg/L	1	9/9/2019 9:58:36 AM	A62764
EPA 6010B: TOTAL RECOVERABLE MET	ALS						Analyst: bcv	
Arsenic	0.016	0.015	0.020	J	mg/L	1	9/9/2019 8:11:09 AM	47071
Barium	1.2	0.0061	0.10		mg/L	5	9/9/2019 8:12:48 AM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:30:53 PM	47071
Chromium	0.0038	0.00086	0.0060	J	mg/L	1	9/5/2019 2:30:53 PM	47071
Lead	0.0042	0.0035	0.0050	J	mg/L	1	9/5/2019 2:30:53 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:11:09 AM	47071
Silver	0.00077	0.00055	0.0050	J	mg/L	1	9/5/2019 2:30:53 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-35

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 9:40:00 AM

 Lab ID:
 1908E25-006
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Result **Qual Units** DF **Date Analyzed Batch ID Analyses MDL** RL**EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 1.0 8/27/2019 6:53:52 PM R62453 Benzene 0.17 µg/L 1 Toluene ND 0.35 1.0 μg/L 1 8/27/2019 6:53:52 PM R62453 Ethylbenzene ND 0.13 1.0 μg/L 1 8/27/2019 6:53:52 PM R62453 μg/L Methyl tert-butyl ether (MTBE) 0.62 0.46 J 8/27/2019 6:53:52 PM R62453 1.0 1 1,2,4-Trimethylbenzene ND 0.21 1 R62453 1.0 µg/L 8/27/2019 6:53:52 PM 1.3.5-Trimethylbenzene ND 0.19 1.0 ua/L 1 8/27/2019 6:53:52 PM R62453 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/27/2019 6:53:52 PM R62453 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/27/2019 6:53:52 PM R62453 0.28 1 Naphthalene ND 2.0 µg/L 8/27/2019 6:53:52 PM R62453 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/27/2019 6:53:52 PM R62453 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/27/2019 6:53:52 PM R62453 Acetone 4.7 1.2 10 J µg/L 1 8/27/2019 6:53:52 PM R62453 Bromobenzene ND 0.24 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/27/2019 6:53:52 PM R62453 ND 0.29 μg/L 1 8/27/2019 6:53:52 PM R62453 Bromoform 1.0 ND 0.27 3.0 1 R62453 Bromomethane µg/L 8/27/2019 6:53:52 PM 2-Butanone ND 2.1 10 µg/L 1 8/27/2019 6:53:52 PM R62453 ND 0.45 Carbon disulfide 10 µg/L 1 8/27/2019 6:53:52 PM R62453 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 Chlorobenzene ND 0.19 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 Chloroethane ND 0.18 2.0 1 µg/L 8/27/2019 6:53:52 PM R62453 Chloroform ND 0.12 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 Chloromethane ND 0.32 3.0 1 8/27/2019 6:53:52 PM R62453 µg/L 2-Chlorotoluene ND 0.25 8/27/2019 6:53:52 PM R62453 1.0 µg/L 1 ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 cis-1,3-Dichloropropene ND 0.14 μg/L 1 8/27/2019 6:53:52 PM R62453 1.0 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/27/2019 6:53:52 PM R62453 Dibromochloromethane ND 0.24 1 1.0 µg/L 8/27/2019 6:53:52 PM R62453 Dibromomethane ND 0.21 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/27/2019 6:53:52 PM R62453 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/27/2019 6:53:52 PM R62453 1,1-Dichloroethane ND 0.14 1 8/27/2019 6:53:52 PM R62453 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/27/2019 6:53:52 PM R62453 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/27/2019 6:53:52 PM R62453 1,3-Dichloropropane ND 0.20 μg/L 1 8/27/2019 6:53:52 PM R62453 1.0 2,2-Dichloropropane ND 0.23 2.0 µg/L 8/27/2019 6:53:52 PM R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-35

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 9:40:00 AM

 Lab ID: 1908E25-006
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
2-Hexanone	ND	1.5	10		μg/L	1	8/27/2019 6:53:52 PM	R62453
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/27/2019 6:53:52 PM	R62453
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Styrene	ND	0.19	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
tert-Butylbenzene	1.4	0.21	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/27/2019 6:53:52 PM	R62453
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/27/2019 6:53:52 PM	R62453
Surr: 1,2-Dichloroethane-d4	98.2	0	70-130		%Rec	1	8/27/2019 6:53:52 PM	R62453
Surr: 4-Bromofluorobenzene	96.6	0	70-130		%Rec	1	8/27/2019 6:53:52 PM	R62453
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	8/27/2019 6:53:52 PM	R62453
Surr: Toluene-d8	102	0	70-130		%Rec	1	8/27/2019 6:53:52 PM	R62453
EPA METHOD 8015D: GASOLINE RANGE							Analyst: RAA	ı
Gasoline Range Organics (GRO)	0.35	0.031	0.050		mg/L	1	8/27/2019 6:53:52 PM	GW624
Surr: BFB	101	0	70-130		%Rec	1	8/27/2019 6:53:52 PM	GW624
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	920	0	1.0	Н	mg CO2	2/ 1	8/26/2019 8:25:09 PM	R62429
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	2500	5.0	5.0		µmhos/o	1	8/26/2019 8:25:09 PM	R62429

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

8/29/2019 1:58:00 PM

47121

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-35

1450

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 9:40:00 AM

 Lab ID:
 1908E25-006
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses Result **MDL** RL**Qual Units** DF **Date Analyzed Batch ID SM2320B: ALKALINITY** Analyst: JRR 8/26/2019 8:25:09 PM Bicarbonate (As CaCO3) 1005 20.00 20.00 mg/L Ca 1 R62429 Carbonate (As CaCO3) ND 2.000 2.000 mg/L Ca 1 8/26/2019 8:25:09 PM R62429 Total Alkalinity (as CaCO3) 1005 20.00 20.00 mg/L Ca 1 8/26/2019 8:25:09 PM R62429 **SM2540C MOD: TOTAL DISSOLVED SOLIDS** Analyst: JMT

100

*D

mg/L

1

100

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Total Dissolved Solids

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-12

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 10:05:00 AM

 Lab ID: 1908E25-007
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

EPA METHOD 8015D: DIESEL RANGE Analyst: JME Diesel Range Organics (DRO) ND 0.13 0.40 mg/L 1 8/29/2019 1:09:40 AM Motor Oil Range Organics (MRO) ND 2.5 2.5 mg/L 1 8/29/2019 1:09:40 AM Surr: DNOP 129 0 52.7-168 %Rec 1 8/29/2019 1:09:40 AM EPA METHOD 300.0: ANIONS Analyst: CAS Fluoride 0.34 0.073 0.50 J mg/L 5 9/9/2019 1:15:16 PM Chloride 5.7 2.5 2.5 mg/L 5 9/9/2019 1:15:16 PM Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 1:15:16 PM	47076 47076 47076 R6278C R6278C R6278C R6278C R6278C
Motor Oil Range Organics (MRO) ND 2.5 2.5 mg/L 1 8/29/2019 1:09:40 AM Surr: DNOP 129 0 52.7-168 %Rec 1 8/29/2019 1:09:40 AM EPA METHOD 300.0: ANIONS Fluoride 0.34 0.073 0.50 J mg/L 5 9/9/2019 1:15:16 PM Chloride 5.7 2.5 2.5 mg/L 5 9/9/2019 1:15:16 PM Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM	47076 47076 R6278C R6278C R6278C R6278C R6278C
Surr: DNOP 129 0 52.7-168 %Rec 1 8/29/2019 1:09:40 AM EPA METHOD 300.0: ANIONS Fluoride 0.34 0.073 0.50 J mg/L 5 9/9/2019 1:15:16 PM Chloride 5.7 2.5 2.5 mg/L 5 9/9/2019 1:15:16 PM Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM	47076 R6278C R6278C R6278C R6278C R6278C
EPA METHOD 300.0: ANIONS Fluoride 0.34 0.073 0.50 J mg/L 5 9/9/2019 1:15:16 PM Chloride 5.7 2.5 2.5 mg/L 5 9/9/2019 1:15:16 PM Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM	R6278C R6278C R6278C R6278C R6278C
Fluoride 0.34 0.073 0.50 J mg/L 5 9/9/2019 1:15:16 PM Chloride 5.7 2.5 2.5 mg/L 5 9/9/2019 1:15:16 PM Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM	R62780 R62780 R62780 R62780
Chloride 5.7 2.5 2.5 2.5 mg/L 5 9/9/2019 1:15:16 PM Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM	R62780 R62780 R62780 R62780
Bromide ND 0.089 0.50 mg/L 5 9/9/2019 1:15:16 PM	R62780 R62780 R62780
	R62780 R62780
Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 1:15:16 PM	R62780
Sulfate 57 0.33 2.5 mg/L 5 9/9/2019 1:15:16 PM	_
Nitrate+Nitrite as N 0.080 0.048 1.0 J mg/L 5 9/9/2019 3:23:59 PM	R62780
EPA METHOD 7470: MERCURY Analyst: rde	
Mercury 0.000079 0.000038 0.00020 J mg/L 1 9/12/2019 2:16:59 PM	47428
EPA METHOD 6010B: DISSOLVED METALS Analyst: bcv	
Arsenic ND 0.019 0.020 mg/L 1 9/9/2019 10:02:12 AM	A62764
Barium 0.045 0.00056 0.020 mg/L 1 9/9/2019 10:02:12 AM	A62764
Cadmium ND 0.00058 0.0020 mg/L 1 9/9/2019 10:02:12 AM	A62764
Calcium 50 0.060 1.0 mg/L 1 9/9/2019 10:02:12 AM	A62764
Chromium 0.0036 0.0012 0.0060 J mg/L 1 9/9/2019 10:02:12 AM	A62764
Copper ND 0.0023 0.0060 mg/L 1 9/9/2019 10:02:12 AM	A62764
Iron 0.020 0.0054 0.020 J mg/L 1 9/9/2019 10:02:12 AM	A62764
Lead 0.0054 0.0048 0.0050 mg/L 1 9/9/2019 10:02:12 AM	A62764
Magnesium 7.3 0.061 1.0 mg/L 1 9/9/2019 10:02:12 AM	A62764
Manganese 0.0095 0.00026 0.0020 mg/L 1 9/9/2019 10:02:12 AM	A62764
Potassium 0.57 0.11 1.0 J mg/L 1 9/9/2019 10:02:12 AM	A62764
Selenium ND 0.041 0.050 mg/L 1 9/9/2019 10:02:12 AM	A62764
Silver ND 0.0013 0.0050 mg/L 1 9/9/2019 10:02:12 AM	A62764
Sodium 29 0.24 1.0 mg/L 1 9/9/2019 10:02:12 AM	A62764
Uranium ND 0.062 0.10 mg/L 1 9/9/2019 10:02:12 AM	A62764
Zinc 0.017 0.0026 0.020 J mg/L 1 9/9/2019 10:02:12 AM	A62764
EPA 6010B: TOTAL RECOVERABLE METALS Analyst: bcv	
Arsenic ND 0.015 0.020 mg/L 1 9/9/2019 8:14:29 AM	47071
Barium 0.071 0.0012 0.020 mg/L 1 9/5/2019 2:32:34 PM	47071
Cadmium ND 0.00055 0.0020 mg/L 1 9/5/2019 2:32:34 PM	47071
Chromium 0.31 0.00086 0.0060 mg/L 1 9/5/2019 2:32:34 PM	47071
Lead 0.0069 0.0035 0.0050 mg/L 1 9/5/2019 2:32:34 PM	47071
Selenium ND 0.035 0.050 mg/L 1 9/9/2019 8:14:29 AM	47071
Silver ND 0.00055 0.0050 mg/L 1 9/5/2019 2:32:34 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-12

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 10:05:00 AM

 Lab ID: 1908E25-007
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Acenaphthene	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Acenaphthylene	ND	2.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Aniline	ND	3.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Anthracene	ND	2.7	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Azobenzene	ND	3.3	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Benz(a)anthracene	ND	3.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Benzo(a)pyrene	ND	3.5	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Benzo(b)fluoranthene	ND	3.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Benzo(g,h,i)perylene	ND	2.2	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Benzo(k)fluoranthene	ND	2.9	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Benzoic acid	ND	11	20	μg/L	1	9/5/2019 4:08:04 PM	47113
Benzyl alcohol	ND	2.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Bis(2-chloroethoxy)methane	ND	2.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Bis(2-chloroethyl)ether	ND	3.2	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Bis(2-chloroisopropyl)ether	ND	3.9	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Bis(2-ethylhexyl)phthalate	ND	4.3	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4-Bromophenyl phenyl ether	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Butyl benzyl phthalate	ND	3.3	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Carbazole	ND	2.9	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4-Chloro-3-methylphenol	ND	3.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4-Chloroaniline	ND	2.3	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2-Chloronaphthalene	ND	3.1	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2-Chlorophenol	ND	2.7	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4-Chlorophenyl phenyl ether	ND	2.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Chrysene	ND	2.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Di-n-butyl phthalate	ND	2.7	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Di-n-octyl phthalate	ND	3.5	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Dibenz(a,h)anthracene	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Dibenzofuran	ND	3.2	10	μg/L	1	9/5/2019 4:08:04 PM	47113
1,2-Dichlorobenzene	ND	4.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
1,3-Dichlorobenzene	ND	5.3	10	μg/L	1	9/5/2019 4:08:04 PM	47113
1,4-Dichlorobenzene	ND	4.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
3,3'-Dichlorobenzidine	ND	2.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Diethyl phthalate	ND	2.9	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Dimethyl phthalate	ND	3.2	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2,4-Dichlorophenol	ND	2.9	20	μg/L	1	9/5/2019 4:08:04 PM	47113
2,4-Dimethylphenol	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4,6-Dinitro-2-methylphenol	ND	2.9	20	μg/L	1	9/5/2019 4:08:04 PM	47113
2,4-Dinitrophenol	ND	2.6	20	μg/L	1	9/5/2019 4:08:04 PM	47113

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-12

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 10:05:00 AM

 Lab ID: 1908E25-007
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	. RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	M
2,4-Dinitrotoluene	ND	3.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2,6-Dinitrotoluene	ND	2.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Fluoranthene	ND	2.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Fluorene	ND	2.9	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Hexachlorobenzene	ND	3.1	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Hexachlorobutadiene	ND	4.7	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Hexachlorocyclopentadiene	ND	3.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Hexachloroethane	ND	4.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Indeno(1,2,3-cd)pyrene	ND	2.7	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Isophorone	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
1-Methylnaphthalene	ND	3.1	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2-Methylnaphthalene	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2-Methylphenol	ND	2.9	10	μg/L	1	9/5/2019 4:08:04 PM	47113
3+4-Methylphenol	ND	3.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
N-Nitrosodi-n-propylamine	ND	6.5	10	μg/L	1	9/5/2019 4:08:04 PM	47113
N-Nitrosodimethylamine	ND	5.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
N-Nitrosodiphenylamine	ND	2.4	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Naphthalene	ND	4.1	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2-Nitroaniline	ND	3.2	10	μg/L	1	9/5/2019 4:08:04 PM	47113
3-Nitroaniline	ND	3.2	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4-Nitroaniline	ND	2.7	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Nitrobenzene	ND	2.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2-Nitrophenol	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
4-Nitrophenol	ND	7.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Pentachlorophenol	ND	2.7	20	μg/L	1	9/5/2019 4:08:04 PM	47113
Phenanthrene	ND	2.8	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Phenol	ND	8.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Pyrene	ND	2.5	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Pyridine	ND	9.6	10	μg/L	1	9/5/2019 4:08:04 PM	47113
1,2,4-Trichlorobenzene	ND	4.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2,4,5-Trichlorophenol	ND	3.0	10	μg/L	1	9/5/2019 4:08:04 PM	47113
2,4,6-Trichlorophenol	ND	2.3	10	μg/L	1	9/5/2019 4:08:04 PM	47113
Surr: 2-Fluorophenol	51.5	0	15-101	%Rec	1	9/5/2019 4:08:04 PM	47113
Surr: Phenol-d5	40.9	0	15-84.6	%Rec	1	9/5/2019 4:08:04 PM	47113
Surr: 2,4,6-Tribromophenol	52.3	0	27.8-112	%Rec	1	9/5/2019 4:08:04 PM	47113
Surr: Nitrobenzene-d5	76.4	0	33-113	%Rec	1	9/5/2019 4:08:04 PM	47113
Surr: 2-Fluorobiphenyl	62.0	0	26.6-107	%Rec	1	9/5/2019 4:08:04 PM	47113
Surr: 4-Terphenyl-d14	63.0	0	18.7-148	%Rec	1	9/5/2019 4:08:04 PM	47113

EPA METHOD 8260B: VOLATILES

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 52

Analyst: RAA

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-12

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 10:05:00 AM

 Lab ID: 1908E25-007
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Result **Qual Units** DF **Date Analyzed Batch ID Analyses MDL** RL**EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 1.0 8/27/2019 7:22:54 PM R62453 Benzene 0.17 µg/L 1 Toluene ND 0.35 1.0 μg/L 1 8/27/2019 7:22:54 PM R62453 Ethylbenzene ND 0.13 1.0 μg/L 1 8/27/2019 7:22:54 PM R62453 μg/L Methyl tert-butyl ether (MTBE) ND 0.46 8/27/2019 7:22:54 PM R62453 1.0 1 1,2,4-Trimethylbenzene ND 0.21 1 R62453 1.0 µg/L 8/27/2019 7:22:54 PM 1.3.5-Trimethylbenzene ND 0.19 1.0 ua/L 1 8/27/2019 7:22:54 PM R62453 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/27/2019 7:22:54 PM R62453 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/27/2019 7:22:54 PM R62453 0.28 1 Naphthalene ND 2.0 µg/L 8/27/2019 7:22:54 PM R62453 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/27/2019 7:22:54 PM R62453 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/27/2019 7:22:54 PM R62453 Acetone ND 1.2 10 µg/L 1 8/27/2019 7:22:54 PM R62453 Bromobenzene ND 0.24 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/27/2019 7:22:54 PM R62453 ND 0.29 1 8/27/2019 7:22:54 PM R62453 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62453 Bromomethane µg/L 8/27/2019 7:22:54 PM 2-Butanone ND 2.1 10 µg/L 1 8/27/2019 7:22:54 PM R62453 ND 8/27/2019 7:22:54 PM R62453 Carbon disulfide 0.45 10 µg/L 1 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 Chlorobenzene ND 0.19 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 Chloroethane ND 0.18 2.0 1 µg/L 8/27/2019 7:22:54 PM R62453 Chloroform ND 0.12 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 Chloromethane ND 0.32 3.0 1 8/27/2019 7:22:54 PM R62453 µg/L 2-Chlorotoluene ND 0.25 8/27/2019 7:22:54 PM R62453 1.0 µg/L 1 ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 cis-1,3-Dichloropropene ND 0.14 μg/L 1 8/27/2019 7:22:54 PM R62453 1.0 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/27/2019 7:22:54 PM R62453 Dibromochloromethane ND 0.24 1 1.0 µg/L 8/27/2019 7:22:54 PM R62453 Dibromomethane ND 0.21 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/27/2019 7:22:54 PM R62453 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/27/2019 7:22:54 PM R62453 1,1-Dichloroethane ND 0.14 1 8/27/2019 7:22:54 PM R62453 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/27/2019 7:22:54 PM R62453 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/27/2019 7:22:54 PM R62453 1,3-Dichloropropane ND 0.20 μg/L 1 8/27/2019 7:22:54 PM R62453 1.0 2,2-Dichloropropane ND 0.23 2.0 µg/L 8/27/2019 7:22:54 PM R62453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-12

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 10:05:00 AM

 Lab ID: 1908E25-007
 Matrix: AQUEOUS
 Received Date: 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
2-Hexanone	ND	1.5	10		μg/L	1	8/27/2019 7:22:54 PM	R62453
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/27/2019 7:22:54 PM	R62453
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Styrene	ND	0.19	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/27/2019 7:22:54 PM	R62453
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/27/2019 7:22:54 PM	R62453
Surr: 1,2-Dichloroethane-d4	94.5	0	70-130		%Rec	1	8/27/2019 7:22:54 PM	R62453
Surr: 4-Bromofluorobenzene	97.6	0	70-130		%Rec	1	8/27/2019 7:22:54 PM	R62453
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	8/27/2019 7:22:54 PM	R62453
Surr: Toluene-d8	106	0	70-130		%Rec	1	8/27/2019 7:22:54 PM	R62453
EPA METHOD 8015D: GASOLINE RANGE							Analyst: RAA	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/27/2019 7:22:54 PM	GW624
Surr: BFB	103	0	70-130		%Rec	1	8/27/2019 7:22:54 PM	GW624
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	140	0	1.0	Н	mg CO	2/ 1	8/26/2019 8:59:20 PM	R62429
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	440	5.0	5.0		µmhos/	'c 1	8/26/2019 8:59:20 PM	R62429

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 52

Lab Order 1908E25

Date Reported: 9/30/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-12

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 10:05:00 AM

Lab ID: 1908E25-007 **Matrix:** AQUEOUS **Received Date:** 8/23/2019 8:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	2
Bicarbonate (As CaCO3)	154.4	20.00	20.00		mg/L Ca	a 1	8/26/2019 8:59:20 PM	R62429
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/26/2019 8:59:20 PM	R62429
Total Alkalinity (as CaCO3)	154.4	20.00	20.00		mg/L Ca	a 1	8/26/2019 8:59:20 PM	R62429
SM2540C MOD: TOTAL DISSOLVED SOLID	os						Analyst: JM 1	Γ
Total Dissolved Solids	262	40.0	40.0	D	mg/L	1	8/29/2019 1:58:00 PM	47121

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 52

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1908E25**

30-Sep-19

Project: 2019 An	nual GW S	ampling	g Event							
Sample ID: MB	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: PBW	Batcl	h ID: R6	2780	F	RunNo: 6 2	2780				
Prep Date:	Analysis D	Date: 9/	9/2019	S	SeqNo: 2138812					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								
Sample ID: LCS	Tes	tCode: El	PA Method	300.0: Anions	3					
Client ID: LCSW	ID: LCSW Batch ID: R62780				RunNo: 6	2780				
Prep Date:	Analysis D	Date: 9/	9/2019	9	SeqNo: 2	138813	Units: mg/L	Units: mg/L		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.55	0.10	0.5000	0	110	90	110			
Chloride	5.1	0.50	5.000	0	101	90	110			
Bromide	2.6	0.10	2.500	0	103	90	110			
Phosphorus, Orthophosphate (As P	5.0	0.50	5.000	0	99.6	90	110			
Sulfate	10	0.50	10.00	0	102	90	110			
Nitrate+Nitrite as N	3.6	0.20	3.500	0	104	90	110			
Sample ID: 1908E25-001CMS	Samp1	Гуре: М	6	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: MW-32	Batcl	h ID: R6	2780	RunNo: 62780						
Prep Date:	Analysis D	Date: 9/	9/2019	8	SeqNo: 2	138815	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.4	0.50	2.500	0	96.0	61.6	129			
Bromide	17	0.50	12.50	4.395	97.5	81.9	109			
Sample ID: 1908E25-001CMS	SD Samp1	уре: М \$	SD	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: MW-32	Batcl	h ID: R6	2780	F	RunNo: 6	2780				
Prep Date:	Analysis D	nalysis Date: 9/9/2019 SeqNo: 2138816				Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.4	0.50	2.500	0	95.1	61.6	129	0.867	20	
Bromide	17	0.50	12.50	4.395	97.2	81.9	109	0.210	20	
Sample ID: MB	SampType: MBLK			TestCode: EPA Method 300.0: Anions						
Client ID: PBW	Batch ID: R62809		F	RunNo: 6	2809					
Prep Date:	Analysis D	Date: 9/	10/2019	8	SeqNo: 2	140030	Units: mg/L			

Qualifiers:

Analyte

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Result

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

HighLimit

%RPD

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Limit

Page 31 of 52

Qual

RPDLimit

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1908E25**

30-Sep-19

Project: 2019	Annual GW Sampling Event				
Sample ID: MB	SampType: MBLK	TestCode: EPA Method	300.0: Anions		
Client ID: PBW	Batch ID: R62809	RunNo: 62809			
Prep Date:	Analysis Date: 9/10/2019	SeqNo: 2140030	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %F	RPD RPDLimit	Qual
Chloride	ND 0.50				
Sulfate	ND 0.50				
Sample ID: LCS	SampType: LCS	TestCode: EPA Method	300.0: Anions		
Client ID: LCSW	Batch ID: R62809	RunNo: 62809			
Prep Date:	Analysis Date: 9/10/2019	SeqNo: 2140031	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %F	RPD RPDLimit	Qual
Chloride	4.9 0.50 5.000	0 97.9 90	110		
Sulfate	10 0.50 10.00	0 99.6 90	110		
Sample ID: MB	SampType: MBLK	TestCode: EPA Method	300.0: Anions		
Client ID: PBW	Batch ID: R62809	RunNo: 62809			
Prep Date:	Analysis Date: 9/10/2019	SeqNo: 2140085	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %F	RPD RPDLimit	Qual
Chloride	ND 0.50				
Sulfate	ND 0.50				
Sample ID: LCS	SampType: LCS	TestCode: EPA Method	300.0: Anions		
Client ID: LCSW	Batch ID: R62809	RunNo: 62809			
Prep Date:	Analysis Date: 9/10/2019	SeqNo: 2140086	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %F	RPD RPDLimit	Qual
Chloride	5.0 0.50 5.000	0 99.0 90	110		
Sulfate	10 0.50 10.00	0 100 90	110		
Sample ID: MB	SampType: MBLK	TestCode: EPA Method	300.0: Anions		
Client ID: PBW	Batch ID: R62940	RunNo: 62940			
Prep Date:	Analysis Date: 9/13/2019	SeqNo: 2144926	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %F	RPD RPDLimit	Qual
Nitrate+Nitrite as N	ND 0.20		3	· · · · · · · · · · · · · · · · · · ·	
Sample ID: LCS	SampType: LCS	TestCode: EPA Method	300.0: Anions		
Client ID: LCSW	Batch ID: R62940	RunNo: 62940			
Prep Date:	Analysis Date: 9/13/2019	SeqNo: 2144928	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %F	RPD RPDLimit	Qual
Nitrate+Nitrite as N	3.4 0.20 3.500	0 98.5 90	110	3 DE	~~~

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: LCS-47076 SampType: LCS TestCode: EPA Method 8015D: Diesel Range

Client ID: LCSW Batch ID: 47076 RunNo: 62454

Prep Date: 8/27/2019 Analysis Date: 8/28/2019 SegNo: 2126320 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 2.5
 0.40
 2.500
 0
 100
 66.7
 148

 Surr: DNOP
 0.24
 0.2500
 97.4
 52.7
 168

Sample ID: MB-47076 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 47076 RunNo: 62454

Prep Date: 8/27/2019 Analysis Date: 8/28/2019 SeqNo: 2126322 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.50 0.5000 99.8 52.7 168

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 100ng lcs	SampType: LCS			Tes	tCode: El	ATILES				
Client ID: LCSW	Batch ID: R62453			F	RunNo: 6	2453				
Prep Date:	Analysis D	ate: 8/ 2	27/2019	8	SeqNo: 2	124995	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	89.9	70	130			
Toluene	19	1.0	20.00	0	92.9	70	130			
Chlorobenzene	19	1.0	20.00	0	92.7	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	84.1	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	85.5	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		93.5	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	9.4		10.00		94.0	70	130			
Surr: Toluene-d8	9.6		10.00		95.9	70	130			

Sample ID: rb	Sampl	ype: M E	BLK	les	tCode: El	PA Method	8260B: VOLA	ATILES		
Client ID: PBW	Batch	ID: R6	2453	F	RunNo: 6	2453				
Prep Date:	Analysis D	ate: 8/	27/2019	8	SeqNo: 2	125016	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								

10100110		1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0
2-Chlorotoluene	ND	1.0

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

TestCode: EPA Method 8260B: VOLATILES Sample ID: rb SampType: MBLK Client ID: PBW Batch ID: R62453 RunNo: 62453 Prep Date: Analysis Date: 8/27/2019 SeqNo: 2125016 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 4-Chlorotoluene ND 1.0 cis-1.2-DCE ND 1.0 ND cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1,2-Dichloropropane 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 1,1-Dichloropropene ND 1.0 ND Hexachlorobutadiene 1.0 2-Hexanone ND 10 Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 ND 4-Methyl-2-pentanone 10 Methylene Chloride 0.23 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 ND 1.0 Styrene tert-Butylbenzene ND 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 ND 1.0 trans-1,3-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 ND 1,2,4-Trichlorobenzene 1.0 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 Trichloroethene (TCE) ND 1.0 Trichlorofluoromethane ND 1.0 1,2,3-Trichloropropane ND 2.0

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: rb	SampT	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES					
Client ID: PBW	Batch	Batch ID: R62453			RunNo: 6 2	2453				
Prep Date:	Analysis D	Date: 8/ 2	27/2019	8	SeqNo: 2	125016	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.4	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.2	70	130			
Surr: Dibromofluoromethane	9.7		10.00		96.8	70	130			
Surr: Toluene-d8	9.8		10.00		98.4	70	130			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908E25

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-47113	SampT	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles								
Client ID: LCSW	Batch	n ID: 47 ′	7113 RunNo: 62675							
Prep Date: 8/28/2019	Analysis D	ate: 9/	5/2019	5	SeqNo: 2	134037	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	70	10	100.0	0	69.8	32.2	94			
4-Chloro-3-methylphenol	130	10	200.0	0	67.5	37.7	101			
2-Chlorophenol	140	10	200.0	0	72.4	32.6	90.1			
1,4-Dichlorobenzene	57	10	100.0	0	57.4	30	87.2			
2,4-Dinitrotoluene	66	10	100.0	0	66.4	35.9	85.8			
N-Nitrosodi-n-propylamine	73	10	100.0	0	73.4	37.1	108			
4-Nitrophenol	87	10	200.0	0	43.3	22.4	86.6			
Pentachlorophenol	110	20	200.0	0	57.0	31.6	91			
Phenol	88	10	200.0	0	43.8	21.7	84.9			
Pyrene	74	10	100.0	0	74.3	46.3	103			
1,2,4-Trichlorobenzene	62	10	100.0	0	61.9	30.2	88.3			
Surr: 2-Fluorophenol	100		200.0		50.2	15	101			
Surr: Phenol-d5	87		200.0		43.6	15	84.6			
Surr: 2,4,6-Tribromophenol	120		200.0		58.6	27.8	112			
Surr: Nitrobenzene-d5	74		100.0		73.8	33	113			
Surr: 2-Fluorobiphenyl	70		100.0		69.8	26.6	107			
Surr: 4-Terphenyl-d14	76		100.0		76.1	18.7	148			

Sample ID: mb-47113	SampType: MBLK			Tes	TestCode: EPA Method 8270C: Semivolatiles					
Client ID: PBW	Batch	1D: 47	113	RunNo: 62675						
Prep Date: 8/28/2019	Analysis D	ate: 9/	5/2019	8	SeqNo: 2	134038	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 37 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47113 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 47113 RunNo: 62675 Prep Date: 8/28/2019 Analysis Date: 9/5/2019 SeqNo: 2134038 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 ND 10 Carbazole 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate ND 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene 10 ND ND 10 Dibenzofuran 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10 10 1,4-Dichlorobenzene ND ND 10 3,3'-Dichlorobenzidine Diethyl phthalate ND 10 Dimethyl phthalate ND 10 2,4-Dichlorophenol ND 20 ND 2,4-Dimethylphenol 10 ND 20 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 4.4 20 J 2,4-Dinitrotoluene ND 10 2.6-Dinitrotoluene ND 10 Fluoranthene ND 10 Fluorene ND 10 Hexachlorobenzene ND 10 Hexachlorobutadiene ND 10 Hexachlorocyclopentadiene ND 10 Hexachloroethane ND 10 ND Indeno(1,2,3-cd)pyrene 10 10 Isophorone ND ND 10 1-Methylnaphthalene 2-Methylnaphthalene ND 10 2-Methylphenol ND 10 3+4-Methylphenol ND 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47113	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	ID: 47	113	RunNo: 62675						
Prep Date: 8/28/2019	Analysis Da	ate: 9/	5/2019	S	SeqNo: 2	134038	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	1.0		200.0		0.510	15	101			S
Surr: Phenol-d5	7.3		200.0		3.65	15	84.6			S
Surr: 2,4,6-Tribromophenol	0.24		200.0		0.120	27.8	112			S
Surr: Nitrobenzene-d5	62		100.0		62.0	33	113			
Surr: 2-Fluorobiphenyl	56		100.0		55.5	26.6	107			
Surr: 4-Terphenyl-d14	63		100.0		63.4	18.7	148			
Sample ID: Icsd-47113	SampTy	/pe: LC	SD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		

Client ID: LCSS02	Batch	1D: 47 1	113	F	RunNo: 6	2675				
Prep Date: 8/28/2019	Analysis D	ate: 9/	5/2019	5	SeqNo: 2	134834	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	80	10	100.0	0	80.2	32.2	94	13.8	32.9	
4-Chloro-3-methylphenol	180	10	200.0	0	89.4	37.7	101	27.9	29.9	
2-Chlorophenol	170	10	200.0	0	82.6	32.6	90.1	13.2	28.5	
1,4-Dichlorobenzene	66	10	100.0	0	66.4	15	87.2	14.6	44.9	
2,4-Dinitrotoluene	73	10	100.0	0	73.0	35.9	85.8	9.41	28.5	
N-Nitrosodi-n-propylamine	89	10	100.0	0	89.1	37.1	108	19.3	29.9	
4-Nitrophenol	100	10	200.0	0	50.3	15	86.6	14.9	68	
Pentachlorophenol	120	20	200.0	0	62.1	31.6	91	8.45	39.5	
Phenol	100	10	200.0	0	50.7	15	84.9	14.4	44.2	
Pyrene	79	10	100.0	0	78.9	46.3	103	5.93	23.8	
1,2,4-Trichlorobenzene	71	10	100.0	0	71.4	15.7	88.3	14.3	38	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908E25

30-Sep-19

Chent:	Western Refining Southwest, Inc.								
Project:	2019 Annual GW Sampling Event								

Sample ID: Icsd-47113	SampTy	/pe: LC	SD	Tes	tCode: El	volatiles				
Client ID: LCSS02	Batch	Batch ID: 47113			RunNo: 6	2675				
Prep Date: 8/28/2019	Analysis Da	ate: 9/	5/2019	S	SeqNo: 2	134834	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110		200.0		56.5	15	101	0	0	
Surr: Phenol-d5	99		200.0		49.4	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	130		200.0		65.7	27.8	112	0	0	
Surr: Nitrobenzene-d5	85		100.0		85.3	33	113	0	0	
Surr: 2-Fluorobiphenyl	75		100.0		75.0	26.6	107	0	0	
Surr: 4-Terphenyl-d14	80		100.0		80.4	18.7	148	0	0	

Sample ID: Ics-47316	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	ID: 47	316	F	RunNo: 6	2883				
Prep Date: 9/6/2019	Analysis D	ate: 9/	12/2019	\$	SeqNo: 2	143013	Units: %Red	:		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	92		200.0		45.8	15	101			
Surr: Phenol-d5	72		200.0		35.9	15	84.6			
Surr: 2,4,6-Tribromophenol	110		200.0		53.1	27.8	112			
Surr: Nitrobenzene-d5	67		100.0		66.9	33	113			
Surr: 2-Fluorobiphenyl	60		100.0		59.8	26.6	107			
Surr: 4-Terphenyl-d14	54		100.0		54.1	18.7	148			

Sample ID: Icsd-47316	SampT	ype: LC	SD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	ID: 47	316	F	RunNo: 6	2883				
Prep Date: 9/6/2019	Analysis D	ate: 9/	12/2019	8	SeqNo: 2	143016	Units: %Red	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	120		200.0		58.8	15	101	0	0	•
Surr: Phenol-d5	92		200.0		46.1	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	130		200.0		66.7	27.8	112	0	0	
Surr: Nitrobenzene-d5	82		100.0		82.4	33	113	0	0	
Surr: 2-Fluorobiphenyl	80		100.0		80.3	26.6	107	0	0	
Surr: 4-Terphenyl-d14	68		100.0		67.9	18.7	148	0	0	

Sample ID: mb-47316	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 47	316	R	RunNo: 62	2883				
Prep Date: 9/6/2019	Analysis D	ate: 9/	12/2019	S	SeqNo: 2	143019	Units: %Red	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	81		200.0		40.4	15	101			
Surr: Phenol-d5	62		200.0		30.9	15	84.6			
Surr: 2,4,6-Tribromophenol	92		200.0		45.8	27.8	112			
Surr: Nitrobenzene-d5	54		100.0		53.9	33	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 40 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47316 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 47316 RunNo: 62883

Prep Date: 9/6/2019 Analysis Date: 9/12/2019 SegNo: 2143019 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Surr: 2-Fluorobiphenyl
 48
 100.0
 48.0
 26.6
 107

 Surr: 4-Terphenyl-d14
 49
 100.0
 49.1
 18.7
 148

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-1 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62429 RunNo: 62429

Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122562 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 101 85 115

Sample ID: Ics-2 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62429 RunNo: 62429

Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122588 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 105 85 115

Sample ID: Ics-1 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126130 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 100 85 115

Sample ID: Ics-2 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126193 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 104 85 115

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 42 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

J

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47428 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 47428 RunNo: 62872

Prep Date: 9/11/2019 Analysis Date: 9/12/2019 SeqNo: 2142285 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.000039 0.00020

Sample ID: LCS-47428 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 47428 RunNo: 62872

Prep Date: 9/11/2019 Analysis Date: 9/12/2019 SeqNo: 2142286 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 93.1 80 120

Sample ID: 1908E25-002DMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: MW-27 Batch ID: 47428 RunNo: 62872

Prep Date: 9/11/2019 Analysis Date: 9/12/2019 SeqNo: 2142289 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 .00005462 92.4 75 125

Sample ID: 1908E25-002DMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: MW-27 Batch ID: 47428 RunNo: 62872

Prep Date: 9/11/2019 Analysis Date: 9/12/2019 SeqNo: 2142290 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 .0005462 96.8 75 125 4.50 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 43 of 52

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

WO#: 1908E25

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals Client ID: PBW Batch ID: A62764 RunNo: 62764 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2137952 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Arsenic ND 0.020 Barium ND 0.020 ND 0.0020 Cadmium Calcium ND 1.0 Chromium ND 0.0060 Copper ND 0.0060 Iron ND 0.020 ND 0.0050 Lead Magnesium ND 1.0 ND 0.0020 Manganese Potassium ND 1.0 ND 0.050 Selenium ND 0.0050 Silver Sodium ND 1.0 Uranium ND 0.10 Zinc ND 0.020

Client ID: LCSW	Bato	ch ID: A6	2764	F	RunNo: 62	2764				
Prep Date:	Analysis	Date: 9/	9/2019	S	SeqNo: 2	137953	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.020	0.5000	0	95.6	80	120			
Barium	0.48	0.020	0.5000	0	95.1	80	120			
Cadmium	0.50	0.0020	0.5000	0	99.4	80	120			
Calcium	50	1.0	50.00	0	100	80	120			
Chromium	0.49	0.0060	0.5000	0	97.1	80	120			
Copper	0.50	0.0060	0.5000	0	100	80	120			
Iron	0.49	0.020	0.5000	0	98.6	80	120			
Lead	0.49	0.0050	0.5000	0	98.6	80	120			
Magnesium	50	1.0	50.00	0	100	80	120			
Manganese	0.48	0.0020	0.5000	0	97.0	80	120			
Potassium	50	1.0	50.00	0	99.3	80	120			
Selenium	0.48	0.050	0.5000	0	96.3	80	120			
Silver	0.10	0.0050	0.1000	0	99.8	80	120			
Sodium	50	1.0	50.00	0	99.6	80	120			
Uranium	0.46	0.10	0.5000	0	91.3	80	120			
Zinc	0.48	0.020	0.5000	0	96.5	80	120			

Qualifiers:

Sample ID: LCS-A

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

TestCode: EPA Method 6010B: Dissolved Metals

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 1908E25-001EMS	Samp	Туре: МЅ)	Tes	tCode: El	PA Method	6010B: Disso	lved Meta	als	
Client ID: MW-32	Bato	h ID: A6	2764	F	RunNo: 6	2764				
Prep Date:	Analysis	Date: 9/ 9	9/2019	\$	SeqNo: 2	138005	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.49	0.020	0.5000	0.01761	94.7	75	125			
Cadmium	0.51	0.0020	0.5000	0	103	75	125			
Chromium	0.48	0.0060	0.5000	0	95.9	75	125			
Copper	0.54	0.0060	0.5000	0	108	75	125			
Iron	0.49	0.020	0.5000	0	97.2	75	125			
Lead	0.47	0.0050	0.5000	0	93.8	75	125			
Magnesium	99	1.0	50.00	49.89	97.8	75	125			
Manganese	0.47	0.0020	0.5000	0	94.2	75	125			
Potassium	53	1.0	50.00	3.662	99.0	75	125			
Selenium	0.59	0.050	0.5000	0	117	75	125			
Silver	0.11	0.0050	0.1000	0.004893	100	75	125			
Zinc	0.50	0.020	0.5000	0.02045	96.8	75	125			

Sample ID: 1908E25-001EMS	D Samp	Type: MS	SD	Tes	tCode: El	PA Method	6010B: Disso	Ived Meta	als	
Client ID: MW-32	Bato	ch ID: A6	2764	F	RunNo: 6	2764				
Prep Date:	Analysis	Date: 9/ 9	9/2019	8	SeqNo: 2	138006	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.49	0.020	0.5000	0.01761	93.9	75	125	0.847	20	·
Cadmium	0.51	0.0020	0.5000	0	102	75	125	0.464	20	
Chromium	0.47	0.0060	0.5000	0	94.9	75	125	0.954	20	
Copper	0.54	0.0060	0.5000	0	107	75	125	0.325	20	
Iron	0.49	0.020	0.5000	0	98.5	75	125	1.35	20	
Lead	0.46	0.0050	0.5000	0	92.6	75	125	1.23	20	
Magnesium	99	1.0	50.00	49.89	97.7	75	125	0.0664	20	
Manganese	0.47	0.0020	0.5000	0	93.4	75	125	0.800	20	
Potassium	53	1.0	50.00	3.662	99.0	75	125	0.0371	20	
Selenium	0.58	0.050	0.5000	0	116	75	125	1.61	20	
Silver	0.10	0.0050	0.1000	0.004893	99.5	75	125	0.873	20	
Zinc	0.51	0.020	0.5000	0.02045	97.1	75	125	0.264	20	

Sample ID: 1908E25-001EMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	6010B: Disso	lved Meta	als	
Client ID: MW-32	Batch	ID: A6	2764	R	tunNo: 6	2764				
Prep Date:	Analysis D	ate: 9/	9/2019	S	SeqNo: 2	138098	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.55	0.020	0.5000	0	111	75	125			
Uranium	0.33	0.10	0.5000	0	65.6	75	125			S

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 45 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 1908E25-001EMSD SampType: MSD TestCode: EPA Method 6010B: Dissolved Metals MW-32 Client ID: RunNo: 62764 Batch ID: A62764 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2138099 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Arsenic 0.59 0.020 0.5000 0 119 75 125 7.03 20 Uranium 0.34 0.10 0.5000 0 67.1 75 125 2.23 20 S

Sample ID: MB-A TestCode: EPA Method 6010B: Dissolved Metals SampType: MBLK Client ID: PBW Batch ID: A62841 RunNo: 62841 Prep Date: Analysis Date: 9/11/2019 SeqNo: 2141041 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Calcium ND 1.0

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 6010B: Dissolved Metals Client ID: LCSW Batch ID: A62841 RunNo: 62841 Prep Date: Analysis Date: 9/11/2019 SeqNo: 2141042 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 49 1.0 50.00 98.8 80 120 0 Calcium

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47071	Samp	Туре: МЕ	BLK	Tes	ıls					
Client ID: PBW	Bato	Batch ID: 47071			RunNo: 6	2682				
Prep Date: 8/26/2019	Analysis I	Date: 9/	5/2019	S	SeqNo: 2	134130	Units: mg/L			ļ
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Selenium	ND	0.050								
Silver	ND	0.0050								

Sample ID: LCS-47071	SampT	SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals							ıls	
Client ID: LCSW	Batch	n ID: 470)71	R	RunNo: 62	2682				
Prep Date: 8/26/2019	Analysis D	ate: 9/	5/2019	S	SeqNo: 21	134131	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.020	0.5000	0	96.7	80	120			
Barium	0.47	0.020	0.5000	0	94.6	80	120			
Cadmium	0.50	0.0020	0.5000	0	100	80	120			
Chromium	0.48	0.0060	0.5000	0	96.6	80	120			
Lead	0.49	0.0050	0.5000	0	97.7	80	120			
Selenium	0.51	0.050	0.5000	0	102	80	120			
Silver	0.10	0.0050	0.1000	0	100	80	120			

Sample ID: 1908E25-001DMS	Samp	SampType: MS TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: MW-32	Bato	h ID: 470	071	F	RunNo: 6	2682				
Prep Date: 8/26/2019	Analysis I	Date: 9/	5/2019	S	SeqNo: 2	134368	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.48	0.020	0.5000	0	96.4	75	125			
Barium	0.47	0.020	0.5000	0.02396	90.0	75	125			
Cadmium	0.51	0.0020	0.5000	0	103	75	125			
Chromium	0.44	0.0060	0.5000	0	88.9	75	125			
Lead	0.43	0.0050	0.5000	0	85.8	75	125			
Selenium	0.52	0.050	0.5000	0	104	75	125			
Silver	0.11	0.0050	0.1000	0.004506	102	75	125			

Sample ID: 1908E25-001DMS	D SampT	уре: М S	SD	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als	
Client ID: MW-32	Batch	ID: 47 0	071	F	RunNo: 6	2682				
Prep Date: 8/26/2019	Analysis D	ate: 9/	5/2019	S	SeqNo: 2	134369	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.49	0.020	0.5000	0	98.6	75	125	2.25	20	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 47 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908E25

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 1908E25-001DMS	08E25-001DMSD SampType: MSD			TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: MW-32	Batch ID: 47071			RunNo: 62682						
Prep Date: 8/26/2019	Analysis Date: 9/5/2019			SeqNo: 2134369			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.020	0.5000	0.02396	91.2	75	125	1.18	20	
Cadmium	0.53	0.0020	0.5000	0	106	75	125	2.85	20	
Chromium	0.45	0.0060	0.5000	0	91.0	75	125	2.34	20	
Lead	0.44	0.0050	0.5000	0	89.0	75	125	3.64	20	
Selenium	0.50	0.050	0.5000	0	99.8	75	125	4.30	20	
Silver	0.11	0.0050	0.1000	0.004506	105	75	125	2.13	20	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range
Client ID: LCSW Batch ID: GW62453 RunNo: 62453

Prep Date: Analysis Date: 8/27/2019 SeqNo: 2126272 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Gasoline Range Organics (GRO) 0 0.48 0.050 0.5000 95.3 70 130

Surr: BFB 9.9 10.00 99.0 70 130

Sample ID: rb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: GW62453 RunNo: 62453

Prep Date: Analysis Date: 8/27/2019 SeqNo: 2126273 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.9 10.00 98.5 70 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 49 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc. **Project:** 2019 Annual GW Sampling Event Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity Client ID: PBW Batch ID: R62429 RunNo: 62429 Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122487 Units: mg/L CaCO3 SPK value SPK Ref Val %REC LowLimit **RPDLimit** Analyte Result PQL HighLimit %RPD Qual Total Alkalinity (as CaCO3) ND 20.00 Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity Client ID: LCSW Batch ID: R62429 RunNo: 62429 Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122488 Units: mg/L CaCO3 SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Total Alkalinity (as CaCO3) 79.32 20.00 80.00 99.2 110 Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity Client ID: PBW Batch ID: R62429 RunNo: 62429 Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122510 Units: mg/L CaCO3 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDI imit Qual Analyte Total Alkalinity (as CaCO3) ND 20.00 Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity Client ID: LCSW Batch ID: R62429 RunNo: 62429 Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122511 Units: mg/L CaCO3 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Total Alkalinity (as CaCO3) 80.00 79.64 20.00 99.6 90 110 Sample ID: mb-3 alk SampType: mblk TestCode: SM2320B: Alkalinity Client ID: PBW Batch ID: R62429 RunNo: 62429 Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122533 Units: mg/L CaCO3 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Total Alkalinity (as CaCO3) ND 20.00 Sample ID: Ics-3 alk TestCode: SM2320B: Alkalinity SampType: Ics Client ID: LCSW Batch ID: R62429 RunNo: 62429 Prep Date: Analysis Date: 8/26/2019 SeqNo: 2122534 Units: mg/L CaCO3 SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

80.12

20.00

80.00

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Total Alkalinity (as CaCO3)

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

100

90

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126078 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126079 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.96 20.00 80.00 0 98.7 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126101 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126102 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 80.56 20.00 80.00 0 101 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 51 of 52

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E25**

30-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47121 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 47121 RunNo: 62516

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-47121 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 47121 RunNo: 62516

Prep Date: 8/28/2019 Analysis Date: 8/29/2019 SeqNo: 2126972 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1030 20.0 1000 0 103 80 120

Sample ID: 1908E25-001CDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: MW-32 Batch ID: 47121 RunNo: 62516

Prep Date: 8/28/2019 Analysis Date: 8/29/2019 SeqNo: 2126980 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 3750 40.0 2.01 10 *D

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 52 of 52

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Western Refining South	Work Order Numb	er: 1908E25		RcptNo	: 1
Received By:		9/92/2010 9:00:00 A				
	Daniel M.	8/23/2019 8:00:00 A				
Completed By:	Michelle Garcia	8/23/2019 3:38:04 P	М	Michelle G	arus	
Reviewed By:	DAD 8/23/19 /	A812011				
(infres.) 90 10				
Chain of Cus	stody					
1. Is Chain of C	Custody complete?		Yes 🗸	No 🗌	Not Present	
2. How was the	sample delivered?		Courier			
Log In						
	mpt made to cool the sample	es?	Yes 🗸	No 🗌	NA 🗌	
1 Word all sam	plan ransium at a temperatur	150 of 20° C to 6.0°C	v	No 🗆		
4. Wele all Salli	ples received at a temperat	are or >0°C to 6.0°C	Yes 🗸	140	NA L	
5. Sample(s) in	proper container(s)?		Yes 🗸	No 🗌		
6. Sufficient san	nple volume for indicated te	st(s)?	Yes 🗸	No 🗆		
7. Are samples	(except VOA and ONG) pro	perly preserved?	Yes 🗸	No 🗌		
tion (ative added to bottles?		Yes	No 🗸	NA \square	
9. VOA vials hav	ve zero headspace?		Yes 🗸	No 🗌	No VOA Vials	
	mple containers received br	oken?	Yes	No 🗸		
			08.07.97.3		# of preserved bottles checked	1
11. Does paperw	ork match bottle labels?		Yes 🗸	No 🗌	for pH:	8
	ancies on chain of custody)				(<2)	>12 unless noted)
	correctly identified on Chain		Yes 🗸	No 🗌	Adjusted?	110
	t analyses were requested?		Yes 🗸	No 🗀		had color
	ng times able to be met? ustomer for authorization.)		Yes 🗸	No 🗆	Checked by:	11/0/10/3/11/c
Special Handi	ling (if applicable)					
15. Was client no	otified of all discrepancies w	th this order?	Yes	No 🗌	NA 🗹	_
Person	Notified:	Date:				
By Who	•	Via:	eMail	Phone Fax	☐ In Person	
Regard						
Client I	nstructions:	AT THE STANDARD WAS AND A STANDARD A		***************************************		
16. Additional re	marks:					_
17. Cooler Infor	rmation					
Cooler No		Seal Intact Seal No	Seal Date	Signed By		
1		Yes		5		
2	1.1 Good	Yes				

اء		_ ≥					F		(N 1	o Y)	eəlddu8 ir											tes.			
0		AALL ENVIKONMENTAL ANALYSIS LABORATORY						hity	IKSI	A -	·we	General Ch	-					×					l arget Analytes.			
P		Z		ത			7	၀၁೪၆	uoi	u∀-	·шe	General Ch				×	×			-			et A			
4		2	2	710	07							N bevlossiO				×							arg			
1			, m	8 ≥	5-41	Ų		-		(A		-imə2) 0728											and			
	(talc	le.	5-34	sank						8260B (VOA	×													
	Ę	\ \ \	mer	nera	Fax 505-345-4107	Rec						8081 Pestici											DOU.			
		2 0	www.hallenvironmental.com	Albuquerque, NM 87109	Fa	Analysis Request		(_b OS, _b C				Anions (F,Cl,											See Analytical Methods			
		_ >	aller		10	Ana		(0)				RCRA 8 Me			×								<u>8</u>			
	-	ANAL	W.	4901 Hawkins NE	Tel. 505-345-3975			(5)				EDB (Metho										_	alyı			
	-		, ≶	wking	345				0.000	00.00.00		OdieM) HQT									_		A			
				Hay	505		- (ONIMIC				TPH 8015B											Sec		1965	
	24			1901	Tel.					-			×	×								_	KS:			
			N.	•								8TM+X3T8 8TM+X3T8									\dashv		Remarks:			
[-						(100		Tel	I.	e 10				_					+	- 1		Т	0	
							tney		1-7055	,	14436	8 M	100									Time	1546	Time	8:00	
			I GW	vent			AcCar		Tracy Payne - 919-561-7055	9	-100cl	HEAL NO.) 1					_				Date	8/22/15	Date	123/17	
		اے	nua	Jg E			L S		ne -	8 0	1												Co		Do	
	äi	□ Rush	2019 Annual GW	Sampling Event			Grego		cv Pav	es	ure: 23	Preservative Type	HCI	Neat	HNO3	HNO3	H ₂ SO ₄	Neat					Part	2	antiel	
	Time:			Ö			ger:		Tra	□ Yes	perat	Pre		~	Н	I	I	_					2		Con Con	
	Turn-Around	X Standard	Project Name:		Project #:		Project Manager: Gregory McCartney		Sampler:	On Ice:	Sample Temperature: 23	Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1				Received hv.	Me +	Received by:	1	
L	_	×	Pr	Г	P		ď			ŏ	S	0 t	40		<u> </u>		0.	0				A A		\$ (
	Chain-of-Custody Record	Western - Bloomfield Terminal		00	Bloomfield, NM 87413	38	gjmccartney@marathonpetroleum.com	X Level 4 (Full Validation)				Sample Request ID	MW-32	MW-32	MW-32	MW-32	MW-32	MW-32					1	0	e Wales	
	stc	omi		498	ield	1-23	ratho	X Le			-	Š			= =							A d	1	j py:	other	
	of-Cu	rn - Blo		50 CR	Bloomf	419-421-2338	ney@mai			EXCEL		Matrix	H ₂ 0	H ₂ 0	H ₂ O	H ₂ O	H ₂ O	H ₂ 0				Relinguished	X	Religquished by:	JAMES /	
	hain-	Weste		Mailing Address: 50 CR 4990		:#		QA/QC Package:	Į.	EDD (Type)_		Time	0720	100		_		→				Time.	4	7	1.08	
	O	Client:		Mailing		Phone #:	Email:	QA/QC	□ Other	X EDD		Date	8/24/9					>				Date:	8/11/8	Date:	51/271	

-1		. >					L		(N 10	入)	Pir Bubbles											es.		1
D	ENVIDONMENTA	IABORATORY	5					linity	IKal	A -	·wə	General Ch						×					ı arget Analytes.		- Parales
PO PO PO PO PO PO PO PO PO PO PO PO PO P				0			2	S&CO	uoi	n A-	·wə	General Ch			\	×	×	4				-	et A		
1	2	C		Albuquerque, NM 87109	07							Dissolved I				×	7	7.80					arg		
•	Ž		E C	∞ ≥	505-345-4107	#				(A		im92) 0728					325						and		
			late	ue. I	5-34	Request						8260B (VO	×				Disso	8					S O		
	Ş			nera	506	THE RESERVE						oiteeq 1808													
	Ž	V	Viro	bnql	Fax	Analysis				_		D, T) snoinA											<u>×</u>		
			www.hallenvironmental.com		10	Ana						RCRA 8 Me			×								Analytical Methods		
	3		W	4901 Hawkins NE	505-345-3975			(5)				EDB (Metho											la Z		
]	•	>	wkin	-345							TPH (Metho											Z O		
		1		1 Ha	505		(O/MRO	_			83108 H9T	×	×									See		
				490	Te.				_			BTM+X3T8											ILKS:		
												BTM+X3T8										-	Kemarks:		
		-							Т	N.	.,		/s-												1
							ey		919-561-7055		3:20	16. 25	7									Time	JAS.	Time Q. C.	
		-	_				artu		561-	1	3-6	, HEAL NO. 08E29	002									į	5		
			S	/ent			ပ္ပိ		919-	0	1/3/	, HEAL NO. 1908E25)								_	Oate	2/13	Date	7
			nual	gĒ			2		1	10000	0.50	0					5						8/24	Re	-
		Rush	2019 Annual GW	Sampling Event			gol		Pavne		19	ative		t	3	3)4	t					-3		
	<u>.</u>		019	am			G		Tracy F	Yes	ture:	Preservative Type	НСІ	Neat	HNO ₃	HNO3	H ₂ SO ₄	Neat					Walk	- 4	7
	Time:	73		Ŋ			ager:		T	P	pera	Pre		Vi serio	_	_							3	, 2000	3
	Turn-Around	X Standard	Project Name:		#		Project Manager: Gregory McCartney		ت		Sample Temperature:,	iner nd #	40ml VOA-5	Ξ <u>Ξ</u>	ո c-1	nl c-1	lu C-1	ات 1-				ۼ	5	1	
	rn-Ar	Star	ject		Project #:		ject		Sampler:	On Ice:	mple	Container Type and #	N V	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1	_			Received by:	J. Mar	Received by:	1
		×	Pro	_	Pro		Pro		Sar	ő	Sar	Q 5	401	, . a	,, σ	, σ	, σ	٠ ۵				Reck	<,	Sec >	-
								ion)	•			□													
	ord	nal			~		om	alidat				iest				121	9							Į,	{
	ec	rmi			741;		um.c	e/ IIr				Sedi	MW-27	MW-27	MW-27	MW-27	MW-27	MW-27						~	\int
	R	l Te			W 8		trole	X Level 4 (Full Validation)				Sample Request ID	Ž	M	M	M	Z	M					١	9	}
	d	fielc		90	Z,	38	onpe	evel				amb												(}	
	stc	om		49	fielc	1-23	rathc	×				ιχ				_						A	N r	o py:	2
	Ç	Blo		50 CR 4990	Bloomfield, NM 87413	419-421-2338	@ma			EXCEL		trix	O.	H ₂ 0	0	0	0	0				edsiii	X	elinquished by:	3
	-O	ב.			Blo	419	tney			E		Matrix	H ₂ O	Ŧ	H ₂ O	H ₂ 0	H ₂ 0	H ₂ O				Relinquished by	V '	Refinquished by:	
	Chain-of-Custody Record	Western - Bloomfield Terminal		Mailing Address:			Email: gjmccartney@marathonpetroleum.com	QA/QC Package:		X EDD (Type)		Time	0800					->		_		Time.	6		,
	당			ng A)e #:	il: g	VQC Packa Standard	Other	ו) סכ	-		0									jÈ	19	± -	+
		Client:		Maili		Phone #:	Ema	QAVQ	Ö	×E		Date	8/22/19					\rightarrow				Jate:	8/12/	Date: \$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
			10							250	- 1	- !	JU I					- I	95		I	J.	ເກ	00	L

Air Bubbles (Y or N) Remarks: See Analytical Methods and Target Analytes. **ANALYSIS LABORATORY** HALL ENVIRONMENTAL 3 9 General Chem. - Alkalinity × General Chem. - Anions&CO₂ × × 4901 Hawkins NE - Albuquerque, NM 87109 Dissolved Metals × Fax 505-345-4107 (AOV-ima2) 0728 × www.hallenvironmental.com **Analysis Request** (AOV) 808S8 × 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) RCRA 8 Metals Total × Tel. 505-345-3975 (2MI20728 to 0188) HA9 EDB (Method 504.1) (1.814 bodteM) H9T ТРН 8015В (GRO/DRO/MRO) × × BTEX+MTBE+TPH(Gas only) BTEX+MTBE+TMB's(8021) x.65 1908E25 6hS/ Tracy Payne - 919-561-7055 Sample Temperature:{4-0,3 7.12.12.54.3-2.0. -003 Time Time 400-Project Manager: Gregory McCartney HEAL No. Surfe Project Name: 2019 Annual GW Sampling Event \$23/19 Date Date 200 □ Rush Preservative H_2SO_4 HNO HNO Neat Neat Neat Type 당 모 **WYes** Turn-Around Time: 40m-VOR-B X Standard 40ml VOA-5 Type and # Container Mar plastic-1 amber-1 plastic-1 125 ml plastic-1 plastic-1 amber-1 250 ml 250 ml 125 ml Received by: 1 liter 500 ml Project #: eceived by Sampler: On Ice: X Level 4 (Full Validation) Sample Request ID Mosts Weeles Chain-of-Custody Record BLANK Client: Western - Bloomfield Terminal Email: gjmccartney@marathonpetroleum.com Bloomfield, NM 87413 MW-38 MW-38 MW-38 MW-38 MW-38 MW-38 MW-38 TRIP 419-421-2338 Mailing Address: 50 CR 4990 Relipedished by: Relinquished by EXCEL Matrix HZO H₂0 H₂0 H_2O H₂0 H₂0 H₂0 H_2^0 8/22/19/0845 8/2/9/549 QA/QC Package: Time X EDD (Type) 1000 Time: □ Standard 1 □ Other Phone #: 8/24/9 8/22/19 Date Date:

4 OF 6

	Chain-of-Custody Record	Client: Western - Bloomfield Terminal		Mailing Address: 50 CR 4990	Bloomfield, NM 87413	419-421-2338	Email: gjmccartney@marathonpetroleum.com		X Level 4 (Full Validation)		EXCEL		Matrix Sample Request ID		MW-37 4	MW-37	MW-37	MW-37	MW-37	MW-37		Relinquished by:	(Relinquished by:	Bases to	
	Turn-Around Time:	X Standard	Project Name: 2019 Annual GW	Sampling Event	Project #:		Project Manager: Gregory McCartney			Sampler: Tracy Payne	On Ice: 🔞 Yes 🗆	Sample Temperature: 1403	Container Preservative Type and # Type		40ml VOA-5 HCI	250 ml Neat	250 ml HNO ₃	125 ml HNO ₃	125 ml H ₂ SO ₄	500 ml Neat		Received by:	Charles	Received by:	S Contier ?	
	12		al GW	Event			McCartney			Tracy Payne - 919-561-7055	/ ÓN 🗆	42/23320°	HEAL No.	CE30017	-065							Date Time	Sh51 61		230 8:00	
				490	Te		(-	8TM+X3T 8TM+X3T	_								Pemarks:	2			
	8			1 Hav	I. 505-		((MBC	(0)				PH 8015B	_	×	×	·					- S				
		ANALYSIS LABORATORY	www	4901 Hawkins NE	Tel. 505-345-3975					(1	† 09	g po	odteM) 80	3		- 1						Arah	5			
		\ \ \	hallen	1		Anal		(5	_				АН (8310 С КА 8 М Е				×					i	3			
	ENVIDONMENTAL	SIS	www.hallenvironmental.com	Albuquerque, NM 87109	Fax 5	Analysis Request							IO,4) enoin									Analytical Mathods				
	0	2	ental.o	rdue, I	05-34	sanba		CB _i e	1 Z	808	3 / S		081 Pestio	_	×											
1	2	BO	com	NM 87	Fax 505-345-4107	st					(A		imə8) 072	_								and Tarret Analytes	<u>:</u>			
P	L	RA		109	_		-	OO8	su	_	_		i bəvlossi AD İstənə	_				×	×		++		5			
9	¥ F												eneral Ch							×		Anal	3			
		, ≿								(N	110	(Y)	r Bubbles	İΑ					***************************************				j			

5 or 6

	YSIS LABORATORY		60			2		ılkal	1A A	шə шə	Dissolved I General Ch General Ch Air Bubbles				×	×	×		Target Analytes	300		
		E	Albuquerque, NM 87109	Fax 505-345-4107					_		-imə2) 0728								_ L			
9		al.co	E Ö	345	rest					()	8260B (VO	×							- bue	5		
	¥	nent	erqu	505	Regu		bCB,≅	280	8/8	эр	S081 Pestici								9	5		
	N IS	ronr	ndn	ä	sis		(_p OS, _p C) ₂ ,P(οN'ε	ON	,ID, F, CI,								40	5		
	1 ×	lenv	Alb		Analysis Request			otal	T s	tals	RCRA 8 Me	-		×					7	5		
	ANALYSIS	www.hallenvironmental.com	빌	975	۷		(SI	NIS	270	8 1c	01E8) HAG								Analytical Methods			
5	Z	*	ins	45-3				()	.40	g p	EDB (Metho								Ana			
•	- 1		4901 Hawkins NE	Tel. 505-345-3975							odtəM) HqT					-			Spo	3		-
		disease.	301 F	el. 5		_					BB108 H9T	×	×									
			4	_			(λluo si	6Đ)	ТРР	<u>+3</u>	8TM+X3T8								Remarks:	3		
							(1208	8)s'8	LME		BTM+X3T8								ď	<u>}</u>	,	
	138	ual GW	y Event			Project Manager: Gregory McCartney		e - 919-561-7055	888	3-11-123-03-202	HEAL NO.	900-				=- =- 32			Date Time	8/22/19 1548		, ,
Time:	□ Rush_	3: 2019 Annual GW	Sampling Event			ger: Gregor		Tracy Payne	D/Yes	140	Preservative Type	IDH	Neat	^E ONH	HNO3	H ₂ SO ₄	Neat			Jaron	Contin	
Turn-Around	X Standard	Project Name:		Project #:		Project Mana		Sampler:	On Ice:	Sample Tem	Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1		Received by:	1	Received by:	
Chain-of-Custody Record	Client: Western - Bloomfield Terminal		50 CR 4990	Bloomfield, NM 87413	419-421-2338	Email: gjmccartney@marathonpetroleum.com	X Level 4 (Full Validation)				Sample Request ID	WW-35	WW-35	MW-35	WW-35	35-WM	MW-35		zi pa'.	1	ined by: West In Caller	
-of-Cu	rn - Blo			Bloom	419-42	tney@ma			EXCEL		Matrix	H ₂ 0	H ₂ O	H ₂ O	H ₂ O	H ₂ O	H ₂ O		Relinquished by:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Relinquished by:	
hain	Weste		Mailing Address:		#:	gjmccar	QA/QC Package:	ū	EDD (Type)		Time	0440					→		Time:		Time:	
J	Client:		Mailing		Phone #:	Email:	QA/QC Packa	□ Other	X EDC		Date	8/24/9					\rightarrow		Date:	8/22/9	S/22/3	

Lab did not recieve 2nd Trip Blank unishe Air Bubbles (Y or N) Remarks: See Analytical Methods and Target Analytes. **ANALYSIS LABORATORY** HALL ENVIRONMENTAL 6 0 6 General Chem. - Alkalinity × $_{
m 2}$ Oეlphaenoinm A-.mədm 7 Lishənəm 6× × 4901 Hawkins NE - Albuquerque, NM 87109 × Fax 505-345-4107 (AOV-ima2) 07S8 × www.hallenvironmental.com **Analysis Request** (AOV) 808S8 × 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) RCRA 8 Metals Total × Tel. 505-345-3975 (2MI20728 10 0188) HA9 EDB (Method 504.1) TPH (Method 418.1) **TPH 8015B (GRO/DRO/MRO)** × × BTEX+MTBE+TPH(Gas only) BTEX+MTBE+TMB's(8021) 8/23/19 8:00 19.08E25 8/22/14 1549 Tracy Payne - 919-561-7055 01/9/C/80 L00-Time Project Manager: Gregory McCartney HEAL No. Project Name: 2019 Annual GW Sampling Event Date Date 2 Sample Temperature: 14.0.5-1/ Courted □ Rush Preservative HNO3 HNO3 H_2SO_4 Neat Neat Neat Type 당 HOME WOAS HE □ Yes Jag Turn-Around Time: X Standard 40ml VOA-5 Type and # Container 7 plastic-1 plastic-1 amber-1 plastic-1 plastic-1 amber-1 Received by: 250 ml 1 liter 250 ml 125 ml 125 ml 500 ml Received by Project #: Sampler: On Ice: X Level 4 (Full Validation) Sample Request ID Chain-of-Custody Record BLANK Email: gjmccartney@marathonpetroleum.com Client: Western - Bloomfield Terminal Bloomfield, NM 87413 **MW-12** MW-12 **MW-12** MW-12 MW-12 MW-12 MW-12 122/2 IRIP 419-421-2338 50 CR 4990 Martas Relinguished by: Relinquished by EXCEL Matrix H₂0 H₂0 H₂0 H₂0 H₂0 H_2O H_2^0 420 Mailing Address: 8/21/19/1005 QA/QC Package: EDD (Type) Time 8/22/19/867 1549 Time: □ Standard Time: Phone #: □ Other 61/22/ 8/21/19 Date Date: Date:

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2014 Western Refining Southwest, Inc. - Bloomfield Terminal

	s (EPA Method 8260B) (1) get List
	Benzene
	Toluene
	Ethylbenzene
	Xylenes
	Methyl tert butyl ether (MTBE)
	Cs - (EPA Method 8270)
	- Method List
	GRO (EPA Method 8015B)
	- Gasoline Range Organics
	DRO (EPA Method 8015B)
	- Diesel Range Organics
	- Motor Oil Range Organics
Total	Carbon Dioxide (Laboratory Calculated)
	- Dissolved CO2
Speci	fic Conductivity (EPA Method 120.1 or field measurement)
	- Specific conductance
	(EPA Method 160.1 or field measurement)
	- Total dissolved solids
	ral Chemistry - Anions (EPA Method 300.0)
	Fluoride
	Chloride
	Bromide
	Nitrogen, Nitrite (as N)
	Nitrogen, Nitrate (as N)
	Phosphorous, Orthophosphate (As P)
	Sulfate
Genei	ral Chemistry - Alkalinity (EPA Method 310.1)
	Alkalinity, Total
(Carbonate
i	Bicarbonate

Total Recoverable Metals (El	PA Method 6010B/7470)
- Target List (not applicable to	River Terrace Sampling Events)
Arsenic	Lead
Barium	Mercury
Cadmium	Selenium
Chromium	Silver
- Target List (for River Terrace	Sampling Events Only)
Lead	
Mercury (DW-1 ON	ILY)
Dissolved Metals (EPA Metho	od 6010B / 7470)
 Target List (for Refinery Con 	nplex, Outfalls, and River)
Arsenic	Manganese
Barium	Mercury
Cadmium	Potassium
Calcium	Selenium
Chromium	Silver
Copper	Sodium
	77 .
Iron	Uranium
Iron Lead	Zinc

TPH = total petroleum hydrocarbons GRO = gasoline range organics VOCs = volatile organic compounds DRO = diesel range organics TDS = total dissolved solids

NOTES:

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

TABLE 2

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2014 Western Refining Southwest, Inc. - Bloomfield Terminal

	Cs (EPA Method 8260B) (1) get List
	Benzene
	Toluene
	Ethylbenzene
	Xylenes
	Methyl tert butyl ether (MTBE)
svo	Cs - (EPA Method 8270)
	- Method List
TPH	-GRO (EPA Method 8015B)
	- Gasoline Range Organics
TPH	-DRO (EPA Method 8015B)
	- Diesel Range Organics
	- Motor Oil Range Organics
Tota	Carbon Dioxide (Laboratory Calculated)
	- Dissolved CO2
Spec	ific Conductivity (EPA Method 120.1 or field measurement)
	- Specific conductance
TDS	(EPA Method 160.1 or field measurement)
	- Total dissolved solids
Gene	ral Chemistry - Anions (EPA Method 300.0)
	Fluoride
	Chloride
	Bromide
	Nitrogen, Nitrite (as N)
	Nitrogen, Nitrate (as N)
	Phosphorous, Orthophosphate (As P)
	Sulfate
	ral Chemistry - Alkalinity (EPA Method 310.1)
	Alkalinity, Total
	Carbonate
	Bicarbonate

- Target List	(not applicable to	River Terrace Sampling Events)
Ai	rsenic	Lead
Be	arium	Mercury
C_{i}	admium	Selenium
C	hromium	Silver
- Target List	(for River Terrace	Sampling Events Only)
	ead	
M	fercury (DW-1 ON	(LY)
Dissolved Mo	etals (EPA Metho	d 6010B / 7470)
		d 6010B / 7470) pplex, Outfalls, and River)
- Target List		
- Target List <i>Ai</i>	(for Refinery Com	pplex, Outfalls, and River)
- Target List Ar Ba	(for Refinery Com	plex, Outfalls, and River) Manganese
- Target List Ai Ba Ca	(for Refinery Com rsenic arium	plex, Outfalls, and River) Manganese Mercury
- Target List Ai Ba Ca Ca	(for Refinery Com rsenic arium admium	plex, Outfalls, and River) Manganese Mercury Potassium
- Target List An Bo Co Co Co	(for Refinery Com rsenic arium admium alcium	plex, Outfalls, and River) Manganese Mercury Potassium Selenium
- Target List An Bo Co Co Co Co Co	(for Refinery Com rsenic arium admium alcium hromium	plex, Outfalls, and River) Manganese Mercury Potassium Selenium Silver
- Target List An Ba Ca Ca Ca Ca Ca Ca Ca Ira	(for Refinery Com rsenic arium admium alcium hromium opper	plex, Outfalls, and River) Manganese Mercury Potassium Selenium Silver Sodium

TPH = total petroleum hydrocarbons GRO = gasoline range organics VOCs = volatile organic compounds DRO = diesel range organics TDS = total dissolved solids

NOTES:

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 01, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: 2019 Annual GW Sampling Event OrderNo.: 1908E78

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 17 sample(s) on 8/24/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Case Narrative
WO#: 1908E78

Date: 10/1/2019

CLIENT: Western Refining Southwest, Inc.Project: 2019 Annual GW Sampling Event

Analytical Notes Regarding EPA Method 8270:

The method blank had poor surrogate recoveries. The blank and all samples were reextracted to confirm the initial data.

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-59

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 2:40:00 PM

 Lab ID:
 1908E78-001
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result DF **Date Analyzed Batch ID Analyses MDL** RL **Qual Units EPA METHOD 8015D: DIESEL RANGE** Analyst: JME Diesel Range Organics (DRO) 0.31 0.13 0.40 mg/L 1 8/29/2019 1:58:59 AM 47076 ND 2.5 Motor Oil Range Organics (MRO) 2.5 mg/L 1 8/29/2019 1:58:59 AM 47076 Surr: DNOP 132 0 52.7-168 %Rec 1 8/29/2019 1:58:59 AM 47076 **EPA METHOD 300.0: ANIONS** Analyst: CJS Fluoride ND 0.073 0.50 5 9/9/2019 10:11:53 AM mg/L R62781 Chloride 240 5.0 10 20 9/9/2019 10:24:14 AM R62781 mg/L 0.25 Bromide 3.6 0.50 mg/L 5 9/9/2019 10:11:53 AM R62781 Phosphorus, Orthophosphate (As P) ND 2.5 5 9/9/2019 10:11:53 AM R62781 1.2 Н mg/L 390 5.0 20 9/9/2019 10:24:14 AM R62781 Sulfate 10 mg/L Nitrate+Nitrite as N 0.048 9/9/2019 5:36:18 PM 0.32 1.0 J mg/L 5 R62781 **EPA METHOD 7470: MERCURY** Analyst: rde 0.00013 0.000038 0.00020 9/12/2019 3:42:20 PM 47428 Mercury J mg/L 1 **EPA METHOD 6010B: DISSOLVED METALS** Analyst: bcv Arsenic 0.027 0.019 0.020 mg/L 1 9/9/2019 10:05:52 AM A62764 0.073 Barium 0.00056 0.020 mg/L 1 9/9/2019 10:05:52 AM A62764 Cadmium 0.00058 ND 0.0020 mg/L 1 9/9/2019 10:05:52 AM A62764 Calcium 200 mg/L 10 9/18/2019 12:08:48 PM A63017 0.60 10 Chromium ND 0.0012 0.0060 mg/L 1 9/9/2019 10:05:52 AM A62764 ND 0.0023 0.0060 9/9/2019 10:05:52 AM Copper mg/L 1 A62764 Iron 7.6 0.054 0.20 mg/L 10 9/18/2019 12:08:48 PM A63017 Lead ND 0.0048 0.0050 mg/L 1 9/20/2019 9:21:26 AM A63074 mg/L 62 0.061 1 9/9/2019 10:05:52 AM A62764 Magnesium 1.0 Manganese 1.5 0.0013 0.010 mg/L 5 9/9/2019 10:07:34 AM A62764 Potassium 3.3 0.11 mg/L 1 9/9/2019 10:05:52 AM A62764 1.0 Selenium ND 0.041 0.050 mg/L 1 9/9/2019 10:05:52 AM A62764 Silver 0.0020 0.0013 0.0050 9/9/2019 10:05:52 AM A62764 J mg/L 1 Sodium 9/18/2019 12:08:48 PM A63017 480 2.4 10 mg/L 10 Uranium ND 0.062 0.10 mg/L 1 9/9/2019 10:05:52 AM A62764 0.025 0.0026 0.020 mg/L 1 9/9/2019 10:05:52 AM A62764 **EPA 6010B: TOTAL RECOVERABLE METALS** Analyst: bcv ND 0.015 0.020 9/9/2019 8:16:04 AM 47071 Arsenic mg/L 1 Barium 0.11 0.0012 0.020 mg/L 1 9/5/2019 2:34:09 PM 47071 Cadmium ND 0.00055 0.0020 mg/L 1 9/5/2019 2:34:09 PM 47071 Chromium ND 0.00086 0.0060 mg/L 1 9/5/2019 2:34:09 PM 47071 1 Lead ND 0.0035 0.0050 mg/L 9/5/2019 2:34:09 PM 47071 Selenium ND 0.035 0.050 mg/L 1 9/9/2019 8:16:04 AM 47071 Silver 0.0018 0.00055 0.0050 J mg/L 9/5/2019 2:34:09 PM 47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-59

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 2:40:00 PM

 Lab ID:
 1908E78-001
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result **MDL Qual Units** DF **Date Analyzed Batch ID Analyses** RL**EPA METHOD 8270C: SEMIVOLATILES** Analyst: **DAM** Acenaphthene ND 3.0 10 9/5/2019 9:10:22 PM 47113 µg/L 1 Acenaphthylene ND 2.4 10 μg/L 1 9/5/2019 9:10:22 PM 47113 Aniline ND 3.6 10 μg/L 9/5/2019 9:10:22 PM 47113 1 Anthracene ND 2.7 10 μg/L 9/5/2019 9:10:22 PM 47113 1 ND 3.3 Azobenzene 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Benz(a)anthracene ND 3.6 10 µg/L 1 9/5/2019 9:10:22 PM 47113 ND 3.5 10 1 9/5/2019 9:10:22 PM 47113 Benzo(a)pyrene µg/L Benzo(b)fluoranthene ND 3.4 10 μg/L 1 9/5/2019 9:10:22 PM 47113 2.2 1 Benzo(g,h,i)perylene ND 10 µg/L 9/5/2019 9:10:22 PM 47113 Benzo(k)fluoranthene ND 2.9 10 μg/L 1 9/5/2019 9:10:22 PM 47113 Benzoic acid ND 11 20 µg/L 1 9/5/2019 9:10:22 PM 47113 Benzyl alcohol ND 2.4 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Bis(2-chloroethoxy)methane ND 2.6 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Bis(2-chloroethyl)ether ND 3.2 10 μg/L 1 9/5/2019 9:10:22 PM 47113 Bis(2-chloroisopropyl)ether ND 3.9 10 1 9/5/2019 9:10:22 PM 47113 µg/L ND 4.3 10 1 47113 Bis(2-ethylhexyl)phthalate µg/L 9/5/2019 9:10:22 PM 4-Bromophenyl phenyl ether ND 3.0 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Butyl benzyl phthalate ND 3.3 10 µg/L 1 9/5/2019 9:10:22 PM 47113 ND 2.9 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Carbazole 4-Chloro-3-methylphenol ND 3.4 10 µg/L 1 9/5/2019 9:10:22 PM 47113 ND 2.3 4-Chloroaniline 10 μg/L 1 9/5/2019 9:10:22 PM 47113 2-Chloronaphthalene ND 3.1 10 µg/L 1 9/5/2019 9:10:22 PM 47113 ND 2.7 2-Chlorophenol 10 1 47113 µg/L 9/5/2019 9:10:22 PM 4-Chlorophenyl phenyl ether ND 2.4 10 47113 µg/L 1 9/5/2019 9:10:22 PM ND 2.8 Chrysene 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Di-n-butyl phthalate ND 2.7 10 µg/L 1 9/5/2019 9:10:22 PM 47113 Di-n-octyl phthalate ND 3.5 μg/L 1 9/5/2019 9:10:22 PM 10 47113 Dibenz(a,h)anthracene ND 3.0 10 µg/L 1 9/5/2019 9:10:22 PM 47113 ND 3.2 1 Dibenzofuran 10 µg/L 9/5/2019 9:10:22 PM 47113 ND 4.8 10 µg/L 1 9/5/2019 9:10:22 PM 47113 1.2-Dichlorobenzene 1,3-Dichlorobenzene ND 5.3 10 µg/L 1 9/5/2019 9:10:22 PM 47113 1,4-Dichlorobenzene ND 4.4 10 μg/L 1 9/5/2019 9:10:22 PM 47113 3,3´-Dichlorobenzidine ND 2.8 10 µg/L 1 9/5/2019 9:10:22 PM 47113 ND Diethyl phthalate 2.9 10 μg/L 1 9/5/2019 9:10:22 PM 47113 Dimethyl phthalate ND 10 1 3.2 µg/L 9/5/2019 9:10:22 PM 47113 2,4-Dichlorophenol ND 2.9 20 µg/L 1 9/5/2019 9:10:22 PM 47113 2,4-Dimethylphenol 1 ND 3.0 10 µg/L 9/5/2019 9:10:22 PM 47113 4,6-Dinitro-2-methylphenol ND 2.9 20 μg/L 1 9/5/2019 9:10:22 PM 47113 2,4-Dinitrophenol ND 2.6 20 µg/L 9/5/2019 9:10:22 PM 47113

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-59

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 2:40:00 PM

 Lab ID: 1908E78-001
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
2,4-Dinitrotoluene	ND	3.8	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2,6-Dinitrotoluene	ND	2.4	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Fluoranthene	ND	2.4	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Fluorene	ND	2.9	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Hexachlorobenzene	ND	3.1	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Hexachlorobutadiene	ND	4.7	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Hexachlorocyclopentadiene	ND	3.6	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Hexachloroethane	ND	4.8	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Indeno(1,2,3-cd)pyrene	ND	2.7	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Isophorone	ND	3.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
1-Methylnaphthalene	ND	3.1	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2-Methylnaphthalene	ND	3.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2-Methylphenol	ND	2.9	10		μg/L	1	9/5/2019 9:10:22 PM	47113
3+4-Methylphenol	ND	3.6	10		μg/L	1	9/5/2019 9:10:22 PM	47113
N-Nitrosodi-n-propylamine	ND	6.5	10		μg/L	1	9/5/2019 9:10:22 PM	47113
N-Nitrosodimethylamine	ND	5.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
N-Nitrosodiphenylamine	ND	2.4	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Naphthalene	ND	4.1	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2-Nitroaniline	ND	3.2	10		μg/L	1	9/5/2019 9:10:22 PM	47113
3-Nitroaniline	ND	3.2	10		μg/L	1	9/5/2019 9:10:22 PM	47113
4-Nitroaniline	ND	2.7	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Nitrobenzene	ND	2.8	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2-Nitrophenol	ND	3.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
4-Nitrophenol	ND	7.6	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Pentachlorophenol	ND	2.7	20		μg/L	1	9/5/2019 9:10:22 PM	47113
Phenanthrene	ND	2.8	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Phenol	ND	8.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Pyrene	ND	2.5	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Pyridine	ND	9.6	10		μg/L	1	9/5/2019 9:10:22 PM	47113
1,2,4-Trichlorobenzene	ND	4.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2,4,5-Trichlorophenol	ND	3.0	10		μg/L	1	9/5/2019 9:10:22 PM	47113
2,4,6-Trichlorophenol	ND	2.3	10		μg/L	1	9/5/2019 9:10:22 PM	47113
Surr: 2-Fluorophenol	54.6	0	15-101		%Rec	1	9/5/2019 9:10:22 PM	47113
Surr: Phenol-d5	37.7	0	15-84.6		%Rec	1	9/5/2019 9:10:22 PM	47113
Surr: 2,4,6-Tribromophenol	64.7	0	27.8-112		%Rec	1	9/5/2019 9:10:22 PM	47113
Surr: Nitrobenzene-d5	89.6	0	33-113		%Rec	1	9/5/2019 9:10:22 PM	47113
Surr: 2-Fluorobiphenyl	73.6	0	26.6-107		%Rec	1	9/5/2019 9:10:22 PM	47113
Surr: 4-Terphenyl-d14	68.2	0	18.7-148		%Rec	1	9/5/2019 9:10:22 PM	47113

EPA METHOD 8260B: VOLATILES

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 90

Analyst: JMR

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-59

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 2:40:00 PM

 Lab ID:
 1908E78-001
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR 7.5 0.17 1.0 8/30/2019 12:27:59 PM R62584 Benzene µg/L 1 Toluene ND 0.35 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 Ethylbenzene 64 0.13 1.0 1 8/30/2019 12:27:59 PM R62584 µg/L Methyl tert-butyl ether (MTBE) 830 4.6 10 8/31/2019 12:00:16 AM R62584 µg/L 10 1,2,4-Trimethylbenzene ND 0.21 R62584 1.0 µg/L 1 8/30/2019 12:27:59 PM 1.3.5-Trimethylbenzene 0.19 ND 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 1,2-Dichloroethane (EDC) 10 0.19 1 8/30/2019 12:27:59 PM R62584 1.0 µg/L 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 ND 0.28 1 8/30/2019 12:27:59 PM R62584 Naphthalene 2.0 µg/L 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/30/2019 12:27:59 PM R62584 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/30/2019 12:27:59 PM R62584 Acetone ND 1.2 10 µg/L 1 8/30/2019 12:27:59 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 ND 0.29 1 8/30/2019 12:27:59 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 12:27:59 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 12:27:59 PM R62584 ND R62584 Carbon disulfide 0.45 10 µg/L 1 8/30/2019 12:27:59 PM Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 Chloroethane ND 0.18 2.0 1 µg/L 8/30/2019 12:27:59 PM R62584 Chloroform ND 0.12 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 Chloromethane ND 0.32 3.0 1 8/30/2019 12:27:59 PM R62584 µg/L 2-Chlorotoluene ND 0.25 8/30/2019 12:27:59 PM R62584 1.0 µg/L 1 ND 0.23 R62584 4-Chlorotoluene 1.0 µg/L 1 8/30/2019 12:27:59 PM cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/30/2019 12:27:59 PM ND 0.14 μg/L 1 8/30/2019 12:27:59 PM R62584 cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 0.33 2.0 μg/L 1 8/30/2019 12:27:59 PM R62584 ND 0.24 1 R62584 Dibromochloromethane 1.0 µg/L 8/30/2019 12:27:59 PM Dibromomethane ND 0.21 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 R62584 8/30/2019 12:27:59 PM 1,1-Dichloroethane ND 0.14 1 8/30/2019 12:27:59 PM R62584 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/30/2019 12:27:59 PM 1,3-Dichloropropane ND 0.20 1 8/30/2019 12:27:59 PM R62584 1.0 µg/L 2,2-Dichloropropane ND 0.23 2.0 μg/L 8/30/2019 12:27:59 PM R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 90

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-59

Project: 2019 Annual GW Sampling Event Collection Date: 8/22/2019 2:40:00 PM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.16 8/30/2019 12:27:59 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 ND 1.5 10 8/30/2019 12:27:59 PM R62584 2-Hexanone µg/L 1 14 0.19 8/30/2019 12:27:59 PM R62584 Isopropylbenzene 1.0 µg/L 1 0.53 0.22 R62584 4-Isopropyltoluene 1.0 J µg/L 1 8/30/2019 12:27:59 PM 0.71 4-Methyl-2-pentanone ND 10 µg/L 1 8/30/2019 12:27:59 PM R62584 Methylene Chloride ND 0.15 3.0 1 8/30/2019 12:27:59 PM R62584 µg/L n-Butvlbenzene 2.8 0.23 3.0 μg/L 1 8/30/2019 12:27:59 PM R62584 n-Propylbenzene 0.21 1 21 1.0 µg/L 8/30/2019 12:27:59 PM R62584 sec-Butylbenzene 4.7 0.25 1.0 μg/L 1 8/30/2019 12:27:59 PM R62584 Styrene ND 0.19 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 tert-Butvlbenzene 0.46 0.21 1.0 J µg/L 1 8/30/2019 12:27:59 PM R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 12:27:59 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 12:27:59 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 12:27:59 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 0.30 R62584 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 8/30/2019 12:27:59 PM 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 µg/L 1 8/30/2019 12:27:59 PM R62584 Trichlorofluoromethane ND 0.19 1 R62584 1.0 µg/L 8/30/2019 12:27:59 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 12:27:59 PM R62584 2.0 µg/L 1 0.18 ND R62584 Vinyl chloride 1.0 µg/L 1 8/30/2019 12:27:59 PM Xylenes, Total ND 0.45 1.5 µg/L 1 8/30/2019 12:27:59 PM Surr: 1,2-Dichloroethane-d4 99.6 0 70-130 %Rec 1 8/30/2019 12:27:59 PM R62584 Surr: 4-Bromofluorobenzene 97.4 0 70-130 %Rec 1 8/30/2019 12:27:59 PM R62584 Surr: Dibromofluoromethane 0 1 102 70-130 %Rec 8/30/2019 12:27:59 PM R62584 Surr: Toluene-d8 97.5 0 70-130 %Rec 1 8/30/2019 12:27:59 PM R62584 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) 0.031 1.2 0.050 mg/L 8/30/2019 12:27:59 PM G62584 1 Surr: BFB 101 0 70-130 %Rec 1 8/30/2019 12:27:59 PM G62584 **CARBON DIOXIDE** Analyst: JRR Total Carbon Dioxide 1100 0 Н mg CO2/ 1 8/28/2019 4:59:13 PM R62496 1.0 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: JRR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

5.0

3200

Oualifiers:

Conductivity

Lab ID:

1908E78-001

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

umhos/c 1

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

5.0

Page 6 of 90

R62496

8/28/2019 4:59:13 PM

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-59

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 2:40:00 PM

Lab ID: 1908E78-001 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRI	₹
Bicarbonate (As CaCO3)	1102	20.00	20.00		mg/L Ca	a 1	8/28/2019 4:59:13 PM	1 R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/28/2019 4:59:13 PM	1 R62496
Total Alkalinity (as CaCO3)	1102	20.00	20.00		mg/L Ca	a 1	8/28/2019 4:59:13 PM	1 R62496
SM2540C MOD: TOTAL DISSOLVED SOLIDS	5						Analyst: KS	
Total Dissolved Solids	2100	40.0	40.0	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-63

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 3:30:00 PM

 Lab ID:
 1908E78-002
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8015D: DIESEL RANGE** Analyst: JME Diesel Range Organics (DRO) ND 0.13 0.40 mg/L 1 8/29/2019 2:23:38 AM 47076 ND 2.5 Motor Oil Range Organics (MRO) 2.5 mg/L 1 8/29/2019 2:23:38 AM 47076 Surr: DNOP 132 0 52.7-168 %Rec 1 8/29/2019 2:23:38 AM 47076 **EPA METHOD 300.0: ANIONS** Analyst: CJS Fluoride ND 0.073 0.50 5 9/9/2019 10:36:34 AM mg/L R62781 Chloride 160 5.0 10 mg/L 20 9/9/2019 10:48:55 AM R62781 0.25 **Bromide** 3.2 0.50 mg/L 5 9/9/2019 10:36:34 AM R62781 Phosphorus, Orthophosphate (As P) ND 2.5 5 9/9/2019 10:36:34 AM R62781 1.2 Н mg/L 2200 25 50 9/10/2019 4:13:44 PM R62815 Sulfate 12 mg/L Nitrate+Nitrite as N 0.097 2.0 9/10/2019 6:48:08 PM 66 ma/L 10 A62815 **EPA METHOD 7470: MERCURY** Analyst: rde 0.00028 0.000038 0.00020 9/12/2019 3:44:36 PM 47428 Mercury mg/L 1 **EPA METHOD 6010B: DISSOLVED METALS** Analyst: bcv Arsenic ND 0.019 0.020 mg/L 1 9/9/2019 10:09:15 AM A62764 Barium 0.013 0.00056 0.020 J mg/L 1 9/9/2019 10:09:15 AM A62764 Cadmium 0.00058 ND 0.0020 mg/L 1 9/9/2019 10:09:15 AM A62764 Calcium 420 mg/L 5 9/9/2019 10:11:11 AM A62764 0.30 5.0 Chromium ND 0.0012 0.0060 mg/L 1 9/9/2019 10:09:15 AM A62764 0.0043 0.0023 0.0060 9/9/2019 10:09:15 AM Copper J mg/L 1 A62764 Iron ND 0.0054 0.020 mg/L 1 9/9/2019 10:09:15 AM A62764 Lead ND 0.0048 0.0050 mg/L 1 9/9/2019 10:09:15 AM A62764 mg/L 180 0.30 5 9/9/2019 10:11:11 AM A62764 Magnesium 5.0 Manganese 0.55 0.00026 0.0020 mg/L 1 9/9/2019 10:09:15 AM A62764 1 Potassium 4.5 0.11 mg/L 9/9/2019 10:09:15 AM A62764 1.0 Selenium ND 0.041 0.050 mg/L 1 9/9/2019 10:09:15 AM A62764 Silver 0.0053 0.0013 0.0050 9/9/2019 10:09:15 AM A62764 mg/L 1 Sodium 9/9/2019 12:39:35 PM 540 2.4 10 mg/L 10 A62764 Uranium ND 0.062 0.10 mg/L 1 9/9/2019 10:09:15 AM A62764 0.023 0.0026 0.020 mg/L 1 9/9/2019 10:09:15 AM A62764 **EPA 6010B: TOTAL RECOVERABLE METALS** Analyst: bcv ND Arsenic 0.015 0.020 9/9/2019 8:24:39 AM 47071 mg/L 1 Barium 0.35 0.0012 0.020 mg/L 1 9/5/2019 2:35:49 PM 47071 0.00055 Cadmium ND 0.0020 mg/L 1 9/5/2019 2:35:49 PM 47071 Chromium 0.0099 0.00086 0.0060 mg/L 1 9/5/2019 2:35:49 PM 47071 1 Lead ND 0.0035 0.0050 mg/L 9/5/2019 2:35:49 PM 47071 Selenium ND 0.035 0.050 mg/L 1 9/9/2019 8:24:39 AM 47071 Silver 0.0027 0.00055 0.0050 J mg/L 9/5/2019 2:35:49 PM 47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 90

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-63

Project: 2019 Annual GW Sampling Event Collection Date: 8/22/2019 3:30:00 PM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.17 1.0 8/30/2019 1:54:24 PM Benzene µg/L 1 R62584 Toluene ND 0.35 1.0 μg/L 1 8/30/2019 1:54:24 PM R62584 Ethylbenzene ND 0.13 1.0 8/30/2019 1:54:24 PM R62584 µg/L 1 Methyl tert-butyl ether (MTBE) 0.46 8/30/2019 1:54:24 PM R62584 3.8 1.0 µg/L 1 1,2,4-Trimethylbenzene ND 0.21 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 1.3.5-Trimethylbenzene ND 0.19 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 1,2-Dichloroethane (EDC) ND 0.19 1 8/30/2019 1:54:24 PM R62584 1.0 µg/L 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 1:54:24 PM R62584 0.28 1 Naphthalene ND 2.0 µg/L 8/30/2019 1:54:24 PM R62584 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/30/2019 1:54:24 PM R62584 2-Methylnaphthalene ND 0.35 4.0 µg/L 1 8/30/2019 1:54:24 PM R62584 Acetone 8.0 1.2 10 J µg/L 1 8/30/2019 1:54:24 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 1:54:24 PM R62584 ND 0.29 1 8/30/2019 1:54:24 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 1:54:24 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 1:54:24 PM R62584 ND Carbon disulfide 0.45 10 µg/L 1 8/30/2019 1:54:24 PM R62584 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 Chloroethane ND 0.18 2.0 1 µg/L 8/30/2019 1:54:24 PM R62584 Chloroform ND 0.12 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 Chloromethane ND 0.32 3.0 1 8/30/2019 1:54:24 PM R62584 µg/L 2-Chlorotoluene ND 0.25 8/30/2019 1:54:24 PM R62584 1.0 µg/L 1 ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 ND 0.14 μg/L 1 8/30/2019 1:54:24 PM R62584 cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 0.33 2.0 μg/L 1 8/30/2019 1:54:24 PM R62584 ND 0.24 1 Dibromochloromethane 1.0 µg/L 8/30/2019 1:54:24 PM R62584 Dibromomethane ND 0.21 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/30/2019 1:54:24 PM R62584 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/30/2019 1:54:24 PM R62584 1,1-Dichloroethane ND 0.14 1 8/30/2019 1:54:24 PM R62584 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/30/2019 1:54:24 PM R62584 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/30/2019 1:54:24 PM R62584 1,3-Dichloropropane ND 0.20 1 8/30/2019 1:54:24 PM R62584 1.0 µg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

0.23

ND

Oualifiers:

2,2-Dichloropropane

Lab ID:

1908E78-002

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

μg/L

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

2.0

Page 9 of 90

R62584

8/30/2019 1:54:24 PM

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-63

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 3:30:00 PM

 Lab ID: 1908E78-002
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 1:54:24 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 1:54:24 PM	R62584
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 1:54:24 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 1:54:24 PM	R62584
Surr: 1,2-Dichloroethane-d4	96.7	0	70-130		%Rec	1	8/30/2019 1:54:24 PM	R62584
Surr: 4-Bromofluorobenzene	96.9	0	70-130		%Rec	1	8/30/2019 1:54:24 PM	R62584
Surr: Dibromofluoromethane	102	0	70-130		%Rec	1	8/30/2019 1:54:24 PM	R62584
Surr: Toluene-d8	99.0	0	70-130		%Rec	1	8/30/2019 1:54:24 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMR	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 1:54:24 PM	G62584
Surr: BFB	101	0	70-130		%Rec	1	8/30/2019 1:54:24 PM	G62584
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	600	0	1.0	Н	mg CO	2/ 1	8/28/2019 5:38:01 PM	R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	4900	5.0	5.0		µmhos/	′c 1	8/28/2019 5:38:01 PM	R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-63

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 3:30:00 PM

Lab ID: 1908E78-002 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRR	2
Bicarbonate (As CaCO3)	593.4	20.00	20.00		mg/L Ca	ı 1	8/28/2019 5:38:01 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	ı 1	8/28/2019 5:38:01 PM	R62496
Total Alkalinity (as CaCO3)	593.4	20.00	20.00		mg/L Ca	ı 1	8/28/2019 5:38:01 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLID	S						Analyst: KS	
Total Dissolved Solids	4090	100	100	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-64

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/22/2019 4:15:00 PM

 Lab ID: 1908E78-003
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JM	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 2:48:19 AM	47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 2:48:19 AM	47076
Surr: DNOP	137	0	52.7-168		%Rec	1	8/29/2019 2:48:19 AM	47076
EPA METHOD 300.0: ANIONS							Analyst: CJS	3
Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 11:01:15 AM	R62781
Chloride	860	25	50	*	mg/L	100	9/10/2019 4:26:36 PM	R62815
Bromide	2.4	0.25	0.50		mg/L	5	9/9/2019 11:01:15 AM	R62781
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 11:01:15 AM	R62781
Sulfate	1500	25	50	*	mg/L	100	9/10/2019 4:26:36 PM	R62815
Nitrate+Nitrite as N	45	0.097	2.0	*	mg/L	10	9/10/2019 7:01:00 PM	A62815
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00021	0.000038	0.00020		mg/L	1	9/12/2019 3:46:54 PM	47428
EPA METHOD 6010B: DISSOLVED META	ALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:13:01 AM	A62764
Barium	0.0098	0.00056	0.020	J	mg/L	1	9/9/2019 10:13:01 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:13:01 AM	A62764
Calcium	440	0.30	5.0		mg/L	5	9/9/2019 10:14:58 AM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:13:01 AM	A62764
Copper	0.0029	0.0023	0.0060	J	mg/L	1	9/9/2019 10:13:01 AM	A62764
Iron	0.027	0.0054	0.020		mg/L	1	9/9/2019 10:13:01 AM	A62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:13:01 AM	A62764
Magnesium	67	0.061	1.0		mg/L	1	9/9/2019 10:13:01 AM	A62764
Manganese	0.00036	0.00026	0.0020	J	mg/L	1	9/9/2019 10:13:01 AM	A62764
Potassium	4.4	0.11	1.0		mg/L	1	9/9/2019 10:13:01 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:13:01 AM	A62764
Silver	0.0060	0.0013	0.0050		mg/L	1	9/9/2019 10:13:01 AM	A62764
Sodium	780	2.4	10		mg/L	10	9/9/2019 12:41:23 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:13:01 AM	A62764
Zinc	0.015	0.0026	0.020	J	mg/L	1	9/9/2019 10:13:01 AM	A62764
EPA 6010B: TOTAL RECOVERABLE ME	TALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:26:22 AM	47071
Barium	0.35	0.0012	0.020		mg/L	1	9/5/2019 2:37:29 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:37:29 PM	47071
Chromium	0.011	0.00086	0.0060		mg/L	1	9/5/2019 2:37:29 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:37:29 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:26:22 AM	47071
Silver	0.0032	0.00055	0.0050	J	mg/L	1	9/5/2019 2:37:29 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-64

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 4:15:00 PM

Lab ID: 1908E78-003 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JM I	R
Benzene	ND	0.17	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Toluene	ND	0.35	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
Ethylbenzene	ND	0.13	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
Naphthalene	ND	0.28	2.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
Acetone	ND	1.2	10	μg/L	1	8/30/2019 3:21:00 PM	R62584
Bromobenzene	ND	0.24	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Bromodichloromethane	ND	0.13	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Bromoform	ND	0.29	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Bromomethane	ND	0.27	3.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
2-Butanone	ND	2.1	10	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Carbon disulfide	ND	0.45	10	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
Chlorobenzene	ND	0.19	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Chloroethane	ND	0.18	2.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
Chloroform	ND	0.12	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Chloromethane	ND	0.32	3.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Dibromochloromethane	ND	0.24	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Dibromomethane	ND	0.21	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	8/30/2019 3:21:00 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	8/30/2019 3:21:00 PM	1 R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-64

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 4:15:00 PM

Lab ID: 1908E78-003 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 3:21:00 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 3:21:00 PM	R62584
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 3:21:00 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 3:21:00 PM	R62584
Surr: 1,2-Dichloroethane-d4	96.3	0	70-130		%Rec	1	8/30/2019 3:21:00 PM	R62584
Surr: 4-Bromofluorobenzene	92.6	0	70-130		%Rec	1	8/30/2019 3:21:00 PM	R62584
Surr: Dibromofluoromethane	102	0	70-130		%Rec	1	8/30/2019 3:21:00 PM	R62584
Surr: Toluene-d8	97.3	0	70-130		%Rec	1	8/30/2019 3:21:00 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMR	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 3:21:00 PM	G62584
Surr: BFB	97.2	0	70-130		%Rec	1	8/30/2019 3:21:00 PM	G62584
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	270	0	1.0	Н	mg CO2	/ 1	8/28/2019 6:01:59 PM	R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	5900	5.0	5.0		µmhos/c	: 1	8/28/2019 6:01:59 PM	R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-64

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/22/2019 4:15:00 PM

Lab ID: 1908E78-003 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	
Bicarbonate (As CaCO3)	276.5	20.00	20.00		mg/L Ca	a 1	8/28/2019 6:01:59 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/28/2019 6:01:59 PM	R62496
Total Alkalinity (as CaCO3)	276.5	20.00	20.00		mg/L Ca	a 1	8/28/2019 6:01:59 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLIE	os						Analyst: KS	
Total Dissolved Solids	4060	100	100	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-70

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 7:45:00 AM

 Lab ID: 1908E78-004
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed E	atch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 3:13:07 AM	47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 3:13:07 AM	47076
Surr: DNOP	149	0	52.7-168		%Rec	1	8/29/2019 3:13:07 AM	47076
EPA METHOD 300.0: ANIONS							Analyst: CJS	
Fluoride	0.26	0.073	0.50	J	mg/L	5	9/9/2019 11:50:39 AM	R62781
Chloride	340	5.0	10	*	mg/L	20	9/9/2019 12:02:59 PM	R62781
Bromide	1.6	0.25	0.50		mg/L	5	9/9/2019 11:50:39 AM	R62781
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 11:50:39 AM	R62781
Sulfate	2100	25	50	*	mg/L	100	9/10/2019 4:39:29 PM	R62815
Nitrate+Nitrite as N	0.33	0.048	1.0	J	mg/L	5	9/9/2019 6:13:22 PM	R62781
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00012	0.000038	0.00020	J	mg/L	1	9/12/2019 3:49:11 PM	47428
EPA METHOD 6010B: DISSOLVED MET	ΓALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:22:22 AM	A62764
Barium	0.013	0.00056	0.020	J	mg/L	1	9/9/2019 10:22:22 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:22:22 AM	A62764
Calcium	610	0.60	10		mg/L	10	9/9/2019 12:48:44 PM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:22:22 AM	A62764
Copper	0.0037	0.0023	0.0060	J	mg/L	1	9/9/2019 10:22:22 AM	A62764
Iron	5.3	0.054	0.20		mg/L	10	9/18/2019 12:10:59 PM	A63017
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:22:22 AM	A62764
Magnesium	150	0.30	5.0		mg/L	5	9/9/2019 10:24:06 AM	A62764
Manganese	1.6	0.0013	0.010		mg/L	5	9/9/2019 10:24:06 AM	A62764
Potassium	3.5	0.11	1.0		mg/L	1	9/9/2019 10:22:22 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:22:22 AM	A62764
Silver	0.0071	0.0013	0.0050		mg/L	1	9/9/2019 10:22:22 AM	A62764
Sodium	610	2.4	10		mg/L	10	9/9/2019 12:48:44 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:22:22 AM	A62764
Zinc	0.017	0.0026	0.020	J	mg/L	1	9/9/2019 10:22:22 AM	A62764
EPA 6010B: TOTAL RECOVERABLE M	ETALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:28:03 AM	47071
Barium	0.15	0.0012	0.020		mg/L	1	9/5/2019 2:39:08 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:39:08 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:39:08 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:39:08 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:28:03 AM	47071
Silver	0.0051	0.00055	0.0050		mg/L	1	9/5/2019 2:39:08 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-70

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 7:45:00 AM

Lab ID: 1908E78-004 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	₹
Benzene	ND	0.17	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Methyl tert-butyl ether (MTBE)	0.54	0.46	1.0	J	μg/L	1	8/30/2019 3:49:54 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Naphthalene	ND	0.28	2.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 3:49:54 PM	R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 3:49:54 PM	R62584
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 3:49:54 PM	R62584
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Chlorobenzene	ND	0.19	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 3:49:54 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 3:49:54 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 90

Received Date: 8/24/2019 10:00:00 AM

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-70

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 7:45:00 AM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.16 8/30/2019 3:49:54 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 3:49:54 PM R62584 ND 1.5 10 8/30/2019 3:49:54 PM R62584 2-Hexanone µg/L 1 ND 0.19 8/30/2019 3:49:54 PM R62584 Isopropylbenzene 1.0 µg/L 1 ND 0.22 4-Isopropyltoluene 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 0.71 4-Methyl-2-pentanone ND 10 ua/L 1 8/30/2019 3:49:54 PM R62584 Methylene Chloride ND 0.15 3.0 1 R62584 µg/L 8/30/2019 3:49:54 PM n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/30/2019 3:49:54 PM R62584 n-Propylbenzene 0.21 1 ND 1.0 µg/L 8/30/2019 3:49:54 PM R62584 sec-Butylbenzene ND 0.25 1.0 1 8/30/2019 3:49:54 PM R62584 µg/L Styrene ND 0.19 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 tert-Butvlbenzene ND 0.21 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 3:49:54 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 3:49:54 PM R62584 1.0 µg/L ND 0.18 1 trans-1,2-DCE 1.0 µg/L 8/30/2019 3:49:54 PM R62584 trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 0.30 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 μg/L 1 8/30/2019 3:49:54 PM R62584 Trichlorofluoromethane ND 0.19 1 R62584 1.0 µg/L 8/30/2019 3:49:54 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 3:49:54 PM R62584 2.0 µg/L 1 ND 0.18 Vinyl chloride 1.0 µg/L 1 8/30/2019 3:49:54 PM R62584 Xylenes, Total ND 0.45 1.5 µg/L 1 8/30/2019 3:49:54 PM R62584 Surr: 1,2-Dichloroethane-d4 96.3 0 70-130 %Rec 1 8/30/2019 3:49:54 PM R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

5.0

0

0

0

0

0

0.031

70-130

70-130

70-130

0.050

70-130

1.0

5.0

93.7

101

99.0

ND

98.0

790

5400

Oualifiers:

Lab ID:

1908E78-004

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Gasoline Range Organics (GRO)

EPA METHOD 8015D: GASOLINE RANGE

SM2510B: SPECIFIC CONDUCTANCE

Surr: Toluene-d8

Surr: BFB

Conductivity

CARBON DIOXIDE

Total Carbon Dioxide

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

%Rec

%Rec

%Rec

mg/L

%Rec

mg CO2/ 1

µmhos/c 1

1

1

1

1

1

8/30/2019 3:49:54 PM

8/30/2019 3:49:54 PM

8/30/2019 3:49:54 PM

8/30/2019 3:49:54 PM

8/30/2019 3:49:54 PM

8/28/2019 6:15:44 PM

8/28/2019 6:15:44 PM

Analyst: JMR

Analyst: JRR

Analyst: JRR

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range

Н

RL Reporting Limit Page 18 of 90

R62584

R62584

R62584

G62584

G62584

R62496

R62496

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-70

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 7:45:00 AM

Lab ID: 1908E78-004 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	
Bicarbonate (As CaCO3)	785.4	20.00	20.00		mg/L Ca	a 1	8/28/2019 6:15:44 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/28/2019 6:15:44 PM	R62496
Total Alkalinity (as CaCO3)	785.4	20.00	20.00		mg/L Ca	a 1	8/28/2019 6:15:44 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLID	os						Analyst: KS	
Total Dissolved Solids	4740	100	100	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event Collection Date:

Lab ID: 1908E78-005 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JM	R
Benzene	ND	0.17	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Naphthalene	ND	0.28	2.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 4:18:48 PM	
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Chlorobenzene	0.48	0.19	1.0	J	μg/L	1	8/30/2019 4:18:48 PM	
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 4:18:48 PM	
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	1 R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 4:18:48 PM	
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 4:18:48 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event Collection Date:

Lab ID: 1908E78-005 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 4:18:48 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 4:18:48 PM	R62584
Methylene Chloride	0.19	0.15	3.0	J	μg/L	1	8/30/2019 4:18:48 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 4:18:48 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 4:18:48 PM	R62584
Surr: 1,2-Dichloroethane-d4	94.1	0	70-130		%Rec	1	8/30/2019 4:18:48 PM	R62584
Surr: 4-Bromofluorobenzene	93.2	0	70-130		%Rec	1	8/30/2019 4:18:48 PM	R62584
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	8/30/2019 4:18:48 PM	R62584
Surr: Toluene-d8	95.9	0	70-130		%Rec	1	8/30/2019 4:18:48 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMF	Ł
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 4:18:48 PM	G62584
Surr: BFB	96.4	0	70-130		%Rec	1	8/30/2019 4:18:48 PM	G62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Collection Date: 8/23/2019

Lab ID: 1908E78-006 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 3:37:47 AM	47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 3:37:47 AM	47076
Surr: DNOP	110	0	52.7-168		%Rec	1	8/29/2019 3:37:47 AM	47076
EPA METHOD 300.0: ANIONS							Analyst: CJS	
Fluoride	0.27	0.073	0.50	J	mg/L	5	9/9/2019 12:15:20 PM	R62781
Chloride	340	5.0	10	*	mg/L	20	9/9/2019 12:27:40 PM	R62781
Bromide	1.6	0.25	0.50		mg/L	5	9/9/2019 12:15:20 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	5.0	10	Н	mg/L	20	9/9/2019 12:27:40 PM	R62781
Sulfate	2100	25	50	*	mg/L	100	9/10/2019 4:52:21 PM	R62815
Nitrate+Nitrite as N	0.29	0.048	1.0	J	mg/L	5	9/9/2019 6:25:43 PM	R62781
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00014	0.000038	0.00020	J	mg/L	1	9/12/2019 3:51:29 PM	47428
EPA METHOD 6010B: DISSOLVED META	LS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:25:48 AM	A62764
Barium	0.013	0.00056	0.020	J	mg/L	1	9/9/2019 10:25:48 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:25:48 AM	A62764
Calcium	610	0.60	10		mg/L	10	9/9/2019 12:50:39 PM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:25:48 AM	A62764
Copper	0.0034	0.0023	0.0060	J	mg/L	1	9/9/2019 10:25:48 AM	A62764
Iron	5.3	0.054	0.20		mg/L	10	9/18/2019 12:13:10 PM	A63017
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:25:48 AM	A62764
Magnesium	150	0.30	5.0		mg/L	5	9/9/2019 10:27:31 AM	A62764
Manganese	1.7	0.0013	0.010		mg/L	5	9/9/2019 10:27:31 AM	A62764
Potassium	3.4	0.11	1.0		mg/L	1	9/9/2019 10:25:48 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:25:48 AM	A62764
Silver	0.0073	0.0013	0.0050		mg/L	1	9/9/2019 10:25:48 AM	A62764
Sodium	600	2.4	10		mg/L	10	9/9/2019 12:50:39 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:25:48 AM	A62764
Zinc	0.023	0.0026	0.020		mg/L	1	9/9/2019 10:25:48 AM	A62764
EPA 6010B: TOTAL RECOVERABLE MET	ΓALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:29:45 AM	47071
Barium	0.15	0.0012	0.020		mg/L	1	9/5/2019 2:40:48 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:40:48 PM	47071
Chromium	0.0019	0.00086	0.0060	J	mg/L	1	9/5/2019 2:40:48 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:40:48 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:29:45 AM	47071
Silver	0.0049	0.00055	0.0050	J	mg/L	1	9/5/2019 2:40:48 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Collection Date: 8/23/2019

Lab ID: 1908E78-006 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	
Benzene	ND	0.17	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Methyl tert-butyl ether (MTBE)	0.52	0.46	1.0	J	μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Naphthalene	ND	0.28	2.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 4:47:43 PM	R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 4:47:43 PM	
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 4:47:43 PM	R62584
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 4:47:43 PM	R62584
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 4:47:43 PM	
Chlorobenzene	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 4:47:43 PM	
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 4:47:43 PM	
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 4:47:43 PM	
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 4:47:43 PM	
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 4:47:43 PM	
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 4:47:43 PM	
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 4:47:43 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Collection Date: 8/23/2019

Lab ID: 1908E78-006 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 4:47:43 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 4:47:43 PM	R62584
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 4:47:43 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 4:47:43 PM	R62584
Surr: 1,2-Dichloroethane-d4	92.2	0	70-130		%Rec	1	8/30/2019 4:47:43 PM	R62584
Surr: 4-Bromofluorobenzene	93.4	0	70-130		%Rec	1	8/30/2019 4:47:43 PM	R62584
Surr: Dibromofluoromethane	100	0	70-130		%Rec	1	8/30/2019 4:47:43 PM	R62584
Surr: Toluene-d8	100	0	70-130		%Rec	1	8/30/2019 4:47:43 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMR	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 4:47:43 PM	G62584
Surr: BFB	97.2	0	70-130		%Rec	1	8/30/2019 4:47:43 PM	G62584
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	770	0	1.0	Н	mg CO2	2/ 1	8/28/2019 6:58:18 PM	R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	5400	5.0	5.0		µmhos/d	2 1	8/28/2019 6:58:18 PM	R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Duplicate #2

Project: 2019 Annual GW Sampling Event

Collection Date: 8/23/2019

Lab ID: 1908E78-006 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	
Bicarbonate (As CaCO3)	791.1	20.00	20.00		mg/L Ca	a 1	8/28/2019 6:58:18 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/28/2019 6:58:18 PM	R62496
Total Alkalinity (as CaCO3)	791.1	20.00	20.00		mg/L Ca	a 1	8/28/2019 6:58:18 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLID	os						Analyst: KS	
Total Dissolved Solids	4450	100	100	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Field Balnk #2

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 8:15:00 AM

 Lab ID: 1908E78-007
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Motor Oil Range Organics (MRO) ND 2.5 2.5 mg/L 1 8/29/2019 4:02:33 AM 470 Mercon organics (MRO) Surr: DNOP 108 0 52.7-168 %Rec 1 8/29/2019 4:02:33 AM 470 Mercon organics (MRO) EPA METHOD 300.0: ANIONS Analyst: CJS Fluoride ND 0.073 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (MRO) PMRO ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (MRO) PMRO ND 1.2 2.5 Mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (MRO) PMRO ND 1.2 2.5 H Mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (MRO) PMRO ND 1.2 2.5 H Mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (MRO) ND 1.2 2.5 H Mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (MRO) ND 1.2 2.5 Mg/L 5 9/9/2019 12:40:00 PM R6 Mercon organics (M	47076 47076 47076 47076 R62781 R62781 R62781 R62781 R62781
Motor Oil Range Organics (MRO) ND 2.5 2.5 mg/L 1 8/29/2019 4:02:33 AM 470 Mercon organics Surr: DNOP 108 0 52.7-168 %Rec 1 8/29/2019 4:02:33 AM 470 Mercon organics EPA METHOD 300.0: ANIONS Analyst: CJS Fluoride ND 0.073 0.50 mg/L 5 9/9/2019 12:40:00 PM R60 Mercon organics Chloride ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R60 Mercon organics Bromide ND 0.25 0.50 mg/L 5 9/9/2019 12:40:00 PM R60 Mercon organics Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R60 Mercon organics Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R60 Mercon organics Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R60 Mercon organics	47076 47076 47076 R62781 R62781 R62781 R62781 R62781
Surr: DNOP 108 0 52.7-168 %Rec 1 8/29/2019 4:02:33 AM 470 EPA METHOD 300.0: ANIONS Fluoride ND 0.073 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Chloride ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Bromide ND 0.25 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R6 Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	47076 R62781 R62781 R62781 R62781 R62781 R62781
EPA METHOD 300.0: ANIONS Fluoride ND 0.073 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Chloride ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Bromide ND 0.25 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R6 Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781 R62781 R62781 R62781 R62781 R62781
Fluoride ND 0.073 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Chloride ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Bromide ND 0.25 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R6 Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781 R62781 R62781 R62781 R62781
Chloride ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Bromide ND 0.25 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R6 Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781 R62781 R62781 R62781 R62781
Bromide ND 0.25 0.50 mg/L 5 9/9/2019 12:40:00 PM R6 Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R6 Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781 R62781 R62781 R62781
Phosphorus, Orthophosphate (As P) ND 1.2 2.5 H mg/L 5 9/9/2019 12:40:00 PM R6 Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781 R62781 R62781
Sulfate ND 1.2 2.5 mg/L 5 9/9/2019 12:40:00 PM R6 Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781 R62781
Nitrate+Nitrite as N 0.49 0.048 1.0 J mg/L 5 9/9/2019 7:15:05 PM R6	R62781
	17428
EPA METHOD 7470: MERCURY Analyst: rde	17428
Mercury 0.00011 0.000038 0.00020 J mg/L 1 9/12/2019 3:53:48 PM 47-	7720
EPA METHOD 6010B: DISSOLVED METALS Analyst: bcv	
Arsenic ND 0.019 0.020 mg/L 1 9/9/2019 10:29:12 AM A6	A62764
Barium ND 0.00056 0.020 mg/L 1 9/9/2019 10:29:12 AM A6	A62764
Cadmium ND 0.00058 0.0020 mg/L 1 9/9/2019 10:29:12 AM A6	A62764
Calcium ND 0.060 1.0 mg/L 1 9/9/2019 10:29:12 AM A6	A62764
Chromium ND 0.0012 0.0060 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Copper ND 0.0023 0.0060 mg/L 1 9/9/2019 10:29:12 AM A6	A62764
Iron ND 0.0054 0.020 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Lead ND 0.0048 0.0050 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Magnesium ND 0.061 1.0 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Manganese ND 0.00026 0.0020 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Potassium ND 0.11 1.0 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Selenium ND 0.041 0.050 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Silver ND 0.0013 0.0050 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Sodium ND 0.24 1.0 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Uranium ND 0.062 0.10 mg/L 1 9/9/2019 10:29:12 AM A6	462764
Zinc 0.016 0.0026 0.020 J mg/L 1 9/9/2019 10:29:12 AM A6	462764
EPA 6010B: TOTAL RECOVERABLE METALS Analyst: bcv	
Arsenic ND 0.015 0.020 mg/L 1 9/9/2019 8:31:25 AM 470	17071
Barium ND 0.0012 0.020 mg/L 1 9/5/2019 2:42:29 PM 470	17071
Cadmium ND 0.00055 0.0020 mg/L 1 9/5/2019 2:42:29 PM 470	47071
Chromium ND 0.00086 0.0060 mg/L 1 9/5/2019 2:42:29 PM 470	47071
Lead ND 0.0035 0.0050 mg/L 1 9/5/2019 2:42:29 PM 470	47071
Selenium ND 0.035 0.050 mg/L 1 9/9/2019 8:31:25 AM 470	47071
Silver ND 0.00055 0.0050 mg/L 1 9/5/2019 2:42:29 PM 470	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Balnk #2

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 8:15:00 AM

Lab ID: 1908E78-007 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JM I	R
Benzene	ND	0.17	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Naphthalene	ND	0.28	2.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 5:16:36 PM	R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 5:16:36 PM	R62584
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 5:16:36 PM	R62584
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Chlorobenzene	ND	0.19	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 5:16:36 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 5:16:36 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 90

Lab Order 1908E78

Date Analyzed

Batch ID

DF

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Balnk #2

Result

ND

ND

93.9

93.4

99.2

97.1

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 8:15:00 AM Lab ID: 1908E78-007 Matrix: AQUEOUS Received Date: 8/24/2019 10:00:00 AM

MDL

RL

Qual Units

EPA METHOD 8260B: VOLATILES Analyst: JMR ND 0.16 8/30/2019 5:16:36 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 5:16:36 PM R62584 ND 1.5 10 8/30/2019 5:16:36 PM R62584 2-Hexanone µg/L 1 Isopropylbenzene ND 0.19 8/30/2019 5:16:36 PM R62584 1.0 µg/L 1 ND 0.22 4-Isopropyltoluene 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 0.71 4-Methyl-2-pentanone ND 10 µg/L 1 8/30/2019 5:16:36 PM R62584 Methylene Chloride ND 0.15 3.0 1 8/30/2019 5:16:36 PM R62584 µg/L n-Butylbenzene ND 0.23 3.0 μg/L 1 8/30/2019 5:16:36 PM R62584 n-Propylbenzene 0.21 1 ND 1.0 µg/L 8/30/2019 5:16:36 PM R62584 sec-Butylbenzene ND 0.25 1.0 1 8/30/2019 5:16:36 PM R62584 µg/L Styrene ND 0.19 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 tert-Butylbenzene ND 0.21 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 1,1,1,2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 5:16:36 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 5:16:36 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 5:16:36 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 0.30 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 5:16:36 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 μg/L 1 8/30/2019 5:16:36 PM R62584 Trichlorofluoromethane ND 0.19 1 R62584 1.0 µg/L 8/30/2019 5:16:36 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 5:16:36 PM R62584 2.0 µg/L 1

FΡΔ	METHOD	8015D·	GASOLIN	FRANGE
EFA	METHOD	60 ISD.	GASOLIN	LINAINGE

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

							,	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 5:16:36 PM	G62584
Surr: BFB	96.3	0	70-130		%Rec	1	8/30/2019 5:16:36 PM	G62584
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	9.7	0	1.0	Н	mg CO2	2/ 1	8/28/2019 7:28:07 PM	R62496

0.18

0.45

0

0

0

0

1.0

1.5

70-130

70-130

70-130

70-130

SM2510B: SPECIFIC CONDUCTANCE

Analyst: JRR 8/28/2019 7:28:07 PM Conductivity ND 5.0 5.0 umhos/c 1 R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Vinyl chloride

Xylenes, Total

Analyses

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

µg/L

μg/L

%Rec

%Rec

%Rec

%Rec

1

1

1

1

1

1

8/30/2019 5:16:36 PM

8/30/2019 5:16:36 PM

8/30/2019 5:16:36 PM

8/30/2019 5:16:36 PM

8/30/2019 5:16:36 PM

8/30/2019 5:16:36 PM

Analyst: JMR

R62584

R62584

R62584

R62584

R62584

R62584

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 28 of 90

Lab Order **1908E78**

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Field Balnk #2

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 8:15:00 AM

Lab ID: 1908E78-007 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRR	1
Bicarbonate (As CaCO3)	ND	20.00	20.00		mg/L Ca	1	8/28/2019 7:28:07 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	1	8/28/2019 7:28:07 PM	R62496
Total Alkalinity (as CaCO3)	ND	20.00	20.00		mg/L Ca	1	8/28/2019 7:28:07 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLIDS	3						Analyst: KS	
Total Dissolved Solids	ND	20.0	20.0		mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-44

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 8:40:00 AM

 Lab ID: 1908E78-008
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JM	 ≣
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 4:26:58 AM	47076
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 4:26:58 AM	47076
Surr: DNOP	109	0	52.7-168		%Rec	1	8/29/2019 4:26:58 AM	47076
EPA METHOD 300.0: ANIONS							Analyst: CJS	3
Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 1:29:23 PM	R62781
Chloride	50	1.2	2.5		mg/L	5	9/9/2019 1:29:23 PM	R62781
Bromide	ND	0.25	0.50		mg/L	5	9/9/2019 1:29:23 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	5.0	10	Н	mg/L	20	9/9/2019 1:41:45 PM	R62781
Sulfate	3500	25	50	*	mg/L	100	9/10/2019 5:30:57 PM	A62815
Nitrate+Nitrite as N	0.11	0.048	1.0	J	mg/L	5	9/9/2019 7:27:26 PM	R62781
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00014	0.000038	0.00020	J	mg/L	1	9/12/2019 3:55:59 PM	47428
EPA METHOD 6010B: DISSOLVED META	ALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:32:51 AM	A62764
Barium	0.0096	0.00056	0.020	J	mg/L	1	9/9/2019 10:32:51 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:32:51 AM	A62764
Calcium	470	0.30	5.0		mg/L	5	9/9/2019 10:34:48 AM	A62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:32:51 AM	A62764
Copper	0.0024	0.0023	0.0060	J	mg/L	1	9/9/2019 10:32:51 AM	A62764
Iron	0.014	0.0054	0.020	J	mg/L	1	9/9/2019 10:32:51 AM	A62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:32:51 AM	A62764
Magnesium	59	0.061	1.0		mg/L	1	9/9/2019 10:32:51 AM	A62764
Manganese	0.43	0.00026	0.0020		mg/L	1	9/9/2019 10:32:51 AM	A62764
Potassium	7.6	0.11	1.0		mg/L	1	9/9/2019 10:32:51 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:32:51 AM	A62764
Silver	0.0063	0.0013	0.0050		mg/L	1	9/9/2019 10:32:51 AM	A62764
Sodium	880	2.4	10		mg/L	10	9/9/2019 12:52:32 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:32:51 AM	A62764
Zinc	0.024	0.0026	0.020		mg/L	1	9/9/2019 10:32:51 AM	A62764
EPA 6010B: TOTAL RECOVERABLE ME	TALS						Analyst: bcv	
Arsenic	0.017	0.015	0.020	J	mg/L	1	9/9/2019 8:33:15 AM	47071
Barium	0.082	0.0012	0.020		mg/L	1	9/5/2019 2:44:17 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:44:17 PM	47071
Chromium	0.0072	0.00086	0.0060		mg/L	1	9/5/2019 2:44:17 PM	47071
Lead	0.0042	0.0035	0.0050	J	mg/L	1	9/5/2019 2:44:17 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:33:15 AM	47071
Silver	0.0056	0.00055	0.0050		mg/L	1	9/5/2019 2:44:17 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-44

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 8:40:00 AM

 Lab ID: 1908E78-008
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JMF	₹
Benzene	ND	0.17	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Toluene	ND	0.35	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Ethylbenzene	ND	0.13	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Methyl tert-butyl ether (MTBE)	1.0	0.46	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Naphthalene	ND	0.28	2.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Acetone	ND	1.2	10	μg/L	1	8/30/2019 5:45:27 PM	R62584
Bromobenzene	ND	0.24	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Bromodichloromethane	ND	0.13	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Bromoform	ND	0.29	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Bromomethane	ND	0.27	3.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
2-Butanone	ND	2.1	10	μg/L	1	8/30/2019 5:45:27 PM	R62584
Carbon disulfide	ND	0.45	10	μg/L	1	8/30/2019 5:45:27 PM	R62584
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Chlorobenzene	ND	0.19	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Chloroethane	ND	0.18	2.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Chloroform	ND	0.12	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Chloromethane	ND	0.32	3.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Dibromochloromethane	ND	0.24	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Dibromomethane	ND	0.21	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	8/30/2019 5:45:27 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	8/30/2019 5:45:27 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-44

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 8:40:00 AM

 Lab ID: 1908E78-008
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 5:45:27 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 5:45:27 PM	R62584
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 5:45:27 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 5:45:27 PM	R62584
Surr: 1,2-Dichloroethane-d4	95.3	0	70-130		%Rec	1	8/30/2019 5:45:27 PM	R62584
Surr: 4-Bromofluorobenzene	97.7	0	70-130		%Rec	1	8/30/2019 5:45:27 PM	R62584
Surr: Dibromofluoromethane	102	0	70-130		%Rec	1	8/30/2019 5:45:27 PM	R62584
Surr: Toluene-d8	101	0	70-130		%Rec	1	8/30/2019 5:45:27 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMR	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 5:45:27 PM	G62584
Surr: BFB	101	0	70-130		%Rec	1	8/30/2019 5:45:27 PM	G62584
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	340	0	1.0	Н	mg CO	2/ 1	8/28/2019 7:34:01 PM	R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	5800	5.0	5.0		µmhos/	'c 1	8/28/2019 7:34:01 PM	R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 8:40:00 AM

Lab ID: 1908E78-008 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	R
Bicarbonate (As CaCO3)	371.1	20.00	20.00		mg/L Ca	a 1	8/28/2019 7:34:01 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/28/2019 7:34:01 PM	R6249€
Total Alkalinity (as CaCO3)	371.1	20.00	20.00		mg/L Ca	a 1	8/28/2019 7:34:01 PM	R6249€
SM2540C MOD: TOTAL DISSOLVED SOLID	S						Analyst: KS	
Total Dissolved Solids	4830	100	100	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Client Sample ID: MW-44

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Analyst: CJS

Hall Environmental Analysis Laboratory, Inc.

EPA METHOD 300.0: ANIONS

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-62

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 9:10:00 AM

 Lab ID:
 1908E78-009
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses Result **MDL Qual Units** DF **Date Analyzed Batch ID** RL**EPA METHOD 8015D: DIESEL RANGE** Analyst: JME Diesel Range Organics (DRO) ND 0.13 0.40 mg/L 8/29/2019 5:40:30 AM 47077 Motor Oil Range Organics (MRO) 2.5 8/29/2019 5:40:30 AM ND 2.5 mg/L 1 47077 Surr: DNOP 117 52.7-168 %Rec 8/29/2019 5:40:30 AM 47077

Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 2:18:47 PM	R62781
Chloride	12	1.2	2.5		mg/L	5	9/9/2019 2:18:47 PM	R62781
Bromide	ND	0.25	0.50		mg/L	5	9/9/2019 2:18:47 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	5.0	10	Н	mg/L	20	9/9/2019 2:31:07 PM	R62781
Sulfate	4000	25	50	*	mg/L	100	9/10/2019 6:09:33 PM	A62815
Nitrate+Nitrite as N	0.076	0.048	1.0	J	mg/L	5	9/9/2019 7:39:47 PM	R62781

EPA METHOD 7470: MERCURY Analyst: rde								
Mercury	0.00012	0.000038	0.00020	J	mg/L	1	9/12/2019 3:58:11 PM	47428
EPA METHOD 6010B: DISSOLVED METALS Analyst: bcv								

Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:36:38 AM	B62764
Barium	0.0091	0.00056	0.020	J	mg/L	1	9/9/2019 10:36:38 AM	B62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:36:38 AM	B62764
Calcium	440	0.30	5.0		mg/L	5	9/9/2019 10:38:35 AM	B62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:36:38 AM	B62764
Copper	0.0023	0.0023	0.0060	J	mg/L	1	9/9/2019 10:36:38 AM	B62764
Iron	ND	0.0054	0.020		mg/L	1	9/9/2019 10:36:38 AM	B62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:36:38 AM	B62764

Magnesium	39	0.061	1.0	mg/L	1	9/9/2019 10:36:38 AM	B62764
Manganese	1.4	0.0013	0.010	mg/L	5	9/9/2019 10:38:35 AM	B62764
Potassium	8.8	0.11	1.0	mg/L	1	9/9/2019 10:36:38 AM	B62764
Selenium	ND	0.041	0.050	mg/L	1	9/9/2019 10:36:38 AM	B62764
Silver	0.0058	0.0013	0.0050	mg/L	1	9/9/2019 10:36:38 AM	B62764
Sodium	1400	4.8	20	mg/L	20	9/9/2019 12:54:21 PM	B62764
Uranium	ND	0.062	0.10	mg/L	1	9/9/2019 10:36:38 AM	B62764
Zinc	0.024	0.0026	0.020	mg/L	1	9/9/2019 10:36:38 AM	B62764

EPA 6010B: TOTAL RECOV	EPA 6010B: TOTAL RECOVERABLE METALS									
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:34:59 AM	47071		
Barium	0.017	0.0012	0.020	J	mg/L	1	9/5/2019 2:45:55 PM	47071		
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:45:55 PM	47071		
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:45:55 PM	47071		

Danum	0.017	0.0012	0.020	J	mg/L	ı	9/5/2019 2.45.55 PW	4/0/1
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:45:55 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:45:55 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:45:55 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:34:59 AM	47071
Silver	0.0061	0.00055	0.0050		mg/L	1	9/5/2019 2:45:55 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-62

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 9:10:00 AM

Lab ID: 1908E78-009 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: JM I	R
Benzene	ND	0.17	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Toluene	ND	0.35	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Ethylbenzene	ND	0.13	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
Naphthalene	ND	0.28	2.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
Acetone	ND	1.2	10	μg/L	1	8/30/2019 6:14:18 PM	R62584
Bromobenzene	ND	0.24	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
Bromodichloromethane	ND	0.13	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Bromoform	ND	0.29	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Bromomethane	ND	0.27	3.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
2-Butanone	ND	2.1	10	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Carbon disulfide	ND	0.45	10	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Carbon Tetrachloride	ND	0.14	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Chlorobenzene	ND	0.19	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Chloroethane	ND	0.18	2.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Chloroform	ND	0.12	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Chloromethane	ND	0.32	3.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
2-Chlorotoluene	ND	0.25	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
4-Chlorotoluene	ND	0.23	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
cis-1,2-DCE	ND	0.19	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
cis-1,3-Dichloropropene	ND	0.14	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
Dibromochloromethane	ND	0.24	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
Dibromomethane	ND	0.21	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
1,2-Dichlorobenzene	ND	0.30	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
1,3-Dichlorobenzene	ND	0.25	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
Dichlorodifluoromethane	ND	0.26	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
1,1-Dichloroethane	ND	0.14	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0	μg/L	1	8/30/2019 6:14:18 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
1,3-Dichloropropane	ND	0.20	1.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584
2,2-Dichloropropane	ND	0.23	2.0	μg/L	1	8/30/2019 6:14:18 PM	1 R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 90

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-62

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 9:10:00 AM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.16 8/30/2019 6:14:18 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 6:14:18 PM R62584 ND 1.5 10 8/30/2019 6:14:18 PM R62584 2-Hexanone µg/L 1 ND 0.19 8/30/2019 6:14:18 PM R62584 Isopropylbenzene 1.0 µg/L 1 ND 0.22 4-Isopropyltoluene 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 0.71 4-Methyl-2-pentanone ND 10 ua/L 1 8/30/2019 6:14:18 PM R62584 Methylene Chloride ND 0.15 3.0 1 8/30/2019 6:14:18 PM R62584 µg/L n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/30/2019 6:14:18 PM R62584 n-Propylbenzene 0.21 1 ND 1.0 µg/L 8/30/2019 6:14:18 PM R62584 sec-Butylbenzene ND 0.25 1.0 1 8/30/2019 6:14:18 PM R62584 µg/L Styrene ND 0.19 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 tert-Butvlbenzene ND 0.21 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 6:14:18 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 6:14:18 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 6:14:18 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 ND 0.30 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 μg/L 1 8/30/2019 6:14:18 PM R62584 Trichlorofluoromethane ND 0.19 1 R62584 1.0 µg/L 8/30/2019 6:14:18 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 6:14:18 PM R62584 2.0 µg/L 1 0.18 ND Vinyl chloride 1.0 µg/L 1 8/30/2019 6:14:18 PM R62584 Xylenes, Total ND 0.45 1.5 µg/L 1 8/30/2019 6:14:18 PM R62584 Surr: 1,2-Dichloroethane-d4 0 70-130 %Rec 1 R62584 94.2 8/30/2019 6:14:18 PM Surr: 4-Bromofluorobenzene 96.6 0 70-130 %Rec 1 8/30/2019 6:14:18 PM R62584 Surr: Dibromofluoromethane 0 1 R62584 100 70-130 %Rec 8/30/2019 6:14:18 PM Surr: Toluene-d8 98.4 0 70-130 %Rec 1 8/30/2019 6:14:18 PM R62584 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) 0.031 8/30/2019 6:14:18 PM ND 0.050 mg/L G62584 1 Surr: BFB 99.5 0 70-130 %Rec 1 8/30/2019 6:14:18 PM G62584 **CARBON DIOXIDE** Analyst: JRR **Total Carbon Dioxide** 590 0 1.0 Н mg CO2/ 1 8/28/2019 7:50:23 PM R62496 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: JRR 8/28/2019 7:50:23 PM Conductivity 7200 5.0 5.0 µmhos/c 1 R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Lab ID:

1908E78-009

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 36 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-62

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 9:10:00 AM

Lab ID: 1908E78-009 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRR	
Bicarbonate (As CaCO3)	630.2	20.00	20.00		mg/L Ca	1	8/28/2019 7:50:23 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	1	8/28/2019 7:50:23 PM	R62496
Total Alkalinity (as CaCO3)	630.2	20.00	20.00		mg/L Ca	1	8/28/2019 7:50:23 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLIE	os						Analyst: KS	
Total Dissolved Solids	6110	20.0	20.0	*	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event Collection Date:

Lab ID: 1908E78-010 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	₹
Benzene	ND	0.17	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Naphthalene	ND	0.28	2.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 6:43:12 PM	R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 6:43:12 PM	R62584
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 6:43:12 PM	R62584
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Chlorobenzene	0.48	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 6:43:12 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event Collection Date:

Lab ID: 1908E78-010 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	₹
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 6:43:12 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 6:43:12 PM	R62584
Methylene Chloride	0.19	0.15	3.0	J	μg/L	1	8/30/2019 6:43:12 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 6:43:12 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 6:43:12 PM	R62584
Surr: 1,2-Dichloroethane-d4	96.6	0	70-130		%Rec	1	8/30/2019 6:43:12 PM	R62584
Surr: 4-Bromofluorobenzene	95.7	0	70-130		%Rec	1	8/30/2019 6:43:12 PM	R62584
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	8/30/2019 6:43:12 PM	R62584
Surr: Toluene-d8	98.5	0	70-130		%Rec	1	8/30/2019 6:43:12 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMF	₹
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 6:43:12 PM	G62584
Surr: BFB	99.4	0	70-130		%Rec	1	8/30/2019 6:43:12 PM	G62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-31

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 9:40:00 AM

 Lab ID: 1908E78-011
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	1.1	0.13	0.40		mg/L	1	8/29/2019 6:53:42 AM	47077
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 6:53:42 AM	47077
Surr: DNOP	119	0	52.7-168		%Rec	1	8/29/2019 6:53:42 AM	47077
EPA METHOD 300.0: ANIONS							Analyst: CJS	;
Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 2:43:28 PM	R62781
Chloride	130	5.0	10		mg/L	20	9/9/2019 2:55:49 PM	R62781
Bromide	2.9	0.25	0.50		mg/L	5	9/9/2019 2:43:28 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 2:43:28 PM	R62781
Sulfate	79	1.2	2.5		mg/L	5	9/9/2019 2:43:28 PM	R62781
Nitrate+Nitrite as N	0.13	0.048	1.0	J	mg/L	5	9/9/2019 7:52:08 PM	R62781
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.000082	0.000038	0.00020	J	mg/L	1	9/12/2019 4:00:23 PM	47428
EPA METHOD 6010B: DISSOLVED ME	TALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:45:59 AM	B62764
Barium	0.87	0.00056	0.020		mg/L	1	9/9/2019 10:45:59 AM	B62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:45:59 AM	B62764
Calcium	110	0.30	5.0		mg/L	5	9/9/2019 10:47:53 AM	B62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:45:59 AM	B62764
Copper	ND	0.0023	0.0060		mg/L	1	9/9/2019 10:45:59 AM	B62764
Iron	0.035	0.0054	0.020		mg/L	1	9/9/2019 10:45:59 AM	B62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:45:59 AM	B62764
Magnesium	37	0.061	1.0		mg/L	1	9/9/2019 10:45:59 AM	B62764
Manganese	0.63	0.00026	0.0020		mg/L	1	9/9/2019 10:45:59 AM	B62764
Potassium	3.8	0.11	1.0		mg/L	1	9/9/2019 10:45:59 AM	B62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:45:59 AM	B62764
Silver	0.0016	0.0013	0.0050	J	mg/L	1	9/9/2019 10:45:59 AM	B62764
Sodium	480	1.2	5.0		mg/L	5	9/9/2019 10:47:53 AM	B62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:45:59 AM	B62764
Zinc	0.011	0.0026	0.020	J	mg/L	1	9/9/2019 10:45:59 AM	B62764
EPA 6010B: TOTAL RECOVERABLE N	IETALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:36:53 AM	47071
Barium	0.92	0.0012	0.020		mg/L	1	9/5/2019 2:57:08 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:57:08 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:57:08 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 2:57:08 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:36:53 AM	47071
Silver	0.0020	0.00055	0.0050	J	mg/L	1	9/5/2019 2:57:08 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 40 of 90

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-31

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 9:40:00 AM

 Lab ID:
 1908E78-011
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result **MDL** DF **Date Analyzed Batch ID Analyses** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR 20 1100 20 9/3/2019 12:40:54 PM Benzene 3.3 µg/L W62589 Toluene 390 7.0 20 μg/L 20 9/3/2019 12:40:54 PM W62589 Ethylbenzene 710 2.6 20 20 9/3/2019 12:40:54 PM W6258 µg/L Methyl tert-butyl ether (MTBE) 0.46 1.0 J 8/30/2019 7:12:01 PM R62584 0.51 µg/L 1 1,2,4-Trimethylbenzene 20 20 W62589 330 4.3 µg/L 9/3/2019 12:40:54 PM 1.3.5-Trimethylbenzene 0.19 33 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/30/2019 7:12:01 PM R62584 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 7:12:01 PM R62584 160 5.5 Naphthalene 40 µg/L 20 9/3/2019 12:40:54 PM W62589 1-Methylnaphthalene 78 0.31 4.0 8/30/2019 7:12:01 PM R62584 µg/L 1 74 0.35 2-Methylnaphthalene 4.0 µg/L 1 8/30/2019 7:12:01 PM R62584 Acetone ND 1.2 10 µg/L 1 8/30/2019 7:12:01 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 7:12:01 PM R62584 ND 0.29 1 8/30/2019 7:12:01 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 7:12:01 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 7:12:01 PM R62584 ND R62584 Carbon disulfide 0.45 10 µg/L 1 8/30/2019 7:12:01 PM Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 Chloroethane ND 0.18 2.0 1 µg/L 8/30/2019 7:12:01 PM R62584 Chloroform ND 0.12 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 Chloromethane ND 0.32 3.0 1 R62584 µg/L 8/30/2019 7:12:01 PM 2-Chlorotoluene ND 0.25 8/30/2019 7:12:01 PM R62584 1.0 µg/L 1 ND 0.23 R62584 4-Chlorotoluene 1.0 µg/L 1 8/30/2019 7:12:01 PM cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 ND 0.14 μg/L 1 8/30/2019 7:12:01 PM R62584 cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/30/2019 7:12:01 PM R62584 ND 0.24 1 Dibromochloromethane 1.0 µg/L 8/30/2019 7:12:01 PM R62584 Dibromomethane ND 0.21 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/30/2019 7:12:01 PM R62584 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/30/2019 7:12:01 PM R62584 1,1-Dichloroethane ND 0.14 1 R62584 1.0 µg/L 8/30/2019 7:12:01 PM 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/30/2019 7:12:01 PM R62584 1,3-Dichloropropane ND 0.20 1 8/30/2019 7:12:01 PM R62584 1.0 µg/L 2,2-Dichloropropane ND 0.23 2.0 μg/L 8/30/2019 7:12:01 PM R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 41 of 90

Lab Order 1908E78

Date Analyzed

DF

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-31

Result

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 9:40:00 AM Lab ID: 1908E78-011 Matrix: AQUEOUS Received Date: 8/24/2019 10:00:00 AM

MDL

RL

Batch ID Qual Units EPA METHOD 8260B: VOLATILES Analyst: JMR ND 0.16 8/30/2019 7:12:01 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 7:12:01 PM R62584 ND 1.5 10 8/30/2019 7:12:01 PM R62584 2-Hexanone µg/L 1 55 0.19 8/30/2019 7:12:01 PM R62584 Isopropylbenzene 1.0 µg/L 1 0.22 4-Isopropyltoluene 2.6 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 0.71 4-Methyl-2-pentanone ND 10 ua/L 1 8/30/2019 7:12:01 PM R62584 Methylene Chloride ND 0.15 3.0 1 8/30/2019 7:12:01 PM R62584 µg/L n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/30/2019 7:12:01 PM R62584 n-Propylbenzene 4.3 190 20 µg/L 20 9/3/2019 12:40:54 PM W62589 sec-Butylbenzene 35 0.25 1.0 8/30/2019 7:12:01 PM R62584 µg/L 1 Styrene 0.27 0.19 1.0 J µg/L 1 8/30/2019 7:12:01 PM R62584 8/30/2019 7:12:01 PM tert-Butvlbenzene 2.4 0.21 1.0 µg/L 1 R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 7:12:01 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 7:12:01 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 7:12:01 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 ND 0.30 R62584 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/30/2019 7:12:01 PM 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 7:12:01 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 μg/L 1 8/30/2019 7:12:01 PM R62584 Trichlorofluoromethane ND 0.19 1.0 1 R62584 µg/L 8/30/2019 7:12:01 PM 1,2,3-Trichloropropane ND 0.30 2.0 8/30/2019 7:12:01 PM R62584 µg/L 1 ND 0.18 R62584 Vinyl chloride 1.0 µg/L 1 8/30/2019 7:12:01 PM Xylenes, Total 1200 9.1 30 µg/L 20 9/3/2019 12:40:54 PM W6258 Surr: 1,2-Dichloroethane-d4 0 70-130 %Rec 8/30/2019 7:12:01 PM R62584 114 1 Surr: 4-Bromofluorobenzene 156 0 70-130 %Rec 1 8/30/2019 7:12:01 PM R62584

SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR 8/28/2019 8:14:40 PM Conductivity 2800 5.0 5.0 µmhos/c 1 R62496

0

0

0.61

0

0

70-130

70-130

70-130

1.0

2.5

113

99.8

11

97.5

960

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Analyses

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Surr: Dibromofluoromethane

Gasoline Range Organics (GRO)

EPA METHOD 8015D: GASOLINE RANGE

Surr: Toluene-d8

Surr: BFB

CARBON DIOXIDE

Total Carbon Dioxide

- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

%Rec

%Rec

mg/L

%Rec

mg CO2/ 2.5

1

1

20

20

8/30/2019 7:12:01 PM

8/30/2019 7:12:01 PM

9/3/2019 12:40:54 PM

9/3/2019 12:40:54 PM

9/4/2019 12:06:53 AM

Analyst: JMR

Analyst: JRR

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range

Н

RL Reporting Limit Page 42 of 90

R62584

R62584

G62589

G62589

R62602

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-31

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 9:40:00 AM

Lab ID: 1908E78-011 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	₹
Bicarbonate (As CaCO3)	1073	50.00	50.00		mg/L Ca	2.5	9/4/2019 12:06:53 AM	R62602
Carbonate (As CaCO3)	ND	5.000	5.000		mg/L Ca	2.5	9/4/2019 12:06:53 AM	R62602
Total Alkalinity (as CaCO3)	1073	50.00	50.00		mg/L Ca	2.5	9/4/2019 12:06:53 AM	R62602
SM2540C MOD: TOTAL DISSOLVED SOLID	S						Analyst: KS	
Total Dissolved Solids	1720	40.0	40.0	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 43 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-29

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 10:30:00 AM

 Lab ID: 1908E78-012
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 7:18:12 AM	47077
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 7:18:12 AM	47077
Surr: DNOP	128	0	52.7-168		%Rec	1	8/29/2019 7:18:12 AM	47077
EPA METHOD 300.0: ANIONS							Analyst: CJS	;
Fluoride	0.14	0.073	0.50	J	mg/L	5	9/9/2019 3:08:10 PM	R62781
Chloride	40	1.2	2.5		mg/L	5	9/9/2019 3:08:10 PM	R62781
Bromide	0.28	0.25	0.50	J	mg/L	5	9/9/2019 3:08:10 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 3:08:10 PM	R62781
Sulfate	210	1.2	2.5		mg/L	5	9/9/2019 3:08:10 PM	R62781
Nitrate+Nitrite as N	0.92	0.048	1.0	J	mg/L	5	9/9/2019 8:04:28 PM	R62781
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00012	0.000038	0.00020	J	mg/L	1	9/12/2019 4:02:36 PM	47428
EPA METHOD 6010B: DISSOLVED META	ALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:49:42 AM	B62764
Barium	0.014	0.00056	0.020	J	mg/L	1	9/9/2019 10:49:42 AM	B62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:49:42 AM	B62764
Calcium	75	0.060	1.0		mg/L	1	9/9/2019 10:49:42 AM	B62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:49:42 AM	B62764
Copper	ND	0.0023	0.0060		mg/L	1	9/9/2019 10:49:42 AM	B62764
Iron	ND	0.0054	0.020		mg/L	1	9/9/2019 10:49:42 AM	B62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:49:42 AM	B62764
Magnesium	17	0.061	1.0		mg/L	1	9/9/2019 10:49:42 AM	B62764
Manganese	1.1	0.0013	0.010		mg/L	5	9/9/2019 10:51:31 AM	B62764
Potassium	1.8	0.11	1.0		mg/L	1	9/9/2019 10:49:42 AM	B62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:49:42 AM	B62764
Silver	ND	0.0013	0.0050		mg/L	1	9/9/2019 10:49:42 AM	B62764
Sodium	120	1.2	5.0		mg/L	5	9/9/2019 10:51:31 AM	
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:49:42 AM	B62764
Zinc	0.016	0.0026	0.020	J	mg/L	1	9/9/2019 10:49:42 AM	B62764
EPA 6010B: TOTAL RECOVERABLE ME	TALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:38:45 AM	47071
Barium	0.066	0.0012	0.020		mg/L	1	9/5/2019 2:58:46 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 2:58:46 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 2:58:46 PM	47071
Lead	0.0072	0.0035	0.0050		mg/L	1	9/5/2019 2:58:46 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:38:45 AM	47071
Silver	0.00066	0.00055	0.0050	J	mg/L	1	9/5/2019 2:58:46 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 44 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-29

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 10:30:00 AM

Lab ID: 1908E78-012 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	₹
Benzene	0.36	0.17	1.0	J	μg/L	1	8/30/2019 7:40:52 PM	R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Ethylbenzene	0.18	0.13	1.0	J	μg/L	1	8/30/2019 7:40:52 PM	R62584
Methyl tert-butyl ether (MTBE)	0.51	0.46	1.0	J	μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2,4-Trimethylbenzene	0.38	0.21	1.0	J	μg/L	1	8/30/2019 7:40:52 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Naphthalene	0.30	0.28	2.0	J	μg/L	1	8/30/2019 7:40:52 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 7:40:52 PM	R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 7:40:52 PM	R62584
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 7:40:52 PM	R62584
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Chlorobenzene	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 7:40:52 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 45 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-29

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 10:30:00 AM

Lab ID: 1908E78-012 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	1
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 7:40:52 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 7:40:52 PM	R62584
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 7:40:52 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 7:40:52 PM	R62584
Surr: 1,2-Dichloroethane-d4	93.4	0	70-130		%Rec	1	8/30/2019 7:40:52 PM	R62584
Surr: 4-Bromofluorobenzene	97.1	0	70-130		%Rec	1	8/30/2019 7:40:52 PM	R62584
Surr: Dibromofluoromethane	100	0	70-130		%Rec	1	8/30/2019 7:40:52 PM	R62584
Surr: Toluene-d8	98.9	0	70-130		%Rec	1	8/30/2019 7:40:52 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMR	!
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 7:40:52 PM	G62584
Surr: BFB	101	0	70-130		%Rec	1	8/30/2019 7:40:52 PM	G62584
CARBON DIOXIDE							Analyst: JRR	
Total Carbon Dioxide	250	0	1.0	Н	mg CO2	2/ 1	8/28/2019 8:49:48 PM	R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	
Conductivity	1100	5.0	5.0		µmhos/d	2 1	8/28/2019 8:49:48 PM	R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 46 of 90

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-29

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 10:30:00 AM Matrix: AQUEOUS

Analyses Result **MDL** RLQual Units DF **Date Analyzed Batch ID SM2320B: ALKALINITY** Analyst: JRR 8/28/2019 8:49:48 PM Bicarbonate (As CaCO3) 20.00 20.00 mg/L Ca 1 266.8 R62496 Carbonate (As CaCO3) ND 2.000 2.000 mg/L Ca 1 8/28/2019 8:49:48 PM R62496 Total Alkalinity (as CaCO3) 266.8 20.00 20.00 mg/L Ca 1 8/28/2019 8:49:48 PM R62496 Analyst: KS **SM2540C MOD: TOTAL DISSOLVED SOLIDS Total Dissolved Solids** *D 9/3/2019 10:47:00 AM 640 40.0 40.0 mg/L 1 47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1908E78-012

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Limit RL

Page 47 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-53

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 11:35:00 AM

 Lab ID: 1908E78-013
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JME	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 7:42:33 AM	47077
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 7:42:33 AM	47077
Surr: DNOP	121	0	52.7-168		%Rec	1	8/29/2019 7:42:33 AM	47077
EPA METHOD 300.0: ANIONS							Analyst: CJS	;
Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 3:32:52 PM	R62781
Chloride	920	25	50	*	mg/L	100	9/10/2019 6:22:25 PM	A62815
Bromide	1.8	0.25	0.50		mg/L	5	9/9/2019 3:32:52 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 3:32:52 PM	R62781
Sulfate	960	25	50	*	mg/L	100	9/10/2019 6:22:25 PM	A62815
Nitrate+Nitrite as N	14	0.048	1.0	*	mg/L	5	9/9/2019 8:16:49 PM	R62781
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00015	0.000038	0.00020	J	mg/L	1	9/12/2019 4:11:44 PM	47428
EPA METHOD 6010B: DISSOLVED META	LS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:53:22 AM	B62764
Barium	0.011	0.00056	0.020	J	mg/L	1	9/9/2019 10:53:22 AM	B62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:53:22 AM	B62764
Calcium	330	0.30	5.0		mg/L	5	9/9/2019 10:55:19 AM	B62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:53:22 AM	B62764
Copper	0.0034	0.0023	0.0060	J	mg/L	1	9/9/2019 10:53:22 AM	B62764
Iron	ND	0.0054	0.020		mg/L	1	9/9/2019 10:53:22 AM	B62764
Lead	ND	0.0048	0.0050		mg/L	1	9/20/2019 9:23:05 AM	A63074
Magnesium	50	0.061	1.0		mg/L	1	9/9/2019 10:53:22 AM	B62764
Manganese	0.30	0.00026	0.0020		mg/L	1	9/9/2019 10:53:22 AM	B62764
Potassium	4.4	0.11	1.0		mg/L	1	9/9/2019 10:53:22 AM	B62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 10:53:22 AM	B62764
Silver	0.0043	0.0013	0.0050	J	mg/L	1	9/9/2019 10:53:22 AM	B62764
Sodium	720	2.4	10		mg/L	10	9/9/2019 12:56:11 PM	B62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:53:22 AM	B62764
Zinc	0.022	0.0026	0.020		mg/L	1	9/9/2019 10:53:22 AM	B62764
EPA 6010B: TOTAL RECOVERABLE MET	ΓALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:40:25 AM	47071
Barium	0.28	0.0012	0.020		mg/L	1	9/5/2019 3:00:26 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 3:00:26 PM	47071
Chromium	0.0040	0.00086	0.0060	J	mg/L	1	9/5/2019 3:00:26 PM	47071
Lead	0.0043	0.0035	0.0050	J	mg/L	1	9/5/2019 3:00:26 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:40:25 AM	47071
Silver	0.0040	0.00055	0.0050	J	mg/L	1	9/5/2019 3:00:26 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 48 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-53

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 11:35:00 AM

 Lab ID: 1908E78-013
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 1.0 8/30/2019 8:09:41 PM Benzene 0.17 µg/L 1 R62584 Toluene ND 0.35 1.0 μg/L 1 8/30/2019 8:09:41 PM R62584 Ethylbenzene ND 0.13 1.0 8/30/2019 8:09:41 PM R62584 µg/L 1 μg/L Methyl tert-butyl ether (MTBE) 0.69 0.46 J 8/30/2019 8:09:41 PM R62584 1.0 1 1,2,4-Trimethylbenzene 0.21 ND 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1.3.5-Trimethylbenzene ND 0.19 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/30/2019 8:09:41 PM R62584 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 8:09:41 PM R62584 0.28 1 Naphthalene ND 2.0 µg/L 8/30/2019 8:09:41 PM R62584 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/30/2019 8:09:41 PM R62584 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Acetone ND 1.2 10 µg/L 1 8/30/2019 8:09:41 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 8:09:41 PM R62584 ND 0.29 1 8/30/2019 8:09:41 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 8:09:41 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 8:09:41 PM R62584 ND Carbon disulfide 0.45 10 µg/L 1 8/30/2019 8:09:41 PM R62584 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Chloroethane ND 0.18 2.0 1 µg/L 8/30/2019 8:09:41 PM R62584 Chloroform ND 0.12 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Chloromethane ND 0.32 3.0 1 R62584 µg/L 8/30/2019 8:09:41 PM 2-Chlorotoluene ND 0.25 8/30/2019 8:09:41 PM R62584 1.0 µg/L 1 ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 ND 0.14 1 8/30/2019 8:09:41 PM R62584 cis-1,3-Dichloropropene 1.0 µg/L 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/30/2019 8:09:41 PM R62584 ND 0.24 1 Dibromochloromethane 1.0 µg/L 8/30/2019 8:09:41 PM R62584 Dibromomethane ND 0.21 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/30/2019 8:09:41 PM R62584 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

0.26

0.14

0.21

0.21

0.20

0.23

1.0

1.0

1.0

1.0

1.0

2.0

ND

ND

ND

ND

ND

ND

Qualifiers:

Dichlorodifluoromethane

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

μg/L

µg/L

µg/L

µg/L

µg/L

μg/L

1

1

1

1

1

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 49 of 90

R62584

R62584

R62584

R62584

R62584

R62584

8/30/2019 8:09:41 PM

8/30/2019 8:09:41 PM

8/30/2019 8:09:41 PM

8/30/2019 8:09:41 PM

8/30/2019 8:09:41 PM

8/30/2019 8:09:41 PM

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-53

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 11:35:00 AM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.16 8/30/2019 8:09:41 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 8:09:41 PM R62584 ND 1.5 10 8/30/2019 8:09:41 PM R62584 2-Hexanone µg/L 1 ND 0.19 8/30/2019 8:09:41 PM R62584 Isopropylbenzene 1.0 µg/L 1 ND 0.22 4-Isopropyltoluene 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 0.71 4-Methyl-2-pentanone ND 10 ua/L 1 8/30/2019 8:09:41 PM R62584 Methylene Chloride ND 0.15 3.0 1 8/30/2019 8:09:41 PM R62584 µg/L n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/30/2019 8:09:41 PM R62584 n-Propylbenzene 0.21 1 ND 1.0 µg/L 8/30/2019 8:09:41 PM R62584 sec-Butylbenzene ND 0.25 1.0 1 8/30/2019 8:09:41 PM R62584 µg/L Styrene ND 0.19 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 tert-Butvlbenzene ND 0.21 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 8:09:41 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 8:09:41 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 8:09:41 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 ND 0.30 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 μg/L 1 8/30/2019 8:09:41 PM R62584 Trichlorofluoromethane ND 0.19 1 R62584 1.0 µg/L 8/30/2019 8:09:41 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 8:09:41 PM R62584 2.0 µg/L 1 ND 0.18 Vinyl chloride 1.0 µg/L 1 8/30/2019 8:09:41 PM R62584 Xylenes, Total ND 0.45 1.5 µg/L 1 8/30/2019 8:09:41 PM R62584 Surr: 1,2-Dichloroethane-d4 92.4 0 70-130 %Rec 1 8/30/2019 8:09:41 PM R62584 Surr: 4-Bromofluorobenzene 95.6 0 70-130 %Rec 1 8/30/2019 8:09:41 PM R62584 Surr: Dibromofluoromethane 97.8 0 1 70-130 %Rec 8/30/2019 8:09:41 PM R62584 Surr: Toluene-d8 98.1 0 70-130 %Rec 1 8/30/2019 8:09:41 PM R62584 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) 0.031 ND 0.050 mg/L 8/30/2019 8:09:41 PM G62584 1 Surr: BFB 98.2 0 70-130 %Rec 1 8/30/2019 8:09:41 PM G62584 **CARBON DIOXIDE** Analyst: JRR **Total Carbon Dioxide** 320 0 1.0 Н mg CO2/ 1 8/28/2019 9:02:51 PM R62496 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: JRR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

5.0

5200

Oualifiers:

Conductivity

Lab ID:

1908E78-013

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

µmhos/c 1

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

5.0

Page 50 of 90

R62496

8/28/2019 9:02:51 PM

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-53

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 11:35:00 AM

Lab ID: 1908E78-013 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	र
Bicarbonate (As CaCO3)	350.9	20.00	20.00		mg/L Ca	a 1	8/28/2019 9:02:51 PM	I R6249€
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	a 1	8/28/2019 9:02:51 PM	I R6249€
Total Alkalinity (as CaCO3)	350.9	20.00	20.00		mg/L Ca	a 1	8/28/2019 9:02:51 PM	l R6249€
SM2540C MOD: TOTAL DISSOLVED SOLID	S						Analyst: KS	
Total Dissolved Solids	3380	40.0	40.0	*D	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 51 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-52

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 12:15:00 PM

Lab ID: 1908E78-014 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015D: DIESEL RANGE							Analyst: JMI	
Diesel Range Organics (DRO)	ND	0.13	0.40		mg/L	1	8/29/2019 8:07:06 AM	47077
Motor Oil Range Organics (MRO)	ND	2.5	2.5		mg/L	1	8/29/2019 8:07:06 AM	47077
Surr: DNOP	124	0	52.7-168		%Rec	1	8/29/2019 8:07:06 AM	47077
EPA METHOD 300.0: ANIONS							Analyst: CJ\$	3
Fluoride	ND	0.073	0.50		mg/L	5	9/9/2019 3:57:34 PM	R62781
Chloride	830	12	25	*	mg/L	50	9/10/2019 6:35:17 PM	A62815
Bromide	2.3	0.25	0.50		mg/L	5	9/9/2019 3:57:34 PM	R62781
Phosphorus, Orthophosphate (As P)	ND	1.2	2.5	Н	mg/L	5	9/9/2019 3:57:34 PM	R62781
Sulfate	1400	12	25	*	mg/L	50	9/10/2019 6:35:17 PM	A62815
Nitrate+Nitrite as N	39	0.097	2.0	*	mg/L	10	9/13/2019 1:17:21 PM	R62940
EPA METHOD 7470: MERCURY							Analyst: rde	
Mercury	0.00014	0.000038	0.00020	J	mg/L	1	9/12/2019 4:13:57 PM	47428
EPA METHOD 6010B: DISSOLVED META	ALS						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 10:57:09 AM	B62764
Barium	0.012	0.00056	0.020	J	mg/L	1	9/9/2019 10:57:09 AM	B62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 10:57:09 AM	B62764
Calcium	340	0.30	5.0		mg/L	5	9/9/2019 10:59:06 AM	B62764
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 10:57:09 AM	B62764
Copper	0.0042	0.0023	0.0060	J	mg/L	1	9/9/2019 10:57:09 AM	B62764
Iron	0.12	0.0054	0.020		mg/L	1	9/9/2019 10:57:09 AM	B62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 10:57:09 AM	B62764
Magnesium	88	0.061	1.0		mg/L	1	9/9/2019 10:57:09 AM	B62764
Manganese	2.2	0.0013	0.010		mg/L	5	9/9/2019 10:59:06 AM	B62764
Potassium	4.8	0.11	1.0		mg/L	1	9/9/2019 10:57:09 AM	B62764
Selenium	0.11	0.041	0.050		mg/L	1	9/9/2019 10:57:09 AM	B62764
Silver	0.0046	0.0013	0.0050	J	mg/L	1	9/9/2019 10:57:09 AM	B62764
Sodium	640	2.4	10		mg/L	10	9/9/2019 12:58:01 PM	B62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 10:57:09 AM	B62764
Zinc	0.044	0.0026	0.020		mg/L	1	9/9/2019 10:57:09 AM	B62764
EPA 6010B: TOTAL RECOVERABLE ME	TALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:49:30 AM	47071
Barium	0.18	0.0012	0.020		mg/L	1	9/5/2019 3:02:05 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 3:02:05 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 3:02:05 PM	47071
Lead	ND	0.0035	0.0050		mg/L	1	9/5/2019 3:02:05 PM	47071
Selenium	0.083	0.035	0.050		mg/L	1	9/9/2019 8:49:30 AM	47071
Silver	0.0041	0.00055	0.0050	J	mg/L	1	9/5/2019 3:02:05 PM	47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 52 of 90

Lab Order 1908E78

Date Analyzed

Batch ID

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

R62584

DF

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

8/30/2019 8:38:29 PM

µg/L

μg/L

µg/L

µg/L

µg/L

µg/L

μg/L

μg/L

µg/L

µg/L

µg/L

μg/L

µg/L

μg/L

µg/L

µg/L

µg/L

µg/L

μg/L

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-52

Result

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 12:15:00 PM

 Lab ID:
 1908E78-014
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

MDL

RL

Qual Units

EPA METHOD 8260B: VOLATILES Analyst: JMR ND 1.0 8/30/2019 8:38:29 PM Benzene 0.17 µg/L 1 R62584 Toluene ND 0.35 1.0 μg/L 1 8/30/2019 8:38:29 PM R62584 Ethylbenzene ND 0.13 1.0 8/30/2019 8:38:29 PM R62584 µg/L 1 μg/L Methyl tert-butyl ether (MTBE) 0.46 J 8/30/2019 8:38:29 PM R62584 0.57 1.0 1 1,2,4-Trimethylbenzene 0.21 ND 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 1.3.5-Trimethylbenzene ND 0.19 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/30/2019 8:38:29 PM R62584 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 8:38:29 PM R62584 0.28 1 Naphthalene ND 2.0 µg/L 8/30/2019 8:38:29 PM R62584 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/30/2019 8:38:29 PM R62584 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/30/2019 8:38:29 PM R62584 Acetone ND 1.2 10 µg/L 1 8/30/2019 8:38:29 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 8:38:29 PM R62584 ND 0.29 1 8/30/2019 8:38:29 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 8:38:29 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 8:38:29 PM R62584 ND Carbon disulfide 0.45 10 µg/L 1 8/30/2019 8:38:29 PM R62584 Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584

0.18

0.12

0.32

0.25

0.23

0.19

0.14

0.33

0.24

0.21

0.30

0.25

0.29

0.26

0.14

0.21

0.21

0.20

0.23

2.0

1.0

3.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Chloroethane

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Dichlorodifluoromethane

1,2-Dibromo-3-chloropropane

cis-1,2-DCE

Chloroform

Analyses

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 53 of 90

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-52

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 12:15:00 PM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.16 8/30/2019 8:38:29 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 8:38:29 PM R62584 ND 1.5 10 8/30/2019 8:38:29 PM R62584 2-Hexanone µg/L 1 ND 0.19 8/30/2019 8:38:29 PM R62584 Isopropylbenzene 1.0 µg/L 1 ND 0.22 4-Isopropyltoluene 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 0.71 4-Methyl-2-pentanone ND 10 ua/L 1 8/30/2019 8:38:29 PM R62584 Methylene Chloride ND 0.15 3.0 1 R62584 µg/L 8/30/2019 8:38:29 PM n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/30/2019 8:38:29 PM R62584 n-Propylbenzene 0.21 1 ND 1.0 µg/L 8/30/2019 8:38:29 PM R62584 sec-Butylbenzene ND 0.25 1.0 1 8/30/2019 8:38:29 PM R62584 µg/L Styrene ND 0.19 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 8/30/2019 8:38:29 PM tert-Butvlbenzene ND 0.21 1.0 µg/L 1 R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 8:38:29 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 8:38:29 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 8:38:29 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 ND 0.30 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 ND Trichlorofluoromethane 0.19 1.0 1 R62584 µg/L 8/30/2019 8:38:29 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 8:38:29 PM R62584 2.0 µg/L 1 ND 0.18 Vinyl chloride 1.0 µg/L 1 8/30/2019 8:38:29 PM R62584 Xylenes, Total ND 0.45 1.5 µg/L 1 8/30/2019 8:38:29 PM R62584 Surr: 1,2-Dichloroethane-d4 98.1 0 70-130 %Rec 1 R62584 8/30/2019 8:38:29 PM Surr: 4-Bromofluorobenzene 97.0 0 70-130 %Rec 1 8/30/2019 8:38:29 PM R62584 Surr: Dibromofluoromethane 0 1 104 70-130 %Rec 8/30/2019 8:38:29 PM R62584 Surr: Toluene-d8 98.1 0 70-130 %Rec 1 8/30/2019 8:38:29 PM R62584 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) 0.031 ND 0.050 mg/L 8/30/2019 8:38:29 PM G62584 1 Surr: BFB 99.8 0 70-130 %Rec 1 8/30/2019 8:38:29 PM G62584 **CARBON DIOXIDE** Analyst: JRR **Total Carbon Dioxide** 190 0 1.0 Н mg CO2/ 1 8/28/2019 9:22:51 PM R62496 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: JRR 8/28/2019 9:22:51 PM Conductivity 5100 5.0 5.0 µmhos/c 1 R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Lab ID:

1908E78-014

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 54 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-52

2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 12:15:00 PM **Project:**

Lab ID: 1908E78-014 Received Date: 8/24/2019 10:00:00 AM Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units I	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRI	R
Bicarbonate (As CaCO3)	197.6	20.00	20.00		mg/L Ca 1	1	8/28/2019 9:22:51 PM	1 R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca ′	1	8/28/2019 9:22:51 PM	N R62496
Total Alkalinity (as CaCO3)	197.6	20.00	20.00		mg/L Ca ′	1	8/28/2019 9:22:51 PM	1 R62496
SM2540C MOD: TOTAL DISSOLVED	SOLIDS						Analyst: KS	
Total Dissolved Solids	3550	40.0	40.0	*D	mg/L ′	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit RL

Date Analyzed

Batch ID

Lab Order 1908E78

DF

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-67

Result

0.15

3.8

ND

72

ND

0.044

0.0020

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 1:30:00 PM Lab ID: 1908E78-015 Matrix: AQUEOUS Received Date: 8/24/2019 10:00:00 AM

MDL

RL

Qual Units

EPA METHOD 8015D: DIESEL RANGE Analyst: JME Diesel Range Organics (DRO) ND 0.13 0.40 mg/L 1 8/29/2019 8:31:27 AM 47077 Motor Oil Range Organics (MRO) ND 2.5 2.5 mg/L 1 8/29/2019 8:31:27 AM 47077 Surr: DNOP 118 0 52.7-168 %Rec 1 8/29/2019 8:31:27 AM 47077 **EPA METHOD 300.0: ANIONS** Analyst: CJS Fluoride 0.52 0.073 0.50 9/9/2019 4:46:57 PM mg/L 5 R62781 Chloride 17 1.2 2.5 mg/L 5 9/9/2019 4:46:57 PM R62781 0.25 Bromide ND 0.50 mg/L 5 9/9/2019 4:46:57 PM R62781 Phosphorus, Orthophosphate (As P) ND 2.5 5 9/9/2019 4:46:57 PM R62781 1.2 Н mg/L 20 9/9/2019 4:59:18 PM 260 5.0 10 mg/L R62781 Nitrate+Nitrite as N 0.048 9/9/2019 8:41:30 PM 3.8 1.0 mg/L R62781 **EPA METHOD 7470: MERCURY** Analyst: rde 0.00013 0.000038 0.00020 9/12/2019 4:16:12 PM Mercury J mg/L 1 47428 **EPA METHOD 6010B: DISSOLVED METALS** Analyst: bcv Arsenic ND 0.019 0.020 mg/L 1 9/9/2019 11:00:57 AM B62764 0.032 Barium 0.00056 0.020 mg/L 1 9/9/2019 11:00:57 AM B62764 Cadmium 0.00058 0.0020 ND mg/L 1 9/9/2019 11:00:57 AM B62764 Calcium 160 mg/L 5 B62764 0.30 5.0 9/9/2019 11:02:48 AM Chromium ND 0.0012 0.0060 mg/L 1 9/9/2019 11:00:57 AM B62764 ND 0.0023 Copper 0.0060 mg/L 1 9/9/2019 11:00:57 AM B62764 Iron ND 0.0054 0.020 mg/L 1 9/9/2019 11:00:57 AM B62764 Lead ND 0.0048 0.0050 mg/L 1 9/20/2019 9:28:40 AM A63074 31 0.061 1 B62764 Magnesium 1.0 mg/L 9/9/2019 11:00:57 AM

EPA 6010B: TOTAL RECOVERABL	LE METALS						Analyst: bcv	
Arsenic	ND	0.015	0.020		mg/L	1	9/9/2019 8:51:14 AM	47071
Barium	0.057	0.0012	0.020		mg/L	1	9/5/2019 3:03:46 PM	47071
Cadmium	ND	0.00055	0.0020		mg/L	1	9/5/2019 3:03:46 PM	47071
Chromium	ND	0.00086	0.0060		mg/L	1	9/5/2019 3:03:46 PM	47071
Lead	0.0045	0.0035	0.0050	J	mg/L	1	9/5/2019 3:03:46 PM	47071
Selenium	ND	0.035	0.050		mg/L	1	9/9/2019 8:51:14 AM	47071
Silver	0.0023	0.00055	0.0050	J	mg/L	1	9/5/2019 3:03:46 PM	47071

0.00026

0.11

0.041

0.0013

0.24

0.062

0.0026

0.0020

0.050

0.0050

1.0

1.0

0.10

0.020

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Manganese

Potassium

Selenium

Silver

Sodium

Uranium

Zinc

Analyses

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

J

1

1

1

1

9/9/2019 11:00:57 AM

9/9/2019 11:00:57 AM

9/9/2019 11:00:57 AM

9/9/2019 11:00:57 AM

9/9/2019 11:00:57 AM

9/9/2019 11:00:57 AM

9/9/2019 11:00:57 AM

B62764

B62764

B62764

B62764

B62764

B62764

B62764

- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 56 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-67

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 1:30:00 PM

 Lab ID:
 1908E78-015
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result **MDL** DF **Date Analyzed Batch ID Analyses** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 1.0 8/30/2019 9:07:18 PM Benzene 0.17 µg/L 1 R62584 Toluene ND 0.35 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 Ethylbenzene ND 0.13 1.0 1 8/30/2019 9:07:18 PM R62584 µg/L Methyl tert-butyl ether (MTBE) ND 0.46 8/30/2019 9:07:18 PM R62584 1.0 µg/L 1 1,2,4-Trimethylbenzene ND 0.21 R62584 1.0 µg/L 1 8/30/2019 9:07:18 PM 1.3.5-Trimethylbenzene ND 0.19 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1,2-Dichloroethane (EDC) ND 0.19 1 8/30/2019 9:07:18 PM R62584 1.0 µg/L 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 0.28 1 Naphthalene ND 2.0 µg/L 8/30/2019 9:07:18 PM R62584 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/30/2019 9:07:18 PM R62584 0.35 2-Methylnaphthalene ND 4.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Acetone ND 1.2 10 µg/L 1 8/30/2019 9:07:18 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 ND 0.29 1 8/30/2019 9:07:18 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 9:07:18 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 9:07:18 PM R62584 ND R62584 Carbon disulfide 0.45 10 µg/L 1 8/30/2019 9:07:18 PM Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Chloroethane ND 0.18 2.0 1 µg/L 8/30/2019 9:07:18 PM R62584 Chloroform ND 0.12 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 Chloromethane ND 0.32 3.0 1 R62584 µg/L 8/30/2019 9:07:18 PM 2-Chlorotoluene ND 0.25 1 8/30/2019 9:07:18 PM R62584 1.0 µg/L ND 0.23 4-Chlorotoluene 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 ND 0.14 μg/L 1 8/30/2019 9:07:18 PM R62584 cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/30/2019 9:07:18 PM R62584 ND 0.24 1 Dibromochloromethane 1.0 µg/L 8/30/2019 9:07:18 PM R62584 Dibromomethane ND 0.21 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 1,1-Dichloroethane ND 0.14 1 8/30/2019 9:07:18 PM R62584 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/30/2019 9:07:18 PM R62584 1,3-Dichloropropane ND 0.20 1 8/30/2019 9:07:18 PM R62584 1.0 µg/L 2,2-Dichloropropane ND 0.23 2.0 μg/L 8/30/2019 9:07:18 PM R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 57 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Client Sample ID:** MW-67

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 1:30:00 PM

 Lab ID:
 1908E78-015
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 0.16 8/30/2019 9:07:18 PM 1.1-Dichloropropene 1.0 µg/L 1 R62584 Hexachlorobutadiene ND 0.31 1.0 μg/L 1 8/30/2019 9:07:18 PM R62584 ND 1.5 10 8/30/2019 9:07:18 PM R62584 2-Hexanone µg/L 1 ND 0.19 8/30/2019 9:07:18 PM R62584 Isopropylbenzene 1.0 µg/L 1 ND 0.22 4-Isopropyltoluene 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 0.71 4-Methyl-2-pentanone ND 10 ua/L 1 8/30/2019 9:07:18 PM R62584 Methylene Chloride ND 0.15 3.0 1 8/30/2019 9:07:18 PM R62584 µg/L n-Butvlbenzene ND 0.23 3.0 μg/L 1 8/30/2019 9:07:18 PM R62584 n-Propylbenzene 0.21 1 ND 1.0 µg/L 8/30/2019 9:07:18 PM R62584 sec-Butylbenzene ND 0.25 1.0 1 8/30/2019 9:07:18 PM R62584 µg/L Styrene ND 0.19 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 tert-Butvlbenzene ND 0.21 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1.1.1.2-Tetrachloroethane ND 0.21 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1.1.2.2-Tetrachloroethane ND 0.55 2.0 μg/L 1 8/30/2019 9:07:18 PM R62584 Tetrachloroethene (PCE) ND 0.15 1 8/30/2019 9:07:18 PM R62584 1.0 µg/L ND 0.18 1 R62584 trans-1,2-DCE 1.0 µg/L 8/30/2019 9:07:18 PM trans-1,3-Dichloropropene ND 0.17 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 ND 0.30 R62584 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/30/2019 9:07:18 PM 1.2.4-Trichlorobenzene ND 0.20 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 1,1,1-Trichloroethane ND 0.17 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 ND 0.22 1,1,2-Trichloroethane 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Trichloroethene (TCE) ND 0.17 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Trichlorofluoromethane ND 0.19 1 R62584 1.0 µg/L 8/30/2019 9:07:18 PM 1,2,3-Trichloropropane ND 0.30 8/30/2019 9:07:18 PM R62584 2.0 µg/L 1 ND 0.18 Vinyl chloride 1.0 µg/L 1 8/30/2019 9:07:18 PM R62584 Xylenes, Total ND 0.45 1.5 µg/L 1 8/30/2019 9:07:18 PM R62584 Surr: 1,2-Dichloroethane-d4 96.1 0 70-130 %Rec 1 8/30/2019 9:07:18 PM R62584 Surr: 4-Bromofluorobenzene 99.9 0 70-130 %Rec 1 8/30/2019 9:07:18 PM R62584 Surr: Dibromofluoromethane 0 1 R62584 103 70-130 %Rec 8/30/2019 9:07:18 PM Surr: Toluene-d8 97.2 0 70-130 %Rec 1 8/30/2019 9:07:18 PM R62584 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) 0.031 8/30/2019 9:07:18 PM ND 0.050 mg/L G62584 1 Surr: BFB 103 0 70-130 %Rec 1 8/30/2019 9:07:18 PM G62584 **CARBON DIOXIDE** Analyst: JRR **Total Carbon Dioxide** 340 0 1.0 Н mg CO2/ 1 8/28/2019 9:46:16 PM R62496 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: JRR 8/28/2019 9:46:16 PM Conductivity 1200 5.0 5.0 µmhos/c 1 R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 58 of 90

Lab Order **1908E78**

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-67

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 1:30:00 PM

Lab ID: 1908E78-015 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM2320B: ALKALINITY							Analyst: JRF	
Bicarbonate (As CaCO3)	358.2	20.00	20.00		mg/L Ca	ı 1	8/28/2019 9:46:16 PM	R62496
Carbonate (As CaCO3)	ND	2.000	2.000		mg/L Ca	ı 1	8/28/2019 9:46:16 PM	R62496
Total Alkalinity (as CaCO3)	358.2	20.00	20.00		mg/L Ca	ı 1	8/28/2019 9:46:16 PM	R62496
SM2540C MOD: TOTAL DISSOLVED SOLIE	os						Analyst: KS	
Total Dissolved Solids	842	20.0	20.0	*	mg/L	1	9/3/2019 10:47:00 AM	47157

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 59 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-68

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 2:30:00 PM

 Lab ID:
 1908E78-016
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8015D: DIESEL RANGE** Analyst: JME Diesel Range Organics (DRO) ND 0.13 0.40 mg/L 1 8/29/2019 8:55:50 AM 47077 ND 2.5 Motor Oil Range Organics (MRO) 2.5 mg/L 1 8/29/2019 8:55:50 AM 47077 Surr: DNOP 119 0 52.7-168 %Rec 1 8/29/2019 8:55:50 AM 47077 **EPA METHOD 300.0: ANIONS** Analyst: CJS Fluoride 0.24 0.073 0.50 9/9/2019 5:11:38 PM J mg/L 5 R62781 Chloride 50 1.2 2.5 mg/L 5 9/9/2019 5:11:38 PM R62781 0.25 5 **Bromide** ND 0.50 mg/L 9/9/2019 5:11:38 PM R62781 Phosphorus, Orthophosphate (As P) ND 2.5 5 9/9/2019 5:11:38 PM R62781 1.2 Н mg/L 260 5.0 20 9/9/2019 5:23:58 PM R62781 Sulfate 10 mg/L Nitrate+Nitrite as N 0.048 9/9/2019 8:53:51 PM 6.8 1.0 mg/L 5 R62781 **EPA METHOD 7470: MERCURY** Analyst: rde 0.00015 0.000038 0.00020 J 9/12/2019 4:18:26 PM 47428 Mercury mg/L 1 **EPA METHOD 6010B: DISSOLVED METALS** Analyst: bcv Arsenic ND 0.019 0.020 mg/L 1 9/9/2019 11:10:01 AM B62764 0.019 Barium 0.00056 0.020 J mg/L 1 9/9/2019 11:10:01 AM B62764 Cadmium 0.00058 9/9/2019 11:10:01 AM ND 0.0020 mg/L 1 B62764 Calcium 100 mg/L 5 9/11/2019 1:15:40 PM A62841 0.30 5.0 Chromium ND 0.0012 0.0060 mg/L 1 9/9/2019 11:10:01 AM B62764 ND 0.0023 0.0060 9/9/2019 11:10:01 AM B62764 Copper mg/L 1 Iron ND 0.0054 0.020 mg/L 1 9/9/2019 11:10:01 AM B62764 ND Lead 0.0048 0.0050 mg/L 1 9/20/2019 9:30:28 AM A63074 28 0.061 1 9/9/2019 11:10:01 AM B62764 Magnesium 10 mg/L Manganese 0.00059 0.00026 0.0020 J mg/L 1 9/9/2019 11:10:01 AM B62764 Potassium 2.7 0.11 mg/L 1 9/9/2019 11:10:01 AM B62764 1.0 Selenium ND 0.041 0.050 mg/L 1 9/9/2019 11:10:01 AM B62764 Silver 0.0014 0.0013 0.0050 mg/L 9/9/2019 11:10:01 AM B62764 J 1 Sodium 5 9/9/2019 11:11:54 AM B62764 100 1.2 5.0 mg/L ND Uranium 0.062 0.10 mg/L 1 9/9/2019 11:10:01 AM B62764 1 0.010 0.0026 0.020 mg/L 9/9/2019 11:10:01 AM B62764 **EPA 6010B: TOTAL RECOVERABLE METALS** Analyst: bcv ND 0.015 0.020 9/9/2019 8:52:56 AM 47071 Arsenic mg/L 1 Barium 0.15 0.0012 0.020 mg/L 1 9/5/2019 3:05:25 PM 47071 0.00055 Cadmium ND 0.0020 mg/L 1 9/5/2019 3:05:25 PM 47071 Chromium 0.0049 0.00086 0.0060 mg/L 1 9/5/2019 3:05:25 PM 47071 1 Lead ND 0.0035 0.0050 mg/L 9/5/2019 3:05:25 PM 47071 Selenium ND 0.035 0.050 mg/L 1 9/9/2019 8:52:56 AM 47071 Silver 0.0011 0.00055 0.0050 mg/L 9/5/2019 3:05:25 PM 47071

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 60 of 90

Lab Order 1908E78

Received Date: 8/24/2019 10:00:00 AM

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-68

Project: 2019 Annual GW Sampling Event Collection Date: 8/23/2019 2:30:00 PM Matrix: AQUEOUS

Result DF **Date Analyzed Batch ID Analyses MDL** RL**Qual Units EPA METHOD 8260B: VOLATILES** Analyst: JMR ND 1.0 8/30/2019 11:02:40 PM R62584 Benzene 0.17 µg/L 1 Toluene ND 0.35 1.0 μg/L 1 8/30/2019 11:02:40 PM R62584 Ethylbenzene ND 0.13 1.0 8/30/2019 11:02:40 PM R62584 µg/L 1 Methyl tert-butyl ether (MTBE) 0.47 0.46 J μg/L 8/30/2019 11:02:40 PM R62584 1.0 1 1,2,4-Trimethylbenzene 0.21 R62584 ND 1.0 µg/L 1 8/30/2019 11:02:40 PM 1.3.5-Trimethylbenzene ND 0.19 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 1,2-Dichloroethane (EDC) ND 0.19 µg/L 1 8/30/2019 11:02:40 PM R62584 1.0 1,2-Dibromoethane (EDB) ND 0.17 1.0 μg/L 1 8/30/2019 11:02:40 PM R62584 0.28 1 8/30/2019 11:02:40 PM R62584 Naphthalene ND 2.0 µg/L 1-Methylnaphthalene ND 0.31 4.0 μg/L 1 8/30/2019 11:02:40 PM R62584 2-Methylnaphthalene ND 0.35 4.0 µg/L 1 8/30/2019 11:02:40 PM R62584 Acetone ND 1.2 10 µg/L 1 8/30/2019 11:02:40 PM R62584 Bromobenzene ND 0.24 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 Bromodichloromethane ND 0.13 1.0 μg/L 1 8/30/2019 11:02:40 PM R62584 ND 0.29 1 8/30/2019 11:02:40 PM R62584 Bromoform 1.0 µg/L ND 0.27 3.0 1 R62584 Bromomethane µg/L 8/30/2019 11:02:40 PM 2-Butanone ND 2.1 10 µg/L 1 8/30/2019 11:02:40 PM R62584 ND R62584 Carbon disulfide 0.45 10 µg/L 1 8/30/2019 11:02:40 PM Carbon Tetrachloride ND 0.14 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 Chlorobenzene ND 0.19 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 Chloroethane ND 0.18 2.0 1 µg/L 8/30/2019 11:02:40 PM R62584 Chloroform ND 0.12 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 Chloromethane ND 0.32 3.0 1 8/30/2019 11:02:40 PM R62584 µg/L 2-Chlorotoluene ND 0.25 8/30/2019 11:02:40 PM R62584 1.0 µg/L 1 ND 0.23 R62584 4-Chlorotoluene 1.0 µg/L 1 8/30/2019 11:02:40 PM cis-1,2-DCE ND 0.19 1.0 µg/L 1 8/30/2019 11:02:40 PM ND 0.14 1 8/30/2019 11:02:40 PM R62584 cis-1,3-Dichloropropene 1.0 µg/L 1,2-Dibromo-3-chloropropane ND 0.33 2.0 µg/L 1 8/30/2019 11:02:40 PM R62584 ND 0.24 1 R62584 Dibromochloromethane 1.0 µg/L 8/30/2019 11:02:40 PM Dibromomethane ND 0.21 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 1,2-Dichlorobenzene ND 0.30 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 1,3-Dichlorobenzene ND 0.25 1.0 μg/L 1 8/30/2019 11:02:40 PM R62584 1,4-Dichlorobenzene ND 0.29 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 ND Dichlorodifluoromethane 0.26 1.0 μg/L 1 8/30/2019 11:02:40 PM R62584 ND 0.14 1 8/30/2019 11:02:40 PM R62584 1,1-Dichloroethane 1.0 µg/L 1,1-Dichloroethene ND 0.21 1.0 µg/L 1 8/30/2019 11:02:40 PM R62584 1 1,2-Dichloropropane ND 0.21 1.0 µg/L 8/30/2019 11:02:40 PM 1,3-Dichloropropane ND 0.20 1 8/30/2019 11:02:40 PM R62584 1.0 µg/L 2,2-Dichloropropane ND 0.23 2.0 μg/L 8/30/2019 11:02:40 PM R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Lab ID:

1908E78-016

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 61 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-68

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/23/2019 2:30:00 PM

Lab ID: 1908E78-016 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMF	₹
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Methylene Chloride	ND	0.15	3.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 11:02:40 PM	M R62584
Surr: 1,2-Dichloroethane-d4	93.6	0	70-130		%Rec	1	8/30/2019 11:02:40 PM	M R62584
Surr: 4-Bromofluorobenzene	97.7	0	70-130		%Rec	1	8/30/2019 11:02:40 PM	M R62584
Surr: Dibromofluoromethane	100	0	70-130		%Rec	1	8/30/2019 11:02:40 PM	M R62584
Surr: Toluene-d8	97.0	0	70-130		%Rec	1	8/30/2019 11:02:40 PM	M R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMF	र
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 11:02:40 PM	M G6258₄
Surr: BFB	98.1	0	70-130		%Rec	1	8/30/2019 11:02:40 PM	M G6258∠
CARBON DIOXIDE							Analyst: JRR	t
Total Carbon Dioxide	220	0	1.0	Н	mg CO2	2/ 1	8/28/2019 10:02:22 PM	M R62496
SM2510B: SPECIFIC CONDUCTANCE							Analyst: JRR	2
Conductivity	1200	5.0	5.0		µmhos/	c 1	8/28/2019 10:02:22 PM	M R62496

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 62 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

9/3/2019 10:47:00 AM

47157

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-68

802

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/23/2019 2:30:00 PM

 Lab ID:
 1908E78-016
 Matrix: AQUEOUS
 Received Date: 8/24/2019 10:00:00 AM

Analyses Result **MDL** RL**Qual Units** DF **Date Analyzed Batch ID SM2320B: ALKALINITY** Analyst: JRR Bicarbonate (As CaCO3) 238.3 20.00 20.00 mg/L Ca 1 8/28/2019 10:02:22 PM R62496 Carbonate (As CaCO3) ND 2.000 2.000 mg/L Ca 1 8/28/2019 10:02:22 PM R62496 Total Alkalinity (as CaCO3) 238.3 20.00 20.00 mg/L Ca 1 8/28/2019 10:02:22 PM R62496 **SM2540C MOD: TOTAL DISSOLVED SOLIDS** Analyst: KS

40.0

*D

mg/L

1

40.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Total Dissolved Solids

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 63 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event Collection Date:

Lab ID: 1908E78-017 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
Benzene	ND	0.17	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Toluene	ND	0.35	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Ethylbenzene	ND	0.13	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Methyl tert-butyl ether (MTBE)	ND	0.46	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2,4-Trimethylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,3,5-Trimethylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2-Dichloroethane (EDC)	ND	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2-Dibromoethane (EDB)	ND	0.17	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Naphthalene	ND	0.28	2.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1-Methylnaphthalene	ND	0.31	4.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
2-Methylnaphthalene	ND	0.35	4.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Acetone	ND	1.2	10		μg/L	1	8/30/2019 11:31:28 PM	R62584
Bromobenzene	ND	0.24	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Bromodichloromethane	ND	0.13	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Bromoform	ND	0.29	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Bromomethane	ND	0.27	3.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
2-Butanone	ND	2.1	10		μg/L	1	8/30/2019 11:31:28 PM	
Carbon disulfide	ND	0.45	10		μg/L	1	8/30/2019 11:31:28 PM	
Carbon Tetrachloride	ND	0.14	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Chlorobenzene	0.48	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Chloroethane	ND	0.18	2.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Chloroform	ND	0.12	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Chloromethane	ND	0.32	3.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
2-Chlorotoluene	ND	0.25	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
4-Chlorotoluene	ND	0.23	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
cis-1,2-DCE	ND	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
cis-1,3-Dichloropropene	ND	0.14	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2-Dibromo-3-chloropropane	ND	0.33	2.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Dibromochloromethane	ND	0.24	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Dibromomethane	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2-Dichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,3-Dichlorobenzene	ND	0.25	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,4-Dichlorobenzene	ND	0.29	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Dichlorodifluoromethane	ND	0.26	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,1-Dichloroethane	ND	0.14	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,1-Dichloroethene	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2-Dichloropropane	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,3-Dichloropropane	ND	0.20	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
2,2-Dichloropropane	ND	0.23	2.0		μg/L	1	8/30/2019 11:31:28 PM	R62584

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 64 of 90

Lab Order 1908E78

Date Reported: 10/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Trip Blank

Project: 2019 Annual GW Sampling Event Collection Date:

Lab ID: 1908E78-017 **Matrix:** AQUEOUS **Received Date:** 8/24/2019 10:00:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: JMR	
1,1-Dichloropropene	ND	0.16	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Hexachlorobutadiene	ND	0.31	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
2-Hexanone	ND	1.5	10		μg/L	1	8/30/2019 11:31:28 PM	R62584
Isopropylbenzene	ND	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
4-Isopropyltoluene	ND	0.22	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
4-Methyl-2-pentanone	ND	0.71	10		μg/L	1	8/30/2019 11:31:28 PM	R62584
Methylene Chloride	0.18	0.15	3.0	J	μg/L	1	8/30/2019 11:31:28 PM	R62584
n-Butylbenzene	ND	0.23	3.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
n-Propylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
sec-Butylbenzene	ND	0.25	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Styrene	ND	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
tert-Butylbenzene	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,1,1,2-Tetrachloroethane	ND	0.21	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,1,2,2-Tetrachloroethane	ND	0.55	2.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Tetrachloroethene (PCE)	ND	0.15	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
trans-1,2-DCE	ND	0.18	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
trans-1,3-Dichloropropene	ND	0.17	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2,3-Trichlorobenzene	ND	0.30	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2,4-Trichlorobenzene	ND	0.20	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,1,1-Trichloroethane	ND	0.17	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,1,2-Trichloroethane	ND	0.22	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Trichloroethene (TCE)	ND	0.17	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Trichlorofluoromethane	ND	0.19	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
1,2,3-Trichloropropane	ND	0.30	2.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Vinyl chloride	ND	0.18	1.0		μg/L	1	8/30/2019 11:31:28 PM	R62584
Xylenes, Total	ND	0.45	1.5		μg/L	1	8/30/2019 11:31:28 PM	R62584
Surr: 1,2-Dichloroethane-d4	95.3	0	70-130		%Rec	1	8/30/2019 11:31:28 PM	R62584
Surr: 4-Bromofluorobenzene	92.9	0	70-130		%Rec	1	8/30/2019 11:31:28 PM	R62584
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	8/30/2019 11:31:28 PM	R62584
Surr: Toluene-d8	99.6	0	70-130		%Rec	1	8/30/2019 11:31:28 PM	R62584
EPA METHOD 8015D: GASOLINE RANGE							Analyst: JMR	
Gasoline Range Organics (GRO)	ND	0.031	0.050		mg/L	1	8/30/2019 11:31:28 PM	G62584
Surr: BFB	97.5	0	70-130		%Rec	1	8/30/2019 11:31:28 PM	G6258 ²

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 65 of 90

Hall Environmental Analysis Laboratory, Inc.

ND

ND

0.50

0.20

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R62781 RunNo: 62781 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2138877 Units: mg/L SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Fluoride ND 0.10 Chloride ND 0.50 **Bromide** ND 0.10 Phosphorus, Orthophosphate (As P ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R62781 RunNo: 62781 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2138878 Units: mg/L SPK value SPK Ref Val %RPD **RPDLimit** PQL %REC HighLimit Analyte Result LowLimit Qual Fluoride 0.49 0.10 0.5000 98.3 90 110 0 97.5 90 0.50 5.000 110 Chloride 4.9 2.500 0 99.5 Bromide 2.5 0.10 90 110 Phosphorus, Orthophosphate (As P 4.7 0.50 5.000 0 94.1 90 110 Sulfate 0.50 0 99.1 99 10.00 90 110 Nitrate+Nitrite as N 3.5 0.20 3.500 0 100 90 110

Sample ID: 1908E78-007CMS TestCode: EPA Method 300.0: Anions SampType: ms Client ID: Field Balnk #2 Batch ID: R62781 RunNo: 62781 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2138892 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 129 2.4 0.50 2.500 0 96.9 61.6 Fluoride Chloride 23 2.5 25.00 0 92.6 83.1 116 0 Bromide 12 0.50 12.50 94.5 81.9 109 Sulfate 47 2.5 50.00 0 93.8 84.2 122

Sample ID: 1908E78-007CMSD TestCode: EPA Method 300.0: Anions SampType: msd Client ID: Field Balnk #2 Batch ID: R62781 RunNo: 62781 Units: mg/L Prep Date: Analysis Date: 9/9/2019 SeqNo: 2138893 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride 2.4 0.50 2.500 0 97.1 61.6 129 0.227 20 Chloride 23 2.5 25.00 0 93.6 83.1 116 1.06 20 Bromide 12 0.50 12.50 0 95.5 81.9 109 0.960 20 0 Sulfate 48 2.5 50.00 95.1 84.2 20 122 1.35

Qualifiers:

Sulfate

Nitrate+Nitrite as N

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 66 of 90

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1908E78**

01-Oct-19

Project:	2019 Annual GW San	npling Event						
Sample ID: MB	SampTyp	e: mblk	Tes	tCode: EPA Method	300.0: Anions			
Client ID: PBW	Batch II	D: R62815	F	tunNo: 62815				
Prep Date:	Analysis Dat	te: 9/10/2019	S	SeqNo: 2140293	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50						
Sulfate	ND	0.50						
Sample ID: LCS	SampTyp	De: Ics	Tes	tCode: EPA Method	300.0: Anions			
Client ID: LCSW	Batch II	D: R62815	F	tunNo: 62815				
Prep Date:	Analysis Dat	te: 9/10/2019	S	SeqNo: 2140294	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50 5.000	0	97.0 90	110			
Sulfate	9.8	0.50 10.00	0	98.1 90	110			
Sample ID: LCS	SampTyp	De: Ics	Tes	tCode: EPA Method	300.0: Anions			
Client ID: LCSW	Batch II	D: A62815	F	tunNo: 62815				
Prep Date:	Analysis Dat	te: 9/10/2019	S	SeqNo: 2140323	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	5.0	0.50 5.000	0	101 90	110			
Sulfate	10	0.50 10.00	0	101 90	110			
Nitrate+Nitrite as N	3.6	0.20 3.500	0	102 90	110			
Sample ID: MB	SampTyp	e: mblk	Tes	tCode: EPA Method	300.0: Anions			
Client ID: PBW	Batch II	D: A62815	F	tunNo: 62815				
Prep Date:	Analysis Dat	te: 9/10/2019	8	SeqNo: 2140324	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50						
Sulfate	ND	0.50						
Nitrate+Nitrite as N	0.041	0.20						J
Sample ID: MB	SampTyp	oe: MBLK	Tes	tCode: EPA Method	300.0: Anions			
Client ID: PBW	Batch II	D: R62940	F	tunNo: 62940				
Prep Date:	Analysis Dat	te: 9/13/2019	S	SeqNo: 2144926	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

Nitrate+Nitrite as N

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

0.20

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 67 of 90

Hall Environmental Analysis Laboratory, Inc.

3.4

WO#: 1908E78

01-Oct-19

Client: Western Refining Southwest, Inc. **Project:** 2019 Annual GW Sampling Event

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R62940 RunNo: 62940

0.20

Prep Date: Analysis Date: 9/13/2019 SeqNo: 2144928 Units: mg/L

3.500

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0

98.5

90

110

Nitrate+Nitrite as N

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 68 of 90

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1908E78**

01-Oct-19

	nual GW Samp	*						
Sample ID: 1908E78-009BMS	SampType:	MS	Tes	tCode: EPA Metho	d 8015D: Diese	l Range		
Client ID: MW-62	Batch ID:	47077	F	RunNo: 62454				
Prep Date: 8/27/2019	Analysis Date:	8/29/2019	5	SeqNo: 2126312	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.7 0	.40 2.500	0	107 68.	3 147			
Surr: DNOP	0.27	0.2500		107 52.	7 168			
Sample ID: 1908E78-009BM\$	SD SampType:	MSD	Tes	tCode: EPA Metho	d 8015D: Diese	el Range		
Client ID: MW-62	Batch ID:	47077	F	RunNo: 62454				
Prep Date: 8/27/2019	Analysis Date:	8/29/2019	5	SeqNo: 2126313	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.9 0	.40 2.500	0	114 68.	3 147	6.23	20	
Surr: DNOP	0.28	0.2500		113 52.	7 168	0	0	
Sample ID: LCS-47076	SampType:	LCS	Tes	tCode: EPA Metho	d 8015D: Diese	el Range		
Client ID: LCSW	Batch ID:	47076	F	RunNo: 62454				
Prep Date: 8/27/2019	Analysis Date:	8/28/2019	9	SeqNo: 2126320	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.5 0	.40 2.500	0	100 66.	7 148			
Surr: DNOP	0.24	0.2500		97.4 52.	7 168			
Sample ID: LCS-47077	SampType:	LCS	Tes	tCode: EPA Metho	d 8015D: Diese	el Range		
Client ID: LCSW	Batch ID:	47077	F	RunNo: 62454				
Prep Date: 8/27/2019	Analysis Date:	8/29/2019	9	SeqNo: 2126321	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.1 0	.40 2.500	0	122 66.	7 148			
Surr: DNOP	0.31	0.2500		122 52.	7 168			
Sample ID: MB-47076	SampType:	MBLK	Tes	tCode: EPA Metho	d 8015D: Diese	el Range		
Client ID: PBW	Batch ID:	47076	F	RunNo: 62454				
Prep Date: 8/27/2019	Analysis Date:	8/28/2019	5	SeqNo: 2126322	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 0	.40						
Motor Oil Range Organics (MRO)	ND	2.5						

Qualifiers:

Surr: DNOP

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

0.50

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

99.8

52.7

168

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

0.5000

Page 69 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47077 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range

Client ID: PBW Batch ID: 47077 RunNo: 62454

Prep Date: 8/27/2019 Analysis Date: 8/29/2019 SeqNo: 2126323 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.40
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.66 0.5000 132 52.7 168

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 70 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 100ng lcs	SampT	SampType: LCS TestCode: EPA Method 8260B: VOLATILES									
Client ID: LCSW	Batch	n ID: R6	2584	F	RunNo: 6	2584					
Prep Date:	Analysis D	ate: 8/	30/2019	S	SeqNo: 2	129847	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	20	1.0	20.00	0	100	70	130				
Toluene	19	1.0	20.00	0	96.8	70	130				
Chlorobenzene	20	1.0	20.00	0	98.5	70	130				
1,1-Dichloroethene	19	1.0	20.00	0	93.3	70	130				
Trichloroethene (TCE)	19	1.0	20.00	0	93.7	70	130				
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.4	70	130				
Surr: 4-Bromofluorobenzene	9.6		10.00		96.1	70	130				
Surr: Dibromofluoromethane	9.8		10.00		97.6	70	130				
Surr: Toluene-d8	9.5		10.00		94.8	70	130				

Sample ID. 1906676-001ams	Sampi	ype. ws	•	168	icode. Ei	PA Wethou	0200D: VUL/	AIILES		
Client ID: MW-59	Batcl	n ID: R6	2584	F	RunNo: 6	2584				
Prep Date:	Analysis D	Date: 8/	30/2019	8	SeqNo: 2	129850	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	24	1.0	20.00	7.519	80.9	70	130			
Toluene	17	1.0	20.00	0	83.2	70	130			
Chlorobenzene	17	1.0	20.00	0	85.4	70	130			
1,1-Dichloroethene	15	1.0	20.00	0	74.7	70	130			
Trichloroethene (TCE)	15	1.0	20.00	0	76.3	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		99.9	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.5	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.9		10.00		99.0	70	130			

Sample ID: 1908e78-001amsd	SampT	ype: MS	SD	Tes	tCode: El	ATILES				
Client ID: MW-59	Batch	1D: R6	2584	F	RunNo: 6	2584				
Prep Date:	Analysis D	ate: 8/	30/2019	8	SeqNo: 2	129852	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	25	1.0	20.00	7.519	88.0	70	130	5.75	20	
Toluene	19	1.0	20.00	0	95.1	70	130	13.4	20	
Chlorobenzene	19	1.0	20.00	0	93.8	70	130	9.40	20	
1,1-Dichloroethene	16	1.0	20.00	0	79.7	70	130	6.53	20	
Trichloroethene (TCE)	17	1.0	20.00	0	84.0	70	130	9.69	20	
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.0	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.8		10.00		97.9	70	130	0	0	
Surr: Dibromofluoromethane	10		10.00		100	70	130	0	0	
Surr: Toluene-d8	9.7		10.00		96.6	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 71 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: R62584 RunNo: 62584

Prep Date: Analysis Date: 8/30/2019 SeqNo: 2129876 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Benzene ND 1.0 Toluene ND 1.0 ND Ethylbenzene 1.0 Methyl tert-butyl ether (MTBE) ND 1.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 ND 10 Acetone ND Bromobenzene 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 ND Chloroethane 2.0 Chloroform ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 ND 2.0 1,2-Dibromo-3-chloropropane Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 ND 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene ND 1.0 ND Dichlorodifluoromethane 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: rb	SampT	ype: ME	IBLK TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	ID: R6	2584	F	RunNo: 6	2584				
Prep Date:	Analysis D	ate: 8/	30/2019	\$	SeqNo: 2	129876	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.9	70	130			
Surr: Dibromofluoromethane	9.6		10.00		95.8	70	130			
Surr: Toluene-d8	9.8		10.00		98.4	70	130			

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: We	S2589	F	RunNo: 6	2589				
Prep Date:	Analysis D	ate: 9/	3/2019	8	SeqNo: 2	131150	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	98.8	70	130			
Toluene	20	1.0	20.00	0	101	70	130			
Surr: 1.2-Dichloroethane-d4	9.3		10.00		92.8	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 73 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: 100ng lcs	SampT	ype: LC	s	Tes	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	ID: W	62589	F	RunNo: 6 2	2589					
Prep Date:	Analysis D	ate: 9/	3/2019	5	SeqNo: 2	131150	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Bromofluorobenzene	9.9		10.00		99.2	70	130				
Surr: Dibromofluoromethane	9.8		10.00		97.5	70	130				
Surr: Toluene-d8	9.7		10.00		97.4	70	130				
Sample ID: rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: PBW	Batch	ID: W	62589	F	RunNo: 6	2589					
Pren Date:	Analysis D	ate· 9/	3/2019	ç	SeaNo: 2	131182	Units: ua/l				

Prep Date:	Analysis D	ate: 9/	3/2019	S	SeqNo: 2	131182	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
Naphthalene	ND	2.0								
n-Propylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.7	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-47113	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	n ID: 47	113	F	RunNo: 6	2675				
Prep Date: 8/28/2019	Analysis D	Date: 9/	5/2019	5	SeqNo: 2	134037	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	70	10	100.0	0	69.8	32.2	94			
4-Chloro-3-methylphenol	130	10	200.0	0	67.5	37.7	101			
2-Chlorophenol	140	10	200.0	0	72.4	32.6	90.1			
1,4-Dichlorobenzene	57	10	100.0	0	57.4	30	87.2			
2,4-Dinitrotoluene	66	10	100.0	0	66.4	35.9	85.8			
N-Nitrosodi-n-propylamine	73	10	100.0	0	73.4	37.1	108			
4-Nitrophenol	87	10	200.0	0	43.3	22.4	86.6			
Pentachlorophenol	110	20	200.0	0	57.0	31.6	91			
Phenol	88	10	200.0	0	43.8	21.7	84.9			
Pyrene	74	10	100.0	0	74.3	46.3	103			
1,2,4-Trichlorobenzene	62	10	100.0	0	61.9	30.2	88.3			
Surr: 2-Fluorophenol	100		200.0		50.2	15	101			
Surr: Phenol-d5	87		200.0		43.6	15	84.6			
Surr: 2,4,6-Tribromophenol	120		200.0		58.6	27.8	112			
Surr: Nitrobenzene-d5	74		100.0		73.8	33	113			
Surr: 2-Fluorobiphenyl	70		100.0		69.8	26.6	107			
Surr: 4-Terphenyl-d14	76		100.0		76.1	18.7	148			

Sample ID: mb-47113	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	1D: 47	113	F	RunNo: 6	2675				
Prep Date: 8/28/2019	Analysis D	ate: 9/	5/2019	8	SeqNo: 2	134038	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 75 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47113 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 47113 RunNo: 62675 Prep Date: 8/28/2019 Analysis Date: 9/5/2019 SeqNo: 2134038 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 ND 10 Carbazole 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 Chrysene ND 10 Di-n-butyl phthalate ND 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene 10 ND ND 10 Dibenzofuran 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10 10 1,4-Dichlorobenzene ND 3,3'-Dichlorobenzidine ND 10 Diethyl phthalate ND 10 Dimethyl phthalate ND 10 2,4-Dichlorophenol ND 20 ND 2,4-Dimethylphenol 10 20 4,6-Dinitro-2-methylphenol ND 2,4-Dinitrophenol 4.4 20 J 2,4-Dinitrotoluene ND 10 2,6-Dinitrotoluene ND 10 Fluoranthene ND 10 Fluorene ND 10 ND 10 Hexachlorobenzene Hexachlorobutadiene ND 10 Hexachlorocyclopentadiene ND 10 Hexachloroethane ND 10 ND Indeno(1,2,3-cd)pyrene 10 10 Isophorone ND ND 10 1-Methylnaphthalene 2-Methylnaphthalene ND 10 2-Methylphenol ND 10 3+4-Methylphenol ND 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 76 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47113	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	n ID: 47 ′	113	F	RunNo: 6	2675				
Prep Date: 8/28/2019	Analysis D	ate: 9/	5/2019	5	SeqNo: 2	134038	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	1.0		200.0		0.510	15	101			S
Surr: Phenol-d5	7.3		200.0		3.65	15	84.6			S
Surr: 2,4,6-Tribromophenol	0.24		200.0		0.120	27.8	112			S
Surr: Nitrobenzene-d5	62		100.0		62.0	33	113			
Surr: 2-Fluorobiphenyl	56		100.0		55.5	26.6	107			
Surr: 4-Terphenyl-d14	63		100.0		63.4	18.7	148			

Sample ID: Icsd-47113	SampT	ype: LC	SD	Tes	tCode: El	PA Method	8270C: Semi	olatiles/		
Client ID: LCSS02	Batch	n ID: 47	113	F	tunNo: 6	2675				
Prep Date: 8/28/2019	Analysis D	ate: 9/	5/2019	S	SeqNo: 2	134834	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	80	10	100.0	0	80.2	32.2	94	13.8	32.9	
4-Chloro-3-methylphenol	180	10	200.0	0	89.4	37.7	101	27.9	29.9	
2-Chlorophenol	170	10	200.0	0	82.6	32.6	90.1	13.2	28.5	
1,4-Dichlorobenzene	66	10	100.0	0	66.4	15	87.2	14.6	44.9	
2,4-Dinitrotoluene	73	10	100.0	0	73.0	35.9	85.8	9.41	28.5	
N-Nitrosodi-n-propylamine	89	10	100.0	0	89.1	37.1	108	19.3	29.9	
4-Nitrophenol	100	10	200.0	0	50.3	15	86.6	14.9	68	
Pentachlorophenol	120	20	200.0	0	62.1	31.6	91	8.45	39.5	
Phenol	100	10	200.0	0	50.7	15	84.9	14.4	44.2	
Pyrene	79	10	100.0	0	78.9	46.3	103	5.93	23.8	
1,2,4-Trichlorobenzene	71	10	100.0	0	71.4	15.7	88.3	14.3	38	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 77 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Icsd-47113	SampT	ype: LC	SD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	ID: 47	113	F	RunNo: 6	2675				
Prep Date: 8/28/2019	Analysis D	ate: 9/	/5/2019	5	SeqNo: 2	134834	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110		200.0		56.5	15	101	0	0	
Surr: Phenol-d5	99		200.0		49.4	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	130		200.0		65.7	27.8	112	0	0	
Surr: Nitrobenzene-d5	85		100.0		85.3	33	113	0	0	
Surr: 2-Fluorobiphenyl	75		100.0		75.0	26.6	107	0	0	
Surr: 4-Terphenyl-d14	80		100.0		80.4	18.7	148	0	0	
Sample ID: Ice 47246	SamaT	/no: 1 C		Too	tCada: E l	DA Mathad	9270Cı Samir	reletile e		

Sample ID: Ics-47316	Sampl	ype: LC	S	les	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	n ID: 47	316	F	RunNo: 6	2883				
Prep Date: 9/6/2019	Analysis D	ate: 9/	12/2019	5	SeqNo: 2	143013	Units: %Red	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	92		200.0		45.8	15	101			
Surr: Phenol-d5	72		200.0		35.9	15	84.6			
Surr: 2,4,6-Tribromophenol	110		200.0		53.1	27.8	112			
Surr: Nitrobenzene-d5	67		100.0		66.9	33	113			
Surr: 2-Fluorobiphenyl	60		100.0		59.8	26.6	107			
Surr: 4-Terphenyl-d14	54		100.0		54.1	18.7	148			

Sample ID: Icsd-47316	SampT	ype: LC	SD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	ID: 47	316	F	RunNo: 6	2883				
Prep Date: 9/6/2019	Analysis D	ate: 9/	12/2019	9	SeqNo: 2	143016	Units: %Red			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	120		200.0		58.8	15	101	0	0	
Surr: Phenol-d5	92		200.0		46.1	15	84.6	0	0	
Surr: 2,4,6-Tribromophenol	130		200.0		66.7	27.8	112	0	0	
Surr: Nitrobenzene-d5	82		100.0		82.4	33	113	0	0	
Surr: 2-Fluorobiphenyl	80		100.0		80.3	26.6	107	0	0	
Surr: 4-Terphenyl-d14	68		100.0		67.9	18.7	148	0	0	

Sample ID: mb-47316	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 47	316	F	RunNo: 6	2883				
Prep Date: 9/6/2019	Analysis D	ate: 9/	12/2019	S	SeqNo: 2	143019	Units: %Red	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	81		200.0		40.4	15	101			
Surr: Phenol-d5	62		200.0		30.9	15	84.6			
Surr: 2,4,6-Tribromophenol	92		200.0		45.8	27.8	112			
Surr: Nitrobenzene-d5	54		100.0		53.9	33	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 78 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: mb-47316 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles

Client ID: PBW Batch ID: 47316 RunNo: 62883

Prep Date: 9/6/2019 Analysis Date: 9/12/2019 SeqNo: 2143019 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Surr: 2-Fluorobiphenyl
 48
 100.0
 48.0
 26.6
 107

 Surr: 4-Terphenyl-d14
 49
 100.0
 49.1
 18.7
 148

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 79 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-1 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126130 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 100 85 115

Sample ID: Ics-2 99.8uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126193 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 5.0 99.80 0 104 85 115

Sample ID: 1908e78-014c dup SampType: dup TestCode: SM2510B: Specific Conductance

Client ID: MW-52 Batch ID: R62496 RunNo: 62496

Prep Date: Analysis Date: 8/28/2019 SeqNo: 2126195 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 5100 5.0 0.146 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 80 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47428 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 47428 RunNo: 62872

Prep Date: 9/11/2019 Analysis Date: 9/12/2019 SeqNo: 2142285 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.000039 0.00020 J

Sample ID: LCS-47428 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 47428 RunNo: 62872

Prep Date: 9/11/2019 Analysis Date: 9/12/2019 SeqNo: 2142286 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0047 0.00020 0.005000 0 93.1 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 81 of 90

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals Client ID: PBW Batch ID: A62764 RunNo: 62764 Prep Date: Analysis Date: 9/9/2019 SeqNo: 2137952 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Arsenic ND 0.020 Barium ND 0.020

Cadmium	ND	0.0020
Calcium	ND	1.0
Chromium	ND	0.0060
Copper	ND	0.0060
Iron	ND	0.020
Lead	ND	0.0050
Magnesium	ND	1.0
Manganese	ND	0.0020
Potassium	ND	1.0
Selenium	ND	0.050
Silver	ND	0.0050
Sodium	ND	1.0
Uranium	ND	0.10
Zinc	ND	0.020

		.) [•								
Client ID: LCSW	Bato	ch ID: A6	2764	F	RunNo: 6	2764					
Prep Date:	Analysis	Date: 9/	9/2019	5	SeqNo: 2	137953	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	0.48	0.020	0.5000	0	95.6	80	120				
Barium	0.48	0.020	0.5000	0	95.1	80	120				
Cadmium	0.50	0.0020	0.5000	0	99.4	80	120				
Calcium	50	1.0	50.00	0	100	80	120				
Chromium	0.49	0.0060	0.5000	0	97.1	80	120				
Copper	0.50	0.0060	0.5000	0	100	80	120				
Iron	0.49	0.020	0.5000	0	98.6	80	120				
Lead	0.49	0.0050	0.5000	0	98.6	80	120				
Magnesium	50	1.0	50.00	0	100	80	120				
Manganese	0.48	0.0020	0.5000	0	97.0	80	120				
Potassium	50	1.0	50.00	0	99.3	80	120				
Selenium	0.48	0.050	0.5000	0	96.3	80	120				
Silver	0.10	0.0050	0.1000	0	99.8	80	120				
Sodium	50	1.0	50.00	0	99.6	80	120				
Uranium	0.46	0.10	0.5000	0	91.3	80	120				
Zinc	0.48	0.020	0.5000	0	96.5	80	120				

Qualifiers:

Sample ID: LCS-A

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

TestCode: EPA Method 6010B: Dissolved Metals

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1908E78**

01-Oct-19

Project:	2019 Annual GW	Sampling	g Event							
Sample ID: MB-B	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	6010B: Disso	lved Meta	als	
Client ID: PBW	Bato	ch ID: B6	2764	F	RunNo: 6	2764				
Prep Date:	Analysis	Date: 9/	9/2019	S	SeqNo: 2	137955	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Copper	ND	0.0060								
Iron	ND	0.020								
Magnesium	ND	1.0								
Manganese	ND	0.0020								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								
Uranium	ND	0.10								
Zinc	ND	0.020								
Sample ID: MB-A	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	6010B: Disso	lved Meta	als	
Sample ID: MB-A Client ID: PBW		Type: ME			tCode: El RunNo: 6		6010B: Disso	lved Meta	ıls	
	Bato		2841	F		2841	6010B: Disso	lved Meta	als	
Client ID: PBW	Bato	ch ID: A6	2841 11/2019	F	RunNo: 6: SeqNo: 2:	2841		Ned Meta	als RPDLimit	Qual
Client ID: PBW Prep Date:	Bato Analysis	ch ID: A6 Date: 9/	2841 11/2019	F	RunNo: 6: SeqNo: 2:	2841 141041	Units: mg/L			Qual
Client ID: PBW Prep Date: Analyte	Bate Analysis Result ND	ch ID: A6 Date: 9/	2841 11/2019 SPK value	SPK Ref Val	RunNo: 6: SeqNo: 2: %REC	2841 141041 LowLimit	Units: mg/L	%RPD	RPDLimit	Qual
Client ID: PBW Prep Date: Analyte Calcium	Bate Analysis Result ND Samp	ch ID: A6 Date: 9/ PQL 1.0	2841 11/2019 SPK value	SPK Ref Val	RunNo: 6: SeqNo: 2: %REC	2841 141041 LowLimit PA Method	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A	Bate Analysis Result ND Samp	PQL 1.0	2841 11/2019 SPK value S 2841	SPK Ref Val Tes	RunNo: 6: SeqNo: 2 %REC tCode: El	2841 141041 LowLimit PA Method 2841	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date:	Bate Analysis Result ND Samp Bate Analysis	PQL 1.0 Type: LC	2841 11/2019 SPK value SS 2841 11/2019	SPK Ref Val Tes	RunNo: 6: SeqNo: 2 %REC tCode: El RunNo: 6: SeqNo: 2	2841 141041 LowLimit PA Method 2841	Units: mg/L HighLimit 6010B: Disso Units: mg/L	%RPD	RPDLimit	Qual
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW	Bate Analysis Result ND Samp	PQL 1.0 Type: LC ch ID: A6 Date: 9/	2841 11/2019 SPK value SS 2841 11/2019	SPK Ref Val Tes	RunNo: 6: SeqNo: 2 %REC tCode: El RunNo: 6: SeqNo: 2	2841 141041 LowLimit PA Method 2841 141042	Units: mg/L HighLimit 6010B: Disso	%RPD	RPDLimit	
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte	Bate Analysis Result ND Samp Bate Analysis Result 49	PQL 1.0 Type: LC ch ID: A6 Date: 9/ PQL PQL PQL PQL PQL	2841 11/2019 SPK value S 2841 11/2019 SPK value 50.00	SPK Ref Val Tes F S SPK Ref Val 0	RunNo: 6: SeqNo: 2 %REC tCode: EI RunNo: 6: SeqNo: 2 %REC 98.8	2841 141041 LowLimit PA Method 2841 141042 LowLimit 80	Units: mg/L HighLimit 6010B: Disso Units: mg/L HighLimit	%RPD lived Meta %RPD	RPDLimit als RPDLimit	
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte Calcium	Bate Analysis Result ND Samp Bate Analysis Result 49	PQL 1.0 Type: LC ch ID: A6 Date: 9/ PQL 1.0 Type: LC ch ID: A6 Date: 9/ PQL 1.0	2841 11/2019 SPK value S 2841 11/2019 SPK value 50.00	SPK Ref Val Tes SPK Ref Val 0 Tes	RunNo: 6: SeqNo: 2 %REC tCode: EI RunNo: 6: SeqNo: 2 %REC 98.8	2841 141041 LowLimit PA Method 2841 141042 LowLimit 80 PA Method	Units: mg/L HighLimit 6010B: Disso Units: mg/L HighLimit 120	%RPD lived Meta %RPD	RPDLimit als RPDLimit	
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte Calcium Sample ID: MB-A	Bate Analysis Result ND Samp Bate Analysis Result 49 Samp Bate	PQL 1.0 Type: LC 1.0 Type: LC 1.0 Type: LC 1.0 Type: ME	2841 11/2019 SPK value SS 2841 11/2019 SPK value 50.00 BLK 3017	SPK Ref Val Tes SPK Ref Val 0 Tes F	RunNo: 6: SeqNo: 2 %REC tCode: EI RunNo: 6: SeqNo: 2 %REC 98.8	2841 141041 LowLimit PA Method 2841 141042 LowLimit 80 PA Method 3017	Units: mg/L HighLimit 6010B: Disso Units: mg/L HighLimit 120	%RPD lived Meta %RPD	RPDLimit als RPDLimit	
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte Calcium Sample ID: MB-A Client ID: PBW	Bate Analysis Result ND Samp Bate Analysis Result 49 Samp Bate	PQL 1.0 Type: LC h ID: A6 Date: 9/ PQL 1.0 Type: LC h ID: A6 Date: 9/ PQL 1.0 Type: ME ch ID: A6	2841 11/2019 SPK value SS 2841 11/2019 SPK value 50.00 BLK 3017 18/2019	SPK Ref Val Tes SPK Ref Val 0 Tes F	RunNo: 6: SeqNo: 2 %REC tCode: El RunNo: 6: SeqNo: 2 %REC 98.8 tCode: El RunNo: 6: SeqNo: 2	2841 141041 LowLimit PA Method 2841 141042 LowLimit 80 PA Method 3017 148716	Units: mg/L HighLimit 6010B: Disso Units: mg/L HighLimit 120 6010B: Disso	%RPD lived Meta %RPD	RPDLimit als RPDLimit	
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte Calcium Sample ID: MB-A Client ID: PBW Prep Date:	Bate Analysis Result ND Samp Bate Analysis Result 49 Samp Bate Analysis	PQL 1.0 Type: LC ch ID: A6 Date: 9/ PQL 1.0 Type: LC ch ID: A6 Date: 9/ PQL 1.0 Type: ME ch ID: A6 Date: 9/	2841 11/2019 SPK value SS 2841 11/2019 SPK value 50.00 BLK 3017 18/2019	SPK Ref Val Tes SPK Ref Val 0 Tes SPK Ref Val 0	RunNo: 6: SeqNo: 2 %REC tCode: El RunNo: 6: SeqNo: 2 %REC 98.8 tCode: El RunNo: 6: SeqNo: 2	2841 141041 LowLimit PA Method 2841 141042 LowLimit 80 PA Method 3017 148716	Units: mg/L HighLimit 6010B: Disso Units: mg/L HighLimit 120 6010B: Disso Units: mg/L	%RPD WRPD	RPDLimit RPDLimit	Qual
Client ID: PBW Prep Date: Analyte Calcium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte Calcium Sample ID: MB-A Client ID: PBW Prep Date: Analyte	Bate Analysis Result ND Samp Bate Analysis Result 49 Samp Bate Analysis Result Result Analysis	PQL 1.0 Type: LC th ID: A6 Date: 9/ PQL 1.0 Type: ME th ID: A6 Date: 9/ PQL Date: 9/ PQL PQL PQL PQL PQL PQL	2841 11/2019 SPK value SS 2841 11/2019 SPK value 50.00 BLK 3017 18/2019	SPK Ref Val Tes SPK Ref Val 0 Tes SPK Ref Val 0	RunNo: 6: SeqNo: 2 %REC tCode: El RunNo: 6: SeqNo: 2 %REC 98.8 tCode: El RunNo: 6: SeqNo: 2	2841 141041 LowLimit PA Method 2841 141042 LowLimit 80 PA Method 3017 148716	Units: mg/L HighLimit 6010B: Disso Units: mg/L HighLimit 120 6010B: Disso Units: mg/L	%RPD WRPD	RPDLimit RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

0.47

Result

0.46

0.0050

Batch ID: A63074

PQL

0.0050

Analysis Date: 9/20/2019

SampType: MSD

0.5000

0.5000

SPK value SPK Ref Val

WO#: **1908E78**

01-Oct-19

Project: 2019	Annual GW Samplin	ng Event							
Sample ID: LCS-A	SampType: L	cs	Tes	tCode: EF	PA Method	6010B: Disso	lved Meta	ıls	
Client ID: LCSW	Batch ID: A	63017	F	unNo: 6 3	3017				
Prep Date:	Analysis Date: 9	/18/2019	S	SeqNo: 21	148717	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	49 1.0	50.00	0	98.6	80	120			
Iron	0.49 0.020	0.5000	0	97.5	80	120			
Sodium	49 1.0	50.00	0	97.5	80	120			
Sample ID: MB-A	SampType: M	BLK	Tes	tCode: EF	PA Method	6010B: Disso	lved Meta	ıls	
Client ID: PBW	Batch ID: A	63074	F	tunNo: 63	3074				
Prep Date:	Analysis Date: 9	/20/2019	S	SeqNo: 21	151039	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead	ND 0.0050)							
Sample ID: LCS-A	SampType: L	cs	Tes	tCode: EF	PA Method	6010B: Disso	lved Meta	ıls	
Client ID: LCSW	Batch ID: A	63074	F	unNo: 63	3074				
Prep Date:	Analysis Date: 9	/20/2019	S	SeqNo: 21	151040	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead	0.47 0.0050	0.5000	0	94.4	80	120			
Sample ID: 1908E78-013	EMS SampType: M	s	Tes	tCode: EF	PA Method	6010B: Disso	Ived Meta	ıls	
Client ID: MW-53	Batch ID: A	63074	F	lunNo: 63	3074				
Prep Date:	Analysis Date: 9	/20/2019	S	SeqNo: 21	151068	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

0

Lead

Qual	ifiers:	
*	37.1	 M

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample ID: 1908E78-013EMSD

Client ID: MW-53

Prep Date:

Analyte

Lead

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

94.4

RunNo: 63074

%REC

92.5

SeqNo: 2151069

75

LowLimit

75

TestCode: EPA Method 6010B: Dissolved Metals

125

Units: mg/L

HighLimit

125

%RPD

2.00

RPDLimit

20

Qual

Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 84 of 90

Hall Environmental Analysis Laboratory, Inc.

ND

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47071 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 47071 RunNo: 62682

0.0050

Prep Date: 8/26/2019 Analysis Date: 9/5/2019 SeqNo: 2134130 Units: mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Arsenic ND 0.020 Barium ND 0.020 Cadmium ND 0.0020 Chromium ND 0.0060 Lead ND 0.0050 ND 0.050 Selenium

Sample ID: LCS-47071 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals Client ID: LCSW Batch ID: 47071 RunNo: 62682 Prep Date: 8/26/2019 Analysis Date: 9/5/2019 SeqNo: 2134131 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.48 0.5000 96.7 80 120 0.020 0 Arsenic 0.47 0.020 0.5000 0 94.6 80 120 Barium 100 Cadmium 0.50 0.0020 0.5000 0 80 120 Chromium 0.48 0.0060 0.5000 0 96.6 80 120 Lead 0.49 0.0050 0.5000 0 97.7 80 120 0.51 0 102 Selenium 0.050 0.5000 80 120 Silver 0.10 0.0050 0.1000 0 100 80 120

Qualifiers:

Silver

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 85 of 90

Client:

Project:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

2019 Annual GW Sampling Event

0.050

SampType: MBLK

Analysis Date: 9/3/2019

Batch ID: G62589

0.48

Result

10

0.5000

10.00

SPK value SPK Ref Val

WO#: **1908E78**

01-Oct-19

Sample ID: 1908e78-002ams	SampT	уре: М	3	Tes	Code: EF	PA Method	8015D: Gasol	ine Rang	e	
Client ID: MW-63	Batch	ID: G6	2584	F	unNo: 62	2584				
Prep Date:	Analysis D	ate: 8/	30/2019	S	eqNo: 2	129905	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.43	0.050	0.5000	0	86.3	70	130			
Surr: BFB	9.8		10.00		97.6	70	130			
Sample ID: 1908e78-002amsd	SampT	ype: M \$	SD	Tes	Code: EF	PA Method	8015D: Gasol	ine Rang	e	
Client ID: MW-63	Batch	ID: G6	2584	F	tunNo: 62	2584				
Prep Date:	Analysis D	ate: 8/	30/2019	S	eqNo: 2	129906	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.52	0.050	0.5000	0	104	70	130	18.7	20	
Surr: BFB	10		10.00		102	70	130	0	0	
Sample ID: 2.5ug gro lcs	SampT	ype: LC	s	Tes	Code: EF	PA Method	8015D: Gasol	ine Rang	e	
Client ID: LCSW	Batch	ID: G6	2584	F	unNo: 62	2584				
Prep Date:	Analysis D	ate: 8/	30/2019	S	eqNo: 2	129924	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.47	0.050	0.5000	0	93.6	70	130			
Surr: BFB	9.8		10.00		98.5	70	130			
Sample ID: rb	SampT	ype: ME	BLK	Tes	Code: EF	PA Method	8015D: Gasol	ine Rang	e	
Client ID: PBW	Batch	ID: G6	2584	F	unNo: 62	2584				
Prep Date:	Analysis D	ate: 8/	30/2019	S	eqNo: 2	129925	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	0.050								
Surr: BFB	10		10.00		102	70	130			
Sample ID: 2.5ug gro Ics	SampT	ype: LC	:s	Tes	Code: EF	PA Method	8015D: Gasol	ine Rang	e	
Client ID: LCSW	Batch	ID: G6	2589	F	unNo: 62	2589				
Prep Date:	Analysis D	ate: 9/	3/2019	S	eqNo: 2	131205	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

Analyte

Surr: BFB

Sample ID: rb

Client ID:

Prep Date:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Gasoline Range Organics (GRO)

PBW

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

95.6

102

RunNo: 62589

%REC

SeqNo: 2131206

70

70

LowLimit

TestCode: EPA Method 8015D: Gasoline Range

130

130

Units: mg/L

HighLimit

%RPD

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

Page 86 of 90

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: rb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G62589 RunNo: 62589

Prep Date: Analysis Date: 9/3/2019 SeqNo: 2131206 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 10 10.00 102 70 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 87 of 90

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

WO#: **1908E78**

01-Oct-19

Project: 2019 Ann	nual GW Sampling	Event							
Sample ID: mb-1 alk	SampType: mbl	k	Tes	tCode: SN	M2320B: AI	kalinity			
Client ID: PBW	Batch ID: R62	496	F	RunNo: 62	2496				
Prep Date:	Analysis Date: 8/2	8/2019	Ş	SeqNo: 21	126078	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND 20.00								
Sample ID: Ics-1 alk	SampType: Ics		Tes	tCode: SN	M2320B: AI	kalinity			
Client ID: LCSW	Batch ID: R62	496	F	RunNo: 62	2496				
Prep Date:	Analysis Date: 8/2	8/2019	9	SeqNo: 2 1	126079	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	78.96 20.00	80.00	0	98.7	90	110			
Sample ID: mb-2 alk	SampType: mbl	lk	Tes	tCode: SN	M2320B: AI	kalinity			
Client ID: PBW	Batch ID: R62	496	F	RunNo: 62	2496				
Prep Date:	Analysis Date: 8/2	8/2019	5	SeqNo: 2 1	126101	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND 20.00								
Sample ID: Ics-2 alk	SampType: Ics		Tes	tCode: SN	M2320B: AI	kalinity			
Client ID: LCSW	Batch ID: R62	496	F	RunNo: 62	2496				
Prep Date:	Analysis Date: 8/2	8/2019	9	SeqNo: 2 1	126102	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	80.56 20.00	80.00	0	101	90	110			
Sample ID: 1908e78-014c dup	SampType: dup)	Tes	tCode: SN	M2320B: AI	kalinity			
Client ID: MW-52	Batch ID: R62	496	F	RunNo: 62	2496				
Prep Date:	Analysis Date: 8/2	8/2019	9	SeqNo: 21	126115	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	197.9 20.00						0.162	20	
Sample ID: mb-1 alk	SampType: mbl	k	Tes	tCode: SN	M2320B: AI	kalinity			
Client ID: PBW	Batch ID: R62	2602	F	RunNo: 62	2602				
Prep Date:	Analysis Date: 9/3	/2019	5	SeqNo: 21	131549	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Total Alkalinity (as CaCO3)

H Holding times for preparation or analysis exceeded

20.00

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 88 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62602 RunNo: 62602

Prep Date: Analysis Date: 9/3/2019 SeqNo: 2131550 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 79.04 20.00 80.00 0 98.8 90 110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R62602 RunNo: 62602

Prep Date: Analysis Date: 9/3/2019 SeqNo: 2131579 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R62602 RunNo: 62602

Prep Date: Analysis Date: 9/3/2019 SeqNo: 2131580 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 80.40 20.00 80.00 0 101 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 89 of 90

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908E78**

01-Oct-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47157 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 47157 RunNo: 62586

Prep Date: 8/29/2019 Analysis Date: 9/3/2019 SeqNo: 2129944 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-47157 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 47157 RunNo: 62586

Prep Date: 8/29/2019 Analysis Date: 9/3/2019 SeqNo: 2129945 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1030 20.0 1000 0 103 80 120

Sample ID: 1908E78-015CDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: MW-67 Batch ID: 47157 RunNo: 62586

Prep Date: **8/29/2019** Analysis Date: **9/3/2019** SeqNo: **2129959** Units: **mg/L**

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 853 20.0 1.30 10 *

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 90 of 90

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Western Refining South	w Work Order Num	ber: 1908E78	-	RcptNo:	1
Received By:	Anne Thorne	8/23/2019 10:00:00	O AM	anne Am	_	
Completed By:	Anne Thorne	8/26/2019 1:11:43	PM	Anne H Anne H		
Reviewed By:	B	24/ca</td <td></td> <td></td> <td></td> <td></td>				
Chain of Cus	stod <u>v</u>	1 /				
1. Is Chain of C	Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	e sample delivered?		<u>Courier</u>			
<u>Log In</u>			[4	N. 🗆		
o. vvas an atter	mpt made to cool the sampl	es?	Yes 🔽	No 📙	NA 🗌	
4. Were all sam	ples received at a temperat	ure of >0° C to 6.0°C	Yes 🗸	No 🗌	NA \square	
5. Sample(s) in	proper container(s)?	·	Yes 🗹	No 🗆		
6. Sufficient san	mple volume for indicated te	st(s)?	Yes 🗹	No 🗌		
7. Are samples	(except VOA and ONG) pro	perly preserved?	Yes 🗹	No 🗌		
8. Was preserva	ative added to bottles?		Yes 🗌	No 🗸	NA \square	
9. VOA vials ha	ve zero headspace?		Yes 🗸	No 🗆	No VOA Vials	
10. Were any sa	mple containers received br	oken?	Yes	No 🗹	# of preserved	
	ork match bottle labels? ancies on chain of custody)		Yes 🗸	No 🗆	for pH: (\$2)or	2 212 unless noted)
12. Are matrices	correctly identified on Chair	of Custody?	Yes 🗸	No 🗆	Adjusted? \	<u> </u>
	at analyses were requested?	•	Yes 🗹	No 🗌	44	مرا براء
	ing times able to be met? customer for authorization.)		Yes 🔽	No 🗌	Checked by:	M Delsolis
Special Hand	ling (if applicable)					
15. Was client no	otified of all discrepancies w	ith this order?	Yes	No 🗌	NA 🗹	
Person	Notified:	Date	1			
By Who	om:	Via:	eMail P	hone Fax	in Person	
Regard	ling:					
Client I	nstructions:					
16. Additional re	marks:					
17. Cooler info	rmation					
Cooler No		Seal Intact Seal No	Seal Date	Signed By		
1		Yes	The state of the forest and the second of the state of th			
2		Yes				
3	orași anima e al al ana cama ce manace "	Yes				
4	0.8 Good	Yes		1		

1 0 14

5	2.			,	Ë		İ						•	ı	5	1	.	
5	<u></u>	10-10-10-10-10-10-10-10-10-10-10-10-10-1	3	i um-Around	:: I:: I::				Ì	HALL	ENVIRONMENTAL	7 7 8		Σ		Z		
Client: M	Veste	rn - Blo	Client: Western - Bloomfield Terminal	X Standard	□ Rush				4	A	ANALYSTS LABORATORY	S	AB		I	C	. >	
				Project Name	: 2019 Annual GW	nual GW			¦ ≶	w ha	www.hallenvironmental.com	nmeni		<u>.</u>			•	
Mailing Address: 50 CR 4990	ddress	50 CR	4990		Sampling Event	g Event	4	4901 Hawkins NE	awking	Z N	Albuc	neran	e S	Albuqueraue: NM 87109	6			
		Bloom	Bloomfield, NM 87413	Project #:				Tel. 50	505-345-3975			× 505	505-345-4107	4107		1.5		
Phone #:		419-421-2338	1-2338							A	Analysis		Request					
Email: gji	mccart	tney@ma	gimccartney@marathonpetroleum.com	Project Mana	iger: Gregol	Project Manager: Gregory McCartney	(-	7			_
QA/QC Package:	ckage: ird		X Level 4 (Full Validation)							(SI				_	- ೧೨೪ಽ	linity		
□ Other				Sampler:	Tracy Payne	ne - 919-561-7055									uoļi	/IKS	(
X EDD (Type)	ype)_	EXCEL			Yes T	ON □										√ - '	Ило	
				Sample Temp	erature:	CALMOUNT										·wə	(Y c	
Date 1	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	8TM+X3T8 8TM+X3T8	aaros H9T	FDB (Metho	01E8) HAG	RCRA 8 Me ⊢Nions (F,Cl	oitse9 1808	8260B (VO	imeS) 0728 N bevlossiQ	General Ch	General Ch	Air Bubbles	
8/24/व 1 पम०	440	H ₂ O	MW-59	40ml VOA-5	HCI	3				 				₩	+		<u> </u>	_
		H ₂ O	MW-59	250 ml amber-1	Neat	199		×			<u> </u>		 			 		
		H ₂ O	MW-59	1 liter	Neat	19								×				
		H ₂ O	WW-59	250 ml plastic-1	HNO ₃	100					×							
		H ₂ 0	MW-59	125 ml plastic-1	HNO3)72								×	×			
		H ₂ O	MW-59	125 mt plastic-1	H ₂ SO ₄	3									×			
→	_>	H ₂ O	MW-59	500 ml plastic-1	Neat	102	į		-						<u> </u>	×		
									+		+	1	\dagger	_				
Date: Tin	Time:	Relinguished by:		Received by:		Date Time	Remarks:	S: See		alytic	⊣ Me	— ₽odi	and	∃ I Targ	Het A	nal <u>∢</u>	- S	
E	SH	1		Alband)	Clar-) 1/23/15 1546	7	1+05cr=		÷.6		0	0.8	+ 0.	OSCF	i, G	ئى	
Salas Tim	Time: F	Relinquished by:	Josh	Received by:	T	Spate Time	40 2. 6.	١.	+0.00F	H W	4. d.						v	
						A-19 124119												

AT08/24/19

	لے	<u></u>								<u>(N</u>	1 10	人)	Air Bubbles										and Target Analytes.		
	ENVIRONMENTAL	LABORATORY						nity	ile	∀IK	/ - ·	шə	General Ch						×				\nal		
5	Z	É		ග			2	೦೦೩	suc	oin	A	เมอ	General Ch				×	×					_ iet ⊿		
	Σ	Š		3710	20		, <u>-</u> .						Dissolved I				×				\perp		[arg		
'	Ž	80	Ë	Σ	505-345-4107	st	<u> </u>		_		(A										\perp	<u> </u>	딜		
	8	4	rtal.c	ne, I	5-34	Request							8560B (VO	×								_			
	ξ	S	nme	uera	20								S081 Pestic									_	_ 1 1 1 1 1 1 1 1 1		
	Z	SI	iviro	Albuquerque, NM 87109	Fax	Analysis		(°OS')					(F,Cl								<u> </u>	+	⊒e ⊠		
			www.hallenvironmental.com	t		Ana		ĺc					PAH (8310			×			<u> </u>		-	-	Analytical Methods		
	HALL	4	ww.h	4901 Hawkins NE	505-345-3975			(5	IVVI				EDB (Metho								+	+	a a		
1	Ì	A	≶	wkin	-345				-	_			TPH (Metho										- ₹ 		
	F-7			Ha	505		(MIKO	אח				88108 H9T	×	×						_	-	See		
	Ц			4901	Ţe <u>.</u>								BTK+X3T8	\vdash						-	-	+	-ĭ₹ ::		
				-			HÌ						BTM+X3T8							\vdash	+	+	Remarks:		
	-	1			<u> </u>				Т					ر. ا	N	اء	ı		- 1	\vdash	+	+		<u> </u>	
							چ			- 919-561-7055			. ℃	202	202	62	202	2002	8				Time	الم الم	J.
			_				T			96		_	HEAL NO. $8 \mathcal{E} 78$	۲	(12	()	1	\					Ti	mi
			ĕ	ent			S			19-5	0	50	НЕ <i>/</i>										Date 8/2		<u> </u>
			ual	Ā			Ž			6-	oN □	1	19.0										\$ L	֓֞֞֞֞֜֞֞֩֓֞֩֞֩֓֓֓֡֓֓֞֩֡֡	100
		Rush	2019 Annual GW	Sampling Event			Project Manager: Gregory McCartney			Tracy Payne		566	live					4	l				7		7
		<u>~</u>	19/	m.			Gre			싥	es	ure:	Preservative Type	НСІ	Neat	HNO3	HNO3	H ₂ SO ₄	Neat					<u>.</u>	}
Time:			20	Š			ger			Tra	X Yes	perature:	Pres		_	I	I	I	_						3
		dard	Project Name:				lana					Femp	ier d#	A-5	= 5	= 5	<u> </u>	= 7	- 5				_ 	3	J.
Turn-Around) ;	X Standard	ect N		Project #:		್ಕ್ಷ ಕ್ಷ			Sampler	.e	_ eld	Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1				q pay		1
<u> </u> <u> </u> <u> </u> <u> </u> <u> </u>		×	Proj		Proj		Proje			Sam	On Ice:	Sample Tem	გ ₹	40m	2; an	B 22	유	1, g	56 pla				Received by:	Received by	
								7																丁	
5	<u>.</u>	_					ے		➤ Level 4 (Full Validation)	1			Sample Request ID												· ·
Ç	3	<u>n</u>			113		n.co	3777	 				dne	63	63	63	63	မ္မ	63)
R e	2	Tell			87,		oleur		<u>.</u>		Ì		. Re	MW-63	MW-63	MW-63	MW-63	MW-63	MW-63						
>		맞		•	ΣZ	8	petro	-	<u>⊅</u> 4				nple		_	*	=	_							
ţ		Œ Œ)66i	jd,	233	thon	-	Č L				Sar											ᡭ	
		<u>0</u>		;R 4	mfie	-12	nara	>	<		닒			_	_						-	-		shed t	
Chain-of-Custody Record	<u>'</u> '	Client: Western - Bloomfield Terminal		Mailing Address: 50 CR 4990	Bloomfield, NM 87413	419-421-2338	gimccartney@marathonpetroleum.com				EXCEL		Matrix	H ₂ O	H ₂ 0	H_2O	H ₂ 0	H ₂ 0	H ₂ O				Relinquished by:	Relinquished by:	
ç	<u>'</u> ,	terr		SS:	80	4	artne	<u>:</u>									_	_	_	+	-	+			
jaj.		Nes		ddre			mcc	QA/QC Package:	<u>5</u>		X EDD (Type)		Time	0851 11/22/					\mapsto				Time:	7 1 1 2 7 4 1 2 4 4 1 2 4 1 2 1 2 1 2 1 2 1 2 1 2	카
S		- ا نځ		ng A		Phone #:		C Pa	olaliualu	□ Other	<u>) aa</u>									+	+	+			8/28/18/19/19
		Ē		Vlaili		Phor	Email:	QA/G	ნ ⊐	0	×		Date	122					ightarrow				Date: 8/23/19	Date	33

3 or 14

Č	20.0) t	Chain of Custody Docord	Tire Around Time.	Time:		I											ı
5	ם -	5 5	astody Incolla	מוווסול-וווח	Ď				I	HALL		2	IRC	ENVIRONMENTA	III S		4	
Client:	Weste	rn - Blc	Western - Bloomfield Terminal	X Standard	□ Rush				•	ANALYSIS	Ž	SI		LABORATORY	2		2	
				Project Name:	2019 Annual GW	ual GW			i	www.hallenvironmental.com	allen	ironr	·	100 100 100) :		
Mailing Address:	Address		50 CR 4990		Sampling Event	g Event		901	∃awki	4901 Hawkins NE	•	enbno	rque,	Albuquerque, NM 87109	7109			
		Bloom	Bloomfield, NM 87413	Project #:				Tel. 5	05-34	505-345-3975		Fax	505-34	Fax 505-345-4107	2,2			
Phone #:		419-42	419-421-2338								Analysis	sis F	Request	st				
Email: ç	jmccar	tney@ma	gjmccartney@marathonpetroleum.com	Project Manae	ger: Gregor	Project Manager: Gregory McCartney										z		
QA/QC Package:	ackage:											([†] OS	s _i g(τλ	
☐ Standard	lard		X Level 4 (Full Validation)							(3)		S' [†] O∘)d 7				iuin	
□ Other				Sampler:	Tracy Payne	e - 919-561-7055						∃' ^z C	808		***		/IKS	()
X EDD (Type)	Type)_	EXCEL		On Ice:	ĭ Yes	oN 🗆						N ^ε	8/8	(A	sls		/ - ·	/ 10
				Sample Temp	perature: Se	See penals pail						ON'			jəlV		шə	Y)
i				Container	Preservative	*						ID,F)			рел		นว เช	səlq
Date	lime	Matrix	Sample Request ID	Type and #	Туре	HEAL No.	+X3T	+X∃T	N) Hd	N) 80	3) HA	suoin	B0 9 8	3) 027	lossi	ener	ener	ı. Buk
						1908678	_		-	-	_	ıΑ	_	_	ıa		ອ	iΑ
842/9	1615	H ₂ O	MW-64	40ml VOA-5	HCI	203		×					×					
		H ₂ O	MW-64	250 ml amber-1	Neat	703		×										
		H ₂ O	MW-64	250 ml plastic-1	HNO3	592					<u>.</u> ×							
		O ^z H	MW-64	125 ml plastic-1	HNO³	592									×	×		
		H ₂ O	MW-64	125 ml plastic-1	H ₂ SO ₄	502										×		
${\rightarrow}$	\rightarrow	H ₂ O	MW-64	500 ml plastic-1	Neat	B											×	
	ime:	Relinquished by	Ay:			Ë	Remarks:		see /	∖naly	ical	Meth	spo	See Analytical Methods and Target Analytes.	arge	it An	alyte	S.
	24.6	*	\	1/1/2/8	3													,
S TA LA	17.4b			Received by:	_ {	28/24/19												-
		× 71 × 71 × 71 × 71 × 71 × 71 × 71 × 71				133]

-	AL	ANALYSIS LABORATORY						- Ity	kalir				eneral (×				See Analytical Methods and Target Analytes.	
5	ENVIRONMENTAL						-	_					eneral (-	 		×	×			+	\neg	rt An	
	III V	2		- Albuquerque, NM 87109						S	etal	M b	evlossi	3			×				十	\dashv	arge	
	Ž	Ö	Ę,	.8	505-345-4107	.				(AO\	√-im	19S) 07S	8						-			Di T	
	8	4	ıtal.c	Z Ne. ⊿	346	lnes							V) 809S	_						X			sar	
	Į		ımer	nerd	. 50,	Rec															\dashv	_	hod	
	Z	SIS	viror	bnq	Fax	Analysis Request	_	(⁷ OS' ⁷					⊣) snoin									_	Med	
		<u></u>	haller	٠,	ŕ۷	Ana	_	(5					188) HA			×			<u> </u>		_		tical	
	HALL	Ž	www.hallenvironmental.com	S NE	-397			- (0					DB (Mer		.					\vdash	+	\dashv	naly	
	Ï	¥	5	awkin	505-345-3975								PH (Met	-						 H	+	\dashv	Ę Ş	
	П			4901 Hawkins NE	I. 50		(OAM					108 Hd	_	×	 					-	\dashv	1	
-				490	Ę.		(λluo ε	(Ga:	Нс	11+3	38T	M+X3T	1						$ \uparrow $	\dashv	\exists	Remarks:	
_								(12	08)s	ΝB	IT+3	18T	TEX+M	1									Ren	
									L.	6			. (>	774	73	<u> </u>	199	ュ	100	202			₹	473
							they		1	919-901-109	00		EAL No.	7 1	12	189	12	73	Ğ	12			Time 1546	Time S
		İ	š	Ħ			Carl		2	000		1	HEAL No.	2		İ							£ 4	e G
			ial G	Eve			Σ			• [7		3	7										Date (Sa)	
		hsr	2019 Annual GW	Sampling Event			Jory	1		IIacy rayiie		۳			<u> </u>						+	-		
١.		□ Rush	19 A	mp			Gre		Ò	acy 2007	M respectature 4		Preservative Type	무	Neat	HNO3	HNO3	H ₂ SO ₄	Neat				1	6
i dei	 - -			Š			ger		ŀ		≱ A		Pres T		2	=	I	<u>Ť</u> `		175	į		-3	26
		dard	Project Name:				Project Manager: Gregory McCartney				Temr		ner nd #)A-5	= 5	= ½	= 7	= 7	= 1				i	4/2
Turn-Around	Š	X Standard	ject I		Project #:		ject I		<u> </u>	Sailipiei. On loc:	Sample Tem		Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1	40 ML			Received by	Referenced by:
Ŀ	<u> </u>	×	Pro		F.	T	<u> </u>		<u>0</u>	<u>8</u> 6			ک ک	4 0	, ,	" <u>a</u>	, 👨	, 0	** <u>a</u>	 25 25	_	\dashv	Rec	A. A. A. A
_									tion)				<u>_</u>											
	5	na			ဗ		mo:		X Level 4 (Fuil Validation)				Sample Request ID	١						Y				
70	וט	m.e			741		em.e		> =				Red	MW-70	MW-70	MW-70	MW-70	MW-70	MW-70	BLANK			;	×
) 		틸			E S		etrole		7 ⊤)				ble	Į	Z	Ξ	Σ	Z	Z					3
70	3	nfiel		990	d, N	338	Jonp		Leve				Sam							TAIP			. \	ĮŌ
U		00		R 4	nfie	21-2	arath	,	K	_	اب			-		_		<u>.</u>			\bot	4	i â	nquished by: United the control of
Of-	<u>}</u>	m-B		50 CR 4990	Bloomfield, NM 87413	419-421-2338	ney@r				LACE		Matrix	H ₂ O	H ₂ 0	H ₂ 0	H ₂ 0	H ₂ 0	H ₂ O	H20			Relinquished by:	Relinquis
Chain-of-Custody Becord	5	Western - Bloomfield Terminal		Mailing Address:			gimccartney@marathonpetroleum.com	QA/QC Package:	ard	Ciner (Type)	- <i>j</i> pc/ -		Time	0145					>	1	\top		Time: Style	^
Č	5	Client: 1		ling 4		Phone #:	Email: g	QC P.	☐ Standard		֡֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝		Date							*	+	\dashv	<u> </u>	<u></u>
		送 등		Mai		H	ĽЩ	S I	,, ,	_ Б	<		De	8/23/19					>	9/23/4		ı	Date: 8/23/4	Date:

IATURNOGIVUR IIAH	ANALYSIS		4901 Hawk	Tel. 505-345-3975			(ʎluo	(805	1) \DE ⊣(G	IЧТ ОЯ	(Ringh # # @ #	ĘĄ	81E) BTE) HqT	X		200	92	702	1	11.6			Date Time Remarks: See Analytical Methods and Target Analytes.	150 1546	/ bate Time 08/24/19
Turn-Around Time:	X Standard Rush	Project Name: 2019 Annual GW	Sampling Event	Project #:		Project Manager: Gregory McCartney			Sampler: Tracy Payne	On Ice: 🖈 Yes	Sample Temperature: See	Container Preservative	lype	TO MC	\vdash	PMBER- NEA	PLASTIC-1 HNO-2			-	_		Received by:	isas-	Received by:
Chain-of-Custody Record	Western - Bloomfield Terminal	d.	50 CR 4990	Bloomfield, NM 87413	419-421-2338	Email: gjmccartney@marathonpetroleum.com P		X Level 4 (Full Validation)	Ø	EXCEL	<u>S</u>	Matrix Sample Request ID	-	HO DUPLICATE #2			20	~~~		120			Relinquished by:		Relinquished by: Re Re Re
Chain-of	Client: Western		Mailing Address: 5	Ē	Phone #: 41	Email: gjmccartne)	QA/QC Package:	□ Standard	□ Other	X EDD (Type) E		Date Time M		423/19 - H										. ગુનુડ	Date: Time: Reli

	. >-								()	1 1C	(人)	Air Bubbles	_	-				<u> </u>		-	-	es.			
•	LABORATORY	 				_	ity	alin	 ⊄!K	/ - ·	เมอ	do leranes	+			_		<u> </u>		+	+	See Analytical Methods and Target Analytes.			
HALL ENVIDONMENTAL		, 1 1				z	008	gsu	oin	Α	เมอ	General Ch				×	×				+	₩ ₩			
1	! ≥		7109	7(sls	jeľ	1 bavlossiC	1			×						arge			
2	Ö	E E	.8 ⊠	7410				·		(A	ΟV.	-imə2) 0728	3] ⊒ [
C	3 (Ital.c	le L	Fax 505-345-4107	Request					_		3260B (VO										sar			
Ę	4	Ψ	uerq	506	Rec							S081 Pestic	4							\perp		hod			
Ź	Si	<u> Vir</u>	Albuquerque, NM 87109	Fax	Analysis		([†] OS'					 √N,G) Snoin	╀							_	_	Met			
Щ	ANALYSIS	www.hallenvironmental.com	- 1		Ana		- /					M 8 ARD?	+		X			<u> </u>			\bot				
	! \	ww.h	4901 Hawkins NE	Tel. 505-345-3975				SM				DB (Metho 	₩	<u> </u>	-	<u></u>				_	+	⊣alyt			
Ì	Z	\$	wking	-345		_						PH (Metho	—		<u>.</u>					+	+				
	, <u> </u>		1 Haj	505		-	MKO	I/O>				EPI 8015B	4—	<u>بر</u> ا		<u> </u>				+	╁	-\S			
			490,	<u>–</u>								STEX+MTB	+							_	_	- isi			
												BTM+X3T8	+-						\vdash	\dashv	+	Remarks:			
											lo		 		~	r-	~	7		<u> </u>	+	+-	2		
						ey			- 919-561-7055		3	9.7	101	13	15/9	3	12	102				Time	25 F	1.4119 1.20	
		_	+			artu			561		Rine	HEAL No.] `	`	`			! '						3/8	
		2	ven			<u>S</u>			919.	9	ا له	-	\$									Date /	2/3/15	0	
		nua	ıg E			Ŋ				oN □	See		_									_	~		
	Rush	Project Name: 2019 Annual GW	Sampling Event			lager: Gregory McCartney			Tracy Payne			Preservative Type		۱ ۲	Ĭ,) ki	. 4	<u> </u>						7	
<u>.</u> :		019	Sam			פֿי			acy	⊠\Yes	Sample Temperature:	eserval Type	K	NEAT	T NON I	FONE	4,504	NEAT					3	4	
Turn-Around Time:	ġ	ne: 2	•			lage			Ė	K	nper		1	Z	エ						+	│	S.	1	
roun	X Standard	t Nar		t #:		Project Man			er:		e Ter	Container Type and #	40 HC UR	7 5	7 2	125 ML PLASTK-1	125 ML PLASTIC-1	See ML PLASTIC				d by:	1		
urn-A	Ste	ojec		Project #:		rojec			Sampler:	On Ice:	ampl	Sonta ype (0 1	250ML Amber-	250ML PLASTIC-1	25 t	125 ML PLASTIC	000				Received by:	Received by:		
<u> =</u>	_	4		ď	Π	<u>-</u>			Ϋ́	<u> </u>	ĊĎ.) 	-	NA	40	+0	70	<i>V</i> 0 -			+	- Re	7	ر:_	
7								X Level 4 (Full Validation)	ı			Et D	1												
Ö	ina			13		moo.		/alida	İ			sent	H X												
Sec	erm			374		enm						Sample Request ID	B. ANK#2											$\boldsymbol{\varepsilon}$	
7	T D			Σ	_	etro) 				əldı	1	1										3	
50	nfie		066	d,	2338	hon		Leve				San	FIELD									 		<u> </u>	>
Sn	<u> </u>		R 4	mfie	21-;	narat		×		إي		<u> </u>	1							+	-			43	
5	B-		50 CR 4990	Bloomfield, NM 87413	419-421-2338	3y@n				EXCE		Matrix	450					->				Relinquished by:	Aeinonished by	July Loule	٠
Q u	terr			a	4	artne	<u>је:</u>							<u> </u>						_	+				
Chain-of-Custody Record	Western - Bloomfield Terminal		Addre		این	gjmc	ackac	dard		Туре		Time	286					>	,			Time:	1547 Time	1740	
Ö	Client:		Mailing Address:		Phone #:	Email: gimccartney@marathonpetroleum.com	QA/QC Package:	□ Standard	□ Other	X EDD (Type)		Date	8/23/9									i.	7	رح.	-
	ਹੈ		ĬĮ		[윤	삐	Q			×			100									Date:	Date:		

Ç		,		- -	i								ı	4	5	S .	اد
3	ומווי	-TO	Chain-or-Custody Record	l urn-Around	ime:				Ĭ	HALL	Z	ZIR	0	Σ	ENVIRONMENTAL		
Client: V	Veste	rn - Blo	Western - Bloomfield Terminal	X Standard	□ Rush				*	Ž	SI	S	ABO		ANALYSIS LABORATORY	X	
				Project Name:	: 2019 Annual GW	nual GW			S	w.hall	enviro	nment	www.hallenvironmental.com) ' ' -	! !		
Mailing Address:	ddress	50 CR 4990	4990		Sampling Event	g Event		301 H	wkins	빌	Albuc	neran	4901 Hawkins NE - Albuquergue, NM 87109	8710	ത		
		Bloom	Bloomfield, NM 87413	Project #:				Tel. 50	505-345-3975	3975	Fax	. 505	505-345-4107	107			
Phone #:		419-421-2338	1-2338							A	nalysi		rest				
Email: g	jmccart	ney@ma	gimccartney@marathonpetroleum.com	Project Mana		ger: Gregory McCartney									7		
QA/QC Package:	ıckage:									(ros					ıity	
□ Standard	ard		X Level 4 (Full Validation)							(SW			-			uile	
□ Other				Sampler:	Tracy Payne	ne - 919-561-7055										JIK:	(1
X EDD (Type)	Type)_	EXCEL		On Ice:	X Yes	ON 🗆							(V			/ - ·	1 TC
		•		Sample Tem	perature: See	e Dal RMOK										шə	Y)
						1 1										ч э	sə
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	//+X∃T8 //+X∃T8	∙08 Hd.	M) Hq.	£8) HA	8 AЯЭ 8	9억 180) 809 Z	S) 072 evlossi	lsneral	leneral	ddu8 ir
8/23/2 0940	A1100	Н,0	MW-44	40ml VOA-5	FC				_	_	-				-	+	4
			MW/AA	250 ml		700		>	_				[-		+	
	_	25	IVIVY-4-4-	amber-1	Neat	B		<			_						
-		H ₂ O	MW-44	250 ml plastic-1	HNO ₃	87					<u>×</u>						
		H ₂ O	MW-44	125 ml plastic-1	FONH 3	802								×	×		
		H ₂ O	MW-44	125 ml plastic-1	H ₂ SO ₄	488									×		
->	->	H ₂ O	MW-44	500 ml plastic-1	Neat	802										×	
														$\vdash \vdash$			
							\perp		\dashv		_	1	+	+		+	\Box
Dațe:	Time:	Relinquished by:		Received by:		Date Time	Remarks:	- 1	- Au	alytic	⊒ We	See Analytical Methods		Tard	and Target Analytes.	alyte	<u>ي</u>
1 4%	is44	\X	7 1	Petron	last 1	JES/ 6/156/8										•	
Date: Time:		R él inguished by	d by:	Received by:)	J.	Date Time 03/24//9									:		

													1)	5	: -	1
Ch	ä	of-Cu	Chain-of-Custody Record	Turn-Around Time:	Time:				Ì	H	Z	5	FNVTRONMENTAL	Σ	Z	▼	
Client: W	ester	rn - Blo	Western - Bloomfield Terminal	X Standard	□ Rush				A	Z	Ş	<u>.</u> <u>S</u>	ANALYSIS LABORATORY	: O	Š	Ö	ı≿
- 				Project Name	e: 2019 Annual GW	ual GW			≶	ww.ha	lenvir	nmer	www.hallenvironmental.com	Ε			
Mailing Address:	dress:		50 CR 4990		Sampling Event	g Event	4	01 H	4901 Hawkins NE	, NR	Albu	dnerd	Albuquerque, NM 87109	1871	60		
	_	Bloom	Bloomfield, NM 87413	Project #:			ř	Tel. 50	5-345	505-345-3975	芷	Fax 505	505-345-4107	4107			
Phone #:		419-421-2338	1-2338							A	Analysis		Request				
Email: gjn	nccart	ney@ma	Email: gjmccartney@marathonpetroleum.com	Project Mana	ger: Gregor	Project Manager: Gregory McCartney	(,								-	_	
QA/QC Package:	kage:									(ဝ၁		
□ Standard	Q		X Level 4 (Full Validation)							(SN					งรเ		
□ Other				Sampler:	Tracy Payne	e - 919-561-7055									ioin		(1
X EDD (Type)	/pe)	EXCEL		On Ice:	XYes	□ No							•				/ 10
				Sample Temp	perature: <	e palkements							(A				(Y (
Date	Time	Matrix	Sample Reduest ID	Container	Preservative	, , HEAL No.	8TM+X 8TM+X	8015B	(Metho	(Metho (8310	5M 8 A	IO,F) en Pestio	B (AO	imə2)	olved i	eral Ch	səlqqn
				ı ype and #	lype	1908 E78							8560				Air B
0160 61/52/8	310	H ₂ O	MW-62	40ml VOA-5	HCI	602		×					×				<u> </u>
		H ₂ O	MW-62	250 ml amber-1	Neat	b02		×									
		H ₂ O	MW-62	250 ml plastic-1	HNO3	62					×						
		H ₂ O	MW-62	125 ml plastic-1	HNO3	502									×		
		H ₂ O	MW-62	125 ml plastic-1	H ₂ SO ₄	P2									×		
<u>→</u>	\subseteq	H ₂ O	MW-62	500 ml plastic-1	Neat	729										×	
	•																
- plęz/8	ı	14.0	TRIP BLANK	40 MS	HC.I	0/02							X	\Box	\square		
											-	+					
Date: Time:		Refinquished by	.xq	Received by:	-5	Date Time	Remarks:		₩ ₩	See Analytical Methods	- ₹ <u>@</u>	-thod	s and	٦⊒⊢	_get '	Anal	and Target Analytes.
5 St.	_	X	3		LINE	145/19 1546											
8/25/4/1740		Amindulished by:	Andrew by:	Contraction of the contraction o	7	61/57/28											
					I												

9 0 14

ပ	hain	-of-Cu	Chain-of-Custody Record	Turn-Around	Time:						i			֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֡֓֓֓֡֡֡֓֓֓֡֡֡֓֡֓	5		1
		; ;						Ц	Ì	HALL		Z	ENVIRONMENTAL	Σ	Z	₹	
Client:	Weste	irn - Blo	Client: Western - Bloomfield Terminal	X Standard	□ Rush				A	M	YS]	SL	ANALYSIS LABORATORY	5	Ă	S	_
				Project Name:	: 2019 Annual GW	ual GW			ş	w.ha	lenvir	nment	www.hallenvironmental.com	_			
Mailing	Mailing Address:		50 CR 4990		Sampling Event	g Event	4	901 H	awkins	NE.	Albu	dnetqu	4901 Hawkins NE - Albuquerque, NM 87109	8710	o		
		Bloom	Bloomfield, NM 87413	Project #:			_	Tel. 50	505-345-3975	-3975	ü	Fax 505	505-345-4107	107			
Phone #:	#:	419-42	419-421-2338							٩	nalys	Analysis Request	uest				
Email:	gjmccar	tney@ma	gimccartney@marathonpetroleum.com	Project Mana	ger: Gregor	Project Manager: Gregory McCartney	-								2		
QA/QC	QA/QC Package:	-								(೦೦೪	ıty	
☐ Standard	dard		X Level 4 (Full Validation)							SW					gsu	alin	
□ Other				Sampler:	Tracy Payne	e - 919-561-7055										VIK:	(N
X EDD (Type)	(Type)	EXCEL		On Ice:	X Yes	No D							(0)			/ - ·	110
				Sample Temp	perature: 👟	out Remaks										wə	Y)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HE 16/8/	BTM+X3T8 BTM+X3T8	88108 H9T	odieM) H9T	EDB (Metho	RCRA 8 Me	Anions (F,Cl 8081 Pestic	OV) 80928	:0728 (Semi- 	General Ch	General Ch	Air Bubbles
9/23/p	0440	H ₂ 0	MW-31	40ml VOA-5	고 단	110			↓	_	+	_	1	_			<u>′</u>
		H ₂ 0	MW-31	250 ml amber-1	Neat	11/2		×			 -						
		H ₂ O	MW-31	250 ml plastic-1	HNO3	all					×						
		H ₂ O	MW-31	125 ml plastic-1	HNO ₃	1)2								×	×		
. <u> </u>		H ₂ O	MW-31	125 ml plastic-1	H ₂ SO ₄	112									×		
\rightarrow	\rightarrow	H ₂ 0	MW-31	500 ml plastic-1	Neat	112										×	
																_	
							_						<u> </u>				
Date: 8/25/9	Time. }\$\f	Relinquished-by:	d-by:	Received by:	J. J. J. J. J. J. J. J. J. J. J. J. J. J	B/3/19 1546	Remarks:		ee Ar	ıalytic	ial M	thod	See Analytical Methods and Target Analytes.	Tarç	et A	naly	es.
Date: 0	Time:	Relinquished by:	elinquished by:	Received by:) Date 1/19 03/2 4/19											

Chain	Client: Weste		Mailing Address:		Phone #:	Email: gjmcca	QA/QC Package:	□ Standard	□ Other	X EDD (Type)		Date Time	8/23/P 1030					→				Date: Time:		
-of-Cu	ern - Blo			Bloom	419-42	rtney@ma			•	EXCEL		Matrix	H ₂ 0	H ₂ O	H ₂ 0	H ₂ O	H ₂ 0	H ₂ O				Relinquished by:	E	
Chain-of-Custody Record	Western - Bloomfield Terminal		50 CR 4990	Bloomfield, NM 87413	419-421-2338	Email: gjmccartney@marathonpetroleum.com		X Level 4 (Full Validation)				Sample Request ID	MW-29	MW-29	MW-29	MW-29	MW-29	MW-29				by:	inquished by:	
Turn-Around Time:	X Standard	Project Name:		Project #:		Project Mana			Sampler:	On Ice:	Sample Temperature:	Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1				Received by:	Received by:	2
Time:	□ Rush	: 2019 Annual GW	Sampling Event			ger: Gregor			Tracy Payn	X Yes	oerature: Se	Preservative Type	HCI	Neat	HNO3	^E ONH	H ₂ SO ₄	Neat					1	,
		nal GW	g Event			Project Manager: Gregory McCartney			Tracy Payne - 919-561-7055	ON	See pa Remarks	HEAL NO.	-0.2.44	2/2	92	775	202	702				Date Time 546	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			4901	Tel			(λ uc	as c	9)F	ЧЧТ	.+∃	9TK+X3T8 9TM+X3T8 9 2108 H9T		×							 -	Remarks:		
Ĭ	Y	*	4901 Hawkins NE	505-345-3975					(I	.81	₽ pc	TPH (Metho										See An		
-	ANALYSIS	w.haller	- 1	10	Ans				IIS0	728	3 10	PAH (8310			×							alytica		
HAII ENVIDONMENTAI		Ψ	Albuquerque, NM 87109	Fax 50	Analysis Request			S' [†] O¢	J, <u>s</u> O	N'ε	ON'I	CHO, TO, TO, TO, TO, TO, TO, TO, TO, TO, T										Analytical Methods		
	LABORATORY	ntal.co	lue, N	505-345-4107	quest							OV) 80928	₩						,			ds and		
Σ	080	, ! E	1871	4107								imə2) 0728 I bəvlossiQ	-			×						d Tar		
	¥	! !	60			3	ဝ၁	พูรแ				General Ch	1			×	×					get A		
Į.	S S						ίγ	iuile	VIK:	,	шəі	General Ch						×				and Target Analytes.		
									- U	4 10	Λ)	səldduR זiA	ļ	<u> </u>				ļ		ļ		တ္တဲ့		

11 of 14

į	•	•					i						•) 	- 5	4	
5	-jain	ot-cu	Chain-of-Custody Record	Turn-Around 1	Time:				¥	HALL ENVIRONMENTAL	2	2	2		▼		
Client:	Neste	rn - Blo	Western - Bloomfield Terminal	X Standard	□ Rush				A	ANALYSIS LABORATORY	SIS	3	BOI	5	0	. ≿	
				Project Name:	2019 Annual GW	iual GW			WW	www.hallenvironmental.com	vironn	ental.c	L ES	i 	 	! !	
Mailing A	ddress	Mailing Address: 50 CR 4990	4990		Sampling Event	g Event	49	4901 Hawkins NE	vkins N	1	anbngr	Albuquerque, NM 87109	NM 87	109			
		Bloom	Bloomfield, NM 87413	Project #:			<u>~</u> 	Tel. 505-345-3975	-345-3		Fax	Fax 505-345-4107	5-4107				
Phone #:		419-421-2338	1-2338							Ana	lysis F	Analysis Request	it				
Email: g	jmccari	tney@ma	Email: gjmccartney@marathonpetroleum.com	Project Manag	ger: Gregor	er: Gregory McCartney	(((·			- 9			z		
QA/QC Package:	ckage:							NBC		((⁵OS	CB.		001			
☐ Standard	ard		X Level 4 (Full Validation)					1/0				d 7		ysu			
□ Other				Sampler.	Tracy Payn	Tracy Payne - 919-561-7055					_	3808				(1	(1
X EDD (Type)	Type)	EXCEL		On Ice:	¥ Yes	oN □						8 / 8	(A			4 40	VI JC
	:			Tem	perature: See	2 pg / Remars										/ //	۱۱ (
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Tvne	l I	atm+x: atm+x:	8015B	(Metho	0168) I	lO,∃) and	Pestic	-iməS) (solved I	eral Ch	30 99116	səlqqng
				i ype alla #	246	1968 E 73] √! V	1 IIV
1 10/62/2	1135	O ^z H	ES-WM	40ml VOA-5	HCI	SP		×				×					
		H ₂ O	MW-53	250 ml amber-1	Neat	8/2		×						ļ			T
		H ₂ O	MW-53	250 ml plastic-1	HNO3	703				×							1
		H ₂ O	MW-53	125 ml plastic-1	HNO3	-d3								×	×		T
		H ₂ O	MW-53	125 ml plastic-1	H ₂ SO₄	SP2								×			Γ
->	>	H ₂ O	MW-53	500 ml plastic-1	Neat	ED2								<u> </u>	×		T
												+		\dashv	_		Т
Date:	Time:	Relinquished by:	ph.	Received by:		Date Time	Remarks:		See Analytical Methods and Target Analytes.	 ytica	Meth	ods a	–¦≝ Pe		Anal	ytes.	
423/19	ጋዝር	7	7		Llast	8/23/19 1546								,		,	
Date: T	Time: 7-40	Relinquished by:	uished by: (ICL) (LES)	Received by:	h	Date Time (08/24/19)											
-)													

13 OF 14

	1	L ≿								(N	JO	٧)	Air Bubbles	_			-					rtes.	, ,
-	ENVIRONMENTAL	LABORATORY						nity	K9	IΙΑ		wə	General Ch						×			See Analytical Methods and Target Analytes.	
5	Z	E		æ			2	೦೦೩	suo	,in,	Α	เษเ	General Ch				×	×				et A	
)	Σ	5		7109	07								Dissolved I	<u> </u>			×					ſarg	
-1	Ž	0	ΕO	ΣN	505-345-4107	st					(A			<u> </u>								_ pu	
	80	3	ntal.c	le, I	5-34	dnes							8260B (VO	×								ds a	
		S	nme	hero	× 50	s Re							Anions (F,Cl							_		tho(
	Z	SI	nviro	Albuquerque, NM 87109	Fax	Analysis Request		(108)					RCRA 8 Me	ļ		×						II Me	
	يّ	ANALYSIS	www.hallenvironmental.com	•		An		(8					0188) HA9									/tica	
	HALL	Z	ww.	N SL	5-39								EDB (Metho									ınalı	
	I	<	-	4901 Hawkins NE	Tel. 505-345-3975					(r.	81	₽ pc	TPH (Metho			.						өө д	
				01 H	<u>بر</u> 50		ë	/WBC	оы	۵/e	ВО	၅) :	82108 H9T	×	×								
				49	۳		Ü						8TM+X3T8									Remarks	
_								(120)8)s	B,ē	MT	.+ <u>∃</u> :	BTEX+MTB										
							tney			61-7055		femals)	HEAL No.	N S S	215	dis	212	Sp	8			$\frac{g}{h}$	Time
			ual GW	y Event			y McCai			e - 919-5	oN □		 									Pate 8/22/	Date
	Time:	□ Rush	2019 Annual GW	Sampling Event			ger: Gregory McCartney			Tracy Payne - 919-561-7055	Ø Yes	erature: Seo	Preservative Type	HCI	Neat	HNO3	HNO3	H ₂ SO ₄	Neat			The state of the s	
	Turn-Around	X Standard	Project Name:		Project #:		Project Manag			Sampler:	On Ice:	Sample Temperature: See pa l	Container Type and #	40ml VOA-5	250 ml amber-1	250 ml plastic-1	125 ml plastic-1	125 ml plastic-1	500 ml plastic-1			Received by:	Received by:
	Chain-of-Custody Record	Western - Bloomfield Terminal		066	Bloomfield, NM 87413	2338	gimccartney@marathonpetroleum.com		★ Level 4 (ruii validation)				Sample Request ID	MW-67	MW-67	MW-67	MW-67	MW-67	MW-67			y.	
	of-Cus	rn - Bloo		Mailing Address: 50 CR 4990	Bloomfie	419-421-2338	tney@mara	•	<		EXCEL		Matrix	H ₂ O	H ₂ O	H ₂ O	H ₂ 0	H ₂ O	H ₂ O			Relinguierfearby:	Relinquished by:
	hain	Weste		Address		 	gimccar	ackage:	פֿב		(Type)_		Time	1330					>			Time: }SY\b	Time: /
	<u>ರ</u>	Client:		Mailing /		Phone #:	Email: ç	QA/QC Package:	L Standard	□ Other	X EDD (Type)_		Date	8/23/8					\rightarrow		_	Date: 0	Date:

14 OF 14

ပ	hain	-of-Ci	Chain-of-Custody Record	Turn-Around	Time:				I	=	L	5	HALL ENVIRONMENTAL		Ī	 	-	
Client:		rn - Bk	Western - Bloomfield Terminal	X Standard	□ Rush				 	ANALYSIS	i	SI	! ≤	LABORATORY	2	: 0 : H	, <u>Y</u>	
				Project Name: 2019 Annual GW	2019 Ann	ual GW			5	ww.h	allenv	ronm	www.hallenvironmental.com	L LIOS) !	1 	
Mailing	Mailing Address:		50 CR 4990		Sampling Event	g Event	4	01 H	4901 Hawkins NE	s NE	- AR	enbn	Albuquerque, NM 87109	N N	7109			
		Bloom	Bloomfield, NM 87413	Project #:			F	el. 50	Tel. 505-345-3975	397		Fax	505-345-4107	5-410	<u>/</u>			
Phone #:	<u></u>	419-42	419-421-2338								ınal		Request	st				
Email:	gjmccar	rtney@m	Email: gjmccartney@marathonpetroleum.com	Project Manaç	ger: Gregor	Project Manager: Gregory McCartney	()	((7		
QA/QC F	QA/QC Package:							NRC				(POS	.B.8				Λî	
□ Standard	dard		X Level 4 (Full Validation)					N/O		(SI)		S' [†] Oc)d 7				111111	
Other	<u> </u>			Sampler:	Tracy Payne	e - 919-561-7055		NDR				∃, _S C	308					(1
X EDD (Type)	(Type)_	EXCEL		On Ice:	X Yes	□ No		ЮЯ				Ν'ε	3 / 9	(A	sls		<i>,</i>	V 10
				Sample Temp	perature: Se	See pal Pemaks		ອ)				ON'			JəlV		uie	Υ)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	ш «	EX+MTB BTM+X3T	8616B	PH (Metho	DH (8310 -	CRA 8 Me	Ю,4) anoin	281 Pestic	-imə2) 072	l bavlossi	eneral Ch	eneral Ch	ir Bubbles
843/9 1430	1430	H ₂ O	MW-68	40ml VOA-5	豆	716		Ι×				\forall		_	a	_	5	A
		H ₂ O	MW-68	250 ml amber-1	Neat	92		×		<u> </u>				ļ,			<u> </u>	
		H ₂ O	MW-68	250 ml plastic-1	HNO3	97					×						<u> </u>	
		H ₂ O	MW-68	125 ml plastic-1	HNO3	912						<u> </u>			×	×		
		H ₂ O	MW-68	125 ml plastic-1	H ₂ SO ₄	90										×		
->	\rightarrow	H ₂ O	MW-68	500 ml plastic-1	Neat	912										<u> </u>	×	
1/43/6	ţ	420	TRIP BLANK	40 M L 3	HCI	212											-	
				K													-	
9	Time: 546		1	Received by:	A	Date Time \$\\23.1/9 \SYV	Remarks:		ee A	nalyt	cal	l eth	See Analytical Methods and Target Analytes.	L pu	arge	it An	alyte	ν _ο
Date: Time:	Time:	Re The second se	7	Received by:		Date, Time												_
1070	٠	_			إ	70007												7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 09, 2019

Gregory J. McCartney
Western Refining Southwest, Inc Bloomfield
#50 CR 4990
Bloomfield, NM 87413
TEL:
FAX:

RE: 2019 Annual GW Sampling Event OrderNo.: 1908G31

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 10 sample(s) on 8/28/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1908G31

Date Reported: 9/9/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: CW 0+60

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/26/2019 8:55:00 AM

 Lab ID: 1908G31-001
 Matrix: AQUEOUS
 Received Date: 8/28/2019 8:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analys	t: BRM
Diesel Range Organics (DRO)	0.70	0.40		mg/L	1	9/3/2019 2:17:46 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	9/3/2019 2:17:46 PM	47204
Surr: DNOP	111	52.7-168		%Rec	1	9/3/2019 2:17:46 PM	47204
EPA METHOD 8260: VOLATILES SHORT LIST						Analys	t: CCM
Benzene	1.0	1.0	J	μg/L	1	9/3/2019 1:49:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	9/3/2019 1:49:00 PM	SL_W62
Ethylbenzene	4.1	1.0		μg/L	1	9/3/2019 1:49:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	1.1	1.0		μg/L	1	9/3/2019 1:49:00 PM	SL_W62
Xylenes, Total	1.3	1.5	J	μg/L	1	9/3/2019 1:49:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	89.4	70-130		%Rec	1	9/3/2019 1:49:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	93.1	70-130		%Rec	1	9/3/2019 1:49:00 PM	SL_W62
Surr: Dibromofluoromethane	98.8	70-130		%Rec	1	9/3/2019 1:49:00 PM	SL_W62
Surr: Toluene-d8	138	70-130	S	%Rec	1	9/3/2019 1:49:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Lab Order 1908G31

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/9/2019

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: OW 25+70

 Project:
 2019 Annual GW Sampling Event
 Collection Date: 8/26/2019 11:50:00 AM

 Lab ID:
 1908G31-002
 Matrix: AQUEOUS
 Received Date: 8/28/2019 8:15:00 AM

Analyses Result **RL Oual Units DF** Date Analyzed **Batch EPA METHOD 8015D: DIESEL RANGE** Analyst: BRM Diesel Range Organics (DRO) ND 0.40 mg/L 1 9/3/2019 3:30:54 PM 47204 Motor Oil Range Organics (MRO) ND 2.5 mg/L 1 9/3/2019 3:30:54 PM 47204 Surr: DNOP %Rec 47204 119 52.7-168 1 9/3/2019 3:30:54 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) 0.052 0.050 9/3/2019 9:44:35 PM G62609 mg/L 1 Surr: BFB 106 65.8-143 %Rec 1 9/3/2019 9:44:35 PM G62609 **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: CCM Benzene ND 1.0 μg/L 9/3/2019 3:01:00 PM SL_W62 1 Toluene ND SL_W62 1.0 μg/L 1 9/3/2019 3:01:00 PM Ethylbenzene ND 1.0 μg/L 1 9/3/2019 3:01:00 PM SL W62 Methyl tert-butyl ether (MTBE) ND μg/L 9/3/2019 3:01:00 PM SL_W62 1.0 1 Xylenes, Total 0.49 1.5 μg/L 1 9/3/2019 3:01:00 PM SL W62 SL_W62 Surr: 1,2-Dichloroethane-d4 98.9 70-130 %Rec 1 9/3/2019 3:01:00 PM Surr: 4-Bromofluorobenzene 100 70-130 %Rec 1 9/3/2019 3:01:00 PM SL_W62 Surr: Dibromofluoromethane 102 70-130 %Rec 1 9/3/2019 3:01:00 PM SL_W62 Surr: Toluene-d8 92.6 70-130 %Rec 9/3/2019 3:01:00 PM SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

Lab Order 1908G31

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/9/2019

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: DUPLICATE #3

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/26/2019

Lab ID: 1908G31-003 **Matrix:** AQUEOUS **Received Date:** 8/28/2019 8:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	: BRM
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	9/3/2019 4:19:52 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	9/3/2019 4:19:52 PM	47204
Surr: DNOP	123	52.7-168		%Rec	1	9/3/2019 4:19:52 PM	47204
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	0.073	0.050		mg/L	1	9/3/2019 10:08:05 PM	G62609
Surr: BFB	99.8	65.8-143		%Rec	1	9/3/2019 10:08:05 PM	G62609
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	: CCM
Benzene	ND	1.0		μg/L	1	9/3/2019 3:26:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	9/3/2019 3:26:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	9/3/2019 3:26:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	9/3/2019 3:26:00 PM	SL_W62
Xylenes, Total	0.51	1.5	J	μg/L	1	9/3/2019 3:26:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	102	70-130		%Rec	1	9/3/2019 3:26:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	99.2	70-130		%Rec	1	9/3/2019 3:26:00 PM	SL_W62
Surr: Dibromofluoromethane	102	70-130		%Rec	1	9/3/2019 3:26:00 PM	SL_W62
Surr: Toluene-d8	94.2	70-130		%Rec	1	9/3/2019 3:26:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

Lab Order 1908G31

Date Reported: 9/9/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: OW 8+10

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/27/2019 7:50:00 AM

 Lab ID: 1908G31-004
 Matrix: AQUEOUS
 Received Date: 8/28/2019 8:15:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	:: BRM
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	9/3/2019 4:44:13 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/3/2019 4:44:13 PM	47204
Surr: DNOP	121	52.7-168	%Rec	1	9/3/2019 4:44:13 PM	47204
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	9/3/2019 10:31:42 PM	G62609
Surr: BFB	108	65.8-143	%Rec	1	9/3/2019 10:31:42 PM	G62609
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: CCM
Benzene	ND	1.0	μg/L	1	9/3/2019 3:50:00 PM	SL_W62
Toluene	ND	1.0	μg/L	1	9/3/2019 3:50:00 PM	SL_W62
Ethylbenzene	ND	1.0	μg/L	1	9/3/2019 3:50:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	1.6	1.0	μg/L	1	9/3/2019 3:50:00 PM	SL_W62
Xylenes, Total	ND	1.5	μg/L	1	9/3/2019 3:50:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	9/3/2019 3:50:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	9/3/2019 3:50:00 PM	SL_W62
Surr: Dibromofluoromethane	106	70-130	%Rec	1	9/3/2019 3:50:00 PM	SL_W62
Surr: Toluene-d8	91.5	70-130	%Rec	1	9/3/2019 3:50:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1908G31

Date Reported: 9/9/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: OW 19+50

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/27/2019 8:10:00 AM

 Lab ID: 1908G31-005
 Matrix: AQUEOUS
 Received Date: 8/28/2019 8:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	: BRM
Diesel Range Organics (DRO)	0.19	0.40	J	mg/L	1	9/3/2019 5:08:42 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	9/3/2019 5:08:42 PM	47204
Surr: DNOP	121	52.7-168		%Rec	1	9/3/2019 5:08:42 PM	47204
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	9/3/2019 10:55:13 PM	G62609
Surr: BFB	105	65.8-143		%Rec	1	9/3/2019 10:55:13 PM	G62609
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	: CCM
Benzene	ND	1.0		μg/L	1	9/3/2019 4:15:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	9/3/2019 4:15:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	9/3/2019 4:15:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	5.1	1.0		μg/L	1	9/3/2019 4:15:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	9/3/2019 4:15:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	103	70-130		%Rec	1	9/3/2019 4:15:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	96.3	70-130		%Rec	1	9/3/2019 4:15:00 PM	SL_W62
Surr: Dibromofluoromethane	103	70-130		%Rec	1	9/3/2019 4:15:00 PM	SL_W62
Surr: Toluene-d8	92.9	70-130		%Rec	1	9/3/2019 4:15:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Lab Order 1908G31

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/9/2019

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: OW 22+00

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/27/2019 8:25:00 AM

 Lab ID: 1908G31-006
 Matrix: AQUEOUS
 Received Date: 8/28/2019 8:15:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analys	BRM
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	9/3/2019 5:33:13 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/3/2019 5:33:13 PM	47204
Surr: DNOP	112	52.7-168	%Rec	1	9/3/2019 5:33:13 PM	47204
EPA METHOD 8015D: GASOLINE RANGE					Analys	:: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	9/3/2019 11:18:42 PM	G62609
Surr: BFB	115	65.8-143	%Rec	1	9/3/2019 11:18:42 PM	G62609
EPA METHOD 8260: VOLATILES SHORT LIST					Analys	: CCM
Benzene	ND	1.0	μg/L	1	9/3/2019 4:39:00 PM	SL_W62
Toluene	ND	1.0	μg/L	1	9/3/2019 4:39:00 PM	SL_W62
Ethylbenzene	ND	1.0	μg/L	1	9/3/2019 4:39:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	1.2	1.0	μg/L	1	9/3/2019 4:39:00 PM	SL_W62
Xylenes, Total	ND	1.5	μg/L	1	9/3/2019 4:39:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	9/3/2019 4:39:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	95.4	70-130	%Rec	1	9/3/2019 4:39:00 PM	SL_W62
Surr: Dibromofluoromethane	106	70-130	%Rec	1	9/3/2019 4:39:00 PM	SL_W62
Surr: Toluene-d8	93.3	70-130	%Rec	1	9/3/2019 4:39:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Received Date: 8/28/2019 8:15:00 AM

Lab Order 1908G31

Date Reported: 9/9/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc Bloomfi Client Sample ID: OW 23+90

Project: 2019 Annual GW Sampling Event Collection Date: 8/27/2019 8:45:00 AM Matrix: AQUEOUS

Analyses Result **RL Oual Units DF** Date Analyzed **Batch EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB 9/3/2019 11:42:15 PM Gasoline Range Organics (GRO) 0.027 0.050 mg/L 1 G62609 Surr: BFB 115 65.8-143 %Rec 1 9/3/2019 11:42:15 PM G62609 **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: CCM 9/3/2019 5:04:00 PM SL_W62 Benzene ND 1.0 μg/L 1 Toluene ND 9/3/2019 5:04:00 PM SL W62 1.0 μg/L 1 Ethylbenzene ND 1.0 μg/L 1 9/3/2019 5:04:00 PM SL_W62 Methyl tert-butyl ether (MTBE) ND 1.0 μg/L 1 9/3/2019 5:04:00 PM SL_W62 Xylenes, Total ND 1.5 μg/L 1 9/3/2019 5:04:00 PM SL_W62 Surr: 1,2-Dichloroethane-d4 105 70-130 %Rec 1 9/3/2019 5:04:00 PM SL_W62 Surr: 4-Bromofluorobenzene 99.7 70-130 %Rec 1 9/3/2019 5:04:00 PM SL_W62 Surr: Dibromofluoromethane 70-130 SL_W62 105 %Rec 1 9/3/2019 5:04:00 PM Surr: Toluene-d8 93.3 70-130 %Rec 9/3/2019 5:04:00 PM SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1908G31-007

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Lab Order **1908G31**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/9/2019

Client Sample ID: CW 25+95

CLIENT: Western Refining Southwest, Inc Bloomfi

Project: 2019 Annual GW Sampling Event Collection Date: 8/27/2019 9:00:00 AM

Lab ID: 1908G31-008 **Matrix:** AQUEOUS **Received Date:** 8/28/2019 8:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analys	: BRM
Diesel Range Organics (DRO)	ND	0.40		mg/L	1	9/3/2019 5:57:44 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	9/3/2019 5:57:44 PM	47204
Surr: DNOP	124	52.7-168		%Rec	1	9/3/2019 5:57:44 PM	47204
EPA METHOD 8260: VOLATILES SHORT LIST						Analys	: CCM
Benzene	ND	1.0		μg/L	1	9/4/2019 1:59:00 PM	SL_W62
Toluene	ND	1.0		μg/L	1	9/4/2019 1:59:00 PM	SL_W62
Ethylbenzene	ND	1.0		μg/L	1	9/4/2019 1:59:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	0.67	1.0	J	μg/L	1	9/4/2019 1:59:00 PM	SL_W62
Xylenes, Total	ND	1.5		μg/L	1	9/4/2019 1:59:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	94.0	70-130		%Rec	1	9/4/2019 1:59:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	102	70-130		%Rec	1	9/4/2019 1:59:00 PM	SL_W62
Surr: Dibromofluoromethane	93.7	70-130		%Rec	1	9/4/2019 1:59:00 PM	SL_W62
Surr: Toluene-d8	89.2	70-130		%Rec	1	9/4/2019 1:59:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Lab Order **1908G31**Date Reported: **9/9/2019**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: FIELD BLANK #3

Project: 2019 Annual GW Sampling Event **Collection Date:** 8/27/2019 9:08:00 AM

Lab ID: 1908G31-009 **Matrix:** AQUEOUS **Received Date:** 8/28/2019 8:15:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: BRM
Diesel Range Organics (DRO)	ND	0.40	mg/L	1	9/3/2019 6:22:17 PM	47204
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/3/2019 6:22:17 PM	47204
Surr: DNOP	116	52.7-168	%Rec	1	9/3/2019 6:22:17 PM	47204
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: CCM
Benzene	ND	1.0	μg/L	1	9/3/2019 6:17:00 PM	SL_W62
Toluene	ND	1.0	μg/L	1	9/3/2019 6:17:00 PM	SL_W62
Ethylbenzene	ND	1.0	μg/L	1	9/3/2019 6:17:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/3/2019 6:17:00 PM	SL_W62
Xylenes, Total	ND	1.5	μg/L	1	9/3/2019 6:17:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	9/3/2019 6:17:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	94.8	70-130	%Rec	1	9/3/2019 6:17:00 PM	SL_W62
Surr: Dibromofluoromethane	108	70-130	%Rec	1	9/3/2019 6:17:00 PM	SL_W62
Surr: Toluene-d8	90.8	70-130	%Rec	1	9/3/2019 6:17:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

Lab Order **1908G31**Date Reported: **9/9/2019**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc Bloomfi

Client Sample ID: TRIP BLANK

Project: 2019 Annual GW Sampling Event **Collection Date:**

Lab ID: 1908G31-010 **Matrix:** AQUEOUS **Received Date:** 8/28/2019 8:15:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	9/4/2019 1:16:22 AM	G62609
Surr: BFB	103	65.8-143	%Rec	1	9/4/2019 1:16:22 AM	G62609
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: CCM
Benzene	ND	1.0	μg/L	1	9/3/2019 6:41:00 PM	SL_W62
Toluene	ND	1.0	μg/L	1	9/3/2019 6:41:00 PM	SL_W62
Ethylbenzene	ND	1.0	μg/L	1	9/3/2019 6:41:00 PM	SL_W62
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/3/2019 6:41:00 PM	SL_W62
Xylenes, Total	ND	1.5	μg/L	1	9/3/2019 6:41:00 PM	SL_W62
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	9/3/2019 6:41:00 PM	SL_W62
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	1	9/3/2019 6:41:00 PM	SL_W62
Surr: Dibromofluoromethane	106	70-130	%Rec	1	9/3/2019 6:41:00 PM	SL_W62
Surr: Toluene-d8	93.5	70-130	%Rec	1	9/3/2019 6:41:00 PM	SL_W62

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908G31**

09-Sep-19

Client: Western Refining Southwest, Inc Bloomfield

Project: 2019 Annual GW Sampling Event

Sample ID: 1908G31-001BMS	SampT	ype: MS	1	Tes	tCode: EF	PA Method	8015D: Diese	l Range		
Client ID: CW 0+60	Batch	1D: 47 2	204	F	tunNo: 62	2625				
Prep Date: 8/30/2019	Analysis D	ate: 9/ 3	3/2019	S	SeqNo: 2	131977	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.7	0.40	2.500	0.6979	121	68.3	147			
Surr: DNOP	0.29		0.2500		116	52.7	168			
Sample ID: 1908G31-001BMS	D SampT	ype: MS	SD .	Tes	tCode: EF	PA Method	8015D: Diese	I Range	·	·

Client ID: CW 0+60	Batch	ID: 47 2	204	F	RunNo: 6	2625		J		
Prep Date: 8/30/2019	Analysis D	ate: 9/ 3	3/2019	S	SeqNo: 2	131978	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.5	0.40	2.500	0.6979	113	68.3	147	5.20	20	
Surr: DNOP	0.27		0.2500		108	52.7	168	0	0	

Sample ID: LCS-47204	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: LCSW	Batch	1D: 47	204	F	RunNo: 6	2625				
Prep Date: 8/30/2019	Analysis D	ate: 9/	3/2019	S	SeqNo: 2	132011	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.6	0.40	2.500	0	105	66.7	148			
Surr: DNOP	0.25		0.2500		98.5	52.7	168			

Sample ID: MB-47204	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8015D: Diese	I Range		
Client ID: PBW	Batcl	n ID: 47	204	F	RunNo: 6	2625				
Prep Date: 8/30/2019	Analysis D	oate: 9/	3/2019	5	SeqNo: 2	132013	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.40								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.54		0.5000		109	52.7	168			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908G31**

09-Sep-19

Client: Western Refining Southwest, Inc Bloomfield

Project: 2019 Annual GW Sampling Event

Sample ID: RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: G62609 RunNo: 62609

Prep Date: Analysis Date: 9/3/2019 SeqNo: 2130655 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 20 20.00 100 65.8 143

Sample ID: 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: G62609 RunNo: 62609

Prep Date: Analysis Date: 9/3/2019 SeqNo: 2130656 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.45 0.050 0.5000 0 90.8 73.6 119 Surr: BFB 20.00 65.8 23 113 143

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

9.7

9.4

WO#: **1908G31**

09-Sep-19

Client: Western Refining Southwest, Inc Bloomfield

Project: 2019 Annual GW Sampling Event

		5 OHOIT E	8260: Volatile				U	уре. с	SampT	Sample ID: 100ng lcs
				2593	RunNo: 6	F	_W62593	h ID: SL	Batcl	Client ID: LCSW
			Units: µg/L	132411	SeqNo: 2	S	3/2019	Date: 9/	Analysis D	Prep Date:
Qual	RPDLimit	%RPD	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
			130	70	99.1	0	20.00	1.0	20	Benzene
			130	70	99.4	0	20.00	1.0	20	Toluene
			130	70	94.6		10.00		9.5	Surr: 1,2-Dichloroethane-d4
			130	70	97.2		10.00		9.7	Surr: 4-Bromofluorobenzene
			130	70	96.9		10.00		9.7	Surr: Dibromofluoromethane
		130	70	94.8		10.00		9.5	Surr: Toluene-d8	
	ist	s Short Li	8260: Volatile	PA Method	tCode: El	Tes	BLK	Гуре: МЕ	SampT	Sample ID: RB
	ist	s Short Li	8260: Volatile		tCode: El RunNo: 6 2		BLK _W62593			Sample ID: RB Client ID: PBW
	ist	s Short Li	8260: Volatile	2593		F	_W62593	h ID: SL		·
Qual	ist RPDLimit	s Short Li		2593	RunNo: 6 2	F	_W62593 3/2019	h ID: SL	Batcl	Client ID: PBW
Qual			Units: µg/L	2593 132412	RunNo: 6 2 SeqNo: 2 1	F	_W62593 3/2019	h ID: SL Date: 9/	Batcl Analysis D	Client ID: PBW Prep Date:
Qual			Units: µg/L	2593 132412	RunNo: 6 2 SeqNo: 2 1	F	_W62593 3/2019	h ID: SL Date: 9/	Batcl Analysis D Result	Client ID: PBW Prep Date: Analyte
Qual			Units: µg/L	2593 132412	RunNo: 6 2 SeqNo: 2 1	F	_W62593 3/2019	h ID: SL Date: 9/ PQL 1.0	Batcl Analysis E Result ND	Client ID: PBW Prep Date: Analyte Benzene
Qual			Units: µg/L	2593 132412	RunNo: 6 2 SeqNo: 2 1	F	_W62593 3/2019	PQL 1.0	Batcl Analysis D Result ND ND	Client ID: PBW Prep Date: Analyte Benzene Toluene
Qual			Units: µg/L	2593 132412	RunNo: 6 2 SeqNo: 2 1	F	_W62593 3/2019	PQL 1.0 1.0	Batcl Analysis D Result ND ND ND	Client ID: PBW Prep Date: Analyte Benzene Toluene Ethylbenzene
Qual			Units: µg/L	2593 132412	RunNo: 6 2 SeqNo: 2 1	F	_W62593 3/2019	PQL 1.0 1.0 1.0	Result ND ND ND ND ND ND ND ND	Client ID: PBW Prep Date: Analyte Benzene Toluene Ethylbenzene Methyl tert-butyl ether (MTBE)
	RPDLimit	%RPD	HighLimit 130 130 130 130 130 130 130	132411 LowLimit 70 70 70 70 70 70	%REC 99.1 99.4 94.6 97.2 96.9	SPK Ref Val	3/2019 SPK value 20.00 20.00 10.00 10.00 10.00	PQL 1.0	Analysis D Result 20 20 9.5 9.7 9.7	Prep Date: Analyte Benzene Toluene Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane

Sample ID: 1908G31-001ams	s Samp	Гуре: М	3	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: CW 0+60	Batc	h ID: SL	_W62593	F	RunNo: 6	2593				
Prep Date:	Analysis [Date: 9/	3/2019	9	SeqNo: 2	132414	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0.9960	103	70	130			
Toluene	20	1.0	20.00	0	99.8	70	130			
Surr: 1,2-Dichloroethane-d4	9.1		10.00		90.6	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.4	70	130			
Surr: Dibromofluoromethane	9.8		10.00		97.8	70	130			
Surr: Toluene-d8	16		10.00		158	70	130			S

10.00

10.00

Sample ID: 1908G31-001ams	d SampT	уре: М \$	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: CW 0+60	Batch	ID: SL	_W62593	F	RunNo: 6	2593				
Prep Date:	Analysis D	ate: 9/	3/2019	S	SeqNo: 2	132415	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0.9960	97.5	70	130	5.24	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Surr: Dibromofluoromethane

Surr: Toluene-d8

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

97.4

93.8

70

70

130

130

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908G31

09-Sep-19

Client: Western Refining Southwest, Inc Bloomfield

Project: 2019 Annual GW Sampling Event

Sample ID: 1908G31-001am	sd SampT	уре: М S	SD	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: CW 0+60	Batch	ID: SL	_W62593	F	RunNo: 6	2593				
Prep Date:	Analysis D	ate: 9/ 3	3/2019	S	SeqNo: 2	132415	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	19	1.0	20.00	0	94.6	70	130	5.32	20	
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.2	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.4		10.00		94.2	70	130	0	0	
Surr: Dibromofluoromethane	9.8		10.00		97.8	70	130	0	0	
Surr: Toluene-d8	16		10.00		156	70	130	0	0	S

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: LCSW	Batch	n ID: SL	_W62628	F	RunNo: 6	2628				
Prep Date:	Analysis D	oate: 9/	4/2019	5	SeqNo: 2	132823	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	19	1.0	20.00	0	95.9	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.2	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		96.9	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.1	70	130			
Surr: Toluene-d8	8.9		10.00		88.8	70	130			

Sample ID: rb	SampT	уре: МЕ	3LK	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: PBW	Batch	ı ID: SL	_W62628	R	RunNo: 62	2628				
Prep Date:	Analysis D	ate: 9/	4/2019	S	SeqNo: 2	132828	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.6	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.2	70	130			
Surr: Dibromofluoromethane	9.6		10.00		96.3	70	130			
Surr: Toluene-d8	8.8		10.00		87.7	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw Work Order Number: 1908G31 RcptNo: 1 Received By: **Desiree Dominguez** 8/28/2019 8:15:00 AM Completed By: Anne Thorne 8/28/2019 11:01:24 AM Reviewed By: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2 How was the sample delivered? Courier 3. Was an attempt made to cool the samples? No 🗌 Yes 🗸 NA 🗌 No 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 NA 🗍 Yes 🗸 No 🗆 Sample(s) in proper container(s)? No 🗔 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? No 🗌 Yes 🗹 No 🗹 8. Was preservative added to bottles? Yes 🗌 NA 🗌 9. VOA vials have zero headspace? Yes 🗹 No \square No VOA Vials Yes 10. Were any sample containers received broken? No 🗹 # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: 2 or >12 unless noted) (Note discrepancies on chain of custody) 12. Are matrices correctly identified on Chain of Custody? Yes 🗹 No 🗔 13, is it clear what analyses were requested? Yes 🗸 No. 🗌 829-15 14. Were all holding times able to be met? No 🗌 Checked by: Yes 🗸 (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 15. Was client notified of all discrepancies with this order? No 🗌 NA 🗹 Person Notified: Date | By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: CUSTODY SEALS INTACT ON SAMPLE BOTTLES/at 8/28/19 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date 2.9 Good Yes

7 0 9

Project #: Project Wanager: Gregory McCartney Project Manager: Gregory McCartney Sampler: Tracy Payne - 919-561-7055 On Ice: & Yes On No Sample Temperature: 3, 3 - 0, 4 = 2, 9 c Sample Temperature: 3, 3 - 0, 4 = 2, 9 c Type and # Type 40m VOA-5 HCI Z50 M-1 Aunager: Cregory McCartney Anni VOA-5 HCI Z50 M-1 Z50	Chain-of-Custody Record	Turn-Around Time: X Standard Rush Project Name: 2019 Annual GW	h nual GW		HALL ANAL	TALL ENVIRON NALYSIS LABC	VVII	ROI LAB	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	- FI	스 H 첫	
Project #: Container Preserve by: Project #: Project #: Project #: Project #: Project Manager: Gregory McCartney Project McCartney		Samplir	ng Event	4901 H	awkins N	E - AR	ndnerd	Me, ⊠	 √187109	•		
Analysis Tenger Menager: Gregory McCartney Sample: Tracey Payme - 319-561-7056 Samp	Bloomfield, NM 87413	roject #:		Tel. 5	5-345-39	75	ax 50.	5-345-	4107			
## Project Manager: Gregory McCartney Sample: Tracy Payne - 919-561-7066 Sample:						Analy		quest				
Sampler Tracy Payme - 919-561-7055 Sampler Tracy	gjmccartney@marathonpetroleum.com	roject Manager: Grego l	ry McCartney									
Sample: Tracy Payne - 919-561-7055 On lose: & Yes Sample: Teacy Payne - 919-561-7055 Sample: Temperature: 3.2-0.4 = 2.9 = 61-7055 Container Preservative A formi VOA-5 HCI Appearant	ull Validation)			(juo si		(SI						
Container Cont			ne - 919-561-7055	8Đ)I	(1	NIS						(
Sample Temperature: 3.3-0.4 ° 2.9 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			No 🗆	НЫ	⊅0				(A			NI IC
## Still Container Preservative HEAL No. Type and # Type and Type and Type and Type and Type and Type and Type and Type and Type and Type and Type and Typ	103	Temperature: 3,	= h'Q-	L+3:	g po				ΟΛ-		70) I)
40mi VOA-5 HCI ———————————————————————————————————	Sample Request ID			BTM+X3T8	EDB (Metho				imə2) 0728			saidana IIV
Feceived by: Seceived by: Character Argent Colored C	CW 0+60		8				<u> </u>	×		_		
Z50 mL X	CW 0+60	<u>'</u>	<u>8</u>	×								
Received by: Received by: Received by: Date Time Date Time Angly 8:15		250 ML X					· ·					
Received by: Received by: Received by: Date Time Date Time And Style 8:15								_				T
Received by: Muzic Walk 8/37/19 S/6 Prime Pri					-							1
Received by: Mult Walk 8/27/19 S/16 Fine Date Time Date Date Time Date												
Received by: Must Male State Time Date Date Time Date Time Date Date Time Date Da							<u> </u>					
Received by: Received by: Received by: Date Time Date Time AM/19 8:15												
Received by: Multiple Male 8/27/19 57/6 Received by: Date Time												Ī
Received by: Multiple Walk 8/37/19 57/6 Received by: Over 100 8.1 5.1 Charles of the State Time 5.1 Charles of the State Time 5.1 Charles of the State Time 5.1 Charles of the State Time 5.1 Charles of the State 5.1 Charles												
Received by: Received by: Out. 1876 Date Time Charles AM/19 8:15										_		
Received by: Re							<u>.</u>					
		اعلا	Date	Remarks:]		-]		<u>-</u>	

ANALYSIS LABORATORY 2 0 9 HALL ENVIRONMENTAL 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 www.hallenvironmental.com Analysis Request Tel. 505-345-3975 Project Name: 2019 Annual GW Sampling Event □ Rush Turn-Around Time: X Standard Project #: Chain-of-Custody Record Client: Western - Bloomfield Terminal Bloomfield, NM 87413 419-421-2338 Mailing Address: 50 CR 4990

Phone #:

EDB (Method 504.1) PAH (8310 or 8270SIMS) PCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) B260B (VOA) BTEX,MTBE only S270 (Semi-VOA)	×									See Analytical Methods and Target Analytes.	
TPH 8015B (GRO/DRO/MRO) TPH (Method 418.1)	-	×					<u> </u>				
31EX+MTBE+TPH(Gas only)	+									Remarks:	
BTEX+MTBE+TMB's(8021)	 	2									1
Project Manager: Gregory McCartney Sampler: Tracy Payne - 919-561-7055 On Ice: Ø Yes □ No Sample Temperature: 3, 3 - 0, 4 = 2,9² Container Preservative HEAL No. Type and # Type	202	7002								Date Time \$\int \frac{127}{9} \frac{1576}{1576} Date Time \$\int \frac{15}{2} \frac{16}{15} \frac{15}{15}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Tracy Payne M Yes Perature: 3.3 Preservative Type	HC	Neat						ï		Mate	ا ا ا
Project Manage Sampler: T On Ice: Sample Tempe Container Type and #	40ml VOA-5	250 ml amber-1			***************************************					Received by: Received by:	1
Email: gimccartney@marathonpetroleum.com QA/QC Package: ☐ Standard ☐ Other X EDD (Type)EXCEL Date	OW 25+70	OW 25+70							1975	in the state of th	
EXCEL Matrix	H ₂ 0	H ₂ O	:							Relinquished by:) > >
gjmccar ackage: fard (Type)	1150	→								Time:	
Email: gimccar QA/QC Package: Standard Other X EDD (Type)	8/26/19 1150	\rightarrow								8/21/19 S U Date: Time: 8/27/14 S U	1,1

3 0 9

Turn-Around Time: X Standard			ANALYSIS		ent 4901 Hawkins NE	Tel. 505-345-3975		(ʎlu	92 O	(G	30) 101	. 2,9% = + + = +	8TM 8TM	HEAL No. TEX+N TEX+N TEX+N	8	765	X							Date Time Remarks: See Analytical Methods $\frac{\delta \lambda}{1/4}$	Date Time 8/28/19 8:15	ı	
# 1	Firm-Around Time			Project Name: 2019 Annual	Sampling Event	Project #:	Project Manager: Gregory Mo			Tracy Payne		Sample Temperature: 3,3 - D, 4		Preservative Type			. 7	2.50mL </th <th>AMBER-11</th> <th></th> <th></th> <th></th> <th></th> <th>b to When</th> <th></th> <th>l</th> <th></th>	AMBER-11					b to When		l	
Client: V Client		T	Western - Bloomfield Terminal	ď	Mailing Address: 50 CR 4990		Email: gjmccartney@marathonpetroleum.com Pr	QA/QC Package:	☐ Standard X Level 4 (Full Validation)					Sample Request ID		- HO DUPLICATE #3			7					Time: Relinquished by:	100 m		

Ċ	hain.	of.Cu	Chain-of-Custody Record	Turn-Around	Time.									1	5 	1	I	
	5	5	Stody Incoold		<u>;</u>				Ĭ				80	HALL ENVIRONMENTAL		Y		
Client:	Weste	rn - Blo	Client: Western - Bloomfield Terminal	X Standard	□ Rush				4	A	X	S	A	ANALYSIS LABORATORY	T	C	, >	
				Project Name:	2019 Annual GW	iual GW			; ≥	www.hallenvironmental.com	lenvir	Dume	ntal.c	Ę			•	
Mailing	Mailing Address:	50 CR 4990	4990		Sampling	g Event		901 H	lawkin	4901 Hawkins NE -	- Albu	querq	ne. N	Albuquerque, NM 87109	60			
		Bloom	Bloomfield, NM 87413	Project #:				[el. 5(5-345	Tel. 505-345-3975	ш	. 50 3x	5-345	Fax 505-345-4107				
Phone #:	#i:	419-421-2338	1-2338							/	nal	is Re	dnest					
Email:	gjmccart	tney@ma	Email: gjmccartney@marathonpetroleum.com	Project Mana	ger: Gregor	ger: Gregory McCartney												
QA/QC Package:	ackage:				-													····
□ Standard	dard		X Level 4 (Full Validation)							(SN								
□ Other				Sampler:	Tracy Payne	e - 919-561-7055											(1)	/•
X EDD (Type)	(Type)_	EXCEL		On Ice:	域 Yes	ON 🗆								(A			4 10	
				Sample Temp	perature: 3.3	3-0.4 2.92								ΟΛ:			, Y)	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	8TM+X3T8 8TM+X3T8	aeros H9T	TPH (Metho	EDB (Metho	S ARDR	Anions (F,Cl 8081 Pestic	8260B (VO	-imə2) 0728	·		e∋ldduB les	
8/27/9	0750	H ₂ O	OW 8+10	40ml VOA-5	HCI	102	_		-		+	4	+	}			+	
\rightarrow	\rightarrow	O ^z H	OW 8+10	250 ml amber-1	Neat	1997		×										I
									<u> </u>			<u> </u> 			<u> </u>			1
																	_	т —
				:														
										_		_		1				
									-	_					4		+	
										_								
-				-				1		_				_			\dashv	— Т
8/27/19	Me: 57 b	Xellocarshed by	\ \	Received by: Must	. Lack	5	Remarks:		ee An	alytic	Met Met	pods	and	See Analytical Methods and Target Analytes	t Anal	lytes.		
Date:		Relinquished by:	in page 2.	Received by:		⊨												
118118118118118	ナースー	5	Chros Ugelt	がなり	Cour les	51.8 61/82/0												\neg
		:																

Ü	hain-	of-Cu	Chain-of-Custody Record	Turn-Around	Time:								ı		5	-	
		; ; ;						Ц	Ì	1	Z	Z	Õ	HALL ENVIRONMENTAL	Z	A	
Client:	Wester	rn - Blo	Western - Bloomfield Terminal	X Standard	☐ Rush				A	M	YSI	SL	AB	ANALYSIS LABORATORY	ATC	KY	
				Project Name:	: 2019 Annual GW	ıual GW			≶	w.hal	www.hallenvironmental.com	ment	al.cor	_			
Mailing.	Address:	Mailing Address: 50 CR 4990	4990		Sampling Event	g Event	4	901 H	4901 Hawkins NE	ЯN	Albuq	nergu	e, NV	Albuquerque, NM 87109	.		
		Bloom	Bloomfield, NM 87413	Project #:				el. 50	Tel. 505-345-3975	3975	Еâ	Fax 505-345-4107	345-4	1107			
Phone #:		419-421-2338	1-2338							A	Analysis	Request	rest				
Email:	gjmccart	ney@ma	Email: gjmccartney@marathonpetroleum.com	Project Mana	ger: Gregol	Project Manager: Gregory McCartney	(<u> </u>		Ą	_		_	
QA/QC Package:	ackage:									(5	ros"		Ino 3				
□ Standard	dard		X Level 4 (Full Validation)								PO ₄		IBTN				
□ Other				Ľ	Tracy Payne	le - 919-561-7055					' ^e OI						(N
X EDD (Type)	(Type)	EXCEL		On Ice:	⊠ Yes	□ No								(\(\dagger)			10
				Sample Temperature:	W	3-0,4-2,92											۲)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	EX+MTE	8015B	H (Metho	01£8) H,	•M 8 A <i>Я</i> : Э,∃) anoi	81 Pestio	OV) 808	imə2) 07			Bubbles
8/7/10	9	Н,О	OW 19+50	40ml VOA-5	Ę	1908 (9.5)	_	_	_		-	_		70			iΑ
	2/20-	27:		250 ml	5	σ			+	1	+	1	<	+			
>	-	O ₂	OW 19+50	amber-1	Neat	705		×								-	
						,											
													·				
														_		_	
, 6,	0	Relinquished by:		Received by:	Jack	Date Time がパタ (5/0	Remarks:		e Ana	alytica	l Meth	ods a	Ind T	See Analytical Methods and Target Analytes	⁴nalyt	es.	
S S S S S S S S S S	Time:	Relinduished by	100		Courier	Date Time 8/28/19											
<u></u>	1.]

6 0 9

<u>ت</u> ت	hain- Weste	of-Cu	Client: Western - Bloomfield Terminal	Turn-Around X Standard	Time:				Ĭ	HALL	E 5	Σ×	8	ĮΣ	ENVIRONMENTAL	₹	}	
1				Project Name:	20	ual GW			₹ *		MALYSIS LABO		4		ANALYSIS LABORATORY	0	>	
1 2	Address	Mailing Address: 50 CR 4990	1 4990		Sampling Event	g Event	4	901 F	4901 Hawkins NE -	s NE	- Alb	iquerc	ane, N	Albuquerque, NM 87109	60			
l		Bloom	Bloomfield, NM 87413	Project #:			<u>, </u>	Tel. 5(Tel. 505-345-3975	-397	<u> </u>	эх Эх	5-34	Fax 505-345-4107				
Phone #:		419-421-2338	1-2338								ınalı	is Re	sənb	-				
-	jimccari	ney@ma	Email: gjmccartney@marathonpetroleum.com	Project Mana	ger: Grego ı	ger: Gregory McCartney	,											
п.	OA/QC Package:									(S								
☐ Stand	☐ Standard		X Level 4 (Full Validation)	Sampler	Tracy Payne	le - 919-561-7055											(
ے د	X EDD (Type)	EXCEL			™ Yes	No □								(∀		-	. <u>N</u> .10	
	- () (Tem	z,	3-0.4=2.9%								′ΟΛ-			э <u>У)</u>	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX+MTB BTM+X3T8	83 r08 H9T	TPH (Metho	EDB (Metho	RCRA 8 Me	IO,∃) anoinA Site9¶ 1808	8560B (VO	imə2) 0728			Air Bubbles	oolgana in
<u>~</u>	8/21/9 0825	H ₂ 0	OW 22+00	40ml VOA-5	HCI	187		×		-	+				<u> </u>		<u> </u>	,
<u> </u>	→	H ₂ O	OW 22+00	250 ml amber-1	Neat	300		×										
													<u> </u>					
┢																		
																		Т
-								_		_		\dashv	.		_			\neg
								\perp	\perp	+	1	+	\bot		_			
+									+	+		+	_		+		+	\neg
+								_	$oxed{\top}$	 		-	—		+		 	\top
Date: 9/27/9	٥	Relinquished by		Received by:	KLAN	Date Time 8/21/19 1510	Remarks:	1	ee Ar	alytic	al Me	thods	and	Targe	See Analytical Methods and Target Analytes	lytes.	_	T
<u> </u>	Time: 844	Reliffquished by:	4 Lock	Received by:	Courier	Date Time 8,15												

7 0 9

Container Preservative HEAL No. 17/10/2 (2.7.3.) I PEAL No. 17/10/2 (1.1.4.) Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type and # Type All No. 17/10/2 (1.1.4.) Type All No. 17/10/
Date Time Remarks: 8/24/19 8:15
Date Time Pare Time Date Time Date Time Pare Time Pa
Date Time Remarks: δμη μ ετιο Pate Time Bate Time 8/24/19 8:15
Date Time Remarks: 8μη/β (Σ10 Date Time 8/24/19 8:15
Date Time Remarks: 8μη/β (Σ10) Date Time S/24/19 8:15
$8 \mu J / \beta = 1 \text{ime}$ Remarks: $8 \mu J / \beta = 1 \pi \rho$ Date Time $8 / 24 / \beta = 8 \pi \rho$

8 9 9

							_						•	2	<u>Р</u>	\	ı	
ပ	hain	of-Cu	Chain-of-Custody Record	Turn-Around	Time:				I	- - - - -		5		2	ENVIDONMENTAL	LAT		
Client:	Weste	ırn - Blo	Western - Bloomfield Terminal	X Standard	□ Rush				₹	ANALYSIS	\	S	AB	0	LABORATORY	OR	. >	
				Project Name	2019 Annual GW	ual GW			≥	www.hallenvironmental.com	lenvir	nmer	ıtal.co	E	: : :) 	ı	
Mailing	Address	Mailing Address: 50 CR 4990	र 4990		Sampling Event	g Event	7	4901 Hawkins NE	awkin		Albu	dnerd	ne, 🗷	- Albuquerque, NM 87109	60			
		Bloom	Bloomfield, NM 87413	Project #:				Tel. 5(5-345		F	Fax 50	505-345-4107	4107				
Phone #:	 	419-42	419-421-2338	•						٩	Analysis Request	is Rec	luest					
Email.	gjmccar	tney@ma	gimccartney@marathonpetroleum.com	Project Mana	ger: Gregor)	Project Manager: Gregory McCartney	'						Ιλ					
QA/QC	QA/QC Package:									(5	-		no 38					
. ☐ Standard	dard		X Level 4 (Full Validation)							SWI			3TN					_
□ Other				Sampler:	Tracy Payne	e - 919-561-7055							ı 'X:				(N	
X EDD (Type)	(Type)	EXCEL		On Ice:	ß′Yes	□ No							3TE	(A(Or i	
				Sample Temperature:	erature: 3.3	-0,4 = 2.9°							∃ (∧	<u>-</u> ΛΞ			<u>Y)</u>	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	EX+MTE	89108 H	H (Metho	0 (Metho	•M 8 AЯ	O,F,C ions (F,C 81 Pestic	60B (VO	imə2) 07			səlqqng .	
8421	3	Ç	CW 25+95	40ml VOA-5	CH	1908 6-51							Z8 >	28			ιiΑ	- 1
61/126	030	225	C6+C2 AA	40ml VOA-5	2	(C)(2)							<				-	
->	->	H ₂ O	CW 25+95	7 500 ml - 7	Neat	778		X										
				250 ML)												
			7	AMBER-1										ļ	:			
																		T
																		_
				,														
									+			\dashv					-	
										\Box		\dashv					_	
							•											
7₽	Time: 8 7-4 15		ed by:	Received by:	7		Remarks:	ks:										
Date:	тіте: }84̈Ч	Relinguished by	ed by:	Received by:	Concier	Date ' Time 8/28/19 8:15												
-																		1

9 00 9

/	ENVIDONMENTAL	LABORATORY	 					ty_	inili				General Ch Air Bubbles								- - :	see Analytical Methods and Target Analytes.		-
ᆼ	<u> </u>		! [z						General Ch	-							<u> </u>	¥ A		
	7	! ≥		Albuquerque, NM 87109							sls	JəN	Dissolved I									arge		
'	Z	Š	L Wo	.∞ <u>≥</u>	505-345-4107						(A	OΛ·	im92) 07 <u>5</u> 8								!	_ p		
		} ₹	tal.c	e e	-345	seni						(/	8260B (VO	X		X						s ar		
				nergi	505	Rec							S081 Pestic	<u> </u>					<u> </u>			DOU.		
	Ź	Si	viror	bna	Fax	lysis		([†] OS				-	IO, F) snoinA	-				<u> </u>	<u> </u>	 _	:	<u>≅</u>		
			www.hallenvironmental.com	- 1	ம	Analysis Request							PAH (8310 ·								<u> </u>	<u>z</u>		
		į	ww.h	S N	-397				121				EDB (Metho	<u> </u>						\dashv	_ -	laly I		
	Ì	₹	≱	4901 Hawkins NE	Tel. 505-345-3975								TPH (Metho							\dashv	- -	e F		
		,		1 Ha	. 505		(,	NRO	N/O				5 32108 H9T	×	X			:			- 1			
				490	<u>e</u>						_	_	BTM+X3T8	Ĭ						+	╡.	arks:		
													BTM+X3T8						<u> </u>			Kemarks:		
										55				500	JO2	0	5 III III						Π	۱/۷
			W	ınt			Cartney			9-561-70		1 = 2,9%	HEAL NO.	۲	b	000			į		Time	7	te Time	51:8 61/8
		اِ	nual G	ng Eve			ory Mc			ne - 91	% □	3-0,4									Oate C	4	Date	61/82/8
	Time:	□ Rush	2019 Ar	Sampling Event			ger: Gregory McCartney			Tracy Payne - 919-561-7055	Ø Yes	perature: 3,	Preservative Type	HCI	NEAT	3461						La As		courier
	Turn-Around	X Standard	Project Name: 2019 Annual GW		Project #:		Project Mana			Sampler:	On Ice:	Sample Temp	Container Type and #	40 ML VOA	2.50 ML AMBER-1	40. ML WA					Poceived hv.		Received by:	
	Chain-of-Custody Record	erminal			87413		leum.com		X Level 4 (Full Validation)				Sample Request ID	BLANK#3	←	 BLANK								1 /2
	stody	Western - Bloomfield Terminal		4990	Bloomfield, NM 87413	1-2338	gimccartney@marathonpetroleum.com		X Level 4 (Sample	FIELD		TRIP					P		d by:	41/1/2
	no-jo-	rn - Blo		: 50 CR 4990	Bloom	419-421-2338	tney@ma				EXCEL		Matrix	H,0	\rightarrow	H20					Relinguished by:		Relinguished by	7.3/
	hain	Weste		Mailing Address:		#:		QA/QC Package:	dard	<u>.</u>	X EDD (Type)_		Time	8/21/9/0908	>	 1					Time.		Time:	Ja h § 1
		Client:		Mailing		Phone #:	Email:	QA/QC	□ Standard	□ Other	X EDC		Date	8/1/3	>	8/27/19					Dafo:	8/21/4	Date:	8/2/6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 18, 2019

Gregory J. McCartney Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX: (505) 632-3911

RE: 2019 Annual GW Sampling Event OrderNo.: 1908I12

Dear Gregory J. McCartney:

Hall Environmental Analysis Laboratory received 1 sample(s) on 8/29/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 1908I12

Date Reported: 9/18/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Mw-27

Project: 2019 Annual GW Sampling Event
 Collection Date: 8/28/2019 8:00:00 AM

 Lab ID: 1908I12-001
 Matrix: AQUEOUS
 Received Date: 8/29/2019 8:15:00 AM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 245.1: MERCURY							Analyst: rde	
Mercury	ND	0.000038	0.00020		mg/L	1	9/17/2019 12:18:40 PM	47502
EPA METHOD 6010B: DISSOLVED METALS	3						Analyst: bcv	
Arsenic	ND	0.019	0.020		mg/L	1	9/9/2019 12:15:34 PM	A62764
Barium	0.045	0.00056	0.020		mg/L	1	9/9/2019 9:25:24 AM	A62764
Cadmium	ND	0.00058	0.0020		mg/L	1	9/9/2019 9:25:24 AM	A62764
Calcium	670	0.60	10		mg/L	10	9/11/2019 12:49:35 PM	A62841
Chromium	ND	0.0012	0.0060		mg/L	1	9/9/2019 9:25:24 AM	A62764
Copper	ND	0.0023	0.0060		mg/L	1	9/9/2019 9:25:24 AM	A62764
Iron	1.1	0.027	0.10		mg/L	5	9/9/2019 9:27:07 AM	A62764
Lead	ND	0.0048	0.0050		mg/L	1	9/9/2019 9:25:24 AM	A62764
Magnesium	110	0.30	5.0		mg/L	5	9/9/2019 9:27:07 AM	A62764
Manganese	1.8	0.0013	0.010		mg/L	5	9/9/2019 9:27:07 AM	A62764
Potassium	6.0	0.11	1.0		mg/L	1	9/9/2019 9:25:24 AM	A62764
Selenium	ND	0.041	0.050		mg/L	1	9/9/2019 9:25:24 AM	A62764
Silver	0.0086	0.0013	0.0050		mg/L	1	9/9/2019 9:25:24 AM	A62764
Sodium	870	2.4	10		mg/L	10	9/9/2019 12:17:15 PM	A62764
Uranium	ND	0.062	0.10		mg/L	1	9/9/2019 9:25:24 AM	A62764
Zinc	0.015	0.0026	0.020	J	mg/L	1	9/9/2019 9:25:24 AM	A62764

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908I12**

18-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-47502 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: PBW Batch ID: 47502 RunNo: 62984

Prep Date: 9/16/2019 Analysis Date: 9/17/2019 SeqNo: 2147224 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCS-47502 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 47502 RunNo: 62984

Prep Date: 9/16/2019 Analysis Date: 9/17/2019 SeqNo: 2147225 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 97.3 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 1908I12

18-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A62764 RunNo: 62764

SampType: LCS

			-			-				
Prep Date:	Analysis	Date: 9/	9/2019	5	SeqNo: 2	137952	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Copper	ND	0.0060								
Iron	ND	0.020								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Manganese	ND	0.0020								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								
Uranium	ND	0.10								
Zinc	ND	0.020								

		, · · ·	_								
Client ID: LCSW	Bato	ch ID: A6	2764	F	RunNo: 6	2764					
Prep Date:	Analysis	Date: 9/	9/2019	\$	SeqNo: 2	137953	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	0.48	0.020	0.5000	0	95.6	80	120				
Barium	0.48	0.020	0.5000	0	95.1	80	120				
Cadmium	0.50	0.0020	0.5000	0	99.4	80	120				
Chromium	0.49	0.0060	0.5000	0	97.1	80	120				
Copper	0.50	0.0060	0.5000	0	100	80	120				
Iron	0.49	0.020	0.5000	0	98.6	80	120				
Lead	0.49	0.0050	0.5000	0	98.6	80	120				
Magnesium	50	1.0	50.00	0	100	80	120				
Manganese	0.48	0.0020	0.5000	0	97.0	80	120				
Potassium	50	1.0	50.00	0	99.3	80	120				
Selenium	0.48	0.050	0.5000	0	96.3	80	120				
Silver	0.10	0.0050	0.1000	0	99.8	80	120				
Sodium	50	1.0	50.00	0	99.6	80	120				
Uranium	0.46	0.10	0.5000	0	91.3	80	120				
Zinc	0.48	0.020	0.5000	0	96.5	80	120				

Qualifiers:

Sample ID: LCS-A

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

TestCode: EPA Method 6010B: Dissolved Metals

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1908I12**

18-Sep-19

Client: Western Refining Southwest, Inc.

Project: 2019 Annual GW Sampling Event

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A62841 RunNo: 62841

Prep Date: Analysis Date: 9/11/2019 SeqNo: 2141041 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Calcium ND 1.0

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 6010B: Dissolved Metals

Client ID: LCSW Batch ID: A62841 RunNo: 62841

Prep Date: Analysis Date: 9/11/2019 SeqNo: 2141042 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Calcium 49 1.0 50.00 0 98.8 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Western Refining Southw	Work Order Number	: 190811	2	RcptNo	1
Received By: Desiree Dominguez	8/29/2019		Da		
Completed By: Isaiah Ortiz	8/30/2019 8:10:39 AM		Inc	24	
Reviewed By: 1	9/3/11			,	
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🔽	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
<u>Log In</u>					
3. Was an attempt made to cool the samples	5?	Yes 🗸	No 🗌	NA 🗌	
4. Were all samples received at a temperature	re of >0° C to 6.0°C	Yes 🗸	No 🗌	NA 🗆	
5. Sample(s) in proper container(s)?		Yes 🗸	No 🗆		
6. Sufficient sample volume for indicated test	(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and ONG) prope	erly preserved?	Yes 🗸	No 🗌		
8. Was preservative added to bottles?		Yes	No 🗸	NA \square	
9. VOA vials have zero headspace?		Yes	No 🗌	No VOA Vials 🗸	
10. Were any sample containers received brol	ken?	Yes	No 🗸	# of preserved	
11. Does paperwork match bottle labels?		Yes 🗸	No 🗌	bottles checked for pH:	
(Note discrepancies on chain of custody)		165	140		>12 unless noted)
12. Are matrices correctly identified on Chain of	of Custody?	Yes 🗸	No 🗌	Adjusted?	V0
13. Is it clear what analyses were requested?		Yes 🗸	No 🗌		9/3/19
14. Were all holding times able to be met?		Yes 🗸	No 🗌	Checked by: D	
(If no, notify customer for authorization.)					DAO 9/3/
Special Handling (if applicable)					
15. Was client notified of all discrepancies with	n this order?	Yes [No 🗆	NA 🗹	
Person Notified:	Date:	and between the same	CONTRACTOR OF THE PROPERTY OF		
By Whom:	Via:	eMail	☐ Phone ☐ Fax	☐ In Person	
Regarding:	THE PARTICULAR PROPERTY OF THE PARTY OF THE	ng kida sa cesara ta incara	PARTIES REAL PROPERTY AND THE PARTIES AND THE	Action of the second of the control	
Client Instructions:					
16. Additional remarks:					
17. Cooler Information					
	Seal Intact Seal No S	Seal Date	Signed By		
1 2.3 Good Y	es				

7 0 7

Chain-of-C	Chain-of-Custody Record	Turn-Around Time:				1					1	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡	4	
Client: Western - E	Western - Bloomfield Terminal	X Standard				HALL			ENVIRONMENTAL				4 2	
		2019	I GW			AIMELSIS LABORALORI		CTC.	5		2	2	2	
Mailing Address: 50 (50 CR 4990	Sampling Event	Event	490)1 Hay	www.lia 4901 Hawkins NF	, <u> </u>		Albuquerane NM 87109		7109			
Bloo	Bloomfield, NM 87413	Project #:		Tel.	I. 505	505-345-3975	10	Fax	505-345-4107	5-410	22			
Phone #: 419-	419-421-2338						Analysis		Request	35				
Email: gjmccartney@	gjmccartney@marathonpetroleum.com	Project Manager: Gregory McCartney	McCartney	(/	(0			(1	S			2 (
QA/QC Package: X Standard	**Level 4 (Full Validation)				O/MR(377.75		[†] OS' [†] O	5 bCB				Annun	
□ Other		Sampler: Tracy Payne	Tracy Payne - 919-561-7055			(1		d,₅C	2808				PVIIV	(1
X EDD (Type) EXCEL	EL	On Ice: 🗚 Yes	oN 🗆			.40		Ν'ε	8 / 8	(A			4	J 10
		Temperature: 2,	-0.0-7.32			g p		ON		_			·ma	入)
Date Time Matrix	Sample Request ID	Preservative Type	AL No.	atm+xəta atm+xəta	TPH 8015B	TPH (Metho	PAH (8310 o	,ID, F) enoinA	8081 Pestici	-imə2) 0728	Dissolved N	General Ch	General Ch	Air Bubbles
8/28/19 0800 HzO	MW-27	PASTIC-1 HNO3	- 00 (
			_											
Q	Relinquished by	Received by:	Sas 326	Remarks:		See Analytical Methods and Target Analytes.	tical	Metho	ods a	nd T	arge	-t An	alyte	<i>(6)</i>
Date: I'me: Kengui	Remodulshed by:	Received by: COUCIAL	5/29/19 8:15											

Analytical Methods and Target Analytes Facility-Wide Groundwater Monitoring Plan - June 2014 Western Refining Southwest, Inc. - Bloomfield Terminal

VOCs (EPA Method 8260B) (1)
- Target	
$B\epsilon$	enzene
To	luene
Et	hylbenzene
$X_{\mathcal{Y}}$	lenes
M	ethyl tert butyl ether (MTBE)
SVOCs	- (EPA Method 8270)
- N	Method List
	RO (EPA Method 8015B)
	Gasoline Range Organics
	RO (EPA Method 8015B)
- I	Diesel Range Organics
	Motor Oil Range Organics
Total C	arbon Dioxide (Laboratory Calculated)
- I	Dissolved CO2
Specific	Conductivity (EPA Method 120.1 or field measurement)
	pecific conductance
TDS (E	PA Method 160.1 or field measurement)
- T	otal dissolved solids
General	Chemistry - Anions (EPA Method 300.0)
	ioride
Ch	loride
Br	omide
Ni	trogen, Nitrite (as N)
Ni	trogen, Nitrate (as N)
Ph	osphorous, Orthophosphate (As P)
	lfate
General	Chemistry - Alkalinity (EPA Method 310.1)
	kalinity, Total
Ca	rbonate
Bio	carbonate

- Target List (not applicable to	A Method 6010B/7470) River Terrace Sampling Events
Arsenic	Lead
Barium	Mercury
Cadmium	Selenium
Chromium	Silver
- Target List (for River Terrace	Sampling Events Only)
Lead	
Mercury (DW-1 ON	(LY)
Dissolved Metals (EPA Methor - Target List (for Refinery Com-	
- Target List (for Refinery Com	nplex, Outfalls, and River)
- Target List (for Refinery Com Arsenic	nplex, Outfalls, and River) Manganese
- Target List (for Refinery Com Arsenic - Barium	pplex, Outfalls, and River) Manganese Mercury
- Target List (for Refinery Com Arsenic Barium Cadmium	nplex, Outfalls, and River) Manganese
- Target List (for Refinery Com Arsenic - Barium	pplex, Outfalls, and River) Manganese Mercury
- Target List (for Refinery Com Arsenic Barium Cadmium	plex, Outfalls, and River) Manganese Mercury Potassium
- Target List (for Refinery Com Arsenic - Barium Cadmium Calcium	aplex, Outfalls, and River) Manganese Mercury Potassium Selenium
- Target List (for Refinery Com Arsenic - Barium Cadmium Calcium Chromium	aplex, Outfalls, and River) Manganese Mercury Potassium Selenium Silver
- Target List (for Refinery Con Arsenic - Barium - Cadmium - Calcium - Chromium - Copper	aplex, Outfalls, and River) Manganese Mercury Potassium Selenium Silver Sodium

TPH = total petroleum hydrocarbons GRO = gasoline range organics VOCs = volatile organic compounds DRO = diesel range organics TDS = total dissolved solids

NOTES:

- (1) VOCs Target List for River Terrace samples are analyzed by EPA Method 8021B per NMED's letter Approval with Direction dated June 16, 2009.
- (2) Target List for San Juan River Terrace Monitoring Wells and Piezomenter Wells only, per the River Terrace Bioventing System Monitoring Plan.

APPENDIX B DATA VALIDATION

1.0 DATA VALIDATION INTRODUCTION

This summary presents data verification results for groundwater and surface water sampling activities conducted in 2019 at the Bloomfield Terminal pursuant to Section IV.A.2. of the July 2007 Consent Order (NMED, 2007) issued by the New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB), and Section 2.F of Discharge Permit GW-001 (NMOCD, 2017) issued by the New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (EMNRD-0CD). The data review was performed in accordance with the procedures specified in the Order issued by NMED (NMED, 2007), USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc (HEAL). The samples evaluated include groundwater samples collected from monitoring wells installed at the Refinery Complex and North Boundary Barrier, and surface water samples collected from the San Juan River.

A total of 43 groundwater samples, four groundwater "outfall" samples, and eight surface water samples (excluding quality assurance samples) were collected in semi-annual and annual monitoring events between April 3, 2019 and August 28, 2019. Groundwater samples, outfall samples, and surface water samples were submitted to HEAL for the following parameters:

- Volatile organic compounds (VOCs) by USEPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) by USEPA Method 8270C
- Gasoline, diesel, and motor oil range organics by SW-846 Method 8015D;
- Total metals (arsenic, barium, cadmium, chromium, lead, selenium, and silver) and dissolved metals (arsenic, barium, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, potassium, selenium, silver, sodium, uranium, and zinc) by SW846 Method 6010B/E200.7; and
- Mercury by EPA Method 7470.

Groundwater and surface water samples were also analyzed for general water quality parameters including, fluoride, chloride, nitrate, nitrite, bromide, phosphorous, sulfate, total carbon dioxide, total alkalinity, carbonate, bicarbonate, total dissolved solids, and specific conductance.

Additionally, 23 quality assurance samples consisting of trip blanks, field blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation activities. Table B-1 presents a summary of the field sample identifications, laboratory sample identifications, and sample collection dates.

2.0 QUALITY CONTROL PARAMETERS REVIEWED

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt;
- Holding Times;
- Blank Contamination (method blanks, trip blanks, field blanks, and equipment rinsate blanks);
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J+ The analyte was positively identified; however, the result should be considered an estimated value with a potential high bias.
- J- The analyte was positively identified; however, the result should be considered an estimated value with a potential low bias.
- UJ The reporting limit for a constituent that was not detected is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J+", "J-", or "UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

Results for the performance monitoring events that required qualification based on the data verification are summarized in Table B-2.

2.1 CHAIN-OF-CUSTODY

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

2.2 SAMPLE PRESERVATION AND TEMPERATURE UPON LABORATORY RECEIPT

Samples collected were received preserved and intact by HEAL. Samples were received by the laboratory at a temperature of 6.0 degrees Celsius or lower. Data qualification on lower temperature samples was not required.

2.3 HOLDING TIMES

All samples were extracted and analyzed within method-specified holding time limits with the exception of total carbon dioxide and phosphorus, both general water quality parameters. The recommended holding time for total carbon dioxide analysis is "immediate". Unless the sample is analyzed in the field it is flagged by the laboratory. The holding time for phosphorus is 48 hours. Since analyses were conducted in a reasonable time period after collection of samples and samples were properly preserved, the data was accepted but was flagged as estimated with a potential low bias. Data qualification for exceeding holding times is shown on Table B-2.

2.4 BLANK CONTAMINATION

2.4.1 Method Blank

Method blanks were analyzed at the appropriate frequency. Target compounds were not detected in the method blanks above target screening levels with the following exception:

Lab Report 1908E25

- VOC methylene chloride was detected in the method blank (Batch ID R62453) at a concentration of 0.23 ug/L. The data was qualified "J";
- SVOC 2,4-dinitrophenol was detected in the method blank (Batch ID 47113) at a concentration of 4.4 ug/L. The data was qualified "J"; and
- Mercury was detected in the method blank (Batch ID 47428) at a concentration of 0.000039 mg/L. The data was qualified "J".

Lab Report 1908E78

- Nitrate+Nitrite as N was detected in the method blank (Batch ID A62815) at a concentration of 0.041 mg/L. The data was qualified "J";
- 2,4-Dinitrophenol was detected in the method blank (Batch ID 47113) at a concentration
 of 4.4 ug/L. The data was qualified "J"; and
- Mercury was detected in the method blank (Batch ID 47428) at a concentration of 0.000039 mg/L. The data was qualified "J".

2.4.2 Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Order and Permit. Target compounds were not detected in the trip blanks with the following exceptions:

Lab Report 1908E25 – The following data was flagged with "J" (Analyte detected below quantitation limit) Batch ID R62453.

• Methylene Chloride – 0.18 ug/L vs screening level of 5 ug/L. Methylene chloride was not detected in the method blank. The data was not qualified.

Lab Report 1908E78–010 - The following data was flagged with "J" (Analyte detected below quantitation limit) Batch ID R62584.

- Chlorobenzene 0.48 ug/L vs screening level of 100 ug/L. Chlorobenzene was not detected in the method blank. The data was not qualified; and
- Methylene Chloride 0.19 ug/L vs screening level of 5 ug/L. Methylene chloride was not detected in the method blank. The data was not qualified.

Lab Report 1908E78–017 - The following data was flagged with "J" (Analyte detected below quantitation limit) Batch ID R62584.

- Chlorobenzene 0.48 ug/L vs screening level of 100 ug/L. Chlorobenzene was not detected in the method blank. The data was not qualified; and
- Methylene Chloride 0.18 ug/L vs screening level of 5 ug/L. Methylene chloride was not detected in the method blank. The data was not qualified.

2.4.3 Field Blanks/Equipment Rinsate Blank

Field and equipment rinsate blanks were collected as specified in the Order and Permit. Target compounds were not detected in the field blanks or equipment blanks with the following exceptions:

Lab Report 1908D80-005 (Field Blank #1)

- Total Carbon Dioxide 10 mg CO2/L. The data was flagged with "H" (Holding times for preparation or analysis exceeded). The results were qualified with "J-" in Table B-2; and
- Zinc 0.025 mg/L vs screening level of 10 mg/L. The reporting limit is 0.020 mg/L. In Batch ID A62764 zinc was not detected in the method blank. Zinc was detected in LCS at a concentration of 0.48 mg/L with a spike value of 0.50 mg/L. The results were not qualified.

Lab Report 1908D80-009 (Equipment Blank #1)

- Total Carbon Dioxide 9.6 mg CO2/L. The data was flagged with "H" (Holding times for preparation or analysis exceeded). The results were qualified with a "J-" in Table B-2;
- Nitrogen, Nitrate (as N) 0.10 mg/L. The reporting limit is 0.10 mg/L. In Batch ID R62406 nitrogen, nitrate (as N) was not detected in the method blank. Nitrogen, nitrate (as N) was detected in the LCS at the spike value. The results were not qualified; and
- Zinc 0.022 mg/L vs screening level of 10 mg/L. The reporting limit is 0.020 mg/L. In Batch ID A62764 zinc was not detected in the method blank. Zinc was detected in LCS at

a concentration of 0.48 mg/L. with a spike value of 0.50 mg/L. The results were not qualified.

Lab Report 1908E78-007 (Equipment Blank #2)

- Nitrate+Nitrite as N 0.49 mg/L. The reporting limit is 1.0 mg/L. In Batch ID R62781 nitrate+nitrite as N was not detected in the method blank. Nitrate+Nitrite as N was detected in the LCS at the spike value. The results were not qualified;
- Mercury 0.00011 mg/L. The reporting limit is 0.00020 mg/L. Mercury was detected in the method blank (Batch ID 47428) at a concentration of 0.000039 mg/L. Mercury was detected in the LCS at below spike value. The data was qualified "J"; and
- Zinc 0.016 mg/L vs screening level of 10 mg/L. The reporting limit is 0.020 mg/L. In Batch ID A62764 zinc was not detected in the method blank. Zinc was detected in LCS at a concentration of 0.48 mg/L. with a spike value of 0.50 mg/L. The results were not qualified.

2.4.4 Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2-butanone (MEK), cyclohexane, chloromethane, and methylene chloride. Data qualification was not required since COCs were not detected in the method blanks. Methylene chloride was detected above the reporting in the following trip blanks:

Lab Report 1908E25 – The following data was flagged with "J" (Analyte detected below quantitation limit) Batch ID R62453.

• Methylene Chloride – 0.18 ug/L vs screening level of 5 ug/L. Methylene chloride was not detected in the method blank. The data was not qualified.

Lab Report 1908E78–010 - The following data was flagged with "J" (Analyte detected below quantitation limit) Batch ID R62584.

 Methylene Chloride – 0.19 ug/L vs screening level of 5 ug/L. Methylene chloride was not detected in the method blank. The data was not qualified.

Lab Report 1908E78-017 - The following data was flagged with "J" (Analyte detected below quantitation limit) Batch ID R62584.

• Methylene Chloride – 0.18 ug/L vs screening level of 5 ug/L. Methylene chloride was not detected in the method blank. The data was not qualified.

2.4.5 Methanol Blanks

Methanol Blanks are not applicable and were not analyzed.

2.5 SURROGATERECOVERY

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exceptions:

Lab Report 1904357-001

- Surrogate recovery for bromofluorobenzene (BFB) was above the upper acceptance limit for field sample CW 0+60. The associated detected field sample results for gasoline range organics (GRO) are qualified "J+" due to a potential high bias.
- Surrogate recovery for toluene-d8 was above the upper acceptance limit for field sample CW 0+60. The associated detected field sample results for benzene, ethylbenzene, MTBE, and total xylenes are qualified "J+" due to a potential high bias. Toluene concentrations were non-detectable and were qualified "UJ".

Lab Report 1908E25

Surrogate recoveries for 2-fluorophenol, phenol-d5, and 2,4,6-tribromophenol were below
the lower acceptance limits for the SVOC method blank (Laboratory Batch ID 47113). The
surrogate recoveries for SVOC analysis of MW-38 and MW-12 were within the laboratory
acceptance limits. No data was qualified.

Lab Report 1908G31-001

• Surrogate recovery for toluene-d8 was above the upper acceptance limit for field sample CW 0+60. The associated detected field sample results for benzene, ethylbenzene, MTBE, and total xylenes are qualified "J+" due to a potential high bias. Toluene concentrations were non-detectable and were qualified "UJ".

Data qualification for surrogate recovery is shown on Table B-2.

2.6 LCS RECOVERY AND RELATIVE PERCENT DIFFERENCE

LCS/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J+" to account for a potential high bias.
- If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J-" for detected results) to account for a potential low bias.

LCS/LCSD percent recoveries and relative percent differences (RPDs) were within acceptance limits and no qualification was required.

2.7 MS/MSD RECOVERY AND RELATIVE PERCENT DIFFERENCE

MS/MSD samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte
 was not detected in the associated analytical batch, then data qualification was not
 required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J+" to account for a potential high bias.
- Low MS/MSD recoveries for inorganic parameters result in sample qualification of the associated analytical batch with a "J-".
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

Some lab reports do not report MS/MSD results if none of the samples included under that report were used for the MS/MSD; however, in many instances the sample used for the MS/MSD was a sample of similar matrix materials submitted by Marathon in a different data set and its MS/MSD results were included in other lab reports, which are included in this data validation review.

MS/MSD percent recoveries and RPDs were within acceptance limits and no qualification was required with the following exceptions:

Lab Report 1908D80

• The MS/MSD recoveries for mercury in Laboratory Batch ID 47323 were slightly below the acceptable range. The mercury data was qualified "UJ" for MW-13.

Lab Report 1908E25

• The MS/MSD recoveries for uranium in Laboratory Batch ID A62764 were below the acceptable range. The uranium data was qualified "UJ" for MW-32.

Lab Report 1908G31

• The MS/MSD recoveries for the surrogate toluene-d8 in Laboratory Batch ID SL_W62593 were above the acceptable range. The associated detected field sample results for benzene, ethylbenzene, MTBE, and total xylenes are qualified "J+" due to a potential high bias. Toluene concentrations were non-detectable and were qualified "UJ".

2.8 DUPLICATES

2.8.1 Field Duplicates

Field duplicates were collected at a rate as stated in the Order and Permit. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table B-3. The field duplicates were evaluated by the following criteria:

• If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 25 percent for ground water samples.

- If an analyte was detected at a concentration that is less than five times the method reporting limit, then the difference between the sample and the field duplicate should not exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average of the concentrations.

Field duplicate RPDs were within acceptance limits except for the following:

Lab Reports 1908D80-006 (MW-11) and 1908D80-007 (DUPLICATE #1)

- 4-Isopropyltoluene concentrations of 3 ug/L vs 2.3 ug/L in the duplicate sample. The RPD was 26.4%;
- Sec-Butylbenzene concentrations of 13 ug/L vs 10 ug/L in the duplicate sample. The RPD was 26.1%;
- Sulfate concentrations of 6.9 mg/L vs 9.6 mg/L in the duplicate sample. The RPD was 32.7%;
- Total lead concentrations of 0.014 mg/L vs 0.0072 mg/L in the duplicate sample. The RPD was 64.2%; and
- GRO concentrations of 2.4 mg/L vs 1.8 mg/L in the duplicate sample. The RPD was 28.6%.

Lab Reports 1908E78-004 (MW-70) and 1908E78-006 (DUPLICATE #2)

• Zinc concentrations of 0.017 mg/L vs 0.023 mg/L in the duplicate sample. The RPD was 30.0%.

Lab Reports 1908G31-002 (OW 25+70) and 1908G31-003 (DUPLICATE #3)

• GRO concentrations of 0.052 mg/L vs 0.073 mg/L in the duplicate sample. The RPD was 33.6%.

3.0 COMPLETENESS SUMMARY

The following equation was used to calculate the technical completeness:

% Technical Completeness =
$$\left(\frac{Number\ of\ usable\ results}{Number\ of\ reported\ results}\right) x 100$$

The technical completeness attained for semi-annual and annual monitoring activities conducted in 2019 was 100 percent. The completeness results are provided in Table B-4. The analytical results for the required analytes per the Order and Permit were considered usable for the intended purposes and the project DQOs have been met.

Table B-1 Sample Identification - 2019 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

Sample ID	Lab ID	Date Collected	Sample Type
MW-1	1904276-001	04/03/19	GW
Field Blank #1	1904276-002	04/03/19	FB
Equipment Blank #1	1904276-003	04/03/19	EB
MW-35	1904276-004	04/03/19	GW
MW-13	1904276-005	04/03/19	GW
Trip Blank	1904276-006	04/03/19	TB
CW 0+60	1904357-001	04/03/19	GW
MW-12	1904357-002	04/04/19	GW
MW-38	1904357-003	04/04/19	GW
MW-37	1904357-004	04/04/19	GW
OW 25+70	1904357-005	04/04/19	GW
Trip Blank	1904357-006	04/04/19	TB
East Outfall #2	1904357-007	04/04/19	Outfall
East Outfall #3	1904357-008	04/04/19	Outfall
OW 8+10	1904419-001	04/05/19	GW
OW 19+50	1904419-002	04/05/19	GW
OW 22+00	1904419-003	04/05/19	GW
OW 23+90	1904419-004	04/05/19	GW
CW 25+95	1904419-005	04/05/19	GW
Duplicate #1	1904419-006	04/05/19	FD
Field Blank #2	1904419-007	04/05/19	FB
Trip Blank	1904419-008	04/05/19	TB
Upstream	1904422-001	04/05/19	SW
North of 45	1904422-002	04/05/19	SW
North of 46	1904422-003	04/05/19	SW
Downstream	1904422-004	04/05/19	SW
Trip Blank	1904422-005	04/05/19	TB
East Outfall #2	1908972-001	08/15/19	Outfall
East Outfall #3	1908972-002	08/15/19	Outfall
Upstream	1908972-003	08/16/19	SW
North of 45	1908972-004	08/16/19	SW
North of 46	1908972-005	08/16/19	SW
Downstream	1908972-006	08/16/19	SW
Trip Blank	1908972-007	08/16/19	TB
MW-1	1908D80-001	08/21/19	GW
MW-13	1908D80-002	08/21/19	GW
Trip Blank	1908D80-003	08/21/19	TB
MW-34	1908D80-004	08/21/19	GW
Field Blank #1	1908D80-005	08/21/19	FB
MW-11	1908D80-006	08/21/19	GW
DUPLICATE #1	1908D80-007	08/21/19	FD
Trip Blank	1908D80-008	08/21/19	TB
EQUIPMENT BLANK #1	1908D80-009	08/21/19	EB
MW-32	1908E25-001	08/22/19	GW
MW-27	1908E25-002	08/22/19	GW
MW-38	1908E25-003	08/22/19	GW
Trip Blank	1908E25-004	08/22/19	TB
MW-37	1908E25-004	08/22/19	GW
IVIVV-3/	T900E70-002	00/22/19	GW

Table B-1
Sample Identification - 2019 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

Sample ID	Lab ID	Date Collected	Sample Type
MW-35	1908E25-006	08/22/19	GW
MW-12	1908E25-007	08/21/19	GW
MW-59	1908E78-001	08/22/19	GW
MW-63	1908E78-002	08/22/19	GW
MW-64	1908E78-003	08/22/19	GW
MW-70	1908E78-004	08/23/19	GW
Trip Blank	1908E78-005	08/23/19	TB
DUPLICATE #2	1908E78-006	08/23/19	FD
FIELD BLANK #2	1908E78-007	08/23/19	FB
MW-44	1908E78-008	08/23/19	GW
MW-62	1908E78-009	08/23/19	GW
Trip Blank	1908E78-010	08/23/19	TB
MW-31	1908E78-011	08/23/19	GW
MW-29	1908E78-012	08/23/19	GW
MW-53	1908E78-013	08/23/19	GW
MW-52	1908E78-014	08/23/19	GW
MW-67	1908E78-015	08/23/19	GW
MW-68	1908E78-016	08/23/19	GW
Trip Blank	1908E78-017	08/23/19	TB
CW 0+60	1908G31-001	08/26/19	GW
OW 25+70	1908G31-002	08/26/19	GW
DUPLICATE #3	1908G31-003	08/26/19	FD
OW 8+10	1908G31-004	08/27/19	GW
OW 19+50	1908G31-005	08/27/19	GW
OW 22+00	1908G31-006	08/27/19	GW
OW 23+90	1908G31-007	08/27/19	GW
CW 25+95	1908G31-008	08/27/19	GW
FIELD BLANK #3	1908G31-009	08/27/19	FB
TRIP BLANK	1908G31-010	08/27/19	TB
MW-27	1908 12-001	08/28/19	GW

Notes:

GW = Groundwater TB = Trip Blank

FD = Field Duplicate EB = Equipment Blank

SW = Surface Water FB = Field Blank

Table B-2 Qualified Data - 2019 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

SAMPLE ID	DATE COLLECTED	ANALYTE	RESULTS	UNITS	SAMPLE TYPE	QUALIFIER	COMMENTS
CW 0+60	04/03/19	Gasoline Range Organics	3.1	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	04/03/19	Benzene	0.0021	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	04/03/19	Toluene	<0.001	mg/L	GW	UJ	Qualified high bias - high recovery in surrogate.
CW 0+60	04/03/19	Ethylbenzene	0.004	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	04/03/19	MTBE	0.0012	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	04/03/19	Total Xylenes	0.0018	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
East Outfall #2	04/04/19	Total Carbon Dioxide	310	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
East Outfall #3	04/04/19	Total Carbon Dioxide	300	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
Upstream	04/05/19	Total Carbon Dioxide	87	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Upstream	04/05/19	Phosphorus, Orthophosphate (As P)	<5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Upstream	04/05/19	Arsenic	<0.020	mg/L	SW	UJ	Qualified high bias - detection of arsenic in method blank.
North of 45	04/05/19	Total Carbon Dioxide	86	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 45	04/05/19	Phosphorus, Orthophosphate (As P)	<5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
North of 46	04/05/19	Total Carbon Dioxide	92	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 46	04/05/19	Phosphorus, Orthophosphate (As P)	<5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Downstream	04/05/19	Total Carbon Dioxide	89	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Downstream	04/05/19	Phosphorus, Orthophosphate (As P)	<5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
East Outfall #2	08/15/19	Total Carbon Dioxide	300	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
East Outfall #2	08/15/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
East Outfall #3	08/15/19	Total Carbon Dioxide	290	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
East Outfall #3	08/15/19	Phosphorus, Orthophosphate (As P)	<0.50	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
Upstream	08/16/19	Total Carbon Dioxide	79	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Upstream	08/16/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
North of 45	08/16/19	Total Carbon Dioxide	80	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 45	08/16/19	Phosphorus, Orthophosphate (As P)	<0.50	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
North of 46	08/16/19	Total Carbon Dioxide	80	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 46	08/16/19	Phosphorus, Orthophosphate (As P)	<0.50	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Downstream	08/16/19	Total Carbon Dioxide	80	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Downstream	08/16/19	Phosphorus, Orthophosphate (As P)	<0.50	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
MW-1	08/21/19	Total Carbon Dioxide	280	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.

Table B-2 Qualified Data - 2019 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

SAMPLE ID	DATE COLLECTED	ANALYTE	RESULTS	UNITS	SAMPLE TYPE	QUALIFIER	COMMENTS
MW-1	08/21/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-13	08/21/19	Total Carbon Dioxide	860	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-13	08/21/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-34	08/21/19	Total Carbon Dioxide	1100	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
Field Blank #1	08/21/19	Total Carbon Dioxide	10	mg CO2/L	FB	J-	Qualified low bias - analysis outside holding time.
MW-11	08/21/19	Total Carbon Dioxide	970	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
DUPLICATE #1	08/21/19	Total Carbon Dioxide	960	mg CO2/L	FD	J-	Qualified low bias - analysis outside holding time.
EQUIPMENT BLANK #1	08/21/19	Total Carbon Dioxide	9.6	mg CO2/L	EB	J-	Qualified low bias - analysis outside holding time.
MW-13	08/21/19	Mercury	<0.001	mg/L	GW	UJ	Qualified low bias - low recovery of mercury in the matrix spike and matrix spike duplicate.
MW-32	08/22/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-32	08/22/19	Total Carbon Dioxide	160	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-27	08/22/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-27	08/22/19	Total Carbon Dioxide	230	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-38	08/22/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-38	08/22/19	Total Carbon Dioxide	620	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-37	08/22/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-37	08/22/19	Total Carbon Dioxide	520	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-35	08/22/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-35	08/22/19	Total Carbon Dioxide	920	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-12	08/22/19	Phosphorus, Orthophosphate (As P)	<2.5	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-12	08/22/19	Total Carbon Dioxide	140	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-32	08/22/19	Uranium	<0.10	mg/L	GW	UJ	Qualified low bias - low recovery of uranium in the matrix spike and matrix spike duplicate.
CW 0+60	08/26/19	Benzene	0.001	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	08/26/19	Toluene	<0.001	mg/L	GW	UJ	Qualified low bias - low recovery in surrogate.
CW 0+60	08/26/19	Ethylbenzene	0.0041	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	08/26/19	МТВЕ	0.0011	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	08/26/19	Total Xylenes	0.0013	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.

Table B-2 Qualified Data - 2019 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

SAMPLE ID	DATE COLLECTED	ANALYTE	RESULTS	UNITS	SAMPLE TYPE	QUALIFIER	COMMENTS
-----------	-------------------	---------	---------	-------	----------------	-----------	----------

Notes:

GW = Groundwater TB = Trip Blank FD = Field Duplicate EB = Equipment Blank

SW = Surface Water FB = Field Blank

Parameter	OW 22+00 1904419-003 4/5/2019	Duplicate #1 1904419-006 4/5/2019	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)		<u></u>	
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane			NC
1,1-Dichloroethene			NC
1,1-Dichloropropene			NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC
1,2,4-Trichlorobenzene			NC
1,2,4-Trimethylbenzene			NC
1,2-Dibromo-3-chloropropane			NC
1,2-Dibromoethane (EDB)			NC
1,2-Dichlorobenzene			NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC
1,3,5-Trimethylbenzene			NC
1.3-Dichlorobenzene		***	NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC
2-Unior otolidene			NC
2-Methylnaphthalene			NC NC
4-Chlorotoluene			NC NC
4-Isopropyltoluene			
4-Methyl-2-pentanone			NC
Acetone			NC
Benzene	<1.0	<1.0	NC
Bromobenzene			NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane		***	NC
Ethylbenzene	<1.0	<1.0	NC
Hexachlorobutadiene			NC
Isopropylbenzene			NC
Methyl tert-butyl ether (MTBE)	<1.0	< 1.0	NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC NC
			NC
n-Propylbenzene			
sec-Butylbenzene			NC NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC

	0W 22+00	Duplicate #1	
Down water	1904419-003	1904419-006	
Parameter —	4/5/2019	4/5/2019	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			•
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE			NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC
Xylenes, Total	<1.5	<1.5	NC
General Chemistry (mg/L)			
Fluoride			NC
Chloride			NC
Nitrite			NC
Bromide			NC
Nitrate			NC
Phosphorus		***	NC
Sulfate			NC
Carbon Dioxide (CO ₂)			NC
Alkalinity (CaCO ₃)			NC
Bicarbonate (CaCO ₃)			NC
Total Metals (mg/L)			+
Arsenic			NC
Barium		***	NC
Cadmium			NC
Chromium			NC
Lead			NC
Selenium			NC
Silver			NC
Mercury	***		NC
Dissolved Metals (mg/L)	•		•
Arsenic			NC
Barium			NC
Cadmium			NC
Calcium			NC
Chromium			NC
Copper			NC
Iron			NC
Lead			NC
Magnesium			NC
Manganese			NC
Potassium			NC
Selenium			NC
Silver			NC
Sodium			NC
Uranium			NC
Zinc			NC
Total Petroleum Hydrocarbons (mg/L)	<u> </u>		
Diesel Range Organics	<0.40	<0.040	NC
Gasoline Range Organics	<0.050	<0.050	NC
Motor Oil Range Organics	<2.5	<2.5	NC

Notes

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

Table B-3
Field Duplicate Summary - 2019 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	MW-11	DUPLICATE #1	
Parameter -	1908D80-006	1908D80-007	RPD %
	8/21/2019	8/21/2019	
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			
1,1,1,2-Tetrachloroethane	< 1.0	< 1.0	NC
1,1,1-Trichloroethane	< 1.0	< 1.0	NC
1,1,2,2-Tetrachloroethane	< 2.0	< 2.0	NC
1,1,2-Trichloroethane	< 1.0	< 1.0	NC
1,1-Dichloroethane	< 1.0	< 1.0	NC
1,1-Dichloroethene	< 1.0	< 1.0	NC
1,1-Dichloropropene	< 1.0	< 1.0	NC
1,2,3-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,3-Trichloropropane	< 2.0	< 2.0	NC
1,2,4-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,4-Trimethylbenzene	110	93	16.7
1,2-Dibromo-3-chloropropane	< 2.0	< 2.0	NC
1,2-Dibromoethane (EDB)	< 1.0	< 1.0	NC
1,2-Dichlorobenzene	< 1.0	< 1.0	NC
1,2-Dichloroethane (EDC)	< 1.0	< 1.0	NC
1,2-Dichloropropane	< 1.0	< 1.0	NC
1,3,5-Trimethylbenzene	< 1.0	< 1.0	NC
1,3-Dichlorobenzene	< 1.0	< 1.0	NC
1,3-Dichloropropane	< 1.0	< 1.0	NC
1,4-Dichlorobenzene	< 1.0	< 1.0	NC
1-Methylnaphthalene	18	16	11.8
2,2-Dichloropropane	< 2.0	< 2.0	NC
2-Butanone	< 10	< 10	NC
2-Chlorotoluene	< 1.0	< 1.0	NC
2-Hexanone	< 10	< 10	NC
2-Methylnaphthalene	28	24	15.4
4-Chlorotoluene	< 1.0	< 1.0	NC
4-Isopropyltoluene	3	2.3	26.4
4-Methyl-2-pentanone	< 10	< 10	NC
Acetone	< 10	< 10	NC
Benzene	8	7	13.3
Bromobenzene	< 1.0	< 1.0	NC
Bromodichloromethane	< 1.0	< 1.0	NC
Bromoform	< 1.0	< 1.0	NC
Bromomethane	< 3.0	< 3.0	NC
Carbon disulfide	< 10	< 10	NC
Carbon Tetrachloride	< 1.0	< 1.0	NC
Chlorobenzene	< 1.0	< 1.0	NC
Chloroethane	< 2.0	< 2.0	NC
Chloroform	< 1.0	< 1.0	NC
Chloromethane	< 3.0	< 3.0	NC
cis-1,2-DCE	< 1.0	< 1.0	NC
cis-1,3-Dichloropropene	< 1.0	< 1.0	NC
Dibromochloromethane	< 1.0	< 1.0	NC
Dibromomethane	< 1.0	< 1.0	NC
Dichlorodifluoromethane	< 1.0	< 1.0	NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene	< 1.0	< 1.0	NC
Isopropylbenzene	81	71	13.2
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	0.0
Methylene Chloride	< 3.0	< 3.0	NC
Naphthalene	99	92	7.3
n-Butylbenzene	3.3	<0.003	NC
n-Propylbenzene			
n-Fropylbenzene)	86	70	20.5

Table B-3
Field Duplicate Summary - 2019 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

Parameter	MW-11 1908D80-006 8/21/2019	DUPLICATE #1 1908D80-007 8/21/2019	RPD %
		Field Duplicate	
Volatile Organic Compounds (ug/L)	Sample Result	Field Duplicate	
Styrene	< 1.0	< 1.0	NC
tert-Butylbenzene	2.5	2.1	17.4
Tetrachloroethene (PCE)	< 1.0	< 1.0	NC
Toluene	< 1.0	< 1.0	NC NC
trans-1,2-DCE	< 1.0	< 1.0	NC NC
trans-1,3-Dichloropropene	< 1.0	< 1.0	NC
Trichloroethene (TCE)	< 1.0	< 1.0	NC
Trichlorofluoromethane	< 1.0	< 1.0	NC
Vinyl chloride	< 1.0	< 1.0	NC
Xylenes, Total	< 1.5	< 1.5	NC
Semi-Volatile Organic Compounds (ug/L			
1,2,4-Trichlorobenzene	< 10	< 10	NC
1,2-Dichlorobenzene	< 10	< 10	NC
1,3-Dichlorobenzene	< 10	< 10	NC
1,4-Dichlorobenzene	< 10	< 10	NC
1-Methylnaphthalene	34	< 10	NC
2,4,5-Trichlorophenol	< 10	< 10	NC
2,4,6-Trichlorophenol	< 10	< 10	NC
2,4-Dichlorophenol	< 20	< 20	NC
2,4-Dimethylphenol	< 10	< 10	NC
2,4-Dinitrophenol	< 20	< 20	NC
2,4-Dinitrotoluene	< 10	< 10	NC
2,6-Dinitrotoluene	< 10	< 10	NC
2-Chloronaphthalene	< 10	< 10	NC
2-Chlorophenol	< 10	< 10	NC
2-Methylnaphthalene	24	< 10	NC
2-Methylphenol	< 10	< 10	NC
2-Nitroaniline	< 10	< 10	NC
2-Nitrophenol	< 10	< 10	NC
3+4-Methylphenol	< 10	< 10	NC
3,3´-Dichlorobenzidine	< 10	< 10	NC
3-Nitroaniline	< 10	< 10	NC
4,6-Dinitro-2-methylphenol	< 20	< 20	NC
4-Bromophenyl phenyl ether	< 10	< 10	NC
4-Chloro-3-methylphenol	< 10	< 10	NC
4-Chloroaniline	< 10	< 10	NC
4-Chlorophenyl phenyl ether	< 10	< 10	NC
4-Nitroaniline	< 10	< 10	NC
4-Nitrophenol	< 10	< 10	NC
Acenaphthene	< 10	< 10	NC
Acenaphthylene	< 10	< 10	NC
Aniline	< 10	< 10	NC
Anthracene	< 10	< 10	NC
Azobenzene	< 10	< 10	NC
Benz(a)anthracene	< 10	< 10	NC
Benzo(a)pyrene	< 10	< 10	NC NC
Benzo(b)fluoranthene	< 10	< 10	NC NC
Benzo(g,h,i)perylene	< 10	< 10	NC NC
Benzo(k)fluoranthene	< 10	< 10	NC
Benzoic acid Benzyl alcohol	< 20 < 10	< 20 < 10	NC NC
Bis(2-chloroethoxy)methane	< 10	< 10	NC NC
Bis(2-chloroethyl)ether	< 10	< 10	NC NC
Bis(2-chloroisopropyl)ether	< 10	< 10	NC NC
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	< 10	< 10	NC NC
Butyl benzyl phthalate	< 10	< 10	NC NC
Carbazole	< 10	< 10	NC NC
Chrysene	< 10	< 10	NC
Chrysene	< 10	/ 1U	INC

Table B-3
Field Duplicate Summary - 2019 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	MW-11 1908D80-006	DUPLICATE #1 1908D80-007	
Parameter	8/21/2019	8/21/2019	— RPD %
	Sample Result	Field Duplicate	
Semi-Volatile Organic Compounds (ug	-	i leid Duplicate	
Di-n-butyl phthalate	< 10	< 10	NC
Di-n-octyl phthalate	< 10	< 10	NC
	< 10	< 10	NC
Dibenz(a,h)anthracene	< 10	< 10	
Dibenzofuran	< 10		NC
Diethyl phthalate		< 10	NC NC
Dimethyl phthalate	< 10	< 10	
Fluoranthene	< 10	< 10	NC
Fluorene	< 10	< 10	NC
Hexachlorobenzene	< 10	< 10	NC
Hexachlorobutadiene	< 10	< 10	NC
Hexachlorocyclopentadiene	< 10	< 10	NC
Hexachloroethane	< 10	< 10	NC
Indeno(1,2,3-cd)pyrene	< 10	< 10	NC
Isophorone	< 10	< 10	NC
N-Nitrosodi-n-propylamine	< 10	< 10	NC
N-Nitrosodimethylamine	< 10	< 10	NC
N-Nitrosodiphenylamine	< 10	< 10	NC
Naphthalene	85	< 10	NC
Nitrobenzene	< 10	< 10	NC
Pentachlorophenol	< 20	< 20	NC
Phenanthrene	< 10	< 10	NC
Phenol	< 10	< 10	NC
Pyrene	< 10	< 10	NC
Pyridine	< 10	< 10	NC
General Chemistry (mg/L)	-		
Fluoride	<0.050	<0.50	NC
Chloride	240	250	4.1
Nitrite	<0.50	<0.50	NC
Bromide	3.8	3.9	2.6
Nitrate	<0.50	<0.50	NC
Phosphorus	<2.5	<2.5	NC
Sulfate	6.9	9.6	32.7
Carbon Dioxide (CO ₂)	970	960	1.0
Alkalinity (CaCO ₃)	1084	1073	1.0
Bicarbonate (CaCO ₃)	1084	1073	1.0
\ 3/	1084	1073	1.0
Total Metals (mg/L)	* O 000	10,000	NO
Arsenic	< 0.020	< 0.020	NC 1.0
Barium	0.99	1	1.0
Cadmium	< 0.0020	< 0.0020	NC
Chromium	< 0.0060	< 0.0060	NC
Lead	0.014	0.0072	64.2
Selenium	< 0.050	< 0.050	NC
Silver	< 0.0050	<0.0050	NC
Mercury	< 0.00020	< 0.00020	NC
Dissolved Metals (mg/L)			
Arsenic	< 0.020	<0.020	NC
Barium	0.97	0.97	0.0
Cadmium	< 0.0020	< 0.0020	NC
Calcium	130	140	7.4
Chromium	< 0.0060	< 0.0060	NC
Copper	< 0.0060	< 0.0060	NC
Iron	6.5	6.5	0.0
Lead	0.0068	0.008	16.2
Magnesium	31	31	0.0
Manganese	2.2	2.2	0.0
Manganood			

	MW-11	DUPLICATE #1	
Parameter	1908D80-006	1908D80-007	RPD %
rarameter	8/21/2019	8/21/2019	T KPD %
	Sample Result	Field Duplicate	
Dissolved Metals (mg/L)			
Selenium	<0.050	<0.050	NC
Silver	< 0.0050	< 0.0050	NC
Sodium	490	500	2.0
Uranium	<0.10	<0.10	NC
Zinc	< 0.020	< 0.020	NC
Total Petroleum Hydrocarbons (mg/L)			
Diesel Range Organics	0.52	0.53	1.9
Gasoline Range Organics	2.4	1.8	28.6
Motor Oil Range Organics	< 2.5	< 2.5	NC

Notes:

 ${\sf RPD = Relative\ percent\ difference;\ [(difference)/(average)]*\ 100}$

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

Table B-3
Field Duplicate Summary - 2019 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	MW-70	DUPLICATE #2	
Parameter –	1908E78-004	1908E78-006	RPD %
T didnicter	8/23/2019	8/23/2019	
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			
1,1,1,2-Tetrachloroethane	< 1.0	< 1.0	NC
1,1,1-Trichloroethane	< 1.0	< 1.0	NC
1,1,2,2-Tetrachloroethane	< 2.0	< 2.0	NC
1,1,2-Trichloroethane	< 1.0	< 1.0	NC
1,1-Dichloroethane	< 1.0	< 1.0	NC
1.1-Dichloroethene	< 1.0	< 1.0	NC
1,1-Dichloropropene	< 1.0	< 1.0	NC
1,2,3-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,3-Trichloropropane	< 2.0	< 2.0	NC
1,2,4-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,4-Trimethylbenzene	< 1.0	< 1.0	NC
1,2-Dibromo-3-chloropropane	< 2.0	< 2.0	NC
1,2-Dibromoethane (EDB)	< 1.0	< 1.0	NC
1,2-Dishorhoethane (EDB)	< 1.0	< 1.0	NC
·		< 1.0	
1,2-Dichloroethane (EDC)	< 1.0		NC NC
1,2-Dichloropropane	< 1.0	< 1.0	NC
1,3,5-Trimethylbenzene	< 1.0	< 1.0	NC
1,3-Dichlorobenzene	< 1.0	< 1.0	NC
1,3-Dichloropropane	< 1.0	< 1.0	NC
1,4-Dichlorobenzene	< 1.0	< 1.0	NC
1-Methylnaphthalene	< 4.0	< 4.0	NC
2,2-Dichloropropane	< 2.0	< 2.0	NC
2-Butanone	< 10	< 10	NC
2-Chlorotoluene	< 1.0	< 1.0	NC
2-Hexanone	< 10	< 10	NC
2-Methylnaphthalene	< 4.0	< 4.0	NC
4-Chlorotoluene	< 1.0	< 1.0	NC
4-Isopropyltoluene	< 1.0	< 1.0	NC
4-Methyl-2-pentanone	< 10	< 10	NC
Acetone	< 10	< 10	NC
Benzene	< 1.0	< 1.0	NC
Bromobenzene	< 1.0	< 1.0	NC
Bromodichloromethane	< 1.0	< 1.0	NC
Bromoform	< 1.0	< 1.0	NC
Bromomethane	< 3.0	< 3.0	NC
Carbon disulfide	< 10	< 10	NC
Carbon Tetrachloride	< 1.0	< 1.0	NC
Chlorobenzene	< 1.0	< 1.0	NC
Chloroethane	< 2.0	< 2.0	NC
Chloroform	< 1.0	< 1.0	NC
Chloromethane	< 3.0	< 3.0	NC
cis-1,2-DCE	< 1.0	< 1.0	NC
cis-1,3-Dichloropropene	< 1.0	< 1.0	NC NC
Dibromochloromethane			
Dibromocnioromethane Dibromomethane	< 1.0	< 1.0	NC NC
	< 1.0	< 1.0	NC NC
Dichlorodifluoromethane	< 1.0	< 1.0	NC NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene	< 1.0	< 1.0	NC
Isopropylbenzene	< 1.0	< 1.0	NC
Methyl tert-butyl ether (MTBE)	0.54	0.52	3.8
Methylene Chloride	< 3.0	< 3.0	NC
Naphthalene	< 3.0	< 3.0	NC
n-Butylbenzene	< 1.0	< 1.0	NC
n-Propylbenzene	< 2.0	< 2.0	NC

	MW-70	DUPLICATE #2	
Parameter	1908E78-004	1908E78-006	RPD %
rarameter	8/23/2019	8/23/2019	KPD 76
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			
sec-Butylbenzene	< 1.0	< 1.0	NC
Styrene	< 1.0	< 1.0	NC
tert-Butylbenzene	< 1.0	< 1.0	NC
Tetrachloroethene (PCE)	< 1.0	< 1.0	NC
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE	< 1.0	< 1.0	NC
trans-1,3-Dichloropropene	< 1.0	< 1.0	NC
Trichloroethene (TCE)	< 1.0	< 1.0	NC
Trichlorofluoromethane	< 1.0	< 1.0	NC
Vinyl chloride	< 1.0	< 1.0	NC
Xylenes, Total	< 1.5	< 1.5	NC
General Chemistry (mg/L) Fluoride	0.26	0.27	3.8
		340	
Chloride Nitrite	340 0.33	0.29	0.0 12.9
Bromide	1.6	1.6	0.0
Nitrate	0.33	0.29	12.9
Phosphorus	< 2.5	< 10	NC
Sulfate	2100	2100	0.0
Carbon Dioxide (CO ₂)	790	770	2.6
Alkalinity (CaCO ₃)	785.4	791.1	0.7
* (0)	785.4	791.1	0.7
Bicarbonate (CaCO ₃) Total Metals (mg/L)	765.4	791.1	0.7
Arsenic	<0.020	< 0.020	NC
Barium	0.15	0.15	0.0
Cadmium	< 0.0020	< 0.0020	NC
Chromium	<0.0020	0.0020	NC NC
Lead	< 0.0050	< 0.0050	NC
Selenium	< 0.050	< 0.050	NC
Silver	0.0051	0.0049	4.0
Mercury	0.00012	0.00014	15.4
Dissolved Metals (mg/L)			
Arsenic	<0.020	<0.020	NC
Barium	0.013	0.013	0.0
Cadmium	< 0.0020	< 0.0020	NC
Calcium	610	610	0.0
Chromium	< 0.0060	< 0.0060	NC
Copper	0.0037	0.0034	8.5
Iron	5.3	5.3	0.0
Lead	< 0.0050	< 0.0050	NC
Magnesium	150	150	0.0
Manganese	1.6	1.7	6.1
Potassium	3.5	3.4	2.9
Selenium	< 0.050	< 0.050	NC
Silver	0.0071	0.0073	2.8
Sodium	610	600	1.7
Uranium	< 0.10	< 0.10	NC
Zinc	0.017	0.023	30.0
Total Petroleum Hydrocarbons (mg/L)	.0.40		1 110
Diesel Range Organics	< 0.40	< 0.40	NC NC
Gasoline Range Organics	<0.050	<0.050	NC NC
Motor Oil Range Organics	< 2.5	< 2.5	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

	0W 25+70	DUPLICATE #3	
Parameter	1908G31-002	1908G31-003	RPD %
raiametei	8/26/2019	8/26/2019	INFD 70
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane			NC
1,1-Dichloroethene			NC
1,1-Dichloropropene			NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC
1,2,4-Trichlorobenzene			NC
1,2,4-Trimethylbenzene			NC
1,2-Dibromo-3-chloropropane			NC
1,2-Dibromoethane (EDB)			NC
1,2-Dichlorobenzene			NC NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC
1,3,5-Trimethylbenzene			NC
1,3-Dichlorobenzene			NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC NC
2-Hexanone			NC NC
2-Methylnaphthalene 4-Chlorotoluene			NC
4-Chlorotolidene 4-Isopropyltoluene			NC NC
4-Methyl-2-pentanone			NC NC
Acetone			NC NC
Benzene	< 1.0	< 1.0	NC NC
Bromobenzene		\ 1.0	NC NC
Bromodichloromethane			NC NC
Bromoform			NC NC
Bromomethane			NC NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane			NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene			NC
Isopropylbenzene		***	NC
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
L			

	OW 25+70	DUPLICATE #3	
Parameter	1908G31-002	1908G31-003	RPD %
Parameter	8/26/2019	8/26/2019	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			
sec-Butylbenzene			NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE		***	NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC 1.0
Xylenes, Total	0.49	0.51	4.0
General Chemistry (mg/L)	1		NO.
Fluoride			NC NC
Chloride Nitrite			NC NC
Bromide			NC NC
Nitrate			NC NC
Phosphorus			NC
Sulfate			NC
Carbon Dioxide (CO ₂)		***	NC
Alkalinity (CaCO ₃)			NC
- I			
Bicarbonate (CaCO ₃)			NC
Total Metals (mg/L) Arsenic			NC
Barium			NC
Cadmium			NC
Chromium			NC
Lead			NC
Selenium	***		NC
Silver			NC
Mercury			NC
Dissolved Metals (mg/L)			
Arsenic			NC
Barium	***		NC
Cadmium	***		NC
Calcium			NC
Chromium			NC
Copper			NC
Iron	***		NC
Lead	***		NC
Magnesium			NC
Manganese			NC
Potassium	***		NC
Selenium			NC
Silver			NC
Sodium			NC
Uranium			NC
Zinc			NC
Total Petroleum Hydrocarbons (mg/L)	- 0 10 T	. O 10	NO
Diesel Range Organics	< 0.40	< 0.40	NC 33.6
Gasoline Range Organics Motor Oil Range Organics	0.052 <2.5	0.073 <2.5	33.6 NC
wotor on Kange Organics	\ 2.3	<2.5	INC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

Table B-4
Technical Completeness Summary - 2019 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	Parameter	Total Number of Results	Number of Usable Results	Percent Technical Compliance
TPH	Diesel Range Organics (DRO)	55	55	100
	Motor Oil Range Organics (MRO)	53	53	100
	Gasoline Range Organics (GRO)	55	55	100
VOCs	All VOC Analytes	27	27	100
VOCs	BTEX & MTBE only	38	38	100
SVOC	All SVOC Analytes	8	8	100
Total Recoverable Metals	Arsenic	39	39	100
	Barium	39	39	100
	Cadmium	39	39	100
	Chromium	39	39	100
	Lead	39	39	100
	Mercury	39	39	100
	Selenium	39	39	100
	Silver	39	39	100
Dissolved Metals	Arsenic	39	39	100
	Barium	39	39	100
	Cadmium	39	39	100
	Calcium	39	39	100
	Chromium	39	39	100
	Copper	39	39	100
	Iron	39	39	100
	Lead	39	39	100
	Magnesium	39	39	100
	Manganese	39	39	100
	Mercury	39	39	100
	Potassium	39	39	100
	Selenium	39	39	100
	Silver	39	39	100
	Sodium	39	39	100
	Uranium	39	39	100
	Zinc	39	39	100
Other Parameters:	Bicarbonate (As CaCO3)	39	39	100
	Bromide	39	39	100
	Carbonate (As CaCO3)	39	39	100
	Chloride	39	39	100
	Fluoride	39	39	100
	Nitrate+Nitrite as N	30	30	100
	Nitrogen, Nitrate (As N)	8	8	100
	Nitrogen, Nitrite (As N)	8	8	100
	Phosphorus, Orthophosphate (As P)	39	39	100
	Sulfate	39	39	100
	Total Alkalinity (as CaCO3)	39	39	100
	Total Carbon Dioxide	39	39	100

Notes:

Number of samples used in completeness calculations includes field duplicates, equipment rinsate, and field blanks. Percent Technial Compliance = (Number of usable results / Number of reported results) * 100