GW

GENERAL CORRESPONDENCE

YEAR(S):

Wingate Plant P.O. Box 119 Rehoboth, NM 87322 phone 505.863.1045

Beverly J. Cox Compliance Coordinator 505-863-1023; Fax 505-863-1047 beverly.j.cox@conocophillips.com

February 21, 2005JMr. Wayne Price
Environmental Bureau
Energy, Minerals & Natural Resources DepartmentPOil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505PDataPrime Pit Clasures Wingste Exectionates

Re: Brine Pit Closure; Wingate Fractionator

Dear Mr. Price:

This letter is to inform you that the brine pit and associated equipment has been remove/closed as per the approved closure plan. The pit closure was completed on January 13, 2006. There were no issues that arose during the closing process.

Should you have questions please do not hesitate to call me at 505-863-1023.

Sincerely,

Burenly J. Corf

Beverly J. Cox

cc: Neal Goates Houston Office TN 5044

Byron Chandler Houston Office WL3 6003

From:Price, Wayne, EMNRDSent:Friday, November 18, 2005 3:29 PMTo:'Cox, Beverly J.'Subject:RE: Waste Stream Disposal Request

Approved for a one time basis. The waste shall be RCRA Non-hazardous before entering the ponds. This approval will expire within 60 days.

From: Cox, Beverly J. [mailto:Beverly.J.Cox@conocophillips.com]
Sent: Thursday, November 10, 2005 12:27 PM
To: Price, Wayne, EMNRD
Cc: Cox, Beverly J.
Subject: Waste Stream Disposal Request
Importance: High

Mr. Price

The Wingate Facility has a Wet Air Surface Cooler (WASC) that will require internal surface treatment. The normal blowdown stream from this unit goes to the evaporation ponds. We are seeking permission to empty the water basins in the WASC to the evaporation ponds during the treatment process. This is a one time usage of this chemical and is currently not listed in the Wingate waste stream. Should this treatment work, we will seek a modification to our waste steam profile to allow for future applications.

The treatment process will take approximately 3000 gallons of water mixed with a 6% Inhibited Dry Acid Descaler (180 gallons). Upon the completion of the treatment cycle, it has been determined that only .05% of ethylene glycol will remain in the water stream. The other constituents of the descaler will be neutralized.

Attached you will find the Fact Sheet on the descaler and the MSDS sheet.

Thanks,

Beverly

Beverly J. Cox Wingate Fractionator 505.863.1023 Fax 505.863.1047 Cell 505.870.9839

From: Price, Wayne, EMNRD
Sent: Friday, November 18, 2005 9:30 AM
To: Price, Wayne, EMNRD; 'Cox, Beverly J.'
Cc: Neal Goates (n.goates@conocophillips.com)
Subject: RE: Brine Pit Closure - Wingate Fractionator

This morning Neal and I looked over the last monitor well plot plan. It appears from this map the brine pit is not causing any groundwater contamination at this time. Therefore OCD approves of Conoco's plan to close in place and not install a MW at the pit. There is sufficient controls all around the old pit.

Please provide photo and report after the pit is closed.

From: Price, Wayne, EMNRD
Sent: Thursday, November 17, 2005 2:08 PM
To: 'Cox, Beverly J.'
Subject: RE: Brine Pit Closure - Wingate Fractionator

For some time OCD and Conoco has pondered over where the salt contamination is coming from. I think we should at least put one monitor well or boring next the the pit on the down gradient side.

From: Cox, Beverly J. [mailto:Beverly.J.Cox@conocophillips.com]
Sent: Wednesday, November 16, 2005 6:34 AM
To: Price, Wayne, EMNRD
Cc: Cox, Beverly J.
Subject: Brine Pit Closure - Wingate Fractionator

Mr. Price

In response to your November 2, 2005 approval email on the Wingate brine pit closure, we are seeking approval to abandon in place the brine pit without additional sampling. The brine pit is of cement construction with an internal epoxy coating. We pulled the wood top off the entire pit and took photo's that show the integrity of the pit. There are monitoring wells within the facility boundaries that are sampled annually and show no increase in chlorides.

Should you have additional questions or would like to inspect the brine pit, please call.

Respectfully,

Beverly

Beverly J. Cox Wingate Fractionator 505.863.1023 Fax 505.863.1047 Cell 505.870.9839

11/18/2005

From:Price, Wayne, EMNRDTo:Cox, Beverly J.Cc:Henderson, Daniel H.; Driver, Jeffery W.Subject:RE: Brine Pit - Abandon In Place Project

Attachments:

OCD hereby approves of the closure work plan with the following conditions:

1. At least one soil sample shall be collected three feet under the pit. The sample shall be collected and analyzed for Chlorides using EPA methods. If the sample indicated that the brine pit was leaking then Conoco shall investigate extent of the contamination.

2. If groundwater was impacted then Conoco shall notify OCD pursuant to Rule 116.

2. A final report shall be submitted by June 15, 2006.

Wayne Price-Senior Environmental Engr. Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505 E-mail wayne.price@state.nm.us Tele: 505-476-3487 Fax: 505-4763462

From: Cox, Beverly J. [mailto:Beverly.J.Cox@conocophillips.com]
Sent: Fri 10/28/2005 10:08 AM
To: Price, Wayne, EMNRD
Cc: Cox, Beverly J.; Henderson, Daniel H.; Driver, Jeffery W.
Subject: Brine Pit - Abandon In Place Project

Mr. Price,

As discussed in this morning phone conversation, I am forwarding you several attachments that represent the brine pit closure project.

- 1. Plot plan that shows the location of the brine pit. This plot plan has the monitoring well locations and land contours. I have hand drawn (in red) the location of the brine pit which is approximately in the center of the plant.
- 2. Proposed method to abandon in place the brine pit and brine pumping trough.
- 3. Several photos of the existing pit and trough.

This project is proposed for spring or early summer of 2006. Please call should you have questions.

Thanks,

Beverly Cox

Beverly J. Cox

Wingate Fractionator

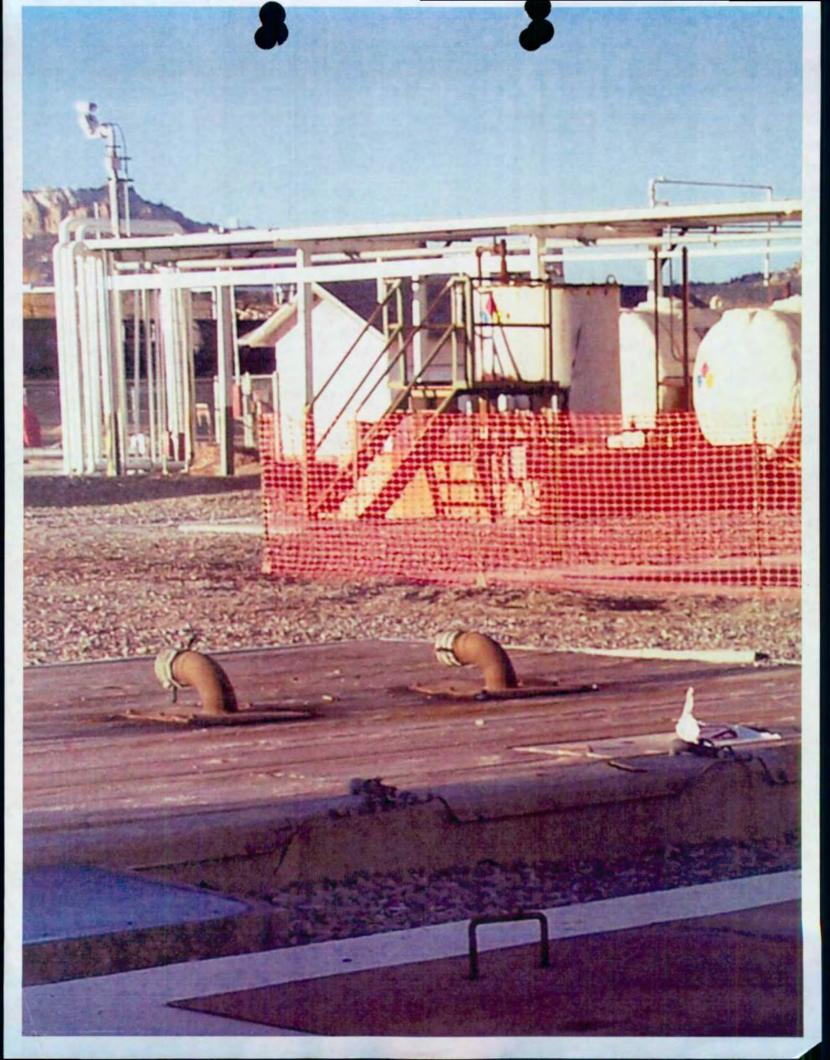
Sent: Wed 11/2/2005 1:39 PM

505.863.1023 Fax 505.863.1047

---- -- --

Cell 505.870.9839

Brine Pit and Sump Abandonment


ConocoPhillips (COP) Wingate Fractionator located in McKinley County, Gallup, New Mexico is proposing to abandon in place the old in-ground brine pit and pumping trough. Both devices are of cement construction. The brine pit and pumping trough was taken out of service in April 2004. This system has been replaced by a nano-filtration water treatment system.

The two in-ground devices were inspected as required by the GWDP in June 2004 and 2005. There have been no integrity problems identified during these inspections.

It is COP's intent to abandon these two devices in place by the following method.

- Currently the pits / trough have been drained and washed with fresh water and there are no active sources supplied to them.
- Flush, drain and permanently disconnect the discharge lines from the brine pit and pumping trough.
- Fill the pit and pump trough with soil or sand ³/₄ full and pack.
- Fill the pit and pump trough to ground level with flowable fill cement.
- Remove above ground cement walls to ground level.
- Cover with rock.

This project is proposed for spring or early summer of 2006.

Sent: Wed 11/2/2005 1:39 PM

From:Price, Wayne, EMNRDTo:Cox, Beverly J.Cc:Henderson, Daniel H.; Driver, Jeffery W.Subject:RE: Brine Pit - Abandon In Place ProjectAttachments:

OCD hereby approves of the closure work plan with the following conditions:

1. At least one soil sample shall be collected three feet under the pit. The sample shall be collected and analyzed for Chlorides using EPA methods. If the sample indicated that the brine pit was leaking then Conoco shall investigate extent of the contamination.

2. If groundwater was impacted then Conoco shall notify OCD pursuant to Rule 116.

2. A final report shall be submitted by June 15, 2006.

Wayne Price-Senior Environmental Engr. Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505 E-mail <u>wayne.price@state.nm.us</u> Tele: 505-476-3487 Fax: 505-4763462

From: Cox, Beverly J. [mailto:Beverly.J.Cox@conocophillips.com]
Sent: Fri 10/28/2005 10:08 AM
To: Price, Wayne, EMNRD
Cc: Cox, Beverly J.; Henderson, Daniel H.; Driver, Jeffery W.
Subject: Brine Pit - Abandon In Place Project

Mr. Price,

As discussed in this morning phone conversation, I am forwarding you several attachments that represent the brine pit closure project.

- 1. Plot plan that shows the location of the brine pit. This plot plan has the monitoring well locations and land contours. I have hand drawn (in red) the location of the brine pit which is approximately in the center of the plant.
- 2. Proposed method to abandon in place the brine pit and brine pumping trough.
- 3. Several photos of the existing pit and trough.

This project is proposed for spring or early summer of 2006. Please call should you have questions.

Thanks,

Beverly Cox

Beverly J. Cox

Wingate Fractionator

🔥 You repli	ed on 11/2/2005 1:24 PM.	
This mes	sage was sent with high importance.	•
Attachme	ents can contain viruses that may harm your computer. Attachments n	ay not display correctly.
The send	ler of this message has requested a read receipt. Click here to send a	eceipt.
Price, Way	yne, EMNRD	
From:	Cox, Beverly J. [Beverly.J.Cox@conocophillips.com]	Sent: Fri 10/28/2005 10:08 AM
то:	Price, Wayne, EMNRD	
Cc:	Cox, Beverly J.; Henderson, Daniel H.; Driver, Jeffery W.	
Subject:	Brine Pit - Abandon In Place Project	
Attachmen	nts: 🗋 <u>Plot Plan Color.pdf(1MB)</u> 🗋 Brine Pit and Sump Abandonment	Plan.doc(52KB) 🗅 100_0456.JPG(1MB) 🗅 100_0465.JPG(1MB)

Mr. Price,

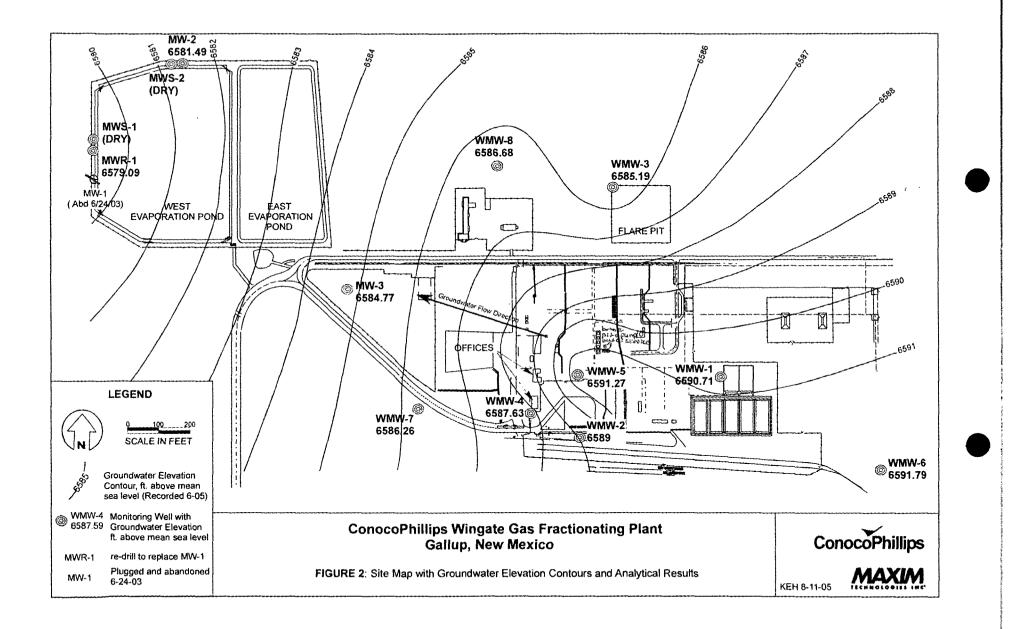
As discussed in this morning phone conversation, I am forwarding you several attachments that represent the brine pit closure project.

- 1. Plot plan that shows the location of the brine pit. This plot plan has the monitoring well locations and land contours. I have hand drawn (in red) the location of the brine pit which is approximately in the center of the plant.
- 2. Proposed method to abandon in place the brine pit and brine pumping trough.
- 3. Several photos of the existing pit and trough.

This project is proposed for spring or early summer of 2006. Please call should you have questions.

Thanks,

Beverly Cox

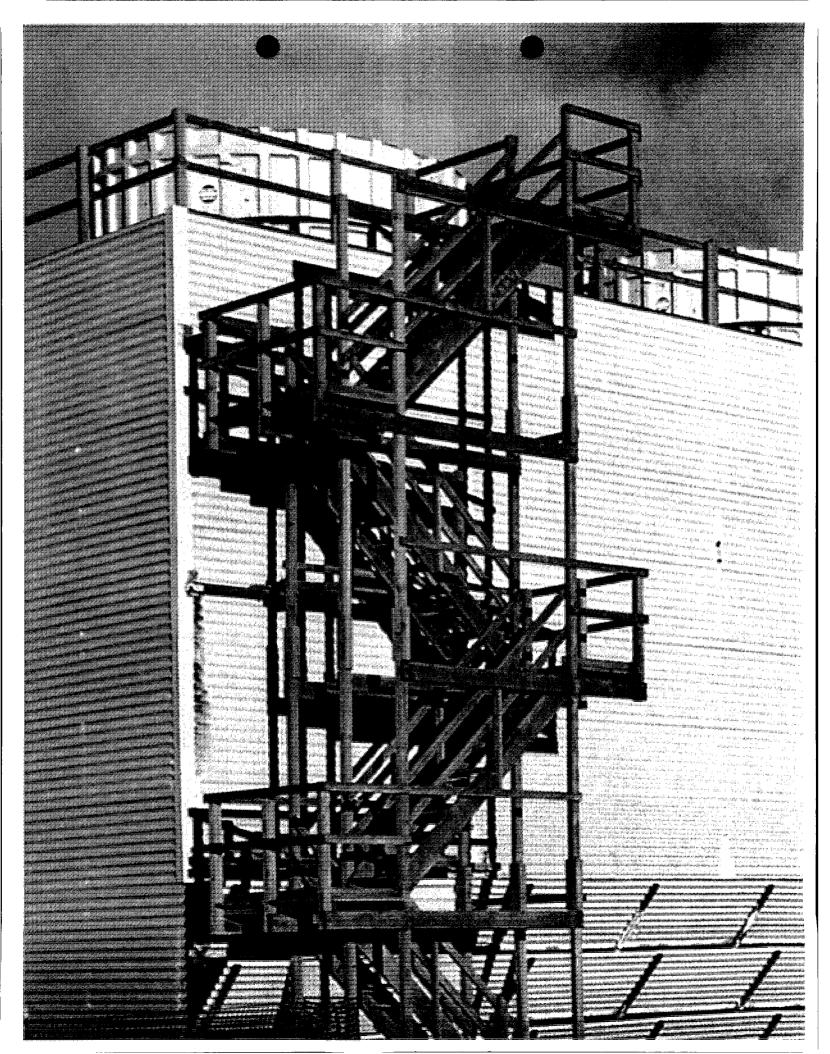

Beverly J. Cox

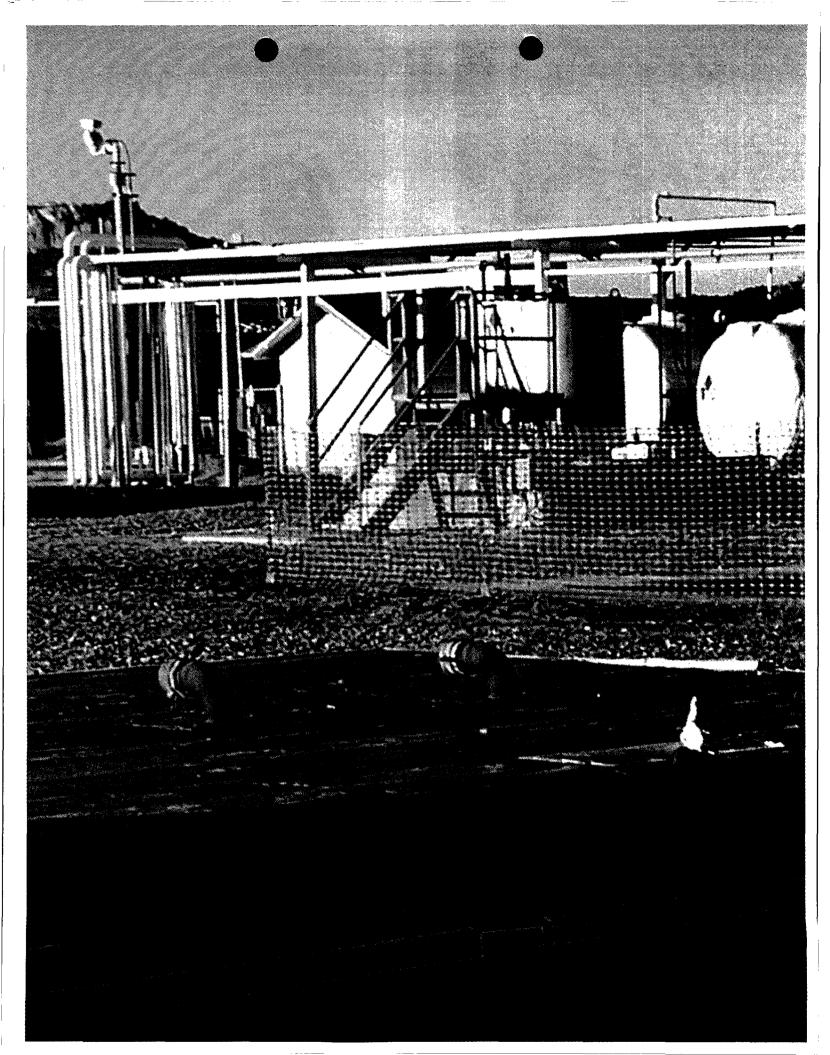
Wingate Fractionator

505.863.1023 Fax 505.863.1047

Cell 505.870.9839

Brine Pit and Sump Abandonment


ConocoPhillips (COP) Wingate Fractionator located in McKinley County, Gallup, New Mexico is proposing to abandon in place the old in-ground brine pit and pumping trough. Both devices are of cement construction. The brine pit and pumping trough was taken out of service in April 2004. This system has been replaced by a nano-filtration water treatment system.


The two in-ground devices were inspected as required by the GWDP in June 2004 and 2005. There have been no integrity problems identified during these inspections.

It is COP's intent to abandon these two devices in place by the following method.

- Currently the pits / trough have been drained and washed with fresh water and there are no active sources supplied to them.
- Flush, drain and permanently disconnect the discharge lines from the brine pit and pumping trough.
- Fill the pit and pump trough with soil or sand ³/₄ full and pack.
- Fill the pit and pump trough to ground level with flowable fill cement.
- Remove above ground cement walls to ground level.
- Cover with rock.

This project is proposed for spring or early summer of 2006.

10601 Lomas Blvd. NE, Suite 106 Albuquerque, NM 87106 Office 505.237.8440 Fax 505.237.8650

November 19, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

Subject: Delivery of Annual Groundwater Monitoring Report Groundwater Discharge Plan No. GW-054 ConocoPhillips Wingate Fractionating Plant Gallup, New Mexico

Dear Mr. Price,

Maxim Technologies (Maxim) is pleased to deliver the enclosed Annual Groundwater Monitoring Report per the requirements of the Groundwater Discharge Plan GW-054.

Should you have any questions, please contact Beverly Cox at the Wingate plant, (505) 863-1023.

Sincerely,

Rr Jengebuch

Robert M. Sengebush Senior Project Manager

Enclosures (1)

Cc: Beverly Cox, ConocoPhillips Neil Goates, ConocoPhillips

DUKE ENERGY FIELD SERVICES 370 17th Street Suite 2500 Denver, CO 80202

303 595 3331

October 7, 2004

UPS Next Day Air (Tracking Number1Z F46 915 23 1002 044 3)

Mr. Wayne Price New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Subject: Val Verde Gas Processing Plant Discharge Plan GW-051 San Juan County, New Mexico

Dear Mr. Price:

Duke Energy Field Services, LP (DEFS) received the New Mexico Oil Conservation Division's (OCD) second request for information dated August 9, 2004 for the Val Verde Gas Processing Plant's discharge plan renewal application dated May 26, 2004.

As stated in the May 26, 2004 application, the facility does not have or intend to have a discharge or discharges onto or below the surface of the ground that may move directly or indirectly into groundwater. DEFS' responses to OCD's specific requests are provided in the attachment and demonstrate that the facility does not have a discharge or discharges onto or below the surface of the ground that may move directly or indirectly or indirectly into groundwater. Therefore, DEFS hereby withdraws its application for renewal and requests cancellation of Discharge Plan GW-051.

With the cancellation of Discharge Plan GW-051, DEFS understands that it is subject to, and agrees to comply with, 19.15.2.50 NMAC and has submitted to OCD on September 30, 2004 a "Pit or Below-Grade Tank Registration or Closure" C-144 Form for all applicable below-grade tanks located at the facility.

If you have any questions regarding this submittal, please call me at (303) 605-1717.

Sincerely

Duke Energy Field Services, LP Karin Kimura Senior Environmental Specialist

Attachments

cc: NMOCD District 3 Office (UPS Next Day Air Tracking Number1Z F46 915 23 1003 036 3) 1000 Rio Brazos Road Aztec, New Mexico 87410 DEFS' Responses to OCD's request for information are provided below. OCD's requests are in *italic text* with DEFS' responses below each request.

1. <u>Item #5 Facility Description</u>. The plan does not properly describe the on site activities. OCD understands that gas is actually treated on-site. Please provide a site map, process flow diagram and a brief description of each process unit.

A description of the on-site activities at the facility is provided below. Process flow diagrams are provided as indicated in the description below. A site map was previously submitted with the discharge plan renewal application dated May 28, 2004 and is included with this submittal for your convenience.

Process Description

 \sim

ŕ.

Dehydrated coal seam natural gas enters the facility via pipeline from individual gas production facilities located throughout the northwest New Mexico and southwest Colorado. The natural gas entering the plant is essentially methane and carbon dioxide (CO₂). The CO₂ laden natural gas stream is sent to one of eight process trains for CO₂ removal.

Chemicals used in each process train include a methyldiethanolamine based solvent (MDEA) to remove CO_2 and triethylene glycol (TEG) to remove water entrained in the natural gas stream during CO_2 stripping.

The natural gas stream in each process train is contacted in vertical trayed countercurrent absorber vessels with a 50% water and 50% MDEA solution.

The rich MDEA solvent leaving the absorber vessels is regenerated in a typical MDEA regeneration system consisting of the following equipment (Figure 3c) for Trains 4, 5, and 6:

- Rich MDEA Flash Tanks
- Lean/Rich Cross Exchanger
- Direct Fired Reboiler
- Lean MDEA Surge Tank
- Hot Oil Surge Tank
- Stripping Column
- Stripper Reflux Condenser (Fan Cooled)
- Lean MDEA Cooler (Fan Cooled)
- Reflux Condenser Cooler

Train 7 and 8 MDEA regeneration system utilizes the same equipment as Trains 4, 5, and 6 with the addition of a Hot Water Surge Tank and Still Side Reboilers to accommodate an indirect fired heater rather than a direct fired boiler.

 CO_2 removed from the MDEA solution from Trains 4, 5, and 6 is piped to a common 20-inch vent line, through a 10-foot by 25-foot seam-to-seam, carbon steel, horizontal, vent scrubber. Condensed water vapor collected in the vent scrubber is pumped back into the regeneration units.

Trains 4 and 8 each have a gas treating capacity of 117 MMSCF/d per train.

The dehydration process for the facility includes individual contactors for each of Trains 3 through 8. Train groups 4 through 8 (Figure 4b) each has its own TEG regeneration system. A TEG regeneration system includes the following equipment:

- TEG Flash Tank
- Lean/Rich TEG Cross Exchangers
- Direct Fired TEG Reboiler with packed stripping column
- Lean TEG Surge Tank
- Lean TEC Cooler (Fan Cooled)

Water System

Process water is supplied to the facility by a set of raw water storage tanks to the east of the plant location. The water is passed through an ion exchange system prior to distribution throughout the plant. The ion exchange system is a portable truck mounted system that is self contained and regenerated at an off-site location.

Process water is used for make-up and cooling water in the amine regeneration process. Make-up water for the regeneration units amounts to approximately 45,000 gpd. Reject water from the regeneration system is collected in a waste water drain line system (WWD) and stored in an aboveground welded steel storage tank.

The cooling water from the regeneration system is drained into the WWD system's sumps and pumped into storage tanks. Trains 4 through 6 share a common sump and Trains 7 and 8 share a common sump. Both sump systems are enclosed systems. The sumps are single-walled steel tanks located within circular concrete cisterns with leak detection and wastewater collected in these sumps is transferred via piping to an aboveground tank to be trucked off site for disposal.

Figures 5 and 6 contain the Process and Instrumentation Diagrams (P&IDs) for Train 5 and 8 respectively. The P&ID for Train 5 are representative for the process fluids and wastewater collection systems in Trains 4 through 6. Train 8 P&IDs are representative of the process fluids and wastewater collection systems for Train 7 and 8.

Material Stored/Used	Method of Storage
Wastewater	Aboveground storage tanks within secondary containment
Diesel	Aboveground storage tank within secondary containment
Unleaded Gasoline	Aboveground storage tank within secondary containment
Kerosene	Aboveground storage tank within secondary containment
Used Oil	Aboveground trailer mounted storage tank within secondary containment
Antifoam	Aboveground storage tanks within secondary containment
Dowtherm J	Aboveground storage tank within secondary containment
Produced Water	Aboveground storage tank within secondary containment
Transformer Oil	Contained in active transformers with secondary containment
Amine	Aboveground storage tanks within secondary containment

2. <u>Item #6 Material Stored or Used.</u> The plan submitted did not list any materials stored on site or how they are stored. Please provide this information.

Material Stored/Used	Method of Storage
Triethylene Glycol (TEG)	Aboveground storage tanks within secondary containment
CS+	Aboveground storage tanks within secondary containment
Deionized Water	Aboveground storage tank within secondary containment
Used CS+	Aboveground storage tanks within secondary containment
Used TEG	Aboveground storage tank within secondary containment
Make-up Water	Aboveground storage tank within secondary containment
Hot Wastewater Rundown	Aboveground storage tanks within secondary containment
CS+ Rundown	Aboveground storage tanks within secondary containment

3. <u>Item #7 Sources and Quantities of Effluent and Waste Solids</u>. The plan listed a number of sources but failed to list quantities. Please provide this information.

There are no effluents or waste solids discharged on site onto or below the surface of the ground so that they may move directly or indirectly into groundwater. All effluent and waste solids generated at the facility are removed from the facility for off-site disposal in accordance with applicable NMOCD, NMED, and EPA regulations. Approximate quantities are provided in the table in the following response to Item #8.

Separators/Scrubbers

Effluent generated from the inlet separator is not discharged on site; wastewater from the inlet separator is routed via piping to an aboveground storage tank within secondary containment and trucked off site for disposal.

Boilers and Cooling Towers/Fans

There are no boilers or cooling towers/fans at the facility.

Process and Storage Equipment Wash Down

Effluent or waste solids generated from process and storage equipment wash down are not discharged on site; wastewater from process and storage equipment wash down is generated within process containment pads or a wash down containment pad, routed via sumps to aboveground storage tanks within secondary containment and trucked off site disposal.

Solvents/Degreasers

Solvent or degreasers are not discharged on site. Solvent from the facility's parts washer is removed routinely from the parts washer by a contractor for off-site recycling/disposal.

Spent Acids/Caustics

Spent acids or caustics are not generated at the facility.

Used Engine Coolants

Engine coolants are not used at the facility.

Waste Lubrication and Motor Oils

Lubricating and motor oils are not discharged on site. Used oil is stored in aboveground storage tanks within secondary containment and transported by a contractor off site for recycling.

Used Oil Filters

Used oil filters generated at the facility are drained and stored in aboveground roll-offs and removed by a contractor for off-site recycling.

Solids and Sludges

Solids and sludges are not discharged on site. Any solids or sludges generated on site are collected and stored in aboveground storage tanks within secondary containment for off-site disposal.

Painting Wastes

Painting wastes are not discharged on site. All painting wastes generated on site are managed in aboveground containers and disposed off site in accordance with applicable Federal, State, and local regulations.

Sewage

Domestic discharges are made through one septic tank (1,500 gal capacity) and leach line system which is subject to the Environmental Improvement Board's Liquid Waste Disposal Regulations, 20.7.3 NMAC. The warehouse building, control rooms, shop building, and the office building discharge into the septic tank. The septic system is shown on the facility plot plan.

Lab Wastes

Lab wastes generated at the facility for testing amine are returned to the amine recycling system and are not discharged on site. MDEA test samples are collected once every day to determine MDEA strength and lean loading. Total sample volume collected per day is 1,750 ml which is pumped back into the facility process. Included in this sample volume are small amounts of the following test reagents:

- Distilled Water
- Methyl Red Indicator
- N Sulfuric Acid
- Methyl Alcohol
- Thymophthalen Indicator 0.05%
- Normal Potassium Hydroxide

Other Liquids and Solid Wastes

There are no other liquids or solid wastes are discharged on site.

Spent MDEA and TEG that cannot undergo a recycling process are characterized as unrecyclable process fluids, collected in aboveground storage tanks within secondary containment, and disposed of in accordance with all applicable Federal, State and local regulations.

The facility also recycles used MDEA and TEG generated at that facility, as well as used MDEA from other non-DEFS gas facilities. The non-DEFS gas facilities use the facility's recycling program as an alternative to disposal and the facility reuses the regenerated MDEA. The recycling equipment and process is a self-contained system that generates minor amounts of residual by-product as a result of the regeneration process. These by-products from the regeneration process are considered RCRA exempt waste and are managed in aboveground storage tanks within secondary containment on site and later disposed at a Class II disposal well.

4. <u>Item #8 Liquids and Solid Waste Collection/Storage/Disposal.</u> The plan failed to identify the liquid and solid waste collected and stored on-site before disposal. In addition, the plan failed to list where the waste is disposed of. Please provide this information.

Collection/Storage

All liquid and solid wastes, except domestic sewage, are collected and stored in containers for off-site disposal. Domestic waste is collected and stored in the on-site septic tank and leach field subject to Liquid Waste Disposal Regulations.

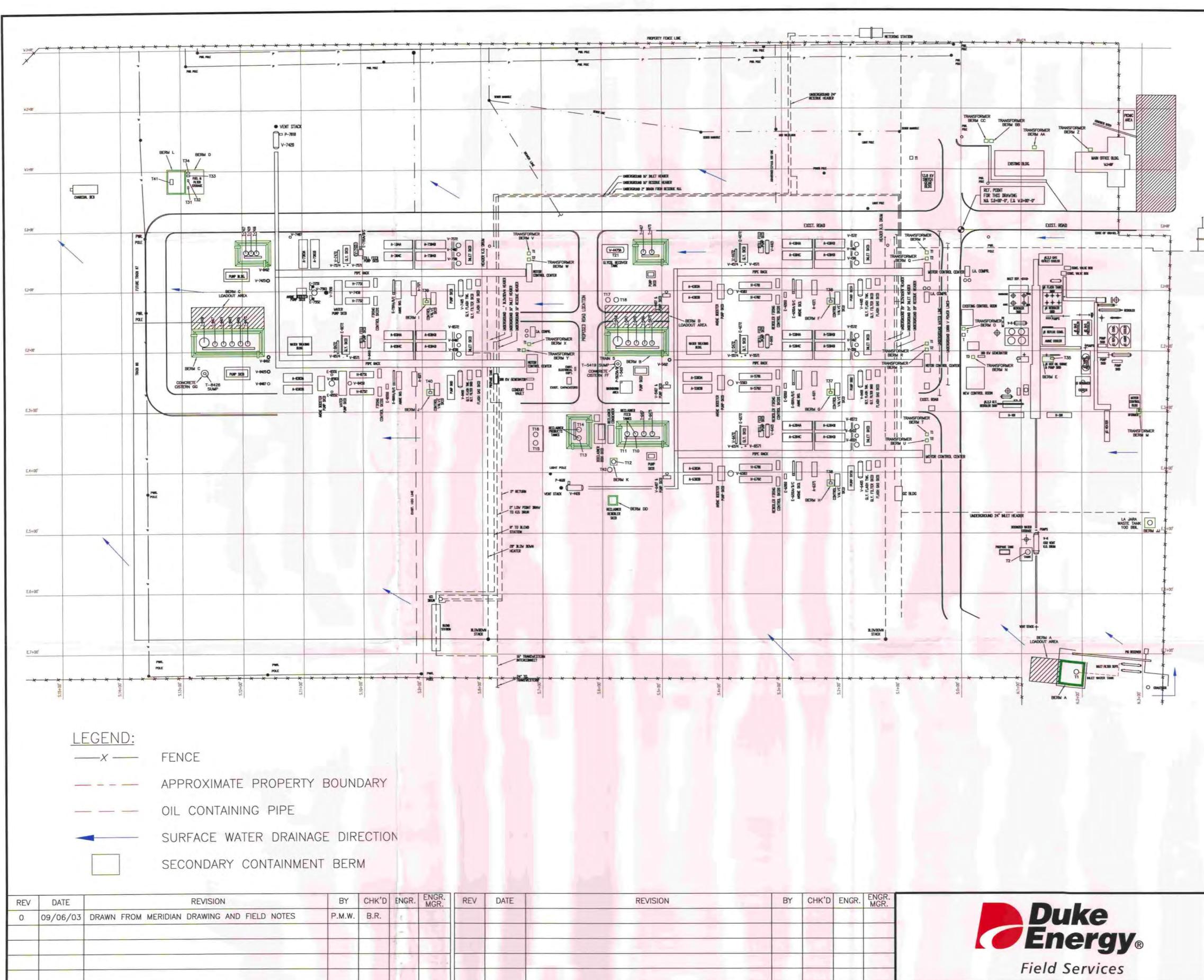
On-site Disposal

There is no on-site disposal at the facility, except for the disposal of domestic sewage. Domestic sewage is disposed of in the on-site septic tank and leach field subject to the Liquid Waste Disposal Regulations.

Off-site Disposal

All liquid and solid wastes, except for domestic sewage, are disposed off site.

The following table provides information regarding wastes collected and stored for off-site disposal and/or recycling.


Waste	Collection/Storage Method	Quantity Generated	Final Disposition	Receiving Facility
Wastewater (process equipment washdown, inlet separator wastewater)	Aboveground storage tanks within secondary containment	40 bbls Per week	Off-site Class II Injection Well	Key Energy Services, Inc. Sunco WDW #1 Injection Well
Produced Water	Aboveground storage tank within secondary containment	40 bbls per week	Off-site Class II Injection Well	Key Energy Services, Inc. Sunco WDW #1 Injection Well
Unrecycled Process Fluids	Aboveground storage tank within secondary containment	5 bbls per week	Off-site Class II Injection Well	Key Energy Services, Inc. Sunco WDW #1 Injection Well
Used Oil	Aboveground storage tank within secondary containment	400 gallons per year	Recycled	Thermo Fluids, Inc.
Heat Transfer Oil	Aboveground storage tank within secondary containment	55 gallons per year	Recycled	Thermo Fluids, Inc.
Amine Filters	Roll-off bin	20 yards per year	Recycled	Thermo Fluids, Inc.
Bag Filter	Roll-off bin	5 yards per year	Recycled	Thermo Fluids, Inc.
Horizontal Inlet Filter	Roll-off bin	20 yards per year	Recycled	Thermo Fluids, Inc.
Coalescer Inlet Filter	Roll-off bin	20 yards per year	Recycled	Thermo Fluids, Inc.
Hot Oil Filter	Roll-off bin	Out of service	Recycled	Thermo Fluids, Inc.
TEG Filter	Roll-off bin	5 yards per year	Recycled	Thermo Fluids, Inc.
Charcoal Filter Media	Not collected or stored on site. Removed from filter by a contractor vacuum truck and hauled off site.	70 yards per year	Soil Remediation Landfarm	Tierra Landfarm
Spent Solvent	Parts Washer	50 gallons per year	Recycled	Safety Kleen
Laboratory Waste	Aboveground storage tank within secondary containment	~1,750 ml/day	Pumped back into process	N/A

Į.

SITE MAP

Val Verde Gas Processing Plant OCD Information Request October 2004

, , 4

REVISION	BY	CHK'D	ENGR.	ENGR. MGR.	Duda
					Duke Energy®
					Field Services

DWG. NAME: Val Verde Plant_SPCC_Plan.dwg

Note: This drawing is based on a field sketch and depicts the location and contents of each oil containing container, equipment, and piping (as required by 40 CFR 112.7(3)). This drawing should only be used for Spill Prevention Control and Countermeasure Plan(SPCC) purposes. As drawing is not to scale, actual containers, equipment, or piping may vary in size and position from those represented here.

SPCC PLOT PLAN

VAL VERDE PLANT

VAL VERDE GATHERING SYSTEM

San Juan County NEW MEXICO

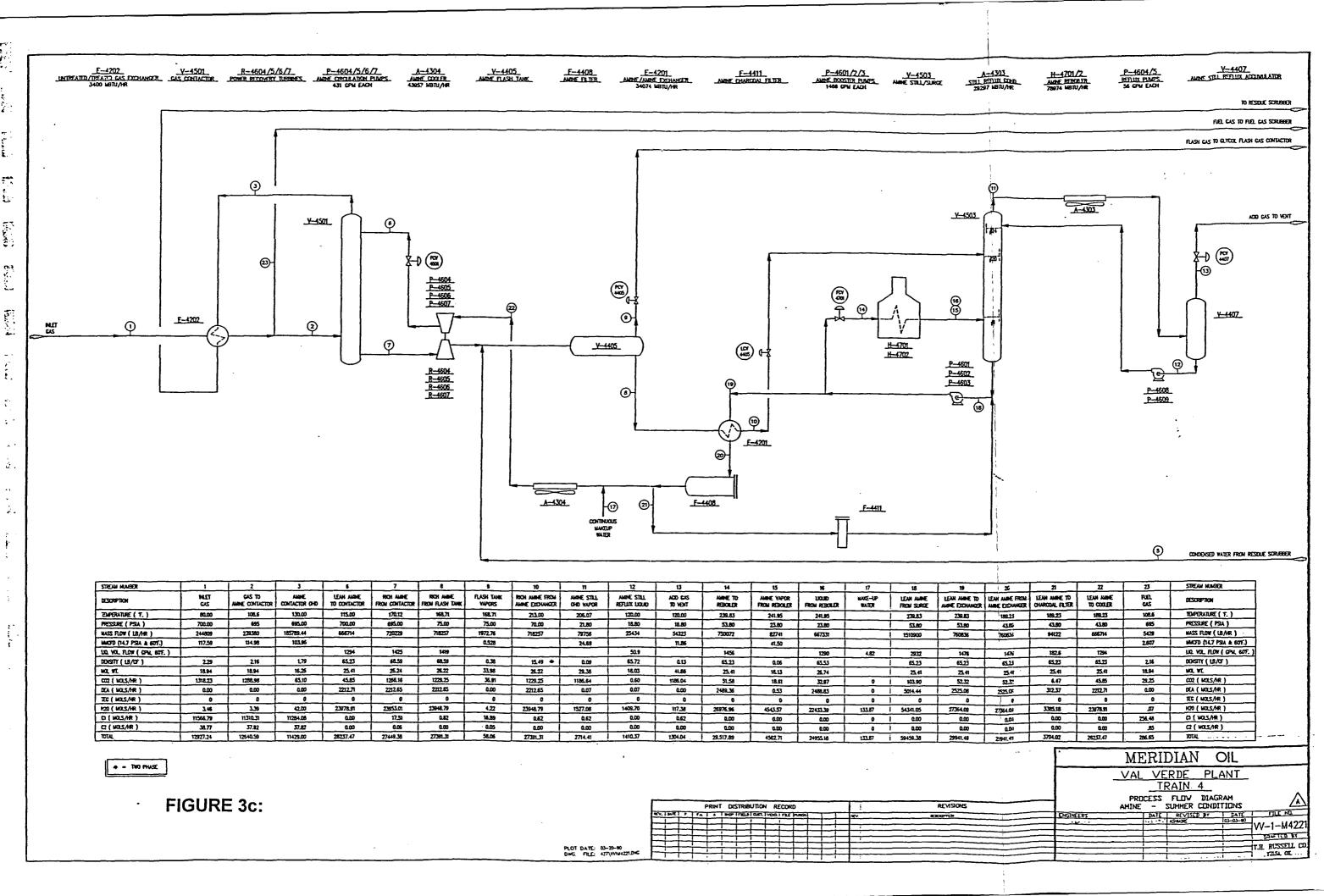
NOT TO SCALE

	ntaining Equip	nent	_
AMS Name	Field Name	Contents Description	Capacity
None	Train 3	Transformer Oil	481gal
None	Control Room	Transformer Oil	240 gal
None	Train 1&2	Transformer Oil	500 gal
None	Train 4 West	Transformer Oil	360 gal
None	Train 4 East	Transformer Oil	360 gal
None	Train 5 West	Transformer Oil	360 gal
None	Train 5 East	Transformer Oil	360 gal
None	Train 6 West	Transformer Oil	360 gal
None	Train 6 East	Transformer Oil	360 gal
None	Train 7 West	Transformer Oil	360 gal
None	Train 7 East	Transformer Oil	360 gal
None	Train 8 West	Transformer Oil	360 gal
None	Train 8 East	Transformer Oil	360 gal
None	Office Building	Transformer Oil	150 gal
None	Spare Transformer North	Trarsformer Oil	360 gal
None	Spare Transformer South	Transformer Oil	355 gal

AMS	Field	Contents
Name	Name	Description
None	T2	Amine
T-5475	T-5475	Glycol
T-5416	T-5416	CS+
T-5415	T-5415	DI Water
T5417	T5417	CS+ Rundown
T-6475	T-6475	Glycol
T-6417	T-6417	CS+ Rundown
None	T10	Gas Spec CS+
None	T11	Gas Spec CS+
None	T13	Used CS+
None	T14	Used CS+
None	T15	Used CS+
None	T16	Used CS+
T-4475	T-4475	Glycol
T-4417	T-4417	CS+ Rundown
None	T21	Used TEG
T-7416	T-7416	Glycol
T-7419	T-7419	CS+ Rundown
T-7417	T-7417	Hot Wastewater Rundown
T-8475	T-8475	Glycol
T-8416	T-8416	CS+
T-8415	T-8415	Makeup Water
T-8419	T-8419	Hot Wastewater Rundown
T-8417	T-8417	CS+ Rundown

AMS Name	Field Name	Contents Description	Capacity
None	T1	Wastewater	210 bbl
T-5418	T-5418	Wastewater	500 bbl
T-8418	T-8418	Wastewater	500 bbl
None	T31	Diesel	317 gal
None	T32	Unleaded Gasoline	303 gal
None	T33	Kerosene	499 gal
None	T34	Used Oil	528 gal
None	T35	Antifoam	500 gal
None	T36	Antifoam	500 gal
None	T37	Antifoam	500 gal
None	T38	Antifoam	500 gal
None	T39	Antifoam	500 gal
None	T40	Antifoam	500 gal
None	T12	Dowtherm J	25 bbl
None	T41 (Trailer- mounted)	Used Oil	529 gal
None	Drum Storage Area	Various 55-gallon drums	NA
None	La Jara Sys. Waste Tank	Produced Water	100 bbl

AMS Name	Field Name	Contents Description	Capacity		
None	Amine Reclaimer Reboiler	Hot Oil	550 gal		
T-5419	T-5419 (Sump)	Used Oil, Wastewater	588 gal		
T-8426	T-8426 (Sump)	Used oil, Wastewater	588 gal		
None	Inlet Filter Separator	Produced Water	58 bbl		
None	Amine Reclaimer Hot Oil Surge Tank	Hot Oil	100 bbi		


ŝ	Z	
	m	

FIGURES

Val Verde Gas Processing Plant OCD Information Request October 2004

·····

۰ -۱

. . .

É.

15

57

ž.

~

÷

2.

• •

ĩ

1

.

.

PRINT DISTRIBUTION RECORD										1	REM			
EV.	MIL	•	14	1 4	1.00		l curt,	MDG	Int	PLACK.		1	* *	R.ROWTCH
_		_					!		+			1		
_		L	-	I	1				1					
-							-							
-				L	<u> </u>	!	<u> </u>	-				1		
-		<u> </u>	<u></u>	L	1	1	<u>. </u>	1	1 -			1		
~		-	<u> </u>	1	1	1	<u> </u>	1	1		 1	1		
			ł	•	i i	1	1	1				1		

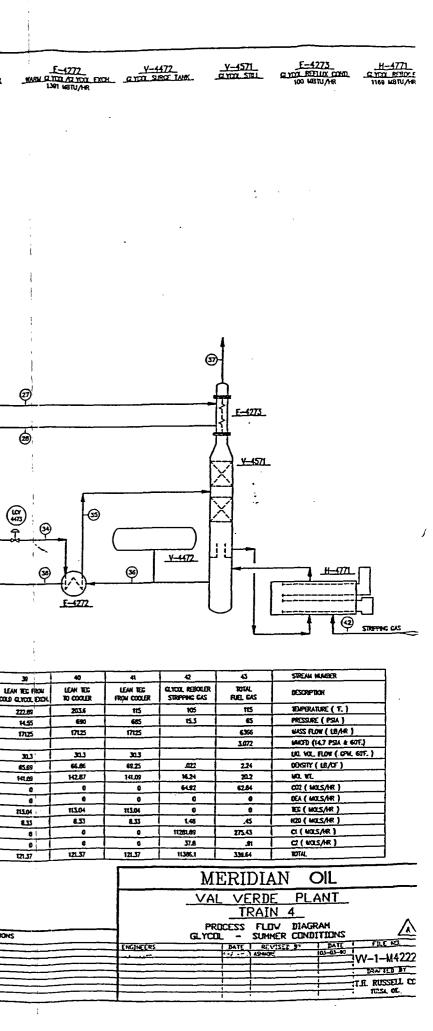
	ER	02	_V-4572_ CONTACTOR/OUTLAT_SORM	A-4371. BBER <u>G YOOL COOLER</u> BOOB WBTU/AR	_P-4671/2 _0.100_ PIMP 30 CPU EAC		-4271_ /21031_00144028_ 5.4870/re	<u>-4473</u> 2)22 AASI	<u>. V-4573</u> JANK ĐASI GAS CONTA	<u><u> </u></u>	E 2122 044800	74. XXX. FX
FROM UNTREATED / TREATED CAS DODWICK	R											
FROM INLET CAS TO CONTACTOR												
FROM MANE FLASH TANK										,		
RESOLE		æ)								• :	
CAS REL U U U U U U U U U U U U U U U U U U U	3 	¥		€		71)) (ع <u>ا</u>	
	1 1]		
CONCERSED WATER TO AMPLE FLASH TANK	Lł											
CONDENSED WATER TO ANNE FLASH TANK	4 5	24 25		27 2		30 31		<u> </u>	<u> 22 - 42</u>	36		38
STREAN MARER Description	4 5 TEC CONTACTUR CONDOSED BLET WATER	LEAN TEG CONTAG TO CONTACTOR CHO	CTOR RECH TEG D FROM CONTACTOR	RECH TEC TO RECH TE REFLUX CONDORSER REFLUX CO	es from Rich Tes from Ondenser Cold Glicol Dich	LEAN TES TO ALONE F FLASH CONTACTOR VAPO	IASH RICH TEE FROM R FLASH TANK	FLASH CONTACTOR GED WA	RICH TEG TO RICH TEG FROM RM GLYDOL DICH. WARM GLYDOL DO	LEAN TES Iol from reboler	NEC STELL LEAN TE OND WARK QUT	TEG FROM
STREAN MANDER DESCRIPTION REMPORTABLE (T.) PRESENTE (PSA)	4 5 BEC CONTACTUR COMPARED BELET WATER 102.02 102.02 690 690	LEAN TEG CONTACTOR CONTACT	CTUR RECH TEG D FROM CONTACTOR 55 104.62 65 680	RECH TELE TO RECH TE REFLUX CONDENSER REFLUX CO T12.12 12 75	EG FROM ROCH TEG FROM OMDENSER COLD QLYCOL DOCH. 72 167 70 65	LEAN TEC TO ALONE F FLASH CONTACTOR VAPO 115 168. 685 2	LASH ROCH TEC FROM R RASH TANK 71 173.27 10 66	FLASH CONTACTOR (240) 1974 150.02 65	Rich IEG TO Rich IEG FROM Rif Q.1001, Dich WARK Q.1001, Dich Dich WARK Q.1001, Dich 171,97 310 20 15	LEAN ES COL FROM REBOLLER 400 14.8	TEC STEL LEAN TE OHD WARK Q10 20K15 255 14.7 1	TEG FROM 1700L EDG 55.16 14.8
STREAN MAGER DESCRIPTION TELIFORATURE (T.) PRESSARE (PSA) MASS FLOW (LIGAR) MAST (142 PSA & 60T.)	4 5 162 CONTACTOR CONDENSED 162.7 84.82R 1902.02 102.02 1 1690 640 1 165372 398 1 103.76	LEAN RG CONTACTOR CHE TO CONTACTOR CHE 115 1055 645 66 15115 1850 1011	COR BEON TEG 0 FRom CONTACTOR 35 104.82 85 680 116 15467 57 57	RECH TELE TO RECH TE REFLUX CONDENSER REFLUX CO T12.12 12 75	EG FROM RECH TEG FROM CHOEMSER COLD GLYCOL DICH. 7.2 167	LEAN TEC TO ALGOE TO	LASH ROH TEC FROM R FLASH TANK 71 173.27 10 66 73 17658	RASH CONTACTOR CHO WAN 150.02	RICH TEC TO RICH TEC FROM	LEAN TES COL FROM REDOLER 400 14.48 177.25	IEC ST21 IEAN IE 010 IIIIAR (2.11 204.15 255 14.7 1 5.553 17 0.223	TEC FROM 1700L DO 55.16 14.8 17125
STREAM MAREER DESCREPTION REAPERATURE (T.) MESSIE (MSA) MAST (UA) MARTO (UA) MAA MARTO (UA) MAA & GOT.) UA VOL. ROM (GPU, GOT.) DOISTLY (UA) OF	4 5 BC CONTACTOR CONDENSED BLLT WHER \$12,02 \$02,02 B40 680 185,392 398 \$01,76 1 1,06 \$2,22	LEAN TEC CONTACTOR 046 TO CONTACTOR 046 115 1002 685 66 15115 1850 1012 28.6 61.25 13	CEOR BEDN 102 0 FR0M CONTACTOR 55 104.82 85 690 116 15467 57 - 27.7 89 69.05	RCH EE TO RECH E REFLUX CONDENSER REFLUX CO 112.12 12 75 15467 15 40.38 ♦ 38	GE FROM ROCH TEC FROM DAUDUSER COUD Q, TOOL DUOL 72 167 70 65 467 15467 136 35.16	LEAN EC 10 Ause F RASH CONTACTOR VAPO 115 1488 685 2011 197 0.5 3.56 69.25 0.1	LLSH BOCH TEC FROM R FLASH TANK 71 173.27 10 66 73 17858 88 31.5 5 67	FL/SH CDRTACTOR 040 WA 150.02 65 177n 0.462 0.34	RCH IEG TO RCH IEG FROM RM GLYCOL, EXCL-INWENT GLYCOL, EXC TALST 30 25 17658 17658 172 4	LEAN TEC TRUE FROM REDOLER 400 14.8 177.25 30.3 \$ 59.67	BCL STLL LEAN TE 040 MARK CLT 254.15 255 14.7 1 5333 17 0.223 3 0.04 64	IEC FROM 1100L DO 55.16 14.6 17125 30.3
STREAN MANDER DESCREPTION IED/FRATURE (T.) PRESSURE (PSA) MACTO (H2) PSA & GOT.) U.D. VOL. FLOW (GPA, GOT.) DENSTY (LE/OF) MCL, WT. CO2 (MCS/AR)	4 5 FEL CONTACTOR CONDERSED 64LT WATER 102.02 102.02 680 680 105.372 388 105.376 1 1.06 62.22 1.05 62.22 1.05 62.22 1.05 62.22 1.05 62.22	LEAN TRC CONTACTOR CONTACTOR TIS 105.2 005.2 665 66 103.2 15115 165.0 103.2 26.6 113.2 103.2 141.09 142.0 143.0 0 64.1 0	CR0R BEDN 102 50 FR0M CONTACTOR 55 104.82 85 680 16 15467 57	RC(EE TO REFUX CONDENCER REFUX CO 112.12 12 75 15467 15 40.35 € 38 122.15 122 0.16 6	GE FROM RICH TEG FROM 0400HSER COLD Q. YOOL DOOL 70 65 467 15467 156 35.16 115 122.15 116 0.16	LEAN EC. 10 Ause: F FLASH CONTACTOR VAPO ft5 168. 685 3 2011 197. 0.5 3.56 642.5 0.1 141.10 3.11 0 3.5	LLSH BOCH TEC FROM R LLSH TANK 71 173.27 10 66 13 17558 18	FLASH CONTACTOR GO WAA ISO.02 65 1770 0.462 0.34 133.8 333.8	ROM IDE TO ROM IDE TO RM GUTOL DODUMAN GUTOL DO 17L87 310 20 15 17656 17656 172 2.49 121 121 1.48 1.48	LEAN EE FROM FEDOLER 400 14.5 17125 30.3 52.67 141.09 0	BCC STLL LEAN TE 0HD MARK CLTS 250.15 255 14.7 8 5333 17 0.223 3 0.04 64 21.69 141 3.46 141	EC FRO 1001 DX 55.16 14.8 1725 30.3 14.73 41.09 0
STREAN MAREER DESCRIPTION REMPERATURE (T.) PRESSARE (PSA) MASS FLOW (LEAR) MASS FLOW (LEAR) MASTO (14.7 PSA & 607.) U.Q. VOL. FLOW (OFM, 607.) DESTTY (LEACE) MAS. VT. CO2 (MAS./AR) DEC (MAS./AR) TEC (MAS./AR)	4 5 BEI CONTACTOR CONDENSED BLZT BMLER B02.02 N02.02 B800 680 B03.76 0.6 1.66 62.22 B6.25 N8.02 B6.25 N8.02 B6.25 N8.02 B6.25 B8.02 B6.25 B8.02 B6.09 0 B 0 B 0	LEAN TEC. CONTACTOR TO CONTACTOR GHE 115 1005 685 GO 15115 1850 69.25 13 140.09 NG2 0 64.1 0 64.1 93.77 0.0	CRR BEDN IEC 0 FROM CONTACTOR 55 104.62 85 690 1546 15467 57 121.7 99 68.05 25 121.07 83 0.16 0 0 01 91.77	RCH TEC TO RECH TE REFLUX CONDENSER REFLUX CONDENSER 112.12 12 75	CFROM RCH TEC FROM 0400HSER CUUD GLYDOL DUOL 72 167 70 65 467 15467 135 35.16 115 122.15 126 0.16 0 0 177 19.16	LEAN EC TO Aume F FLASH CONTLACTOR WAPC 115 168. 6655 37 2071 197 6625 32 6425 0.1 141.10 33.1 0 36. 6 0 6.966 0.966	LASH BOCH TEC FROM R FLASH TANK 71 T71_27 70 66 73 17858 73 17858 75 17858 75 67 77 17 77 17 81 1.46 9 6 9 113.04	FLASH CONTUCTOR GO 150.02 65 1781 0.462 0.54 131.6 0.54 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0	RCH IEG TD RCH IEG FROM RM GLYCOL, DICH, WARM GLYCOL, DICH, WARM GLYCOL, DICH, WARM GLYCOL, DICH, WARM GLYCOL, DICH,	K LLAN EE FROM REDOLER 400 14.8 17725 50.57 \$51.67 141.09 0 13.04	BCC STLL LEAN TE 040 WARK Q.Y. 204.15 255 14.7 1 533 17 0.223 3 0.04 64 21.59 141 3.46 0 0 113	EE FRO (1001, D) 55.16 14.8 17725 30.3 44.09 0 0 0 11.04
STREAN MUMBER DESCRIPTION REAPOLATARE (T.) PRESSURE (PSA) MACED (H-2 PSA & GOT.) U.D. VOL. FLOW (LB/AR) MACED (H-2 PSA & GOT.) DOSSTY (LB/OF) MOL NUL, FLOW (CPA, GOT.) DOSSTY (LB/OF) MOL NUL, FLOW (CPA, GOT.) DEC (MOLS/AR) DEC (MOLS/AR) COL (MOLS/AR) COL (MOLS/AR)	4 5 BEE CONTACTUR CONDERSED WATER WATER WATER WATER WATER <t< td=""><td>LEAN TEC. CONTACTOR TO CONTACTOR 046 115 1005 645 61 15115 1650 69125 13 141.09 142 0 64.1 0 64.1 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10</td><td>CRR BEDN IEC 0 FROM CONTACTOR 55 104.82 85 690 16 15467 57 - 27.7 - 89 691.05 25 121.07 83 0.16 0 0 30 99.77 84 24.50 83 2.16</td><td>RCM EE TO RECH TE NETHIX CONDENSER REFULX CONDENSER 112.12 12 75 15 15467 15 40.38 38 112.15 122 61.66 0 98.177 99 24.50 24 2.16 2</td><td>Gr Row RCH TEC FROM (MODESER COUD Q, TOOL (MOD.) 72 167 70 65 467 15467 15 12215 115 12215 116 0.16 0 0 0 2450 177 8177 50 2450</td><td>LEAN EC, 10 Ause: F FLASH CONTACTOR WAPC 115 168. 685 3 2011 197 0.5 3.56 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 6 3.6 9 1.327 0 16.5</td><td>LLSH BOCH TEC FROM R FLASH TANK 71 173.27 70 66 73 17658 73 17658 73 17658 73 17658 73 17658 74 17658 75 67 77 12° 81 1.46 0 6 0 11304 72 2.23 89 0.059</td><td>FLASH CORTACTOR GO 150.02 65 1778 0.462 0.35 131.59 0 0 0 0 0 1355 0 0 0 1355 0 0 0 14.45 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>RCM IEE TO RM GLYCOL, EXCL-LIWRAN GLYCOL, EXC 17L.87 RCM IEE FROM RM GLYCOL, EXCL-LIWRAN GLYCOL, EXC 17L.87 20 15 17658 17658 172 17658 172 2.49 121 121 148 0 0 11304 111.04 11.04 243 28.3 0.09</td><td>LEAN BE FROM REDOLER 400 14.8 177.25 30.3 52.67 141.09 0 111.04 8.33 0</td><td>BCL STLL LEAN TE 040 MARK QLT 201.15 255 14.7 1 5333 177 0.223 3 0.04 64 71.69 141 3.46 0 0 113 20.97 4</td><td>EE FRO 1001 D 55.16 1725 30.3 41.09 0 0 0 104 8.33 0</td></t<>	LEAN TEC. CONTACTOR TO CONTACTOR 046 115 1005 645 61 15115 1650 69125 13 141.09 142 0 64.1 0 64.1 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10 0 14.10	CRR BEDN IEC 0 FROM CONTACTOR 55 104.82 85 690 16 15467 57 - 27.7 - 89 691.05 25 121.07 83 0.16 0 0 30 99.77 84 24.50 83 2.16	RCM EE TO RECH TE NETHIX CONDENSER REFULX CONDENSER 112.12 12 75 15 15467 15 40.38 38 112.15 122 61.66 0 98.177 99 24.50 24 2.16 2	Gr Row RCH TEC FROM (MODESER COUD Q, TOOL (MOD.) 72 167 70 65 467 15467 15 12215 115 12215 116 0.16 0 0 0 2450 177 8177 50 2450	LEAN EC, 10 Ause: F FLASH CONTACTOR WAPC 115 168. 685 3 2011 197 0.5 3.56 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 641.25 0.3 6 3.6 9 1.327 0 16.5	LLSH BOCH TEC FROM R FLASH TANK 71 173.27 70 66 73 17658 73 17658 73 17658 73 17658 73 17658 74 17658 75 67 77 12° 81 1.46 0 6 0 11304 72 2.23 89 0.059	FLASH CORTACTOR GO 150.02 65 1778 0.462 0.35 131.59 0 0 0 0 0 1355 0 0 0 1355 0 0 0 14.45 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0	RCM IEE TO RM GLYCOL, EXCL-LIWRAN GLYCOL, EXC 17L.87 RCM IEE FROM RM GLYCOL, EXCL-LIWRAN GLYCOL, EXC 17L.87 20 15 17658 17658 172 17658 172 2.49 121 121 148 0 0 11304 111.04 11.04 243 28.3 0.09	LEAN BE FROM REDOLER 400 14.8 177.25 30.3 52.67 141.09 0 111.04 8.33 0	BCL STLL LEAN TE 040 MARK QLT 201.15 255 14.7 1 5333 177 0.223 3 0.04 64 71.69 141 3.46 0 0 113 20.97 4	EE FRO 1001 D 55.16 1725 30.3 41.09 0 0 0 104 8.33 0
STREAM MALEER DESCREPTION NEMPTRATURE (T.) MESSINE (PSA) MASS FLOW (16/AR) MASS FLOW (16/AR) MASS FLOW (16/AR) U.C. VOL. FLOW (0PA, 60T.) DENSTY (18/OF) MAL WT. CO2 (MASS/AR) DEC (MASS/AR) TEC (MASS/AR) H2D (MASS/AR)	4 5 BEE CONTACTOR CONDORSED BULT BALER BO2.02 BO2.02 BES BO2.02 BES BO2.02 BES BO2.02 BES BES	LEAN TRC. CONTACTOR TO CONTACTOR 046 115 1055 645 05 15115 1855 61.25 13 141.09 142 0 641 0 59.77 0 7.36	CR0R BEDN 102 50 FR0M CONTACTOR 55 104.82 85 680 16 15467 57 - 27.7 - 89 69.05 25 121.07 83 0.16 9 0 01 99.77 66 24.50 69 216 80 0.02	RCH EE TO RECH E REFUIX CONDOSER REFUIX C 112.12 12 75 15467 15 40.38 € 38 1122.15 122 0.16 C 98.77 98 24.50 24 2.16 2	Gr Row ROC TEC FROM (NODESER COLD Q.TOOL DOOL 72 ROT 0 ROW 0 70 65 467 15467 10 55 125 125 135 35.16 4 154 135 122.15 125 125 145 0 6 6 177 91.77 92.77 50 24.50 146 2.16 2.16 102 0.02	LEAN EC TO Ause F FLASH CONTACTOR WAPC 115 168. 685 3 2070 187 0.2 156 641.25 0.1 141.10 3.21 0 36. 6 0 0.36 0 15.27 4.3	LASH BOCH TEC FROM R FLASH TANK 71 173.27 10 66 13 17628 28 1 31.5 15 67 17 12* 11 3.46 0 0 111304 27 21.3 28 0.09 15 0.07	FLASH CONTACTOR GO WAA ISONZ 65 1791 0.462 0.34 1159 0 0 0 0 0 0 0 0 0 0 0 0 0	RCM IEE TO RCM IEE FROM RW GLYCOL DODH WWAN GLYCOL DO 171.87 RCM IEE FROM 300 20 25 17658 17658 172 4 2.49 121 1.48 1.48 0 0 0 113.04 f13.04 f13.04 21.3 22.3 23.3	LLAN EE FROM REDOLER 400 14.8 177.25 30.3 52.67 141.09 0 111.04 8.33	BCL STLL LEAN TE 040 MARK CLT 204.15 255 14.7 1 5333 17 0.223 3 0.04 64 71.59 141 3.46 6 0 113 20.97 6 0.09 0.01	EE FRO 1700. DX 55.16 14.6 17725 30.3 41.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STREAN MANDER DESCREPTION IEDAPERATURE (T.) PRESSURE (PSA) MACTO (H-2 PSA & 607.) U.D. YOL. FLOW (GPK, 607.) DESTV (US/OF) MCL YT. CO2 (MCS/AR) DEC (MCS/AR) EC (MCS/AR) C2 (MCS/AR)	4 5 BEL CONLACTOR CONDERSED 64LT WARR 102.02 100.202 680 680 105.372 388 105.372 388 105.572 388 105.6 61.221 86.25 18.02 6 0 9 0 9 0 11254.05 22.05 11254.05 0.02 37.82 6	LEAN TEC. CONTACTOR CONTACTOR TIS 105.2 06.5 EGS GE 101.2 15115 18500 101.2 256.6 101.2 101.2 61.25 1.3 101.2 0 64.1 0 99.77 0.0 7.35 0 1125.1 1.4 0 37.4 0	CR0R BEDN 102 50 FR0M CONTACTOR 55 104.82 85 680 16 15467 57 - 27.7 - 89 69.05 25 121.07 83 0.16 9 0 01 99.77 66 24.50 69 216 80 0.02	RCM TEC TO RECH TE REFLIX COMORSER REFLIX COMORSER 112.12 12 75	Gr Row ROC TEC FROM (NODESER COLD Q.TOOL DOOL 72 ROT 0 ROW 0 70 65 467 15467 10 55 125 125 135 35.16 4 154 135 122.15 125 125 145 0 6 6 177 91.77 92.77 50 24.50 146 2.16 2.16 102 0.02	LEAN EC, 10 Ause: F FLASH CONTACTOR VAPO ft5 168. 685 3 20m 197 0.5 0.5 69.25 0.1 141.10 31.1 0 35.6 141.10 31.1 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2	LASH BOCH TEC FROM R FLASH TANK 71 173.27 10 66 13 17628 28 1 31.5 15 67 17 12* 11 3.46 0 0 111304 27 21.3 28 0.09 15 0.07	FLASH CONTACTOR GO WAA ISO.02 65 7770 0.462 0.34 333.8 333.8 0.34 0.35 0 0 0.38 10.38 10.38 10.38 10.38 10.05	ROM IDE TO RM QUOL DUD-WASH QUOL DU TALST ROM IDE FROM AND QUOL DUD-WASH QUOL DU TALST 171.97 310 20 15 17658 17658 172 4 2.49 172 4 2.49 172 4 2.49 121 122 1.46 13.04 11.04 11.04 24.5 - 28.5 0.09 0.09 0.01	LEAN BE CAL FROM REDOLER 400 14.8 177.25 30.3 52.67 141.09 0 13.04 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0	BCL STLL LEAN TE 040 MARK CLT 204.15 255 14.7 1 5333 17 0.223 3 0.04 64 71.59 141 3.46 6 0 113 20.97 6 0.09 0.01	EC FROM LICOL DO 55.16 14.8 17.25 30.3 30.3 44.09 0 0 13.04 4.09 0 0 0
STREAN MAADER DESCHIPTION RELATION (PRESSURE (F.) PRESSURE (PSA) MACTO (14.7 PSA & 60T.) U.O. VOL. FLOW (GPA, 60T.) DOISTY (UB/O') MOL VTL CO2 (MOLS/AR) IEC (MOLS/AR) IEC (MOLS/AR) C2 (MOLS/AR) C2 (MOLS/AR) C3 (MOLS/AR) C3 (MOLS/AR) C4 (MOLS/AR) C5 (MOLS/AR) C5 (MOLS/AR) C6 (MOLS/AR) C7 (MOLS/AR)	4 5 BE: CONTACTOR CONDERSED BULT BULT BULT BULT <td< td=""><td>LEAN TEC. CONTACTOR TO CONTACTOR 046 115 1005 665 60 15115 1850 69.25 13 141.09 143 9 143 0 644 0 141 9 143 140.9 143 140.9 143 10 314 0 314 107.13 11366</td><td>CR0R BEDN 102 50 FR0M CONTACTOR 55 104.82 85 680 16 15467 57 - 27.7 - 89 69.05 25 121.07 83 0.16 9 0 01 99.77 66 24.50 69 216 80 0.02</td><td>RCM TEC TO RECH TE REFLIX COMORSER REFLIX COMORSER 112.12 12 75 </td><td>Gr Row ROC TEC FROM (NODESER COLD Q.TOOL DOOL 72 ROT 0 ROW 0 70 65 467 15467 10 55 125 125 135 35.16 4 154 135 122.15 125 125 145 0 6 6 177 91.77 92.77 50 24.50 146 2.16 2.16 102 0.02</td><td>LEAN EC, 10 Ause: F FLASH CONTACTOR VAPO ft5 168. 685 3 20m 197 0.5 0.5 69.25 0.1 141.10 31.1 0 35.6 141.10 31.1 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2</td><td>LASH BOCH TEC FROM R FLASH TANK 71 173.27 10 66 13 17628 28 1 31.5 15 67 17 12* 11 3.46 0 0 111304 27 21.3 28 0.09 15 0.07</td><td>FLASH WAR CONTLACTOR GEO WAR 150.02 65 1778 642 0.462 1 0.34 1 133.8 1 33.8 1 0.34 1 0.35 1 0.36 1 0.38 1 0.38 1 0.36 1 2.398 1</td><td>ROM IDE TO RM QUOL DUD-WASH QUOL DU TALST ROM IDE FROM AND QUOL DUD-WASH QUOL DU TALST 171.97 310 20 15 17658 17658 172 4 2.49 172 4 2.49 172 4 2.49 121 122 1.46 13.04 11.04 11.04 24.5 - 28.5 0.09 0.09 0.01</td><td>LEAN BE CAL FROM REDOLER 400 14.8 177.25 30.3 52.67 141.09 0 13.04 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BCL STLL LEAN TE 040 MARK CLT 204.15 255 14.7 1 5333 17 0.223 3 0.04 64 71.59 141 3.46 6 0 113 20.97 6 0.09 0.01</td><td>EC FROM LICOL DO 55.16 14.8 17.25 30.3 30.3 44.09 0 0 13.04 4.09 0 0 0</td></td<>	LEAN TEC. CONTACTOR TO CONTACTOR 046 115 1005 665 60 15115 1850 69.25 13 141.09 143 9 143 0 644 0 141 9 143 140.9 143 140.9 143 10 314 0 314 107.13 11366	CR0R BEDN 102 50 FR0M CONTACTOR 55 104.82 85 680 16 15467 57 - 27.7 - 89 69.05 25 121.07 83 0.16 9 0 01 99.77 66 24.50 69 216 80 0.02	RCM TEC TO RECH TE REFLIX COMORSER REFLIX COMORSER 112.12 12 75	Gr Row ROC TEC FROM (NODESER COLD Q.TOOL DOOL 72 ROT 0 ROW 0 70 65 467 15467 10 55 125 125 135 35.16 4 154 135 122.15 125 125 145 0 6 6 177 91.77 92.77 50 24.50 146 2.16 2.16 102 0.02	LEAN EC, 10 Ause: F FLASH CONTACTOR VAPO ft5 168. 685 3 20m 197 0.5 0.5 69.25 0.1 141.10 31.1 0 35.6 141.10 31.1 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2	LASH BOCH TEC FROM R FLASH TANK 71 173.27 10 66 13 17628 28 1 31.5 15 67 17 12* 11 3.46 0 0 111304 27 21.3 28 0.09 15 0.07	FLASH WAR CONTLACTOR GEO WAR 150.02 65 1778 642 0.462 1 0.34 1 133.8 1 33.8 1 0.34 1 0.35 1 0.36 1 0.38 1 0.38 1 0.36 1 2.398 1	ROM IDE TO RM QUOL DUD-WASH QUOL DU TALST ROM IDE FROM AND QUOL DUD-WASH QUOL DU TALST 171.97 310 20 15 17658 17658 172 4 2.49 172 4 2.49 172 4 2.49 121 122 1.46 13.04 11.04 11.04 24.5 - 28.5 0.09 0.09 0.01	LEAN BE CAL FROM REDOLER 400 14.8 177.25 30.3 52.67 141.09 0 13.04 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0	BCL STLL LEAN TE 040 MARK CLT 204.15 255 14.7 1 5333 17 0.223 3 0.04 64 71.59 141 3.46 6 0 113 20.97 6 0.09 0.01	EC FROM LICOL DO 55.16 14.8 17.25 30.3 30.3 44.09 0 0 13.04 4.09 0 0 0
STREAM MARER DESCRPTION REMPRATURE (T.) PRESSARE (PSA) MASS REW (BAR) MASS REW (BAR) NOT (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR) RE (MASSAR)	4 5 BEL CONLACTOR CONDERSED 64LT WARR 102.02 100.202 680 680 105.372 388 105.372 388 105.572 388 105.6 61.221 86.25 18.02 6 0 9 0 9 0 11254.05 22.05 11254.05 0.02 37.82 6	LEAN TEC. CONTACTOR TO CONTACTOR 046 115 1005 665 60 15115 1850 69.25 13 141.09 143 9 143 0 644 0 141 9 143 140.9 143 140.9 143 10 314 0 314 107.13 11366	CR0R BEDN 102 50 FR0M CONTACTOR 55 104.82 85 680 16 15467 57 - 27.7 - 89 69.05 25 121.07 83 0.16 9 0 01 99.77 66 24.50 69 216 80 0.02	RCM TEC TO RECH TE REFLIX COMORSER REFLIX COMORSER 112.12 12 75	Gr Row ROC TEC FROM (NODESER COLD Q.TOOL DOOL 72 ROT 0 ROW 0 70 65 467 15467 10 55 125 125 135 35.16 4 154 135 122.15 125 125 145 0 6 6 177 91.77 92.77 50 24.50 146 2.16 2.16 102 0.02	LEAN EC, 10 Ause: F FLASH CONTACTOR VAPO ft5 168. 685 3 20m 197 0.5 0.5 69.25 0.1 141.10 31.1 0 35.6 141.10 31.1 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2 0 35.2	LASH BOCH BEC FROM R FLASH TASK 71 T73_27 10 66 73 17858 85 - 11 3.45 10 17658 86 - 11 3.45 10 177 12 18 10 16 10 1758 10 17588 10 175888 10 175888 10 17588 10 175	FLASH WALL CORTALCIDE GEO WALL ISS.022 65 ITM 0.44 ISS.02 0.45 ISS.02 0.45 ISS.02 0.45 ISS.04 0.45 ISS.05 0.45	ROK IEE TO ROK IEE TO RV CLED TO LOUGHARD CLEDING RECORD 172 20 1755 17655 172 2.49 172 2.49 172 2.49 172 2.49 172 2.49 172 2.49 172 2.49 171 127 145 3.46 0 0 1104 11.04 24.3 2.43 0.09 0.07 0.01 0.07 0.02 0.03 0.03 0.07 0.03 0.07 0.03 0.07 0.05 0.05 0.05 0.07 0.05 0.07 0.07 0.07 0.08 0.07 0.09 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07	LLAN EE FRUM REDULER 400 14.8 177.25 30.3 552.67 141.09 0 111.04 0 111.04 0 121.37 1	BCL STLL LEAN TE 040 MARK CLT 204.15 255 14.7 1 5333 17 0.223 3 0.04 64 71.59 141 3.46 6 0 113 20.97 6 0.09 0.01	EC FRON DIS 55.16 14.6 17725 30.3 44.09 0 0 0 0 0 0 0 0 0 0 0 0 0

!

1 .

.

Π.


· .

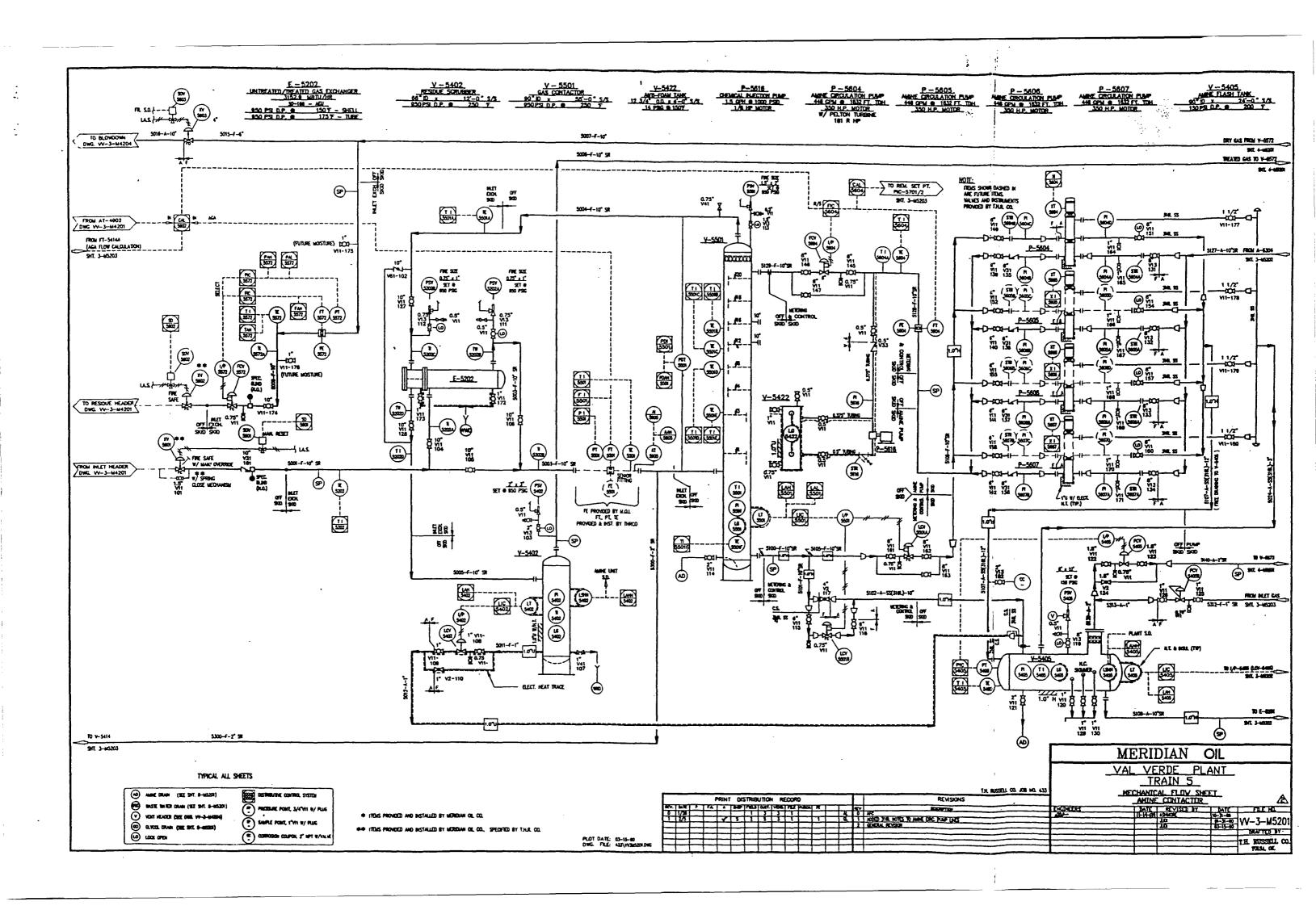
. .

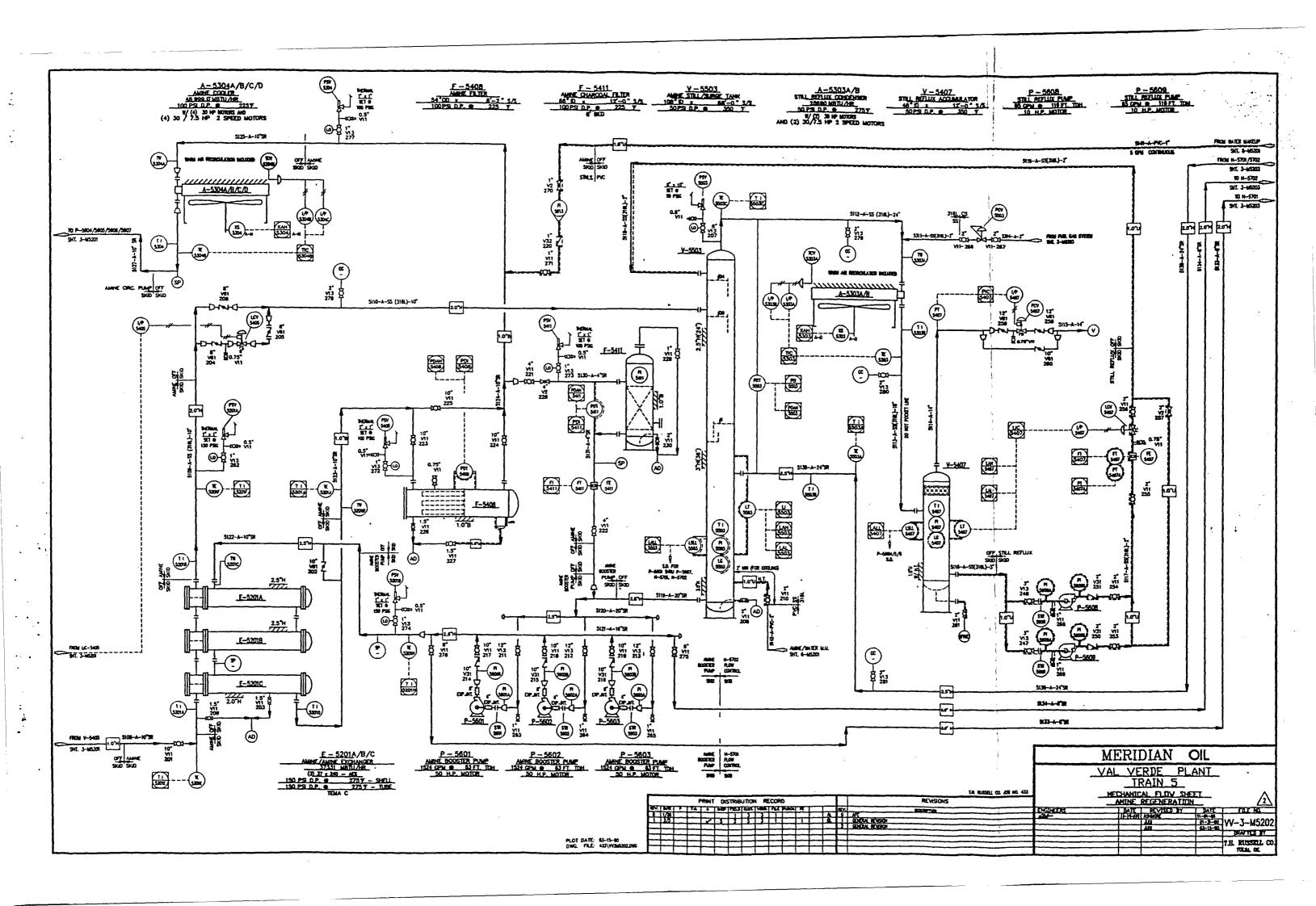
71

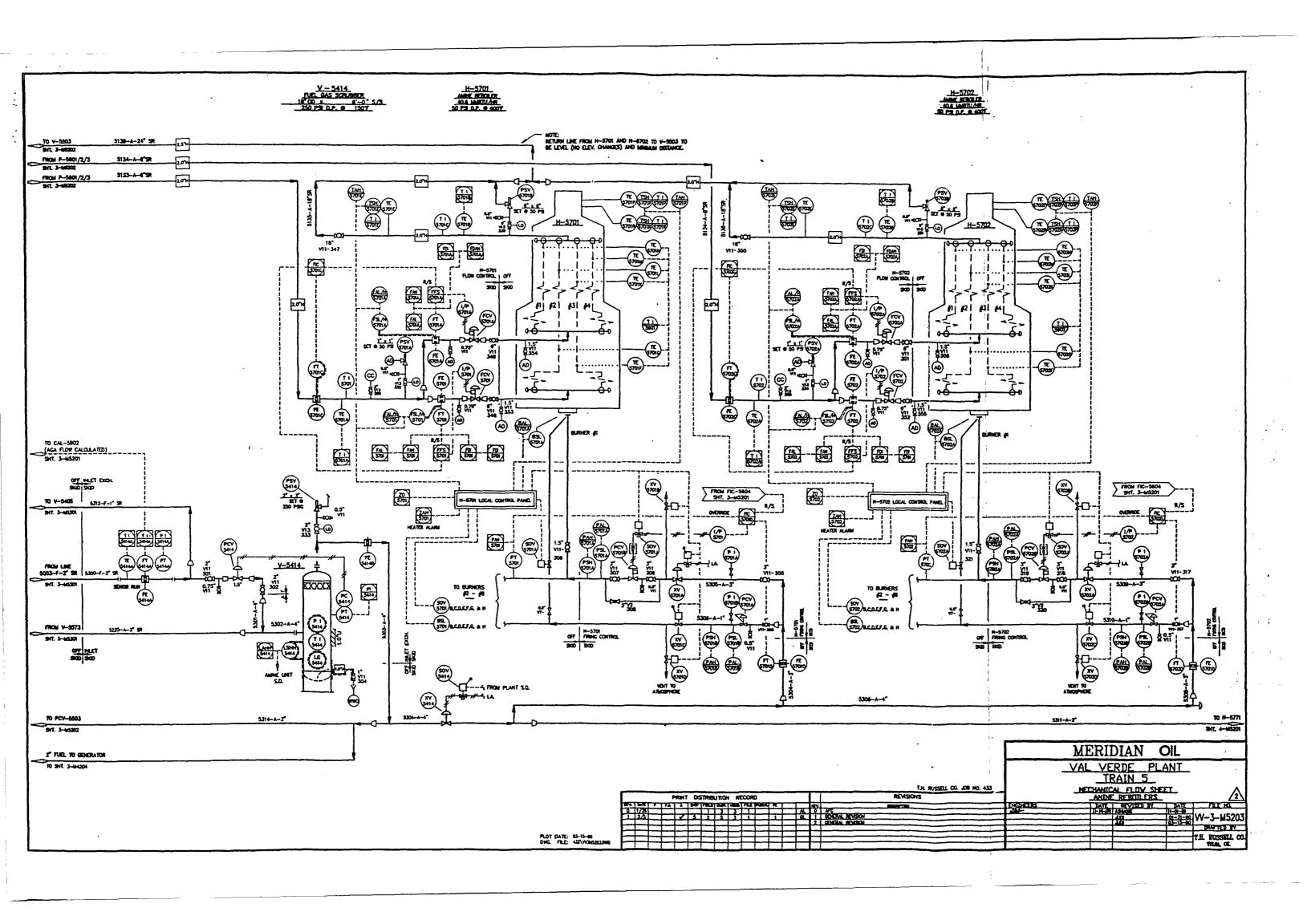
•

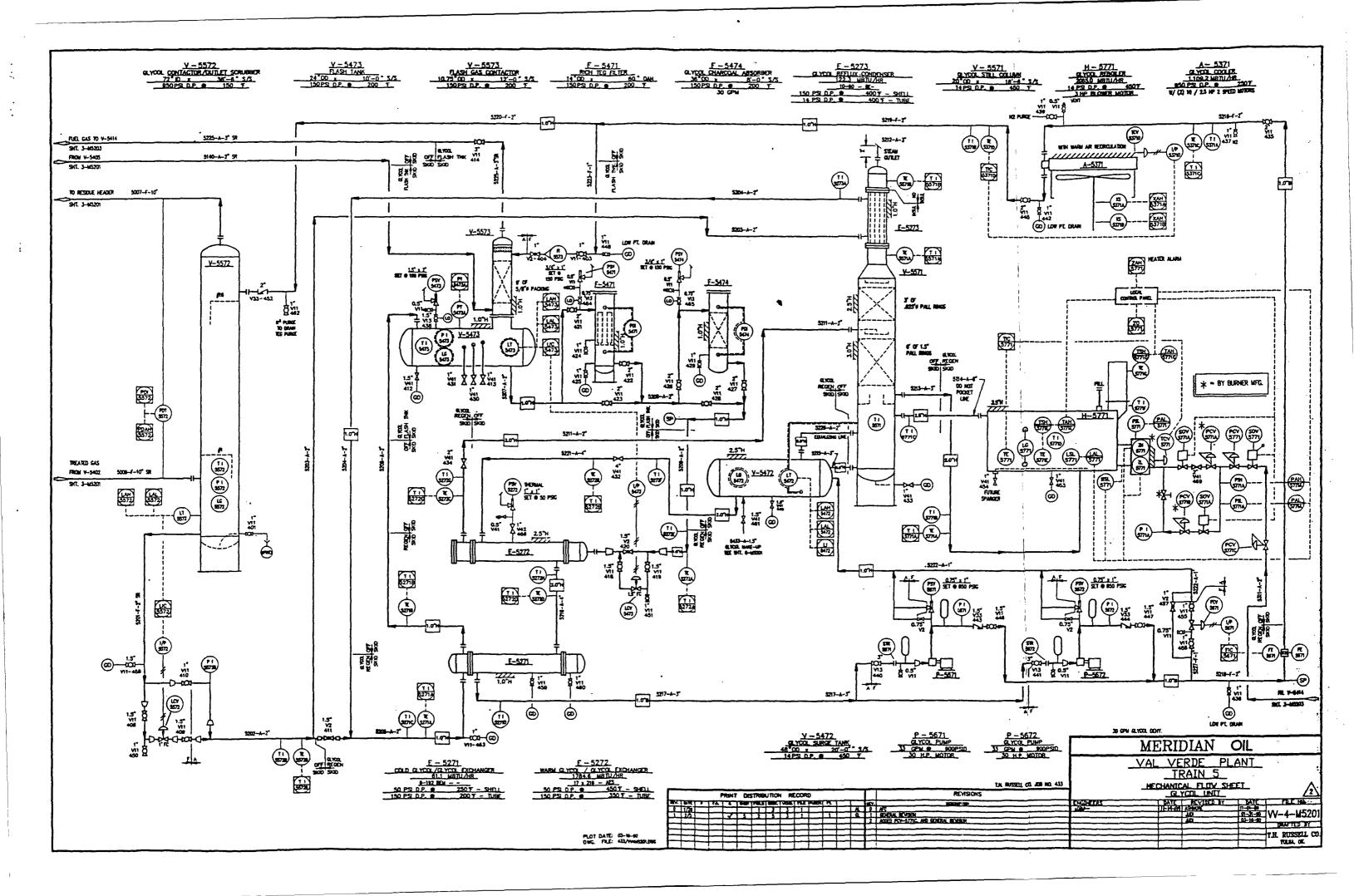
PLOT DATE: 05-20-10 DwG. FLE: 427\\Vw4221.DwG

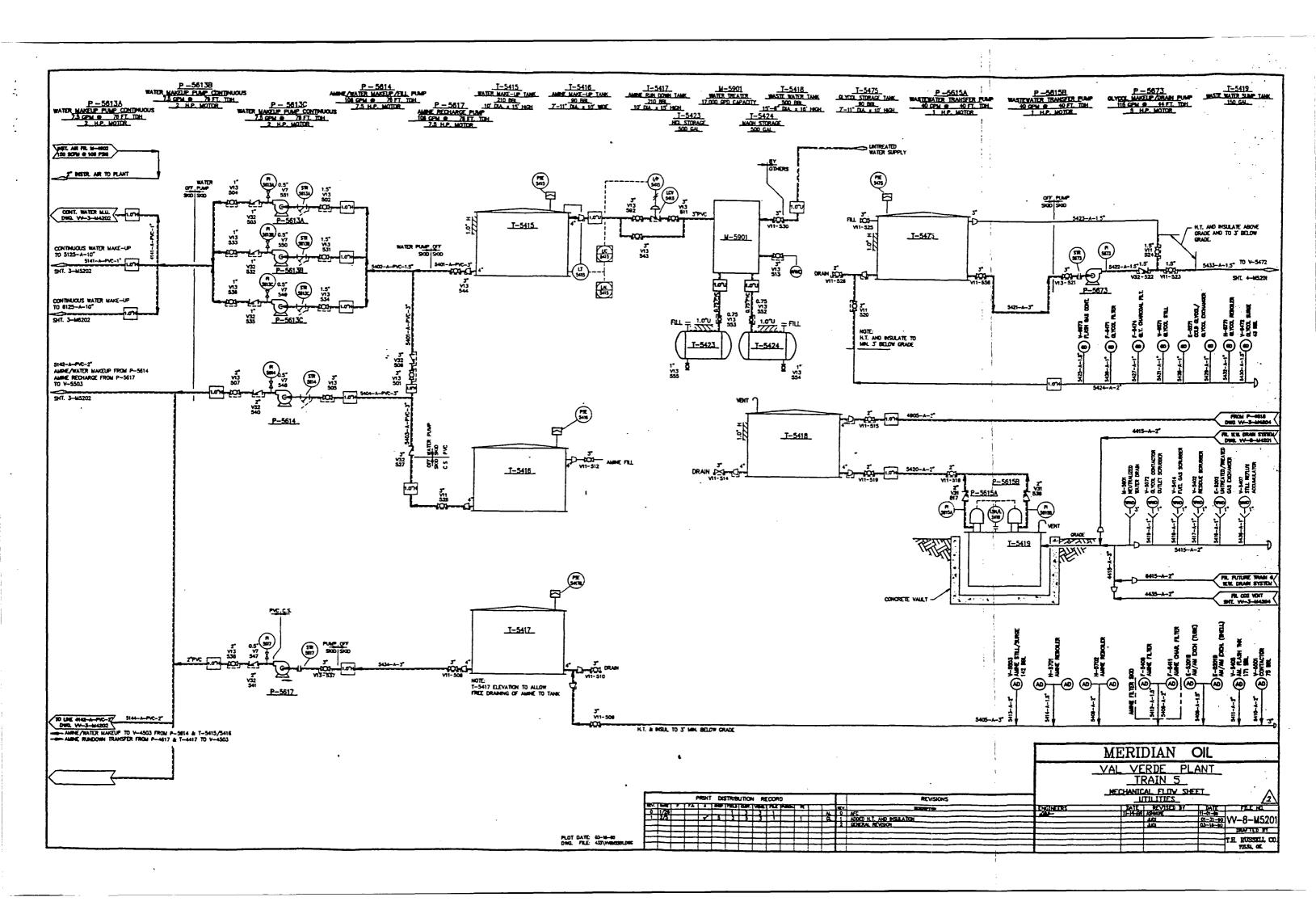
PROCESS & INSTRUMENTATION DIAGRAMS


Train 5


Val Verde Gas Processing Plant OCD Information Request October 2004

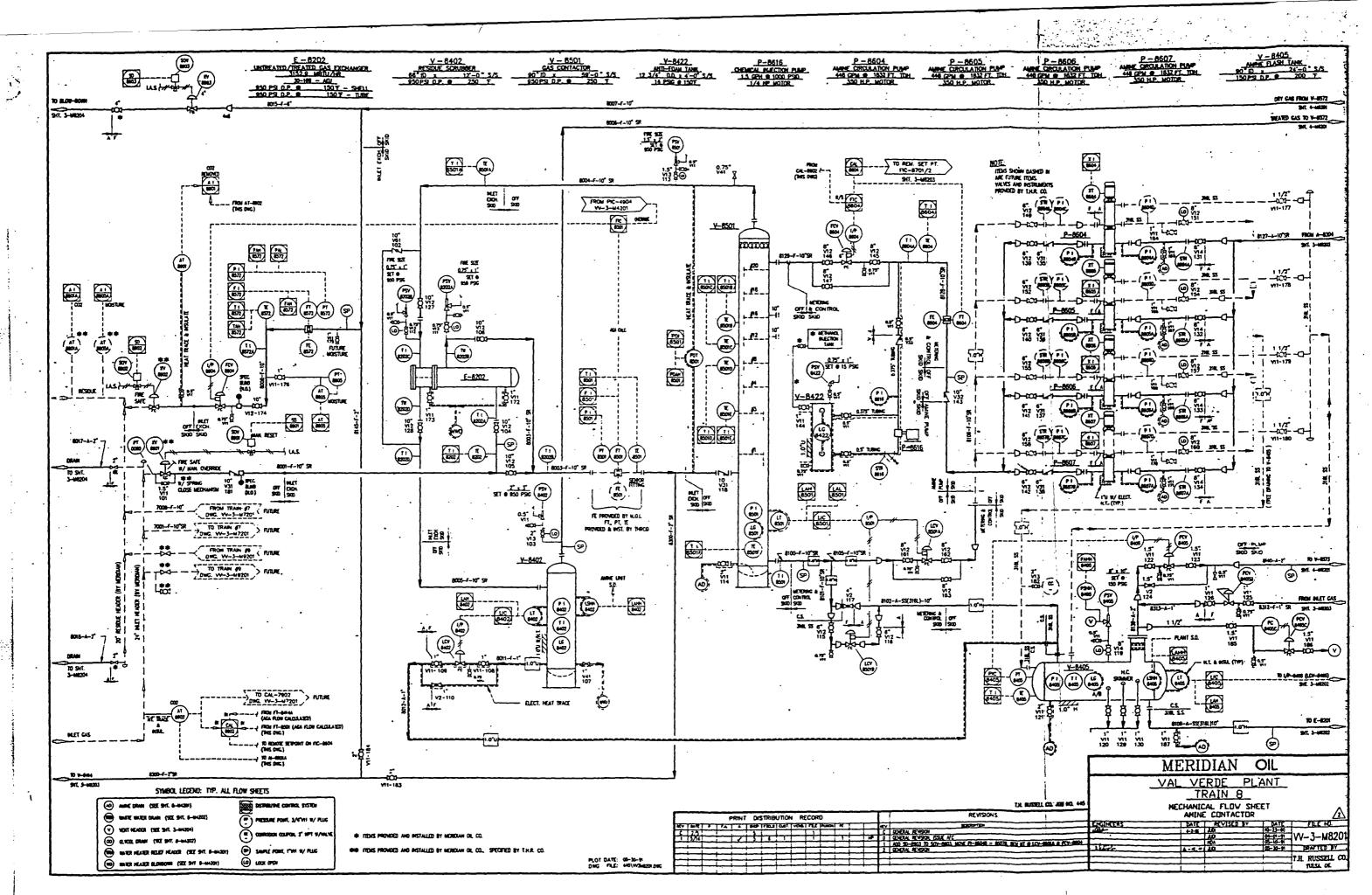



l


i.

PROCESS & INSTRUMENTATION DIAGRAMS

- ----


Train 8

Val Verde Gas Processing Plant OCD Information Request October 2004

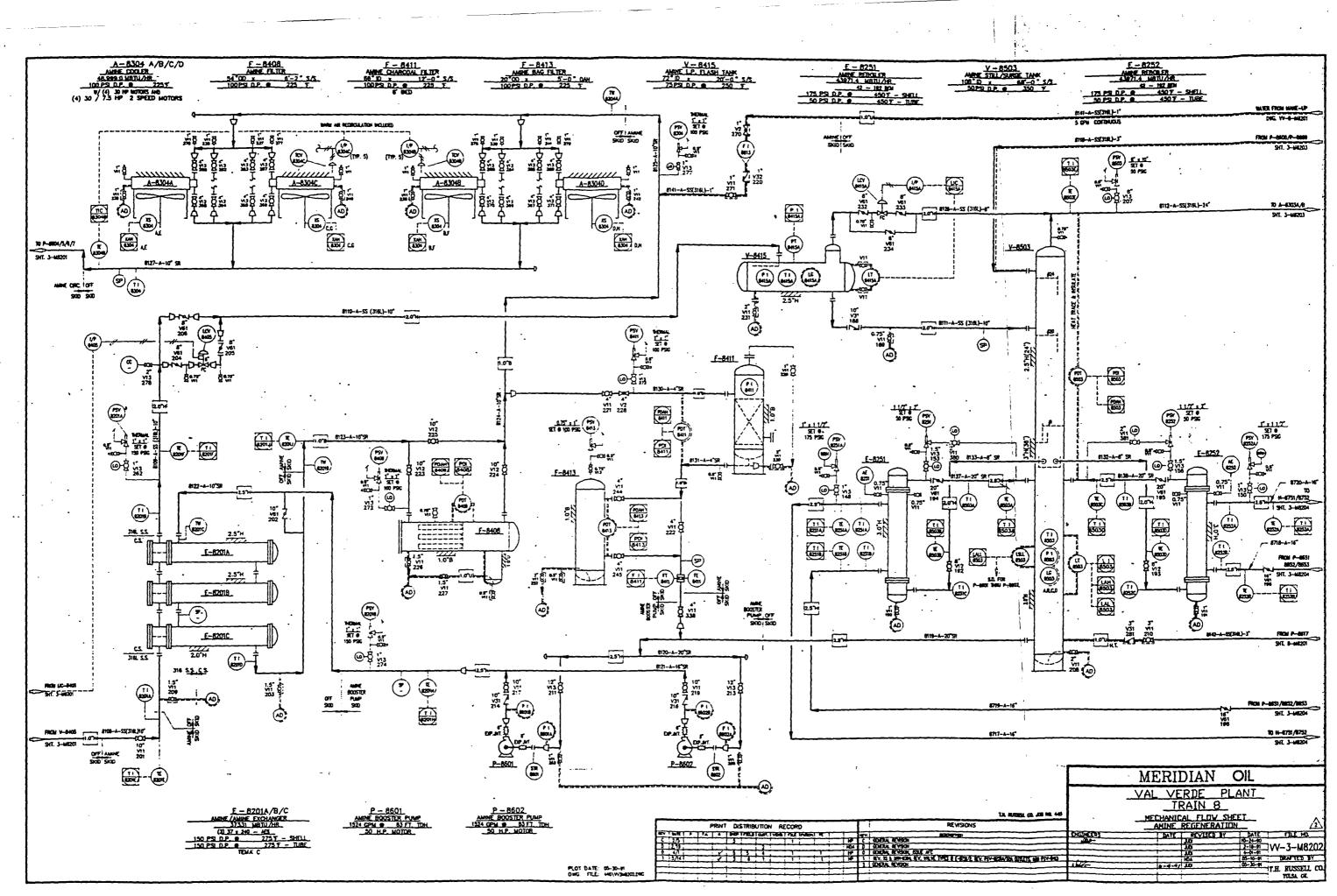
0

• • • •

`.

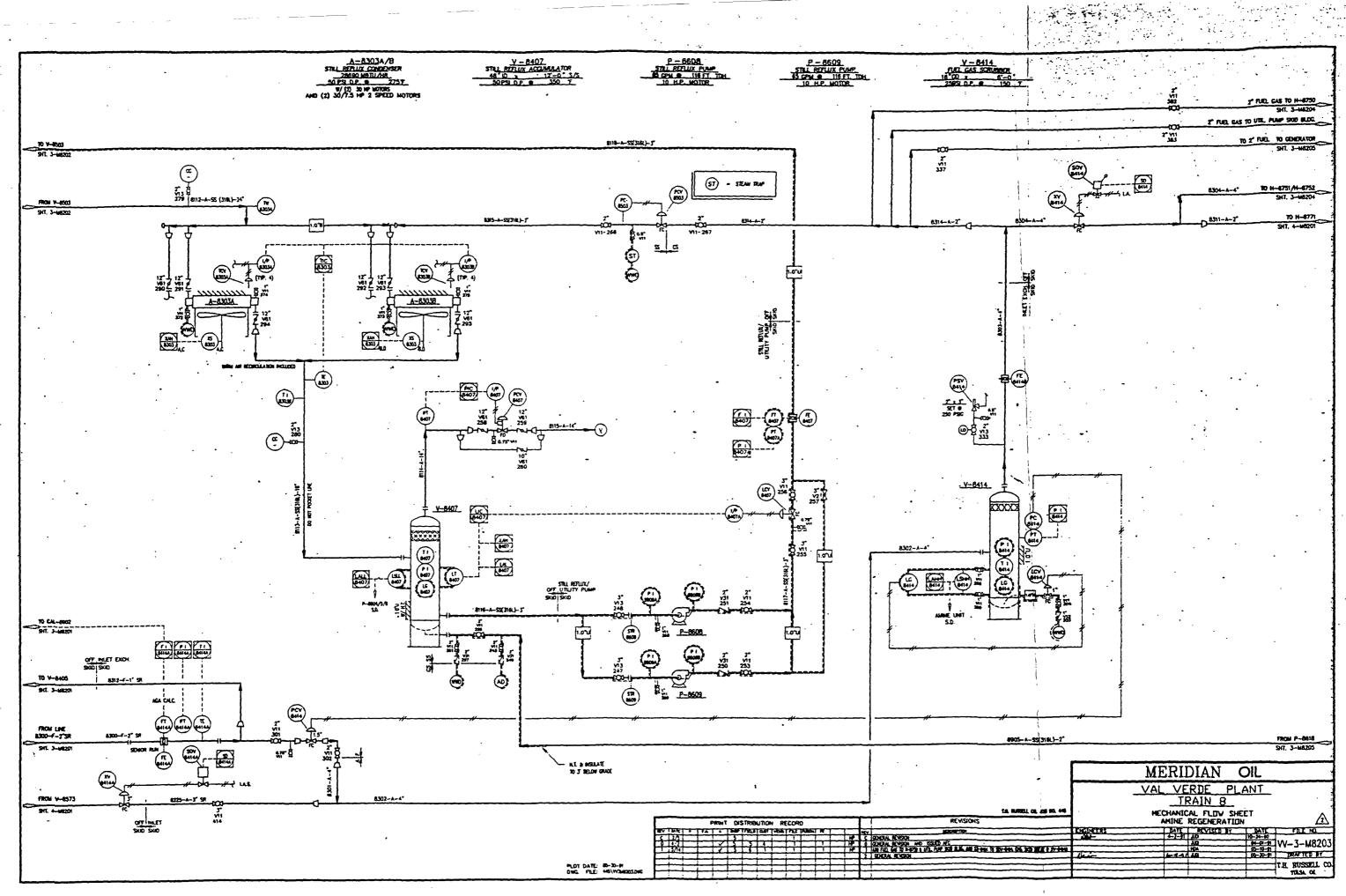
:

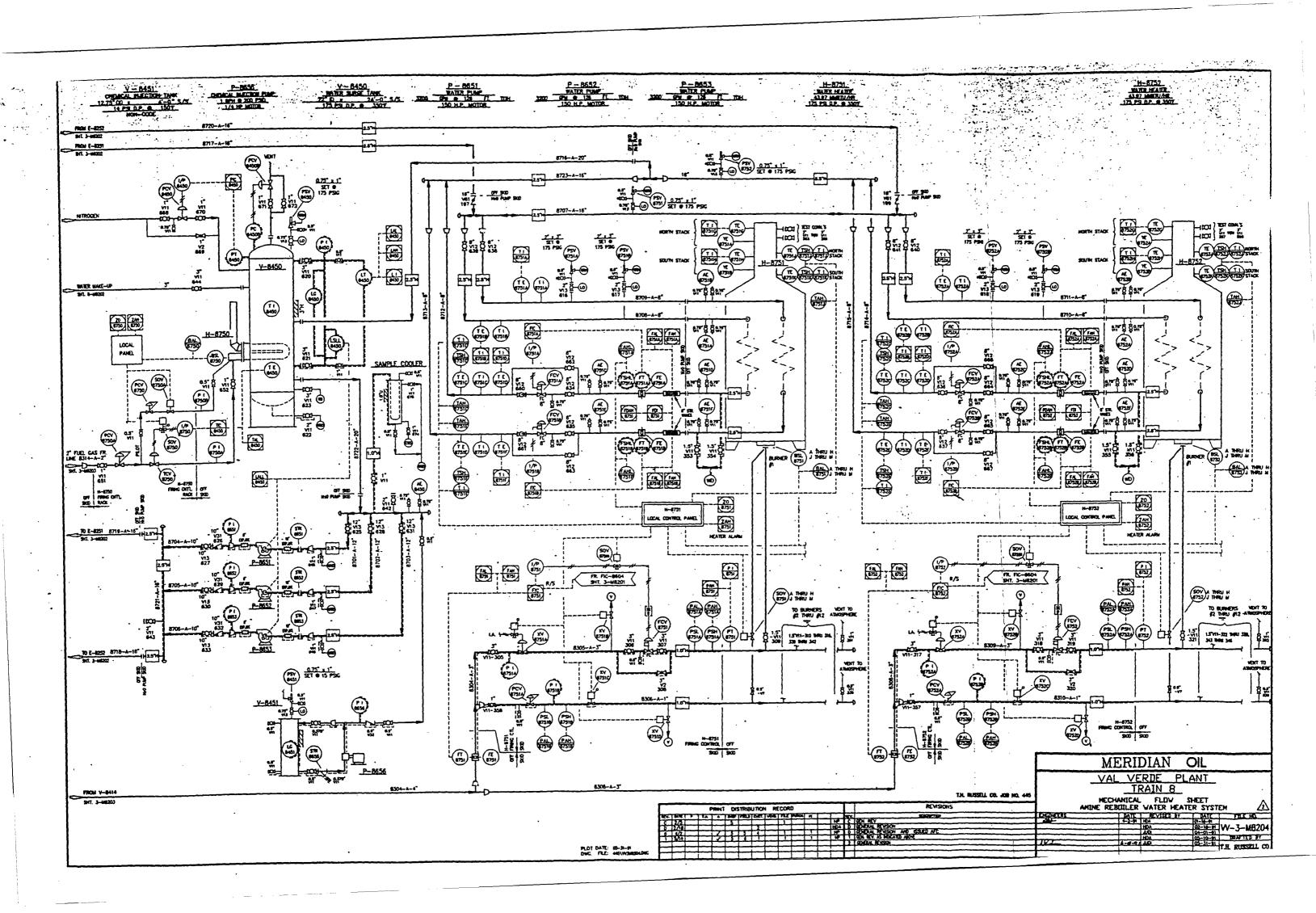
.

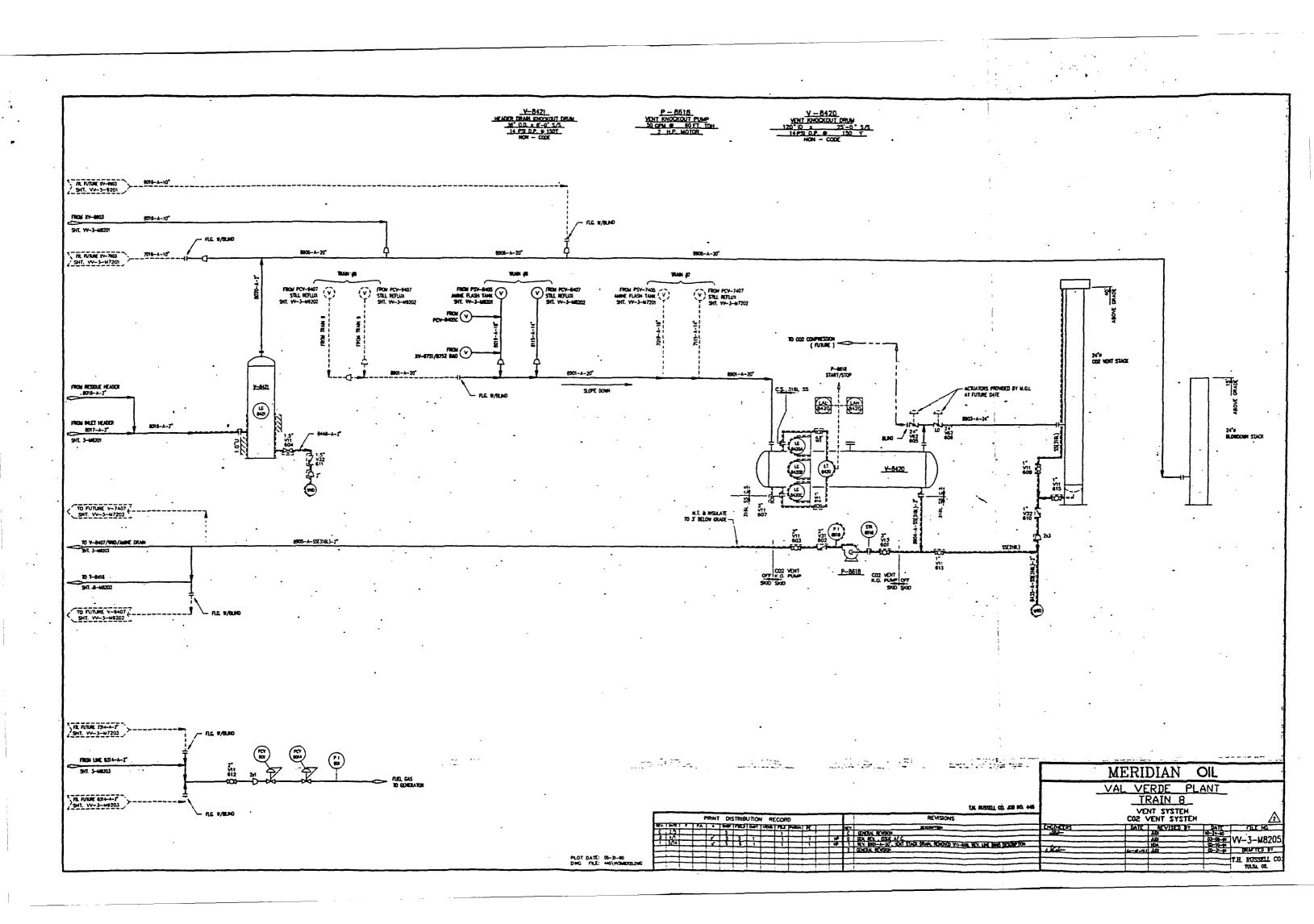

.~

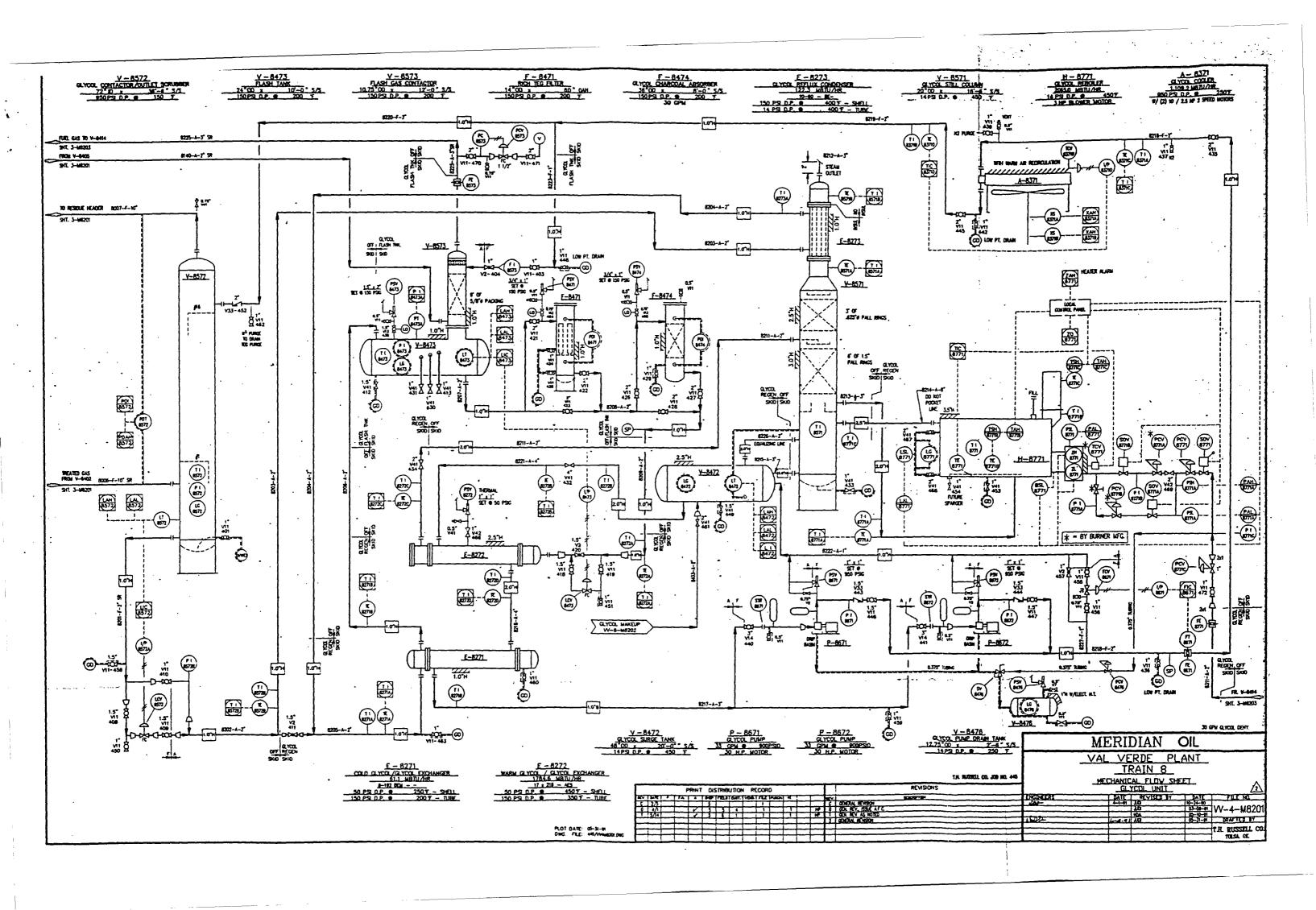
1년 1년 - 2

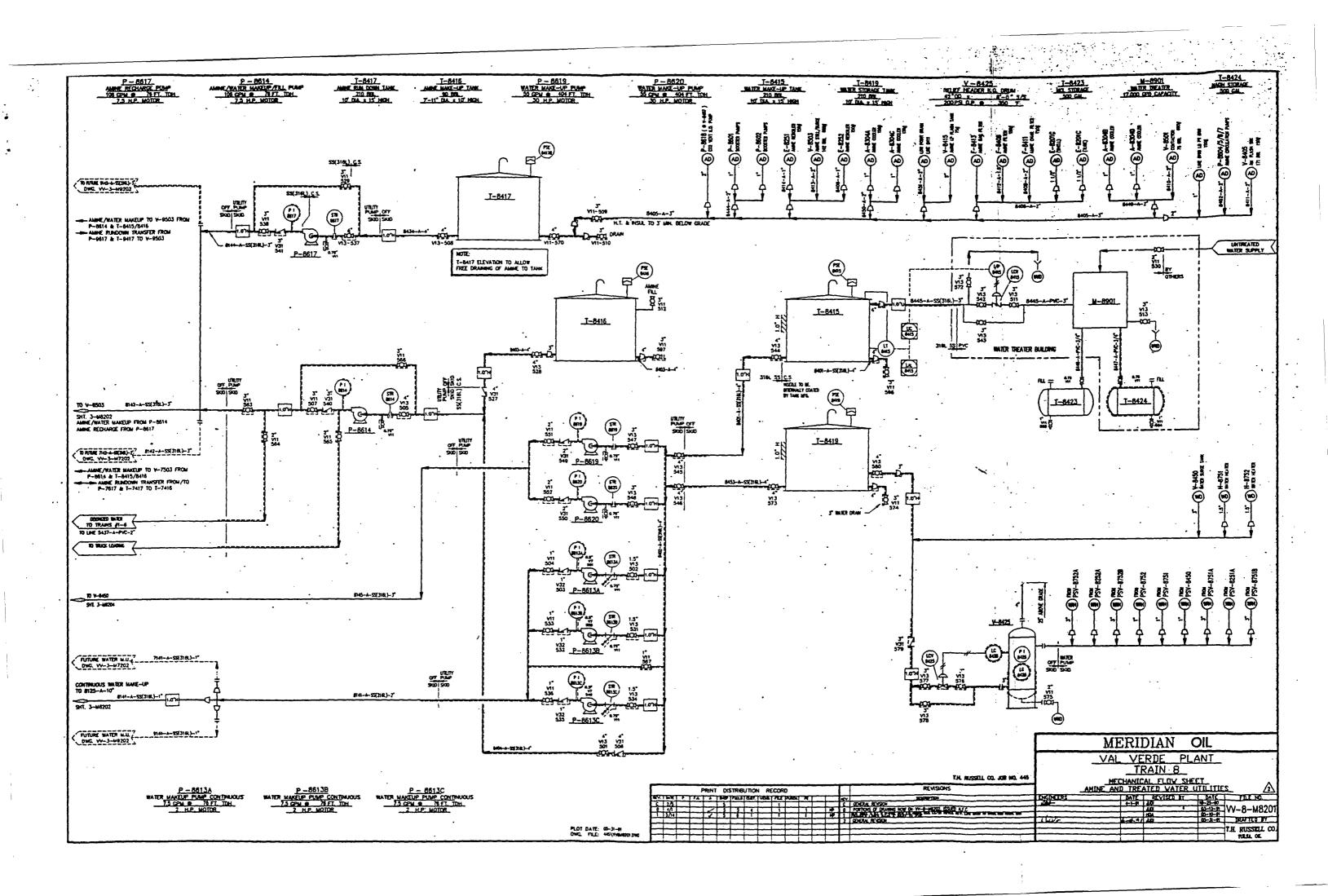
M

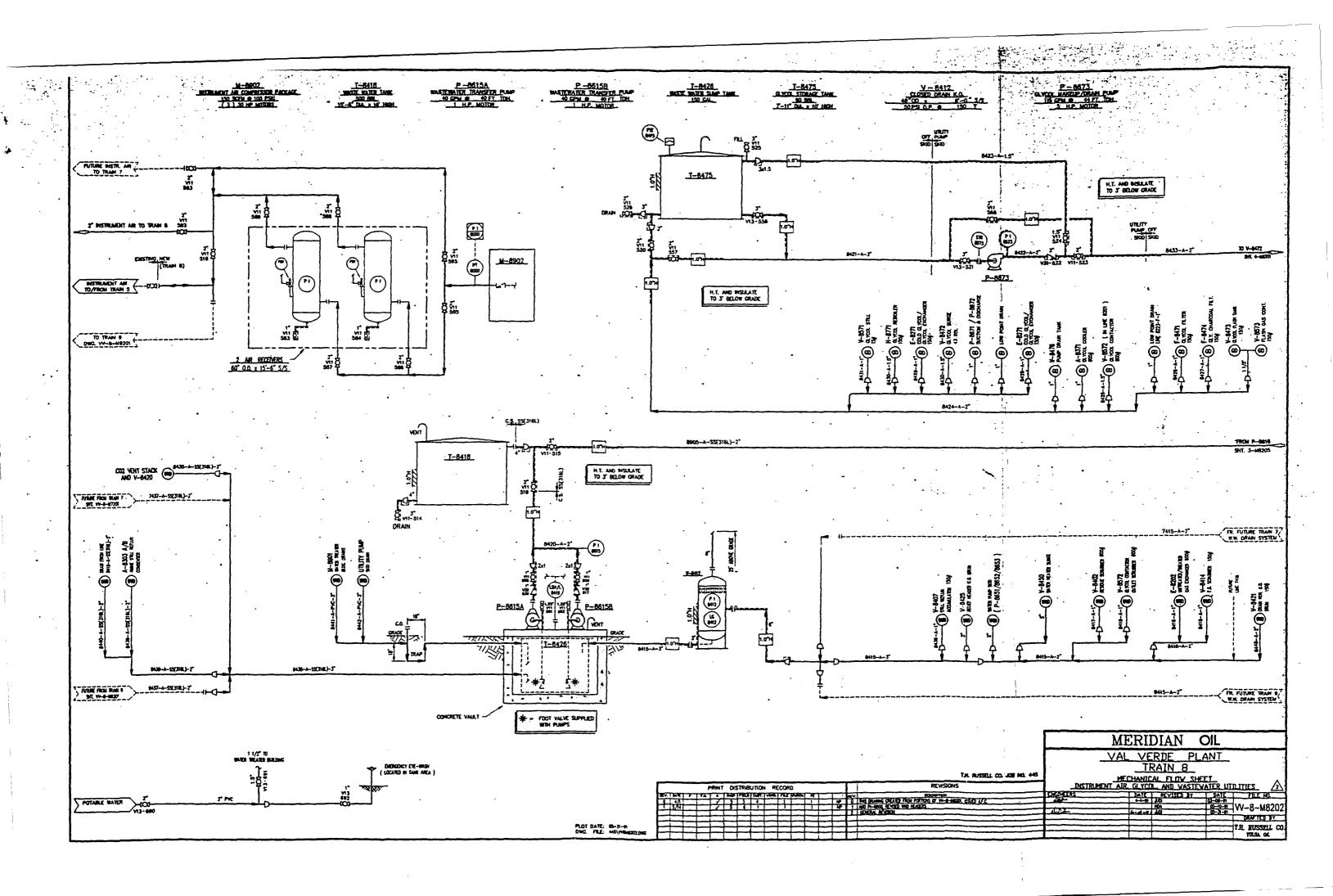

Ì






Ľ.




... ...-

Wingate Plant P.O. Box 119 Rehoboth, NM 87322 phone 505.863.1045

Beverly J. Cox Compliance Coordinator 505-863-1023, Fax 505-863-1047 beverly.j.cox@conocophillips.com

CIL COUL

April 13, 2004

Mr. Wayne Price New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Operations Manager Change ConocoPhillips Wingate Fractionator, Gallup, New Mexico

Dear Mr. Price,

This letter serves as notification of a change in the Wingate Fractionator Operations Manager position. Mr. Chuck White has retired from ConocoPhillips. In the interim, Mr. Daniel Henderson is assuming the role of Operations Manager for the Wingate Fractionator.

Should you have any questions, please do not hesitate to call me at 505-863-1023 or Mr. Daniel Henderson at 505-863-1007.

Sincerely,

Beverlif J. Voy

Beverly J. Cox Compliance Coordinator

cc: Denny Foust 1000 Rio Brazos Rd Aztec, NM 87401

> Henry Platt ConocoPhillips Westlake Building III Houston, TX

NEW EXICO ENERGY, M NERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor

March 24, 2004

Joanna Prukop Cabinet Secretary Acting Director Oil Conservation Division

Ms. Beverly Cox ConocoPhillips Wingate Gas Fractionating Plant PO Box 119 Rehoboth, NM 87322

Subject: Approval for Wingate Monitoring Well Location on El Paso Property

Dear Ms. Cox:

The New Mexico Oil Conservation Division (OCD) understands that ConocoPhillips Company (COPC) proposes to install a new groundwater monitoring well on a parcel belonging to El Paso Natural Gas. The parcel is located north-northwest of the central Wingate facility area. The purpose of this well is to monitor groundwater quality in compliance with the Wingate Gas Fractionating Plant Groundwater Discharge Plan GW-054. This location is hereby approved by the OCD.

Please be advised that NMOCD approval of this plan does not relieve **ConocoPhillips** of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve (ConocoPhillips) of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions please do not hesitate to contact me at 505-476-3487 or e-mail <u>WPRICE@state.nm.us</u>.

Sincerely;

Wayne Price-Pet. Engr. Spec.

cc: OCD Aztec Office

10601 Lomas Blvd. NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440 fax (505) 237-8656

February 5, 2004

Mr. Wayne Price Environmental Bureau Energy, Minerals and Natural Resource Department Oil Conservation Division (OCD) 1220 South St. Francis Drive Santa Fe, NM 87505

Subject: Response to Draft #2 Attachment to the Discharge Plan GW-054 Approval, Dated January 7, 2004, Amended Discharge Plan Approval Conditions ConocoPhillips Wingate Gas Fractionating Plant, Gallup, New Mexico Maxim Project No. 4690019

Dear Mr. Price:

This document is the response to the above-referenced "Draft #2 Attachment" regarding the ConocoPhillips (CoP) Wingate Gas Fractionating Plant.

- 1. CoP concurs with Items 1 through 14 of the Draft #2 Attachment.
- 2. Item 15 Storm Water Plan: OCD has eliminated the Storm Water Plan because of the implementation of an SPCC plan and the Integrated Contingency Plan for the Wingate facility.
- 3. Item 16 Waste Water Evaporation Ponds:
 - A. *Pond Inspections:* CoP concurs.
 - B. CoP concurs with annual monitoring of MWR-1, MW-2, and MW-3 (MW-3 was omitted from the Attachment but has historically been sampled as part of the evaporation pond monitoring program so we are placing it back in the program for consistency).

MWS-1 and MWS-2, the shallow wells that monitor potential pond leakage, will be inspected quarterly for the presence of fluids. If fluids are present in volumes sufficient for sampling, these fluids will be analyzed. We agree upon a sampling schedule for these wells that is based on the analytical results of the initial samples. If results of initial sampling suggest pond leakage (based on chemical similarities to pond water), then CoP will consider quarterly sampling of these two wells. If the results of initial sampling suggest that the fluids contained in the wells are the result of infiltration by surface water (from precipitation), then

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

Mr. Wayne Price February 5, 2004 Page 2 of 4

CoP proposes sampling and analysis on an annual schedule or once per year when inspections indicate fluids are present in the wells.

Sample analysis: CoP concurs with the analytical suite requested by OCD except for fecal coliform bacteria. The fecal coliform bacteria analysis requires a short holding time that is difficult to meet, given the location of the Wingate facility with respect to the nearest analytical laboratory. CoP has discussed this with OCD, and because historically no fecal coliform has been found in the evaporation ponds, OCD has agreed that total coliform bacteria analysis will be sufficient.

4. Item 17 Vadose Zone and Water Pollution

B Flare Pit area: OCD has requested that a new groundwater monitoring well be installed down gradient from WMW-3 to ensure that contamination is not leaving the CoP property.

CoP is willing to consider installing a new well. However, there are logistical issues that must be resolved. WMW-3 is located on the north side of the facility, in the northwest corner of the flare pit area, which is enclosed by a fence. Beyond the fence is Navajo reservation land. A new well directly downgradient from WMW-3, according to groundwater flow interpreted as of September 2003, would be located on reservation land. CoP estimates that receiving permission to install a monitoring well on the reservation might take as much as a year or more.

An alternative would be to position the new well within the area currently occupied by El Paso Natural Gas, also located on the north side of the Wingate facility. The proposed location is shown on Figure 1. This location is downgradient but is also sidegradient from WMW-3. This proposed location is, however, directly downgradient of the center of the Wingate facility and may, in fact, be a better location to monitor potential contaminant migration from the center of the plant. CoP believes that permission to drill and sample a well in this alternative location could be obtained in a timely manner from El Paso Natural Gas. In addition, obtaining permission from El Paso Natural Gas for annual sampling access is also considered by CoP to be more likely than obtaining such access from the Navajo Nation. This conclusion is based on past experience with both the Navajos and El Paso Natural Gas. CoP agrees to install the new well on the El Paso Natural Gas site pending resolution of access and Right-of-Way issues.

Thus, CoP requests concurrence from OCD for locating the new well as shown in Figure 1.

5. *17C Railroad Rack Area 1:* OCD requests a new monitoring well be installed west of existing monitoring well WMW-2.

CoP proposes to install a new monitoring well west of WMW-2 in the location shown on Figure 1.

CoP concurs that groundwater remediation of the railroad rack area shall be addressed upon closure of the facility, or at any time upon discovery that the contamination begins to migrate away from this area. At such a time, CoP will submit a corrective plan to OCD for approval.

D. Plant area groundwater salt contamination: ConocoPhillips shall submit an investigation plan for OCD approval to determine the source of the salt contamination.

CoP is currently taking a proactive approach to solving the problem of groundwater salt contamination. This plan has two parts, as follows:

- 1. Install a nano-filtration water treatment system. This ion exchange system requires a brine solution for regeneration. ConocoPhillips has approved capital and is currently (January 2004) constructing this system designed to replace the current water softening system. The new filtration system will not require the brine pits that are currently in operation, and thus the pits will be out of service once the new system is up and running. The new system is a different technology and will drastically reduce the use of salt in the facility.
- 2. Discontinue use of the belowground concrete brine pits that have been used historically as part of the facility water treatment system. Water in the brine pits will be removed along with any residual solid salt. The pits will be covered and will remain functional but inactive until the new nano-filtration system is fully operational. Decommissioning the brine pits is expected to reduce the potential for additional salt impact to groundwater within the central area of the plant. With the elimination of the potential source, salt concentrations in groundwater will eventually decrease through natural attenuation. Groundwater monitoring in the existing wells and the two proposed wells will verify the effects of the natural attenuation processes.
- ConocoPhillips concurs with annual sampling of wells WMW-1, WMW-2, WMW-3, WMW-4, WMW-5 and WMW-6, and the two new WMW wells (as requested by OCD). Samples will be analyzed for Volatile Organics (Method 8260), semi-volatiles (Method 8270), New Mexico Water Quality Control Commission (WQCC) metals, and General Chemistry including cations and anions.

Additional Requirements

CoP acknowledges that OCD has requested that CoP notify the OCD Santa Fe office and the local district office at least two weeks in advance of all scheduled activities such that the ODC has the opportunity to witness the events and split samples. For large facilities (i.e., gas processing plants) an annual notification will suffice.

7. *18 Annual Report, C: Correction:* first sentence, "An annual water table potentiometric elevation map using the water table elevation of the ground water in all refinery monitor wells." Please replace the word "refinery" with the word "facility."

Mr. Wayne Price February 5, 2004 Page 4 of 4

8. Item 19 Transfer of Discharge Plan

"The OCD will be notified prior to any transfer of ownership, control, or possession of a facility with an approved discharge plan." CoP suggests that notifying OCD prior to facility ownership transfer may not always be possible. Compliance with this request could impact CoP's corporate business objectives as well as facility operational requirements. CoP proposes that the OCD will be notified of any transfer of ownership as soon as possible after the completion of such a transfer.

CoP looks forward to the OCD's review and approval of this response to the Draft #2 Attachment. Should you have any questions, please contact Ms. Beverly Cox, Wingate Gas Fractionating Plant Environmental Coordinator, at (505) 863-1023.

Sincerely,

Maxim Technologies, Inc.

Jengebush_

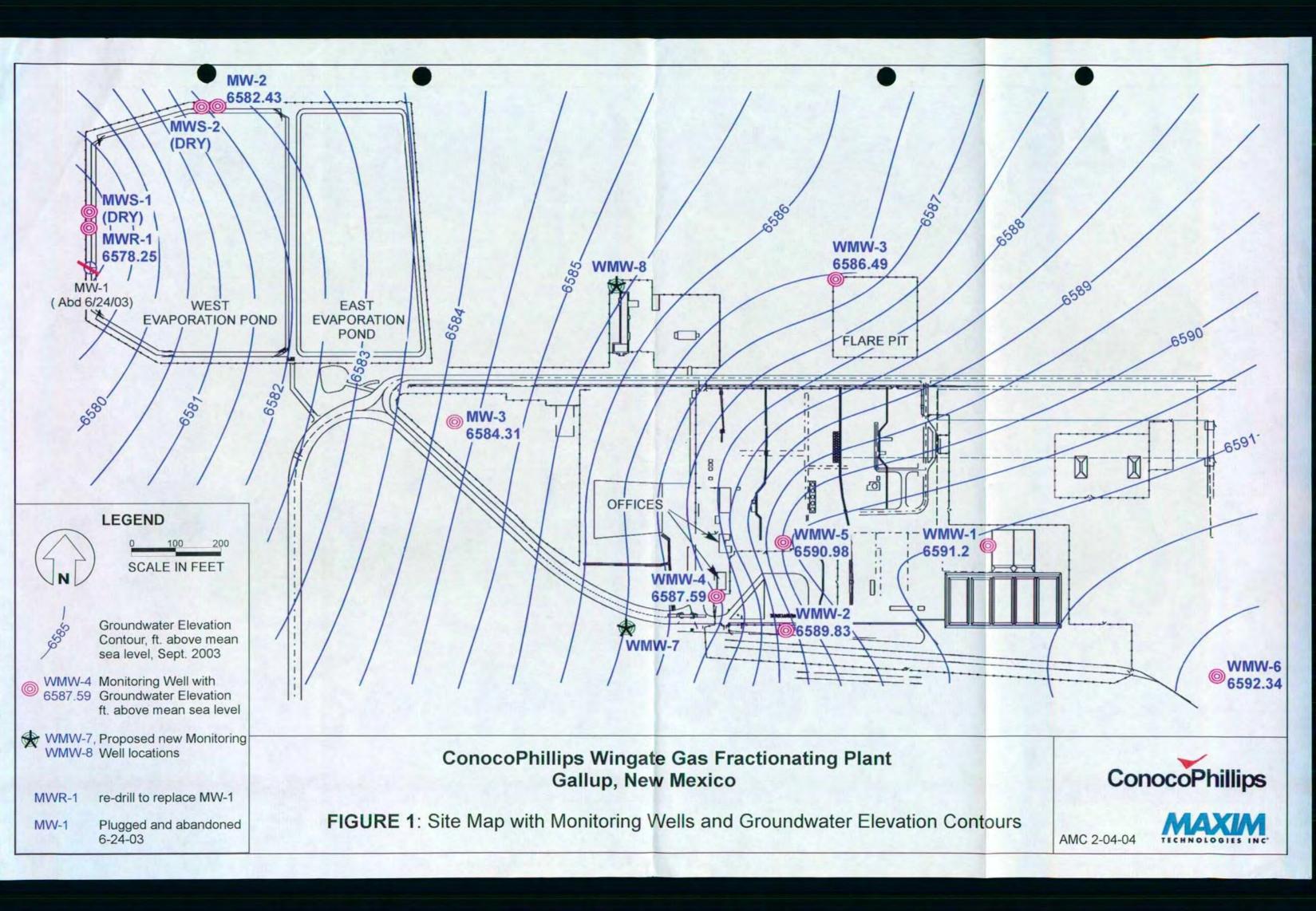
Robert M. Sengebush, R.G. Senior Project Manager

Attachment: Figure 1 - Site Map with proposed monitoring well locations

Cc: Beverly Cox, ConocoPhillips Joyce Miley, ConocoPhillips Neal Goates, ConocoPhillips

Conditions Accepted by:

ConocoPhillips


White

Company Representative (print name)

Date: 2-6-04

Company Representative (signature)

Title: OpenAtions MANAYEr

January 07, 2004

CERTIFIED MAIL RETURN RECEIPT NO. 7923 4313

Mr. Chuck White ConocoPhillips (CP) P.O. Box 119 Rehoboth, New Mexico 87322

Re: Renewal of Discharge Plan GW-054 Wingate Gas Fractionating Plant

Dear Mr. White:

The groundwater discharge plan GW-054 for the ConocoPhillips, Wingate Gas Fractionating Plant, located in the portions of Section 9,10,15,16 and 17, Township 15 North, Range 17 West, NMPM, McKinely County, New Mexico, is hereby approved under the amended conditions contained in the enclosed attachment. Enclosed are two copies of the amended conditions of approval. Please sign and return one copy to the New Mexico Oil Conservation Division (OCD) Santa Fe Office within 30 working days of receipt of this letter.

The original discharge plan was approved on August 17, 1992. The discharge plan renewal application dated April 18, 2002, including attachments, and an addendum dated June 06, 2002, October 28, 2002 (E-mail) was submitted pursuant to Section 3106 of the New Mexico Water Quality Control Commission (WQCC) Regulations which included all earlier applications and all conditions later placed on those approvals was approved with conditions on October 30, 2002.

On December 02, 2002 ConocoPhillips acknowledge receipt of the discharge plan approval and submitted the required fees and noted the approval conditions will be signed and forwarded to OCD when all comments have been addressed in their letter. As a result of ConocoPhillips request, OCD began negotiations concerning the issues listed. After several meetings, site visit, additional file search, and additional investigation work performed by ConocoPhillips, the OCD has amended the approval conditions to reflect the current conditions. The supporting documentation is as follows:

CP December 02, 2002 "Renewal of Ground Water Discharge Plan GW-054 Reply and Comments from Wingate Fractionating Plant"; CP-Maxim March 13, 2003 "Environmental Monitoring and Closure Plan"; CP-Maxim April 03, 2003 "addendum regarding Flare Pit and Fire Training Pit Closure"; OCD April 18, 2003 "E-mail Draft permit"; CP April 30, 2003 "Reply to Draft Amended Discharge Approval Conditions"; CP-Maxim June 27, 2003 Railroad Rack Vadose Zone and Groundwater Contamination and Flare"; CP-Maxim September 11, 2003 "Outcome and Monitoring as of September 08, 2003"; CP November 07, 2003 "pond sampling results".

÷

The discharge plan is renewed pursuant to Section 3109.C. Please note Section 3109.G., which provides for possible future amendment of the plan. Please be advised that approval of this plan does not relieve ConocoPhillips of responsibility should operations result in pollution of surface water, ground water or the environment. Nor does it relieve ConocoPhillips of its responsibility to comply with any other governmental authority's rules and regulations.

Please be advised that all exposed pits, including lined pits and open top tanks (exceeding 16 feet in diameter) shall be screened, netted, or otherwise rendered nonhazardous to wildlife including migratory birds.

Please note that Section 3104. of the regulations requires that "when a plan has been approved, discharges must be consistent with the terms and conditions of the plan." Pursuant to Section 3107.C., ConocoPhillips is required to notify the Director of any facility expansion, production increase, or process modification that would result in any change in the discharge of water quality or volume.

Pursuant to Section 3109.H.4., this approval is for a period of five years. This approval will expire August 17, 2007 and an application for renewal should be submitted in ample time before that date. Pursuant to Section 3106.F. of the regulations, if a discharger submits a discharge plan renewal application at least 120 days before the discharge plan expires and is in compliance with the approved plan, then the existing discharge plan will not expire until the application for renewal has been approved or disapproved.

The discharge plan application for the ConocoPhillips, Wingate Gas Fractionating Plant, is subject to the WQCC Regulation 3114. Every billable facility submitting a discharge plan will be assessed a fee equal to the filing fee of \$100.00 plus a flat fee of \$4000.00 for gas processing plants. The OCD has received the \$100 filing fee and \$4000.00 flat fee.

If you have any questions, please contact Wayne Price of my staff at (505-476-3487) or E-mail WPRICE@state.nm.us. On behalf of the staff of the OCD, I wish to thank you and your staff for your cooperation during this discharge plan review.

Sincerely,

1

Roger C. Anderson Environmental Bureau Chief

RCA/lwp Attachment-1 Xc: OCD Aztec Office

DRAFT #2

ATTACHMENT TO THE DISCHARGE PLAN GW-054 APPROVAL ConocoPhillips, Wingate Gas Fractionating Plant Amended DISCHARGE PLAN APPROVAL CONDITIONS January 07, 2004

- 1. <u>Payment of Discharge Plan Fees:</u> The \$100.00 filing fee and required flat fee of \$4000.00 for gas processing plants has been received by the OCD.
- 2. <u>Commitments:</u> ConocoPhillips will abide by all commitments submitted in the discharge plan renewal application dated April 18, 2002, including attachments, and addendums dated June 06, 2002, October 28, 2002 (E-mail), April 03, 2003, all subsequent submittals and these amended conditions for approval.
- 3. Drum Storage: All drums containing materials other than fresh water must be stored on an impermeable pad with curbing. All empty drums should be stored on their sides with the bungs in place and lined up on a horizontal plane. Chemicals in other containers such as sacks or buckets must also be stored on an impermeable pad with curbing.
- 4. <u>Process Areas:</u> All process and maintenance areas which show evidence that leaks and spills are reaching the ground surface must be either paved and curbed or have some type of spill collection device incorporated into the design.
- 5. <u>Above Ground Tanks:</u> All above ground tanks which contain fluids other than fresh water must be bermed to contain a volume of one-third more than the total volume of the largest tank or of all interconnected tanks. All new facilities or modifications to existing facilities must place the tank on an impermeable type pad within the berm.
- 6. <u>Above Ground Saddle Tanks</u>: Above ground saddle tanks must have impermeable pad and curb type containment unless they contain fresh water or fluids that are gases at atmospheric temperature and pressure.
- 7. Labeling: All tanks, drums, and other containers should be clearly labeled to identify their contents and other emergency information necessary if the tank were to rupture, spill, or ignite.
 - 8. <u>Below Grade Tanks/Sumps:</u> All below grade tanks, sumps, and pits must be approved by the OCD prior to installation or upon modification and must incorporate secondary

> containment and leak-detection into the design. All below grade tanks and sumps must be tested annually. Results of such tests shall be maintained at the facility covered by this discharge plan and available for NMOCD inspection. Permit holders may propose various methods for testing such as pressure testing to 3 pounds per square inch above normal operating pressure and/or visual inspection of cleaned out tanks and/or sumps, or other OCD approved methods. The OCD will be notified at least 72 hours prior to all testing.

- 9. <u>Underground Process/Wastewater Lines:</u> All underground process/wastewater pipelines must be approved by the OCD prior to installation and must be tested to demonstrate their mechanical integrity every five (5) years. Results of such tests shall be maintained at the facility covered by this discharge plan and available for NMOCD inspection. Permit holders may propose various methods for testing such as pressure testing to 3 pounds per square inch above normal operating pressure or other means acceptable to the OCD. The OCD will be notified at least 72 hours prior to all testing.
- 10. <u>Class V Wells</u>: No Class V wells that inject non-hazardous industrial wastes or a mixture of industrial wastes and domestic wastes will be approved for construction and/or operation unless it can be demonstrated that groundwater will not be impacted in the reasonably foreseeable future. Leach fields and other wastewater disposal systems at OCD regulated facilities which inject non-hazardous fluid into or above an underground source of drinking water are considered Class V injection wells under the EPA UIC program. Class V wells that inject domestic waste only must be permitted by the New Mexico Environment Department.
- 11. Housekeeping: All systems designed for spill collection/prevention, and leak detection will be inspected daily to ensure proper operation and to prevent over topping or system failure. All spill collection and/or secondary containment devices will be emptied of fluids within 48 hours of discovery. A record of inspections will be retained on site for a period of five years.
- 12. <u>Spill Reporting:</u> All spills/releases shall be reported pursuant to OCD Rule 116. and WQCC 1203.
- 13. <u>Waste Disposal</u>: All wastes will be disposed of at an OCD approved facility. Only oilfield exempt wastes shall be disposed of down Class II injection wells. Non-exempt oilfield wastes that are non-hazardous may be disposed of at an OCD approved facility upon proper waste determination per 40 CFR Part 261. Any waste stream that is not listed in the discharge plan will be approved by OCD on a case-by-case basis.

Rule 712 Waste: Pursuant to Rule 712 disposal of certain non-domestic waste is allowed at solid waste facilities permitted by the New Mexico Environment Department as long as the waste stream is identified in the discharge plan, and existing process knowledge of the waste stream does not change without notification to the Oil Conservation Division.

- 14. <u>OCD Inspections:</u> Additional requirements may be placed on the facility based upon results from OCD inspections or the annual report.
- 15. Storm Water Plan: Stormwater runoff controls shall be maintained. As a result of operations, if any water contaminant that exceeds the WQCC standards listed in 20 NMAC 6.2.3101 is discharged in any stormwater run-off, then immediate actions shall be taken to mitigate the effects of the run-off, notify the OCD within 24 hours, and modify the discharge plan to include a formal stormwater run-off containment plan and submit for OCD approval within 15 days.
- 16. Waste Water Evaporation Ponds: A minimum freeboard of 3 feet will be maintained in the ponds so that no over topping of wastewater occurs. All waste entering the ponds or the plant wastewater collection system shall be RCRA non-hazardous as defined by EPA 40 CFR Part 261. Any repairs or modifications to the pond, wastewater collection system and/or monitoring systems must receive prior OCD approval. Leaks, releases from the ponds, or any contaminant found in any monitoring device or groundwater that exceeds the New Mexico Ground Water (WQCC) standards shall be reported pursuant to Item 12. (Spill Reporting) of these conditions.
 - A. <u>Pond Inspections</u>: Evaporation ponds shall be inspected monthly and after any major storm event. Records shall be maintained for fluid levels, freeboard, seepage, flow channels, pipes, valves and dike integrity.
 - B. Evaporation Pond(s) and Pond Monitor Well(s): MWR-1 and MW-2 monitor wells shall be purged and sampled annually. MWS-1 and MWS-2 shall be inspected for fluids quarterly. If fluids are discovered in MWS-1 and MWS-2 they shall be sampled upon discovery and semi-annually thereafter. Composite pond samples shall be collected and analyzed annually.

All Samples collected shall be analyzed for Volatile Organics (Method 8260), semi-volatiles organics (Method 8270), New Mexico Water Quality Control Commission (WQCC) metals, and General Chemistry including cations and anions. Due to the raw untreated sewage going into the ponds OCD will require that general requirements found in WQCC regulations 20.6.2.2101 (BOD, COD, Fecal Coliform Bacteria, and PH) be part of the sampling program. Sampling and analytical work shall be pursuant to EPA approved methods and quality assurance/quality control (QA/QC) procedures.

- C. Migratory Bird Protection: ConocoPhillips will not be required to net the evaporation ponds as long as the ponds are rendered nonhazardous to wildlife including migratory birds. ConocoPhillips will be responsible for monitoring, recording, and reporting any significant event that provides evidence that the ponds are hazardous to any wildlife including migratory birds.
- 17. Vadose Zone and Water Pollution: The previously submitted investigation(s) and remediation plans that were submitted pursuant to the discharge plan and all future discoveries of contamination will be addressed through the discharge plan process.
 - A. <u>Fire Training Pit area</u> is considered closed and no further action required at this time.
 - B. <u>Flare Pit area</u> soil remediation is considered closed with continued groundwater monitoring in the area. In addition, OCD will require a new monitor well to be installed down gradient from WMW-3 to ensure that contamination is not leaving ConocoPhillip's property.
 - C. <u>Railroad Rack area is still active</u>. At the request of ConocoPhillips, OCD will allow long term monitoring in this area and forgo any active remediation requirement as long the follow is adhered to:
 - 1. a new monitor well shall be installed west of existing monitoring well WMW-2.
 - 2. The remediation of the groundwater and vadose zone contamination shall be addressed upon closure of the facility, or at any time upon discovery the contamination begins to migrate away from this area, then a corrective plan shall be submitted for OCD approval.
 - D. <u>Plant area groundwater salt contamination</u>: ConocoPhillips shall submit an investigation plan for OCD approval to determine the source of the salt contamination.
 - E. Monitor wells WMW-1, WMW-2, WMW-3, WMW-4, WMW-5 and WMW-6 shall be purged and sampled annually. All Samples collected shall be analyzed for Volatile Organics (Method 8260), semi-volatiles organics (Method 8270), New Mexico Water Quality Control Commission (WQCC) metals, and General Chemistry including cations and anions. Sampling and analytical work shall be pursuant to EPA approved methods and quality assurance/quality control (QA/QC) procedures.

Additional Requirements:

- 1. ConocoPhillips shall notify the OCD Santa Fe and local district office at least 2 weeks in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples. For large facilities, i.e. gas processing plants, an annual notification will suffice.
- 2. ConocoPhillips shall notify the NMOCD within 15 days of the discovery of separated-phase hydrocarbons or the exceedance of a WQCC standard in any down gradient monitor well where separate-phase hydrocarbons were not present or where contaminant concentrations did not exceed WQCC standards during the preceding monitoring event.
- 18. ANNUAL REPORT: An annual report will be submitted to the OCD by September 15 of each year. The annual report will contain:
 - A. A description of the monitoring and remediation activities that occurred during the year including conclusions and recommendations.
 - B. Summary tables listing laboratory analytic results, of all water quality sampling for each monitoring point and plots of concentration vs. time for contaminants of concern from each monitoring point. Any WQCC constituent found to exceed the groundwater standard shall be highlighted and noted in the annual report. Copies of the most recent years laboratory analytical data sheets will also be submitted.
 - C. An annual water table potentiometric elevation map using the water table elevation of the ground water in all refinery monitor wells. A corrected water table elevation shall be determined for all wells containing phase-separated hydrocarbons. This map shall show well locations, pertinent site features, and the direction and magnitude of the hydraulic gradient.
 - D. Plots of water table elevation vs. time for each ground water monitoring point.
 - E. An annual product thickness map based on the thickness of free phase product on ground water in all refinery recovery wells. This map shall include isopleth lines for products and contaminants of concern.
 - **F.** Electronic filing: OCD would like to encourage ConocoPhillips to file this report in an acceptable electronic format.

- 19. <u>Transfer of Discharge Plan</u>: The OCD will be notified prior to any transfer of ownership, control, or possession of a facility with an approved discharge plan. A written commitment to comply with the terms and conditions of the previously approved discharge plan must be submitted by the purchaser and approved by the OCD prior to transfer.
- 20. <u>Closure</u>: The OCD will be notified when operations of the facility are discontinued for a period in excess of six months. Prior to closure of the facility a closure plan will be submitted for approval by the Director. Closure and waste disposal will be in accordance with the statutes, rules and regulations in effect at the time of closure.
- 21. <u>Certification</u>: **ConocoPhillips** by the officer whose signature appears below, accepts this permit and agrees to comply with all terms and conditions contained herein. **ConocoPhillips** further acknowledges that these conditions and requirements of this permit may be changed administratively by the Division for good cause shown as necessary to protect fresh water, human health and the environment.

Conditions accepted by: ConocoPhillips

Company Representative- print name

Date

Company Representative- Sign

Title

Wingate Plant P.O. Box 119 Rehoboth, NM 87322 phone 505.863.1045

Beverly J. Cox Compliance Coordinator 505-863-1023 Fax 505-863-1040

November 7, 2003

Mr. Wayne Price Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Re: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Price:

Please find attached the results from the annual evaporation pond sampling event at ConocoPhillips Wingate Fractionator facility, located in Gallup, New Mexico.

The ponds were sampled on October 9, 2003 pursuant to Discharge Plan GW-054 Approval Condition #16 (October 30, 2002) and analyzed by Hall Environmental Laboratories, Albuquerque, New Mexico. Maxim Technologies Inc. submitted the monitoring well results on September 11, 2003.

Should you have questions or require additional information, please contact Beverly Cox at 505-863-1023.

Sincerely, Benerky J. Corf

Beverly J. Cox

Attachments

Cc: Joyce Miley Houston Office PO 2014

Price, Wayne

From:Price, WayneSent:Wednesday, October 01, 2003 10:04 AMTo:'Cox, Beverly J.'Subject:RE: Wingate GWDP Pond Sampling Requirement

Approved!

-----Original Message----From: Cox, Beverly J. [mailto:Beverly.J.Cox@conocophillips.com]
Sent: Wednesday, October 01, 2003 9:29 AM
To: wprice@state.nm.us
Cc: Cox, Beverly J.; Miley, Joyce M.
Subject: Wingate GWDP Pond Sampling Requirement

Mr. Price,

The Wingate Fractionating Plant, located in Gallup, New Mexico collects the annual water samples from the evaporation ponds in October. The latest GWDP (GW-54), condition 16 -Waste Water Evaporation Ponds, states the analysis required for the evaporation ponds. There are some concerns in the analysis process for the Fecal Coliform Bacteria test. The Fecal Coloiform sample has to be collected, return to a lab and analyzed within 8 hours. The nearest lab available is in Albuquerque.

Can a Total Fecal Coliform Bacteria test be conducted in lieu of the Fecal Coliform Bacteria test?

Your help in resolving this matter is greatly appreciated.

Many thanks,

BJ

Beverly J. Cox Wingate Fractionator 505-863-1023

Albuquerque, NM 87112 (505) 237-8440 Fax (505) 237-8656

June 27, 2003

Mr. Wayne Price Environmental Bureau Energy, Minerals and Natural Resource Department Oil Conservation Division (OCD) 1220 South St. Francis Drive Santa Fe, NM 87505

 Subject: Railroad Rack Vadose Zone and Groundwater Contamination and Flare Pit Groundwater Contamination Investigation Plan Response to April 18, 2003, OCD Draft Attachment to the Groundwater Discharge Plan GW-054 Amended Discharge Plan Approval Conditions April 18, 2003 Environmental Monitoring and Closure Plan ConocoPhillips Wingate Gas Fractionating Plant, Gallup, New Mexico Maxim Project No. 3690050

Dear Mr. Price:

On behalf of ConocoPhillips Company (ConocoPhillips), Maxim Technologies, Inc. (Maxim) is submitting this Investigation Plan in response to your request of April 18, 2003:

"16. <u>Vadose Zone and Water Pollution</u>: Provide an investigation plan for OCD approval for the railroad rack vadose zone and groundwater contamination area and the flare pit groundwater contamination area by June 15, 2003. Due to the salt contamination found in various Monitor wells OCD requires an up-gradient well to be included in the plan."

This document presents the plan to investigate and monitor the presence of environmental impacts in the railroad rack and flare pit areas. Part of the investigation has already taken place by way of a full round of groundwater sampling, conducted the week of May 12, 2003. Analytical results of that sampling are presented in Table 1. Please refer to Figure 1, Site Map with Analytical Results, for well locations and related analytical results.

Railroad Rack Vadose Zone and Groundwater Contamination Area

• OCD has requested an investigation of the railroad rack area vadose zone. At present, the railroad rack area is used for loading railroad cars with petroleum products. The current procedure is automated and carefully monitored. There is no apparent evidence of recent leaks or spills in the area. Based on the available ConocoPhillips records, soil sampling has not been conducted in this area, so the condition of the subsurface soil is not known. A soil

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

Mr. Wayne Price June 27, 2003 Page 2 of 3

TECHNOLOGIESINC A TETRA TECH COMPANY

sampling program would create a significant impact to the facility operations with, in ConocoPhillips' opinion, little to gain from the information obtained (groundwater in this area is already known to be impacted with benzene). Thus, given the active nature of the area and lack of known impact, ConocoPhillips proposes no action on the vadose zone at this time.

- May 2003 groundwater analyses show elevated benzene in WMW-2. These benzene concentrations are consistent with prior analyses. The benzene concentrations appear to be stable over time.
- May 2003 groundwater analyses from WMW-4 show no detectable benzene, toluene, ethyl benzene or total xylenes (BTEX). WMW-4 is downgradient from WMW-2, based on the interpreted groundwater flow direction determined from groundwater elevations in May 2003. Thus it appears that the elevated benzene concentrations are not migrating downgradient but rather are stable in and around WMW-2. Please note: due to problems with the contract analytical laboratory, BTEX analyses from WMW-4 and WMW-5 were out of holding time. These wells will be resampled and the samples will be analyzed again for BTEX. ConocoPhillips will notify OCD immediately if the results of resampling require any change to this interpretation.
- Low concentration of sulfate (8.2 milligrams per liter) in WMW-2 demonstrates clearly that chemical reduction of sulfate is taking place in this well. This is further supported by black silt in purge water from this well which suggests reduction of iron oxides to iron sulfides. Benzene concentrations in WMW-2 have been recorded in the range of 26,800 micrograms per liter (µg/L) in 1991 to 30,000 µg/L 1998. The benzene concentration from sampling in May 2003 was 29,000 µg/L. Further, the impacted groundwater seems to not be moving, as demonstrated by the consistent absence of benzene or other hydrocarbon compounds in WMW-4, located approximately 400 feet downgradient of WMW-2. This evidence suggests that the benzene "plume" has attained chemical and biological equilibrium within a limited area around the railroad rack area.
- Therefore, ConocoPhillips proposes annual sampling of WMW-2 and WMW-4 with analyses for BTEX but no active remediation of the benzene at this time.

Flare Pit Groundwater Contamination Area

- May 2003 groundwater analyses show no detectable hydrocarbon in WMW-3. Groundwater contamination referred to by OCD in the April 18, 2003, letter is for chloride, sulfate and total dissolved solids (TDS).
- May 2003 analyses indicate elevated concentrations of chloride, sulfate and TDS in WMW-3 as well as in WMW-1, WMW- 2, and WMW-5. Please refer to the Site Map (Figure 1) with Analytical Results. Concentrations of these constituents are not elevated in WMW-4.

Mr. Wayne Price June 27, 2003 Page 3 of 3

A TETRA TECH COMPANY

• It is not known at this time whether or not these concentrations are representative of the background groundwater quality or are a result of impact from the Wingate plant activities. A new monitoring well (WMW-6) will be installed in an upgradient location (the southeast corner of the Wingate facility) the week of June 23, 2003, and sampled to determine background concentrations of chloride, sulfate and TDS.

Summary

Railroad rack area vadose zone: No investigation is planned at this time for the railroad rack vadose zone.

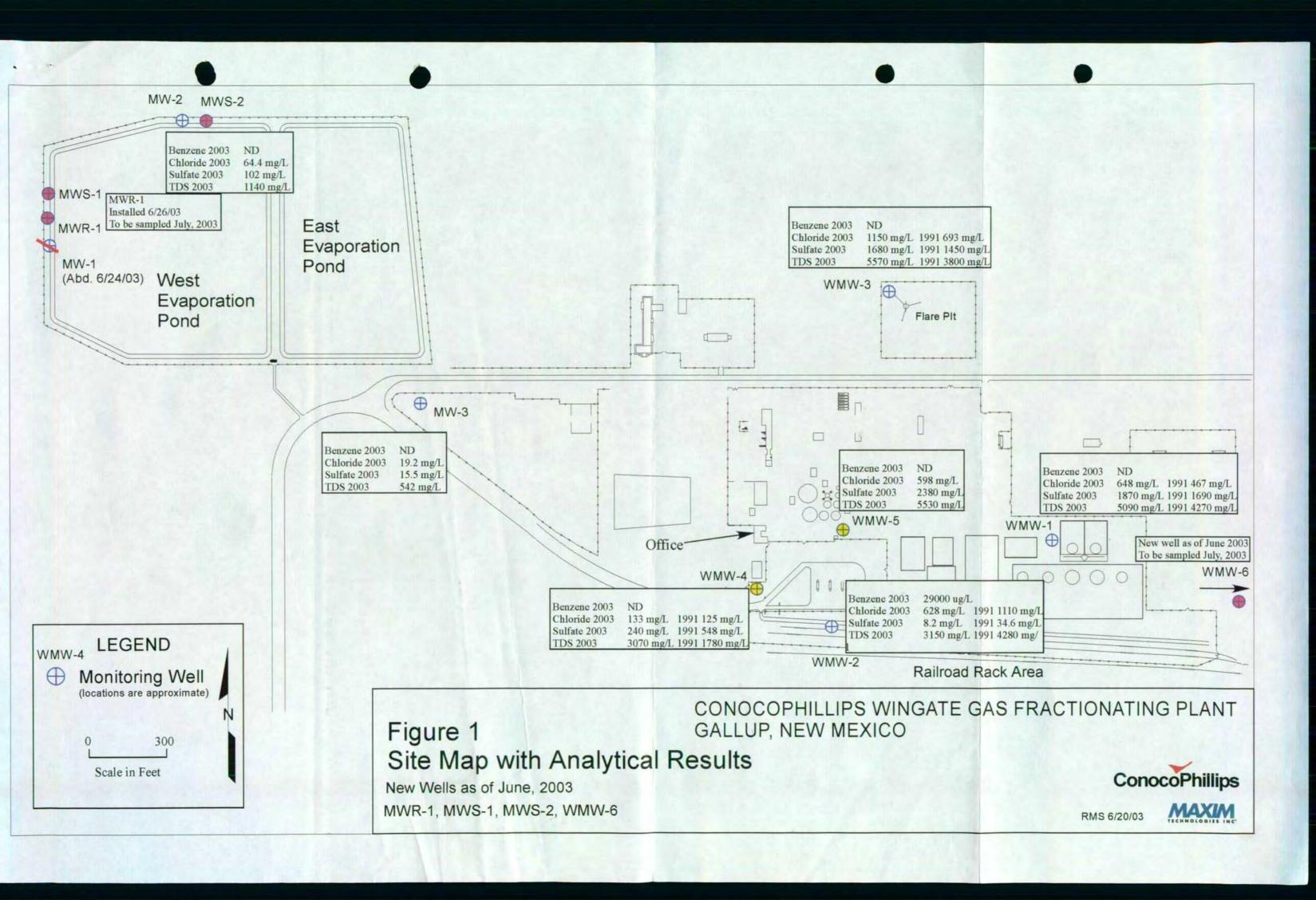
Railroad rack area groundwater: Elevated benzene concentrations are present in WMW-2. The concentrations have been stable since sampling began in 1991. The areal extent of the elevated benzene concentrations also appears to be stable in that no benzene was detected in WMW-4 in 2003. WMW-4 is downgradient from WMW-2.

ConocoPhillips proposes annual monitoring of WMW-2 and WMW-4 to verify the stability of the elevated benzene concentrations.

Flare pit area groundwater contamination: The groundwater impact referred to is elevated concentrations of chloride, sulfate and TDS. Per request of OCD, ConocoPhillips has installed a monitoring well (WMW-6) in an upgradient location and will collect samples from that well to compare to analyses from the wells in the facility area (WMW-1, WMW-2, WMW-3, WMW-4 and WMW-5).

Should you have any questions regarding the information contained here, please contact Ms. Beverly Cox, Compliance Coordinator, ConocoPhillips Wingate Gas Fractionating Plant, at (505) 863-1023 or me at (505) 237-8440.

Sincerely,


MAXIM TECHNOLOGIES, INC.

engebush

Robert M. Sengebush, R.G. Senior Project Manager

Attachment

Cc: Beverly Cox, ConocoPhillips Neal Goates, ConocoPhillips Joyce Miley, ConocoPhillips

TABLE 1 Wingate Gas Fractionating Plant Groundwater Analytical Results Summary

Sample Location	Date Sampled	SW846 8260B Micrograms per Liter (ug/L)				SW846 6010B Milligrams per Liter (mg/L)							MCAWW 300.0A			MCAWW MCAWW 310.1 160.1		
		Benzene	Toluene	Ethylbenzene	Xylenes	Arsenic	Barium	Calcium	Cadmium	Chromium	Magnesium	Sodium	Lead	Chloride	Nitrate	Sulfate	Alkalinity	inity TDS
MWR-1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MWS-1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-2	05/14/03	<1.0	<1.0	<1.0	<2.0	< 0.01	0.21	14.7	<0.002	<0.005	7.9	418	< 0.003	64.4	<0.5	102	770	1140
MWS-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	05/14/03	<1.0	<1.0	<1.0	<2.0	<0.01	<0.2	28.7	<0.002	<0.005	13.5	149	< 0.003	19.2	<0.5	15.5	428	542
WMW-1	05/14/03	<1.0	<1.0	<1.0	<2.0	<0.01	<0.2	258	<0.002	<0.005	69.7	1410	< 0.003	648	<0.5	1870	1050	5090
WMW-2	05/14/03	29000	<500	<500	<1000	0.016	0.42	47.3	0.0081	0.0095	27.4	1140	0.0180	628	0.6	8.2	1710	3150
Duplicate	05/14/03	30000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WMW-3	05/14/03	<1.0	<1.0	<1.0	<2.0	0.014	0.62	186	<0.002	0.19	88.5	1860	0.042	1150	1.5	1680	1090	5570
WMW-4	05/14/03	<1.0 **	<1.0	<1.0	<2.0	<0.01	0.28	37.3	<0.002	0.006	16.8	550	16.8	133	<0.5	240	783	3070
WMW-5	05/14/03	<1.0 **	<1.0	<1.0	<2.0	< 0.01	<0.2	332	<0.002	<0.005	98	1310	< 0.003	598	<0.5	2380	895	5530
WMS-6	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NMWQCC (Groundwater Human Health	10	750	750	620	0.1	1.0	NE	0.01	0.05	NE	NE	0.05	250	44*	600	NE	1000

MW	Monitoring Well	MWS = Shallow	MWR = Redrill
----	-----------------	---------------	---------------

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, Movember 1986 and its updates

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions

NMWQCC New Mexico Water Quality Control Commission

NA Not Analyzed

- NE Not established by NMWQCC
- TDS Total Dissolved Solids

NS Not Sampled as of 6/23/03

* Converted from 10 mg/L to 44 mg/L for Nitrate as NO3

** will be resampled July 2003

ConocoPhillips

Wingate Gas Fractionating Plant 6/30/03

Sample Location	Date	EPA 405.1 BOD	EPA 410.1 COD	SM 9222D Fecal Coliform		
MWR-1	NS	NS	NS	NS		
MWS-1	NS	NS	NS	NS		
MW-2	05/14/03	<4 mg.L	17.1 mg/L	ND		
MWS-2	NS	NS	NS	NS		
MW-3	05/14/03	<4 mg.L	ND	ND		

ConocoPhillips

Wingate Plant P.O. Box 119 Rehoboth, NM 87322 phone 505.863.1045

Beverly J. Cox Compliance Coordinator P. O. Box 119 Rehoboth, NM 87322 505-863-1023, Fax 505-863-1040

April 30, 2003

Mr. Wayne Price New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa FE, NM 87505

RE: Reply to Draft Amended Discharge Plan Approval Conditions ConocoPhillips Wingate Fractionator GWDP-54

Dear Mr. Price,

This letter is in response to the electronic DRAFT Amended Discharge Plan Approval Conditions that Mr. Rob Sengebush received on April 18, 2003.

In recapping previous correspondence, we feel the following have been adequately addressed:

- In the cover letter, it is stated, "all exposed pits, including lined pits and open top tanks (exceeding 16 feet in diameter) shall be screened, netted, or otherwise rendered non-hazardous to wildlife including migratory birds." March 27, 2002, written communication was sent to the OCD requesting an exemption from this requirement. We have not heard back from the OCD on granting this exemption. A history of pond water analysis show that the pond water is safe to wildlife therefore our request should be approved. Should you require another copy of the written request, one will be provided.
- 2. Item number 9 Investigation Plan Required: comments state that it was unclear if any of the drain lines were leaking. These lines are non-hydrocarbon bearing lines. Research into the test event and observations during line replacement indicate that there was not a "leak" of product from the drain system. The old drain system was designed to move liquids from a number of different sources by gravity flow not as liquid under pressure. When trying to test this line in a pressure situation during December of 1999, an air leak was detected. This

•

GWDP-054 Amended Reply

pressurized air leak is believed to be from the fact that not all entry sources could be blocked in for the test so a decision was made to replace the existing line to allow us to achieve a testable system. The new drain lines are also designed as gravity drainage lines for waste water that goes to the evaporation ponds but we believe we can continue to isolate these lines for the required test.

- 3. Item number 14, OCD Inspections:
 - A. "Submit a plan to investigate the brine water sump and waste water line going to the ponds. The plan should include investigating soils beneath this sump and line for salt contamination." The brine water sump and pit was part of our annual inspections performed during turnaround in June 2002. The results of these inspections were sent to the OCD on July 11, 2002. There were no cracks or leakage from the pit in question. Please let me know if you need the documents resent.

Item number 16, <u>Additional Monitoring Devices Required</u>: OCD's request to install two shallow monitoring wells located in close proximity to MW-1 and MW-2 will be conducted. Maxim Technologies Inc. will conduct this work. Once the wells have been drilled and MW-1 has been re-completed, a full report will be sent to your office.

<u>Pond and Monitoring Well Sampling</u>: The pond and monitoring well sampling will continue on an annual basis and the pond samples will be analyzed as outlined in the draft document.

Regarding the second item number 16, <u>Vadose Zone and Water Pollution</u>: "Provide an investigation plan for OCD approval for the railroad rack vadose zone and groundwater contamination area and the flare pit groundwater contamination area." Maxim Technologies Inc. services have been retained to perform an evaluation of the railroad rack and flare pit area. Maxim will address this prior to the June 15, 2003 deadline.

Just a reminder that on December 30, 2002 a letter was sent to Mr. Roger Anderson, Environmental Bureau Chief, regarding the Conoco Inc. name change. The Wingate Fractionator Plant is now owned and operated as a ConocoPhillips company. All correspondence should reflect the ConocoPhillips name.

Should you have any questions, please do not hesitate to call me at 505-863-1023.

Sincerely,

Beverley & Cerf

Beverly J. Cox Compliance Coordinator

à

GWDP-054 Amended Reply

Ŷ

cc: Denny Foust 1000 Rio Brazos Rd Aztec, NM 87401

> Joyce Miley ConocoPhillips PO 2014 Houston, TX

> Neal Goats ConocoPhillips 5044 TN Houston, TX

Price, Wayne

5

1

From: Sent: To: Cc: Subject: Price, Wayne Friday, April 18, 2003 10:33 AM Neal Goates (E-mail) Clyde Yancey (E-mail); Rob Sengebush (E-mail) Conoco Wingate Plant GW-054 Amended Conditions of Approval

Please find enclosed a copy of the permit and the draft amended conditions of approval. Please respond with comments within 10 days.

Sincerely:

Wape Pini

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us October 30, 2002

CERTIFIED MAIL RETURN RECEIPT NO. 3929 9536

Mr. Chuck White Conoco Inc. P.O. Box 119 Rehoboth, New Mexico 87322

Re: Renewal of Discharge Plan GW-054 Wingate Gas Fractionating Plant

Dear Mr. White:

The groundwater discharge plan GW-054 for the Conoco Inc., Wingate Gas Fractionating Plant, located in the portions of Section 9,10,15,16 and 17, Township 15 North, Range 17 West, NMPM, McKinely County, New Mexico, is hereby approved under the conditions contained in the enclosed attachment. Enclosed are two copies of the conditions of approval. Please sign and return one copy to the New Mexico Oil Conservation Division (OCD) Santa Fe Office within 30 working days of receipt of this letter.

The original discharge plan was approved on August 17, 1992. The discharge plan renewal application dated April 18, 2002, including attachments, and an addendum dated June 06, 2002 and October 28, 2002 (E-mail) submitted pursuant to Section 3106 of the New Mexico Water Quality Control Commission (WQCC) Regulations also includes all earlier applications and all conditions later placed on those approvals.

The discharge plan is renewed pursuant to Section 3109.C. Please note Section 3109.G., which provides for possible future amendment of the plan. Please be advised that approval of this plan does not relieve Conoco Inc. of responsibility should operations result in pollution of surface water, ground water or the environment. Nor does it relieve Conoco Inc. of its responsibility to comply with any other governmental authority's rules and regulations.

Please be advised that all exposed pits, including lined pits and open top tanks (exceeding 16 feet in diameter) shall be screened, netted, or otherwise rendered nonhazardous to wildlife including migratory birds.

Mr. White April 18, 2003 Page 2

Please note that Section 3104. of the regulations requires that "when a plan has been approved, discharges must be consistent with the terms and conditions of the plan." Pursuant to Section 3107.C., Conoco Inc. is required to notify the Director of any facility expansion, production increase, or process modification that would result in any change in the discharge of water quality or volume.

Pursuant to Section 3109.H.4., this approval is for a period of five years. **This approval will expire August 17, 2007** and an application for renewal should be submitted in ample time before that date. Pursuant to Section 3106.F. of the regulations, if a discharger submits a discharge plan renewal application at least 120 days before the discharge plan expires and is in compliance with the approved plan, then the existing discharge plan will not expire until the application for renewal has been approved or disapproved.

The discharge plan application for the Conoco Inc., Wingate Gas Fractionating Plant, is subject to the WQCC Regulation 3114. Every billable facility submitting a discharge plan will be assessed a fee equal to the filing fee of \$100.00 plus a flat fee of \$4000.00 for gas processing plants. The OCD has not received the \$4000.00 flat fee. The flat fee may be paid in a single payment due on the date of the discharge plan approval or in five equal installments over the expected duration of the discharge plan. Installment payments shall be remitted yearly, with the first installment due on the date of the discharge plan approval and subsequent installments due on this date of each calendar year.

Please make all checks payable to: Water Quality Management Fund C/o: Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505.

If you have any questions, please contact Wayne Price of my staff at (505-476-3487) or E-mail WPRICE@state.nm.us. On behalf of the staff of the OCD, I wish to thank you and your staff for your cooperation during this discharge plan review.

Sincerely,

Roger C. Anderson Environmental Bureau Chief

RCA/lwp Attachment-2 Xc: OCD Aztec Office Mr. White April 18, 2003 Page 3

DRAFT

ATTACHMENT TO THE DISCHARGE PLAN GW-054 APPROVAL Conoco Inc., Wingate Gas Fractionating Plant Amended DISCHARGE PLAN APPROVAL CONDITIONS April 18, 2003

- 1. <u>Payment of Discharge Plan Fees:</u> The \$100.00 filing fee and required flat fee of \$4000.00 for gas processing plants has been received by the OCD.
- 2. <u>Commitments:</u> Conoco Inc. will abide by all commitments submitted in the discharge plan renewal application dated April 18, 2002, including attachments, and addendums dated June 06, 2002, October 28, 2002 (E-mail), April 03, 2003 and these amended conditions for approval.
- 3. Drum Storage: All drums containing materials other than fresh water must be stored on an impermeable pad with curbing. All empty drums should be stored on their sides with the bungs in place and lined up on a horizontal plane. Chemicals in other containers such as sacks or buckets must also be stored on an impermeable pad with curbing.
- 4. <u>Process Areas:</u> All process and maintenance areas which show evidence that leaks and spills are reaching the ground surface must be either paved and curbed or have some type of spill collection device incorporated into the design.
- 5. Above Ground Tanks: All above ground tanks which contain fluids other than fresh water must be bermed to contain a volume of one-third more than the total volume of the largest tank or of all interconnected tanks. All new facilities or modifications to existing facilities must place the tank on an impermeable type pad within the berm.
- 6. <u>Above Ground Saddle Tanks</u>: Above ground saddle tanks must have impermeable pad and curb type containment unless they contain fresh water or fluids that are gases at atmospheric temperature and pressure.
- 7. Labeling: All tanks, drums, and other containers should be clearly labeled to identify their contents and other emergency information necessary if the tank were to rupture, spill, or ignite.
- 8. Below Grade Tanks/Sumps: All below grade tanks, sumps, and pits must be approved by the OCD prior to installation or upon modification and must incorporate secondary containment and leak-detection into the design. All below grade tanks and sumps must be tested annually. Results of such tests shall be

Mr. White April 18, 2003 Page 4

maintained at the facility covered by this discharge plan and available for NMOCD inspection. Permit holders may propose various methods for testing such as pressure testing to 3 pounds per square inch above normal operating pressure and/or visual inspection of cleaned out tanks and/or sumps, or other OCD approved methods. The OCD will be notified at least 72 hours prior to all testing.

9. Underground Process/Wastewater Lines: All underground process/wastewater pipelines must be approved by the OCD prior to installation and must be tested to demonstrate their mechanical integrity every five (5) years. Results of such tests shall be maintained at the facility covered by this discharge plan and available for NMOCD inspection. Permit holders may propose various methods for testing such as pressure testing to 3 pounds per square inch above normal operating pressure or other means acceptable to the OCD. The OCD will be notified at least 72 hours prior to all testing.

Investigation Plan Required: As a result of the failed pressure tests conducted during the fall of 1999 it was unclear if any of these lines were actually leaking, If so please provide a plan for investigation of these areas. Please send plan or explanation concerning this issue by June 15, 2003.

- 10. Class V Wells: No Class V wells that inject non-hazardous industrial wastes or a mixture of industrial wastes and domestic wastes will be approved for construction and/or operation unless it can be demonstrated that groundwater will not be impacted in the reasonably foreseeable future. Leach fields and other wastewater disposal systems at OCD regulated facilities which inject non-hazardous fluid into or above an underground source of drinking water are considered Class V injection wells under the EPA UIC program. Class V wells that inject domestic waste only must be permitted by the New Mexico Environment Department.
- 11. Housekeeping: All systems designed for spill collection/prevention, and leak detection will be inspected daily to ensure proper operation and to prevent over topping or system failure. All spill collection and/or secondary containment devices will be emptied of fluids within 48 hours of discovery. A record of inspections will be retained on site for a period of five years.
- 12. Spill Reporting: All spills/releases shall be reported pursuant to OCD Rule 116. and WQCC 1203.
- 13. Waste Disposal: All wastes will be disposed of at an OCD approved facility. Only oilfield exempt wastes shall be disposed of down Class II injection wells. Non-exempt oilfield wastes that are non-hazardous may be disposed of at an OCD approved facility upon proper waste determination per 40 CFR Part 261. Any waste stream that is not listed in the discharge plan will be approved by OCD on a case-by-case basis.

Mr. White April 18, 2003 Page 5

Rule 712 Waste: Pursuant to Rule 712 disposal of certain non-domestic waste is allowed at solid waste facilities permitted by the New Mexico Environment Department as long as the waste stream is identified in the discharge plan, and existing process knowledge of the waste stream does not change without notification to the Oil Conservation Division.

- 14. <u>OCD Inspections:</u> Additional requirements may be placed on the facility based upon results from OCD inspections. As a result of the inspection conducted on May 30, 2002 (copy of report attached) the OCD requires the following actions to be taken by June 15, 2003.
 - A. Submit a plan to investigate the brine water sump and waste water line going to the ponds. The plan should include investigating soils beneath this sump and line for salt contamination.
- 15. Storm Water Plan: Stormwater runoff controls shall be maintained. As a result of operations, if any water contaminant that exceeds the WQCC standards listed in 20 NMAC 6.2.3101 is discharged in any stormwater run-off, then immediate actions shall be taken to mitigate the effects of the run-off, notify the OCD within 24 hours, and modify the discharge plan to include a formal stormwater run-off containment plan and submit for OCD approval within 15 days.
- 16. Waste Water Evaporation Ponds: A minimum freeboard of 3 feet will be maintained in the ponds so that no over topping of wastewater occurs. All waste entering the ponds or the plant wastewater collection system shall be RCRA non-hazardous as defined by EPA 40 CFR Part 261. Any repairs or modifications to the pond, wastewater collection system and/or monitoring systems must receive prior OCD approval. Leaks, releases from the ponds, or any contaminant found in any monitoring device or groundwater that exceeds the New Mexico Ground Water (WQCC) standards shall be reported pursuant to Item 12. (Spill Reporting) of these conditions.

Additional Monitoring Devices Required: OCD's inspection revealed the fact that it is uncertain whether the ponds are lined or unlined. After reviewing the pond monitor well construction diagrams it appears that the down gradient monitor wells MW#1 and MW#2 may not be screened in the shallow zone. Therefore, please install a minimum of two shallow monitor wells located in close proximity to MW-1 and MW-2. MW-1 shall also be re-completed. The shallow wells shall be completed between the upper and lower impermeable layers noted on Conoco's Schematic Cross Section Fig #2 submitted on March 13, 2003.

Pond and Monitor Well Sampling: All pond monitor wells (MW#1-3) and any new shallow wells with fluids and pond composite samples must be sampled annually. OCD bases this decision on the fact the ponds may not have liners and monitoring of the shallow zone has not taken place. All Samples collected shall be Mr. White April 18, 2003 Page 6

analyzed for Volatile Organics (Method 8260), semi-volatiles organics (Method 8270), New Mexico Water Quality Control Commission (WQCC) metals, and General Chemistry including cations and anions. Due to the raw untreated sewage going into the ponds OCD will require that general requirements found in WQCC regulations 20.6.2.2101 (BOD, COD, Fecal Coliform Bacteria, and PH) be part of the sampling program. Sampling and analytical work shall be pursuant to EPA approved methods and quality assurance/quality control (QA/QC) procedures.

- 16. <u>Vadose Zone and Water Pollution</u>: Provide an investigation plan for OCD approval for the railroad rack vadose zone and groundwater contamination area and the flare pit groundwater contamination area by June 15, 2003. Due to the salt contamination found in various Monitor wells OCD requires an up-gradient well to be included in the plan.
- 17. Annual Report: Provide a summary of all groundwater investigation results and sample results required pursuant to this permit. This information may be sent in a compatible electronic format. The annual report shall be due on or before September 15 of each year. OCD recommends this information be submitted electronically.
- 18. Transfer of Discharge Plan: The OCD will be notified prior to any transfer of ownership, control, or possession of a facility with an approved discharge plan. A written commitment to comply with the terms and conditions of the previously approved discharge plan must be submitted by the purchaser and approved by the OCD prior to transfer.
- 19. Closure: The OCD will be notified when operations of the facility are discontinued for a period in excess of six months. Prior to closure of the facility a closure plan will be submitted for approval by the Director. Closure and waste disposal will be in accordance with the statutes, rules and regulations in effect at the time of closure.
- 20. Certification: Conoco Inc. by the officer whose signature appears below, accepts this permit and agrees to comply with all terms and conditions contained herein. Conoco Inc. further acknowledges that these conditions and requirements of this permit may be changed administratively by the Division for good cause shown as necessary to protect fresh water, human health and the environment.

Conditions accepted by: Conoco Inc.

Company Representative- print name

Date

Company Representative- Sign

Title

Mr. White April 18, 2003 Page 7 -- -- -

Beverly J. Cox Compliance Coordinator P. O. Box 119 Rehoboth, NM 87322 505-863-1023, Fax 505-863-1040 Wingate Plant P.O. Box 119 Rehoboth, NM 87322 phone 905 865 1045

UEC 0 3 2002

OIL CONSERVATION DIVISION

December 2, 2002

New Mexico Energy, Minerals and Natural Resources Department c/o Oil Conservation Division Wayne Price 1220 South St. Francis Drive Santa FE, NM 87505

RE: Renewal of Ground Water Discharge Plan GW-054 Reply and Comments from Wingate Fractionating Plant

Mr. Price,

On Monday, November 4, 2002 the ConocoPhillips Wingate Fractionating Plant received the Renewal for the Ground Water Discharge Plan GW-054. Enclosed you will find the final check of \$4000 for the renewal fees. The modified approval conditions sheet will be signed and forwarded when all comments have been addressed.

All documents have been reviewed and we are submitting comments either for clarification from the Oil Conservation Division (OCD) or changes in our operations.

- In the cover letter, it is stated, "all exposed pits, including lined pits and open top tanks (exceeding 16 feet in diameter) shall be screened, netted, or otherwise rendered non-hazardous to wildlife including migratory birds." March 27, 2002, written communication was sent to the OCD requesting an exemption from this requirement. We have not heard back from the OCD on granting this exemption. A history of pond water analysis show that the pond water is safe to wildlife therefore our request should be approved. Should you require another copy of the written request, one will be provided.
- 2. Item number 9 <u>"Investigation Plan Required:"</u> comments state that it was unclear if any of the drain lines were leaking. These lines are non-hydrocarbon bearing lines. Research into the test event and observations during line replacement indicate that there was not a "leak" of product from the drain system. The old drain system was designed to move liquids from a number of different sources by gravity flow not as liquid under pressure. When trying to test this line in a pressure situation during December of 1999, an air leak was detected. This

pressurized air leak is believed to be from the fact that not all entry sources could be blocked in for the test so a decision was made to replace the existing line to allow us to achieve a testable system. The new drain lines are also designed as gravity drainage lines for waste water that goes to the evaporation ponds but we believe we can continue to isolate these lines for the required test.

- 3. Item number 14, <u>"OCD Inspections:"</u>
 - A. "Investigate the brine water sump for mechanical integrity." The brine water sump was part of our pit and sump inspections performed during turnaround in June 2002. The results of these inspections were sent to the OCD on July 11, 2002. There were no crack or leakage from the pit in question. Please let me know if you need the documents resent.
 - B. "The out of service "C" cooling tower sulfuric acid tank and secondary containment requires closure. The secondary containment was noted to contain acid waste residue and the containment has possible lost integrity." The two acid tanks have been removed from the containment area in question. They have been EPA cleaned and are stored in our junkyard. The containment area also has been cleaned and re-evaluated. A new cement floor will be poured and the containment area will be put back in service utilizing a small sulfuric acid tank that was located just north of this area during your inspection.
 - C. "A NGL line was noted to be leaking located approximately between tanks 215 and 102." The leak detected was from the valve stem packing. Maintenance was performed immediately and the leak was stopped, we believe no further action is required.
- 4. Item number 16 <u>"Waste Water Evaporation Ponds:</u>" The ponds are set up so that total flow goes in to the east pond and overflows to the west pond. The overflow line is set approximately 3 feet below the levee. The west pond is dry most of the year. Overflow to the west pond occurs when the butamer unit is running which is usually during the summer months. The evaporation rate is quite high during the summer months; therefore the west pond usually does not reach its full potential. Both ponds maintain a minimum of three feet freeboard area on the outer levees.
- 5. Item number 16 <u>"Additional Monitoring Devices Required:</u>" ConocoPhillips will construct a plan to add additional monitoring wells that will adequately monitor the shallow zone. This plan will be submitted by your request date of March 15, 2003.
- 6. Item number 16 <u>"Pond and Monitor Well Sampling:"</u> New monitoring wells will be drilled in the spring to ensure accurate monitoring of the shallow zone. These

wells will be tested on a quarterly basis until records show that the ponds are not leaking to the shallow zone. Once non impacted shallow zone data is collected we will request a modification of this condition to reflect an appropriate sampling frequency.

Past history of the existing monitoring well test data does not show any leakage or migration of pond water into the lower zone. Additionally, the original monitoring wells were approved for annual testing by the OCD in February 1999. We request to keep sampling the existing monitoring wells on an annual basis.

The OCD has also requested to perform a pond composite sample semi-annually. Annual sampling was approved by the OCD in the November 1997 renewal. A review of the analysis history was conducted and the pond water has been well below RCRA standards and WQCC standards, therefore we request to continue annual sampling of the evaporation pond water.

7. Item number 17 <u>"Vadose Zone and Water Pollution:</u>" A final closure plan for the railroad rack vadose zone and groundwater contamination area, the fire training land farm area, and the flare pit groundwater contamination area will be submitted before March 15, 2003.

Should you have any questions, please do not hesitate to call me at 505-863-1023.

Sincerely,

Benerly J. Cer

Beverly J. Cox

Cc: Denny Foust 1000 Rio Brazos Rd Aztec, NM 87401

> Joyce Miley ConocoPhillips PO 2014 Houston, TX

> Neal Goates ConocoPhillips 5044 TN Houston, TX

CONOCO INC. WINGATE FRACTIONATING PLANT

Ground Water Discharge Plan Renewal GW-054

April 2002

16 <u>Di</u> 13 <u>Di</u> 10 <u>Di</u>	<u>strict I</u> 25 N. French Dr., Hobbs, NM 88240 <u>strict II</u> 01 W. Grand Avenue, Artesia, NM 88210 <u>strict III</u> 00 Rio Brazos Road, Aztec, NM 87410 <u>strict IV</u> 20 S. St. Francis Dr., Santa Fe, NM 87505	State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	Revised January 24, 2001 Submit Original Plus 1 Copy to Santa Fe 1 Copy to Appropriate District Office
	AND C	ATION FOR SERVICE CON IPRESSOR, GEOTHERMA RUDE OIL PUMP STATION uidelines for assistance in completing th Renewal Modificat	L FACILITES NS le application)
1.	Type:Gas Plant		
2.	Operator:Conoco Inc., Wingate Fra	actionator	
	Address:P. O. Box 119, Rehoboth	1, NM 87322	
3.	Contact Person: Chuck White, Plant Man Location: Lat: 35°32'36", Long: 108°38'3 Submit large		5NRange17W
4.	Attach the name, telephone number and a	ddress of the landowner of the facility	site.
5.	Attach the description of the facility with	a diagram indicating location of fences	, pits, dikes and tanks on the facility.
6.	Attach a description of all materials store	d or used at the facility.	
7.	Attach a description of present sources of must be included.	effluent and waste solids. Average qu	ality and daily volume of waste water
8.	Attach a description of current liquid and	solid waste collection/treatment/dispos	al procedures.
9.	Attach a description of proposed modific	ations to existing collection/treatment/d	isposal systems.
10.	Attach a routine inspection and maintena	nce plan to ensure permit compliance.	
11.	Attach a contingency plan for reporting a	and clean-up of spills or releases.	
12.	Attach geological/hydrological informati	on for the facility. Depth to and quality	y of ground water must be included.
13.	Attach a facility closure plan, and other i rules, regulations and/or orders.	nformation as is necessary to demonstra	ate compliance with any other OCD
	4. CERTIFICATIONI hereby certify that best of my knowledge and belief.	the information submitted with this app	olication is true and correct to the
١	Name:Chuck White	Title:	Plant Manager
Ds	Name:Chuck White Signature:	Date:	-18-02

I

TABLE OF CONTENTS

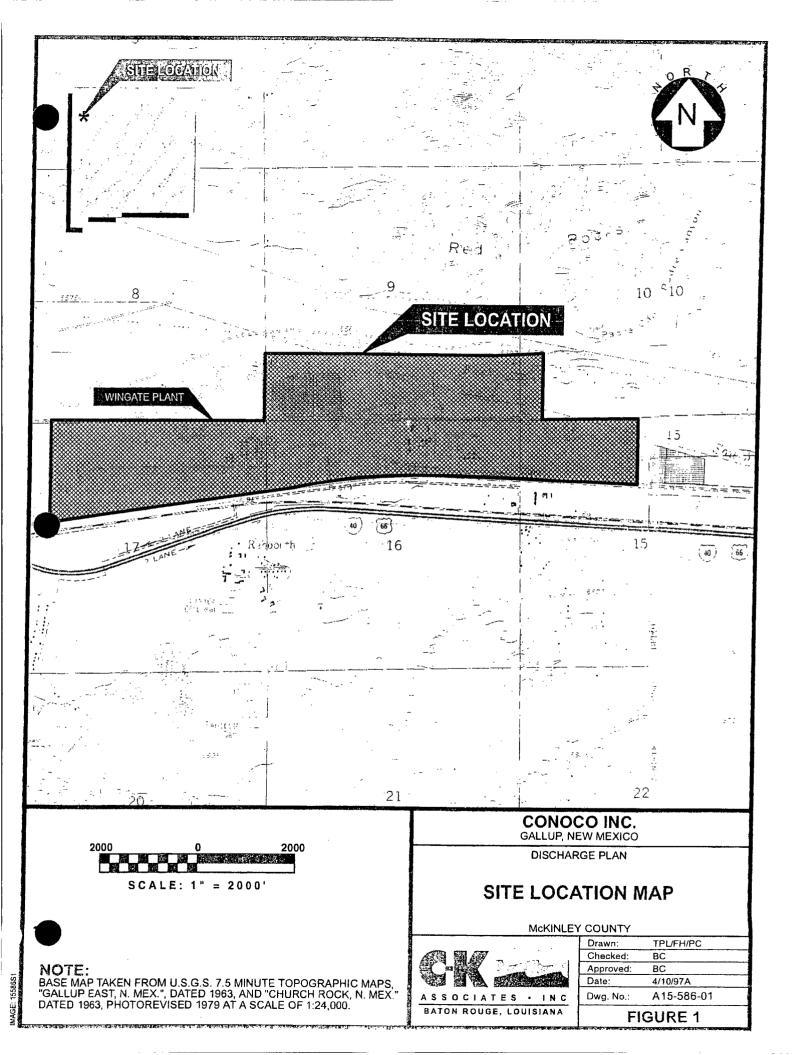
<u>Sectio</u>	ection Pa						
1.0	Wingate Facility Type	1					
2.0	Operator	1					
3.0	Location of the Discharge Plan Facility Figure 3-1						
4.0	Landowner	3					
5.0	Facility Description Chemical Inventory Layout Chemical Inventory List	3 4 5					
6.0	Materials Stored or Used At The Facility	6					
7.0	Sources And Quantities Of Effluent Waste Table 7-1	6 7					
8.0	Description Of Current Liquid And Solid Waste Collection/Storage/Disposal Procedures	8 8 8 9					
9.0	Proposed Modifications	10					
10.0	Inspection, Maintenance, And Reporting	10					
11.0	Spill/Leak Prevention And Reporting Procedures	10					
12.0	Site Characteristics 12.1 Geology Description 12.1.1 Regional Geology 12.1.2 Local Coology	10 10 10					
	12.1.2 Local Geology Figure 12-1 Figure 12-2 Figure 12-3	11 12 13 14					

TABLE OF CONTENTS (Continued)

..

	12.2 Hydrogeology							
		12.2.1 Regional Hydrogeology	15					
		12.2.2 Local Hydrogeology	15					
		Figure 12-4	18					
		Figure 12-5	19					
		Figure 12-6	20					
	12.3	Water Quality	21					
		12.3.1 Regional Aquifer	21					
		12.3.2 Alluvial Aquifer	21					
		Figure 12-7	22					
	12.4	Hydrologic Features	23					
13.0	Other	Compliance Information	23					
	13.1	Spill/Leak Reporting	23					
	13.2	Closure Plan	24					
14.0	Refer	ences	25					

1.0 Wingate Facility Type


The Conoco Wingate Facility is a gas fractionating plant.

2.0 Operator

The Wingate Plant is currently owned and operated by Conoco Inc. (Conoco). The Wingate Plant was previously owned and operated by El Paso Natural Gas Company (EPNG) until October 1990 and by Meridian Oil, Inc. (Meridian) from October 1990 to April 1996. The facility was placed in service in October 1953.

3.0 LOCATION OF THE DISCHARGE PLAN FACILITY

Conoco Wingate Plant is located approximately one mile east of Gallup, New Mexico on U.S. Highway No. 66. It includes portions of Sections 9, 10, 15, 16 and 17, Township 15 North, Range 17 West lying north of BNSF Railroad in McKinley County, New Mexico. The exact location of the plant is at latitude 35.32'36" north and longitude 108.38'3"west. The elevation is 6593 feet above mean seal level (msl). The facility location is show on Figure 1.

4.0 LANDOWNER

Conoco is the landowner of record.

The facility physical address is:

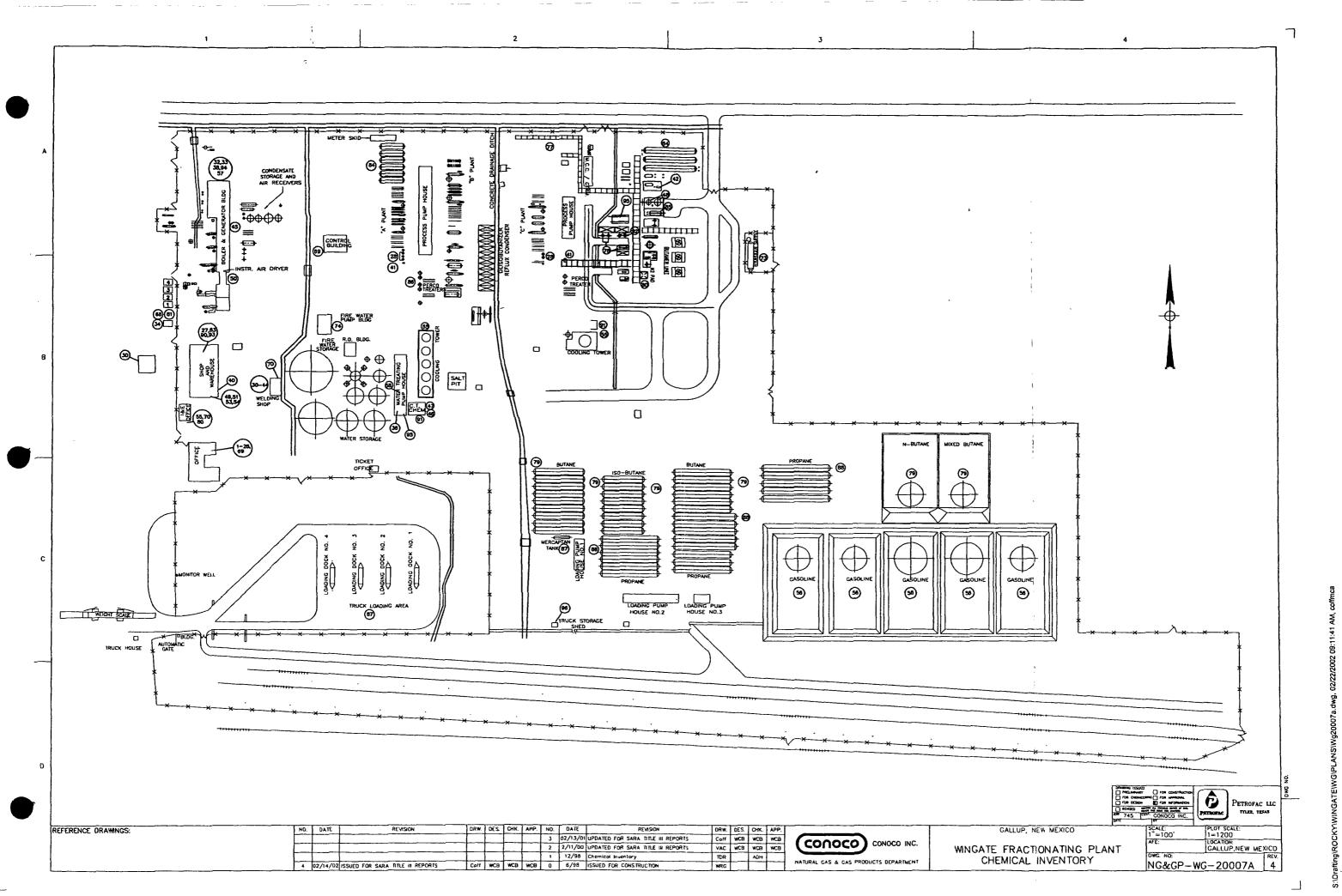
Conoco Inc. Wingate Fractionator #68 El Paso Circle Gallup, NM 87301 505-863-3900

The Wingate Plant mailing address is:

Conoco Inc, P. O. Box 119 Rehoboth, NM 87322

Wingate Facility Contacts are:

Chuck White, Plant Manager – 505-863-1001 Beverly Cox, Local Representative – 505-863-1023

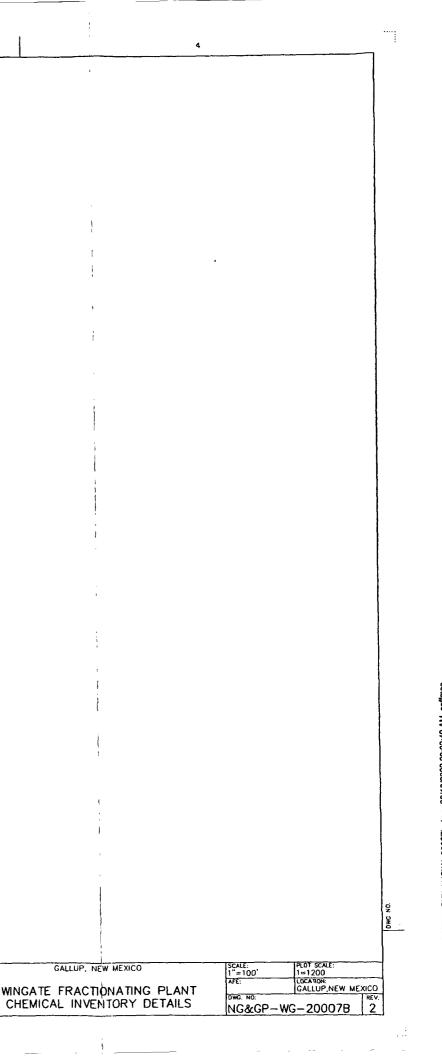

Portions of Section 9, 10 and 15 are leased from the Navajo Tribe. Their address is as follows:

The Navajo Tribal Council P. O. Box 701 Window Rock, Arizona 86515

5.0 FACILITY DESCRIPTION

The Conoco Wingate Facility is a processing plant, which fractionates natural gas liquids into usable products. The products of the facility are propane, normal butane, isobutane, natural gas liquid (light gasoline), and mixed butane. Its feedstock is received via pipelines from three natural gas facilities.

Finished product is stored in a large tank farm. Spherical tanks are used for natural gas liquid (light gasoline) and part of the normal butane storage. These have containment dikes surrounding them. Other products, which are gaseous under atmospheric pressure, are stored in undiked horizontal tanks. There is no underground product storage. Product leaves the facility by trucks, train rail cars and/or pipeline. (See the Wingate Chemical Inventory Attachment for facility layout).


REFERENCE DRAWINGS:	NO.	DATE	REVISION	DRW	DE	\$ 0	снк.	APP.	NO.	DATE	REVISION	DRW.	DES	Ю	K.	APP.		GALLUF
							_		3	02/13/01	UPDATED FOR SARA TITLE III REPORTS	Coff	WC	WC	в	₩СВ		
	—								2	2/11/00	UPDATED FOR SARA TITLE IN REPORTS	VAC	WCE	WC	8	WCB	CONOCO INC.	WINGATE FRA
	—	1			1	1			•	12/98	Chemical Inventory	TDR	T	AD	н			CHEMICA
	4	02/14/0	2 ISSUED FOR SARA TITLE IN REPORTS	Cof	WK	CB ¥	WC8	WCB	0	6/98	ISSUED FOR CONSTRUCTION	WRG				_	NATURAL GAS & CAS PRODUCTS DEPARTMENT	CHEMICA
															_			

EM	CHEMICAL INVENTORY	QUANTITY	ITEM	CHEMICAL INVENTORY	QUANTI	2		1	
	Acetone	1 gol	83	Oxygen, Compressed Gas	61 lbs				
2	Amino Acid Reagent	2 fbs	84	PBC Wix/EPBC Mix	1,500,				
3	Buffer Solution, Conc. PH 4.0, 1 + 4 Dilution	10 gel	85	Perchloroethylene	10,000	gat			
	Buffer Salution, PH 10.0 Concentrate	10 gal	86	Perco Copper Sweetening Reagent NS					
5	Buffer Solution, PH 7.2, for Giernso Stain		87 88	PERCAP 355 Propone	26,800	000 lbs			
, +	Conductivity Std., 4600 MHOS Code 245 2gal Dector Solution	2gal 1 gal	89	Purple X	250 15				
8	DPD 2 Free Chlorine	2 lbs	90	Genuine Safety Solvent N 0140	15 gal				
9	Gallic Acid Code 275	1 gol	91	Sulturic Acid	21,600				
10	Hardness Buffer	t gat	92	UOP Type I-12 Cotolyst NS					
"	Hardness Indicator Code 290	1 gai	93	White Oil 22	5 gol				
12	Hardness Titrating Solution MB Dil. Water Sterile 99ML	1 gal	94	Corr-Shield MD-4100 PPG CALCIUM HYPOCHLORITE TABLETS	20 lbs				,
14	Methyl Oronge Indicator Code 211	1 gol	94	NOSE GUARD					
15	Methyl Purple Indicator	1 gal	95	R&O 150 & Waste Oil Tank	150 g	n & 300 gat			
16	Molybdate Reagent for PO4 Code 2044	2 lbs							
17	Notyver 1, Nolybdenum Reagent	2 fbs	4						
18 19	Molyver 2, Molybdenum Reagent	2 lbs	-						
20	Malyver 3, Malybdenum Reagent Phenolphthalein indicator	2 lbs 2 lbs	-						
21	Phenolphthalein Solutions	2 103	1						
	Potossium lodide-lodote	2 libs	1						
23	Sulfite Indicator Plus	2 ths]						
_	Sulfur Sulfuric Acid N/50	5 lbs	-						
25	Sulfuric Acid N/50 Sulfuric Acid Salution, 10N	1 Kbs 1 ibs	-						
_	Acetylene, Dissolved	58 lbs	1						
28	Activated Aluminas		1						
_	Activated Carbon		1						
	Empty Drums and SOO gallons Waste Oil	1700	-						
_	Dectal R.O. 07# 32, 46, 68, 100 El Mar 2000 Engine 07	3700 lbs 220 gal	-						
33	Fleet Heavy Duty Engine Oil	380 fbs	1						
	Liquid Alive Bacteria 233	170 fbs	1						
_	Polodow Mini-Pellets 90% Celcium Chloride	10,000 lbs	1						
	Soda Ash Super All-Season Motor Oli	1,000 tbs	4	•					
	Super All-Season Notor Oil Super Hydraulic Oil 22, 32, 46, 68	22 lbs 400 lbs	-						
	Syncon R & O Oil	770 lbs	1						
40	Zep-A-Lume	140 lbs	1						
"	Ferrasweet kan Sponge 3,000	3,000	4						
12	Muriatic Ackd Purple-K Dry Chemical Extinguishing Agent	1,000 lbs	-						
_	Barrier Fluid- Royal Purple	(,000 105	1						
15	Cortrol IS 1050	500 lbs	1						
46	Spectrus BD 1500	3,800 lbs]						
17 18	Dianodic DN2104 Caustic Sodo (liquid)	4,800 lbs 5,000 gol	-						
19	Americack 400 High Solids Epoxy	130 Hbs	1						
50	Balanced Polymer 54418	4,000 lbs	1						
51	EP Conslith HT Grasse No. 2	42 lbs]						
52	Krovor I DF Herbicide NS		4						
	Multigear Lubt EP SAE 85W-140 Super-Sto M Grease	10 gal 11 fba	1						
_	Chlorine NS		1						
56	Condensate	11,220,000 lbs]						
	Corr-Shiald M0100	500 lbs	4						
	Dixichlar FX-250 Llquid NS	55 gol	1						
_	FX-250 Eliquid HS FX-250 Powder NS		1						
51	FX-263 NS	<u> </u>	1						
	FX-408 "A" Comp. NS		1						
_	FX-408 "8" Comp. NS	<u>├</u>	1						
	FX-70-9 Gray "A" Comp. NS FX-70-9 Gray "B" Comp. NS		1						
_	FX-752 "A" Comp. NS	L	1						
17	FX-752 "8" Comp. NS		1						
	Gazalina, Unleaded	300 gal	4						
	Holon 1301 Fire Extinguishant	200 lbs	1						
_	Helium, Compressed Gas Helium, Compressed Gas	25 lbs 25 lbs	1						
70	Helium, Compressed Gas	25 lbs	1						
	Helium, Compressed Gas	25 lbs	1						
T			4						
, +	Mudraaa	25.000 act	-						
	Hydrogen Hypersperse Antifoulant	25,000 gol 55 gol	1						
	Mercury NS		1						
	Methane (Sweet Natural Gas) NS		1						
_	Methonal	793 lbs]						
18	Moleculor Siev Types HPG-250 & HPG-429 NS		4						
_	N-Butone, ISO-Butone, "D" Grade Butane	12,600,00 lbs	-						
	Nitrogen, Compressed Gas	159 lbs 1000 get	-						
_	Na 2 Diesel Fuet Oust Herbicide NS	,000 gu	1						
12		l	-i						
	ENCE DRAWNCS		240	DATE PENSION		ES, CHK I AP	PP. NO. DATE ! REVISION	1 DRW 1 DES I CHK 1 APP 1	· · · · · · · · · · · · · · · · · · ·
FER	ENCE DRAWINGS:		NO.	DATE REVISION	ORW	ES. CHK. AP	PP. NO. DATE REVISION	DRW. DES. CHK. APP.	
FER	ENCE DRAWINGS: 19-WG-20007A CHEMICAL INVENTORY		NO.	DATE REVISION	ORW	JES. CHK. AP	P. NO. DATE REVISION 2 02/14/02 ISSUED FOR SARA TITLE III R 1 01/16/01 UPDATED FOR SARA TITLE III	EPORTS Coff WC8 WC8 WC8	

. -

S:\D

6.0 MATERIALS STORED OR USED AT THE FACILITY

A number of process and non-process chemicals or additives are used at the Wingate Plant. A list of products and chemicals stored is presented in the Wingate Chemical Inventory attachment. The majority of the chemicals are stored in small quantities and any spills or leaks would be very small in volume and easily contained in the immediate area. Material Safety Data books are maintained and kept in the field office.

7.0 SOURCES AND QUANTITIES OF EFFLUENT WASTE

Waste streams originate from the backwashing of the sand filters in the pretreatment system, from the regeneration of the sodium zeolite ion exchanger, from the reverse osmosis waste, from the boiler and cooling tower blowdowns, from the backwashing of the condensers, from the backwashing of the side stream filters and from the septic tank systems. Table 7-1 list the waste streams with their flows.

The waste streams are directed to the general waste sump and are discharged directly to the evaporation pond.

The general waste sump provides a waste collection point for the iron filter backwash, the softener regeneration water, the reverse osmosis waste, the boiler blowdown waste, the cooling tower blowdown water, wsac blowdown, the boiler house drain water, and the plants septic tank water. The waste in the general waste sump may include some surface water runoff.

Domestic discharges are made through six septic tanks. One septic tank in the southeast corner of the plant is fed by one low use restroom. It has a leach field and does not empty into the evaporation ponds. The septic tanks in the processing plant area are discharged into the general waste sump. The septic tank discharge line for EPNG's general warehouse and pipeline district office ties into the Conoco Plant waste stream line which discharges into the evaporation ponds.

TABLE 7-1

Waste Water Streams

STREAM	FLOW
Sand Filter Backwash	Currently no-flow
Sodium Zeolite Regeneration	Estimated Volume is 775,260 gal / month*
Boiler Blowdown	Estimated Volume is 148,102 gal / month*
Cooling Tower Blowdown	Metered volume of 553,521 gal / month
Wsac Blowdown	Estimated Volume is 446,760 gal / month*
Reverse Osmosis Unit Waste Stream	Estimated Volume is 357,700 gal / month*
Caustic Waste (pH levels are as per RCRA	
standards)	Estimated Volume is 6000 gal / month*
Domestic Waste (sewage & gray water)	Estimated Volume is 9000 gal / month*
Water Quality Test Waste	Estimated Volume is 30 gal / month*
Rain Water	Varies
*Estimated volumes are based from engine	eering calculations of equipment maximum

flow rates.

GWDP Renewal April 2002.doc

8.0 DESCRIPTION OF CURRENT LIQUID AND SOLID WASTECOLLECTION/STORAGE/DISPOSAL PROCEDURES

8.1 Evaporation Ponds

Plant waste streams are discharged to the evaporation ponds for final disposal by evaporation. The streams enter the east pond through a metered line containing effluent from the Conoco facility and from the EPNG district office containing only domestic waste. When the east pond is full the west pond receives the overflow. The east pond is contained in a 560 foot by 940-foot area and has a surface area of 480,000 square feet (11.0 acres). The west pond is contained in a 900 foot by 850-foot area and has a surface area of 693,000 square feet (15.9 acres).

A series of flow meters have been installed to measure incoming water and outgoing waste steams. They measure both flow rate and total flow. These flowmeters are read monthly and the total flow recorded.

8.2 Waste Disposal

Waste oil from engines, generators, and motors is stored in waste oil tanks located in the concreted containment pads east of the processing area and vapor recovery unit. The waste oil is trucked out periodically and processed as recycled oil.

Other wastes generated at the facility are disposed of at OCD approved locations. Table 8-2 lists the potential waste generated.

Liquid / Solid Waste	Storage	Disposal
Asbestos	All items are properly wrapped and sealed. Small items are stored in special	Keers Environmental, Albuquerque, NM
	asbestos drums, large items are stored in designated storage area.	
Contaminated Soil	Stored near the point of	Picked up by Waste
	generation until disposal site is determined.	Management for disposal
Copper Sweep	Not Stored	TBD – based on sample results
E & P Exempt Waste (separator fluid/water, process fluid/water, solids/sludges from tank bottoms)	Not Stored	Basin Salt Water Disposal & Waste Management
Empty Drums	Per OCD Guidance	Recycled
Iron Sponge	Not Stored	TBD – based on sample results
Molecular Sieve		TBD – based on sample results
Office / Domestic Trash	Special Waste Dumpsters	Picked up by Waste Management for disposal
Paint (dried) Chips	Drums	Picked up by Waste Management for disposal
Painting Waste	Drum	TBD
Scrap Lumber & Concrete		Picked up by Waste Management for disposal
Scrap Metal	East side of plant	Recycled
Spent Alumina	Not Stored	Picked up by Waste Management for disposal
Universal Waste (lead acid batteries, florescent tubes)		TBD
Used Absorbent Pads	Special Waste Dumpsters	Picked up by Waste Management for disposal
Used Lube Oils	Tank	Pro Cycle Oil & Metals, Odessa Terminal
Used/Spent Filters	Special Waste Dumpsters	Picked up by Waste Management for disposal
Zeolite Resin Beads	Not Stored	Picked up by Waste Management for disposal

TABLE 8-2WASTE DISPOSAL STREAMS

GWDP Renewal April 2002.doc

9.0 **PROPOSED MODIFICATIONS**

No modifications are being proposed in this discharge plan.

10.0 INSPECTION, MAINTENANCE, AND REPORTING

The Wingate Plant is operated in a manner to prevent and mitigate any unplanned releases to the environment. The plant is manned 24 hours per day and 365 days per year including holidays. Plant process and storage units are regularly observed by a number of personnel during normal operations, and any evidence or sign of spill/leaks are reported to supervisory personnel so that repairs or cleanup can be promptly implemented. Routine maintenance procedures conducted at the Wingate Plant also help to assure that equipment remains functional and that the possibility of spills/leaks is minimized.

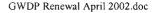
11.0 SPILL/LEAK PREVENTION AND REPORTING PROCEDURES

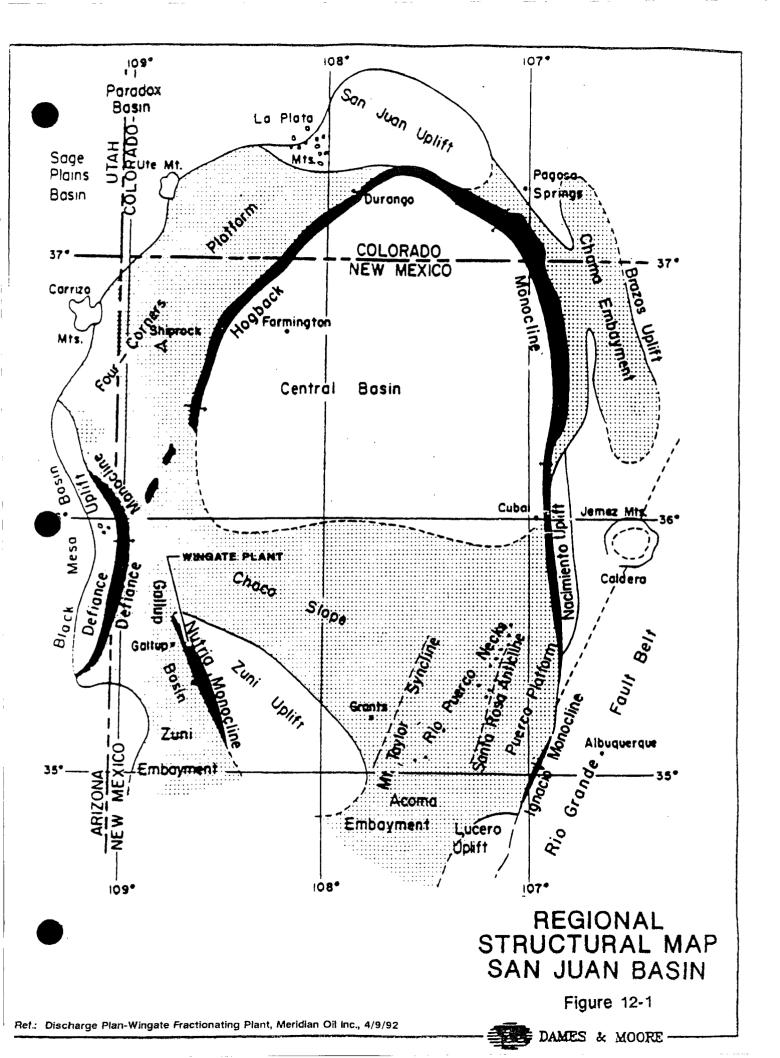
The Spill Prevention Control and Countermeasure Plan shall serve as the contingency plan for any spills and releases.

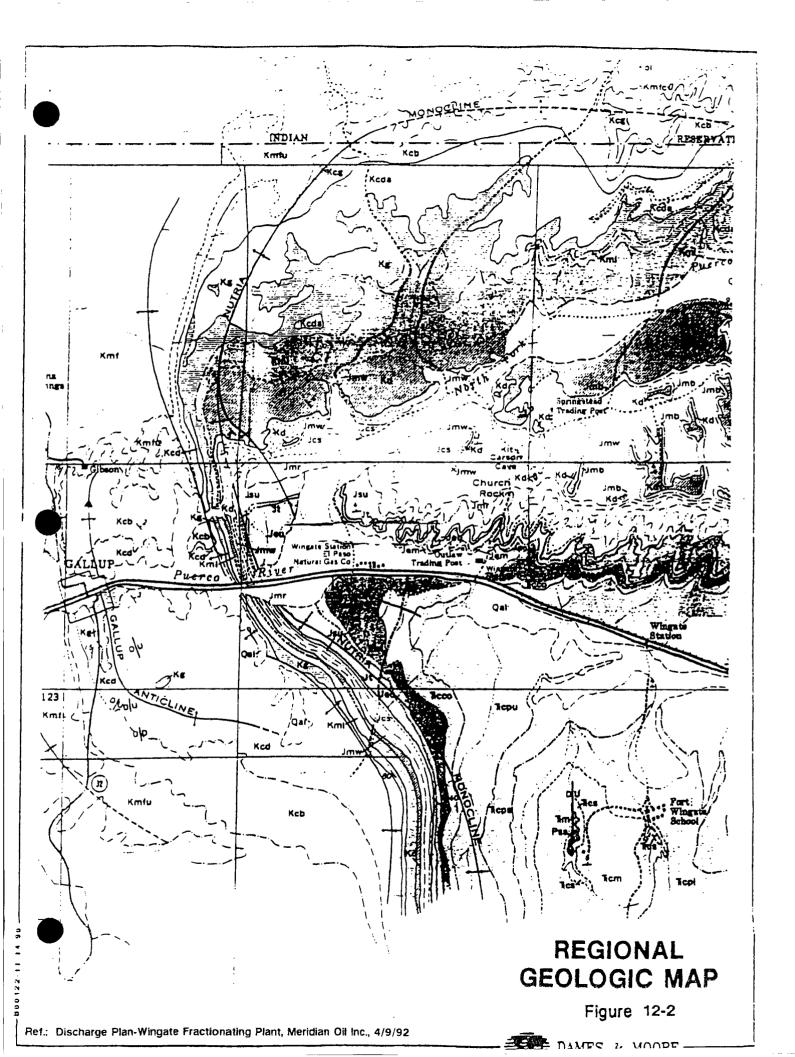
12.0 SITE CHARACTERISTICS

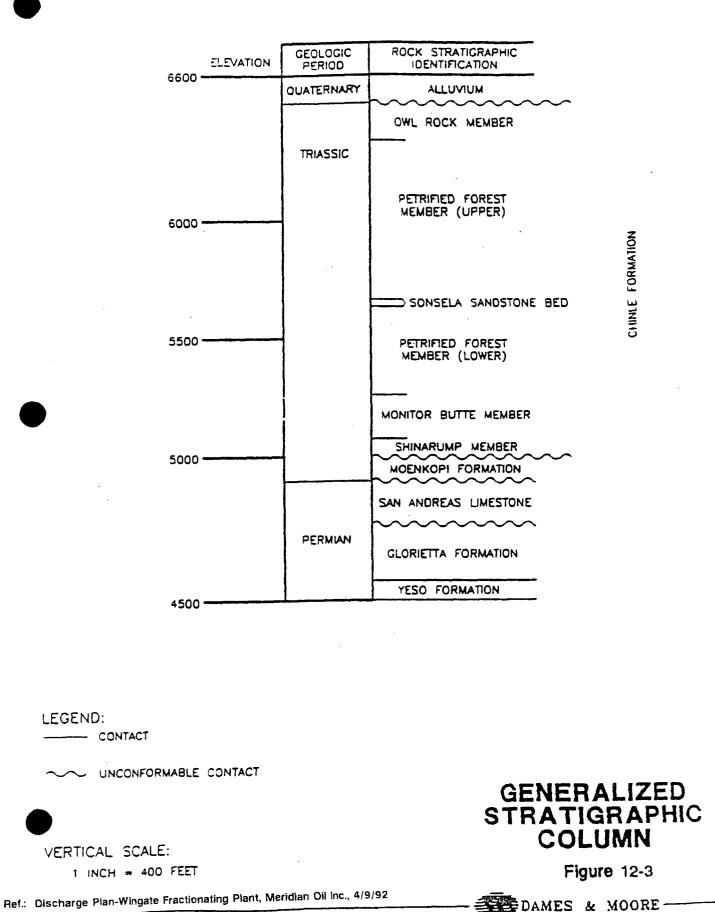
12.1 Geology Description

12.1.1 <u>Regional Geology</u>


The Wingate Plant is situated along the southwestern margin of the San Juan Basin designated the Zuni Uplift, in the Colorado Plateau physiographic Province (Figure 12-1). The Zuni Uplift is a northwest trending structural dome comprising an area approximately 55 miles in length by 20 miles in width. The site lies at the head of the western side of the uplift termed the Nutria Monocline. The San Juan Basin forms an asymmetric basin covering an area of about 25,000 square miles in northwestern New Mexico, and portions of northeastern Arizona, and southwestern Colorado. The basin is reported to contain as much as 15, 000 feet of Paleozoic and Mesozoic sediments (Fassett and Hinds, 1971).


The regional geology in the area surrounding the Wingate Plant is shown in Figure 12-2. Based on available drilling log information the generalized stratigraphic column in Figure 12-3 was prepared. As shown, the surficial geology surrounding the site areas is comprised of Quaternary-aged alluvial deposits. Below the alluvium lies a thick sequence (on the order of 1,500 feet) of the Chinle Formation siltstones and mudstones. Underlying the Moenkopi Formation, also unconformably, are the Permian-age San Andres Limestone, and Glorieta Sandstone (102 and 230 feet thick, respectively), which comprise the regional aquifer in the site area. The deepest onsite well is completed into the top portion of the Yeso Formation also of Permian-age, described as fine-grained Arkosic sandstone, to a depth of approximately 2,000 feet. Below the base of the Yeso Formation in descending order are the sandstone, claystone and siltstone of the Permian-age Abo Formation, unnamed limestone and conglomerate rocks of Pennsylvania-age, and Percambrian granitic and metamorphic rocks, which comprise the basement, rocks in the regions.


12.1.2 Local Geology


The site lies along the south side of an east-west trending alluvial drainage formed by the south fork of the Puerco River. To the south of the site are the Zuni Mountains, reaching a maximum elevation of around 9,000 feet. North of the plant, a massive red sandstone escarpment comprised of the Triassic/Jurassic-age sandstone and siltstone deposits of the Entreda and Wingate sandstones. It rises approximately 400 feet above the valley to an elevation of around 7,000 feet. The Wingate Plant property ranges in elevation from around 6,580 to 6,612 ft-msl.

As shown in Figure 12-2, the surficial geology in the site area, consists of Quaternary-ages alluvium. These strata dip to the northwest at approximately 2-3 degrees.

DAMES & MOORE

12.2 Hydrogeology

12.2.1 Regional Hydrogeology

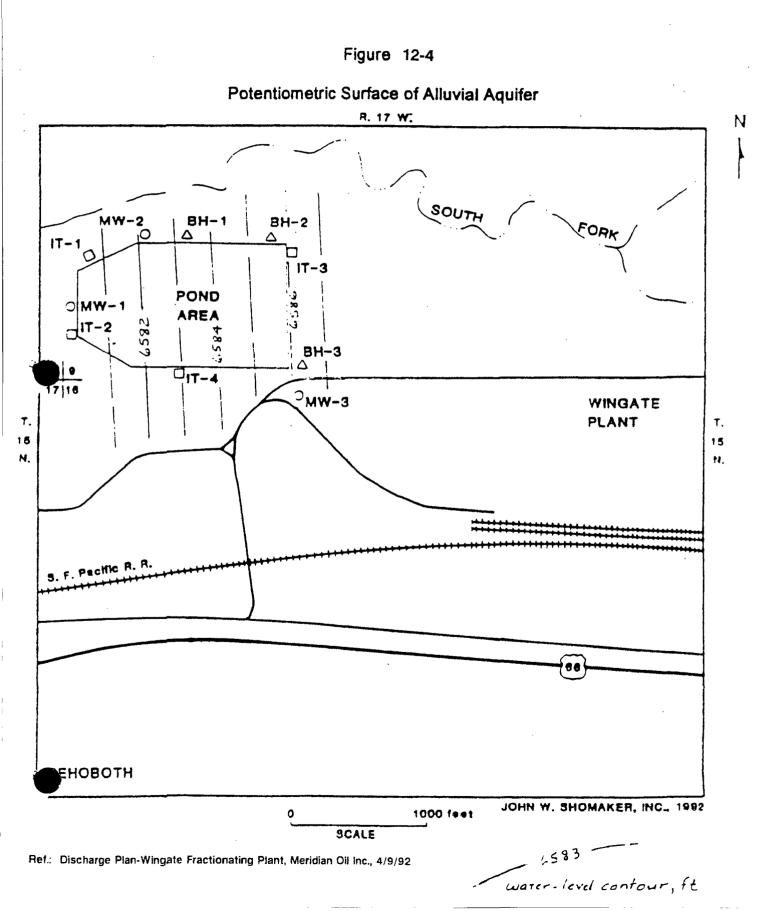
The hydrogeology of the region is a function of geologic structure and hydraulic properties of the sedimentary formations deposited in the basin. Permeable sandstones and limestones are typically interbedded with relatively impermeable shales, siltstones and mudstones, resulting in the formation of numerous confined aquifer systems in the Permian, Triassic, Jurassic, and Cretaceous-The northward dip of these strata in the aged deposits. southwestern portion of the San Juan Basin, in conjunction with the presence of impermeable overlying formation, results in recharge being limited to the outcrop exposure of the waterbearing unit, with progressively artesian conditions occurring to the north. The major regional aquifer in the site area is San Andres Limestone/Glorieta Sandstone of Permian-age. Recharge to the Sand Andres/Glorieta aquifer occurs primarily in areas of the Zuni Mountains to the south of the site area.

As stated previously, the San Andres Limestone/Glorieta Sandstone formations constitute the primary aquifer in the region. This aguifer has been designated part of the C multiple-aguifer in the region. This aguifer has been designated part of the C multiple-aquifer system (Cooley, et.al 1969). The top of the San Andres is found at a depth of approximately 1,6750 feet, according to the driller's log data from on site wells. The thickness of the combined aquifer system in the site area is reported to be about 3300 feet. Driller's log data from off site wells approximately six miles to the east, which service the plant via pipeline indicate the top of the San Andres/Glorieta aquifer to be present locally at a depth of around 1,000 feet. Based on well data from the four active wells (two onsite and two offsite), the San Andres/Glorieta aguifer appears to become more productive to the east perhaps reflecting an increased degree of fracturing and/or solution cavities in that area.

12.2.2 Local Hydrogeology

Shallow borings in the southwestern corner of the plant site associated with a geotechnical investigation for a railroad overpass (Sergent, Hauskins and Beckwith, 1987), encountered between 40 and 80 feet of unconsolidated clays, silty clays, silty sands and gravels, prior to auger refusal in weathered siltstones and sandstone. The specific capacity of offsite wells completed in

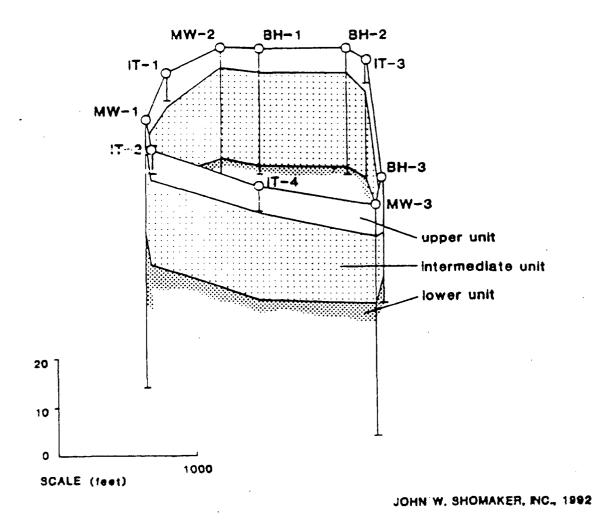
alluvium reported to range from 0.19 to 1.75 gpm/ft (Shomaker, 1971). A review of driller's logs for the onsite water supply wells indicated alluvial thickness on the order of 100 feet. These logs variously report that the Chinle Formation or basal unit of the Wingate sandstone to underlie the alluvial fill deposits.


In order to better define the hydrogeology of the shallow alluvial aquifer and assess the impact of the plant's wastewater impoundments (i.e. east and west evaporation ponds) three groundwater monitoring wells were installed around the impoundments (Dames & Moore 1990) and three additional test holes were drilled and four field permeability test were conducted (Shomaker 1992). The location of these monitoring wells (MW), bore holes (BH) and field test (FT) are shown in Figure 12-4. In addition, five other wells were installed onsite as part of a property transfer environmental assessment (WMW.-1,2,3,4 and WMW-5). The location of these wells is shown in Figure 12-5.

Three test holes were drilled around the ponds between January 6 and 8, 1992. Each hole was drilled to a depth of 26.5 feet. Splitspoon samples were collected to total depth in each hole. Core samples were collected in BH-3 from 12.5 to 14 feet (red clay), and 17.5 to 19 feet (dark red clayey silt). The core samples were submitted for laboratory analysis for column constant-head permeability test. The laboratory was unable to saturate the samples after 21 days. The samples were sieved and found to be very fine-grained with 76 percent of the samples passing 200 mesh. The plasticity and liquid limit of both samples were 35 and 51, respectively, indicating both samples were high plasticity clays. The permabilities were found to be less than 10^{-7} cm/sec.

Based upon well logs, boreholes and cores, the stratigraphy of the alluvium under the ponds consist generally of three unconsolidated units which are illustrated in Figure 12-6. These units include (from the surface downward): an upper unit consisting of sands and silty clays to depths of four to five feet; and intermediate unit consisting of clay with minor silt and sands to depths of 15 to 23 feet; and a lower unit consisting of sands, silts and interbedded clay at depths from 15 to 55 feet. As discussed above, the hydraulic conductivity of the intermediate clay unit was determined to be less than 10^{-7} cm/sec. Saturated conditions were encountered only in the lower unit.

The shallow aquifer at the plant is in the shallow alluvium. In the pond area, the aquifer occurs in sands, silty sands interbedded with clays and silty clays of the lower unit at depths between 20 and 25

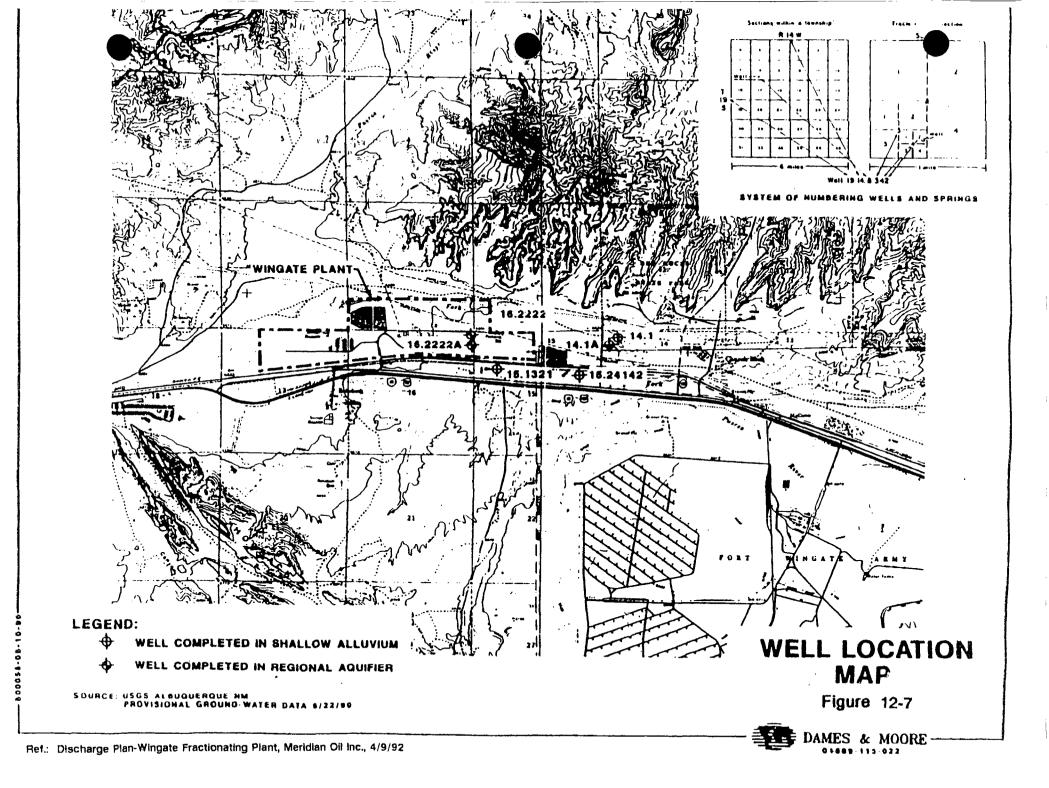

feet. Logs indicated soils were unsaturated to a depth of between 21 and 25 feet around the ponds. Saturated conditions were encountered below these depths. The potentiometric surface is about three feet below the land surface. The shallow aquifer, beneath the pond area, is confined by the overlying intermediate unit. This confining interval should restrict downward migration of water from the ponds.

Fence Diagram - Stratigraphic Relation Underlying Pond Area

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

12.3 Water Quality

12.3.1 Regional Aquifer


Water quality data for the four plant water supply wells are collected annually. Ground water from these wells meets New Mexico State water quality standards.

12.3.2 <u>Alluvial Aquifer</u>

The locations of wells within one mile of Wingate Plant and the onsite water supply wells are shown in Figure 12-7 (USGS, 1990). All the offsite wells are shallow alluvial wells to the east and upgradient of the facility.

The hydraulic and stratigraphic relationships previously discussed suggest water in the evaporation ponds is not likely to leak into the aquifer beneath the evaporation ponds. This interpretation is based upon the following:

- The clayey sediments in the intermediate unit underlying the evaporation ponds have a hydraulic conductivity less than 10^{-7} cm/sec.
- The intermediate interval is from 15 to 20 feet thick beneath the ponds.
- The confined hydraulic head in the shallow aquifer indicates upward flow is limited and restricted by the clayrich intermediate unit.

12.4 Hydrologic Features

The northern portion of the Wingate Plant property is bounded by the south fork of the Puerco River. The Puerco River is an intermittent stream tributary to the Little Colorado River watershed. The confluence of the north and south forks occurs to the west of the plant, upstream from the City of Gallup. The Puerco River (north and south branches) comprises a drainage area of approximately 558 square miles. No other surface water sources are known to be present with in a one-mile radius of the Wingate Plant.

Surface water runoff upgradient of the plant property to the south is intercepted by the I-40 Interstate, and routed to the south around the facility. Runoff from the east of the plant is channeled north to the Puerco River. Onsite run-off is routed to the north and south of the developed portion of the site, where it rejoins pre-existing natural drainages to the west.

13.0 OTHER COMPLIANCE INFORMATION

13.1 Spill/Leak Reporting

Should a reportable discharge occur as defined in OCD Rule 116 and WQCC section 12-3, verbal notification will be made to the following agencies:

OCD Santa Fe Office OCD Aztec District Office WQCC Ground Water Protection Agency – Chief

Notification to these agencies will be as soon as possible, but not more than 24 hours thereafter.

Information to be provided in the notification will include:

- Name, address and telephone number of person(s) in charge of the facility;
- Name and address of the facility;
- Date, time, location and duration of the discharge;
- Source and cause of the discharge;
- A description of the discharge and its chemical composition;
- Estimated volume of the discharge; and
- Actions taken to mitigate immediate damage from the discharge.

Conoco will provide written notification of a spill, to the WQCC and OCD following the notification guidelines.

13.2 Closure Plan

Conoco acknowledges and commits to the preparation of a closure plan at the time the decision is made to close the evaporation ponds. The Closure Plan will include a description of closure measures, maintenance and monitoring plans, post-closure maintenance and monitoring plans, a financial assurance mechanism, as well as other measures deemed necessary to prevent and/or abate contamination should it be found to be present.

- Cooley, M.E., Harsburger, J.W., Akers, J.P., and Hardt, W.F., 1969, <u>Regional Hydrogeology</u> of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah, USGS Professional Paper 521-A.
- Cresswell, L.W., <u>The Fate of Petroleum in a Soil Environment</u>, 1977 Oil Spill Conference Proceedings, American Petroleum Institute Publication N. 4284, pp. 479-482, 1977.

Dames and Moore, <u>Hydrogeologic Assessment Wingate Fractionating Plant for El Paso Natural</u> <u>Gas Company</u>, 1990, unpublished report prepared for El Paso Natural Gas Company.

Gudin, C., and W.J. Syratt, <u>Biological Aspects of Land Rehabilitation Following Hydrocarbon</u> <u>Contamination</u>, Environmental Pollution, volume 8:107-117, 1975.

Meridian Oil Inc., Discharge Plan, Wingate Fractionating Plant, April 9. 1992.

National Oceanic and Atmospheric Administration, <u>Climatography of the United States No. 81</u> (New Mexico), 1982.

National Oceanic and Atmospheric Administration, <u>Mean Relative Humidity (%)</u>, <u>Monthly and</u> <u>Annual</u>, pp 61-62, 1970.

Oil Conservation Division, "<u>Guidelines for the Preparation of Discharge Plans at Natural Gas</u> <u>Plants, Refineries, Compressor and Crude Oil Pump Stations</u>", Revised December 1995.

Sergent, Hauskins, and Beckwith Engineers, 1987, EPNG Wingate Plant Railroad Bridge Overpass - Geotechnical Investigation Report, June 26, 1987.

Shomaker, J. W., 1971, <u>Water Resources of Fort Wingate Army Depot and Adjacent Areas</u>, <u>McKinley County, New Mexico</u>, USGS Open File Report MK-32, September 1971.

Shomaker and Associates, 1992, <u>Hydrologic Evaluation of Evaporation Pond Area</u>, <u>Wingate</u> <u>Plant</u>, <u>McKinley County</u>, <u>New Mexico</u>, unpublished report prepared for Conoco Oil, Inc.

U.S. Department of Agriculture, Annual Lake Evaporation map, USSCS, 1978.

- U.S. Department of Housing and Urban Development, <u>Federal Insurance Administration</u>, 1978, <u>Flood Hazard Boundary Map</u>, McKinley County, New Mexico.
- U.S. Geological Survey, <u>Well Information Database</u>, <u>McKinley County</u>, <u>New Mexico</u>, <u>June 6</u>, <u>1990</u>, Albuquerque, New Mexico.

1507R10.WLC

C-K Associates, Inc.

Conoco Inc. Beverly J. Cox Compliance Coordinator Office 505-863-1023 Fax 505-863-1040 **Conoco Inc.** Wingate Fractionating Plant PO Box 119 Rehoboth, NM 87322

March 27, 2002

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505

Re: Exception From Protection of Migratory Birds Order R-8952 Wingate Fractionating Plant McKinley County, Gallup, New Mexico

Dear Mr. Ford:

Conoco Inc. is submitting the attached form C-134 for an exemption to the Division Order R-8952 for two evaporation ponds located at our Wingate Fractionating Plant. The ponds were place in service between 1968 and 1970. An eight-foot high hurricane fence encloses the two evaporation ponds. The two ponds are in series with the east pond containing water throughout the year. The west pond generally receives overflow during the winter months and sometimes dries up in the summer months. The east pond is contained in a 560 foot by 940 foot area and has a surface area of 480,000 square feet (11.0 acres). The west pond in contained in a 900 foot by 850 foot area and has a surface area of 693,000 square feet (15.9 acres). The ponds are sampled pursuant to Discharge Plan GW-054 approval condition #17.

The largest volumes of water discharging into the evaporation ponds are non-contact water from the cooling towers, water filter backwash, boiler blowdown, reverse osmosis effluent and the water softener regeneration process. This water does not contact any process fluid. Septic tanks exist on the site and drain to the evaporation ponds as permitted by GW-054. In addition a de minimums amount of rainwater has the potential for entering these ponds.

Should you have questions or require additional information, please do not hesitate to call me at 505-863-1023.

Sincerely,

ā

С

Beverly flof

Beverly J. Cox

Attachments

cc: Joyce Miley – Houston Office File: 2859-2

÷	ACCEIVED
District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	State of New Mexico PD 0 1 2002 Form C-134 Energy Minerals and Natural Resources Environmental Bureau Revised March 17, 1999 Oil Conservation Division Oil Conservation Division Submit 4 Copies to appropriate District Office 1220 South St. Francis Dr. Santa Fe, NM 87505 Permit No. (for Division Use Only Oil Conservation Division

DEACH

APPLICATION FOR EXCEPTION TO DIVISION ORDER R-8952

FOR PROTECTION OF MIGRATORY BIRDS Rule 8(b), Rule 105(b), Rule 312(h), Rule 313, or Rule711(I)

Operator Name: _____Conoco Inc._

Operator Address: _____#68 El Paso Circle, Gallup, NM 87301 (mailing address P.O. Box 119, Rehoboth, NM 87322 Lon 108°38'3" west - Sec. 9, 10, 15, Lease or Facility Name _Wingate Fractionating Plant _____ Location Lat 35° 32'36" north - 16&17 - 5N_17W Ut. Ltr. Sec. Twp. Rge Size of pit or tank: _East 560' X 940' West 900' X 850' _____

Operator requests exception from the requirement to screen, net or cover the pit or tank at the above-described facility.

___X_ The pit or tank is not hazardous to migratory waterfowl. Describe completely the reason pit is non-hazardous.

The pit accepts non-contact cooling tower water used in the cooling tower exchangers. This fluid does not come in contact with process fluids. Additionally these ponds receive small amounts of septic tank effluents and surface water runoff.

1) If any oil or hydrocarbons should reach this facility, give method and time required for removal:

Oil or hydrocarbons will be removed by using absorbent booms to soak up oil. A supply of booms and absorbent materials are kept on hand at the facility at all times.

2) If any oil or hydrocarbons reach the above-described facility, the operator is required to notify the appropriate District Office of the OCD with 24 hours.

Operator proposes the following alternate protective measures:

<u>CERTIFICATION BY OPERATOR</u>: I hereby certify that the information given above is true and complete to the best of my knowledge and belief.

Signature Buerley J. Ust	_Title _Compliance Coordinator Date _March 27, 2002
•	Telephone No505-863-1023
FOR OIL CONSERVATION DIVISION USE	
Date Facility Inspected	Approved by
Inspected by	Title
	Date

NEW MEALOU CIVIRUNNENT DEPARTIENT REVENUE TRANSMITTAL FORM

	FUND	CEB	DFA ORG	ACCT	ED ORG	ED ACCT	AMOUNT
Description	FUND						
CY Reimbursement Project Tax	064	01	·				
Gross Receipt Tax	054	01		2329	900000	2329134	
Air Quality Title V	092	13	1300	1696	900000	4169134	
PRP Prepayments	248	14	1400	0696	900000	4969014	
Climax Chemical Co.	248	- 14	1400	9696	900000	4989015	
Circle K Reimbursements	248	14	1400	9696	900000	4969248	
Hazardous Waste Permits	339	27	2700	1696	900000	4169027	
Hazardous Waste Annual Generator Fees	339	27	2700	1698	900000	4169339	
Water Quality - Oil Conservation Division	341	29		2329	900000	2329029	4000-
Water Quality - GW Discharge Permit	341	29	2900	1696	900000	4169029	
Air Quality Permits	631	31	2500	1696	900000	4169031	
Payments under Protest	651	33		2919	900000	2919033	
	652	34		2349	900000	2349001	
Xerox Copies Ground Water Penalties	652	34		2349	800000	2349002	
	652	34		2349	800000	2439003	
Witness Fees	652	34		2349	900000	2349004	
Air Quality Penalties	652	34		2349	900000	2349005	
OSHA Penalties	652	34		2349	900000	2349006	
Prior Year Reimbursement	652	34		2349	900000	2349009	
Surface Water Quality Certification	852	34		2349	900000	2349012	
Jury Duty	652	34		2349	900000	2349014	
CY Reimbursements (I.e. telephone)	783	24	2500	9596	900000	4969201	
UST Owner's List	783	24	2500	9696	800000	4959202	
Hazardous Waste Notifiara List	783	24	2500	9696	000000	4989203	الانتكوي بينائل ويجبدهم
UST Maps	783	24	2500	9695	900000	4989205	
UST Owner's Update	783	24	2500	2696	900000	4969207	
Hazardous Waste Regulations		24	2500	9696	000000	4909208	
Radiologio Teon. Regulations	783 783	24 24	2500	9896	900000	4989211	
Superfund CERLIS List	783 783	24 24	2600	9696	900000	4989213	
Bolid Waste Permit Fess	783	24	2500	9690	900000	4969214	
Smoking School		24 24	2500	9698	900000	4989222	
SWQB - NP5 Publications	783		2500	8686	900000	4969228	
Radiation Licensing Regulation	783	24 24	2500	9596	900000	4969301	
Sale of Equipment	783	24	2500	9696	900000	4969302	•
Sala of Automobile	783	-		9698	900000	4969614	
Lust Recoveries	783	24	2500	0696	900000	4969515	• • • • • • • • • • • • • • • • • • •
Lust Repayments	783	24	2500	9696	900000	4969801	
Surface Water Publication	783	24	2500	9692	900000	4969242	
Excon Reese Drive Ruidoso - CAF	783	24	2500	1698	800000	4164032	
Emerg. Hazardous Waste Penaltias NOV	957	32	9600	1898	900000	4109005	
Radiologic Tech. Certification	987	05	0500		900000	4169020	······
Ust Permit Fees	989	20	3100	1696	800000	4189021	. <u></u>
UST Tank Installers Fees	989	20	3100	1098		4169026	
Food Permit Fees	991	26	2600	1696	800000		

Other 43

* Gross Receipt Tax Required

- Site Name & Project Code Required

Contact Person: ROGER C. ANDERSON

Received in ASD By:

Date:

Phone: 476-3490

тотац<u>В 4080</u>= 12/5/02

ST #:

Date:

RT#:

÷ F8B025 Revised 07/07/00

ACXNOWLEDGEMENT OF RECEIPT OF CHECX/CASH

I hereby acknowledge receipt of check No. dated / or cash received on in the amount of \$ 400 from CONSCO for WINGALE FRACTIONATING PLANT Gle-054 Submitted by: WAYNE PRIZE Submitted to ASD by: Date: Received in ASD by: ____ ____Data: Filing Fee ____ New Facility ____ Renewal X Modification ____ Other Organization Code 521.07 Applicable FY 2008 To be deposited in the Water Quality Management Fund. Full Payment X or Annual Increment No. CONOCO CONOCO INC Ponca City, ok 74602 Citibank Delaware New Cestle, DE 19720 XXX VOID AFTER 90 DAYS XXX NOVEMBER 27, 2002 Vendor Code: 217921R01 Ասեհովեհերիություններին հետություններին հետություններին Pav OTE CONSERVATION DIVISION WATER QUALITY MANAGEMENT FUND 2040 S PACHECO SI Santa FE NM: 87505+5472 To the Order SZ1 Authorized Signature

.

	COSH REMITTA	atural Resources Depart	
Och	Location Name ① ENUR BUREAU	Location Cod	10 2 Jul # CRR000
Today's Date: _/2	H DAY	Location Cod <u>OTHO</u> 3 20 <u>O</u> YEAR brough / /_ MM DD /	CONOCO GW-007 WWGAth
Collection Period:	/ / th	winding / / / / / / /	
Cost Center	Revenue Code	Receipt Amount	Collected Amount
(ANDAR)	6 ADANG	(7)	8
	- Coppe	400 1	4000
· · · · · · · · · · · · · · · · · · ·		1000	
Total	=======	\$ 4000 g	\$ 4000 0
			· · ·
Over/Short Amou	nt \$	0	
		^	
CRR Deposit A	mount	\$	
Print Name: 2 RE	Ē	Signature:	
Print Name: J. Fat	<u>/</u> 3	Signature:	2
	Ū.		
	by copy to Accounts Receivable-ASD. ned at CRR submitting location.		
Official Use Only	······································		
Completed by the Acco	ounts Receivable	Date Rec	eived: 1010100
Notes:		0	
		Amount F	Received: 4 and 6
State Treasurer Deposi	t Number:	Verified b	y: 6
Deposit Date:	· 6		EMNRDCRR - Revised 4/01

l i

Alleria periode alleria

هست سيوه تحسرتسين المساعماته معقان معقان مقتد تنقدة تقتد تنقدة تحقد تحقد تحقد وتعديه وللقارع بدقان وتقتر المنقان وترسا والمناقع المناقع المناقع

A Philippine and the second second

يعممه تسققه للعضية فيكيكهم والمعام أمحمه المستم مطلعة ويجريه كحنائه المقلم وألغمه أطلقته فلتعم فستعاذفه

As Per 19.15.9.712(C)(4) Disposal Of Certain Non-Domestic Waste At Solid Waste Facilities, an amendment has been filed for the Ground Water Discharge Plan for the Conoco Inc., Wingate Fractionator Facility, located in McKinley, County, Gallup, New Mexico.

In the attached table (Table 8-2), the phrase "Process knowledge" may be used to make a determination of lisposal location (e.g. stained concrete debris from a location where hydrocarbons are present will be handled as 'contaminated"). The phrase "Based on Analysis" refers to the "Limits" set forth in the 712-rule. If the analysis result equals or exceeds the specified limits, then the waste will be disposed of in the proper OCD approved lisposal site. Therefore, the waste streams that are dependent upon analysis results may have multiple disposal sites listed.

October 28, 200.

Ground Water Discharge Plan Amendment to Vere Streams

TABLE 8-2WASTE DISPOSAL STREAMS

Rule 712 Reference	Liquid / Solid Waste	Storage	Disposal
D(1)(n)	Absorbent Material / Pads; Used & Dry	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(1)(n)	Absorbent Material / Pads; Used & Wet	Drum	Paint Filter Test – Solid Waste Facility or Tierra Env; Envirotech Inc
D(2)(a)	Alumina – Spent/Used in air service	Not Stored	Based on Analysis/Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(2)(a)	Alumina > Spent/Used in hydrocarbon service	Not stored	Based on Analysis/Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(2)(d)	Asbestos	All items are properly wrapped and sealed. Small items are stored in special asbestos drums; large items are stored in designated storage area.	Keers Environmental, Albuquerque, NM
D(1)(a)	Barrels, drums, 5- gallon buckets, 1- gallon container; emptied and tripled washed	Special waste dumpsters and/or containment pad	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(1)(b)	Brush and vegetation arising from clearing operations; uncontaminated	East of facility	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(2)(b)	Carbon > Activated	TBD	Based on Analysis > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(3)(b)	Catalysts	Not Stored	Recycled by Manufacturer
D(3)(e)	Concrete > contaminated	Point of generation or East of Facility	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility or Tierra Env.; Envirotech
D(1)(c)	Concrete > Uncontaminated	East of Facility	Waste Management Solid Waste Facility; Red Rock Regional Landfill

Groun Water Discharge Plan Amendment to teste Streams

Rule 712 Reference	Liquid / Solid Waste	Storage	Disposal
D(1)(d)	Construction Debris > Uncontaminated	East of Facility	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(2)(e)	Cooling Tower Filters	Drums / Special Waste Dumpsters	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(3)(n)	Copper Sweep	Not Stored	Based on Analysis > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(1)(d)	Demolition	Near Site Of	Waste Management Solid Waste Facility
D(3)(f)	Debris	Generation	
D(1)(f)	Detergent Buckets; empty	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(3)(g)	Dry Chemicals > Unused	Original Container	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill or Tierra Env.; Envirotech Inc
Liquid waste – N/A Solids – D(3)(n)	E & P Exempt Waste (separator fluid/water, process fluid/water, solids/sludges from tank	Not Stored	Based on Process Knowledge > Liquid - Basin Salt Water Disposal & Solids - Waste Management Solid Waste Facility
D(1)(a)	bottoms) Empty Drums	Cement Containment	Recycled by vendors
D(3)(n)	Engine Water Filters > Spent/Used – Non-Contact Water	Pad Special Waste Dumpsters	Based on Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(2)(i)	Ferrous Sulfate or Elemental Sulfur > (Iron Sponge) Contaminated	Drum	Based on Analysis > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(1)(i)	Ferrous Sulfate/Elemental Sulfur; Uncontaminated	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(1)(g)	Fiberglass Tanks; EPA cleaned and cut up/shredded	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill

i.

i

Groun-Water Discharge Plan Amendment to Uste Streams

Rule 712 Reference	Liquid / Solid Waste	Storage	Disposal
D(2)(g)	Gas Condensate Filters (Inlet Product Filters) > Spent	Drums	Based on Analysis > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(1)(h)	Grease Buckets; empty and EPA Cleaned	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(3)(n)	Lube Oils > Spent/Used	Tank	Recycled - US Filter Recovery System Inc., Odessa Terminal
D(1)(o)	Lumber / Pallets Scrap & Uncontaminated	Next to Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(3)(l)	Lumber/Pallets > Contaminated	At point of generation or in containment pan	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill or Tierra Env.; Envirotech
D(3)(n)	Mercaptain Filters > Spent/Used	Special Waste Dumpsters	Based on Process Knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(1)(j)	Metal Plate/Metal Cable/Junk Iron	East Side of Facility	Waste Management Solid Waste Facility; Red Rock Regional Landfill or Recycled
D(2)(k)	Molecular Sieve	Not Stored	Based on Analysis > Waste Management Solid Waste Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
D(1)(k)	Office / Domestic Trash	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rocks Regional Landfill
D(2)(o)	Oil Filters > Used	Enclosed Drain Box	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility or recycled
D(3)(n)	Paint (dried) Chips	Drums	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility or Tierra Env.; Envirotech
D(3)(n)	Painting Waste	Drum	Safety Kleen
D(3)(n)	Pipe Scale, deposits removed from non-contact water equipment	Drums	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(2)(l)	Pipe Scale, Deposits removed from petroleum hydrocarbon pipeline and process equipment	Drums/Tanks	Based on Analysis & Testing > Waste Management Solid Waste Facility; Red Rock Regional Landfill

Ground Water Discharge Plan Amendment to Wie Streams

Rule 712 Reference	Liquid / Solid Waste	Storage	Disposal
D(1)(j)	Pipes & Valves – Used in non- contact water services	Eat Side of Facility	Waste Management Solid Waste Facility; Red Rock Regional Landfill or Recycled
D(2)(j)	Pipes & Valves – Used in petroleum hydrocarbon services	East Side of Facility	Based on Testing &/or Process knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill or Recycled
D(1)(m)	Plastic Pit Liners; cleaned	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(1)(n)	Rags/Gloves > Dry	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
D(2)(n)	Sandblasting Sand > Spent/Used	Drums	Based on Analysis / Process knowledge > Waste Management Solid Waste Facility; Tierra Environmental; Envirotech Inc
D(1)(j)	Scrap Metal	East side of plant	Recycled
D(3)(c)	Soil – Contaminates other than petroleum	Drums	Based on Analysis / Process knowledge; Waste Management Solid Waste Facility; Tierra Env; Envirotech Inc.
D(3)(n)	Soil – Petroleum hydrocarbon contaminated	Stored near the point of generation until disposal site is determined.	Based on Process Knowledge > Disposal in Waste Management Solid Waste Facility
D(2)(k)	Support Balls	Not Stored	Part of Molecular Sieve waste
D(3)(k)	Tower Packing Materials	Not Stored	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility or Tierra Env.; Envirotech
D(3)(n)	Universal Waste (lead acid & gel packed batteries)	Sealed Containers	Recycled – Recycling Center, Farmington, NM > currently under evaluation
D(3)(n)	Universal Waste (florescent tubes)	TBD	TBD
D(3)(n)	Zeolite Resin Beads	Not Stored	Based on Process Knowledge > Waste Management Solid Waste Facility

Wingate Fractionating Plant #68 El Paso Circle Gallup, NM 87301 505-863-3900

Conoco Inc. Beverly J. Cox Compliance Coordinator P. O. Box 119 Rehoboth, NM 87322 505-863-1023, Fax 505-863-1040

June 6, 2002

State Of New Mexico Oil Conservation Division Wayne Price 1220 South St. Francis Drive Santa FE, NM 87505

RECEIVED JUN 1 0 2002 Environmental Bureau Oil Conservation Division

RE: Ground Water Discharge Plan (GW-054) Amendments

Mr. Price,

On Thursday, May 30, 2002, a facility walk thru was conducted of the Wingate Fractionating Facility, in preparation for the Ground Water Discharge Plan (GW-54) renewal. Two amendments were requested to complete the renewal process.

Amendment to Storm Water Discharge:

The storm water permit for the Wingate Plant was terminated in July 1998. The Spill Prevention Control & Countermeasure (SPCC) Plan is in place to assist in preventing the release of materials and address procedures to respond immediately to accidental spills that could enter the storm water drainage system. The SPCC plan has specific requirements for inspecting and releasing drainage water. The Ground Water Discharge Plan is also in place that addresses plant processes, waste streams, and chemical characteristics of materials found at the plant. The plan covers spill response procedures as well as general housekeeping practices. With these plans in place, Conoco is adequately prepared to respond in the event of a spill and prevent a material from reaching storm water.

Amendment to Waste Disposal as per Rule-712

During the walk thru, Rule-712 was presented by the OCD. After review of rule-712, Table 8-2 of the GW-054 renewal has been changed to meet its requirements. For your review, Table 8-2 is attached.

/¶3

Should you have any questions, please do not hesitate to call me at 505-863-1023.

Sincerely,

ì

L Oof les irea Beverly J. Cox

Cc: Denny Foust 1000 Rio Brazos Rd Aztec, NM 87401

> Joyce Miley HU 3036 Houston, TX

Ground Water Discharge Plane Amendment to Waste Streams

As Per 19.15.9.712(C)(4) Disposal Of Certain Non-Domestic Waste At Solid Waste Facilities, an amendment has been filed for the Ground Water Discharge Plan for the Conoco Inc., Wingate Fractionator Facility, located in McKinley, County, Gallup, New Mexico.

In the attached table (Table 8-2), the phrase "Based on Analysis" refers to the "Limits" set forth in the 712-rule. If the analysis results equal or exceeded the outlined limits, then the waste will be disposed of in the proper OCD approved disposal site. Therefore, the waste streams that are dependent upon analysis results may have multiple disposal sites listed. Ground Water Discharge Plane Amendment to Waste Streams

June 6, 2002

TABLE 8-2WASTE DISPOSAL STREAMS

Liquid / Solid Waste	Storage	Disposal
Absorbent Material /	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock
Pads; Used & Dry		Regional Landfill
Absorbent Material /	Drum	Paint Filter Test – Solid Waste Facility or Tierra Env;
Pads; Used & Wet		Envirotech Inc
Alumina –	Not Stored	Based on Analysis/Process Knowledge > Waste
Spent/Used in air		Management Solid Waste Facility; Red Rock Regional
service		Landfill; or Tierra Env; Envirotech Inc
Alumina >	Not stored	Based on Analysis/Process Knowledge > Waste
Spent/Used in		Management Solid Waste Facility; Red Rock Regional
hydrocarbon service		Landfill; or Tierra Env; Envirotech Inc
Asbestos	All items are properly	Keers Environmental, Albuquerque, NM
	wrapped and sealed. Small	
	items are stored in special	
	asbestos drums; large	
	items are stored in	
	designated storage area.	
Barrels, drums, 5-	Special waste dumpsters	Waste Management Solid Waste Facility; Red Rock
gallon buckets, 1-	and/or containment pad	Regional Landfill
gallon container;		
emptied and tripled		
washed		
Brush and vegetation	East of facility	Waste Management Solid Waste Facility; Red Rock
arising from clearing		Regional Landfill
operations;		
uncontaminated	TDD	Develop Analysis > Weste Menogeneert Solid Weste
Carbon > Activated	TBD	Based on Analysis > Waste Management Solid Waste
		Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc
Catalusta	Not Stored	
Catalysts	Not Stored	Recycled by Manufacturer
Concrete >	Point of generation or East	Based on Analysis &/or Process Knowledge > Waste
contaminated	of Facility	Management Solid Waste Facility or Tierra Env.; Envirotech
Concrete >	East of Facility	Waste Management Solid Waste Facility; Red Rock
Uncontaminated		Regional Landfill
Construction Debris >	East of Facility	Waste Management Solid Waste Facility; Red Rock
Uncontaminated		Regional Landfill
Cooling Tower Filters	Drums / Special Waste	Based on Analysis &/or Process Knowledge > Waste
	Dumpsters	Management Solid Waste Facility; Red Rock Regional
	- unpowers	Landfill; or Tierra Env; Envirotech Inc
Copper Sweep	Not Stored	Based on Analysis > Waste Management Solid Waste
		Facility; Red Rock Regional Landfill; or Tierra Env;
		Envirotech Inc

÷

Liquid / Solid Waste	Storage	Disposal
Demolition Debris	Near Site Of Generation	Waste Management Solid Waste Facility
Detergent Buckets;	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock
empty		Regional Landfill
Dry Chemicals >	Original Container	Based on Analysis &/or Process Knowledge > Waste
Unused		Management Solid Waste Facility; Red Rock Regional
		Landfill or Tierra Env.; Envirotech Inc
E & P Exempt Waste	Not Stored	Based on Process Knowledge > Liquid - Basin Salt Water
(separator fluid/water,		Disposal & Solids - Waste Management Solid Waste
process fluid/water,		Facility
solids/sludges from		
tank bottoms)		
Empty Drums	Cement Containment Pad	Recycled by vendors
Engine Water Filters	Special Waste Dumpsters	Based on Process Knowledge > Waste Management Solid
> Spent/Used – Non-		Waste Facility; Red Rock Regional Landfill
Contact Water		
Ferrous Sulfate or	Drum	Based on Analysis > Waste Management Solid Waste
Elemental Sulfur >		Facility; Red Rock Regional Landfill; or Tierra Env;
(Iron Sponge)		Envirotech Inc
Contaminated		
Ferrous	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock
Sulfate/Elemental		Regional Landfill
Sulfur;		
Uncontaminated		
Fiberglass Tanks;	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock
EPA cleaned and cut		Regional Landfill
up/shredded		
Gas Condensate	Drums	Based on Analysis > Waste Management Solid Waste
Filters (Inlet Product		Facility; Red Rock Regional Landfill; or Tierra Env;
Filters) > Spent		Envirotech Inc
Grease Buckets;	Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock
empty and EPA		Regional Landfill
Cleaned		
Lube Oils >	Tank	Recycled - US Filter Recovery System Inc., Odessa
Spent/Used		Terminal
Lumber / Pallets	Next to Special Waste	
Scrap &	Dumpsters	Waste Management Solid Waste Facility; Red Rock
Uncontaminated		Regional Landfill
Lumber/Pallets >	At point of generation or	Based on Analysis &/or Process Knowledge > Waste
Contaminated	in containment pan	Management Solid Waste Facility; Red Rock Regional Landfill or Tierra Env.; Envirotech
Mercaptain Filters >	Special Waste Dumpsters	Based on Process Knowledge > Waste Management Solid
Spent/Used	· · · · · · · · · · · · · · · · · · ·	Waste Facility; Red Rock Regional Landfill
Metal Plate/Metal	East Side of Facility	Waste Management Solid Waste Facility; Red Rock
Cable/Junk Iron		Regional Landfill or Recycled
Molecular Sieve	Not Stored	Based on Analysis > Waste Management Solid Waste

2

i

Special Waste Dumpsters Drums	Facility; Red Rock Regional Landfill; or Tierra Env; Envirotech Inc Waste Management Solid Waste Facility; Red Rocks Regional Landfill
- · · · · · · · · · · · · · · · · · · ·	
Drums	
	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility or Tierra Env.; Envirotech
Drum	Safety Kleen
Drums	Waste Management Solid Waste Facility; Red Rock Regional Landfill
Drums/Tanks	Based on Analysis & Testing > Waste Management Solid Waste Facility; Red Rock Regional Landfill
Eat Side of Facility	Waste Management Solid Waste Facility; Red Rock Regional Landfill or Recycled
East Side of Facility	Based on Testing &/or Process knowledge > Waste Management Solid Waste Facility; Red Rock Regional Landfill or Recycled
Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
Special Waste Dumpsters	Waste Management Solid Waste Facility; Red Rock Regional Landfill
Drums	Based on Analysis / Process knowledge > Waste Management Solid Waste Facility; Tierra Environmental; Envirotech Inc
East side of plant	Recycled
Drums	Based on Analysis / Process knowledge; Waste Management Solid Waste Facility; Tierra Env; Envirotech Inc.
Stored near the point of generation until disposal site is determined.	Based on Process Knowledge > Disposal in Waste Management Solid Waste Facility
Not Stored	Part of Molecular Sieve waste
Not Stored	Based on Analysis &/or Process Knowledge > Waste Management Solid Waste Facility or Tierra Env.; Envirotech
	Drums Drums/Tanks Eat Side of Facility East Side of Facility Special Waste Dumpsters Special Waste Dumpsters Drums East side of plant Drums Stored near the point of generation until disposal site is determined. Not Stored

 \sim

Ground Water Discharge Plane Amendment to Waste Streams

June 6, 2002

I

Liquid / Solid Waste	Storage	Disposal
Universal Waste (lead acid & gel packed batteries)	Sealed Containers	Recycled – Recycling Center, Farmington, NM > currently under evaluation
Universal Waste (florescent tubes)	TBD	TBD
Zeolite Resin Beads	Not Stored	Based on Process Knowledge > Waste Management Solid Waste Facility
		Waste Facility

. . •

Conoco Inc. Beverly J. Cox Compliance Coordinator 505-863-1023 **Conoco Inc.** Wingate Fractionating Plant PO Box 119 Rehoboth, NM 87322 Fax 505-863-1040

April 18, 2002

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Re: Discharge Plan GW-054 Renewal Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

Conoco Inc. is submitting the renewal for the Wingate Fractionating Plant Ground Water Discharge Plan (GW-054), located in McKinley County, New Mexico.

As part of the Ground Water Discharge Plan requirement, the sumps are visually inspected on an annual base with the last annual inspection on June 2, 2001 and the 2002 inspection due the week of June 24, 2002. The annual sump inspections are performed during the plant turn-a-round. As per OCD requirements, your office will be contacted prior to the next inspection.

Enclosed you will find a copy of the underground drain system test. This test was performed on February 25, 2002.

The evaporation ponds were sampled on October 4, 2001 and the monitoring wells, on November 13, 2001. These results were submitted to your office on December 17, 2001.

The required filing fee of \$100 is enclosed. The required permit fee of \$4000 for Gas Processing Plants will be paid at the time of permit approval.

Mr. Jack Ford Energy, Minerals & Natural Resources Department Oil Conservation Division

Should you have questions or require additional information, please contact Beverly Cox at 505-863-1023.

Sincerely,

Benevly & Cox

Beverly J. Cox

Enclosures (2)

cc: State of New Mexico Minerals and Natural Resources Oil Conservation, District Office III 1000 Rio Brazos Road Aztec, NM 87410

> Joyce Miley – Houston Office HU 3036 Houston, TX File: 2852

۲	CONOCO, INC. WINGATE GAS PLANT	
НУ	DROSTATIC PRESSURE TEST	TING
Date: <u>2 125 102</u> In	nspector:	and the second sec
System or Equipment Being 7	rested: Office	2.0 SP17220
Plant ID Number: 155	Vessel or Equipm	ent Serial No:
Maximum Working Pressure:	<u>DENE SUCCE</u>	· · · · · · · · · · · · · · · · · · ·
Test Pressure: 7.0	8 (Maximur	m Working Pressure X 1.5)
<u>Time</u> 10:3.5	PSIG 7.8	<u>Temp. °F</u> 43
10:50		430
11:05	7.0	A 45
11.20		4.5
21 315		And 3
·		<u> </u>
<u></u>		
••••••••••••••••••••••••••••••••••••••		
Comments: <u>L'INDY</u>	Print & Company	
¥	· · · · · · · · · · · · · · · · · · ·	
2-12-02- MR Vincel	ligil contracted refere	encing upcoming test.
Circulate: Process Forema	an	· · · · · · · · · · · · · · · · · · ·
Maintenance Fo	oreman <u>Jaka Jorsu</u>	
Plant Manager	lote	
*File - SSF-333 Safety File		

Conoco Inc. Beverly J. Cox Compliance Coordinator 505-863-1023 Conoco Inc. Wingate Fractionating Plant PO Box 119 Rehoboth, NM 87322 Fax 505-863-1040

April 18, 2002

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Re: Discharge Plan GW-054 Renewal Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

Conoco Inc. is submitting the renewal for the Wingate Fractionating Plant Ground Water Discharge Plan (GW-054), located in McKinley County, New Mexico.

As part of the Ground Water Discharge Plan requirement, the sumps are visually inspected on an annual base with the last annual inspection on June 2, 2001 and the 2002 inspection due the week of June 24, 2002. The annual sump inspections are performed during the plant turn-a-round. As per OCD requirements, your office will be contacted prior to the next inspection.

Enclosed you will find a copy of the underground drain system test. This test was performed on February 25, 2002.

The evaporation ponds were sampled on October 4, 2001 and the monitoring wells, on November 13, 2001. These results were submitted to your office on December 17, 2001.

The required filing fee of \$100 is enclosed. The required permit fee of \$4000 for Gas Processing Plants will be paid at the time of permit approval.

Mr. Jack Ford Energy, Minerals & Natural Resources Department Oil Conservation Division

Should you have questions or require additional information, please contact Beverly Cox at 505-863-1023.

Sincerely,

Bing & log Beverly J. Cox

Deverty J. COX

Enclosures (2)

cc: State of New Mexico Minerals and Natural Resources Oil Conservation, District Office III 1000 Rio Brazos Road Aztec, NM 87410

> Joyce Miley – Houston Office HU 3036 Houston, TX File: 2852

W	CONOCO, INC. INGATE GAS PLANT	
Hydros	TATIC PRESSURE TEST	ING
Date: <u>2123122</u> Inspecto	pr: <u></u>	
System or Equipment Being Tested	Ŧ	
Plant ID Number: 155	Vessel or Equipme	ent Serial No:
Maximum Working Pressure:	SP2 HA BARDA	;
Test Pressure: 7.8	•	n Working Pressure X 1.5)
<u>Time</u> 10:35 10:50 10 10:50 10 10:50 10 10:50 10:50 10 10:50 10 10:50 10 10 10 10 10 10 10 10 10 10 10	PSIG 7.5	<u>Temp. °F</u> 43 ²⁰ 4 ³ 4 ³ 4 ³ 4 ³ 4 ³ 4 ³ 4 ³ 4 ³
Comments: 2010 2.		
 Circulate: Process Foreman Maintenance Foreman		
Plant Manager		

THE SANTA FE **NEW** MEXIC Founded 1849

NM OIL CONSERVATION DIVISION 1220 S. ST. FRANCIS DR. SANTA FE, NM 87505 AD NUMBER: 264383 ATTN WAYNE PRICE LEGAL NO: 71573

> AFFIDAVITS: 5.25 5.87 TAX: TOTAL: 99.72

201 LINES

AFFIDAVIT OF PUBLICATION

ACCOUNT: 56689

1 time(s) at \$ 88.60

P.O.#: 02199000249

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL

RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Division, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-054) - Conoco Inc., Chuck White, Plant Man-505-863-1001, ager, 505-863-1001, P.O. Box 119, Rehoboth, NM 87322 has submitted an application for renewal of its previously approved discharge plan for its Wingate Fractionating Plant located in portions of Section 9,10,15,16 and 17, Township 15 North, Range 17 West, NMPM, Maddlew County McKinley County, New Mexico. The plant fractionates natural gas liq-uids into usable products such as propane, butanes and light gasoline. Approximately 2 million gallons per month of wastewater is generated and disposed of in on-site surface evaporation ponds. Ground water most likely to be affected in the event of an accidental discharge is at a depth of approxi-mately 5-30 feet with a total dissolved solids concentration of approximately 480-1400 mg/l. The discharge plan addresses how oilfield products and waste will property handled, stered, and disposed of, including how spills, leaks, and other acci-dental discharges to the surface will be managed in order to protect fresh rater.

may obtain further information from the Oil Conservation Division and may submit written comments to the Director of STATE OF NEW MEXICO plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification the or its modification, the Director of the Oil Conallow at least thirty (30) #71573 days after the date of publication of this notice may be submitted to him and a public hearing the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

Any interested person

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 31 th day of May, 2002. STATE OF NEW MEXICO OIL CONSERVATION DIVI-

SION SEAL LORI WROTENBERY, Di-

rector egal #71573 Pub. June 7, 2002

the Oil Conservation Divi-sion at the address giv-en above. The discharge I, say that I am Legal Advertising Representative of THE SANTA FE NEW MEXICAN, a daily newspaper published in <u>p.m.</u> the English language, and having a general circulation in the Counties of Santa Fe and Los Alamos, State of New Mexico and being a Newspaper duly qualified to publish legal notices and advertisements under the provisions of servation Division shall Chapter 167 on Session Laws of 1937; that the publication a copy of which is hereto attached was published in said newspaper 1 day(s) between 06/07/2002 and during which comments 06/07/2002 and that the notice was published in the newspaper proper and not in any supplement; the first may be requested by publication being on the 7 day of June, 2002 any interested person, and that the undersigned has personal knowledge of the Requests for a public matter and things set forth in this affidavit.

/S/

LEGAL ADVERTISEMENT REPRESENTATIVE

Subscribed and sworn to before me on this 10 day of June A.D., 2002

Notary 11/23/03

Commission Expires _

www.sfnewmexican.com

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-054) - Conoco Inc., Chuck White, Plant Manager, 505-863-1001, P.O. Box 119, Rehoboth, NM 87322 has submitted an application for renewal of its previously approved discharge plan for its Wingate Fractionating Plant located in portions of Section 9,10,15,16 and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. The plant fractionates natural gas liquids into usable products such as propane, butanes and light gasoline. Approximately 2 million gallons per month of wastewater is generated and disposed of in on-site surface evaporation ponds. Ground water most likely to be affected in the event of an accidental discharge is at a depth of approximately 5-30 feet with a total dissolved solids concentration of approximately 480-1400 mg/l. The discharge plan addresses how oilfield products and waste will be properly handled, stored, and disposed of, including how spills, leaks, and other accidental discharges to the surface will be managed in order to protect fresh water.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 31th day of May, 2002.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

LORI WROTENBERY, Director

SEAL

- 3

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-054) - Conoco Inc., Chuck White, Plant Manager, 505-863-1001, P.O. Box 119, Rehoboth, NM 87322 has submitted an application for renewal of its previously approved discharge plan for its Wingate Fractionating Plant located in portions of Section 9,10,15,16 and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. The plant fractionates natural gas liquids into usable products such as propane, butanes and light gasoline. Approximately 2 million gallons per month of wastewater is generated and disposed of in on-site surface evaporation ponds. Ground water most likely to be affected in the event of an accidental discharge is at a depth of approximately 5-30 feet with a total dissolved solids concentration of approximately 480-1400 mg/l. The discharge plan addresses how oilfield products and waste will be properly handled, stored, and disposed of, including how spills, leaks, and other accidental discharges to the surface will be managed in order to protect fresh water.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 31th day of May, 2002.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

LORI WROTENBERY, Director

SEAL

Affidavit of Publication

STATE OF NEW MEXICO

) SS

COUNTY OF MCKINLEY

RANGEL, LYDIA being duly sworn upon oath, deposes and says:

As _____LEGALS CLERK _____ of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup, New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants, New Mexico and having a general circulation in Apache County, Arizona and in the City of St. Johns and in the City of Window Rock, Arizona therein: that this affiant makes this affidavit based upon personal knowledge of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said newspaper during the period and time of publication and said notice was published in the newspaper proper, and not in a supplement thereof, for <u>one time</u>, the first publication being on the <u>6th</u> day of <u>June</u> 2002 , the second publica tion being on the _____ day of ______ 20____, the third publication being on the _____ day of ______ 20____,

and the last publication being on the _ _____ day of , 20

That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation.

Lange

Sworn and subscribed to before me this _12th ___ day _____, A.D., 20<u>02</u>____ of June

Varen Amstring Notary Public

My commission expires:

November 27, 2004

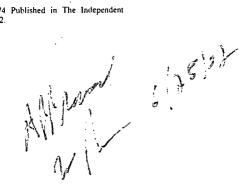
LEGALN ICE Gallup-Mc 'ounty New Mexi

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

NOTICE IS HEREBY GIVEN that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe. New Mexico 87505. Tele-phone (505) 827-7131:

(GW-054) - Conoco Inc., Chuck White, Plant Manager, 505-863-1001, P.O. Box 119, Rehoboth, NM 87322 has submitted an application for re-newal of its previously approved discharge plan for its Wingate Fractionating Plant located in portions of Section 9,10,15,16 and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. The plant fractionates natural gas liquids into usable products such as propane, butanes and light gasoline. Approximately 2 million gallons per month of wastewater is generated and disposed of in on-site surface evaporation ponds. Ground water most likely to be affected in the event of an accidental discharge is at a depth of approximately 5-30 feet with a total dissolved solids concen-tration of approximately 480-1400 mg/1. The discharge plan addresses how oilfield products and waste will be properly handled, stored, and dis-posed of, including how spills, leaks, and other accidental discharges to the surface will be managed in order to protect fresh water.

Any interested person may obtain further in-formation from the Oil Conservation Division and may submit written comments to the Di-rector of the Oil Conservation Division at the address given above. The discharge plan appliaddites given have the distribute primary in a spin application of the second state of allow at least thirty (300 days after the date of publication of this notice during which comments may be submitted to him and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.


<u>...</u> Ed

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe. New Mexico, on this 31st day of May. 2002.

> STATE OF NEW MEXICO OIL CONSERVATION DIVISION I ORI WROTENBERY, Director

Legal #3374 Published in The Independent hine 6 2002.

NUMBER ABOVE.

Conoco Inc. Beverly J. Cox Compliance Coordinator 505-863-1023 Fax 505-863-1040

ì

Conoco Inc. Wingate Fractionating Plant PO Box 119 Rehoboth, NM 87322 68 El Paso Circle Gallup, NM 87301

RECEIVED

JAN 0 7 2002

Environmental Bureau Oil Conservation Division

December 17, 2001

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505

Re: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

Please find attached the results from the annual evaporation pond sampling event and the annual groundwater monitoring well sampling event at Conoco's Gas & Power Wingate facility.

The ponds were sampled on October 4, 2001 pursuant to Discharge Plan GW-054 Approval Condition #17 (November 21, 1997) and analyzed by Inter-Mountain Laboratories, Farmington, New Mexico. The monitoring wells, MW-1, MW-2, MW-3 and WMH-4 were sampled by El Paso Natural Gas on November 13, 2001 and analyzed by NEL Laboratories, Las Vegas Division, Las Vegas, Nevada.

Should you have questions or require additional information, please contact Beverly Cox at 505-863-1023.

Sincerely, Beverly J. Cox

Attachments

Cc: Joyce Miley – Houston Office Louis Ferrari – Wingate File: ENV 215-5-6

December 14, 2001

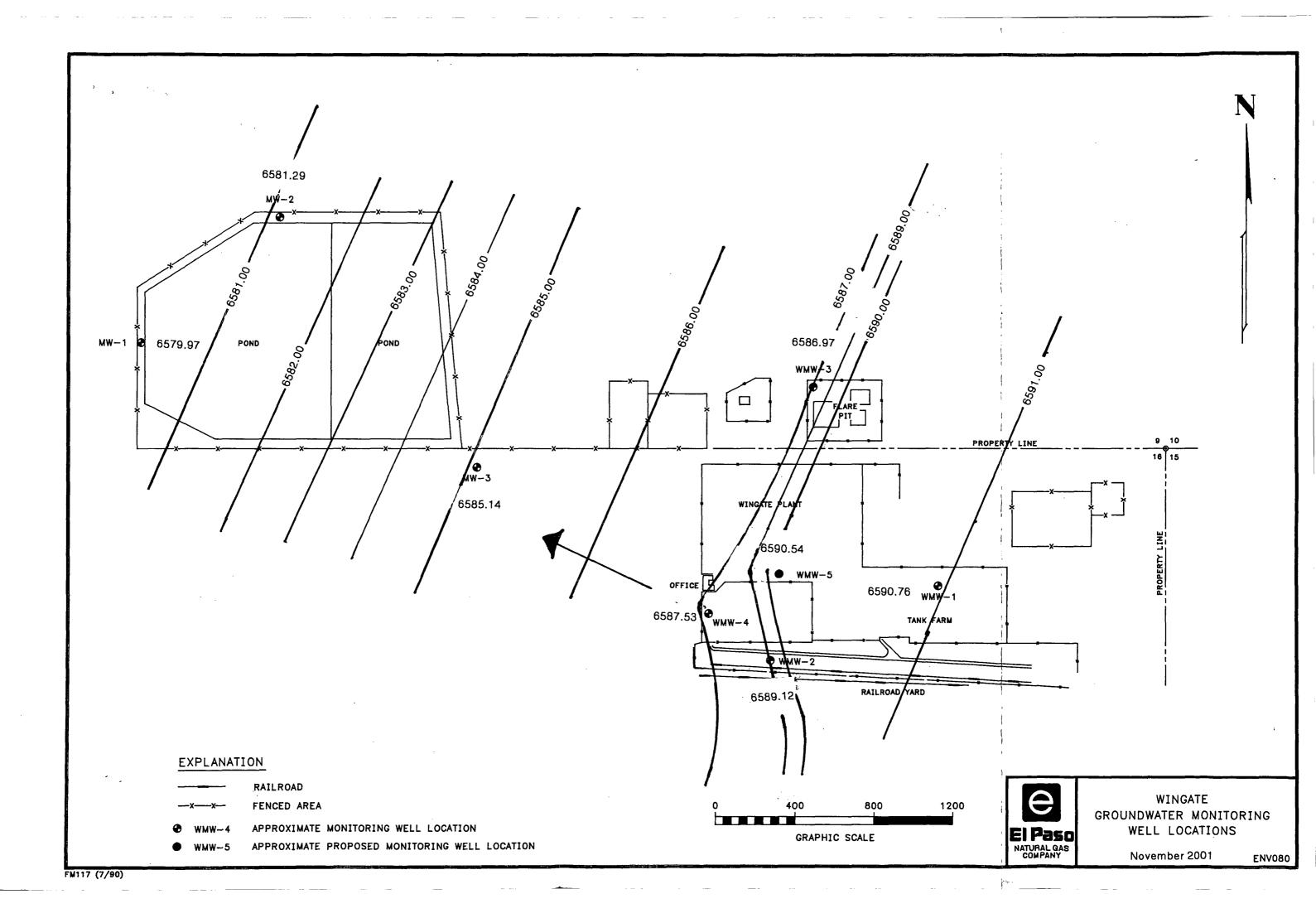
ف

Ms. Beverly Cox Conoco, Inc. # 68 El Paso Circle Gallup, NM 87301

RE: Wingate Plant Gallup, New Mexico Annual Groundwater Sampling

Dear Ms. Cox:

Enclosed please find the above referenced analytical results for submittal to the New Mexico Oil Conservation Division (NMOCD). Groundwater samples were collected from one on-site monitoring well (WMW-4) and from three monitoring wells located off-site (MW-1through 3) on November 13, 2001. A duplicate sample was collected from WMW-4.


Water level measurements were taken on November 13, 2001. Groundwater elevations for all monitoring wells were calculated using the Top of Riser measurements, consistent with the data previously submitted to NMOCD. A new potentiometric surface map is enclosed for submittal to NMOCD.

Please contact me at (505) 599-2124, if you have questions or comments.

Sincerely,

Scott T. Pope, PG Senior Environmental Scientist Environmental Remediation Department

Enclosure

TABLES

WINGATE PLANT GROUNDWATER ELEVATIONS November 2001

4

WELL NUMBER	TOP OF RISER ELEVATION	DEPTH TO WATER	GROUNDWATER ELEVATION
MW-1	6,584.66	4.69	6,579.97
MW-2	6,585.37	4.08	6,581.29
MW-3	6,589.84	4.70	6,585.14
WMW-1	6,596.04	5.28	6,590.76
WMW-2	6,593.69	4.57	6,589.12
WMW-3	6,593.91	6.94	6,586.97
WMW-4	6,594.50	6.97	6,587.53
WMW-5	6,596.98	6.44	6,590.54

WINGATE PLANT ANALYTICAL RESULTS

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chlorid
			μg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 μg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 µg/L	700 μg/L	10000 μg/L				
11/15/91	MW-01	MOI	ND	ND	ND	ND	-	ND	1	
01/22/92	MW-01	MOI	ND	ND	ND	ND	-	-	1	
02/25/93	MW-01	MOI	19.0	2.7	ND	ND	- 1	-	1	1
01/22/92	MW-01	EPNG	< 0.5	<0.5	<0.5	<0.5	-	-		
01/93	MW-01	EPNG	-	-	-	-	-	-	1	
04/28/92	MW-01	EPNG	<1.0	<1.0	<1.0	<1.0	<100	-		
04/06/93	MW-01	EPNG	ND	ND	ND	ND	-	_		<u> </u>
01/06/94	MW-01	EPNG	1.5	1.5	1.2	3.6				
09/14/94	MW-01	EPNG	<0.5	<0.5	<0.5	<1.0				
09/14/94	MW-01D	EPNG	< 0.5	<0.5	1.4	1.1				
03/01/95	MW-01	MOI	<0.3	<0.3	<0.3	<0.6		< 0.3	535	20.4
08/22/95	MW-01	EPNG	ND	87	9	49				1
03/27/96	MW-01	MOI	ND	ND	ND	ND		ND	690	22.5
03/27/96	MW-01D	MOI	ND	ND	ND	ND		ND	650	25
08/27/96	MW-01	EPNG	ND	ND	ND	ND				
03/26/97	MW-01	CON	1.2	ND	ND	ND		0.6	660	24
08/27/97	MW-01	EPNG	ND	ND	ND	ND		······································		1
03/31/98	MW-01	CON	1.8	10	ND	11		ND	610	20
08/25/98	MW-01	EPNG	ND	ND	ND	ND				1
08/25/98	MW-01D	EPNG	ND	ND	ND	ND	+			<u> </u>
09/22/99	MW-01	EPNG	ND	ND	ND	ND			550	28
11/13/01	MW-01	EPNG	ND	ND	ND	ND		ND	964	45

WINGATE PLANT ANALYTICAL RESULTS

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			μg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 µg/L	750 μg/L		620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L			1	
11/15/91	MW-02	MOI	ND	ND	ND	0.1	-	2.6		1
01/22/92	MW-02	MOI	ND	ND	ND	ND	-	-		
02/25/93	MW-02	MOI	ND	ND	ND	ND	-	-		
01/22/92	MW-02	EPNG	<0.5	<0.5	< 0.5	<0.5	-	-		<u> </u>
04/28/92	MW-02	EPNG	0.002	<1.0	<1.0	<1.0	<100	-	1	1
01/93	MW-02	EPNG	-	-	-	-	-	-		1
04/06/93	MW-02	EPNG	2.0	2.0	ND	1.0	-	-		1
09/14/94	MW-02	EPNG	< 0.5	<0.5	<0.5	<1.0				1
03/01/95	MW-02	MOI	<0.3	< 0.3	<0.3	<0.6		< 0.3	1030	57
08/22/95	MW-02	EPNG	ND	ND	ND	ND				1
03/27/96	MW-02	MOI	ND	ND	ND	ND		ND	1120	53.7
08/27/96	MW-02	EPNG	ND	ND	ND	ND				1
03/26/97	MW-02	CON	2.0	ND	ND	ND		0.5	1100	56
08/27/97	MW-02	EPNG	ND	ND	ND	ND				1
03/31/98	MW-02	CON	ND	ND	ND	ND		ND	1140	60.8
08/25/98	MW-02	EPNG	ND	ND	ND	ND				1
09/22/99	MW-02	EPNG	ND	ND	ND	ND			980	70
09/22/99	MW-02D	EPNG	ND	ND	ND	ND			1000	66
11/13/01	MW-02	EPNG	ND	ND	ND	ND		ND	1100	71

WINGATE PLANT ANALYTICAL RESULTS

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			μg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 µg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 µg/L	700 μg/L	10000 μg/L				
01/15/91	MW-03	MOI	0.2	0.2	0.4	1.7	ND	-		
01/21/92	MW-03	MOI	ND	3.9	0.6	4.4	-	-		
02/25/93	MW-03	MOI	ND	ND	ND	ND	-	-		
01/92	MW-03	EPNG	-	-	-	-	-	-		
04/28/92	MW-03	EPNG	<1.0	<1.0	<1.0	<1.0	<100	-		
01/12/93	MW-03	EPNG	<1.0	2.0	<1.0	<1.0	-	-		
04/06/93	MW-03	EPNG	ND	ND	ND	ND	-	-		
01/06/94	MW-03	EPNG	46	1.4	3.5	4.7				
01/06/94	MW-03	EPNG	1.5	1.4	1.2	3.4				
09/14/94	MW-03	EPNG	2	<0.5	<0.5	<1.0				
09/14/94	MW-03D	EPNG	1.4	< 0.5	<0.5	<1.0				
03/01/95	MW-03	MOI	< 0.3	<0.3	<0.3	<0.6		<0.3	481	18.7
08/22/95	MW-03	EPNG	ND	ND	ND	ND				
03/28/96	MW-03	MOI	ND	ND	ND	ND		ND	540	23.7
08/28/96	MW-03	EPNG	ND	ND	ND	ND				
03/26/97	MW-03	CON	9.2	ND	ND	ND		1.1	600	21
08/27/97	MW-03	EPNG	ND	ND	ND	ND				
03/31/98	MW-03	CON	ND	ND	ND	ND		ND	530	19.2
08/26/98	MW-03	EPNG	ND	ND	ND	ND				
09/22/99	MW-03	EPNG	ND	ND	ND	ND			750	59
11/13/01	MW-03	EPNG	ND	ND	ND	ND		ND	481	16

WINGATE PLANT ANALYTICAL RESULTS

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			μg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 µg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L				1
07/10/91	WMW-04	MOI	ND	ND	ND	ND	-	14.7	T	1
10/28/91	WMW-04	MOI	1.3	ND	ND	ND		ND		
01/21/92	WMW-04	MOI	1.9	4.0	1.1	5.1	-	-		
02/25/93	WMW-04	MOI	7.6	3.0	ND	ND	-	-		<u> </u>
02/06/92	WMW-04	EPNG	0.7	<0.5	<0.5	< 0.5		-		1
04/29/92	WMW-04	EPNG	3.0	<1.0	<1.0	<1.0	<100	-		<u> </u>
01/12/93	WMW-04	EPNG	68.0	8.0	<1.0	4.0		-	1	<u>† – – – – – – – – – – – – – – – – – – –</u>
04/07/93	WMW-04	EPNG	ND	1.0	ND	ND	-	-		
01/05/94	WMW-04	EPNG	13	1.5	3.3	5.6				
09/13/94	WMW-04	EPNG	<0.5	<0.5	2	2			†	t
03/01/95	WMW-04	MOI	0.9	0.8	<0.3	<0.6		< 0.3	1470	123
08/23/95	WMW-04	EPNG	ND	ND	ND	ND				
03/28/96	WMW-04	MOI	ND	ND	ND	ND		ND	1500	110
08/27/96	WMW-04	EPNG	ND	ND	ND	ND				
08/27/96	WMW-04D	EPNG	ND	ND	ND	ND				
03/25/97	WMW-04	CON	ND	ND	ND	ND		0.4	1500	120
08/26/97	WMW-04	EPNG	ND	ND	ND	ND				
03/30/98	WMW-04	CON	3.6	ND	ND	ND		ND	1440	110
08/25/98	WMW-04	EPNG	ND	ND	ND	ND			1	1
09/22/99	WMW-04	EPNG	ND	ND	ND	ND			1200	110
11/13/01	WMW-04	EPNG	ND	ND	ND	ND		ND	1410	130
11/13/01	WMW-04D	EPNG	ND	ND	ND	ND		1	1390	150

SAMPLE KEY

SAMPLE NUMBER: M01-0514 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: FMP #1 before purging wells S D CONTINUED: S D CONTINUED: SAMPLE TIME: 09:30 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0515 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Bailer Blank before sampling wells S D CONTINUED: S D CONTINUED: SAMPLE TIME: 09:35 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0516 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Field Blank S D CONTINUED: S D CONTINUED: SAMPLE TIME: 09:40 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0517 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Monitor well #MW3 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 10:25 SAMPLE DATE: 11/13/2001 BY: Brisbin

ORIGINAL

SAMPLE KEY

SAMPLE NUMBER: M01-0518 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Monitor well #WMW4 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 12:15 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0519 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Monitor well #WMW4 Dup. S D CONTINUED: S D CONTINUED: SAMPLE TIME: 12:15 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0520 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Monitor well #MW2 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 15:30 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0521 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Monitor well #MW1 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 16:20 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0522 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: FMP #1 after purging wells S D CONTINUED: S D CONTINUED: SAMPLE TIME: 16:45 SAMPLE DATE: 11/13/2001 BY: Brisbin

SAMPLE KEY

SAMPLE NUMBER: M01-0523 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: Bailer after sampling wells S D CONTINUED: S D CONTINUED: SAMPLE TIME: 17:00 SAMPLE DATE: 11/13/2001 BY: Brisbin

NEL LABORATORIES

Reno • Las Vegas Phoenix • Boise Las Vegas Division 4208 Arcata Way, Suite A • Las Vegas, Nevada 89030 **702-657-1010** • Fax: 702-657-1577 1-888-368-3282

CLIENT:	El Paso Natural Gas Company
	8645 Railroad Drive
	El Paso, TX 79904
ΑΤΓΝ:	Darrell Campbell

PROJECT NAME: Wingate M.W.'s PROJECT NUMBER: NA

NEL ORDER ID: P0111032

Attached are the analytical results for samples in support of the above referenced project.

Samples submitted for this project were not sampled by NEL Laboratories. Samples were received by NEL in good condition, under chain of custody on 11/15/01.

Should you have any questions or comments, please feel free to contact our Client Services department at (602) 437-0099.

111 Stan Van Wagenen

Laboratory Manager

CERTIFICATIONS:

	Reno	Las Vegas	S. California
Arizona	AZ0520	AZ0518	AZ0605
California	1707	2002	2264
US Army Corps	Certified	Certified	
of Engineers			

4/01 Date

RenoLas VegasS. CaliforniaIdahoCertifiedCertifiedMontanaCertifiedCertifiedNevadaNV033NV052CA084L.A.C.S.D.10228

CLIENT: PROJECT ID: PROJECT #:	PROJECT ID: Wingate M.W.'s		DA		M01-0514 LED: 11/13/01 LID: P0111032-0	1	
TEST: MATRIX:	Inorganic Non-M Aqueous	letals					
РА	RAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride Total Dissolved	Salida	21 1080	10. 15.	100	EPA 300.0 SM 2540 C	mg/L mg/L	11/29/01 11/21/01

میہ

R.L. - Reporting Limit D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

ÇLIENT: PROJECT ID: PROJECT #:	El Paso Natural G Wingate M.W.'s NA	as Company	DA	IENT ID: ATE SAMPL EL SAMPLE	M01-0515 ED: 11/13/01 ID: P0111032-0	2	
TEST: MATRIX:	Inorganic Non-M Aqueous	letals					. <u>.</u>
PA	RAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
PA	RAMETER	<u>RESULT</u> 0.25	R. L. 0.1	<u>D. F.</u> 1	METHOD EPA 300.0	UNITS mg/L	ANALYZED 11/29/01

÷...

C.L. - Reporting Limit *D.F.* - Dilution Factor *ND* - Not Detected *This report shall not be reproduced except in full, without the written approval of the laboratory.*

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Cor Wingate M.W.'s NA	npany	DA	LIENT ID: ATE SAMPI EL SAMPLE	3		
TEST: MATRIX:	Inorganic Non-Metals Aqueous						
PA Chloride	RAMETER	<u>RESULT</u> ND	<u> </u>	<u>D. F.</u>	METHOD EPA 300.0	UNITS mg/L	ANALYZED 11/29/01

15.

ND

1

SM 2540 C

mg/L

11/21/01

i.

i.

R.L. - Reporting Limit D.F. - Dilution Factor

Total Dissolved Solids

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	EL LABORATORIE El Paso Natural Gas Co Wingate M.W.'s NA		DA		M01-0517 LED: 11/13/01 E ID: P0111032-04		
TEST: MATRIX:	Inorganic Non-Metals Aqueous						
PA Chloride	RAMETER	<u>RESULT</u> 16	<u> </u>	<u>D. F.</u> 50	<u>METHOD</u> EPA 300.0	UNITS mg/L	<u>ANALYZED</u> 11/29/01

15.

1

SM 2540 C

481

mg/L

11/21/01

-

R.L. - Reporting Limit D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

1

Total Dissolved Solids

	· NE	EL LABORAT	ORIES						
	CLIENT: PROJECT ID: PROJECT #:	El Paso Natural C Wingate M.W.'s NA	Gas Company	DA	LIENT ID: ATE SAMPI EL SAMPLE		5		
1	TEST: . MATRIX:	Inorganic Non-M Aqueous	letals						
	PA	RAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED	
	⁽ Chloride Total Dissolved	Solids	130 1410	10. 30.	100 2	EPA 300.0 SM 2540 C	mg/L mg/L	11/29/01 11/21/01	

R.L. - Reporting Limit D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0519	
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01	
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-06	
FEST:	Inorganic Non-Metals			
MATRIX:	Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	150	10.	100	EPA 300.0	mg/L	11/29/01
Total Dissolved Solids	1390	30.	2	SM 2540 C	mg/L	11/21/01

R.L. - Reporting Limit D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0520	
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01	
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-07	
TEST:	Inorganic Non-Metals			
MATRIX:	Aqueous			

PARAMETER	RESULT	<u> </u>	<u> </u>	METHOD	UNITS	ANALYZED
Chloride	71	10.	100	EPA 300.0	mg/L	11/29/01
Total Dissolved Solids	1100	15.	1	SM 2540 C	mg/L	11/21/01

-

R.L. - Reporting Limit D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

• •NI	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company Wingate M.W.'s NA	CLIENT ID: M01-0521 DATE SAMPLED: 11/13/01 NEL SAMPLE ID: P0111032-08	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

=

à

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride Total Dissolved Solids	45 964	10. 15	100	EPA 300.0 SM 2540 C	mg/L	11/29/01 11/26/01
Total Dissolved Solids	904	15.	1	SIVI 2340 C	mg/L	11/20/01

TEST: Inorganic MATRIX: Aqueous	Non-Metals					
PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED

15.

1

1110

SM 2540 C

11/21/01

¥

mg/L

R.L. - Reporting Limit D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

Total Dissolved Solids

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Ga Wingate M.W.'s NA	as Company	CLIENT ID: M01-0523 DATE SAMPLED: 11/13/01 NEL SAMPLE ID: P0111032-10)	
TEST: MATRIX:	Inorganic Non-M Aqueous	etals					
PA	RAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
PA Chloride	RAMETER	RESULT ND	<u>R. L.</u> 0.1	<u>D. F.</u> 1	METHOD EPA 300.0	UNITS mg/L	<u>ANALYZEI</u> 11/29/01

<u>-</u>-

R.L. - Reporting Limit D.F. - Dilution Factor

VD - Not Detected

CLIENT: PROJECT ID: PROJECT #:	El Paso Natura Wingate M.W.' NA	•	ny		ID: Metho AMPLED: NA MPLE ID: 01112	d Blank TDS-BLK	
TEST:	Non-Metals						
PARAMETER	RE	SULT	REPORTING LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Total Dissolved S	olids	ND	15	1	SM 2540 C	mg/L	11/21/01
?	_						
D.F Dilution I	Factor						
D.F Dilution I ND - Not Detect							

.

÷

12

:

CLIENT: PROJECT ID: PROJECT #:	El Paso N Wingate N NA	latural Gas Com M.W.'s	pany		ID: AMPLED: MPLE ID:			
TEST:	Non-Met	als						
PARAMETER		RESULT	REPORTING LIMIT	D. F.	METH	IOD	UNITS	ANALYZED
		RESULT ND	REPORTING LIMIT 15	<u>D. F.</u> 1	METH SM 25		UNITS mg/L	ANALYZED 11/26/01
PARAMETER Total Dissolved S D.F Dilution I	olids		LIMIT	<u>D. F.</u> 1				

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Cor Wingate M.W.'s NA	npany		ID: Method AMPLED: NA MPLE ID: 011129	i Blank CL-BLK	
TEST:	Non-Metals	<u></u>		<u></u>		
PARAMETER	RESULT	REPORTING	<u>D. F.</u>	METHOD	_UNITS	ANALYZED
PARAMETER Chloride	<u>RESULT</u> ND		<u>D. F.</u> 1	<u>МЕТНОD</u> ЕРА 300.0	<u>UNITS</u> mg/L	<u>ANALYZED</u> 11/29/01
PARAMETER Chloride D.F Dilution F	ND	LIMIT	<u>D. F.</u> 1			

This report shall not be reproduced except in full, without the written approval of the laboratory.

• NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0514
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED	: 11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	: P0111032-01
TEST:	Volatile Organic Compounds by EP	A SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
		D14	Reporting
PARAMETER	_	Result	<u>Limit</u>
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. µg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorob	enzene	96	76 - 111
Toluene-d8		102	95 - 108

•• •	Â.		
· NE	L LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0515
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-02
TEST:	Volatile Organic Compounds by E	PA SW846 Method 8260B, Dec	. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
			Reporting
PARAMETER		Result	Limit
мтве		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Fotal Xylenes		ND	4. μg/L
QUALITY CONT	FROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorob	enzene	96	76 - 111
Toluene-d8		98	95 - 108
<i>QUALITY CONT</i> Surrogate 4-Bromofluorobe		<u>% Recovery</u> 96	<u>Acceptable Range</u> 76 - 111

ND - Not Detected

· • • • • • • • • • • • • • • • • • • •	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0516
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED	: 11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-03
TEST:	Volatile Organic Compounds by E	PA SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
			Reporting
PARAMETER	_	Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorob	benzene	95	76 - 111
Toluene-d8		100	95 - 108

ND - Not Detected

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0517
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-04
LEST:	Volatile Organic Compounds by EPA	SW846 Method 8260B, Dec	. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
			Reporting
PARAMETER		Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
		ND	2. μg/L
Ethylbenzene			4 ug/I
Ethylbenzene Total Xylenes		ND	4. μg/L
=	TROL DATA:	ND	4. µg/L
Total Xylenes	TROL DATA:	<u>% Recovery</u>	Acceptable Range
Total Xylenes QUALITY CON		······	

۲

ND - Not Detected

, 4	÷		
• N	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0518
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED	: 11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-05
TEST:	Volatile Organic Compounds by EPA	A SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	I	ANALYZED:	11/15/01
			Reporting
PARAMETER		Result	_Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorol	penzene	100	76 - 111
Toluene-d8		103	95 - 108

- - - -

ND - Not Detected

.

This report shall not be reproduced except in full, without the written approval of the laboratory.

=

· NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0519
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-06
TEST:	Volatile Organic Compounds by EF	PA SW846 Method 8260B, Dec	. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
			Reporting
PARAMETER		Result	Limit
MTBE	-	ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. μg/L
QUALITY CON	TROL DATA:	······································	
Surrogate		% Recovery	Acceptable Range
4-Bromofluorob	benzene	100	76 - 111
Toluene-d8		101	95 - 108

• •	•		
· •NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0520
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-07
TEST:	Volatile Organic Compounds by El	PA SW846 Method 8260B, Dec	. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
			Reporting
PARAMETER		Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorob	benzene	101	76 - 111
Toluene-d8		104	95 - 108

ND - Not Detected

× NI			
, <u>,</u> , NI	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0521
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-08
TEST:	Volatile Organic Compounds by El	PA SW846 Method 8260B, Dec	e. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/15/01
			Reporting
PARAMETER	_	Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
Surrogate 4-Bromofluorob	enzene	<u>% Recovery</u> 93	<u>Acceptable Range</u> 76 - 111

ND - Not Detected

NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0522
PROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-09
TEST:	Volatile Organic Compounds by E	PA SW846 Method 8260B, Dec	. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/16/01
			Reporting
PARAMETER		Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. µg/L
QUALITY CON	TROL DATA:		
Surrogate		<u>% Recovery</u>	Acceptable Range
4-Bromofluorob	enzene	94	76 - 111
Toluene-d8		99	95 - 108

· •NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M01-0523
FROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	11/13/01
PROJECT #:	NA	NEL SAMPLE ID:	P0111032-10
TEST:	Volatile Organic Compounds by E	PA SW846 Method 8260B, Dec	e. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	11/16/01
			Reporting
PARAMETER	-	Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	4. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorob	benzene	96	76 - 111
Toluene-d8		101	95 - 108

ND - Not Detected

LIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
ROJECT ID:	Wingate M.W.'s	DATE SAMPLED:	
PROJECT #:	NA	NEL SAMPLE ID:	011115AQBX_2A-BLK
EST:	Volatile Organic Compounds by EPA		. 1996
AETHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
AATRIX:	Aqueous	EXTRACTED:	NA
والمراجعة والمتحدث ويرزر		ANALYZED:	11/15/01
ARAMETER	Ł	Result	Reporting Limit
ATBE	-	ND	<u>5. μg/L</u>
Senzene		ND	2. µg/L
olucne		ND	2. μg/L
thylbenzene		ND	2. μg/L
otal Xylenes		ND	4. μg/L
UALITY CON	ITROL DATA:		
urrogate		% Recovery	Acceptable Range
-Bromofluorol	benzene	91	76 - 111
oluene-d8		96	95 - 108
his repo <mark>rt sha</mark>	ll not be reproduced except in full, withou	••••••	•
ID - Not Detec <i>his report shar</i> CLIENT: ROJECT ID: ROJECT #: EST: 4ETHOD:		CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	Method Blank NA 011116AQBX_2A-BLK
his report shat LIENT: ROJECT ID: ROJECT #: EST: 1ETHOD:	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED:	Method Blank NA 011116AQBX_2A-BLK 1996
his report shat LIENT: ROJECT ID: ROJECT #: EST: 1ETHOD:	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST:	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01
<i>his report sha</i> CLIENT: ROJECT ID: ROJECT #: EST: 4ETHOD: 1ATRIX:	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED:	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01 Reporting
his report shat LIENT: ROJECT ID: ROJECT #: EST: IETHOD: IATRIX: ARAMETER	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED: Result	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01 Reporting Limit
his report shat LIENT: ROJECT ID: ROJECT #: EST: IETHOD: IATRIX: ARAMETER TBE	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED: Result ND	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01 Reporting Limit 5. μg/L
this report shat ELIENT: ROJECT ID: ROJECT #: EST: AETHOD: IATRIX: ARAMETER TBE enzene	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED: Result	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01 Reporting Limit 5. μg/L 2. μg/L
this report shat CLIENT: ROJECT ID: ROJECT #: EST: AETHOD: IATRIX: ARAMETER TBE enzene oluene	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED: Result ND ND	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01
his report shar LIENT: ROJECT ID: ROJECT #: EST: IETHOD: IATRIX: ARAMETER TBE enzene oluene chylbenzene	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED: Result ND ND ND	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01 Reporting Limit 5. μg/L 2. μg/L
<i>'his report sha</i> i CLIENT: ROJECT ID: ROJECT #: 'EST: 1ETHOD:	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED:	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01
his report share CLIENT: ROJECT ID: ROJECT #: EST: AETHOD: AATRIX: ARAMETER UBE enzene oluene thylbenzene otal Xylenes DUALITY CON urrogate	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED:	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01 Reporting Limit 5. µg/L 2. µg/L 2. µg/L 4. µg/L 4. µg/L
his report share CLIENT: ROJECT ID: ROJECT #: EST: AETHOD: AATRIX: ARAMETER TIBE enzene oluene thylbenzene otal Xylenes	ll not be reproduced except in full, withou El Paso Natural Gas Company Wingate M.W.'s NA Volatile Organic Compounds by EPA EPA 8260B Aqueous	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID: A SW846 Method 8260B, Dec. ANALYST: EXTRACTED: ANALYZED:	Method Blank NA 011116AQBX_2A-BLK 1996 SKV - Las Vegas Division NA 11/16/01

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

N

۲	CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Wingate M.W.'s NA	Gas Company							
	TEST: METHOD: ORDER ID:	Total Extractable EPA 8015M P0111032	e Petroleum Hy	drocarbons l	oy EPA	Method 8015M	, Decemb	er 1	996	
	MATRIX:	Aqueous				AN	VALYST:	J	RW - Las Vega	s Division
	CLIENT SAMPLE ID	SAMPLE DATE	NEL SAMPLE ID	RESULT mg/L	C.R.	Reporting Limit	Surroga Recover		EXTRACTED	ANALYZEI
	M01-0514	11/13/01	P0111032-01	ND	ND	0.5 mg/L	. 85	%	11/16/01	11/17/01
	M01-0515	11/13/01	P0111032-02	ND	ND	0.5 mg/L	. 94	%	11/16/01	11/17/01
	M01-0516	11/13/01	P0111032-03	ND	ND	0.5 mg/L	90	%	11/16/01	11/17/01
	M01-0517	11/13/01	P0111032-04	ND	ND	0.5 mg/L	99	%	11/16/01	11/19/01
	M01-0518	11/13/01	P0111032-05	ND	ND	0.5 mg/L	96	%	11/16/01	11/17/01
	M01-0519	11/13/01	P0111032-06	1.0	G	0.5 mg/L	112	%	11/16/01	11/19/01
	M01-0520	11/13/01	P0111032-07	ND	ND	0.5 mg/L	87	%	11/16/01	11/17/01
	M01-0521	11/13/01	P0111032-08	ND	ND	0.5 mg/L	108	%	11/16/01	11/19/01
	M01-0522	11/13/01	P0111032-09	ND	ND	0.5 mg/L	89	%	11/16/01	11/17/01
	M01-0523	11/13/01	P0111032-10	ND	ND	0.5 mg/L	79	%	11/16/01	11/19/01

C.R.: Carbon Range

G Gas Range Organics (C4 to C14). QUALITY CONTROL DATA (Total for Diesel Range):

Sample ID	Result	Accept	able Range Su	rrogate ł	Recovery'	* Sample Number
Blank, 011116TP -BLK	ND	<	0.5 mg/L	95	%	NA
LCS, 011116TPHW-LCS	72 %	53	- 91 %	113	%	NA
LCSD, 011116TPHW-LCSD	77 %	53	- 91 %	124	%	NA
* Surrogate used was Octacosane, acceptance limits 58-120%.						

ACO 1111 40 4

P0111032 Page

▲ ./											150		- , ,
elpaso Dur 11/2	C	CHAIN OF CUSTODY F						ECOI	RD	POI	103	,2_	Page0i
PROJECT NUMBER PROJECT NAME	14'3	3ER ERS	Ю		RÉ	QUESTEI	D ANALY	SIS		CONTRACT LABOP	ATORY		
SAMPLERS: (Signature) DATE:	130	TOTAL NUMBER OF CONTAINERS	COMPOSITE OR GRAB	ХÖ		μ.	Ś						
LAB ID DATE TIME MATRIX SAMPLE NU	IMBER	401 0F.0 0	сом	BTEX BALOD	Ê J	HOD. Trill	F	Ð				REMARKS	
0/ huston 0530 4.0 MD1.051	<u>ч</u>	5	4	X	K	ĸ	Х	x					
02 1/13/0 0935 H.O MOI-051	5	54	A_	<u>×</u>	×	X	×	ĸ					
03 1/13/0 0940 H.O MO1-05	16	$\leq $	K.			×	$\overline{\}$	×					
04 113/01/025 HOU MOI-0	517	5	Å	X	X	4	×	X					
05 11361 1315 H20 MO1-05	18	5	<u>6</u>	x	<u> </u>	K	x	K		ReciE	VEID	ONE SA	IMPIE BROKEN
06 1113/6, 1215 H20 MOI-05	19	5	<u>6</u>	K	x	X	Δ	X					
07 111341 1530 HZO MDI-05	20	5	9	ĸ	X		ĸ	x					
08 1113/01 1620 H20 MOI-050	31	5	17	X	X	3	ĸ	X					$) \qquad \bigcirc \circ$
09 113/11/1645 H20 MOI-05	22	5	<u>[</u>]	٤	X	K	K	Y	Cue	lody Seal II	ntect <mark>? Y</mark> <u>v: lion wit</u> v		
10 11/13/01 1702 H20 MOI-05	33	5	4	X	X	X	K	X					
			/										
REMOUSSED BY ISCHARTER DATE/TIME	RECEIVED BY (Sign.	Y (Signature) RELINGUISHED BY: (Signatu			ıre)		DATE	1100	RECEIVED BY. , 3. Bradle	ignature			
RELINQUISHED BY: (Signature) DATE/TIME	RECEIVED BY. (Sign.	RELINGUISHED BY: (Signal			ire)		DATE		RECEIVED OF LA	BORATORY BY, September 9			
REQUESTED TURNAROUND TIME SAMPLE RECEIPT RE			EMARKS				RESUL	RESULTS & INVOICES TO:					
								LABORATORY SERVICES EL PASO CORPORATION 8645 RAILROAD DRIVE					
CHARGE CODE				······································					EL PASO, TEXAS 79904				
BILL NO.:									915	-587-3729	FAX: 915-587-3835		

White - Testing Laboratory Canary - EP Corp. Lab Pink - Field Sampler

Phone (505) 326-4737 Fax (505) 325-4182

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

Date:	10/31/01
Client:	Conoco, Inc. Gallup
Lab ID:	0301W04220 - 4221
Project:	Wingate

Dear Client:

The sample was received for analysis at Inter-Mountain Laboratories (IML), Farmington, New Mexico. Enclosed are the results of the analyses.

Comment:

The enclosed report has been independently reviewed for compliance with IML-Farmington's Quality Assurance Plan and Data Quality Objectives. IML has examined all of the data in this report and has made every effort possible to make sure it is complete, accurate, and compliant. Quality Assurance data, if not included, is on file and available upon request.

Unless otherwise noted, all results were obtained by approved methods. Practical Quantification Limits (PQLs) are based on statistically derived determinations, and upon any dilutions necessary to obtain proper method response without matrix interference.

Surrogate recoveries in both 625 extractions were out of QC limits for three out of six compounds. Because the recoveries were high and the analytes were not detected the results are still acceptable.

If you have any prestions, please call me at (505) 326-4737.

William Lipps

Laboratory Director/IML-Farmington, NM

Client:	Conoco, Inc. Gallup			
Project:	Wingate Plant			
Sample ID:	WINGATE EAST POND			
Lab ID:	0301W04221			
Matrix:	Water			
Condition:	Cool/Intact			

2506 West Main Street Farmington, NM 87401

Date Received: 10/04/01 Date Reported: 10/30/01 Date Sampled: 10/04/01 Time Sampled: 1030

	Analytical						An	alysis	
Parameter	Result	Units		Units	PQL	Method	Date	Time	lnit.
GENERAL PARAMETERS						<u> </u>			
PH	8.5	s.u.			0.1	EPA 150.1	10/04/0	1 1620	ZW
Electrical Conductivity	72,800	µmhos/cm			10	EPA 120.1	10/04/0	1 1620	ZW
Solids - Total Dissolved	52,800	mg/L			10	EPA 160.1	10/05/0	1 1530	ZW
Cyanide (Total) - Colorimetric	<0.01	mg/L			0.01	SM 4500-CN E	E 10/23/0	1 0915	ML
Alkalinity (CaCO3)	200	mg/L			1	EPA 310.1	10/10/0	1 1340	ZW
Hardness (CaCO3)	6,370	mg/L			1	EPA 200.7	10/30/0	1 1622	WL
MAJOR ANIONS									
Bicarbonate (HCO3)	244	mg/L	4.00	meq/L	1	EPA 310.1	10/10/0	1 1340	ZW
Carbonate (CO3)	<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/0	1 1340	ZW
Hydroxide (OH)	<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/0	1 1340	ZW
Bromide (Br)	<0.2	mg/L	<0.01	meq/L	0.2	EPA 300.0	10/20/0	1 1837	ZW
Chloride	25,900	mg/L	730	meq/L	1	EPA 300.0	10/20/0	1 1837	ZW
Fluoride	0.65	mg/L	0.03	meq/L	0.05	EPA 340.2	10/08/0	1 1502	ZW
Nitrogen - Nitrate	<0.05	mg/L	<0.01	meq/L	0.05	EPA 353.2	10/12/0	1 1528	MC
Sulfate	10,600	mg/L	222	meq/L	5	EPA 300.0	10/20/0	1 1837	ZW
MAJOR CATIONS									
Calcium	1,010	mg/L	50.3	meq/L	0.2	EPA 200.7	10/30/0	1 1622	WL
Magnesium	937	mg/L	77.1	meq/L	0.2	EPA 200.7	10/30/0	1 1622	WL
Potassium	237	mg/L	6.05	meq/L	0.2	EPA 200.7	10/30/0	1 1622	WL
Sodium	18,700	mg/L	812	meq/L	0.2	EPA 200.7	10/30/0	1 1622	WL
CATION/ANION BALANCE QC IN	FORMATION								
Anion Sum			955	meg/L	0.01	SM 1030			
Cation Sum			946	meq/L	0.01	SM 1030			
Cation/Anion Balance			0.51	%	0.01	SM 1030			

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983.

SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,18th Edition, 1992.

EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994. SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF, 19th Edition, 1995.

íΛ

Client:	Conoco, Inc. Gallup			
Project:	Wingate Plant			
Sample ID:	WINGATE EAST POND			
Lab ID:	0301W04221			
Matrix:	Water			
Condition:	Cool/Intact			

 Date Received:
 10/04/01

 Date Reported:
 10/30/01

 Date Sampled:
 10/04/01

 Time Sampled:
 1030

	Analytical					An	alysis	
Parameter	Result	Units	Units	PQL	Method	Date	Time	Init.
TOTAL METALS								
Arsenic	<0.005	mg/L		0.005	SM 3114B	10/26/0	1 1715	JG
Barium	0.17	mg/L		0.01	EPA 200.7	10/20/0	1 1817	WL
Cadmium	0.014	mg/L		0.001	EPA 200.9	10/20/0	1 1817	WL
Chromium	<0.01	mg/L		0.01	EPA 200.7	10/20/0	1 1817	WL
Lead	<0.005	mg/L		0.005	EPA 200.9	10/20/0	1 1817	WL
Mercury	<0.001	mg/L		0.001	EPA 245.1	10/08/0 ⁻	1 1130	JG
Selenium	<0.005	mg/L		0.005	SM 3114B	10/15/0	1 1100	JG
Silica	21.1	mg/L		0.1	EPA 200.7	10/20/01	1 1817	WL
Silver	<0.01	mg/L		0.01	EPA 200.7	10/20/0	1 1817	WL

Reference: SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF, 19th Edition, 1995. EPA - "Methods for the Détermination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

Reviewed By: U

2506 West Main Street Farmington, NM 87401

٦

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE EAST POND	Date Sampled:	10/04/01
Lab ID:	0301W04221	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	10/03/01
Condition:	Cool/Intact	Date Analyzed:	10/11/01

Parameter	Analytical Result	PQL	Units
			Units
Method 625 - Semivolatiles			
1,2,4-Trichlorobenzene	<10	10	µg/L
1,2-Dichlorobenzene	<10	10	µg/L
1,3-Dichlorobenzene	<10	10	µg/L
1,4-Dichlorobenzene	<10	10	µg/L
2,4,5-Trichlorophenol	<10	10	µg/L
2,4,6-Trichlorophenol	<10	10	µg/L
2,4-Dimethylphenol	<10	10	µg/L
2,4-Dinitrophenol	<50	50	µg/L
2,4-Dinitrotoluene	<10	10	µg/L
2,6-Dinitrotoluene	<10	10	µg/L
2-Chloronaphthalene	<10	10	µg/L
2-Chlorophenol	<10	10	μg/L
2-Methylnaphthalene	<10	10	μg/L
2-Methylphenol	<10	10	μg/L
2-Nitroaniline	<50	50	μg/L
2-Nitrophenol	<10	10	µg/L
3,3'-Dichlorobenzidine	<10	10	µg/L
3-Nitroaniline	<50	50	µg/L
4,6-Dinitro-2-methylphenol	<50	50	µg/L
4-Bromophenyl phenyl ether	<10	10	µg/L
1-Chloro-3-methylphenol	<20	20	µg/L
1-Chloroaniline	<20	20	μg/L
1-Chlorophenyl phenyl ether	<10	10	µg/L
4-Methylphenol	<10	10	µg/L
1-Nitrophenol	<10	10	µg/L
Acenaphthene	<10	10	µg/L
Acenaphthylene	<10	10	µg/L
Aniline	<10	10	µg/L
Anthracene	<10	10	µg/L
Benzidine	<20	20	µg/L
Benzo(a)anthracene	<10	10	µg/L
Benzo(a)pyrene	<10	10	µg/L
Benzo(b)fluoranthene	<10	10	µg/L

Reference: US-EPA 40 CFR Part 136, April 1995

Analyst:

2506 West Main Street Farmington, NM 87401

1

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE EAST POND	Date Sampled:	10/04/01
Lab ID:	0301W04221	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	10/03/01
Condition:	Cool/Intact	Date Analyzed:	10/11/01

	Analytical		
Parameter	Result	PQL	Units
Benzo(g,h,i)perylene	<10	10	µg/L
Benzo(k)fluoranthene	<10	10	μg/L
Benzoic Acid	<50	50	µg/L
Benzyl Alcohol	<20	20	µg/L
Butylbenzylphthalate	<10	10	µg/L
Carbazole	<10	10	µg/L
Chrysene	<10	10	μg/L
Di-n-Butylphthalate	<10	10	µg/L
Di-n-Octylphthalate	<10	10	µg/L
Dibenz(a,h)anthracene	<10	10	µg/L
Dibenzofuran	<10	10	µg/L
Diethylphthalate	<10	10	μg/L
Dimethylphthalate	<10	10	µg/L
Fluoranthene	<10	10	µg/L
Fluorene	<10	10	µg/L
Hexachlorobenzene	<10	10	µg/L
Hexachlorobutadiene	<10	10	µg/L
Hexachlorocyclopentadiene	<10	10	µg/L
Hexachloroethane	<10	10	µg/L
Indeno(1,2,3-cd)pyrene	<10	10	µg/L
Isophorone	<10	10	µg/L
N-Nitroso-di-n-propylamine	<10	10	μg/L
N-Nitrosodimethylamine	<20	20	µg/L
N-Nitrosodiphenylamine	<10	10	µg/L
Naphthalene	<10	10	µg/L
Nitrobenzene	<10	10	µg/L
Pentachlorophenol	<50	50	µg/L
Phenanthrene	<10	10	µg/L
Phenol	<10	10	μg/L
Pyrene	<10	10	µg/L
Pyridine	<10	10	µg/L
bis(2-Chloroethoxy)methane	<10	10	µg/L
bis(2-Chloroethyl)ether	<10	10	µg/L

Reference: US-EPA 40 CFR Part 136, April 1995

Reviewed By: *i*

Analyst:

٦.

i.

Client:	Conoco, Inc. Gallup	
Project:	Wingate Plant	Date Reported: 10/31/01
Sample ID:	WINGATE EAST POND	Date Sampled: 10/04/01
Lab ID:	0301W04221	Date Received: 10/04/01
Matrix:	Water	Date Extracted: 10/03/01
Condition:	Cool/Intact	Date Analyzed: 10/11/01

	Analytical		
Parameter	Result	PQL	Units
bis(2-Chloroisopropyl)ether	<10	10	µg/L
bis(2-Ethylhexyl)phthalate	<10	10	µg/L

Quality Control - Surrogate Recovery	%	QC Limits
2-Fluorobiphenyl	113	37 - 96
2-Fluorophenol	68	10 - 90
Nitrobenzene-d5	130	38 - 106
Phenol-d6	71	11 - 63
2,4,6-Tribromophenol	77	17 - 115
d14-Terphenyl	96	21 - 82

Reference: US-EPA 40 CFR Part 136, April 1995

Reviewed By:___ n

Analyst:

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE EAST POND	Date Sampled:	10/04/01
Lab ID:	0301W04221	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	N/A
Condition:	Cool/Intact	Date Analyzed:	10/04/01

	Analytical		
Parameter	Result	PQL	Units
Method 624 - Volatiles			
1,1,1,2-Tetrachloroethane	<10	10	µg/L
1,1,1-Trichloroethane	<10	10	µg/L
1,1,2,2-Tetrachloroethane	<10	10	μg/L
1,1,2-Trichloroethane	<10	10	µg/L
1,1-Dichloroethane	<10	10	µg/L
1,1-Dichloroethene	<10	10	µg/L
1,1-Dichloropropene	<10	10	µg/L
1,2,3-Trichlorobenzene	<10	10	µg/L
1,2,3-Trichloropropane	<20	20	µg/L
1,2,4-Trichlorobenzene	<10	10	µg/L
1,2,4-Trimethylbenzene	<10	10	µg/L
1,2-Dibromo-3-chloropropane (DBCP)	<20	20	µg/L
1,2-Dibromoethane	<10	10	µg/L
1,2-Dichlorobenzene	<10	10	μg/L
1,2-Dichloroethane	<10	10	µg/L
1,2-Dichloropropane	<10	10	µg/L
1,3,5-Trimethylbenzene	<10	10	µg/L
1,3-Dichlorobenzene	<10	10	µg/L
1,3-Dichloropropane	<10	10	µg/L
1,4-Dichlorobenzene	<10	10	µg/L
1-Methylnaphthalene	<40	40	µg/L
2,2-Dichloropropane	<10	10	µg/L
2-Chloroethylvinyl ether	<500	500	µg/L
2-Chlorotoluene	<10	10	µg/L
2-Methylnaphthalene	<40	40	µg/L
4-Chlorotoluene	<10	10	µg/L
Benzene	<10	10	µg/L
Bromobenzene	<10	10	µg/L
Bromochloromethane	<10	10	µg/L
Bromodichloromethane	<10	10	µg/L
Bromoform	<10	10	µg/L
Bromomethane	<10	10	µg/L
Carbon Tetrachloride	<10	10	µg/L

Reference: EPA - 40 CFR Part 136.

Reviewed By: Mary

İ

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE EAST POND	Date Sampled:	10/04/01
Lab ID:	0301W04221	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	N/A
Condition:	Cool/Intact	Date Analyzed:	10/04/01

	Analytical		
Parameter	Result	PQL	Units
	-12	40	
Chlorobenzene	<10	10	µg/L
Chloroethane	<20	20	µg/L
Chloroform	<10	10	µg/L
Chloromethane	<10	10	µg/L
Dibromochloromethane	<10	10	µg/L
Dibromomethane	<20	20	µg/L
Dichlorobromomethane	<10	10	µg/L
Dichlorodifluoromethane	<10	10	µg/L
Ethylbenzene	<10	10	µg/L
Hexachlorobutadiene	<10	10	µg/L
Isopropylbenzene	<10	10	µg/L
Methyl tert-butyl Ether (MTBE)	<10	10	µg/L
Methylene chloride	<30	30	µg/L
Naphthalene	<20	20	µg/L
Styrene	<10	10	µg/L
Toluene	<10	10	µg/L
Trichlorofluoromethane	<10	10	μg/L
Vinyl Chloride	<20	20	µg/L
cis-1,2-Dichloroethene	<10	10	μg/L
cis-1,3-Dichloropropene	<10	10	µg/L
n,p-Xylene	<10	10	µg/L
p-Xylene	<10	10	μg/L
sec-Butylbenzene	<10	10	μg/L
ert-Butylbenzene	<10	10	μg/L
irans-1,2-Dichloroethene	<10	10	µg/L
irans-1,3-Dichloropropene	<10	10	μg/L

Quality Control - Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	99	75 - 123
Toluene-d8	97	84 - 115
4-Bromofluorobenzene	102	86 - 117

Reference: EPA - 40 CFR Part 136.

Reviewed By:

May

CHAIN OF CUSTODY RECORD

Client/Project-Name				-	ct Location	Est	14.94		7	ANA	LYSES	/ PA F	RAMET	ERS		
Sampler: (Signature)	* .		Chair		tody Tape			/		/		/	_	Remarks		
Sample No./ Identification	Date	Time	Lab Nur	nber		Matrix		No. of Containers								
£===	10/4	18:30 A.	11042.	21									-			
EAST PRINTS	10/4	10:30.4		- 1		7					1		-			
5- SHATTLES																
LEE BUIHE																
Request																
FARM																
						<u> </u>					<u> </u>					
· · · · · · · · · · · · · · · · · · ·													<u> </u>			
								<u> </u>								
						·······								<u></u>		
······································														<u> </u>		
						<u> </u>	11 <u></u>			<u> </u>						
Relinquished by: (Signature)					Date	Time	Received	by: (Sign	nature)					Date	-	lime
1 Alecent A		y de maria			1934 6 -	14/10.				·						
Relinquished by: (Signature)	1				Date	Time	Received	by: (Sigr	nature)					Date		Time
Relinquished by: (Signature))				Date	Time	Received	by labor	atory: (Signatur	e)	<u> </u>	<u></u>	Date		lime
							Received	11 6			,			for the second		
			nter-Mo	ounta	in Lab	oratorie	es, Ínc.									
555 Absaraka Sheridan, Wyoming 82 Telephone (307) 674-7	2801 She	3 Terra Avenu ridan, Wyomi phone (307)	ie ng 82801	D 1701 F Gillette	Phillips Circl , Wyoming one (307) 6	e 82718	2506 West Farmington Telephone	: Main St n, NM 87	7401	Co	183 State bliege State lephone	ation, T	X 77845		 	4

Client:	Conoco, Inc. Gallup
Project:	Wingate Plant
Sample ID:	WINGATE WEST POND
Lab ID:	0301W04220
Matrix:	Water
Condition:	Cool/Intact

 Date Received:
 10/04/01

 Date Reported:
 10/30/01

 Date Sampled:
 10/04/01

 Time Sampled:
 1030

						A 116	alysis	
Result	Units		Units	PQL	Method	Date	Time	Init.
7.4	s.u.			0.1	EPA 150.1	10/04/0	1 1620	ZW
9,000	µmhos/cm			10	EPA 120.1	10/04/01	1 1620	zw
9,000	mg/L			10	EPA 160.1	10/05/01	1 1530	ZW
<0.01	mg/L			0.01	SM 4500-CN E	10/23/0	1 0915	ML
1,030	mg/L			1	EPA 310.1	10/10/0 ⁻	1 1340	ZW
8,100	mg/L			1	EPA 200.7	10/30/0	1 1620	WL
1,260	mg/L	20.6	meq/L	1	EPA 310.1	10/10/0	1 1340	zw
<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/0 ⁻	1 1340	ZW
<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/0 ⁻	1 1340	zw
275	mg/L	3.44	meq/L	0.2	EPA 300.0	10/20/01	1 1825	zw
49,000	mg/L	4,190	meq/L	1	EPA 300.0	10/20/0 ⁻	1 1825	zw
<0.05	mg/L	<0.01	meq/L	0.05	EPA 340.2	10/08/01	1 1502	ZW
<0.05	mg/L	<0.01	meq/L	0.05	EPA 353.2	10/12/0 ⁻	1 1528	MC
86,900	mg/L	1,810	meq/L	5	EPA 300.0	10/20/01	1 1825	ZW
202	mg/L	10.1	meq/L	0.2	EPA 200.7	10/30/0 ⁻	1 1620	WL
21,300	mg/L	1,750	meq/L	0.2	EPA 200.7	10/30/01	1 1620	WL
2,870	mg/L	73.5	meq/L	0.2	EPA 200.7	10/30/01	1 1620	WL
97,100	mg/L	4,220	meq/L	0.2	EPA 200.7	10/30/0 ⁻	1 1620	WL
TION								
		6,020	meg/L	0.01	SM 1030			
		6,060	meg/L	0.01	SM 1030			
		0.32	%	0.01	SM 1030			
	39,000 79,000 <0.01 1,030 38,100 1,260 <1 <1 <1 275 49,000 <0.05 <0.05 86,900 202 21,300	7.4 s.u. 39,000 μmhos/cm '9,000 mg/L <0.01	7.4 s.u. $39,000$ µmhos/cm $79,000$ mg/L <0.01 mg/L $1,030$ mg/L 20.01 <0.01 <1 mg/L <0.01 <0.01 <275 mg/L 3.44 $49,000$ mg/L <0.01 <0.05 mg/L <0.01 <202 mg/L $1,810$ 202 mg/L $1,750 <2,870 mg/L 73.5 97,100 mg/L 4,220 TION 6,020 <$	7.4 s.u. 39,000 μmhos/cm 79,000 mg/L <0.01	7.4 s.u. 0.1 $39,000$ µmhos/cm 10 $79,000$ mg/L 10 <0.01 mg/L 0.01 1,030 mg/L 1 $38,100$ mg/L 1 $1,260$ mg/L 20.6 meq/L 1 $1,260$ mg/L 20.01 meq/L 1 $1,260$ mg/L 20.6 meq/L 1 <1 mg/L <0.01	7.4 s.u. 0.1 EPA 150.1 $39,000$ µmhos/cm 10 EPA 120.1 $'9,000$ mg/L 10 EPA 160.1 <0.01 mg/L 0.01 SM 4500-CN E $1,030$ mg/L 1 EPA 310.1 10 mg/L 1 EPA 310.1 10 mg/L 1 EPA 310.1 $1,260$ mg/L 20.6 meq/L 1 EPA 310.1 10 EPA 310.1 1 EPA 310.1 1 EPA 310.1 <1 mg/L <0.01	7.4 s.u. 0.1 EPA 150.1 $10/04/0^{\circ}$ 39,000 µmhos/cm 10 EPA 120.1 $10/04/0^{\circ}$ '9,000 mg/L 10 EPA 120.1 $10/04/0^{\circ}$ <0.01	7.4 s.u. 0.1 EPA 150.1 10/04/01 1620 $99,000$ µmhos/cm 10 EPA 120.1 10/04/01 1620 $99,000$ mg/L 10 EPA 160.1 10/05/01 1530 <0.01 mg/L 0.01 SM 4500-CN E 10/23/01 0915 $1,030$ mg/L 1 EPA 310.1 10/10/01 1340 $88,100$ mg/L 1 EPA 200.7 10/30/01 1620 $1,260$ mg/L 20.6 meq/L 1 EPA 310.1 10/10/01 1340 <1 mg/L 0.01 meq/L 1 EPA 310.1 10/10/01 1340 <1 mg/L <0.01

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983. SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,18th Edition, 1992. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994. SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,19th Edition, 1995. Reviewed By:

Client:	Conoco, Inc. Gallup
Project:	Wingate Plant
Sample ID:	WINGATE WEST POND
Lab ID:	0301W04220
Matrix:	Water
Condition:	Cool/Intact

 Date Received:
 10/04/01

 Date Reported:
 10/30/01

 Date Sampled:
 10/04/01

 Time Sampled:
 1030

	Analytical					Ana	lysis	
Parameter	Result	Units	Units	PQL	Method	Date	Time	Init.
TOTAL METALS								
Arsenic	0.008	mg/L		0.005	SM 3114B	10/26/01	1715	JG
Barium	0.03	mg/L		0.01	EPA 200.7	10/20/01	1821	WL
Cadmium	0.001	mg/L		0.001	EPA 200.9	10/20/01	1821	WL
Chromium	<0.01	mg/L		0.01	EPA 200.7	10/20/01	1821	WL
Lead	0.071	mg/L		0.005	EPA 200.9	10/20/01	1821	WL
Mercury	<0.001	mg/L		0.001	EPA 245.1	10/08/01	1130	JG
Selenium	<0.005	mg/L		0.005	SM 3114B	10/15/01	1100	JG
Silica	12.1	mg/L		0.1	EPA 200.7	10/20/01	1821	WL
Silver	0.11	mg/L		0.01	EPA 200.7	10/20/01	1821	WL

Reference: SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,19th Edition, 1995. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

K 7 Reviewed By: セ

2506 West Main Street Farmington, NM 87401

٦

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE WEST POND	Date Sampled:	10/04/01
Lab ID:	0301W04220	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	N/A
Condition:	Cool/Intact	Date Analyzed:	10/04/01

	Analytical		
Parameter	Result	PQL	Units
Method 624 - Volatiles			
1,1,1,2-Tetrachloroethane	<10	10	µg/L
1,1,1-Trichloroethane	<10	10	μg/L
1,1,2,2-Tetrachloroethane	<10	10	μg/L
1,1,2-Trichloroethane	<10	10	µg/L
1,1-Dichloroethane	<10	10	µg/L
1,1-Dichloroethene	<10	10	µg/L
1,1-Dichloropropene	<10	10	μg/L
1,2,3-Trichlorobenzene	<10	10	μg/L
1,2,3-Trichloropropane	<20	20	μg/L
1,2,4-Trichlorobenzene	<10	10	μg/L
1,2,4-Trimethylbenzene	<10	10	µg/L
1,2-Dibromo-3-chloropropane (DBCP)	<20	20	µg/L
1,2-Dibromoethane	<10	10	μg/L
1,2-Dichlorobenzene	<10	10	µg/L
1,2-Dichloroethane	<10	10	µg/L
1,2-Dichloropropane	<10	10	μg/L
1,3,5-Trimethylbenzene	<10	10	µg/L
1,3-Dichlorobenzene	<10	10	µg/L
1,3-Dichloropropane	<10	10	µg/L
1,4-Dichlorobenzene	<10	10	µg/L
1-Methylnaphthalene	<40	40	μg/L
2,2-Dichloropropane	<10	10	μg/L
2-Chloroethylvinyl ether	<500	500	µg/L
2-Chlorotoluene	<10	10	μg/L
2-Methylnaphthalene	<40	40	µg/L
4-Chlorotoluene	<10	10	µg/L
Benzene	<10	10	µg/L
Bromobenzene	<10	10	µg/L
Bromochloromethane	<10	10	µg/L
Bromodichloromethane	<10	10	µg/L
Bromoform	<10	10	µg/L
Bromomethane	<10	10	µg/L
Carbon Tetrachloride	<10	10	µg/L

Reference: EPA - 40 CFR Part 136.

jie Gy Reviewed By:

İ

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported: 1	0/31/01
Sample ID:	WINGATE WEST POND	Date Sampled: 1	0/04/01
Lab ID:	0301W04220	Date Received: 1	0/04/01
Matrix:	Water	Date Extracted: N	N/A
Condition:	Cool/Intact	Date Analyzed: 1	0/04/01

Parameter	Analytical Result	PQL	Units
· · · · · · · · · · · · · · · · · · ·			
Chlorobenzene	<10	10	µg/L
Chloroethane	<20	20	µg/L
Chloroform	<10	10	μg/L
Chloromethane	<10	10	µg/L
Dibromochloromethane	<10	10	µg/L
Dibromomethane	<20	20	µg/L
Dichlorobromomethane	<10	10	µg/L
Dichlorodifluoromethane	<10	10	µg/L
Ethylbenzene	<10	10	µg/L
lexachlorobutadiene	<10	10	μg/L
sopropylbenzene	<10	10	µg/L
Methyl tert-butyl Ether (MTBE)	<10	10	µg/L
Methylene chloride	<30	30	µg/L
Naphthalene	<20	20	μg/L
Styrene	<10	10	µg/L
Toluene	<10	10	µg/L
Frichlorofluoromethane	<10	10	µg/L
/inyl Chloride	<20	20	µg/L
sis-1,2-Dichloroethene	<10	10	µg/L
sis-1,3-Dichloropropene	<10	10	µg/L
n,p-Xylene	<10	10	µg/L
o-Xylene	<10	10	µg/L
sec-Butylbenzene	<10	10	µg/L
ert-Butylbenzene	<10	10	µg/L
rans-1,2-Dichloroethene	<10	10	µg/L
rans-1,3-Dichloropropene	<10	10	μg/L

Quality Control - Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4 (Surr)	96	75 - 123
Toluene-d8 (Surr)	99	84 - 115
4-Bromofluorobenzene(SUR-8021B)	106	86 - 117

Reference: EPA - 40 CFR Part 136.

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE WEST POND	Date Sampled:	10/04/01
Lab ID:	0301W04220	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	10/03/01
Condition:	Cool/Intact	Date Analyzed:	10/11/01

	Analytical		
Parameter	Result	PQL	Units
Method 625 - Semivolatiles		·····	
1,2,4-Trichlorobenzene	<10	10	µg/L
1,2-Dichlorobenzene	<10	10	µg/L
1,3-Dichlorobenzene	<10	10	µg/L
1,4-Dichlorobenzene	<10	10	µg/L
2,4,5-Trichlorophenol	<10	10	µg/L
2,4,6-Trichlorophenol	<10	10	µg/L
2,4-Dimethylphenol	<10	10	µg/L
2,4-Dinitrophenol	<50	50	µg/L
2,4-Dinitrotoluene	<10	10	µg/L
2,6-Dinitrotoluene	<10	10	µg/L
2-Chloronaphthalene	<10	10	µg/L
2-Chlorophenol	<10	10	µg/L
2-Methylnaphthalene	<10	10	µg/L
2-Methylphenol	<10	10	µg/L
2-Nitroaniline	<50	50	µg/L
2-Nitrophenol	<10	10	µg/L
3,3'-Dichlorobenzidine	<10	10	µg/L
3-Nitroaniline	<50	50	µg/L
4,6-Dinitro-2-methylphenol	<50	50	µg/L
4-Bromophenyl phenyl ether	<10	10	µg/L
4-Chloro-3-methylphenol	<20	20	μg/L
1-Chloroaniline	<20	20	μg/L
1-Chlorophenyl phenyl ether	<10	10	µg/L
1-Methylphenol	<10	10	µg/L
4-Nitrophenol	<10	10	µg/L
Acenaphthene	<10	10	µg/L
Acenaphthylene	<10	10	µg/L
Aniline	<10	10	µg/L
Anthracene	<10	10	µg/L
Benzidine	<20	20	µg/L
Benzo(a)anthracene	<10	10	µg/L
Benzo(a)pyrene	<10	10	µg/L
Benzo(b)fluoranthene	<10	10	µg/L

Reference: US-EPA 40 CFR Part 136, April 1995

Reviewed By: DR

- --

-

Ļ

Ļ

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported: 10	/31/01
Sample ID:	WINGATE WEST POND	Date Sampled: 10	/04/01
Lab ID:	0301W04220	Date Received: 10	/04/01
Matrix:	Water	Date Extracted: 10	/03/01
Condition:	Cool/Intact	Date Analyzed: 10	/11/01

	Analytical	Analytical		
Parameter	Result	PQL	Units	
Benzo(g,h,i)perylene	<10	10	µg/L	
Benzo(k)fluoranthene	<10	10	μg/L	
Benzoic Acid	<50	50	μg/L	
Benzyl Alcohol	<20	20	μg/L	
Butylbenzylphthalate	<10	10	μg/L	
Carbazole	<10	10	-	
Chrysene	<10	10	μg/L μg/L	
Di-n-Butylphthalate	<10	10	μg/L	
Di-n-Octylphthalate	<10	10		
Dien-Octyphinalate Dibenz(a,h)anthracene	<10	10	µg/L	
Dibenzofuran	<10	10	µg/L	
Diethylphthalate	<10	10	µg/L	
Dimethylphthalate	<10	10	µg/L µg/l	
Fluoranthene	<10	10	μg/L μg/L	
Fluorene	<10 <10	10		
Hexachlorobenzene	<10	10	µg/L	
Hexachloroberizerie Hexachlorobutadiene	<10	10	µg/L	
Hexachlorocyclopentadiene	<10	10	µg/L	
Hexachloroethane	<10 <10	10	µg/L	
Indeno(1,2,3-cd)pyrene	<10 <10	10	µg/L	
Isophorone	<10	10	µg/L	
	<10	10	µg/L	
N-Nitroso-di-n-propylamine			µg/L	
N-Nitrosodimethylamine	<20 <10	20 10	µg/L	
N-Nitrosodiphenylamine			µg/L	
Naphthalene	<10	10	µg/L	
Nitrobenzene	<10	10	µg/L	
Pentachlorophenol	<50	50	µg/L	
Phenanthrene	<10	10	µg/L	
Phenol	<10	10	µg/L	
Pyrene	<10	10	µg/L	
	<10	10	µg/L	
bis(2-Chloroethoxy)methane	<10	10	µg/L	
bis(2-Chloroethyl)ether	<10	10	µg/L	

Reference: US-EPA 40 CFR Part 136, April 1995

W Reviewed By:

Analyst:

2506 West Main Street Farmington, NM 87401

i.

Client:	Conoco, Inc. Gallup	
Project:	Wingate Plant	Date Reported: 10/31/01
Sample ID:	WINGATE WEST POND	Date Sampled: 10/04/01
Lab ID:	0301W04220	Date Received: 10/04/01
Matrix:	Water	Date Extracted: 10/03/01
Condition:	Cool/Intact	Date Analyzed: 10/11/01

	Analytical			
Parameter	Result	PQL	Units	
bis(2-Chloroisopropyl)ether	<10	10	µg/L	
bis(2-Ethylhexyl)phthalate	<10	10	µg/L	

Quality Control - Surrogate Recovery	%	QC Limits
2-Fluorobiphenyl	84	37 - 96
2-Fluorophenol	69	10 - 90
Nitrobenzene-d5	94	38 - 106
Phenol-d6	68	11 - 63
2,4,6-Tribromophenol	122	17 - 115
d14-Terphenyl	210	21 - 82

Reference: US-EPA 40 CFR Part 136, April 1995

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE WEST POND	Date Sampled:	10/04/01
Lab ID:	0301W04220	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	N/A
Condition:	Cool/Intact	Date Analyzed:	10/04/01

	Analytical		
Parameter	Result	PQL	Units
Method 624 - Volatiles	ti in an ann an		
1,1,1,2-Tetrachloroethane	<10	10	µg/L
1,1,1-Trichloroethane	<10	10	μg/L
1,1,2,2-Tetrachloroethane	<10	10	μg/L
1,1,2-Trichloroethane	<10	10	μg/L
1,1-Dichloroethane	<10	10	μg/L
1,1-Dichloroethene	<10	10	µg/L
1,1-Dichloropropene	<10	10	μg/L
1,2,3-Trichlorobenzene	<10	10	µg/L
1,2,3-Trichloropropane	<20	20	µg/L
1,2,4-Trichlorobenzene	<10	10	µg/L
1,2,4-Trimethylbenzene	<10	10	µg/L
1,2-Dibromo-3-chloropropane (DBCP)	<20	20	µg/L
1,2-Dibromoethane	<10	10	μg/L
1,2-Dichlorobenzene	<10	10	µg/L
1,2-Dichloroethane	<10	10	µg/L
1,2-Dichloropropane	<10	10	µg/L
1,3,5-Trimethylbenzene	<10	10	µg/L
1,3-Dichlorobenzene	<10	10	µg/L
1,3-Dichloropropane	<10	10	`μg/L
1,4-Dichlorobenzene	<10	10	μg/L
1-Methylnaphthalene	<40	40	μg/L
2,2-Dichloropropane	<10	10	µg/L
2-Chloroethylvinyl ether	<500	500	µg/L
2-Chlorotoluene	<10	10	µg/L
2-Methylnaphthalene	<40	40	µg/L
4-Chlorotoluene	<10	10	µg/L
Benzene	<10	10	µg/L
Bromobenzene	<10	10	µg/L
Bromochloromethane	<10	10	µg/L
Bromodichloromethane	<10	10	µg/L
Bromoform	<10	10	µg/L
Bromomethane	<10	10	μg/L
Carbon Tetrachloride	<10	10	µg/L

Reference: EPA - 40 CFR Part 136.

2506 West Main Street Farmington, NM 87401

Client:	Conoco, Inc. Gallup		
Project:	Wingate Plant	Date Reported:	10/31/01
Sample ID:	WINGATE WEST POND	Date Sampled:	10/04/01
Lab ID:	0301W04220	Date Received:	10/04/01
Matrix:	Water	Date Extracted:	N/A
Condition:	Cool/Intact	Date Analyzed:	10/04/01

	Analytical			
Parameter	Result	PQL	Units	
Oblavabanzana	<10	10	ug/l	
Chlorobenzene	<20	20	μg/L μg/L	
Chloroethane	<10	20 10		
Chloroform Chloromethane	<10	10	µg/L	
	<10	10	µg/L	
Dibromochloromethane	<20		µg/L	
Dibromomethane	<20 <10	20	µg/L	
Dichlorobromomethane		10	µg/L	
Dichlorodifluoromethane	<10	10	µg/L	
Ethylbenzene	<10	10	µg/L	
Hexachlorobutadiene	<10	10	µg/L	
Isopropylbenzene	<10	10	µg/L	
Methyl tert-butyl Ether (MTBE)	<10	10	µg/L	
Methylene chloride	<30	30	µg/L	
Naphthalene	<20	20	µg/L	
Styrene	<10	10	µg/L	
Toluene	<10	10	µg/L	
Trichlorofluoromethane	<10	10	µg/L	
Vinyl Chloride	<20	20	µg/L	
cis-1,2-Dichloroethene	<10	10	µg/L	
cis-1,3-Dichloropropene	<10	10	µg/L	
m,p-Xylene	<10	10	µg/L	
o-Xylene	<10	10	µg/L	
sec-Butylbenzene	<10	10	µg/L	
tert-Butylbenzene	<10	10	μg/L	
trans-1,2-Dichloroethene	<10	10	μg/L	
trans-1,3-Dichloropropene	<10	10	µg/L	

Quality Control - Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	96	75 - 123
Toluene-d8	99	84 - 115
4-Bromofluorobenzene	106	86 - 117

Reference: EPA - 40 CFR Part 136.

Reviewed By: MC 57

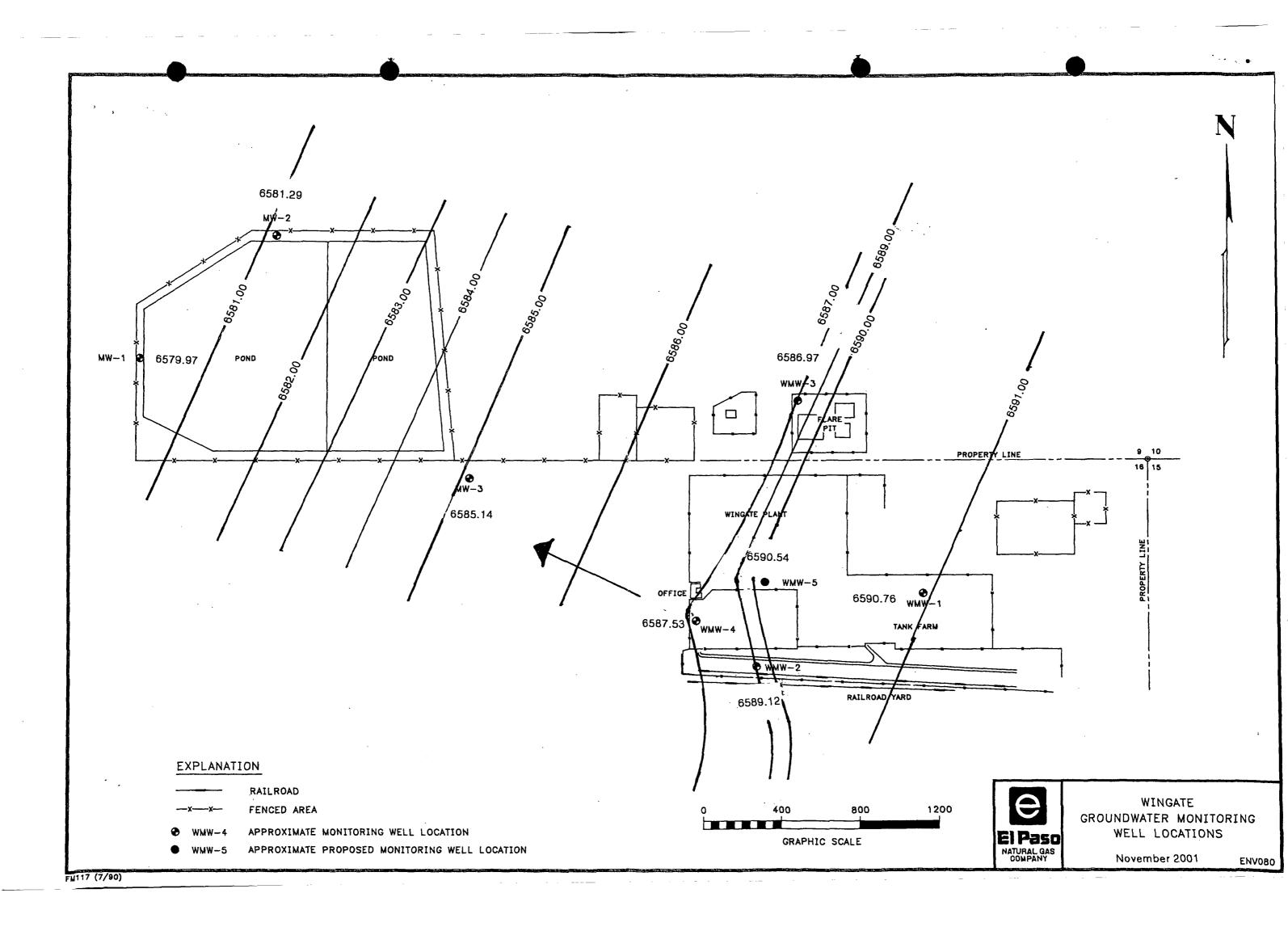
CHAIN OF CUSTODY RECORD

Client/Project Name					ct Location					ANALY	SES / PA	RAMETE	RS	
Sampler: (Signature)	et et et et et et et et et et et et et e		Chai		stody Tape			7	/	1			emarks	
hald the stand the sea				•			ers /	/	/ /			emarks		
Sample No./ Identification	Date	Time	Lab Nur	mber		Matrix		No. of Containers						
WEST PLADS	10mg	10. E) A	en Ett 24	17.20										
	44													
2 MAN MOL	No.												<u> </u>	
	9													
		N. Harrison												
		N. A.												
			1	·										
				^{Vi} til 										
				``										
					**.*									
					the strice of									
	/		<u> </u>			· · · · · · · · · · · · · · · · · · ·								
Relinquished by: (Signature)		j.			Date		Received I	by: (Signa	ature)				Date	Time
L Methode V		140-	~·		10/4	1000 pm								
Relinquished by: (Signature)	**				Date	Time	Received I	by: (Signa	ature)				Date	Time
		<i>w</i> .										<u> </u>		
Relinquished by: (Signature)					Date	Time	Received I	by labora	tory:{Si	gnature)			Date	Time
				<u> </u>										1 Stand
			Inter-Mo	ounta	in Lab	oratorie	s, Inc.							
Image: State of the state of			Phillips Circle e, Wyoming (one (307) 6	32718	2506 West Farmington Telephone	, NM 874	401	Colle	State Hwy ge Station, hone (979)	TX 77845		•••••••••••••••••••••••••••••••••••••••		

WINGATE PLANT ANALYTICAL RESULTS

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			µg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 μg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 µg/L	700 μg/L	10000 µg/L				
11/15/91	MW-02	MOI	ND	ND	ND	0.1	-	2.6	1	
01/22/92	MW-02	MOI	ND	ND	ND	ND	-	-	1	1
02/25/93	MW-02	MOI	ND	ND	ND	ND	-	-		
01/22/92	MW-02	EPNG	<0.5	<0.5	<0.5	<0.5	- 1	-		1
04/28/92	MW-02	EPNG	0.002	<1.0	<1.0	<1.0	<100	-	1	
01/93	MW-02	EPNG	-	-	-	-	-	-		1
04/06/93	MW-02	EPNG	2.0	2.0	ND	1.0	-	_	1	[
09/14/94	MW-02	EPNG	<0.5	<0.5	<0.5	<1.0				
03/01/95	MW-02	MOI	< 0.3	<0.3	<0.3	<0.6		< 0.3	1030	57
08/22/95	MW-02	EPNG	ND	ND	ND	ND			1	
03/27/96	MW-02	MOI	ND	ND	ND	ND		ND	1120	53.7
08/27/96	MW-02	EPNG	ND	ND	ND	ND			1	
03/26/97	MW-02	CON	2.0	ND	ND	ND		0.5	1100	56
08/27/97	MW-02	EPNG	ND	ND	ND	ND		<u> </u>	1	1
03/31/98	MW-02	CON	ND	ND	ND	ND		ND	1140	60.8
08/25/98	MW-02	EPNG	ND	ND	ND	ND		··	1	
09/22/99	MW-02	EPNG	ND	ND	ND	ND			980	70
09/22/99	MW-02D	EPNG	ND	ND	ND	ND			1000	66
11/13/01	MW-02	EPNG	ND	ND	ND	ND		ND	1100	71

WINGATE PLANT ANALYTICAL RESULTS


SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			μg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 µg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 µg/L	700 μg/L	10000 μg/L				
01/15/91	MW-03	MOI	0.2	0.2	0.4	1.7	ND	-	1	T
01/21/92	MW-03	MOI	ND	3.9	0.6	4.4	•	-	1	[
02/25/93	MW-03	MOI	ND	ND	ND	ND	-	-		
01/92	MW-03	EPNG	-	-	-	-	-	-	1	
04/28/92	MW-03	EPNG	<1.0	<1.0	<1.0	<1.0	<100		1	
01/12/93	MW-03	EPNG	<1.0	2.0	<1.0	<1.0	-	-	1	
04/06/93	MW-03	EPNG	ND	ND	ND	ND	-	-		
01/06/94	MW-03	EPNG	46	1.4	3.5	4.7				
01/06/94	MW-03	EPNG	1.5	1.4	1.2	3.4				
09/14/94	MW-03	EPNG	2	<0.5	< 0.5	<1.0				[
09/14/94	MW-03D	EPNG	1.4	<0.5	<0.5	<1.0				
03/01/95	MW-03	MOI	<0.3	< 0.3	<0.3	<0.6		<0.3	481	18.7
08/22/95	MW-03	EPNG	ND	ND	ND	ND				
03/28/96	MW-03	MOI	ND	ND	ND	ND		ND	540	23.7
08/28/96	MW-03	EPNG	ND	ND	ND	ND			1	
03/26/97	MW-03	CON	9.2	ND	ND	ND		1.1	600	21
08/27/97		EPNG	ND	ND	ND	ND			1	
03/31/98	MW-03	CON	ND	ND	ND	ND		ND	530	19.2
08/26/98	MW-03	EPNG	ND	ND	ND	ND		<u></u>		
09/22/99	MW-03	EPNG	ND	ND	ND	ND		· · · · · · · · · · · · · · · · · · ·	750	59
11/13/01	MW-03	EPNG	ND	ND	ND	ND		ND	481	16

WINGATE PLANT ANALYTICAL RESULTS

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chlorid
			μg/L	μg/L	μg/L	μg/L		μg/L	mg/L	mg/L
		Standard	10 µg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L				1
07/10/91	WMW-04	MOI	ND	ND	ND	ND	-	14.7		1
10/28/91	WMW-04	MOI	1.3	ND	ND	ND	-	ND	1	1
01/21/92	WMW-04	MOI	1.9	4.0	1.1	5.1	-	-		<u> </u>
02/25/93	WMW-04	MOI	7.6	3.0	ND	ND	-	-	+	<u> </u>
02/06/92	WMW-04	EPNG	0.7	<0.5	<0.5	<0.5		-		1
04/29/92	WMW-04	EPNG	3.0	<1.0	<1.0	<1.0	<100	•	1	<u> </u>
01/12/93	WMW-04	EPNG	68.0	8.0	<1.0	4.0	-	-		1
04/07/93	WMW-04	EPNG	ND	1.0	ND	ND	-	-		
01/05/94	WMW-04	EPNG	13	1.5	3.3	5.6				
09/13/94	WMW-04	EPNG	<0.5	<0.5	2	2			1	
03/01/95	WMW-04	MOI	0.9	0.8	<0.3	<0.6		<0.3	1470	123
08/23/95	WMW-04	EPNG	ND	ND	ND	ND				
03/28/96	WMW-04	MOI	ND	ND	ND	ND		ND	1500	110
08/27/96	WMW-04	EPNG	ND	ND	ND	ND			1	
08/27/96	WMW-04D	EPNG	ND	ND	ND	ND			1	
03/25/97	WMW-04	CON	ND	ND	ND	ND		0.4	1500	120
08/26/97	WMW-04	EPNG	ND	ND	ND	ND				
03/30/98	WMW-04	CON	3.6	ND	ND	ND		ND	1440	110
08/25/98	WMW-04	EPNG	ND	ND	ND	ND				
09/22/99	WMW-04	EPNG	ND	ND	ND	ND			1200	110
11/13/01	WMW-04	EPNG	ND	ND	ND	ND		ND	1410	130
11/13/01	WMW-04D	EPNG	ND	ND	ND	ND		1	1390	150

WINGATE PLANT GROUNDWATER ELEVATIONS November 2001

	TOP OF RISER		GROUNDWATER
WELL NUMBER	ELEVATION	DEPTH TO WATER	ELEVATION
MW-1	6,584.66	4.69	6,579.97
MW-2	6,585.37	4.08	6,581.29
MW-3	6,589.84	4.70	6,585.14
WMW-1	6,596.04	5.28	6,590.76
WMW-2	6,593.69	4.57	6,589.12
WMW-3	6,593.91	6.94	6,586.97
WMW-4	6,594.50	6.97	6,587.53
WMW-5	6,596.98	6.44	6,590.54
Data provided in feet		0.44	0,390.34

Joyce M. Miley Environmental Consultant Natural Gas & Gas Products

Certified Mail No: 7099 3220 0003 1150 1865 Return Receipt Requested

December 28, 2000

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505

Conoco Inc Humber 3036 P.O. Box 2197 Houston, TX 77252-2197 (281) 293-4498 Fax: (281) 293-1214 65 VRERVATION DIVIS

Re: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

Please find attached the results from the annual evaporation pond sampling event and the annual groundwater monitoring well sampling event at Conoco's NGGP's Wingate facility.

The ponds were sampled on October 10, 2000 pursuant to Discharge Plan GW-54 Approval Condition #17 (November 21, 1997) and analyzed by Inter-Mountain Laboratories, Farmington New Mexico. The monitoring wells were sampled according to our agreement and follow-up letter dated June 23, 1999 reducing the sampling of MW-1, MW-2, MW-3 and WMW-4 to an annual basis. Monitoring wells were sampled on October 13, 2000 and analyzed by Pinnacle Laboratories, Albuquerque, New Mexico. Water level measurements were taken on October 13, 2000.

If you have any questions or require any additional information, please contact Joyce Miley or Louis Ferrari at (505) 863-1028. Thank you for your time and consideration.

Sincerely,

Joyce Male

Joyce M. Miley

cc: Chuck White – Wingate Louis Ferrari - Wingate File: ENV 215-5-6