GW - 199

MONITORING REPORTS

DATE:

COMPREHENSIVE STATUS REPORT

CHAMPION TECHNOLOGIES, INC. **4001 SOUTH HIGHWAY 18** HOBBS (LEA COUNTY), NEW MEXICO NE 1/4 of SE 1/4 of Section 15, Township 19 South, Range 38 East

PREPARED FOR:

CHAMPION TECHNOLOGIES, INC. 3130 FM 521 FRESNO, TEXAS 77545

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 4600 WEST WALL **MIDLAND, TEXAS 79703**

MARCH 31, 2003

Todd Choban

Geologist/ Sr. Project Manager

Project Manager

Midland, Texas ■ 4600 W. Wall 79703 ■ Office 915-522-1139 ■ Fax 915-520-4310

Houston, Texas ■ 12727 Featherwood Drive, Suite 220, 77034 ■ Office 281-484-3595 ■ Fax 281-484-3331

Hobbs, New Mexico ■ 2540 West Marland, 88240 ■ Office 505-397-4882 ■ Fax 505-397-4701

TABLE OF CONTENTS

1.0	<u>Introdu</u>	ction	1
	1.1	Site Histo	ry and usage1
	1.2	Project Ob	pjective1
2.0	Site De	escription	2
	2.1	Physical I	ocation2
	2.2	Site Layou	ıt2
	2.3	Soil Descr	ription3
	2.4	Regional (Geology3
	2.5	Site Litho	logy3
	2.6	Regional l	Hydrology4
	2.7	Site Hydro	ology4
3.0			4
			4
	3.2	Area 2	4
			7
	3.4	Septic Sys	stem Leachfield8
			Corner of Property8
			Vell MW-8 Area9
			Drilling and Soil Sampling9
	3.8	Backgroun	nd Soil Concentrations10
4.0			estigation12
			for Monitor Well Placement
			Well Drilling, Installation, and Development12
			ening and Measurement
			iter Sampling13
	4.5		estigated - Groundwater14
			Downgradient Area of Area 214
		4.5.2	Downgradient Area of Area 315
		4.5.3	Septic System Leachfield15
		4.5.4	Upgradient of Monitor Well MW-415
		4.5.5	Off-Site and Downgradient of Monitor Well MW-416
		4.5.6	Background Data16
5.0			s and their Significance
	5.1		tigation16
			Area 216
			Area 3
	5.2	Groundwa	ater investigation

	5.2.1 Downgradient of Area 218
	5.2.2 Downgradient of Area 319
	5.2.3 Septic System Leachfield
	5.2.4 Upgradient of Monitor Well MW-419
	5.2.5 Off-Site and Downgradient of Monitor Well MW-420
	5.2.6 Background Data20
6.0 <u>Dispositi</u>	on of Excavated Material21
7.0 Potential	Impact of Chloride in Soil to Groundwater
	istorical and Current Land Use22
7.2 P	otential Impact of Chloride in Soil to Groundwater22
7.3 C	ompaction of Soil24
8.0 Risk Ass	essment
9.0 Conclusi	ons26
9.1 S	oil Remediation and Assessment26
9.2 G	roundwater Assessment27
10.0 Recomm	nendations
11.0 Referen	<u>ces</u> 30
	TABLES
Table 1	Concentrations of Metals in Groundwater/Soil
Table 2	Concentrations of General Chemistry in Groundwater/Soil
Table 3	Concentrations of Volatile Organic Compounds in Groundwater/Soil
Table 4	Concentrations of Semi Volatile Organic Compounds in Groundwater/Soil
Table 5	Concentrations of Alkalinity and Specific Conductance
Table 6	Concentrations of TPH (Aliphatics and Aromatics) in Groundwater/Soil
Table 7	Concentrations of TPH in Groundwater
Table 8	Sampling Parameters and Sampling Requirements
Table 9	Groundwater Elevations
Table 10	Concentrations of Background Samples in Groundwater/Soil
Table 11	Maximum Contaminant Concentrations Detected in Groundwater
Table 12	Waste Characterization
Table 13	Concentrations of TPH and BTEX in Soil
Table 14	Quarterly Groundwater Sampling Parameters
Table 15	Maximum Concentrations of Contaminants Detected in all Data that has Not
	Reen Removed by Excavation

.

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	ETGI Soil Boring Location Map
Figure 4	Soil Concentrations Map for Potential COC
Figure 5	WQCC Exceedences and Chromium and Chloride Concentrations (8/2/02)
Figure 6	WQCC Exceedences and Chromium and Chloride Concentrations (10/21/02)
Figure 7	WQCC Exceedences and Chromium and Chloride Concentrations (2/19/02)
Figure 8	Groundwater Gradient Map for August 2, 2002
Figure 9	Groundwater Gradient Map for October 21, 2002
Figure 10	Groundwater Gradient Map for February 18, 2003
Figure 11	Proposed Temporary Boring and Temporary Peizometer Locations
Figure 12	Groundwater Contaminant Zones and Proposed Treatment and Monitor
	Well Locations
Figure 13	0.5 Mile Water Well Survey
Figure 14	Detail Confirmation Soil Sample Locations Area 2
Figure 15	Confirmation Sample Area 3

APPENDICES

Appendix A	Soil Boring Logs
Appendix B	Monitor Well Logs and Well Completion Diagrams
Appendix C	Analytical Results in Chronological Order
Appendix D	Manifests for Disposal of Excavated Materials
Appendix E	Modeling of Chloride Report
Appendix F	Risk Assessment Report
Annendix G	Photographs

Wayne,

In efforts to conserve resources I have enclosed correction pages for the Comprehensive Status Report (CSR) sent to you on March 29th, 2003 instead of reproducing the report in its entirety. If this is not satisfactory, please contact me and we will send you a complete report.

Please note that these pages should be **added** to your current document (CSR) and not used as replacement pages. Due to changes in the Hicks report and subsequently to the ETGI report, the corrected page numbers may not match exactly with those in the copy you currently have. You may insert the corrected pages behind the current pages to ensure no content is lost. The CSR corrected pages are in red text for easy reference.

The corrected pages from the Hicks Chloride report (Appendix E) are **not** highlighted and may be used as replacement pages

If you have any questions about receiving the appropriate report information, please contact me.

Todd Choban Geologist/Sr. Project Manager ETGI – Midland Office (915) 522 1139

MAY 0 6 2003
Environmental Bureau
Call Conservation Director

DISTRIBUTION

Copy 1: Wayn

Wayne Price

Energy Minerals And Natural Resources Department

Oil Conservation Division (OCD)

2040 South Pacheco P.O. Box 6429

Santa Fe, New Mexico 87505-5472

Copy 2:

Larry Johnson

Energy Minerals And Natural Resources Department

Oil Conservation Division (OCD)

1625 N. French Drive Hobbs, New Mexico 88240

Copy 3:

Ralph Corry

Champion Technologies.

3130 FM 521 P.O. Box 450499 Fresno, Texas 77545

Copy 4:

Dwight E. Vorpahl

Attorney at Law

3355 W. Alabama, Suite 410 Houston, Texas 77098

Copy 5:

Richard Cox

Champion Technologies 5723 Cimarron Manor Gutherie, Oklahoma 73044

Copy 6:

Champion Technologies

4001 S Highway 18 P.O. Box 2187

Hobbs, New Mexico 88240

Copy 7:

Environmental Technology Group, Inc.

4600 West Wall

Midland, Texas 79703

Copy 8:

Environmental Technology Group, Inc.

12727 Featherwood Drive #220

Houston, Texas 77034

OHERONDO STORY OF THE CENTRAL OF THE PROPERTY OF THE PROPERTY

CORRECTION PAGES FOR TEXT OF CHAMPION-HOBBS FACILITY COMPREHENSIVE STATUS REPORT

1.0 INTRODUCTION

Environmental Technology Group, Inc. (ETGI) was retained in July of 2002 by Champion Technologies (Champion) to respond to a Letter of Deficiency from the New Mexico Oil Conservation Division (NMOCD) dated June 03, 2002. A Stage 2 Abatement Plan Proposal (APP) dated February 05, 2002 had been previously submitted to the NMOCD by Enercon Services, Inc. (Enercon). This APP was conditionally approved by the NMOCD on June 12, 2002.

This Comprehensive Status Report (CSR) was designed to address the conditions, procedures, results and recommendations of the APP, Letter of Deficiency and any new abatement circumstances discovered during implementation.

1.1 SITE HISTORY AND USAGE

Site History and Usage has remained relatively unchanged subsequent to the submission of the Site Investigation Report (SIR) dated September 10, 2000. This Champion facility stores and distributes chemicals for the petroleum industry in Eastern New Mexico and West Texas. Additional information can be found in the September 10, 2000 SIR submitted to NMOCD by Enercon.

1.2 PROJECT OBJECTIVE

The objective of this project is to continue to investigate, evaluate and mitigate any soil and groundwater contaminants of concern pursuant to The New Mexico Water Quality Control Commission (NMWQCC) Regulations 20NMAC 6.2.4106.E. The focus of this CSR is to document abatement activities of the heavily contaminated soil and delineate groundwater impacted with chemicals of concern (COC). Additionally, risk-based assessment and transport modeling will be utilized for supporting proposed remediation methodologies to attain NMWQCC standards that are protective of human health, safety and the environment. This objective is being accomplished through the following activities:

- 1. Review of relevant site, vicinity and research documents.
- 2. Completion of a detailed door-to-door water-well survey within one-half mile of the Champion facility. This data was used for updating the original water-well report and map including domestic wells along Llano Grande Street to the north and west of the facility (Figure 13).
- 3. Developing and implementing a soil investigation program that included:
 - soil borings and sample collection for Area 2 beneath the existing bulk chemical containment area,
 - soil borings and sample collection for Area 3 around the "trenched area/SB-21 area",

2.6 REGIONAL HYDROLOGY

The primary regional aquifer is the Ogallala Aquifer. Where present, the Ogallala Aquifer is usually characterized by relatively high hydraulic conductivity and transmissivity. Sediments of the Ogallala Aquifer are commonly interfingered and intermixed silts, clays, sands and gravels derived from erosion of the southern end of the Rocky Mountains located approximately 100 miles west of the area. Regionally, the Ogallala Aquifer thins from north to south in Lea County and total dissolved solid content increases from north to south. Perched zones can exist with limited aerial extent above the primary aquifer, although no regional perches are recognized in the study area.

2.7 SITE HYDROLOGY

Groundwater is encountered at approximately 55 feet bgs across the site. Caliche layers are also located within the saturated zone beneath the site. The saturated thickness is approximately 80 feet based on drilling records for the on-site domestic water well installed by Eads Drilling Co. in 1993. Total Dissolved Solids (TDS) content varied from 882 mg/l in monitor well MW-15 to 1550 mg/l in monitor well MW-5. Groundwater flow has been generally west to east across the property for the duration of the gauging events conducted by ETGI.

Groundwater in the area has historically provided domestic water to residences, livestock and limited areas of irrigation. All three uses have been documented on the adjoining properties.

3.0 SOIL INVESTIGATION

3.1 AREA 1

Area 1 has previously been reported as being located on the west side and surrounded by Area 2. For the purposes of this report Area 1 has been incorporated into the Area 2 soil investigation. There will be no further separate discussion of Area 1.

3.2 AREA 2

Area 2 is located directly west of the existing warehouse on the north-central part of the property (Figure 2). The purpose of sample collection was to delineate the horizontal and vertical extent of a suspected former pit. Soil samples in Area 2 were collected using an air-rotary drilling rig and decontaminated split-spoon sampler. Soil sample locations in Area 2 consisted of soil borings SB-41, SB-42, SB-47 through SB-51, SB-53 and SB-57 through SB-64 (Figure 3). Typically, samples were collected at 5-foot intervals to total depth. Hard, compacted or indurated carbonate rock (caliche) at some depths prevented collection of split-spoon samples. Descriptions of all boring are enclosed in Appendix A, titled Soil Boring Logs. Photographic documentation presented is enclosed in Appendix G.

using a Photo Ionization Detector (PID) and the results recorded. A minimum of three soil depths were collected in sample containers, placed on ice and submitted to the laboratory for analysis. When a contaminated zone was encountered, an additional sample was collected at the base of the contaminated zone and also submitted for laboratory analysis.

Cuttings generated from the borings were placed with the stockpiled soil excavated from Area 2 awaiting sampling, classification and disposal/treatment. The boring, once completed, was grouted to surface using Portland cement, bentonite powder and water. The mixture was tremied from the bottom of the boring to ground surface.

The drilling rig, drill stem and drill bit along with all split spoons were decontaminated prior to proceeding to complete the next boring.

A qualified geologist, hydrogeologist, or soil sample technician recorded soil type descriptions. These descriptions included the following information and were recorded in the field logbook:

- Color,
- Structure,
- Texture,
- Moisture,
- any other characteristic that may affect the environmental fate of any releases.

Field screening observations for possible contamination included visual descriptions of each sample. All descriptions were recorded in the bound field logbook.

Samples selected for laboratory analysis were placed into a cooler with plastic bubble wrap matting over the base and bottom corners of each cooler or shipping container. Each sample bottle was individually wrapped with bubble wrap and placed upright on the base of the appropriate cooler. Ice or cold packs in two heavy-duty zip-lock type plastic bags were placed over the top of the samples to ensure proper temperature needed for sample preservation. Chain-of-custody documentation was completed with all appropriate information for each cooler or shipping container and accompanied each shipping container during transport to the analytical laboratory.

3.8 BACKGROUND SOIL CONCENTRATIONS

Background soil samples were collected by ETGI from borings SB-55 and SB-56. Additional background soil data was collected from soil samples collected while completing monitor wells MW-9 and MW-15. Chromium concentrations in these samples ranged from 2.1 mg/kg to 5.73 mg/kg. Chloride concentrations ranged from 13.9 mg/kg to 390 mg/kg (Table 10, Figure 4). Analytical results for soil and groundwater samples collected and analyzed for general chemistry parameters are presented in Table 2.

range from 1.0 mg/kg to 40 mg/kg. The U.S. Geological Survey (USGS) reports a range of 0.1 mg/kg to 97 mg/kg and a mean value of 7.2 mg/kg for background arsenic concentrations in soil (USGS 1984).

4.0 GROUNDWATER INVESTIGATION

4.1 RATIONALE FOR MONITOR WELL PLACEMENT

Monitor wells installed on the Champion property were placed to determine the potential impact to groundwater. Enercon installed monitor wells MW-1 through MW-7 while monitor wells MW-8 through MW-16 were installed by ETGI (Figure 2). Monitor wells MW-1, MW-7, MW-9 and MW-15 were installed upgradient to determine background concentrations of COCs in groundwater and represent groundwater moving onto the Champion property. Monitor well MW-10 was installed downgradient to determine if COCs have migrated off-site.

Monitor wells MW-2, MW-6, MW-8 and MW-11 were placed to determine the extent, if any, of groundwater impact from Area 2. Monitor wells MW-12 and MW-16 were placed to further define the extent of COC detected in monitor well MW-6.

Monitor wells MW-4 and MW-5 were installed by Enercon as documented in the Site Investigation Report (SIR). Monitor wells MW-10 and MW-14 were installed to further define the extent of COC detected in monitor wells MW-4 and MW-5.

Monitor well MW-13 was installed after completing a trenching investigation south of the office building. The trenching investigation was completed to determine if evidence could be found for the existence of a potential secondary chromium source south of the office building. Investigation of this part of the yard did not yield any potential source areas. Subsequently, monitor well MW-13 was installed to determine if the COC in monitor wells MW-4 and MW-5 were potentially migrating from an area located west of the trenched areas. Monitor well logs and well completion diagrams are enclosed in Appendix B.

4.2 MONITOR WELL DRILLING, INSTALLATION AND DEVELOPMENT

Soil borings were advanced using an air-rotary drilling rig. Upon completion of the bore hole to the designated depth, new schedule 40 PVC screen and riser were assembled and lowered centrally into the bore hole. The annular space around the screened section of the monitor wells was filled with graded clean sand to three feet above the well screen. A two-foot seal, using Bentonite pellets and water, was placed over the sand pack. The remaining length of the bore hole was backfilled with grout to within two feet of the surface. Protective steel casing was placed around the riser and a concrete pad was poured to secure the monitor well in place. The protective steel casings were secured with a lockable protective cover for above-ground completions or lockable monitor well caps for ground-flush well completions.

- Total metal concentrations in accordance with EPA Methods SW846 6010B, 6020, (mercury 7471A)
- Semi-Volatile Organic Compounds in accordance with EPA Methods SW846 8270C
- Volatile Organic Compounds in accordance with EPA Methods SW846 8260B
- General Chemistry in accordance with EPA Methods SW846 E300.0, E310.1, E160.1 and S6010B

Sampling containers for all water samples were provided by the analytical laboratory. Sample containers, preservatives, sample volume, and holding times are referenced in Table 8, Sampling Parameters and Sampling Requirements. Analytical reports for all samples collected are presented in chronological order in Appendix C.

4.5 AREAS INVESTIGATED – GROUNDWATER

The hydrology at the site was determined by collecting water level readings from the monitor wells (Table 9). This data is illustrated in Figures 8, 9 and 10 for each quarter the wells were sampled. The hydraulic gradient ranged from 0.002 to 0.003 ft/ft and groundwater flow is from the west to the east.

Three quarterly sampling events are included in this report: August 2, 2002; October 21, 2002 and February 19, 2003. The analytical data for metal concentrations is reported in Table 1. Trace concentrations of volatile organic compounds and semi-volatile organic compounds detected in groundwater are listed in Tables 3 and 4, respectively. Maximum concentrations of COC detected in groundwater are specified in Table 11. Concentrations of chlorides and other general chemistry parameters are listed in Tables 2 and 5. TPH concentrations detected in groundwater are referenced in Table 7 and Aliphatic and Aromatic hydrocarbons are listed in Table 6. Laboratory Analytical Reports are provided in Appendix C in chronological order.

4.5.1 Downgradient of Area 2

Groundwater downgradient of Area 2 was investigated by the installation and sampling of monitor well MW-8 and the sampling of existing monitor well MW-6. Analysis of groundwater samples for the COC reported chloride concentrations above the NMWQCC standard of 250 mg/L in monitor wells MW-6 and MW-8. Monitor well MW-6 also exceeded NMWQCC standards for barium, chromium, manganese, iron and fluoride in August of 2002 (Figure 5). Monitor well MW-8 exceeded NMWQCC for iron and fluoride. Iron and fluoride were also above NMWQCC standards in background monitor wells MW-1, MW-7 and MW-9. Based upon these analytical results, additional monitor wells MW-11, MW-12 and MW-16 were installed to further define the extent of COC in groundwater associated with MW-6 and Area 2. These monitor wells were sampled in October 2002 and contained chloride concentrations above 250 mg/L (Figure 6). Monitor well MW-11 located directly north of monitor well MW-6 and adjacent to the east wall of the excavation contained iron, fluoride, and aluminum above NMWQCC standards. Monitor well MW-12 downgradient or east of monitor well MW-6, contained

5.1.2 Area 3

Soil samples collected by ETGI from Area 3 investigation were obtained from soil borings and excavation confirmation sampling points. Chemicals of potential concern for Area 3 are the same as for Area 2 (chromium, arsenic, lead, TPH, BTEX and chloride).

The maximum chromium concentration remaining in soil was found in confirmation soil sample S.S. 1 Wall 5 feet from the southeast wall of the "Trenched Area" excavation at 12.9 mg/kg (Figure 15). As with Area 2, we propose evaluating concentrations of chromium in this area based on the background of 50 mg/kg. Recognizing this concentration as background and thus no threat to groundwater, additional mitigation of chromium in Area 3 is not warranted.

Maximum arsenic concentrations remaining in soil after excavating was found in confirmation sidewall sample S.S. 3 Wall 3 feet at 4.34 mg/kg. Maximum lead concentration remaining in soil after excavation was found in confirmation bottom-hole sample S.S. 14 Btm 10 feet at 3.74 mg/kg.

Maximum concentration of TPH remaining in soil after excavation was found in confirmation bottom-hole sample S.S. 12 Btm 10 feet at 496 mg/kg by method 418.1. Analysis for BTEX constituents did not yield any detections in this excavation. The material and mechanism that would allow for further migration of remaining hydrocarbons has been removed. The remaining TPH concentrations will naturally attenuate in place.

The maximum chloride concentrations remaining in soil after excavating of Area 3 was soil sample D-34 @ 5 feet bgs at 11,900 mg/kg. The surface will be graded in such a way as to minimize infiltration of meteoric water.

Historical concentration of COCs remaining in the soil are found in reports previously submitted by Enercon.

5.2 GROUNDWATER INVESTIGATION

5.2.1 Downgradient of Area 2

The COCs in groundwater for Area 2 are identified as chloride, chromium, and DCA, with the highest concentrations detected in monitor well MW-6 at 469 mg/L, 0.254 mg/L, 2.35 mg/L and 0.0453 mg/L, respectively in the October 2002 sampling event (Figure 6). Monitor well MW-6 is downgradient of monitor well MW-12. Monitor well MW-12 contained chromium and chloride above NMWQCC standards at 0.054 mg/L and 357 mg/L respectively in the October 2002 sampling event. Maximum concentrations of potential COC detected in groundwater are presented in Table 15.

All samples analyzed for metals (chromium) prior to 2/19/03 were unfiltered samples. These concentrations cannot be used to compare with NMWQCC standard that requires

5.2.6 Background Data

The concentrations above NMWQCC standards in background monitor wells MW-1, MW-7, MW-9 and MW-15 are: fluoride and iron with monitor well MW-1 containing fluoride at 3.7 mg/L and iron at 18 mg/L; monitor well MW-7 containing fluoride at 1.94 mg/L and iron at 2.0 mg/L; monitor well MW-9 containing fluoride at 2.0 mg/L and iron at 14.7mg/L; and monitor well MW-15 containing fluoride at 2.61 mg/L and iron at 7.13 mg/L; barium in monitor well MW-1 at 1.75 mg/L; chloride in monitor well MW-1 at 408 mg/L and monitor well MW-9 at 346 mg/L; aluminum in monitor well MW-15 at 6.11 mg/L and chromium once in monitor well MW-9 at 0.086 mg/L.

This data clearly illustrates fluoride and iron concentrations throughout the site are attributable to off-site sources or are in concentrations normal to this area/region. Monitor well MW-15 is the only background well that was analyzed for aluminum. Concentrations above the NMWQCC standards of 6.11 mg/L indicate on-site aluminum concentrations ranging from 8.87 mg/L to 14 mg/L and the off-site downgradient well (monitor well MW-10) at 6.42 mg/L are similar to background concentrations normal to the area. Chloride concentrations range from 239 mg/L to 408 mg/L (with the average being 331 mg/L) based on the August 2002 analytical data (Figure 5); 156 mg/L to 356 mg/L (with the average being 263 mg/L) based on the October 2002 analytical data (Figure 6); and 221 mg/L to 510 mg/L (with the average being 374.5 mg/L) based on the February 2003 analytical data (Figure 6). This data illustrates chloride concentrations in groundwater in the on-site wells are similar to background concentrations. Section 9 on Migration of Chloride was completed to illustrate the potential for chloride being added to groundwater from on-site soil. Total unfiltered chromium concentrations in a background monitor well (MW-9) were only detected once above NMWOCC standards at 0.086mg/L during the October 2002 sampling event.

6.0 DISPOSITION OF EXCAVATED MATERIAL

Approximately 1,420 cy of impacted material excavated from Area 3 "Trenched Area" was transported to J & L Landfarm in Hobbs, New Mexico for treatment. Excavated material associated with Area 3 SB-21 area remains stockpiled on-site. Two samples collected from this stockpile show concentrations of chloride ranging from 709 mg/kg to 798 mg/kg, chromium from 5.48 mg/kg to 5.58 mg/kg and TPH from 242 mg/kg to 272 mg/kg using EPA Method 418.1 and 59.8 mg/kg to 71.3 mg/kg using EPA Method 8015M. These concentrations do not present a risk of migration to groundwater and should be used to backfill the two Area 3 excavations.

Approximately 9,640 cy of impacted materials excavated from Area 2 were removed and transported to Sundance Services, Inc. in Eunice, New Mexico for disposal. Sundance Services, Inc. is an NMOCD approved facility for receiving contaminated material. Analyses were completed on excavated materials requiring disposal or treatment. Based on analytical results all material was determined to be non-hazardous waste (Table 12). An estimated 8,500 cy of impacted materials will be transported and disposed of at

Sundance Services, Inc. The concrete removed from the dismantling of half of the bulk chemical containment area generated an estimated 3,120 cy of concrete debris that will require disposal. An additional 1,560 cy of concrete requiring disposal came from the dismantling of the concrete pad west of the warehouse, for a total of 4,680 cy of concrete debris. Manifests/bills of lading for transport and disposal of excavated materials are referenced in Appendix D.

7.0 POTENTIAL IMPACT OF CHLORIDE IN SOIL TO GROUNDWATER

7.1 Historical and Current Land Use

Groundwater in the Hobbs Area has historically been impacted by operations related to oil and gas development and production. The standard historical method of placing brine into unlined pits for evaporation has resulted in brine seepage into the shallow unconfined aquifer. Some mixing will take place at the water table, but the greater density of brine will tend to move towards the lower part of the aquifer. The use of unlined pits continued in parts of New Mexico until the 1980s. Other causes of groundwater contamination via oil and gas operations include production and injection wells, pipelines, waste discharge from gas dehydrators, gas processing and oil refineries (McQuillan and Parker).

Other sources of groundwater contaminants include household septic tanks, controlled sewage and cesspool plants, agricultural activity, use and management of refined petroleum products, mining industry, packing plants, dairies and landfills.

Review of aerial photographs of the site and surrounding property clearly indicate the large volume of oil and gas activity that has been and is presently being conducted in the area. Numerous production and storage facilities, salt-water disposal wells, oil and gas wells dot the one-mile radius around the site. Most of these wells historically have had pits associated with them. Several oil and gas storage facilities as well as oil and gas wells are located up gradient or west of the site. These factors and the changing groundwater chloride concentrations in the onsite and offsite monitor wells strongly suggest potential historic and current migration of impacted groundwater (chloride) in the vicinity of this site.

7.2 Simulation of Chlorides Migration

Residual chloride concentrations in the top five feet of soil range from 103 mg/kg to 11,900 mg/kg based on samples collected by ETGI and 170 mg/kg to 12,428 mg/kg based on Enercon data.

Residual chloride concentrations below the excavated pit in Area 2 range from 89.5 mg/kg to 7620 mg/kg based on samples collected by ETGI and 57.4 mg/kg to 11,009 mg/kg based on Enercon data. To determine the potential of these residual concentrations in the soil to migrate to groundwater, R.T. Hicks Consultants, Ltd. were

retained to simulate the transport of chloride using the numerical model Hydrus - 1D (Appendix E). Four scenarios were simulated following a calibration using site-specific data. Scenario 1 the "No Action" scenario included simulating transport in the unsaturated zone utilizing input data in the Hydrus-1D from Area 3.

Scenario 2 simulated Area 2 with the removal of the chloride load from surface to approximately 18 feet bgs and backfilling the excavation with clean material. There was no adjustment to precipitation for this scenario.

Scenario 3 addressed the residual chloride concentrations in soil from ground surface to five feet bgs. In this scenario, precipitation is reduced by 70% to illustrate a lack of infiltration. The planned remedial approach for this scenario is to utilize engineering controls on the surface to accomplish this. This will remove the transport mechanism for mobilization of chloride.

Scenario 4 addressed Area 2 where the removal of chloride from the surface down to 18 feet bgs reduced the calculated chloride load. Additionally, precipitation was reduced by 70% in this scenario. The planned remedial approach for this area required backfilling Area 2 excavation with clean backfill material and placing a one (1) foot thick layer of compacted clay at or near the surface to prevent infiltration of precipitation. This method has proven to adequately remove the transport mechanism for mobilization of chloride.

The concentrations of chloride applied in these four scenarios were the highest concentrations detected at the site representing a worst-case simulation. Simulation of the rate of migration of chloride to groundwater was based on site data as well as regional data and/or professional experience. The hydraulic saturated conductivity of 0.7 cm/day, as determined by laboratory analysis, was used in the model.

This saturated hydraulic conductivity decreases dramatically with decreasing soil water content. The capillaries that constitute the pore space are subject to Poiseuille's Law where the flux of water (g) (in a capillary) is directly proportional to the radius squared (r²). In addition this chloride flux rate exists only during and directly after heavy precipitation. This transient flow undergoes three phases: 1. Infiltration. 2. Redistribution. 3. Static. The upper zone controls the infiltration rate. The application rate (rainfall) can be decreased by a graded and compacted surface to facilitate runoff or by the natural saturated hydraulic conductivity of the shallow soil. The infiltration rate will finally reach the asymptotic value of saturated hydraulic conductivity, resulting in ponding or runoff. During the redistribution phase, the soil water flux decreases with time to zero. Any impermeable soil layer has a strong impact on the duration of the redistribution phase. During the static phase, the soil water flux rate is near zero and is affected by losses of water due to evaporation (or plant intake). Subsequently, lower depths within the unsaturated zones are beyond the influence of the transient conditions at the surface and soil water flow will occur under unsaturated conditions.

Based on this very conservative model using maximum chloride concentrations and

available saturated hydraulic conductivity, Scenario 1, the "No Action" simulation indicates that the potential exists for chloride concentrations to migrate to groundwater. Scenario 2 indicates simulation results similar to Scenario 1. This scenario exhibits a similar concentration increase over approximately the same duration but with a greater rate of decline toward background after maximum value is achieved.

Scenario 3 indicates a maximum possible increase of groundwater chloride concentrations to approximately 100 mg/L can potentially occur after approximately 10 years.

Scenario 4 illustrated a reduction of infiltration of precipitation by 70% and removal of the top 18 feet of chloride load, resulting in a potential increase of chloride concentrations by approximately 100 mg/kg after approximately 200 years. Essentially, the chloride is immobilized in the vadose zone by the removal of a transport media (water flux).

Field data representing residual soil concentrations outside any of the excavated areas show only one sample with chloride concentrations above 10,000 mg/kg (Sample 3 - 0001 - A, collected 9/16/00 by Enercon) and an additional sample showed 8632 mg/kg (18 - 0305 - A, collected 9/16/00). All other samples were below 5166 mg/kg for chloride. These model simulations would be more accurate if the chloride load was calculated using data representative of the *average* site conditions versus the worst-case situation.

The releases of chloride onto and into the soil surface are believed to have occurred during historical operations. Based on present conditions, the entire yard has been covered with a compacted caliche layer and has been graded to prevent ponding. Champion has applied compacted caliche layers several times during their operational period. Based on the yard's current construction, a reduction of infiltration (by precipitation) has already been implemented. Compaction of either sandy (caliche) soils or clayey soils generally result in a decrease of permeability by approximately 70 percent.

7.3 Compaction of Soil

Compaction of soil results in increased sheer strength of soil reduced compressibility and reduced permeability. This occurs as the volume of voids in soil is removed resulting in an increase in the dry density of the soil. Compaction with water initially results in higher soil weights but after the optimal water content point is reached, additional water will hinder compaction.

The degree of compaction achieved generally rises with increased efforts at compaction. However, there are only minor gains (increases) in dry density for additional compactions after the initial compaction effort.

Soil infiltration rates measured in the laboratory indicate compacted sand decreases infiltration rates to an average 1.5 inches/hour from 13.5 inches/hour in sand that is not

compacted, for a 120-minute storm duration. (Pitt, Chen and Clark) Subsequently, the layers of compacted sandy caliche at the site should more than meet the requirements of decreasing infiltration by 70%.

For compacted clayey soil, the average rate decreased to 0.2 inches/hour from 9.3 inches/hour in dry non-compacted clay. This illustrates that a one foot compacted clay layer over the backfilled excavation of Area 2, will effectively reduce the rate of infiltration, greater than 70%.

8.0 RISK ASSESSMENT

A risk assessment was conducted to determine if the residual concentrations of COC left in the soil below 18 feet in Area 2 have a potential to present risk to any on-site or off-site receptors.

Exposure pathways through groundwater, soil, and air are identified to evaluate risks for both potential and actual receptors. Potential on-site receptors of concern include:

- Construction workers via inhalation;
- Site visitors via inhalation;
- Groundwater via ingestion;

Potential off-site receptors of concern include:

- · Residents via inhalation or ingestion;
- Water wells via groundwater;

All COC were screened utilizing the Tier 1 Tables provided by NMED and Tier 1 Risk Based Screening Levels (RBSL) calculated in the RBCA Tool Kit for Chemical Releases modeling program. For contaminants that exceeded the Tier 1 evaluation, a Tier 2 risk-based assessment for each COC was evaluated to develop Site-Specific Target Limits (SSTL). The complete Risk Assessment Report is provided in Appendix F.

The COCs evaluated for Tier 2 risk assessment are chromium, chromium VI, magnesium, benzene, and TPH. For each exposure pathway, the SSTL were calculated using the maximum concentration of each COC.

For groundwater ingestion, the only COC that poses a human health risk of onsite ingestion of groundwater or potential offsite migration is chromium VI. The onsite SSTL calculated for chromium VI is 0.039 mg/L and offsite SSTL is 0.11 mg/L. Monitor wells MW-4, MW-6 and MW-13 have exhibited concentrations above the SSTL.

The risk assessment also indicates that there is a potential of residual benzene in the subsurface soils leaching to groundwater. The calculated on and offsite SSTL for benzene are 0.36 mg/kg and 0.98 mg/kg, respectively. Soil borings 9, 10, 14, 15, and SB-

41 have concentrations above the onsite SSTL. Soil borings, 9, 10, 13, and SB-41 have concentrations above the offsite SSTL. To date, no benzene contaminants have been detected in the groundwater. To assist in preventing further leaching of benzene, the chloride simulation illustrates the remedial option of limiting infiltration of precipitation will also eliminate the medium of transport. Residual benzene concentrations will degrade by natural attenuation and therefore will not present a risk to groundwater.

A potential for onsite inhalation of benzene volatiles in the soil is possible in the area around soil boring 13. The onsite SSTL for benzene volatilizing to air is 3 mg/kg. Soil boring 13 at 18-20 feet has a benzene concentration of 3.51 mg/kg.

All other contaminants evaluated for either Tier 1 screening levels or Tier 2 SSTL were below the risk levels established or calculated for this site. A complete review of all contaminants and their RBSL and/or SSTL is provided in the Risk Assessment Report in Appendix F.

9.0 CONCLUSIONS

Environmental Technology Group, Inc. (ETGI) has completed extensive soil investigations and remediation and groundwater investigations to address the contaminants detected in the soil and groundwater at the Champion facility in Hobbs, New Mexico. Based on the field work completed, analytical data collected, modeling of chloride migration, and the risk assessment report for COC, the following conclusions are made:

9.1 SOIL REMEDIATION AND ASSESSMENT

- Excavation activities at the site in Area 2 have resulted in the removal of known impacted soil to the extent practicable. COC that have penetrated the massive caliche through cracks and fractures remain in the subsurface zone between 18 feet bgs to 50 feet bgs. Hydrocarbon concentrations in this zone range from <10 mg/kg to 30,000 mg/kg, chromium concentrations range from 2.6 mg/kg to 13.4 mg/kg, and chloride concentrations range from 38.7 mg/kg to 11,009 mg/kg. Concentrations of bottom hole and sidewall samples are below the concentration that would present a risk of leaching to groundwater. Subsequently, Area 2 excavation should be backfilled.</p>
- Excavation activities associated with Area 3 have resulted in the removal of all hydrocarbon-impacted soil above 496 mg/kg, as illustrated in the 30+ confirmation samples collected and analyzed to date. Chloride concentration in residual soils associated with Area 3 range from 88.6 mg/kg to 11,900 mg/kg.
- Scenario 4 represents modeling of chloride migration for Area 2. Scenario 4 represents the excavation down to 18 feet bgs, backfilling with clean material and placement of a one-foot thick compacted clay cap near the surface (70% precipitation reduction). The clay cap limits the infiltration of precipitation thereby limiting migration to groundwater. The chloride migration simulations

illustrated in Scenario 4 indicate that residual chloride concentrations have a potential to increase groundwater chloride concentrations by a maximum of 100 mg/L. The unsaturated flow conditions that exist 10 feet bgs to the capillary zone above groundwater (55 feet) have a significantly lower unsaturated conductivity than the saturated conductivity of 0.7 cm/day (8.5E-6 cm/s), concluding that the concentration of chloride in the soil in Area 2 & 3 will not migrate to groundwater. The addition of a compacted caliche layer and the addition of a compacted clay layer further reduces infiltration of precipitation to eliminate the chloride transport medium.

- The Hydrus -1D modeling illustrates the chloride concentrations in the shallow subsurface soils (0-5 ft bgs) will not cause an increase in chloride concentrations greater than approximately 100 mg/l (Area 3, Scenario 3) to groundwater, when a 70% reduction of infiltration is accomplished. The existing compacted clayey caliche base material of the Champion yard likely meets these infiltration requirements (Pitt, Shen, and Clark).
- Modeling migration through the subsurface using chloride concentrations is affective to demonstrate that other COC at the site have a lower probability of migration. Chloride does not adhere to clay or organic material nor mineralize to oxides like metal ions and it does not biologically degrade like hydrocarbons. Eliminating the chloride transport mechanism by minimizing precipitation infiltration also eliminates the potential for metals and hydrocarbons to migrate to groundwater.
- The soil samples collected from under the remaining concrete pad on 2/18/03 contained concentrations of chromium at 10.2 to 10.9 mg/kg, lead at 22.6 to 23.3 mg/kg and arsenic at 17.7 to 18.9 mg/kg. The concentrations for lead and arsenic were the highest detected during the investigation. However, migration of chemicals of concern is diminished by the existing concrete pad. The concrete pad functions as a cap over the impacted area and eliminates the possibility of percolating meteoric waters, which would cause these contaminants to migrate.
- The septic system leachfield line was removed and soil samples collected from two locations along and under the former leach line. Soil samples were also collected from boring SB-52 south of the leachfield. These samples did not contain elevated concentrations of chlorides, chromium or TPH. New leachfield lines were installed north of the former leachfield lines and are currently in use.
- 1,420 cy of impacted materials excavated from Area 3 were removed and transported to J & L Landfarm in Hobbs New Mexico for treatment and disposal. All excavated materials were classified and profiled as non-hazardous based on analytical data.
- 9640 cy of impacted materials excavated from Area 2 were transported to Sundance Services, Inc. in Eunice, New Mexico for disposal.
- The one foot compacted clay layer over the backfilled excavated Area 2 will decrease the possibility of residual contaminant migration by eliminating the entry of precipitation to the *insitu* contaminants.
- Total chromium concentrations in the soil at the site range from 1.59 mg/kg to 28.4 mg/kg. Background chromium concentrations reviewed in RODS database

samples ranged from 156 mg/L to 658 mg/L. Background chloride concentrations range from 156 mg/L to 510 mg/L with an average overall background concentration of 312 mg/L.

10.0 RECOMMENDATIONS:

ETGI, on behalf of Champion, has completed extensive soil and groundwater investigations and soil remediation. Based on the field work completed, analytical data collected and modeling of chloride migration, the risk assessment report for chromium and hydrocarbons and the conclusion presented above, the following recommendations are made:

- To demonstrate the accuracy of conclusions presented in the risk assessment and chloride modeling, ETGI will collect quarterly groundwater samples from monitor wells MW-2, MW-6, MW-8, MW-11, MW-12 and MW-16 to determine if concentrations of potential COC (chromium, barium, lead, arsenic, manganese, VOC, BTEX and TPH) detected in the soil are leaching to groundwater or are increasing in concentrations, and have the potential to migrate off-site from Area ETGI will collect data to determine if subsurface conditions are conducive to a reducing environment to facilitate the change of soluble chromium to an insoluble chromium compound. An additional monitor well will be installed directly east of monitor well MW-12 just inside the fence to demonstrate chromium concentrations above NMWOCC limits are not migrating off the property in groundwater. If concentrations of chromium in groundwater exceed NMWQCC limits at monitor well MW-12, an insitu groundwater treatment system that creates a reducing environment will be installed. The reducing environment can be created via injection of a product to enhance microbial and chemical reduction of soluble chromium to an insoluble chromium compound. This injection zone should be directly east of monitor well MW-12. A pilot test should be completed to determine the spacing of the injection wells. Champion can choose to establish a treatment zone between monitor wells MW-6 and MW-12 prior to detection of chromium above NMWOCC standards in monitor well MW-12.
- Concentrations of total dissolved chromium in groundwater exceed NMWQCC standards in monitor wells MW-4 and MW-13 based on the samples collected in the February 2003 sampling event. Based on these concentrations, a groundwater treatment zone should be created in the southeast corner of the property. This chromium treatment zone will require the completion of a pilot test to determine the spacing of the injection wells. Upon completion of the pilot test, the chromium treatment zone should be created (Figure 12). This treatment zone will function initially to chemically reduce soluble chromium to an insoluble chromium compound. The treatment zone will also function as a barrier because it will treat dissolved chromium in the groundwater as it passes through this zone. Monitor wells MW-4, MW-5, MW-10, MW-13 and MW-14 should be sampled quarterly to monitor the progress of the chromium treatment zone.

If dissolved concentrations are detected at 0.04 mg/L or above in adjoining property residential wells or on-site active water wells, the immediate corrective action and public protection plan will be implemented and a new domestic water supply will be installed to provide potable water.

 To determine if a source of chromium exists in the soil upgradient of monitor well MW-13, borings should be completed and converted into temporary piezometers (Figure 11). Soil and groundwater samples should be collected and analyzed for chromium.

 A slug test should be completed to determine the site-specific hydraulic conductivity, so the rate of groundwater movement can be more accurately determined. Groundwater modeling should be completed to determine the rate of migration of chromium in groundwater.

Address Area 2 by placing a one-foot thick compacted clay liner at or near the surface of the excavation after backfilling and grading the surface to minimize infiltration of precipitation.

 Address Area 3 by backfilling the excavation, compacting and grading to prevent ponding of precipitation.

 Repair Bulk Tank and Drum Storage Area and provide with a permanent secondary containment retaining wall. Place a compacted caliche layer over the excavation to minimize the infiltration of precipitation.

 Establish a procedure to collect all fluids that are placed into the sink in the laboratory to prevent them entering the new leachfield. The fluids collected should be characterized and disposed of properly to meet the discharge plan for the site.

11.0 REFERENCES

Compacted Urban Soils Effects on Infiltration and Bioretention Stormwater Control
Designs, Robert Pitt, P. E., Shen-En Chen, P. E. and Shirley Clark, P. E.
Department of Civil and Environmental Engineering, The University of
Alabama, September 2002

Groundwater Contamination & Remediation in New Mexico 1927 –2000, Dennis McQuillan and Jennifer Parker, New Mexico Environmental Department, Groundwater Quality Bureau, July 2000

Groundwater Models: Scientific and Regulatory Applications (1990)

Water Science and Technology Board Committee on Groundwater Modeling,
Assessment Commission on Physical Sciences, Mathematics and Resources.

National Research Council National Academy Press, Washington D.C. 1990.

Groundwater Lea County, New Mexico Bureau of Mine & Mineral Resources

Letter of deficiency, NMOCD June 3, 2002

CORRECTION PAGES FOR APPENDIX A (Simulation Of Chloride Transport At The Champion Facility In Hobbs, New Mexico) OF CHAMPION-HOBBS FACILITY COMPREHENSIVE STATUS REPORT

paramters had little effect on the prediction of chloride concentration in ground water while other factors had a profound effect. The Sensitivity Analysis presented in Appendix A describes the relative importance of each of the input parameters. Site specific data exist for the most important input factors (e.g. chloride load, depth to ground water). For some input parameters we employed regional data or values based upon professional judgement (see Table 1).

We also used data from the Champion site to verify the predictions of the HYDRUS1D model. This simulation served as a "calibration" effort to support our selection of model input parameters.

3. Data Employed for the Champion Site

We present three scenarios to describe possible chloride migration at the site. Plate 1 shows a typical soil profile at the site (ETGI personal communication, 2003). We input these lithologies (input #1, soil texture) into HYDRUS1D and allowed the model's library of hydraulic properties to generate the hydraulic properties shown in Plate 1. We then used these hydraulic properties in simulations of these scenarios. For all scenarios, we used data for the Ogallala Aquifer as described in Nicholsen and Clebsch, (1961) as input to the mixing model (input #2, aquifer thickness; input#3, ground water flux). Other data are described below.

Initial Conditions

As described in Appendix A, the distribution of the mass of chloride in the vadose zone is the most important input parameter for prediction of chloride concentrations in ground water. One can calculate the mass of chloride from a known fluid release by simply multiplying the known chloride concentration of the released fluid (mg/L) by the volume of the release (L). Calculating the distribution of this mass requires a surface measurement of the area (m^2) of the release. Simple division creates the value of chloride load (mg/m^2) used in the simulation. More times than not, however, we do not have good data concerning the release characteristics. Site specific sampling , can provide these same data.

We used chloride measurements from boreholes and other samples to determine the maximum chloride load at the site. ETGI data shows that essentially all of the chloride resides in the vadose zone from ground surface to a depth of about 25 feet in the area of the former pit. In this zone, we estimated a chloride load of about 154 kg per square meter (input #4) using data from a small area of the pit that displayed good vertical control. Appendix B describes the method employed for chloride calculation. Plate 2 and 3 show the data used and the calculation of

chloride load for this scenario. Plates 1, 2 and 3 also show the depth to ground water, 55 feet (input #5).

Because we have soils analysis showing 8% moisture, we employed this value in this simulation (input #6). Based upon our experience, we employed a dispersion length of 100 cm (input #7). The selected dispersion length is 7% of the total length of the HYDRUS1D model (55 feet). Many researchers suggest that a dispersion length that is 7-10% of the total model length provides reasonable results for simulation experiments.

The daily climate data available from the Pearl weather station near the Hobbs Airport served as input for all climate indices required by HYDRUS1D (input #8). For the final input parameter, background ground water chloride concentration, we used 375 mg/L based upon site data.

We used the results of this simulation effort to calibrate our input parameters. For example, we first attempted to use an aquifer thickness of three meters in our mixing model calculation. The resultant concentration in ground water was much higher than is currently observed. We then used the actual aquifer thickness at the site, 100 feet, which returned a result more similar to what we currently observe in monitoring wells. The fact that chloride ion is relatively well distributed throughout the thickness of aquifer at the site (see ETGI data) supports our use of 100 feet in the mixing model. Additionally, chloride-rich vadose zone water is generally denser than the underlying water in the aquifer. Density flow at the site would also increase the mixing in the aquifer.

We applied the chloride load (154 kg/m²) to the ground surface over a relatively short time and then used HYDRUS1D to simulate unsaturated transport for about 20 years, to observe the simulated distribution of chloride in the vadose zone.

Scenario 1: "No Action"

After satisfactory calibration of the model, ETGI provided chloride data from boreholes and samples within and adjacent to an excavation south and west of the former pit. This chloride distribution, shown in Plate 2. results in a chloride load of 118 kg/m² is representative of conditions which exist in this area of the site. We then simulated unsaturated zone transport and ground water mixing.

Scenario 2: Remove Chloride Load

In this simulation we assumed removal of the 6 m deep chloride impact zone in the area of the former pit and backfilling with a "clean" soil.

SIMULATION OF CHLORIDE TRANSPORT - CHAMPION FACILITY ETGI

Plate 3 shows the calculation of chloride load for this simulation. All other input parameters remain the same as described in Scenario 1. The excavation and removal of the uppermost 6 meters of soil results in a reduction of the chloride load from the original estimate of 154 kg/m 2 to 92 mg/m 2 .

Scenario 3: Reduce Infiltration

To minimize the potential for any leaching of residual chloride from the vadose zone, we assumed a surface remedy that would reduce infiltration of precipitation. To simulate such a remedy, we simply reduced the precipitation values by 70%. This simulation predicts the effect of (a) covering the site with asphalt (which would result in almost 100% reduction of infiltration), (b) sloping the site to cause runoff of the larger precipitation events (c) placement of a clay or synthetic barrier between the parking lot gravel and the underlying soil, (d) placement of a graded compacted layer at the surface to minimize infiltration, facilitate runoff and prevent ponding of precipitation, or (e) a combination of any or all of these remedies. All other input parameters are the same as Scenario 1 (e.g. a chloride load of 118 kg/m²).

Scenario 4: Excavate 6 Meters and Reduce Infiltration
We used the same input parameters as Scenario 2, excavation and
removal of the uppermost 6 meters, except we reduced precipitation by
70%.

Figure 1: HYDRUSID simulation showing agreement between field chloride measurements and the simulated response.

4. Results

Figure 1 presents the simulated chloride distribution in the vadose zone using the input parameters of the Initial Conditions. This figure plots the distribution of chloride with depth assuming that the calculated chloride load (154 Kg/ m²) was discharged to the surface (pit) over a relatively short period then allowed to infiltrate with precipitation over 20 years. The simulated chloride distribution approximates the chloride distribution observed in boreholes at the site. This good agreement between the simulated response and the

measured values suggests that the HYDRUS 1D model represents a good approximation of the site. We understand the chloride-rich fluids may have been placed in the pits about 20 years ago.

Figure 2 shows the response in a monitoring well located immediately adjacent to the area of the site

represented by Scenario 1 and Plate 2. The chloride content of the monitoring well steadily rises from 375 at day zero to a maximum of about 1600 mg/L near day 12000 (32 years). time. We ceased this simulation after 45 years. Clearly ground water will exceed background concentrations for many more decades.

Figure 3 presents the

results of our simulation of Scenario 2, excavate and remove the top 6 meters of soil. The similarity between Scenario 1 and Scenario 2 is not surprising. The excavation program does not materially reduce the chloride load (118 kg/m² in Scenario 1 to 92 kg/m² in Scenario 2). However, the rate of decline of chloride concentrations in the adjacent moni-

Figure 2: Simulated chloride concentration in an monitoring well adjacent to an area with a chloride loading of 118 kg/m².

Figure 3: Simulated chloride concentration in an monitoring well adjacent to an area where the top 6 meters of soil is excavated and removed.

toring well is greater than predicted in Scenario 1 (no action). Although we simulated this scenario for only 47 years, Figure 3 suggests that the monitoring well will return to background conditions near day 20,000 (about 55 years).

Figure 4 Scenario 3: Chloride distribution in the soil profile after 198 years of simulation after infiltration reduction.

Figure 4 presents the results of the simulation for Scenario 3. Reducing precipitation by 70% causes the chloride mass to remain in the vadose zone – even after 198 years. Figure 5 shows the response of the adjacent monitoring well. After an intitial rise from 375 mg/L to about 475, natural ground water flow causes a gradual decline in chloride concentrations to about 400 mg/L.

The flux of chloride from the vadose zone to ground water may be reduced in several ways. One method, excavation and backfilling, was simulated in Scenario 2. In Scenario 3 we reduced infiltration by a surface remedy that had the same effect as reduction of precipitation by 70%.

Figure 5 Scenario 3: chloride concentration in an adjacent monitoring well after infiltration reduction.

Figure 6 shows the response of a monioring Well adjacent to the former pit, under the conditions described by Scenario 4. We see no material difference between the predictions of Scenario 3 and 4. The graphics package that generates the results of the simulation shows the final concentration of the monitoring well greater than 400 mg/L in Scenario 4

Figure 6 Scenario 4: chloride concentration in a monitoring well adjacent to the former pit after excavation, removal and infiltration reduction.

and less than 400 mg/L in Scenario 4 and less than 400 mg/L in Scenario 3. Removal of some of the chloride load by excavation would actually reduce the resultant concentration in the monitoring well by some small extent, not as shown in these interpreted graphical results for Scenarios 3 and 4.

4. Conclusion

We believe the HYDRUS1D simulations for the Champion Hobbs facility provide reasonably good predictions of chloride concentrations in ground water for the various scenarios. We find no material difference in chloride concentrations in ground water between two potential remedies for the site:

- Excavation and removal of the near-surface chloride in the vadose zone, with surface controls to reduce infiltration and
- 2. Allowing a large chloride load to remain in place and create surface controls to reduce infiltration

Chloride is a "conservative ion". Chloride does not sorb to clays or organic material (like dissolved metals); it does not mineralize to oxides ongrain surfaces (like metals), and it does not degrade (like hydrocarbons). A remedy that permanently immobilizes chloride ion in the vadose zone, will more readily cause immobilization of certain metals and petroleum hydrocarbons.

Hicks Consultants 219 Central NW Albuquerque, NM	Environmental Technologies Group, Inc. Calculation of Chloride Load, Champion Facility, Hobbs Scenarios 1 and 3				Plate 2 Mar-03	
60 feet —	Aquifer = Medium Sand Calculated Chloride Loa		118.4682692			
	50-55 Hard Caliche					
40 feet —	28-50 Feet Caliche with fractures filled with silty sand	1405	1858	31	26.8108673	
	23-28 Feet Hard Caliche					
20 feet —	0.5-23 feet Calliche with fractures filled with silty sand	3000	1858	10	18.46690435	
		6600	1858	9	36.56447061	
	0-0.5 Compact Caliche	11900	1858	5	36.62602696	
Depth	Lithologic Description	Measured Soil Chloride Concentration mg/kg	Bulk Density of Sample kg/cubic meter	Thickness of Column (ft)	Calculated Chloride Mi in Column (kg/m2)	

Depth	Lithologic Description	Measured Soil Chloride Concentration mg/kg	Bulk Density of Sample kg/cubic meter	Thickness of Column (ft)	Calculated Chloride Mas in Column (kg/m2)
	0-0.5 Compact Caliche	97	1858	5	0.298548287
	0.5-23 feet	97	1858	13	0.776225546
20 feet —	Caliche with fractures filled with silty sand	11009	1858	10	67.76738332
	23-28 Feet Hard Caliche				
40 feet —	28-50 Feet Caliche with fractures filled with silty sand	1405	1858	27	23.35140055
60 feet -	50-55 Hard Caliche				
oo leet _	Aquifer = Medium Sand				California de la compania del compania del compania de la compania del compania del compania de la compania del compania d
			Calculated Chloride Loa	d	92.1935577
R.T. Hicks Consultants, Ltd		echnologies Group, In	nc.		Plate 3
219 Central NW Albuquerque, NM	Calculation of Chloride Scenarios 2 -	Mar-03			

1.0 INTRODUCTION

Environmental Technology Group, Inc. (ETGI) was retained in July of 2002 by Champion Technologies (Champion) to respond to a Letter of Deficiency from the New Mexico Oil Conservation Division (NMOCD) dated June 03, 2002. A Stage 2 Abatement Plan Proposal (APP) dated February 05, 2002 had been previously submitted to the NMOCD by Enercon Services, Inc. (Enercon). This APP was conditionally approved by the NMOCD on June 12, 2002.

This Comprehensive Status Report (CSR) was designed to address the conditions, procedures, results and recommendations of the APP, Letter of Deficiency and any new abatement circumstances discovered during implementation.

1.1 SITE HISTORY AND USAGE

Site History and Usage has remained relatively unchanged subsequent to the submission of the Site Investigation Report (SIR) dated September 10, 2000. This Champion facility stores and distributes chemicals for the petroleum industry in Eastern New Mexico and West Texas. Additional information can be found in the September 10, 2000 SIR submitted to NMOCD by Enercon.

1.2 PROJECT OBJECTIVE

The objective of this project is to continue to investigate, evaluate and mitigate any soil and groundwater contaminants of concern pursuant to The New Mexico Water Quality Control Commission (WQCC) Regulations 20NMAC 6.2.4106.E. The focus of this CSR is to document abatement activities of the heavily contaminated soil and delineate groundwater impacted with chemicals of concern (COC). Additionally, risk-based assessment and transport modeling will be utilized for supporting proposed remediation methodologies to attain WQCC standards that are protective of human health safety and the environment. This objective is being accomplished through the following activities:

- 1. Review of relevant site, vicinity and research documents.
- 2. Completion of a detailed door-to-door water well survey within one half mile of the Champion facility. This data was used for updating the original water well report and map including domestic wells along Llano Grande Street to the north and west of the facility.
- 3. Developing and implementing a soil investigation program that included;
 - soil borings and sample collection for Area 2 beneath the existing bulk chemical containment area,
 - soil borings and sample collection for Area 3 around the "trenched area/SB-21 area",
 - trenching and boring along the then-current septic system leach field line,

- investigative trenching the area south of the current office building,
- documentation of off-site and background soil and groundwater concentrations.
- 4. Developing and implementing a groundwater investigation program that includes installation of monitor wells to identify and delineate any potential groundwater impacts by COCs, determine the human health and environmental risk from the COCs, and to monitor groundwater gradient and velocity.
- Investigate possible water well that was located beneath the bulk chemical containment area.

The data obtained from site investigation and excavation was used to present recommendations for future investigations and remedial actions. Work plans for approved investigations and/or remedial actions will be submitted as an addendum to this CSR.

2.0 SITE DESCRIPTION

2.1 PHYSICAL LOCATION

The Champion facility's physical address is 4001 South Highway 18 in Hobbs, Lea County, New Mexico. The legal description for the property is the NE/4 of SE/4, Section 15, Township 19 South, Range 38 East, West Hobbs Quadrangle (Figure 1).

2.2 SITE LAYOUT

The Champion facility stores and distributes chemicals for the petroleum industry. The property is rectangular in shape, approximately 500 feet along Highway 18 by 640 feet deep (Figure 2). The facility consists of an office and laboratory building, manufacturing and warehousing as well as open storage, parking and undeveloped areas. The site is enclosed by a fence with a locking gate along Highway 18. The facility uses a septic system for sanitary waste disposal and water is supplied by an on-site domestic well. The site is nearly flat with a slight gradient to the northwest. There are no bodies of surface water on the site.

The facility is bordered by South Highway 18 on the east, residential and undeveloped property to the south, a recently installed oil well and livestock area to the west, and an oilfield service company to the north.

2.3 SOIL DESCRIPTION

Soils at the site are predominantly mapped as the Kimbrough Loam with small areas of Sharvana, Lea and Stegall soils (Soil Survey, Lea County, New Mexico, 1974).

Kimbrough Series Soils are located on upland plains with very minor slopes. Kimbrough Series Soils formed in thin calcic eolian sediment (approximately 15 inches thick) over fractured caliche layers. The soils support short and mid grasses and shrubs, and are primarily utilized as rangeland (Soil Survey, Lea County, New Mexico 1974).

2.4 REGIONAL GEOLOGY

The geology of the Southern High Plains of New Mexico and Texas consist of the Tertiary Ogallala Formation, which is overlain by Quaternary eolian, fluvial, and lacustrine sediments. The Quaternary deposits range in age from 1.4 million years old to recent, and extend to a maximum depth of 80 feet below ground surface (bgs) regionally. The Tertiary Ogallala Formation contains coarse fluvial conglomerates, sandstone, and fine-grained eolian siltstone and clay. The depositional environment of the Ogallala Formation and overlying Quaternary deposits produce overlapping alluvial fans. Exposed along dry river beds in the region, the Quaternary alluvium deposits consist of sands, silts and gravels. Locally, a resistant calcic layer known as the "caprock" overlies the Ogallala Formation. The "caprock" is exposed along the northwestern portion of Lea County.

2.5 SITE LITHOLOGY

The site geology is represented by surface sediments that have been subjected to development of caliche layers that are contiguous over the investigation area. The surface of the investigative area consists of 6 inches to 1 foot of dry compacted caliche base. In undisturbed locations the caliche yard base is underlain by an under-developed caliche layer containing fine grain sand, silt and occasional clay nodules that extends to approximately 25 feet bgs. Below 25 feet, a very hard, mature caliche (calcrete) is encountered that is lacking the sand and silt observed in the layer above. This layer of mature caliche has a thickness of approximately 5 feet. The layer underlying this 5-foot thick mature caliche is similar in character to that above it. This caliche and intermixed sand layer extends from approximately 30 feet to 49 feet bgs. An extremely hard layer of indurated caliche (siliceous calcrete) is encountered from 49 feet to the current water table at approximately 55 feet bgs. Below 55 feet, medium and fine grain sands and gravels with occasional carbonate (caliche) layers dominate the saturated zone. Throughout the caliche profiles, no evidence was observed of current or recent moisture.

2.6 REGIONAL HYDROLOGY

The primary regional aquifer is the Ogallala Aquifer. Where present, the Ogallala Aquifer is usually characterized by relatively high hydraulic conductivity and transmissivity. Sediments of the Ogallala Aquifer are commonly interfingered and intermixed silts, clays, sands and gravels derived from erosion of the southern end of the Rocky Mountains located approximately 100 miles west of the area. Regionally, the Ogallala Aquifer thins from north to south in Lea County and total dissolved solid content increases from north to south. Perched zones can exist with limited aerial extent above the primary aquifer, although no regional perches are recognized in the study area.

2.7 SITE HYDROLOGY

Groundwater is encountered at approximately 56 feet bgs across the site. Caliche layers are also located within the saturated section in areas of the site. The saturated thickness is approximately 80 feet based on drilling records for the on-site domestic water well installed by Eads Drilling Co. in 1993. Total Dissolved Solids (TDS) content varied from 882 mg/l in monitor well MW-15 to 1550 mg/l in monitor well MW-5. Groundwater flow has been generally west to east across the property for the duration of the gauging events conducted by ETGI.

Groundwater in the area has historically provided domestic water to residences, livestock and limited areas of irrigation. All three uses have been documented on the adjoining properties.

3.0 SOIL INVESTIGATION

3.1 AREA 1

Area 1 has previously been reported as being located on the west side and surrounded by Area 2. For the purposes of this report Area 1 has been incorporated into the Area 2 soil investigation. There will be no further separate discussion of Area 1.

3.2 AREA 2

Area 2 is located directly west of the existing warehouse on the north-central part of the property (Figure 2). The purpose of sample collection was to delineate the horizontal and vertical extent of suspected former pit. Soil samples in Area 2 were collected using an air-rotary drilling rig and decontaminated split-spoon sampler. Soil sample locations in Area 2 consisted of SB-41, SB-42, SB-47 through SB-51, SB-53 and SB-57 through SB-64 (Figure 3). Typically, samples were collected at 5-foot intervals to total depth. Hard, compacted or indurated carbonate rock (caliche) at some depths prevented collection of split-spoon samples.

Soil boring SB-41 was advanced to a total depth of 57 feet bgs. Heavily stained black fill material was encountered from 2 to 15 feet bgs. Strong hydrocarbon and chemical odor

were detected through approximately 25 feet bgs. Below 15 feet, the staining becomes less pronounced with depth until no longer evident at 30 feet bgs. A very hard indurated caliche layer was encountered from 25 to 30 feet and a second hard indurated and siliceous layer was encountered from 50 to 53 feet bgs. Below 53 feet the cemented sand that was encountered became increasingly moist at 56.5 feet.

Soil boring SB-42 was placed immediately off the north side of the existing bulk chemical containment area and advanced to 40 feet bgs. No staining or odor was encountered during placement of SB-42. Based on visual observations, no samples were submitted for laboratory analysis. Soil excavation revealed that SB-42 was coincidentally placed between the existing known pit and a previously unknown pit that extended beneath the bulk chemical containment area. The additional pit was designated Area 2-West Pit based on proximity to the original pit of Area 2.

In implementing the previously approved Stage 2 Abatement Plan Proposal dated February 5, 2002, excavation activities in Area 2 were initiated on July 29, 2002. An estimated 18,200 cubic yards (cy) of material was removed during the excavation of Area 2. The fill material removed consisted of mild to severely stained caliche, sand and debris. Debris removed from the pit included metal and plastic drums, metal piping, tires and assorted solid waste. Much of the debris removed from the excavation was coated with black gelatinous or tarry material. The material had a very strong chemical odor. The central portion of the pit was saturated from approximately 6 to 12 feet bgs.

During excavation activities, several metal pipes were removed from Area 2. The metal pipes were segregated from the removed fill and will be picked up by a metal recycler.

Area 2 was initially excavated approximately 140' by 114' by 18'deep. Sidewalls were benched on all sides to conform to safe excavating practice. Even though the south sidewall was excavated as close as practicable to the existing bulk chemical containment pad, an area of this sidewall approximately 15' wide by 18' high remained stained. This material was left in place at the time to maintain structural integrity of the overlying bulk chemical containment pad. This area would later be excavated following the relocation of additional bulk chemical tanks and subsequent removal of approximately half of the overlying concrete containment pad. The removal of the stained sidewall led to the discovery of a pit extending beneath the containment pad to the south and beyond the pad for approximately 35' to the west. The approximate final excavation extent is indicated in Figure 2.

Sidewall confirmation soil samples were collected from the north and an east wall to verify that contaminant excavation was achieved. Remaining sidewall and bottom-hole samples were not collected during this phase of Area 2 excavation pending final determination of south and west delineation. Excavation of Area 2 was terminated at a depth of approximately 16-18 feet bgs due to a very hard caliche rock. The central floor area of the excavation remains stained from pit fill leachate.

Soil borings SB-47 through SB-51, SB-53 and SB-57 through SB-64 were placed to delineate and characterize the south and west sides of Area 2 (Area 2-West Pit). Soil borings SB-47 through SB-51, SB-53 and SB-57 through SB-60 were placed through the concrete bulk chemical containment area in efforts to delineate the southern extent of contamination below the concrete pad. Soil boring data from SB-49 and SB-50 was used to establish the southern extent of Area 2. Efforts were then made to salvage a portion of the concrete chemical containment pad by saw cutting the pad several feet south of SB-49 and SB-50.

Following the saw cut, approximately 50% of the bulk chemical containment pad was removed. This allowed for a second phase of excavation on the south and west sides of Area 2 to bring the excavation to it's current extent (Figure 2). Similar material was removed during this phase of excavation that began on January 20, 2003 as was removed during earlier excavation activities. The materials consisted of moderately to heavily stained, moist caliche, solid waste and debris. A very strong chemical odor was evident during excavation activities. Removed metal piping and scrap were segregated and placed with previously removed material of similar nature. The excavation was advanced to the west until all visual contamination was removed. The excavation was also advanced to the south up to the chemical containment pad saw cut. This south wall face continues to exhibit minor staining in a layer approximately two feet thick and extending below the length of the remaining chemical containment pad.

During a site visit by members of the NMOCD on February 05, 2003, ETGI was directed on behalf of Champion Technologies to collect at least one composite soil sample from the stained layer below the remaining chemical containment pad and analyzed the sample for COCs. Samples from this layer were collected by using a hand auger advanced horizontally beneath the pad. A total of three horizontal borings were advanced within a six-foot sidewall section. A composite sample of the three borings was collected and analyzed from the 3-4 foot horizontal distance interval. Two of the three borings encountered refusal at the 8-foot distance while one boring was advanced to a maximum distance of 14.5 feet where a discrete point sample was collected from 14.5 to 15.5 horizontal feet. Sample results are discussed in Section 5.1, Analytical Results and Significance.

In the process of excavating the south sidewall of Area 2, a metal pipe was exposed that appeared to be part of a well casing. The casing was excavated to expose an 8' tall section for better investigation. The metal casing was cut off approximately 4' above the bottom of the excavation to allow access down the pipe. Water was gauged at approximately 58 feet bgs. Larry Johnson of the Hobbs, New Mexico office of the NMOCD visited the site on March 06, 2003 and identified the casing as an abandoned water well. This water well will be properly plugged and abandoned per New Mexico regulations prior to the backfilling of this excavation.

Sidewall confirmation samples were collected from the south and west walls of the Area 2 excavation (Figure 14). A bottom-hole composite sample was collected from in-place material in the floor of the Area 2-West Pit section of the excavation. After removing

unconsolidated material with a shovel and broom, the caliche rock bottom was sampled using an electric drill to collect cuttings from three separate floor locations to make one composite sample.

3.3 AREA 3

Area 3 is comprised of two excavations separated by approximately 5 feet. One excavation referred to as the "Trenched Area" is the more southerly excavation of the two excavations (Figure 2). This excavation is so referred because of previous work by Enercon in which five parallel trenches were excavated for exploratory purposes. Stained material and solid waste were reported at that time but the trenches were backfilled. Faint surface traces of the former trenches were used in conjunction with site drawings by Enercon to locate this area.

The northern of the two excavations is referred to as the SB-21 Area due to previous work by Enercon. Soil boring SB-21 installed by Enercon indicated elevated concentrations of COCs in samples collected in SB-21. An excavation plan was developed based on previous soil borings and references on Enercon's site drawings.

Excavation activities at Area 3 began on July 22, 2002 with the "Trenched Area" being excavated first. The shape of the area is roughly rectangular and measures approximately 80' in the east-west direction and approximately 45' in the north-south direction. Several crushed metal drums were removed from this area. Several of these drums and drum pieces had a black tarry material adhering to them. Some of the material was very viscous but could be seen dripping from the debris. Other excavated materials found were tires, metal containers, pipes, trash, plastic containers, and wood. The soil surrounding the solid waste was moderately stained and emitted a chemical odor but no indications of moisture were observed.

Depth of the Area 3 "Trenched Area" excavation varies from 4' to a maximum of 12' bgs and was based on depth of visual staining, unconsolidated fill and solid waste removed. Depth in the southwest corner was approximately 12' bgs, the central section approximately 10' bgs and the northeast section 8' bgs.

An estimated 1,000 cy of material was removed from the "Trenched Area" portion of the Area 3 excavation. The solid waste was segregated by similar qualities (metal, plastic, etc.). After waste characterization, the soil was transported to a local NMOCD approved land farm for treatment.

Excavation of the Area 3 SB-21 area was planned to encompass soil borings SB-32, SB-33, SB-34 as well as SB-21. This excavation is square in shape (approximately centered on SB-21) with a length of approximately 40'. The depth of this excavation was approximately 4' bgs. No staining, moisture, or debris was observed. A hard, fractured caliche was encountered at one-foot bgs and yielded no observable evidence of having been previously disturbed. An estimated 375 cy of soil was removed from the SB-21

area. After waste characterization this material remains stockpiled on site for possible reuse as backfill.

Confirmation sidewall and bottom-hole samples were collected for both excavations. Results from the "Trenched Area" excavation sidewall samples required re-sampling after stepping out from initial sidewall sample locations as chlorides were found to exceed 250 ppm in the initial sample location. (Figure 15).

A letter by ETGI dated November 12, 2002 was submitted to the NMOCD to request backfill approval for Area 3. As of this report, approval has not been received. This letter documents and illustrates that climatic and sub-surface conditions do not exist that would allow for transport of COC through the unsaturated zone to the groundwater.

3.4 SEPTIC SYSTEM LEACHFIELD

A septic system and leachfield line providing service for the office and in-house laboratory is located directly west of the office building. The office and laboratory were moved from the warehouse location upon construction of the new building in 1994. The septic system provided service for the laboratory until it was closed in 1999. This septic system continued to service the office until October 2001 (Stage 2 Abatement Plan Proposal, Enercon Services, Inc. February 5, 2002) when the septic tank was replaced and reconnected to the original leachfield line. Monitor well MW-3 was installed south of the then-current septic tank and leach line system by Enercon Services, Inc. No indication of staining or contamination was reported. Groundwater concentrations of chloride in monitor well MW-3, as with all the monitor wells on-site, exceed 250 ppm.

On September 25, 2002, the original leach line was excavated and removed. A new leach line was installed approximately 20' north of the original line, covered and placed into service. The original leach line excavation trench was sampled for chromium and chloride prior to backfilling. On October 02, 2002 soil boring SB-52 was placed on the south side of the former leach line and advanced to a depth of 56' bgs. Soil samples were collected and analyzed for chromium and chloride. There was no visual or olfactory indication of contamination in the leach line excavation or soil boring SB-52 (Figure 4).

3.5 SOUTHEAST CORNER OF PROPERTY

Monitor wells MW-4, MW-5, MW-13 and MW-14 are located on the southeast corner of the property. This area of approximately 18,000 square feet is utilized by Champion as an occasional storage area for utility trailers or equipment. Directly across the fence and property line to the south is a residence and the off-site domestic well that is included in the quarterly groundwater monitoring program.

Based on increases of groundwater chromium concentrations in monitor well MW-4 and monitor well MW-13, and a relatively stable concentration in monitor well MW-3, an alternate source of chromium is suspected. An electronic pipe locator was used to survey this part of the yard. The pipe locator survey indicated multiple areas for possible

investigation. These areas were investigated and led to a refined excavation plan. No suspect material was discovered during this investigation.

Two trenches were excavated in this area for exploratory purposes. The trenches were oriented north-south parallel to each other and on either side of buried utilities connecting the on-site domestic well to the office. The trenches were designated West Trench and East Trench (Figure 4). The trenches were excavated to an average depth of three feet bgs with occasional areas reaching six feet bgs. Soil samples were collected from the West Trench on the south end and below a 2" diameter metal pipeline that traversed both trenches east-west. There were multiple corrosion holes in the pipeline but no moisture or staining was observed. No samples were collected from the East Trench. No evidence of disturbance was observed in either trench.

3.6 MONITOR WELL MW-8 AREA

An area of approximately 100 sf was investigated immediately east of monitor well MW-8 on the north side of the warehouse. A surface stain was observed in the soil during the installation of MW-8. The stained soil visually extended to approximately one-foot bgs. This appeared to have been a minor spill but was delineated by placement of soil borings to the west (SB-43), north (SB-44) and east (SB-45). Visual, instrument (PID) and olfactory observations did not indicate contamination beyond the surface expression or below 2'. No samples were submitted to the laboratory for analysis. Small spill mitigation is addressed in the Champion Discharge Plan dated September 13, 2001.

3.7 BOREHOLE DRILLING AND SOIL SAMPLING

The soil investigation was accomplished by completing boreholes and collecting soil samples at locations identified in previous work plans submitted to NMOCD. The soil borings were completed using an air-rotary drilling rig and soil samples were collected using a split-spoon sampler. Lithologic soil boring logs were created from the observations of samples and drill cuttings during soil boring placement.

Soil samples were collected by drilling to the desired sample interval and removing the drill stem and drill bit. The sampling plan required sample collection using a split spoon sampler every 5 feet. A decontaminated split spoon was lowered to the sampling depth and slowly advanced into the undisturbed soil. Hard, compacted and indurated carbonate rock layers posed limiting factors for sample collection at various intervals. The split-spoon was withdrawn from the borehole and the sample removed from the sampling devices and placed into appropriate containers. The split spoon device was removed from each soil boring and the drill bit and drill stem reattached and the boring advanced to the next sample location. Field headspace analysis was completed by placing a part of the sample into a zip lock bag. After 30 minutes the headspace in the bag was screened using a photo ionization detector (PID) and the results recorded. A minimum of three soil depths were collected in sample containers, placed on ice, and submitted to the laboratory for analysis. When a contaminated zone was encountered, an additional

sample was collected at the base of the contaminated zone and also submitted for laboratory analysis.

Cuttings generated from the borings were placed with the stockpiled soil excavated from Area 2 awaiting sampling, classification and disposal/treatment. The boring, once completed, was grouted to surface using Portland cement, bentonite powder and water. The mixture was tremied from the bottom of the boring to ground surface.

The drilling rig, drill stem and drill bit along with all split spoons were decontaminated prior to proceeding to complete the next boring.

A qualified geologist, hydrogeologist, or soil sample technician recorded soil type descriptions. These descriptions included the following information and were recorded in the field logbook:

- · Color.
- Structure,
- Texture,
- Moisture,
- any other characteristic that may affect the environmental fate of any releases.

Field screening observations for possible contamination included visual descriptions of each sample. All descriptions were recorded in the bound field logbook.

Samples selected for laboratory analysis were placed into a cooler with plastic bubble wrap matting over the base and bottom corners of each cooler or shipping container. Each sample bottle was individually wrapped with bubble wrap and placed upright on the base of the appropriate cooler. Ice or cold packs in two heavy-duty zip-lock type plastic bags were placed over the top of the samples to ensure proper temperature needed for sample perservation. Chain-of-custody documentation was completed with all appropriate information for each cooler or shipping container and accompanied each shipping container during transport to the analytical laboratory.

3.8 BACKGROUND SOIL CONCENTRATIONS

Background soil samples were collected by ETGI from borings SB-55 and SB-56. Additional background soil data was collected from soil samples collected while completing monitor wells MW-9 and MW-15. Chromium concentrations in these samples ranged from 2.1 mg/kg to 5.73 mg/kg. Chloride concentrations ranged from 13.9 mg/kg to 390 mg/kg (Table 10, Figure 4).

Background soil concentrations were researched by reviewing existing publications. Published data indicates background chromium concentrations in soil can range from 5-150 milligrams per kilograms (mg/kg), with an average concentration in calcic, sandy soils reported at 50 mg/kg. This data has previously been reported in the ETGI letter

entitled "Request for Backfill of Area 3" that was submitted to the NMOCD on November 12, 2002.

Site-specific background soil samples collected by ETGI and samples collected by Enercon were analyzed for chromium. These samples showed chromium concentrations ranging from 2.1 mg/kg to 20.1 mg/kg (Table 10).

Published average lead background concentrations reported in Risk Assessment Information Systems (RAIS) Generic Soil Background Values for various soil lithologies range from 18 to 26 mg/kg with an average of 20.9 mg/kg.

Background lead concentrations observed in soil samples collected by ETGI and samples collected by Enercon ranged from 1.51 mg/kg to 23.2 mg/kg.

Background Arsenic concentrations observed in soil samples collected by ETGI and samples collected by Enercon ranged from 1.84 mg/kg to 17.0 mg/kg. Published average concentrations for arsenic range from 3.6 to 8.8 mg/kg with an average concentration of 6.7 mg/kg (RAIS).

Review of the "Technical Background Document for Development of Soil Screening Levels" prepared by New Mexico Environmental Department, Hazardous Waste Bureau and Groundwater Quality Bureau, Voluntary Remediation Program, dated December 18, 2000 specifies in Section 4 titled "Migration of Contaminants to Groundwater", the procedure to determine if concentrations of contaminants in soil have the potential to migrate to groundwater at a concentration that presents an ingestion risk to human health. Table A-1 NMED Soil Screening Levels indicate an arsenic concentration of 60 mg/kg (Dilution Attenuation Factor (DAF) of 20) does not present a risk of migration to groundwater above risk-based standards. Other chemicals referenced in this table include Chromium VI at 20 mg/kg and Chromium III at 200 mg/kg.

The use of a DAF of approximately 20 is specified in section 4.1.4 and states "NMED believes that a DAF of 20 for a 0.5 acre source area is protective of groundwater in New Mexico". This is reemphasized in section 4.1.6.

Table 4-16 titled Soil Concentrations Protective of Groundwater No Transport Zone in the Unsaturated Zone (DAF _{unset} 20) reviewed in Volume 2 Tier 1 Screening Levels Ecological Risk Assessment, Phase 1 Scoping Assessment, specifies lead concentrations of 53.08 and below is protective of leaching to groundwater.

Review of the Toxicological profile for Arsenic published by the US Department of Health and Human Services, Public Health Services, Agency for Toxic Substances and Disease Registry (September 2000) specifies background arsenic concentration in soil range from 1.0 mg/kg to 40 mg/kg. The U.S. Geological Survey (USGS) reports a range of 0.1 mg/kg to 97 mg/kg and a mean value of 7.2 mg/kg for background arsenic concentrations in soil (USGS 1984).

4.0 GROUNDWATER INVESTIGATION

4.1 RATIONALE FOR MONITOR WELL PLACEMENT

Monitor wells installed on the Champion property were placed to determine the potential impact to groundwater. Enercon installed monitor wells MW-1 through MW-7 while monitor wells MW-8 through MW-16 were installed by ETGI (Figure 2). Monitor wells MW-1, MW-7, MW-9 and MW-15 were installed upgradient to determine background concentrations of COCs in groundwater and represent groundwater moving onto the Champion property. Monitor well MW-10 was installed downgradient to determine if COCs have migrated off-site.

Monitor wells MW-2, MW-6, MW-8 and MW-11 were placed to determine the extent, if any, of groundwater impact from Area 2. Monitor wells MW-12 and MW-16 were placed to further define the extent of COC detected in monitor well MW-6.

Monitor wells MW-4 and MW-5 were installed by Enercon as documented in the Site Investigation Report (SIR). Monitor wells MW-10 and MW-14 were installed to further define the extent of COC detected in monitor wells MW-4 and MW-5.

Monitor well MW-13 was installed after completing a trenching investigation south of the office building. The trenching investigation was completed to determine if evidence could be found for the existence of a potential secondary chromium source south of the office building. Investigation of this part of the yard did not yield any potential source areas. Subsequently, monitor well MW-13 was installed to determine if the COC in monitor wells MW-4 and MW-5 were potentially migrating from an area located west of the trenched areas.

4.2 MONITOR WELL DRILLING, INSTALLATION AND DEVELOPMENT

Soil borings were advanced using an air-rotary drilling rig. Upon completion of the bore hole to the designated depth, new schedule 40 PVC screen and riser were assembled and lowered centrally into the bore hole. The annular space around the screened section of the monitor wells was filled with graded clean sand to three feet above the well screen. A two-foot seal, using Bentonite pellets and water, was placed over the sand pack. The remaining length of the bore hole was backfilled with grout to within two feet of the surface. Protective steel casing was placed around the riser and a concrete pad was poured to secure the monitor well in place. The protective steel casings were secured with a lockable protective cover above ground completion or lockable monitor well caps for ground flush well completions.

All monitor wells were professionally surveyed to determine spacial location and vertical elevation. Drill cuttings, drill fluids and decontamination water were secured and disposed of properly.

SEEL OF GEREEN ? Page 12 of 30

Monitor wells were developed by removing water from the well using a submersible pump until the water was clear. A minimum of five well volumes was calculated and removed from the casings. Field measurements collected during this process included temperature, pH and specific conductance illustrating proper development upon stabilization of these parameters.

4.3 FIELD SCREENING AND MEASUREMENT

Field instruments used during monitor well development and sampling included:

Photo Ionization Detector (PID); Conductivity Meter; Temperature and pH Meter and; Electronic Water/Oil Level Meter.

Water samples were screened during monitor well development, monitor well purging and groundwater sample collection.

4.4 GROUNDWATER SAMPLING

Wells were first gauged with an interface probe and then purged with a clean disposable bailer or submersible pump for a total of three well volumes. After purging the wells, groundwater samples were collected with a disposable Teflon sampler and polyethylene line by personnel wearing clean, disposable gloves. Groundwater sample containers were filled in the order of decreasing volatilization sensitivity (i.e., BTEX containers were filled first and PAH containers second). Groundwater samples, collected for BTEX analysis, were placed in 40 mL glass VOA vials equipped with Teflon-lined caps. The containers were provided by the analytical laboratory. The vials were filled to a positive meniscus, sealed and visually checked to ensure the absence of air bubbles.

Sample containers were labeled and placed on ice in an insulated cooler, and chilled to 4°C. The cooler was sealed for transportation to the analytical laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

The groundwater samples were analyzed as follows:

- BTEX concentrations in accordance with EPA Methods SW846, 8021B, or 8260B.
- TPH concentrations in accordance with EPA Methods 418.1, 8015 Modified and 8015 Modified Extended, 8015M ext. Aliphatics and Aromatics.
- Total metal concentrations in accordance with EPA Methods SW846 6010B, 6020, (mercury 7471A).
- Semi-Volatile Organic Compounds in accordance with EPA Methods SW846 8270C.
- Volatile Organic Compounds in accordance with EPA Methods SW846 8260B.

 General Chemistry in accordance with EPA Methods SW846 E300.0, E310.1, E160.1 and S6010B.

Sampling containers for all water samples were provided by the analytical laboratory. Sample containers, preservatives, sample volume, and holding times are referenced in Table 8, Sampling Parameters and Sampling Requirements.

4.5 AREAS INVESTIGATED – GROUNDWATER

The hydrology at the site was determined by collecting water level readings from the monitor wells (Table 9). This data is illustrated in Figures 8, 9 and 10 for each quarter the wells were sampled. The hydraulic gradient ranged from 0.002 to 0.003 ft/ft and groundwater flow is from the west to the east.

Three quarterly sampling events are included in this report: August 2, 2002; October 21, 2002 and February 19, 2003. The analytical data for metal concentrations is reported in Table 1. Trace concentrations of volatile organic compounds and semi-volatile organic compounds detected in groundwater are listed in Tables 3 and 4, respectively. Maximum concentrations of COC detected in groundwater are specified in Table 11. Concentrations of chlorides and other general chemistry parameters are listed in Tables 2 and 5. TPH concentrations detected in groundwater are referenced in Table 7 and Aliphatic and Aromatic hydrocarbons are listed in Table 6. Laboratory Analytical Reports are provided in Appendix C in chronological order.

4.5.1 Downgradient of Area 2

Groundwater downgradient of Area 2 was investigated by the installation and sampling of monitor well MW-8 and the sampling of existing monitor well MW-6. Analysis of groundwater samples for the COC reported chloride concentrations above the NMWQCC standard of 250 mg/L in monitor wells MW-6 and MW-8. Monitor well MW-6 also exceeded NMWQCC standards for barium, chromium, manganese, iron and fluoride in August of 2002 (Figure 5). Monitor well MW-8 exceeded NMWQCC for iron and fluoride. Iron and fluoride were also above NMWQCC standards in background monitor wells MW-1, MW-7 and MW-9. Based upon these analytical results, additional monitor wells MW-11, MW-12 and MW-16 were installed to further define the extent of COC in groundwater associated with MW-6 and Area 2. These monitor wells were sampled in October 2002 and contained chloride concentrations above 250 mg/L (Figure 6). Monitor well MW-11 located directly north of monitor well MW-6 and adjacent to the east wall of the excavation contained iron, fluoride, and aluminum above NMWQCC standards. Monitor well MW-12 downgradient or east of monitor well MW-6, contained chromium, iron, fluoride and aluminum concentrations above NMWQCC standards. Monitor well MW-16, located southeast of monitor well MW-6 contained iron, fluoride and aluminum concentrations above NMWQCC standards. These results were compared to the new background monitor well MW-15, installed off-site and upgradient of the site. Monitor well MW-15 exceeded NMWQCC standards for iron, fluoride and aluminum.

Analytical data for samples collected from monitor well MW-6 in October 2002 reported chloride, chromium, and 1,1-Dichloroethane (DCA) exceeding NMWQCC standards. Based on these results, the COCs from Area 2 are chloride, chromium, and VOCs. Because of remaining concentrations of TPH in soil, Champion elects to monitor for TPH (Method 8015) in this area as well.

Groundwater samples collected in February 2003 contained chloride and total dissolved chromium concentrations exceeding NMWQCC standards in monitor well MW-6. Monitor wells MW-8, MW-11, MW-12 and MW-16 all exceeded 250 mg/L chlorides. Average background chloride concentrations also exceeded 250 mg/L by approximately 50 to 125 mg/L.

4.5.2 Downgradient of Area 3

Area 3 was excavated to remove debris buried in a trench. Bottom hole soil samples collected illustrate that COC (with the exception of chloride) have been removed and are no longer available to migrate to groundwater. Monitor well MW-2 is the closest downgradient well to Area 3. Only chloride and fluoride were detected above NMWQCC standards in the August 2002 sampling event and only chloride in the October 2002 and February 2003 sampling events, illustrating that the impact from the material in Area 3 was limited to the soil.

4.5.3 Septic System Leachfield

The groundwater south of the former septic tank system was investigated by monitor well MW-3, installed by Enercon. The analytical results indicated that chloride and fluoride were detected above NMWQCC standards in August 2002 and only chloride in October 2002. An additional soil investigation was completed and is described in Section 3.2.4. The old leachfield lines were removed and new leachfield lines were installed.

4.5.4 Upgradient of Monitor Well MW-4

Groundwater samples collected from monitor well MW-4 detected the highest concentrations of chromium throughout the site. To identify possible chromium sources, two trenches aligned north and south were completed on both sides of the electrical and water lines running from the water well to the main office. Soil investigation of this area is discussed in Section 3.4. Monitor well MW-13 was installed west of this area to determine if an upgradient source of chromium exists. The analytical results reported chloride, chromium, iron, fluoride, and aluminum exceeded NMWQCC standards. Iron, fluoride and aluminum were detected in background wells above NMWQCC standards. Therefore only chloride and chromium were identified as COC. Analytical data from MW-13 indicated the source for chromium associated with monitor well MW-4 could potentially exist further west of monitor well MW-13. The February 2003 sampling event continued to show concentrations of total dissolved chromium above NMWQCC limits.

4.5.5 Off-Site and Downgradient of Monitor Well MW-4

Monitor well MW-10 was installed (off-site) due east of monitor well MW-4, across Highway 18 to investigate concentrations of COC in groundwater downgradient of monitor well MW-4. Analytical data collected showed chloride, iron, fluoride and aluminum exceeded NMWQCC standards. Iron, fluoride and aluminum were detected in background monitor wells above NMWQCC standards. Chloride and chromium were the only COC detected for the area associated with monitor well MW-4. Monitor well MW-14 was installed north of monitor well MW-4 with groundwater samples containing chloride, iron, fluoride and aluminum above NMWQCC standards. Subsequently, chloride is the only COC associated with this well.

4.5.6 Background Data

Enercon initially collected background data through the installation of monitor wells MW-1 and MW-7. The sampling data collected in August 2002 (by ETGI) indicated that monitor well MW-1 exceeded NMWQCC standards for barium, chloride, iron and fluoride and monitor well MW-7 exceeded NMWQCC standards for iron and fluoride (Figure 5). An additional monitor well, MW-9, was installed off-site and upgradient of monitor well MW-1. Sampling data collected in August 2002 indicated that chloride, iron and fluoride exceeded NMWQCC standards. At the request of NMOCD, a fourth background monitor well MW-15 was installed. This well contained iron, fluoride and aluminum above NMWQCC standards during the October 2002 sampling event. Monitor wells MW-1 and MW-9, sampled in October 2002, contained chloride above NMWQCC standards. Monitor well MW-9 also contained chromium above NMWQCC standards (Figure 6).

Background monitor well data is tabulated in Table 10 for potential COCs. Iron, fluoride and aluminum were eliminated as COC due to their frequent occurrences above NMWQCC standards in background wells. The average chloride concentration was calculated at 263 mg/L, from analytical data for the four (4) background monitor wells in the October 2002 sampling event and 375 mg/L for the February 2003 sampling event. This data illustrates that the average background concentration for chloride is above the NMWQCC standards.

5.0 ANALYTICAL RESULTS AND THEIR SIGNIFICANCE

5.1 SOIL INVESTIGATION

5.1.1 Area 2

Soil samples from the Area 2 investigation were collected from soil borings, surface grab and composite sampling locations. Potential chemicals of concern (COCs) in Area 2 are considered to be chromium, arsenic, lead, TPH, BTEX and chloride.

Maximum chromium concentration remaining in soil was found in soil boring SB-41 @ 25' at 13.4mg/kg. Background chromium concentrations as reported by the Risk Assessment Information Systems and provided to the NMOCD in the letter dated November 12, 2002 (*Request for Backfill of Area 3*) by ETGI state an average of 50 mg/kg for calcic soils. ETGI proposes establishing background chromium concentrations as < 50 mg/kg for the Champion Facility in Hobbs, New Mexico.

Maximum arsenic and lead concentrations remaining in soil were found to be 18.9 mg/kg and 23.3 mg/kg respectively. These concentrations were found in the east horizontal soil boring at 14.5-15.5' distance beneath the bulk chemical containment pad. It is ETGI's contention that the soil at this location is in a stable environment. This environment has a 6" thick reinforced concrete pad and the pad's underlying compacted caliche and sand base above it. This area is not susceptible to a transport mechanism such as infiltration.

Maximum concentrations for TPH and BTEX remaining in soil were found in soil boring SB-41 @ 25' at 28,000 mg/kg by method 418.1 and 13,360 mg/kg by method 8015M for TPH and 46.5 mg/kg total BTEX. These concentrations in soil with low permeability, indurated lithology and with the transportation method removed (leach field), do not pose a significant threat of further migration to groundwater. Nonetheless, ETGI recommends continuing monitoring of the groundwater down-gradient of Area 2 for TPH and Volatile Organic Compounds (VOCs) following a TPH detection in monitor well MW-6 on the October 21, 2002 sampling event (2.35 mg/L by method 418.1).

Maximum chloride concentration remaining in soil after excavation was reported in soil boring SB-50 @ 25' at 3020 mg/kg. Chloride transport simulations indicate that chloride at this depth will not migrate to groundwater if engineering controls are installed. These controls will consist of a clay cap over the excavated Area 2 and a surface sloped so as to reduce infiltration by precipitation. Section 7.2 further discusses modeling of chloride migration in the unsaturated zone.

Historical analytical results for concentrations of COCs can be found in reports submitted to the NMOCD during the SIR investigation by Enercon. The maximum historical chloride concentrations were used as input data for running the chloride transport simulations. And employing engineering controls, as discussed in section 7.2-Simulation of Chloride Migration keeps the chloride from mobilizing.

5.1.2 Area 3

Soil samples collected by ETGI from Area 3 investigation were obtained from soil borings and excavation confirmation sampling points. Chemicals of potential concern for Area 3 are the same as for Area 2 (chromium, arsenic, lead, TPH, BTEX and chloride).

The maximum chromium concentrations remaining in soil was found in confirmation soil sample S.S. 1 Wall 5' from the southeast wall of the "Trenched Area" excavation at 12.9 mg/kg (Figure 15). As with Area 2, we propose evaluating concentrations of chromium

in this area based on the background of 50 mg/kg. Recognizing this concentration as background and thus no threat to groundwater, additional mitigation of chromium in Area 3 is not warranted.

Maximum arsenic concentrations remaining in soil after excavating was found in confirmation sidewall sample S.S. 3 Wall 3' at 4.34 mg/kg. Maximum lead concentration remaining in soil after excavation was found in confirmation bottom-hole sample S.S. 14 Btm 10' at 3.74 mg/kg.

Maximum concentration of TPH remaining in soil after excavation was found in confirmation bottom-hole sample S.S. 12 Btm 10' at 496 mg/kg by method 418.1. Analysis for BTEX constituents did not yield any detections in this excavation. The material and mechanism that would allow for further migration of remaining hydrocarbons has been removed. The remaining TPH concentrations will naturally attenuate in place.

The maximum chloride concentrations remaining in soil after excavating of Area 3 was soil sample D-34 @ 5' bgs at 11,900 mg/kg. The surface will be graded in such a way as to minimize infiltration of meteoric water

Historical concentration of COCs remaining in the soil are found in reports previously submitted by Enercon.

5.2 GROUNDWATER INVESTIGATION

5.2.1 Downgradient of Area 2

The COCs in groundwater for Area 2 are identified as chloride, chromium, and DCA, with the highest concentrations detected in monitor well MW-6 at 469 mg/L, 0.254 mg/L, 2.35 mg/L and 0.0453 mg/L, respectively in the October 2002 sampling event (Figure 6). Monitor well MW-6 is downgradient of monitor well MW-12. Monitor well MW-12 contained chromium and chloride above NMWQCC standards at 0.054 mg/L and 357 mg/L respectively in the October 2002 sampling event.

All samples analyzed for metals (chromium) prior to 2/19/03 were unfiltered samples. These concentrations cannot be used to compare with NMWQCC standard that requires filtered samples or dissolved metals (chromium). In November 2002, ETGI collected water samples from select monitor wells and had them analyzed for unfiltered total chromium, total dissolved chromium and hexavalent chromium. The analytical results indicated that total dissolved chromium concentrations were similar to the hexavalent chromium (Chromium VI) concentrations. Chromium VI presents the greatest risk to human health and potential for offsite migration. The dissolved metal concentrations also have a greater potential to migrate downgradient. These same concentrations can also be used to compare with NMWQCC standards. ETGI completed the February 2003 sampling event for dissolved metals and total dissolved chromium concentrations (Figure

7). Based on the February 2003 sampling event and comparison of analytical results, only MW-6 is above NMWQCC limits for Area 2.

The chromium contaminant plumes illustrated in Figure 12 are of primary concern as they present the greatest risk to human health should concentrations of total dissolved chromium in groundwater migrate to an off-site water well receptor.

Chloride concentrations are above NMWQCC standards in all but two of the on-site monitor wells based on the analytical data obtained on the October 2002 sampling event and in all monitor wells from the February 2003 sampling data. The modeling completed and referenced in Section 9 illustrates that chloride in the soil is no longer contributing to chloride in the groundwater. The concentration of DCA (0.0453 mg/L) detected in monitor well MW-6 is below NMWQCC standards and in monitor well MW-12 (DCA at 0.010 mg/L) indicating these COC are being reduced by natural attenuation. The February 2003 sampling data illustrate DCA and TPH were not detected in monitor well MW-6 (Figure 7).

5.2.2 Downgradient of Area 3

There are no COC above NMWQCC standards for Area 3 with the exception of chloride detected in monitor well MW-2 at 397 mg/L during the October 2002 sampling event (Figure 6) and 384 mg/L in February 2003 (Figure 7). Chlorides in groundwater are discussed in detail in Section 9.

5.2.3 Septic System Leachfield

The only COC above NMWQCC standards found in groundwater near the former septic system leachfield (MW-3) is chloride detected at 464 mg/L during the October 2002 sampling event and 658 mg/L in February 2003 (Figure 6 and 7). The constant addition of water via the leachfield indicates a higher potential for chlorides to be leached from the soil to groundwater. This portion of the site is indicative of saturated flow and not unsaturated flow through the subsurface soil, as is the case for the remainder of the site. The concentration of chloride in the on-site water well used for sanitation is 290 mg/L based on the data collected during the October 2002 sampling event and 347 mg/L in February 2003. The concentrations of chloride are constantly added into the leachfield on a daily basis, and accumulation in the area associated with monitor well MW-3 and further downgradient in monitor well MW-5 (508 mg/L and 476 mg/L chloride), as observed during the October 2002 (Figure 6) and February 2003 sampling events (Figure 7).

5.2.4 Upgradient of Monitor Well MW-4

The COC above NMWQCC standards that are upgradient of and at monitor well MW-4 are chromium and chloride. Monitor well MW-13 contained concentrations of chromium at 0.094 mg/L and chloride at 244 mg/L, while monitor well MW-4 contained chromium at 0.333 mg/L and chloride at 377 mg/L in the October 2002 sampling event (Figure 6).

The February 2003 sampling event showed total dissolved chromium and chloride concentrations in monitor well MW-13 at 0.151 mg/L and 332 mg/L, respectively (Figure 7). Monitor well MW-4 showed total dissolved chromium concentrations of 0.271 mg/L and chloride at 435 mg/L. Although the on-site active water well is located directly upgradient of monitor well MW-4, this domestic water supply well is screened at a lower level (110' – 130' bgs) than the monitor wells on-site. This can account for the lack of both total unfiltered chromium and total dissolved chromium concentrations in the active onsite domestic water well. Should this well become impacted by chromium concentrations above 0.04 mg/L, the immediate corrective action and public protection plan will be implemented and a new domestic water supply well will be installed in a different location. The soil investigation upgradient of monitor well MW-4 did not detect the presence of a potential chromium source. Total dissolved chromium concentrations detected in monitor well MW-13 indicates a potential source of chromium may still be present west of this location (Figure 11).

5.2.5 Off-Site and Downgradient of Monitor Well MW-4

The COC above NMWQCC standards downgradient of monitor well MW-4 is chloride and as observed at a concentration of 260 mg/L in monitor well MW-10 during the October 2002 sampling event and 355 mg/L in February 2003 (Figure 6 and 7). The migration of chloride is discussed in greater detail in Section 9. Total dissolved chromium concentrations in monitor well MW-4 in February 2003 were 0.271 mg/L. Total dissolved chromium concentrations were detected in monitor well MW-10 in February 2003 0.0163 mg/L. This illustrates the total dissolved chromium concentrations have not exceeded NMQWCC limits at monitor well MW-10. Monitor well MW-10 is approximately 200 feet downgradient of monitor well MW-4. The groundwater gradient across the site ranges from 0.002 to 0.003 ft/ft, (Figure 8, 9 and 10). The groundwater Darcy's velocity was calculated at 0.05 ft/day.

The domestic water well located at the resident south of the Champion property is sampled quarterly. Should total dissolved chromium concentrations be detected at 0.04 mg/L or above, a new source of water will be provided to this resident. Installing a new water well located upgradient of the delineated chromium concentration zone(s) could accomplish this task.

5.2.6 Background Data

The concentrations above NMWQCC standards in background monitor wells MW-1, MW-7, MW-9 and MW-15 are: fluoride and iron with monitor well MW-1 containing fluoride at 3.7 mg/L and iron at 18 mg/L; monitor well MW-7 containing fluoride at 1.94 mg/L and iron at 2.0 mg/L; monitor well MW-9 containing fluoride at 2.0 mg/L and iron at 14.7mg/L; and monitor well MW-15 containing fluoride at 2.61 mg/L and iron at 7.13 mg/L; barium in monitor well MW-1 at 1.75 mg/L; chloride in monitor well MW-1 at 408 mg/L and monitor well MW-9 at 346 mg/L; aluminum in monitor well MW-15 at 6.11 mg/L and chromium once in monitor well MW-9 at 0.086 mg/L.

This data clearly illustrates fluoride and iron throughout the site are attributable to off-site sources or are in concentrations normal to this area/region. Monitor well MW-15 is the only background well that was analyzed for aluminum. Concentrations above the NMWQCC standards of 6.11 mg/L indicate on-site aluminum concentrations ranging from 8.87 mg/L to 14 mg/L and the off-site downgradient well (monitor well MW-10) at 6.42 mg/L are similar to background concentrations normal to the area. Chloride concentrations range from 239 mg/L to 408 mg/L (with the average being 331 mg/L) based on the August 2002 analytical data (Figure 5); 156 mg/L to 356 mg/L (with the average being 263 mg/L) based on the October 2002 analytical data (Figure 6); and 221 mg/L to 510 mg/L (with the average being 374.5 mg/L) based on the February 2003 analytical data (Figure 6). This data illustrates chloride concentrations in groundwater in the on-site wells are similar to background concentrations. Section 9 on Migration of Chloride was completed to illustrate the potential for chloride being added to groundwater from on-site soil. Total unfiltered chromium concentrations in the background monitor well were only detected once above NMWQCC standards during the October 2002 sampling event in monitor well MW-9 at 0.086 mg/L.

6.0 DISPOSITION OF EXCAVATED MATERIAL

Approximately 1,420 cy of impacted material excavated from Area 3 "Trenched Area" was transported to J & L Landfarm in Hobbs, New Mexico for treatment. Excavated material associated with Area 3 SB-21 area remains stockpiled on-site. Two samples collected from this stockpile show concentrations of chloride ranging from 709 mg/kg to 798 mg/kg, chromium from 5.48 mg/kg to 5.58 mg/kg and TPH from 242 mg/kg to 272 mg/kg using EPA Method 418.1 and 59.8 mg/kg to 71.3 mg/kg using EPA Method 8015M. These concentrations do not present a risk of migration to groundwater and should be used to backfill the two Area 3 excavations.

Approximately 9,640 cy of impacted materials excavated from Area 2 were removed and transported to Sundance Services, Inc. in Eunice, New Mexico for disposal. Sundance Services, Inc. is an NMOCD approved facility for receiving contaminated material. An estimated 8,500 cy of impacted materials will be transported and disposed of at Sundance Services, Inc. The concrete removed from the dismantling of half of the bulk chemical containment area generated an estimated 3,120 cy of concrete debris that will require disposal. An additional 1,560 cy of concrete requiring disposal came from the dismantling of the concrete pad west of the warehouse, for a total of 4,580 cy of concrete debris.

7.0 POTENTIAL IMPACT OF CHLORIDE IN SOIL TO GROUNDWATER

7.1 Historical and Current Land Use

Groundwater in the Hobbs Area has historically been impacted by operations related to oil and gas development and production. The standard historical method of placing brine into unlined pits for evaporation has resulted in brine seepage into the shallow

unconfined aquifer. Some mixing will take place at the water table, but the greater density of brine will tend to move towards the lower part of the aquifer. The use of unlined pits continued in parts of New Mexico until the 1980s. Other causes of groundwater contamination via oil and gas operations include production and injection wells, pipelines, waste discharge from gas dehydrators, gas processing and oil refineries (McQuillan and Parker).

New Mark

Other sources of groundwater contaminants include household septic tanks, controlled sewage and cesspool plants, agricultural activity, use and management of refined petroleum products, mining industry, packing plants and dairies and landfills.

Review of aerial photographs of the site and surrounding property clearly indicate the large volume of oil and gas activity that has been and is presently being conducted in the area. Numerous production and storage facilities, salt-water disposal wells, oil and gas wells dot the one-mile radius around the site. Most of these wells historically have had pits associated with them. Several oil and gas storage facilities as well as oil and gas wells are located up gradient or west of the site. These factors and the changing groundwater chloride concentrations in the onsite and offsite monitor wells strongly suggest potential historic and current migration of impacted groundwater (chloride) in the vicinity of this site.

7.2 Simulation of Chlorides Migration

Residual chloride concentrations in the top five feet of soil range from 103 mg/kg to 11,900 mg/kg based on samples collected by ETGI and 170 mg/kg to 12,428 mg/kg based on Enercon data.

Residual chloride concentrations below the excavated pit in Area 2 range from 89.5 mg/kg to 7620 mg/kg based on samples collected by ETGI and 57.4 mg/kg to 11,009 mg/kg based on Enercon data. To determine the potential of these residual concentrations in the soil to migrate to groundwater, R.T. Hicks Consultants, Ltd. were retained to simulate the transport of chlorides using the numerical model Hydrus - 1D (Appendix E). Three scenarios were simulated. Scenario 1 included entering site-specific data into the Hydrus - 1D model and calibrating the model.

Scenario 2 addressed the pit area where the removal of chlorides from the surface down to 18 feet bgs reduced the calculated chloride load. The planned remedial approach for this area required backfilling Area 2 excavation with clean backfill material and placing a one (1) foot thick layer of compacted clay at or near the surface to prevent infiltration of precipitation. This is shown to adequately remove the transport mechanism for mobilization of chloride.

Scenario 3 addressed the residual chloride concentrations in soil from ground surface to five feet bgs. The planned remedial approach for this scenario is to minimize the infiltration of precipitation. As mentioned in Scenario 2, this will remove the transport

WHEPE

How!

eering controls will be employed

mechanism for mobilization of chloride. Engineering controls will be employed to affect this approach as practically and economically as possible.

The concentrations of chloride applied in these three scenarios were the highest concentrations detected at the site representing a worst-case simulation. Simulation of the rate of migration of chloride to groundwater was based on site data as well as regional data and/or professional experience. The hydraulic saturated conductivity of 0.7 cm/day determined by laboratory analysis was used in the model.

This saturated hydraulic conductivity decreases dramatically with decreasing soil water content. The capillaries that constitute the pore space are subject to Poiseuille's Law where the flux of water (g) (in a capillary) is directly proportional to the radius squared (r²). In addition this chloride flux rate exists only during and directly after heavy precipitation. This transient flow undergoes three phases: 1. Infiltration. 2. Redistribution. 3. Static. The upper zone controls the infiltration rate. The application rate (rainfall) can be decreased by a graded and compacted surface to facilitate runoff or by the natural saturated hydraulic conductivity of the shallow soil. The infiltration rate will finally reach the asymptotic value of saturated hydraulic conductivity, and results in ponding or runoff. During the redistribution phase, the soil water flux decreases with time to zero. Any impermeable soil layer has a strong impact on the duration of the redistribution phase. During the static phase, the soil water flux rate is near zero and is affected by losses of water due to evaporation (or plant intake). Subsequently, lower depths within the unsaturated zones are beyond the influence of the transient conditions at the surface and soil water flow will occur under unsaturated conditions.

Based on this very conservative model using maximum chloride concentrations and available saturated hydraulic conductivity in Scenario 1, the simulation indicates that the potential for chloride concentrations to migrate to groundwater exist.

Scenario 2 indicates a maximum possible increase of chloride concentrations of 95 mg/L in a period of 32 years can potentially occur.

Scenario 3 illustrated a reduction of infiltration of precipitation by 70%, resulting in a potential increase of chloride concentrations by 15 mg/kg after approximately 200 years. Essentially, the chloride is immobilized in the vadose zone by the removal of a transport media (water flux).

Field data representing residual soil concentrations outside any of the excavated areas show only one sample with chloride concentrations above 10,000 mg/kg (Sample 3 - 0001 - A, collected 9/16/00 by Enercon) and an additional sample showed 8632 mg/kg (18 - 0305 - A, collected 9/16/00). All other samples were below 5166 mg/kg for chloride. These model simulations would be more accurate if the chloride load was calculated using data representative of the *average* site conditions versus the worst-case situation.

The releases of chloride onto and into the soil surface are believed to have occurred

during historical operations. Based on present conditions, the entire yard has been covered with a compacted caliche layer and has been graded to prevent ponding. Champion has applied compacted caliche layers several times during their operational period. Based on the yard's current construction, a reduction of infiltration (by precipitation) has already been implemented. Compaction of either sandy (caliche) soils or clayey soils generally result in a decrease of permeability by approximately 70 percent.

7.3 Compaction of Soil

Compaction of soil results in increased sheer strength of soil reduced compressibility and reduced permeability. This occurs as the volume of voids in soil is removed resulting in an increase in the dry density of the soil. Compaction with water initially results in higher soil weights but after the optimal water content point is reached, additional water will hinder compaction.

The degree of compaction achieved generally rises with increased efforts at compaction. However, there are only minor gains (increases) in dry density for additional efforts in compaction after the initial compaction effort.

Soil infiltration rates measured in laboratory indicate compacted sand decreases infiltration rates to an average 1.5 inches/hour from 13.5 inches/hour in sand that is not compacted, for 120-minute storm duration. (Pitt, Chen and Clark) Subsequently, the layers of compacted sandy caliche at the site should more than meet the requirements of decreasing infiltration by 50%.

For compacted clayey soil, the average rate decreased to 0.2 inches/hour from 9.3 inches/hour in dry non-compacted clay. This illustrates that a one foot compacted clay layer over the backfilled excavation of Area 2, will effectively reduce the rate of infiltration, greater than 50%.

8.0 RISK ASSESSMENT

A risk assessment was conducted to determine if the residual concentrations of COC left in the soil below 18 feet in Area 2 have a potential to present risk to any on-site or off-site receptors.

Exposure pathways through groundwater, soil, and air are identified to evaluate risks for both potential and actual receptors. Potential on-site receptors of concern include:

- Construction workers via inhalation
- · Site visitors via inhalation
- · Groundwater via ingestion

Potential off-site receptors of concern include:

- Residents via inhalation or ingestion
- · Water wells via groundwater

All COC were screened utilizing the Tier 1 Tables provided by NMED and Tier 1 Risk Based Screening Levels (RBSL) calculated in the RBCA Tool Kit for Chemical Releases modeling program. For contaminants that exceeded the Tier 1 evaluation, a Tier 2 risk-based assessment for each COC was evaluated to develop site-specific target limits (SSTL). The complete Risk Assessment Report is provided in Appendix F.

The COCs evaluated for Tier 2 risk assessment are chromium, chromium VI, magnesium, benzene, and TPH. For each exposure pathway, the SSTL were calculated using the maximum concentration of each COC.

For groundwater ingestion, the only COC that poses a human health risk of onsite ingestion of groundwater or potential offsite migration is chromium VI. The onsite SSTL calculated for chromium VI is 0.039 mg/L and offsite SSTL is 0.11 mg/L. Monitor wells MW-4, MW-6, and MW-13 have exhibited concentrations above the SSTL.

The risk assessment also indicates that there is a potential of residual benzene in the subsurface soils leaching to groundwater. The calculated on and offsite SSTL for benzene are 0.36 mg/kg and 0.98 mg/kg, respectively. Soil borings 9, 10, 14, 15, and SB-41 have concentrations above the onsite SSTL. Soil borings, 9, 10, 13, and SB-41 have concentrations above the offsite SSTL. To date, no benzene contaminants have been detected in the groundwater. To assist in preventing further leaching of benzene, the chloride simulation illustrates the remedial option of limiting infiltration of precipitation will also eliminate the medium of transport. Residual benzene concentrations will degrade by natural attenuation and therefore will not present a risk to groundwater.

A potential for onsite inhalation of benzene volatiles in the soil is possible in the area around soil boring 13. The onsite SSTL for benzene volatilizing to air is 3 mg/kg. Soil boring 13 at 18-20' has a benzene concentration of 3.51 mg/kg.

All other contaminants evaluated for either Tier 1 screening levels or Tier 2 SSTL were below the risk levels established or calculated for this site. A complete review of all contaminants and their RBSL and/or SSTL is provided in the Risk Assessment Report in Appendix F.

WHERE

9.0 CONCLUSIONS

Environmental Technology Group, Inc. (ETGI) has completed extensive soil investigations and remediation and groundwater investigations to address the contaminants detected in the soil and groundwater at the Champion facility in Hobbs, New Mexico. Based on the field work completed, analytical data collected, modeling of chloride migration, and the risk assessment report for COC, the following conclusions are made:

9.1 SOIL REMEDIATION AND ASSESSMENT

- Excavation activities at the site in Area 2 have resulted in the removal of known impacted soil to the extent practicable. COC that have penetrated the massive caliche through cracks and fractures remain in the subsurface zone between 18 feet bgs to 50 feet bgs. Hydrocarbon concentrations in this zone range from <10 mg/kg to 30,000 mg/kg, chromium concentrations range from 2.6 mg/kg to 13.4 mg/kg, and chloride concentrations range from 38.7 mg/kg to 11,009 mg/kg. Concentrations of bottom hole and sidewall samples are below the concentration that would present a risk of leaching to groundwater. Subsequently Area 2 excavation should be backfilled _____ 7 LINEUS
 - Excavation activities associated with Area 3 have resulted in the removal of all hydrocarbon-impacted soil above 496 mg/kg, as illustrated in the 30+ confirmation samples collected and analyzed to date. Chloride concentration in residual soils associated with Area 3 range from 88.6 mg/kg to 11,900 mg/kg. Modeling of chloride migration was completed on the highest concentrations of chlorides detected at 11,009 mg/kg (Enercon Data). The chloride migration simulations in the subsurface illustrates in Scenario 2 that these residual concentrations are not conducive to migration to groundwater at concentrations greater than 95mg/kg. The unsaturated flow conditions that exist 10 feet bgs to the capillary zone above groundwater (55 feet) has a significantly lower unsaturated conductivity than the saturated conductivity of 0.7 cm/day (8.5E-6 migrate to groundwater in the next 200 years. The addition of a compacted clay layer will further reduce infiltration of precipitation to eliminate the chloride transport medium.
 - The Hydrus -1D modeling further illustrates the chloride concentrations in the shallow subsurface soils (0-5 ft bgs) will not cause an increase in chloride concentrations greater than 12 mg/l in groundwater, if a 70% reduction of infiltration can be accomplished. This reduction in infiltration has been completed by the compacted caliche surface placed over the entire yard.
 - Modeling migration through the subsurface using chloride concentrations is affective to demonstrate that other COC at the site have a lower probability of migration. Chloride does not adhere to clay, organic material or mineralize to oxides like metal ions and it does not biologically degrade like hydrocarbons. Eliminating the chloride transport mechanism by minimizing precipitation

0

- infiltration, also eliminates the potential for metals and hydrocarbons to migrate to groundwater.
- The soil samples collected from under the remaining concrete pad on 2/18/03 contained concentrations of chromium at 10.2 to 10.9 mg/kg, lead at 22.6 to 23.3 mg/kg and arsenic at 17.7 to 18.9 mg/kg. The concentrations for lead and arsenic were the highest detected during the investigation. However, the possibility of migration has been diminished by the concrete pad. The concrete pad functions as a cap over the impacted area and eliminates the possibility of perculating meteoric waters, which would cause these contaminants to migrate.
- The septic system leachfield line was removed and soil samples collected from two locations along and under the former leach line. Soil samples were also collected from boring SB-52 south of the leachfield. These samples did not contain elevated concentrations of chlorides, chromium or TPH. New leachfield lines were installed north of the former leachfield lines and are currently in use.
- 1,420 cy of impacted materials excavated from Area 3 were removed and transported to J & L Landfarm in Hobbs New Mexico for treatment and disposal. All excavated materials were classified and profiled as non-hazardous based on analytical data.
- 9640 cy of impacted materials excavated from Area 2 was transported to Sundance Services, Inc. in Eunice, New Mexico for disposal.
- The one foot compacted clay layer over the backfilled excavated Area 2 will
 decrease the possibility of residual contaminant migration by eliminating the entry
 of precipitation to the *insitu* contaminants.
- Total chromium concentrations in the soil at the site range from 1.59 mg/kg to 28.4 mg/kg. Background chromium concentrations reviewed in RODS database range from 26.1 to 200 mg/kg. Based on this data, removal or treatment of soil for chromium is not required at this site.
- The benzene concentrations in the subsurface soils around soil borings SB-9, SB-10, SB-13, SB-14, SB-15, and SB-41 have a potential to leach into the groundwater on and offsite. A clay cap over these locations will assist in stopping further migration of the contaminants by preventing precipitation from leaching into the subsurface.
- Risk assessment completed for the site indicate the concentrations of hexavalent chromium in the soil that would have a potential to leach to groundwater to produce a dissolved concentration of hexavalent chromium above the allowable risk level for hexavalent chromium are above 50mg/kg. Total chromium concentrations in the soil at the site range from 1.59 mg/kg to 13.4 mg/kg. Background chromium concentrations reviewed in RODS database range from 26.1 to 200 mg/kg. Based on this data removal or treatment of soil for chromium is not required at this site.
- The hydrocarbon analysis by EPA Method 8015m ext. for Aliphatics and Aromatics, of a soil sampling containing 28,000 mg/kg TPH, by EPA method 418.1 representing the worst-case scenario, was used for risk assessment. The risk assessment completed for the risk from residual hydrocarbons in soil illustrates these concentrations are protective of leaching to groundwater and volatilization to the out door air.

SPECS SPECS

NO 7

9.2 GROUNDWATER ASSESSMENT

- Sixteen (16) monitor wells have been installed on or off-site to delineate the groundwater impact at this site. Four (4) monitor wells represent background wells (MW-1, MW-7, MW-9 and MW-15). Monitor well MW-10 represents an off-site downgradient well, while on-site monitor wells MW-4, MW-5, MW-13 and MW-14 define the total dissolved chromium located in the southeast corner of the site. Monitor wells MW-6, MW-11, MW-12, and MW-16 define the total dissolved chromium concentration of Area 2.
- The hexavalent chromium concentrations in the groundwater in areas around monitor wells MW-4, MW-6 and MW-13 are above acceptable risk-based target concentrations for onsite groundwater consumption. There is also a potential for these concentrations to migrate off-site.
- Concentrations of total dissolved chromium upgradient of monitor well MW-4 in monitor well MW-13 are above NMWQCC standards. The source of these chromium concentrations has yet to be identified or delineated.
- Distribution of concentrations of total dissolved chromium at and around monitor well MW-6 are defined by monitor wells MW-8, MW-12 and MW-16.
- VOCs initially detected in groundwater are presently all below NMWQCC standards.
- Total unfiltered chromium concentrations in groundwater samples range from <0.002 mg/L to 0.333 mg/L. Total dissolved chromium concentrations from water samples range from <0.011 mg/L to 0.281 mg/L. Concentrations above NMWQCC standards for total dissolved chromium were observed in monitor wells MW-4, MW-6 and MW-13. Chloride concentrations in groundwater samples ranged from 156 mg/L to 658 mg/L. Background chloride concentrations range from 156 mg/L to 510 mg/L with average background concentrations of 312 mg/L.

10.0 RECOMMENDATIONS:

ETGI, on behalf of Champion, has completed extensive soil and groundwater investigations and soil remediation. Based on the field work completed, analytical data collected and modeling of chloride migration, the risk assessment report for chromium and hydrocarbons and the conclusion presented above, the following recommendations are made:

• To demonstrate the accuracy of conclusions presented in the risk assessment and chlorides modeling, ETGI will collect quarterly groundwater samples from monitor wells MW-2, MW-6, MW-8, MW-11, MW-12 and MW-16 to determine if concentrations of COC (chromium, lead, arsenic, manganese, BTEX and TPH) detected the soil are leaching to groundwater or are increasing in concentrations, and have the potential to migrate off-site from Area 2. ETGI will collect data to determine if subsurface conditions are conducive to a reducing environment to

facilitate the change of soluble chromium to an insoluble chromium compound. An additional monitor well will be installed directly east of monitor well MW-12 just inside the fence to demonstrate chromium concentrations above NMWQCC limits are not migrating off the property in groundwater. If concentrations of chromium in groundwater exceed NMWQCC limits at monitor well MW-12, then install an insitu groundwater treatment system that creates a reducing environment in groundwater. The reducing environment can be created via injection of a product to enhance microbial and chemical reduction of soluble chromium to an insoluble chromium compound. This injection zone should be directly east of monitor well MW-12. A pilot test should be completed to determine the spacing of the injection wells. Champion can choose to establish a treatment zone between monitor wells MW-6 and MW-12 prior to detection of chromium above NMWQCC standards in monitor well MW-12.

- Concentrations of total dissolved chromium in groundwater exceed NMWQCC standards in monitor wells MW-4 and MW-13 based on the samples collected in the February 2003 sampling event. Based on these concentrations, a groundwater treatment zone should be created in the southeast corner of the property. This chromium treatment zone will require the completion of a pilot test to determine the spacing of the injection wells. Upon completion of the pilot test, the chromium treatment zone should be created (Figure 12). This treatment zone will function initially to chemically reduce soluble chromium to an insoluble chromium compound. The treatment zone will also function as a barrier because it will treat dissolved chromium in the groundwater as it passes through this zone. Monitor wells MW-4, MW-5, MW-10, MW-13 and MW-14 should be sampled quarterly to monitor the progress of the chromium treatment zone.
- If dissolved concentrations are detected at 0.04 mg/l or above in adjoining property residential wells or onsite active water wells, the immediate corrective action and public protection plan will be implemented and a new domestic water supple will be installed to provide potable water.
- To determine if a source of chromium exists in the soil upgradient of monitor well MW-13, borings should be completed and converted into temporary piezometers (Figure 11). Soil and groundwater samples should be collected and analyzed for chromium.
- Slug test should be completed to determine the site-specific hydraulic conductivity, so the rate of groundwater movement can be more accurately determined. Groundwater modeling should be completed to determine the rate of migration of chromium in groundwater.
- Address Area 2 by placing a one-foot thick compacted clay liner at or near the Address Area 3 by backfilling the excavation, compacting and grading to prevent
 Repair Pulls To it surface of the excavation after backfilling and grading the surface to minimize
- Repair Bulk Tank and Drum Storage Area and provide with a permanent secondary containment retaining wall.

 Establish a procedure to collect all fluids that are placed into the sink in the laboratory to prevent them entering the new leachfield. The fluids collected should be characterized and disposed to meet the discharge plan for the site.

11.0 REFERENCES

Groundwater Lea County, New Mexico Bureau of Mine & Mineral Resources

Groundwater Contamination & Remediation in New Mexico 1927 –2000, Dennis McQuillan and Jennifer Parker, New Mexico Environmental Department, Groundwater Quality Bureau, July 2000

Compacted Urban Soils Effects on Infiltration and Bioretention Stormwater Control Designs, Robert Pitt, P. E., Shen-Enchen, P. E. and Shirley Clark, P. E. Department of Civil and Environmental Engineering, The University of Alabama

Groundwater Models: Scientific and Regulatory Applications (1990)
Water Science and Technology Board Committee on Groundwater Modeling,
Assessment Commission on Physical Sciences, Mathematics and Resources. National
Research Council National Academy Press, Washington D.C. 1990.

Risk Assessment Information System Sponsored by US Department of Energy (DOE) Office of Environmental Management

Record of Decision Systems (RODS) US Environmental Protection Agency.

Technical Background Document for Development of Soil Screening Levels. New Mexico Environmental Department, Hazardous Waste Bureau and Groundwater Quality Bureau, Voluntary Remediation Program, December 18, 2000 Revision 1.0

Toxicology Profile for Arsenic, US Department of Health and Human Services, Public health services, Agency for Toxic Substances and Disease Registry (September 2000).

Tier 1 Screening Level, Ecological Risk Assessment. Phase 1 Scoping Assessment Soil Screening Levels. New Mexico Environmental Department, Hazardous Waste Bureau and Groundwater Quality Bureau, Voluntary Remediation Program, December 18, 2000 Revision 1.0

TABLES

Table 1

Champion Technologies Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

		<u> </u>													E	PA SW	346-6010	B, 7471	A, 6020					·								
SAMPLE DATE	SAMPLE LOCATION	SAMPLE MATRIX	Aluminum	Arsenic	Dissolved Arsenic	Barium	Boron	Cadmium	Dissolved Calcium	Calcium	Total Unfiltered Chromium	Hexavalent Chromium	Total Dissolved Chromium	Cobalt	Copper	Iron	Lead	Dissolved Lead	Dissolved Magnesium	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Dissolved Potassium	Potassium	Selenium	SILICA	Silver	Dissolved Sodium	Sodium	Zinc
07/25/02	S.S. 1 Wall 5'	Soil		1.61		79.2		0.403		107000	12.9				1.57	2450	1.94			2070	15.7	<0.10	-			288	<0.320		<0.160		2220	23.3
07/25/02	S.S. 2 Wall 8'	Soil		1.89	 	101		0.492		62000	4.42		 		2.15	3240	1.24		 	4140	18.2	<0.10	 			261	<0.320		<0.160		2450	11.3
07/25/02	S.S. 3 Wall 3'	Soil		4.34	 	758	<u> </u>	0.34		166000	2.1		1		1.71	1240	<0.880		<u> </u>	2020	14.3	<0.10			1	504	<0.320		<0.160		8160	10.9
07/25/02	S.S. 4 Wall 3'	Soil		3.42		210	<u> </u>	0.329		156000	1.99		1		1.9	2060	1.12	İ	1	2300	16.2	<0.10				760	<0.320		<0.160		6600	10.4
07/25/02	S.S. 5 Wall 3'	Soil		2.12		385		0.54		141000	3.45				2.5	2950	1.29			2300	24.4	<0.10				340	<0.320		<0.160		3110	10.8
07/25/02	S.S. 6 Wall 4'	Soil		1.2		355		0.325		184000	2.54				1.77	2180	1.97			1630	15.2	<0.10				314	<0.320		<0.160		2620	14.8
07/25/02	S.S. 7 Wall 4'	Soil		2.65		231		0.458		117000	2.9			<u> </u>	2.5	2900	1.42		<u> </u>	2220	21.8	<0.10	<u></u>		$oxed{oxed}$	503	<0.320		<0.160		4730	11.4
07/25/02	S.S. 8 Wall 4'	Soil		1.8		241	ļ	0.257		185000	2.11		ļ		1.63	1380	1.06			2350	16.8	<0.10	<u> </u>	<u> </u>	\sqcup	271	<0.320		<0.160	ļ	5090	6.41
07/25/02	S.S. 9 Wall 4'	Soil		1.55		214	ļ	0.421		164000	2.54		ļ	<u> </u>	1.31	2660	1.18		ļ	2100	20	<0.10			 	363	<0.320		<0.160		3520	7.3
07/25/02	S.S. 10 Wall 4'	Soil		2.03		219	<u> </u>	0.172		214000	1.81		 	ļ	1.28	1150	<0.880	ļ	 	1700	8.76	<0.10	-		 	197	<0.320		<0.160		3120	4.84
07/25/02	S.S. 11 Btm 6'	Soil		1,44	ļ	100		0.757		78300	5.18		 	ļ	1.85	5060	2.06	 	+	2550	31.9	<0.10	 	 	 	225	<0.320		<0.160		1110	13.2
07/25/02	S.S. 11 Btm 6 S.S. 12 Btm 10'	Soil		1.55		126	 	0.757		84600	3.35	 	-	 	1.46	3420	1.49	 	 	1600	23.8	<0.10	 	 	 	509	<0.320		<0.160		3080	9.39
07/25/02	S.S. 12 Btm 10	Soil		1.6		335		0.724		187000	5.11		 		3.49	4570	1.84		 	2270	48.8	<0.10	,-			300	<0.320		<0.160		3320	14.5
07/25/02	S.S. 14 Btm 10'	Soil		<0.640	l	263		0.379		61800	2.03				1.64	2280	0.946		<u> </u>	3490	17.7	<0.10		<u> </u>		345	<0.320		<0.160		2140	6.92
07/25/02	S.S. 15 Btm 10'	Soil		0.999				0.466		59900	4.28				3.09	3040	3.74		 	3000	34.3	<0.10				278	<0.320		<0.160		1460	13.2
07/25/02	S.S. 16 Btm 4'	Soil		<0.640		534		0.582		77200	5.6				3.6	3560	1.59			3410	26.1	<0.10				454	<0.320		<0.160		2570	13.4
07/25/02	S.S. 17 Btm 8'	Soil		1.24		233		0.534		64000	3.04				1.63	3300	1.08		1	2380	16.1	<0.10				280	<0.320		<0.160			9.17
07/25/02	S.S. 18 Btm 8'	Soil		< 0.640		274		0.681		130000	10.4				2.61	4510	2.97			2860	29.3	<0.10	,			395	<0.320		<0.160		2580	21.6
07/25/02	S.S. 19 Wall 4'	Soil		1.82		216		0.344		212000	2.64				3.28	2820	1.53		<u> </u>	2750	20.2	<0.10	1			262	<0.320		<0.160			13.3
07/25/02	S.S. 20 Wall 4'	Soil		1.51		155		0.296		184000	1.92		<u> </u>		1.9	271	<0.880		<u> </u>	5750	15	<0.10		ļ <u> </u>		442	<0.320		<0.160		4320	7.58
07/25/02	S.S. 21 Wall 4'	Soil		0.992		133		0.293		240000	1.7		<u> </u>		0.573	2070	1.14		ļ	2200	19.7	<0.10			\sqcup	586	<0.320		<0.160		1590	6.49
07/25/02	S.S. 22 Wall 4'	Soil		<0.640		120		0.255		149000	1.59		<u> </u>		0.633	1690	1.34		ļ	2070	14.2	<0.10	<u> </u>	<u> </u>		364	<0.320		<0.160		1520	6.08
07/25/02	S.S. 23 Wall 4'	Soil		<0.640		567		0.443		85100	2.48		 		1.55	3290	1.82	ļ	—	2040	15.4	<0.10		<u> </u>		341	<0.320		<0.160		1750	8.56
07/25/02	S.S. 24 Wall 5'	Soil		<0.640		492		0.537		102000	4.66		<u> </u>	ļ	2.73	3420	2.88	<u> </u>	 	6330	26.6	<0.10		 		778	<0.320		<0.160		1070	15.3
07/05/00	C.C. OF Dime E!	Coil		10.640	 	358	<u> </u>	0.418		168000	2.71	 	 		3.05	2850	<0.880	-	 	4960	20	<0.10	1-		\vdash	271	<0.320		<0.160		1070	
07/25/02 07/25/02	S.S. 25 Btm 5' S.S. 26 Btm 5'	Soil Soil		<0.640 2.29		271	 	0.416		125000	2.59		 		1.88	3230	0.955	 	+	8600	21.3	<0.10	 ' -	 -	 	573	<0.320		<0.160			9.14
07/25/02	S.S. 27 Btm 5'	Soil		<0.640		143		0.658		90800	4.29				1.77	4320	1.65		 	5680	24.7	<0.10	1		1	586	<0.320		<0.160			11.4
07/25/02	S.S. 28 Btm 5'	Soil		<0.640		235		0.452		190000	3.16		 		1.96	2820	2.07		 	3200	23.4	<0.10	 		-	755	<0.320		<0.160		1220	14.6
07725702	0.0. 20 Dun 0			10.010		200		0.102		100000	0.70			<u> </u>	1.00	1020	2.07		†	0200	20.1	40.10	1	<u> </u>	 	700	10.020		40.100		1220	
07/25/02	SB-41 25'	Soil		2.77		266		<0.080		179000	13.4	-	†		7.64	4500	14.8		<u> </u>	4220	35.6	<0.10	-			713	<0.320		<0.160		1730	59.3
07/26/02	SB-41 39'	Soil	_	1.07		131		0.497		110000			T		3.53	2710	2.74		1	1260	19.7	<0.10	-			420	<0.320		<0.160		863	36.4
07/26/02	MW-9 5'	Soil		1.84		75.4		0.251		121000	2.1				0.619	1860	1.51			1320	19.1	<0.10	1			428	<0.320		<0.160		842	5.56
																		<u> </u>														
07/29/02		Soil		<0.40		281	<u> </u>	0.397		109000			<u> </u>			2180			ļ			<0.10				104	<0.20		<0.10		1270	
07/29/02		Soil		<0.40		122		0.45		116000			ļ				0.899		ļ		23.5	<0.10			├ ──	106	<0.20		<0.10			7.36
07/29/02	MW-8 S.S. 55'	Soil		<0.40		21.4		0.552	-	49200	3.09				0.331	3290	1.6	<u> </u>		193	40.7	<0.10	-			70.2	<0.20		<0.10		722	5.85
	Auga Chi Chadaalaalla			-			<u> </u>	\vdash					 		 	—			 		-	-	-	 	1		 					
07/20/00	Area 3 N. Stockpile	_{Call}		1 04		465		0.866		119000	5.58				22	4360	4 22	1		960	37.6	<0.10	[i			479	<0.20		_040		1700	40.0
07/30/02	Excavation SS-1 Area 3 N. Stockpile	Soil		1.84		400		0.000		119000	J.36		 	 	1 3.3	4300	7.22	 	 	300	37.0	<u> </u>	 		├	4/8	<0.20		<0.10	-	1700	19.3
07/30/02		Soil		0.922		479		0.488		120000	5.49				3 31	4720	3.31			922	425	<0.10	′			486	<0.20		<0.10		2400	17 =
07/30/02	Excavation 55-2	3011		0.322		4/9		0.400		120000	J.40		 	 	1 0.01	7,20	0.01		 	322	72.0	VO. 10	 	-	 	700	10.20		₹0.10		2400	17.5
				-				 		-		<u> </u>	 		1	 			 	\vdash			 		 - 							
08/02/02	S.S. 1 East Wall/ South 6'	Soil		<0.40		88		0.282		107000	4.35			L	2.72	4230	1.4	ļ		2350	34.6	<0.10	L	L	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	399	<0.20		<0.10	<u> </u>	1520	11.2
								$oxed{oxed}$					<u> </u>		<u> </u>										ota		LI					
08/03/03	S.S. 2 East Wall/ North 6'	Soil	_	<0.40		105		0.34		54700	5.41				2.59	4673	1.36			5020	36.6	<0.10				626	<0.20		<0.10		758	12.6
00/02/02	S.S. E LUST YYAII/ IYOTUTO	3011		10.40		,,,,		 ~.~~		5 55	5.,,				1	10.0		 	1			10.10	,		 	-J- U	10.20		30.10		730	12.0
08/02/02	S.S. 3 North Wall 8'	Soil		<0.40		93.5		0.344		53900	4.95				2.15	4835	0.999		1	4980	35.9	<0.10			┌──┤	530	<0.20		<0.10		1590	124
30,02,02	3.3. 3 1.31 177 411 3	5511				23.0							4					·	•	لتتبي											-1000	12.4

Champion Technologies Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

Г						=		 _		 _					E	PA SW	846-601	0B, 7471	A, 6020													
SAMPLE DATE	SAMPLE LOCATION	SAMPLE MATRIX	Aluminum	Arsenic	Dissolved Arsenic	Barium	Boron	Cadmium	Dissolved Calcium	Calcium	Total Unfiltered Chromium	Hexavalent Chromium	Total Dissolved Chromium	Cobalt	Copper	lron	Lead	Dissolved Lead	Dissolved Magnesium	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Dissolved Potassium	Potassium	Selenium	SILICA	Silver	Dissolved Sodium	Sodium	Zinc
08/02/02	MW-1	WATER		<0.008	ļ	1.75		0.002		121	0.038				0.028	17.6	<0.011			28.8	0.165	<0.002				8.2	<0.004		<0.002		163	0.093
08/02/02	MW-2	WATER								90.3						<u> </u>			 	23.5						8.42				\square	281	
08/02/02	MW-3	WATER		<0.008		0.092		<0.001		116	0.014				0.005	1.56	<0.011			25.1	0.064	<0.002				6.87	<0.004	****	<0.002		218	0.028
08/02/02	MW-4	WATER		<0.008		0.14	·	<0.001		99.2	0.305				0.003	0.777	<0.011			22	0.015	<0.002				7.48	<0.004		<0.002		239	0.015
08/02/02	MW-5	WATER		<0.008		0.179		<0.001		80.7	0.014				0.006	2.91	<0.011			21.8	0.056	<0.002					<0.004		<0.002			0.069
08/02/02	MW-6	WATER		<0.008		4.78		0.003		144	0.197				0.036		0.023					<0.002					<0.004		<0.002			
08/02/02	MW-7	WATER		<0.008		0.068		<0.001		90.4	<0.002				0.006	2	<0.011					<0.002					<0.004		<0.002			0.026
08/02/02	MW-8	WATER		<0.008		0.225		<0.001		110	0.01				0.006	5.84	<0.011					<0.002					<0.004		<0.002		~~~	
08/02/02	MW-9	WATER		<0.008		0.402		0.002		158	0.023				0.016		<0.011					<0.002		<u> </u>			<0.004		<0.002			0.085
08/02/02	South DW	WATER		<0.008		0.066		<0.001		152	0.004				0.002		<0.011					<0.002					<0.004		<0.002			
08/02/02	Champion DW	WATER		<0.008		0.077		<0.001		137	0.003					0.034						<0.002					<0.004		<0.002			0.056
08/08/02	Backfill Sundance	SOIL		19.2		405		0.406		207000					6.28	2600					94.2					137	<0.20		<0.10			
		Soil		12.1		154		1.04		74200	6.48				2.39	3990	10				27.7											5.93
08/12/02	Comp. Caliche Pit					134		1.04		74200	3.35				2.59	3330	1.75			1090	21.1	20.10				106	<0.20		<0.10		654	10.1
09/24/02	MW-11 56'	Soil		<5.00													1./5															
09/24/02	Soil Sample #1	SPLP									<0.005				<u> </u>																	
09/24/02	Soil Sample #1	Soil									3.56																					
09/25/02	Old Leach Line 9+ 4.5'	SOIL									10.2																				-	
09/25/02	Old Leach Line22' + 5'	SOIL									4.2												i									
09/25/02	MW-12 15' MW-12 45'	SOIL SOIL		<5.00 <5.00							2.61 4.55						1.7 1.44						ļ ;									
09/25/02	MW-14 5'	SOIL		<5.00							4.28						3.69						-									
09/25/02	MW-14 30'	SOIL		<5.00							4.04						2.52															
09/25/02	MW-14 50'	SOIL		<5.00							3.21						2.32						<u> </u>									
09/26/02	MW-15 5'	SOIL									5.73																					
09/26/02	MW-15 25'	SOIL									2.46																					
09/26/02	MW-15 40'	SOIL									5.88				<u> </u>																	
09/27/02	SB-49 5'	SOIL		<5.00							2.51						<1.00				_											
	SB-49 40'	SOIL		<5.00					LI		2.71		L	L	L	<u></u>	<1.00			<u> </u>			L	ــــا								

Champion Technologies Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

													All water o	CONCENT				D 7474	4 0000				:									
				т —		1									┌─┖	PA SW	846-6010	JB, 7471	A, 6020		·				r 1				т			
SAMPLE DATE	SAMPLE LOCATION	SAMPLE MATRIX	Aluminum	Arsenic	Dissolved Arsenic	Barium	Boron	Cadmium	Dissolved Calcium	Calcium	Total Unfiltered Chromium	Hexavalent Chromium	Total Dissolved Chromium	Cobalt	Copper	Iron	Lead	Dissolved Lead	Dissolved Magnesium	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Dissolved Potassium	Potassium	Selenium	SILICA	Silver	Dissolved Sodium	Sodium	Zinc
	SB-49 50'	SOIL		<5.00	—						2.75			Ι.			<1.00		Ī													
	SB-57 10'	SOIL		<5.00							10.3						9.21			Ι												
	SB-57 45'	SOIL		<5.00							3.11						<1.00															
	SB-58 10'	SOIL	_	<5.00		<u> </u>					37.2			1			46.1		<u> </u>								<u> </u>			1		
	SB-58 25'	SOIL		<5.00	ļ	<u> </u>					3.62	ļ	ļ	ļ			<1.00		<u> </u>	 	<u> </u>								 	+		
09/27/02	SB-58 10'	SPLP									0.23						0.0885															
10/01/02	SB-47 5'	SOIL		<5.00							2.96		 				1.04			 -	ļ									 		<u> </u>
10.00.00	SB-50 10'	SOIL		<5.00							5.99					· · · · · · · · ·	3.17															
	SB-50 25'	SOIL		<5.00							2.01			1			<1.00													L J		
	SB-61 10'	SOIL		<5.00							4.22						2.38															
10/02/02	SB-52 5'	SOIL		-		ļ		├──			2.27	<u> </u>	 	<u> </u>		<u> </u>	-	-	 	├	-		<u> </u>						 	+		<u> </u>
10/02/02	SB-52 25'	SOIL		 	 				1		2.27			 			1	 	 	 	 						 					-
	SB-52 45'	SOIL		 		<u> </u>		 			2.6			1				l	1								<u> </u>					
	SB-55 5'	SOIL									3.25																					
	SB-55 20'	SOIL			.	i					3.57																					
	SB-55 40'	SOIL									3.19																					
	SB-56 5'	SOIL									5.62			L		 _				<u> </u>			_,						 _		 	
	SB-56 20	SOIL									5.57		ļ	<u> </u>						L			<u> </u>						<u> </u>			
	SB-56 40'	SOIL		ļ.,,,,		Ļ		<u> </u>			2.8			_		<u> </u>	<u> </u>	<u> </u>	ļ		 		ļ						ļ			
	SB-64	SOIL		5.66							3.03		-	-			<1.00	 		 	 								 	+		
10/03/02	SB-53 40'	SOIL		<5.00		<u> </u>					3.36						1.3															
	SB-53 49'	SOIL		<5.00		<u> </u>					6.32						<1.00			-	<u> </u>		'						<u> </u>	 		
10/08/02	West Trench N @2.5'	SOIL		 		├					2.52	<u> </u>	-	-				l			-		 				ļ			+		
10.00.02	West Trench Pipe @ 2.5'	SOIL									5.03			İ									, ,									
	West Trench S @ 2.5'	SOIL									3.42																				<u> </u>	
																														ļ		
10/09/02	MW-13 5'	SOIL		<u> </u>	L	<u> </u>					5.64			ļ			igsquare				<u> </u>									igwdown		
	MW-16 5'	SOIL		-	-	<u> </u>					2.07					 		} -	-		 							ļ	 	 		<u> </u>
10/21/02	Off-Site DW	WATER		<0.050	 	 		 			<0.010		 	 		 	<0.010		 	-			 									
10/21/02	On-Site DW	WATER		<0.050		<u> </u>					<0.010						<0.010	l														
10/21/02		WATER		<0.050							<0.010						<0.010			ļ										\perp		<u> </u>
	MW-2	WATER		<0.050		ļ					0.0144		ļ	ļ			<0.010		 		<u> </u>		-;						<u> </u>	├ ──		
	MW-3	WATER		<0.050		ļ					0.0207	<u> </u>		 		 	<0.010			ļ	-									\longrightarrow		
	MW-4	WATER		<0.050		ļ			 		0.333	<u> </u>	 	 		 	<0.010			-							 		 	 		
	MW-5 MW-6	WATER WATER		<0.050 0.0559		├			\vdash		0.0639	├	-	 			<0.010		 	 	-					 -			<u> </u>	+-+		
	MW-6 *	WATER		0.0559	-		<u> </u>	 	 		0.309	 	0.05	t —			10.010		 	 	 		 						<u> </u>	 		
	MW-7	WATER		<0.050	_					_	<0.010		1				<0.010			 		$\overline{}$	1		-				\vdash			\vdash
	MW-8	WATER		<0.050		†——					0.0225						<0.010															
	MW-9	WATER		<0.050		l					0.0859		[<0.010															
	MW-9 *	WATER									0.109		<0.011																			
	MW-10	WATER	6.42					<0.005		115	0.0292						<0.010					<0.0002							<0.0125			
	MW-11	WATER		<0.050				<0.005		329	0.0171	ļ					<0.010			51.5	0.194	<0.0002	<0.050	<0.025	 	43	<0.050		<0.0125			0.0518
	MW-12	WATER				0.241	0.536	<0.005	<u> </u>	254	0.0539	L	ļ				<0.010					<0.0002							<0.0125		216	0.0894
	MW-13	WATER				0.239	0.539	<0.005	\vdash	153	0.0939		 	<0.025	<0.0125	6.08	<0.010	 				<0.0002 0.0009			 				<0.0125		214	<0.025
	MW-14	WATER						<0.005		218 165	0.0459		-	<0.025	<0.0125	7 12	<0.010		 			<0.0009							<0.0125 <0.0125			<0.025
	MW-15	WATER WATER	10.11	<0.050	-			<0.005 <0.005		297	0.0107	 	 	<0.025	<0.0125	9.74	<0.010	 		36.2	0.0030	< 0.0002	<0.050	<0.025	 				<0.0125		234	<0.025
1 1	MW-16	WAIEH	10.6	I <0.050	1	J U.229	U.5U4	<0.000	ıl	291	1 0.0219	I _	<u> </u>	1.0.020	NO.0123	1. 3./4	\U.U.U	L	L	00.2	0.0307	_~0.0002	L<0.000	~U.UZ3		12	L < 0.000	40.4	L<0.0120		204	١ ٢

Champion Technologies Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

A 2 Bottom #2 SOIL 2.54 446 4.0500 5.81 6.54 7260 3.59 68.6 <0.19							=									Е	PA SW	346-6010	B, 7471	A, 6020										- -			
MW-3		SAMPLE LOCATION		Aluminum	Arsenic	Dissolved Arsenic	Barium	Boron	Cadmium	Dissolved Calcium	Calcium	Total Unfiltered Chromium	Hexavalent Chromium	Total Dissolved Chromium	Cobalt	Copper	Iron	Lead	Dissolved Lead	Dissolved Magnesium	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Dissolved Potassium	Potassium	Selenium	SILICA	Silver	Dissolved Sodium	Sodium	Zinc
MW-4 WATER 0.019 4.011	11/12/02	MW 1	WATER									10.010								-												 	
MW-4 WATER	11/13/02				 	\vdash	 	 		├			-0.01	<u> </u>			 			┼	 			 -		 			—		<u> </u>	/ <u>'</u>	
MW-6 M7ER					├		 	 					0.00						 	 								-				r'	
MW-6 WATER 0.138 0.047 0.056					 -	 	 	 	 	 		0.272	0.290	0.201		 	 		ļ	 	 	 		ļ	 	 	<u> </u>					r'	├-
MW-3								├	-			0.138	0.047	0.201						1	-					 					-		
MW-9 WATER					 			 					0.047	0.05		$\vdash -$				 	 			 	-	 	_						
MW 9 WYER					-								 	0.00			 			 	-			 		 		-					<u> </u>
MW-91 WATER				L		 	ļ	 	-	-			<0.01						ļ	 	 	 			-	 				-		/'	
MW-15 WATER						-							<u> </u>	<0.011						 	l	<u> </u>		 		 							\vdash
MW-16 WATER S.E. CORNER NATER					 	┞──┤		 	 	 			0.059	10.011						 		 			<u> </u>	<u> </u>		\vdash		-			
S.E. CORNER WATER TIPP BLANK WATER 1071802 A.2 Botton #1 SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL					 	 	-	 			-			 				_		 	 	 		 									$\vdash \vdash$
THP BLANK WATER						 	 	\vdash	$\vdash \vdash \vdash$	 				 	-					 	 	 				†			-1				
12/18/02 A 2 Bottom # SOIL SOIL SOIL SOIL SOIL C.500 S.200 S.200 A 2 Bottom #2 SOIL 2.54 4.46 <.0.500 S.200 S.211 S.014 S.015						-	-						0.200								-			+			****						\vdash
A 2 Bottom #2 SOIL 2.54 446 <		55,1111	77771 411		 					~-		10.010								1	 	\vdash		 -		 							 -
A 2 Bottom #2 SOIL 2.54 446 <	12/18/02	A-2 Bottom #1	SOIL		3.55	-	238	\vdash	<0.500			8.29	ļ	 		4.48	6340	4.71			<u> </u>	66.4	<0.19			 		<1.00		<0.200			16.2
A 2 Bottom r8 SOIL 2.56 324 40.500 6.04 3.04 4370 4.05 5.22 4.019 4.1.00 <0.200 A 2 Bottom r8 SOIL 2.2 464 40.500 28.4" 3.81 4350 5.68 5.88 <0.19 4.100 <0.200 A 2 Bottom r8 SOIL 2.2 464 40.500 28.4" 3.81 4350 5.68 5.88 <0.19 4.100 <0.200 A 2 Bottom r8 SOIL 1.77 1.09 10.2 23.3 23.3 2.00 2.00 A 2 Bottom r8 SOIL 1.77 1.09 10.2 23.3 2.00 2.26 2.00 2.0																6.54	7260			<u> </u>				<u> </u>									11.2
A 2 Bottom #4 SOIL 2 2 464 < 0.500 28 4." 3.81 4850 5.68 5.88 6.19 < 1.00 < 0.200 <								 																									11.2
Composit 4 Soll 18.9 10.2 23.3																3.81				1	<u> </u>												37.2
Composit 4 SOIL 17.7 19.9 22.6																				T						i i							
Composit 4 SOIL 17.7	02/18/03	East 14.5' - 15.5'	SOIL		18.9		-					10.2						23.3		1													
WChamp 21903 MW-2 WATER			SOIL		17.7							10.9						22.6															
WChamp 21903 MW-2 WATER	00/40/00	MOhama 04000 MM 4	WATER					<u> </u>						0.011						 												,—— <u> </u>	
WChamp 21903 MW-4 WATER	02/19/03						ļ	 	 											 						-						'	
WChamp 21903 MW-4 WATER						-		├								 	 			 		<u> </u>			 	-						/ <u>'</u>	
WChamp 21903 MW-5 WATER		WChamp 21903 MW-3	WATER		_		-		\vdash								<u> </u>		 	 	 	 		<u> </u>	-							/'	<u> </u>
WChamp 21903 MW-6 WATER		WChamp 21903 MW 5						 					 							 		-		 								/ 	
WChamp 21903 MW-9 WATER		WChamp 21903 MW-5	WATER			<0.011		├──	-										<0.011	┼	-				<u> </u>							/'	
WChamp 21903 MW-9 WATER			WATER		 	20.011			 										\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 		-			-							,——— [,]	
WChamp 21903 MW-9 WATER					 												 		-	 	 			-							-		
WChamp 21903 MW-10 WATER		WChamp 21903 MW-9	WATER			-		 	-											 	-			-				-					- -
WChamp 21903 MW-12 WATER <0.011		WChamp 21903 MW-10	WATER		-	-		 												t	 	\vdash		<u> </u>			_						
WChamp 21903 MW-12 WATER						<0.011		 	 				 			\vdash		_	<0.011	 	 							-					
WChamp 21903 MW-14 WATER									 												 			 			_						
WChamp 21903 MW-14 WATER				_		10.071				~			_					_	101011	†				T								——	
WChamp 21903 MW-15 WATER						<0.011	-	\vdash	-											<u> </u>	<u> </u>												
WChamp 21903 MW-16 WATER		WChamp 21903 MW-15	WATER					 	\vdash	-										1		\vdash				1							
WChamp Onsite 21903 WATER <					 				 											—	1	 			\vdash								
WChamp Offsite 21903 WATER									\vdash											1		\vdash								***	 		
02/26/03 A2 W Wall Ext SOIL 4.02 400 <0.500 106000 5.48 3.06 4190 2.75 9790 37.2 <0.19 1450 17.4 <0.200 1260 A2 West Wall SOIL 288 <0.500																								Li.									
A2 West Wall SOIL 288 <0.500 12900 4.51 2.46 3360 <1.00 9670 30.7 1240 16.4 <0.200 660 A2 NW Wall SOIL 1.71 160 0.676 56300 6.78 2.81 5550 <1.00 6600 70.1 <0.19 1860 18.1 <0.200 1430 A2 South Wall SOIL 1.95 598 0.701 46500 7.98 3.63 5870 2.6 16600 50.8 <0.19 2420 20.7 <0.200 1080 A2 SE Bench SOIL 2.12 330 0.554 81600 5.83 3.56 4200 2.28 13100 37.6 <0.19 1580 17.4 <0.200 1130							465				10000					0.00	4400	0 75			0700	0= 0	0.10										
A2 NW Wall SOIL 1.71 160 0.676 56300 6.78 2.81 5550 <1.00 6600 70.1 <0.19 1860 18.1 <0.200 1430 A2 South Wall SOIL 1.95 598 0.701 46500 7.98 3.63 5870 2.6 16600 50.8 <0.19	02/26/03				4.02	ļ——ļ		<u> </u>					 -						<u> </u>	-			<0.19	 									
A2 South Wall SOIL 1.95 598 0.701 46500 7.98 3.63 5870 2.6 16600 50.8 <0.19 2420 20.7 <0.200 1080 A2 SE Bench SOIL 2.12 330 0.554 81600 5.83 3.56 4200 2.28 13100 37.6 <0.19					4			ļ					<u> </u>	 					<u> </u>	 			10.10	 									12.8
A2 SE Bench SOIL 2.12 330 0.554 81600 5.83 3.56 4200 2.28 13100 37.6 <0.19 1580 17.4 <0.200 1130						├		-						 						←											——		
						ļl		 						├ ──┤						 													18.4
AZ WY BOTTOM SUIL Z.UZ 335 <0.500 14/000 4.8 Z.03 Z010 9.57 Z0500 30.1 <0.19 647 13.9 <0.200 945						├ ─┤		├						┝╼┤						 													
		AZ WY BOTTOM	SUIL		2.02	 	335	 	<0.500		147000	4.8		├──┤		د.03	2010	9.01		}	20000	30.1	<0.19	 -		 	04/	13.9	—	<0.200		945	1.9
╼╌┼╌╌┈┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼					├			 	 - 								 		-	 		 		 							<u> </u>		
	+				-		-		-			-		 						1	<u> </u>					<u> </u>					 		

^{*} These samples were rerun for Total Unfiltered Chromium and/or Total Dissolved Chromium for comparative purposes

** This soil sample (split with NMOCD representatives) was not collected from in-place material.

Table 2

GENERAL CHEMISTRY IN GROUNDWATER / SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

SAMPLE DATE	SAMPLE LOCATION	SAMPLE TYPE	FLUORIDE	CHLORIDE	SULFATE	NITRATE-N	NITRITE	BICARBONATE/CARB ONATE	HYDROXIDE	pН	DISSOLVED	DISSOLVED MAGENSIUM	DISSOLVED	DISSOLVED	TOTAL DISSOLVED SOLIDS	ANION/ CATION BALANCE (%)
07/25/02	S.S. 1 Wall 5'	Soil	< 0.02	3280	56	6	< 0.025	124/<0.10	<0.10	7.85	Classic Com-					
07/25/02	S.S. 2 Wall 8'	Soil	< 0.02	2970	237	15.5	< 0.025	78/<0.10	< 0.10	7.8						
07/25/02	S.S. 3 Wall 3'	Soil	< 0.02	3500	90	3	< 0.025	96/<0.10	<0.10	7.87					-105 111	
07/25/02	S.S. 4 Wall 3'	Soil	< 0.02	7620	282	<2.5	< 0.025	175/<0.10	< 0.10	7.88				A CONTRACTOR		
07/25/02	S.S. 5 Wall 3'	Soil	< 0.02	2390	220	9.5	< 0.025	95/<0.10	< 0.10	8.28						
07/25/02	S.S. 6 Wall 4'	Soil	< 0.02	2300	578	19	< 0.025	100/<0.10	< 0.10	8.19						
07/25/02	S.S. 7 Wall 4'	Soil	< 0.02	3720	455	9	< 0.025	225/20	<0.10	8.44					BUELLO	
07/25/02	S.S. 8 Wall 4'	Soil	< 0.02	6910	318	25	< 0.025	110/<0.10	< 0.10	7.99			and the filling			
07/25/02	S.S. 9 Wall 4'	Soil	< 0.02	2660	374	23	< 0.025	370/15	< 0.10	8.57						
07/25/02	S.S. 10 Wall 4'	Soil	<0.02	2750	280	9	<0.025	215/<0.10	<0.10	7.98		100				-
07/25/02	S.S. 11 Btm 6'	Soil	<0.02	665	328	10	<0.025	60/<0.10	<0.10	8.16						
07/25/02	S.S. 12 Btm 10'	Soil	< 0.02	260	485	27	< 0.025	225/<0.10	< 0.10	8.02	TIMES OF THE STATE	Control of the last				
07/25/02	S.S. 13 Btm 4'	Soil	< 0.02	3630	184	17.5	0.04	370/<0.10	<0.10	7.95						
07/25/02	S.S. 14 Btm 10'	Soil	<0.02	2570	7990	16.4	0.055	45/<0.10	< 0.10	7.79						The state of the s
07/25/02	S.S. 15 Btm 10'	Soil	< 0.02	975	801	7	< 0.025	110/<0.10	< 0.10	8.08	S DI		757 (2	STATE OF THE RESERVE	505 7 ITS	
07/25/02	S.S. 16 Btm 4'	Soil	< 0.02	4080	517	23	< 0.025	45/<0.10	< 0.10	7.7	LIGHT WE					
07/25/02	S.S. 17 Btm 8'	Soil	< 0.02	1370	7840	6	< 0.025	47/<0.10	< 0.10	7.83				COAT STORE		TA (128/17)
07/25/02	S.S. 18 Btm 8'	Soil	<0.02	1950	7890	8	<0.025	40/<0.10	<0.10	7.88					-121/17/17/18	
07/25/02	S.S. 19 Wall 4'	Soil	<0.02	1600	350	8	0.025	80/<0.10	<0.10	8.47						
07/25/02	S.S. 20 Wall 4'	Soil	<0.02	3370	525	16.5	<0.025	80/10	<0.10	8.43	-					
07/25/02	S.S. 21 Wall 4'	Soil	<0.02	443	218	<5.0	<0.20	90/70	<0.10	9.38					1000	
07/25/02	S.S. 22 Wall 4'	Soil	<0.02	103	258	<5.0	<0.20	165/110	<0.10	9.7						_
07/25/02	S.S. 23 Wall 4'	Soil	<0.02	133	259	<5.0	<0.20	800/100	<0.10	9.46						
07/25/02	S.S. 24 Wall 5'	Soil	<0.02	106	268	42	<0.20	120/20	<0.10	8.85						
07/05/00	S.S. 25 Btm 5'	Soil	<0.02	399	1050	10.5	<0.025	135/10	-0.10	8.7		119				
07/25/02		Soil	<0.02	3190	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN 1		The second second	80/5	<0.10	8.24						
07/25/02	S.S. 26 Btm 5'	Soil	<0.02	5500	516 184	16.5	<0.025	The state of the s	<0.10							
07/25/02	S.S. 27 Btm 5' S.S. 28 Btm 5'	Soil	<0.02	133	210	12.5	<0.025	70/<0.10 145/40	<0.10	9.49				12 // 1		
07/25/02	SB-41 25'	Soil	<0.02	162	162	12.4	0.11	409/<0.1	<0.10	8.13						
07/26/02	SB-41 39'	Soil	<0.02	421	86	4	0.05	200/<0.1	<0.10	8.07						
07/26/02	MW-9 5'	Soil	<0.02	73.9	98	<12.5	<0.25	265/<0.1	<0.1	8.54						10000
07/26/02	SB-41 39'	Soil	<0.02	421	86	4	0.05	200/<0.1	<0.1	8.07		FIFTURE				
07/29/02	MW-8 S.S. 15'	Soil	7.00	88.6	203	32	0.067	77.8/22.2	<0.10	8.34	7000000					
07/29/02	MW-8 S.S. 35'	Soil	6.15	88.6	78.5	3.5	0.227	65/5	<0.10	8.41	T D S T I	THE RESERVE	TIT SU			1800 001
07/29/02	MW-8 S.S. 55'	Soil	4.15	88.6	58	2	0.144	37.5/5	<0.10	8.47					1/1 2 2/2/2	1 1 3
07/30/02	Area 3 N. Stockpile Excavation SS-1	Soil	7.00	709	424	6.5	0.228	65/<0.10	<0.10	8.09	Ale al fai					
07/30/02	Area 3 N. Stockpile Excavation SS-2	Soil	7.50	798	404	10	0.32	67.5/<0.10	<0.10	8.14						

GENERAL CHEMISTRY IN GROUNDWATER / SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

SAMPLE	SAMPLE LOCATION	SAMPLE TYPE	FLUORIDE	CHLORIDE	SULFATE	NITRATE-N	NITRITE	BICARBONATE/CARB ONATE	HYDROXIDE	рН	DISSOLVED	DISSOLVED MAGENSIUM	DISSOLVED POTASSIUM	DISSOLVED	TOTAL DISSOLVED SOLIDS	ANION/ CATION BALANCE (%)
08/02/02	MW-1	Water	3.70	408.0	298.0	1.4	<0.001	281/<0.10	<0.10							III.
08/02/02	MW-2	Water	3.74	372	271.0	1.7	<0.001	281/0.10	<0.10							
08/02/02	MW-3	Water	2.38	381	266	0.7	<0.001	233/<0.10	<0.10							B165
08/02/02	MW-4	Water	2.42	354	256	1.2	<0.001	226/<0.10	<0.10							
08/02/02	MW-5	Water	3.08	346	233	<0.50	<0.001	254/<0.10	<0.10	Tall						
08/02/02	MW-6	Water	2.52	443	270	0.90	<0.001	320/<0.10	<0.10							
08/02/02	MW-7	Water	1.94	239	248	1.40	<0.001	204/<0.10	<0.10	7.12					889	
08/02/02	MW-8	Water	2.46	257	274	1.80	<0.001	254/<0.10	<0.10	7.22					1150	
08/02/02	MW-9	Water	2.00	346	216	6.80	<0.001	234/<0.10	<0.10	7.12					1360	
08/02/02	SOUTH DW	Water	2.24	372	280	1.50	<0.001	169/<0.10	<0.10			American				
08/02/02	CHAMPION DW	Water	1.58	319	197	1.60	<0.001	186/<0.10	<0.10						O DE NO	
08/02/02	S.S. 1 East Wall/ South 6	SOIL	3.40	702	224	18.00	1.5	105/<0.10	<0.10							
	S.S. 2 East Wall/ North 6	SOIL	16.30	<50.0	141	2.50	6.25	85/10	<0.10							
08/02/02		SOIL	16,90	295	6740	7.50	1	27.5/<0.10	<0.10						N. H. A. M.	17.06
08/08/02	Backfill Sundance	SOIL	7.25	<20.0	93	<2.5	0.05	450/<0.10	<0.10		politi sub					Z II S
08/12/02	Comp. Caliche Pit	SOIL	5.45	<50.0	324	14.20	0.257	56.0/<0.10	<0.10							
0012/02	Comp. Culiche 1 n	OOIL	0.40	400.0	924	14.20	U.EST	30,0/0.10	40.10							
09/20/02	Soil Sample #4	SOIL		6990 738												
	Soil Sample #8 Soil Sample #11	SOIL		145										LOS AND LO	1000	
	Soil Sample #27	SOIL	7007	837				William and			8.05.01				111111111111111111111111111111111111111	
09/20/02	Soil Sample #4	SPLP		520	0.20											
	Soil Sample #8	SPLP		128									200			
	Soil Sample #11 Soil Sample #27	SPLP		33.6 240												
09/24/02	MW-11 56'	SOIL		37.6												
09/25/02	Old Leach Line 9'	Soil		64.5		VIII TO SE	102 II						1000			
HL.	Old Leach Line 22' + 5'	Soil		52.3								81.	III			
09/25/02	MW-12 15'	Soil		390									-			
09/23/02	MW-12 45'	Soil		43.7												

GENERAL CHEMISTRY IN GROUNDWATER / SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

SAMPLE DATE	SAMPLE LOCATION	SAMPLE TYPE	FLUORIDE	CHLORIDE	SULFATE	NITRATE-N	NITRITE	BICARBONATE/CARB ONATE	HYDROXIDE	pH	DISSOLVED	DISSOLVED MAGENSIUM	DISSOLVED POTASSIUM	DISSOLVED	TOTAL DISSOLVED SOLIDS	ANION/ CATION BALANCE (%
09/25/02	MW-14 5'	SOIL		61.4												
09/25/02	MW-14 30'	SOIL		575												
09/25/02	MW-14 50'	SOIL		127												
09/26/02	MW-15 5'	SOIL		46.7												
09/26/02	MW-15 25'	SOIL		37.4											1	
09/26/02	MW-15 40°	SOIL		137												
09/27/02	SB-49 5'	SOIL		107		The state of										
	SB-49 40' SB-49 50'	SOIL		19.7 12.6												
	SB-57 10' SB-57 45'	SOIL		536 491												
	SB-58 10' SB-58 25'	SOIL		713 562												
10/01/02	SB-47 5'	SOIL		2940				NAME OF THE OWNER OWNER OW		W. Clin						
	SB-50 10' SB-50 25'	SOIL		2066 3020												
	SB-61 10'	SOIL		27.4												
10/02/02	SB-52 5' SB-52 25'	SOIL		52.7 43.7												
	SB-52 45'	SOIL		38.7												
	SB-55 5' SB-55 20'	SOIL		249 390												
	SB-55 40' SB-56 5'	SOIL		92 33.3												
	SB-56 20 SB-56 40'	SOIL		139 61.9												
	SB-64	SOIL														
10/03/02	SB-53 40' SB-53 49'	SOIL		462 89.5												
10/08/02	West Trench N ⊕2.5'	SOIL		708												
	West Trench Pipe @ 2.5' West Trench S @ 2.5'	SOIL		180 4130												
10/09/02	MW-13 5'	SOIL		2280												
	MW-13 10' MW-16 5'	SOIL		501 2820												
10/10/02	MW-10 5'	SOIL		240												

GENERAL CHEMISTRY IN GROUNDWATER / SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

SAMPLE		SAMPLE						BICARBONATE/CARB			DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	TOTAL	ANION
DATE	SAMPLE LOCATION	TYPE	FLUORIDE	CHLORIDE	SULFATE	NITRATE-N	NITRITE	ONATE	HYDROXIDE	pН	CALCIUM	MAGENSIUM	POTASSIUM	SODIUM	DISSOLVED SOLIDS	CATION BALANCE (%
	MW-10 10'	SOIL		153												
	MW-10 20'	SOIL		243												
	MW-10 40'	SOIL		7.8												
10/21/02	Off-Site DW	WATER		386										*****		
	On-Site DW	WATER		290												
														Ī		
10/21/02	MW-1	WATER		356												
	MW-2	WATER		397												
	MW-3	WATER		464												
	MW-4	WATER		377												
	MW-5	WATER		508												
	MW-6	WATER		469											ĺ	
	MW-7	WATER		235												
	MW-8	WATER		304												
	MW-9	WATER		305												
	MW-10	WATER	2.82	260	163	4.30				7.5	110	17	7.14	226	1004	
	MW-11	WATER	2.31	298	205	1.12				7.5	96.8	45	38.6	161	1048	
	MW-12	WATER	2.63	357	198	5.91				7.2	141	42.8	10.7	218	1322	ļ
	MW-13	WATER	2.61	244	186	4.63				7.7	79.6	16.6	6.34	238	1004	
	MW-14	WATER	2.70	272	176	5.21				7.5	117	21	8.14	184	1086	
	MW-15	WATER	2.61	156	172	5.33			*	7.4	110	22.7	5.53	103	882	
	MW-16	WATER	2.10	416	171	5.82				7.3	126	29.3	7.32	218	1210	
11/13/02	MW-6	WATER		390	1											
	MW-15	WATER		200												
										1					<u> </u>	<u>.</u>
02/18/03	East 14.5' - 15.5'	SOIL		793							ļ					
	Composite 4"	SOIL		532						<u> </u>				ļ	ļ	
															<u> </u>	1
02/19/03	WChamp 21903 MW-1	WATER		435												
	WChamp 21903 MW-2	WATER		384										ļ	ļ	
	WChamp 21903 MW-3	WATER		658	ļ <u>.</u>			<u> </u>						<u> </u>	ļ	
	WChamp 21903 MW-4	WATER		435			<u> </u>			ļ				ļ	ļ	
	WChamp 21903 MW-5	WATER		476						 					ļ .	
	WChamp 21903 MW-6	WATER		533						ļ						_
	WChamp 21903 MW-7	WATER		510						ļ					 	
	WChamp 21903 MW-8	WATER		397						<u> </u>	ļ			ļ		
	WChamp 21903 MW-9	WATER		332						-			1			
	WChamp 21903 MW-10			355						-	1			<u> </u>	 	+
	WChamp 21903 MW-11	WATER		298	 	 		1			 		 	 	 	
	WChamp 21903 MW-12			353	 		 	 		 	ļ	ļ		 	1	+
	WChamp 21903 MW-13			332						├	-	 		 	 	+
	WChamp 21903 MW-14			342						-	1		ļ	 	 	+
	WChamp 21903 MW-15			221						-	1			 		
	WChamp 21903 MW-16			474	-		<u> </u>			ļ	-		-	ļ	 	+
	WChamp Onsite 21903	WATER		347	1						1		 	 	+	
	WChamp Offsite 21903	WATER		479			 	ļ		1	1	-	 		 	

GENERAL CHEMISTRY IN GROUNDWATER / SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

All soil concentrations are in mg/kg All water concentrations are in mg/L

SAMPLE	SAMPLE LOCATION	SAMPLE TYPE	FLUORIDE	CHLORIDE	SULFATE	NITRATE-N	NITRITE	BICARBONATE/CARB ONATE	HYDROXIDE	pH	DISSOLVED	DISSOLVED MAGENSIUM	DISSOLVED	DISSOLVED	TOTAL DISSOLVED SOLIDS	ANION/ CATION BALANCE (%
			1100000													
02/24/03	D-30	SOIL		1840					HOLD AND							
	D-34	SOIL		11900												
	D-35	SOIL		3760												
	D-37	SOIL		768												
02/26/03	A2 W Wall Ext	SOIL	4.41	1020	2160	6.69	<10									
	A2 West Wall		4.15	1260	76.2	13.5	<10	Company of the last of the las								
	A2 NW Wall		4.99	1670	1880	5.99	<40									
	A2 South Wall		16.39	456	67.5	11.00	<10	THE RESERVE				50 11 11				
	A2 SE Banch		6.68	780	276	2.62	<10	N P P								
					100											

ANALYTICAL METHODS

Fluoride 340.1/6020 Chloride 9253/6020 Sulfate 375.4/6020 Nitrate 353.3/6020 Nitrite 9056/6020 Bicarbonate /

Carbonate 300/6020 Hydroxide 310.1 9045C pH TDS 160.1 Anion/Cation 1030F

Table 3

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER / SOIL Champion Technology, Inc. Hobbs, New Mexico ETGI Project # CH2100

All soil concentrations are in mg/kg
All water concentrations are in mg/L
ANALYTE (EPA SW846-8260)

SAMPLE DATE	07/05/00	0/07/00	00/00/00	00/00/00	00/00/00	10/01/00	10/01/00	10/04/00	10/01/00	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	2/19/03	2/19/03	2/19/03	2/19/03
SAMPLE DATE	07/25/02	9/27/02	08/02/02	08/02/02	08/02/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	WChamp	WChamp	WChamp	WChamp
SAMPLE LOCATION	SB-41 25'	SB-58 10'	MW-7	MW-8	MW-9	MW-6	MW-8	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16		21903 MW		
SAMPLE LOCATION	35-4123	36-30 10	141 44 - 1	10100-0	18188-3	19199-0	10177-0	18188-10	10100-11	11111-12	1111-10	111.11		11111-10	16	6	11	12
SAMPLE MATRIX	SOIL	SOIL	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dichlorodifluoromethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chloromethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vinyl chloride	<0.2	0.873	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromomethane	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chloroethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Trichlorofluoromethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Acetone	<0.2	<5.000	<0.001	<0.001	<0.001	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
1,1-Dichloroethene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
lodomethane	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Carbon Disulfide	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Methylene Chloride	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
trans-1,2-Dichloroethene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Acrylonitrile	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Methyl tert-butyl ether	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1-Dichloroethane	<0.2	0.864	<0.001	<0.001	<0.001	0.005	<0.001	<0.001	0.002	0.001	<0.001	<0.001	<0.001	0.002	0.002	0.003	0.001	0.003
Vinyl Acetate	<0.2		<0.001	<0.001	<0.001													
2-Butanone	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-1,2-dichloroethene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromochloromethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chloroform	<0.2	<0.005	<0.001	0.002	<0.001	0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
2,2-Dichloropropane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,1-Trichloroethane	<0.2	<0.005	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
1,1-Dichloropropene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Carbon Tetrachloride	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Benzene	1.300	2.400	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,2 Dichloroethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Trichloroethene	<0.2	<0.005	<0.001	<0.001	<0.001	0.005	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001	0.001
1,2-Dichloropropane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Dibromomethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromodichloromethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2-Chloroethyl vinyl ether	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Hexanone	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Methyl 2-Pentanone	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dibromochloromethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
cis 1,3 Dichoropropene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
trans 1,3-Dichloropropene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2-Trichloroethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	4.310	7.890	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,3-Dichloropropane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chlorodibromomethane				L								L		L	<u> </u>			

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER / SOIL

Champion Technology, Inc. Hobbs, New Mexico ETGI Project # CH2100

All soil concentrations are in mg/kg
All water concentrations are in mg/L
ANALYTE (EPA SW846-8260)

SAMPLE DATE	07/25/02	9/27/02	08/02/02	08/02/02	08/02/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	2/19/03	2/19/03	2/19/03	2/19/03
SAMPLE LOCATION	SB-41 25'	SB-58 10'	MW-7	MW-8	MW-9	MW-6	MW-8	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	WChamp 21903 MW 16	WChamp 21903 MW 6	WChamp 21903 MW 11	WChamp 21903 MW 12
SAMPLE MATRIX	SOIL	SOIL	WATER	WATER	WATER	WATER												
1,2-Dibromoethane	<0.2	<0.005	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Tetrachloroethene	<0.2	<0.005	<0.001	<0.001	<0.001	0.020	<0.001	<0.001	<0.001	0.006	<0.001	<0.001	<0.001	0.001	0.002	0.015	<0.001	0.002
Chlorobenzene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,1,2-Tetrachloroethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	14.600	5.820	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
m & p Xylene	18.800	8.770	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
o-Xylene	7.490	4.070	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylenes- Total			<0.001	<0.001	<0.001													
Styrene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromoform	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Trans-1,4-Dichloro-2-butene	<0.2	<5.000	<0.001	<0.001	<0.001	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
1,1,2,2-Tetrachloroethane	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,2,3-Trichloropropane		<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Isopropylbenzene	4.920	2.030	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromobenzene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
n-Propylbenzene	7.490	3.830	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2-Chlorotoluene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
4-Chlorotoluene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,3,5-Trimethylbenzene	6.300	5.240	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
tert-Butylbenzene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,2,4-Trimethylbenzene	19.000	12.100	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
sec-Butylbenzene	3.560	0.963	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,3-Dichlorobenzene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,4-Dichlorobenzene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
p-Isopropyitoluene	2.440	1.510	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,2-Dichlorobenzene	<0.2	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
n-Butylbenzene	<0.2	1.380	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,2-Dibromo-3-Chloropropane	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2,4-Trichlorobenzene	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Naphthalene	10.300	27.500	<0.001	<0.001	<0.001	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobutadiene	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2,3-Trichlorobenzene	<0.2	<2.500	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1- Dichloroethylene																		
Methyl ethyl ketone																		
Tetrachloroetylene													1					
Trichloroethylene																	ĺ	
CONCENTRATIONS IN BOIL													=					

CONCENTRATIONS IN BOLD EXCEED DETECTION LIMITS

CONCENTRATIONS OF SEMI-VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER / SOIL

CHAMPION TECHNOLOGY, INC. HOBBS, NEW MEXICO ETGI Project #CH2100

All soil concentrations are in mg/kg All water concentrations are in mg/L

ANALYTE Methods 8270C-BNA, S 8270C, SW-846 8270C

SAMPLE DATE	7/25/2002	9/27/02	8/2/02	8/2/02	8/2/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02
SAMPLE LOCATION	SB-41 25'	SB-58 10'	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16
SAMPLE MATRIX	SOIL	SOIL	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Pyridene	<1	<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
N-Nitrosodimethylamine	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aniline	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Phenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Bis(2-chloroethyl)ether	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Chlorophenol	<1	<25	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005_
1,3-Dichlorobenzene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
1,4-Dichlorobenzene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2-Dichlorobenzene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzyl Alcohol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Methylphenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Bis(2-chloroisopropyl)ether	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Methylphenol	<1		<0.005	<0.005	< 0.005							
N-Nitrosodi-n-propylamine	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachloroethane	<1	<25	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrobenzene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Isophorone	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Nitrophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4-Dimethylphenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Bis(2-chloroethoxy)methane	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4-Dichlorophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005_	<0.005	<0.005
Benzoic Acid	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2,4-Trichlorobenzene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Naphthalene	8.25	<25	<0.005	<0.005_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Chloroaniline	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobutadiene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Chloro-3-methylphenol	<1	<25	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Methylnaphthalene	18.6	43.18	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorocyclopentadiene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4,6-Trichlorophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4,5-Trichlorophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Chloronaphthalene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

CHAMPION TECHNOLOGY, INC. HOBBS, NEW MEXICO ETGI Project #CH2100

All soil concentrations are in mg/kg All water concentrations are in mg/L

ANALYTE Methods 8270C-BNA, S 8270C, SW-846 8270C

SAMPLE DATE	7/25/2002	9/27/02	8/2/02	8/2/02	8/2/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02
SAMPLE LOCATION	SB-41 25'	SB-58 10'	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16
SAMPLE MATRIX	SOIL	SOIL	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
2-Nitroaniline	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005_	<0.005	<0.005	<0.005
Dimethyl phthalate	<1	<25	<0.005	<0.005	<0.005	<0.005	0.01	0.015	0.024	0.011	0.029	<0.005
2,6-Dinitrotoluene	<1		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3-Nitroaniline	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4-Dinitrophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Nitrophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dibenzofuran	3.08	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,3,4,6- Tetrachlorophenol	<1	<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4-Dinitrotoluene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Diethyl phthalate	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorene	2.78	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Chlorophenylphenyl ether	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Nitroaniline	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Methyl-4,6-dinitrophenol	<1											
Azobenzene	<1		<0.005	<0.005	<0.005							
N-Nitrosodiphenylamine	<1		<0.005	<0.005	<0.005							
4-Bromophenylphenyl ether	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Pentachlorophenol	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Phenanthrene	6.46	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Anthracene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Carbazole	<1		<0.005	<0.005	<0.005							
Di-n-butyl phthalate	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzidine	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Pyrene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Butylbenzyl phthalate	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)anthracene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chrysene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Bis(2-ethylhexyl)phthalate	<1	<25	0.025	0.005	0.031	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Di-n-octyl phthalate	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(b)fluoranthene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(k)fluoranthene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)pyrene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

CHAMPION TECHNOLOGY, INC. HOBBS, NEW MEXICO ETGI Project #CH2100

All soil concentrations are in mg/kg All water concentrations are in mg/L

ANALYTE Methods 8270C-BNA, S 8270C, SW-846 8270C

SAMPLE DATE	7/25/2002	9/27/02	8/2/02	8/2/02	8/2/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/21/02
SAMPLE LOCATION	SB-41 25'	SB-58 10'	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16
SAMPLE MATRIX	SOIL	SOIL	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Indeno(1,2,3-cd)pyrene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dibenzo(a,h)anthracene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(ghi)perylene	<1	<25	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
3,3 Dichlorobenzidine	<1	<25	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Hexachlor-1,3-butadien												
2-Picoline		<25				<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Methyl Methanesulfonate		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Ethyl Methanesulfonate		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Methylphenol/ 3-Methylphenol		<25				< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acetophenone		<25				<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
n-Nitrosopiperidine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
a,a-Dimethylphenethylamine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,6-Dichlorophenol		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
n-Nitroso-di-n-butylamine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1-Methylnaphthalene		30.93				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2,4,5-Tetrachorobenzene		<25				<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
1-Chloronaphthalene		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Pentachlorobenzene		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1-Naphthylamine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
2-Naphthylamine		<25				<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
4,6-Dinitro-2-methylphenol	_	<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Diphenylamine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Diphenylhydrazine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Phenacetin		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4-Aminobiphenyl		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Pentachloronitrobenzene		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Pronamide		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
p-Dimethylaminoazobenzene		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
7,12-Dimethylbenz(a)anthracene		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3-Methylcholanthrene		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dibenzo-(a,j)acridine		<25				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Table 5

CONCENTRATIONS OF ALKALINITY AND SPECIFIC CONDUCTANCE

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

Unless otherwise noted, all concentrations are in mg/L as CaCo³

				ANALYTICAL	METHOD 310.1		SM 2510B
SAMPLE DATE	SAMPLE LOCATION	SAMPLE MATRIX	HYDROXIDE ALKALINITY	CARBONATE ALKALINITY	BICARBONATE ALKALINITY	TOTAL ALKALINITY	SPECIFIC CONDUCTANCE µMHOS/cm
10/21/02	MW-10	WATER	<1.0	<1.0	212	212	1704
	MW-11	WATER	<1.0	<1.0	222	222	1890
	MW-12	WATER	<1.0	<1.0	308	308	2250_
	MW-13	WATER	<1.0	<1.0	202	202	1700
	MW-14	WATER	<1.0	<1.0	230	230	1820
	MW-15	WATER	<1.0	<1.0	220	220	1400
	MW-16	WATER	<1.0	<1.0	242	242	2210
02/26/03	A2 W. Wall Ext.	SOIL	<1.0	<1.0	27	27	5410
02/26/03	A2 West Wall	SOIL	<1.0	<1.0	48	48	3690
02/26/03	A2 NW Wall	SOIL	<1.0	<1.0	32	32	6500
02/26/03	A2 South Wall	SOIL	<1.0	<1.0	148	148	1710
02/26/03	A2 SE Bench	SOIL	<1.0	<1.0	64	64	2740
02/26/03	A2-WP Bottom	SOIL	<1.0	<1.0	244	244	545

CONCENTRATIONS OF TPH (Aliphatics & Aromatics) IN GROUNDWATER / SOIL

Champion Technology, Inc.
Hobbs Facility
Hobbs, New Mexico
ETGI Project #CH2100

All water concentrations are in mg/L All soil concentrations are in mg/kg

SAMPLE				ALIPHA	TICS - Me	thod 8015 l	Modified			AROMA	TICS Me	thod 8015 l	Modified	
DATE	LOCATION	TYPE	C ₆ -C ₈	>C ₈ -C ₁₀	>C ₁₀ -C ₁₂	>C ₁₂ -C ₁₆	>C ₁₆ -C ₂₁	>C ₂₁ -C ₃₅	C ₆ -C ₈	>C ₈ -C ₁₀	>C ₁₀ -C ₁₂	>C ₁₂ -C ₁₆	>C ₁₆ -C ₂₁	>C ₂₁ -C ₃₅
07/25/02	SB-41 25'	SOIL	291	528	2087	2860	1674	1486	43.6	3.74	19.8	70.3	102	123
08/02/02	MW-6	WATER	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
08/02/02	MW-8	WATER	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3

CONCENTRATIONS OF TPH IN GROUNDWATER

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

All concentrations are in mg/L

		EPA 418.1	Metho	d 8015	Metho	d 8015 Mc	dified
SAMPLE DATE	SAMPLE LOCATION	ТРН	GRO	DRO	TPH C ₆ -C ₁₀	TPH >C ₁₀ -C ₃₅	TPH C ₆ -C ₃₅
08/02/02	MW-6				<3	<3	<3
10/21/02	MW-6	2.35					
08/02/02	MW-8				<3	<3	<3
10/21/02	MW-8	<0.500					,,,
10/21/02	MW-10	<0.500					
10/21/02	MW-11	<0.500					
10/21/02	MW-12	<0.500					
10/21/02	MW-13	<0.500					
10/21/02	MW-14	<0.500					
10/21/02	MW-15	<0.500					
10/21/02	MW-16	<0.500					
02/19/03	WChamp 21903 MW-6		<0.1	<5.00			
	WChamp 21903 MW-11 WChamp 21903 MW-12		<0.1 <0.1	<5.00 <5.00			
	44 Champ 21800 WW-12			<u> </u>			
L	<u> </u>			<u> </u>			

Table 8 SAMPLING PARAMETERS AND SAMPLING REQUIREMENTS

Champion Technologies Hobbs, New Mexico Facility ETGI project # CH2100

ANALYTICAL METHODS	PARAMETER	CONTAINER	PRESER- VATION	MAXIMUM HOLDING TIME	SAMPLE VOLUME
VOLATILE ORGANIC COMPOUNDS 8260B	Concentrated waste	G w/TLC	Cool, 4°C	14 days	4 oz.
	Soil/Sediment	G w/TLC	Cool, 4°C	14 days	4 oz.
	Sludge	G w/TLC	Cool, 4°C	14 days	4 oz.
METALS - 6010B	Metals except Boron, CR6+, & Mercury	P,G	HNO₃ to pH<2	6 months	250 mls
TPH GRO - 8015B	TPH GRO	G w/TLS	Cool, 4°C	14 days	2 VOAs
CHLORIDE - 300.0	Chloride	P, G	None	28 days	250 mls
TPH - 418.1	TPH	G w/TLS	Cool, 4°C	14 days	2 VOAs
ALKALINITY - 310.1	Alkalinity	P,G	Cool, 4°C	14 days	250 mls
CONDUCTIVITY - 2510B	Conductivity	P,G	Cool, 4°C	28 days	100 mls
MERCURY - 7470A	Mercury	P,G	HNO₃ to pH<2	28 days	250 mls
SALTS - 6010B	SAR	P,G	HNO ₃ to pH<2	6 months	250 mls
ION CHROMATOGRAPHY - 300.0		=======================================			
SEMI VOLATILE COMPOUNDS 8270C	Concentrated waste	G w/TLC	Cool, 4°C	extraction, 40 days thereafter	4 oz.
	Soil/Sediment	G w/TLC	Cool, 4°C	extraction, 40 days thereafter	4 oz.
	Sludge	G w/TLC	Cool, 4°C	extraction, 40 days thereafter	4 oz.
	PCB (In transformer oil)	P,G	Cool, 4°C	28 days, recommended	20 mls
TOTAL DISSOLVED SOLIDS (TDS) 160.1	Total Dissolved Solids	P,G	Cool, 4°C	7 days	250 mls
рН - 150.1	рН	P,G TES	None	Analyze immediately	50 mls

Abbreviations

G: Glass

P: Polyethylene

TLC: Telfon-lined cap

TLS: Teflon-lined septum

Sample Preservation

Sample preservation should be performed immediately upon sample collection. For composite samples, samples may be preserved by maintaning the samples at 4° until compositing and sample splitting is completed.

Holding Times

Holding times listed are the times that samples may be help before analysis and still be considered valid under EPA regulations. Holding times are measured from the date of sampling.

Table 9

GROUNDWATER ELEVATION Champion Technologies Inc. Hobbs, New Mexico ETGI Project # CH2100

All measurements are in feet except where noted

WELL LOCATION	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO WATER	GROUNDWATER ELEVATION
MW-1	8/2/2002	3594.44	50.74	3543.70
	8/22/2002		50.75	3543.69
	9/20/2002		50.94	3543.50
	10/21/2002		50.96	3543.48
	11/13/2002		51.01	3543.43
	2/18/2003		51.22	3543.22
	***		es destroy	
MW-2	*8/2/2002	3598.40	56.30	3542.10
	8/22/2002		56.42	3541.98
	9/20/2002		60.00	3538.40
	10/21/2002	**3602.78	60.08	3542.70
	2/18/2003		60.29	3542.49
MW-3	8/2/2002	3599.49	56.81	3542.68
	8/22/2002		56.84	3542.65
	9/20/2002		57.02	3542.47
	10/21/2002		57.09	3542.40
	11/13/2002		57.06	3542.43
	2/18/2003		57.31	3542.18
Profig.	and the second			
MW-4	8/2/2002	3899.40	57.13	3842.27
	8/22/2002		57.17	3842.23
	9/20/2002		57.37	3842.03
	10/21/2002		57.45	3841.95
	11/13/2002		57.47	3841.93
	2/18/2003		57.61	3841.79
a Patricka				# 1 4 5 2 5 2 5 E
MW-5	8/2/2002	3599.28	56.97	3542.31
	8/22/2002		57.00	3542.28
	9/20/2002		57.19	3542.09
	10/21/2002		57.28	3542.00
	2/18/2003		57.50	3541.78
e est	2 .		n yan	
MW-6	8/2/2002	3599.20	56.38	3542.82
	8/22/2002		56.44	3542.76
	9/20/2002		60.98	3538.22

GROUNDWATER ELEVATION Champion Technologies Inc. Hobbs, New Mexico ETGI Project # CH2100

All measurements are in feet except where noted

WELL LOCATION	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO WATER	GROUNDWATER ELEVATION
	10/21/2002	**3603.56	61.04	3542.52
	11/13/2002		61.08	3542.48
	2/18/2003		61.30	3542.26
ja (4), in (4)				多点在1000 000000000000000000000000000000000
MW-7	8/2/2002	3596.91	53.16	3543.75
	8/22/2002		53.28	3543.63
	9/20/2002		53.40	3543.51
	10/21/2002		53.46	3543.45
	11/13/2002		53.51	3543.40
	2/18/2003		53.70	3543.21
7				
MW-8	8/2/2002	3602.68	59.87	3542.81
10100-0	8/22/2002	3002.00	59.98	3542.70
	9/20/2002		60.12	3542.76
ļ — — — — — — — — — — — — — — — — — — —	10/21/2002		60.12	3542.50
	2/18/2003		60.38	3542.30
	2/10/2003		00.36	3342.30
		i da di	- 2 5/55	print of the
MW-9	8/2/2002	3597.00	53.15	3543.85
	8/22/2002		53.12	3543.88
	9/20/2002	:	53.34	3543.66
	10/21/2002		53.37	3543.63
	2/18/2003		53.61	3543.39
				ja aktistaja ita
MW-10	10/16/2002	3600.84	59.38	3541.46
	10/21/2002		59.37	3541.47
	2/18/2003		59.61	3541.23
	Ya.		٠.	
MW-11	10/16/2002	3599.63	57.09	3542.54
	10/21/2002		57.12	3542.51
	2/18/2003		57.35	3542.28
			7	
MW-12	10/16/2002	3602.8	60.42	3542.38
	10/21/2002		60.45	3542.35
	2/18/2003		60.66	3542.14

GROUNDWATER ELEVATION Champion Technologies Inc. Hobbs, New Mexico ETGI Project # CH2100

All measurements are in feet except where noted

WELL LOCATION	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO WATER	GROUNDWATER ELEVATION
MW-13	10/16/2002	3602.68	60.28	3542.40
	10/21/2002		60.39	3542.29
	11/13/2002		60.35	3542.33
	2/18/2003		60.52	3542.16
MW-14	10/16/2002	3599.23	57.17	3542.06
	10/21/2002		57.24	3541.99
	2/18/2003		57.43	3541.80
1 47)			· 大路	
MW-15	10/16/2002	3597.06	53.26	3543.80
	10/21/2002		53.31	3543.75
	11/13/2002		53.35	3543.71
	2/18/2003		53.56	3543.50
14 S 4 S 5 7 5	Piliper of the State	to be a second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Commence of the commence of th
MW-16	10/16/2002	3602.56	60.11	3542.45
	10/21/2002		60.17	3542.39
	11/13/2002		60.19	3542.37
	2/18/2003		60.38	3542.18

^{*}Potential Gauging Error

^{**} Top Of Casing raised on 9-18-02

Table 10 CONCENTRATIONS OF BACKGROUND SAMPLES IN GROUNDWATER/SOIL

Champion Technologies Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

All soil concentrations are in mg/kg All water concentrations are in mg/L

			ANAL	YTICAL	PARAMET	ERS
SAMPLE DATE	MATRIX	SAMPLE ID	CHLORIDE	ARSENIC	CHROMIUM	LEAD
09/16/00	SOIL	SB-1 - 0001 - A	151	13.7	20.1	23.2
09/16/00	SOIL	SB-2 - 0001 - A	174	17	8.32	10.2
05/11/01	SOIL	SB-35 - 0305 - A	1339	5.46	<5.0	2.77
05/11/01	SOIL	SB-35 - 1315 - A	3388	<5.0	<5.0	2.02
05/11/01	SOIL	SB-35 - 2325 - A	1579	<5.0	<5.0	2.29
05/11/01	SOIL	SB-35 - 3335 - A	1480	<5.0	<5.0	1.71
10/02/02	SOIL	SB-55 5'	249		3.25	
10/02/02	SOIL	SB-55 20'	390		3.57	
10/02/02	SOIL	SB-55 40'	92		3.19	
10/02/02	SOIL	SB-56 5'	33.3		5.62	
10/02/02	SOIL	SB-56 20'	13.9		5.57	
10/02/02	SOIL	SB-56 40'	61.9		2.8	
10/02/02	SOIL	MW-9 5'	73.9	1.84	2.1	1.51
09/26/02	SOIL	MW-15 5'	46.7		5.73	
09/26/02	SOIL	MW-15 25'	37.4		2.46	
09/26/02	SOIL	MW-15 40'	137		5.88	
08/02/02	WATER	MW-1	408	<0.008	0.038	<0.011
08/02/02	WATER	MW-7	239	<0.008	<0.002	<0.011
08/02/02	WATER	MW-9	346	<0.008	0.023	<0.011
10/21/02	WATER	MW-1	356		<0.010	<0.010
10/21/02	WATER	MW-7	235		<0.010	<0.010
10/21/02	WATER	MW-9	305		0.086	<0.010
10/21/02	WATER	MW-15	156		0.0107	0.011
11/13/03	WATER	MW-1			<0.010	
11/13/03	WATER	MW-7			<0.010	
11/13/03	WATER	MW-9			<0.010	
11/13/03	WATER	MW-15	200			

Table 11

Maximum Contaminant Concentration Detected In Groundwater

CHAMPION TECHNOLOGY HOBBS FACILITY HOBBS, NEW MEXICO ETGI Project #CH2100

Unless otherwise stated, all water concentrations are in mg/L.

ANALYTICAL PARAMETERS	MAX. DETECTED CONCENTRATION	LOCATION	NEW MEXICO REG. LIMIT*	EPA MCL*
				<u>. </u>
TPH	2.35	MW-6	1.4 TO 3.7**	
Chlorides	508	MW-5	250	250
Arsenic	0.073***	MW-14	0.10	0.05
Chromium	0.333***	MW-4	0.05	0.05
Chromium +6	0.333	MW-4	0.05	0.10
	0.003***			
Cadmium		MW-6	0.01	0.01
Lead	0.023***	MW-6	0.05	0.015 (al)
1,1-Dichloroethene (DCE)	0.01	MW-12	0.005	0.007
Chloroform	0.00329	MW-8	0.10	SMCL = 0 (p)
1,1,1-Trichloroethane (TCA)	0.0021	MW-6	0.06	0.2
1,1,1-Trichloroethene (TCE)	0.00485	MW-6	0.10	0.005
Tetrachloroethene				
(perchloroethylene, PCE)	0.0199	MW-6	0.02	0.005
Dimethylphthalate	0.029	MW-15	TOX	NONE
1,1-Dichloroethane (DCA)	0.045	MW-6	0.025	NONE
Bis(2-ethylhexyl)phthalate	0.031	MW-9	TOX	0.006
Total disolved solids (TDS)	1360	MW-9	1,000	500
Fluoride	3.7	MW-1 & 2	1.6	4
Nitrate-N	6.8	MW-9	10	10
Sulfate	298	MW-1	600 (a)	250 (a)/400p
Aluminum	14	MW-11	5 (i)	0.05-0.2 (a)
Boron	0.539	MW-13	0.75 (i)	NONE
Iron	47.6	MW-6	1.0	0.3
Manganese	0.426	MW-6	0.2	0.05
Barium	4.78	MW-6	1.0	2
Zinc	0.626	MW-6	10	5

^{* =} http://www.nmenv.state.nm.us/gwb/gwstds.html

Concentrations in bold exceed NM groundwater limits

^{** =} New Mexico Environmental Department TPH Cleanup Guidelines (DRAFT)

^{*** =} unfiltered samples

TOX = a numerical standard has not been established, but the contaminant is listed in a narrative standard of "toxic pollutant" defined in WQCC Regulations

WASTE CHARACTERIZATION

CHAMPION TECHNOLOGY HOBBS FACILITY HOBBS, NEW MEXICO ETGI Project #CH2100

Unless otherwise stated, all soil concentrations are in mg/kg.
Unless otherwise stated, all water concentrations are in mg/L.

	SAMPLE DATA		TOTAL METAL		1	RCI	•	TCL	P META	LSME	THOD E	PA SW8	46-6010	B, 7470 <i>A</i>		niess ou	nerwise	sialed, a	ui water		SEMIVO			OD 8270	C TCLP						*********	1	TCLP V	DLATIL	ES-ME	THOD 82	260B TC	LP		
Sample Date	Sample Location	Sample Type	Chromium Method 3050/6010B	pH Method S 1110	Ignitability Method SW-846 Ch. 7.1	Reactive Cyanide Method ASTM D 4978-95	Reactive Sulfide Method ASTM D 5049-90	Mercury	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	Pyridine	1,4-Dichlorobenzene	0-Cresol	m.p-Cresol	Hexachloroethane	Nitrobenzene	Hexachlorobutadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenoi	2,4-Dinitrotolene	2,4-D	Hexachlorobenzene	2,4,5-TP	- Pentachlorophenol	Vinyl Chloride	1,1-Dichloroethene	Methyi Ethyl Ketone	Chloroform	1,2 Dichloroethane	Benzene	Carbon Tetrachloride	Trichloroethene	Tetrachloroethene	Chlorobenzene	1,4 Dichlorobenzene
7/25/2002	South Excavation Stockpile-SS1	SOIL		7.91	>100° C	<0.090	<5.00	<0.002	0.035	0.665	<0.001	<0.002	<0.011	0.028	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
7/25/2002	South Excavation Stockpile-SS-2	SOIL		7.82	>100° C	<0.090	<5.00	<0.002	0.032	0.618	<0.001	0.002	<0.011	0.032	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/2/2002	Area 2 Stockpile #1 N. Side	SOIL		7.61	>100° C	<0.090	<5.00	<0.002	<0.008	0.333	<0.001	0.003	<0.011	<0.004	<0.002	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007		<0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/2/2002	Area 2 Stockpile #1 S. Side	SOIL		7.74	>100° C	<0.090	<5.00	<0.002	<0.008	0.393	<0.001	<0.002	<0.011	<0.004	<0.002	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007		<0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/22/2002	Area 2 Stockpile 1-A	SOIL	22.8					<0.002	0.028	0.9	<0.001	<0.002	<0.011	<0.004	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/22/2002	Area 2 Stockpile 1-B	SOIL	32.3					<0.002	0.025	0.558	<0.001	<0.002	<0.011	<0.004	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0011	<0.001
8/22/2002		SOIL						<0.002	0.022	0.695	<0.001	<0.002	<0.011	<0.004	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00168	<0.001
8/22/2002	Area 2 Stockpile 2-B	SOIL						<0.002	0.027	0.594	<0.001	<0.002	0.013	<0.004	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001
2/26/2003	A2 East 1 Stockpile	Soil		8.3	Non- ignitable	<2.5	<10	<0.010	<0.500	1.84	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	A2 East 2 Stockpile	Soil		8.4	Non- ignitable	<2.5	<10	<0.010	<0.500	2.1	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	A2 East 3 Stockpile	Soil		8.6	Non- ignitable	<2.5	<10	<0.010	<0.500	1.87	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	A2 East 4 Stockpile	Soil		8.6	Non- ignitable	<2.5	<10	<0.010	<0.500	1.85	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	A2 Middle Stockpile	Soil		8.8	Non- ignitable	<2.5	<10	<0.010	<0.500	1.74	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	A2 West 1 Stockpile	Soil		8.1	Non- ignitable	<2.5	<10	<0.010	<0.500	1.56	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	A2 West 2 Stockpile	Soil		8	Non- ignitable	<2.5	<10	<0.010	<0.500	1.95	<0.05	<0.100	<0.100	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2/26/2003	Floorsweep Stockpile	Soil		7.5	Non- ignitable	<2.5	<10	<0.010	<0.500	<1.00	<0.05	<0.100	0.137	<0.100	<0.020	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

CONCENTRATIONS OF TPH & BTEX IN SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

All concentrations are in mg/kg

		EPA 418.1	Method	8015 B	15B Method 8015 Modified							
SAMPLE DATE	SAMPLE LOCATION	TPH	GRO	DRO	TPH C ₆ -C ₁₀	TPH >C ₁₀ -C ₂₆	TPH C ₆ -C ₃₈	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES	втех
07/05/00	CD 44 051	28000			5140	8220	13360	-				
07/25/02 07/26/02	SB-41 25' SB-41 39'	3900		 	678	1320	1998	 				
01120102	30~41 35	3800			1 0.0	1020	1000	<u> </u>				
07/25/02	S.S. 1 Wall 5'	<10			.			<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 2 Wall 8'	<10						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 3 Wall 3'	<10		T				<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 4 Wall 3'	<10			 			<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 5 Wall 3'	<10						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 6 Wall 4'	198						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 7 Wall 4'	<10						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 8 Wall 4'	<10						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 9 Wall 4'	30.6						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 10 Wall 4'	11.6						<0.025	<0.025	<0.025	<0.025	<0.025
							<u> </u>					
07/25/02	S.S. 11 Btm 6'	<10						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 12 Btm 10'	496						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 13 Btm 4'	29.4		ļ	1			<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 14 Btm 10'	35.7		L			<u> </u>	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 15 Btm 10'	78.4		L	1		<u> </u>	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 16 Btm 4'	33.1		<u> </u>			L	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 17 Btm 8'	26.9		ļ	<u> </u>			<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 18 Btm 8'	229					<u> </u>	<0.025	<0.025	<0.025	<0.025	<0.025
L											2 225	
07/25/02	S.S. 19 Wall 4'	19.2						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 20 Wall 4'	<10			_		ļ	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 21 Wall 4'	<10		ļ			 	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 22 Wall 4'	10.7					<u> </u>	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 23 Wall 4'	<10		ļ			<u> </u>	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 24 Wall 5'	197			<u> </u>		├	<0.025	<0.025	<0.025	<0.025	<0.025
07/05/00	0.0.05.0451	20.4						<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02 07/25/02	S.S. 25 Btm 5'	28.1			 		 	<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 26 Btm 5' S.S. 27 Btm 5'	11.4 12.7		-	-			<0.025	<0.025	<0.025	<0.025	<0.025
07/25/02	S.S. 28 Btm 5'	45.9			 		-	<0.025	<0.025	<0.025	<0.025	<0.025
01123102	3.3. 26 Bill 5	40.5			 		 	~0.025	10.025	10.025	~0.025	\0.023
07/29/02	MW-8 S.S. 15'	25.2			<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025
07/29/02	MW-8 S.S. 35'	41.2			<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025
07/29/02	MW-8 S.S. 55'	<10			<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025
07725702	MIV 0 0.0. 00	-10			110.0	110.0	170.0	10,020	10.020	10.020	10.020	10.020
07/30/02	Area 3 N. Stockpile Excavation SS-1	242			<10.0	71.3	71.3		· · · · · · · · · · · · · · · · · · ·			
	Area 3 N. Stockpile											
07/30/02	Excavation SS-2	272			<10.0	59.8	59.8					
<u> </u>					ļ							
08/02/02	S.S 1 East Wall/ South 6'	27.6						<0.025	<0.025	<0.025	<0.025	<0.025
	S.S 2 East Wall/ North 6'	<10.0		1			1	<0.025	<0.025	<0.025	<0.025	<0.025
	S.S 3 East Wall/ North 8'	21.6						<0.025	<0.025	<0.025	<0.025	<0.025
08/02/02	Area 2 Stockpile #1 N. Side	11400										
08/08/02	Backfill Sundance	38						<0.025	<0.025	<0.025	<0.025	<0.025
08/12/02	Comp. Caliche Pit	16.5		ļ			ļ	<0.025	<0.025	<0.025	<0.025	<0.025
00/61/66	1414/ 44 50			ļ			<u> </u>					
09/24/02	MW-11 56'	<10	ļ	ļ <u> </u>			<u> </u>	<0.010	<0.010	<0.010	<0.010	<0.010
00/05/00	MW-12 15'	-40		 	\vdash			10.010	-0.040	-0.010	.0.010	-0.010
09/25/02	MW-12 15'	<10		 				<0.010	<0.010	<0.010	<0.010	<0.010
\vdash	IVI VV - 1 Z 43	11.7		-	\vdash		 	<0.010	<0.010	<0.010	<0.010	<0.010
09/27/02	SB-57 45'	<10		 	 			<0.010	<0.010	<0.010	<0.010	<0.010
1	SB-58 10'	80800		 			 	1.46	4.08	3.27	6.88	15.7
<u> </u>	10									<u> </u>	7.00	

CONCENTRATIONS OF TPH & BTEX IN SOIL

Champion Technology, Inc. Hobbs Facility Hobbs, New Mexico ETGI Project #CH2100

All concentrations are in mg/kg

	EPA 418.1 Method 8015 B Meth					od 8015 Mc	dified		SW	846-8021B,	5030	
SAMPLE Date	SAMPLE LOCATION	ТРН	GRO	DRO	TPH C ₆ -C ₁₀	TPH >C ₁₀ -C ₃₆	TPH C ₆ -C ₃₈	BENZENE	TOLUENE	ETHYL- Benzene	TOTAL Xylenes	BTEX
	SB-58 25'	37.1			T			<0.010	<0.010	<0.010	0.0109	0.0109
	SB-49 5'	27.9						<0.010	<0.010	< 0.010	<0.010	<0.010
	SB-49 40'	<10						<0.010	<0.010	<0.010	<0.010	<0.010
	SB-49 50'	98.7						<0.010	<0.010	<0.010	<0.010	<0.010
	SB-57 10'	<10			<u> </u>			<0.010	<0.010	<0.010	<0.010	<0.010
10/01/02	SB-47 5'	<10		[f		<0.010	<0.010	<0.010	<0.010	<0.010
	SB-50 10'	<10			1			<0.010	<0.010	<0.010	<0.010	<0.010
	SB-50 25'	<10						<0.010	<0.010	<0.010	<0.010	<0.010
	SB-61 10'	<10			T			<0.010	<0.010	< 0.010	<0.010	<0.010
	SB-64	<10						<0.010	<0.010	<0.010	<0.010	<0.010
02/18/03	East 14.5' - 15.5'		<1.0	<50.0				<0.010	<0.010	<0.010	0.0496	0.0496
02/26/03	A2 W. Wall Ext.		<1.0	<50.0				<0.010	<0.010	<0.010	<0.010	<0.010
02/26/03	A2 West Wall		<1.0	<50.0				<0.010	<0.010	<0.010	<0.010	0.0539
02/26/03	A2 NW Wall		<1.0	<50.0				<0.010	<0.010	<0.010	<0.010	<0.010
02/26/03	A2 South Wall		<1.0	<50.0				<0.010	<0.010	<0.010	<0.010	<0.010
02/26/03	A2 SE Bench		<1.0	320				<0.010	<0.010	<0.010	<0.010	<0.010
02/26/03	A2-WP Bottom		20.1	1400				<0.010	<0.010	0.129	0.263	0.302

CONCENTRATIONS IN BOLD ARE ABOVE DETECTION LIMITS

QUARTERLY GROUNDWATER SAMPLING PARAMETERS

Champion Technologies Hobbs Facility Hobbs, New Mexico

ETGI Project Number CH2100

MW 1	Chromium	Chloride	
MW 2	Chromium	Chloride	
MW 3	Chromium	Chloride	
MW 4	Chromium	Chloride	
MW 5	Chromium	Chloride	
MW 6	Chromium	Chloride	TPH 8015 VOC Lead Arsenic Manganese Barium
MW 7	Chromium	Chloride	
MW 8	Chromium	Chloride	
MW 9	Chromium	Chloride	
MW 10	Chromium	Chloride	
MW 11	Chromium	Chloride	TPH 8015 VOC (Lead Arsenic Manganese Barium)*
MW 12	Chromium	Chloride	TPH 8015 VOC (Lead Arsenic Manganese Barium)*
MW 13	Chromium	Chloride	
MW 14	Chromium	Chloride	
MW 15	Chromium	Chloride	
MW 16	Chromium	Chloride	TPH 8015 VOC (Lead Arsenic Manganese Barium)*
Champion's water well	Chromium	Chloride	
Resident's water well	Chromium	Chloride	

^{*} If detected in MW-6

TABLE 15
Maximum concentrations of Contaminants detected in all data that has not been removed by excavation.

Contaminants	Concentration	Location	Consultant
TPH	3680	12-1820-A	E
Benzene	3.51	13-1820-A	E
Arsenic	33.3	13-2325-A	E
Barium	857	3-0001-A	E
Barium	758	ss 3 wall 3'	ETGI
Cadmium	1.67	14-2325-A	E
Chromium	28.4	Split Sample	NMOCD
Chromium	20.1	1-0001-A	E
Iron	7260	A-2 Bottom 2	ETGI
Lead	23.3	East 14.5-15.5	ETGI
Manganese	628	33-2325-A	E
Manganese	283	32-23-25-A	E
Manganese	91.9	3-0001-A	E
Manganese	48.8	SS 13Btm4'	ETGI
Mercury	0.257	19-23-25-A	E
Zinc	314	24-2325-A	E
Zinc	59.3	SB-41-25'	ETGI
Nitrate N	113	3-0001-A	E
Nitrate N	27	SS 12 btm 10'	ETGI
Toluene	9.34	12-1820-A	E
Ethylbenzene	17.6	12-1820-A	E
Total Xylenes	31.5	12-1820-A	E

Surface concentrations at sample locations 3-0001-A can be removed.

FIGURES

INDEX TO FIGURE 13

Champion Technologies Hobbs Facility Hobbs, New Mexico ETGI Project Number CH2100

Well No. 1	Bull Rodgers Shop and Home	2412 S. Hwy 81/Eunice Hwy
Well No. 2	House	3028 S. Hwy 81/Eunice Hwy
Well No. 3	Caprock Communication	1 Mile S. Hwy 81/Eunice Hwy
Well No. 4	Bunk's Feed	3324 S. Hwy 81/Eunice Hwy
Well No. 5	Bunk Seleman Home	3324 S. Hwy 81/Eunice Hwy
Well No. 6	Trailer House	3624 S. Hwy 81/Eunice Hwy
Well No. 7	Office	3800 S. Hwy 81/Eunice Hwy
Well No. 8	Pate Trucking	3800 S. Hwy 81/Eunice Hwy
Well No. 9	Bunk Seleman's Third Well	1.25 Miles S. Hwy 81/Eunice Hwy
Well No. 10	Trailer House	3619 S. Hwy 81/Eunice Hwy
Well No. 11	Trailer House	3621 S. Hwy 81/Eunice Hwy
Well No. 12	House	3709 S. Hwy 81/Eunice Hwy
Well No. 13	House	3805 S. Hwy 81/Eunice Hwy
Well No. 14	Trailer House	526 Llano Grande
Well No. 15	Trailer House	528 Llano Grande
Well No. 16	House	500 Llano Grande
Well No. 17	House	416 Llano Grande
Well No. 18	House	328 Llano Grande
Well No. 19	House	320 Llano Grande
Well No. 20	House	230 Llano Grande
Well No. 21	Trailer House	206 Llano Grande
Well No. 22	Three Trailer Houses	108 Llano Grande
Well No. 23	Two Houses	3910 Telephone Pole Road
Well No. 24	Two Trailer Houses	329 Llano Grande
Well No. 25	House	125 Llano Grande
Well No. 26	Livestock Well	125 Llano Grande
Well No. 27	Trailer House	3930 Dalmont Street
Well No. 28	Trailer House	503 Llano Grande
Well No. 29	Bulldog Services Shop	3901 S. Hwy 81/Eunice Hwy
Well No. 30	Trailer House	4027 S. Hwy 81/Eunice Hwy
Well No. 31	House	4219 S. Hwy 81/Eunice Hwy
Well No. 32	Trailer House and House	5018 S. Hwy 81/Eunice Hwy
Well No. 33	Trailer House	5018A S. Hwy 81/Eunice Hwy
Well No. 34	Trailer House	218 Townsend Street
Well No. 35	300 Feet Behind Trailer House	106 Townsend Street
Well No. 36	Shell Pipeline New Hobbs Station	214 West County Road

APPENDIX A SOIL BORING LOGS

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 7/25/02
Boring/Well Name: SB-41

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_	·				0 - 1': Caliche pad and gravel
-	SS	601	Strong	Heavy	2-15': Sand and debris, black heavy staining. Hydrocarbon and H2S odor
_					(5') Dry brittle material. Charcoal-like (burned?) Minor caliche and sand
_					
10	SS	767	Very Strong	Heavy	
-					
-	SS	33	Strong	Moderate	15 – 25' Caliche with sand, strong odor, moderate staining, moderately hard.
•					
-					
20	SS	70	Moderate	Moderate	Caliche nodule, less staining
_	NS	326			25 - 30' Calcrete, very hard, indurated with little sand
-					
30	SS	217	Slight	None	30 – 42' Caliche with sand, softer, no staining, slight chemical odor
-					· .
_					
40	NS				
-					42' Caliche with minor sand, hard, indurated
_					
-	NS	8.5	None	None	
-					
50	NS	48	None	None	50 - 52' Calcrete, siliceous, very hard, indurated
-					52' Caliche with sand, moderately hard
_					
-		100	None	None	Possible water at 56.5'
-					Total depth at 57'
60					

Completion Details: Plugged and abandoned

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 7/25/02
Boring/Well Name: SB-42

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-					0 - 1.5' Caliche, gravel, asphalt
	SS	3	None	None	1.5' Caliche. Moderately hard, dry, tan
•					
_					
10	SS	4.8	None	None	
_					12 - 15' Caliche. Very hard, light buff color
_					
-	NS				15' Caliche. Less hard with cement and sand. No odor or discoloration.
-		-			
20	SS	4.3	None	None	
<u>-</u>		ļ <u></u> -		<u> </u>	
-					
	NS	1.1	None	None	Too hard to collect sample.
-		ļ		<u> </u>	
30	NS	<u> </u>			Too hard to collect sample.
	<u> </u>	<u></u>		ļ	
		<u> </u>			
	 	 			
-	-			<u> </u>	
<u>40</u>					Total depth.
-				<u> </u>	
-					
50_					
-		<u> </u>			
-					
60					

Completion 1	Details:	Plugged	and	abando	ned

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 7/26/02
Boring/Well Name: SB-43

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-					0-5' Caliche pad. Unconsolidated. No odor or stain.
-	NS	ND	None	None	5 - 12' Caliche with sand, moderately hard
_					
-					
10	NS				
_					12 - 20' Caliche with sand. Less hard.
-					
-					
_					
20					Total depth
-					
-					
-					
_					
30					
_					
-					
-					
•					
40					
-					
-					
-					
50					
_					
_					
-					
60					

Completion Details: Samples collected for field screening only (odor, stain, PID, etc.). Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 7/26/02
Boring/Well Name: SB-44

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-	SS		Possible	None	0 – 5' Caliche, sand
-					
-	SS		None	None	5' Caliche with sand, moderately hard, dry
-					
10	SS		None	None	Total depth
-					
20					
_					
		ļ			
-					
30					
		ļ			
		-		<u> </u>	
		ļ <u>.</u>			
40		ļ <u>.</u>			
_					
-		ļ			
50					
		<u> </u>			
		ļ			
-					
60					

Completion Details: Samples collected for field screening only (odor, stain, PID, etc.). Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 7/26/02
Boring/Well Name: SB-45

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	- SOIL DESCRIPTION
-	SS		None	None	0 - 5' Caliche and sand unconsolidated
_					
-					
-					
5	SS		None	None	5 – 10' Caliche and sand. More consolidated, harder
10	SS		None	None	Total depth
				-	
_					
-					
15					
-					
_					
_					
-					
20					
_					
_					
-					
_	-				
25					
-					
-					
-					
_	,				
30					

Completion Details: Samples collected for field screening only (odor, stain, PID, etc.). Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 8/06/02
Boring/Well Name: SB-46

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-			None	None	0 - 3' Caliche, sand unconsolidated
_					3 – 15' Caliche with sand, light brown, weakly to moderately cemented, dry
_					
-					
10			None	None	
_					
-			None	None	15' Caliche, less sand. More consolidated.
_					
-					
20			None	None	20 - 30' Calcrete, very hard. Light tan, almost white.
-					
-					
30			None	None	30 – 45' Softer caliche with sand nodules, light brown, embedded in harder caliche.
					·
-					
-					
40	СВ				
_	СВ				
	СВ				
_	СВ				45' Calcrete. Very hard, indurated
_					
50					Moisture at 50'. Total depth. Refusal.
-					
_					
-					
-					
60					

Completi	on Detai	ls: Plu	ugged a	nd aban	doned

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/01//02
Boring/Well Name: SB-47

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_			Strong	Heavy	0 – 6" Concrete
-			Strong	Heavy	0.5 – 2' Clayey sand, topsoil, caliche, heavily stained from 1 – 2' Strong chemical odor
-	SS		None	None	No staining in soil sample at 2.5'
-					3.5 – 5' Caliche with sand, unconsolidated
5	SS				Soil sample at 5'. No stain or odor. Terminated boring. Total depth.
_					
_					
_					
-					
10					
_					
_					
	, <u> </u>				
15					
_					
_	-				
20					
-					
_					
25					
_					
-					
_					
30					

Completion	n Details:	Plugged	and	abandoneo

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/01/02
Boring/Well Name: SB-48

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 6" Concrete
_					0.5 – 3.5' Topsoil, caliche, clayey sand
-	SS		None	None	3.5 - 5' Caliche with silty sand. Soft, unconsolidated, yellowish tan.
_					
5	SS		None	None	Total depth.
-					
-					
-					
-					
10			_		
_					
-					
_					
_					
15					
-					
_					
-					
-					
20					
_					
-					
-					
-					
25					
_			,		
-					
-					
-					
30					

Completion Details: Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility ETGI Project #: CH2100

Date Drilled: 09/27/02
Boring/Well Name: SB-49

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 6" Concrete
_			Slight	Heavy	0.5 - 2' Caliche with sand. Heavily stained, slight chemical odor.
	SS		None	None	2 - 25' Caliche with minor sand, light tan, hard caliche fragments, dry
_					
10	SS	8.1		None	
-	SS	11.8	Slight	None	
-					
20	SS	7.3	Slight	None	Definite hydrocarbon / chemical odor.
-					
-					
-					25 – 37' Caliche. Very hard. Strongly cemented sand coarse to fine
-					
30	NS				Too hard to collect sample 30 – 35'
_					
_	NS				
_					37 – 52' Caliche with sand less consolidated. Hard caliche fragments and softer sandy caliche nodules
-					
40	SS	2.0	None	None	
			The state of the s		
-					
-	ND				
_					
50	SS	4.2	None	None	
-					52 – 53' Sandy caliche, fine medium brown
-	SS				53 - 57' Calcrete. Very hard, indurated. Light tan to buff color.
_	NS				Too hard to collect soil sample at 57'. Total depth.
_					
60			_		

Completion Details: Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 10/01/02
Boring/Well Name: SB-50

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 0.5' Concrete pad
-	SS	8.9	None	None	0.5 – 3' Light tan/ brown caliche with sand
-					3 – 12' Light red/ brown sand
-					
5	SS	2.7	None	None	
_					
-					
_					
_					
10	SS	6.3	None	None	
-					12 – 21' Light brown/ buff caliche
-					
15	NS				
_			· · · · · · · · · · · · · · · · · · ·		
-					
_					
20	NS				
					21 – 28' Light tan caliche with sand
-					
_					
25	SS		None	None	
-					
_					28 – 30' Light red/ brown sand with caliche.
30	NS				Total depth.
30	742	L	<u> </u>	L	1 Otal deptil.

Completion Details: No groundwater encountered. Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/03/02
Boring/Well Name: SB-51

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 6" Concrete
-					0.5 – 3' Clayey sand. Reddish brown with caliche fragments
-	SS		None	None	3-7' Clayey sand, caliche, heavily stained, strong chemical odor, debris (especially wood fragments)
<u>-</u>					
5					
_					
_					7 10' Caliche with sand. Reddish brown turning to tan with depth.
10_	SS		None	None	No visual evidence of staining. Total depth.
-					
_					
15					
-					
_					
_					
_					
20					
_	. anna 2- War	* ***********	11 111 11 11 11 11 11 11 11 11		
_					
_					
-				1	
25					
	 				
30				-	
50	<u> </u>	<u> </u>	L	<u> </u>	

Camalatian Datailar	Diversed and shouldered		
Completion Details:	Plugged and abandoned.		

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 10/02/02

Boring/Well Name: SB-52 (by old leach lines)

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 4' Caliche pad & leach line backfill
-					4 – 12' Light tan sand with caliche
_	SS		None	None	
_					
10	SS		None	None	
-					12' - 27' Light tan caliche
-	NS				
-					
-					
20	NS				
_					
-	SS		None	None	
_					27 - 41' Light tan/ brown caliche with sand
_					
30	NS				
_					
-	SS		None	None	
-					
-					
40	SS		None	None	41 – 48' Light red/ brown sand
-					
-	SS		None	None	
_					
-					48 - 54' Calcrete. Extremely hard.
50					
_					54 – 56' Red/ brown sand
_					56' Total depth
! - -					
60					

Completion Details: Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 10/03/02

Boring/Well Name: SB-53

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-			-		0 – 6" Concrete
_	SS		Strong	Heavy	6" - 4' Clayey sand, caliche with rock fragments
-					4 – 15' Clayey sand with caliche, debris wood, rubber, metal, cardboard, etc.
-					
10	SS		Strong	Heavy	Heavy staining, very strong chemical odor, very moist
_					
_	SS	368.0	Slight	Light	15 – 16' Caliche with sand, no staining
				<u></u>	16 – 44' Light tan caliche with sand
-					
20	NS				
-					
	NS				
-					
-					
30	NS		 		
-					
_	SS		None	None	
-					
-					
40	SS	0.9	None	None	
_					
-	SS	0.2	None	None	44 – 46' Light tan/ brown sand with caliche
-	NS				46 – 49' Silcrete, red/ brown, hard
_	SS	0.9	None	None	49 - 51' Light tan to buff caliche with brown sand
50					
-	NS				51 – 53' Silcrete, red/ brown, hard
-					53' Light red/ brown sand, slightly damp. Total depth.
-					
_					
60	-				

Completion Details: No groundwater encountered. Plugged & abandoned.

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/02/02
Boring/Well Name: SB-55

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-					0 - 2' Caliche pad.
-	SS		None	None	2 – 18' Light tan caliche with sand
-					
-					
10					
-					
-					
_					
-					
20	SS		None	None	18 – 26' Light tan/ brown caliche
_					
_					
_					26 – 29' Red/ brown sand.
-					29 – 34' Light tan to brown caliche
30					
-					
_					34 – 40' Light tan sand with caliche
-					
_					
40	SS		None	None	Total depth.
-					
_					
-					
-					
50					
_	l		-		
-					
_					
_					
60					

Completion Details: No groundwater encountered. Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/02/02
Boring/Well Name: SB-56

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 4' Packed caliche pad
_	SS	ND	None	None	4 - 20' Caliche with sand, tan, weakly cemented, dry
_					
10					
-				-	
_					
-					
-					
20	SS		None	None	20 – 32' Calcrete, very hard, dry, strongly cemented zones alternate with weakly cemented sandy zones.
_					
_					
_					
-					
30					
-					32 – 40' Caliche with minor sand, tan, dry, fractured very hard caliche fragments
_					Inghions
_					
-					
40	SS		None	None	Total depth.
_					
_					
50					
-					
_					
_		 			
60	ļ		<u></u>		
	L	L		L	

Completion Details: Plugged and abandoned.		 	

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100
Date Drilled: 09/27/02
Boring/Well Name: SB-57

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-	SS	1.3	None	None	0 – 6" Concrete
					0.5 – 2' Caliche fill and topsoil
_	SS	797	Very Strong	Heavy	2 – 9' Caliche, sand, heavily stained, debris, moderate moisture. Very strong chemical odor
_			· 		
10	SS	1099	Very Strong	Heavy	9-16' Sand with caliche, medium grain, reddish brown, unconsolidated, weakly cemented.
-					Out of stain
	SS	ND	None	None	16 – 42' Caliche with sand, light tan, moderately hard to very hard, dry, some thin sandy caliche layers- softer
_					
20	NS				Too hard to sample
-					
-	SS	ND	None	None	Softer at 25°. Collect sample
_					
30	NS	ļ			Too hard to collect at 30', 35', 40'.
-					
-	NS				
-					
40	NS	-ND			
-					42 - 54' Calcrete, very hard, indurated. Light tan to white.
_	SS	ND	None	None	
_					
50	NS				
-					
-					54 – 57' Sand, reddish brown. Medium to fine grained.
<u></u>					57' Total depth
60					

Completion Details: Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility ETGI Project #: CH2100

Date Drilled: 09/30/02 Boring/Well Name: SB-58

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-					0 – 6" Concrete
-					0.5 – 2.5' Sand, caliche pad, topsoil
_	SS	273	Strong	Heavy	2.5 - 13' Sandy caliche, heavy staining, strong odor
-				-	
5	SS	631	Strong	Heavy	
-					
-					
-					
10	SS	370	Strong	Heavy	
_					
				· · · · · · · · · · · · · · · · · · ·	13 – 16' Light tan/ brown caliche
15	SS	47.6	Moderate	Light	
_					16 – 30' Light tan/ buff caliche
-					
_					
_		ļ			
20	NS		ļ		
-					
-					
				·	
-					
25	SS	3.7	None	None	
_		ļ			
-					
_					
-					
30	NS				Total depth.

Completion Details: Plugged and abandoned. No groundwater encountered.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 9/30/02

Boring/Well Name: SB-59

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-					0 – 1' Concrete pad
-	SS	543	Strong	Heavy	1 – 2' Light red/ brown caliche with sand
_					2 - 14' Heavy black stained sand with caliche
-					
5	SS		Strong	Heavy	
-					
-					
-					
-					
10	SS	440	Strong	Heavy	
-					
1					
-					
-				Light	14 – 16' Light tan, brown caliche
15	NS				
					16 – 20' Light tan caliche
-					
_					
•					
20	SS	2.8			Total depth
_					
_					
-					
_					
25				,	
-					
_					
_					
30					

Completion Details: No groundwater encountered. Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/01/02
Boring/Well Name: SB-60

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 – 6" Concrete
_	SS	22.7	Strong	Heavy	0.5 – 4.5' Sandy caliche, rock fragments, strong chemical odor, staining, dense (compacted?)
-					
-					
5	SS	1.4	None	None	4.5 – 10' Sandy caliche, weakly consolidated to strongly cemented. Reddish brown sand. Minor clay, Calcrete fragments
-					
-					
_			-		
-					
10	SS	2.6	None	None	Total depth
_					
_					
-					
15					
_					
_					
_					
20					
	-				
25	 		-		
			-		
-					
-					
-					
30				<u></u>	

Completion Details:	Plugged and abandoned				
					\neg

Site Name: Champion Technologies, Hobbs Facility
ETGI Project #: CH2100
Date Drilled: 10/01/02
Boring/Well Name: SB-61

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
					0 – 1' Concrete pad
-	SS	16.4	None	Moderate	1 - 2' Light reddish brown caliche with sand
_					2-3' Black stained sand with caliche
_					3 – 10' Light tan caliche with sand
5	SS		None	None	
-					
_					
-					
-					
10	SS	8.0	None	None	Total depth
-					
_					
-					
_					
15					
-					
-		<u> </u>			
-					
20					
-					
_					
-					
25					
-					
_					
_					
-					
30					

Completion Details: No groundwater encountered. Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 10/1/02
Boring/Well Name: SB-62

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
-	SS	22.0	None	Moderate	0 – 1' Caliche pad
-					1 – 4' Light brownish red caliche with sand
-	SS		Strong	Heavy	4 – 15' Black stained sand with caliche
_			¢.		
10	SS	471.0	Strong	Heavy	
-					
_					
_	SS		None	None	15 – 23' Light tan/ brown caliche
-					
20	NS				
-					23 - 36' Light tan/ buff caliche
_	SS		None	None	
_					
-					
30	NS				
_					
-	NS				
_					36 - 40' Light tan sand with caliche
_					
40	SS	9.6	None	None	Total depth
-	y 40 y 1 1 1				
_					
-					
-					
50					
_					
_					
_				1	
60					

Completion Details: No groundwater encountered. Plugged and abandoned.

Site Name: Champion Technologies, Hobbs Facility

ETGI Project #: CH2100

Date Drilled: 10/02/02

Boring/Well Name: SB-63

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_					0 - 1' Packed caliche, topsoil
_					1 – 9' Caliche with sand. Light brown. No odor, no staining
-					
_					
5					
-					
-					
			· · · · · · · · · · · · · · · · · · ·		
-					9 – 11' Caliche with Calcrete fragments, strongly cemented sand, dry. No odor or discoloration.
10					
_					Total depth. No samples collected
_					
-					
15					
_					
_					
_					
_					
20					
-					
_					
_					
_					
25					
-					
-					
_					
_					
30					

Completion Details:	Plugged and abandoned			
			_	

Site Name: Champion Technologies, Hobbs Facility ETGI Project #: CH2100

Date Drilled: 10/02/02
Boring/Well Name: SB-64

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_				NO	0 - 1': Packed caliche, dark brown sand, clay, gravel.
-					1-5': Caliche with sand, unconsolidated tan, dry
-					
_					
5					Total depth
_					
_					
-				-	
-					
10				-	
_					
_					
_					
_					
15					·
_					
-					
_					
20					
=====					
_			_		
_			<u> </u>		
25					
-		 			
_					
_					
_					
30					
30	<u> </u>	<u> </u>			

Completion Details:	Plugged and abandoned	 	 	

Site Name: Champion Technologies, Hobbs Facility ETGI Project #: CH2100

Date Drilled: 7/25/02
Boring/Well Name: SB-41

DEPTH	LAB SAMPLE	PID (ppm)	ODOR	STAIN	SOIL DESCRIPTION
_		1			0 - 1': Caliche pad and gravel
-	SS	601	Strong	Heavy	2 – 15': Sand and debris, black heavy staining. Hydrocarbon and H2S odor
-					(5') Dry brittle material. Charcoal-like (burned?) Minor caliche and sand
-					
10	SS	767	Very Strong	Heavy	
-					
*	SS	33	Strong	Moderate	15 – 25' Caliche with sand, strong odor, moderate staining, moderately hard.
-					
20	SS	70	Moderate	Moderate	Caliche nodule, less staining
_					
_					
	NS	326			25 – 30' Calcrete, very hard, indurated with little sand
_					
30	SS	217	Slight	None	30 – 42' Caliche with sand, softer, no staining, slight chemical odor
_		<u> </u>			
-					
-		<u> </u>			
40	NS		}		
-					42' Caliche with minor sand, hard, indurated
_	NS	8.5	None	None	
-					
50	NS	48	None	None	50 – 52' Calcrete, siliceous, very hard, indurated
					52' Caliche with sand, moderately hard
-					
-		100	None	None	Possible water at 56.5'
-					Total depth at 57'
60					

Completion Details: Plugged and abandoned

APPENDIX B
MONITOR WELL LOGS & WELL COMPLETION DIAGRAMS

Soil Boring Log Details

MW-8

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

Prep By: JDJ Checked By: TKC

March 11, 2003 ETGI Projet

ETGI Project # CH2100

Monitor Well Details

0

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Screen

▼ Indicates the groundwater level measured on date.

Indicates samples selected for laboratory submittal.

PID Head-space reading in ppm obtained with a photo-ionization detector.

Completion Notes

- The monitor well was installed on date using air rotary drilling techniques.
- The well was constructed with 4" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- 3. The well is protected with a locked stick up steel cover and a compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 5. The depths indicated are referenced from the ground surface.

Soil Boring Log Details

MW-9

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

Prep By: JDJ Checked By: TKC

March 11, 2003 ETGI Project # CH2100

MW-10

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Group, Inc.

Prep By: BN Checked By: TKC March 11, 2003 ETGI Project # CH2100

MW-11

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

 Prep By: JDJ
 Checked By: TKC

 March 11, 2003
 ETGI Project # CH2100

Hobbs, NM

Champion Technologies, Inc. Hobbs Facility

Prep By: BN

March 11, 2003

Checked By: TKC

ETGI Project # CH2100

MW-13

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

Prep By: BN Checked By: TKC March 11, 2003 ETGI Project # CH2100

MW-14

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

Prep By: JDJ Checked By: TKC

March 11, 2003

ETGI Project # CH2100

MW-15

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

Prep By: BN Checked By: TKC

March 11, 2003 ETGI Project # CH2100

Soil Boring Log Details

MW-16

Champion Technologies, Inc. Hobbs Facility

Hobbs, NM

Environmental Technology Group, Inc.

Prep By: JDJ		Checked By: TKC		
March 11, 2003	ETGI Proje	ct# CH2100		

APPENDIX C
ANALYTICAL REPORTS IN CHRONOLOGICAL ORDER

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

*	Carranto e	74. A	Date / Time	Date / Time	Constant	5
<u>Lab ID:</u> 0204006-01	Sample: South Excavation Stockpile-SS1	Matrix: SOIL	7/25/02 7:43	Received 7/25/02 16:40	Container 4 oz glass	Preservative Ice
L	ab Testing:	Rejected: No		mp: 4 C		
_	8260B TCLP					
	8270C Semivolatile O	rganics - TCLP				
	METALS RCRA 7 TO	CLP				
	RCI					
	Mercury, TCLP					
0204006-02	South Excavation Stockpile-SS2	SOIL	7/25/02 7:54	7/25/02 16:40	4 oz glass	Ice
<u>L</u>	ab Testing:	Rejected: No	Te	mp: 4 C		
	8260B TCLP					
	8270C Semivolatile O	rganics - TCLP				
	METALS RCRA 7 TO	LP				
	RCI					
	Mercury, TCLP					
0204006-03	S.S. 1 Wall 5'	SOIL	7/25/02 8:45	7/25/02 16:40	4 oz glass	Ice
<u>La</u>	ub Testing:	Rejected: No	Te	mp: 4 C		
	8021B/5030 BTEX					
	Anions					
	Cations					
	Arsenic					
	Barium					
	Cadmium					
	Chromium					
	Copper					
	Fluoride					
	Iron					
	Lead					
	Manganese					
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	pН					

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Date / Time Date / Time Collected Sample: Matrix: Received Container Lab ID: Preservative Selenium Silver **TPH 418.1 FTIR** Zinc SOIL S.S. 2 Wall 8' 7/25/02 7/25/02 4 oz glass Ice 0204006-04 8:50 16:40 Rejected: No 4 C Lab Testing: Temp: 8021B/5030 BTEX Anions Cations Arsenic Barium Cadmium Chromium Copper Fluoride Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pН Selenium Silver **TPH 418.1 FTIR** Zinc S.S. 3 Wall 3' SOIL 7/25/02 7/25/02 4 oz glass Ice 0204006-05 9:00 16:40 Rejected: No 4 C Lab Testing: Temp: 8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u>	Sample: Cadmium Chromium	<u>Matrix:</u>	Date / Time Collected	Date / Time Received	Container	<u>Preservative</u>
	Copper Fluoride Iron					
	Lead Manganese Mercury, Total Nitrogen, Nitrate					
	Nitrogen, Nitrite pH Selenium					
	Silver TPH 418.1 FTIR Zinc					
0204006-06	S.S. 4 Wall 3'	SOIL	7/25/02	7/25/02	4 oz glass	Ice

Lab Testing:

Rejected: No

9:05

Temp:

16:40

4 C

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u>	Sample: Silver TPH 418.1 FTIR Zinc	Matrix:	Date / Tin Collected		Date / Time Received	Container	Preservative
0204006-07	S.S. 5 Wall 3'	SOIL	7/25/02 9:10		7/25/02 16:40	4 oz glass	Ice
<u>L</u>	ab Testing:	Rejected: No		Temp:			
-	8021B/5030 BTEX						
	Anions						
	Cations						
	Arsenic						
	Barium						
_	Cadmium						
	Chromium						
	Copper						
	Fluoride						
	Iron						
	Lead						
	Manganese						
	Mercury, Total						
	Nitrogen, Nitrate						
	Nitrogen, Nitrite			•		<u> </u>	•
	pН						
	Selenium						
	Silver						
	TPH 418.1 FTIR						
	Zinc						
0204006-08	S.S. 6 Wali 4'	SOIL	7/25/02 9:15		7/25/02 16:40	4 oz glass	Ice
<u>L</u>	ab Testing:	Rejected: No		Temp:	4 C		
	8021B/5030 BTEX						
	Anions						
	Cations						
	Arsenic						
_	Barium						

Cadmium

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

> Date / Time Date / Time

Lab ID:

Sample:

Matrix:

Collected

Received

Container

Preservative

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

0204006-09

S.S. 7 Wall 4'

SOIL

7/25/02 9:20

7/25/02

4 oz glass

Ice

Lab Testing:

Rejected: No

16:40 4 C Temp:

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pΗ

Selenium

Silver

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Lab ID:	Sample: TPH 418.1 FTIR Zinc	Matrix:	Date / Time Collected	Date / Time Received	Container	Preservative
0204006-10	S.S. 8 Wall 4'	SOIL	7/25/02 9:25	7/25/02 16:40	4 oz glass	Ice
	8021B/5030 BTEX Anions Cations Arsenic Barium Cadmium Chromium Copper Fluoride Iron Lead Manganese Mercury, Total Nitrogen, Nitrate	Rejected: No	Ten			
	pH Selenium Silver TPH 418.1 FTIR Zinc	SON .	7/05/00	7/25/02	Accelon	
0204006-11 <u>La</u>	S.S. 9 Wall 4' ab Testing: 8021B/5030 BTEX Anions Cations Arsenic Barium Cadmium Chromium	SOIL Rejected: No	7/25/02 9:52 Tem	7/25/02 16:40 ap: 4 C	4 oz glass	Ice

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

> Date / Time Date / Time

Lab ID:

Sample:

Matrix:

Collected

Received

Container

Preservative

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

0204006-12

S.S. 10 Wall 4'

SOIL

7/25/02

7/25/02

4 oz glass

Ice

Lab Testing:

Rejected: No

10:02 16:40 4 C Temp:

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u>	Sample :	<u>Matrix:</u>		Date / Time Collected	Date / Time Received	Container	Preservative
0204006-13	S.S. 11 Btm 6'	SOIL		7/25/02 10:07	7/25/02 16:40	4 oz glass	Ice
La	ab Testing:	Rejected:	No	Te	mp: 4 C		
	8021B/5030 BTEX						
	Anions						
	Cations						
 	Arsenic						
	Barium						
	Cadmium						
	Chromium						
_	Copper						
	Fluoride						
	Iron						
	Lead						
	Manganese						
	Mercury, Total						
İ	Nitrogen, Nitrate						
i.	Nitrogen, Nitrite						
	pН						
!	Selenium						
!	Silver						
	TPH 418.1 FTIR						
l	Zinc						
0204006-14	S.S. 12 Btm 10'	SOIL		7/25/02 10:13	7/25/02 16:40	4 oz glass	Ice
<u>La</u>	b Testing:	Rejected:	No	Ter			
	8021B/5030 BTEX						
	Anions						
	Cations						
	Arsenic						
	Barium						
	Cadmium						
_	Chromium						
	Copper						

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

> Date / Time Date / Time

Lab ID:

Sample:

Matrix:

Collected Received

Container Preservative

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

7/25/02

4 oz glass

Ice

06-15

S.S. 13 Btm 4'

SOIL

7/25/02 10:15

16:40

Lab Testing:

Rejected: No

Temp:

4 C

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u> 0204006-16	<u>Sample:</u> S.S. 14 Btm 10'	Matrix:	Date / Time Collected 7/25/02 10:21	Date / Time <u>Received</u> 7/25/02 16:40	Container 4 oz glass	Preservative Ice
	8021B/5030 BTEX Anions Cations Arsenic Barium Cadmium Chromium Copper Fluoride Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite	Rejected: No	10:21 Ter	16:40 np: 4 C		
0204006-17	pH Selenium Silver TPH 418.1 FTIR Zinc S.S. 15 Btm 10'	SOIL Rejected: No	7/25/02 10:25 Ter	7/25/02 16:40 np: 4 C	4 oz glass	Ice
	8021B/5030 BTEX Anions Cations Arsenic Barium Cadmium Chromium Copper					

Fluoride

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u>	<u>Sample :</u> Iron Lead	Matrix:	Date / Time Collected	Date / Time Received	Container	Preservative
	Manganese					
	Mercury, Total Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	pH					
	Selenium					
	Silver					
	TPH 418.1 FTIR					
	Zinc					
020-1006-18	S.S. 16 Btm 4'	SOIL	7/25/02 10:30	7/25/02 16:40	4 oz glass	Ice
La	ib Testing:	Rejected: No	Ten	ip: 4 C		
	8021B/5030 BTEX					
	Anions					
	Cations					
	Arsenic					
	Barium					
	Cadmium					
	Chromium					
	Copper					
	Fluoride					
	Iron					
	Lead					
	Manganese					
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	pН					
	Selenium					
	Silver					
	TPH 418.1 FTIR					
	Zinc					

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u> 0204006-19	<u>Sample:</u> S.S. 17 Btm 8'	<u>Matrix:</u> SOIL		Date / Time Collected 7/25/02 10:36		te / Time eceived 7/25/02 16:40	Container 4 oz glass	Preservative Ice
<u>La</u>	8021B/5030 BTEX Anions Cations Arsenic Barium Cadmium Chromium Copper Fluoride Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrate PH Selenium Silver TPH 418.1 FTIR	Rejected:	No		emp:	16:40 4 C		
0204006-20 <u>La</u>	Zinc S.S. 18 Btm 8' b Testing: 8021B/5030 BTEX	SOIL Rejected:	No	7/25/02 10:41 Te	mp:	7/25/02 16:40 4 C	4 oz glass	Ice
	Anions Cations Arsenic Barium Cadmium Chromium Copper							

Fluoride

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

915-520-4310

Project Name: Champion Technology Inc.

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Date / Time

Date / Time

Lab ID:

Sample:

Matrix:

Collected

Received

Container

Preservative

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

0204006-21

S.S. 19 Wall 4'

SOIL

7/25/02 11:55

7/25/02

4 oz glass

Ice

Lab Testing:

Rejected: No

16:40 4 C Temp:

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pΗ

Selenium

Silver

TPH 418.1 FTIR

Zinc

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Lab ID:	Sample:	Matrix:		Date / Ti		ate / Time Received	Container	Preservative
0204006-22	S.S. 20 Wall 4'	SOIL		7/25/02 12:04	<u>u</u>	7/25/02 16:40	4 oz glass	Ice
La	b Testing:	Rejected:	No	12.07	Temp:	4 C		
	8021B/5030 BTEX							
	Anions							
	Cations							
	Arsenic							
	Barium							
	Cadmium							
	Chromium							
	Copper							
_	Fluoride							
	Iron							
	Lead							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	pН							
	Selenium							
	Silver							
	TPH 418.1 FTIR							
	Zinc							
0204006-23	S.S. 21 Wall 4'	SOIL		7/25/02 12:09		7/25/02 16:40	4 oz glass	Ice
<u>La</u>	<u>b Testing:</u>	Rejected:	No		Temp:	4 C		
	8021B/5030 BTEX							
	Anions							
	Cations							
	Arsenic							
	Barium							
	Cadmium							
	Chromium							

Copper Fluoride

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Date / Time Date / Time Sample: Matrix: Collected Received Container Lab ID: Preservative Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pН Selenium Silver **TPH 418.1 FTIR** SOIL S.S. 22 Wall 4' 7/25/02 7/25/02 4 oz glass Ice 12:15 16:40

0204006-24

Lab Testing:

Rejected: No

4 C Temp:

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u> 0204006-25	Sample: S.S. 23 Wall 4'	Matrix:	Date / Time Collected 7/25/02 11:50	Date / Time <u>Received</u> 7/25/02 16:40	Container 4 oz glass	Preservative Ice
La	ab Testing:	Rejected: N		mp: 4 C		
	8021B/5030 BTEX			•		
	Anions					
	Cations					
	Arsenic					
	Barium					
	Cadmium					
	Chromium					
	Copper					
_	Fluoride					
	Iron		•			
	Lead					
	Manganese					
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	pН					
	Selenium					
	Silver					
	TPH 418.1 FTIR					
	Zinc					
0204006-26	S.S. 24 Btm 5'	SOIL	7/25/02 12:25	7/25/02 16:40	4 oz glass	Ice
<u>La</u>	<u>ıb Testing:</u>	Rejected: No	o Te	mp: 4 C		
	8021B/5030 BTEX					
	Anions					
	Cations					
	Arsenic					
	Barium					
	Cadmium					
	Chromium					

Copper Fluoride

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Date / Time Date / Time Sample: Collected Lab ID: Matrix: Received Container Preservative Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pΗ Selenium Silver **TPH 418.1 FTIR** Zinc

≥006-27

S.S. 25 Btm 5'

SOIL

7/25/02 12:37

7/25/02 16:40

4 oz giass

Ice

Lab Testing:

Rejected: No

Temp: 4 C

8021B/5030 BTEX

Anions

Cations

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride

Iron

Lead

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Selenium

Silver

TPH 418.1 FTIR

Zinc

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Lab ID:	Sample :	Matrix:		Date / Time Collected		ate / Time Received	Container	Preservative
0204006-28	S.S. 26 Btm 5'	SOIL		7/25/02	-	7/25/02	4 oz glass	Ice
0204000-20				12:41		16:40		
<u>La</u>	ib Testing:	Rejected:	No	T	emp:	4 C		
	8021B/5030 BTEX							
	Anions							
	Cations							
	Arsenic							
	Barium							
	Cadmium							
	Chromium							
	Copper							
_	Fluoride							
	Iron							
	Lead							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	pН							
	Selenium							
	Silver							
	TPH 418.1 FTIR							
	Zinc							
0204006-29	S.S. 27 Btm 5'	SOIL		7/25/02 12:52		7/25/02 16:40	4 oz glass	Ice
<u>La</u>	<u>b Testing:</u>	Rejected:	No	T	emp:	4 C		
	8021B/5030 BTEX							
	Anions							
	Cations							
	Arsenic							
	Barium							
	Cadmium							

Chromium Copper Fluoride

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204006

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

Lab ID:	Sample: Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pH Selenium Silver TPH 418.1 FTIR Zinc	Matrix:	Date / Time <u>Collected</u>	Date / Time Received	Container	Preservative
0250006-30	S.S. 28 Btm 5'	SOIL	7/25/02 13:00	7/25/02 16:40	4 oz glass	Ice
	ab Testing:	Rejected: No	Tem			
_	8021B/5030 BTEX			•		
	Anions					
	Cations					
	Arsenic					
	Barium					
	Cadmium					
	Chromium					
	Copper					
	Fluoride					
	Iron					
	Lead			-		
	Manganese					
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	pН					
	Selenium					
	Silver					

TPH 418.1 FTIR

Zinc

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc. O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-03

Sample ID:

S.S. 1 Wall 5'

8021B/5030 BTEX

Method

Date Prepared

Sample Amount

Dilution

Analyst

Method

Blank 0002551-02 **Analyzed** 7/27/02 3:45

Date

1

Factor 25

CK

8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	< 0.025	0.025

Lab ID:

0204006-04

Sample ID:

S.S. 2 Wall 8'

8021B/5030 BTEX

Method Blank

Date

Date

Sample

Dilution

0002551-02

Prepared

Analyzed 7/27/02 4:07

Amount 1

Factor 25

Analyst CK

Method 8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	< 0.025	0.025

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-05

Sample ID:

S.S. 3 Wall 3'

8021B/5030 BTEX

Method

Date Prepared Date Analyzed Sample Amount Dilution

Analyst

Method

Blank 0002551-02

7/27/02 4:30

1

Factor 25

CK

8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Lab ID:

0204006-06

Sample ID:

S.S. 4 Wall 3'

8021B/5030 BTEX

Method

Date Prepared Date S Analyzed A

Sample Amount Dilution <u>Factor</u>

Analyst

Method 8021B

Blank 0002551-02

7/27/02 4:52 1

25

CK

Result RLParameter mg/kg <0.025 0.025 Benzene Ethylbenzene < 0.025 0.025 Toluene <0.025 0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 o-Xylene

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-07

Sample ID:

S.S. 5 Wall 3'

8021B/5030 BTEX

Method

Date **Prepared**

Date Analyzed Sample

Amount

Dilution **Factor**

Analyst

Method

Blank 0002551-02

7/27/02 5:14

25

CK

8021B

Result Parameter RL mg/kg <0.025 0.025 Benzene 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 p/m-Xylene <0.025 0.025 o-Xylene <0.025 0.025

Lab ID:

0204006-08

Sample ID:

S.S. 6 Wall 4'

8021B/5030 BTEX

Method

Date

Date

Sample

Dilution

Analyst

Method

Blank 0002551-02 Prepared

Analyzed 7/27/02 6:20

Amount 1

Factor 25

CK

8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

ANALYTICAL REPORT

Todd Choban

rironmental Technology Group, Inc.

Order#:

G0204006

.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-09

Sample ID:

S.S. 7 Wall 4'

8021B/5030 BTEX

Method

Date **Prepared**

p/m-Xylene

o-Xylene

Date Analyzed

Sample Amount Dilution **Factor**

Analyst

Method

Blank 0002551-02

7/27/02 7:27

1

25

CK

8021B

Result RL Parameter mg/kg Benzene < 0.025 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 0.025

Lab ID:

0204006-10

Sample ID:

S.S. 8 Wall 4'

8021B/5030 BTEX

Method

Date Prepared Date

Sample Amount Dilution **Factor**

Analyst

Method

Blank 0002557-02 Analyzed 7/27/02

7:49

1

25

< 0.025

< 0.025

CK

0.025

8021B

Result RLParameter mg/kg < 0.025 0.025 Benzene 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 o-Xylene

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-11

Sample ID:

S.S. 9 Wall 4'

8021B/5030 BTEX

Method Blank

Date Prepared

Date **Analyzed** Sample

Dilution

Analyst

Method

0002557-02

7/27/02 8:11

Amount 1

Factor 25

CK

8021B

Result Parameter RL mg/kg <0.025 0.025 Benzene 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 p/m-Xylene <0.025 0.025 o-Xylene <0.025 0.025

Lab ID:

0204006-12

Sample ID:

S.S. 10 Wall 4'

8021B/5030 BTEX

Method

Date

Date

8:33

Sample

Dilution

Analyst

Method

Blank 0002557-02 Prepared

Analyzed 7/27/02

Amount 1

Factor 25

CK

8021B

Parameter	Result mg/kg	RL	
Benzene	<0.025	0.025	
Ethylbenzene	< 0.025	0.025	
Toluene	<0.025	0.025	
p/m-Xylene	< 0.025	0.025	
o-Xylene	<0.025	0.025	

ANALYTICAL REPORT

dd Choban

vironmental Technology Group, Inc.

P.O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-13

Sample ID:

S.S. 11 Btm 6'

8021B/5030 BTEX

Method Blank

Date Prepared

Date Analyzed Sample Amount 1

Dilution Factor

25

Analyst CK

Method 8021B

0002557-02

7/27/02

8:55

Result RL Parameter mg/kg 0.025 Benzene < 0.025 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 < 0.025 p/m-Xylene < 0.025 0.025 o-Xylene

Lab ID:

0204006-14

Sample ID:

S.S. 12 Btm 10'

8021B/5030 BTEX

Method Blank 0002557-02

Date **Prepared**

Date Analyzed 7/27/02

9:18

Sample Amount Dilution **Factor** 25

Analyst CK

Method 8021B

Result RLParameter mg/kg 0.025 Benzene < 0.025 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 < 0.025 p/m-Xylene o-Xylene <0.025 0.025

ANALYTICAL REPORT

Codd Choban

ironmental Technology Group, Inc.

Order#:

G0204006

II OHRICHTAL TECH

Project:

CH 2100

P.O. Box 4845 Midland, TX 79704 Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-15

Sample ID:

S.S. 13 Btm 4'

8021B/5030 BTEX

Method

Date Prepared Date S

Sample Amount Dilution

Factor

Analyst

Method

Blank 0002557-02 <u>Analyzed</u> 7/27/02

9:40

1

25

CK

8021B

Result RLParameter mg/kg < 0.025 0.025 Benzene Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 o-Xylene

Lab ID:

0204006-16

Sample ID:

S.S. 14 Btm 10'

8021B/5030 BTEX

Method Blank

Date Prepared Date Sample

Sample Amount Dilution <u>Factor</u>

Analyst

Method

0002557-02

Analyzed 7/27/02 10:02

1

25

CK 8021B

Result RLParameter mg/kg <0.025 0.025 Benzene Ethylbenzene < 0.025 0.025 0.025 Toluene < 0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 o-Xylene

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-17

Sample ID:

S.S. 15 Btm 10'

8021B/5030 BTEX

Method

Date <u>Prepared</u> Date Analyzed Sample Amount Dilution Factor

Analyst

Method

Blank 0002557-02

7/27/02 10:24

1

25

CK 8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Lab ID:

0204006-18

Sample ID:

S.S. 16 Btm 4'

8021B/5030 BTEX

Method Blank

Date Prepared Date
Analyzed
7/27/02

Sample Amount Dilution Factor 25

Analyst CK

Method 8021B

0002557-02

7/27/02 10:46

Result RLParameter mg/kg <0.025 0.025 Benzene Ethylbenzene < 0.025 0.025 Toluene <0.025 0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 o-Xylene

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-19

Sample ID:

S.S. 17 Btm 8'

8021B/5030 BTEX

Method	
Blank	

Date Prepared Date
Analyzed
7/27/02

Sample Amount 1

Dilution Factor 25

Analyst CK

Method 8021B

0002557-02

11:08

Result Parameter RLmg/kg 0.025 Benzene < 0.025 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 < 0.025 p/m-Xylene < 0.025 0.025 o-Xylene

Lab ID:

0204006-20

Sample ID:

S.S. 18 Btm 8'

8021B/5030 BTEX

Method
Blank
0002557-02

Date Prepared Date
<u>Analyzed</u>
7/27/02
11:30

Sample Amount Dilution Factor 25

Analyst CK Method 8021B

Result Parameter RLmg/kg 0.025 Benzene < 0.025 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 < 0.025 0.025 p/m-Xylene 0.025 < 0.025 o-Xylene

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-21

Sample ID:

S.S. 19 Wall 4'

8021B/5030 BTEX

Method Blank

Date Prepared

Date **Analyzed** 7/27/02

Sample **Amount** 1

Dilution **Factor**

25

<u>Analyst</u> CK

Method 8021B

0002557-02

11:52

Result RLParameter mg/kg 0.025 Benzene < 0.025 <0.025 0.025 Ethylbenzene Toluene <0.025 0.025 p/m-Xylene < 0.025 0.025 o-Xylene <0.025 0.025

Lab ID:

0204006-22

Sample ID:

S.S. 20 Wall 4'

8021B/5030 BTEX

Method Blank 0002557-02

Date Prepared

Date Analyzed 7/27/02 12:14

Sample **Amount**

Dilution Factor 25

Analyst CK

Method 8021B

Parameter	Result mg/kg	RL	
Benzene	<0.025	0.025	
Ethylbenzene	<0.025	0.025	
Toluene	<0.025	0.025	
p/m-Xylene	<0.025	0.025	
o-Xylene	<0.025	0.025	

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-23

Sample ID:

S.S. 21 Wall 4'

8021B/5030 BTEX

Method Blank

Date Prepared

Date Analyzed

Sample Amount

1

Dilution **Factor**

25

Analyst CK

Method 8021B

0002557-02

7/27/02

12:36

Result RLParameter mg/kg < 0.025 0.025 Benzene < 0.025 0.025 Ethylbenzene Toluene < 0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 0.025 o-Xylene

Lab ID:

0204006-24

Sample ID:

S.S. 22 Wall 4'

8021B/5030 BTEX

Method Blank

Date Prepared

Date **Analyzed**

Sample Amount Dilution **Factor**

Analyst CK

Method

0002557-02

7/27/02 12:58

25

8021B

Parameter	Result mg/kg	RL	
Benzene	<0.025	0.025	
Ethylbenzene	<0.025	0.025	
Toluene	<0.025	0.025	
p/m-Xylene	<0.025	0.025	
o-Xylene	<0.025	0.025	

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-25

Sample ID:

S.S. 23 Wall 4'

8021B/5030 BTEX

Method Blank

Date Prepared

Date Analyzed

Sample **Amount** Dilution **Factor**

Analyst CK

Method

0002557-02

7/27/02 13:20

1

25

8021B

Result RLParameter mg/kg 0.025 Benzene < 0.025 0.025 Ethylbenzene < 0.025 Toluene <0.025 0.025 p/m-Xylene < 0.025 0.025 < 0.025 0.025 o-Xylene

Lab ID:

0204006-26

Sample ID:

S.S. 24 Btm 5'

8021B/5030 BTEX

Method Blank 0002557-02

Date Prepared

Date **Analyzed** 7/27/02

13:42

Sample Amount Dilution **Factor** 25

Analyst CK

Method 8021B

Result **Parameter** RLmg/kg < 0.025 0.025 Benzene Ethylbenzene < 0.025 0.025 0.025 Toluene < 0.025 p/m-Xylene < 0.025 0.025 o-Xylene < 0.025 0.025

ANALYTICAL REPORT

Lodd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-27

Sample ID:

S.S. 25 Btm 5'

8021B/5030 BTEX

Method Blank

Date **Prepared**

Date Analyzed

Sample Amount Dilution **Factor**

Analyst

Method

0002557-02

7/27/02 14:04

1

25

CK

8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	< 0.025	0.025
Toluene	< 0.025	0.025
p/m-Xylene	< 0.025	0.025
o-Xylene	< 0.025	0.025

Lab ID:

0204006-28

Sample ID:

S.S. 26 Btm 5'

8021B/5030 BTEX

Method

Date Prepared

Date Analyzed

Sample Amount Dilution **Factor**

Analyst

Method 8021B

Blank 0002557-02

7/27/02 14:26

25

CK

Result RLParameter mg/kg 0.025 < 0.025 Benzene Ethylbenzene < 0.025 0.025 0.025 <0.025 Toluene < 0.025 0.025 p/m-Xylene o-Xylene < 0.025 0.025

ANALYTICAL REPORT

Todd Choban

rironmental Technology Group, Inc.

Order#:

G0204006

Project:

CH 2100

.O. Box 4845 Midland, TX 79704 Project Name: Location:

Champion Technology Inc. Hobbs, NM

Lab ID:

0204006-29

Sample ID:

S.S. 27 Btm 5'

8021B/5030 BTEX

Method

Date Prepared

Date Analyzed

Sample Amount Dilution **Factor**

Analyst

Method 8021B

Blank 0002557-02

7/27/02 17:48

1

25

CK

Result Parameter RL mg/kg < 0.025 0.025 Benzene 0.025 Ethylbenzene < 0.025 0.025 Toluene <0.025 <0.025 0.025 p/m-Xylene < 0.025 0.025 o-Xylene

Lab ID:

0204006-30

Sample ID:

S.S. 28 Btm 5'

8021B/5030 BTEX

Method Blank 0002557-02

Date Prepared

Date **Analyzed** 7/27/02

18:10

Sample Amount Dilution **Factor** 25

Analyst CK

Method 8021B

Result RLParameter mg/kg Benzene 0.025 < 0.025 Ethylbenzene 0.025 < 0.025 0.025 Toluene < 0.025 0.025 p/m-Xylene < 0.025 o-Xylene <0.025 0.025

Raland K. Tuttle, Lab Director, QA Officer

Date

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-03

Sample ID:

S.S. 1 Wall 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	107000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2070	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	288	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2220	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution	`		Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.61	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	79.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.403	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	12.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.57	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2450	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.94	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
liver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	23.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-04

Sample ID:

S.S. 2 Wall 8'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	62000	mg/kg	10000	100	6010B	07/29/2002	7/31/02	SM
Magnesium	4140	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	261	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2450	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.89	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	101	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.492	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	4.42	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.15	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3240	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.24	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	18.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

D. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-04

Sample ID:

S.S. 2 Wall 8'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	11.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-05

Sample ID: **Cations** S.S. 3 Wall 3'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	166000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2020	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	504	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	8160	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
rsenic	4.34	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
arium	758	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.34	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.1	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.71	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	1240	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	14.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	10.9	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-06

Sample ID:

S.S. 4 Wali 3'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	156000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2300	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	760	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	6600	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 2 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-06

Sample ID:

S.S. 4 Wall 3'

Test Parameters			Dilution			Date		
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	3.42	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	210	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.329	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.99	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2060	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.12	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	16.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	10.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-07

Sample ID:

S.S. 5 Wall 3'

C ations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	141000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2300	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	340	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3110	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	2.12	mg/kg	80	0.640	-3051/6010B	07/29/2002	8/1/02	SM
Barium	385	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.54	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.45	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.5	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2950	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.29	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	24.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	10.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Page 3 of 17

ANALYTICAL REPORT

Todd Choban

pvironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-08

Sample ID:

S.S. 6 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	184000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	1630	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	314	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2620	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	1.2	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	355	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.325	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.54	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.77	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2180	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.97	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
ilver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	14.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-09

Sample ID: S.S. 7 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	117000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2220	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	503	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	4730	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	2.65	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	231	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.458	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.5	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2900	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.42	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	21.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL ≈ Reporting Limit

Page 4 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Date

07/29/2002

07/30/2002

07/29/2002

Date

Location:

Dilution

Hobbs, NM

Lab ID:

0204006-09

Sample ID:

S.S. 7 Wall 4'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	11.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-10

Sample ID: Cations

S.S. 8 Wall 4'

Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	185000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2350	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	271	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	5090	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	RL	Method	Prepared	Analyzed	<u>Analyst</u>
rsenic	1.8	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
arium	241	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.257	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.11	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.63	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	1380	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.06	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	16.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

mg/kg

mg/kg

mg/kg

Lab ID:

Silver

Zinc

0204006-11

Sample ID:

Selenium

S.S. 9 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	164000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2100	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	363	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3520	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

Page 5 of 17

8/1/02

7/31/02

8/1/02

SM

SM

SM

< 0.320

< 0.160

6.41

0.320

0.160

0.080

80

80

80

3051/6010B

3051/6010B

3051/6010B

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-11

Sample ID:

S.S. 9 Wall 4'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.55	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	214	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.421	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.54	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.31	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2660	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.18	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	20	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	7.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-12

Sample ID:

S.S. 10 Wall 4'

Sations			Dilution			Date Date		
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	214000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	1700	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	197	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3120	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	2.03	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM -
Barium	219	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.172	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.81	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.28	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	1150	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	8.76	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	4.84	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Page 6 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-13

Sample ID:

S.S. 11 Btm 6'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	78300	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2550	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	225	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1110	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	1.44	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	100	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.757	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	5.18	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.85	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	5060	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.06	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	31.9	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
elenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
ilver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	13.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-14

Sample ID: S.S. 12 Btm 10'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	84600	mg/kg	50000	500	6010B -	-07/29/2002	7/31/02	- SM
Magnesium	1600	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	509	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3080	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	1.55	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	126	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.576	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.35	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.46	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3420	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.49	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	23.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 7 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-14

Sample ID:

S.S. 12 Btm 10'

Test Parameters			Dilution						
<u>Parameter</u>		Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		9.39	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID:	0204006-15								
Sample ID:	S.S. 13 Btm 4'								

Sample 19. 5.5. 15 Bin 4								
Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	187000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2270	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	300	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3320	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
rsenic	1.6	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
arium	335	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

1.6	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM	
335	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM	
0.724	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM	
5.11	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM	
3.49	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM	
4570	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM	
1.84	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM	
48.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM	
< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB	
< 0.320	mg/kg	80	-0.320	3051/6010B	-07/29/2002	8/1/02	SM	
< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM	
	11	00	0.000	2051/60100	07/20/2002	8/1/02	SM	
	335 0.724 5.11 3.49 4570 1.84 48.8 < 0.10 < 0.320 < 0.160	335 mg/kg 0.724 mg/kg 5.11 mg/kg 3.49 mg/kg 4570 mg/kg 1.84 mg/kg 48.8 mg/kg < 0.10 mg/kg < 0.320 mg/kg	335 mg/kg 80 0.724 mg/kg 80 5.11 mg/kg 80 3.49 mg/kg 80 4570 mg/kg 80 1.84 mg/kg 80 48.8 mg/kg 80 < 0.10 mg/kg 50 < 0.320 mg/kg 80 < 0.160 mg/kg 80	335 mg/kg 80 0.080 0.724 mg/kg 80 0.080 5.11 mg/kg 80 0.160 3.49 mg/kg 80 0.160 4570 mg/kg 80 1.6 1.84 mg/kg 80 0.880 48.8 mg/kg 80 0.080 < 0.10 mg/kg 50 0.10 < 0.320 mg/kg 80 0.160 < 0.160 mg/kg 80 0.160	335 mg/kg 80 0.080 3051/6010B 0.724 mg/kg 80 0.080 3051/6010B 5.11 mg/kg 80 0.160 3051/6010B 3.49 mg/kg 80 0.160 3051/6010B 4570 mg/kg 800 1.6 3051/6010B 1.84 mg/kg 80 0.880 3051/6010B 48.8 mg/kg 80 0.080 3051/6010B < 0.10 mg/kg 50 0.10 7470 < 0.320 mg/kg 80 0.160 3051/6010B < 0.160 mg/kg 80 0.160 3051/6010B	335 mg/kg 80 0.080 3051/6010B 07/29/2002 0.724 mg/kg 80 0.080 3051/6010B 07/29/2002 5.11 mg/kg 80 0.160 3051/6010B 07/29/2002 3.49 mg/kg 80 0.160 3051/6010B 07/29/2002 4570 mg/kg 800 1.6 3051/6010B 07/29/2002 1.84 mg/kg 80 0.880 3051/6010B 07/29/2002 48.8 mg/kg 80 0.880 3051/6010B 07/29/2002 48.8 mg/kg 80 0.080 3051/6010B 07/29/2002 < 0.10 mg/kg 50 0.10 7470 07/29/2002 < 0.320 mg/kg 80 - 0.320 3051/6010B - 07/29/2002	335 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 0.724 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 5.11 mg/kg 80 0.160 3051/6010B 07/29/2002 8/1/02 3.49 mg/kg 80 0.160 3051/6010B 07/29/2002 8/1/02 4570 mg/kg 800 1.6 3051/6010B 07/29/2002 8/1/02 1.84 mg/kg 80 0.880 3051/6010B 07/29/2002 8/1/02 48.8 mg/kg 80 0.880 3051/6010B 07/29/2002 8/1/02 48.8 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 < 0.10 mg/kg 50 0.10 7470 07/29/2002 7/29/02 < 0.320 mg/kg 80 0.320 3051/6010B - 07/29/2002 7/29/02 < 0.160 mg/kg 80 0.160 3051/6010B 07/30/2002 7/31/02	335 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 SM 0.724 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 SM 5.11 mg/kg 80 0.160 3051/6010B 07/29/2002 8/1/02 SM 3.49 mg/kg 80 0.160 3051/6010B 07/29/2002 8/1/02 SM 4570 mg/kg 800 1.6 3051/6010B 07/29/2002 8/1/02 SM 1.84 mg/kg 80 0.880 3051/6010B 07/29/2002 8/1/02 SM 4.88 mg/kg 80 0.880 3051/6010B 07/29/2002 8/1/02 SM 48.8 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 SM 48.8 mg/kg 80 0.080 3051/6010B 07/29/2002 8/1/02 SM 0.10 mg/kg 50 0.10 7470 07/29/2002 7/29/02 MB 0.320 mg/kg 80 0.320 3051/6010B - 07/29/2002 7/29/02 SM 0.320 mg/kg 80 0.160 3051/6010B 07/39/2002 7/31/02 SM 0.160 mg/kg 80 0.160 3051/6010B 07/30/2002 7/31/02 SM 0.160 mg/kg 80 0.160 3051/6010B 07/30/2002 7/31/02 SM

Lab ID:

0204006-16

Sample ID:

S.S. 14 Btm 10'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	61800	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	3490	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	345	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2140	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

Page 8 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-16

Sample ID:

S.S. 14 Btm 10'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	263	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.379	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.03	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.64	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2280	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	0.946	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	17.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	6.92	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-17

Sample ID: S.S. 15 Btm 10'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	59900	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	3000	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	278	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1460	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	0.999	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.466	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	4.28	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	3.09	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3040	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	3.74	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	34.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	13.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Page 9 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-18

Sample ID:

S.S. 16 Btm 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	RL	Method	Prepared	Analyzed	Analyst
Calcium	77200	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	3410	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	454	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2570	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	534	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.582	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	5.6	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	3.6	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3560	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.59	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	26.1	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
liver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	13.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-19

Sample ID:

S.S. 17 Btm 8'

Cations	D 11	** **	Dilution	 .		Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	64000	mg/kg	- 50000	500	6010B	- 07/29/2002	- 7/31/02	SM:
Magnesium	2380	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	280	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1790	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.24	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	233	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.534	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.04	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.63	mg/kg	80	0.160	3051/6010 B	07/29/2002	8/1/02	SM
Iron	3300	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.08	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	16.1	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
_Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 10 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Date

07/29/2002

8/1/02

SM

Date

Location:

Dilution

Hobbs, NM

Lab ID:

0204006-19

Sample ID:

S.S. 17 Btm 8'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	9.17	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-20

Sample ID: Cations

S.S. 18 Btm 8'

Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	130000	mg/kg	100000	1000	6010B	07/29/2002	7/31/02	SM
Magnesium	2860	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	395	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2580	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
rsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
arium	274	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.681	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	10.4	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.61	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	4510	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.97	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	29.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	~07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM

Lab ID:

Zinc

0204006-21

Sample ID:

S.S. 19 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	212000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2750	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	262	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3100	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

mg/kg

80

0.080

3051/6010B

Page 11 of 17

21.6

ANALYTICAL REPORT

Todd Choban

rironmental Technology Group, Inc.

D. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-21

Sample ID:

S.S. 19 Wall 4'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	1.82	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	216	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.344	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.64	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	3.28	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2820	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.53	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	20.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	13.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-22

Sample ID:

S.S. 20 Wall 4'

Sations			Dilution			Date	Date	
arameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	184000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	5750	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	442	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	4320	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	1.51	mg/kg	80	0.640	~~ 3051/6010B	07/29/2002	8/1/02	SM
Barium	155	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.296	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.92	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	271	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	7.58	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

). Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-23

Sample ID:

S.S. 21 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	240000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2200	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	586	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1590	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	0.992	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	133	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.293	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.7	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	0.573	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2070	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.14	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	19.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
lver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	6.49	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-24

Sample ID:

S.S. 22 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	149000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2070	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	364	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1520	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	120	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.255	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.59	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	0.633	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	1690	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.34	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	14.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 13 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Method

Date

Date

Prepared Analyzed Analyst

Location:

Dilution

Factor

<u>RL</u>

Hobbs, NM

Lab ID:

0204006-24

Sample ID:

S.S. 22 Wall 4'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	6.08	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Units

Lab ID:

0204006-25

Sample ID: Cations

Parameter

S.S. 23 Wall 4'

Calcium	85100	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2040	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	341	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1750	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Sarium	567	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.443	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.48	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.55	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3290	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.82	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	8.56	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-26

Sample ID:

S.S. 24 Btm 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	102000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	6330	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	778	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1070	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Result

Page 14 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-26

Sample ID:

S.S. 24 Btm 5'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	492	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.537	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	4.66	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.73	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3420	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.88	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	26.6	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	15.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-27

Sample III

S.S. 25 Btm 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	168000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	4960	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	271	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1270	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	358	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.418	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.71	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	3.05	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2850	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	20	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	8.28	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Page 15 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-28

Sample ID:

S.S. 26 Btm 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	125000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	8600	mg/kg	10000	10.0	6010B	07/29/2002	7/31/02	SM
Potassium	573	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3680	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	2.29	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	271	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.5	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.59	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.88	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3230	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	0.955	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	21.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
liver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	9.14	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-29

Sample ID:

S.S. 27 Btm 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	90800	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	5680	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	586	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	5120	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	143	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.658	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	4.29	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.77	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	4320	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.65	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	24.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 16 of 17

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006 CH 2100

Project:

Project Name:

Location:

Dilution

Factor

50000

RL

500

Champion Technology Inc. Hobbs, NM

Method

6010B

Date

Prepared

07/29/2002

Date

7/31/02

Analyzed Analyst

SM

Lab ID:

0204006-29

Sample ID:

S.S. 27 Btm 5'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	11.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Units

mg/kg

Lab ID:

0204006-30

Sample ID: Cations

Calcium

Parameter

S.S. 28 Btm 5'

Magnesium	3200	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	755	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1220	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
arium	235	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.452	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.16	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.96	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2820	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.07	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	23.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	14.6	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Approval: LAXA AF JUXA Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

Page 17 of 17

Result

190000

ANALYTICAL REPORT

Codd Choban

vironmental Technology Group, Inc.

1.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-03

Sample ID:

S.S. 1 Wall 5'

Anions Parameter	Result	Units	Dilution <u>Factor</u>	RL	<u>Method</u>	Date Analyzed	Analyst
Bicarbonate Alkalinity	124	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	3280	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	56.0	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	6.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pH	7.85	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-04

mple ID:

S.S. 2 Wall 8'

		Dilution		Date			
Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>	
78.0	mg/kg	1	2.00	310.1	7/29/02	SB	
<0.10	mg/kg	1	0.10	310.1	7/29/02	SB	
2970	mg/kg	1	10	9253	7/30/02	SB	
<0.10	mg/kg	1	2	310.1	7/30/02	SB	
237	mg/kg	1	25	375.4	7/29/02	SB	
	78.0 <0.10 2970 <0.10	78.0 mg/kg <0.10 mg/kg 2970 mg/kg <0.10 mg/kg	Result Units Factor 78.0 mg/kg i <0.10	Result Units Factor RL 78.0 mg/kg 1 2.00 <0.10	Result Units Factor RL Method 78.0 mg/kg 1 2.00 310.1 <0.10	Result Units Factor RL Method Analyzed 78.0 mg/kg 1 2.00 310.1 7/29/02 <0.10	

Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	15.5	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pН	7.80	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-05

Sample ID:

S.S. 3 Wall 3'

Anions	Dilution					Date			
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>		
Bicarbonate Alkalinity	96.0	mg/kg	1	2.00	310.1	7/29/02	SB		
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB		

RL = Reporting Limit

N/A = Not Applicable

Page 1 of 13

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-05

Sample ID:

S.S. 3 Wall 3'

Anions		** *.	Dilution			Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	<u>Analyzed</u>	<u>Analyst</u>
Chloride	3500	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	90.0	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
<u>Parameter</u>	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	3.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	< 0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pH	7.87	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-06

Sample ID:

S.S. 4 Wall 3'

Anions			Dilution			Date	
arameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Bicarbonate Alkalinity	175	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	7620	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	282	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	<2.5	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pH	7.88	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-07

Sample ID:

S.S. 5 Wall 3'

Anions		Dilution					Date			
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Analyzed	Analyst			
Bicarbonate Alkalinity	95.0	mg/kg	1	2.00	310.1	7/29/02	SB			
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB			
Chloride	2390	mg/kg	1	10	9253	7/30/02	SB			
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/30/02	SB			

RL = Reporting Limit

N/A = Not Applicable

Page 2 of 13

ANALYTICAL REPORT

Codd Choban

rironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-07

Sample ID:

S.S. 5 Wall 3'

Anions			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
SULFATE, 375.4	220	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters Parameter	Result	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	9.5	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pН	8.28	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-08

Sample ID:

Anions

S.S. 6 Wall 4'

Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst	
Bicarbonate Alkalinity	100	mg/kg	1	2.00	310.1	7/29/02	SB	
arbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB	
Chloride	2300	mg/kg	1	10	9253	7/30/02	SB	
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB	
SULFATE, 375.4	578	mg/kg	1	25	375.4	7/29/02	SB	
Test Parameters			Dilution			Date		
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>	
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB	
Nitrogen, Nitrate	19.0	mg/kg	5	2.5	353.3	7/26/02	RKT	
Nitrogen, Nitrite	< 0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT	
рН	8.19	pH Units	1	N/A	9045C	7/26/02	MB	
TPH 418.1 FTIR	198					7/29/02		

Dilution

Lab ID:

0204006-09

Sample ID:

S.S. 7 Wall 4'

Anions			Dilution			Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	225	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	20.0	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	3720	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	I	2	310.1	7/30/02	SB
SULFATE, 375.4	455	mg/kg	1	25	375.4	7/29/02	SB

RL = Reporting Limit

N/A = Not Applicable

Page 3 of 13

Date

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-09

Sample ID:

S.S. 7 Wall 4'

Test Parameters		Dilution					Date			
Parameter	<u>Result</u>	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>			
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB			
Nitrogen, Nitrate	9.0	mg/kg	5	2.5	353.3	7/26/02	RKT			
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT			
pН	8.44	pH Units	1	N/A	9045C	7/26/02	MB			
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB			

Lab ID:

0204006-10

Sample ID:

S.S. 8 Wall 4'

Anions			Dilution			Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	110	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	6910	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
YULFATE, 375.4	318	mg/kg	1	25	375.4	7/29/02	SB

Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	25.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pH	7.99	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-11

Sample ID:

S.S. 9 Wall 4'

Anions Parameter	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analyst
			racioi				
Bicarbonate Alkalinity	370	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	15.0	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	2660	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	374	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	23.0	mg/kg	5	2.5	353.3	7/26/02	RKT

RL = Reporting Limit

N/A = Not Applicable

Page 4 of 13

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

7/26/02

7/26/02

7/26/02

7/29/02

RKT

RKT

MB

SB

Location:

Hobbs, NM

2.5

0.0250

N/A

10.0

1

1

353.3

354.1

9045C

418.1

Lab ID:

0204006-11

Sample ID:

S.S. 9 Wali 4'

		Date				
Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
8.57	pH Units	1	N/A	9045C	7/26/02	MB
30.6	mg/kg	1	10.0	418.1	7/29/02	SB
	<0.025 8.57	<0.025 mg/kg 8.57 pH Units	<0.025 mg/kg 5 8.57 pH Units 1	Result Units Factor RL <0.025	Result Units Factor RL Method <0.025	Result Units Factor RL Method Analyzed <0.025

Lab ID:

0204006-12

Sample ID:

Anions

S.S. 10 Wall 4'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	215	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	2750	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	280	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB

mg/kg

mg/kg

pH Units

mg/kg

9.0

< 0.025

7.98

11.6

Lab ID:

0204006-13

Sample ID:

Nitrogen, Nitrate

Nitrogen, Nitrite

TPH 418.1 FTIR

S.S. 11 Btm 6'

Anions	Dilution Date							
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst	
Bicarbonate Alkalinity	60.0	mg/kg	1	2.00	310.1	7/29/02	SB	
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB	
Chloride	665	mg/kg	1	10	9253	7/30/02	SB	
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB	
SULFATE, 375.4	328	mg/kg	I	25	375.4	7/29/02	SB	
Test Parameters			Dilution			Date		
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst	
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB	
Nitrogen, Nitrate	10.0	mg/kg	5	2.5	353.3	7/26/02	RKT	
Nitrogen, Nitrite	< 0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT	
рН	8.16	pH Units	1	N/A	9045C	7/26/02	MB	

RL = Reporting Limit

N/A = Not Applicable

Page 5 of 13

ANALYTICAL REPORT

Todd Choban

rironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-13

Sample ID:

S.S. 11 Btm 6'

Test	Par	ame	ters
------	-----	-----	------

Parameter **TPH 418.1 FTIR**

<10.0

Result

Units mg/kg

Dilution **Factor** 1

Dilution

Factor

1

1

1

1

RL

2.00

0.10

10

Method

310.1

310.1

9253

9045C

418.1

<u>RL</u> 10.0 Method 418.1

Date Analyzed 7/29/02

Date

Analyzed

7/29/02

7/29/02

7/30/02

7/26/02

7/29/02

Analyst SB

Lab ID:

0204006-14

Sample ID:

S.S. 12 Btm 10'

Anions			Dilution			Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	225	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	260	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	485	mg/kg	1	25	375.4	7/29/02	SB

Test Parameters

Test Parameters			Dilution		Date				
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst		
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB		
itrogen, Nitrate	27.0	mg/kg	5	2.5	353.3	7/26/02	RKT		
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT		
pH	8.02	pH Units	1	N/A	9045C	7/26/02	MB		
TPH 418.1 FTIR	496	mg/kg	1	10.0	418.1	7/29/02	SB		

Units

mg/kg

mg/kg

mg/kg

pH Units

mg/kg

Lab ID:

0204006-15

Sample ID:

Chloride

S.S. 13 Btm 4'

Anions	**************************************
Parameter	Result
Bicarbonate Alkalinity	370

Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/30/02
SULFATE, 375.4	184	mg/kg	1	25	375.4	7/29/02
Test Parameters			Dilution			Date
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02
Nitrogen, Nitrate	17.5	mg/kg	5	2.5	353.3	7/26/02
Nitrogen, Nitrite	0.040	mg/kg	5	0.0250	354.1	7/26/02

< 0.10

3630

7.95

29.4

TPH 418.1 FTIR

RL = Reporting Limit

Carbonate Alkalinity

N/A = Not Applicable

Page 6 of 13

Analyst

SB

SB

SB

SB SB

Analyst SB RKT

RKT

MB

SB

N/A

10.0

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-16

Sample ID:

S.S. 14 Btm 10'

Anions			Date				
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	45.0	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	2570	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	7990	mg/kg	1	25	375.4	7/29/02	SB

Test Parameters			Date				
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	16.4	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	0.055	mg/kg	5	0.0250	354.1	7/26/02	RKT
рН	7.79	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	35.7	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-17

emple ID:

S.S. 15 Btm 10'

		Date				
Result	Units	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
110	mg/kg	1	2.00	310.1	7/29/02	SB
<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
975	mg/kg	1	10	9253	7/30/02	SB
<0.10	mg/kg	1	2	310.1	7/30/02	SB
801	mg/kg	1	25	375.4	7/29/02	SB
	110 <0.10 975 <0.10	110 mg/kg <0.10 mg/kg 975 mg/kg <0.10 mg/kg	110 mg/kg 1 <0.10 mg/kg 1 975 mg/kg 1 <0.10 mg/kg 1	Result Units Factor RL 110 mg/kg 1 2.00 <0.10	Result Units Factor RL Method 110 mg/kg 1 2.00 310.1 <0.10	Result Units Factor RL Method Analyzed 110 mg/kg 1 2.00 310.1 7/29/02 <0.10

Test Parameters			Date				
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	7.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	< 0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pН	8.08	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	78.4	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-18

Sample ID:

S.S. 16 Btm 4'

Anions		Date					
Parameter	Result	<u>Units</u>	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	45.0	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB

RL = Reporting Limit

N/A = Not Applicable

Page 7 of 13

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-18

Sample ID:

S.S. 16 Btm 4'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Chloride	4080	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	I	2	310.1	7/30/02	SB
SULFATE, 375.4	517	mg/kg	i	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	< 0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	23.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pH	7.70	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	33.1	mg/kg	1	10.0	418.1	7/29/02	SB

Lab ID:

0204006-19

Sample ID:

S.S. 17 Btm 8'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bicarbonate Alkalinity	47.0	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	1370	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	7840	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	RL	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	6.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	< 0.025	mg/kg	5	0.0250	354.1	7/26/02	RKT
pН	7.83	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	26.9	mg/kg	1	10.0	418.1	7/26/02	SB

Lab ID:

0204006-20

Sample ID:

S.S. 18 Btm 8'

Anions				Date			
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bicarbonate Alkalinity	40.0	mg/kg	1	2.00	310.1	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	1950	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB

RL = Reporting Limit

N/A = Not Applicable

Page 8 of 13

ANALYTICAL REPORT

Lodd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-20

Sample ID:

S.S. 18 Btm 8'

Anions Parameter	Result	Units	Dilution <u>Factor</u>	RL	Method	Date Analyzed	Analyst
SULFATE, 375.4	7890	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters Parameter	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	8.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	CK
pН	7.88	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	229	mg/kg	1	10.0	418.1	7/26/02	SB

Lab ID:

0204006-21

Sample ID:

Anions

Parameter

S.S. 19 Wall 4'

Bicarbonate Alkalinity	80	mg/kg	1	2.00	310.1	7/29/02	SB
arbonate Alkalinity	< 0.10	mg/kg	1	0.10	310.1	7/29/02	SB
Chloride	1600	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	350	mg/kg	1	25	375.4	7/29/02	SB
Test Parameters			Dilution			Date	
1 Cot 1 Williams			Dillullon			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
- · · · · · · · · · · · · · · · · · · ·	<u>Result</u> <0.02	Units mg/kg		<u>RL</u> 0.02	Method 340.1		Analyst SB
Parameter						Analyzed	
Parameter Fluoride	<0.02	mg/kg		0.02	340.1	Analyzed 7/29/02	SB
Parameter Fluoride Nitrogen, Nitrate	<0.02	mg/kg mg/kg	Factor 1 5	0.02 2.5	340.1 353.3	Analyzed 7/29/02 7/26/02	SB RKT

Units

Result

Dilution

<u>Factor</u>

<u>RL</u>

Method

Lab ID:

0204006-22

Sample ID:

S.S. 20 Wall 4'

Anions				Date			
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	80.0	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	10.0	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	3370	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	525	mg/kg	1	25	375.4	7/30/02	SB

RL = Reporting Limit

N/A = Not Applicable

Page 9 of 13

Date

Analyzed

<u>Analyst</u>

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-22

Sample ID:

S.S. 20 Wall 4'

Test Parameters			Date				
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	16.5	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	CK
pH	8.43	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/26/02	SB

Lab ID:

0204006-23

Sample ID:

Anions

S.S. 21 Wall 4'

Anions			Date				
Parameter	<u>Result</u>	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	90	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	70.0	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	443	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	218	mg/kg	1	25	375.4	7/30/02	SB
Test Parameters			Dilution			Date	
	200 11	~~ ·					

Test Parameters			Dilution			Date	
Parameter	<u>Result</u>	<u>Units</u>	Factor	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	< 0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	<5.0	mg/kg	10	5.0	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.20	mg/kg	10	0.20	354.1	7/26/02	CK
pН	9.38	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/26/02	SB

Lab ID:

0204006-24

Sample ID:

S.S. 22 Wall 4'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	165	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	110	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	103	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	258	mg/kg	1	25	375.4	7/31/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	<5.0	mg/kg	10	5.0	353.3	7/26/02	RKT

RL = Reporting Limit

N/A = Not Applicable

Page 10 of 13

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-24

Sample ID:

S.S. 22 Wall 4'

Test Parameters	Dilution					Date			
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>		
Nitrogen, Nitrite	<0.20	mg/kg	10	0.20	354.1	7/26/02	CK		
pH	9.70	pH Units	1	N/A	9045C	7/26/02	MB		
TPH 418.1 FTIR	10.7	mg/kg	1	10.0	418.1	7/26/02	SB		

Lab ID:

0204006-25

Sample ID:

Anions

S.S. 23 Wall 4'

Anions			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	800	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	100	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	133	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	259	mg/kg	1	25	375.4	7/30/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst

esi Furumeiers			Dilution			Date		
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst	
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB	
Nitrogen, Nitrate	<5.0	mg/kg	10	5.0	353.3	7/26/02	RKT	
Nitrogen, Nitrite	<0.20	mg/kg	10	0.20	354.1	7/26/02	CK	
pH	9.46	pH Units	1	N/A	9045C	7/26/02	MB	
TPH 418.1 FTIR	<10.0	mg/kg	1	10.0	418.1	7/26/02	SB	

Lab ID:

0204006-26

Sample ID:

S.S. 24 Btm 5'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	120	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	20.0	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	106	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	268	mg/kg	1	25	375.4	7/30/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	42.0	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.20	mg/kg	5	0.0250	354.1	7/26/02	CK
pH	8.85	pH Units	1	N/A	9045C	7/26/02	MB

RL = Reporting Limit

N/A = Not Applicable

Page 11 of 13

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-26

Sample ID:

S.S. 24 Btm 5'

Test	Param	eters
------	-------	-------

Parameter **TPH 418.1 FTIR** Result 197

Units mg/kg

Dilution **Factor** 1

RL10.0 Method Analyzed

418.1

<u>Analyst</u>

SB

Date

7/26/02

Lab ID:

0204006-27

Sample ID:

S.S. 25 Btm 5'

Anions		Dilution					Date			
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst			
Bicarbonate Alkalinity	135	mg/kg	1	2.00	310.1	7/28/02	SB			
Carbonate Alkalinity	10.0	mg/kg	1	0.10	310.1	7/28/02	SB			
Chloride	399	mg/kg	1	10	9253	7/30/02	SB			
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/28/02	SB			
SULFATE, 375.4	1050	mg/kg	1	25	375.4	7/30/02	SB			
T-4 D										

Dilution					Date			
Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>		
< 0.02	mg/kg	1	0.02	340.1	7/29/02	SB		
10.5	mg/kg	5	2.5	353.3	7/26/02	RKT		
< 0.025	mg/kg	5	0.0250	354.1	7/26/02	CK		
8.70	pH Units	1	N/A	9045C	7/26/02	MB		
28.1	mg/kg	1	10.0	418.1	7/26/02	SB		
	<0.02 10.5 <0.025 8.70	<0.02 mg/kg 10.5 mg/kg <0.025 mg/kg 8.70 pH Units	Result Units Factor <0.02	Result Units Factor RL <0.02	Result Units Factor RL Method <0.02	Result Units Factor RL Method Analyzed <0.02		

Lab ID:

0204006-28

Sample ID:

S.S. 26 Btm 5'

Anions	Dilution Date							
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>	
Bicarbonate Alkalinity	80.0	mg/kg	1	2.00	310.1	7/28/02	SB	
Carbonate Alkalinity	5.0	mg/kg	1	0.10	310.1	7/28/02	SB	
Chloride	3190	mg/kg	1	10	9253	7/30/02	SB	
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/28/02	SB	
SULFATE, 375.4	516	mg/kg	1	25	375.4	7/30/02	SB	
Test Parameters			Dilution			Date		
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>	
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB	
Nitrogen, Nitrate	16.5	mg/kg	5	2.5	353.3	7/26/02	RKT	
Nitrogen, Nitrite	< 0.025	mg/kg	5	0.0250	354.1	7/26/02	CK	
pH	8.24	pH Units	1	N/A	9045C	7/26/02	MB	
TPH 418.1 FTIR	11.4	mg/kg	1	10.0	418.1	7/26/02	SB	

RL = Reporting Limit

N/A = Not Applicable

Page 12 of 13

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Date

Location:

Dilution

Hobbs, NM

Lab ID:

0204006-29

Sample ID:

Anions

S.S. 27 Btm 5'

Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	<u>Method</u>	<u>Analyzed</u>	<u>Analyst</u>
Bicarbonate Alkalinity	70.0	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	5500	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	184	mg/kg	1	25	375.4	7/30/02	SB
Test Parameters			Dilution			Date	
Parameter	<u>Result</u>	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>
Fluoride	< 0.02	mg/kg	1	0.02	340.1	7/29/02	SB

1 est 1 aranteters		Dilution					Date			
Parameter	Result	<u>Units</u>	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>			
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB			
Nitrogen, Nitrate	12.5	mg/kg	5	2.5	353.3	7/26/02	RKT			
Nitrogen, Nitrite	<0.025	mg/kg	5	0.0250	354.1	7/26/02	CK			
pH	8.09	pH Units	1	N/A	9045C	7/26/02	MB			
TPH 418.1 FTIR	12.7	mg/kg	1	10.0	418.1	7/26/02	SB			

Lab ID:

0204006-30

iple ID:

S.S. 28 Btm 5'

Anions		Date					
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	145	mg/kg	1	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	40.0	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	133	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	7/28/02	SB
SULFATE, 375.4	210	mg/kg	1	25	375.4	7/30/02	SB

Test Parameters			Date				
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	<5.0	mg/kg	10	5.0	353.3	7/26/02	RKT
Nitrogen, Nitrite	<0.20	mg/kg	10	0.20	354.1	7/26/02	CK
pH	9.49	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	45.9	mg/kg	1	10.0	418.1	7/26/02	SB

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

RL = Reporting Limit

N/A = Not Applicable

Page 13 of 13

QUALITY CONTROL REPORT

Anions

Order#: G0204006

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	0002564-01			<2.00		
Bicarbonate Alkalinity-mg/kg	0002565-01			<10.0		
Carbonate Alkalinity-mg/kg	0002566-01			<0.10		
Carbonate Alkalinity-mg/kg	0002567-01			<0.10		
Chloride-mg/kg	0002594-01			<5.00		
Chloride-mg/kg	0002608-01			<10.0		
Hydroxide Alkalinity-mg/kg	0002568-01			<0.10		
Hydroxide Alkalinity-mg/kg	0002569-01			<0.10		
SULFATE, 375.4-mg/kg	0002595-01			<0.50		
SULFATE, 375.4-mg/kg	0002609-01			<0.50		
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	0204005-01	409		411		0.5%
Bicarbonate Alkalinity-mg/kg	0204006-22	80		82.5	1	3.1%
Carbonate Alkalinity-mg/kg	0204005-01	0		<0.10		0.%
Carbonate Alkalinity-mg/kg	0204006-22	10		10		0.%
Hydroxide Alkalinity-mg/kg	0204005-01	0		<0.10		0.%
Hydroxide Alkalinity-mg/kg	0204006-22	0		<0.10		0.%
TE, 375.4-mg/kg	0204005-01	162		165		1.8%
SOL. ATE, 375.4-mg/kg	0204006-22	525		520		1.%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	0204005-01	421	1473.75	1640	82.7%	
Chloride-mg/kg	0204006-22	3370	5000	8240	97.4%	
MSD SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	0204005-01	421	1473.75	1640	82.7%	0.%
Chloride-mg/kg	0204006-22	3370	5000	8330	99.2%	1.1%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	0002564-04		0.05	0.0496	99.2%	
Bicarbonate Alkalinity-mg/kg	0002565-04		0.05	0.0496	99.2%	· · · · · ·
Carbonate Alkalinity-mg/kg	0002566-04		0.05	0.0496	99.2%	
Carbonate Alkalinity-mg/kg	0002567-04		0.05	0.0496	99.2%	
Chloride-mg/kg	0002594-04		5000	4960	99.2%	
Chloride-mg/kg	0002608-04		5000	4960	99.2%	
Hydroxide Alkalinity-mg/kg	0002568-04	•	0.05	0.0496	99.2%	
Hydroxide Alkalinity-mg/kg	0002569-04		0.05	0.0496	99.2%	
SULFATE, 375.4-mg/kg	0002595-04		50	49.8	99.6%	
SULFATE, 375.4-mg/kg	0002609-04		50	49.5	99.%	

QUALITY CONTROL REPORT

Cations

Order#: G0204006

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002618-02			< 1.0		
Calcium-mg/kg		0002621-02			< 1.0		
Magnesium-mg/kg		0002618-02			< 0.10		
Magnesium-mg/kg		0002621-02			<0.001		~
Potassium-mg/kg		0002618-02			< 5.0		
Potassium-mg/kg		0002621-02			< 5.0		
Sodium-mg/kg		0002618-02			< 1.0		
Sodium-mg/kg		0002621-02			< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204006-03	107000		106000		0.9%
Calcium-mg/kg		0204006-23	240000		251000		4.5%
Magnesium-mg/kg		0204006-03	2070		2120		2.4%
Magnesium-mg/kg		0204006-23	2200		2210		0.5%
Potassium-mg/kg		0204006-03	288		281		2.5%
Potassium-mg/kg		0204006-23	586		600		2.4%
Sodium-mg/kg		0204006-03	2220		2240		0.9%
Sodium-mg/kg		0204006-23	1590		1560		1.9%
	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002618-05		2	2.02	101.%	
Calcium-mg/kg	-1 1111	0002621-05		2	2.29	114.5%	
Magnesium-mg/kg		0002618-05		2	2.12	106.%	_
Magnesium-mg/kg		0002621-05		2	2.02	101.%	
Potassium-mg/kg		0002618-05		2	1.88	94.%	
Potassium-mg/kg		0002621-05		2	1.93	96.5%	
Sodium-mg/kg		0002618-05		2	1.90	95.%	
Sodium-mg/kg		0002621-05		2	1.90	95.%	

QUALITY CONTROL REPORT

Test Parameters

Order#: G0204006

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002661-01			<0.64		
Arsenic-mg/kg	0002662-01			< 0.64		
Barium-mg/kg	0002661-01			<0.08		
Barium-mg/kg	0002662-01			<0.08		
Cadmium-mg/kg	0002661-01			<0.08		
Cadmium-mg/kg	0002662-01			<0.08		
Chromium-mg/kg	0002661-01			<0.16		
Chromium-mg/kg	0002662-01			<0.16		
Copper-mg/kg	0002663-01			<0.16		1737. ±
Copper-mg/kg	0002664-01			<0.16		
Fluoride-mg/kg	0002596-01			<0.10		
Fluoride-mg/kg	0002607-01			<0.02		
Iron-mg/kg	0002663-01			<0.16		
Iron-mg/kg	0002664-01	·		< 0.16		
Lead-mg/kg	0002661-01			<0.88		
Lead-mg/kg	0002662-01			<0.88		
Manganese-mg/kg	0002663-01			<0.08		
Manganese-mg/kg	0002664-01			<0.08		·
, Total-mg/kg	0002586-01		-	< 0.0020		
Mercury, Total-mg/kg	0002587-01			< 0.0020		
Nitrogen, Nitrate-mg/kg	0002577-01			<2.5		
Nitrogen, Nitrate-mg/kg	0002578-01			<2.5		
Nitrogen, Nitrite-mg/kg	0002578-01			<0.025		
Nitrogen, Nitrite-mg/kg	0002580-01			<0.025		
pH-pH Units	0002588-01			7.42		
pH-pH Units	- 0002589-01-			7.62		
Selenium-mg/kg	0002661-01			< 0.32	†	
Selenium-mg/kg	0002662-01			< 0.32		
Silver-mg/kg	0002639-01			< 0.16		
Silver-mg/kg	0002640-01	 		< 0.16		
TPH 418.1 FTIR-mg/kg	0002541-01			<10.0		
TPH 418.1 FTIR-mg/kg	0002552-01			<10.0		
Zinc-mg/kg	0002663-01			<0.08	-	
Zinc-mg/kg	0002664-01			<0.08		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002661-02		40	40.9	102.3%	
Arsenic-mg/kg	0002662-02		40	40	100.%	
Barium-mg/kg	0002661-02		40	40	100.%	
mg/kg	0002662-02		40	39	97.5%	

QUALITY CONTROL REPORT

TROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Cadmium-mg/kg	0002661-02		40	43.0	107.5%	
Cadmium-mg/kg	0002662-02		40	42.2	105.5%	
Chromium-mg/kg	0002661-02		40	38	95.%	
Chromium-mg/kg	0002662-02		40	37	92.5%	 -
Copper-mg/kg	0002663-02		16	16.1	100.6%	
Copper-mg/kg	0002664-02		16	16.2	101.3%	
ron-mg/kg	0002663-02		16	17.2	107.5%	
ron-mg/kg	0002664-02		16	17	106.3%	
_ead-mg/kg	0002661-02		40	41.3	103.3%	
_ead-mg/kg	0002662-02		40	41	102.5%	
Manganese-mg/kg	0002663-02		16	15.6	97.5%	
Manganese-mg/kg	0002664-02		16	16.8	105.%	
Mercury, Total-mg/kg	0002586-02		0.015	0.014	93.3%	
Mercury, Total-mg/kg	0002587-02		0.015	0.015	100.%	
pH-pH Units	0002588-02		7	7.03	100.4%	
oH-pH Units	0002589-02		7	7.05	100.7%	··I
Selenium-mg/kg	0002661-02		40	42.0	105.%	
Selenium-mg/kg	0002662-02		40	41	102.5%	
Silver-mg/kg	0002639-02		16	13.2	82.5%	
Silver_mg/kg	0002640-02		16	13.2	82.5%	
g/kg	0002663-02		16	18.4	115.%	
Zinc-mg/kg	0002664-02		16	18.6	116.3%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002661-03		40	40	100.%	2.2%
Arsenic-mg/kg	0002662-03		40	39.9	99.7%	0.3%
Barium-mg/kg	0002661-03		40	39.3	98.2%	1.8%
Barium-mg/kg	- 0002662-03 -		40	39.2	98.%	0.5%
Cadmium-mg/kg	0002661-03		40	42.6	106.5%	0.9%
Cadmium-mg/kg	0002662-03		40	43.6	109.%	3.3%
Chromium-mg/kg	0002661-03		40	38.1	95.3%	0.3%
Chromium-mg/kg	0002662-03		40	38.2	95.5%	3.2%
Copper-mg/kg	0002663-03		16	15.8	98.8%	1.9%
Copper-mg/kg	0002664-03		16	15.7	98.1%	3.1%
ron-mg/kg	0002663-03		16	17	106.3%	1.2%
ron-mg/kg	0002664-03		16	16.2	101.3%	4.8%
.ead-mg/kg	0002661-03		40	40.0	100.%	3.2%
.ead-mg/kg	0002662-03		40	41.2	103.%	0.5%
Manganese-mg/kg	0002663-03		16	15.5	96.9%	0.6%
Annanan matter	0002664-03		16	16.5	103.1%	1.8%
vianganese-mg/kg	1 0002004-03					
Manganese-mg/kg Mercury, Total-mg/kg	0002586-03		0.015	0.015	100.%	6.9%

QUALITY CONTROL REPORT

CTROL DI	J P SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Selenium-mg/kg		0002661-03		40	42.6	106.5%	1.4%
Selenium-mg/kg		0002662-03		40	41.2	103.%	0.5%
Silver-mg/kg		0002639-03		16	13.5	84.4%	2.2%
Silver-mg/kg		0002640-03		16	13.2	82.5%	0.%
Zinc-mg/kg		0002663-03		16	18.1	113.1%	1.6%
Zinc-mg/kg		0002664-03		16	17.8	111.3%	4.4%
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg		0204005-01	0		<0.02		0.%
Fluoride-mg/kg		0204006-22	0		<0.02		0.%
Nitrogen, Nitrate-mg/kg		0204005-01	12.4		13.9		11.4%
Nitrogen, Nitrate-mg/kg		0204006-22	16.5		18.0		8.7%
Nitrogen, Nitrite-mg/kg		0204005-01	0.11		0.110		0.%
Nitrogen, Nitrite-mg/kg		0204006-22	0		<0.025		0.%
pH-pH Units		0204005-01	8.13		8.20		0.9%
pH-pH Units		0204006-22	8.43		8.42		0.1%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg		0204004-01	1730	2500	4180	98.%	
TPH 418.1 FTIR-mg/kg	· · · · · · · · · · · · · · · · · · ·	0204006-19	26.9	2500	2710	107.3%	
	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg		0204004-01	1730	2500	4270	101.6%	2.1%
TPH 418.1 FTIR-mg/kg		0204006-19	26.9	2500	2770	109.7%	2.2%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg		0002661-04		1	0.951	95.1%	
Arsenic-mg/kg		0002662-04		1	0.965	96.5%	
Barium-mg/kg		0002661-04		1	0.911	91.1%	
Barium-mg/kg		0002662-04		1	0.913	91.3%	
Cadmium-mg/kg		0002661-04		1	1.04	104.%	
Cadmium-mg/kg	·.	0002662-04		1	1.03	103.%	
Chromium-mg/kg		0002661-04		1	0.93	93.%	
Chromium-mg/kg		0002662-04		1	0.922	92.2%	
Copper-mg/kg		0002663-04		1	1.01	101.%	
Copper-mg/kg		0002664-04		I	0.995	99.5%	***************************************
Fluoride-mg/kg		0002596-04		1	0.96	96.%	
Fluoride-mg/kg		0002607-04	·	1	0.95	95.%	
Iron-mg/kg		0002663-04		1	1.01	101.%	
Iron-mg/kg		0002664-04		1	0.993	99.3%	
Lead-mg/kg		0002661-04		1	0.986	98.6%	
Leng/kg		0002662-04		1	0.988	98.8%	

QUALITY CONTROL REPORT

	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Manganese-mg/kg		0002663-04		1	0.989	98.9%	
Manganese-mg/kg		0002664-04		1	0.979	97.9%	
Mercury, Total-mg/kg		0002586-04		0.015	0.015	100.%	
Mercury, Total-mg/kg		0002587-04		0.015	0.014	93.3%	
Nitrogen, Nitrate-mg/kg		0002577-04		1	1.0	100.%	
Nitrogen, Nitrate-mg/kg		0002578-04		1	1.0	100.%	
Nitrogen, Nitrite-mg/kg		0002578-04		0.2	0.166	83.%	
Nitrogen, Nitrite-mg/kg		0002580-04		0.2	0.175	87.5%	
pH-pH Units		0002588-04		7	7.05	100.7%	
pH-pH Units		0002589-04		7	7.04	100.6%	
Selenium-mg/kg		0002661-04		1	0.988	98.8%	
Selenium-mg/kg		0002662-04		1	0.959	95.9%	
Silver-mg/kg		0002639-04		0.5	0.495	99.%	
Silver-mg/kg		0002640-04		0.5	0.486	97.2%	W - 5
TPH 418.1 FTIR-mg/kg		0002541-04		5008	4850	96.8%	**
TPH 418.1 FTIR-mg/kg		0002552-04		5008	5080	101.4%	
Zinc-mg/kg		0002663-04		I	0.997	99.7%	
Zinc-mg/kg		0002664-04		1	0.993	99.3%	

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ 4 deg C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 07/25/02 Receiving Date: 07/25/02 TCLP Extraction: 07/26/02

Analysis Date: 07/29/02

Field Code: South Excavation Stockpile-SS1

TCLP SEMIVOLATILE ORGANICS (mg/L)	REG. LIMIT	REPORT LIMIT	ELT# 0204006-01	CCC % DEV	%EA	RPD
2-Methylphenol	200	0.005	ND			
4-Methylphenol	200	0.005	ND			
1,4-Dichlorobenzene	7.5	0.005	ND	-10.8	60	21
2, 4-Dinitrotoluene	0.13	0.005	ND		60	6
Hexachlorobenzene	0.13	0.005	ND			
Hexachlor-1, 3-butadien	0.5	0.005	ND	-28.0		
Hexachloroethane	3	0.005	ND			
Nitrobenzene	2	0.005	ND			
Pentachlorophenol	100	0.005	ND	24.4	84	10
Pyridine Pyridine	5	0.005	ND			
2,4,5-Trichlorophenol	400	0.005	ND .			
2,4,6-Trichlorophenol	2	0.005	ND	-46.9#		

ND= NOT DETECTED, < REPORTING LIMIT	
SYSTEM MONITORING COMPOUNDS	% Recovery
2-Fluorophenoi	29.2
Phenol-d5	17.9
Nitrobenzene-d5	86.1
2-Fluorobiphenyl	109
2,4,6-Tribromophenol	74.2
p-Terphenyl-d14	126

ND = Not detected at report limit

Out of historical ranges

Method: SW 846-8270C,1311

Celey D. Keene Raland K. Tuttle 7-30-02

Date

ENVIRONMENTAL LAB OF \$\square I, Ltd.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 520-4310

Sample Type: Soil
Sample Condition: Intact/ Iced/ 4 deg C
Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 07/25/02 Receiving Date: 07/25/02 TCLP Extraction: 07/26/02

Analysis Date: 07/29/02

Field Code: South Excavation Stockpile-SS2

TCLP SEMIVOLATILE ORGANICS (mg/L)	REG. LIMIT	REPORT LIMIT	ELT# 0204006-02	CCC % DEV	%EA	RPD
2-Methylphenol	200	0.005	ND			
4-Methylphenol	200	0.005	ND			
1,4-Dichlorobenzene	7.5	0.005	ND	-10.8	60	21
2, 4-Dinitrotoluene	0.13	0.005	ND		60	6
Hexachlorobenzene	0.13	0.005	ND			
Hexachlor-1, 3-butadien	0.5	0.005	ND	-28.0		
Hexachloroethane	3	0.005	ND			
Nitrobenzene	2	0.005	ND			
Pentachlorophenol	100	0.005	ND	24.4	84	10
Pyridine	5	0.005	ND			
2,4,5-Trichlorophenol	400	0.005	ND			
2,4,6-Trichlorophenol	2	0.005	ND	-46.9#		

% Recovery
18.5#
11.7
62.9
86.9
106
138

ND = Not detected at report limit

Out of historical ranges

Method: SW 846-8270C,1311

Celey D. Keene Raland K. Tuttle 7-30-0

Date

ENVIRONMENTAL LAB OF \$\square I, Ltd.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ 4 deg C Project Name: Champion Technology Inc.

Project #: CH 2100

Vinyl chloride

Project Location: Hobbs, NM

Sampling Date: 07/25/02

Receiving Date: 07/25/02 TCLP Extraction: 07/26/02

Analysis Date: 07/29/02

Field Code: South Excavation Stockpile-SS1

109

TCLP	REPORT	ELT# 0204006-01				
Volatile Compounds	LIMIT	mg/L	%EA	%IA	RPD	
Benzene	0.001	ND	115		0	
Carbon tetrachloride	0.001	ND	124		1	
Chlorobenzene	0.001	ND	114		1	
Chloroform	0.001	ND	114	120	1	
1,4-Dichlorobenzene	0.001	ND	102		1	
1,2-Dichloroethane	0.001	ND	91		1	
1,1-Dichloroethylene	0.001	ND	124	120	8	
Methyl ethyl ketone	0.001	ND	96		7	
Tetrachloroethylene	0.001	ND	87		4	
Trichloroethylene	0.001	ND	81		2	

ND

0.001

System Monitoring Compounds	% RECOVER
Dibromofluoromethane	108
1,2-dichloroethane-d4	
Toluene-d8	101
4-Bromofluorobenzene	99.1

ND= Not Detected at report limit

Method: EPA SW 846 8260B, 1311

Celey D. Keene Raland K. Tuttle Date

1989.

Environmental Lab of 🏹 I, Ltd.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ 4 deg C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 07/25/02 Receiving Date: 07/25/02 TCLP Extraction: 07/26/02

Analysis Date: 07/29/02

Field Code: South Excavation Stockpile-SS2

TCLP	REPORT	ELT# 0204006-02				
Volatile Compounds	LIMIT	mg/L	%EA	%IA	RPD	
Benzene	0.001	ND	115		0	
Carbon tetrachloride	0.001	ND	124	*	0 1	
Chlorobenzene	0.001	ND	114	•	1	
Chloroform	0.001	ND	114	120	1	
1,4-Dichlorobenzene	0.001	NĐ	102		1	
1,2-Dichloroethane	0.001	ND	91		1	
1,1-Dichloroethylene	0.001	ND	124	120	8	
Methyl ethyl ketone	0.001	0.002	96		7	
Tetrachloroethylene	0.001	ND	87		4	
Trichloroethylene	0.001	ND	81		2	
Vinyl chloride	0.001	ND	96	109	8	

System Monitoring Compounds	% RECOVERY
Dibromofluoromethane	98.9
1,2-dichloroethane-d4	74.9
Toluene-d8	99.8
4-Bromofluorobenzene	98.7

ND= Not Detected at report limit

Method: EPA SW 846 8260B, 1311

Celey D. Keene Raland K. Tuttle Date

ANALYTICAL REPORT

Todd Choban

yironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-01

Sample ID:

South Excavation Stockpile-SS1

RCI				Date				
Parameter	Result	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>	
Ignitability	>100	C	1	NA	1010	7/29/02	SB	
pН	7.91	pH Units	1	N/A	9045C	7/26/02	SB	
Reactive Cyanide	<0.090	mg/kg	1	0.09	SW846 CH.7	7/27/02	SB	
Reactive Sulfide	<5.00	mg/kg	1	5.00	SW846 CH.7	7/27/02	SB	

Lab ID:

0204006-02

Sample ID:

South Excavation Stockpile-SS2

RCI Parameter Ignitability pH			Dilution	Date					
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst		
Ignitability	>100	С	1	NA	1010	7/29/02	SB		
pН	7.82	pH Units	1	N/A	9045C	7/26/02	SB		
Reactive Cyanide	<0.090	mg/kg	1	0.09	SW846 CH.7	7/27/02	SB		
Reactive Sulfide	<5.00	mg/kg	1	5.00	SW846 CH.7	7/27/02	SB		

Approval: (A) C A Officer Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sandra Biezugbe, Lab Tech.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

D. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-01

Sample ID:

South Excavation Stockpile-SS1

METALS RCR	A 7 TCLP			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic		0.035	mg/L	1	0.008	1311/6010B	07/26/2002	7/29/02	SM
Barium		0.665	mg/L	l	0.001	1311/6010B	07/26/2002	7/29/02	SM
Cadmium		< 0.001	mg/L	1	0.001	1311/6010B	07/26/2002	7/29/02	SM
Chromium		< 0.002	mg/L	1	0.002	1311/6010B	07/26/2002	7/29/02	SM
Lead		<0.011	mg/L	1	110.0	1311/6010B	07/26/2002	7/29/02	SM
Selenium		0.028	mg/L	1	0.004	1311/6010B	07/26/2002	7/29/02	SM
Silver		<0.002	mg/L	1	0.002	1311/6010B	07/26/2002	7/29/02	SM
Test Parameter	rs			Dilution			Date	Date	
<u>Parameter</u>		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Mercury, TCLP		<0.002	mg/L	I	0.002	1311/7470	07/26/2002	7/29/02	MB
	04006-02 uth Excavation Stockp	oile-SS2							
METALS RCR	A 7 TCLP			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic		0.032	mg/L	ı	0.008	1311/6010B	07/26/2002	7/29/02	SM
Barium		0.618	mg/L	1	0.001	1311/6010B	07/26/2002	7/29/02	SM
admium		<0.001	mg/L	1	0.001	1311/6010B	07/26/2002	7/29/02	SM
Chromium		0.002	mg/L	1	0.002	1311/6010B	07/26/2002	7/29/02	SM
Lead		<0.011	mg/L	1	0.011	1311/6010B	07/26/2002	7/29/02	SM
Selenium		0.032	mg/L	1	0.004	1311/6010B	07/26/2002	7/29/02	SM
Silver		<0.002	mg/L	1	0.002	1311/6010B	07/26/2002	7/29/02	SM
Test Parameter	rs			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Mercury, TCLP		<0.002	mg/L	1	0.002	1311/7470	07/26/2002	7/29/02	МВ
Lab ID: 020	04006-03 . 1 Wall 5'								
Cations				Dilution			Date	Date	
Parameter		Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium		107000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		2070	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		288	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		2220	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

pvironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-03

Sample ID:

S.S. 1 Wall 5'

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.61	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	79.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.403	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	12.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.57	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2450	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.94	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	23.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: 0204006-04 Sample ID: S.S. 2 Wall 8'								
Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	62000	mg/kg	10000	100	6010B	07/29/2002	7/31/02	SM
Magnesium	4140	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	261	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2450	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	1.89	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	101	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.492	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	4.42	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.15	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3240	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.24	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	18.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM

80

mg/kg

0.080

N/A = Not Applicable

Zinc

RL = Reporting Limit

11.3

Page 2 of 18

SM

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

3051/6010B

07/29/2002

8/1/02

ANALYTICAL REPORT

Todd Choban

nvironmental Technology Group, Inc.

P.O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name: Location: Champion Technology Inc.

cation: Hobbs, NM

Lab ID:

0204006-05

Sample ID:

S.S. 3 Wall 3'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	166000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2020	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	504	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	8160	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	4.34	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	758	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.34	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.1	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.71	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	1240	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	14.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	10.9	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-06

Sample ID:

S.S. 4 Wall 3'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	156000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2300	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	760	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	6600	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	3.42	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	210	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.329	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.99	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2060	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.12	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	16.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 3 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

pvironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-06

Sample ID:

S.S. 4 Wall 3'

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	10.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: 0204006-07								
Sample ID: S.S. 5 Wall 3'								
Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	141000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2300	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	340	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3110	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	2.12	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	385	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.54	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.45	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.5	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2950	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.29	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	24.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	10.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-08

Sample ID:

S.S. 6 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	184000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	1630	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	314	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2620	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 4 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

nvironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project: Project Name: CH 2100

Location:

Champion Technology Inc. Hobbs, NM

Lab ID:

Iron

Lead

Manganese

Selenium

Silver

Zinc

Mercury, Total

0204006-08

Sample ID:

S.S. 6 Wall 4'

Test Parameters			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.2	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	355	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.325	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.54	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.77	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2180	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.97	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	14.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: 0204006-09 Sample ID: S.S. 7 Wall 4'								
Cations			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	117000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2220	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	503	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	4730	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	2.65	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	231	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.458	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2:9:.	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM-
Copper	2.5	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
- -								

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

800

80

80

50

80

80

80

1.6

0.880

0.080

0.10

0.320

0.160

0.080

N/A = Not Applicable

RL = Reporting Limit

2900

1.42

21.8

< 0.10

< 0.320

< 0.160

11.4

Page 5 of 18

SM

SM

SM

MB

SM

SM

SM

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

3051/6010B

3051/6010B

3051/6010B

7470

3051/6010B

3051/6010B

3051/6010B

07/29/2002

07/29/2002

07/29/2002

07/29/2002

07/29/2002

07/30/2002

07/29/2002

8/1/02

8/1/02

8/1/02

7/29/02

8/1/02

7/31/02

8/1/02

ANALYTICAL REPORT

Todd Choban

pvironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location: Hobbs, NM

Lab ID:

0204006-10

Sample ID:

S.S. 8 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	185000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2350	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	271	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	5090	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	1.8	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	241	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.257	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.11	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.63	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	1380	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.06	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	16.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	6.41	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-11

Sample ID:

S.S. 9 Wall 4'

Cations			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	164000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2100	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	363	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3520	mg/kg	1000	10.0	6010B	07/29/2002-	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RI.	Method	Prepared	Analyzed	Analyst

Test Parameters		Dilution						
Parameter	<u>Result</u>	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	1.55	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	214	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.421	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.54	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.31	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2660	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.18	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	20	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 6 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

nvironmental Technology Group, Inc.

.O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project: Project Name: CH 2100

Location:

Champion Technology Inc.

n: Hobbs, NM

Lab ID:

0204006-11

Sample ID:

S.S. 9 Wall 4'

Test Param	ieters			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		7.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: Sample ID:	0204006-12 S.S. 10 Wall 4'								
Cations				Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium		214000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		1700	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		197	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		3120	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Paran	neters			Dilution			Date	Date	
<u>Parameter</u>		Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic		2.03	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		219	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.172	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		1.81	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper		1.28	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		1150	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead		< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		8.76	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	I	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		_ 4.84	_mg/kg	. 80 .	0.080	3051/6010B	07/29/2002	8/1/02	_ SM

Lab ID:

0204006-13

Sample ID:

S.S. 11 Btm 6'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	78300	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2550	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	225	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1110	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 7 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban nvironmental Technology Group, Inc. P.O. Box 4845 Midland, TX 79704

704

Lab ID: 0204006-13 Sample ID: S.S. 11 Btm 6' Order#: Project:

G0204006 CH 2100

Project Name: Champion Technology Inc.

Location: Hobbs, NM

Test Parameters			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.44	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	100	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.757	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	5.18	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.85	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	5060	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.06	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	31.9	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	13.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-14

Sample ID:

S.S. 12 Btm 10'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	84600	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	1600	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	509	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3080	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	<u>Result</u>	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.55	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	126	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.576	mg/kg	80	_0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.35	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM=
Copper	1.46	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3420	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.49	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	23.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	9.39	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 8 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project: Project Name:

CH 2100

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-15

Sample ID:

S.S. 13 Btm 4'

Cations				Dilution			Date	Date	
<u>Parameter</u>		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium		187000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		2270	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		300	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		3320	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parame	eters			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic		1.6	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		335	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.724	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		5.11	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper		3.49	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		4570	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		1.84	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		48.8	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total		< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		14.5	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID:	0204006-16								
Sample ID:	S.S. 14 Btm 10'								

Sample ID:

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	61800	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	3490	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	345	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2140	mg/kg	1000	10.0	6010B	07/29/2002	—7/31/02—	-SM

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	263	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.379	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.03	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.64	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2280	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	0.946	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	17.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 9 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

nvironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc. Hobbs, NM

Location:

Lab ID:

0204006-16

Sample ID:

S.S. 14 Btm 10'

Test Paran	neters			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analys
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		6.92	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID:	0204006-17								
Sample ID:	S.S. 15 Btm 10'								
Cations				Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	<u>RL</u>	Method	<u>Prepared</u>	Analyzed	Analys
Calcium		59900	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		3000	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		278	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		1460	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Paran	neters			Dilution			Date	Date	
<u>Parameter</u>		Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analys
Arsenic	•	0.999	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.466	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		4.28	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper		3.09	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		3040	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		3.74	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		34.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Tota	1	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Silver		13.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	77200	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	3410	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	454	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2570	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 10 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Units

mg/kg

Result

534

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Dilution

<u>Factor</u>

Champion Technology Inc.

Method

3051/6010B

Date

07/29/2002

Date

8/1/02

SM

Prepared Analyzed Analyst

Hobbs, NM Location:

RL

0.080

Lab ID: Sample ID:

Barium

0204006-18

Parameter

Test Parameters

S.S. 16 Btm 4'

Cadmium		0.582	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		5.6	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper		3.6	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		3560	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		1.59	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		26.1	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total		< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		13.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID:	0204006-19								
Sample ID:	S.S. 17 Btm 8'								
Cations				Dilution			Date	Date	
Parameter		Result	Units	<u>Factor</u>	RL	Method	Prepared	Analyzed	Analyst
Calcium		64000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		2380	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		280	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		1790	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Param	eters			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic		1.24	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		233	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.534	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		3.04	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	A CONTRACTOR OF THE PARTY OF TH	1.63	mg/kg	80	0.160	3051/6010B-	07/29/2002-	8/1/02= =	SM-
Iron		3300	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		1.08	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		16.1	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total		< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc		9.17	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 11 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

nvironmental Technology Group, Inc.

Midland, TX 79704

Order#:

G0204006 CH 2100

O. Box 4845

Project: Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID: Sample ID: 0204006-20

S.S. 18 Btm 8'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	130000	mg/kg	10000	1000	6010B	07/29/2002	7/31/02	SM
Magnesium	2860	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	395	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	2580	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	RL	Method	<u>Prepared</u>	Analyzed	<u>Analyst</u>
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	274	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.681	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	10.4	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.61	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	4510	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.97	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	29.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/30/2002	7/31/02	SM
Zinc	21.6	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

0204006-21

S.S. 19 Wall 4' Sample ID:

Cations			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	212000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2750	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	262	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3100	mg/kg	1000	10:0	6010B	07/29/2002	7/31/02	SM

Test Parameters			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	1.82	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	216	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.344	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.64	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	3.28	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2820	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.53	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	20.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 12 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

nvironmental Technology Group, Inc.

Midland, TX 79704

Order#: Project: G0204006 CH 2100

.O. Box 4845

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-21

Sample ID:

S.S. 19 Wall 4'

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	13.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: 0204006-22								
Sample ID: S.S. 20 Wall 4'								
Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	184000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	5750	mg/kg	1000	1.0	6010B	07/29/2002	7/3 1/02	SM
Potassium	442	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	4320	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	<u>Result</u>	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	1.51	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	155	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.296	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	1.92	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.9	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	271	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	15	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	7.58.	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-23

Sample ID:

S.S. 21 Wall 4'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	240000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	2200	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	586	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1590	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 13 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

Invironmental Technology Group, Inc.

.O. Box 4845 Midland, TX 79704 Order#:

G0204006 CH 2100

Test Parameters

Project: Project Name:

Champion Technology Inc.

Date

Date

Location:

Dilution

Hobbs, NM

Lab ID:

0204006-23

Sample ID:

S.S. 21 Wall 4'

A COL I CHI CHI	,0,0,0								
Parameter		Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic		0.992	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		133	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.293	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		1.7	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper		0.573	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		2070	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		1.14	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		19.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total		< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc		6.49	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: Sample ID:	0204006-24 S.S. 22 Wall 4'								
Cations				Dilution			Date	Date	
<u>Parameter</u>		Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium		149000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		2070	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		364	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		1520	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Paran	neters			Dilution			Date	Date	
<u>Parameter</u>		Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic		< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		120	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	an and also be seen to be an in-		mg/kg	80	0.080	3051/6010B	07/29/2002	_8/1/02	SM
Chromium	and the state of t	1.59	mg/kg	80	0.160		-07/29/2002·		SM=
Copper		0.633	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		1690	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		1.34	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		14.2	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	!	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc		6.08	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 14 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

pvironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-25

S

40 20.			
ample ID:	S.S. 23	Wall	4

Result 85100 2040 341	Units mg/kg mg/kg mg/kg	<u>Factor</u> 50000 1000	<u>RL</u> 500	Method 6010B	Prepared 07/29/2002	Analyzed 7/31/02	Analyst SM
2040 341	mg/kg			6010B	07/29/2002	7/31/02	SM
341		1000					0147
	mo/kg		1.0	6010B	07/29/2002	7/31/02	SM
1750	***********************	100	5.0	6010B	07/29/2002	7/31/02	SM
1/30	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
		Dilution			Date	Date	
Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
567	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
0.443	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
2.48	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
1.55	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
3290	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
1.82	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
15.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
8.56	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
	Result < 0.640 567 0.443 2.48 1.55 3290 1.82 15.4 < 0.10 < 0.320 < 0.160	Result Units < 0.640	1750 mg/kg 1000 Dilution Result Units Factor 4	Dilution Dilution Dilution Dilution	Dilution Dilution Dilution Dilu	Dilution Date Dilution Date Prepared Co.640 mg/kg 80 0.640 3051/6010B 07/29/2002 0.443 mg/kg 80 0.160 3051/6010B 07/29/2002 0.443 mg/kg 80 0.160 3051/6010B 07/29/2002 0.443 mg/kg 80 0.160 3051/6010B 07/29/2002 0.448 mg/kg 80 0.160 3051/6010B 07/29/2002 0.55 mg/kg 800 0.880 3051/6010B 07/29/2002 0.54 mg/kg 80 0.880 3051/6010B 07/29/2002 0.10 mg/kg 50 0.10 7470 07/29/2002 0.320 mg/kg 80 0.320 3051/6010B 07/29/2002 0.320 mg/kg 80 0.320 3051/6010B 07/29/2002 0.160 mg/kg 80 0.160 3051/6010B 07/29/2002 0.160 0.160 3051/6010B 07/29/2002 0.160	Dilution Date Dat

ab ID:

0204006-26

S.S. 24 Btm 5' Sample ID:

Cations			Dilution			Date	Date	
Parameter	<u>Result</u>	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	102000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	6330	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	778	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Collins and the second	1070	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

0001-1-1								
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	492	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.537	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	4.66	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	2.73	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	3420	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.88	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	26.6	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 15 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204006

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-26

Sample ID:

S.S. 24 Btm 5'

Parameter Selenium	Result	<u>Units</u>						
Selenium		Cints	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	15.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID: 0204006-27								
Sample ID: S.S. 25 Btm 5	5'							
Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	168000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	4960	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	271	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1270	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	358	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.418	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.71	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	3.05	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2850	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	< 0.880	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	20	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	8.28	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204006-28

Sample ID:

S.S. 26 Btm 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	125000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	8600	mg/kg	10000	10.0	6010B	07/29/2002	7/31/02	SM
Potassium	573	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	3680	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 16 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Units

Result

Todd Choban

nvironmental Technology Group, Inc.

.O. Box 4845 Midland, TX 79704

Test Parameters

Order#:

G0204006 CH 2100

Project: Project Name:

Champion Technology Inc.

Method

Date

Date

Prepared Analyzed Analyst

Location:

Dilution

Factor

<u>RL</u>

Hobbs, NM

Lab ID:

0204006-28

Sample ID:

Parameter

S.S. 26 Btm 5'

Arsenic		2.29	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		271	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.5	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium		2.59	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper		1.88	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		3230	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		0.955	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		21.3	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	1	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc		9.14	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Lab ID:	0204006-29								
Sample ID:	S.S. 27 Btm 5'								
Cations				Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium		90800	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium		5680	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium		586	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium		5120	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Paran	neters			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic		< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium		143	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium		0.658	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	a and the second of the second	4:29	mg/kg	80	0.160	3051/6010B	07/29/2002-	8/1/02	SM
Copper		1.77	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron		4320	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead		1.65	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese		24.7	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Tota	d	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium		< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver		< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc		11.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 17 of 18

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban vironmental Technology Group, Inc. O. Box 4845 Midland, TX 79704

Order#: Project:

G0204006 CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204006-30

S.S. 28 Btm 5' Sample ID:

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	190000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	3200	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	755	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	1220	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	< 0.640	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	235	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.452	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	3.16	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Copper	1.96	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2820	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.07	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Manganese	23.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Zinc	14.6	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Date

Environi 2600 West I-20 Eas Odessa, Texas 7976	1 1101101 010 000 1002	i I, L1	td.									СНА	IN O	FC	ISTO	, DOY F	j j EC	Ø SRD	ANI	D AN	1 C	∱4 sis r	Èvol	ST		
Project Ma	anager: Todd Choban												Р	rojec	ct Na	me: _	Cl	γα γ	<u>ηρ</u>	100	- ا <u>ل</u>	Tech	וסתי	ogy_	In'	ر_
Compan	y Name <u>E. T. G. L</u> .		1007 - Manuary 1																		bø				8	
Company A	ddress: 4600 W. Wall		¥.											Proj	ject L	.oc: /	Ho	66	52	W	M					
	ate/Zip: Midland Tx 7	970	3													D#:									026	
	one No: 915-522-1139			Fax No:	91	<u> </u>	52	03-4	721	B						_									7-20	
	nature: Marielo Campoo			Also							102	-84:	3Z												Ţ	ڋ
Gampio. Gig	1 / well (simple								Cha	10 P	ate	21	-	F					Ana	lyze I	For:	<u></u>			$\exists k_{\!\!\!\! 2}$	}
		•.	mhe	tel@etgi Ivie@etgi	٠ (د	_								_		TOT		×	+	+	-	10th			Ĭ,Š	-
		- 		T	1	<u> </u>	P	reserva	ative	1	_	Mati	rix	1006				Se				بخ	اطح		le QS	
0204006			Date:Sampled	Time Sampled	No. of Containers	lce	HNO ₃	NaOH	4,5O.	None Other (Specify)	Water	Sludge	Soil	Other (specify): TPH: 418.13 8015M 1005	Cations (Ca. Mg, Na, K)	Anions (Cl. SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Semivolalities TC F	BTEX 8021B/6935	RCI	WOCC Mrta	Sen. Chemist		RUSH TAT (Pre-Schedule	Standard TAT
CAB # (lab lise only)	South Excavation Stockpile -55	1 7-	75-M2	15743	3	X	-			-		,	X	1	U	₹	S)	<u>∑</u>	֡֟ ֞ ֟֡ ڒۘٳؗٙؗ؉	} "	X	7		+	X	X
OZ	-S.S.	2	1	Ø754	3					\top			T	┰				$\frac{1}{x}$	χÌχ		X		+-1		M	台
03	S.S.1 Wall 5'			0845	1				\Box				\prod	$\exists x$				`	Ť	X		X)			1	\prod
04	" 2 " 8'		li .	Ø850	\prod								\prod	1	`			1	1	11		T				П
05	3 " 3'			13900	П								\prod	П					\top	\prod		\prod			T	П
olo	4 / 3/		í	\$9\$5									\prod	П						\prod		1				
07	5 " 3:		ý	\$91B																						
<i>0</i> 8	6 " 4'		į	Φ915																						
09	7 " 4'		ľ	ゆタスゆ									\coprod													
lo	8 " 4"	1	/	0925		V							V						L	N		V:	1		\perp	V
Special Instructions: Relinquished by:	Date Time 2.25-42.1644	Receiv	ed by:						· .		Da	ate		Tim		Sam Tem Labo	рега	ture	Upo Comi	n Re	ceipt: ts:	•	Y	N		
Prelinquished by:	Date Time	Receiv	ed by El	?от: Э ₇ /ЗИУ	g iR	L	7.			7	Da 7- χ	ste 5. 0	2/	Tim '6',									·			

i

į

i

Environa 2600 West I-20 Eas Odessa, Texas 7976		I, Ltd.								СНА	IN OF	F CU	C stot	OY RE	cok) () DA	} ND A	INA	J. Lysi:	J PRE	NUES I	Γ		
Project M	anager: Todd CHOBAN										Pr	ojec	t Nam	ıe: (ho	e bri	010	žΝ	I.	ech	noli	ogy	工	NC
	y Name E. T. G. I											Pı	roject	#: (H		U (ъt	5			2.7		
	ddress: 4600 W. Wall	9								•	,	Droi	net Le	.c. L]_	LL	<u>~</u>	ን / አነ	M					
		7972	~							-	•	rioji					,	70						
	ate/Zip: Midland Tx	+170								-			РО	#:										_
	one No: 915-522-1139	i.	Fax No	9	15-5	520	-43	31 Ø		•														
Sampler Sig	nature: March Campos									-														
	,	P - 0										\vdash		TCLP	:	Ar	nalyz	e Fo	<u>r:</u>	\top	П	$\top \exists$		
		. 1			ı —	Prese	rvative		т-	Mati	ix	-		TOTAL				\neg	1	ا ح				
0204006		Date-Sampled ====================================	Time Sampled	No. of Containers	ie NO,	121	NaCH H ₂ SO ₄	None Other (Specify)	Water	Sludge	Soil Other (specify):	TPH: 418.1 8015M 1005 1006	Cations (Ca, Mg, Na, K)	Anions (CI, SO4, CO3, HCO3) SAR / ESP / CEC	elals: As Ag Ba Cd Cr Pb Hg 8	Volatiles	Semivolaliles	BTEX 80218/4690	1 000 1100	Sen. Chemistry			RUSH TAT (Pre-Schedule	andard TAT
LAB # (lab use only)	S.S. 9 Wall 4'	7-25-42		3	Υ	=	ZI	2 0	+	S	X	Y	7 3	S S	ž	Š	S	χ	ੂ \ \ \	X	\vdash	++	<u>m</u> (is X
12	11 10 " 4"	1 0 40	1002	1		$\dagger \dagger$	1-1		\top	1	计	ťî			-	-				77		++		1
3	11 11 Btm 6'		1007																					
14	" 12 " 10"		1013															\prod						
IS	" 13 " 4'		1\$15									Ш												
16	" 14 " 10"		1021								Ш	Ш						Ш		$\perp \!\!\! \perp \!\!\! \perp$				_
<u> </u>	" 15 " 10"		1025	11	Щ				_						_				$\perp \parallel$	\coprod		$\bot \bot$	\perp	1
[8]	" 16 " 4"		1030	44		$\perp \downarrow$			1_		Ш_	11						\prod	$\perp \parallel$	111	\sqcup	\bot	_	1
19	" 17 " 8'	<u> </u>	1036	1,			_		_		_	11			<u> </u>			\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$				_	\downarrow
20	" 18 " 8"		1041	W	M	$\perp \perp$			<u> </u>		V	W			<u></u>	Щ		1	13%	111				V
Special Instructions: Relinquished by:	Date Time	Received by:	<u> </u>			· · .			D	ate	Т	Tim		Sampl Fempe Labor	ratui	e U	pon F	Rece	eipt:	o	Υ	N		
Wand C.	mais 1 7-25-42 1640	1 13																	/	_				
Relinquished by	Date Time	Received by EL	BWoo	thy	÷,	. •		7		ate -OL		Tim(

i

2600 West I-20 Eas Odessa, Texas 7976	3 Fax: 9	5-563-1800 5-563-1713	l, Ltd.									СНА	IN O	FCU	O(ISTOI	y RE	COR	D AI	4 ND AI	Val.	2/ Ysis	REQU	EST			
Project Ma	anager: Todd Ch	sban	5							·			Pı	ojec	t Nam	ie:	han	_p <u>]:</u>	oη.	Cl	<u>rem'</u>	icals	, 1.	r <u>C</u>		_
	y Name E. T. 6. I		1,122.												roject			•								
	ddress: 4600 W.	Wa //										•			ect Lo											
	ate/Zip: Midland,		7.03									-		•		#:		,) . '	4						
Telepho	one No: <u>915-522-113</u> mature: <u>Marcelo</u> , C	9	it d	Fax No	o: <u>9/.</u>	<u>5-</u>	529	Ø	431	Ø_		• •														•
	2 1 1200 20 02	7										•		F		TCLF		An	alyze I	For:		~——		A		
						F	De	0000	entino		Τ-	Mate		_	T	TOTAL				7	1					
20 4006 LAB # (lab use only) 21 22 23 24 25 26 27 28	FIELD CODE S.S. 19 Wall -4 "20 1" 4 "22 " 4 "23 " 4 "24 Bfm-5 "25 11 5 "27 "5	/ / / / / / / / / / / / / / / / / / /	2-2-Date Sampled	2 1155 12 49 12 49 1215 115 \$\text{P} 1225 1239 1241 1252	No. of Containers	901	HUO,	HOW N	·	None Other (Specify)	Water	Mati	Soul Soul	X TPH(418.1) 8015M 1005 1006	Cations (Ca, Mg, Na, K)	Anions (CI. SO4, CO3, HCO3) SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semivolatiles	RCI RCI RCI	JOCC	XGen. Chemistry	2	11-12-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	KUSH IAI (Pre-Schedule	The state of the s
30	" 28 " 5			1340	V	1							1	V						1	V	V			N	
Relinquished by: Relinquished by: Relinquished by:	Date 7-25 Date	Da 1648	Received by:		rot	Chy				1	Da	ate ate	_ (Tim Tim	e I	Sampl empe abora	eratur	e Up	on R	eceip	ot:	°C		N		_

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204005

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

915-520-4310

Project Name: Champion Technology Inc.

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u> 0204005-01	<u>Sample:</u> SB-41 25'	Matrix:	Date / Time Collected 7/25/00 10:21	Date / Time <u>Received</u> 7/25/02 16:40	Container 4 oz glass	Preservative Ice
L	ab Testing:	Rejected: No	Tem			
	1006 TNRCC, Aliphati	cs				
	1006 TNRCC, Aromati					
	8015M					
	8260B Volatiles List					
	8270C - BNA					
	Anions					
	Cations					
	Arsenic					
_	Barium			•		
	Cadmium					
	Chromium					
	Copper					
	Fluoride					
	Iron					
	Lead					
	Manganese					
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	pН					
	Selenium					
	Silver					

TPH 418.1 FTIR

Zinc

ENVIRONMENTAL LAB OF \$\square I, Ltd.

Pg 1 of 3

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Soil

Sample Condition: Intact/ Iced/ 4 deg. C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 07/25/02 Receiving Date: 07/25/02

Analysis Date: 07/29/02

GRO DRO TPH C6-C10 >C10-C35 C6-C35 FIELD CODE ELT# mg/kg mg/kg mg/kg 0204005-01 SB-41 25' 5140 8220 13360

> % IA % EA BLANK

91.3

118

<10

METHODS: Modified 8015 C6-C35

Raland K. Tuttle

7-30-

Date

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Soil

Sample Condition: Intact/ Iced/ 4 deg. C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 07/25/02

Receiving Date: 07/25/02 Analysis Date: 07/29/02

AROMATICS

	•	CC C0		ARUMATICS	. 612 616		
ELT#	FIELD CODE	C6-C8 mg/kg	>C8-C10 mg/kg	>C10-C12 mg/kg	>C12-C16 mg/kg	>C16-C21 mg/kg	>C21-C35 mg/kg
0204005-01	SB-41 25'	43.6	3.74	19.8	70.3	102	123

% IA Blank

METHODS: Modified 8015 C6-C35

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Soil

Sample Condition: Intact/ Iced/ 4 deg. C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 07/25/02

Receiving Date: 07/25/02

Analysis Date: 07/29/02

				ALIPHATICS			
ELT#	FIELD CODE	C6-C8 mg/kg	>C8-C10 mg/kg	>C10-C12 mg/kg	>C12-C16 mg/kg	>C16-C21 mg/kg	>C21-C35 mg/kg
0204005-01	SB-41 25'	291	528	2087	2860	1674	1486

METHODS: Modified 8015 C6-C35

ANALYTICAL REPORT

Lodd Choban

vironmental Technology Group, Inc.

Order#:

G0204005

Project:

CH 2100

r.O. Box 4845 Midland, TX 79704 Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204005-01

Sample ID:

SB-41 25'

8015M

Method Blank

Date Prepared

7/26/02

Date **Analyzed** 7/26/02

Sample Amount

1

Dilution Factor | 10

Analyst CK

Method 8015M

Result RLParameter mg/kg GRO, C6-C12 100 5140 DRO, >C12-C35 8220 100 TOTAL, C6-C35 13360 100

> Raland K. Tuttle, Lab Director, QA Officer Date

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204005

Project:

CH 2100 Champion Technology Inc.

Project Name: Location:

Hobbs, NM

Lab-ID:

Date

0204005-01

Sample-ID: SB-41 25'

> Date Received

Date Prepared 7/29/02

Date Analyzed

Matrix

Sample Amount Dilution **Factor**

Analyst

Method

Method

Collected 7/25/00 10:21

7/25/02 16:40

7/30/02 14:37

SOIL

5

200

CK

8260B

Blank 0002583-01

8260B Volatiles List

Parameter	Result	RL	Parameter		Resu	- 1	RL
Dichlorodifluoromethane	μg/kg <200	200	Chlorobenzene		μg/kg <200		200
Chloromethane	<200	200	1,1,1,2-Tetrachloroethane		<200		200
Vinyl chloride	<200	200	EthylBenzene		1460		200
Bromomethane	<200	200					200
Chloroethane	<200	200	m,p-Xylene		1880		200
	<200	200	o-Xylene		7490		
Trichlorofluoromethane		200	Styrene Bromoform		<200	1	200
1,1-Dichloroethene	<200				<200		200
Acetone	<200	200	trans-1,4-Dichloro-2-butene		<200		200
Iodomethane	<200	200	Isopropylbenzene		4920		200
Carbon disulfide	<200	200	1,2,3-Trichloropropane		<200		200
Methylene chloride	<200	200	1,1,2,2-Tetrachloroethane		<200		200
MTBE	<200	200	Bromobenzene		<200		200
trans-1,2-dichloroethylene	<200	200	n-Propylbenzene		7490		200
Acrylonitrile	<200	200	2-Chlorotoluene		<200		200
I-Dichloroethane	<200	200	1,3,5-Trimethylbenzene		6300		200
inyl acetate	<200	200	4-Chlorotoluene		<200		200
cis-1,2-Dichloroethene	<200	200	tert-Butylbenzene		<200		200
2-Butanone (MEK)	<200	200	1,2,4-Trimethylbenzene		1900	0	200
Bromochloromethane	<200	200	sec-Butylbenzene		3560		200
Chloroform	<200	200	1,3-Dichlorobenzene		<200		200
1,1,1-Trichloroethane	<200	200	p-Isopropyltoluene		2440		200
2,2-Dichloropropane	<200	200	1,4-Dichlorobenzene		<200		200
Carbon tetrachloride	<200	200	n-Butylbenzene		<200		200
1,1-Dichloropropene	<200	200	1,2-Dichlorobenzene		<200		200
1,2-Dichloroethane	<200	200	1,2-Dibromo-3-chloropropane		<200		200
Benzene	1300	200	1,2,4-Trichlorobenzene		<200		200
Trichloroethene	<200	200	Hexachlorobutadiene		<200		200
1,2-Dichloropropane	<200	200	Naphthalene		1030		200
Dibromomethane	<200	200	200 1,2,3-Trichlorobenzene <200				200
Bromodichloromethane	<200	200	200 Surrogates % Recovered QC Limits (%				its (%)
2-Chloroethyl vinyl ether	<200	200	Dibramafusamathana		4220/	QC Dill	

Dibromofluoromethane 123% 53 144 1,2-dichloroethane-d4 96% 147 57 Toluene-d8 100% 64 128 4-Bromofluorobenzene 119% 47 158

RL = Reporting Limit

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

4-Methyl-2-pentanone

1,1,2-Trichloroethane

Tetrachloroethene

1,3-Dichloropropane

1,2-Dibromoethane

Dibromochloromethane

Toluene

2-Hexanone

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

<200

<200

4310

<200

<200

<200

<200

<200

<200

<200

200

200

200

200

200

200

200

200

200

200

Page 1 of 1

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

D. Box 4845 Midland, TX 79704 Order#:

G0204005

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab-ID:

0204005-01

SB-41 25' Sample-ID:

Date Collected

7/25/00

10:21

Date Received 7/25/02

16:40

Date Prepared 7/26/02

Date Analyzed 7/30/02

13:15

Matrix SOIL

Sample Amount

1

Dilution Factor

187

Analyst

RKT

Method 8270C

Method

<u>Blank</u> 0002582-01

8270C - BNA

Parameter	Result µg/kg	RL	Parameter		Resu µg/kg	•	RL
Pyridine	<1000	1000	2,3,4,6-Tetrachlorophenol		<100	0	1000
N-Nitrosodimethylamine	<1000	1000	2,4-Dinitrotoluene		<100	0	1000
Aniline	<1000	1000	Diethylphthalate		<100	0	1000
Phenol	<1000	1000	Fluorene		2780)	1000
ois(2-Chloroethyl) Ether	<1000	1000	4-Chlorophenyl-phenylether		<100	0	1000
2-Chlorophenol	<1000	1000	4-Nitroaniline		<100	0	1000
1,3-Dichlorobenzene	<1000	1000	Azobenzene		<100	0	1000
,4-Dichlorobenzene	<1000	1000	4,6-Dinitro-2-methylphenol		<100	0	1000
,2-Dichlorobenzene	<1000	1000	N-Nitrosodiphenylamine		<100	0	1000
Benzyl Alcohol	<1000	1000	4-Bromophenyl-phenylether		<100	0	1000
Bis(2-chloroisopropyl) ether	<1000	1000	Hexachlorobenzene		<100	0	1000
2-Methylphenol	<1000	1000	Pentachlorophenol		<100	0	1000
N-Nitroso-di-n-propylamine	<1000	1000	Phenanthrene		6460)	1000
-Methylphenol	<1000	1000	Anthracene		<100	0	1000
xachloroethane	<1000	1000	Carbozole		<100	0	1000
itrobenzene	<1000	1000	Di-n-Butylphthalate		<100	0	1000
sophorone	<1000	1000	Fluoranthene	<1000		0	1000
2-Nitrophenol	<1000	1000	Benzidine		<100	0	1000
2,4-Dimethylphenol	<1000	1000	Pyrene		<1000	5	1000
ois(2-Chloroethoxy) methane	<1000	1000	Butylbenzylphthalate		<100	0	1000
,4-Dichlorophenol	<1000	1000	Benzo(a)anthracene		<1000	0	1000
Benzoic Acid	<1000	1000	Chrysene		<1000	0	1000
,2,4-Trichlorobenzene	<1000	1000	bis-(2-Ethylhexyl) phthalate		<100	0	1000
Naphthalene	8250	1000	Di-n-octylphthalate		<1000	5	1000
-Chloroaniline	<1000	1000	Benzo(b)fluoranthene		<100	0 1	1000
-lexachlorobutadiene	<1000	1000	4		<1000	5	1000
-Chloro-3-methylphenol	<1000	1000	Benzo(a)pyrene		<1000)	1000
-Methylnaphthalene	18600	1000	Indeno(1,2,3-cd)Pyrene <1000			5	1000
lexachlorocyclopentadiene	<1000	1000	Dibenzo(a,h)Anthracene <1000			5	1000
2,4,5-Trichlorophenol	<1000	1000	Benzo(g,h,i)Perylene <1000				1000
2,4,6-Trichlorophenol	<1000	1000	3,3 Dichlorobenzidine		<1000		1000
-Chloronaphthalene	<1000	1000	Surrogates	1%1	Recovered	QC Lim	ite (%)
2-Nitroaniline	<1000	1000		1/01			
		 	2-Fluorophenol	į.	68%	21	110

1000

1000

1000

1000

1000

1000

1000

1000

Surrogates	% Recovered	QC Limits (%)		
2-Fluorophenol	68%	21	110	
Phenol-d5	65%	10	110	
Nitrobenzene-d5	90%	35	114	
2-Fluorobiphenyl	104%	43	116	
2,4,6-Tribromophenol	95%	10	123	
p-Terphenyl-d14	90%	33	141	

RL = Reporting Limit

Dimethylphthalate

2,6-Dinitrotoluene

3-Nitroaniline

Acenaphthene

4-Nitrophenol

Dibenzofuran

Acenaphthylene

2,4-Dinitrophenol

Approval: Raland K. Tuttle, Lab Director, CA Officer Celey D. Keene, Org. Tech. Director

<1000

<1000

<1000

<1000

<1000

<1000

<1000

3080

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204005

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204005-01

Sample ID:

SB-41 25'

Anions Parameter	Result	<u>Units</u>	Dilution <u>Factor</u>	RL	Method	Date Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	409	mg/kg	1	2.00	300	7/29/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	300	7/29/02	SB
Chloride	421	mg/kg	l	10	9253	7/30/02	SB
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	7/30/02	SB
SULFATE, 375.4	162	mg/kg	1	25	300	7/29/02	SB

Test Parameters			Dilution			Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	12.4	mg/kg	5	2.5	353.3	7/26/02	RKT
Nitrogen, Nitrite	0.110	mg/kg	5	0.0250	9056	7/26/02	RKT
pH	8.13	pH Units	1	N/A	9045C	7/26/02	MB
TPH 418.1 FTIR	28000	mg/kg	5	50.0	418.1	7/29/02	SB

Approval:

Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech. ____

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

5. Box 4845

Midland, TX 79704

Order#:

G0204005

Project:

CH 2100

Project Name:

Champion Technology Inc.

Location:

Hobbs, NM

Lab ID:

0204005-01

Sample ID:

SB-41 25'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	179000	mg/kg	50000	500	6010B	07/29/2002	7/30/02	SM
Magnesium	4220	mg/kg	1000	1.00	6010B	07/29/2002	7/30/02	SM
Potassium	713	mg/kg	100	5.00	6010B	07/29/2002	7/30/02	SM
Sodium	1730	mg/kg	1000	10.0	6010B	07/29/2002	7/30/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	2.77	mg/kg	80	0.640	3051/6010B	07/29/2002	7/30/02	MB
Barium	266	mg/kg	80	0.080	3051/6010B	07/29/2002	7/30/02	MB
Cadmium	< 0.080	mg/kg	80	0.080	3051/6010B	07/29/2002	7/30/02	MB
Chromium	13.4	mg/kg	80	0.160	3051/6010B	07/29/2002	7/30/02	MB
Copper	7.64	mg/kg	80	0.160	3051/6010B	07/29/2002	7/30/02	MB
Iron	4500	mg/kg	800	1.6	3051/6010B	07/29/2002	7/30/02	MB
Lead	14.8	mg/kg	80	0.880	3051/6010B	07/29/2002	7/30/02	MB
Manganese	35.6	mg/kg	80	0.080	3051/6010B	07/29/2002	7/30/02	MB
Mercury, Total	<0.100	mg/kg	50	0.10	7470	07/29/2002	7/29/02	MB
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	7/30/02	MB
ilver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/30/02	MB
Zinc	59.3	mg/kg	80	0.080	3051/6010B	07/29/2002	7/30/02	MB

Approval: QLOMOLO JULIA Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech. 7-30-02

Date

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

8015M

Order#: G0204005

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0002549-02			<10.0		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0204008-04	152	909	1140	108.7%	··
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0204008-04	152	909	1120	106.5%	1.8%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0002549-05		1000	913	91.3%	

QUALITY CONTROL REPORT

8260B Volatiles List

Order#: G0204005

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Dichlorodifluoromethane-µg/L	0002583-01			<25		
Chloromethane-µg/L	0002583-01			<25		······································
Vinyl chloride-µg/L	0002583-01			<25		
Bromomethane-μg/L	0002583-01			<25		
Chloroethane-µg/L	0002583-01	+ + = ==		<25		
Trichlorofluoromethane-μg/L	0002583-01			<25		
l,1-Dichloroethene-μg/L	0002583-01			<25		
Acetone-µg/L	0002583-01			<25		
lodomethane-µg/L	0002583-01			<25		
Carbon disulfide-µg/L	0002583-01			<25		
Methylene chloride-μg/L	0002583-01			<25		
MTBE-μg/L	0002583-01	· · · · · · · · · · · · · · · · · · ·		<25		
trans-1,2-dichloroethylene-µg/L	0002583-01			<25		
Acrylonitrile-µg/L	0002583-01			<25		
1,1-Dichloroethane-µg/L	0002583-01			<25		
Vinyl acetate-µg/L	0002583-01			<25		
cis-1,2-Dichloroethene-µg/L	0002583-01			<25		
2-Butanone (MEK)-μg/L	0002583-01			<25		
:hloromethane-μg/L	0002583-01			<25		
Chloroform-µg/L	0002583-01			<25		
1,1,1-Trichloroethane-μg/L	0002583-01			<25		
2,2-Dichloropropane-μg/L	0002583-01			<25		
Carbon tetrachloride-µg/L	0002583-01			<25		
1,1-Dichloropropene-µg/L	0002583-01			<25		
1,2-Dichloroethane-µg/L	0002583-01			<25		
Benzene-µg/L	0002583-01			<25		
Trichloroethene-µg/L	0002583-01			<25		
1,2-Dichloropropane-µg/L	0002583-01	7/11/1		<25		
Dibromomethane-µg/L	0002583-01			<25		
Bromodichloromethane-µg/L	0002583-01			<25		
2-Chloroethyl vinyl ether-µg/L	0002583-01			<25		
cis-1,3-Dichloropropene-µg/L	0002583-01			<25		
4-Methyl-2-pentanone-μg/L	0002583-01			<25		
Toluene-μg/L	0002583-01			<25		
rans-1,3-Dichloropropene-µg/L	0002583-01	· · · · · · · · · · · · · · · · · · ·		<25		
1,1,2-Trichloroethane-µg/L	0002583-01			<25		
2-Hexanone-μg/L	0002583-01			<25		
Tetrachloroethene-µg/L	0002583-01			<25	<u> </u>	
1,3-Dichloropropane-µg/L	0002583-01			<25		
ochloromethane-µg/L	0002583-01			<25		

QUALITY CONTROL REPORT

NK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
1,2-Dibromoethane-μg/L	0002583-01			<25		·
Chlorobenzene-µg/L	0002583-01			<25		···
1,1,1,2-Tetrachloroethane-μg/L	0002583-01			<25		
EthylBenzene-µg/L	0002583-01			<25		
m,p-Xylene-µg/L	0002583-01			<25		
o-Xylene-μg/L	0002583-01			<25		·
Styrene-µg/L	0002583-01			<25		
Bromoform-µg/L	0002583-01			<25		- ,
trans-1,4-Dichloro-2-butene-µg/L	0002583-01			<25		
Isopropylbenzene-µg/L	0002583-01			<25		
1,2,3-Trichloropropane-µg/L	0002583-01			<25		
1,1,2,2-Tetrachloroethane-µg/L	0002583-01			<25		
Bromobenzene-μg/L	0002583-01	-		<25		
n-Propylbenzene-µg/L	0002583-01			<25		<u>-</u> .
2-Chlorotoluene-µg/L	0002583-01			<25		
1,3,5-Trimethylbenzene-μg/L	0002583-01			<25		
4-Chlorotoluene-μg/L	0002583-01			<25		
tert-Butylbenzene-µg/L	0002583-01			<25		
1,2,4-Trimethylbenzene-µg/L	0002583-01			<25		
see-Rutylbenzene-μg/L	0002583-01			<25		
opyltoluene-µg/L	0002583-01			<25		
n-Butylbenzene-μg/L	0002583-01	,		<25		
1,2-Dibromo-3-chloropropane-µg/L	0002583-01			<25		
1,2,3-Trichlorobenzene-µg/L	0002583-01			<25		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Vinyl chloride-µg/L	0002583-02		50	47.8	95.6%	
1,1-Dichloroethene-µg/L	0002583-02		50	61.9	123.8%	
2-Butanone (MEK)-μg/L	0002583-02		100	96.2	96.2%	
Chloroform-µg/L	0002583-02		50	57.2	114.4%	
Carbon tetrachloride-µg/L	0002583-02		50	62.2	124.4%	
1,2-Dichloroethane-µg/L	0002583-02		50	45.4	90.8%	
Benzene-µg/L	0002583-02		50	57.7	115.4%	·
Trichloroethene-µg/L	0002583-02		50	40.4	80.8%	
Tetrachloroethene-µg/L	0002583-02		50	43.4	86.8%	
Chlorobenzene-µg/L	0002583-02		50	57.2	114.4%	
CONTROL DUP	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Vinyl chloride-µg/L	0002583-03		50	44.2	88.4%	7.8%
1,1-Dichloroethene-µg/L	0002583-03		50	57	114.%	8.2%
2-Butanone (MEK)-μg/L	0002583-03		100	89.4	89.4%	7.3%

QUALITY CONTROL REPORT

TROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Carbon tetrachloride-µg/L	0002583-03		50	62.9	125.8%	1.1%
1,2-Dichloroethane-µg/L	0002583-03		50	45.7	91.4%	0.7%
Benzene-µg/L	0002583-03		50	57.6	115.2%	0.2%
Trichloroethene-μg/L	0002583-03		50	39.8	79.6%	1.5%
Tetrachloroethene-µg/L	0002583-03		50	41.8	83.6%	3.8%
Chlorobenzene-µg/L	0002583-03		50	57.5	115.%	0.5%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Vinyl chloride-μg/L	0002583-04		20	21.7	108.5%	
1,1-Dichloroethane-µg/L	0002583-04		20	24	120.%	· · · · · ·
Chloroform-µg/L	0002583-04		20	23.9	119.5%	
1,2-Dichloropropane-µg/L	0002583-04		20	22.3	111.5%	
Toluene-μg/L	0002583-04		20	24.2	121.%	
EthylBenzene-µg/L	0002583-04		20	23	115.%	

QUALITY CONTROL REPORT

8270C - BNA

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Pyridine-µg/L	0002582-01			<200		****
N-Nitrosodimethylamine-μg/L	0002582-01			<200		
Aniline-µg/L	0002582-01			<200		
Phenol-μg/L	0002582-01			<200		
bis(2-Chloroethyl) Ether-µg/L	0002582-01			<200		
2-Chlorophenol-μg/L	0002582-01			<200		
1,3-Dichlorobenzene-µg/L	0002582-01			<200		
1,4-Dichlorobenzene-μg/L	0002582-01			<200		
1,2-Dichlorobenzene-µg/L	0002582-01			<200		
Benzyl Alcohol-μg/L	0002582-01			<200		
Bis(2-chloroisopropyl) ether-µg/L	0002582-01			<200		····
2-Methylphenol-μg/L	0002582-01			<200		
N-Nitroso-di-n-propylamine-μg/L	0002582-01			<200		
4-Methylphenol-μg/L	0002582-01			<200		<u> </u>
Hexachloroethane-µg/L	0002582-01			<200		
Nitrobenzene-µg/L	0002582-01			<200		
Isophorone-μg/L	0002582-01			<200		
2-Nitrophenol-μg/L	0002582-01			<200		
nethylphenol-μg/L	0002582-01			<200		
bis(z-Chloroethoxy) methane-µg/L	0002582-01			<200		
2,4-Dichlorophenol-μg/L	0002582-01			<200		
Benzoic Acid-μg/L	0002582-01			<200		
1,2,4-Trichlorobenzene-µg/L	0002582-01			<200		
Naphthalene-µg/L	0002582-01			<200		
4-Chloroaniline-μg/L	0002582-01			<200		
Hexachlorobutadiene-µg/L	0002582-01	d 700.00 - as		<200		
4-Chloro-3-methylphenol-µg/L	0002582-01			<200		
2-Methylnaphthalene-µg/L	0002582-01			<200		
Hexachlorocyclopentadiene-µg/L	0002582-01			<200		
2,4,5-Trichlorophenol-μg/L	0002582-01			<200		
2,4,6-Trichlorophenol-μg/L	0002582-01			<200		
2-Chloronaphthalene-μg/L	0002582-01			<200		
2-Nitroaniline-μg/L	0002582-01			<200		
Dimethylphthalate-µg/L	0002582-01			<200		
2,6-Dinitrotoluene-μg/L	0002582-01			<200		
3-Nitroaniline-μg/L	0002582-01			<200		
Acenaphthylene-µg/L	0002582-01			<200		
Acenaphthene-μg/L	0002582-01			<200		
2,4-Dinitrophenol-μg/L	0002582-01			<200		
phenol-µg/L	0002582-01			<200		

QUALITY CONTROL REPORT

NK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Dibenzofuran-µg/L	0002582-01			<200		
2,3,4,6-Tetrachlorophenol-µg/L	0002582-01			<200		
2,4-Dinitrotoluene-µg/L	0002582-01			<200		
Diethylphthalate-µg/L	0002582-01			<200		
Fluorene-μg/L	0002582-01			<200		Marie Constitution of the
4-Chlorophenyl-phenylether-μg/L	0002582-01			<200		
4-Nitroaniline-μg/L	0002582-01			<200		·····
Azobenzene-µg/L	0002582-01			<200		
4,6-Dinitro-2-methylphenol-μg/L	0002582-01			<200		
N-Nitrosodiphenylamine-µg/L	0002582-01			<200		
4-Bromophenyl-phenylether-μg/L	0002582-01			<200		
Hexachlorobenzene-μg/L	0002582-01			<200		
Pentachlorophenol-µg/L	0002582-01	,		<200		
Phenanthrene-µg/L	0002582-01	· · · · · · · · · · · · · · · · · · ·		<200		
Anthracene-µg/L	0002582-01			<200		
Carbozole-µg/L	0002582-01			<200		
Di-n-Butylphthalate-µg/L	0002582-01			<200		
Fluoranthene-µg/L	0002582-01			<200		
Benzidine-µg/L	0002582-01			<200		
Pvrene-µg/L	0002582-01		İ	<200		
enzylphthalate-µg/L	0002582-01			<200		
Benzo(a)anthracene-μg/L	0002582-01			<200		
Chrysene-µg/L	0002582-01			<200		
bis-(2-Ethylhexyl) phthalate-µg/L	0002582-01			<200		
Di-n-octylphthalate-μg/L	0002582-01			<200		
Benzo(b)fluoranthene-µg/L	0002582-01			<200		
Benzo(k)fluoranthene-µg/L	0002582-01			<200		
Benzo(a)pyrene-μg/L	0002582-01			<200		
Indeno(1,2,3-cd)Pyrene-µg/L	0002582-01			<200		
Dibenzo(a,h)Anthracene-μg/L	0002582-01			<200		
Benzo(g,h,i)Perylene-µg/L	0002582-01			<200		
3,3 Dichlorobenzidine-µg/L	0002582-01			<200		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Phenoi-µg/L	0002582-02		200	62.2	31.1%	
2-Chlorophenol-μg/L	0002582-02		200	91.5	45.8%	
1,4-Dichlorobenzene-µg/L	0002582-02		100	49.6	49.6%	
N-Nitroso-di-n-propylamine-µg/L	0002582-02		100	70.8	70.8%	
1,2,4-Trichlorobenzene-µg/L	0002582-02		100	63.5	63.5%	
4-Chloro-3-methylphenol-µg/L	0002582-02		200	77.1	38.5%	
Acenaphthene-μg/L	0002582-02		100	67.7	67.7%	
phenol-µg/L	0002582-02	· · · · · · · · · · · · · · · · · · ·	200	104	52.%	

QUALITY CONTROL REPORT

TROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
2,4-Dinitrotoluene-μg/L	0002582-02		100	57.3	57.3%	
Pentachlorophenol-µg/L	0002582-02		200	152	76.%	
Pyrene-µg/L	0002582-02		100	107	107.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Phenol-µg/L	0002582-03		200	71.2	35.6%	13.5%
2-Chlorophenol-µg/L	0002582-03		200	111	55.5%	19.3%
1,4-Dichlorobenzene-µg/L	0002582-03		100	61.1	61.1%	20.8%
N-Nitroso-di-n-propylamine-µg/L	0002582-03		100	75	75.%	5.8%
1,2,4-Trichlorobenzene-µg/L	0002582-03		100	75.8	75.8%	17.7%
4-Chloro-3-methylphenol-μg/L	0002582-03		200	80	40.%	3.7%
Acenaphthene-µg/L	0002582-03		100	72.9	72.9%	7.4%
4-Nitrophenol-µg/L	0002582-03	***************************************	200	113	56.5%	8.3%
2,4-Dinitrotoluene-μg/L	0002582-03		100	61	61.%	6.3%
Pentachlorophenol-µg/L	0002582-03		200	168	84.%	10.%
Pyrene-μg/L	0002582-03		100	102	102.%	4.8%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Phenol-µg/L	0002582-04		50	34.4	68.8%	
1,4-Dichlorobenzene-µg/L	0002582-04		50	56.7	113.4%	1700
phenol-µg/L	0002582-04		50	50.2	100.4%	
2,4-pichlorophenol-μg/L	0002582-04		50	50.5	101.%	
Hexachlorobutadiene-µg/L	0002582-04		50	52.5	105.%	
4-Chloro-3-methylphenol-μg/L	0002582-04		50	31.2	62.4%	
2,4,6-Trichlorophenol-μg/L	0002582-04		50	46.9	93.8%	
Acenaphthene-µg/L	0002582-04		50	55.9	111.8%	
N-Nitrosodiphenylamine-µg/L	0002582-04		50	62.2	124.4%	
Pentachlorophenol-µg/L	0002582-04	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50	40.2	80.4%	
Fluoranthene-µg/L	0002582-04		50	45.4	90.8%	
Di-n-octylphthalate-μg/L	0002582-04		50	70.6	141.2%	
Benzo(a)pyrene-µg/L	0002582-04		50	55.6	111.2%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002593-02			< 1.0		
Magnesium-mg/kg		0002593-02			< 0.10		
Potassium-mg/kg		0002593-02			< 5.0		
Sodium-mg/kg	,	0002593-02			< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204005-01	179000		183000		2.2%
Magnesium-mg/kg		0204005-01	4220		4260		0.9%
Potassium-mg/kg		0204005-01	713		698		2.1%
Sodium-mg/kg	***	0204005-01	1730		1730		0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg	,	0002593-05		2	1.76	88.%	
Magnesium-mg/kg		0002593-05		2	2.17	108.5%	
Potassium-mg/kg		0002593-05		2	1.76	88.%	
Sodium-mg/kg		0002593-05		2	1.87	93.5%	

QUALITY CONTROL REPORT

Test Parameters

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002590-01			< 0.640		
Barium-mg/kg	0002590-01			< 0.080		
Cadmium-mg/kg	0002590-01			< 0.080		
Chromium-mg/kg	0002590-01			< 0.160		
Copper-mg/kg	0002592-01			< 0.160		
-luoride-mg/kg	0002596-01			<0.02		
ron-mg/kg	0002592-01			< 0.160		
Lead-mg/kg	0002590-01			< 0.880		. <u> </u>
Manganese-mg/kg	0002592-01	a ,		< 0.080		
Mercury, Total-mg/kg	0002584-01			<0.100		
Nitrogen, Nitrate-mg/kg	0002578-01			<2.5		
Nitrogen, Nitrite-mg/kg	0002578-01			<0.025		
pH-pH Units	0002588-01			7.42		
Selenium-mg/kg	0002590-01			< 0.320		
Silver-mg/kg	0002590-01			< 0.160		
TPH 418.1 FTIR-mg/kg	0002541-01			<10.0		
Zinc-mg/kg	0002592-01			< 0.080		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
home-mg/kg	0002590-02		64	53.2	83.1%	
Barium-mg/kg	0002590-02		16	18	112.5%	
Cadmium-mg/kg	0002590-02		16	15.58	97.4%	
Chromium-mg/kg	0002590-02		16	15.9	99.4%	
Copper-mg/kg	0002592-02		16	16.9	105.6%	
ron-mg/kg	0002592-02	, .	16	15.8	98.8%	
Lead-mg/kg	0002590-02		88	79.4	90.2%	
Manganese-mg/kg	0002592-02		16	16.5	103.1%	
Mercury, Total-mg/kg	0002584-02		0.015	0.014	93.3%	
oH-pH Units	0002588-02		7	7.03	100.4%	1.1.
Selenium-mg/kg	0002590-02		32	22.8	71.3%	
Silver-mg/kg	0002590-02		16	12.6	78.7%	
Zinc-mg/kg	0002592-02		16	18.3	114.4%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002590-03		64	52.3	81.7%	1.7%
Barium-mg/kg	0002590-03		16	18	112.5%	0.%
Cadmium-mg/kg	0002590-03		16	15.75	98.4%	1.1%
Chromium-mg/kg	0002590-03	-	16	16.0	100.%	0.6%
Copper-mg/kg	0002592-03	W-11.	16	16.9	105.6%	0.%
r g/kg	0002592-03		16	15.9	99.4%	0.6%

QUALITY CONTROL REPORT

TROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Lead-mg/kg	0002590-03		88	79.4	90.2%	0.%
Manganese-mg/kg	0002592-03		16	16.5	103.1%	0.%
Mercury, Total-mg/kg	0002584-03		0.015	0.015	100.%	6.9%
Selenium-mg/kg	0002590-03		32	21.6	67.5%	5.4%
Silver-mg/kg	0002590-03		16	12.1	75.6%	4.%
Zinc-mg/kg	0002592-03		16	18.4	115.%	0.5%
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg	0204005-01	0		<0.02		0.%
Nitrogen, Nitrate-mg/kg	0204005-01	12.4		13.9		11.4%
Nitrogen, Nitrite-mg/kg	0204005-01	0.11		0.110		0.%
pH-pH Units	0204005-01	8.13		8.20		0.9%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg	0204004-01	1730	2500	4180	98.%	
MSD SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg	0204004-01	1730	2500	4270	101.6%	2.1%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Armic-mg/kg	0002590-04		1	1.06	106.%	
e-mg/kg	0002590-04		1	0.946	94.6%	
Cadmium-mg/kg	0002590-04		1	1.05	105.%	
Chromium-mg/kg	0002590-04		1	1.01	101.%	
Copper-mg/kg	0002592-04		1	1.02	102.%	
Fluoride-mg/kg	0002596-04		1	0.96	96.%	
Iron-mg/kg	0002592-04		1	1.01	101.%	
Lead-mg/kg	0002590-04		1	1.08	108.%	
Manganese-mg/kg	0002592-04		1	0.972	97.2%	
Mercury, Total-mg/kg	0002584-04		0.015	0.015	100.%	
Nitrogen, Nitrate-mg/kg	0002578-04		1	1.0	100.%	<u> </u>
Nitrogen, Nitrite-mg/kg	0002578-04		0.2	0.166	83.%	
pH-pH Units	0002588-04		7	7.05	100.7%	
Selenium-mg/kg	0002590-04		1	1.03	103.%	
Silver-mg/kg	0002590-04		0.5	0.50	100.%	
TPH 418.1 FTIR-mg/kg	0002541-04	• • • • • • • • • • • • • • • • • • • •	5008	4850	96.8%	
Zinc-mg/kg	0002592-04		1	0.984	98.4%	

Environ 12600 West I-20 East Odessa, Texas 79763		Phone: 91			_									СНА	٥ مار	R	C	; / opy	, REC	Ď :ori	D AI	ID A	/ NAL	vsls	REG	- JUE!	s <i>T</i>		
Project Ma	nager: Tod	ld Cho	00 1 (436	3228											P	rojed	t Na	ame:	C	has	m ()	DW.		ecl	120	100	ų <u>_</u>	Inc	
	Name £	- •	LB/CI S													P	roje	ct #:	(+1	2	10	5d	<u> </u>	nnol	'3-	0		
		LOP W	. Wall																				ار ۱۸						
		lland, T														•		'O #:				/ 							
		522-1139	•		Fax N	o: <u>91</u>	<u></u>	-53	رب در در	-1	 171	r)																	
		d Chal			1 44 11	o. <u></u>	<u>J</u>	<u> </u>	·Ψ		<u> </u>	* -																	
oumpior orgi	100	a Chas)(LV											•		F			CLP:		Ana	alyze	For:	_	্র		- ह्या		
									Proc	ervat	ivo		т	Mate	riv	_			TAL:		_				Tota		ma ti	y duis	
	SB-41 SB-41	FIELD CODE 25' 35'		Date Sampled	1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. of Containers	<u>3</u> X	HNO3	I L	НОВИ	H ₂ SO ₄	Other (Specify)	Water	Sludge	X Soil	Outer (Specify): TPH(418, 1/8015M) 1005 1006	Cations (Ca, Mg, Na, K)	Anions (CI, SO4, CO3, HCO3)	SAR/ESP/CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	X Volatiles 8264	X Semivolatiles 8270C	BTEX 8021B/5030	X (, , , , , , , , , , , , , , , , , ,	X W OCC M. till		Ren Aliphatic & Arematic	RUSH TAT (Pre-Schedule	Standard TAT
																							+	-			+		
Special Instructions:	3 day	turn arc	and tim	e												1							ntact'			Y	N	1	<u> </u>
Relinquished by: Maulo (Relinquished by:	ampes-f	Date	72 16 49	Received by:	OT: 4 C L								Da Da			Tin								Y	<i>و</i> ر	-			

Received by ELOT:

7-25-02

Time /6.40

SAMPLE WORK LIST

Environmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

915-520-4310

Order#:

G0204041

Project:

CH2100

Project Name: Champion Technology-Hobbs

Location:

Hobbs (Lea Co.), NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time Date / Time Received Container Collected **Preservative** Sample: Matrix: Lab ID: 7/26/02 7/27/02 4 oz glass SB-41 @ 39' SOIL Ice 0204041-01 12:01 11:17 8.0 C Rejected: No Temp: Lab Testing: 8015M Anions Cations **METALS RCRA 7 Total** Copper Fluoride Iron Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pН **TPH 418.1 FTIR** Zinc MW-9@5' SOIL 7/26/02 7/27/02 4 oz glass Ice 0204041-02 7:49 12:01 Lab Testing: Rejected: No Temp: 8.0 C Anions Cations **METALS RCRA 7 Total**

Copper

Fluoride

Iron

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

pН

Zinc

ANALYTICAL REPORT

Todd Chohan

Environmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204041 CH2100

Project:
Project Name:

Champion Technology-Hobbs

Location:

Hobbs (Lea Co.), NM

Lab ID:

0204041-01

Sample ID:

SB-41 @ 39'

8015M

Method Blank Date Prepared Date Analyzed 7/29/02 Sample <u>Amount</u> 1 Dilution <u>Factor</u>

Analyst

CK

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 678
 50.0

 DRO, >C12-C35
 1,320
 50.0

 TOTAL, C6-C35
 1998
 50.0

Approval:

Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sandra Biczugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204041

Project:

CH2100

Project Name: Location: Champion Technology-Hobbs Hobbs (Lea Co.), NM

Lab ID:

0204041-01

Sample ID:

SB-41 @ 39'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Calcium	110000	mg/kg	50000	50 0	6010B	07/29/2002	7/31/02	SM
Magnesium	1260	mg/kg	1000	0.1	6010B	07/29/2002	7/31/02	SM
Potassium	420	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	863	mg/kg	1000	10.0	6010B	07/29/2002	7/31/02	SM

METALS RCRA 7 Total			Date	Date				
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	1.07	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	131	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.497	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	12.5	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	2.74	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Selenium	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Copper	3.53	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Iron	2710	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Manganese	19.7	mg/kg	80	0.080	3051/6010B		8/1/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7471	07/29/2002	7/29/02	SM
Zinc	36.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM

Lab ID:

0204041-02

Sample ID: MW-9 @ 5'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	121000	mg/kg	50000	500	6010B	07/29/2002	7/31/02	SM
Magnesium	1320	mg/kg	1000	1.0	6010B	07/29/2002	7/31/02	SM
Potassium	428	mg/kg	100	5.0	6010B	07/29/2002	7/31/02	SM
Sodium	842	mg/kg	100	1.0	6010B	07/29/2002	7/31/02	SM

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	1.84	mg/kg	80	0.640	3051/6010B	07/29/2002	8/1/02	SM
Barium	75.4	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Cadmium	0.251	mg/kg	80	0.080	3051/6010B	07/29/2002	8/1/02	SM
Chromium	2.10	mg/kg	80	0.160	3051/6010B	07/29/2002	8/1/02	SM
Lead	1.51	mg/kg	80	0.880	3051/6010B	07/29/2002	8/1/02	SM
Selenium .	< 0.320	mg/kg	80	0.320	3051/6010B	07/29/2002	8/1/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 2

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204041

Project:

CH2100

Project Name:

Champion Technology-Hobbs

Location:

50

80

0.10

0.080

Hobbs (Lea Co.), NM

Lab ID:

0204041-02

Sample ID:

Mercury, Total

Zinc

MW-9@5'

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	RL	Method	Prepared	Analyzed	Analyst
Silver	< 0.160	mg/kg	80	0.160	3051/6010B	07/29/2002	7/31/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	0.619	mg/kg	80	0.160	3051/6010B	07/29/2002-	8/1/02	SM
Iron	1860	mg/kg	800	1.6	3051/6010B	07/29/2002	8/1/02	SM
Manganese	19.1	mg/kg	80	0.080	3051/6010B		8/1/02	SM

mg/kg

mg/kg

< 0.10

5.56

Approval: Calande Jul

7471

3051/6010B

07/29/2002

07/29/2002

Date

7/29/02

8/1/02

SM

SM

Raland K. Tuttle, Lab Director, QA Officer Celcy D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Date

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204041

Project:

CH2100

Project Name:

Dilution

Champion Technology-Hobbs

Location:

Hobbs (Lea Co.), NM

Lab ID:

0204041-01

Sample ID:

Anions

SB-41 @ 39'

Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bicarbonate Alkalinity	200	mg/kg	I	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	421	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	2	310.1	_7/28/02	SB
SULFATE, 375.4	86.0	mg/kg	1	25	375.4	7/30/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	4.0	mg/kg	5	2.5	353.3	7/27/02	RKT
Nitrogen, Nitrite	0.050	mg/kg	5	0.0250	9056	7/27/02	RKT
pH	8.07	pH Units	1	N/A	9045C	7/28/02	SB
TPH 418.1 FTIR	3900	mg/kg	i	10.0	418.1	7/28/02	SB

Lab ID:

0204041-02

Sample ID:

MW-9 @ 5'

Ánions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	265	mg/kg]	2.00	310.1	7/28/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/28/02	SB
Chloride	73.9	mg/kg	1	10	9253	7/30/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	I	2	310.1	7/28/02	SB
SULFATE, 375.4	98.0	mg/kg	1	25	375.4	7/30/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	<0.02	mg/kg	1	0.02	340.1	7/29/02	SB
Nitrogen, Nitrate	<12.5	mg/kg	25	12.5	353.3	7/27/02	RKT
Nitrogen, Nitrite	< 0.250	mg/kg	50	0.250	9056	7/27/02	RKT
pH	8.54	pH Units	1	N/A	9045C	7/28/02	SB

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biczugbe, Lab Tech.

8-01-02 Date

Page 1 of 1

QUALITY CONTROL REPORT

8015M

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002642-02			<10.0		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002642-03		909	1160	127.6%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr,	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002642-04		909	1120	123.2%	3.5%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002642-05		1000	1100	110.%	

QUALITY CONTROL REPORT

Anions

Order#:	G0204041
---------	----------

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	0002565-01			<10.0		
Carbonate Alkalinity-mg/kg	0002567-01			<0.10		
Chloride-mg/kg	0002608-01			<10.0		
Hydroxide Alkalinity-mg/kg	0002569-01			<0.10		
SULFATE, 375.4-mg/kg	0002609-01			<0.50		
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	0204006-22	80		82.5		3.1%
Carbonate Alkalinity-mg/kg	0204006-22	10		10		0.%
Hydroxide Alkalinity-mg/kg	0204006-22	0		<0.10		0.%
SULFATE, 375.4-mg/kg	0204006-22	525		\$20		1.%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	0204006-22	3370	5000	8240	97.4%	
MSD SOIL	LAB-1D#	Sample Concentr,	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Chloride-mg/kg	0204006-22	3370	5000	8330	99.2%	1.1%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
stearbonate Alkalinity-mg/kg	0002565-04		0.05	0.0496	99.2%	
Carbonate Alkalinity-mg/kg	0002567-04		0.05	0.0496	99.2%	
Chloride-mg/kg	0002608-04		5000	4960	99.2%	
Hydroxide Alkalinity-mg/kg	0002569-04	· · · · · · · · · · · · · · · · · · ·	0.05	0.0496	99.2%	
SULFATE, 375.4-mg/kg	0002609-04		50	49.5	99.%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002621-02			< 1.0		
Magnesium-mg/kg		0002621-02			<0.001		
Potassium-mg/kg		0002621-02			< 5.0		
Sodium-mg/kg		0002621-02			< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204006-23	240000		251000		4.5%
Magnesium-mg/kg		0204006-23	2200		2210	-	0.5%
Potassium-mg/kg		0204006-23	586		600		2.4%
Sodium-mg/kg		0204006-23	1590		1560		1.9%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002621-05		2	2.29	114.5%	
Magnesium-mg/kg		0002621-05	······	2	2.02	101.%	
Potassium-mg/kg		0002621-05		2	1.93	96.5%	
Sodium-mg/kg		0002621-05	 	2	1,90	95.%	

QUALITY CONTROL REPORT

METALS RCRA 7 Total

O-4-4-	G0204041
i irnaru.	E - (1 / (1) (2) 14 (2) 1

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg		0002644-01			< 0.64		
Barium-mg/kg		0002644-01			< 0.080		
Cadmium-mg/kg		0002644-01			< 0.080		
Chromium-mg/kg		0002644-01			< 0.16		
.ead-mg/kg		0002644-01			< 0.88		· · · · · · · · · · · · · · · · · · ·
elenium-mg/kg		0002644-01			< 0.32		
Silver-mg/kg		0002639-01			< 0.16		
CONTROL	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) - Recovery	RPD
rsenie-mg/kg		0002644-02		40	40.9	102.3%	
arium-mg/kg		0002644-02		40	39.9	99.7%	······································
admium-mg/kg		0002644-02		40	42.6	106.5%	······································
Chromium-mg/kg		0002644-02		40	38.2	95.5%	
cad-mg/kg		0002644-02		40	40.0	100.%	
elenium-mg/kg		0002644-02		40	42.3	105.7%	
ilver-mg/kg		0002639-02		16	13.2	82.5%	
CONTROL D	UP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
enic-mg/kg		0002644-03		40	40.0	100.%	2.2%
arium-mg/kg		0002644-03	J 110 W2.1	40	39.3	98.2%	1.5%
admium-mg/kg		0002644-03		40	42.6	106.5%	0.%
hromium-mg/kg		0002644-03		40	38.1	95.3%	0.3%
ead-mg/kg		0002644-03		40	41.3	103.3%	3.2%
elenium-mg/kg		0002644-03		40	42.6	106.5%	0.7%
ilver-mg/kg		0002639-03		16	13.5	84.4%	2.2%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
rsenic-mg/kg		0002644-04		1	1.00	100.%	
arium-mg/kg		0002644-04		1	0.913	91.3%	
admium-mg/kg		0002644-04		1	1.06	106.%	
hromium-mg/kg		0002644-04		1	0.929	92.9%	
ead-mg/kg		0002644-04		ı	1.01	101.%	
elenium-mg/kg		0002644-04		1	1.02	102.%	
ilver-mg/kg		0002639-04		0.5	0.495	99.%	

QUALITY CONTROL REPORT

Test Parameters

Order#:	G020404	1
Olucin.	O 0 20 10 1	

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg		0002643-01			< 0.16		
luoride-mg/kg		0002607-01			<0.02		····
ron-mg/kg		0002643-01	······································		< 0.16		
Manganese-mg/kg		0002643-01			< 0.080		
Mercury, Total-mg/kg		0002648-01			< 0.10		
Nitrogen, Nitrate-mg/kg	<u> </u>	0002576-01			<2.5		•
Nitrogen, Nitrite-mg/kg		0002579-01			<0.025		
pH-pH Units		0002561-01			6.34	-	
IPH 418.1 FTIR-mg/kg	}	0002556-01			< 10		······································
Zinc-mg/kg		0002643-01			< 0.080		
CONTROL	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Copper-mg/kg		0002643-02		16	16.1	100.6%	····
lron-mg/kg		0002643-02		16	17.2	107.5%	
Manganese-mg/kg		0002643-02		16	15.6	97.5%	
Mercury, Total-mg/kg		0002648-02		0.75	0.710	94.7%	
Nitrogen, Nitrate-mg/kg	<u> </u>	0002576-02		2.5	2.5	100.%	
rogen, Nitrite-mg/kg		0002579-02		0.2	0.181	90.5%	
ic-mg/kg		0002643-02	·····	16	18.4	115.%	
CONTROL D	UP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg		0002643-03		16	15.8	98.8%	1.9%
ron-mg/kg		0002643-03		16	17.1	106.9%	0.6%
Manganese-mg/kg		0002643-03		16	15.5	96.9%	0.6%
Mercury, Total-mg/kg		0002648-03		0.75	0.765	102.%	7.5%
Nitrogen, Nitrate-mg/kg		0002576-03		2.5	2.4	96.%	4.1%
Nitrogen, Nitrite-mg/kg	······································	0002579-03		0.2	0.186	93.%	2.7%
Zinc-mg/kg		0002643-03		16	18.1	113.1%	1.6%
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
luoride-mg/kg		0204006-22	0		<0.02		0.%
H-pH Units	 	0204041-01	8.07		8.13		0.7%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg	······································	0204032-61	13.4	2640	2780	104.8%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
PH 418.1 FTIR-mg/kg		0204032-61	13.4	2640	2790	105.2%	0.4%
SRM	SOIL	LAB-JD#	Sample Concentr,	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
_							

QUALITY CONTROL REPORT

SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg	0002607-04		1	0.95	95.%	
Iron-mg/kg	0002643-04		1	1.02	102.%	
Manganese-mg/kg	0002643-04	· · · · · · · · · · · · · · · · · · ·	1	1.01	101.%	
Mercury, Total-mg/kg	0002648-04		0.015	0.015	100.%	
Nitrogen, Nitrate-mg/kg	0002576-04		2.5	2.5	100.%	
Nitrogen, Nitrite-mg/kg	0002579-04		0.2	0.178	89.%	
pH-pH Units	0002561-04		10	10.01	100.1%	
TPH 418.1 FTIR-mg/kg	0002556-04		5288	5440	102.9%	
Zinc-mg/kg	0002643-04		1	1.01	101.%	

																														ige		
Technology Group	4600 144	Men				, Co W					4.7			1040 IA	fodood		Cŀ	IAI	4-0	F-C	us	TO	DY	AN	D A	NA	LY	SIS	RE	QU	EST	
MI TO	4600 West Idland, TX el (915) 522 ex(915) 520	78703 -1139	ı				/oadla el (28 '		TX 7 -857	7380 			Ŧ	2540 West N Hobbs, NM Fel (505) 39 Fax (505) 39	88242 7-4882								YS or Sp						-			
Project Manager	λ/											_																		T		T
Project Name: TODD CHOBA Project Name: Champion Technologies - 1	4x 1, 1			Proj	ject	Numl	ber:	7	4-	11	مرار	` <u>`</u>				1				3/7470												
Project Location: (Lea Co), NM	ONE	ــــــــــــــــــــــــــــــــــــــ		San	nple	Sign	natu	<u> </u>	/-	=/\ >/	<u> </u>	2		.,,		1				1g 6010	ž.									1		
では、 では、 では、 では、 では、 では、 では、 では、					ATF	1	na				VĀ HO	TIC D	N	SAN	<i>I</i> PLING		× 1006		(extco only)	IC: Pb Sa	d Cr Pb Sa						5.2		\$	hemushiy	1	
LAB # FIELD CODE (Lab Use Only)	# CONTAINERS	Volume/Amount	WATER	_		SLUDGE			~	NaHSO ₄		Ä		'n	ш	BTEX 8021B/BTEX 8260B	TPH 418, JTX 1005 EXUTX 1008	TPH BO15M GROUDRO	PAH 8270C (8100 New Mexico only)	Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/7470	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles	Volaties 8260B	Semi Volatiles 8270C	160.1	Cations/Anions 375.4/325.3		N	General Che	RUSH TAT	STANDARD TAT
0204041		—	ĕĀ	SOIL	AIR	S.		호	S S S	Nat	핑	NONE	_	DATE	TIME	BTEX	Ě	FF.	PAH	Total	ᅙ		_			TDS 160.1	Calio	õ		<u> </u>	i i	
01 SB-41 C 39'	4	\perp	_	X			_	_	_		X			7/24/02	11:17	-	X	X						Ŧ	H				X	X	_	X
02 MW-9 85'	3	4	1_	X			_	_			X	<u> </u>	_	1/2	7:49	_	_	L	_	_	_	_				_			X	X	\bot	X
interest to the first of the second of the s		-	\perp				4		_				_			-		L	_	_		L	_		_				\sqcup	_	_	\downarrow
A STATE OF THE STA		1	-				_	_	_					<u> </u>		_	<u> </u>	_	<u> </u>	_	<u> </u>	L	_		_				$\vdash \downarrow$	4	\perp	1
HERON TANAS		1	_				_	-	_		_	_	L			1_	Ļ	_	_	L	_	L	_			_				\dashv	_	
The state of the s		\perp	1				_	_			_		L	Ļ		_				L		L	_		_					_		1_
	-	1	_				_	_	_		_	_	L	ļ		<u> </u>	_	L		_	_	_	_		_					_	\bot	\bot
A Company of the Comp		$oldsymbol{\perp}$	\perp	Ц				_	_		_					_	_		_	_	_	L			_					\bot	_	1
		_	_					\dashv	_			_	L			1	L	_	_	_	_	_	_								_	
		$oldsymbol{\perp}$	_						_		_		_	ļ		\perp	<u> </u>	L	_	_		_	_		_				Ш			
		\perp	\perp				_	_			_		_			_	<u> </u>		_			L	_	_	_							
		\perp	_													<u> </u>	L			_	L	L			L	L						
								\Box									L															
Relinquished by: Date:	Time:	0	/	Re	cei	ved	by:			Da	te:			Time	:	R	H/s	ARK L	(S:	۱۲	VO	Cs	, <	\ \ \)(5	- 21 -	R	èc	- 8	3.0	,*c
Relinquished by: Date:	Time:			0.25	1000	7.7	10.00		Take L		144.2	1. 1.6.2	In XIII		ie ik i	The state of the s	pl:	£	Ca	11	W	s/	Ve	5 4	યંડ	٤	115		ن يخ	r C	C61	

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204067

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Date / Time

Project Name: Champion Technology

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time

Lab ID: Sample: Matrix: Collected Received Container	<u>Preservative</u>
0204067-01 Area 3 N. Stockpile SOIL 7/30/02 7/30/02 4 oz glass	Ice
Excavation SS-1 11:00 15:30	
Lab Testing: Rejected: No Temp: 3.0 C	
8015M	
Anions	
Cations	
Arsenic	
Barium	
Cadmium	
Chromium	
Copper	
Fluoride	
Iron	
Lead	
Manganese	
Mercury, Total	
Nitrogen, Nitrate	
Nitrogen, Nitrite	
pН	
Selenium	
Silver	
TPH 418.1 FTIR	
Zinc	
0204067-02 Area 3 N. Stockpile Excavation SS-2 SOIL 7/30/02 7/30/02 4 oz glass 11:05 15:30	Ice
Lab Testing: Rejected: No Temp: 3.0 C	
8015M	
Anions	
Cations	
Arsenic	
Barium	

Chromium Copper Fluoride

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204067

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Zinc

Project Name: Champion Technology

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time Date / Time Collected Received Container Sample: Matrix: Preservative_ Lab ID: Iron Lead Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pН Selenium Silver **TPH 418.1 FTIR**

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204067

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204067-01

Sample ID:

Area 3 N. Stockpile Excavation SS-1

8015M

Method Blank Date Prepared Date Analyzed

Sa d Aı

Sample Amount

Dilution Factor

Analyst

Method

8/1/02 1

CK 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	71.3	10.0
TOTAL, C6-C35	71.3	10.0

Lab ID:

0204067-02

Sample ID:

Area 3 N. Stockpile Excavation SS-2

8015M

Method Blank Date Prepared Date Analyzed

8/1/02

Sample Amount

1

Dilution Factor

1

Analyst CK

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	59.8	10.0
TOTAL, C6-C35	59.8	10.0

Approval: Caland K. Juttle, Lab Director, QA Officer

Date

Celey D. Keene, Org. Tech. Director
Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Page 1 of 1

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204067

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204067-01

Sample ID:

Area 3 N. Stockpile Excavation SS-1

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	119,000	mg/kg	10000	100	6010B	08/02/2002	8/2/02	SM
Magnesium	960	mg/kg	100	0.100	6010B	08/02/2002	8/2/02	SM
Potassium	479	mg/kg	100	5.00	6010B	08/02/2002	8/2/02	SM
Sodium	1,700	mg/kg	1000	10.0	6010B	08/02/2002	8/2/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.84	mg/kg	50	0.40	3050/6010B	08/01/2002	8/2/02	SM
Barium	465	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM
Cadmium	0.866	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM
Chromium	5.58	mg/kg	50	0.10	3050/6010B	08/01/2002	8/2/02	SM
Copper	3.3	mg/kg	50	0.10	3050/6010B	08/01/2002	8/2/02	SM
Iron	4,360	mg/kg	500	1.0	3050/6010B	08/01/2002	8/2/02	SM
Lead	4.22	mg/kg	50	0.550	3050/6010B	08/01/2002	8/2/02	SM
Manganese	37.6	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/31/2002	8/2/02	MB
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	08/01/2002	8/2/02	SM
Bilver	< 0.10	mg/kg	50	0.10	3050/6010B	08/01/2002	8/2/02	SM
Zinc	19.3	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM

Lab ID:

0204067-02

Sample ID:

Area 3 N. Stockpile Excavation SS-2

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	120,000	mg/kg	10000-	100-	6010B	08/02/2002-	8/2/02	SM
Magnesium	922	mg/kg	100	0.100	6010B	08/02/2002	8/2/02	SM
Potassium	486	mg/kg	100	5.00	6010B	08/02/2002	8/2/02	SM
Sodium	2,400	mg/kg	1000	10.0	6010B	08/02/2002	8/2/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	0.922	mg/kg	50	0.40	3050/6010B	08/01/2002	8/2/02	SM
Barium	479	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM
Cadmium	0.488	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM
Chromium	5.48	mg/kg	50	0.10	3050/6010B	08/01/2002	8/2/02	SM
Copper	3.31	mg/kg	50	0.10	3050/6010B	08/01/2002	8/2/02	SM
Iron	4,720	mg/kg	500	1.0	3050/6010B	08/01/2002	8/2/02	SM
Lead	3.31	mg/kg	50	0.550	3050/6010B	08/01/2002	8/2/02	SM
Manganese	42.5	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/31/2002	8/2/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 2

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#: Project: G0204067

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204067-02

Sample ID:

Area 3 N. Stockpile Excavation SS-2

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	08/01/2002	8/2/02	SM
Silver	< 0.10	mg/kg	50	0.10	3050/6010B	08/01/2002	8/2/02	SM
Zinc	17.5	mg/kg	50	0.050	3050/6010B	08/01/2002	8/2/02	SM

Approval: LOLON C. JULIU
Raland K. Tuttle, Lab Director, QA Officer
Celey D. Keene, Org. Tech. Director
Jeanne McMurrey, Inorg. Tech. Director
Sandra Biezugbe, Lab Tech.

8-02-02

Date

Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204067

Project:

CH 2100

Project Name:

Champion Technology

Date

Location:

Dilution

Hobbs, NM

Lab ID:

0204067-01

Sample ID: Anions

Area 3 N. Stockpile Excavation SS-1

Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	65.0	mg/kg	1	2.00	310.1	7/31/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/31/02	SB
Chloride	709	mg/kg	1	10	9253	8/1/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/31/02	SB
SULFATE, 375.4	424	mg/kg	1	25	375.4	7/31/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	7.00	mg/kg	1	0.10	340.1	7/31/02	MB
Nitrogen, Nitrate	6.5	mg/kg	5	0.50	353.3	8/1/02	MB
Nitrogen, Nitrite	0.228	mg/kg	5	0.0040	354.1	8/1/02	MB
pН	8.09	pH Units	1	N/A	9045C	7/31/02	SB
TPH 418.1 FTIR	242	mg/kg	1	10.8	418.1	7/31/02	SB

Lab ID:

0204067-02

ample ID:

Area 3 N. Stockpile Excavation SS-2

Anions Parameter	Result	Units	Dilution Factor	<u>RL</u>	Method	Date Analyzed	Analyst
Bicarbonate Alkalinity	67.5	mg/kg	1	2.00	310.1	7/31/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/31/02	SB
Chloride	798	mg/kg	1	10	9253	8/1/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/31/02	SB
SULFATE, 375.4	404	mg/kg	1	25	375.4	7/31/02	MB
Test Parameters	antinina and an art, the respondential date and a series of the art of a	V- , 160 , 1-164 , 1-15, 15 - 150, 15	Dilution	_2.16.26mbres . ver 20.	ar and the towns, - months of	Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>
Fluoride	7.50	mg/kg	1	0.10	340.1	7/31/02	MB
Nitrogen, Nitrate	10	mg/kg	5	0.50	353.3	8/1/02	MB
Nitrogen, Nitrite	0.320	mg/kg	5	0.0040	354.1	8/1/02	MB
pH	8.14	pH Units	1	N/A	9045C	7/31/02	SB
TPH 418.1 FTIR	272	mg/kg	1	10.8	418.1	7/31/02	SB

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Page 1 of 1

QUALITY CONTROL REPORT

Anions

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-m	ıg/kg	0002657-01			<2.00		
Carbonate Alkalinity-mg	/kg	0002657-01			<0.10		
Chloride-mg/kg		0002656-01			<10		
Hydroxide Alkalinity-mg	/kg	0002657-01			<0.10		
SULFATE, 375.4-mg/kg		0002659-01			<0.50		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-m	ıg/kg	0204067-01	65		65		0.%
Carbonate Alkalinity-mg	/kg	0204067-01	0		<0.10		0.%
Hydroxide Alkalinity-mg	/kg	0204067-01	0		<0.10		0.%
SULFATE, 375.4-mg/kg		0204067-01	424		435		2.6%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204068-03	88.6	2760	2570	89.9%	····
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204068-03	88.6	2760	2570	89.9%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
nate Alkalinity-m	ıg/kg	0002657-04		5	4.96	99.2%	
Chloride-mg/kg		0002656-04		5000	4960	99.2%	
SULFATE, 375.4-mg/kg		0002659-04		50	49.7	99.4%	·

QUALITY CONTROL REPORT

8015M

Order#.	G0204067

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002635-02			<10.0		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002635-03	-	909	1070	117.7%	*
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002635-04		909	883	97.1%	19.2%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0002635-05		1000	936	93.6%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002671-02			< 1.0		
Magnesium-mg/kg		0002671-02			< 0.10		
Potassium-mg/kg		0002671-02			< 5.0		
Sodium-mg/kg		0002671-02			< 10.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204067-02	120000		119,000		0.8%
Magnesium-mg/kg		0204067-02	922		915		0.8%
Potassium-mg/kg		0204067-02	486		442		9.5%
Sodium-mg/kg		0204067-02	2400		2,430		0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg	-	0002671-05		2	1.87	93.5%	
Magnesium-mg/kg		0002671-05		2	2.06	103.%	
Potassium-mg/kg		0002671-05		2	1.98	99.%	
Sodium-mg/kg		0002671-05		2	1.99	99.5%	

QUALITY CONTROL REPORT

Test Parameters

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002669-01			< 0.40		
Barium-mg/kg	0002669-01			< 0.050		
Cadmium-mg/kg	0002669-01			< 0.050		
Chromium-mg/kg	0002669-01	******		< 0.10		
Copper-mg/kg	0002670-01			< 0.10		
Fluoride-mg/kg	0002653-01			<0.02		
Iron-mg/kg	0002670-01			< 0.10		
Lead-mg/kg	0002669-01			< 0.55		
Manganese-mg/kg	0002670-01			< 0.050		
Mercury, Total-mg/kg	0002665-01			< 0.10		
Nitrogen, Nitrate-mg/kg	0002658-01			< 0.10		
Nitrogen, Nitrite-mg/kg	0002660-01			< 0.00080		
pH-pH Units	0002627-01			6.03		
Selenium-mg/kg	0002669-01			< 0.20		
Silver-mg/kg	0002669-01			< 0.10		
TPH 418.1 FTIR-mg/kg	0002620-01			<10.0		
Zinc-mg/kg	0002670-01			< 0.050		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsonic-mg/kg	0002669-02		40	37.6	94.%	
Barium-mg/kg	0002669-02		10	10.6	106.%	
Cadmium-mg/kg	0002669-02		10	9.71	97.1%	
Chromium-mg/kg	0002669-02		10	9.48	94.8%	
Copper-mg/kg	0002670-02		10	10.3	103.%	
fron-mg/kg	0002670-02		10	10.5	105.%	······································
Lead-mg/kg	0002669-02		50	44.0	88.%	
Manganese-mg/kg	0002670-02		10	10.7	107.%	
Mercury, Total-mg/kg	0002665-02		0.015	0.015	100.%	
Selenium-mg/kg	0002669-02		20	18.9	94.5%	
Silver-mg/kg	0002669-02		5	4.30	86.%	
Zinc-mg/kg	0002670-02		10	11.6	116.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002669-03		40	37.7	94.3%	0.3%
Barium-mg/kg	0002669-03		10	10.6	106.%	0.%
Cadmium-mg/kg	0002669-03		10	9.78	97.8%	0.7%
Chromium-mg/kg	0002669-03		10	9.59	95.9%	1.2%
Copper-mg/kg	0002670-03		10	10.1	101.%	2.%
ron-mg/kg	0002670-03		10	10.3	103.%	1.9%
mg/kg	0002669-03		50	43.9	87.8%	0.2%

QUALITY CONTROL REPORT

TROL DU	P SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Manganese-mg/kg		0002670-03		10	10.5	105.%	1.9%
Mercury, Total-mg/kg		0002665-03		0.015	0.015	100.%	0.%
Selenium-mg/kg		0002669-03		20	19.1	95.5%	1.1%
Silver-mg/kg		0002669-03		5	4.34	86.8%	0.9%
Zinc-mg/kg		0002670-03		10	11.4	114.%	1.7%
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg		0204068-03	4.15		4.1		1.2%
Nitrogen, Nitrate-mg/kg		0204068-03	2		2.0		0.%
Nitrogen, Nitrite-mg/kg		0204068-03	0.144		0.153		6.1%
pH-pH Units	-	0204068-03	8.47		8.48		0.1%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg		0204049-01	4530	2640	7250	103.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg		0204049-01	4530	2640	7250	103.%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg		0002669-04		1	1.10	110.%	
Bartum-mg/kg	-	0002669-04		1	1.04	104.%	
um-mg/kg		0002669-04		1	1.07	107.%	
Chromium-mg/kg		0002669-04		1	1.01	101.%	
Copper-mg/kg		0002670-04		1	1.00	100.%	
Fluoride-mg/kg		0002653-04	,	1	0.93	93.%	- · · · · · · · · · · · · · · · · · · ·
Iron-mg/kg		0002670-04		1	1.02	102.%	
Lead-mg/kg		0002669-04		1	1.03	103.%	
Manganese-mg/kg		0002670-04		1	1.01	101.%	
Mercury, Total-mg/kg		0002665-04		0.015	0.015	100.%	
Nitrogen, Nitrate-mg/kg		0002658-04		2	1.7	85.%	
Nitrogen, Nitrite-mg/kg		0002660-04		0.1	0.085	85.%	
pH-pH Units		0002627-04		10	10.03	100.3%	
Selenium-mg/kg		0002669-04		1	1.05	105.%	
Silver-mg/kg		0002669-04		0.5	0.484	96.8%	
TPH 418.1 FTIR-mg/kg		0002620-04		5288	5350	101.2%	
Zinc-mg/kg		0002670-04		1	1.01	101.%	· · · · · · · · · · · · · · · · · · ·

ANALYTICAL REPORT

odd Choban

ironmental Technology Group, Inc.

Order#:

G0204068

Project:

CH 2100

.O. Box 4845 Midland, TX 79704 Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204068-01

Sample ID:

MW-8 S.S. 15'

8015M

Method Blank

Date Prepared

Date Analyzed 8/1/02

Sample Amount

1

Dilution **Factor**

1

Analyst

CK

Method 8015M

Result RL Parameter mg/kg 10.0 GRO, C6-C12 <10.0 10.0 DRO, >C12-C35 <10.0 <10.0 10.0 TOTAL, C6-C35

8021B/5030 BTEX

Method Blank

Date Prepared

Date Analyzed 8/3/02

Sample **Amount** 1

Dilution **Factor** 25

Analyst CK

Method 8021B

0002694-02

19:16

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	< 0.025	0.025

Lab ID:

0204068-02

Sample ID:

MW-8 S.S. 35'

8015M

Method Blank

Date Prepared

Date **Analyzed** 8/1/02

Sample Amount

1

Dilution <u>Factor</u>

Analyst

CK

Method 8015M

Result Parameter RLmg/kg GRO, C6-C12 <10.0 10.0 DRO, >C12-C35 <10.0 10.0 <10.0 10.0 TOTAL, C6-C35

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 1 of 3

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204068

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204068-02

Sample ID:

MW-8 S.S. 35'

8021B/5030 BTEX

Method Blank

Date Prepared Date Analyzed Sample Amount Dilution Factor

Analyst

Method

0002694-02

8/3/02 19:38 1

25

CK 8021B

Result Parameter RL mg/kg 0.025 <0.025 Benzene 0.025 Ethylbenzene < 0.025 <0.025 0.025 Toluene p/m-Xylene < 0.025 0.025 o-Xylene <0.025 0.025

Lab ID:

0204068-03

Sample ID:

MW-8 S.S. 55'

8015M

Method Blank Date <u>Prepared</u> Date
<u>Analyzed</u>
8/1/02

Sample <u>Amount</u>

t

Dilution <u>Factor</u>

Analyst CK

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	<10.0	10.0
TOTAL, C6-C35	<10.0	10.0

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204068

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204068-03

Sample ID:

MW-8 S.S. 55'

8021B/5030 BTEX

Method <u>Blank</u> Date Prepared Date Analyzed Sample Amount 1 Dilution Factor 25

Analyst CK

Method 8021B

0002694-02

8/3/02 20:00

Result RL Parameter mg/kg < 0.025 0.025 Benzene 0.025 Ethylbenzene < 0.025 Toluene < 0.025 0.025 <0.025 0.025 p/m-Xylene 0.025 <0.025 o-Xylene

Approva<u>l:</u>

Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Date

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204068

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204068-01

Sample ID:

MW-8 S.S. 15'

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	109,000	mg/kg	10000	100	6010B	08/02/2002	8/2/02	SM
Magnesium	1,540	mg/kg	1000	1.00	6010B	08/02/2002	8/2/02	SM
Potassium	104	mg/kg	100	5.00	6010B	08/02/2002	8/2/02	SM
Sodium	1,270	mg/kg	100	1.00	6010B	08/02/2002	8/2/02	SM
Test Parameters			Dilution			Date	Date	
<u>Parameter</u>	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	<0.40	mg/kg	50	0.400	3050/6010B	07/30/2002	8/5/02	SM
Barium	281	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Cadmium	0.397	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Chromium	1.81	mg/kg	50	0.100	3050/6010B	07/30/2002	8/5/02	SM
Copper	2.27	mg/kg	50	0.100	3050/6010B	07/30/2002	8/5/02	SM
Iron	2,180	mg/kg	500	1.00	3050/6010B	07/30/2002	8/5/02	SM
Lead	0.850	mg/kg	50	0.550	3050/6010B	07/30/2002	8/5/02	SM
Manganese	25.7	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Mercury, Total	<0.10	mg/kg	50	0.100	7470	07/31/2002	8/2/02	MB
Gelenium	<0.20	mg/kg	50	0.200	3050/6010B	07/30/2002	8/5/02	SM
Silver	< 0.10	mg/kg	50	0.100	3050/6010B	07/30/2002	8/5/02	SM
Zinc	6.06	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM

Lab ID:

0204068-02

Sample ID: MW-8 S.S. 35'								
Cations Parameter	Result	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Prepared	Date Analyzed	<u>Analyst</u>
Calcium	116,000	mg/kg	10000	100	6010B	08/02/2002	8/2/02	SM
Magnesium	722	mg/kg	100	0.100	6010B	08/02/2002	8/2/02	SM
Potassium	106	mg/kg	100	5.00	6010B	08/02/2002	8/2/02	SM
Sodium	978	mg/kg	100	1.00	6010B	08/02/2002	8/2/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.40	mg/kg	50	0.40	3050/6010B	07/30/2002	8/5/02	SM
Barium	122	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Cadmium	0.450	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Chromium	2.3	mg/kg	50	0.10	3050/6010B	07/30/2002	8/5/02	SM
Copper	0.618	mg/kg	50	0.10	3050/6010B	07/30/2002	8/5/02	SM
Iron	2,550	mg/kg	500	1.0	3050/6010B	07/30/2002	8/5/02	SM
Lead	0.899	mg/kg	50	0.550	3050/6010B	07/30/2002	8/5/02	SM
Manganese	23.5	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/31/2002	8/2/02	MB

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 2

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204068

Project:

CH 2100

Project Name:

Champion Technology

Method

Date

Date

Prepared Analyzed Analyst

Location:

Dilution

Factor

<u>RL</u>

Hobbs, NM

Lab ID:

0204068-02

Sample ID:

MW-8 S.S. 35'

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	07/30/2002	8/5/02	SM
Silver	< 0.10	mg/kg	50	0.10	3050/6010B	07/30/2002	8/5/02	SM
Zinc	7.36	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM

Units

Lab ID:

0204068-03

Sample ID: Cations

<u>Parameter</u>

MW-8 S.S. 55'

Calcium	49,200	mg/kg	10000	100	6010B	08/02/2002	8/2/02	SM
Magnesium	193	mg/kg	100	0.100	6010B	08/02/2002	8/2/02	SM
Potassium	70.2	mg/kg	100	5.00	6010B	08/02/2002	8/2/02	SM
Sodium	722	mg/kg	100	1.00	6010B	08/02/2002	8/2/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.40	mg/kg	50	0.40	3050/6010B	07/30/2002	8/5/02	SM
arium	21.4	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Cadmium	0.552	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Chromium	3.09	mg/kg	50	0.10	3050/6010B	07/30/2002	8/5/02	SM
Copper	0.331	mg/kg	50	0.10	3050/6010B	07/30/2002	8/5/02	SM
Iron	3,290	mg/kg	500	1.0	3050/6010B	07/30/2002	8/5/02	SM
Lead	1.6	mg/kg	50	0.550	3050/6010B	07/30/2002	8/5/02	SM
Manganese	40.7	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	07/31/2002	8/2/02	MB
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	07/30/2002	8/5/02	SM
Silver	< 0.10	mg/kg	50	0.10	3050/6010B	07/30/2002	8/5/02	SM
Zinc	5.85	mg/kg	50	0.050	3050/6010B	07/30/2002	8/5/02	SM

Approval: N. Q. X. A. C. L. A. C. Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech. Date

Page 2 of 2

Result

ANALYTICAL REPORT

Todd Choban

ronmental Technology Group, Inc.

.o. Box 4845

Midland, TX 79704

Order#:

G0204068

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204068-01

Sample ID:

MW-8 S.S. 15'

Anions			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Bicarbonate Alkalinity	77.8	mg/kg	1	2.00	310.1	7/31/02	SB
Carbonate Alkalinity	22.2	mg/kg	1	0.10	310.1	7/31/02	SB
Chloride	88.6	mg/kg	1	10	9253	8/1/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/31/02	SB
SULFATE, 375.4	203	mg/kg	1	25	375.4	7/31/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	7.00	mg/kg	1	0.02	340.1	7/31/02	MB
Nitrogen, Nitrate	32	mg/kg	10	0.50	353.3	8/1/02	MB
Nitrogen, Nitrite	0.067	mg/kg	5	0.0040	354.1	8/1/02	MB
pH	8.34	pH Units	1	N/A	9045C	7/31/02	SB
TPH 418.1 FTIR	25.2	mg/kg	1	11.3	418.1	7/31/02	SB

Lab ID:

0204068-02

mple ID:

MW-8 S.S. 35'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	65	mg/kg	1	2.00	310.1	7/31/02	SB
Carbonate Alkalinity	5.0	mg/kg	1	0.10	310.1	7/31/02	SB
Chloride	88.6	mg/kg	1	10	9253	8/1/02	SB
Hydroxide Alkalinity	<0.10	mg/kg	1	0.10	310.1	7/31/02	SB
SULFATE, 375.4	78.5	mg/kg	1	25	375.4	7/31/02	MB
Test Parameters			Dilution			Date	
Parameter	<u>Result</u>	<u>Units</u>	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	6.15	mg/kg	1	0.02	340.1	7/31/02	MB
Nitrogen, Nitrate	3.5	mg/kg	5	0.50	353.3	8/1/02	MB
Nitrogen, Nitrite	0.227	mg/kg	5	0.0040	354.1	8/1/02	MB
pH	8.41	pH Units	1	N/A	9045C	7/31/02	SB
TPH 418.1 FTIR	41.2	mg/kg	1	11.2	418.1	7/31/02	SB

Lab ID:

0204068-03

Sample ID:

MW-8 S.S. 55'

Anions				Date			
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	37.5	mg/kg	1	2.00	310.1	7/31/02	SB
Carbonate Alkalinity	5.0	mg/kg	1	0.10	310.1	7/31/02	SB

RL = Reporting Limit

N/A = Not Applicable

Page 1 of 2

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Nitrogen, Nitrite

TPH 418.1 FTIR

pН

Order#:

G0204068

Project:

CH 2100

Project Name:

Champion Technology

Location:

Hobbs, NM

Lab ID:

0204068-03

Sample ID:

MW-8 S.S. 55'

Anions			Dilution			Date	
Parameter	<u>Result</u>	Units	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
Chloride	88.6	mg/kg	1	10	9253	8/1/02	SB
Hydroxide Alkalinity	< 0.10	mg/kg	1	0.10	310.1	7/31/02	SB
SULFATE, 375.4	58	mg/kg	i	25	375.4	7/31/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	4.15	mg/kg	1	0.02	340.1	7/31/02	MB
Nitrogen, Nitrate	2.0	mg/kg	5	0.50	353.3	8/1/02	MB

mg/kg

pH Units

mg/kg

0.144

8.47

<10.0

Approval:

5

1

Polandt July

354.1

9045C

418.1

Date

MB

SB

SB

8/1/02

7/31/02

7/31/02

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

0.0040

N/A

11.0

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

8015M

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0002636-02			<10.0		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0204068-03	0	909	1010	111.1%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0204068-03	0	909	909	100.%	10.5%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0002636-05		1000	1020	102.%	

QUALITY CONTROL REPORT

8021B/5030 BTEX

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002694-02			<0.025		
Ethylbenzene-mg/kg		0002694-02			<0.025		
Toluene-mg/kg		0002694-02			<0.025		
o/m-Xylene-mg/kg		0002694-02			<0.025		
o-Xylene-mg/kg		0002694-02			<0.025		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204082-01	0	0.1	0.093	93.%	
Ethylbenzene-mg/kg		0204082-01	0	0.1	0.099	99.%	
Toluene-mg/kg		0204082-01	0	0.1	0.097	97.%	
p/m-Xylene-mg/kg		0204082-01	0	0.2	0.204	102.%	
o-Xylene-mg/kg		0204082-01	0	0.1	0.098	98.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204082-01	0	0.1	0.096	96.%	3.2%
Ethylbenzene-mg/kg	···	0204082-01	0	0.1	0.102	102.%	3.%
Foluene-mg/kg		0204082-01	0	0.1	0.101	101.%	4.%
p/m-Xylene-mg/kg		0204082-01	0	0.2	0.212	106.%	3.8%
e-mg/kg		0204082-01	0	0.1	0.103	103.%	5.%
Swall	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	***************************************	0002694-05	· · · · · · · · · · · · · · · · · · ·	0.1	0.095	95.%	
Ethylbenzene-mg/kg	 	0002694-05		0.1	0.102	102.%	
Toluene-mg/kg		0002694-05	,	0.1	0.100	100.%	
o/m-Xylene-mg/kg		0002694-05		0.2	0.212	106.%	
o-Xylene-mg/kg		0002694-05		0.1	0.103	103.%	

QUALITY CONTROL REPORT

Anions

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	3	0002657-01			<2.00		
Carbonate Alkalinity-mg/kg		0002657-01			<0.10		
Chloride-mg/kg		0002656-01			<10		
Hydroxide Alkalinity-mg/kg		0002657-01			<0.10		
SULFATE, 375.4-mg/kg		0002659-01			<0.50		
DUPLICATE SOIL		LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	3	0204067-01	65		65		0.%
Carbonate Alkalinity-mg/kg		0204067-01	0		<0.10		0.%
Hydroxide Alkalinity-mg/kg		0204067-01	0		<0.10		0.%
SULFATE, 375.4-mg/kg		0204067-01	424		435		2.6%
MS	SOIL	LAB-ID#	Sample Concentr,	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	****	0204068-03	88.6	2760	2570	89.9%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204068-03	88.6	2760	2570	89.9%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
onate Alkalinity-mg/kg		0002657-04		5	4.96	99.2%	
Chloride-mg/kg		0002656-04		5000	4960	99.2%	
SULFATE, 375.4-mg/kg	SULFATE, 375.4-mg/kg			50	49.7	99.4%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002677-02			< 1.0		
Magnesium-mg/kg		0002677-02			< 0.10		
Potassium-mg/kg		0002677-02			< 5.0		
Sodium-mg/kg		0002677-02			< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204068-02	116000		121,000		4.2%
Magnesium-mg/kg		0204068-02	722		732		1.4%
Potassium-mg/kg		0204068-02	106		110		3.7%
Sodium-mg/kg		0204068-02	978		1000		2.2%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002677-05		2	1.86	93.%	
Magnesium-mg/kg		0002677-05		2	2.08	104.%	
Potassium-mg/kg		0002677-05		2	1.93	96.5%	
Sodium-mg/kg		0002677-05		2	2.06	103.%	

QUALITY CONTROL REPORT

Test Parameters

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002700-01			< 0.40		• •
Barium-mg/kg	0002700-01			< 0.050		
Cadmium-mg/kg	0002700-01			< 0.050		·····
Chromium-mg/kg	0002700-01			< 0.10		
Copper-mg/kg	0002699-01			< 0.10		
Fluoride-mg/kg	0002653-01			<0.02		<u> </u>
ron-mg/kg	0002699-01			< 0.10		
Lead-mg/kg	0002700-01			< 0.55		· · ·
Manganese-mg/kg	0002699-01			< 0.050		
Mercury, Total-mg/kg	0002665-01			< 0.10		
Nitrogen, Nitrate-mg/kg	0002658-01			< 0.10		
Nitrogen, Nitrite-mg/kg	0002660-01			< 0.00080		
pH-pH Units	0002627-01			6.03		
Selenium-mg/kg	0002700-01			< 0.20		
Silver-mg/kg	0002700-01			< 0.10		
TPH 418.1 FTIR-mg/kg	0002620-01			<10.0		
Zinc-mg/kg	0002699-01			< 0.050		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002700-02		40	37.5	93.8%	
Barium-mg/kg	0002700-02		10	10.3	103.%	
Cadmium-mg/kg	0002700-02		10	9.52	95.2%	
Chromium-mg/kg	0002700-02		10	9.44	94.4%	
Copper-mg/kg	0002699-02		10	10	100.%	
lron-mg/kg	0002699-02		10	9.82	98.2%	
Lead-mg/kg	0002700-02		50	43.9	87.8%	
Manganese-mg/kg	0002699-02		10	10.3	103.%	
Mercury, Total-mg/kg	0002665-02		0.015	0.015	100.%	
Selenium-mg/kg	0002700-02		20	18.9	94.5%	
Silver-mg/kg	0002700-02		5	4.76	95.2%	
Zinc-mg/kg	0002699-02		10	11.1	111.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002700-03		40	37.6	94.%	0.3%
Barium-mg/kg	0002700-03		10	10.3	103.%	0.%
Cadmium-mg/kg	0002700-03		10	9.57	95.7%	0.5%
Chromium-mg/kg	0002700-03		10	9.66	96.6%	2.3%
Copper-mg/kg	0002699-03		10	9.86	98.6%	1.4%
iron-mg/kg	0002699-03	· · · · · · · · · · · · · · · · · · ·	10	9.84	98.4%	0.2%
ng/kg	0002700-03		50	43.7	87.4%	0.5%

QUALITY CONTROL REPORT

CTROL DUI	P SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Manganese-mg/kg		0002699-03		10	10.3	103.%	0.%
Mercury, Total-mg/kg		0002665-03		0.015	0.015	100.%	0.%
Selenium-mg/kg	_	0002700-03		20	18.8	94.%	0.5%
Silver-mg/kg		0002700-03		5	4.71	94.2%	1.1%
Zinc-mg/kg		0002699-03		10	11.1	111.%	0.%
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg		0204068-03	4.15		4.1		1.2%
Nitrogen, Nitrate-mg/kg		0204068-03	2		2.0		0.%
Nitrogen, Nitrite-mg/kg		0204068-03	0.144		0.153		6.1%
pH-pH Units		0204068-03	8.47		8.48		0.1%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg		0204049-01	4530	2640	7250	103.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg		0204049-01	4530	2640	7250	103.%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg		0002700-04		1	1.08	108.%	
Barreng/kg		0002700-04		1	1.04	104.%	
m-mg/kg		0002700-04		1	1.05	105.%	
Chromium-mg/kg		0002700-04		1	1.06	106.%	
Copper-mg/kg		0002699-04		1	1.02	102.%	
Fluoride-mg/kg		0002653-04		1	0.93	93.%	
Iron-mg/kg		0002699-04		1	1.01	101.%	
Lead-mg/kg		0002700-04		1	1.00	100.%	
Manganese-mg/kg		0002699-04		1	0.986	98.6%	
Mercury, Total-mg/kg		0002665-04		0.015	0.015	100.%	
Nitrogen, Nitrate-mg/kg		0002658-04		2	1.7	85.%	
Nitrogen, Nitrite-mg/kg		0002660-04		0.1	0.085	85.%	
pH-pH Units		0002627-04		10	10.03	100.3%	
Selenium-mg/kg	<u> </u>	0002700-04		1	1.05	105.%	
Silver-mg/kg		0002700-04		0.5	0.517	103.4%	
TPH 418.1 FTIR-mg/kg		0002620-04	,	5288	5350	101.2%	
Zinc-mg/kg		0002699-04		1	0.987	98.7%	

Environ ental Lab of Texas I, Lto 2600 West I-20 East Phone: 915-563-1800 Odessa, Texas 79763 Fax: 915-563-1713	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	
Project Manager: Todal Choban	Project Name: Champion Technology	
Company Name E, T, G, I	Project #: CH 21 DD	
Company Address: 4600 w. Wall	Project Loc: Hobbs, N.M.	
City/State/Zip: Midland, Tx 797 \$3	PO#:	
Telephone No: 9/5-522-1/39 Sampler Signature: Manely Campos	Fax No: 9/5-520-4310	
Sampler Signature: It Tanks Campo	Analyze For:	
	Preservative Matrix (p)	
LAB # (lal use only) FIELD CODE OI Area 3 N. Stockpile Execution 55.2 7.30 OZO4068-08 Mw-8 S.S. 15' PMW-8 S.S. 35' MW -8 S.S. 35'	Time Sampled No. of Containers Ice HNOs HCI Nach HCI Nach HCI Nach None Other (Specify) Water Soil Other (Specify): TPH: £(18.1) (80.15)/y 1005 1000 Callions (Ca. Mg. Na. K) Anions (Ca. Mg. Na. K) Anions (Ca. Mg. Na. K) SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg S Semivolatiles Semivolatiles BTEX 8021B/Metals BCI W QCC Metals CD QCC Metals Semivolatiles BTEX 8021B/Metals BTEX 8021B/Metals Semivolatiles BTEX 8021B/Metals Semivolatiles BTEX 8021B/Metals Semivolatiles	Clandard TAT
Special Instructions: 3 day T.A. T. for the first Relinquished by: Date Time Received 230-702/53P		
Relinquished by: Date Time Received	by ELOT: Date Time 7-30-02 1530	

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204106

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technologies

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	e D	ate / Time		
Lab ID:	Sample:	Matrix:		Collected		Received	Container	Preservative
0204106-01	MW1	WATER		8/2/02 10:35		8/2/02 16:35	See COC	See COC
La	ab Testing:	Rejected:	No	T	emp:	-1.5 C		
	Anions							
	Cations							
	METALS RCRA 7 Tot	al						
	Copper							
	Fluoride							
	Iron							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	Zinc							
0204106-02	MW2	WATER		8/2/02		8/2/02	See COC	See COC
0204100-02				8:15		16:35		
L	ab Testing:	Rejected:	No	T	emp:	-1.5 C		
	Anions							
	Cations							
	- Fluoride							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
0204106-03	MW3	WATER		8/2/02		8/2/02	See COC	See COC
0201100.05				8:45		16:35		
<u>L</u> .	ab Testing:	Rejected:	No	T	emp:	-1.5 C		
	Anions							
	Cations							
	METALS RCRA 7 Tot	al						
	Copper							
	Fluoride							
	Iron							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204106

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technologies

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample : Zinc	<u>Matrix:</u>		Date / Time Collected	Date / Time Received	Container	Preservative
0204106-04	MW4	WATER		8/2/02 11:47	8/2/02 16:35	See COC	See COC
<u>La</u>	b Testing:	Rejected:	No	Ten	np: -1.5 C		
	Anions						
	Cations						
	METALS RCRA 7 To	tal					
	Copper						
	Fluoride						
	Iron						
	Manganese						
	Mercury, Total						
	Nitrogen, Nitrate						
	Nitrogen, Nitrite						
	Zinc				···		
0204106-05	MW5	WATER		8/2/02 9:10	8/2/02 16:35	See COC	See COC
<u>La</u>	b Testing:	Rejected:	No	Ten	ip: -1.5 C		
	Anions						
	Cations						
	METALS RCRA 7 To	tal					
	Copper						
	Fluoride						
	Iron						
	Manganese						
	Mercury, Total						
	Nitrogen, Nitrate						
	Nitrogen, Nitrite						
	Zinc						
0204106-06	MW6	WATER		8/2/02 11:15	8/2/02 16:35	See COC	See COC

1005 TNRCC Rev 03 1006 TNRCC, Aliphatics

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204106

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technologies

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time Date / Time Sample: Collected Container Lab ID: Matrix: Received Preservative 1006 TNRCC, Aromatics Anions Cations **METALS RCRA 7 Total** Copper Fluoride Iron Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite Zinc 106-07 MW7 WATER 8/2/02 8/2/02 See COC See COC 7:40 16:35 Rejected: No Lab Testing: Temp: -1.5 C 8260B Volatiles List 8270C - BNA Anions Cations METALS-RCRA-7-Total-Copper Fluoride Iron Manganese Mercury, Total Nitrogen, Nitrate Nitrogen, Nitrite pΗ Total Dissolved Solids (TDS) Zinc MW8 WATER 8/2/02 8/2/02 See COC See COC 0204106-08

12:05

Temp:

8260B Volatiles List

8270C - BNA

Rejected: No

Lab Testing:

16:35

-1.5 C

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204106

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technologies

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

receipt of s	amples by Environmental Lab	of Texas, unl	less otherv	vise noted.				
				Date / Ti	me I	Date / Time		
Lab ID:	Sample:	Matrix:		Collecte	<u>ed</u>	Received	Container	Preservative
	Anions		_					
	Cations							
	METALS RCRA 7 To	tal						
	Copper							
	Fluoride							
	Iron							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	pН							
	Total Dissolved Solids	(TDS)						
	Zinc					·		
0204106-09	MW9	WATER		8/2/02		8/2/02	See COC	See COC
0201200 05				9:42		16:35		
<u>La</u>	ib Testing:	Rejected:	No		Temp:	-1.5 C		
	8260B Volatiles List							
	8270C - BNA							
	Anions							
de la la la la la la la la la la la la la	—Cations————							
	METALS RCRA 7 To	tal						
	Copper	•						
	Fluoride							
	Iron							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	pН							
	Total Dissolved Solids	(TDS)						
	Zinc	····						
0204106-10	South DW	WATER		8/2/02 13:05		8/2/02 16:35	See COC	See COC
La	b Testing:	Rejected:	No		Temp:	-1.5 C		

Anions

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204106

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Zinc

Project Name: Champion Technologies

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

		•				
Lab ID:	Sample:	Matrix:	Date / Time Collected	Date / Time Received	Container	<u>Preservative</u>
	Cations					1.00011402.0
	METALS RCRA 7 To	otal				
	Copper					
	Fluoride					
	Iron					
	Manganese					
	Mercury, Total			•		
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	Zinc					
0204106-11	Champion DW	WATER	8/2/02 13:10	8/2/02 16:35	See COC	See COC
	ab Testing:	Rejected: No	Tem	p: -1.5 C		
	Anions					
	Cations					
	METALS RCRA 7 To	otal				
	Copper					
	Fluoride					
	Iron					
and the state of t	Manganese	THE PROPERTY OF THE PROPERTY O		· · · · · · · · · · · · · · · · · · ·		
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					

ENVIRONMENTAL LAB OF I, LTD.

Pg 1 of 3

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Water

Sample Condition: Intact/ Iced/ HCl/ -1.5 deg. C

Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02

Analysis Date: 08/06/02

ELT#	FIELD CODE	GRO C6-C10 mg/L	DRO >C10-C35 mg/L	TPH C6-C35 mg/L	
0204106-06	MW 6	<3.00	<3.00	<3.00	

% IA % EA **BLANK**

94.5 96.3 <3.00

METHODS: Modified 8015 C6-C35

<3.00

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

<3.00

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

C6-C8

mg/L

<3.00

SampleType: Water

Sample Condition: Intact/ Iced/ HCl/ -1.5 deg. C

FIELD CODE

MW 6

Project Name: Champion Technology Inc.

Project #: CH 2100

ELT#

0204106-06

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02

Analysis Date: 08/06/02

<3.00

	ALIPHATICS			
>C8-C10	>C10-C12	>C12-C16	>C16-C21	>C21-C35
mg/L	mg/L	mg/L	mg/L	mg/L

<3.00

<3.00

METHODS: Modified 8015 C6-C35

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Water

Sample Condition: Intact/ Iced/ HCI/ -1.5 deg. C

Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02

Receiving Date: 08/02/02 Analysis Date: 08/06/02

		C6-C8	>C8-C10	>C10-C12	>C12-C16	>C16-C21	>C21-C35
ELT#	FIELD CODE	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
0204106-06	MW 6	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00

METHODS: Modified 8015 C6-C35

Page 1 of 3

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

D. Box 4845 lidland, TX 79704 Order#:

G0204106 CH 2100

Project: Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab-ID:

0204106-07

MW7 Sample-ID:

Date Collected

Date Received

Date Prepared

Date Analyzed

Matrix

Sample Amount Dilution Factor

Method 8260B

Method Blank

8/2/02 7:40

8/2/02 16:35

8/13/02 17:54

WATER

Analyst CK

0002806-02

8260B Volatiles List

Parameter	Result µg/L	RL	Parameter	Resu μg/L		R	ST.
Dichlorodifluoromethane	<1	1.00	Chlorobenzene	<1		1.	.00
Chloromethane	<1	1.00	1,1,1,2-Tetrachloroethane	<1		1.	.00
Vinyl chloride	<1	1.00	EthylBenzene	<1		1.	.00
Bromomethane	<1	1.00	m,p-Xylene	<1		1.	.00
Chloroethane	<1	1.00	o-Xylene	<1		1.	.00
Trichlorofluoromethane	<1	1.00	Styrene	<1	···	1.	.00
1,1-Dichloroethene	<1	1.00	Bromoform	<1		1.0	.00
Acetone	<1	1.00	trans-1,4-Dichloro-2-butene	<1		1.0	.00
Iodomethane	<1	1.00	Isopropylbenzene	<1		1.0	.00
Carbon disulfide	<1	1.00	1,2,3-Trichloropropane	<1		1.0	.00
Methylene chloride	<1	1.00	1,1,2,2-Tetrachloroethane	<1		1.0	.00
МТВЕ	<1	1.00	Bromobenzene	<1		1.0	.00
trans-1,2-dichloroethylene	<1	1.00	n-Propylbenzene	<1	<1		.00
Acrylonitrile	<1	1.00	2-Chlorotoluene	<1	<1		.00
-Dichloroethane	<1	1.00	1,3,5-Trimethylbenzene	<1		1.5	.00
hyl acetate	<1	1.00	4-Chlorotoluene	<1		1.0	.00
cis-1,2-Dichloroethene	<1	1.00	tert-Butylbenzene	<1		1.0	.00
2-Butanone (MEK)	<1	1.00	1,2,4-Trimethylbenzene	<1		1.0	.00
Bromochloromethane	<1	1.00	sec-Butylbenzene	<1		1.0	.00
Chloroform	<1	1.00	1,3-Dichlorobenzene	<1		1.0	00
1,1,1-Trichloroethane	<1	1.00	p-Isopropyltoluene	<1		1.0	.00
2,2-Dichloropropane	<1	1.00	1,4-Dichlorobenzene	<1		1.0	.00
Carbon tetrachloride	<1	1.00	n-Butylbenzene	<1		1.0	.00
1,1-Dichloropropene	<1	1.00	1,2-Dichlorobenzene	<1		1.0	00
1,2-Dichloroethane	<1	1.00	1,2-Dibromo-3-chloropropane	<1		- 1.0	00
Benzene	<1	1.00	1,2,4-Trichlorobenzene	<1		1.0	.00
Trichloroethene	<1	1.00	Hexachlorobutadiene	<1		1.0	00
1,2-Dichloropropane	<1	1.00	Naphthalene	<1		1.0	.00
Dibromomethane	<1	1.00	1,2,3-Trichlorobenzene	<1		1.0	.00
Bromodichloromethane	<1	1.00	Surrogates	% Recovered	loc r:	mito (0/)	i
2-Chloroethyl vinyl ether	<1	1.00			 	mits (%)	ł
cis-1,3-Dichloropropene	<1	1.00	Dibromofluoromethane	106%	53	144	l
4-Methyl-2-pentanone	<1	1.00	1,2-dichloroethane-d4	77%	57	147	ĺ
		 	Toluene-d8	99%	64	128	í

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Toluene-d8 99% 64 128 4-Bromofluorobenzene 94% 158

RL = Reporting Limit

Toluene

2-Hexanone

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Tetrachloroethene

1,3-Dichloropropane

1,2-Dibromoethane

Dibromochloromethane

Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director

<1

<1

<1

<1

<1

<1

<1

<i

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab-ID:

0204106-08

MW8 Sample-ID:

Date Collected

8/2/02

12:05

Date Received

8/2/02

16:35

Date Prepared

Date Analyzed

18:18

8/13/02

Matrix WATER

Sample Amount

1

Dilution

Factor Analyst

Method CK 8260B

Method <u>Blank</u>

0002806-02

8260B Volatiles List

Parameter	Result µg/L	RL	Parameter	Resu µg/L	זת ו
Dichlorodifluoromethane	<1	1.00	Chlorobenzene	<i< td=""><td>1,00</td></i<>	1,00
Chloromethane	<1	1.00	1,1,1,2-Tetrachloroethane	<1	1.00
Vinyl chloride	<1	1.00	EthylBenzene	<1	1.00
Bromomethane	<1	1.00	m,p-Xylene	<1	1.00
Chloroethane	<1	1,00	o-Xylene	<1	1.00
richlorofluoromethane	<1	1.00	Styrene	<1	1.00
1,1-Dichloroethene	<1	1.00	Bromoform	<1	1.00
Acetone	<1	1.00	trans-1,4-Dichloro-2-butene	<1	1.00
odomethane	<1	1.00	Isopropylbenzene	<1	1,00
Carbon disulfide	<1	1.00	1,2,3-Trichloropropane	<1	1.00
Methylene chloride	<1	1.00	1,1,2,2-Tetrachloroethane	<1	1,00
MTBE	<1	1.00	Bromobenzene	<1	1.00
rans-1,2-dichloroethylene	<1	1,00	n-Propylbenzene	<1	1.00
Crylonitrile	<1	1.00	2-Chlorotoluene	<1	1.00
-Dichloroethane	<1	1.00	1,3,5-Trimethylbenzene	<1	1.00
inyl acetate	<1	1.00	4-Chlorotoluene	<1	1.00
is-1,2-Dichloroethene	<1	1.00	tert-Butylbenzene	<1	1.00
-Butanone (MEK)	<1	1.00	1,2,4-Trimethylbenzene	<1	1.00
Bromochloromethane	<1	1.00	sec-Butylbenzene	<1	1.00
Chloroform	1.87	1.00	1,3-Dichlorobenzene	<1	1.00
,1,1-Trichloroethane	<1	1.00	p-Isopropyltoluene	<1	1.00
2,2-Dichloropropane	<1	1.00	1,4-Dichlorobenzene	<1	1.00
Carbon tetrachloride	<1	1.00	n-Butylbenzene	<1	1.00
,1-Dichloropropene	<1	1.00	1,2-Dichlorobenzene	<1	1.00
,2-Dichloroethane		1.00	1,2-Dibromo-3-chloropropane	<1	1.00
Benzene	<1	1.00	1,2,4-Trichlorobenzene	<1	1.00
Frichloroethene	<1	1.00	Hexachlorobutadiene	<1	1,00
,2-Dichloropropane	<1	1.00	Naphthalene	<1	1.00
Dibromomethane	<1	1.00	1,2,3-Trichlorobenzene	<1	1.00
Bromodichloromethane	<1	1.00	Surrogates	% Recovered	QC Limits (%)
2-Chloroethyl vinyl ether	<1	1.00	Dibromofluoromethane		
cis-1,3-Dichloropropene	<1	1.00		108%	53 144
		T	- 11.2-dichloroethane-d4	75%	57 147

Surrogates	% Recovered	QC Limits (%)		
Dibromofluoromethane	108%	53	144	
1,2-dichloroethane-d4	75%	57	147	
Toluene-d8	99%	64	128	
4-Bromofluorobenzene	93%	47	158	

RL = Reporting Limit

4-Methyl-2-pentanone

1,1,2-Trichloroethane

Tetrachloroethene

1,3-Dichloropropane Dibromochloromethane

1,2-Dibromoethane

trans-1,3-Dichloropropene

Toluene

2-Hexanone

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Ph: 915-563-1800

<1

<1

<1

<1

<1

<1

<1

<1

<1

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

ANALYTICAL REPORT

Todd Choban

Environmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab-ID:

0204106-09

Sample-ID: MW9

Date Collected

Date Received

Date Prepared

Date Analyzed

Matrix

Sample Amount Dilution **Factor**

Analyst Method

Method Blank

8/2/02 9:42

8/2/02 16:35

8/13/02 18:42

WATER

1

CK

8260B

0002806-02

8260B Volatiles List

Parameter	Result	RL	Parameter		Resu µg/L		R	T.
Dichlorodifluoromethane	<1	1.00	Chlorobenzene		<1		1.0	00
Chloromethane	<1	1.00	1,1,1,2-Tetrachloroethane		<1		1.0	00
Vinvl chloride	<1	1.00	EthylBenzene	EthylBenzene			1.6	00
Bromomethane	<1	1.00	m,p-Xylene		<1		1.0	00
Chloroethane	<1	1.00	o-Xylene		<1		1.0	00
Trichlorofluoromethane	<1	1.00	Styrene		<1		1.6	00
1.1-Dichloroethene	<1	1.00	Bromoform		<1		1.0	00
Acetone	<1	1.00	trans-1,4-Dichloro-2-butene		<1		1.0	00
Iodomethane	<1	1.00	Isopropylbenzene	<1		1.0	00	
Carbon disulfide	<1	1.00	1,2,3-Trichloropropane	***	<1		1.0	00
Methylene chloride	<1	1.00	1,1,2,2-Tetrachloroethane	<1		1.0	00	
МТВЕ	<1	1.00	Bromobenzene	<1		1.0	00	
rans-1,2-dichloroethylene	<1	1.00	n-Propylbenzene	<1		1.0	00	
Acrylonitrile	<1	1.00	2-Chlorotoluene	<1		1.0	00	
I-Dichloroethane	<1	1.00	1,3,5-Trimethylbenzene	<1	_	1.0	00	
inyl acetate	<1	1.00	4-Chlorotoluene	<1		1,0	00	
is-1,2-Dichloroethene	<1	1.00	tert-Butylbenzene		<1		1.0	00
-Butanone (MEK)	<1	1.00	1,2,4-Trimethylbenzene		<1		1.0	00
Bromochloromethane	<1	1.00	sec-Butylbenzene		<1		1.0	00
Chloroform	<1	1.00	1,3-Dichlorobenzene		<1		1.0	00
1,1,1-Trichloroethane	<1	1.00	p-Isopropyltoluene		<1		1.0	00
2,2-Dichloropropane	<1	1.00	1,4-Dichlorobenzene		<1		1.0	00
Carbon tetrachloride	<1	1.00	n-Butylbenzene		<1		1.0	00
,1-Dichloropropene	<1	1.00	1,2-Dichlorobenzene		<i< td=""><td></td><td>1.0</td><td>00</td></i<>		1.0	00
,2-Dichloroethane	<1	1.00	1,2-Dibromo-3-chloropropane		<1		1.0) 0 —
Benzene	<1	1.00	1,2,4-Trichlorobenzene		<1		1.0	00
richloroethene	<1	1.00	Hexachlorobutadiene		<1		1.0	00
,2-Dichloropropane	<1	1.00	Naphthalene		<1		1.0	00
Dibromomethane	<1	1.00	1,2,3-Trichlorobenzene		<1		1.0)0
Bromodichloromethane	<1	1.00	Surrogates	0/2	Recovered	OC Tir	nits (%)	
2-Chloroethyl vinyl ether	<1	1.00	Dibromofluoromethane	1/0				
cis-1.3-Dichloropropene	<1	1.00	Dibromofiuoromethane	\perp	111%	53	144	

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

77% 1,2-dichloroethane-d4 57 147 Toluene-d8 100% 64 128 4-Bromofluorobenzene 98% 47 158

RL = Reporting Limit

4-Methyl-2-pentanone

1,1,2-Trichloroethane

Tetrachloroethene

1,3-Dichloropropane

1,2-Dibromoethane

Dibromochloromethane

trans-1,3-Dichloropropene

Toluene

2-Hexanone

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

<1

<1

<1

<1

<1

<1

<l <1

<1

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project: CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-01

Lab ID: 0204106-01 Sample ID: MW1								
Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	121	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	28.8	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	8.2	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM
Sodium	163	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	1.75	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	0.002	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.038	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	< 0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	<0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	0.028	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	17.6	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.165	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	<0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.093	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Lab ID:

0204106-02

Sample ID:

MW2

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	90.3	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	23.5	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	8.42	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM
Sodium	281	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM

Lab ID:

0204106-03

Sample ID:

MW3

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	116	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	25.1	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	6.87	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 7

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

D. Box 4845

Midland, TX 79704

Order#:

G0204106

Project: CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-03

Sample ID: MW3								
Cations Parameter	Result	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Prepared	Date Analyzed	Analyst
Sodium	218	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.092	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	<0.001	mg/L	I	0.001	3005/6010B		8/9/02	SM
Chromium	0.014	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	. 1	0.011	3005/6010B		8/9/02	SM
Selenium	< 0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	<0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	0.005	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	1.56	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.064	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	<0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.028	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Lab ID:

Silver

0204106-04

Sample ID: Cations

Parameter

MW4

Calcium	99.2	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	22	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	7.48	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM
Sodium	239	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.140	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	<0.001	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.305	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	< 0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM

mg/L

Units

Dilution

<u>Factor</u>

RL

0.002

Method

N/A = Not Applicable

RL = Reporting Limit

< 0.002

Result

Page 2 of 7

SM

3005/6010B

Date

Date

8/9/02

Prepared Analyzed Analyst

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845 Midland, TX 79704 Order#:

G0204106

Project:

CH 2100

Box 4845 Project Name:

Location:

Champion Technologies Hobbs, NM

Lab ID:

0204106-04

Sample ID:

MW4

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Copper	0.003	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	0.777	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.015	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	< 0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.015	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Lab ID:

0204106-05

Sample ID:

MW5

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	80.7	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	21.8	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	9.29	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM
Sodium	240	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.179	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	< 0.001	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.014	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	<0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	<0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM

Test Parameters			Dilution		•	Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Copper	0.006	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	2.91	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.056	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	<0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.069	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Lab ID:

0204106-06

Sample ID:

MW6

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	144	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	28.1	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 3 of 7

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-06

Sample ID:

MW6

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Potassium	8.92	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM
Sodium	251	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	4.78	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	0.003	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.197	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	0.023	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	< 0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	< 0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	0.036	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	47.6	mg/L	10	0.020	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.426	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	< 0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.626	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Lab ID:

0204106-07

Sample ID:

MW7

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	90.4	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	18.5	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	8.84	mg/L	1	0.050	6010B	08/14/2002	8/14/02	SM
Sodium	139	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.068	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	< 0.001	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	<0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 110.0>	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	< 0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	< 0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 4 of 7

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-07

Sample ID:

MW7

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	0.006	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	2.00	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.027	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	< 0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.026	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM
		V-4.				-		

Lab ID:

0204106-08

Sample ID:

MW8

Cations Dilution	Date Date
Parameter Result Units Factor RL Meth	od Prepared Analyzed Analyst
Calcium 110 mg/L 100 1.0 6010	0B 08/14/2002 8/14/02 SM
Magnesium 28.3 mg/L 10 0.010 6010	0B 08/14/2002 8/14/02 SM
Potassium 6.71 mg/L 10 0.50 6010	0B 08/14/2002 8/14/02 SM
Sodium 165 mg/L 100 1.0 6010	OB 08/14/2002 8/14/02 SM

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	800.0	3005/6010B		8/9/02	SM
Barium	0.225	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	< 0.001	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.010	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	<0.004	mg/L	i	0.004	3005/6010B		8/9/02	SM
Silver	< 0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM

Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Copper	0.006	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	5.84	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.082	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	< 0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.306	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Lab ID:

0204106-09

Sample ID:

MW9

Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	158	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	34	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 5 of 7

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Date

Date

Date

Date

Location:

Hobbs, NM

0204106-09

Sample ID:

MW9

	. p	
~	. •	

Cattons			Dilution			Date	Date		
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst	
Potassium	8.47	mg/L	10	0.50	6010B	08/14/2002	8/14/02	SM	
Sodium	120	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM	

METALS RCRA 7 Total

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.402	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	0.002	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.023	mg/L	i	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	<0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	<0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM

Test Parameters

		Date	Date				
Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
0.016	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
14.7	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
0.178	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
< 0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
0.085	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM
	0.016 14.7 0.178 <0.002	0.016 mg/L 14.7 mg/L 0.178 mg/L <0.002 mg/L	0.016 mg/L 1 14.7 mg/L 1 0.178 mg/L 1 <0.002 mg/L 1	Result Units Factor RL 0.016 mg/L 1 0.002 14.7 mg/L 1 0.002 0.178 mg/L 1 .001 <0.002	Result Units Factor RL Method 0.016 mg/L 1 0.002 3005/6010B 14.7 mg/L 1 0.002 3005/6010B 0.178 mg/L 1 .001 3005/6010B <0.002	Result Units Factor RL Method Prepared 0.016 mg/L 1 0.002 3005/6010B 08/06/2002 14.7 mg/L 1 0.002 3005/6010B 08/06/2002 0.178 mg/L 1 .001 3005/6010B 08/06/2002 <0.002	Result Units Factor RL Method Prepared Analyzed 0.016 mg/L 1 0.002 3005/6010B 08/06/2002 8/9/02 14.7 mg/L 1 0.002 3005/6010B 08/06/2002 8/9/02 0.178 mg/L 1 .001 3005/6010B 08/06/2002 8/9/02 <0.002

Lab ID:

0204106-10

Sample ID:	South DW
Cations	

Callons			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Calcium	152	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	29.9	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	7.72	mg/L	1	0.050	6010B	08/14/2002	8/14/02	SM
Sodium	166	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM

Dilution

METALS	RCRA	7	Total
---------------	------	---	-------

Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.066	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	< 0.001	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.004	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	< 0.011	mg/L	1	0.011	3005/6010B		8/9/02	SM
Selenium	<0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	< 0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 6 of 7

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Method

Date

Date

Prepared Analyzed Analyst

Location:

Dilution

Factor

RL

Hobbs, NM

Lab ID:

0204106-10

Sample ID:

South DW

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Copper	0.002	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	0.230	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.006	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	<0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB
Zinc	0.048	mg/L	1	0.001	3005/6010B	08/06/2002	8/9/02	SM

Units

Lab ID:

Zinc

0204106-11

Sample ID: Cations

Parameter

Champion DW

Calcium	137	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
Magnesium	27.4	mg/L	10	0.010	6010B	08/14/2002	8/14/02	SM
Potassium	6.76	mg/L	1	0.050	6010B	08/14/2002	8/14/02	SM
Sodium	130	mg/L	100	1.0	6010B	08/14/2002	8/14/02	SM
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	<0.008	mg/L	1	0.008	3005/6010B		8/9/02	SM
Barium	0.077	mg/L	1	0.001	3005/6010B		8/9/02	SM
Cadmium	< 0.001	mg/L	1	0.001	3005/6010B		8/9/02	SM
Chromium	0.003	mg/L	1	0.002	3005/6010B		8/9/02	SM
Lead	0.012	mg/L	I	0.011	3005/6010B		8/9/02	SM
Selenium	<0.004	mg/L	1	0.004	3005/6010B		8/9/02	SM
Silver	<0.002	mg/L	1	0.002	3005/6010B		8/9/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	0.004	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Iron	0.034	mg/L	1	0.002	3005/6010B	08/06/2002	8/9/02	SM
Manganese	0.005	mg/L	1	.001	3005/6010B	08/06/2002	8/9/02	SM
Mercury, Total	<0.002	mg/L	1	0.002	7470	08/06/2002	8/7/02	MB

mg/L

Approval: CX CY Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

3005/6010B

08/06/2002

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech. Date

8/9/02

N/A = Not Applicable I

RL = Reporting Limit

0.056

Result

Page 7 of 7

SM

0.001

QUALITY CONTROL REPORT

8260B Volatiles List

Order#: G0204106	6
------------------	---

BLANK	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Dichlorodifluorometh	ane-μg/L	0002806-02			<l< td=""><td></td><td></td></l<>		
Chloromethane-µg/L		0002806-02			<1		
Vinyl chloride-µg/L		0002806-02			<1		
Bromomethane-µg/L		0002806-02			<1		
Chloroethane-µg/L		0002806-02			<1		
Trichlorofluoromethan	ıe-μg/L	0002806-02			<1		
1,1-Dichloroethene-µg	g/L	0002806-02			<1		
Acetone-μg/L		0002806-02			<1		
Iodomethane-μg/L		0002806-02			<1		***
Carbon disulfide-µg/L		0002806-02			<1		
Methylene chloride-µ	g/L	0002806-02			<1		
MTBE-μg/L		0002806-02			<1		
trans-1,2-dichloroethy	lene-μg/L	0002806-02			<1		
Acrylonitrile-µg/L		0002806-02			<1		
1,1-Dichloroethane-με	g/L	0002806-02			<1		
Vinyl acetate-μg/L		0002806-02			<1		
cis-1,2-Dichloroethen	e-μg/L	0002806-02			<1		
2-Butanone (MEK)-με	g/L	0002806-02			<1		
chloromethane	μg/L	0002806-02			<1		
oform-μg/L		0002806-02			<1		
1,1,1-Trichloroethane	·μg/L	0002806-02			<1		
2,2-Dichloropropane-	ıg/L	0002806-02			<1		
Carbon tetrachloride-	ıg/L	0002806-02			<1		
1,1-Dichloropropene-	ıg/L	0002806-02			<1		
1,2-Dichloroethane-με	g/L	0002806-02			<1		
Benzene-μg/L		0002806-02			<1		
Trichloroethene-µg/L		0002806-02			<1		
1,2-Dichloropropane-	ıg/L	0002806-02			<1		
Dibromomethane-μg/I		0002806-02			<1		
Bromodichloromethan	e-μg/L	0002806-02			<1		
2-Chloroethyl vinyl et	her-μg/L	0002806-02			<1		···
cis-1,3-Dichloroprope	ne-μg/L	0002806-02			<1		
4-Methyl-2-pentanone	-μg/L	0002806-02			<1		
Γoluene-μg/L		0002806-02			<1		
rans-1,3-Dichloroprop	oene-μg/L	0002806-02			<1		
1,1,2-Trichloroethane-	μg/L	0002806-02			<1		
2-Hexanone-μg/L		0002806-02			<1		
Tetrachloroethene-μg/	L	0002806-02			<1		
1,3-Dichloropropane-	ıg/L	0002806-02			<1		<u> </u>
pochloromethan	e-μg/L	0002806-02			<1		····

QUALITY CONTROL REPORT

NK v	VATER LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
1,2-Dibromoethane-µg/L	0002806-02			<1		
Chlorobenzene-µg/L	0002806-02			<1		
1,1,1,2-Tetrachloroethane-μg	L 0002806-02			<1		, , , , , , , , , , , , , , , , , , ,
EthylBenzene-µg/L	0002806-02			<1		
n,p-Xylene-μg/L	0002806-02			<1		
o-Xylene-μg/L	0002806-02			<1		
Styrene-μg/L	0002806-02			<1		
Bromoform-µg/L	0002806-02			<1		
rans-1,4-Dichloro-2-butene-p	g/L 0002806-02			<1		
sopropylbenzene-µg/L	0002806-02			<1		
,2,3-Trichloropropane-µg/L	0002806-02			<1		
,1,2,2-Tetrachloroethane-µg/	L 0002806-02			<1		
Bromobenzene-µg/L	0002806-02		•	<1		<u> </u>
ı-Propylbenzene-μg/L	0002806-02			<1		
-Chlorotoluene-µg/L	0002806-02			<1	1	
,3,5-Trimethylbenzene-µg/L	0002806-02			<1		
-Chlorotoluene-µg/L	0002806-02			<1		
ert-Butylbenzene-µg/L	0002806-02			<1		
,2,4-Trimethylbenzene-µg/L	0002806-02			<1		
ee_Butylbenzene-µg/L	0002806-02			<1		
chlorobenzene-µg/L	0002806-02			<1		
-Isopropyltoluene-µg/L	0002806-02			<1		
,4-Dichlorobenzene-µg/L	0002806-02			<1		
ı-Butylbenzene-μg/L	0002806-02			<1		
,2-Dichlorobenzene-µg/L	0002806-02			<1		
,2-Dibromo-3-chloropropane	-µg/L 0002806-02			<1		
1,2,4-Trichlorobenzene-µg/L	0002806-02			<1		
lexachlorobutadiene-μg/L	0002806-02			<1		
Naphthalene-µg/L	0002806-02			<1		
1,2,3-Trichlorobenzene-µg/L	0002806-02			<1		
CONTROL	VATER LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Vinyl chloride-μg/L	0002806-03		50	39.1	78.2%	
,1-Dichloroethene-µg/L	0002806-03		50	47.1	94.2%	
2-Butanone (MEK)-μg/L	0002806-03		100	80	80.%	
Chloroform-µg/L	0002806-03		50	53.4	106.8%	
Carbon tetrachloride-µg/L	0002806-03		50	49.8	99.6%	
,2-Dichloroethane-µg/L	0002806-03		50	44.8	89.6%	
Benzene-μg/L	0002806-03		50	52.9	105.8%	
Trichloroethene-μg/L	0002806-03		50	33.8	67.6%	
Tetrachloroethene-μg/L	0002806-03		50	31.7	63.4%	
benzene-µg/L	0002806-03		50	49.7	99.4%	

QUALITY CONTROL REPORT

VTROL WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
1,4-Dichlorobenzene-µg/L	0002806-03		50	44.9	89.8%	
CONTROL DUP WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Vinyl chloride-μg/L	0002806-04		50	47.1	94.2%	18.6%
1,1-Dichloroethene-µg/L	0002806-04		50 ·	49.4	98.8%	4.8%
2-Butanone (MEK)-μg/L	0002806-04		100	86.6	86.6%	7.9%
Chloroform-µg/L	0002806-04		50	56.3	112.6%	5.3%
Carbon tetrachloride-µg/L	0002806-04		50	59.7	119.4%	18.1%
1,2-Dichloroethane-µg/L	0002806-04		50	45.1	90.2%	0.7%
Benzene-μg/L	0002806-04		50	55.4	110.8%	4.6%
Trichloroethene-µg/L	0002806-04		50	39.5	79.%	15.6%
Tetrachloroethene-μg/L	0002806-04		50	38.9	77.8%	20.4%
Chlorobenzene-µg/L	0002806-04		50	53.3	106.6%	7.%
1,4-Dichlorobenzene-μg/L	0002806-04		50	44.2	88.4%	1.6%
SRM WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Vinyl chloride-µg/L	0002806-05		50	44.4	88.8%	
1,1-Dichloroethene-µg/L	0002806-05		50	49.7	99.4%	
Chloroform-µg/L	0002806-05		50	51.2	102.4%	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane-μg/L	0002806-05		50	48.3	96.6%	
ne-μg/L	0002806-05		50	49.6	99.2%	
EmylBenzene-µg/L	0002806-05		50	45.4	90.8%	

QUALITY CONTROL REPORT

Cations

BLANK	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0002810-02			< 0.010		
Magnesium-mg/L		0002810-02			<0.001		
Potassium-mg/L		0002810-02			<0.05		
Sodium-mg/L		0002810-02			<0.01		
DUPLICATE	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0204137-02	35.6		34.7		2.6%
Magnesium-mg/L		0204137-02	10.5		10.2		2.9%
Potassium-mg/L	<u></u>	0204137-02	3.02		3.1		2.6%
Sodium-mg/L	· · · · · · · · · · · · · · · · · · ·	0204137-02	47.9		48.3		0.8%
SRM	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0002810-05		2	2.06	103.%	
Magnesium-mg/L		0002810-05		2	2.18	109.%	
Potassium-mg/L		0002810-05		2	1.77	88.5%	
Sodium-mg/L		0002810-05		2	1.79	89.5%	

QUALITY CONTROL REPORT

METALS RCRA 7 Total

BLANK	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0002754-01			<0.008		
Barium-mg/L		0002754-01	· · · · · · · · · · · · · · · · · · ·		<0.001		
Cadmium-mg/L		0002754-01			<0.001		
Chromium-mg/L		0002754-01			<0.002		
Lead-mg/L		0002754-01			<0.011		
Selenium-mg/L		0002754-01			<0.004		
Silver-mg/L		0002754-01			<0.002		
CONTROL	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0002754-02		0.8	0.750	93.8%	
Barium-mg/L		0002754-02		0.2	0.223	111.5%	
Cadmium-mg/L		0002754-02		0.2	0.209	104.5%	
Chromium-mg/L		0002754-02		0.2	0.211	105.5%	
Lead-mg/L		0002754-02		1	1.05	105.%	
Selenium-mg/L	· · · · · · · · · · · · · · · · · · ·	0002754-02	11440	0.4	0.401	100.2%	
Silver-mg/L		0002754-02		0.2	0.207	103.5%	
CONTROL DU	P WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ic-mg/L		0002754-03		0.8	0.781	97.6%	4.%
h-mg/L		0002754-03		0.2	0.222	111.%	0.4%
Cadmium-mg/L		0002754-03		0.2	0.214	107.%	2.4%
Chromium-mg/L		0002754-03		0.2	0.208	104.%	1.4%
Lead-mg/L		0002754-03		1	1.07	107.%	1.9%
Selenium-mg/L		0002754-03		0.4	0.412	103.%	2.7%
Silver-mg/L		0002754-03		0.2	0.203	101.5%	2.%
SRM	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0002754-04		1	1.01	101.%	
Barium-mg/L		0002754-04		1	1.07	107.%	
Cadmium-mg/L	· · · · · · · · · · · · · · · · · · ·	0002754-04		1	1.03	103.%	
Chromium-mg/L		0002754-04		1	0.988	98.8%	
Lead-mg/L		0002754-04		1	1.08	108.%	
Selenium-mg/L		0002754-04		1	1.05	105.%	
Silver-mg/L		0002754-04		0.5	0.496	99.2%	

ENVIRONMENTAL LAB OF \$\frac{1}{2} I, LTD.

"Don't Treat Your Soil Like Dirt!"

E,T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Water

Sample Condition: Intact/ Iced/ -1.5 deg. C

Project Name: Champion Technologies

Project #: CH 2100

Project Location: Hobbs, NM

ELT#: 0204106-07

Sampling Date: 08/02/02 Receiving Date: 08/02/02 Extracted: 08/06/02 Analysis Date: 08/08/02

Field Code: MW 7

	EPA 8270 COMPOUNDS	Reporting Limit	MW 7 Concentration mg/L	CCC %DEV	RPD	% EA .	
							
	N-Nitrosodimethylamine	0.005	ND				•
	Aniline	0.005	ND				
	Phenol	0.005	ND	-29.9	11	20	
7	Bis (2-chloroethyl)ether	0.005	ND	•			
	2-Chlorophenol	0.005	ND		12	50	
	1,3-Dichlorobenzene	0.005	ND				
	1,4-Dichlorobenzene	0.005	ND	-11.1	13	52	
	1,2-Dichlorobenzene	0.005	ND				
)	Benzyi Alcohol	0.005	ND				
	Bis (2-chloroisopropyl) ether	0.005	ND				
	2-Methylphenol	0.005	ND				
	n-Nitroso-di-n-propylamine	0.005	ND		8	76	
	4-Methylphenol	0.005	ND				
	Hexachloroethane	0.005	ND	, ,			
	Nitrobenzene	0.005	ND				
	Isophorone	0.005	ND				
	2-Nitrophenol	0.005	, ND	-7.4			
	- 2,4-Dimethylphenol		ND			a can written a see on a women a ca	
	Bis (2-chloroethoxy) methan	0.005	ND				
	2,4-Dichlorophenol	0.005	ND	0.0			
	Benzoic acid	0.005	ND			•	
	1,2,4-Trichlorobenzene	0.005	ND		14	55	
	Naphthalene	0.005	ND				
	4-Chloroaniline	0.005	ND				
	Hexachlorobutadiene	0.005	ND	7.0			
	4-Chloro-3-methylphenol	0.005	ND	-7.4	10	55	
	2-Methylnaphthalene	0.005	ND				
	Hexachlorocyclopentadiene	0.005	ND				
	2,4,6-Trichlorophenol	0.005	ND	10.4			
	2,4,5-Trichlorophenol	0.005	ND				
	2-Chloronaphthalene	0.005	ND				
	2-Nitroaniline	0.005	ND				
	Dimethylphthalate	0.005	ND				
	2,6-Dinitrotoluene	0.005	ND			·	

ELT# 0204106-07			_		Page 2 of 2	
	Reporting	Concentration	CCC			
EPA 8270 COMPOUNDS	Limits	mg/L	%DEV	RPD	%EA	Ï
Acenaphthylene	0.005	ND				
3-Nitroaniline	0.005	ND				
Acenaphthene	0.005	ND	-9.2	10	65	
2,4-Dinitrophenol	0.005	ND				
4-Nitrophenol	0.005	ND		20	12	
Dibenzofuran	0.005	ND				
2,4-Dinitrotoluene	0.005	ND,		3	50	
Diethylphthalate	0.005	ND			·	
Fluorene	0.005	ND				
4-Chlorophenyl phenyl ether	0.005	ND				
4-Nitroaniline	0.005	ND	•			
Azobenzene	0.005	ND				
4,6-Dinitro-2-methylphenol	0.005	ND				
n-Nitrosodiphenylamine	0.005	ND	-17.7			
4-Bromophenyl phenyl ether	0.005	ND				
Hexachlorobenzene	0.005	ND				
Pentachlorophenol	0.005	ND	31.7#	3	55	
Phenanthrene	0.005	ND .				
Anthracene	0.005	ND				
Carbazole	0.005	ND				
Di-n-butylphthalate	0.005	ND				
Fluoranthene	0.005	ND	-4.1			
Benzidine	0.005	ND				
Pyrene	0.005	ND		6	97	
Butylbenzylphthalate	0.005	ND		•		
Benzo {a} anthracene	0.005	ND				
3,3'-Dichlorobenzidine	0.005	ND				
Chrysene	0.005	ND				
Bis (2-ethylhexyl) phthalate	0.005	0.025		•		
Di-n-octylphthalate	0.005	ND	23.6			
Benzo {b} fluoranthene	0.005	ND				
Benzo {k} fluoranthene	0.005	ND				
Benzo {a} pyrene	0.005	ND	-5.0			
Indeno (1,2,3-c,d) pyrene	0.005	ND				
Dibenzo {a,h} anthracene	0.005	ND				
Benzo {g,h,i} perylene	0:005	- ND				
		•				

SURROGATES	% RECOVERY	·
2-Fluorophenol SURR	24.8	
Phenol-d5 SURR	15.3	
Nitrobenzene-d5 SURR	83.3	
2-Fluorobiphenyl SURR	75.3	Method: SW 846-8270C, 3510
2,4,6-Tribromophenol SURR	51.3	ND = not detected at report limit
P-Terphenyl-d14 SURR	105	·

Celey D. Keene Raland K. Tuttle

ENVIRONMENTAL LAB OF \$\frac{1}{2} I, Ltd.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Water

Sample Condition: Intact/ Iced/ -1.5 deg. C

Project Name: Champion Technologies

Project #: CH 2100

Project Location: Hobbs, NM

ELT#: 0204106-08

Sampling Date: 08/02/02 Receiving Date: 08/02/02 Extracted: 08/06/02 Analysis Date: 08/08/02

Field Code: MW 8

EPA 8270 COMPOUNDS	Reporting Limit	MW 8 Concentration mg/L	CCC %DEV	RPD	% EA	
N-Nitrosodimethylamine	0.005	ND				
Aniline	0.005	ND				•
Phenol	0.005	ND	-29.9	11	20	
Bis (2-chloroethyl)ether	0.005	ND				
2-Chlorophenol	0.005	ND		12	50	
1,3-Dichlorobenzene	0.005	ND		•		
1,4-Dichlorobenzene	0.005	ND	-11.1	13	52	
1,2-Dichlorobenzene	0.005	ND				
Benzyl Alcohol	0.005	ND				
Bis (2-chloroisopropyl) ether	0.005	ND				
2-Methylphenol	0.005	ND				
n-Nitroso-di-n-propylamine	0.005	ND		8	76	
4-Methylphenol	0.005	ND				
Hexachloroethane	0.005	ND				
Nitrobenzene	0.005	ND				
Isophorone	0.005	ND				
2-Nitrophenol	0.005	ND	-7.4	_		
2,4-Dimethylphenol	0.005	ND				
Bis (2-chloroethoxy) methan	0.005	ND				
2,4-Dichlorophenol	0.005	ND	0.0			
Benzoic acid	0.005	ND				
1,2,4-Trichlorobenzene	0.005	ND		14	55	
Naphthalene	0.005	ND				
4-Chloroaniline	0.005	ND				
Hexachlorobutadiene	0.005	, ND	7.0			
4-Chloro-3-methylphenol	0.005	ND	-7.4	10	55	
2-Methylnaphthalene	0.005	ND				
Hexachlorocyclopentadiene	0.005	ND				
2,4,6-Trichlorophenol	0.005	ND	10.4			
2,4,5-Trichlorophenol	0.005	ND				
2-Chloronaphthalene	0.005	ND				
2-Nitroaniline	0.005	ND				
Dimethylphthalate	0.005	ND				
2,6-Dinitrotoluene	0.005	ND				

	ELT# 0204106-08		MW 8			Page 2 of 2	
		Reporting	Concentration	CCC			
7	EPA 8270 COMPOUNDS	Limits	mg/L	%DEV	RPD	%EA	
	Acenaphthylene	0.005	ND				
	3-Nitroaniline	0.005	ND				
	Acenaphthene	0.005	ND	-9.2	10	65	
	2,4-Dinitrophenol	0.005	ND	*			
	4-Nitrophenol	0.005	ND		20	12	
	Dibenzofuran	0.005	ND				
	2,4-Dinitrotoluene	0.005	ND		3	50	
	Diethylphthalate	0.005	ND				
	Fluorene	0.005	ND				
	4-Chlorophenyl phenyl ether	0.005	ND				
	4-Nitroaniline	0.005	ND				
	Azobenzene	0.005	ND				
	4,6-Dinitro-2-methylphenol	0.005	ND				
	n-Nitrosodiphenylamine	0.005	ND	-17.7			
	4-Bromophenyl phenyl ether		ND				
	Hexachlorobenzene	0.005	ND				
	Pentachlorophenol	0.005	ND	31.7#	3	55	
	Phenanthrene	0.005	, ND				
	Anthracene	0.005	ND				
	Carbazole	0.005	ND				
	Di-n-butylphthalate	0.005	ND				
	Fluoranthene	0.005	ND	-4.1			
	Benzidine	0.005	. ND				
	Pyrene	0.005	ND .		6	97	
	Butylbenzylphthalate	0.005	ND				
	Benzo {a} anthracene	0.005	ND				
	3,3'-Dichlorobenzidine	0.005	ND				
	Chrysene	0.005	ND				
	Bis (2-ethylhexyl) phthalate	0.005	0.005				
	Di-n-octylphthalate	0.005	. ND	23.6			
	Benzo {b} fluoranthene	0.005	ND				
	Benzo {k} fluoranthene	0.005	ND				
	Benzo {a} pyrene	0.005	ND	-5.0			
	Indeno (1,2,3-c,d) pyrene	0.005	ND				
_	_Dibenzo {a,h} anthracene _	0.005	ND				
_	Benzo {g,h,i} perylene	0.005	ND			· · · · · · · · · · · · · · · · · · ·	-

SURROGATES	% RECOVERY	
2-Fluorophenol SURR	21.6	
Phenol-d5 SURR	14.2	
Nitrobenzene-d5 SURR	72.3	
2-Fluorobiphenyl SURR	70.1	Method: SW 846-8270C, 3510
2,4,6-Tribromophenol SURR	45.5	ND = not detected at report limit
P-Terphenyl-d14 SURR	88.8	

Celey D. Keene Raland K. Tuttle

8-14-02

Date

ENVIRONMENTAL LAB OF

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Water

Sample Condition: Intact/ Iced/ -1.5 deg. C

Project Name: Champion Technologies

Project #: CH 2100

Project Location: Hobbs, NM

ELT#: 0204106-09

Sampling Date: 08/02/02 Receiving Date: 08/02/02 Extracted: 08/06/02 Analysis Date: 08/08/02

Field Code: MW 9

			MW 9	•			
	·	Reporting	Concentration	CCC			
	EPA 8270 COMPOUNDS	Limit	mg/L	%DEV	RPD	% EA	
	N-Nitrosodimethylamine	0.005	ND				
	Aniline	0.005	ND				
	Phenol	0.005	ND	-29.9	11	20	•
	Bis (2-chloroethyl)ether	0.005	ND				
	2-Chlorophenol	0.005	ND		12	50	•
	1,3-Dichlorobenzene	0.005	ND				
	1,4-Dichlorobenzene	0.005	ND	-11.1	13	52	
	1,2-Dichlorobenzene	0.005	ND				
)	Benzyl Alcohol	0.005	ND				
	Bis (2-chloroisopropyl) ether	0.005	ND				
	2-Methylphenol	0.005	ND				
	n-Nitroso-di-n-propylamine	0.005	ND		8	76	
	4-Methylphenol	0.005	ND			•	
	Hexachloroethane	0.005	ND			•	
	Nitrobenzene	0.005	ND	·			
	Isophorone	0.005	ND				
_	2-Nitrophenol	0.005	ND	-7.4			
,	2,4-Dimethylphenol	0.005	ND				
	Bis (2-chloroethoxy) methan	0.005	ND		•		
	2,4-Dichlorophenol	0.005	ND	.0.0			
	Benzoic acid	0.005	ND	•			
	1,2,4-Trichlorobenzene	0.005	ND		14	55	
	Naphthalene	0.005	ND				
	4-Chloroaniline	0.005	ND	7.0			
	Hexachlorobutadiene	0.005	ND	7.0	10		
	4-Chloro-3-methylphenol	0.005	ND	-7.4	10	55	
	2-Methylnaphthalene	0.005	ND				
	Hexachlorocyclopentadiene	0.005	ND	10.4			
	2,4,6-Trichlorophenol	0.005	ND	10.4			
	2,4,5-Trichlorophenol	0.005	ND				
	2-Chloronaphthalene	0.005	ND				
	2-Nitroaniline	0.005	ND				
	Dimethylphthalate	0.005	ND				
	2,6-Dinitrotoluene	0.005	ND				

ELT# 0204106-09		MW 9			Page 2 of 2	
	Reporting	Concentration	CCC			
EPA 8270 COMPOUNDS	Limits	mg/L	%DEV	RPD	%EA	
Acenaphthylene	0.005	ND				
3-Nitroaniline	0.005	ND				
Acenaphthene	0.005	ND	-9.2	10	65	
2,4-Dinitrophenol	0.005	ND				
4-Nitrophenol	0.005	ND		20	. 12	
Dibenzofuran	0.005	ND				
2,4-Dinitrotoluene	0.005	ND		3	50	
Diethylphthalate	0.005	ND				
Fluorene	0.005	ND				
4-Chlorophenyl phenyl ether	0.005	ND				
4-Nitroaniline	0.005	ND				
Azobenzene	0.005	ND		•		
4,6-Dinitro-2-methylphenol	0.005	ND				
n-Nitrosodiphenylamine	0.005	ND	-17.7			
4-Bromophenyl phenyl ether	0.005	ND				
Hexachlorobenzene	0.005	ND				
Pentachlorophenol	0.005	ND	31.7#	3	55	
Phenanthrene	0.005	ND				
Anthracene	0.005	ND				
Carbazole	0.005	ND				
Di-n-butylphthalate	0.005	ND				
Fluoranthene	0.005	ND	-4.1			
Benzidine	0.005	. ND				
Pyrene	0.005	ND		6	97	
Butylbenzylphthalate	0.005	ND				
Benzo {a} anthracene	0.005	ND				
3,3'-Dichlorobenzidine	0.005	ND				
Chrysene	0.005	ND				
Bis (2-ethylhexyl) phthalate	0.005	0.031				
Di-n-octylphthalate	0.005	ND	23.6		•	
Benzo {b} fluoranthene	0.005	ND				
Benzo {k} fluoranthene	0.005	ND				
Benzo {a} pyrene	0.005	ND	-5.0		•	
Indeno (1,2,3-c,d) pyrene	0.005	ND				
Dibenzo {a,h} anthracene	0.005	ND				
Benzo {g,h,l} perylene	0.005	ND -				
		•				

SURROGATES	% RECOVERY	
2-Fluorophenol SURR	22.9	
Phenol-d5 SURR	14.2	
Nitrobenzene-d5 SURR	62.2	
2-Fluorobiphenyl SURR	57. 4	Method: SW 846-8270C, 3510
2,4,6-Tribromophenol SURR	39.4	ND = not detected at report limit
P-Ternhenyl-d14 SURR	84.0	•

Celey D. Keene Raland K. Tuttle

8-14-02

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-01

Sample ID:

MW1

Anions		Date					
Parameter	Result	<u>Units</u>	<u>Factor</u>	RL	Method	Analyzed	Analyst
Bicarbonate Alkalinity	281	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	408	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	< 0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	298	mg/L	25	12.5	375.4	8/12/02	MB

Test Parameters Parameter	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Fluoride	3.70	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	1.40	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Lab ID:

0204106-02

Sample ID:

MW2

Anions			Date				
Parameter	Result	Units	Dilution <u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	281	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	372	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	271	mg/L	8.3	4.15	375.4	8/12/02	MB

Test Parameters Parameter	Result	Units	Dilution <u>Factor</u>	<u>RL</u> -	Method	Date Analyzed	Analyst
Fluoride	3.74	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	1.70	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Lab ID:

0204106-03

Sample ID:

MW3

Anions		Date					
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	233	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	381	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	266	mg/L	8.3	4.15	375.4	8/12/02	MB

RL = Reporting Limit

N/A = Not Applicable

Page 1 of 5

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

6. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-03

Sample ID:

MW3

Test Parameters Parameter	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analyst
1 al allicei		Cirits	Pactor	KL	Method	Anatyzeu	Analyst
Fluoride	2.38	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	0.70	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Lab ID:

0204106-04

Sample ID:

MW4

Anions			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	226	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	< 0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	354	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	256	mg/L	8.3	4.15	375.4	8/12/02	MB

Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Fluoride	2.42	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	1.20	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Lab ID:

0204106-05

Sample ID:

MW5

Antons			Dilution		······································	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	254	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	346	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	233	mg/L	8.3	4.15	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	3.08	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	<0.50	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	< 0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Page 2 of 5

ANALYTICAL REPORT

Todd Choban

pironmental Technology Group, Inc.

5. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-06

Sample ID:

MW6

Anions			Dilution	***		Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	<u>Analyzed</u>	<u>Analyst</u>
Bicarbonate Alkalinity	320	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	443	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	< 0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	270	mg/L	8.3	4.15	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	2.52	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	0.90	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	< 0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Lab ID:

0204106-07

Sample ID:

Anions

MW7

Parameter	Result	<u>Units</u>	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>	
Bicarbonate Alkalinity	204	mg/L	1	2.00	310.1	8/3/02	SB	
Carbonate Alkalinity	< 0.10	mg/L	1	0.10	310.1	8/3/02	SB	
Chloride	239	mg/L	1	5.00	9253	8/3/02	SB	
Hydroxide Alkalinity	< 0.10	mg/L	1	0.10	310.1	8/3/02	SB	
SULFATE, 375.4	248	mg/L	8.3	4.15	375.4	8/12/02	MB	
Test Parameters			Dilution			Date		
Parameter	- Result	<u>Units</u>	- Factor	<u>RL</u> .	Method _	Analyzed	<u>Analyst</u>	
Fluoride	1.94	mg/L	2	0.040	340.1	8/13/02	MB	-
Nitrogen, Nitrate	1.40	mg/L	1	0.5	353.3	8/3/02	SB	
Nitrogen, Nitrite	< 0.001	mg/L	1	0.0010	354.1	8/3/02	SB	
pH	7.12	pH Units	1	N/A	150.1	8/3/02	SB	
Total Dissolved Solids (TDS)	889	mg/L	1	5.0	160.1	8/5/02	SB	

Dilution

Lab ID:

0204106-08

Sample ID:

MW8

		Dilution			Date	
Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
254	mg/L	1	2.00	310.1	8/3/02	SB
<0.10	mg/L	1	0.10	310.1	8/3/02	SB
257	mg/L	1	5.00	9253	8/3/02	SB
< 0.10	mg/L	1	0.10	310.1	8/3/02	SB
	254 <0.10 257	254 mg/L <0.10 mg/L 257 mg/L	Result Units Factor 254 mg/L 1 <0.10	Result Units Factor RL 254 mg/L 1 2.00 <0.10	Result Units Factor RL Method 254 mg/L 1 2.00 310.1 <0.10	Result Units Factor RL Method Analyzed 254 mg/L 1 2.00 310.1 8/3/02 <0.10

RL = Reporting Limit

N/A = Not Applicable

Page 3 of 5

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-08

Sample ID:

MW8

Anions Parameter	<u>Result</u>	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
SULFATE, 375.4	274	mg/L	8.3	4.15	375.4	8/12/02	МВ
Test Parameters Parameter	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Fluoride	2.46	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	1.80	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB
pH	7.22	pH Units	1	N/A	150.1	8/3/02	SB
Total Dissolved Solids (TDS)	1150	mg/L	1	5.0	160.1	8/5/02	SB

Lab ID:

0204106-09

Sample ID:

Anions

MW9

Parameter	Result	<u>Units</u>	Factor	RL	Method	Analyzed	Analyst	
Bicarbonate Alkalinity	234	mg/L	1	2.00	310.1	8/3/02	SB	
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB	
Chloride	346	mg/L	1	5.00	9253	8/3/02	SB	
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB	
SULFATE, 375.4	216	mg/L	8.3	4.15	375.4	8/12/02	MB	
Test Parameters			Dilution			Date		
Darameter	Docult	Ilnite	Factor	RI.	Method	Analyzed	Analyst	

Dilution

Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	RL	Method	Analyzed	<u>Analyst</u>
Fluoride	2.00	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	6.80	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	< 0.001	mg/L	1	0.0010	354.1	8/3/02	SB
рН	7.12	pH Units	1	N/A	150.1	8/3/02	SB
Total Dissolved Solids (TDS)	1360	mg/L	1	5.0	160.1	8/5/02	SB

Lab ID:

0204106-10

Sample ID:

South DW

Anions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	169	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	372	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	< 0.10	mg/L	I	0.10	310.1	8/3/02	SB
SULFATE, 375.4	280	mg/L	8.3	4.15	375.4	8/12/02	MB

RL = Reporting Limit

N/A = Not Applicable

Page 4 of 5

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204106

Project:

CH 2100

Project Name:

Champion Technologies

Location:

Hobbs, NM

Lab ID:

0204106-10

Sample ID:

South DW

Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	2.24	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	1.50	mg/L	I	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Lab ID:

0204106-11

Sample ID:

Champion DW

Anions			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bicarbonate Alkalinity	186	mg/L	1	2.00	310.1	8/3/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
Chloride	319	mg/L	1	5.00	9253	8/3/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	8/3/02	SB
SULFATE, 375.4	197	mg/L	8.3	4.15	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst
Fluoride	1.58	mg/L	2	0.040	340.1	8/13/02	MB
Nitrogen, Nitrate	1.60	mg/L	1	0.5	353.3	8/3/02	SB
Nitrogen, Nitrite	<0.001	mg/L	1	0.0010	354.1	8/3/02	SB

Approval: Colon dt June 8 # 08
Raland K. Tuttle, Lab Director, QA Officer Date

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

Anions

Order#:	G0204106
Olucin.	COLOTIO

		Allio		Order#: G0204106				
BLANK WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD		
Bicarbonate Alkalinity-mg/L	0002706-01			<2.00				
Carbonate Alkalinity-mg/L	0002708-01			<0.10				
Chloride-mg/L	0002715-01			<5.00				
Hydroxide Alkalinity-mg/L	0002710-01			<0.10				
SULFATE, 375.4-mg/L	0002773-01			<0.5				
SULFATE, 375.4-mg/L	0002775-01			< 0.50				
DUPLICATE WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD		
Bicarbonate Alkalinity-mg/L	0204106-01	281		280		0.4%		
Carbonate Alkalinity-mg/L	0204106-01	0		<0.10		0.%		
Hydroxide Alkalinity-mg/L	0204106-01	0		<0.10		100.%		
SULFATE, 375.4-mg/L	0204072-01	150		147		2.%		
SULFATE, 375.4-mg/L	0204106-03	266		264		0.8%		
MS WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD		
Chloride-mg/L	0204091-01	93	250	337	97.6%			
MSD WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD		
Chloride-mg/L	0204091-01	93	250	337	97.6%	0.%		
M WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD		
Bicarbonate Alkalinity-mg/L	0002706-04		0.05	0.0496	99.2%			
Carbonate Alkalinity-mg/L	0002708-04		0.05	0.0496	99.2%			
Chloride-mg/L	0002715-04		5000	4960	99.2%			
Hydroxide Alkalinity-mg/L	0002710-04		0.05	0.0496	99.2%			
SULFATE, 375.4-mg/L	0002773-04		50	48.3	96.6%			
SULFATE, 375.4-mg/L	-0002775-04		50	48.5	97.%			

QUALITY CONTROL REPORT

Test Parameters

BLANK	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/L		0002790-01			<0.002		
Fluoride-mg/L		0002795-01			< 0.020		
ron-mg/L		0002790-01			<0.002		***************************************
Manganese-mg/L		0002790-01			<.001		
Mercury, Total-mg/L		0002732-01	,		<0.002		
Nitrogen, Nitrate-mg/L		0002719-01			1.35		
Nitrogen, Nitrite-mg/L		0002720-01			<0.001		
H-pH Units		0002727-01			6.05		
Total Dissolved Solids (TI	S)-mg/L	0002734-01			<5.00		
Zinc-mg/L		0002790-01			<0.001		
DUPLICATE	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/L		0204106-01	3.7		3.50		5.6%
Nitrogen, Nitrate-mg/L		0204106-01	1.4		1.35		3.6%
Nitrogen, Nitrite-mg/L		0204106-01	0		<0.001		100.%
H-pH Units	<u></u>	0204106-07	7.12		7.12		0.%
Total Dissolved Solids (TI	S)-mg/L	0204106-07	889		923		3.8%
MS	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
-mg/L		0204106-11	0.004	0.2	0.206	101.%	
ron-mg/L		0204106-11	0.034	0.2	0.266	116.%	
Manganese-mg/L		0204106-11	0.005	0.2	0.234	114.5%	
Mercury, Total-mg/L		0204092-01	0	0.015	0.014	93.3%	
Zinc-mg/L		0204106-11	0.056	0.2	0.261	102.5%	
MSD	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/L		0204106-11	0.004	0.2	0.204	100:%	1.%
ron-mg/L		0204106-11	0.034	0.2	0.261	113.5%	1.9%
Manganese-mg/L		0204106-11	0.005	0.2	0.226	110.5%	3.5%
Mercury, Total-mg/L		0204092-01	0	0.015	0.014	93.3%	0.%
Zinc-mg/L		0204106-11	0.056	0.2	0.251	97.5%	3.9%
SRM	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/L		0002790-04		1	1.00	100.%	
luoride-mg/L		0002795-04		1	1.10	110.%	
ron-mg/L		0002790-04		1	1.04	104.%	
Manganese-mg/L		0002790-04		1	1.07	107.%	
Mercury, Total-mg/L		0002732-04		0.015	0.017	113.3%	
Nitrogen, Nitrate-mg/L		0002719-04		2	1.9	95.%	
Nitrogen, Nitrite-mg/L		0002720-04	· · · · · · · · · · · · · · · · · · ·	0.25	0.25	100.%	·
Units		0002727-04		7	7.03	100.4%	

QUALITY CONTROL REPORT

WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Zinc-mg/L	0002790-04		1	1.10	110.%	

ON MONE TOLP Volume AND TEN SOUL TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Semilar TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Volume AND TOLP Semilar TOLP Semil	JEST
Company Name & Address: ETGT PO. Box 4845 MIDLAND TX 79704 Project R: CH 2100 CHAMPION TECHNOLOGIES Sampler Signature: HOBBS NM MATRIX PRESERVATIVE SAMPLING OLLAB # FIELD CODE CHAMPION TO DATE BY SECOND MATRIX PRESERVATIVE SAMPLING ONLY ON MW ON MW LAB # FIELD CODE ON MW A CONDENS AND A SECOND MATRIX PRESERVATIVE SAMPLING ON MW A CONDENS AND MATRIX PRESERVATIVE SAMPLING ON MW A CONDENS AND MATRIX PRESERVATIVE SAMPLING ON MW A CONDENS AND MATRIX PRESERVATIVE SAMPLING ON MATRIX PRESERVATIVE SAMPLING ON MATRIX PRESERVATIVE SAMPLING A CONDENS AND MATRIX PRESERVATIVE SAMPLING ON MATRIX PRESERVATIVE SAMPLING A CONDENS AND MATRIX PRESERVATIVE SAMPLING ON MATRIX PRESERVATIVE SAMPLING A CONDENS AND MATRIX PRESERVATIVE SAMPLING ON MATRIX PRESERVATIVE SAMPLING A CONDENS AND MATRIX PRE	
Project #: Project Location: P	
Project Name: CH 2100 CHAMPISM FECHNOLOGIES Sampler Signature: MODE LAB# LOTE Metals Ag As Bs Cd Ci Pb H 418.1 CLP Notalines TOLP Notalines TOLP Semi Voladiles TOLP Notalines TOLP Semi Voladiles TOLP Semi Vo	
Project Name: CH 2100 CHAMPISM FECHNOLOGIES Froject Location: Sampler Signature: MATRIX PRESERVATIVE METHOD LAB# (LAB USE) ONLY	1.
Project Location: CONTAINER CONTAINER CONTAINER CONTAINER	
AND SEMI-SEMI-SEMI-SEMI-SEMI-SEMI-SEMI-SEMI-	
TOLP Volume IA MONE OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER TOLP Volatified TOLP Volatified TOLP Volatified TOLP Volatified TOLP Volatified TOLP Semil Volatified TOLP Semil Volatified TOLP Volatified TOLP Semil Volatified TOLP Volatified TOLP Semil Volatified TOLD Semil Vol	A
TOLP Volume IA MONE OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER TOLP Volatified TOLP Volatified TOLP Volatified TOLP Volatified TOLP Volatified TOLP Semil Volatified TOLP Semil Volatified TOLP Volatified TOLP Semil Volatified TOLP Volatified TOLP Semil Volatified TOLD Semil Vol	
01 mw / 2 L.5 X X X X 8-2 1035 X X	TANDEN D
01 mw / 2 L. 5 X X X X 8-2 1035 X X	TANKE CCH
01 mw / 2 L.5 X X X X 8-2 1035 X X	
	1 12
02 mu 2 2 54 0815 XX	X
03 mw 3 2 54 845 XX	X
04 mw 4 2 54 1147 1147 XX	X
05 MW 5 2 .64 0910 XX	X
06 mu 6 6 54 1 1115 12 12 12 12 12 12 12 12 12 12 12 12 12	
07 mw 7 5 5 1 0740 X X X X X X	X
08 Mm 8 9 5 1 205 X X X X X X X	1 1 2
09 MW9 5 55 XXXXXXX	X
10 SOUTH DW 2 .54 XX	X
11 CHAMPION DW 3 .5 N NNN V 1310 XX	X
Relinquished by: Date: Times: Received by: REMARKS Occ - 1 Coc + Rush oscilysis	POMWE LOG
Simor (ass 8/2/02 320) 320 DI TOH 1005, 1006 ON M	w 8
Simor Case 8/2/02 320 Received by: Relinquished by: Date: Received by	
135 Savemenan Hold on age mornes or	- 1
Relinquished by: Date: Times: Received by Laboratory: UNTIL NOTIFICATION L- HDFE -NO	r - }
500 ml - 1+DPE W/1	1410-

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204107

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technologies, Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Tin	ne D	ate / Time		
Lab ID:	Sample:	Matrix:		Collected	<u>i</u> _	Received	Container	<u>Preservative</u>
0204107-01	Area 2 Stockpile #1 N.	SOIL		8/2/02		8/2/02	4 oz glass	Ice
	Side			10:42		16:35		
L_{l}	ab Testing:	Rejected:	No		Temp:	-1.5 C		
	8260B TCLP							
	8270C Semivolatile Org	-	CLP					
	METALS RCRA 7 TC	LP						
	RCI							
	Mercury, TCLP							
0204107-02	Area 2 Stockpile #1 S. Side	SOIL		8/2/02 10:30		8/2/02 16:35	4 oz glass	Ice
L	ab Testing:	Rejected:	No		Temp:	-1.5 C		
	8260B TCLP							
	8270C Semivolatile Org	ganics - TC	LP					
	METALS RCRA 7 TCI	_P						
	RCI							
	Mercury, TCLP							
	TPH 418.1 FTIR							
0204107-04	S.S. 1 East Wall/ South 6'	SOIL		8/2/02 7:40		8/2/02 16:35	4 oz glass	Ice
- · · · <u>L</u>	ab Testing:	Rejected:	No -		Temp:	-1.5 C	u	• · · · · · · · · · · · · · · · · · · ·
	8021B/5030 BTEX							
	Anions							
	Cations							
	METALS RCRA 7 Tota	al				•		
	Copper							
	Fluoride							
	Iron							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	TPH 418.1 FTIR							
	Zinc							

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204107

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technologies, Inc.

915-520-4310

Location:

Hobbs, NM

Date / Time

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time

Lab ID:	Sample: S.S. 2 East Wall/ North 6'	Matrix:		Collecte 8/2/02	<u>d</u> _1	Received 8/2/02	Container	<u>Preservative</u>
0204107-05	S.S. 2 East Wall/ North 6	SUIL		7:50		8/2/02 16:35	4 oz glass	Ice
La	b Testing:	Rejected:	No		Temp:	-1.5 C		
	8021B/5030 BTEX							
	Anions							
	Cations							
	METALS RCRA 7 Tota	al						
	Copper							
	Fluoride							
	Iron							•
	Manganese							
_	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	TPH 418.1 FTIR							
	Zinc	- -						
0204107-06	S.S. 3 North Wall 8'	SOIL		8/2/02 8:05		8/2/02 16:35	4 oz glass	Ice
La	b Testing:	Rejected:	No		Temp:	-1.5 C		
	-8021B/5030-BTEX							
	Anions							
	Cations							
	METALS RCRA 7 Tota	ıl						
	Copper							
	Fluoride							
	Iron							
	Manganese							
	Mercury, Total							
	Nitrogen, Nitrate							
	Nitrogen, Nitrite							
	TPH 418.1 FTIR							
	Zinc							

ENVIRONMENTAL LAB OF \$\square I, LTD.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ $-1.5 \ deg \ C$

Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02

TCLP Extraction: 08/05/02

Analysis Date: 08/13/02

Field Code: Area 2 Stockpile #1 N. Side

TCLP Volatile Compounds	REPORT LIMIT	ELT# 0204107-01 mg/L	%EA	CCC %IA	RPD	
✓Benzene	0.001	ND	105		5	
Carbon tetrachloride	0.001	ND	99		18	
√Chlorobenzene	0.001	ND	99		7	
√Chloroform	0.001	ND	107	102	5	
√1,4-Dichlorobenzene	0.001	ND	89		2	
1,2-Dichloroethane	0.001	ND	90		1	
√1,1-Dichloroethylene	0.001	ND	94	99	5	
Methyl ethyl ketone	0.001	. ND	79		8	•
✓Tetrachloroethylene	0.001	ND	63		21#	
	0.001	ND	67		16	
Vinyl chloride	0.001	ND	78	89	19	

System Monitoring Compounds	% RECOVERY
Dibromofluoromethane	110
1,2-dichloroethane-d4	80.5
Toluene-d8	101
4-Bromofluorobenzene	97.9

ND= Not Detected at report limit

Method: EPA SW 846 8260B, 1311

Celey D. Keene Raland K. Tuttle

ENVIRONMENTAL LAB OF \$\square I, LTD.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ -1.5 deg C

Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02

TCLP Extraction: 08/05/02 Analysis Date: 08/13/02

Field Code: Area 2 Stockpile #1 S. Side

		ELT#				
TCLP	REPORT	0204107-02		CCC		
Volatile Compounds	LIMIT	mg/L	%EA	%IA	RPD	
Benzene	0.001	ND	105		5	
Carbon tetrachloride	0.001	ND	99		18	
Chlorobenzene	0.001	ND	99		7	
Chloroform	0.001	ND	107	102	5	
1,4-Dichlorobenzene	0.001	ND	89		2	
1,2-Dichloroethane	0.001	ND	90		1	
1,1-Dichloroethylene	0.001	ND	94	99	5	
Methyl ethyl ketone	0.001	ND	79		8	
Tetrachloroethylene	0.001	ND	63		21#	
Trichloroethylene	0.001	ND	67		16	
Vinyl chloride	0.001	ND	78	89	19	

System Monitoring Compounds	% RECOVERY
Dibromofluoromethane	109
1,2-dichloroethane-d4	81.2
Toluene-d8	101
4-Bromofluorobenzene	96.4

ND= Not Detected at report limit

Method: EPA SW 846 8260B, 1311

Celey D. Keene Raland K. Tuttle

Date

8-16-02

ENVIRONMENTAL LAB OF \$\int_{\circ}\lambda\la

"Don't Treat Your Soil Like Dirt!"_

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ -1.5 deg C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02 TCLP Extraction: 08/05/02

Analysis Date: 08/08/02

Field Code: Area 2 Stockpile #1 N. Side

TCLP SEMIVOLATILE ORGANICS (mg/L)	REG. LIMIT	REPORT LIMIT	ELT# 0204107-01	CCC % DEV	%EA	RPD
√2-Methylphenol	200	0.007	ND			
√4-Methylphenol	200	0.007	ND			
1,4-Dichlorobenzene	7.5	0.007	ND	-11.1	52	13
₩2, 4-Dinitrotoluene	0.13	0.007	ND		50	3
Hexachiorobenzene	0.13	0.007	ND			
√Hexachlor-1, 3-butadien	0.5	0.007	ND	7.0		
∨Hexachloroethane	3	0.007	ND			
∟Nitrobenzene	2	0.007	ND			
✓ Pentachlorophenol	100	0.007	ND	31.7#	55	3
√Pyridine	5 .	0.007	ND			
∠2,4,5-Trichlorophenol	400	0.007	ND			
√2,4,6-Trichlorophenol	2	0.007	ND	10.4		

ND= NOT DETECTED, < REPORTING LIMIT	•
SYSTEM MONITORING COMPOUNDS	% Recovery
2-Fluorophenol	38.6
Phenol-d5	29.5
Nitrobenzene-d5	95.2
2-Fluorobiphenyl	81.6
2,4,6-Tribromophenol	53.1
p-Terphenyl-d14	110

ND = Not detected at report limit

Out of historical ranges

Method: SW 846-8270C,1311

Celey D. Keene Raland K. Tuttle 8-10

ENVIRONMENTAL LAB OF \$\int_{\circ}\$ 1, LTD.

"Don't Treat Your Soil Like Dirt!"

E.T.G.I.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

Sample Type: Soil

Sample Condition: Intact/ Iced/ -1.5 deg C Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02 TCLP Extraction: 08/05/02

Analysis Date: 08/08/02

Field Code: Area 2 Stockpile #1 S. Side

TCLP SEMIVOLATILE ORGANICS (mg/L)	REG. LIMIT	REPORT LIMIT	ELT# 0204107-02	CCC % DEV	%EA	RPD
2-Methylphenol	200	0.007	ND			
4-Methylphenol	200	0.007	ND			
1,4-Dichlorobenzene	7.5	0.007	ND	-11.1	52	13
2, 4-Dinitrotoluene	0.13	0.007	ND		50	3
Hexachlorobenzene	0.13	0.007	ND			_
Hexachlor-1, 3-butadien	0.5	0.007	ND	7.0		
Hexachloroethane	3	0.007	ND			
Nitrobenzene	2	0.007	ND			
Pentachlorophenol	100	0.007	ND	31.7#	55	3
Pyridine	5	0.007	ND			-
2,4,5-Trichlorophenol	400	0.007	ND			
2,4,6-Trichlorophenol	2	0.007	ND	10.4		

ND= NOT DETECTED, < REPORTING LIMIT	
SYSTEM MONITORING COMPOUNDS	% Recovery
2-Fluorophenol	31.3
Phenol-d5	24.9
Nitrobenzene-d5	82.8
2-Fluorobiphenyl	73.7
2,4,6-Tribromophenol	48.8
p-Terphenyl-d14	90.8

ND = Not detected at report limit

Out of historical ranges

Method: SW 846-8270C,1311

Celey D. Keene Raland K. Tuttle

ANALYTICAL REPORT

dd Choban

Order#:

G0204107

ironmental Technology Group, Inc.

Project:

CH 2100

P.O. Box 4845

Project Name:

Champion Technologies, Inc.

Midland, TX 79704

Location:

Hobbs, NM

Lab ID:

0204107-04

Sample ID:

S.S. 1 East Wall/South 6'

8021B/5030 BTEX

				_		
Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	<u>Amount</u>	<u>Factor</u>	Analyst	Method
0002741-02		8/7/02	1	25	CK	8021B
		13:50				

Parameter	Result mg/kg	RL
Benzene	<0.025	0.0010
Ethylbenzene	<0.025	0.0010
Toluene	<0.025	0.0010
p/m-Xylene	<0.025	0.0010
o-Xylene	<0.025	0.0010

Lab ID:

0204107-05

Sample ID:

S.S. 2 East Wall/ North 6'

8021B/5030 BTEX

				_		
Method	Date	Date	Sample	Dilution		
Blank	Prepared	<u>Analyzed</u>	<u>Amount</u>	<u>Factor</u>	Analyst	Method
0002741-02		8/7/02	1	25	CK	8021B
		14:12				

Parameter	Result mg/kg	RL
Benzene	<0.025	0.0010
Ethylbenzene	<0.025	0.0010
Toluene	<0.025	0.0010
p/m-Xylene	<0.025	0.0010
o-Xylene	<0.025	0.0010

ANALYTICAL REPORT

Codd Choban

vironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204107

Project:

CH 2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204107-06

Sample ID:

S.S. 3 North Wall 8'

8021B/5030 BTEX

Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
0002741-02		8/7/02	1	25	CK	8021B
		14-34				

Parameter	Result mg/kg	RL
Benzene	<0.025	0.0010
Ethylbenzene	<0.025	0.0010
Toluene	<0.025	0.0010
p/m-Xylene	<0.025	0.0010
o-Xylene	<0.025	0.0010

Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

rironmental Technology Group, Inc.

5. Box 4845

Midland, TX 79704

Order#:

G0204107

Project: CH 2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204107-01

Sample ID:

Area 2 Stockpile #1 N. Side

METALS	RCRA 7 TCLP			Dilution			Date	Date	
Parameter		Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic		<0.008	mg/L	1	0.008	1311/6010B	08/08/2002	8/9/02	SM
Barium		0.333	mg/L	1	0.001	1311/6010B	08/08/2002	8/9/02	SM
Cadmium		< 0.001	mg/L	1	0.001	1311/6010B	08/08/2002	8/9/02	SM
Chromium		0.003	mg/L	1	0.002	1311/6010B	08/08/2002	8/9/02	SM
Lead		< 0.011	mg/L	1	0.011	1311/6010 B	08/08/2002	8/9/02	SM
Selenium		< 0.004	mg/L	1	0.004	1311/6010B	08/08/2002	8/9/02	SM
Silver		<0.002	mg/L	1	0.002	1311/6010B	08/08/2002	8/9/02	SM
Test Parai	neters			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Mercury, TC	LP	<0.002	mg/L	1	0.002	1311/7470	08/06/2002	8/7/02	MB
Lab ID:	0204107-02					1.1		-	
Sample ID:	Area 2 Stockpile #1 S. Side				•				

METALS RCRA 7 TCLP			Dilution			Date	Date		
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst	
rsenic	<0.008	mg/L	1	0.008	1311/6010B	08/08/2002	8/9/02	SM	
Barium	0.393	mg/L	1	0.001	1311/6010B	08/08/2002	8/9/02	SM	
Cadmium	< 0.001	mg/L	1	0.001	1311/6010B	08/08/2002	8/9/02	SM	
Chromium	< 0.002	mg/L	1	0.002	1311/6010 B	08/08/2002	8/9/02	SM	
Lead	< 0.011	mg/L	1	0.011	1311/6010B	08/08/2002	8/9/02	SM	
Selenium	<0.004	mg/L	1	0.004	1311/6010B	08/08/2002	8/9/02	SM	
Silver	<0.002	mg/L	1	0.002	1311/6010B	08/08/2002	8/9/02	SM	
Test-Parameters			Dilution -			Date	Date		
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst	
Mercury, TCLP	<0.002	mg/L	1	0.002	1311/7470	08/06/2002	8/7/02	MB	

Lab ID:

0204107-04

Sample ID:

S.S. 1 East Wall/ South 6'

Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	107000	mg/kg	50000	500	6010B	08/10/2002	8/13/02	SM
Magnesium	2350	mg/kg	1000	1.0	6010B	08/10/2002	8/13/02	SM
Potassium	399	mg/kg	100	5.0	6010B	08/10/2002	8/13/02	SM
Sodium	1520	mg/kg	100	1.0	6010B	08/10/2002	8/13/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 3

ANALYTICAL REPORT

Todd Choban

ironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204107

Project:

CH 2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204107-04

Sample ID:

S.S. 1 East Wall/ South 6'

METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	<0.40	mg/kg	50	0.400	3050/6010B	08/05/2002	8/7/02	SM
Barium	88.0	mg/kg	50	0.050	3050/6010B	08/05/2002	8/7/02	SM
Cadmium	0.282	mg/kg	50	0.050	3050/6010B	08/05/2002	8/7/02	SM
Chromium	4.35	mg/kg	50	0.100	3050/6010B	08/05/2002	8/7/02	SM
Lead	1.40	mg/kg	50	0.550	3050/6010B	08/05/2002	8/7/02	SM
Selenium	<0.20	mg/kg	50	0.200	3050/6010B	08/05/2002	8/7/02	SM
Silver	<0.10	mg/kg	50	0.100	3050/6010B	08/05/2002	8/7/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Copper	2.72	mg/kg	50	0.10	3050/6010B	08/05/2002	8/8/02	SM
Iron	4230	mg/kg	500	1.0	3050/6010B	08/05/2002	8/8/02	SM
Manganese	34.6	mg/kg	50	0.050	3050/6010B	08/05/2002	8/8/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	08/06/2002	8/7/02	MB
Zinc	11.2	mg/kg	50	0.050	3050/6010B	08/05/2002	8/8/02	SM

b ID:

0204107-05

ample ID:

S.S. 2 East Wall/ North 6'

Cations			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	54700	mg/kg	10000	100	6010B	08/10/2002	8/13/02	SM
Magnesium	5020	mg/kg	1000	1.0	6010B	08/10/2002	8/13/02	SM
Potassium	626	mg/kg	100	5.0	6010B	08/10/2002	8/13/02	SM
-Sodium	<u>758</u>	mg/kg	100	1.0	6010B	08/10/2002	8/13/02	SM

	The second secon			 				
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	RL	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	<0.40	mg/kg	50	0.400	3050/6010B	08/05/2002	8/7/02	SM
Barium	105	mg/kg	50	0.050	3050/6010B	08/05/2002	8/7/02	SM
Cadmium	0.340	mg/kg	50	0.050	3050/6010B	08/05/2002	8/7/02	SM
Chromium	5.41	mg/kg	50	0.100	3050/6010B	08/05/2002	8/7/02	SM
Lead	1.36	mg/kg	50	0.550	3050/6010B	08/05/2002	8/7/02	SM
Selenium	<0.20	mg/kg	50	0.200	3050/6010B	08/05/2002	8/7/02	SM
Silver	<0.10	mg/kg	50	0.100	3050/6010B	08/05/2002	8/7/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Copper	2.59	mg/kg	50	0.10	3050/6010B	08/05/2002	8/8/02	SM
Iron	4673	mg/kg	500	1.0	3050/6010B	08/05/2002	8/8/02	SM
Manganese	36.6	mg/kg	50	0.050	3050/6010B	08/05/2002	8/8/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 2 of 3

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Mercury, Total

Zinc

Order#:

G0204107

Project:

CH 2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204107-05

Sample ID:

S.S. 2 East Wall/ North 6'

Sample ID:	S.S. 2 East Wall/ North o								
Test Param	eters	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Prepared	Date Analyzed	<u>Analyst</u>
Mercury, Total		< 0.10	mg/kg	50	0.10	7470	08/06/2002	8/7/02	MB
Zinc		12.6	mg/kg	50	0.050	3050/6010B	08/05/2002	8/8/02	SM
Lab ID:	0204107-06								
Sample ID:	S.S. 3 North Wall 8'								
Cations				Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium		53900	mg/kg	10000	100	6010B	08/10/2002	8/13/02	SM
Magnesium		4980	mg/kg	1000	1.0	6010B	08/10/2002	8/13/02	SM
Potassium		530	mg/kg	100	5.0	6010B	08/10/2002	8/13/02	SM
Sodium		1590	mg/kg	100	1.0	6010B	08/10/2002	8/13/02	SM
METALS R	CRA 7 Total			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic		<0.40	mg/kg	50	0.400	3050/6010B	08/05/2002	8/7/02	SM
Barium		93.5	mg/kg	50	0.050	3050/6010B	08/05/2002	8/7/02	SM
Cadmium		0.344	mg/kg	50	0.050	3050/6010B	08/05/2002	8/7/02	SM
Chromium		4.95	mg/kg	50	0.100	3050/6010B	08/05/2002	8/7/02	SM
Lead		0.999	mg/kg	50	0.550	3050/6010B	08/05/2002	8/7/02	SM
Selenium		<0.20	mg/kg	50	0.200	3050/6010B	08/05/2002	8/7/02	SM
Silver		<0.10	mg/kg	50	0.100	3050/6010B	08/05/2002	8/7/02	SM
Test Param	eters			Dilution			Date	Date	
<u>Parameter</u>		Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Copper		2.15	mg/kg	50-	0.10	3050/6010B	08/05/2002	8/8/02	SM
Iron		4835	mg/kg	500	1.0	3050/6010B	08/05/2002	8/8/02	SM
Manganese		35.9	mg/kg	50	0.050	3050/6010B	08/05/2002	8/8/02	SM
-									

Approval: Caland K July 8-16-07
Raland K. Tuttle, Lab Director, QA Officer Date

08/06/2002

08/05/2002

8/7/02

8/8/02

MB

SM

Celey D. Keene, Org. Tech. Director
Jeanne McMurrey, Inorg. Tech. Director
Sandra Bierushe, Leh Tech

7470

3050/6010B

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

0.10

0.050

Page 3 of 3

< 0.10

12.4

mg/kg

mg/kg

50

50

ANALYTICAL REPORT

Codd Choban

vironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204107

Project:

CH 2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204107-01

Sample ID:

Area 2 Stockpile #1 N. Side

RCI			Dilution			Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Ignitability	>100	C	1	NA	1010	8/5/02	SB
pH	7.61	pH Units	1	N/A	9045C	8/3/02	SB
Reactive Cyanide	<0.09	mg/kg	1	0.09	SW846 CH.7	8/3/02	SB
Reactive Sulfide	<5.00	mg/kg	1	5.00	SW846 CH.7	8/3/02	SB

Lab ID:

0204107-02

Sample ID:

Area 2 Stockpile #1 S. Side

RCI			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Ignitability	>100	С	1	NA	1010	8/5/02	SB
pН	7.74	pH Units	1	N/A	9045C	8/3/02	SB
Reactive Cyanide	<0.09	mg/kg	1	0.09	SW846 CH.7	8/3/02	SB
Reactive Sulfide	<5.00	mg/kg	1	5.00	SW846 CH.7	8/3/02	SB
Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
TPH 418.1 FTIR	11400	mg/kg	1	10.0	418.1	8/5/02	SB

Lab ID:

0204107-04

Sample ID:

S.S. 1 East Wall/ South 6'

Anions			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	105	mg/kg	1 -	2.00	310.1	8/6/02	SB
Carbonate Alkalinity	<0.10	mg/kg	i	0.10	310.1	8/6/02	SB
Chloride	702	mg/kg	5	50.0	9253	8/13/02	CK
Hydroxide Alkalinity	<0.10	mg/kg	1	0.10	310.1	8/6/02	SB
SULFATE, 375.4	224	mg/kg	5	2.5	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	3.40	mg/kg	5	0.10	340.1	8/13/02	MB
Nitrogen, Nitrate	18.0	mg/kg	1	0.5	353.3	8/6/02	SB
Nitrogen, Nitrite	1.50	mg/kg	1	0.100	354.1	8/6/02	SB
TPH 418.1 FTIR	27.6	mg/kg	1	10.0	418.1	8/5/02	SB

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204107

Project:

CH 2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204107-05

Sample ID:

S.S. 2 East Wall/ North 6'

35 0.0 50.0	mg/kg mg/kg	1 1	2.00	310.1	8/6/02	SB
		1			, -	OD.
50.0		-	0.10	310.1	8/6/02	SB
	mg/kg	5	50.0	9253	8/13/02	CK
).10	mg/kg	1	0.10	310.1	8/6/02	SB
41	mg/kg	5	2.5	375.4	8/12/02	MB
		Dilution			Date	
sult	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	Analyst
6.3	mg/kg	10	0.20	340.1	8/13/02	MB
.50	mg/kg	1	0.5	353.3	8/6/02	SB
.25	mg/kg	1	0.100	354.1	8/6/02	SB
0.0	mg/kg	1	10.0	418.1	8/5/02	SB
	0.10 0.10 141 esult 6.3 0.50 0.25	0.10 mg/kg 141 mg/kg esult Units 6.3 mg/kg 1.50 mg/kg 1.25 mg/kg	0.10 mg/kg 1 1.41 mg/kg 5 Dilution Esult Units Factor 6.3 mg/kg 10 1.50 mg/kg 1 1.55 mg/kg 1	Dilution Packed Dilution Dilution Packed Dilution Diluti	Dilution Dilution RL Method	Dilution Date

Lab ID:

0204107-06

Sample ID:

S.S. 3 North Wall 8'

lnions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	27.5	mg/kg	1	2.00	310.1	8/6/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	8/6/02	SB
Chloride	295	mg/kg	5	50.0	9253	8/13/02	CK
Hydroxide Alkalinity	<0.10	mg/kg	1	0.10	310.1	8/6/02	SB
SULFATE, 375.4	6740	mg/kg	125	62.5	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Fluoride	16.9	mg/kg	10	0.20	340.1	8/13/02	MB
Nitrogen, Nitrate	7.50	mg/kg	1	0.5	353.3	8/6/02	SB
Nitrogen, Nitrite	1.00	mg/kg	1	0.100	354.1	8/6/02	SB
TPH 418.1 FTIR	21.6	mg/kg	1	10.0	418.1	8/5/02	SB

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Page 2 of 2

8-16-02

QUALITY CONTROL REPORT

8021B/5030 BTEX

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002741-02			<0.025		
Ethylbenzene-mg/kg		0002741-02			<0.025		·
Foluene-mg/kg		0002741-02			<0.025		
p/m-Xylene-mg/kg		0002741-02			<0.025		
o-Xylene-mg/kg		0002741-02			<0.025		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204107-06	0	0.1	0.092	92.%	
Ethylbenzene-mg/kg		0204107-06	0	0.1	0.097	97.%	
Toluene-mg/kg		0204107-06	0	0.1	0.096	96.%	
p/m-Xylene-mg/kg		0204107-06	0	0.2	0.201	100.5%	
o-Xylene-mg/kg	-	0204107-06	0	0.1	0.097	97.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204107-06	0	0.1	0.090	90.%	2.2%
Ethylbenzene-mg/kg		0204107-06	0	0.1	0.095	95.%	2.1%
Toluene-mg/kg		0204107-06	0	0.1	0.094	94.%	2.1%
p/m-Xylene-mg/kg		0204107-06	0	0.2	0.197	98.5%	2.%
o ene-mg/kg	···.	0204107-06	0	0.1	0.095	95.%	2.1%
N ₁ M	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002741-05		0.1	0.091	91.%	
Ethylbenzene-mg/kg		0002741-05		0.1	0.096	96.%	
Toluene-mg/kg		0002741-05		0.1	0.095	95.%	
p/m-Xylene-mg/kg		0002741-05		0.2	0.198	99.%	
o-Xylene-mg/kg		0002741-05		0.1	0.096	96.%	

QUALITY CONTROL REPORT

Anions

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg	/kg	0002707-01			<2.00		
Carbonate Alkalinity-mg/k	g	0002709-01	· · · · · · · · · · · · · · · · · · ·		<0.10		
Chloride-mg/kg		0002792-01			<20.0		
Hydroxide Alkalinity-mg/k	g	0002711-01			<0.10		
SULFATE, 375.4-mg/kg		0002776-01			< 0.50		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg	/kg	0204107-04	105		105		0.%
Carbonate Alkalinity-mg/k	g	0204107-04	0		<0.10		0.%
Hydroxide Alkalinity-mg/k	(g	0204107-04	0		<0.10		0.%
SULFATE, 375.4-mg/kg		0204173-01	93		96.0		3.2%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204133-01	753	833	1566	97.6%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204133-01	753	833	1625	104.7%	3.7%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
onate Alkalinity-mg	/kg	0002707-04		0.05	0.0496	99.2%	
Carbonate Alkalinity-mg/k	g	0002709-04		0.05	0.0496	99.2%	
Chloride-mg/kg		0002792-04		5000	4870	97.4%	
Hydroxide Alkalinity-mg/k	rg	0002711-04		0.05	0.0496	99.2%	
SULFATE, 375.4-mg/kg		0002776-04		50	48.5	97.%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002797-01			< 1.0		
Magnesium-mg/kg		0002797-01			< 0.10		· · · · · · · · · · · · · · · · · · ·
Potassium-mg/kg		0002797-01			< 5.0		
Sodium-mg/kg		0002797-01	-		< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204173-01	207000		204000		1.5%
Magnesium-mg/kg		0204173-01	1360		1370		0.7%
Potassium-mg/kg		0204173-01	137		137		0.%
Sodium-mg/kg		0204173-01	953		945		0.8%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002797-04		2	1.89	94.5%	
Magnesium-mg/kg		0002797-04		2 .	2.1	105.%	
Potassium-mg/kg		0002797-04		2	1.72	86.%	
Sodium-mg/kg		0002797-04		2	1.77	88.5%	

QUALITY CONTROL REPORT

METALS RCRA 7 TCLP

		17112	IALSICI	Order#: G0204107			
BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L	·	0002765-02			<0.008		
Barium-mg/L		0002765-02			<0.001		
Cadmium-mg/L		0002765-02			<0.001		
Chromium-mg/L		0002765-02			<0.002		, , , , ,
.ead-mg/L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0002765-02			<0.011		***************************************
elenium-mg/L		0002765-02			<0.004		·····
ilver-mg/L		0002765-02			<0.002		
CONTROL	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0002765-03		0.2	0.214	107.%	
Barium-mg/L		0002765-03	<u> </u>	0.2	0.215	107.5%	
Cadmium-mg/L		0002765-03		0.2	0.212	106.%	
Chromium-mg/L		0002765-03		0.2	0.203	101.5%	
.ead-mg/L		0002765-03		0.2	0.215	107.5%	
Selenium-mg/L		0002765-03		0.2	0.214	107.%	
Silver-mg/L		0002765-03		0.2	0.191	95.5%	
CONTROL D	UP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
qic-mg/L		0002765-04		0.2	0.228	114.%	6.3%
m-mg/L		0002765-04		0.2	0.215	107.5%	0.%
Cadmium-mg/L		0002765-04		0.2	0.209	104.5%	1.4%
Chromium-mg/L		0002765-04		0.2	0.197	98.5%	3.%
.ead-mg/L		0002765-04		0.2	0.212	106.%	1.4%
Selenium-mg/L		0002765-04		0.2 .	0.220	110.%	2.8%
Silver-mg/L		0002765-04		0.2	0.192	96.%	0.5%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0002765-05		1	1.07	107.%	-
Barium-mg/L		0002765-05	-	1	1.02	102.%	
Cadmium-mg/L		0002765-05		1	1.03	103.%	
Chromium-mg/L		0002765-05		1	0.974	97.4%	
_ead-mg/L		0002765-05		1	1.09	109.%	* **
Selenium-mg/L		0002765-05		1	1.08	108.%	
Silver-mg/L		0002765-05		0.5	0.489	97.8%	

QUALITY CONTROL REPORT

METALS RCRA 7 Total

Order#:	G0204107
---------	----------

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002736-02			< 0.40		
Barium-mg/kg	0002736-02			< 0.050		
Cadmium-mg/kg	0002736-02			< 0.050		
Chromium-mg/kg	0002736-02			< 0.10		•
Lead-mg/kg	0002736-02			< 0.55		
Selenium-mg/kg	0002736-02			< 0.20		
Silver-mg/kg	0002736-02			< 0.10		•
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002736-03		40	36.4	91.%	
Barium-mg/kg	0002736-03		10	10.9	109.%	
Cadmium-mg/kg	0002736-03		10	9.42	94.2%	
Chromium-mg/kg	0002736-03		10	9.88	98.8%	
Lead-mg/kg	0002736-03		50	51.3	102.6%	*
Selenium-mg/kg	0002736-03		20	19.0	95.%	
Silver-mg/kg	0002736-03		10	8.77	87.7%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ic-mg/kg	0002736-04		40	35.8	89.5%	1.7%
m-mg/kg	0002736-04		10	11.1	111.%	1.8%
Cadmium-mg/kg	0002736-04		10	9.46	94.6%	0.4%
Chromium-mg/kg	0002736-04		10	9.62	96.2%	2.7%
Lead-mg/kg	0002736-04		50	51.3	102.6%	0.%
Selenium-mg/kg	0002736-04		20	18.4	92.%	3.2%
Silver-mg/kg	0002736-04		10	8.85	88.5%	0.9%
SRMSOIL	LAB-ID#	Sample Concentr:	Spike Concentr.	QC Test	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002736-05		1	0.961	96.1%	
Barium-mg/kg	0002736-05		1	1.03	103.%	
Cadmium-mg/kg	0002736-05		1	1.00	100.%	
Chromium-mg/kg	0002736-05		1	1.03	103.%	
_ead-mg/kg	0002736-05	······································	1	1.04	104.%	
Selenium-mg/kg	0002736-05		1	1.01	101.%	
Silver-mg/kg	0002736-05		0.5	0.504	100.8%	

QUALITY CONTROL REPORT

RCI

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
pH-pH Units		0002728-01			6.05		
Reactive Cyanide-mg/kg		0002722-01			<0.09		
Reactive Sulfide-mg/kg		0002724-01			<5.00		
CONTROL	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Reactive Cyanide-mg/kg		0002722-02		0.1	0.09	90.%	
Reactive Sulfide-mg/kg		0002724-02		13.6	10.9	80.1%	
DUPLICATE	SOLID	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Ignitability-C		0204110-01	0		>100		0.%
pH-pH Units		0204107-01	7.61		7.71		1.3%
Reactive Cyanide-mg/kg		0204107-01	0		<0.09		0.%
Reactive Sulfide-mg/kg		0204107-01	0		<5.00		0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
pH-pH Units		0002728-04		7	7.03	100.4%	
Reactive Cyanide-mg/kg		0002722-04		1	0.98	98.%	
Reactive Sulfide-mg/kg		0002724-04		680	422	62.1%	

QUALITY CONTROL REPORT

Test Parameters

Order#:	G0204107
,	

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002748-01			< 0.10		
Fluoride-mg/kg	0002798-01			< 0.020		-
Iron-mg/kg	0002748-01			< 0.10		
Manganese-mg/kg	0002748-01			< 0.050		
Mercury, TCLP-mg/L	0002733-01			<0.002		
Mercury, Total-mg/kg	0002731-01			< 0.10		
Nitrogen, Nitrate-mg/kg	0002730-01			<0.50		·
Nitrogen, Nitrite-mg/kg	0002721-01			<0.004		
TPH 418.1 FTIR-mg/kg	0002679-01			<10.0		
Zinc-mg/kg	0002748-01			< 0.050		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002748-02		10	10.7	107.%	
Iron-mg/kg	0002748-02		10	12.3	123.%	
Manganese-mg/kg	0002748-02		10	10.7	107.%	
Mercury, TCLP-mg/L	0002733-02		0.015	0.016	106.7%	
Mercury, Total-mg/kg	0002731-02		0.015	0.015	100.%	
Zinc-mg/kg	0002748-02		10	11.3	113.%	
NTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002748-03		10	10.5	105.%	1.9%
Iron-mg/kg	0002748-03		10	12.2	122.%	0.8%
Manganese-mg/kg	0002748-03		10	10.6	106.%	0.9%
Mercury, TCLP-mg/L	0002733-03		0.015	0.015	100.%	6.5%
Mercury, Total-mg/kg	0002731-03		0.015	0.015	100.%	0.%
Zinc-mg/kg	0002748-03		10	11.1	111.%	1.8%
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg	0204173-01	7.25		7.25		0.%
Nitrogen, Nitrate-mg/kg	0204107-04	18		18.5		2.7%
Nitrogen, Nitrite-mg/kg	0204107-04	1.5		1.5		0.%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg	0204107-04	27.6	2640	2530	94.8%	
MSD SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TPH 418.1 FTIR-mg/kg	0204107-04	27.6	2640	2530	94.8%	0.%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002748-04		1	1.01	101.%	
ide-mg/kg	0002798-04		1	1.10	110.%	

QUALITY CONTROL REPORT

SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Iron-mg/kg	0002748-04		1	1.02	102.%	
Manganese-mg/kg	0002748-04		1	1.03	103.%	· · · · · · · · · · · · · · · · · · ·
Mercury, TCLP-mg/L	0002733-04		0.015	0.015	100.%	
Mercury, Total-mg/kg	0002731-04		0.015	0.014	93.3%	
Nitrogen, Nitrate-mg/kg	0002730-04		2	1.98	99.%	
Nitrogen, Nitrite-mg/kg	0002721-04	· · · · · · · · · · · · · · · · · · ·	0.25	0.24	96.%	
TPH 418.1 FTIR-mg/kg	0002679-04		5288	5300	100.2%	
Zinc-mg/kg	0002748-04		I	1.06	106.%	

2600 West I-20 Eas Odessa, Texas 7976	3 Fax: 915-563-1713		d.									СН	AIN	OF C	UST			C COR		•		YSIS	REQ	UES	τ		
	anager: Told Chokan 238											_											chn	de	gies	<u>. 4</u>	KhC
Compan	y Name E. T. G. I.						·					_									かめ						
Company A	ddress: 4600 W. Wall											·- 		Pro	oject	Loc	:_ <u>/</u>	1/2	<i>bb</i> ,	-, <i>N</i>	1.11	1,					
City/Sta	aterZip: Midland, Tx 79	7 <u>0</u>	3									_			1	°0#	:										
Telepho	one No: 9/5-522-1/39	i		Fax No:	91.	5-	52	ø-	43	IB	-	_															
Sampler Sig	nature: Marches Campes													_												7	
	. /																CLP:	X	An	alyze	For:	\top		0	T		
							Р	reserv	ative			Ma	trix	1	9	7	TAL:	Se		-	-		als remistruk				
	. •														2	(603)		²b Hg		-		1-14	7 'M			RUSH TAT (Pre-Schedule	
1			_	70	ers	29 1655									ž ž	CO3, H		Cd Cr				May				e-Sch	
0204107)ate Sampled	Time Sampled	No. of Containers	520	þ			None	ecily)			scify):	Cations (Ca Ma Na K)	Anions (Cl. SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg		es	BTEX 8021B/	2	1 3			AT (P	TAT
020			ste Sa	Te Sz	of C	7	6	NaOH	H ₂ SO,	e c	Oliner (Sp.	Sludge	_	Other (specify).		ns (Cl.	Z/ ESP	als: As	Volatiles	Semivolatiles	X 80Z	000				SH T/	Standard TAT
LAB # (lab use only)	FIELD CODE		_	·	1	ig S	HNO	E S	Ť	Ž	5 8	Slu	Sol	ő	1 .C	Anic	SAF	Met	Š	Sen		3	19	_	4	8	Sta
01	Atrea 2 Stockpile #1 N. Side	8-2	-42	1042	3	X			$\bot \bot$	_	-	-	A	- .	1	-	<u> </u>	\Diamond	$\langle \rangle$	$\langle \cdot \rangle$	X	\	\dashv		+-		
02	Area 2 Stockpile #1 S. Side		 	1030	3				1-1	-	\bot	-	\mathbb{H}	×	<u>X</u>	\perp	 		X	ΔĮ,		4	$\left\langle \cdot \right\rangle$	_	4-	┨—┼	\mathbb{H}
03	J+L Land Farm - Backfill	 		4915	3				$\vdash \vdash$		_	-		_{	\mathcal{A}	_	-				\mathcal{Y}	长	X		\vdash	\vdash	+
04	S.S. 1 East Wall /South 6	1	<u> </u>	\$740	3			_ _	1-1		4-		\square	_k	-	\bot	-		_	_/	4	公	A		-		\prod
	S.S. 2 EastWall/North 6'	1		\$75¢	3	Щ		_ _	1-1	_	_	-	\mathbb{H}		<u>X</u> _	4	_			_ {	<u> </u>	TX.	X		4		4
مان	S.S. 3 North Wall 8'	 	<u>v</u>	\$ \$\$\$5	3	M				_	1		V	_	X _	-	\vdash			1	\ _	$\downarrow \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	X		4	\sqcup	\mathbb{A}
		1		/	<u> </u>				$\perp \downarrow$	-	_		$\left - \right $	_	4	\perp	-			\perp	\perp	1-	$\downarrow \downarrow$		_		_
		↓					\sqcup	-	$ \cdot $	_	1			\perp	1	\bot	_		_	_	\bot	_	$\perp \perp$	_	_		_
		1					\sqcup		1-1		_		_	_	_	_	<u> </u>		_	\perp	\bot		\perp	_			

Special Instructions: Hold on = J+L Land Farm Backfill until notified by Todd Received by: Relinquished by: Date Time 8-2-02 Received by 500 Date Time Relinquished by:

Date Time 8.2.02 12:15 Time Date 8-2-02 1635

Rec -1.5°C * Stop all analysis except 418,1 On Samples O4 thru 05. as per Todd
08-05.0 1 1 419.1 is < 100 ppm
(with nuclear alysis, Continue analysis as per Tode) 08 05-02(e, 1300 01 0405.06

Sample Containers Intact? Temperature Upon Receipt:

Laboratory Comments:

ENVIRONMENTAL

Pg 1 of 3

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Water

Sample Condition: Intact/ Iced/ HCl/ -1.5 deg. C

Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02 Receiving Date: 08/02/02

Analysis Date: 08/06/02

ELT#	FIELD CODE	GRO C6-C10 mg/L	DRO >C10-C35 mg/L	TPH C6-C35 mg/L	
0204105-01	MW 8	<3.00	<3.00	<3.00	

% IA % EA BLANK 94.5 96.3 <3.00

METHODS: Modified 8015 C6-C35

Raland K. Tuttle

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

SampleType: Water

Sample Condition: Intact/ Iced/ HCl/ -1.5 deg. C

Project Name: Champion Technology Inc.

Project #: CH 2100

Project Location: Hobbs, NM

Sampling Date: 08/02/02

Receiving Date: 08/02/02

Analysis Date: 08/06/02

				ALIPHATICS			
		C6-C8	>C8-C10	>C10-C12	>C12-C16	>C16-C21	>C21-C35
ELT#	FIELD CODE	mg/L	mg/L	mg/L	mg/L_	mg/L_	mg/L
0204105-01	MW 8	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00

METHODS: Modified 8015 C6-C35

Paland K Tuttle

Date

<3.00

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: TODD CHOBAN

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310

<3.00

SampleType: Water

Sample Condition: Intact/ Iced/ HCl/ -1.5 deg. C

8 WM

Project Name: Champion Technology Inc.
Project #: CH 2100
Project Location: Hobbs, NM

0204105-01

Sampling Date: 08/02/02 Receiving Date: 08/02/02

Analysis Date: 08/06/02

<3.00

<3.00

<3.00

				AROMATICS			•
		C6-C8	>C8-C10	>C10-C12	>C12-C16	>C16-C21	>C21-C35
ELT#	FIELD CODE	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
							,

<3.00

METHODS: Modified 8015 C6-C35

SAMPLE WORK LIST

vironmental Technology Group, Inc.

Order#:

G0204173

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

Project Name: Champion Technology-Hobbs

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time	Date / Time

_ab ID:)204173-01 Sample:

Matrix:

Collected

Received 8/9/02

Container 4 oz glass

Preservative Ice

Backfill Sundance

SOIL

8/8/02 11:20

17:25

Lab Testing:

Rejected: No

Temp:

12.0 C

8021B/5030 BTEX

Anions

Cations

METALS RCRA 7 Total

Copper

Fluoride

Iron

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

TPH 418.1 FTIR

SAMPLE WORK LIST

vironmental Technology Group, Inc.

Order#:

G0204173 CH 2100

P.O. Box 4845

Project:

Project Name: Champion Technology-Hobbs

Midland, TX 79704 915-520-4310

Zinc

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

			Date / Time	Date / Time		
ab ID:	Sample:	Matrix:	Collected	Received	Container	Preservative
204173-01	Backfill Sundance	SOIL	8/8/02 11:20	8/9/02 17:25	4 oz glass	Ice
<u>Į</u>	Lab Testing:	Rejected: No	Tem	p: 12.0 C		
	8021B/5030 BTEX					
	Anions					
	Cations					
	METALS RCRA 7 T	otal				
	Copper					
	Fluoride					
	Iron					
	Manganese					
	Mercury, Total					
	Nitrogen, Nitrate					
	Nitrogen, Nitrite					
	TPH 418 1 FTIR					

ANALYTICAL REPORT

Todd Choban

onmental Technology Group, Inc.

Box 4845 Midland, TX 79704 Order#:

G0204173

Project:

CH 2100

Project Name:

Champion Technology-Hobbs

Location:

Hobbs, NM

Lab ID:

0204173-01

Sample ID:

Backfill Sundance

8021B/5030 BTEX

Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
0002771-02		8/11/02 12:50	1	25	CK	8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Approva<u>l:</u>

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

onmental Technology Group, Inc.

Box 4845 Midland, TX 79704 Order#:

G0204173

Project:

CH 2100

Project Name:

Champion Technology-Hobbs

Location:

Hobbs, NM

Lab ID:

0204173-01

Sample ID:

Backfill Sundance

8021B/5030 BTEX

Method	
Blank	

Date **Prepared**

Date Analyzed

Sample Amount

Dilution Factor

Analyst

Method

0002771-02

8/11/02 12:50

25

CK 8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	< 0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

conmental Technology Group, Inc.

Box 4845 Midland, TX 79704 Order#:

G0204173

Project:

CH 2100

Project Name:

Champion Technology-Hobbs

Location:

Hobbs, NM

Lab ID:

0204173-01

Sample ID: Backfill Sundance								
Cations			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium	207000	mg/kg	50000	500	6010B	08/10/2002	8/13/02	SM
Magnesium	1360	mg/kg	1000	1.0	6010B	08/10/2002	8/13/02	SM
Potassium	137	mg/kg	100	5.0	6010B	08/10/2002	8/13/02	SM
Sodium	953	mg/kg	100	1.0	6010B	08/10/2002	8/13/02	SM
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	19.2	mg/kg	50	0.400	3050/6010B	08/10/2002	8/14/02	SM
Barium	405	mg/kg	50	0.050	3050/6010B	08/10/2002	8/14/02	SM
Cadmium	0.406	mg/kg	50	0.050	3050/6010B	08/10/2002	8/14/02	SM
Chromium	1.63	mg/kg	50	0.100	3050/6010B	08/10/2002	8/14/02	SM
Lead	2.24	mg/kg	50	0.550	3050/6010B	08/10/2002	8/14/02	SM
Selenium	<0.20	mg/kg	50	0.200	3050/6010B	08/10/2002	8/14/02	SM
Silver	<0.10	mg/kg	50	0.100	3050/6010B	08/10/2002	8/14/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
pper	6.28	mg/kg	50	0.10	3050/6010B	08/10/2002	8/15/02	SM
non	2600	mg/kg	500	1.0	3050/6010B	08/10/2002	8/15/02	SM
Manganese	94.2	mg/kg	50	0.050	3050/6010B	08/10/2002	8/15/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7471	08/11/2002	8/11/02	SM
Zinc	5.93	mg/kg	50	0.050	3050/6010B	08/10/2002	8/15/02	SM
					A-A-	\		

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban

ronmental Technology Group, Inc.

Midland, TX 79704

Mercury, Total

Zinc

Order#:

G0204173

Project:

CH 2100

Project Name: Location:

Champion Technology-Hobbs Hobbs, NM

Lab ID:

0204173-01

Lab ID:	Backfill Sundance								
Sample ID:	Datking Squares								
Cations				Dilution			Date	Date	
Parameter		Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Calcium		207000	mg/kg	50000	500	6010B	08/10/2002	8/13/02	SM
Magnesium		1360	mg/kg	1000	1.0	6010B	08/10/2002	8/13/02	SM
Potassium		137	mg/kg	100	5.0	6010B	08/10/2002	8/13/02	SM
Sodium		953	mg/kg	100	1.0	6010B	08/10/2002	8/13/02	SM
METALS	RCRA 7 Total			Dilution			Date	Date	
Parameter		Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic		19.2	mg/kg	50	0.400	3050/6010B	08/10/2002	8/14/02	SM
Barium		405	mg/kg	50	0.050	3050/6010B	08/10/2002	8/14/02	SM
Cadmium		0.406	mg/kg	50	0.050	3050/6010B	08/10/2002	8/14/02	SM
Chromium		1.63	mg/kg	50	0.100	3050/6010B	08/10/2002	8/14/02	SM
Lead		2.24	mg/kg	50	0.550	3050/6010B	08/10/2002	8/14/02	SM
Selenium		<0.20	mg/kg	50	0.200	3050/6010B	08/10/2002	8/14/02	SM
Silver		<0.10	mg/kg	50	0.100	3050/6010B	08/10/2002	8/14/02	SM
Test Para	meters			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
opper		6.28	mg/kg	50	0.10	3050/6010B	08/10/2002	8/15/02	SM
iron		2600	mg/kg	500	1.0	3050/6010B	08/10/2002	8/15/02	SM
Manganese		94.2	mg/kg	50	0.050	3050/6010B	08/10/2002	8/15/02	SM
Mercury, To	tal	< 0.10	mg/kg	50	0.10	7471	08/11/2002	8/11/02	SM

mg/kg

0.050

50

Raland K. Tuttle, Lab Director, QA Officer

3050/6010具

08/10/2002

8/15/02

SM

Celey D. Keene, Org. Teen. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

5.93

ANALYTICAL REPORT

Todd Choban

onmental Technology Group, Inc.

Box 4845 Midland, TX 79704 Order#:

G0204173

Project:

CH 2100

Project Name: Champion Technology-Hobbs

Location:

Hobbs, NM

Lab ID:

0204173-01

Sample ID:

Backfill Sundance

Anions Parameter	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Bicarbonate Alkalinity	450	mg/kg	1	2.00	310.1	8/13/02	CK
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	8/13/02	CK
Chloride	<20.0	mg/kg	2	20.0	9253	8/13/02	CK
Hydroxide Alkalinity	< 0.10	mg/kg	1	01.0	310.1	8/13/02	CK
SULFATE, 375.4	93.0	mg/kg	5	2.5	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Fluoride	7.25	mg/kg	5	0.10	340.1	8/13/02	MB
Nitrogen, Nitrate	<2.5	mg/kg	5	2.5	353.3	8/10/02	RKT
Nitrogen, Nitrite	0.050	mg/kg	5	0.010	354.1	8/10/02	RKT
TPH 418.1 FTIR	38.0	mg/kg	1	10.0	418.1	8/11/02	CK

8-19-02

Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Page 1 of 1

ANALYTICAL REPORT

Todd Choban

onmental Technology Group, Inc.

Box 4845

Midland, TX 79704

Order#:

G0204173

Project:

CH 2100

Project Name: Champion Technology-Hobbs

Location:

Hobbs, NM

Lab ID:

0204173-01

Sample ID:

Backfill Sundance

Anions			Dilution			Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Bicarbonate Alkalinity	450	mg/kg	1	2.00	310.1	8/13/02	CK
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	8/13/02	CK
Chloride	<20.0	mg/kg	2	20.0	9253	8/13/02	CK
Hydroxide Alkalinity	< 0.10	mg/kg	1	0.10	310.1	8/13/02	CK
SULFATE, 375.4	93.0	mg/kg	5	2.5	375.4	8/12/02	MB
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	<u>Analyst</u>
Fluoride	7.25	mg/kg	5	0.10	340.1	8/13/02	MB
Nitrogen, Nitrate	<2.5	mg/kg	5	2.5	353.3	8/10/02	RKT
Nitrogen, Nitrite	0.050	mg/kg	5	0.010	354.1	8/10/02	RKT
TPH 418.1 FTIR	38.0	mg/kg	1	10.0	418.1	8/11/02	CK

Approval: Kalan Raland K. Tuttle, Lab Direc 8-19-02

Raland K. Tuttle, Lab Director, QA Officer Celev D. Keene, Org. Tech. Director

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

8021B/5030 BTEX

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002771-02			<0.025		
Ethylbenzene-mg/kg		0002771-02			<0.025		
Foluene-mg/kg		0002771-02			<0.025		
o/m-Xylene-mg/kg		0002771-02			<0.025		
o-Xylene-mg/kg		0002771-02			<0.025		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204163-03	0	0.1	0.089	89.%	
Ethylbenzene-mg/kg		0204163-03	0	0.1	0.094	94.%	
Foluene-mg/kg		0204163-03	0	0.1	0.092	92.%	
p/m-Xylene-mg/kg		0204163-03	0 .	0.2	0.194	97.%	
o-Xylene-mg/kg		0204163-03	0	0.1	0.094	94.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204163-03	0	0.1	0.100	100.%	11.6%
Ethylbenzene-mg/kg		0204163-03	0	0.1	0.107	107.%	12.9%
Toluene-mg/kg	 	0204163-03	0	0.1	0.104	104.%	12.2%
p/m-Xylene-mg/kg		0204163-03	0	0.2	0.219	109.5%	12.1%
rlene-mg/kg		0204163-03	0	0.1	0.105	105.%	11.1%
	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002771-05		0.1	0.093	93.%	
Ethylbenzene-mg/kg		0002771-05		0.1	0.099	99.%	
Toluene-mg/kg		0002771-05		0.1	0.098	98.%	
p/m-Xylene-mg/kg		0002771-05		0.2	0.206	103.%	· · · · · · · · · · · · · · · · · · ·
o-Xylene-mg/kg		0002771-05	W-1,,/=	0.1	0.100	100.%	

QUALITY CONTROL REPORT

8021B/5030 BTEX

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002771-02			<0.025		
Ethylbenzene-mg/kg		0002771-02			<0.025		
Foluene-mg/kg	· · · · · · · · · · · · · · · · · · ·	0002771-02			<0.025		
/m-Xylene-mg/kg		0002771-02			<0.025		
o-Xylene-mg/kg		0002771-02			<0.025		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204163-03	0	0.1	0.089	89.%	
Ethylbenzene-mg/kg		0204163-03	0	0.1	0.094	94.%	
Toluene-mg/kg		0204163-03	0	0.1	0.092	92.%	
p/m-Xylene-mg/kg		0204163-03	0 .	0.2	0.194	97.%	
o-Xylene-mg/kg		0204163-03	0	0.1	0.094	94.%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0204163-03	0	0.1	0.100	100.%	11.6%
Ethylbenzene-mg/kg		0204163-03	0	0.1	0.107	107.%	12.9%
Toluene-mg/kg		0204163-03	0	0.1	0.104	104.%	12.2%
p/m-Xylene-mg/kg		0204163-03	0	0.2	0.219	109.5%	12.1%
o zne-mg/kg		0204163-03	0	0.1	0.105	105.%	11.1%
	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002771-05		0.1	0.093	93.%	
Ethylbenzene-mg/kg		0002771-05		0.1	0.099	99.%	
Toluene-mg/kg		0002771-05		0.1	0.098	98.%	
p/m-Xylene-mg/kg		0002771-05		0.2	0.206	103.%	
o-Xylene-mg/kg		0002771-05		0.1	0.100	100.%	

QUALITY CONTROL REPORT

Anions

						Oracim. Coza	
BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity	-mg/kg	0002803-01			<2.00		
Carbonate Alkalinity-r	ng/kg	0002803-01			<0.10		
Chloride-mg/kg		0002792-01			<20.0		
lydroxide Alkalinity-	mg/kg	0002803-01			< 0.10		· · · · · · · · · · · · · · · · · · ·
SULFATE, 375.4-mg/	kg	0002776-01			< 0.50		
DUPLICATI	E SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity	/-mg/kg	0204173-01	450		470		4.3%
Carbonate Alkalinity-	ng/kg	0204173-01	0		<0.10		0.%
Hydroxide Alkalinity-	mg/kg	0204173-01	0		< 0.10		0.%
SULFATE, 375.4-mg/	/kg	0204173-01		3.2%			
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204133-01	753	833	1566	97.6%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204133-01	753	833	1625	104.7%	3.7%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
nate Alkalinit	y-mg/kg	0002803-04		0.05	0.0575	115.%	
Carponate Alkalinity-	mg/kg	0002803-04		0.05	0.0575	115.%	
Chloride-mg/kg		0002792-04		5000	4870	97.4%	
Hydroxide Alkalinity-	mg/kg	0002803-04		0.05	0.0575	115.%	
SULFATE, 375.4-mg	/kg	0002776-04		50	48.5	97.%	

QUALITY CONTROL REPORT

Anions

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
icarbonate Alkalinity-mg/kg	0002803-01			<2.00		
Carbonate Alkalinity-mg/kg	0002803-01			<0.10		
hloride-mg/kg	0002792-01	-		<20.0		
lydroxide Alkalinity-mg/kg	0002803-01			< 0.10		
SULFATE, 375.4-mg/kg	0002776-01			< 0.50		
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/kg	0204173-01	450		470		4.3%
Carbonate Alkalinity-mg/kg	0204173-01	0		<0.10		0.%
lydroxide Alkalinity-mg/kg	0204173-01	0		< 0.10		0.%
SULFATE, 375.4-mg/kg	0204173-01	93		96.0		3.2%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	0204133-01	753	833	1566	97.6%	
MSD SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	0204133-01	753	833	1625	104.7%	3.7%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ate Alkalinity-mg/kg	0002803-04		0.05	0.0575	115.%	
Carbonate Alkalinity-mg/kg	0002803-04		0.05	0.0575	115.%	
Chloride-mg/kg	0002792-04		5000	4870	97.4%	
Hydroxide Alkalinity-mg/kg	0002803-04		0.05	0.0575	115.%	
SULFATE, 375.4-mg/kg	0002776-04		50	48.5	97.%	

QUALITY CONTROL REPORT

Cations

		Т	Sample	Spike	OC Test	Pot (9/)	nee
BLANK	SOIL	LAB-ID#	Concentr.	Concentr.	Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002797-01			< 1.0		
Magnesium-mg/kg		0002797-01		!	< 0.10		
Potassium-mg/kg		0002797-01			< 5.0		
Sodium-mg/kg		0002797-01			< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204173-01	207000		204000		1.5%
Magnesium-mg/kg		0204173-01	1360		1370		0.7%
Potassium-mg/kg		0204173-01	137		137		0.%
Sodium-mg/kg		0204173-01	953		945		0.8%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002797-04		2	1.89	94.5%	
Magnesium-mg/kg		0002797-04		2	2.1	105.%	
Potassium-mg/kg		0002797-04		2	1.72	86.%	
Sodium-mg/kg		0002797-04		2	1.77	88.5%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002797-01			< 1.0		
Magnesium-mg/kg		0002797-01			< 0.10		
Potassium-mg/kg		0002797-01			< 5.0		
Sodium-mg/kg		0002797-01			< 1.0		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0204173-01	207000		204000		1.5%
Magnesium-mg/kg		0204173-01	1360		1370		0.7%
Potassium-mg/kg		0204173-01	137		137		0.%
Sodium-mg/kg		0204173-01	953		945		0.8%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/kg		0002797-04	***	2	1.89	94.5%	
Magnesium-mg/kg		0002797-04		2	2.1	105.%	
Potassium-mg/kg		0002797-04		2	1.72	86.%	··
Sodium-mg/kg		0002797-04		2	1.77	88.5%	

QUALITY CONTROL REPORT

METALS RCRA 7 Total

	IVIE	TALS RC	RA / Total		Order#: G020)4173
BLANK	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
rsenic-mg/kg	0002836-02			< 0.40		
arium-mg/kg	0002836-02	, , , , , , , , , , , , , , , , , , , ,		< 0.050		
admium-mg/kg	0002836-02			< 0.050		
hromium-mg/kg	0002836-02			< 0.10		
ead-mg/kg	0002836-02			< 0.55		
elenium-mg/kg	0002836-02			< 0.20		
ilver-mg/kg	0002836-02			< 0.10		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
rsenic-mg/kg	0002836-03		40	34.8	87.%	
arium-mg/kg	0002836-03		· 10	10.2	102.%	
admium-mg/kg	0002836-03		10 .	9.15	91.5%	
hromium-mg/kg	0002836-03		10	9.84	98.4%	
.ead-mg/kg	0002836-03		50	45.5	91.%	
elenium-mg/kg	0002836-03		20	16.7	83.5%	
lilver-mg/kg	0002836-03		5	5.11	102.2%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ic-mg/kg	0002836-04		40	34.7	86.8%	0.3%
mg/kg	0002836-04		10	10.1	101.%	1.%
Cadmium-mg/kg	0002836-04		10	9.23	92.3%	0.9%
Chromium-mg/kg	0002836-04		10	10.1	101.%	2.6%
.ead-mg/kg	0002836-04		50	45.9	91.8%	0.9%
Selenium-mg/kg	0002836-04		20	16.3	81.5%	2.4%
Silver-mg/kg	0002836-04		5	5.11	102.2%	0.%
SRM. SOIL	LAB-ID#	SampleConcentr.	Spike Concentr:	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002836-05		1	1.04	104.%	,
3arium-mg/kg	0002836-05		1	1.06	106.%	
Cadmium-mg/kg	0002836-05		1	1.01	101.%	·-····································
Chromium-mg/kg	0002836-05		1 .	1.03	103.%	
Lead-mg/kg	0002836-05		1	1.04	104.%	
Selenium-mg/kg	0002836-05		1	1.02	102.%	
Silver-mg/kg	0002836-05		0.5	0.510	102.%	
						

QUALITY CONTROL REPORT

METALS RCRA 7 Total

		1741	IALS IC	IXX / I Utai		Order#: Guz	J41/3
BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg		0002836-02			< 0.40		
arium-mg/kg		0002836-02			< 0.050		
admium-mg/kg		0002836-02			< 0.050		
hromium-mg/kg		0002836-02			< 0.10		
ead-mg/kg		0002836-02			< 0.55		
elenium-mg/kg		0002836-02			< 0.20		
ilver-mg/kg		0002836-02			< 0.10		
CONTROL	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
rsenic-mg/kg		0002836-03		40	34.8	87.%	
arium-mg/kg		0002836-03		10	10.2	102.%	
Cadmium-mg/kg		0002836-03		10 .	9.15	91.5%	
Chromium-mg/kg		0002836-03		10	9.84	98.4%	
.ead-mg/kg		0002836-03		50	45.5	91.%	
elenium-mg/kg		0002836-03		20	16.7	83.5%	· · · · · · · · · · · · · · · · · · ·
ilver-mg/kg		0002836-03		5	5.11	102.2%	
CONTROL D	UP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ic-mg/kg		0002836-04		40	34.7	86.8%	0.3%
mg/kg		0002836-04		10	10.1	101.%	1.%
Cadmium-mg/kg		0002836-04		10	9.23	92.3%	0.9%
Chromium-mg/kg		0002836-04		10	10.1	101.%	2.6%
.ead-mg/kg		0002836-04		50	45.9	91.8%	0.9%
lelenium-mg/kg		0002836-04		20	16.3	81.5%	2.4%
ilver-mg/kg		0002836-04		5	5.11	102.2%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr	Spike Concentr.	QC Test	Pct (%)	RPD
A	SUIL	00000006.05	Concentr.	1	1.04	104.%	
Arsenic-mg/kg	<u>. </u>	0002836-05		1	1.04	104.%	····
Barium-mg/kg		0002836-05		1	1.00	106.%	
Cadmium-mg/kg		0002836-05				<u> </u>	
Chromium-mg/kg		0002836-05		1 .	1.03	103.%	
Lead-mg/kg		0002836-05		1	1.04	104.%	
Selenium-mg/kg		0002836-05		1	1.02	102.%	
Silver-mg/kg		0002836-05		0.5	0.510	102.%	

QUALITY CONTROL REPORT

Test Parameters

O 1 "	C00044 #7
Order#:	G0204173

BLANK	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-01			< 0.10		
Fluoride-mg/kg	0002798-01			< 0.020		
ron-mg/kg	0002828-01			< 0.10		
Manganese-mg/kg	0002828-01		·	< 0.050		
Mercury, Total-mg/kg	0002778-01			< 0.10		
Molybdenum-mg/kg	0002828-01			< 0.10		
Nickel-mg/kg	0002828-01			< 0.30		
Nitrogen, Nitrate-mg/kg	0002805-01			<2.5		
Nitrogen, Nitrite-mg/kg	0002805-01			<0.010		
IPH 418.1 FTIR-mg/kg	0002764-01			<10.0		
Zinc-mg/kg	0002828-01			< 0.050		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-02		100	105	105.%	
lron-mg/kg	0002828-02		100	103	103.%	
Manganese-mg/kg	0002828-02		100	104	104.%	
Molybdenum-mg/kg	0002828-02		100	103	103.%	
Nickel-mg/kg	0002828-02	-	100	102	102.%	
en, Nitrate-mg/kg	0002805-02		1.	0.8	80.%	
en, Nitrite-mg/kg	0002805-02		0.1	0.079	79.%	
Zinc-mg/kg	0002828-02		100	104	104.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-03		100	105	105.%	0.%
Iron-mg/kg	0002828-03		100	103	103.%	0.%
Manganese-mg/kg	0002828-03		100	105	105.%	1.%
Molybdenum-mg/kg	0002828-03		100	103	103.%	0.%
Nickel-mg/kg	0002828-03		100	102	102.%	0.%
Nitrogen, Nitrate-mg/kg	0002805-03		1	0.7	70.%	13.3%
Nitrogen, Nitrite-mg/kg	0002805-03		0.1	0.086	86.%	8.5%
Zinc-mg/kg	0002828-03		100	104	104.%	0.%
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg	0204173-01	7.25		7.25		0.%
Nitrogen, Nitrate-mg/kg	0204173-01	0		<2.5		0.%
Nitrogen, Nitrite-mg/kg	0204173-01	0.05		0.065		26.1%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Mercury, Total-mg/kg	0204165-01	0.97	1	0.970	0.%	
TPH 418.1 FTIR-mg/kg	0204173-01	38	2640	2540	94.8%	

QUALITY CONTROL REPORT

Test Parameters

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-01			< 0.10		
luoride-mg/kg	0002798-01			< 0.020		
on-mg/kg	0002828-01			< 0.10		
langanese-mg/kg	0002828-01		·	< 0.050		
fercury, Total-mg/kg	0002778-01			< 0.10		
Nolybdenum-mg/kg	0002828-01			< 0.10		
Nickel-mg/kg	0002828-01			< 0.30		
Vitrogen, Nitrate-mg/kg	0002805-01			<2.5		
litrogen, Nitrite-mg/kg	0002805-01			<0.010		
PH 418.1 FTIR-mg/kg	0002764-01			<10.0		
Zinc-mg/kg	0002828-01			< 0.050		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-02		100	105	105.%	
ron-mg/kg	0002828-02		100	103	103.%	
Manganese-mg/kg	0002828-02		100	104	104.%	
Molybdenum-mg/kg	0002828-02		100	103	103.%	
Nickel-mg/kg	0002828-02		100	102	102.%	
n, Nitrate-mg/kg	0002805-02		1	0.8	80.%	
n, Nitrite-mg/kg	0002805-02		0.1	0.079	79.%	
Zinc-mg/kg	0002828-02		100	104	104.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-03		100	105	105.%	0.%
fron-mg/kg	0002828-03		100	103	103.%	0.%
Manganese-mg/kg	0002828-03		100	105	105.%	1.%
Molybdenum-mg/kg	0002828-03		100	103	103.%	0.%
Nickel-mg/kg	0002828-03		100	102	102.%	0.%
Nitrogen, Nitrate-mg/kg	0002805-03		1	0.7	70.%	13.3%
Nitrogen, Nitrite-mg/kg	0002805-03		0.1	0.086	86.%	8.5%
Zinc-mg/kg	0002828-03		100	104	104.%	0.%
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Fluoride-mg/kg	0204173-01	7.25		7.25		0.%
Nitrogen, Nitrate-mg/kg	0204173-01	0		<2.5		0.%
Nitrogen, Nitrite-mg/kg	0204173-01	0.05		0.065		26.1%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Mercury, Total-mg/kg	0204165-01	0.97	1	0.970	0.%	
TPH 418.1 FTIR-mg/kg	0204173-01	38	2640	2540	94.8%	· · · · · · · · · · · · · · · · · · ·

QUALITY CONTROL REPORT

SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Mercury, Total-mg/kg	0204165-01	0.97	1	1.03	6.%	6.%
TPH 418.1 FTIR-mg/kg	0204173-01	38	2640	2800	104.6%	9.7%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-04		1	1.02	102.%	
Fluoride-mg/kg	0002798-04		1	1.10	110.%	
Iron-mg/kg	0002828-04		ĩ	0.981	98.1%	-
Manganese-mg/kg	0002828-04		1	1.02	102.%	
Mercury, Total-mg/kg	0002778-04		0.75	0.715	95.3%	
Molybdenum-mg/kg	0002828-04		1	1.01	101.%	
Nickel-mg/kg	0002828-04		1	0.993	99.3%	
Nitrogen, Nitrate-mg/kg	0002805-04		2	1.8	90.%	
Nitrogen, Nitrite-mg/kg	0002805-04		0.1	0.088	88.%	
TPH 418.1 FTIR-mg/kg	0002764-04		5288	4930	93.2%	
Zinc-mg/kg	0002828-04		I	1.06	106.%	

QUALITY CONTROL REPORT

SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Mercury, Total-mg/kg	0204165-01	0.97	1	1.03	6.%	6.%
TPH 418.1 FTIR-mg/kg	0204173-01	38	2640	2800	104.6%	9.7%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002828-04		1	1.02	102.%	
Fluoride-mg/kg	0002798-04		1	1.10	110.%	
Iron-mg/kg	0002828-04		1	0.981	98.1%	
Manganese-mg/kg	0002828-04		1	1.02	102.%	
Mercury, Total-mg/kg	0002778-04		0.75	0.715	95.3%	
Molybdenum-mg/kg	0002828-04		1	1.01	101.%	
Nickel-mg/kg	0002828-04		1	0.993	99.3%	· · · · · · · · · · · · · · · · · · ·
Nitrogen, Nitrate-mg/kg	0002805-04		2	1.8	90.%	
Nitrogen, Nitrite-mg/kg	0002805-04		0.1	0.088	88.%	
TPH 418.1 FTIR-mg/kg	0002764-04		5288	4930	93.2%	
Zinc-mg/kg	0002828-04		1	1.06	106.%	

4600 West Wall Midland, TX 79703 Tel (915) 522-1139 Fax(915) 520-4310 1766 Woodstead Court, Ste. 1 The Woodlands, TX 77380 Tel (281) 362-8571 Fax (281) 362-8932 2540 West Marland Hobbs, NM 68242 Tel (505) 397-4882 Fax (505) 397-4701

CHAIN-OF-CUSTODY AND ANALYSIS RE

ST

ANALYSIS REQUEST

Consult	ing & Remediation Se																					(5111	,,,,	<i>π</i> Ορ		, .,,			,				
		N																															
Project Name:	TODD CHORA nampion Techno "Hobbs, NM	logies- A	66	k	Pr	ojec	Nur C/	iber: 12	10E)											Total Metals Ag As Ba Cd Cr Pb Se Hg 60108/7470												
Project Location	Hobbs, NM				Sa	mpl Y	er Sig	nati	Ire;	ر	hs	h								<u>\$</u>	e Hg 601	% Fg									٠		
And the second s					Ņ	IAT	RIX		PF		ETI			Z	SAN	MPLING		X 1006		exico on	Cr Pb S	SCr Pb						63		الا	Chemistry		
TIAR#	FIELD CODE	_	2	5			Τ										X 8260	OS EXIT	Jago	O New M	s Ba Cd	As Ba C		iles		20		75.4/325		Ketak	Ö		
(Lab Use Only)	I ILLD CODE	-	Ž :	e/Amo	ا ا	!	H				٦							X 5 5	SM GRC	OC (810	tals Ag A	stats Ag	latiles	mi Volat	8260B	atlles B2		Anions 3			eral	₽	RD TA
₅₂₀ 4.12			# CON AINER	Volume/Amount	SOIL	AR	SLUDGE		된	HNO.	NaHSO,	览	NONE		DATE	TIME	BTEX 8021B BTEX 8260B	TPH 418.1 JTX 1005 EXITX 1006	TPH 8015M GRO/DRO	PAH 8270C (8100 New Mexico only)	Fotal Me	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles	Volatiles 8260B	Semi Volatiles 8270C	TDS 160.1	Cations/Anions 375.4/325.3		MAGC.	Gen enal	RUSHTAT	STANDARD TAT
LAB,# (Lab Use Only) (2041) (2041) (32)	Backfill Sund		3	1	1							V			8/8/02		X	X												X ;			X
																														_			Ц
			4	_	_		igspace	_				\Box					<u> </u>	_					_				_	4	_	_	\perp	<u> </u>	
			-	1		-	+				-	-	_	_			-	_		_					_	\dashv		4	1	-		-	\vdash
			+	+		+	┼			-	_		-				-	-	-	-			_		-	_	-	-	\dashv	\dashv	+	-	\vdash
			+	+		+	-			_	\dashv	-	-		-		┼-	-	-						-	\dashv	_	\dashv	\dashv		+	 	$\vdash \vdash$
			+	+		+	+-	_	\vdash		ᅦ	-	ᅱ				╁┈	\vdash	-		_				-	-	1	\dashv	\dashv	+		┤	$\vdash \vdash$
			+	+		1	<u> </u>					\exists						-					-				1	\dashv	\dashv	\dashv		\vdash	
			+	1	- -	1	\top						一				1			-							7				1	T	
													٨																				
Relinquished	1 by: Date:	Time: 144			R	ece	iyed	/			Dat	e :	1,	_	Time	: 2 <i>4:5i</i>	RE	EMA	RK	S:								2.	0	°C			
			7		4	1 2 5 5	\mathcal{X}	ى			₹7/		<u> </u>		-		4																
Relinquished	by: Date:	Time:	. 1	_	- K	ece	ived //		ap.	y.			Jat																				
© Environmental Tech	mology Group, Inc.	DZ 5) /	11		Ü	Ø		W.	C	A	97	//			1)	-															_
CHANGING TOOL		·			1			۔)																								

4600 West Wall Midland, TX 79703 Tel (915) 522-1139 Fax(915) 520-4310 1766 Woodstead Court, Ste. 1 The Woodlands, TX 77380 Tel (281) 362-8571 Fax (281) 362-8932 2540 West Marland Hobbs, NM 88242 Tel (505) 397-4882 Fax (505) 397-4701 CHAIN-OF-CUSTODY AND ANALYSIS RE

ANALYSIS REQUEST

'ST

Project Manager:	Remadiation	ranjsto)) 320 - 43	110	į	:	1 62	. (2017	JUE-0	JJ2			•	un (000) 00							(Circ	ile o	Spe	cify	Metl	od i	Vo.)				
70,000 manager.	JOD CHO	BAN																													П
Project Name;	upion Tech		1406	k	Pr	oject (Numb	er: 2/0	0											08/7470											
Project Location:	ibbs, NI	M			Sa	mple V <	r Sign	ature		h	zh								3	e Hg 601	e Fg								7		
					Ŋ	IATF	RIX	1		SEF MET	₹VA	TIC	N	SAN	<i>I</i> PLING		X 1006		lexico on	Cr Pb S	d Cr Pb					1 2		뇡	Chewisty		
LAB# (Lab.Use Only)	FIELD C	ODE	#CONTAINERS	Volume/Amount	WAIEK	AſŔ	SLUDGE	HCL	HNO	NaHSO4	ICE	NONE		рате	TIME	BTEX 80218 BTEX 82608	TPH 418.1 TX 1005 EXITX 1006	TPH BO15M GRO/DRO	PAH 8270C (8100 New Mexico only)	Total Metals Ag As Ba Cd Cr Pb Se Hg 60108/7470	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles	Volatiles 82608	Semi Volatiles BZ/0C TDS 160.1	Cations/Anions 375.4/325.3	RCI		General Che	RUSH TAT	STANDARD TAT
AND SELECTION OF THE SE	ackfill S	undance	3		Y						X			8/8/02	1128	Χ	X	_											X		X
				\perp		_								·						_											
				_		<u> </u>		_	$oldsymbol{\perp}$							ļ	<u> </u>			_		_	_ _	1		\perp	_		_		
		·	11	1				\perp	\downarrow	1						-	_	_					1	1	_	1	-		_	-	\sqcup
			$\bot \downarrow$	\perp		_		-	_	1						_	_	_			_	4	_	4	_	_	-			_	
	 			4	- :	_			_	-						-	_					-	_	_	_ _	-	-		_ _		\square
				_	-	╄		-	\perp	_						-	₋					-	\dashv	-		\downarrow	-		- -		
			$\perp \mid$	_		┿	\sqcup	+	\bot	 						-	-	-					-	4	+	┼-	-		_		
	,		+	-	- -	-		-	-	-						-		 				_	-	4	-	_	-			-	╀╌┨
			+-+	_	- -	-	-	_	-	-						-	-	_			-	-	\dashv	+	\perp	+	-	-			-
			++	_	11	-	-	-	-	╄-						+	-	-			\vdash		_	+	-	+	-			+	\vdash - \mid
			++	\dashv	-{-	-	-		-							+	-	\vdash				\dashv	\dashv	+	-	-	+				\vdash
	Deter	Time				A	1000					لمِـا		Time		D		\ \RK	<u>_</u>							<u></u>		لِيا			Щ
Relinquished by:	: Date:	2 142 1				\geq	ved t	ے	Á	Da	le			skip:	2 4:50		∠IVI <i>F</i>	~F <f< td=""><td>.J.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>2.0</td><td>C</td><td>•</td><td></td><td></td></f<>	.J.							10	2.0	C	•		
Relinquished by:	Lele 8	Time Color		5,	新科	1646									ie	15			. =.:										<u></u>		

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204207

P.O. Box 4845

Project:

CH 2100

Midland, TX 79704

D - - - - - 4 NT - -

Project Name: Champion

4 oz glass

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Date / Time Date / Time

Lab ID: 0204207-01

Sample:
Comp. Caliche Pit

Matrix: Collected

Received

Container Preservative

SOIL

8/12/02 16:45 8/14/02 10:30 Ice

Lab Testing:

Rejected: No

Temp:

9.0 C

9021D/5020 DTE

,

mp: 9.0

8021B/5030 BTEX

Anions

Cations

METALS RCRA 7 Total

Copper

Fluoride

Iron

Manganese

Mercury, Total

Nitrogen, Nitrate

Nitrogen, Nitrite

TPH 418.1 FTIR

Zinc

ANALYTICAL REPORT

Lodd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204207

Project:

CH 2100

Project Name: Location:

Champion Hobbs, NM

Lab ID:

0204207-01

Sample ID:

Comp. Caliche Pit

8021B/5030 BTEX

Method	
Blank	

Date Prepared

Date Analyzed Sample **Amount**

Dilution <u>Factor</u> 25

Analyst CK

Method 8021B

0002898-02

8/19/02 19:31

Result Parameter RLmg/kg Benzene <0.025 0.025 <0.025 0.025 Ethylbenzene Toluene <0.025 0.025 0.025 p/m-Xylene < 0.025 <0.025 0.025 o-Xylene

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	90%	73	115
Bromofluorobenzene	107%	72	110

Approval:

Raland K. Tuttle, Lab Divector, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204207

Project:

CH 2100

Project Name: Location:

Champion Hobbs, NM

Lab ID:

0204207-01

Sample ID:

Comp. Caliche Pit

Anions			Dilution			Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	Analyst
Bicarbonate Alkalinity	56.0	mg/kg	1	2.00	310.1	8/15/02	SB
Carbonate Alkalinity	<0.10	mg/kg	1	0.10	310.1	8/15/02	SB
Chloride	<50.0	mg/kg	1	50.0	9253	8/17/02	SB
Hydroxide Alkalinity	< 0.10	mg/kg	1	2	310.1	8/15/02	SB
SULFATE, 375.4	324	mg/kg	1	2.5	375.4	8/16/02	SB
Test Parameters			Dilution			Date	

Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Fluoride	5.45	mg/kg	1	0.10	340.1	8/16/02	SB
Nitrogen, Nitrate	14.2	mg/kg	5	2.5	353.3	8/14/02	SB
Nitrogen, Nitrite	0.257	mg/kg	5	0.020	354.1	8/14/02	SB
TPH 418.1 FTIR	16.5	mg/kg	1	10.0	418.1	8/14/02	SB

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Todd Choban vironmental Technology Group, Inc. O. Box 4845

Order#:

Location:

G0204207

Project: Project Name: CH 2100 Champion Hobbs, NM

Lab ID:

Midland, TX 79704

0204207-01

Lau ID. 0204207-01								
Sample ID: Comp. Caliche Pit								
Cations			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium	74200	mg/kg	10000	100	6010B	08/22/2002	8/22/02	SM
Magnesium	1090	mg/kg	1000	1.0	6010B	08/22/2002	8/22/02	SM
Potassium	106	mg/kg	100	5.0	6010B	08/22/2002	8/22/02	SM
Sodium	654	mg/kg	100	1.0	6010B	08/22/2002	8/22/02	SM
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	12.1	mg/kg	50	0.400	3050/6010B	08/15/2002	8/16/02	SM
Barium	154	mg/kg	50	0.050	3050/6010B	08/15/2002	8/16/02	SM
Cadmium	1.04	mg/kg	50	0.050	3050/6010B	08/15/2002	8/16/02	SM
Chromium	6.48	mg/kg	50	0.100	3050/6010B	08/15/2002	8/16/02	SM
Lead	10	mg/kg	50	0.550	3050/6010B	08/15/2002	8/16/02	SM
Selenium	< 0.20	mg/kg	50	0.200	3050/6010B	08/15/2002	8/16/02	SM
Silver	< 0.10	mg/kg	50	0.100	3050/6010B	08/15/2002	8/16/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Copper	2.39	mg/kg	50	0.10	3050/6010B	08/15/2002	8/17/02	SM
Iron	3990	mg/kg	500	1.0	3050/6010B	08/15/2002	8/17/02	SM
Manganese	27.7	mg/kg	50	0.050	3050/6010B	08/15/2002	8/17/02	SM
Mercury, Total	< 0.10	mg/kg	50	0.10	7471	08/15/2002	8/16/02	SM
Zinc	10.1	mg/kg	50	0.050	3050/6010B	08/15/2002	8/17/02	SM

Approval:

Raland K. Tuttle, Lab Diffector, QA Officer Celey D. Keene, Org. Tech Director

Jeanne McMurrey, Inorg Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

		Test Para	meters		Order#: G020	14207
BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002868-01			< 0.10		
luoride-mg/kg	0002851-01			<0.10		
on-mg/kg	0002868-01	-,		< 0.10		
fanganese-mg/kg	0002868-01	77.1		< 0.050		
fercury, Total-mg/kg	0002843-01			< 0.10		
itrogen, Nitrate-mg/kg	0002821-01			<0.5		
litrogen, Nitrite-mg/kg	0002821-01			<0.010		
PH 418.1 FTIR-mg/kg	0002817-01			<10.00		
inc-mg/kg	0002868-01	- 1,1		< 0.050		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002868-02		10	9.40	94.%	· · · · · · · · · · · · · · · · · · ·
on-mg/kg	0002868-02		30	32.5	108.3%	
/langanese-mg/kg	0002868-02		10	10.0	100.%	
inc-mg/kg	0002868-02		10	10.4	104.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002868-03		10	9.56	95.6%	1.7%
g/kg	0002868-03		30	34.0	113.3%	4.5%
nese-mg/kg	0002868-03		10	10.1	101.%	1.%
inc-mg/kg	0002868-03		10	10.5	105.%	1.%
DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
luoride-mg/kg	0204207-01	5.45		5.45		0.%
litrogen, Nitrate-mg/kg	0204207-01	14.2		13.7		3.6%
Vitrogen, Nitrite-mg/kg	0204207-01	0.257		0.265		3.1%
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
fercury, Total-mg/kg	0204207-01	0	1	0.890	89.%	
PH 418.1 FTIR-mg/kg	0204180-01	198	2640	2950	104.2%	
MSD SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Mercury, Total-mg/kg	0204207-01	0	1	0.925	92.5%	3.9%
PH 418.1 FTIR-mg/kg	0204180-01	198	2640	2950	104.2%	0.%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Copper-mg/kg	0002868-04		1	1.02	102.%	
luoride-mg/kg	0002851-04		1	0.96	96.%	
ron-mg/kg	0002868-04		1	1.03	103.%	
/langanese-mg/kg	0002868-04		1	1.01	101.%	
ry, Total-mg/kg	0002843-04		0.75	0.735	98.%	

QUALITY CONTROL REPORT

•	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Nitrogen, Nitrate-mg/kg		0002821-04		2	1.9	95.%	
Nitrogen, Nitrite-mg/kg		0002821-04		0.25	0.240	96.%	
TPH 418.1 FTIR-mg/kg		0002817-04		5288	5450	103.1%	
Zinc-mg/kg		0002868-04		1	1.07	107.%	

QUALITY CONTROL REPORT

Cations

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-None		0002944-01			<0.010		· · · · · · · · · · · · · · · · · · ·
Magnesium-None		0002944-01			<0.001		
Potassium-None		0002944-01			<0.050		
Sodium-None		0002944-01			<0.010		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-None		0204207-01	74200		76300		2.8%
Magnesium-None		0204207-01	1090		1170		7.1%
Potassium-None		0204207-01	106		106		0.%
Sodium-None		0204207-01	654		653		0.2%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-None		0002944-04		2	2.04	102.%	
Magnesium-None		0002944-04		2	1.93	96.5%	
Potassium-None		0002944-04		2	1.91	95.5%	
Sodium-None		0002944-04		2	1.78	89.%	

QUALITY CONTROL REPORT

METALS RCRA 7 Total

Order#: G020420'

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002844-02			< 0.40		
Barium-mg/kg	0002844-02	•		< 0.050		
Cadmium-mg/kg	0002844-02			< 0.050		·
Chromium-mg/kg	0002844-02			< 0.10		
_ead-mg/kg	0002844-02			< 0.55		
Selenium-mg/kg	0002844-02			< 0.20		
Silver-mg/kg	0002844-02			< 0.10		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002844-03		40	36	90.%	
Barium-mg/kg	0002844-03		10	9.90	99.%	
Cadmium-mg/kg	0002844-03		10	9.51	95.1%	
Chromium-mg/kg	0002844-03		10	10.4	104.%	
Lead-mg/kg	0002844-03		50	47.1	94.2%	
Selenium-mg/kg	0002844-03		20	15.9	79.5%	
Silver-mg/kg	0002844-03		5	4.59	91.8%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ic-mg/kg	0002844-04		40	36.1	90.3%	0.3%
m-mg/kg	0002844-04		10	9.97	99.7%	0.7%
Cadmium-mg/kg	0002844-04		10 .	9.65	96.5%	1.5%
Chromium-mg/kg	0002844-04		10	10.4	104.%	0.%
Lead-mg/kg	0002844-04		50	47.7	95.4%	1.3%
Selenium-mg/kg	0002844-04		20	16.2	81.%	1.9%
Silver-mg/kg	0002844-04		5	4.69	93.8%	2.2%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0002844-05		1	1.09	109.%	
Barium-mg/kg	0002844-05		1	1.09	109.%	
Cadmium-mg/kg	0002844-05		1	1.08	108.%	
Chromium-mg/kg	0002844-05		1	1.09	109.%	
Lead-mg/kg	0002844-05	······································	1	1.08	108.%	
Selenium-mg/kg	0002844-05		1	1.06	106.%	
Silver-mg/kg	0002844-05		0.5	0.488	97.6%	

QUALITY CONTROL REPORT

8021B/5030 BTEX

BLANK s	OIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002898-02			<0.025		•
Ethylbenzene-mg/kg		0002898-02			<0.025		
Toluene-mg/kg		0002898-02			<0.025		
p/m-Xylene-mg/kg		0002898-02			<0.025		
o-Xylene-mg/kg		0002898-02			<0.025		
CONTROL s	OIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002898-03		0.1	0.101	101.%	
Ethylbenzene-mg/kg		0002898-03		0.1	0.107	107.%	
Toluene-mg/kg		0002898-03		0.1	0.105	105.%	
p/m-Xylene-mg/kg		0002898-03		0.2	0.214	107.%	
o-Xylene-mg/kg		0002898-03		0.1	0.105	105.%	
CONTROL DUP	OIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002898-04		0.1	0.102	102.%	1.%
Ethylbenzene-mg/kg		0002898-04		0.1	0.108	108.%	0.9%
Toluene-mg/kg		0002898-04		0.1	0.107	107.%	1.9%
p/m-Xylene-mg/kg		0002898-04		0.2	0.216	108.%	0.9%
o ene-mg/kg		0002898-04		0.1	0.105	105.%	0.%
SAM	OIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0002898-05		0.1	0.100	100.%	
Ethylbenzene-mg/kg		0002898-05		0.1	0.104	104.%	
Toluene-mg/kg		0002898-05		0.1	0.109	109.%	
p/m-Xylene-mg/kg		0002898-05		0.2	0.216	108.%	
o-Xylene-mg/kg		0002898-05		0.1	0.105	105.%	

QUALITY CONTROL REPORT

Anions

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-m	ıg/kg	0002846-01			<2.00		
Carbonate Alkalinity-mg	/kg	0002848-01			<0.10		
Chloride-mg/kg		0002897-01			<50.0		
Hydroxide Alkalinity-mg	/kg	0002850-01	· · · · · · · · · · · · · · · · · · ·		<0.10		
SULFATE, 375.4-mg/kg		0002860-01			<2.5		
DUPLICATE	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-m	ıg/kg	0204207-01	56		56		0.%
Carbonate Alkalinity-mg/kg		0204207-01	0		<0.10		0.%
Hydroxide Alkalinity-mg/kg		0204207-01	0		<0.10		0.%
SULFATE, 375.4-mg/kg		0204207-01	324		322		0.6%
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204207-01	0	1250	1280	102.4%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204207-01	1280	1250	1280	102.4%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
onate Alkalinity-mg/kg		0002846-04		0.05	0.0496	99.2%	
Carbonate Alkalinity-mg/kg		0002848-04		0.05	0.0496	99.2%	
Chloride-mg/kg		0002897-04		5000	4960	99.2%	
Hydroxide Alkalinity-mg/kg		0002850-04		0.05	0.0496	99.2%	
SULFATE, 375.4-mg/kg		0002860-04		50	49.2	98.4%	

Enviroghental Lab of Texas I, I 12600 West I-20 East Odessa, Texas 79763 Project Manager: Clc Choban	td.						СН				RECOI						:ST		
		·			······	·		Pro	oject N	ame:	<u>C</u>		ロハフノ	$\frac{\mu}{\Delta z}$	<u>011</u> 1	<u>′</u>			
Company Name Fl GL Company Address: #600 West	LAL				· · · · · · · · · · · · · · · · · · ·						Llo								
City/State/Zip: Micliand, TX	797	03					_	·		 -O#:	Mo	<u> </u>	<u></u>						
Telephone No (35) 522-1139		Fax No:	95)	520	-43	10			·	O	-								
						·	_				CLP:	An	nalyze	For:		<u> </u>			
				Presen	/ative	T	Ma	trix	ا ي	TOT	TAL:	+	+	\dashv		+			
LAB # (lab use only) OI Comp. Caliche Pit 8	Date Sampled		No. of Containers	HC:	H ₂ SO ₄	Olher (Specify)	Sludge	Soil Other (specify):	TPH: 418.) 8015M 1005 1006	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg S	Volatiles	Semivolaliles	RCI RCI	3	X General Chemists		RUSH TAT (Pre-Schedule	X Standard TAT
					+	╁╌┟	-						+	4-	$\vdash \vdash$	_	 		
Relinquished by: Relinquished by: Time Relinquished by:	ceived by: Ceived by ELOT: Stane:	Sench memu inovished		Jasa	m He	8-1	Date 14-07	2 0/	Time 6:55	Terr Lab	nple Conperaturorator	ire Ur y Coi	pon R	eceipt	t:	9,0	N N		

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204312

P.O. Box 4845

Project:

CH2100

Midland, TX 79704

Project Name: Champion Technologies, Inc.

915-520-4310

Location:

Hobbs, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

			Date / Time	Date / Time		
Lab ID:	Sample:	Matrix:	Collected	Received	Container	Preservative
0204312-01	Area 2 Stockpile 1-A	SOIL	8/22/02	8/23/02	4 oz glass	iced
_	* m	D. C. Ma	8:55	10:00		
<u>La</u>	b Testing:	Rejected: No	Ten	np: 1.0C		
	8260B TCLP					
	8270C Semivolatile C	-				
	METALS RCRA 7 TO	CLP				
	Chromium					
	Mercury, TCLP					
0204312-02	Area 2 Stockpile 1-B	SOIL	8/22/02	8/23/02	4 oz glass	iced
			9:03	10:00		
<u>La</u>	b Testing:	Rejected: No	Теп	ip: 1.0C		
	8260B TCLP					
	8270C Semivolatile C	•				
	METALS RCRA 7 TO	CLP				
	Chromium					
	Mercury, TCLP					
0204312-03	Area 2 Stockpile 2-A	SOIL	8/22/02	8/23/02	4 oz glass	iced
0201012 00			9:11	10:00		
<u>La</u>	b Testing:	Rejected: No	Ten	ip: 1.0C		
	8260B TCLP					
	8270C Semivolatile C	rganics - TCLP				
	METALS RCRA 7 TO	CLP				
	Mercury, TCLP_					
0204312-04	Area 2 Stockpile 2-B	SOIL	8/22/02 9:17	8/23/02 10:00	4 oz glass	iced
La	b Testing:	Rejected: No	Ten			
_	8260B TCLP					
	8270C Semivolatile C	rganics - TCLP				
	METALS RCRA 7 TO	•				
	Mercury, TCLP					

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-01

Sample ID:

Area 2 Stockpile 1-A

8260B TCLP

Method

Date

Prepared

Date Analyzed

Sample Amount 5

Dilution Factor

Analyst

Method

Blank 0002973-02 8/23/02

8/26/02 18:14

1

1311/8260B CK

Parameter	Result µg/L	RL		
Carbon tetrachloride	<1	1.00		
Benzene	<1	1.00		
1,2-Dichloroethane	<1	1.00		
Chlorobenzene	<1	1.00		
1,1-Dichloroethene	<1	1.00		
1,4-Dichlorobenzene	<1	1.00		
2-Butanone (MEK)	<1	1.00		
Chloroform	<1	1.00		
Tetrachloroethene	<1	1.00		
Trichloroethene	<1	1.00		
Vinyl chloride	<1	1.00		

Surrogates	% Recovered	QC Limits (%)				
Dibromofluoromethane	98%	53	144			
1,2-dichloroethane-d4	100%	57	147			
Toluene-d8	101%	64	128			
4-Bromofluorobenzene	95%	47	158			

ANALYTICAL REPORT

odd Choban

rironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-01

Sample ID:

Area 2 Stockpile 1-A

8270C Semivolatile Organics - TCLP

Method Blank

Date **Prepared** 8/23/02

Date <u>Analyzed</u> 8/27/02

Sample Amount 1

Dilution **Factor**

<u>Analyst</u>

Method

0003051-02

19:27

1 CK 1311/8270C

Parameter	Result µg/L	RL
Pyridine	<5	5.00
1,4-Dichlorobenzene	<5	5.00
2-Methylphenol	<5	5.00
Hexachloroethane	<5	5.00
Nitrobenzene	<5	5.00
Hexachlorobutadiene	<5	5.00
2,4,6-Trichlorophenol	<5	5.00
2,4,5-Trichlorophenol	<5	5.00
2,4-Dinitrotoluene	<5	5.00
Hexachlorobenzene	<5	5.00
Pentachlorophenol	<5	5.00
4-Methylphenol	<5	5.00

Surrogates	% Recovered	QC Li	mits (%)
2-Fluorophenol	15%	21	110
Phenol-d5	15%	10	110
Nitrobenzene-d5	28%	35	114
2-Fluorobiphenyl	36%	43	116
2,4,6-Tribromophenol	92%	10	123
p-Terphenyl-d14	70%	33	141

ANALYTICAL REPORT

odd Choban

vironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-02

Sample ID:

Area 2 Stockpile 1-B

8260B TCLP

Method	Date	Date
<u>Blank</u>	Prepared	Analyzed
0002973-02	8/23/02	8/26/02

Sample Amount

Dilution <u>Factor</u>

Analyst

Method 1311/8260B

18:39

5 1 CK

Parameter	Result µg/L	RL
Carbon tetrachloride	<1	1.00
Benzene	<1	1.00
1,2-Dichloroethane	<1	1.00
Chlorobenzene	<1	1.00
1,1-Dichloroethene	<1	1.00
1,4-Dichlorobenzene	<1	1.00
2-Butanone (MEK)	<1	1.00
Chloroform	<1	1.00
Tetrachloroethene	1.10	1.00
Trichloroethene	<1	1.00
Vinyl chloride	<1	1.00

Surrogates	% Recovered	QC Li	mits (%)
Dibromofluoromethane	95%	53	144
1,2-dichloroethane-d4	101%	57	147
Toluene-d8	99%	64	128
4-Bromofluorobenzene	94%	47	158

ANALYTICAL REPORT

dd Choban

ironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-02

Sample ID:

Area 2 Stockpile 1-B

8270C Semivolatile Organics - TCLP

Method Blank

Sample

Dilution

Analyst

Method

0003051-02

Date Prepared

Analyzed 8/27/02

Amount

Factor 1

CK

1311/8270C

8/23/02

20:04

	D 4	· · · · · · · · · · · · · · · · · · ·
Parameter	Result µg/L	RL
Pyridine	<5	5.00
1,4-Dichlorobenzene	<5	5.00
2-Methylphenol	<5	5.00
Hexachloroethane	<5	5.00
Nitrobenzene	<5	5.00
Hexachlorobutadiene	<5	5.00
2,4,6-Trichlorophenol	<5	5.00
2,4,5-Trichlorophenol	<5	5.00
2,4-Dinitrotoluene	<5	5.00
Hexachlorobenzene	<5	5.00
Pentachlorophenol	<5	5.00
4-Methylphenol	<5	5.00

Surrogates	% Recovered	Recovered QC Limi	QC Limits (%)
2-Fluorophenol	17%	21	110
Phenol-d5	13%	10	110
Nitrobenzene-d5	36%	35	114
2-Fluorobiphenyl	45%	43	116
2,4,6-Tribromophenol	101%	10	123
p-Terphenyl-d14	74%	33	141

ANALYTICAL REPORT

dd Choban

ironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-03

Sample ID:

Area 2 Stockpile 2-A

8260B TCLP

Method Blank Date <u>Prepared</u> Date Analyzed Sample Amount Dilution

Anols

Method

0002973-02

8/23/02

Analyzed 8/26/02

5

Factor 1 Analyst CK

1311/8260B

75-02

19:03

Parameter	Result µg/L	RL
Carbon tetrachloride	<1	1.00
Benzene	<1	1.00
1,2-Dichloroethane	<1	1.00
Chlorobenzene	<1	1.00
1,1-Dichloroethene	<1	1.00
1,4-Dichlorobenzene	<1	1.00
2-Butanone (MEK)	<1	1.00
Chloroform	<1	1.00
Tetrachloroethene	1.68	1.00
Trichloroethene	<1	1.00
Vinyl chloride	<1	1.00

Surrogates	% Recovered	QC Li	mits (%)
Dibromofluoromethane	98%	53	144
1,2-dichloroethane-d4	100%	57	147
Toluene-d8	103%	64	128
4-Bromofluorobenzene	107%	47	158

ANALYTICAL REPORT

Codd Choban

ironmental Technology Group, Inc.

O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-03

Sample ID:

Area 2 Stockpile 2-A

8270C Semivolatile Organics - TCLP

Method Blank

Sample Amount

Dilution

1

Analyst

Method

0003051-02

Date **Prepared** 8/23/02

Analyzed 8/27/02 20:41

1

Factor

CK 1311/8270C

Result RLParameter μg/L <5 5.00 Pyridine 5.00 <5 1,4-Dichlorobenzene 2-Methylphenol <5 5.00 Hexachloroethane <5 5.00 Nitrobenzene <5 5.00 5.00 Hexachlorobutadiene <5 2,4,6-Trichlorophenol <5 5.00 5.00 2,4,5-Trichlorophenol <5 2,4-Dinitrotoluene <5 5.00 <5 5.00 Hexachlorobenzene 5.00 Pentachlorophenol <5 4-Methylphenol <5 5.00

Surrogates	% Recovered	QC Li	mits (%)
2-Fluorophenol	19%	21	110
Phenol-d5	17%	10	110
Nitrobenzene-d5	34%	35	114
2-Fluorobiphenyl	43%	43	116
2,4,6-Tribromophenol	112%	10	123
p-Terphenyl-d14	80%	33	141

ANALYTICAL REPORT

odd Choban

ironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name: Location:

Champion Technologies, Inc. Hobbs, NM

Lab ID:

0204312-04

Sample ID:

Area 2 Stockpile 2-B

8260B TCLP

Method

Date

Sample Date

Dilution

<u>Analyst</u> Method

Blank 0002973-02 Prepared 8/23/02

Analyzed 8/26/02

Amount 5

Factor 1

19:28

CK

1311/8260B

Parameter	Result µg/L	RL
Carbon tetrachloride	<1	1.00
Benzene	<1	1.00
1,2-Dichloroethane	<1	1.00
Chlorobenzene	<1	1.00
1,1-Dichloroethene	<1	1.00
1,4-Dichlorobenzene	<1	1.00
2-Butanone (MEK)	<1	1.00
Chloroform	<1	1.00
Tetrachloroethene	1.00	1.00
Trichloroethene	<1	1.00
Vinyl chloride	<1	1.00

Surrogates	% Recovered	QC Li	mits (%)
Dibromofluoromethane	78%	53	144
1,2-dichloroethane-d4	74%	57	147
Toluene-d8	99%	64	128
4-Bromofluorobenzene	98%	47	158

ANALYTICAL REPORT

codd Choban

vironmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-04

Sample ID:

Area 2 Stockpile 2-B

8270C Semivolatile Organics - TCLP

Method	Date Prepared	Date <u>A</u> nalyzed	Sample Amount	Dilution Factor	Analyst	Method
Blank	Trepared	Mularyzeu	Amount	Pactor	Allalyst	MEHIOU
0003051-02	8/23/02	8/27/02 21:17	1	1	CK	1311/8270C
		41:17				

Parameter	Result µg/L	RL
Pyridine	<5	5.00
1,4-Dichlorobenzene	<5	5.00
2-Methylphenol	<5	5.00
Hexachloroethane	<5	5.00
Nitrobenzene	<5	5.00
Hexachlorobutadiene	<5	5.00
2,4,6-Trichlorophenol	<5	5.00
2,4,5-Trichlorophenol	<5	5.00
2,4-Dinitrotoluene	<5	5.00
Hexachlorobenzene	<5	5.00
Pentachlorophenol	<5	5.00
4-Methylphenol	<5	5.00

Surrogates	% Recovered	QC Limits (%)		
2-Fluorophenoi	22%	21	110	
Phenol-d5	20%	10	110	
Nitrobenzene-d5	47%	35	114	
2-Fluorobiphenyl	51%	43	116	
2,4,6-Tribromophenol	86%	10	123	
p-Terphenyl-d14	77%	33	141	

Approval: Caland College
Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Page 8 of 8

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

G0204312

Project:

CH2100

Project Name:

Champion Technologies, Inc.

Location:

Hobbs, NM

Lab ID:

0204312-01

Sample ID:

Area 2 Stockpile 1-A

METALS RCRA 7 TCLP			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic	0.028	mg/L	1	0.008	1311/6010B	08/26/2002	8/27/02	SM
Barium	0.900	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Cadmium	< 0.001	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Chromium	<0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Lead	< 0.011	mg/L	1	0.011	1311/6010B	08/26/2002	8/27/02	SM
Selenium	<0.004	mg/L	1	0.004	1311/6010B	08/26/2002	8/27/02	SM
Silver	<0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Chromium	22.8	mg/kg	50	0.10	3050/6010B	08/26/2002	8/28/02	SM
Mercury, TCLP	<0.002	mg/L	1	0.002	7470	08/26/2002	8/27/02	SM

Lab ID:

0204312-02

Sample ID:

Area 2 Stockpile 1-B

METALS RCRA 7 TCLP			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	Analyst
Arsenic	0.025	mg/L	1	0.008	1311/6010B	08/26/2002	8/27/02	SM
Barium	0.558	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Cadmium	< 0.001	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Chromium	< 0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Lead	< 0.011	mg/L	1	0.011	1311/6010B	08/26/2002	8/27/02	SM
Selenium	<0.004	mg/L	1	0.004	1311/6010B	08/26/2002	8/27/02	SM
Silver	<0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Total Designations			1724002			-		

Test Parameters			Dilution			Date	Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Chromium	32.3	mg/kg	50	0.10	3050/6010B	08/26/2002	8/28/02	SM
Mercury, TCLP	<0.002	mg/L	1	0.002	7470	08/26/2002	8/27/02	SM

Lab ID:

0204312-03

Sample ID:

Area 2 Stockpile 2-A

METALS RCRA 7 TCLP			Dilution			Date	Date	
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	0.022	mg/L	1	0.008	1311/6010B	08/26/2002	8/27/02	SM
Barium	0.695	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Cadmium	< 0.001	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Chromium	< 0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Lead	< 0.011	mg/L	1	0.011	1311/6010B	08/26/2002	8/27/02	SM

N/A = Not Applicable

RL = Reporting Limit

Page 1 of 2

ANALYTICAL REPORT

Todd Choban

vironmental Technology Group, Inc.

.O. Box 4845

Midland, TX 79704

Order#:

Location:

G0204312

Project: CH

CH2100

Project Name:

Champion Technologies, Inc. Hobbs, NM

Lab ID:

0204312-03

Sample ID:

Area 2 Stockpile 2-A

METALS RCRA 7 TCLP			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Analyst</u>
Selenium	<0.004	mg/L	1	0.004	1311/6010B	08/26/2002	8/27/02	SM
Silver	< 0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Prepared	Analyzed	<u>Anaiyst</u>
Mercury, TCLP	<0.002	mg/L	1	0.002	7470	08/26/2002	8/27/02	SM

Lab ID:

0204312-04

Sample ID:

Area 2 Stockpile 2-B

METALS RCRA 7 TCLP Parameter	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Prepared	Date Analyzed	Analyst
Arsenic	0.027	mg/L	1	0.008	1311/6010B	08/26/2002	8/27/02	SM
Barium	0.594	mg/L	1	0.001	1311/6010B	08/26/2002	8/27/02	SM
Cadmium	< 0.001	mg/L	i	0.001	1311/6010B	08/26/2002	8/27/02	SM
Chromium	< 0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Lead	0.013	mg/L	Ī	0.011	1311/6010B	08/26/2002	8/27/02	SM
Selenium	<0.004	mg/L	1	0.004	1311/6010B	08/26/2002	8/27/02	SM
Silver	<0.002	mg/L	1	0.002	1311/6010B	08/26/2002	8/27/02	SM
Test Parameters			Dilution			Date	Date	•
Parameter	Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Mercury, TCLP	<0.002	mg/L	1	0.002	7470	08/26/2002	8/27/02	SM

Approval: Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech. Date

9-05-02

QUALITY CONTROL REPORT

8260B TCLP

A	C30001310
I I PO CPTT	G0204312

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Carbon tetrachloride-µg/L	0002973-02			<1		
Benzene-μg/L	0002973-02		-	<1		
,2-Dichloroethane-µg/L	0002973-02			<1		
Chlorobenzene-µg/L	0002973-02			<1		
,1-Dichloroethene-µg/L	0002973-02			<1		
,4-Dichlorobenzene-μg/L	0002973-02			<1		
-Butanone (MEK)-μg/L	0002973-02			<1		
Chloroform-µg/L	0002973-02			<1		
Tetrachloroethene-μg/L	0002973-02			<1		
Frichloroethene-μg/L	0002973-02			<1		
Vinyl chloride-µg/L	0002973-02			<1		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Carbon tetrachloride-µg/L	0002973-03		50	55.3	110.6%	
Benzene-μg/L	0002973-03		50	59.4	118.8%	
,2-Dichloroethane-µg/L	0002973-03		50	64.6	129.2%	
Chlorobenzene-µg/L	0002973-03		50	55.4	110.8%	
,1-Dichloroethene-µg/L	0002973-03		50	54.4	108.8%	
anone (MEK)-µg/L	0002973-03		100	97.5	97.5%	
oform-μg/L	0002973-03		50	62.8	125.6%	
etrachloroethene-μg/L	0002973-03		50	40.4	80.8%	
richloroethene-µg/L	0002973-03		50	41.5	83.%	
/inyl chloride-μg/L	0002973-03		50	43.7	87.4%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Carbon tetrachloride-μg/L	0002973-04		50	56.2	112.4%	1.6%
Benzene-μg/L	0002973-04		50	55.5	111.%	6.8%
,2-Dichloroethane-μg/L	0002973-04		50	58.8	117.6%	9.4%
Chlorobenzene-µg/L	0002973-04		50	49.3	98.6%	11.7%
,1-Dichloroethene-µg/L	0002973-04		50	58.9	117.8%	7.9%
-Butanone (MEK)-μg/L	0002973-04		100	85.4	85.4%	13.2%
Chloroform-µg/L	0002973-04		50	56.6	113.2%	10.4%
Γetrachloroethene-μg/L	0002973-04		50	39.1	78.2%	3.3%
richloroethene-μg/L	0002973-04		50	40.6	81.2%	2.2%
/inyl chloride-μg/L	0002973-04		50	39.7	79.4%	9.6%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
,1-Dichloroethene-μg/L	0002973-05		50	55.3	110.6%	
Chloroform-µg/L	0002973-05		50	60.1	120.2%	
Vinyl chloride-µg/L	0002973-05		50	45.9	91.8%	

QUALITY CONTROL REPORT

8270C Semivolatile Organics - TCLP

Order#: G0204312

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Pyridine-μg/L	0003051-02			<5		
l,4-Dichlorobenzene-µg/L	0003051-02			<5		,
2-Methylphenol-μg/L	0003051-02			<5		
Hexachloroethane-μg/L	0003051-02			<5		
Nitrobenzene-µg/L	0003051-02			<5		
Hexachlorobutadiene-µg/L	0003051-02			<5		
2,4,6-Trichlorophenol-µg/L	0003051-02			<5		· · · · - ·
2,4,5-Trichlorophenol-µg/L	0003051-02			<5		
2,4-Dinitrotoluene-μg/L	0003051-02			<5		
Hexachlorobenzene-μg/L	0003051-02			<5		
Pentachlorophenol-µg/L	0003051-02			<5		•
4-Methylphenol-μg/L	0003051-02			<5		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
1,4-Dichlorobenzene-µg/L	0003051-03		100	33	33.%	
2,4-Dinitrotoluene-μg/L	0003051-03		100	58.2	58.2%	
Pentachlorophenol-µg/L	0003051-03		200	184	92.%	·
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
chlorobenzene-µg/L	0003051-04	,	100	31.6	31.6%	4.3%
2,4-Dinitrotoluene-µg/L	0003051-04		100	56.9	56.9%	2.3%
Pentachlorophenol-µg/L	0003051-04		200	195	97.5%	5.8%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
1,4-Dichlorobenzene-µg/L	0003051-05		50	51.2	102.4%	
Hexachlorobutadiene-µg/L	0003051-05		50	62.4	124.8%	
2,4,6-Trichlorophenol-μg/L	0003051-05		50	53.8	107.6%	
Pentachlorophenol-µg/L	0003051-05		50	64	128.%	

QUALITY CONTROL REPORT

METALS RCRA 7 TCLP

Order#: G0204312

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L	0002996-02			<0.008		
Barium-mg/L	0002996-02			<0.001		-
Cadmium-mg/L	0002996-02			<0.001		
Chromium-mg/L	0002996-02			<0.002		
_ead-mg/L	0002996-02			<0.011		
Selenium-mg/L	0002996-02			<0.004		
Silver-mg/L	0002996-02			<0.002		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L	0002996-03		0.8	0.886	110.7%	
Barium-mg/L	0002996-03		0.2	0.199	99.5%	
Cadmium-mg/L	0002996-03		0.2	0.188	94.%	
Chromium-mg/L	0002996-03		0.2	0.195	97.5%	
Lead-mg/L	0002996-03		1	0.908	90.8%	
Selenium-mg/L	0002996-03		0.5	0.482	96.4%	
Silver-mg/L	0002996-03		0.5	0.444	88.8%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ic-mg/L	0002996-04		0.8	0.890	111.3%	0.5%
n-mg/L	0002996-04		0.2	0.206	103.%	3.5%
Cadmium-mg/L	0002996-04		0.2	0.190	95.%	1.1%
Chromium-mg/L	0002996-04		0.2	0.191	95.5%	2.1%
_ead-mg/L	0002996-04		1	0.899	89.9%	1.%
Selenium-mg/L	0002996-04		0.5	0.485	97.%	0.6%
Gilver-mg/L	0002996-04		0.5	0.447	89.4%	0.7%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pet (%) Recovery	RPD
Arsenic-mg/L	0002996-05		1	0.960	96.%	
Barium-mg/L	0002996-05		1	1.02	102.%	
Cadmium-mg/L	0002996-05		1	0.965	96.5%	
Chromium-mg/L	0002996-05		1	1.02	102.%	
_ead-mg/L	0002996-05		1	1.01	101.%	
Selenium-mg/L	0002996-05		1	0.994	99.4%	
Silver-mg/L	0002996-05		0.5	0.481	96.2%	

QUALITY CONTROL REPORT

Test Parameters

Order#: G0204312

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chromium-mg/kg	0002998-01			< 0.10		
Mercury, TCLP-mg/L	0002977-01			<0.002		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chromium-mg/kg	0002998-02		10	9.16	91.6%	
Mercury, TCLP-mg/L	0002977-02		0.015	0.016	106.7%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chromium-mg/kg	0002998-03		10	9.01	90.1%	1.7%
Mercury, TCLP-mg/L	0002977-03		0.015	0.016	106.7%	0.%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chromium-mg/kg	0002998-04		1	0.990	99.%	· · · · · ·
Mercury, TCLP-mg/L	0002977-04		0.015	0.015	100.%	

CASE NARRATIVE

ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Environmental Technology Group, Inc.

P.O. Box 4845

Midland, TX 79704

Order#: G0204312

Project: Champion Technologies, Inc.

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
Area 2 Stockpile 1-A	0204312-01	SOIL	08/22/2002	08/23/2002
Area 2 Stockpile 1-B	0204312-02	SOIL	08/22/2002	08/23/2002
Area 2 Stockpile 2-A	0204312-03	SOIL	08/22/2002	08/23/2002
Area 2 Stockpile 2-B	0204312-04	SOIL	08/22/2002	08/23/2002

Phenol surrogate recoveries were low. Samples were rerun with same results. Spike recoveries were within range, therefore low surrogate recoveries due to matrix interference.

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By: Raland Lucub Date: 9-05-02

Environ- 12600 West I-20 Eas Odessa, Texas 7976		63-1800				CHAIN		OC:/		LYSIS R	EQUEST	
Project M	anager: TODD CH	IOBAN					Project N	ame: Chan	pion	Tech	indogi	ies In
	y Name E. T. G. I.							ect #: <u>C H</u>		-		
		1)0//						Loc: Hob				
	tate/Zip: Midland, T	1:							•	— 		
	one No: 915-522-1139	11		: 915-52¢	1-421		•	· · · · · · · · · · · · · · · · · · ·				
	gnature: Marcelo C		Fax No:	· 112 Jak	701	Ψ						
Jampier Ji	gnature. II/a/Westo	ampor						NAK.	Analyze For			
								TCLP:				
07	FIELD CODE Area 2 Stockpile Excava Area 2 Stockpile Excava Area 2 Stockpile Excava Area 2 Stockpile Excava	ation 1-B	редова Ф855 Ф911 Ф914	Containers 48 ;	HOSO, None	Waltır Water Sludge Soil	Other (specify): TPH: 418.1 8015M 1005 1006 Cations (Ca Mo Na K)	Anions (Cl, SO4, CO3, HCO3) SAR / ESP / CEC Metals. As Ag Ba Cd Cr Pb Hg Se		XX Total Chromium		RUSH TAT (Pre-Schedule
				1-1-1-1					++-}	+	+++	
Relinquished by. Relinquished by. Relinquished by. Relinquished by. Relinquished by. Relinquished by. Relinquished by. Relinquished by. Relinquished by.	Campoo \$122/\$2	Time Received by: 1415 Vode Time Received by E	Shoh- ELOT: LK She) Å		Date Date 8/23/02.	Time //COC	Sample Conta Temperature Laboratory C	Upon Recei		<u> </u>	V

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 10, 2002Order Number: A02092418 Champion Tech

Page Number: 1 of 2 Hobbs,NM

Summary Report

Todd Choban

Report Date:

October 10, 2002

E.T.G.I. PO Box 4845

Midland, Tx. 79704

Order ID Number: A02092418

Project Number:

CH2100

Project Name: Project Location: Hobbs,NM

Champion Tech

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
208671	Soil Sample #1	Soil	9/24/02	9:40	9/24/02
208672	Soil Sample #4	Soil	9/20/02	9:20	9/24/02
208673	Soil Sample #8	Soil	9/20/02	9:05	9/24/02
208674	Soil Sample #11	Soil	9/20/02	9:30	9/24/02
208675	Soil Sample #27	Soil	9/20/02	8:45	9/24/02

0 This report consists of a total of 2 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 208671 - Soil Sample #1

Dumpio,			
Param	Flag	Result	Units
Total Chromium		3.56	mg/Kg

Sample: 208672 - Soil Sample #4

Sampic. 2000.2	Don Danie 1/ -		
Param	Flag	Result	Units
Chloride		6990	mg/Kg

Sample: 208673 - Soil Sample #8

Param	Flag	Result	Units
Chloride		738	mg/Kg

Sample: 208674 - Soil Sample #11

Param	Flag	Result	Units
Chloride		145	mg/Kg

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date CH2100

Report Date: October 10, 2002Order Number: A02092418

Champion Tech

Page Number: 2 of 2

Hobbs,NM

Sample: 208675 - Soil Sample #27

Param

Flag

Result

Units

Chloride

837

mg/Kg

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932

800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298

E-Mail: lab@traceanalysis.com

FAX 915 • 585 • 4944

Analytical and Quality Control Report

Todd Choban

Report Date:

October 10, 2002

E.T.G.I. PO Box 4845

Midland, Tx. 79704

Order ID Number: A02092418

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

Sample	Description	Matrix	Date Taken	Time Taken	Date Received
208671	Soil Sample #1	Soil	9/24/02	9:40	9/24/02
208672	Soil Sample #4	Soil	9/20/02	9:20	9/24/02
208673	Soil Sample #8	Soil	9/20/02	9:05	9/24/02
208674	Soil Sample #11	Soil	9/20/02	9:30	9/24/02
208675	Soil Sample #27	Soil	9/20/02	8:45	9/24/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Report Date: October 10, 2002 CH2100

Order Number: A02092418 Champion Tech Page Number: 2 of 5 Hobbs,NM

Analytical Report

Sample: 208671 - Soil Sample #1

Analysis: SPLP Metals Analytical Method: S 6010B QC Batch: QC23808 Date Analyzed: 9/27/02 Preparation Method: SPLP 1312 Prep Batch: PB22216 Date Prepared: Analyst: RR9/25/02

Sample: 208672 - Soil Sample #4

Analytical Method: Analysis: SPLP Chloride E 300.0 QC Batch: QC24020 Date Analyzed: 10/8/02 Analyst: **JSW** Preparation Method: 1312 Prep Batch: PB22435 Date Prepared: 10/8/02

Sample: 208673 - Soil Sample #8

Analysis: Analytical Method: SPLP Chloride E 300.0 QC Batch: QC24020 Date Analyzed: 10/8/02 Analyst: **JSW** Preparation Method: 1312 Prep Batch: PB22435 Date Prepared: 10/8/02

Param Flag Result Units Dilution RDL

mg/L

 $\overline{1}$

2550

Sample: 208674 - Soil Sample #11

SPLP Chloride

Analysis: SPLP Chloride Analytical Method: QC Batch: Date Analyzed: 10/8/02 E 300.0 QC24020 Analyst: Preparation Method: 1312 Prep Batch: PB22435 Date Prepared: **JSW** 10/8/02

ParamFlagResultUnitsDilutionRDLSPLP Chloride671mg/L14

Sample: 208675 - Soil Sample #27

Analysis: SPLP Chloride Analytical Method: E 300.0 QC Batch: QC24020 Date Analyzed: 10/8/02 Analyst: Preparation Method: 1312 Prep Batch: PB22435 Date Prepared: **JSW** 10/8/02

Report Date: October 10, 2002 CH2100 Order Number: A02092418 Champion Tech Page Number: 3 of 5 Hobbs, NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23808

				Reporting
Param	Flag	Results	Units	Limit
SPLP Chromium		< 0.005	mg/L	0.005

Method Blank

QCBatch:

QC24020

				Reporting
Param ·	Flag	Results	Units	Limit
SPLP Chloride		14.03	mg/L	4

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23808

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
SPLP Chromium	0.103	0.103	mg/L	1	0.10	< 0.005	103	0	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes QCBatch: Q

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
SPLP Chloride	1 25.70	² 25.75	mg/L	ï	12.50	14.03	205	0	85 - 115	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

¹Blank soil should be subtracted from the sample. %IA = 93 and RPD = 0.

²Blank soil should be subtracted from the sample. %IA = 93 and RPD = 0.

CH2100

Order Number: A02092418

Champion Tech

Page Number: 4 of 5 Hobbs,NM

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
SPLP Chromium	0.107	0.106	mg/L	1	0.10	< 0.005	107	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24020

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
SPLP Chloride	16040	16240	mg/L	1	6250	10400	90	3	85 - 115	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

QC23808

			CCVs	CCVs	CCVs	Percent	_
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chromium		mg/L	0.20	0.198	99	90 - 110	9/27/02

ICV (1)

QCBatch:

QC23808

			CCVs	CCVs .	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chromium		$_{ m mg/L}$	0.20	0.199	99	90 - 110	9/27/02

CCV (1)

QCBatch:

QC24020

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chloride		mg/L	12.50	11.76	94	85 - 115	10/8/02

ICV (1)

QCBatch:

CH2100

Order Number: A02092418

Champion Tech

Page Number: 5 of 5 Hobbs,NM

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chloride		mg/L	12.50	11.82	94	85 - 115	10/8/02

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Todd Choban

Report Date:

October 10, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02092418

Project Number:

CH2100

Project Name: Project Location:

Champion Tech Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
208671	Soil Sample #1	Soil	9/24/02	9:40	9/24/02
08672	Soil Sample #4	Soil	9/20/02	9:20	9/24/02
208673	Soil Sample #8	Soil	9/20/02	9:05	9/24/02
208674	Soil Sample #11	Soil	9/20/02	9:30	9/24/02
208675	Soil Sample #27	Soil	9/20/02	8:45	9/24/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Report Date: October 10, 2002 CH2100

Order Number: A02092418 Champion Tech

Page Number: 2 of 5 Hobbs,NM

Analytical Report

Sample:

208671 - Soil Sample #1

Analysis:

Total Metals

Analytical Method:

S 6010B

QC Batch: QC23775

Date Analyzed:

9/25/02

Analyst:

RR

Preparation Method:

S 3050B

PB22201 Prep Batch:

Date Prepared:

9/24/02

Param Total Chromium Flag

Result 3.56

Units mg/Kg Dilution 100

RDL 0.01

Sample:

208672 - Soil Sample #4

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23887 Date Analyzed: 9/30/02

Analyst:

JSW

Preparation Method:

N/A

Prep Batch: PB22331 Date Prepared: 9/30/02

Param Chloride Flag

Result Units 6990 mg/Kg Dilution 500

RDL

Sample:

208673 - Soil Sample #8

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23887 Date Analyzed: 9/30/02

Analyst:

JSW

Preparation Method:

mg/Kg

N/A

Prep Batch: PB22331 Date Prepared: 9/30/02

aram Chloride Flag Result 738 Units

Dilution

50

RDL

1

1

RDL

Sample: 208674 - Soil Sample #11

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23887 Date Analyzed: 9/30/02

Analyst:

JSW

Prep Batch: PB22331 Date Prepared: 9/30/02

Param

Preparation Method:

N/A

Dilution

5

Chloride

Flag Result Units 145 mg/Kg RDL

Sample:

208675 - Soil Sample #27

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23887 Date Analyzed: 9/30/02

Analyst:

Preparation Method:

JSW

N/A

Flag

Prep Batch: PB22331 Date Prepared: 9/30/02

Param Chloride

Result 837

Units mg/Kg Dilution 50

Order Number: A02092418 Champion Tech Page Number: 3 of 5 Hobbs,NM

Quality Control Report Method Blank

Method Blank

CH2100

QCBatch:

QC23775

				Reporting
Param	Flag	Results	Units	Limit
Total Chromium		< 0.010	mg/Kg	0.01

Method Blank

QCBatch:

QC23887

				Reporting
Param	Flag	Results	${f Units}$	Limit
Chloride		17.49	mg/Kg	1

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23775

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Chromium	10.6	10.5	mg/Kg	100	10	< 0.010	106	0	75 - 125	20
Total Iron	254	140	mg/Kg	100	50	0.801	5	58	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laborat	ory Cont	rol Spike	S	QCBatch:	QC23887		and the second second			
Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Chloride	1 29.66	2 29.38	mg/Kg	1	12.50	17.49	237	1015	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

 $^{^{1}}$ Soil blank should be subtracted from the blank spikes. %EA = 97 and RPD = 1.

²Soil blank should be subtracted from the blank spikes. %EA = 97 and RPD = 1.

CH2100

Order Number: A02092418 Champion Tech

Page Number: 4 of 5 Hobbs,NM

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Chromium	12.5	12.7	mg/Kg	100	10	3.56	89	2	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23887

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	12810	12870	mg/Kg	1	6250	6990	93	1	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

QC23775

			CCVs True	CCVs Found	CCVs $\operatorname{Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Chromium		mg/Kg	0.20	0.197	98	90 - 110	9/25/02
Total Iron		mg/Kg	1	0.974	97	90 - 110	9/25/02

ICV (1)

QCBatch:

QC23775

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Chromium		mg/Kg	0.20	0.197	98	95 - 105	9/25/02
Total Iron		mg/Kg	1	0.984	98	95 - 105	9/25/02

CCV (1)

QCBatch:

QC23887

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/L	12.50	11.72	93	90 - 110	9/30/02

ICV (1)

QCBatch:

Report Date: October 10, 2002 CH2100 Order Number: A02092418 Champion Tech Page Number: 5 of 5 Hobbs,NM

CCVs CCVsCCVsPercent True Found Percent Recovery Date Flag Units Conc. Recovery Limits Analyzed Param Conc. 9/30/02 12.50 11.73 93 90 - 110 Chloride mg/L

Page of

6701 Aberdeen Averlue, Ste. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

TraceAnalysis, Inc.

155 McCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Na	me: E.T. G. I.						Phone	#: 9	15	-5	22	-//	3 9							ANA	\LY:	SIS	REC	QUE	ST						
Address:	E.T. G. I., (Street, City, Zip)	all mi	A /	<u></u>		107	Fax #:	91	5-1	<u> </u>	11-	431	15		1 .	ı	ı	ı	((ircle) ر	or S	pecil	y Με ι	ethod (No.)	. 1	ı		, ,	١ ١	
Contact Pers	on: Todd (Choba		12,	<u>1x_1</u>	7770	0 <u>3</u>				عر.	٠٠٠.						Se Hg 6010B/200.7					ļ								
Invoice to: (If different fro	om above)	- 1.0-000			·										1			g 6010	Ð											dard	
Project #:	H2100						Projec	t Nar	ne:	1	•	•	7.1	.1:			1		b Se F								200	, _} ,		om Star	
Project Locat	\mathcal{L}						Samp	er Sig	gnaty	<u>1) a</u> re:		<u>iDn</u>	7	ndojin				Cd Cr Pb	Cd Cr Pb Se Hg				0/625				romum oridas	1 2	1976	erent fro	
	008,70.100		S.	Ē	<u> </u>	MATE	ZZZ RIX	an	PR		<i>_&</i> ^ RVAT THOD		7	PLING	2	2 8		_	As Ba	tiles			0B/624		4/608	c	2 5	1_<>-	non	e if diffe	
LAB#	FIELD CO	DDE	CONTAINERS	/Amor			w			T			100		8021B/602	21B/60	ပွ	als Ag	etals Ag	Volatiles Semi Volatiles	sticides		/ol. 826	82/608	s 8081,	S, PH		9 6	7	and Tim	
(LAB USE) ONLY			# CON	Volume/Amount	WATER	AIR	SLUDGE	豆	HNO	H2504	NaOH	NONE	DATE	TIME	MTBE 8	BTEX 8021B/602 TPH 418 1/TX1005	PAH 8270C	Total Metals Ag As Ba	TCLP Metals Ag As Ba	TCLP Semi Vol	TCLP Pesticides	<u>교</u>	GC/MS Vol. 8260B/624	PCB's 8082/608	Pesticides 8081A/608	BOD, TSS, pH	401	200	7 1	Turn Around Time if different from standard	Hold
208471	Soil Sample	= #1	2	408							X		9/2#		1												X	X		χ	
72	Soil Sample	#4	2											18924													X	y			
	Soil Sample	e#8	2		1_11	1.1					$\perp \!\!\! \perp$			\$945			_		\perp		_						X				
74	Soil Sample	, ঝ //	2					Ш			$\downarrow \downarrow$		1	\$93¢			_				_			ļ			X	X			
75	Soil Sample	#27	2	1		4-1			1	_	V	- -	1/24	\$ \$845	1	_	-			\perp	_		_			4	Δ			V	_
			ļ	-	-	+		-	_	_	-			-	\vdash	-	╀	-	1	\perp	-					4		-	44		
				-		+	+	-	+	+	 			 	-	\perp	-		-	-	-		\perp	-	$\left \cdot \right $		-		4		_
			ļ		\vdash	+	-	H	+	+			-	-	\vdash	-	+-		-	+	╁_			-	-	-	-	-			\dashv
			-	<u> </u>	 	++	\dashv		\dashv	+	+		-	-	-	-	+		+	+	-	┝┤				+	+				\dashv
		·		 		+		H		+	\dashv			<u> </u>	\vdash	+	+		+	+	-	\dashv	\dashv	-		+	_	-	+		\dashv
Relinquished Market	by: Date:	Time:		eived b	y:				Date	:	Ti	me:		.l		LA	B	US LY	E		REM	ARK	 S:		<u> </u>						
Relinquished I	·	Time:		ived b	ý:				Date	:	Ti	me:			Intac	ct	8	/ N		_											
Salinaviahed !	by: Date:	Time:	Poss)	Labora	atoric 5	<u> </u>		Dot:		7			_		dspad	e _	Y	<u>/ N</u>	-											
Relinquished I	bate.	i iine:	nece	ved a	Labora		v. VLA		Date	,		me: <i>] 0</i> :	:ce	/	L_	in Re	,		m	-		Li	mits .	If Spe Are No	eded		ing				
Submittal of sa	amples constitutes agreer	ment to Terms	andic	ondition	ns listed										Carri	ier#_	Fea	14	7	3/9:	12	891	7.	79	,						コ
							ORIG	AVIIC	L C	OP'	A																				

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 4, 2002Order Number: A02092728

CH2100

Champion Tech

Page Number: 1 of 1

Hobbs,NM

Summary Report

Todd Choban

Report Date:

October 4, 2002

E.T.G.I.

Sample

209103

PQ Box 4845

Midland, Tx. 79704.

Order ID Number: A02092728

Project Number:

Champion Tech

Description

MW-11-56'

Project Name: Project Location: Hobbs, NM

CH2100

Date	Time	Date
Taken	Taken	Received
9/24/02	11:45	9/27/02

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

Matrix

Soil

	BTEX								
	Benzene	Toluene	Ethylbenzene	M,P,O-Xylene	Total BTEX	TRPHC			
Sample - Field Code	(ppm)	(ppm)	(ppm)	(ppm)	(ենա)	(ppm)			
209103 - MW-11-56'	<0.010	< 0.010	<0.010	<0.010	<0.010	<10.0			

Sample: 209103 - MW-11-56'

Param	Flag	Result	Units
Chloride		37.6	mg/Kg
Total Arsenic		<5.00	mg/Kg
Total Chromium		3.35	mg/Kg
Total Lead		1.75	mg/Kg

Analytical and Quality Control Report

Todd Choban

Report Date:

October 4, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02092728

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
09103	MW-11-56'	Soil	9/24/02 .	11:45	9/27/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 7 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

for

Dr. Blair Leftwich, Director

Michael abel

Report Date: October 4, 2002 CH2100

Order Number: A02092728 Champion Tech Page Number: 2 of 7 Hobbs,NM

Analytical Report

Sample: 209103 - MW-11-56'

Analytical Method: BTEX S 8021B QC Batch: QC23844 Date Analyzed: 9/28/02 Analysis: Prep Batch: PB22288 Date Prepared: Analyst: CG Preparation Method: S 5035 9/28/02

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		< 0.010	m mg/Kg	10	0.001
Total BTEX		< 0.010	mg/Kg	1	0.001
Total BTEX		< 0.010	mg/Kg	10	0.001

Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	Recovery Limits
TFT		0.819	mg/Kg	10	1	82	70 - 130
4-BFB		0.846	mg/Kg	10	1	85	70 - 130

Sample: 209103 - MW-11-56'

nalysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC23891 Date Analyzed: 10/1/02. Analyst: JSW Preparation Method: N/A Prep Batch: PB22336 Date Prepared: 10/1/02.

Sample: 209103 - MW-11-56'

Analysis: TPHAnalytical Method: E 418.1 QC Batch: QC23895 Date Analyzed: 10/2/02 Preparation Method: Prep Batch: Analyst: BC N/A PB22341 Date Prepared: 10/2/02

Sample: 209103 - MW-11-56'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC23903 Date Analyzed: 10/2/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22294 Date Prepared: 9/30/02

Flag Result Units Dilution Param RDLTotal Arsenic < 5.00 mg/Kg 100 0.01 Total Chromium 3.35 mg/Kg 100 0.01 Total Lead 1.75 mg/Kg 100 0.01 Order Number: A02092728 Champion Tech Page Number: 3 of 7 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23844

Param	Flag	Results	Units	Reporting Limit
Benzene		< 0.010	mg/Kg	0.001
Toluene		< 0.010	${ m mg/Kg}$	0.001
Ethylbenzene		< 0.010	${ m mg/Kg}$	0.001
M,P,O-Xylene		< 0.010	mg/Kg	0.001
Total BTEX		< 0.010	mg/Kg	0.001

Surrogata	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Surrogate	rag			Dilution	Allount	recovery	
TFT		0.854	${ m mg/Kg}$	10	1	85	70 - 130
4-BFB		0.775	mg/Kg	10	1	77	70 - 130

Method Blank

QCBatch:

QC23891

				Reporting
Param	\mathbf{Flag}	Results	$\mathbf{U}\mathbf{nits}$	Limit
Chloride	1	<1.0	mg/L	1

Method Blank

QCBatch:

QC23895

				Reporting
Param	Flag	Results	Units	Limit
TRPHC		<10.0	mg/Kg	10

Method Blank

QCBatch:

QC23903

Param	Flag	Results	Units	Reporting Limit
Total Arsenic		< 0.050	mg/Kg	0.01
Total Chromium		< 0.010	mg/Kg	0.01
Total Lead		< 0.010	mg/Kg	0.01

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

¹Method blank (matrix) QC Batch 23891 in soil 13.42 mg/Kg the other in water.

CH2100

Order Number: A02092728 Champion Tech Page Number: 4 of 7 Hobbs,NM

Spike LCS LCSD Amount Matrix % Rec RPD Result Dil. Added Result RPD Result Units % Rec Limit Limit Param 0.933 0.887 mg/Kg MTBE 10 1 < 0.010 93 5 70 - 130 20 0.926 0.907 mg/Kg 10 1 < 0.010 92 2 70 - 130 20 Benzene 0.901 0.885mg/Kg 10 < 0.010 90 70 - 130 20 Toluene 1 1 Ethylbenzene 0.897 0.875 mg/Kg 10 1 < 0.010 89 2 70 - 130 20 M,P,O-Xylene 2.72 2.71mg/Kg 10 3 < 0.010 90 0 70 - 130 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.867	0.834	mg/Kg	10	1	86	83	70 - 130
4-BFB	0.836	0.824	mg/Kg	10	1	83	82	70 - 130

Laboratory Control Spikes

QCBatch:

QC23891

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	² 25.55	3 25.22	mg/Kg	1	12.50	<1.0	95	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23895

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	248	249	mg/Kg	1	250	<10.0	99	0	74 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23903

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	50.4	52.9	mg/Kg	100	50	< 0.050	100	4	75 - 125	20
Total Chromium	9.54	9.82	mg/Kg	100	10	< 0.010	95	2	75 - 125	20
Total Lead	46.8	48.5	mg/Kg	100	50	<0.010	93	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

²Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

 $^{^3}$ Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

CH2100

Order Number: A02092728

Champion Tech

Page Number: 5 of 7

Hobbs,NM

Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Benzene	0.868	0.78	mg/Kg	10	1	< 0.010	86	10	70 - 130	20
Toluene	0.859	0.795	mg/Kg	10	1	< 0.010	85	7	70 - 130	20
Ethylbenzene	0.862	0.806	mg/Kg	10	1	< 0.010	86	6	70 - 130	20
M,P,O-Xylene	2.7	2.53	mg/Kg	10	3	0.0563	88	6	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	MSD Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	MS % Rec	${ m MSD}$ ${ m Rec}$	Recovery Limits
TFT	4 0.522	5 0.402	mg/Kg	10	1	52	40	70 - 130
4-BFB	6 0.626	7 0.505	mg/Kg	10	1	62	50	70 - 130

Matrix Spikes

QCBatch:

QC23891

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	$_{ m Limit}$	Limit
Chloride	1150	1160	mg/Kg	1	625	575	92	1	35 - 144	20

rcent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23895

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
TRPHC	236	250	mg/Kg	1	250	11.7	89	6	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23903

	MS	MSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	55.8	52.5	mg/Kg	100	50	< 5.00	111	6	75 - 125	20
Total Chromium	12.8	12.5	mg/Kg	100	10	3.35	94	3	75 - 125	20
Total Lead	51.4	52.5	mg/Kg	100	50	1.75	99	2	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

⁴Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

⁵Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

⁶Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

⁷Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

CH2100

Order Number: A02092728 Champion Tech Page Number: 6 of 7 Hobbs,NM

CV	(1)

QCBatch:

QC23844

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0887	89	85 - 115	9/28/02
Benzene		mg/L	0.10	0.0923	92	85 - 115	9/28/02
Toluene		mg/L	0.10	0.091	91	85 - 115	9/28/02
Ethylbenzene		$_{ m mg/L}$	0.10	0.0897	90	85 - 115	9/28/02
M,P,O-Xylene		mg/L	0.30	0.272	91	85 - 115	9/28/02

CCV (2)

QCBatch:

QC23844

			CCVs	CCVs	CCVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed 9/28/02	
MTBE		m mg/L	0.10	0.092	92	85 - 115	9/28/02	
Benzene		${ m mg/L}$	0.10	0.0949	94	85 - 115	9/28/02	
Toluene		mg/L	0.10	0.0933	93	85 - 115	9/28/02	
Ethylbenzene		${ m mg/L}$	0.10	0.0907	90	85 - 115	9/28/02	
M,P,O-Xylene		$\mathrm{mg/L}$	0.30	0.276	92	85 - 115	9/28/02	

ICV (1)

QCBatch:

QC23844

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0919	92	85 - 115	9/28/02
Benzene		${ m mg/L}$	0.10	0.0939	94	85 - 115	9/28/02
Toluene		${ m mg/L}$	0.10	0.0938	94	85 - 115	9/28/02
Ethylbenzene		m mg/L	0.10	0.0932	93	85 - 115	9/28/02
M,P,O-Xylene		${ m mg/L}$	0.30	0.288	96	85 - 115	9/28/02

CCV (1)

QCBatch:

QC23891

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	$\operatorname{Recovery}$	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		m mg/L	12.50	11.85	94	90 - 110	10/1/02

ICV (1)

QCBatch:

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		m mg/L	12.50	11.88	95	90 - 110	10/1/02

Flag

Param

Total Arsenic

Total Lead

Total Chromium

Units

mg/L

mg/L

mg/L

Conc.

1

0.20

1

Conc.

0.975

0.195

0.955

Recovery

97

97

95

Limits

95 - 105

95 - 105

95 - 105

Analyzed

10/2/02

10/2/02

10/2/02

Order Number: A02092728
Champion Tech

Page Number: 7 of 7

CH2100		, 2002		(Champion Tec	h	1 000 1	Hobbs,NM
CV (1)		QCBatch:	QC2	3895				
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Units	}	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/K		100	101	101	80 - 120	10/2/02
			<u> </u>					
CCV (2)		QCBatch:	QC2	3895				
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Units	:	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC	2 100	mg/K		100	101	101	80 - 120	10/2/02
ICV (1)		QCBatch:	QC23	895 CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	3	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/K	g	100	101	101	80 - 120	10/2/02
CCV (1)		QCBatch:	QC2			·		
				CCVs	CCVs	$_{ m cCVs}$	Percent	_
_		~~1		True	Found	Percent	Recovery	Date
Param		Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Arsenic			mg/L	1	0.973	97	90 - 110	10/2/02
Total Chromiu	ım		mg/L	0.20	0.193	96 05	90 - 110	10/2/02
Total Lead ICV (1)		QCBatch:	mg/L QC23	903	0.950	95	90 - 110	10/2/02
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date

14011	_	14	ì
			L

'01 Aberdeen Avenue, Sta. 9 Lubbock, Texas 79424

ittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C.O.C.

155 McCulchecn, Suite H El Paso, Texas 79932

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Fax (4	11ace 106) 794-1298 100) 378-1296	A	117	H	y S	113	٠,		IC.	•		Fa	ix (91.	5) 585-3 5) 585-4 I) 588-34	1944	[• • •		• :	ĽÆ	On	ier ((AC	20	A c	<u>)</u>	2	8	<u> </u>		·	٠.	
pany Na							Phon	a ¥:	19	Œ	if.	55	20	2-11	3	9											od N		Ł	0				
ess: 21/ ₀ act Pen	OD W. Wall		2	91	03	>	Fax #	:	1	91	5	5	2	0-	43	3/4	۱	[1	اڃا)C.E		hec	 			.	. Kg		1			
	son: Checoolec		78			87	od	d	<u>C</u>	b	اه	pa	_V	۵						Cr Pb Se Hg 60108/200.7									AS, 1	1	2]
	rom above)							P	Ø		6	26	1)6	ÒQ	Ø		į			29 gr	Se Ho							1	، ل	为	127		tandar	
ct#:	CH2100						Projec			$\overline{}$	h	Lu	u	ಲ್'	er er	ل				Pb Se	S P S					ا بر			8	1	72		from s	
ct Loca	Nobbs	_					Samp	lers)	gnak U	ure:	۷.	7	1	en	سمعسا	?>				8	Ba Cd C				4	70C/62			maka	村	1	۱	ilterunt	
		EAS	ניטן		ł	ITAN	RIX		PF		EAV THO	ATIV DD	E	SA	MPLII	NG	2 2	5005		As Ba	Q As B	Volaliles	38		SED8/62	Vol. 82	90 4 4	Aveue	2		0		Turn around Time if diffurunt from standard	
. 8 #	FIELD CODE	CONTAINERS	e/Amc	\ a			36										80218/602 80218/802	X X	Įδ	Plais A	letals		witicid		Vol. B.	Semi.	3082/6(es ave	WØCC	Growna	orid		Dung T	
NLY)		ő	Volume/Amount	WATER	SOIL	AIR	SLUDGE	ᅙ	HNO,	H,50	NaOH	<u>ا</u> ا	NON NO	DATE:		TIME	MTBE 80218/60	PH 4	PAH 8270C	Total Metals Ag As	TCLP Metals Ag As	TCLP Semi	TCLP Pusticides	PC!	GC/MS Vol. 82508/624	GC/MS	PCB's 8082/608	Pesticides 8081 A/608 BOD, 785, 0H	3	B	E		Yurn Ar	Hold
094	MW-11 5'	3	4,		X					_	_	Ķ		+-	460																			×
45	mw-11 101	3			5										ð	958											\bot	\perp						X
96	mw-11 15'	1		L								Щ	1	L	1 3	604												1			\perp	$oldsymbol{\perp}$		凶
47	mw-11 20'	2	\bot								1				/ 1	42							<u> </u>	_				\perp		\coprod	\perp			X
98	mw-11 25'	3		L	\perp					\perp		Ц			11	725			_		_		_				_	_			\bot		\sqcup	X
99	MW-11 30'	2	\bot											'	16	40			_				\perp					\perp			\perp			X
100	MW-11 35'		1										_		12	250		_	L	Ц	_		_	\downarrow			_				\perp			X
101	MW-11 40'	1		<u> </u>						_	_	\perp	_		11	100		\perp			\downarrow	\perp		_	_		\dashv	\perp	_	\sqcup	\perp			入
102	MW-11 45	a	5									4			11	19		٫,			_	_		ļ			_	_	<u> </u>	\coprod				X
103	mw-11 56	3	1	L	1					_].		Ц			11	145			<u> </u>			\perp	1	<u> </u>			\perp	_	X	X	<u> </u>			
		2					丄				\bot		L			_			<u> </u>		_	\perp	150								\perp			_
wished Sur 7	A 4.25-47 1730	Reflei	oved b	\mathcal{H}	2n	X	_	0	Date P-25			Time		1734	כ		· · :	LA (B	US LY	E		()	zii Zii	To	dd	. W	si c	٦L°	βu	4 5+	ربراد	∿	
uished	by: Date: Time: 1/30 Pleny 01-16-02	Flecei	و والم	y: // ·	4	ha	Jt	\$\/	Oat 9	•	00:	Time	<u> </u>	113	0	F.	ntact tead			(N Y	N													
uished		Hece	7					, (Date 7-)		:	Time	٠.:	ou.	•	1	emp og u		rview	1	hf						e Nee		podin	9				

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suita 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 4, 2002Order Number: A02092727

CH2100

Champion Tech

Fage Number: 1 of 1

Hobbs,NM

Summary Report

Todd Choban

E.T.G.I. PO Box 4845

Midland, Tx. 79704

Report Date:

October 4, 2002

Order ID Number: A02092727

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs, NM

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Roceived
209090	MW-12-15'	Şoji	9/25/02	9:22	9/27/02
209093	MW-12-45'	Soil	9/25/02	10:08	9/27/02

O This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

	BTEX							
1	Benzone	Toluene	Ethylbensene	M,P,O-Xylone	Total BTEX	TRPHC		
Sample - Field Code	(ppm)	(ppm)	(mpm)	(ppm)	(ppm)	(10 ta)		
209090 - MW-12-15'	<0.010	< 0.010	< 0.010	<0.010	<0.010	<10.0		
209093 - MW-12-45'	<0.010	<0.010	<0,010	<0.010	<0.030	11.7		

Sample: 209090 - MW-12-15'

Param	Flag	Result	Units
Chlorido		390	mg/Kg
Total Armenic		<δ,00	mg/Kg
Total Chromium		2,61	mg/Kg
Total Lead		1.70	mg/Kg

Sample: 209093 - MW-12-451

Param	Flag	Result	Units
Chloride		43.7	mg/Kg
Total Arsenic		<5.00	mg/Kg
Total Chromium		4.55	mg/Kg
Total Lead		1.44	mg/Kg

This is only a summary. Please, refer to the complete report package for quality control data.

Analytical and Quality Control Report

Todd Choban

Report Date:

October 4, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02092727

Project Number:

CH2100

Project Name:

Champion Tech

Hobbs,NM Project Location:

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209090	MW-12-15'	Soil	9/25/02	9:22	9/27/02
09093	MW-12-45'	Soil	9/25/02	10:08	9/27/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 11 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Dr. Blair Leftwich, Director

Report Date: October 4, 2002 CH2100 Order Number: A02092727 Champion Tech Page Number: 2 of 11 Hobbs,NM

Analytical Report

Sample: 209090 - MW-12-15'

Analysis: **BTEX** Analytical Method: S 8021B QC Batch: QC23913 Date Analyzed: 10/2/02 Analyst: CGPreparation Method: S 5035 Prep Batch: PB22346 Date Prepared: 10/2/02

Flag Result Units Dilution RDL Param mg/Kg < 0.010 10 0.001 Benzene 10 < 0.010 Toluene mg/Kg 0.001 Ethylbenzene < 0.010 mg/Kg 10 0.001 M,P,O-Xylene < 0.010 mg/Kg 10 0.001 Total BTEX < 0.010 mg/Kg 10 0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.868	mg/Kg	10	1	87	70 - 130
4-BFB		0.814	${ m mg/Kg}$	10	1	81	70 - 130

Sample: 209090 - MW-12-15'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC23890 Date Analyzed: 10/1/02

Preparation Method: N/A Prep Batch: PB22335 Date Prepared: 10/1/02

Sample: 209090 - MW-12-15'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC23895 Date Analyzed: 10/2/02 Analyst: BC Preparation Method: N/A Prep Batch: PB22341 Date Prepared: 10/2/02

ParamFlagResultUnitsDilutionRDLTRPHC<10.0</td>mg/Kg110

Sample: 209090 - MW-12-15'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC23903 Date Analyzed: 10/2/02 Analyst: RRPreparation Method: S 3050B Prep Batch: PB22294 Date Prepared: 9/30/02

Flag Units Param Result Dilution RDL Total Arsenic < 5.00 mg/Kg 100 0.01 Total Chromium 2.61 100 mg/Kg 0.01 Total Lead 1.70 mg/Kg 100 0.01

Sample: 209093 - MW-12-45'

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23844 Date Analyzed: 9/28/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22288 Date Prepared: 9/28/02

Report Date: October 4, 2002 CH2100 Order Number: A02092727 Champion Tech Page Number: 3 of 11 Hobbs,NM

ram	Flag	Result	Units	Dilution	\mathtt{RDL}
enzene		< 0.010	mg/Kg	10	0.001
oluene		< 0.010	mg/Kg	10	0.001
thylbenzene		< 0.010	mg/Kg	10	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.818	mg/Kg	10	1	82	70 - 130
4-BFB		0.852	mg/Kg	10	1	85	70 - 130

Sample: 209093 - MW-12-45'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC23891 Date Analyzed: 10/1/02 Analyst: JSW Preparation Method: N/A Prep Batch: PB22336 Date Prepared: 10/1/02

Sample: 209093 - MW-12-45'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC23895 Date Analyzed: 10/2/02 Analyst: BC Preparation Method: N/A Prep Batch: PB22341 Date Prepared: 10/2/02

Faram Flag Result Units Dilution RDL TRPHC 11.7 mg/Kg 1 10

Sample: 209093 - MW-12-45'

Total Metals Analytical Method: S 6010B Analysis: QC Batch: QC23903 Date Analyzed: 10/2/02 Analyst: Preparation Method: S 3050B Prep Batch: PB22294 Date Prepared: 9/30/02 RR

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Total Arsenic		< 5.00	mg/Kg	100	0.01
Total Chromium		4.55	${ m mg/Kg}$	100	0.01
Total Lead		1.44	mg/Kg	100	0.01

Order Number: A02092727 Champion Tech Page Number: 4 of 11 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23844

Param	Flag	Results	Units	Reporting Limit
Benzene		< 0.010	mg/Kg	0.001
Toluene		< 0.010	${\sf mg/Kg}$	0.001
Ethylbenzene		< 0.010	${\sf mg/Kg}$	0.001
M,P,O-Xylene		< 0.010	mg/Kg	0.001
Total BTEX		<0.010	mg/Kg	0.001

0	Ela m	Dogult	TTm:+a	Dilution	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.854	mg/Kg	10	1	85	70 - 130
4-BFB		0.775	mg/Kg	10	1	77	70 - 130

Method Blank

QCBatch:

QC23890

		•		Reporting
1 aram	Flag	Results	Units	Limit
Chloride		13.31	mg/Kg	1

Method Blank

QCBatch:

QC23891

				Reporting
Param	Flag	Results	Units	Limit
Chloride	1	<1.0	mg/L	1

Method Blank

QCBatch:

QC23895

				Reporting
Param	Flag	Results	Units	Limit
TRPHC		<10.0	mg/Kg	10

Method Blank

QCBatch:

ram	Flag	Results	Units	Reporting Limit
rotal Arsenic		< 0.050	mg/Kg	0.01
Total Chromium		< 0.010	m mg/Kg	0.01
				$Continued \dots$

¹Method blank (matrix) QC Batch 23891 in soil 13.42 mg/Kg the other in water.

Report Date: October 4, 2002 CH2100

Order Number: A02092727 Champion Tech

Page Number: 5 of 11 Hobbs,NM

\sim	 1

_				Reporting
Param	Flag	Results	Units	Limit
Total Lead		< 0.010	mg/Kg	0.01

Method Blank

QCBatch:

QC23913

				Reporting
Param	Flag	Results	${f Units}$	Limit
Benzene		< 0.010	mg/Kg	0.001
Toluene		< 0.010	mg/Kg	0.001
Ethylbenzene		< 0.010	mg/Kg	0.001
M,P,O-Xylene		< 0.010	${ m mg/Kg}$	0.001
Total BTEX		< 0.010	mg/Kg	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		1.01	mg/Kg	10	1	101	70 - 130
4-BFB		0.902	mg/Kg	10	1	90	70 - 130

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23844

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
MTBE	0.933	0.887	mg/Kg	10	1	< 0.010	93	5	70 - 130	20
Benzene	0.926	0.907	mg/Kg	10	1	< 0.010	92	2	70 - 130	20
Toluene	0.901	0.885	mg/Kg	10	1	< 0.010	90	1	70 - 130	20
Ethylbenzene	0.897	0.875	mg/Kg	10	1	< 0.010	89	2	70 - 130	20
M,P,O-Xylene	2.72	2.71	mg/Kg	10	3	< 0.010	90	0	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	$\%~{ m Rec}$	Limits
TFT	0.867	0.834	mg/Kg	10	1	86	83	70 - 130
4-BFB	0.836	0.824	_ mg/Kg	10	1	83	82	70 - 130

Laboratory Control Spikes

QCBatch:

_					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
aram	Result	Result	Units	Dil.	$\operatorname{Added} olimits$	Result	% Rec	RPD	Limit	Limit
Chloride	$\frac{2}{25.27}$	$\frac{3}{25.27}$	mg/Kg	1	6.25	13.31	404	0	90 - 110	20

²Soil blank should be subtracted from the blank spikes. %EA = 96 and RPD = 0.

 $^{^3}$ Soil blank should be subtracted from the blank spikes. %EA = 96 and RPD = 0.

Report Date: October 4, 2002

CH2100

Order Number: A02092727 Champion Tech Page Number: 6 of 11 Hobbs,NM

cent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23891

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	⁴ 25.55	5 25.22	mg/Kg	1	12.50	<1.0	95	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23895

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	248	249	mg/Kg	1	250	<10.0	99	0	74 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23903

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
ram	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
Total Arsenic	50.4	52.9	mg/Kg	100	50	< 0.050	100	4	75 - 125	20
Total Chromium	9.54	9.82	mg/Kg	100	10	< 0.010	95	2	75 - 125	20
Total Lead	46.8	48.5	mg/Kg	100	50	< 0.010	93	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23913

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
MTBE	0.909	0.927	mg/Kg	10	1	< 0.010	90	1	70 - 130	20
Benzene	0.958	0.956	mg/Kg	10	1	< 0.010	95	0	70 - 130	20
Toluene	0.966	0.961	mg/Kg	10	1	< 0.010	96	0	70 - 130	20
Ethylbenzene	0.972	0.968	mg/Kg	10	1	< 0.010	97	0	70 - 130	20
M,P,O-Xylene	2.85	2.83	mg/Kg	10	3	< 0.010	95	0	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.991	0.974	mg/Kg	10	1	99	97	70 - 130
4-BFB	0.930	0.935	mg/Kg	10	1	93	93	70 - 130

Quality Control Report

 $^{^4}$ Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

⁵Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

Order Number: A02092727 Champion Tech Page Number: 7 of 11 Hobbs,NM

Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

QC23844

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Benzene	0.868	0.78	mg/Kg	10	1	< 0.010	86	10	70 - 130	20
Toluene	0.859	0.795	${ m mg/Kg}$	10	1	< 0.010	85	7	70 - 130	20
Ethylbenzene	0.862	0.806	mg/Kg	10	1	< 0.010	86	6	70 - 130	20
M,P,O-Xylene	2.7	2.53	mg/Kg	10	3	0.0563	88	66	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	$\%~{ m Rec}$	Limits
$\overline{ ext{TFT}}$	6 0.522	70.402	mg/Kg	10	1	52	40	70 - 130
4-BFB	8 0.626	9 0.505	mg/Kg	10	11	62	50	70 - 130

Matrix Spikes

QCBatch:

QC23890

			•		Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	$\%~{ m Rec}$	RPD	Limit	Limit
Chloride	962	961	mg/Kg	1	625	390	91	0	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23891

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	\mathbf{Units}	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	1150	1160	mg/Kg	1	625	575	92	1	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23895

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	$\%~{ m Rec}$	RPD	Limit	Limit
TRPHC	236	250	mg/Kg	1	250	11.7	89	6	70 - 130	20

rcent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

⁶Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

⁷Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

⁸Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

⁹Low MS/MSD surrogate recovery due to prep. LCS, LCSD show the method to be in control.

Report Date: October 4, 2002

CH2100

Order Number: A02092727 Champion Tech Page Number: 8 of 11 Hobbs,NM

latrix Spikes

QCBatch:

QC23903

Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Total Arsenic	55.8	52.5	mg/Kg	100	50	< 5.00	111	6	75 - 125	20
Total Chromium	12.8	12.5	mg/Kg	100	10	3.35	94	3	75 - 125	20
Total Lead	51.4	52.5	mg/Kg	100	50	1.75	99	2	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23913

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	\mathbf{Limit}	Limit
Benzene	0.802	0.793	mg/Kg	10	1	< 0.010	80	1	70 - 130	20
Toluene	0.816	0.808	mg/Kg	10	1	< 0.010	81	0	70 - 130	20
Ethylbenzene	0.842	0.839	mg/Kg	10	1	< 0.010	84	0	70 - 130	20
M,P,O-Xylene	2.45	2.45	mg/Kg	10	3	< 0.010	81	0	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Recovery
irrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
TFT	0.844	0.81	mg/Kg	10	1	84	81	70 - 130
4-BFB	0.804	0.79	mg/Kg	10	1	80	79	70 - 130

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

QC23844

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0887	89	85 - 115	9/28/02
Benzene		$_{ m mg/L}$	0.10	0.0923	92	85 - 115	9/28/02
Toluene		m mg/L	0.10	0.091	91	85 - 115	9/28/02
Ethylbenzene		mg/L	0.10	0.0897	90	85 - 115	9/28/02
M,P,O-Xylene		mg/L	0.30	0.272	91	85 - 115	9/28/02

CCV (2)

QCBatch:

QC23844

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
$\overline{ ext{MTBE}}$		mg/L	0.10	0.092	92	85 - 115	9/28/02
Benzene		mg/L	0.10	0.0949	94	85 - 115	9/28/02

Continued ...

Report Date: October 4, 2002

CH2100

Order Number: A02092727 Champion Tech

Page Number: 9 of 11

Hobbs,NM

Continued							
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Toluene		mg/L	0.10	0.0933	93	85 - 115	9/28/02
Ethylbenzene		m mg/L	0.10	0.0907	90	85 - 115	9/28/02
M,P,O-Xylene		${ m mg/L}$	0.30	0.276	92	85 - 115	9/28/02

ICV (1)

QCBatch:

QC23844

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0919	92	85 - 115	9/28/02
Benzene		${ m mg/L}$	0.10	0.0939	94	85 - 115	9/28/02
Toluene		${ m mg/L}$	0.10	0.0938	94	85 - 115	9/28/02
Ethylbenzene		mg/L	0.10	0.0932	93	85 - 115	9/28/02
M,P,O-Xylene		${ m mg/L}$	0.30	0.288	96	85 - 115	9/28/02

CCV (1)

QCBatch:

QC23890

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		m mg/L	12.50	11.91	95	90 - 110	10/1/02

ICV (1)

QCBatch:

QC23890

			CCVs	CCVs	CCVs	Percent	D. 1
			True	Found	Percent	Recovery	\mathbf{Date}
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.85	94	90 - 110	10/1/02

CCV (1)

 $\label{eq:QCBatch:} QCBatch:$

QC23891

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.85	94	90 - 110	10/1/02

CV (1)

QCBatch:

Report Date: October 4, 2002 CH2100 Order Number: A02092727 Champion Tech Page Number: 10 of 11 Hobbs,NM

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.88	95	90 - 110	10/1/02

CCV (1)

QCBatch:

QC23895

			CCVs	CCVs	CCVs	Percent	
			True	\mathbf{Found}	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	101	101	80 - 120	10/2/02

CCV (2)

QCBatch:

QC23895

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	101	101	80 - 120	10/2/02

CV (1)

QCBatch:

QC23895

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	101	101	80 - 120	10/2/02

CCV (1)

QCBatch:

QC23903

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/L	1	0.973	97	90 - 110	10/2/02
Total Chromium		${ m mg/L}$	0.20	0.193	96	90 - 110	10/2/02
Total Lead		${ m mg/L}$	1	0.950	95	90 - 110	10/2/02

ICV (1)

QCBatch:

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
tal Arsenic		mg/L	1	0.975	97	95 - 105	10/2/02
Total Chromium		${ m mg/L}$	0.20	0.195	97	95 - 105	10/2/02
Total Lead		$_{ m mg/L}$	1	0.955	95	95 - 105	10/2/02

Report Date: October 4, 2002 CH2100

Order Number: A02092727 Champion Tech Page Number: 11 of 11 Hobbs,NM

CCV (1)

QCBatch:

QC23913

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0921	92	85 - 115	10/2/02
Benzene		${ m mg/L}$	0.10	0.0947	95	85 - 115	10/2/02
Toluene		m mg/L	0.10	0.0947	95	85 - 115	10/2/02
Ethylbenzene		m mg/L	0.10	0.0958	96	85 - 115	10/2/02
M,P,O-Xylene		m mg/L	0.30	0.282	94	85 - 115	10/2/02

CCV (2)

QCBatch:

QC23913

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.088	88	85 - 115	10/2/02
Benzene		m mg/L	0.10	0.092	92	85 - 115	10/2/02
Toluene		${ m mg/L}$	0.10	0.092	92	85 - 115	10/2/02
Ethylbenzene		${ m mg/L}$	0.10	0.092	92	85 - 115	10/2/02
M,P,O-Xylene		${ m mg/L}$	0.30	0.267	89	85 - 115	10/2/02

ICV (1)

QCBatch:

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE	-	m mg/L	0.10	0.0932	93	85 - 115	10/2/02
Benzene		${ m mg/L}$	0.10	0.0957	96	85 - 115	10/2/02
Toluene		m mg/L	0.10	0.0965	96	85 - 115	10/2/02
Ethylbenzene		m mg/L	0.10	0.0973	97	85 - 115	10/2/02
M,P,O-Xylene		${ m mg/L}$	0.30	0.286	95	85 - 115	10/2/02

	nue, Sie. 9
Lubbock, 10	Mas 79424
Tel (806) 7	794-1296
Fax (808)	794-1298
	40 4040

TraceAnalysis, Inc.

155 McCutchean, Suite H El Paso, Texas 79932 Tel (915) 585-3443

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Fax [80	08) 794-1298 0) 378-1296		A A W	~ I . II.	414	J			A. J. s			Fa:	x (915 (888)	585-404 588-3443	14 3	LAB Order ID # \$600090707					S - 2007										
Company Na	EIG							Phon	_9	15.	- 52	22	<i>]</i>	/39											UES		,				 `
Address: 460	(Street, Ci	ty, Zip)	٧//	Mi	llan	1 1	170	Fax #	:					/3/]	1	f	ام) 	 -	ors	pecm	y Me	ihodi i i	(.0P	1 1	1 1		!!	,
Contact Pers	on: Toda		Choba]			B/200				} }				20	127			
Invoice to: (If different In				!					- , - , - ,	-									Se Hg 60108/200.7	اع							X	8		dard	
	CH21	00						Projec	Nar.	ne: 3.M/									Se H	88.0							3	12/2	 	Star Star	
Project Local	To bbs	, N.	M				_	Aduub	ler Sig	inajiri M	i an	w							Cd Cr Pb	TCLP Metals Ag As Ba Cd Cr Pb Se Hg				00/625	1 }		tais	10		Turn Around Time if different from standard	
				RS	is		MA	TRIX		PRE	SERV.	ATIVE	:	SAM	PLING	202	얺	g	As Ba	As Ba	Bulles	8	,c3/80;	ol. 827		A/608	meta	1/2	{ }	ze it di	
LAB#		FIELI	CODE	CONTAINERS	Amo			iii	\prod					200	-	8021 B/602	21B/6(ž g	als Ag	Hals A	mi Vol	sticide	10/ 10/	emi. V	82/606	S. PH	2	1,5		P. Dri	1
(LAB USE)				NOO #	Volume/Amount	WATER	SOIL	SLUDGE	모	HNO3,	NaOH	NO NE	1	DATE	TIME	MTBE 80218/602	TEX 80	PAH 8270C	Total Metals Ag As	TCLP Metals A	TCLP Semi Volatiles	TCLP Pesticides	ACI GC/MS)	GC/MS Semi. Val. 8270C/625	PCB's 8082/608	Pesticides 8081A/608 BOD, TSS, pH	Macc	General Chloride		urn Arou	Fok
209088	MW-	12	5'	3	40	-	X		1	_		X	_	9-25							+			1 10	1-1	1 10	17	7	+	-	Ž
	MW-		10'	3) 1	0714											7	11	77			入
90	MW -	12	/5'	3										J	0922	T	X.	×									×	X			又
91	MW-	12	20'	3	11					1					0929													77			Z
9)	MW-		25' 45'	2	11,										0990																X
93	MW-	12	45'	1	V		V	-				V _		V	vos:		X							\int_{-}			X	(X			
					 	1		11	1-1		_	1		ļ			1				\perp					1	\prod	11			
				-	 	1-1	-		1-1	\rightarrow	-				-		_			+	-	-	1	1	-		\coprod	4	\bot		_
				+	-	++	-		H	-	\vdash	+	-			-	\dashv	+	}-}	+		} -{	+	+	H	+	+-}-	++		}	-
-	-			 	 	11	1		11	+-		+					+	+	1	-}-	+	}	-	+	+	+	++	++	+-1		\dashv
Relinquished	ru i	0ate	: Time: 16-02 1130	Rec	eived b	y all		lon		Date:	,	Time:		30		2.7	L	AB ON	US	E.			ARKS							hace	
Relinguished		Date		Rec	alved b		_=_	7		Date:		Time:					ct	y (ce	/ N			ave	20	iny	9	ues	stio	И 5 .			1
Relinquishe	d by:	Date			ejdeci a	Labo	ratory	Kur		Date:	54	Time:	1.	10	A . ; *	Cerr	p.	enter Ha		K					Specia a Nee		gnihou				
Submittal o	f samples con:	stitutes a	greement to Term	s and	onditio	ns liste	d on i	everse :						while	Δ	Can	ier#	d'	11	0.	h	R	11/	W A	1 7	, _	. 17.	*			

ORIGINAL CODY

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

El Paso, Texas 79932 E-Mail: lab@traceanalysis.com

CORRECTED CERTIFICATE

Analytical and Quality Control Report

Todd Choban

Report Date:

November 11, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02093010

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs, NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

	•		Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209239	MW-14-5	Soil	9/25/02	14:10	9/28/02
209240	MW-14 30	Soil	9/25/02	14:43	9/28/02
209244	MW-14 50	Soil	9/25/02	17:08	9/28/02

Comment: LCS had the wrong % recovery needed to be corrected. Matrix Blank was added for chloride.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Report Date: November 11, 2002 CH2100

Order Number: A02093010 Champion Tech

Page Number: 2 of 6 Hobbs,NM

Analytical Report

Sample:

209239 - MW-14-5

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23891 Date Analyzed: 10/1/02

Analyst:

Preparation Method: N/A

Prep Batch: PB22336 Date Prepared: 10/1/02

Param Chloride Flag

Units mg/Kg

Result

< 5.00

4.28

3.69

Dilution 5

RDL

Sample:

209239 - MW-14-5

Analysis: **Total Metals**

Analytical Method:

Flag

Result

61.4

S 6010B

QC23898 QC Batch:

Date Analyzed:

10/2/02

1

Analyst:

Param

Total Arsenic

Total Chromium

RR

Preparation Method: S 3051

Prep Batch:

Units

mg/Kg

mg/Kg

mg/Kg

PB22328

Dilution

100

100

100

Date Prepared:

10/1/02

RDL

0.05

0.01

0.01

Total Lead

209240 - MW-14 30

Sample: Analysis:

Ion Chromatography (IC) Analytical Method:

Preparation Method:

E 300.0 QC Batch:

QC23891 Date Analyzed: 10/1/02

nalyst:

JSW

N/A

Prep Batch: PB22336 Date Prepared: 10/1/02

Param Chloride

Flag

Result Units Dilution 575 mg/Kg 50

Sample:

Analyst:

209240 - MW-14 30

Analysis:

Analytical Method: S 6010B Total Metals Preparation Method: S 3051 RR

QC Batch: QC23898 PB22328 Prep Batch:

Date Analyzed:

10/2/02

Param Total Arsenic

Flag Result <5.00 Units

Date Prepared: Dilution

10/1/02

RDL

Total Chromium Total Lead

4.04 2.52 mg/Kg 100 mg/Kg 100 mg/Kg 100 0.05 0.01 0.01

Sample:

209244 - MW-14 50

Analysis:

Ion Chromatography (IC) Analytical Method:

Result

127

E 300.0 QC Batch:

QC23891 Date Analyzed: 10/1/02

Analyst:

JSW

Preparation Method:

Units

mg/Kg

Prep Batch:

PB22336 Date Prepared: 10/1/02

Param

Flag

N/A

Dilution

5

Chloride

sample: Analysis: **Total Metals**

209244 - MW-14 50 Analytical Method:

S 6010B

QC Batch:

QC23898

Date Analyzed:

10/2/02

RDL

Analyst:

Preparation Method:

S 3050B

Prep Batch: PB22328

Date Prepared:

10/1/02

Report Date: November 11, 2002 CH2100 Order Number: A02093010

Champion Tech

Page Number: 3 of 6

Hobbs,NM

Param	Flag	Result	Units	Dilution	RDL
Total Arsenic		<5.00	mg/Kg	100	0.05
Total Chromium		3.21	mg/Kg	100	0.01
Total Lead		2.32	mg/Kg	100	0.01

Report Date: November 11, 2002

CH2100

Order Number: A02093010 Champion Tech Page Number: 4 of 6 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23891

				Reporting
Param	Flag	Results	Units	Limit
Chloride	1	<1.0	mg/L	1

Method Blank

QCBatch:

QC23898

Param	Flag	Results	Units	Reporting Limit
raram	riag	resums		Dillit
Total Arsenic		< 0.050	mg/Kg	0.05
Total Chromium		< 0.010	mg/Kg	0.01
Total Lead		< 0.010	mg/Kg	0.01

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23891

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	² 25.55	3 25.22	mg/Kg	1	12.50	<1.0	95	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23898

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	52.3	53.2	mg/Kg	100	50	< 0.050	104	1	75 - 125	20
Total Chromium	9.65	9.63	mg/Kg	100	10	< 0.010	96	0	75 - 125	20
Total Lead	47.8	47.4	mg/Kg	100	50	<0.010	95	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

¹Method blank (matrix) QC Batch 23891 in soil 13.42 mg/Kg the other in water.

 $^{^2}$ Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

 $^{^3}$ Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

Report Date: November 11, 2002

CH2100

Order Number: A02093010 Champion Tech

Page Number: 5 of 6 Hobbs,NM

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
Chloride	1150	1160	mg/Kg	1	625	575	92	1	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23898

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	56.9	55.1	mg/Kg	100	50	< 5.00	113	3	75 - 125	20
Total Chromium	13.2	13.5	mg/Kg	100	10	4.28	89	3	75 - 125	20
Total Lead	52.1	53.7	mg/Kg	100	50	3.69	96	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

QC23891

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		${ m mg/L}$	12.50	11.85	94	90 - 110	10/1/02

ICV (1) --- QCBatch: -- QC23891 ---

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.88	95	90 - 110	10/1/02

CCV (1)

QCBatch:

QC23898

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/Kg	1	1.00	100	90 - 110	10/2/02
Total Chromium		mg/Kg	0.20	0.195	98	90 - 110	10/2/02
Total Lead		mg/Kg	1	0.966	97	90 - 110	10/2/02

ICV (1)

QCBatch:

Report Date: November 11, 2002 CH2100

Order Number: A02093010 Champion Tech

Page Number: 6 of 6 Hobbs,NM

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic	1 105	mg/Kg	1	0.980	98	95 - 105	10/2/02
Total Chromium		mg/Kg	0.20	0.195	98	95 - 105	10/2/02
Total Lead		mg/Kg	1	0.966	97	95 - 105	10/2/02

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

CH2100

Report Date: October 3, 2002Order Number: A02093013 Champion Tech

Page Number: 1 of 1

MN, eddoll

Summary Report

Todd Choban

Report Date:

October 3, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02093013

Project Number: Project Name:

CH2100

Project Location: Hobbs, NM

Champion Tech

Sample	Description	Matrix	Date Taken	Time Taken	Dato Received
209257	Old Leach Line 9 + 4.5'	Soil	9/25/02	17:15	9/28/02
209258	Old Leach 22' + 5'	Soil ·	9/25/02	17:12	9/28/02

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 209257 - Old Leach Line 9 + 4.5

Param	Flag	Result	Units
Total Chromium		10.2	mg/Kg

Sample: 209258 - Old Leach 22' + 5'

Campier RODAGG -	Old Deach Am T 3		
Param	Flag	Result	Units
Total Chromium		4.20	mg/Kg

Analytical and Quality Control Report

Todd Choban

Report Date:

October 17, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02093013

Project Number:

CH2100

Project Name: Project Location:

Champion Tech Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209257	Old Leach Line 9 + 4.5'	Soil	9/25/02	17:15	9/28/02
09258	Old Leach 22' + 5'	Soil	9/25/02	17:12	9/28/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety including the chain of custody. (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Dr. Blair Leftwich, Director

Report Date: October 17, 2002 CH2100

Order Number: A02093013 Champion Tech Page Number: 2 of 4 Hobbs,NM

Analytical Report

Sample: 209257

209257 - Old Leach Line 9 + 4.5

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC23898 Date Analyzed: 10/2/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22328 Date Prepared: 10/1/02

Sample: 209258 - Old Leach 22' + 5'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC23898 Date Analyzed: 10/2/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22328 Date Prepared: 10/1/02

ParamFlagResultUnitsDilutionRDLTotal Chromium4.20mg/Kg1000.01

Report Date: October 17, 2002 CH2100 Order Number: A02093013 Champion Tech Page Number: 3 of 4 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23898

				Reporting
Param	Flag	Results	Units	Limit
Total Chromium		< 0.010	mg/Kg	0.01

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23898

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	52.3	53.2	mg/Kg	100	50	< 0.050	104	1	75 - 125	20
Total Chromium	9.65	9.63	mg/Kg	100	10	< 0.010	96	0	75 - 125	20
Total Lead	47.8	47.4	mg/Kg	100	50	< 0.010	95	0	75 - 125	20

rcent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

QC23898

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	$\%~{ m Rec}$	RPD	Limit	Limit
Total Chromium	13.2	13.5	mg/Kg	100	10	4.28	89	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

ram	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
otal Arsenic		mg/Kg	1	1.00	100	90 - 110	10/2/02
Total Chromium		${ m mg/Kg}$	0.20	0.195	98	90 - 110	10/2/02
Total Lead		mg/Kg	1	0.966	97	90 - 110	10/2/02

Report Date: October 17, 2002 CH2100

Order Number: A02093013 Champion Tech Page Number: 4 of 4 Hobbs,NM

CV (1)

QCBatch:

D	Dlam	IImita	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Arsenic		mg/Kg	1	0.980	98	95 - 105	10/2/02
Total Chromium		${ m mg/Kg}$	0.20	0.195	98	95 - 105	10/2/02
Total Lead		mg/Kg	1	0.966	97	95 - 105	10/2/02

2 - 4 - 7	- T
20925	<i>[-</i>

1701 Aberdeen Avenue, Ste. 9
Lubbock, Texas 79424
Tel (806) 794-1298
Fax (806) 794-1298
1 (900) 278-1206

155 McCutcheon, Suite H
El Paso, Texas 79932
Tel (915) 585-3443
Fax (915) 585-4944
4 Jones EGD-93A3

rage_

Fax (8	06) 794-1298 06) 794-1298 0) 378-1296	A	na	ıy:	SIS	S , .	Ln	IC.	1	F	ax 191	5) 585-344 15) 585-49 3) 588-344	44	: .	•		LÀE	Ord	ler IO	#	A	28	43	101	<u>′3</u>	<u> </u>				
mpany Na	6161		·			Phon	e #:	15) 5	22	-1	139					~ ~			LYS				ST No.)						
dress:	(Street, City, Zip) 460() W Wall M	idi	an	K		Fax #	i:					1311			1	į	<u> -</u>)		, 		1	}	1		1	1	
intact Pers	on: Todd Chopan	<u> </u>															Se Hg 8010B/200.7													,
olce to: different fr	rom above)			-													5 60 1	Se Fg				-							tandan	
oject #:	CHRIOD					Proje	ct Na	me: (110	21/21	10	シ					Pb Se					1,,	, ,			4			from S	,
oject Loca	tion:		1		7	Samp	aler S	ignate	**/		7	7		1			Ö	Cd Cr Pb			ı İ.	DC/629			}	7 2			Heren	
		ည့	Ĕ		MAT	4	Ť			TAVE	VE	SAN	IPLING	8	2	98	[22]	As Ba	tiles	S		20 B/62	,	A/508		7			me if d	
LAB #	FIELD CODE	AINE	Amor	一	T		+	П						221B/6	21B/60	چ آ	als Ag	tals Ag	To No.	sticide		0. 82 0. 82 0. 82	382/60	ss 808 s	S. P.	ģ			II pund	
OMLY)		# CONTAINERS	Volume/Amount	WATER	AIR	SLUDGE	ij	ONH	H ₂ SO.	ICE	NONE.	DATE	TIME	MTBE 80218/602	BTEX 8021B/602	7PH 418.1/TX1005 PAH 8270C	Total Metals Ag As Ba	TCLP Metals Ag As	TCLP Semi Vo	TCLP Pasticides	JQ.	GC/MS Vol. 8260B/624 GC/MS Semi Vol 8270C/625	PCB's 8082/608	Pesticides 8081A/508	BOD, TSS, pH	Chron			Turn Around Time if different from standard	Hold
209257	Old Leach Line 9x4	51/	402	 	\neg					X		9.2	5 1715										\perp			X	<u> </u>	1	1	_
58	1111 22' 25'	1	7)				\perp			K	1712	2		_						_	1	4	$\vdash \downarrow$	X	1	-	<u> </u>	
<u>59</u>	1111 50' + 5'	1			\				_	1		11	176	-			ļ_		-			4	\downarrow	}	$\vdash \dashv$		+	 	ــ	×
40	100' ×4.5'		(<u> </u>					1		\rightarrow	165	4_	\square	-	-			-		\dashv	+	4	Н		-	-	+	X
		-	<u> </u>				_		1					-	-	-			+	+-	$\left\{ -\right\}$	-	+	-}-			+-	\vdash	+-	
· ·		-		- -	-	-	-	\mathbb{H}	_		\sqcup	_		1	$\left\{ \cdot \right\}$	-}-	-	\vdash	+		\vdash	\dashv	+	-	H	_	+	\vdash	+-	+-
		╁—		-	-}	-	-}-		-	-				+	\vdash		}	}	+	+		+	+	+	H	\rightarrow	+	++	+-	+
		 	ļ		-			\vdash	-	+	\vdash			╂-	$\left\{ \cdot \right\}$		+-	\vdash	+	+		\dashv	+	+	\vdash	_	+	}+	+	+
		 	-	├ -	+-	╂╌┼╴	+	-						╁╴	H		+	-	\dashv	+	\vdash	\dashv	+	+	 	┌┼	+	+	+	+-
			ļ	\vdash	+		+-	H	+	+-	\vdash			+	\Box	+	+-		1	+-	-	H	+	+	+-	$\vdash \uparrow$	-	++	+-	+-
elinquished	20/20	147 /	rived by	1 11	al	ten	9	Date 2	- [me:	<u> </u>	0		L	AB	US	E		REN	IARI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LOU LOU	ud:	a.A.	15	10,0	or	 T	
eliaguished		Rece	ived by	y:			<u></u>	Date			me:			Не		ээвс		<i>}</i> (Q	ud Tod	521	-10	°пс Р)	<u>ر</u> 15) d	38	~ 00	61	E.
tinquished	by: Oate: Time:	Rece 72	rved at	Lation	poli	by:		Date 9/19		· :.	me: 2-	of A		Ł	, .	えて Revie		W	N A] ;	Checi Limit	k II S ; Are	ipecial Needl	Repe	orting				
ubmillal of s	samples constitutes agreement to Terms	and C	ondition	ns lister	d on (everse				40	MM	valus.	-45	Ca	arrier	# 0	10	00	K.	D	Ū	\sim	Ø							

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

CORRECTED CERTIFICATE

Analytical and Quality Control Report

Todd Choban

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Report Date:

November 11, 2002

Order ID Number: A02093012

Project Number: CH2100

Project Name:

Champion Tech

Project Location: Hobbs, NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209253	Old Leach Line 9'	Soil	9/25/02	17:15	9/25/02
209254	Old Leach Line 22'+5'	Soil	9/25/02	17:12	9/25/02

Comment: LCS had the wrong % recovery needed to be corrected. Matrix Blank was added for chloride.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Blair Leftwich, Director

Report Date: November 11, 2002 CH2100

Order Number: A02093012 Champion Tech

Page Number: 2 of 4 Hobbs,NM

Analytical Report

Sample:

209253 - Old Leach Line 9'

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23891 Date Analyzed: 10/1/02

Analyst:

JSW

Preparation Method: N/A

Prep Batch: PB22336 Date Prepared: 10/1/02

Param

Flag

RDL

Chloride

Result 64.5

Units mg/Kg Dilution 10

Sample:

209254 - Old Leach Line 22'+5'

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC23891 Date Analyzed: 10/1/02

Analyst:

JSW

Preparation Method: N/A

Prep Batch: PB22336 Date Prepared: 10/1/02

Param Chloride Flag Result 52.3

Units mg/Kg Dilution 5

RDL 1

Page Number: 3 of 4 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23891

				Reporting
Param	Flag	Results	Units	Limit
Chloride	1	<1.0	mg/L	1

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23891

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	² 25.55	3 25.22	mg/Kg	1	12.50	<1.0	95	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

QC23891

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	1150	1160	mg/Kg	1	625	575	92	1	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.85	94	90 - 110	10/1/02

¹Method blank (matrix) QC Batch 23891 in soil 13.42 mg/Kg the other in water.

²Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

³Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

Report Date: November 11, 2002 CH2100

Order Number: A02093012 Champion Tech Page Number: 4 of 4 Hobbs,NM

ICV (1)

QCBatch:

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		m mg/L	12.50	11.88	95	90 - 110	10/1/02

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424

806 • 794 • 1296 800 • 378 • 1296 915 • 585 • 3443

El Paso, Texas 79922

888 • 588 • 3443 E-Mail: lab@traceanalysis.com

FAX 915 • 585 • 4944

November 06, 2002

Receiving Date: 10/02/2002

Sample Type: Soil

Project Number: CH2100 Project Location: Hobbs, NM

T209424 - SB-58 10'

ANALYTICAL RESULTS FOR

E.T.G.I.

Attention: Todd Choban

P. O. Box 4845 Midland, TX 79704 Lab Receiving #: A02100208 Sampling Date: 09/27/2002

Sample Condition: Intact and Cool

Sample Received by: VH

Project Name: Champion Tech

SAMPLE		CONC	•	COMPOUND	r.	MDL *DF	CONC.
Sample # 209424	has a	23.6	_mg/Kg of	Naphthalene,	which is higher than MDL	0.005, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	3	mg/Kg of	Benzo [A] anthracene,	which is higher than MDL	0.0055, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	6.3	mg/Kg of	Chrysene,	which is higher than MDL	0.0071, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	0.96	mg/Kg of	Benzo [B] fluoranthene,	which is higher than MDL	0.0059, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	0.9	mg/Kg of	Benzo [K] fluoranthene,	which is higher than MDL	0.0061, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	1.17	mg/Kg of	Benzo [A] pyrene,	which is higher than MDL	0.0069, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	0.3	mg/Kg of	Ideno [1,2,3-cd] pyrene,	which is higher than MDL	0.0073, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.
Sample # 209424	has a	0.26	mg/Kg of	Dibenzo [A,H] anthracene,	which is higher than MDL	0.0081, but lower than the RDL.	0.0 mg/Kg was present in the Method Blank.

Date

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue, Ste. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298

TraceAnalysis, Inc.

El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944

155 McCutcheon, Suite H AD2003012

CHAIN-OF-CUSTODY	AND ANALYSIS	REQUES

1 (80	0) 378-1296			J				-			-	ax (915 1 (888)	588-3443	4	1			\$ L	AB (Orde	r ID	#/		M/	<i>77</i> <u> </u>	<u>U</u>				·		
npany Na	5161					Phor	ne #: /5)	5 <i>5</i>	22	-)/	3	9													QUE		١					
dress: 人	(Street, City, Zip)	Hla	bne	79	10	Fax i	#: / (715	5)	56	20	-2	431	0					-), O,					, 		1	1 1	}	1
	on: Toold Chopa	21)															0000	90108/2007							'						
oice to: lifferent fr	om above)	,																3	5 F	,											andard	
ject #:	CHano					Proje	ect Na	ame:			17	1						18	Pb Se												from st	
ject Locat	tion: Hebbs/Champ	bn	Faci	1,7		Sam	pler S	Signa	iture:	$\overline{}$	Le		7	7				3	ζ 3 3					4	3			ides			fferent	
		RS	Ę	0	MATE	12	Ť		RES	ERV		Æ.	SAME	PLING	200	22	905	å	As Ba		atiles	S		50B/62	5 m	A/608		φ <u>.</u> [:		-	ne if di	
LAB#	FIELD CODE	CONTAINERS	Amo	[m		追									3021B/6)21B/6(3.1/TX1		etals A	olatiles	emi Vol	esticide		Vol. 82	082/60	ss 808	SS. pH	101			und Ti	
AB USE)		NOO #	Volume/Amount	WATER	AIR	SLUDGE	Ē	INO.	H ₂ SO ₄	NaOH	핑	NONE	DATE	LING	MTBE 8	BTEX 8021B/602	TPH 418.1/TX1005	PAH 82	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles	TCLP Pesticides	FG (GC/MS Vol. 8260B/624	PCB's 8082/608	Pesticides 8081A/608	BOD, TSS, pH	C_{μ}			Turn Around Time if different from standard	Hold
9253	Old Leach line 9' 45'	1	402		\top					_	X		9-25														++	X				
_54	11 11 22'x5'		3	X			\perp			_	X		9-25	1712	L					ļ				\perp				X				
55 56	1111 50'x5'	1	<u> </u>	X	+		\perp	_			X		5-25	170)	L			\perp					_	\perp	\perp				1		<u> </u>	$ \prec $
56	1111 1001 x 4,5	1_		X		-	_			_	X	_	9-25	1652	_			_		<u>. </u>	_		_	_	_	\perp		 			—	X
					-	1		-				_	<u> </u>		_		\perp	_	- -	1			_	\downarrow	_	\perp	\sqcup					—
				-	-	- -	-	-		_	_	+	-		-		-	4	-	-			\dashv		+	+	\vdash	\perp		- -	_	-
		ļ		-	H	╫	+	\vdash	\vdash	-	+	-		ļ	-				+	-	.		\dashv	+	+	+		-	+	-	-	-
				\vdash			-	 -			-	+-	-		H			+		+		\vdash	\dashv	+	\dashv	-	H	-	+	\vdash	+-	-
							+	+-		-	\dashv	+	-				-	+		+			+	+	+	+-	\vdash		+-	$\vdash \vdash$	+	-
							-				+	+						+	\dagger				7				\prod	-			-	
nquished Down navished		Rece	ived by		te	ta	N 0	v I	ite: /		Tim		00			Ł	AE OI	VĽ	SE Y		R	EM/	ARK Le	rM 2:	lar	6	5	do	.5 t	er	uare	DW.
nquished	by: Date: Time: 9/27/02 1830	Rece	ived by	<i>:</i> :					ite:		Tim	e:				1000	oace		40,000	N	1					؛ ر.)	2/1 79	T 15	ibo	1 38-	-bb	/a\
nquished		Rece	ived at	Labora	tory t	y	91		ite:		Tim	e:			Ter	mp_	H ol	<u> </u>	M	°			C		II Spe Are N	ecial I	Repo		, -		<u> </u>	۱۳۷
mittal of s	amples constitutes agreement to Terms	and Co	ondition	listed	on re	verse							اريالم	HS	Ca	rrier	# /	U	11	/ /\	R	B			-							
						OR	IGIN	AL	CO	ργ		. (7	.						25	V ~				<u> </u>							

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

E-Mail: lab@traceanalysis.com

FAX 915 • 585 • 4944

CORRECTED CERTIFICATE

Analytical and Quality Control Report

Todd Choban

Report Date:

November 11, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02093011

Project Number:

Project Name:

CH2100 Champion Tech

Project Location: Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209245	MW-15 5	Soil	9/26/02	10:55	9/28/02
209249	MW-15 25	Soil	9/26/02	11:31	9/28/02
209252	MW-15 40	Soil	9/26/02	12:07	9/28/02

Comment: LCS had the wrong % recovery needed to be corrected. Matrix Blank was added for chloride.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Leftwich, Director

Report Date: November 11, 2002 CH2100

Order Number: A02093011 Champion Tech

Page Number: 2 of 5 Hobbs,NM

Analytical Report

209245 - MW-15 5 Sample:

JSW

Analyst:

Analysis: Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch: Preparation Method: N/A Prep Batch: PB22336 Date Prepared: 10/1/02

QC23891 Date Analyzed: 10/1/02

Result Units Dilution RDL Flag Param 46.7 mg/Kg 5 Chloride 1

209245 - MW-15 5 Sample:

QC Batch: Date Analyzed: Analysis: Total Metals Analytical Method: S 6010B QC23898 10/2/02

Date Prepared: Analyst: Preparation Method: S 3050B Prep Batch: PB22328 10/1/02 RR

Result Dilution Flag Units RDL Param Total Chromium 5.73 mg/Kg 100 0.01

209249 - MW-15 25 Sample:

E 300.0 QC Batch: QC23891 Date Analyzed: 10/1/02 Analysis: Ion Chromatography (IC) Analytical Method:

Prep Batch: PB22336 Date Prepared: 10/1/02 Analyst: Preparation Method: N/A JSW

aram Flag Result Units Dilution RDL Chloride 37.4 mg/Kg 5 1

Sample: 209249 - MW-15 25

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC23898 Date Analyzed: 10/2/02

Analyst: Preparation Method: S 3050B Prep Batch: PB22328 Date Prepared: RR 10/1/02

Result Units Dilution Param Flag RDL mg/Kg 2.46100 0.01 Total Chromium

209252 - MW-15 40 Sample:

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC23891 Date Analyzed: 10/1/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22336 Date Prepared: 10/1/02

Param Flag Result Units Dilution RDL mg/Kg Chloride 137 5

Sample: 209252 - MW-15 40

Analysis: Analytical Method: QC Batch: QC23898 Total Metals S 6010B Date Analyzed: 10/2/02 Analyst: Preparation Method: S 3050B Prep Batch: PB22328 Date Prepared: RR10/1/02

Param Flag Dilution RDLResult Units

100 Total Chromium 5.88 mg/Kg 0.01 Report Date: November 11, 2002

CH2100

Order Number: A02093011 Champion Tech Page Number: 3 of 5 Hobbs, NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23891

				Reporting
Param	Flag	Results	Units	Limit
Chloride	l	<1.0	${ m mg/L}$	1

Method Blank

QCBatch:

QC23898

				Reporting
Param	Flag	Results	Units	Limit
Total Chromium		< 0.010	mg/Kg	0.01

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23891

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	2 25.55	3 25.22	mg/Kg	1	12.50	<1.0	95	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC23898

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Total Arsenic	52.3	53.2	mg/Kg	100	50	<0.050	104	1	75 - 125	20
Total Chromium	9.65	9.63	mg/Kg	100	10	< 0.010	96	Ô	75 - 125	20
Total Lead	47.8	47.4	mg/Kg	100	50	<0.010	95	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

¹Method blank (matrix) QC Batch 23891 in soil 13.42 mg/Kg the other in water.

²Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

 $^{^3}$ Soil blank should be subtracted from the blank spikes. %EA = 95 and RPD = 0.

Report Date: November 11, 2002 CH2100 Order Number: A02093011 Champion Tech Page Number: 4 of 5 Hobbs,NM

Spike MS MSD % Rec RPD Amount Matrix Units Dil. Added Result % Rec RPD Limit Param Result Result Limit 625 575 92 35 - 144 Chloride 1150 1160 mg/Kg 1 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC23898

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
Total Chromium	13.2	13.5	mg/Kg	100	10	4.28	89	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

QC23891

		4	CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	$\mathbf{U}_{\mathbf{nits}}$	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		$_{ m mg/L}$	12.50	11.85	94	90 - 110	10/1/02

ICV (1)

QCBatch:

QC23891

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.88	95	90 - 110	10/1/02

CCV (1)

QCBatch:

QC23898

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/Kg	1	1.00	100	90 - 110	10/2/02
Total Chromium		mg/Kg	0.20	0.195	98	90 - 110	10/2/02
Total Lead		mg/Kg	1	0.966	97	90 - 110	10/2/02

ICV (1)

QCBatch:

Report Date: November 11, 2002 CH2100

Order Number: A02093011

Champion Tech

Page Number: 5 of 5 Hobbs,NM

,			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Arsenic		mg/Kg	1	0.980	98	95 - 105	10/2/02
Total Chromium		mg/Kg	0.20	0.195	98	95 - 105	10/2/02
Total Lead		mg/Kg	1	0.966	97	95 - 105	10/2/02

6701 Aberdeen Avenue, Ste. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

TraceAnalysis, Inc.

155 McCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443

CHAIN-OF-CUSTODY	AND	ANALYSIS	REQUEST

LAB Order ID #_ #2013011

						1										1.5																	
mpany Na	6191					Pho		: (91	5)5	da	2-	113	G										REG								
dress: 식((Street, City, Zip)	lar	id	79	763	Fax	#:	(9	115))·E	521	<u>) </u>	4	(3)	ر ا			1	-	-), S	р ес і 	fy M			., 		1		ı	
mact Pers	on: Todd Chopae	1	, ,																7 000/2007	00/200													
oice to: different fro		,																	0 0	호 도,												andard	
oject #:	CHAIOO					Proje	ect N	Vam	e: (()	W	01	28	(N)	7 5	7				00 40	8 8												from St	
oject Locat	ion: Nobbs/Champ	NOY	Lac	ili	In	Sam	pler	'Sigi	natur	e: Dz	*~~	X	ei	~	Z				5						4	20/00				ta		ifferent	
·		1	1			RIX			PRE		RVAT HOD			SAMP	LING	602	8	1005	Q V	g As B		latiles	ss		60B/62	8 8	1A/608		laridas	nn		me if d	
LAB#	FIELD CODE	CONTAINERS	€/Amo	a l		ΞË										30218/	021B/6	#. 17X		etals A	olatiles	emi Vo	esticide		Vol. 82	082/60	es 808	SS. pH	Java	romi		II punt	
AB USE) ONLY		UOO #	Volume/Amount	WATER	SOIL	SLUDGE		ᅙ	H.SO.		SE SO	NONE		DATE	TIME	MTBE 8021B/602	BTEX 8021B/602	TPH 418.1/TX1005	Total Matala As As	TCLP Metals Ag As Ba	TCLP Volatiles	TCLP Semi Volatiles	TCLP Pesticides	<u>2</u>	GC/MS Vol. 8260B/624	PCB's 8082/608	Pesticides 8081A/608	BOD, TSS, pH	(41	Chr		Turn Around Time if different from standard	Hold
19245	MW-15-5'	3	402	T T	Ϋ́						X			9-26															X	×			
46	mw-15-10'	3	(\coprod						1				1103			\perp															X
47	MW-15-15'	2													HID																		X
48	$M_1N-15-20'$	3			/						$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$)	น13																		X
49	MW-15-25'	2	\)									(1131														Ż,	Χ			
50	MW16-30'	3	1			1:								\neg	1149														П				Х
51	MW-15-35	1	1			Table 1				T	17				1155														П			1	X
52	MW-15-40'	3	7	1 1			1				17			-	1207											1	\top		χÌ	$\overline{\mathbf{v}}$	11	1	
					1		十			+	Ť			-	100		1	7	T							_	T	\dagger	H	\uparrow	11	+	1
					\top		\dashv	+		\top	1					-	\Box	\top		+-	1			7	\dashv	┪	+	\top	\vdash	_	++	+	+
							\top				-	 	7					1			-					\dagger	+	\forall			+	+	1
linquished	by: Date: / Time:	Rece	ived by	/: _k	1	7 /		- [Date:	1	T	ime:				¥.	L	ΑB	U	SE		R	EMA	ARK	S:			<u> </u>					
/essi	Sole 3 27/02 1500		len		he	lte	W		27		_		15	500	2	3 W.S	s All selv	, ~		SÈ Y	4 1 3		V	SI	aj	N	o 1	rd		5	0	11/	-)
linguished	Date: Time: 1830	Rebe	ived by	/ :		į		E	Date:		T	ime:				i	act_ adsp			N Y / I			0	3	F Tra	v15	: <i>C</i>	4	ur	m	ar	01	2nd
linquished	<u> </u>	Rece	ived at	Labo	ratory	by:	, Majari Majari		Date:	, , , , , , , , , , , , , , , , , , ,	Ti	me:		4,0%,1% 201,273	ringin.	Ter	np	16	,د	Y / I	. 0	<u>'</u>	<i>ب</i> ی		hack	, (<u>)</u> 	O(ail Id I Repo	oning	3 28	3-00	16/	İ
		3	\sim	de	/			U	1~	$C \cap$		44	-	<u> </u>			g-in l	Revie	w_	_//	MS	7		L	imits	Are 1	1eed	ed	y	}	thi	71	>
bmittal of s	amples constitutes agreement to Terms	and C	ondition	nsfliste	d on			le of	C.O.	C.	20	00C	M	Kai-1	15	Са	rrier	#	X	<u>La</u>	4	1	8	الع				_					
				-		OB	NG1	NIA	L CC	יםר	✓			4	i			`			4												

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 16, 2002Order Number: A02100208 CH2100 Champion Tech

Page Number: 1 of 6

Hobbs,NM

Summary Report

Todd Choban

Report Date:

October 16, 2002

E.T.G.I.

PO Box 4845 Midland, Tx. 79704

Order ID Number: A02100208

Project Number:

CH2100

Project Name:

Project Location: Hobbs,NM

Champion Tech

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209421	SB-57 45'	Soil	9/27/02	13:45	10/2/02
209424	SB-58 10'	Soil	9/27/02	10:30	10/2/02
209426	SB-58 25'	Soil	9/27/02	14:05	10/2/02
209428	SB-49 5'	Soil	9/27/02	8:35	10/2/02
209432	SB-49 40'	Soil	9/27/02	9:40	10/2/02
209433	SB-49 50'	Soil	9/27/02	10:15	10/2/02
209437	SB-57 10'	Soil	9/27/02	12:27	10/2/02

0 This report consists of a total of 6 page(s) and is intended only as a summary of results for the sample(s) listed above.

	BTEX							
1	Benzene	Toluene	Ethylbenzene	M,P,O-Xylene	Total BTEX	TRPHC		
Sample - Field Code	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
209421 - SB-57 45'	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<10.0		
209424 - SB-58 10'	1.46	4.08	3.27	6.88	15.7	80800		
209426 - SB-58 25'	< 0.010	< 0.010	< 0.010	0.0109	0.0109	37.1		
209428 - SB-49 5'	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	27.9		
209432 - SB-49 40'	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<10.0		
209433 - SB-49 50'	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	98.7		
209437 - SB-57 10'	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<10.0		

Sample: 209421 - SB-57 45'

Param	Flag	Result	Units
Chloride		491	mg/Kg
Total Arsenic		< 5.00	mg/Kg
Total Chromium		3.11	mg/Kg
Total Lead		<1.00	mg/Kg

Report Date: October 16, 2002Order Number: A02100208 CH2100 Champion Tech Page Number: 2 of 6 Hobbs,NM

Flag	Result	TT-14-
Flag	Result	TT 24
		Units
	713	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
		mg/Kg
	<25.00	mg/Kg
	<25.00	mg/Kg
	·	mg/Kg
		mg/Kg
•		mg/Kg
		mg/Kg
		mg/Kg
		mg/Kg
		mg/Kg
		mg/Kg
		mg/Kg
		mg/Kg
		mg/Kg
	·	mg/Kg
		mg/Kg
		mg/Kg mg/Kg
		mg/Kg
		mg/Kg mg/Kg
		<25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00 <25.00

Report Date: October 16, 2002Order Number: A02100208 CH2100 Champion Tech Page Number: 3 of 6 Hobbs,NM

Sample 209424 continued ...

Param	Flag	Result	Units
Dibenzofuran		<25.00	mg/Kg
Pentachlorobenzene		<25.00	mg/Kg
4-Nitrophenol		<25.00	mg/Kg
1-Naphthylamine		<25.00	mg/Kg
2,4-Dinitrotoluene		<25.00	mg/Kg
2-Naphthylamine		<25.00	mg/Kg
2,3,4,6-Tetrachlorophenol		<25.00	mg/Kg
Fluorene		<25.00	mg/Kg
Diethylphthalate		<25.00	mg/Kg
4-Chlorophenyl-phenylether		<25.00	mg/Kg
4-Nitroaniline		<25.00	mg/Kg
4,6-Dinitro-2-methylphenol		<25.00	mg/Kg
Diphenylamine		<25.00	mg/Kg
Diphenylhydrazine		<25.00	mg/Kg
4-Bromophenyl-phenylether		<25.00	mg/Kg
Phenacetin		<25.00	mg/Kg
Hexachlorobenzene		<25.00	mg/Kg
4-Aminobiphenyl		<25.00	mg/Kg
Pentachlorophenol		<25.00	mg/Kg
Pentachloronitrobenzene		<25.00	mg/Kg
Pronamide		<25.00	mg/Kg
Phenanthrene		<25.00 <25.00	mg/Kg
Anthracene		<25.00 <25.00	mg/Kg
Di-n-butylphthalate		<25.00 <25.00	mg/Kg
Fluoranthene		<25.00	mg/Kg
Benzidine		<25.00	mg/Kg
Pyrene		<25.00	mg/Kg
p-Dimethylaminoazobenzene		<25.00	mg/Kg
Butylbenzylphthalate	•	<25.00	mg/Kg
Benzo(a)anthracene		<25.00	mg/Kg
3,3-Dichlorobenzidine		<25.00	mg/Kg
Chrysene Chrysene		<25.00	mg/Kg
Bis (2-ethylhexyl) phthalate		<25.00	mg/Kg mg/Kg
Di-n-octylphthalate		<25.00	mg/Kg
Benzo(b)fluoranthene		<25.00	mg/Kg
7,12-Dimethylbenz(a)anthracene		<25.00	mg/Kg mg/Kg
Benzo(k)fluoranthene		<25.00 <25.00	mg/Kg
		<25.00 <25.00	
Benzo(a)pyrene 3-Methylcholanthrene		<25.00 <25.00	mg/Kg
Dibenzo(a,j)acridine		<25.00 <25.00	mg/Kg mg/Kg
Indeno(1,2,3-cd)pyrene		<25.00 <25.00	mg/Kg mg/Kg
		<25.00 <25.00	mg/Kg mg/Kg
Dibenzo(a,h)anthracene		<25.00 <25.00	
Benzo(g,h,i)perylene	1		mg/Kg
Test Comments Total Arsenic		Note <5.00	mg/Kg
		37.2	mg/Kg
Total Chromium			mg/Kg
Total Lead		46.1	mg/Kg
Bromochloromethane		<500	μg/Kg
Dichlorodifluoromethane		<500	μg/Kg

Continued on next page ...

¹Elevated reporting limits due to sample matrix.

Report Date: October 16, 2002Order Number: A02100208 CH2100

Champion Tech

Page Number: 4 of 6 Hobbs,NM

Sample 209424 continued ...

Param	Flag	Result	Units
Chloromethane (methyl chloride)		<500	$\mu { m g/Kg}$
Vinyl Chloride		873	μg/Kg
Bromomethane (methyl bromide)		<2500	$\mu { m g}/{ m Kg}$
Chloroethane		<500	$\mu { m g/Kg}$
Trichlorofluoromethane		< 500	$\mu { m g/Kg}$
Acetone		<5000	$\mu { m g/Kg}$
Iodomethane (methyl iodide)		<2500	$\mu { m g/Kg}$
Carbon Disulfide		<500	$\mu { m g/Kg}$
Acrylonitrile		<500	$\mu { m g}/{ m Kg}$
2-Butanone (MEK)		<2500	$\mu { m g}/{ m Kg}$
4-methyl-2-pentanone (MIBK)		<2500	$\mu { m g}/{ m Kg}$
2-hexanone		<2500	$\mu { m g}/{ m Kg}$
trans 1,4-Dichloro-2-butene		<5000	μg/Kg
1,1-Dichloroethene		<500	μg/Kg
Methylene chloride		<2500	$\mu g/Kg$
MTBE		<500	μg/Kg
trans-1,2-Dichloroethene		<500	μg/Kg
1.1-Dichloroethane		864	$\mu g/Kg$
cis-1,2-Dichloroethene		<500	$\mu g/Kg$
2,2-Dichloropropane		<500	$\mu g/Kg$
1,2-Dichloroethane (EDC)		<500	$\mu g/Kg$
Chloroform		<500	$\mu_{\rm g}/{ m Kg}$
1,1,1-Trichloroethane		<500	$\mu_{\rm g}/{ m Kg}$ $\mu_{ m g}/{ m Kg}$
1,1-Dichloropropene		<500	μg/Kg μg/Kg
Benzene		2400	$\mu_{\rm g}/{ m Kg}$ $\mu_{\rm g}/{ m Kg}$
Carbon Tetrachloride		<500	$\mu_{ m g}/{ m Kg}$ $\mu_{ m g}/{ m Kg}$
1,2-Dichloropropane		<500	$\mu_{ m g}/{ m Kg}$ $\mu_{ m g}/{ m Kg}$
Trichloroethene (TCE)		<500	μ g/Kg μ g/Kg
Dibromomethane (methylene bromide)		<500	μ_{g}/Kg μ_{g}/Kg
Bromodichloromethane		<500 <500	$\mu_{ m g}/{ m Kg}$ $\mu_{ m g}/{ m Kg}$
2-Chloroethyl vinyl ether		<2500	
			μg/Kg
cis-1,3-Dichloropropene trans-1,3-Dichloropropene		<500 <500	$ ho_{ m \mu g/Kg}$
Toluene		7890	
1,1,2-Trichloroethane			μg/Kg
		<500	μg/Kg
1,3-Dichloropropane Dibromochloromethane		<500	. μg/Kg
		<500	μg/Kg
1,2-Dibromoethane (EDB)		<500	μg/Kg
Tetrachloroethene (PCE)		<500	μg/Kg
Chlorobenzene		<500	$\mu \mathrm{g}/\mathrm{Kg}$
1,1,1,2-Tetrachloroethane		<500	$\mu \mathrm{g}/\mathrm{Kg}$
Ethylbenzene		5820	μg/Kg
m,p-Xylene		8770	$\mu_{ m g}/{ m Kg}$
Bromoform		<500	$\mu \mathrm{g}/\mathrm{Kg}$
Styrene		<500	$\mu { m g}/{ m Kg}$
o-Xylene		4070	$\mu { m g}/{ m Kg}$
1,1,2,2-Tetrachloroethane		< 500	$\mu { m g/Kg}$
2-Chlorotoluene		<500	$\mu { m g/Kg}$
1,2,3-Trichloropropane		<500	μg/Kg
Isopropylbenzene		2030	μg/Kg

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 16, 2002Order Number: A02100208 CH2100 Champion Tech Page Number: 5 of 6 Hobbs,NM

Sample 209424 continued ...

Param	Flag	Result	Units
Bromobenzene		<500	$\mu { m g/Kg}$
n-Propylbenzene		3830	$\mu { m g}/{ m Kg}$
1,3,5-Trimethylbenzene		5240	$\mu { m g}/{ m Kg}$
tert-Butylbenzene		< 500	$\mu { m g}/{ m Kg}$
1,2,4-Trimethylbenzene		12100	$\mu { m g}/{ m Kg}$
1,4-Dichlorobenzene (para)		<500	$\mu { m g}/{ m Kg}$
sec-Butylbenzene		963	$\mu { m g}/{ m Kg}$
1,3-Dichlorobenzene (meta)		< 500	$\mu { m g}/{ m Kg}$
p-Isopropyltoluene		1510	$\mu { m g}/{ m Kg}$
4-Chlorotoluene	a.	< 500	$\mu { m g}/{ m Kg}$
1,2-Dichlorobenzene (ortho)		<500	$\mu { m g}/{ m Kg}$
n-Butylbenzene		1380	$\mu { m g}/{ m Kg}$
1,2-Dibromo-3-chloropropane		<2500	$\mu { m g}/{ m Kg}$
1,2,3-Trichlorobenzene		<2500	$\mu { m g}/{ m Kg}$
1,2,4-Trichlorobenzene		<2500	$\mu { m g}/{ m Kg}$
Naphthalene \		27500	$\mu { m g}/{ m Kg}$
Hexachlorobutadiene		<2500	$\mu { m g/Kg}$

Sample: 209426 - SB-58 25'

Param	Flag	Result	Units
Chloride		562	mg/Kg
Total Arsenic		<5.00	mg/Kg
Total Chromium		3.62	mg/Kg
Total Lead		<1.00	mg/Kg

Sample: 209428 - SB-49 5'

-Param	Flag	Result	Units
Chloride		107	mg/Kg
Total Arsenic		<5.00	mg/Kg
Total Chromium		2.51	mg/Kg
Total Lead		<1.00	mg/Kg

Sample: 209432 - SB-49 40'

Param	Flag	Result	Units
Chloride		19.7	mg/Kg
Total Arsenic		< 5.00	mg/Kg
Total Chromium		2.71	mg/Kg
Total Lead		<1.00	mg/Kg

TraceA	nal	vsis.	Inc.
TIACEL	TTICH	YOLU	1110.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 16, 2002Order Number: A02100208 CH2100 Champion Tech Page Number: 6 of 6 Hobbs,NM

Sample: 209433 - SB-49 50'					
Param	Flag	Result	Units		
Chloride		12.6	mg/Kg		
Total Arsenic		< 5.00	mg/Kg		
Total Chromium		2.75	mg/Kg		
Total Lead		<1.00	mg/Kg		

Sample: 209437 - SB-57 10'

Param	Flag	Result	Units
Chloride		536	mg/Kg
Total Arsenic		<5.00	mg/Kg
Total Chromium		10.3	mg/Kg
Total Lead		9.21	mg/Kg

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Todd Choban

Report Date:

October 16, 2002

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02100208

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

•			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209421	SB-57 45'	Soil	9/27/02	13:45	10/2/02
209424	SB-58 10'	Soil	9/27/02	10:30	10/2/02
209426	SB-58 25'	Soil	9/27/02	14:05	10/2/02
209428	SB-49 5'	Soil	9/27/02	8:35	10/2/02
209432	SB-49 40'	Soil	9/27/02	9:40	10/2/02
209433	SB-49 50'	Soil	9/27/02	10:15	10/2/02
209437	SB-57 10'	Soil	9/27/02	12:27	10/2/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 26 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Dr. Blair Leftwich, Director

Order Number: A02100208 Champion Tech Page Number: 2 of 26 Hobbs,NM

Analytical Report

Sample: 209421 - SB-57 45'

Analytical Method: S 8021B QC Batch: QC23913 Date Analyzed: Analysis: BTEX 10/2/02 CG Preparation Method: PB22346 Analyst: S 5035 Prep Batch: Date Prepared: 10/2/02

Units Dilution RDL Param Flag Result Benzene < 0.010 mg/Kg 10 0.001 Toluene < 0.010 mg/Kg 10 0.001 Ethylbenzene < 0.010 mg/Kg 10 0.001 M,P,O-Xylene < 0.010 mg/Kg 10 0.001 Total BTEX < 0.010 10 mg/Kg 0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.813	mg/Kg	10	1	81	70 - 130
4-BFB		0.760	mg/Kg	10	1	76	70 - 130

Sample: 209421 - SB-57 45'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24019 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22434 Date Prepared: 10/8/02

Sample: 209421 - SB-57 45'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC23978 Date Analyzed: 10/7/02 Analyst: WG Preparation Method: N/A Prep Batch: PB22404 Date Prepared: 10/7/02

Sample: 209421 - SB-57 45'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24004 Date Analyzed: 10/8/02 Analyst: RRPreparation Method: S 3050B Prep Batch: PB22405 Date Prepared: 10/7/02

Flag Param Result Units Dilution RDL Total Arsenic <5.00 mg/Kg 100 0.05 Total Chromium 3.11 100 mg/Kg 0.01 Total Lead <1.00 mg/Kg 100 0.01

Sample: 209424 - SB-58 10'

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23913 Date Analyzed: 10/2/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22346 Date Prepared: 10/2/02

CH2100

Order Number: A02100208 Champion Tech

Page Number: 3 of 26 Hobbs,NM

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		1.46	mg/Kg	200	0.001
Toluene		4.08	mg/Kg	200	0.001
Ethylbenzene		3.27	mg/Kg	200	0.001
M,P,O-Xylene		6.88	mg/Kg	200	0.001
Total BTEX		15.7	mg/Kg	200	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.918	mg/Kg	200	1	88	70 - 130
4-BFB	1	1.90	${ m mg/Kg}$	1	1	185	70 - 130

Sample:

209424 - SB-58 10'

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC24018 Date Analyzed: 10/8/02

Analyst:

JSW

Preparation Method: N/A Prep Batch: PB22437 Date Prepared: 10/8/02

Param	Flag	Result	Units	Dilution	RDL
Chloride		713	mg/Kg	50	1

Sample:

209424 - SB-58 10'

Analysis: Semivolatiles Analyst: RC

Analytical Method: Preparation Method: E 3510C

S 8270C

QC Batch: QC24151

Prep Batch: PB22540

Date Analyzed: Date Prepared:

10/14/02 10/10/02

Param	Flag	Result	Units	Dilution	RDL
Pyridine		<25.00	mg/Kg	100	0.25
n-Nitrosodimethylamine		<25.00	mg/Kg	100	0.25
2-Picoline		<25.00	${ m mg/Kg}$	100	0.25
Methyl methanesulfonate		<25.00	mg/Kg	100	0.25
Ethyl methanesulfonate		<25.00	${ m mg/Kg}$	100	0.25
Phenol		<25.00	mg/Kg	100	0.25
Aniline		<25.00	mg/Kg	100	0.25
bis (2-chloroethyl) ether		<25.00	mg/Kg	100	0.25
2-Chlorophenol		<25.00	mg/Kg	100	0.25
1,3-Dichlorobenzene (meta)		<25.00	mg/Kg	100	0.25
1,4-Dichlorobenzene		<25.00	mg/Kg	100	0.25
Benzyl alcohol		<25.00	mg/Kg	100	0.25
1,2-Dichlorobenzene		<25.00	${ m mg/Kg}$	100	0.25
2-Methylphenol		<25.00	mg/Kg	100	0.25
bis (2-chloroisopropyl) ether		<25.00	${ m mg/Kg}$	100	0.25
4-Methylphenol/3-Methylphenol		<25.00	mg/Kg	100	0.25
Acetophenone		<25.00	mg/Kg	100	0.25
n-Nitrosodi-n-propylamine		<25.00	mg/Kg	100	0.25
Hexachloroethane		<25.00	mg/Kg	100	0.25
Nitrobenzene		<25.00	mg/Kg	100	0.25
n-Nitrosopiperidine		<25.00	mg/Kg	100	0.25
Isophorone		<25.00	mg/Kg	100	0.25
2-Nitrophenol		<25.00	mg/Kg	100	0.25
,4-Dimethylphenol		<25.00	mg/Kg	100	0.25

Continued ...

¹High surrogate recovery due to peak interference.

Order Number: A02100208 Champion Tech Page Number: 4 of 26 Hobbs,NM

Continued Sample: 209424	Analysis: Semivola	tilee			
Param	Flag	Result	Units	Dilution	RDL
bis (2-chloroethoxy) methane	Tiag	<25.00	mg/Kg	100	0.25
Benzoic acid		<25.00	mg/Kg	100	0.25
2,4-Dichlorophenol		<25.00	mg/Kg	100	0.25
1,2,4-Trichlorobenzene		<25.00	mg/Kg	100	0.25
a,a-Dimethylphenethylamine		<25.00	mg/Kg	100	0.25
Naphthalene		<25.00	mg/Kg	100	0.25
4-Chloroaniline		<25.00	mg/Kg	100	0.25
2,6-Dichlorophenol		<25.00	mg/Kg	100	0.25
Hexachlorobutadiene		<25.00	mg/Kg	100	0.25
n-Nitroso-di-n-butylamine		<25.00	mg/Kg	100	0.25
4-Chloro-3-methylphenol		<25.00	mg/Kg	100	0.25
1-Methylnaphthalene		30.93	mg/Kg	100	0.25
2-Methylnaphthalene		43.18	mg/Kg	100	0.25
1,2,4,5-Tetrachlorobenzene		<25.00	mg/Kg	100	0.25
Hexachlorocyclopentadiene		<25.00	mg/Kg	100	0.25
2,4,6-Trichlorophenol		<25.00	mg/Kg	100	0.25
2,4,5-Trichlorophenol		<25.00	mg/Kg	100	0.25
2-Chloronaphthalene		<25.00	mg/Kg	100	0.25
1-Chloronaphthalene		<25.00	mg/Kg	100	0.25
2-Nitroaniline		<25.00	mg/Kg	100	0.25
Dimethylphthalate		<25.00	mg/Kg	100	0.25
Acenaphthylene		<25.00	mg/Kg	100	0.25
2,6-Dinitrotoluene		<25.00	mg/Kg	100	0.25
3-Nitroaniline		<25.00	mg/Kg	100	0.25
Acenaphthene		<25.00	mg/Kg	100	0.25
2,4-Dinitrophenol		<25.00	mg/Kg	100	0.25
Dibenzofuran	·	<25.00	mg/Kg	100	0.25
Pentachlorobenzene		<25.00	mg/Kg	100	0.25
4-Nitrophenol		<25.00	mg/Kg	100	0.25
1-Naphthylamine		<25.00	mg/Kg	100	0.25
2,4-Dinitrotoluene		<25.00	${ m mg/Kg}$	100	0.25
2-Naphthylamine		<25.00	mg/Kg	100	0.25
2,3,4,6-Tetrachlorophenol		<25.00	mg/Kg	100	0.25
Fluorene		<25.00	mg/Kg	100	0.25
Diethylphthalate		<25.00	${ m mg/Kg}$	100	0.25
4-Chlorophenyl-phenylether		<25.00	mg/Kg	100	0.25
4-Nitroaniline		<25.00	${ m mg/Kg}$	100	0.25
4,6-Dinitro-2-methylphenol		<25.00	${ m mg/Kg}$	100	0.25
Diphenylamine		<25.00	${ m mg/Kg}$	100	0.25
Diphenylhydrazine		<25.00	mg/Kg	100	0.25
4-Bromophenyl-phenylether		<25.00	${ m mg/Kg}$	100	0.25
Phenacetin		<25.00	mg/Kg	100	0.25
Hexachlorobenzene		<25.00	${\sf mg/Kg}$	100	0.25
4-Aminobiphenyl		<25.00	mg/Kg	100	0.25
Pentachlorophenol		<25.00	mg/Kg	100	0.25
Pentachloronitrobenzene		<25.00	mg/Kg	100	0.25
Pronamide		<25.00	mg/Kg	100	0.25
Phenanthrene		<25.00	mg/Kg	100	0.25
Anthracene		<25.00	mg/Kg	100	0.25
Di-n-butylphthalate		<25.00	mg/Kg	100	0.25
Fluoranthene		<25.00	mg/Kg	100	0.25
Benzidine		<25.00	mg/Kg	100	0.25
Pyrene		<25.00	mg/Kg	100	0.25

Continued ...

Order Number: A02100208 Champion Tech Page Number: 5 of 26 Hobbs,NM

Continued Sample: 209424 Anal	ysis: Semivola	tiles			
Param	Flag	Result	Units	Dilution	RDL
p-Dimethylaminoazobenzene		<25.00	mg/Kg	100	0.25
Butylbenzylphthalate		<25.00	${ m mg/Kg}$	100	0.25
Benzo(a)anthracene		<25.00	${ m mg/Kg}$	100	0.25
3,3-Dichlorobenzidine		<25.00	mg/Kg	100	0.25
Chrysene		<25.00	${ m mg/Kg}$	100	0.25
Bis (2-ethylhexyl) phthalate		<25.00	mg/Kg	100	0.25
Di-n-octylphthalate		<25.00	${ m mg/Kg}$	100	0.25
Benzo(b)fluoranthene		<25.00	${ m mg/Kg}$	100	0.25
7,12-Dimethylbenz(a)anthracene		<25.00	${ m mg/Kg}$	100	0.25
Benzo(k)fluoranthene	•	<25.00	${ m mg/Kg}$	100	0.25
Benzo(a)pyrene		<25.00	${ m mg/Kg}$	100	0.25
3-Methylcholanthrene		<25.00	${ m mg/Kg}$	100	0.25
Dibenzo(a,j)acridine		<25.00	· mg/Kg	100	0.25
Indeno(1,2,3-cd)pyrene		<25.00	${ m mg/Kg}$	100	0.25
Dibenzo(a,h)anthracene	•	<25.00	mg/Kg	100	0.25
Benzo(g,h,i)perylene		<25.00	${ m mg/Kg}$	100	0.25
Test Comments	2	Note	mg/Kg	100	

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
2-Fluorophenol		67.9	mg/Kg	100	80	84	25 - 121
Phenol-d5		78.86	mg/Kg	100	80	98	24 - 113
Nitrobenzene-d5	3	103.33	mg/Kg	100	80	129	23 - 120
2-Fluorobiphenyl		87.91	mg/Kg	100	80	109	30 - 115
2,4,6-Tribromophenol		61.75	mg/Kg	100	80	77	19 - 122
Terphenyl-d14		76.17	mg/Kg	100	80	95	28 - 137

Sample: 209424 - SB-58 10'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC23978 Date Analyzed: 10/7/02

Analyst: WG Preparation Method: N/A Prep Batch: PB22404 Date Prepared: 10/7/02

Param	Flag	Result	Units	Dilution	RDL
TRPHC		80800	mg/Kg	100	10

Sample: 209424 - SB-58 10'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24071 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Total Arsenic		< 5.00	mg/Kg	100	0.05
Total Chromium		37.2	${ m mg/Kg}$	100	0.01
Total Lead		46.1	mg/Kg	100	0.01

²Elevated reporting limits due to sample matrix.

³Sample surrogate recovery out of limits due to sample matrix.

CH2100

Order Number: A02100208 Champion Tech Page Number: 6 of 26 Hobbs, NM

Continued ...

Sample: 209424 - SB-58 10' Analysis: Volatiles Analytical Method: S 8260B QC Batch: QC24104 Date Analyzed: 10/10/02 Analyst: JGPreparation Method: E 5030B Prep Batch: PB22507 Date Prepared: 10/10/02 Flag Dilution Param Result Units RDL Bromochloromethane <500 500 μg/Kg 500 Dichlorodifluoromethane < 500 $\mu g/Kg$ 1 500 Chloromethane (methyl chloride) <500 $\mu g/Kg$ 1 Vinyl Chloride 873 $\mu \mathrm{g}/\mathrm{Kg}$ 500 1 Bromomethane (methyl bromide) <2500 500 $\mu \mathrm{g}/\mathrm{Kg}$ 5 Chloroethane < 500 $\mu g/Kg$ 500 1 Trichlorofluoromethane < 500 $\mu {
m g}/{
m Kg}$ 500 1 Acetone < 5000 500 10 $\mu \mathrm{g}/\mathrm{Kg}$ Iodomethane (methyl iodide) $\mu {
m g}/{
m Kg}$ <2500 500 5 Carbon Disulfide < 500 $\mu {
m g}/{
m Kg}$ 500 1 Acrylonitrile < 500 500 $\mu \mathrm{g}/\mathrm{Kg}$ 1 2-Butanone (MEK) <2500 $\mu g/Kg$ 500 5 4-methyl-2-pentanone (MIBK) $\mu {
m g}/{
m Kg}$ <2500 500 5 <2500 500 2-hexanone $\mu g/Kg$ 5 trans 1,4-Dichloro-2-butene < 5000 $\mu g/Kg$ 500 10 $\mu {
m g/Kg}$ 1.1-Dichloroethene <500 500 1 Methylene chloride $\mu \mathrm{g}/\mathrm{Kg}$ 500 5 <2500 **MTBE** < 500 500 $\mu g/Kg$ 1 trans-1,2-Dichloroethene <500 500 1 $\mu g/Kg$ 1.1-Dichloroethane 500 864 $\mu g/Kg$ 1 cis-1.2-Dichloroethene < 500 500 $\mu g/Kg$ 1 2,2-Dichloropropane < 500 500 μ g/Kg 1 1,2-Dichloroethane (EDC) <500 $\mu \mathrm{g}/\mathrm{Kg}$ 500 1 Chloroform < 500 $\mu g/Kg$ 500 1 1,1,1-Trichloroethane <500 500 1 $\mu \mathrm{g}/\mathrm{Kg}$ 1,1-Dichloropropene < 500 $\mu g/Kg$ 500 Benzene 2400 500 $\mu {
m g}/{
m Kg}$ 1 Carbon Tetrachloride 500 < 500 $\mu {
m g}/{
m Kg}$ 1 1,2-Dichloropropane < 500 $\mu g/Kg$ 500 1 <u><5</u>00 Trichloroethene (TCE) $\mu \mathrm{g}/\mathrm{Kg}$ 500 1 Dibromomethane (methylene bromide) < 500 $\mu g/Kg$ 500 1 Bromodichloromethane < 500 $\mu g/Kg$ 500 1 2-Chloroethyl vinyl ether <2500 $\mu g/Kg$ 500 5 cis-1,3-Dichloropropene <500 500 $\mu g/Kg$ 1 trans-1,3-Dichloropropene <500 $\mu g/Kg$ 500 1 Toluene 7890 500 μ g/Kg 1 1,1,2-Trichloroethane < 500 500 $\mu {
m g}/{
m Kg}$ 1 1,3-Dichloropropane <500 500 $\mu g/Kg$ 1 Dibromochloromethane 500 < 500 $\mu g/Kg$ 1 1,2-Dibromoethane (EDB) <500 $\mu g/Kg$ 500 1 Tetrachloroethene (PCE) < 500 $\mu g/Kg$ 500 1 Chlorobenzene < 500 500 1 $\mu g/Kg$ 1,1,1,2-Tetrachloroethane $\mu \mathrm{g}/\mathrm{Kg}$ < 500 500 1 Ethylbenzene 5820 $\mu g/Kg$ 500 1 m,p-Xylene 8770 $\mu g/Kg$ 500 1 Bromoform < 500 $\mu g/Kg$ 500 1 Styrene < 500 500 $\mu g/Kg$ 1 -Xylene 4070 500 $\mu g/Kg$ 1 1,1,2,2-Tetrachloroethane < 500 $\mu g/Kg$ 500 1 2-Chlorotoluene < 500 $\mu g/Kg$ 500 1

CH2100

Order Number: A02100208 Champion Tech Page Number: 7 of 26 Hobbs,NM

Param Flag	Result	Units	Dilution	\mathtt{RDL}
1,2,3-Trichloropropane	<500	$\mu { m g/Kg}$	500	1
Isopropylbenzene	2030	$\mu { m g}/{ m Kg}$	500	1
Bromobenzene	< 500	$\mu { m g}/{ m Kg}$	500	1
n-Propylbenzene	3830	$\mu { m g}/{ m Kg}$	500	1
1,3,5-Trimethylbenzene	5240	$\mu { m g}/{ m Kg}$	500	1
tert-Butylbenzene	< 500	$\mu { m g}/{ m Kg}$	500	1
1,2,4-Trimethylbenzene	12100	$\mu { m g}/{ m Kg}$	500	1
1,4-Dichlorobenzene (para)	< 500	$\mu { m g}/{ m Kg}$	500	1
sec-Butylbenzene	963	$\mu { m g}/{ m Kg}$	500	1
1,3-Dichlorobenzene (meta)	< 500	$\mu { m g}/{ m Kg}$	500	1
p-Isopropyltoluene	1510	$\mu { m g}/{ m Kg}$	500	1
4-Chlorotoluene	< 500	$\mu { m g}/{ m Kg}$	500	1
1,2-Dichlorobenzene (ortho)	< 500	$\mu { m g}/{ m Kg}$	500	1
n-Butylbenzene	1380	$\mu { m g}/{ m Kg}$	500	1
1,2-Dibromo-3-chloropropane	<2500	$\mu { m g}/{ m Kg}$	500	5
1,2,3-Trichlorobenzene	<2500	$\mu { m g}/{ m Kg}$	500	5
1,2,4-Trichlorobenzene	<2500	$\mu { m g}/{ m Kg}$	500	5
Naphthalene	27500	$\mu { m g}/{ m Kg}$	500	5
Hexachlorobutadiene	<2500	$\mu { m g}/{ m Kg}$	500	5

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Pibromofluoromethane		47.9	μg/Kg	1	50	95	70 - 130
oluene-d8		49.1	$\mu { m g}/{ m Kg}$	1	50	98	70 - 130
4-Bromofluorobenzene		51.0	$\mu { m g}/{ m Kg}$	1	50	102	70 - 130

Sample: 209426 - SB-58 25'

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23913 Date Analyzed: 10/2/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22346 Date Prepared: 10/2/02

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		0.0109	mg/Kg	10	0.001
Total BTEX		0.0109	mg/Kg	10	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
TFT		0.863	mg/Kg	10	1	86	70 - 130
4-BFB		0.820	mg/Kg	200	1	82	70 - 130

Sample: 209426 - SB-58 25'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24159 Date Analyzed: 10/14/02 nalyst: JSW Preparation Method: N/A Prep Batch: PB22542 Date Prepared: 10/14/02

Order Number: A02100208 Champion Tech Page Number: 8 of 26 Hobbs,NM

Param	Flag	Result	Units	Dilution	RDL
Chloride		562	mg/Kg	50	1

Sample: 209426 - SB-58 25'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC23978 Date Analyzed: 10/7/02 Analyst: WG Preparation Method: N/A Prep Batch: PB22404 Date Prepared: 10/7/02

ParamFlagResultUnitsDilutionRDLTRPHC37.1mg/Kg110

Sample: 209426 - SB-58 25'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24071 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Units Dilution RDL Param Flag Result mg/Kg 100 Total Arsenic < 5.00 0.05 Total Chromium 3.62 mg/Kg 100 0.01 <1.00 Total Lead mg/Kg 100 0.01

Sample: 209428 - SB-49 5'

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23913 Date Analyzed: 10/2/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22346 Date Prepared: 10/2/02

Param	Flag	Result	Units	Dilution	RDL
MTBE		< 0.010	mg/Kg	10	0.001
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		< 0.010	mg/Kg	10	0.001
Total BTEX		< 0.010	mg/Kg	10	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.824	mg/Kg	10	1	82	70 - 130
4-BFB		0.770	mg/Kg	10	1	77	70 - 130

Sample: 209428 - SB-49 5'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24019 Date Analyzed: 10/8/02 Analyst: JSW Preparation Method: N/A Prep Batch: PB22434 Date Prepared: 10/8/02

Order Number: A02100208

Champion Tech

Page Number: 9 of 26

Hobbs,NM

209428 - SB-49 5' Sample:

Analysis: TPH Analytical Method: Analyst: WG

Preparation Method: N/A

QC Batch: PB22404 Prep Batch:

QC24067

Date Analyzed:

10/3/02

Param TRPHC

Units

Date Prepared:

10/7/02

Flag

Result 27.9

mg/Kg

Dilution 1

RDL 10

209428 - SB-49 5' Sample:

Analysis:

Total Metals

Analytical Method: Preparation Method:

S 6010B

OC Batch:

QC24004

Date Analyzed:

10/8/02

Param Total Arsenic

Analyst:

RR Flag S 3050B

Result

< 5.00

2.51

<1.00

Result

< 0.010

Units

mg/Kg

mg/Kg

E 418.1

Prep Batch:

Units

mg/Kg

mg/Kg

mg/Kg

PB22405

Dilution

100

100

100

Date Prepared:

10/7/02

RDL

0.05

0.01

0.01

Total	Chromium
Total	Lead

209432 - SB-49 40'

Sample: Analysis: Analyst:

BTEX CG

Analytical Method: Preparation Method:

S 8021B S 5035

QC Batch:

Prep Batch:

Units

mg/Kg

10

QC23913 PB22346

Date Analyzed: Date Prepared:

10/2/02 10/2/02

RDL

0.001

0.001

0.001

0.001

0.001

70 - 130

	Param
1	Benzene
	Toluene
	Ethylbenze
	M,P,O-Xyl

loluene	<0.010
Ethylbenzene	< 0.010
M,P,O-Xylene	< 0.010
Total BTEX	< 0.010

Flag

mg/Kg	
mg/Kg	
mg/Kg	
mg/Kg	

	Spike	Percent	Recovery
Dilution	Amount	Recovery	Limits
10	1	84	70 - 130

Dilution

10

10

10

10

10

Sample:

Surrogate

TFT

4-BFB

209432 - SB-49 40'

Analysis:

Ion Chromatography (IC) Analytical Method:

Result

19.7

Result

0.844

0.796

E 300.0 QC Batch:

Dilution

1

1

QC24019 Date Analyzed: 10/8/02

80

Analyst:

JSW

Flag

Preparation Method:

Units

mg/Kg

N/A Prep Batch:

PB22434 Date Prepared: 10/8/02

Param	
Chloride	

209432 - SB-49 40' Sample:

Flag

Analysis: TPH Analyst: WG

Analytical Method:

E 418.1

QC24067

Date Analyzed:

10/3/02

RDL

1

Preparation Method: N/A

QC Batch: Prep Batch: PB22404

Date Prepared:

10/7/02

aram	Flag	Result	Units	Dilution	RDL
TRPHC		<10.0	mg/Kg	1	10

CH2100 Cha

Order Number: A02100208 Champion Tech Page Number: 10 of 26

Hobbs,NM

Sample: 209432 - SB-49 40'

Total Metals Analytical Method: S 6010B QC Batch: QC24071 Date Analyzed: 10/10/02 Analysis: Analyst: Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02 RR.

Param Flag Result Units Dilution RDL Total Arsenic < 5.00 mg/Kg 100 0.05 100 2.71 mg/Kg 0.01 Total Chromium 100 <1.00 mg/Kg 0.01 Total Lead

Sample: 209433 - SB-49 50'

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23913 Date Analyzed: 10/2/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22346 Date Prepared: 10/2/02

Flag Param Result Units Dilution RDL mg/Kg Benzene < 0.010 10 0.001 mg/Kg 10 0.001 Toluene < 0.010 10 Ethylbenzene < 0.010 mg/Kg 0.001 10 M,P,O-Xylene < 0.010 mg/Kg 0.001 mg/Kg 10 0.001 Total BTEX < 0.010

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.870	mg/Kg	10	1	87	70 - 130
4-BFB		0.822	mg/Kg	10	1	82	70 - 130

Sample: 209433 - SB-49 50'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24019 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22434 Date Prepared: 10/8/02

Sample: 209433 - SB-49 50'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC24067 Date Analyzed: 10/3/02 Analyst: WG Preparation Method: N/A Prep Batch: PB22404 Date Prepared: 10/7/02

ParamFlagResultUnitsDilutionRDLTRPHC98.7mg/Kg110

Sample: 209433 - SB-49 50'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24071 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

aram Flag Result Units Dilution RDL Total Arsenic <5.00 mg/Kg 100 0.05 Total Chromium 2.75 mg/Kg 100 0.01

Continued ...

Order Number: A02100208 Champion Tech Page Number: 11 of 26 Hobbs,NM

Continued	Sample: 209433	Analysis: Total Metals			
Param	Flag	Result	Units	Dilution	RDL
Total Lead		<1.00	mg/Kg	100	0.01

Sample: 209437 - SB-57 10'

Analysis:	BTEX	Analytical Method:	S 8021B	QC Batch:	QC23913	Date Analyzed:	10/2/02
Analyst:	CG	Preparation Method:	S 5035	Prep Batch:	PB22346	Date Prepared:	10/2/02

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		< 0.010	mg/Kg	10	0.001
Total BTEX		< 0.010	mg/Kg	10	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT	4	0.654	mg/Kg	10	1	65	70 - 130
4-BFB	5	0.630	mg/Kg	10	1	63	70 - 130

Sample: 209437 - SB-57 10'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24019 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22434 Date Prepared: 10/8/02

Param	Flag	Result	Units	Dilution	RDL
Chloride		536	mg/Kg	50	1

Sample: 209437 - SB-57 10'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC24067 Date Analyzed: 10/3/02 Analyst: WG Preparation Method: N/A Prep Batch: PB22404 Date Prepared: 10/7/02

Param	Flag	Result	Units	Dilution	RDL
TRPHC	_	<10.0	mg/Kg	1	10

Sample: 209437 - SB-57 10'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24071 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Param	Flag	Result	\mathbf{Units}	Dilution	\mathtt{RDL}
Total Arsenic		< 5.00	mg/Kg	100	0.05
Total Chromium		10.3	mg/Kg	100	0.01
Total Lead		9.21	mg/Kg	100	0.01

⁴Surrogate within acceptable limits according to GC2 soil control chart.

Surrogate within acceptable limits according to GC2 soil control chart.

Order Number: A02100208 Champion Tech Page Number: 12 of 26 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23913

				Reporting
Param	Flag	Results	Units	Limit
MTBE		< 0.010	mg/Kg	0.001
Benzene		< 0.010	mg/Kg	0.001
Toluene		< 0.010	${ m mg/Kg}$	0.001
Ethylbenzene		< 0.010	mg/Kg	0.001
M,P,O-Xylene		< 0.010	mg/Kg	0.001
Total BTEX		< 0.010	mg/Kg	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		1.01	mg/Kg	10	1	101	70 - 130
4-BFB		0.902	mg/Kg	10	1	90	70 - 130

Method Blank

QCBatch:

QC23978

				Reporting
Param	Flag	Results	Units	Limit
TRPHC		<10.0	mg/Kg	10

Method Blank

QCBatch:

QC24004

	n 1 m m		Reporting	
Param	Flag	Results	Units	Limit
Total Arsenic		< 0.050	mg/Kg	0.05
Total Chromium		< 0.010	mg/Kg	0.01
Total Lead		< 0.010	mg/Kg	0.01

Method Blank

QCBatch:

QC24018

				Reporting
Param	Flag	Results	${f Units}$	Limit
Chloride		22.74	mg/Kg	1

Method Blank

QCBatch:

				Reporting
Param	Flag	Results	Units	Limit
Chloride		14.03	mg/Kg	1

Order Number: A02100208 Champion Tech

Page Number: 13 of 26 Hobbs,NM

Method Blank

QCBatch:

QC24067

				Reporting
Param	Flag	Results	Units	Limit
TRPHC		<10.0	mg/Kg	10

Method Blank

QCBatch:

QC24071

				Reporting
Param	Flag	Results	Units	Limit
Total Arsenic		< 0.050	mg/Kg	0.05
Total Chromium		< 0.010	mg/Kg	0.01
Total Lead		< 0.010	mg/Kg	0.01
Total Silver		< 0.002	mg/Kg	0.002

Method Blank

QCBatch:

QC24104

_				Reporting
Param	Flag	Results	Units	Limit
Bromochloromethane		<10.0	$\mu { m g}/{ m Kg}$	1
Dichlorodifluoromethane		<10.0	$\mu {\sf g}/{\sf K}{\sf g}$	1
Chloromethane (methyl chloride)		<10.0	$\mu { m g}/{ m Kg}$	1
Vinyl Chloride		<10.0	$\mu { m g}/{ m Kg}$	1
Bromomethane (methyl bromide)		< 50.0	$\mu { m g}/{ m Kg}$	5
Chloroethane		<10.0	$\mu { m g}/{ m Kg}$	1
Trichlorofluoromethane		<10.0	$\mu { m g}/{ m Kg}$	1
Acetone		<100	$\mu { m g}/{ m Kg}$	10
Iodomethane (methyl iodide)		< 50.0	$\mu { m g}/{ m Kg}$	5
Carbon Disulfide		<10.0	$\mu { m g}/{ m Kg}$	1
Acrylonitrile		<10.0	$\mu { m g}/{ m Kg}$	1
2-Butanone (MEK)		< 50.0	$\mu_{ m g}/{ m Kg}$	5
4-methyl-2-pentanone (MIBK)		< 50.0	$\mu { m g}/{ m Kg}$	5
2-hexanone		< 50.0	$\mu { m g}/{ m Kg}$	5
trans 1,4-Dichloro-2-butene		<100	$\mu { m g}/{ m Kg}$	10
1,1-Dichloroethene		<10.0	$\mu { m g}/{ m Kg}$	1
Methylene chloride		< 50.0	$\mu { m g}/{ m Kg}$	5
MTBE		<10.0	$\mu { m g}/{ m Kg}$	1
trans-1,2-Dichloroethene		<10.0	$\mu { m g}/{ m Kg}$	1
1,1-Dichloroethane		<10.0	$\mu { m g}/{ m Kg}$	1
cis-1,2-Dichloroethene		<10.0	$\mu { m g}/{ m Kg}$	1
2,2-Dichloropropane		<10.0	$\mu { m g}/{ m Kg}$	1
1,2-Dichloroethane (EDC)		<10.0	$\mu { m g}/{ m Kg}$	1
Chloroform		<10.0	$\mu { m g}/{ m Kg}$	1
1,1,1-Trichloroethane		<10.0	$\mu { m g}/{ m Kg}$	1
1,1-Dichloropropene		<10.0	$\mu_{ m g}/{ m Kg}$	1
Benzene		<10.0	$\mu { m g}/{ m Kg}$	1
Carbon Tetrachloride		<10.0	$\mu { m g}/{ m Kg}$	1
1,2-Dichloropropane		<10.0	$\mu_{ m g}/{ m Kg}$	1
richloroethene (TCE)		<10.0	$\mu { m g}/{ m Kg}$	1
Dibromomethane (methylene bromide)		<10.0	$\mu { m g/Kg}$	1
Bromodichloromethane		<10.0	$\mu \mathrm{g}/\mathrm{Kg}$	1
		720.0	r-0/0	Continued

Continued ...

Order Number: A02100208 Champion Tech Page Number: 14 of 26 Hobbs,NM

	Continued	

				Reporting
Param	Flag	Results	Units	Limit
2-Chloroethyl vinyl ether		<50.0	μg/Kg	5
cis-1,3-Dichloropropene		<10.0	$\mu { m g}/{ m Kg}$	1
trans-1,3-Dichloropropene		<10.0	$\mu { m g}/{ m Kg}$	1
Toluene		<10.0	$\mu { m g}/{ m K}{ m g}$	1
1,1,2-Trichloroethane		<10.0	$\mu { m g}/{ m Kg}$	1
1,3-Dichloropropane		<10.0	$\mu { m g}/{ m Kg}$	1
Dibromochloromethane		<10.0	$\mu { m g}/{ m Kg}$	1
1,2-Dibromoethane (EDB)		<10.0	$\mu { m g}/{ m Kg}$	1
Tetrachloroethene (PCE)		<10.0	$\mu { m g}/{ m Kg}$	1
Chlorobenzene		<10.0	$\mu { m g}/{ m Kg}$	1
1,1,1,2-Tetrachloroethane		<10.0	$\mu { m g}/{ m Kg}$	1
Ethylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
m,p-Xylene		<10.0	$\mu { m g}/{ m Kg}$	1
Bromoform		<10.0	$\mu { m g}/{ m Kg}$	1
Styrene		<10.0	$\mu { m g}/{ m Kg}$	1
o-Xylene		<10.0	$\mu { m g}/{ m Kg}$	1
1,1,2,2-Tetrachloroethane		<10.0	$\mu { m g}/{ m Kg}$	1
2-Chlorotoluene		<10.0	$\mu { m g}/{ m Kg}$	1
1,2,3-Trichloropropane		<10.0	$\mu { m g}/{ m Kg}$	1
Isopropylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
Bromobenzene		<10.0	$\mu { m g}/{ m Kg}$	1
n-Propylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
1,3,5-Trimethylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
ert-Butylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
1,2,4-Trimethylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
1,4-Dichlorobenzene (para)		<10.0	$\mu { m g}/{ m Kg}$	1 .
sec-Butylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
1,3-Dichlorobenzene (meta)		<10.0	$\mu { m g}/{ m Kg}$	1
p-Isopropyltoluene		<10.0	$\mu { m g}/{ m Kg}$	1
4-Chlorotoluene		<10.0	$\mu { m g}/{ m Kg}$	1
1,2-Dichlorobenzene (ortho)		<10.0	$\mu { m g}/{ m Kg}$	1
n-Butylbenzene		<10.0	$\mu { m g}/{ m Kg}$	1
1,2-Dibromo-3-chloropropane		< 50.0	$\mu { m g}/{ m Kg}$	5
1,2,3-Trichlorobenzene		< 50.0	$\mu { m g}/{ m Kg}$	5
1,2,4-Trichlorobenzene		< 50.0	$\mu { m g}/{ m Kg}$	5
Naphthalene		< 50.0	$\mu { m g}/{ m Kg}$	5
Hexachlorobutadiene		< 50.0	$\mu { m g/Kg}$	5

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Dibromofluoromethane		37.8	$\mu { m g/Kg}$	1	50	76	70 - 130
Toluene-d8		49.2	$\mu { m g}/{ m Kg}$	1	50	98	70 - 130
4-Bromofluorobenzene		48.5	$\mu { m g}/{ m Kg}$	1	50	97	70 - 130

Method Blank

QCBatch:

	771	5 . 1.	A.	Reporting
Param	Flag	Results	Units	Limit
Pyridine		< 0.25	${ m mg/Kg}$	0.25

Order Number: A02100208 Champion Tech Page Number: 15 of 26 Hobbs,NM

\dots Continued

Param	Flag	Results	Units	Reporting Limit
n-Nitrosodimethylamine		< 0.25	mg/Kg	0.25
2-Picoline		< 0.25	mg/Kg	0.25
Methyl methanesulfonate		< 0.25	mg/Kg	0.25
Ethyl methanesulfonate		< 0.25	mg/Kg	0.25
Phenol		< 0.25	mg/Kg	0.25
Aniline		< 0.25	mg/Kg	0.25
bis (2-chloroethyl) ether		< 0.25	mg/Kg	0.25
2-Chlorophenol		< 0.25	mg/Kg	0.25
1,3-Dichlorobenzene (meta)		< 0.25	mg/Kg	0.25
1,4-Dichlorobenzene		< 0.25	mg/Kg	0.25
Benzyl alcohol		< 0.25	mg/Kg	0.25
1,2-Dichlorobenzene		< 0.25	mg/Kg	0.25
2-Methylphenol		< 0.25	mg/Kg	0.25
bis (2-chloroisopropyl) ether		< 0.25	mg/Kg	0.25
4-Methylphenol/3-Methylphenol		< 0.25	mg/Kg	0.25
Acetophenone		< 0.25	mg/Kg	0.25
n-Nitrosodi-n-propylamine		< 0.25	mg/Kg	0.25
Hexachloroethane		< 0.25	mg/Kg	0.25
Nitrobenzene		< 0.25	mg/Kg	0.25
n-Nitrosopiperidine		< 0.25	mg/Kg	0.25
Isophorone		< 0.25	mg/Kg	0.25
2-Nitrophenol		< 0.25	mg/Kg	0.25
2,4-Dimethylphenol		< 0.25	mg/Kg	0.25
is (2-chloroethoxy) methane		< 0.25	mg/Kg	0.25
Benzoic acid		<0.25	mg/Kg	0.25
2,4-Dichlorophenol		<0.25	mg/Kg	0.25
1,2,4-Trichlorobenzene		<0.25	mg/Kg	0.25
a,a-Dimethylphenethylamine		<0.25	mg/Kg	0.25
Naphthalene		<0.25	mg/Kg	0.25
4-Chloroaniline		<0.25	mg/Kg	0.25
2,6-Dichlorophenol		<0.25	mg/Kg	0.25
Hexachlorobutadiene		<0.25	mg/Kg	0.25
n-Nitroso-di-n-butylamine		<0.25		0.25
4-Chloro-3-methylphenol		<0.25	mg/Kg	
1-Methylnaphthalene		< 0.25	mg/Kg	0.25
2-Methylnaphthalene		<0.25	mg/Kg	0.25
1,2,4,5-Tetrachlorobenzene		<0.25 <0.25	mg/Kg	0.25
		100	mg/Kg	0.25
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol		< 0.25	mg/Kg	0.25
•		< 0.25	mg/Kg	0.25
2,4,5-Trichlorophenol		<0.25	mg/Kg	0.25
2-Chloronaphthalene		< 0.25	mg/Kg	0.25
1-Chloronaphthalene		<0.25	mg/Kg	0.25
2-Nitroaniline		< 0.25	mg/Kg	0.25
Dimethylphthalate		< 0.25	mg/Kg	0.25
Acenaphthylene		<0.25	mg/Kg	0.25
2,6-Dinitrotoluene		<0.25	mg/Kg	0.25
3-Nitroaniline		< 0.25	mg/Kg	0.25
Acenaphthene		< 0.25	mg/Kg	0.25
2,4-Dinitrophenol		< 0.25	mg/Kg	0.25
ibenzofuran		< 0.25	mg/Kg	0.25
Pentachlorobenzene		< 0.25	mg/Kg	0.25
4-Nitrophenol		< 0.25	mg/Kg	0.25

Continued ...

Order Number: A02100208 Champion Tech Page Number: 16 of 26 Hobbs,NM

\dots Continued

				Reporting
Param	Flag	Results	Units	Limit
1-Naphthylamine		< 0.25	mg/Kg	0.25
2,4-Dinitrotoluene		< 0.25	${ m mg/Kg}$	0.25
2-Naphthylamine		< 0.25	${ m mg/Kg}$	0.25
2,3,4,6-Tetrachlorophenol		< 0.25	mg/Kg	0.25
Fluorene		< 0.25	mg/Kg	0.25
Diethylphthalate		< 0.25	${ m mg/Kg}$	0.25
4-Chlorophenyl-phenylether		< 0.25	mg/Kg	0.25
4-Nitroaniline		< 0.25	${ m mg/Kg}$	0.25
4,6-Dinitro-2-methylphenol		< 0.25	mg/Kg	0.25
Diphenylamine		< 0.25	mg/Kg	0.25
Diphenylhydrazine		< 0.25	mg/Kg	0.25
4-Bromophenyl-phenylether		< 0.25	mg/Kg	0.25
Phenacetin		< 0.25	mg/Kg	0.25
Hexachlorobenzene		< 0.25	mg/Kg	0.25
4-Aminobiphenyl		< 0.25	mg/Kg	0.25
Pentachlorophenol		< 0.25	mg/Kg	0.25
Pentachloronitrobenzene		< 0.25	mg/Kg	0.25
Pronamide		< 0.25	mg/Kg	0.25
Phenanthrene		< 0.25	mg/Kg	0.25
Anthracene		< 0.25	mg/Kg	0.25
Di-n-butylphthalate		< 0.25	mg/Kg	0.25
Fluoranthene		< 0.25	mg/Kg	0.25
Benzidine		< 0.25	mg/Kg	0.25
Pyrene		< 0.25	mg/Kg	0.25
p-Dimethylaminoazobenzene		< 0.25	mg/Kg	0.25
Butylbenzylphthalate		< 0.25	mg/Kg	0.25
Benzo(a)anthracene		< 0.25	mg/Kg	0.25
3,3-Dichlorobenzidine		< 0.25	mg/Kg	0.25
Chrysene		< 0.25	mg/Kg	0.25
Bis (2-ethylhexyl) phthalate		< 0.25	mg/Kg	0.25
Di-n-octylphthalate		< 0.25	mg/Kg	0.25
Benzo(b)fluoranthene		< 0.25	mg/Kg	0.25
7,12-Dimethylbenz(a)anthracene		< 0.25	mg/Kg	0.25
Benzo(k)fluoranthene		< 0.25	mg/Kg	0.25
Benzo(a)pyrene		< 0.25	mg/Kg	0.25
3-Methylcholanthrene		< 0.25	mg/Kg	0.25
Dibenzo(a,j)acridine		< 0.25	mg/Kg	0.25
Indeno(1,2,3-cd)pyrene		< 0.25	mg/Kg	0.25
Dibenzo(a,h)anthracene		< 0.25	mg/Kg	0.25
Benzo(g,h,i)perylene		< 0.25	mg/Kg	0.25

					Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	\mathbf{Units}	Dilution	${f Amount}$	Recovery	Limits
2-Fluorophenol		50.01	mg/Kg	1	80	62	25 - 121
Phenol-d5		58.72	mg/Kg	1	80	73	24 - 113
Nitrobenzene-d5		67.11	mg/Kg	1	80	83	23 - 120
2-Fluorobiphenyl		57.36	mg/Kg	1	80	71	30 - 115
2,4,6-Tribromophenol		63.08	mg/Kg	1	80	78	19 - 122
Ferphenyl-d14		59.76	mg/Kg	1	80	74	28 - 137

CH2100

Order Number: A02100208 Champion Tech Page Number: 17 of 26

Hobbs,NM

Method Blank

QCBatch:

QC24159

				Reporting
Param	Flag	Results	Units	Limit
Chloride		18.03	mg/Kg	1

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23913

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
MTBE	0.909	0.927	mg/Kg	10	1	< 0.010	90	1	70 - 130	20
Benzene	0.958	0.956	mg/Kg	10	1	< 0.010	95	0	70 - 130	20
Toluene	0.966	0.961	mg/Kg	10	1	< 0.010	96	0	70 - 130	20
Ethylbenzene	0.972	0.968	mg/Kg	10	1	< 0.010	97	0	70 - 130	20
M,P,O-Xylene	2.85	2.83	mg/Kg	10	3	< 0.010	95	0	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
FT	0.991	0.974	mg/Kg	10	1	99	97	70 - 130
4-BFB	0.930	0.935	mg/Kg	10	1	93	93	70 - 130

Laboratory Control Spikes

QCBatch:

QC23978

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	235	238	mg/Kg	1	250	<10.0	94	1	74 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Total Arsenic	60.2	57.4	mg/Kg	100	50	< 0.050	120	4	75 - 125	20
Total Barium	100	102	mg/Kg	100	100	< 0.100	100	1	75 - 125	20
Total Cadmium	24.5	25.0	mg/Kg	100	25	< 0.005	98	2	75 - 125	20
Total Chromium	10.3	10.5	mg/Kg	100	10	< 0.010	103	1	75 - 125	20
Total Lead	48.6	49.7	mg/Kg	100	50	< 0.010	97	2	75 - 125	20
Total Selenium	41.0	40.6	mg/Kg	100	50	< 0.010	82	0	75 - 125	20
Total Silver	12.1	12.3	mg/Kg	100	12.50	< 0.002	96	11	75 - 125	20

Order Number: A02100208 Champion Tech Page Number: 18 of 26 Hobbs,NM

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	6 34.61	7 34.68	mg/Kg	1	12.50	22.74	276	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24019

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	8 25.70	⁹ 25.75	mg/Kg	1	12.50	14.03	205	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24067

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	235	238	mg/Kg	1	250	<10.0	94	1	74 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24071

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Total Arsenic	44.4	43.5	mg/Kg	100	50	< 0.050	88	2	75 - 125	20
Total Chromium	10.4	10.3	mg/Kg	100	10	< 0.010	104	0	75 - 125	20
Total Lead	49.3	49.6	mg/Kg	100	50	< 0.010	98	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24104

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
1,1-Dichloroethene	¹⁰ 1050	1180	$\mu { m g/Kg}$	1	2500	<10.0	42	11	70 - 130	20
Benzene	2320	2400	$\mu { m g}/{ m Kg}$	1	2500	<10.0	92	3	70 - 130	20
Trichloroethene (TCE)	2370	2450	$\mu { m g}/{ m Kg}$	1	2500	<10.0	94	3	70 - 130	20
Toluene	2270	2320	$\mu { m g}/{ m Kg}$	1	2500	<10.0	90	2	70 - 130	20
Chlorobenzene	2380	2490	$\mu { m g}/{ m Kg}$	1	2500	<10.0	95	4	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

 $^{^6\}mathrm{Blank}$ soil should be subtracted from the sample. $\%\mathrm{IA} = 95$ and RPD = 0.

 $^{^{7}}$ Blank soil should be subtracted from the sample. %IA = 95 and RPD = 0.

 $^{^8}$ Blank soil should be subtracted from the sample. %IA = 93 and RPD = 0.

⁹Blank soil should be subtracted from the sample. %IA = 93 and RPD = 0.

¹⁰low spike recovery due to prep procedure.

CH2100

Order Number: A02100208

Champion Tech

Page Number: 19 of 26

Hobbs,NM

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
Dibromofluoromethane	35.6	38.4	μg/Kg	1	50	71	77	70 - 130
Toluene-d8	48.1	48.1	$\mu \mathrm{g}/\mathrm{Kg}$	1	50	96	96	70 - 130
1-Bromofluorobenzene	49.2	48.1	$\mu { m g}/{ m Kg}$	1	50	98	96	70 - 130

Laboratory Control Spikes

QCBatch:

QC24151

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Phenol	69.22	70.7	mg/Kg	1	80	< 0.25	86	2	29 - 170	20
2-Chlorophenol	71.01	72.00	mg/Kg	1	80	< 0.25	88	1	30 - 68	20
1,4-Dichlorobenzene	69.04	69.65	mg/Kg	1	80	< 0.25	86	0	32 - 62	20
n-Nitrosodi-n-propylamine	68.26	69.67	mg/Kg	1	80	< 0.25	85	2	28 - 77	20
1,2,4-Trichlorobenzene	67.54	68.36	mg/Kg	1	80	< 0.25	84	1	32 - 65	20
4-Chloro-3-methylphenol	67.12	68.06	mg/Kg	1	80	< 0.25	83	1	27 - 81	20
Acenaphthene	71.89	72.68	mg/Kg	1	80	< 0.25	89	1	40 - 73	20
4-Nitrophenol	19.57	19.47	mg/Kg	1	80	< 0.25	24	0	0 - 127	20
2,4-Dinitrotoluene	102.12	108.61	mg/Kg	1	80	< 0.25	127	6	27 - 96	20
Pentachlorophenol	36.08	39.78	mg/Kg	1	80	< 0.25	45	9	0 - 100	20
Pyrene	53.56	55.26	mg/Kg	1	80	< 0.25	66	3	16 - 101	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
2-Fluorophenol	68.97	69.12	mg/Kg	1	80	86	86	25 - 121
Phenol-d5	82.12	78.26	mg/Kg	1	80	102	97	24 - 113
Nitrobenzene-d5	95.3	96.61	mg/Kg	1	80	119	120	23 - 120
2-Fluorobiphenyl	77.25	77.53	mg/Kg	1	80	96	96	30 - 115
2,4,6-Tribromophenol	67.62	70.41	mg/Kg	1	80	84	88	19 - 122
Terphenyl-d14	57.51	59.74	mg/Kg	1	80	71	74	28 - 137

Laboratory Control Spikes

QCBatch:

QC24159

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	11 30.25	¹² 30.34	mg/Kg	1	12.50	18.03	242	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

 $^{^{11}\}text{Blank}$ spikes should be subtracted from this sample. %EA = 98 and RPD = 0.

 $^{^{12}\}mbox{Blank}$ spikes should be subtracted from this sample. %EA = 98 and RPD = 0.

CH2100

Order Number: A02100208 Champion Tech Page Number: 20 of 26 Hobbs,NM

				1	Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
MTBE	13 0.694	¹⁴ 0.67	mg/Kg	10	1	< 0.010	69	3	70 - 130	20
Benzene	0.802	0.793	mg/Kg	10	1	< 0.010	80	1	70 - 130	20
Toluene	0.816	0.808	mg/Kg	10	1	< 0.010	81	0	70 - 130	20
Ethylbenzene	0.842	0.839	mg/Kg	10	1	< 0.010	84	0	70 - 130	20
M,P,O-Xylene	2.45	2.45	mg/Kg	10	3	< 0.010	81	0	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	MSD Result	Units	Dilution	Spike Amount	MS % Rec	MSD % Rec	Recovery Limits
TFT	0.844	0.81	mg/Kg	10	1	84	81	70 - 130
4-BFB	0.804	0.79	mg/Kg	10	1	80	79	70 - 130

Matrix Spikes

QCBatch:

QC23978

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
TRPHC	219	224	mg/Kg	1	250	<10.0	87	2	70 - 130	20

ercent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24004

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
Total Arsenic	76.3	79.7	mg/Kg	100	50	14.1	124	5	75 - 125	20
Total Chromium	21.2	21.9	mg/Kg	100	10	10.4	107	6	75 - 125	20
Total Lead	59.6	60.0	mg/Kg	100	50	10.1	99	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24018

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	25000	25000	mg/Kg	1	12500	13100	95	0	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

¹³Spike recovery outside limits but within control charts for BTEX GC2.

¹⁴Spike recovery outside limits but within control charts for BTEX GC2.

Order Number: A02100208 Champion Tech Page Number: 21 of 26 Hobbs,NM

Spike MS MSD Matrix % Rec RPD Amount Result % Rec RPD Limit Result Result Units Dil. Added Limit Param 536 Chloride 1130 1130 mg/Kg 625 95 0 35 - 144 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24067

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	283	286	mg/Kg	1	250	63	88	1	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24071

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	49.3	50.0	mg/Kg	100	50	6.43	85	1	75 - 125	20
Total Chromium	21.6	21.0	mg/Kg	100	10	9.56	120	5	75 - 125	20
Total Lead	61.8	60.5	mg/Kg	100	50	10.0	103	2	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24159

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
Chloride	10100	10120	mg/Kg	1	6250	4130	95	0	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.0921	92	85 - 115	10/2/02
Benzene		mg/L	0.10	0.0947	95	85 - 115	10/2/02
Toluene		mg/L	0.10	0.0947	95	85 - 115	10/2/02
Ethylbenzene		mg/L	0.10	0.0958	96	85 - 115	10/2/02
M,P,O-Xylene		mg/L	0.30	0.282	94	85 - 115	10/2/02

CH2100

Order Number: A02100208 Champion Tech Page Number: 22 of 26

Hobbs,NM

CCV (2)

QCBatch:

QC23913

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.088	88	85 - 115	10/2/02
Benzene		mg/L	0.10	0.092	92	85 - 115	10/2/02
Toluene		mg/L	0.10	0.092	92	85 - 115	10/2/02
Ethylbenzene		$_{ m mg/L}$	0.10	0.092	92	85 - 115	10/2/02
M,P,O-Xylene		mg/L	0.30	0.267	89	85 - 115	10/2/02

ICV (1)

QCBatch:

QC23913

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0932	93	85 - 115	10/2/02
Benzene		$_{ m mg/L}$	0.10	0.0957	96	85 - 115	10/2/02
Toluene		mg/L	0.10	0.0965	96	85 - 115	10/2/02
Ethylbenzene		mg/L	0.10	0.0973	97	85 - 115	10/2/02
M,P,O-Xylene		mg/L	0.30	0.286	95	85 - 115	10/2/02

CCV (1)

QCBatch:

QC23978

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/L	100	93.3	93	80 - 120	10/7/02

CCV (2)

QCBatch:

QC23978

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/L	100	92.9	92	80 - 120	10/7/02

ICV (1)

QCBatch:

QC23978

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		${ m mg/L}$	100	93.6	93	80 - 120	10/7/02

CCV (1)

QCBatch:

Order Number: A02100208 Champion Tech Page Number: 23 of 26

mg/L

12.50

11.82

94

90 - 110

10/8/02

hloride

Hobbs,NM

CH2100		Champion Tech								
Param	ন	lag Un	CCV True	e Found	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed			
Total Arsenic	T.	mg		1.09	109	90 - 110	10/8/02			
Total Chromiur	n	mg			102	90 - 110	10/8/02			
Total Lead		mg	•	1.00	100	90 - 110	10/8/02			
ICV (1)	QC	Batch: Q	C24004							
			CCV	s CCVs	CCVs	Percent				
			True	e Found	Percent	Recovery	Date			
Param	F	lag Un	its Conc	c. Conc.	Recovery	Limits	Analyzed			
Total Arsenic		mg	/L 1	1.05	105	95 - 105	10/8/02			
Total Chromiur	n	mg			100	95 - 105	10/8/02			
Total Lead		mg		1.01	101	95 - 105	10/8/02			
CCV (1)	Q	CBatch: (QC24018 CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date			
Daram	Tilor	Units	Conc.			Limits				
Param Thloride	Flag	mg/L	12.50	Conc. 11.84	Recovery 94	90 - 110	Analyzed 10/8/02			
ICV (1)	QC	Batch: Q	C24018							
			CCVs	CCVs	CCVs	Percent				
			True	Found	Percent	Recovery	Date			
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed			
Chloride		${ m mg/L}$	12.50	11.76	94	90 - 110	10/8/02			
CCV (1)	0	CD-Astro	VC04010							
CCV (1)	Q	CBatch: C	QC24019							
			CCVs	CCVs	CCVs	Percent				
_			True	Found	Percent	Recovery	Date			
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed			
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02			
ICV (1)	QC	Batch: Q	C24019							
			CCVs	CCVs	CCVs	Percent				
			True	Found	Percent	Recovery	Date			
aram	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed			
hlorida		ma/I	12.50	11.89	0.4	00 110	10/8/02			

Order Number: A02100208 Champion Tech

Page Number: 24 of 26 Hobbs,NM

CCV (1)

QCBatch:

QC2406	7

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		$_{ m mg/L}$	100	92.9	92	80 - 120	10/3/02

CCV (2)

QCBatch:

QC24067

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/L	100	93.2	93	80 - 120	10/3/02

ICV (1)

QCBatch:

QC24067

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/L	100	93.3	93	80 - 120	10/3/02

CCV (1)

QCBatch:

QC24071

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/L	1	0.983	98	90 - 110	10/10/02
Total Chromium		mg/L	0.20	0.202	101	90 - 110	10/10/02
Total Lead		mg/L	1	0.994	99	90 - 110	10/10/02

ICV (1)

QCBatch:

QC24071

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/L	1	1.01	101	95 - 105	10/10/02
Total Chromium		mg/L	0.20	0.201	100	95 - 105	10/10/02
Total Lead		mg/L	1	0.988	99	95 - 105	10/10/02

CCV (1)

QCBatch:

CH2100

Order Number: A02100208 Champion Tech Page Number: 25 of 26 Hobbs,NM

\dots Continued							
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Vinyl Chloride		$\mu { m g/L}$	50	48.0	96	80 - 120	10/10/02
1,1-Dichloroethene		$\mu { m g}/{ m L}$. 50	50.0	100	80 - 120	10/10/02
Chloroform		$\mu { m g}/{ m L}$	50	51.0	102	80 - 120	10/10/02
1,2-Dichloropropane		$\mu { m g}/{ m L}$	50	52.0	104	80 - 120	10/10/02
Toluene		$\mu { m g}/{ m L}$	50	52.0	104	80 - 120	10/10/02
Chlorobenzene		$\mu { m g}/{ m L}$	50	53.0	106	80 - 120	10/10/02
Ethylbenzene		$\mu { m g}/{ m L}$	50	54.0	108	80 - 120	10/10/02
Dibromofluoromethane		$\mu { m g}/{ m L}$	50	46.2	92	80 - 120	10/10/02
Toluene-d8		$\mu { m g}/{ m L}$	50	48.0	96	80 - 120	10/10/02
4-Bromofluorobenzene		$\mu { m g}/{ m L}$	50	49.5	99	80 - 120	10/10/02

CCV (1)

QCBatch:

QC24151

			CCVs	CCVs	CCVs	Percent	
_			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Phenol		mg/L	60	62.36	103	80 - 120	10/14/02
1,4-Dichlorobenzene		${ m mg/L}$	60	59.74	99	80 - 120	10/14/02
2-Nitrophenol		${ m mg/L}$	60	70.37	117	80 - 120	10/14/02
2,4-Dichlorophenol		${ m mg/L}$	60	60.78	101	80 - 120	10/14/02
Hexachlorobutadiene		${ m mg/L}$	60	56.33	93	80 - 120	10/14/02
4-Chloro-3-methylphenol		${ m mg/L}$	60	53.71	89	80 - 120	10/14/02
2,4,6-Trichlorophenol	•	mg/L	60	62.29	103	80 - 120	10/14/02
Acenaphthene		${ m mg/L}$	60	59.8	99	80 - 120	10/14/02
Diphenylamine		mg/L	60	62.41	104	80 - 120	10/14/02
Pentachlorophenol		mg/L	60	61.59	102	80 - 120	10/14/02
Fluoranthene		mg/L	60	60.7	101	80 - 120	10/14/02
Di-n-octylphthalate		mg/L	60	64.08	106	80 - 120	10/14/02
Benzo(a)pyrene		mg/L	60	58.66	97	80 - 120	10/14/02
2-Fluorophenol		mg/L	60	63.04	105	80 - 120	10/14/02
Phenol-d5		mg/L	60	62.22	103	80 - 120	10/14/02
Nitrobenzene-d5		mg/L	60	58.28	97	80 - 120	10/14/02
2-Fluorobiphenyl		mg/L	60	62.43	104	80 - 120	10/14/02
2,4,6-Tribromophenol		mg/L	60	60.15	100	80 - 120	10/14/02
Terphenyl-d14		mg/L	60	48.29	80	80 - 120	10/14/02

CCV (1)

QCBatch:

Chloride		mg/L	12.50	12.30	98	90 - 110	10/14/02
aram	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
			True	Found	Percent	Recovery	Date
			CCVs	CCVs	CCVs	Percent	

Order Number: A02100208 Champion Tech Page Number: 26 of 26

Hobbs,NM

ICV (1)

QCBatch:

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	12.24	97	90 - 110	10/14/02

6701 Aberdeen Je, Ste. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

TraceAnalysis, Inc.

5 McCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 CHAIN-OF-CUSTODY AND ANALYSIS ALQUEST

LAB Order ID# ADQIDDADK

1 (000) 370-1230	1 (888) 588-3443												
Company Name:	Phone #915 \$522-1139	ANALYSIS REQUEST (Circle or Specify Method No.)											
Address: (Street, City, Zip)	Fax #(915) 520-4311)												
Contact Person: Todd (hoban	No.	1											
Invoice to: (If different from above)		Se Hg 6010B/200. Se Hg En 12 , 22 a n standard											
Project #: CH2100	Project Name:	Pb Se H											
Project Location: Hobbs Champion Faci	Sampler Signature:	88 Cd Cr Pb 8 Ba Cd Cr Pb 8 Ba Cd Cr Pb 8270C/625 8270C/625 70 1 Ar 5											
l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	MATRIX PRESERVATIVE SAMPLING	005 005 005 3 As Ba (008/624 001.827(01.827(
CONTAINERS CONTAINERS CONTAINERS CONTAINERS		8021B/602 18.0TX1005 18.0TX1005 1270C Aetals Ag As B Metals Ag As B Metals Ag As B Wolatiles Semi Volatiles S Semi Vol. 8260B/6 S Semi Vol. 8260B/6 S Semi Vol. 8260B/6 C S Semi Vol. 8260B/6 S Vol. 8260											
# CONTAINERS # CONTAINERS # WATER WATER	AIR SLUDGE HCI HNO ₃ H ₂ SO ₄ NAOH ICE NONE	MTBE 8021B/602 #FEX 8021B/602 PAH 418. 9TX1005 PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 601 TCLP Metals Ag As Ba Cd Cr Pb Se Hg 601 TCLP Semi Volatiles TCLP Pesticides TCLP Pesticides TCLP Pesticides GC/MS Semi. Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Chrointain idifferent from standard Turn Around Time if different from standard Hold											
209428 SB-49 - 5' 4 402 :	4 9-27 0835												
429 5B-49 - 10' 3/													
430 SB-49-15' 2 (CSYT	المناق مستن الألا الكار مي الكواني الكواني المن من المناز بدور بسر بدور بسر من من المن الكراني الكر											
431 SB-49-20' 11	0854												
Splyg gion		hanna ta											
432 3B-49-40' 2	054												
433 58-49-50 2 /	1015	74											
434 513 - 49 - 57' 1	645												
435 5B-57- 2 4 \	12,5												
436 58 - 57 5 4		xx hold											
43758-57 10' 4 1	1 122												
Refinquished by Date: Time: Received by: 10-01-02 0800 June 1	Date: Time: 2815	LABUSE PLESE run VOC + SUCC on Surrelle withinghost Teltrosult.											
Relinquished by: Date Time: Received by:	Date:) Time:	Intact (Y)/N Thanks											
Just of the state	Welton 10/01/02 1600	Headspace Y / N											
Rélinquished by: Date: Time: Réceived at Labo	My 1 10:2-02 10:00	Temp Check If Special Reporting Limits Are Needed											
Submittal of samples constitutes agreement to Terms and Conditions liste	ORIGINAL COPY	Carrier # 102564 881 3											

	_																												Pag	ge_ <u>-</u>	٥_ب)f	_
6701 Aberd Lubbool	k, Te. 9424														eon,Suite													LYS			UEST		
Fax (8	06) 794-1296 06) 794-1298 0) 378-1296	Trace	A	na	ly	/S]	IS	, J	n	C.	•		Fax ((915) 5	85-3443 85-4944 38-3443					LA	3 Ord	ier IC	#		F)0	Q1	DO:	20	8			-	
Company Na	ime: FOD F	TGIL			-		P	hone	#: (914	5) 1	12	2-	113	G			, ,				NALYSIS REQUEST cle or Specify Method No.)						$\overline{}$	7			
Address:	(Street, City, Zip)	wall	75	2/13	?		F	ax #:							/3/C			i	Į	ا م ا	(C	Circle 	or S	pecif 	y Me	etho 	d No	.)		Ep.	1 1	1	,
Contact Pers	son: Todd	Chob	ar	<u> 70 -</u> 7					<u> </u>	<u></u>	<u>-</u>									B/200.										7			
Invoice to: (If different fr				÷																Se Hg 6010B/200.7	£									111		ndard	
Project #:	CHAIC						Р	rojec	t Nar	ne:			,							Pb Se P	Pb Se									Green.		rom St	5
Project Loca	tion: Hobbs	/Cham	010	n	<u>La</u>	<i>c</i>)`	S	ampl	er Si	gnatu	ire:	Ho	~	_/		·	1			Cd Cr Pb	Ö B G				4 70C/625	2000			V	7		fferent	5
	- 1.4(_)	,	ERS .	į		М	ATRÍ	Z/		PR	ESE ME	RVA THO			SAMP	LING	8	20.5		Total Metals Ag As Ba	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	latiles	Sé		GC/MS Semi Vol 8270C/625	2 a	Pesticides 8081A/608		Nor17065	U T		Turn Around Time if different from standard	:
LAB#	FIEL	D CODE	CONTAINERS	e/Amo	6		با ا	ŭ,									8021B/	2 X	18	stals Ag	letals A	emi Vo	esticide		Vol. 82	082/60	es 808	SS. pH	10 1	NO WILL		Tpuic	· .
(LAB USE) ONLY			W CO	Volume/Amount	WATER	SOIL	ATA C	SLODGE SLODGE	호	E S	H2SO4	NaOH CF	NONE		DATE	TIME	MTBE 8021B/602	BTEX 8021B/602	PAH 8270C	Total Me	TCLP Metals A	TCLP Semi Volatiles	TCLP Pesticides	RCI	SC/MS	PCB's 8082/608	Pesticid	BOD, TSS, pH	13	72		Turn Ar	Hold
209438	5B- 5 9	2'	4	402				I						-	9-30	13/																	X
439	5B-59 5B-59	- 5'	4	3	_			_			_				9-30	1352		<u>`</u>	+-							1	_	_	X	X_	\perp	h	old
4%			/_	1 3			<u> </u>	+			_	-			9-30	405	1-1		\neg		_				_	+	-	_	X	*	11	<u> </u>	20
44)	SB-59-	10	4	14/00	-		-	+		_	+		-		5-30	1318	-	X	-		-	-			+	+	+	+	Y	X	++	<u> </u>	old
78			-		-			+-		\dashv	\dashv	-	-	\vdash				-	╁		\dashv	+			+	-		+	\vdash	\dashv	++	+	+
			1-		-		${\mathsf H}$	\dagger	\vdash		\dashv	+	-						-		\dashv				+	\dagger	╁	+		+	++	十	+
			ļ	ļ	_			_										_			_	_			_	4		-		_	$\perp \perp$		
			-	-	<u> </u>		-	+		\dashv	+		-			 		+	-		\dashv	-		-	+	-	-	+	$\left \cdot \right $	+	\dashv	-	
Relinquished	by:// Dat	e: Time: 0-01-02 0800	Rece	ived b	y:					Date	e:	T	ime:					 	В	US	 F	1	REM	ARK	S:	ـاـ	<u> </u>	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	- ex		<u>、</u>
bron	lleme		4	m	2	<u> </u>	1_		5	U	5-6	2/-	02	48	15			(NC	LY			PI.	eas	æ	C	'لد	~	V	u.		-	PH
Rélinquished	by: Date	e: 0/01/12 Time:	Rece	eixed b	y:Z		H	TT.	<i>-</i> . 10	Date	-	T 2	îme:	1	600)	Inta Hea	ct idspa		∕ N . Y	/ N		\$ \$	LW ESi	201	I R	u	4	h	18	Nost	- 1	PH
Relinquished			1 /	ved at	Lat	orato		ns		Date	⊋:		ime:	So	10-		Tem		£		m	<u>.</u> 2	7				oecial Need		orting	I			
Submittal of	samples constitutes a	agreement to Terms	and C	onditio	ns lis	ited o	n rev	erse :	side o	of C.C	D.C.	13	SA	M	100-1	15	Car	rier #	J		St.	V	8	u	M	_(2	14	35	560	48	<u>"P1</u>	5

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: October 28, 2002Order Number: A02100208

CH2100 Champion Tech Page Number: 1 of 1

Hobbs,NM

Summary Report

Todd Choban

E.T.G.I.

Report Date:

October 28, 2002

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02100208

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs,NM

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209424	SB-58 10'	Soil	9/27/02	10:30	10/2/02

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 209424 - SB-58 10'

Param	Flag	Result	Units
SPLP Chromium		0.230	mg/L
SPLP Lead		0.0885	mg/L

E-Mail: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932

800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443

Report Date:

Order ID Number: A02100208

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

October 28, 2002

Analytical and Quality Control Report

Todd Choban

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

CH2100

Project Number: Project Name:

Champion Tech

Project Location: Hobbs,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209424	SB-58 10'	Soil	9/27/02	10:30	10/2/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Dr. Blair Leftwich, Director

Report Date: October 28, 2002

CH2100

Order Number: A02100208 Champion Tech

Page Number: 2 of 4 Hobbs,NM

Analytical Report

Sample:

209424 - SB-58 10'

Analysis:

SPLP Metals Analytical Method:

S 6010B

QC Batch:

QC24468 Date Analyzed: 10/27/02

Analyst: RR Preparation Method: SPLP 1312 Prep Batch: PB22793

Date Prepared: 10/24/02

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
SPLP Chromium		0.230	mg/L	1	0.005
SPLP Lead		0.0885	${ m mg/L}$	1	0.01

Report Date: October 28, 2002 CH2100 Order Number: A02100208 Champion Tech Page Number: 3 of 4 Hobbs,NM

C

Quality Control Report Method Blank

Method Blank

QCBatch:

QC24468

				Reporting
Param	Flag	Results	\mathbf{Units}	Limit
SPLP Chromium		< 0.005	mg/L	0.005
SPLP Lead		< 0.010	mg/L	0.01

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC24468

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
SPLP Chromium	0.101	0.100	mg/L	1	0.10	< 0.005	101	0	80 - 120	20
SPLP Lead	0.517	0.514	mg/L ·	1	0.50	< 0.010	103	0	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

QC24468

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
SPLP Chromium	0.330	0.334	mg/L	1	0.10	0.230	100	3	75 - 125	20
SPLP Lead	0.590	0.610	mg/L	1	0.50	0.0885	100	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	$_{ m Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
PLP Chromium		mg/L	0.20	0.200	100	90 - 110	10/27/02
SPLP Lead		mg/L	1	0.980	98	90 - 110	10/27/02

Report Date: October 28, 2002 CH2100

Order Number: A02100208 Champion Tech

Page Number: 4 of 4 Hobbs,NM

ICV (1)

QCBatch:

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Chromium		mg/L	0.20	0.198	99	90 - 110	10/27/02
SPLP Lead		$_{ m mg/L}$	1	0.968	96	90 - 110	10/27/02

6701 Aberdeen Ave. 5, Ste. 9 Lubbock, Texas 79424

McCutcheon,Suite H El Paso, Texas 79932

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Fax (806) 794-1296 1 (806) 794-1298 1 (806) 378-1296 1 (806) 378-1296 1 (806) 378-3443 1 (808) 588-3443													LAI	3 Ord	ler IC) # <u>_</u>	A	02/6	00	20	<u> 8</u>			- 7		
ompany Name: EJC	I.			Phone	#: (15	52	2-1	1139	,				` ".				SIS					78			
ddress: (Street, Cit	y, Zip) V. W911	1970	23	Fax #:	19	16)	52	13-4	1310)		I 1	ı	_	(C	ircle	or S	pecif	y Me I	thod 	No.) ⁻	1	Kar	1 1	1	1
ontact Person: Tod	A A) -								<u></u>					Se Hg 6010B/200.7									고 전			
voice to: different from above)	9 1 10 10 10													g 6010	한								1 7 7		ndard	
roject #: CH2	10/7	· · · · · · · · · · · · · · · · · · ·		Projec	t Nam	e:								b Se F	Pb Se								4		Turn Around Time if different from standard	5
roject Location:	s/Champion	n Fac	11:70	Samp	er Sigi	nature:	Ala	<u> </u>	/-	<u></u>				Š	Ö B				8270C/625				1	.	arent f	5
	· · · · · · · · · · · · · · · · · · ·			TRIX		PRES	ERVAT	IVE)	SAMP	LING	8	2	92		As Ba	tiles		000	OB/624		A/608	29	1 - 4		1 1 2	; ; ;
LAB#	FIELD CODE	CONTAINERS				Т			 		8021B/602	218,60	XX S	als Ag	tals Ag	mi Vola	sticides	1	ol. 826 emi. V	82/608	s 8081	6 5	0 m		T Pu	2
AB USE)		CONT	WATER	SLUDGE	亨	H ₂ SO ₄	NaOH ICE	NONE	DATE	TIME	MTBE 8(ETEX 80218/602	PAH 418.17	Total Metals Ag As Ba	TCLP Metals Ag	TCLP Semi Volatiles	TCLP Pesticides	5	GC/MS Semi. Vol. 82700	PCB's 8082/608	Pesticides 8081A/608	70.13	1 4		Tr. Aroi	Hold
79419 SB-57	15	1 401	+	K S	I :	Ē I	z <u>u</u>	Ž	9-27		_	P		<u>P</u>	¥ ¥	1	15	PG 0	5 <u>0</u>	I G	9 9	5	(5)	+	+	X
420 SB-57	25	36	1			+-	1		1/	1300		¥	х.	1-1	7,95				1	+		×	ط	ho	111	11
421 513-57	45'	(3)							15	13215	-	X	χ̈́			1				\top			X	11	\top	
422 58-57	45°	13	1151				1		15	1425	1				1	1							ole	1		V
423 58-58	2.5'	3 (1		930							1			1		\prod			11		X
44 SB-5	8 701	4)					1)		$\overline{}$	1030	_	Ÿ	X.			T		j	XX	7		×	1	11		X
425 SB- 58		171	1 1)				5		12				1		_	1	1		T	+		1		11	+	文
426 SB-8	58 25'	27	15				5		9-30	1405	1	Ϋ́	X	11			1			<u> </u>	廿	×	Ŵ	11	1	X
600		200	200	10			20	96	6-30L			7.	1		\top	1	1			1	十十	1		+++	1	+
427 SB - 5	8 5'	2/ L	3				3		9-30	1018			_		\top	1			1	1	\Box		\prod	11		
		1/1	1 1 1			11								11		T	1		+-	+	一	1	\prod	+	+	7
elinquished by:	Date: 10-01-02 Time: 0800	Received b	7/			Date:	Tii 0-61.	me:	0813	5"	55			US LY			PI.	ARK:	en	นา	VC)C °	⊷ +รง	oc o	ท	
hquished by:	Date: Jime:	Received b		.00	4	Date:		ne:			inta		/Y	`			Sa	n Pl	e v !!	2/ W GJ	ugh ZO:	ust d:	TF スフィ	PH 1	esu.	11
fum for	5/0/01/02 1600		NON	illi	V 10	, -, ,	02_		600			adsp	ace/_	Υ	<u>/ N</u>	-	1.01	יו ק נים	<i>C</i>	20		Ž	194	o per	. 0	
elingaished by: 1	Date: Time: 30 830	Received a	Laborator	PINA	لم	Date: //) =	11 60 (ne: <i>10</i>)' <i>00</i>		Ter Log	/	leviev	v,)	W-		<u>֚֡֞֞</u>	C	neck l	If Spe Are Ne	cial Re eeded	eportin	g	F	101	117/02
ubmittal of samples constit	tutes agreement to Terms	and Conditio					2:		meller		Cai	rier #		U	w	W	he	n	1	13	54	108	281	5	- /	-
			ORI	GINAL	COPY		. • • •		II		L	<u> </u>			-7											

6701 Aberdeen Avalue, Ste.
Lubbock, Texas 79424
Tel (806) 794-1296
Fax (806) 794-1298
4 (000) 070 4000

TraceAnalysis, Inc.

35 McCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

LAB (Order ID	##21	Ĥ	021002	08

	1 (000) 300-3443	[1] [1] [1] [1] [2] [2] [2] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
Company Name: ETG T	Phone #: (915) \$522-1139	ANALYSIS REQUEST
Address: (Street, City, Zip)	Fax #(915) 520-4310	(Circle or Specify Method No.)
Contact Person: Todd (Voban		6010B/200.7
Invoice to: (If different from above)		19 6010 Hg 6010
Project #: CH2100	Project Name:	Cr Pb Se Hg I Cr Pb Se Hg Ar Sen i 2
Project Location: Nobbs Champion Faci	Sample Signature:	S Ba Cd Cr F S Ba
	MATRIX PRESERVATIVE SAMPLING	005 005 005 3 As Ba atiles 3 A/608 A/608
LAB # FIELD CODE SIGNAL	H H	TEX 80218/602 PH 418. 9TX1003 AH 8270C AH 8270C AH 8270C AH 8270C CLP Metals Ag As CLP Semi Volatiles CLP Pesticides CI CMS Vol 82607 CMS Semi. Vol. CB's 8082/608 esticides 8081A/ OD, TSS. pH UM Around Time
# CONTAINERS WATER WATER	SOIL AIR SLUDGE SLUDGE HOS H2SO4 NAOH ICE NONE DATE	MTBE 8021B/602 8TEX 802JB/602 17PH 418. \$TX1005 PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 601 TCLP Notatiles TCLP Semi Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH (A hr.) As S Ohre multa m idifferent from standard Turn Around Time if different from standard
246 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 9-27 0835	
429 5B-49 - 10' 3	/ / 6840	\times
430 SB-49-15' 2	Orys	Y Y
431 5B-49-20' 11	0854	The state of the s
cal us 1 sign		
432 3 B - 49 - 40' 2	054	THE THE THE PARTY OF THE PARTY
433 SR-49-50 2	1015	
434 83 - 49 - 57 / 1 /	645	
435 5B - 57 - 2 4)	
436 58 - 57 5' 4	(
43758-57 10' 4	122	XX hold
Refinquished by Date: 10-0/-02 Time: Received by: 70-0/-02 O800 June 2	Date: Time: 1001-02 0815	LABUSE PLEASE TUN VOC + SUCCE ON ONLY Sample w/ his host TOLL (1841)+
Received by: Date Time: Received by:	111 1 110 / /	Intact (V)/N Headspace, Y/N
Relinquished by: Date: Time: Received at Labo		Temp Check If Special Reporting Limits Are Needed
Submittal of samples constitutes agreement to Terms and Conditions liste	ed on reverse side of C.O.C. 27 hamples - HS	Carrier #_ Mr. 163566 881 3

Lubboci	een Avee, Ste. 9 k, Texas 79424 06) 794-1296	Trace	A 1	no	Ιĸ	701	C	In	•			I Paso	utcheon,Suite , Texas 7993 (5) 585-3443	2			CH	AIN	OF-	CUS	ота						R	JUES	3T ——		
Fax (8	06) 794-1298 0) 378-1296	Hace		lla	1 y	21	3,		٠٠٠	•		Fax (91	15) 585-4944 8) 588-3443		1. 186 1.45 co. 1.75 co.			LAB	Orde	r ID	#	_f,)[[a	100	721	<u> 8c</u>		: : : :	<u>-</u> -	A.	
Company Na	me: EST E	TGI					Phon	e #: (915	5)	5	22	2-113	9								IS R					9				\neg
Address:	(Street, City, Zip)		79'	203	3		Fax #	"19	15)		_	-4310			1	1 1	۱.۲	(C)	rcie d	or Sp 	ecify	Meth	100 N	0.)	1 1		1	1 1	1	
Contact Pers	ion: Todd																	Cd Cr Pb Se Hg 6010B/200.7									7				
Invoice to: (If different fr	om above)					and the state of t												년 601	DL ac								eni			andard	
Project #:	CHAIC	5O				,	Proje	ct Nar	ne:		. /							P Se	2								45			from st	
Project Local	lion.	1 Cham	010	n	<u>La</u>	cs li	Sami	A Si	gnatu	re:	1/2	~~ <u>,</u>						S S				4	0C/625			\ \	1			fferent	
		,		1			rRIX				TAVE		SAMP	LING	8 8	900		As Ba	B AS DB	atiles	S.	60B/62	/ol. 827	8 4/608	300	1,005	7			me if di	
LAB#	FIEL	D CODE	CONTAINERS	e/Amo	m		Щ								8021B/602		8	stals Aç	olatiles	Semi Volatiles	esticide	Vol. 82	Semi.	082/60	SS. pH	7014				ound Ti	
(LAB USE) ONLY			CON#	Volume/Amount	WATER	SOIL	SLUDGE	Ę	NO S	T SO	를 등	NONE	DATE	TIME	MTBE (181 EX 8021B/002	PAH 8270C	Total Metals Ag As Ba	TCLP Volatiles	TCLP S	TCLP Pesticides	HCI GC/MS Vol. 8260B/624	GC/MS Semi. Vol. 8270C/625	PCB's 8082/608	BOD, TSS, pH	Ch	27			Turn Around Time if different from standard	Hold
209438	5B-59	2'	4	402									9-30																		X
439	5B-59	<u>- 5'</u>	4	3						_	ļ			132	-	X	+	_				_				X	X	\perp		hol	
4/10	513-59 -	- 20	/_	1				_	-	_	↓_		5-30		1-1-	X		_	4		_	\perp	-	-		X	1		$\perp \perp \prime$		
44)	SB-59-	10	4	2/07				-		-	-		5-30	1328		X	\dashv	-	-	\blacksquare	-	-	-	-	+	\ Y	x	+	+	hol	91
-8			-		H		$\vdash \vdash$	-		-	-	-			\vdash	+-	\dashv	+	+		\perp		$\left \cdot \right $	-	-	+-	\vdash	+	++	\dashv	
			-	}				-		+	+-					+	H	_	+			+	+	+	-	+	\vdash	+	++	-	
			-			-+;				\dagger	-					1	T	1	1		1	\top	\Box		+	+-		-	++		
																									\top		П		\prod		
			_	<u> </u>													Ц		J.								Ш	\bot			
Relinquished	by: Date 10	e: Ol-02 080	Drece	Wed by	y: <	7/	/ -	2	Date 22		וו 0-7	me: コ	W 15		975 975 975	LA	B U	JSE Y		H	PI	ARKS.	: 2 1	ΛL	.~	V	ac	d	Si	ICC	-
Relinquished	by: Date	e: 0/01/12 Time:	Aece	eixed by		he	Har		Date	"	Ti	me:	1600	D	Intac Head		(§)	N	N		Sark	17 _w. 'Sh	Pla	و ر	4	h	1, &	Nos	st-	TP	<i>'H</i>
Relinquished	- 111 111		1/	ved at	Lab	oraton	ens	10	Date 10		Ti	me:	10:0-	ار داد مرزود	Tem Log-	in Re	view_	\ L	μ <u>.</u>			Che		Specia	al Rep	porting					
Submittal of s	samples constitutes a	agreement to Terms	and C	ondition	ns lis	ted on ORI	reverse GINA	side i L COI	of C.C	C.	13	sdi	rythes!	1S	Carri	er #_		<u> </u>	dij	1	<u>v</u>	U	V_	0	16	33	56	4	88 j	15	

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79932 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298

E-Mail: lab@traceanalysis.com

FAX 915 • 585 • 4944

CORRECTED CERTIFICATE

Analytical and Quality Control Report

Todd Choban

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Report Date:

November 12, 2002

Order ID Number: A02100420

Project Number: CH2100

Project Name:

Champion Tech

Project Location: Hobbs, NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

		,	Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209639	SB-52 5'	Soil	10/2/02	12:40	10/4/02
209641	SB-52 25'	Soil	10/2/02	13:42	10/4/02
209644	SB-52 45'	Soil	10/2/02	14:45	10/4/02
209647	SB-50 10'	Soil	10/1/02	9:54	10/4/02
209648	SB-50 25'	Soil	10/1/02	10:17	10/4/02
209651	SB-61 10'	Soil	10/1/02	13:03	10/4/02
209655	SB-55 5'	Soil	10/2/02	9:55	10/4/02
209656	SB-55 20'	Soil	10/2/02	10:07	10/4/02
209657	SB-55 40'	Soil	10/2/02	10:27	10/4/02
209658	SB-56 5'	Soil	10/2/02	9:37	10/4/02
209659	SB-56 20'	Soil	10/2/02	9:45	10/4/02
209660	SB-56 40'	Soil	10/2/02	9:05	10/4/02
209664	SB-47 5'	Soil	10/1/02	9:28	10/4/02
209665	SB-64	Soil	10/2/02	9:08	10/4/02

Comment: Chloride LCS results have been corrected. Method Blank (Matrix) was added.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 19 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

lote: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 ays has past.

Dr. Blair Leftwich, Director

Order Number: A02100420 Champion Tech

Page Number: 3 of 19 Hobbs,NM

Analytical Report

209639 - SB-52 5' Sample:

Ion Chromatography (IC) Analytical Method: Analysis:

Preparation Method:

E 300.0 QC Batch:

QC24019 Date Analyzed: 10/8/02

Analyst: **JSW** N/A Prep Batch: PB22434 Date Prepared: 10/8/02

Param Flag Result Units Dilution RDL Chloride 52.75 mg/Kg1

209639 - SB-52 5' Sample:

Analysis: Total Metals Analytical Method: QC Batch: QC24071 S 6010B Date Analyzed: 10/10/02

Analyst: Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Param Flag Result Units Dilution RDL Total Chromium 2.27 mg/Kg 100 0.01

Sample: 209641 - SB-52 25'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24021 Date Analyzed: 10/8/02

JSW Preparation Method: N/A Analyst: Prep Batch: PB22436 Date Prepared: 10/8/02

Flag Result Units Dilution aram RDL43.7Chloride mg/Kg 5

209641 - SB-52 25' Sample:

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24072 Date Analyzed: 10/10/02

Analyst: RRPreparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Dilution Param Flag Units Result RDL Total Chromium 2.27 mg/Kg 100 0.01

209644 - SB-52 45' Sample:

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24021 Date Analyzed: 10/8/02

Preparation Method: N/A Prep Batch: PB22436 Date Prepared: 10/8/02 Analyst: **JSW**

Param Flag Result Units Dilution RDL Chloride 38.7mg/Kg 5

209644 - SB-52 45' Sample:

Analysis: Total Metals Analytical Method: QC Batch: S 6010B QC24072 Date Analyzed: 10/10/02 Analyst: Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Flag Result Units Dilution RDL Total Chromium 2.60 100 mg/Kg 0.01

Order Number: A02100420 Champion Tech Page Number: 4 of 19 Hobbs,NM

Sample: 209647 - SB-50 10'

Analytical Method: S 8021B QC Batch: QC23988 10/7/02 Analysis: BTEX Date Analyzed: Prep Batch: CG Preparation Method: S 5035 PB22416 Date Prepared: 10/7/02 Analyst:

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		< 0.010	mg/Kg	10	0.001
Total BTEX		< 0.010	mg/Kg	10	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.835	mg/Kg	10	1	83	70 - 130
4-BFB		0.873	mg/Kg	10	1	87	70 - 130

Sample: 209647 - SB-50 10'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC24013 Date Analyzed: 10/9/02 Analyst: WG Preparation Method: N/A Prep Batch: PB22430 Date Prepared: 10/9/02

Sample: 209647 - SB-50 10'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24072 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: 10/8/02

Flag Result Units Dilution Param RDL 100 Total Arsenic < 5.00 mg/Kg 0.05 Total Chromium 5.99 mg/Kg 100 0.01 mg/Kg Total Lead 3.17 100 0.01

Sample: 209648 - SB-50 25'

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23988 Date Analyzed: 10/7/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22416 Date Prepared: 10/7/02

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		< 0.010	mg/Kg	10	0.001
Total BTEX		< 0.010	mg/Kg	10	0.001

					Spike	Percent	Recovery
rrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
FT		0.896	mg/Kg	10	1	89	70 - 130
4-BFB		0.895	mg/Kg	10	11	89	70 - 130

Order Number: A02100420

Champion Tech

Page Number: 5 of 19 Hobbs,NM

Sample:

209648 - SB-50 25'

Analysis: TPH Analyst:

WG

Analytical Method: E 418.1 Preparation Method: N/A

QC Batch: Prep Batch:

QC24014

Date Analyzed:

10/9/02

Param

PB22430

Date Prepared:

10/9/02

TRPHC

Flag

Result <10.0

Units mg/Kg Dilution 1

RDL 10

209648 - SB-50 25' Sample:

Analysis:

Total Metals RR

Analytical Method:

S 6010B

OC Batch:

QC24072

Dilution

100

100

100

Dilution

10

10

10

10

10

Date Analyzed:

10/10/02

Param

Analyst:

Preparation Method:

S 3050B

Prep Batch: PB22421

10/8/02

Total Arsenic Total Chromium Total Lead

Flag Result < 5.00 Units

mg/Kg

mg/Kg

mg/Kg

Date Prepared:

RDL

0.05

0.01

0.01

Sample:

209651 - SB-61 10'

Analysis: Analyst:

BTEX CG

Analytical Method:

Result

S 8021B

2.01

<1.00

< 0.010

< 0.010

< 0.010

< 0.010

< 0.010

Units

mg/Kg_

mg/Kg

QC Batch:

QC23988

Spike

Amount

1

Date Analyzed:

10/7/02

enzene oluene Ethylbenzene

Param

M,P,O-Xylene

Total BTEX

Preparation Method: S 5035 Flag Result

Prep Batch: PB22416

Units

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Dilution

10

10

Date Prepared:

10/7/02

RDL

0.001

0.001

0.001

0.001

0.001

Recovery

Limits

70-- 130-

70 - 130

Surrogate	

TFT	0.807
4-BFB	0.796

Flag

Sample:

209651 - SB-61 10'

Analysis: Analyst:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

Dilution

5

QC24021 Date Analyzed: 10/8/02

Percent

Recovery

80-

79

Preparation Method: N/A

Prep Batch:

PB22436 Date Prepared: 10/8/02

Param Chloride

Flag

Result

27.4

Units

mg/Kg

RDL

Sample:

209651 - SB-61 10'

Analysis: Analyst:

TPH WG

Analytical Method: Preparation Method: N/A

E 418.1 QC Batch: Prep Batch:

QC24014

Date Analyzed: Date Prepared:

10/9/02

ram

Flag

Result

Units

PB22430

10/9/02

RPHC

<10.0

mg/Kg

Dilution 1

RDL 10

Champion Tech

Order Number: A02100420 Page Number: 6 of 19
Champion Tech Hobbs,NM

Sample: 209651 - SB-61 10'

Total Metals Analytical Method: S 6010B QC Batch: QC24072 Date Analyzed: 10/10/02 Analysis: Preparation Method: S 3050B Prep Batch: PB22421 Date Prepared: Analyst: RR10/8/02

Flag Result Units Dilution RDL Param Total Arsenic <5.00 mg/Kg 100 0.05 4.22 100 Total Chromium mg/Kg 0.01 2.38 mg/Kg 100 Total Lead 0.01

Sample: 209655 - SB-55 5'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24021 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22436 Date Prepared: 10/8/02

ParamFlagResultUnitsDilutionRDLChloride249mg/Kg101

Sample: 209655 - SB-55 5'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24073 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22443 Date Prepared: 10/9/02

ParamFlagResultUnitsDilutionRDLTotal Chromium3.25mg/Kg1000.01

Sample: 209656 - SB-55 20'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24021 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22436 Date Prepared: 10/8/02

Sample: 209656 - SB-55 20'

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24073 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22443 Date Prepared: 10/9/02

ParamFlagResultUnitsDilutionRDLTotal Chromium3.57mg/Kg1000.01

Sample: 209657 - SB-55 40'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24021 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22436 Date Prepared: 10/8/02

ParamFlagResultUnitsDilutionRDLChloride92.0mg/Kg51

Order Number: A02100420

Champion Tech

Page Number: 7 of 19

Hobbs,NM

209657 - SB-55 40' Sample:

Total Metals Analysis: RR

Analytical Method: Preparation Method:

S 6010B QC Batch: S 3050B Prep Batch:

QC24073 PB22443

Date Analyzed: Date Prepared:

10/10/02 10/9/02

Param Total Chromium

Analyst:

Flag Result 3.19

Units mg/Kg Dilution 100

RDL 0.01

209658 - SB-56 5' Sample:

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC24021 Date Analyzed: 10/8/02

Preparation Method: N/A Prep Batch: PB22436 Date Prepared: 10/8/02 Analyst: **JSW**

Param

Units

Flag Result Dilution RDL 33.3 mg/Kg Chloride 5 1

Sample: 209658 - SB-56 5'

Analysis:

Total Metals

Analytical Method:

S 6010B

QC Batch:

QC24073 Date Analyzed: 10/10/02

Analyst:

RR

Preparation Method:

S 3050B Prep Batch:

PB22443

Date Prepared:

10/9/02

RDL

0.01

Result Units Dilution Flag Param 5.62 100 Total Chromium mg/Kg

209659 - SB-56 20' Sample:

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC24018 Date Analyzed: 10/8/02

Analyst:

JSW

Preparation Method:

Prep Batch: N/A

PB22437 Date Prepared: 10/8/02

Flag RDL Param Result Units Dilution Chloride 139 mg/Kg 5

Sample:

209659 - SB-56 20'

Analysis: Analyst: RR

Total Metals

Analytical Method:

S 6010B

QC Batch:

Prep Batch: PB22443

QC24073

Date Analyzed: Date Prepared:

10/10/02 10/9/02

Param Flag Result Units Dilution RDL Total Chromium 5.57 mg/Kg 100 0.01

Sample:

209660 - SB-56 40'

Analysis:

Ion Chromatography (IC) Analytical Method:

Preparation Method: S 3050B

E 300.0 QC Batch:

QC24018 Date Analyzed: 10/8/02

Analyst:

JSW

Preparation Method:

N/A Prep Batch: PB22437 Date Prepared: 10/8/02

RDL Param Flag Result Units Dilution 61.9 mg/Kg 5 Chloride

RR

Analyst:

Order Number: A02100420 Champion Tech Page Number: 8 of 19 Hobbs,NM

Sample: 209660 - SB-56 40'

Analysis: Total Metals Analytical Method:

Preparation Method:

QC Batch: Prep Batch:

QC24073 PB22443 Date Analyzed: Date Prepared: 10/10/02 10/9/02

S 6010B

S 3050B

Sample: 209664 - SB-47 5'

Analytical Method: QC Batch: QC23988 Analysis: BTEX S 8021B Date Analyzed: 10/7/02 PB22416 CG Preparation Method: S 5035 Prep Batch: Date Prepared: Analyst: 10/7/02

Dilution Param Flag Result Units RDL Benzene < 0.010 mg/Kg 10 0.001 10 Toluene < 0.010 mg/Kg 0.001 Ethylbenzene < 0.010 mg/Kg 10 0.001 M,P,O-Xylene < 0.010 mg/Kg 10 0.001 Total BTEX mg/Kg 10 < 0.010 0.001

Spike Percent Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits TFT 0.898 mg/Kg 10 1 89 70 - 130 4-BFB 0.958 mg/Kg 10 1 95 70 - 130

Sample: 209664 - SB-47 5'

Analysis: Ion Chromatography (IC) Analytical Method: E 300.0 QC Batch: QC24021 Date Analyzed: 10/8/02

Analyst: JSW Preparation Method: N/A Prep Batch: PB22436 Date Prepared: 10/8/02

Sample: 209664 - SB-47 5'

Analysis: TPH Analytical Method: E 418.1 QC Batch: QC24014 Date Analyzed: 10/9/02 Analyst: WG Preparation Method: N/A Prep Batch: PB22430 Date Prepared: 10/9/02

Sample: 209664 - SB-47 5'

Total Metals Analysis: Analytical Method: S 6010B QC Batch: QC24073 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22443 Date Prepared: 10/9/02

Flag Units Dilution Param Result RDLTotal Arsenic < 5.00 mg/Kg 100 0.05 otal Chromium 2.96mg/Kg 100 0.01 Total Lead 1.04 mg/Kg 100 0.01

Order Number: A02100420 Champion Tech Page Number: 9 of 19 Hobbs,NM

Sample: 209665 - SB-64

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC23988 Date Analyzed: 10/7/02 Analyst: CG Preparation Method: S 5035 Prep Batch: PB22416 Date Prepared: 10/7/02

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.010	mg/Kg	10	0.001
Toluene		< 0.010	mg/Kg	10	0.001
Ethylbenzene		< 0.010	mg/Kg	10	0.001
M,P,O-Xylene		< 0.010	mg/Kg	10	0.001
Total BTEX		< 0.010	mg/Kg	10	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.846	mg/Kg	10	1	84	70 - 130
4-BFB		0.903	mg/Kg	10	1	90	70 - 130

Sample: 209665 - SB-64

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
TRPHC		<10.0	mg/Kg	1	10

Sample: 209665 - SB-64

Analysis: Total Metals Analytical Method: S 6010B QC Batch: QC24073 Date Analyzed: 10/10/02 Analyst: RR Preparation Method: S 3050B Prep Batch: PB22443 Date Prepared: 10/9/02

Param	Flag	Result	Units	Dilution	RDL
Total Arsenic		5.66	mg/Kg	100	0.05
Total Chromium		3.03	mg/Kg	100	0.01
Total Lead		<1.00	${ m mg/Kg}$	100	0.01

Order Number: A02100420 Champion Tech Page Number: 10 of 19 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC23988

Param	Flag	Results	Units	Reporting Limit
Benzene		< 0.010	mg/Kg	0.001
Toluene		< 0.010	mg/Kg	0.001
Ethylbenzene		< 0.010	mg/Kg	0.001
M,P,O-Xylene		< 0.010	mg/Kg	0.001
Total BTEX		< 0.010	mg/Kg	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		1.03	mg/Kg	10	1	103	70 - 130
4-BFB		0.746	mg/Kg	10	1	75	70 - 130

Method Blank

QCBatch:

QC24013

				Reporting
aram	Flag	Results	Units	Limit
TRPHC		<10.0	mg/Kg	10

Method Blank

QCBatch:

QC24014

				Reporting
Param	Flag	Results	Units	Limit
TRPHC		<10.0	mg/Kg	10

Method Blank

QCBatch:

QC24018

				Reporting
Param	Flag	Results	Units	Limit
$\overline{\operatorname{Ch}}$ loride		22.74	mg/Kg	1

Method Blank

QCBatch:

				Reporting
Param	Flag	Results	Units	Limit
Chloride		14.03	mg/Kg	1

CH2100

Order Number: A02100420

Champion Tech

Page Number: 11 of 19 Hobbs,NM

Method Blank

QCBatch:

QC24021

				Reporting
Param	Flag	Results	Units	Limit
Chloride	I	<1.0	mg/L	1

Method Blank

QCBatch:

QC24071

				Reporting
Param	Flag	Results	Units	Limit
Total Chromium		< 0.010	mg/Kg	0.01

Method Blank

QCBatch:

QC24072

				Reporting
Param	Flag	Results	Units	Limit
Total Arsenic		< 0.050	mg/Kg	0.05
Total Chromium		< 0.010	mg/Kg	0.01
Total Lead		< 0.010	mg/Kg	0.01

Method Blank

QCBatch:

QC24073

				Reporting
Param	Flag	Results	Units	Limit
Total Arsenic		< 0.050	mg/Kg	0.05
Total Chromium		< 0.010	${\sf mg/Kg}$	0.01
Total Lead		< 0.010	mg/Kg	0.01

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC23988

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
MTBE	0.940	0.914	mg/Kg	10	1	< 0.010	94	2	70 - 130	20
Benzene	0.917	0.845	mg/Kg	10	1	< 0.010	91	8	70 - 130	20
Toluene	0.833	0.764	$_{ m mg/Kg}$	10	1	< 0.010	83	8	70 - 130	20
Ethylbenzene	0.864	0.801	mg/Kg	10	1	< 0.010	86	7	70 - 130	20
M,P,O-Xylene	2.75	2.54	mg/Kg	10	3	< 0.010	91	7	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

¹Method Blank (Matrix) 29.57 mg/kg in soil.

CH2100

Order Number: A02100420

Champion Tech

Page Number: 12 of 19

Hobbs,NM

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.971	0.892	mg/Kg	10	1	97	89	70 - 130
4-BFB	0.86	0.785	mg/Kg	10	1	86	78	70 - 130

Laboratory Control Spikes

QCBatch:

QC24013

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	240	242	mg/Kg	1	250	<10.0	96	0	74 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24014

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	240	242	mg/Kg	1	250	<10.0	96	0	74 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

laboratory Control Spikes

QCBatch:

QC24018

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	² 34.61	³ 34.68	mg/Kg	1	12.50	22.74	95	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24019

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	4 25.70	5 25.75	mg/Kg	1	12.50	14.03	93	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24021

Continued ...

²Blank soil should be subtracted from the sample. %EA = 95 and RPD = 0.

 $^{^3}$ Blank soil should be subtracted from the sample. %EA = 95 and RPD = 0.

 $^{^4}$ Blank soil should be subtracted from the sample. %EA = 93 and RPD = 0.

⁵Blank soil should be subtracted from the sample. %EA = 93 and RPD = 0.

CH2100

Order Number: A02100420 Champion Tech Page Number: 13 of 19 Hobbs,NM

\dots Continu	.ed									
Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
	LCS	LCSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	6 40.1	7 41.1	mg/Kg	1	12.50	<1.0	91	2	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24071

					Spike .					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	44.4	43.5	mg/Kg	100	50	< 0.050	88	2	75 - 125	20
Total Chromium	10.4	10.3	mg/Kg	100	10	< 0.010	104	0	75 - 125	20
Total Lead	49.3	49.6	mg/Kg	100	50	< 0.010	98	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24072

	LCS	LCSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	44.4	43.5	mg/Kg	100	50	< 0.050	88	2	75 - 125	20
Total Barium	102	102	mg/Kg	100	100	< 0.100	102	0	75 - 125	20
Total Cadmium	25.2	25.1	mg/Kg	100	25	< 0.005	100	0	75 - 125	20
Total Chromium	10.4	10.3	mg/Kg	100	10	< 0.010	104	0	75 - 125	20
Total Lead	49.3	49.6	mg/Kg	100	50	< 0.010	98	0	75 - 125	20
Total Selenium	42.0	40.8	mg/Kg	100	50	0.0201	84	2	75 - 125	20
Total Silver	12.4	12.4	mg/Kg	_100	12.50	<0.002	99	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

QCBatch:

QC24073

	LCS	LCSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	$_{ m Limit}$
Total Arsenic	42.3	40.8	mg/Kg	100	50	< 0.050	84	3	75 - 125	20
Total Barium	103	96.9	mg/Kg	100	100	< 0.100	103	6	75 - 125	20
Total Cadmium	25.0	24.0	mg/Kg	100	25	< 0.005	100	4	75 - 125	20
Total Chromium	10.5	9.98	mg/Kg	100	10	< 0.010	105	5	75 - 125	20
Total Lead	48.6	47.3	mg/Kg	100	50	< 0.010	97	2	75 - 125	20
Total Selenium	40.9	39.5	mg/Kg	100	50	0.0153	81	3	75 - 125	20
Total Silver	12.4	11.8	mg/Kg	100	12.50	< 0.002	99	4	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

⁶Blank soil should be subtracted from the sample. %IA = 91 and RPD = 0.

 $^{^{7}}$ Blank soil should be subtracted from the sample. %IA = 91 and RPD = 0.

CH2100

Order Number: A02100420 Champion Tech

Page Number: 14 of 19 Hobbs,NM

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

QC23988

Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Benzene	0.818	0.85	mg/Kg	10	1	< 0.010	81	3	70 - 130	20
Toluene	0.973	1.08	mg/Kg	10	1	< 0.010	97	10	70 - 130	20
Ethylbenzene	0.825	0.93	mg/Kg	10	1	< 0.010	82	11	70 - 130	20
M,P,O-Xylene	2.42	2.74	mg/Kg	10	3	< 0.010	80	12	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	MSD Result	Units	Dilution	Spike Amount	MS % Rec	MSD % Rec	Recovery Limits
$\overline{ ext{TFT}}$	0.83	0.884	mg/Kg	10	1	83	88	70 - 130
4-BFB	0.919	1	mg/Kg	10	1	91	100	70 - 130

Matrix Spikes

QCBatch:

QC24013

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	830	842	mg/Kg	1	250	558	108	4	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24014

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
TRPHC	240	223	mg/Kg	1	250	<10.0	96	7	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24018

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	25000	25000	mg/Kg	1	12500	13100	95	0	35 - 144	20

ercent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

Order Number: A02100420

Page Number: 15 of 19 Hobbs,NM

CH2100

Param

Chloride

Champion Tech

				Spike					
MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
1130	1130	mg/Kg	1	625	536	95	0	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24021

•					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	9160	9220	mg/Kg	1	6250	2940	99	0	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24071

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	$\%~{ m Rec}$	RPD	Limit	Limit
Total Chromium	21.6	21.0	mg/Kg	100	10	9.56	120	5	75 - 125	20

ercent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24072

	MS	MSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Total Arsenic	56.2	54.3	mg/Kg	100	50	9.45	93	4	75 - 125	20
Total Chromium	19.7	19:9	mg/Kg	100-	10	8.71	109	1	 75 125	20
Total Lead	58.9	60.4	mg/Kg	100	50	8.95	99	2	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch:

QC24073

					Spike					
	MS	MSD			Amount	Matrix			$\%~{ m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	$\%~{ m Rec}$	RPD	Limit	Limit
Total Arsenic	46.8	49.0	mg/Kg	100	50	< 5.00	93	4	75 - 125	20
Total Chromium	22.0	21.3	mg/Kg	100	10	10.0	119	6	75 - 125	20
Total Lead	62.0	60.3	${ m mg/Kg}$	100	50	8.68	106	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CH2100

Order Number: A02100420 Champion Tech Page Number: 16 of 19 Hobbs,NM

CCV (1)

QCBatch:

QC23988

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.111	111	85 - 115	10/7/02
Benzene		mg/L	0.10	0.101	101	85 - 115	10/7/02
Toluene		$_{ m mg/L}$	0.10	0.098	98	85 - 115	10/7/02
Ethylbenzene		$_{ m mg/L}$	0.10	0.099	99	85 - 115	10/7/02
M,P,O-Xylene		mg/L	0.30	0.305	101	85 - 115	10/7/02

ICV (1)

QCBatch:

QC23988

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.106	106	85 - 115	10/7/02
Benzene		$_{ m mg/L}$	0.10	0.099	99	85 - 115	10/7/02
Toluene		mg/L	0.10	0.096	96	85 - 115	10/7/02
Ethylbenzene		$_{ m mg/L}$	0.10	0.098	98	85 - 115	10/7/02
M,P,O-Xylene		mg/L	0.30	0.307	102	85 - 115	10/7/02

CCV (1)

QCBatch:

QC24013

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	94.3	94	80 - 120	10/9/02

CCV (2)

QCBatch:

QC24013

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	94.1	94	80 - 120	10/9/02

ICV (1)

QCBatch:

QC24013

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	94.0	94	80 - 120	10/9/02

CCV (1)

QCBatch:

Order Number: A02100420

Page Number: 17 of 19

Champion Tech Hobbs,NM

CH2100		Champion Tech											
			CCVs	CCVs	CCVs	Percent							
_	771	** •.	True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc. 94.6	Recovery 94	Limits 80 - 120	Analyzed						
TRPHC		mg/Kg	100	94.0	94	80 - 120	10/9/02						
ICV (1)	QC	Batch: QC	24014										
			CCVs	CCVs	CCVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
TRPHC		mg/Kg	100	94.0	94	80 - 120	10/9/02						
						,							
CCV (1)	Q	CBatch: Q	C24018										
			CCVs	CCVs	CCVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
Chloride		$_{ m mg/L}$	12.50	11.84	94	90 - 110	10/8/02						
(CV (1)	·	CBatch: QC	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02						
CCV (1)	Q	CBatch: Q	C24019										
			CCVs	CCVs	CCVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02						
ICV (1)	QC	CBatch: QC	24019										
			CCVs	CCVs	CCVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
Chlorido	<u>~</u> _	ma/I	12.50	11 92	04	00 110	10/9/02						

CCV (1)

Chloride

QCBatch:

mg/L

QC24021

12.50

11.82

94

90 - 110

10/8/02

Order Number: A02100420

Page Number: 18 of 19

CH2100

Champion Tech

Hobbs,NM

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02

ICV (1)

QCBatch:

QC24021

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02

CCV (1)

QCBatch:

QC24071

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Arsenic		mg/L	1	0.983	98	90 - 110	10/10/02
Total Chromium		$_{ m mg/L}$	0.20	0.202	101	90 - 110	10/10/02
Total Lead		mg/L	1	0.994	99	90 - 110	10/10/02

ICV (1)

QCBatch:

QC24071

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/L	1	1.01	101	95 - 105	10/10/02
Total Chromium		mg/L	0.20	0.201	100	95 - 105	10/10/02
Total Lead		mg/L	1	0.988	99	95 - 105	10/10/02

CCV (1)

QCBatch:

QC24072

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/Kg	1	0.986	99	90 - 110	10/10/02
Total Barium		${ m mg/Kg}$	2	2.01	100	90 - 110	10/10/02
Total Cadmium		mg/Kg	0.50	0.502	100	90 - 110	10/10/02
Total Chromium		mg/Kg	0.20	0.200	100	90 - 110	10/10/02
Total Lead		mg/Kg	1	0.983	98	90 - 110	10/10/02
Total Selenium		mg/Kg	1	0.954	93	90 - 110	10/10/02
Total Silver		mg/Kg	0.25	0.250	100	90 - 110	10/10/02

ICV (1)

QCBatch:

CH2100

Order Number: A02100420 Champion Tech Page Number: 19 of 19 Hobbs,NM

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	\mathbf{Date}
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Arsenic		mg/Kg	1	1.01	101	95 - 105	10/10/02
Total Barium		mg/Kg	2	1.98	99	95 - 105	10/10/02
Total Cadmium		mg/Kg	0.50	0.498	100	95 - 105	10/10/02
Total Chromium		mg/Kg	0.20	0.201	100	95 - 105	10/10/02
Total Lead		mg/Kg	1	0.988	99	95 - 105	10/10/02
Total Selenium		mg/Kg	1	0.978	96	95 - 105	10/10/02
Total Silver		mg/Kg	0.25	0.247	99	95 - 105	10/10/02

CCV (1)

QCBatch:

QC24073

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/Kg	1	0.998	100	90 - 110	10/10/02
Total Barium		mg/Kg	2	1.98	99	90 - 110	10/10/02
Total Cadmium		mg/Kg	0.50	0.497	99	90 - 110	10/10/02
Total Chromium		mg/Kg	0.20	0.202	101	90 - 110	10/10/02
Total Lead		mg/Kg	1	1.00	100	90 - 110	10/10/02
Total Selenium		mg/Kg	1	0.972	96	90 - 110	10/10/02
Total Silver		mg/Kg	0.25	0.246	98	90 - 110	10/10/02

ICV (1)

QCBatch:

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Arsenic		mg/Kg	1	1.01	101	95 - 105	10/10/02
Total Barium		mg/Kg	2 .	1.98	99	95 - 105	10/10/02
Total Cadmium		${ m mg/Kg}$	0.50	0.498	100	95 - 105	10/10/02
Total Chromium		mg/Kg	0.20	0.201	100	95 - 105	10/10/02
Total Lead	•	mg/Kg	1	0.988	99	95 - 105	10/10/02
Total Selenium		mg/Kg	1	0.978	96	95 - 105	10/10/02
Total Silver		mg/Kg	0.25	0.247	99	95 - 105	10/10/02

Lubboci	een Ave. Ste. 9 k, Texas 79424	Tracio	TraceAnalysis,				T		El Paso, Texas 79932				2	CHART-OF-COSTOD FARD ANALTSIO FILEGES																					
Fax (8	06) 794-1296 06) 794-1298 0) 378-1296	Irace	e A l	па	1)	SI	ıs,	I	.II	C.	•		Fax	x (915	585-3443) 585-4944 588-3443			LAB Order ID # 100100420								· 	430								
Company Na	71GL						Ph	one	#:(9	7/	5)5	a	2	-/13	9											QU								
Address:	(Street, City, Zip	Wall	19	70.	3		Fa	x #:	(9	15	·)	<u>ري</u>	ጽ	_	431	מ			1	٦	_	(Ci	rcie	or a	pec 	ary n	/letho	או מכ 	0.)	1	1 1	1	1 1	. 1	ļ
Contact Pers	on:	00-411	<u> </u>	(1.00)												7 000/00/00															i				
nvoice to: If different fr	om above)																			00 00	2 P													standard	
Project #:	CH210	20				. –	Pro	oject	Nan	ne:		j								á	Pb Se						.							from s	
roject Local	•	/ Champ	inn	I,	FCI	11,	Sa	phylie	r Sig	natu	12	er	1	_						2	3 3					4	0C/62				14	,]		fferent	
		Case f		1			ATTIX			PA		RVA		E	SAMP	LING	05	Q	92	á	As Ba	!	atiles			30B/62	ol. 827	A/608		2	id			ne if di	
LAB#	FIE	LD CODE	AINE	Amor			<u>Ш</u>							T			8021B/602	21B/6C	Ž,	2 5	tals Ac	atiles	mi Vols	sticide		ol. 826	emi. V	82/600	TSS, pH	2 2	0			ind Ti	
LAB USE)		4;	# CONTAINERS	Volume/Amount	WATER	SOIL	AIR SLUDGE		도	HNO3	H2SO,	NaOH	NO NE	NO.	DATE	TIME	MTBE 80	BTEX 8021B/602	TPH 418.1/TX1005	FAH 82/0C	TCLP Metals Ag	TCLP Volatiles	TCLP Semi Volatiles	TCLP Pesticides	FC!	GC/MS Vol. 8260B/624	GC/MS Semi. Vo	PCB s 8082/608 Pecticides 80814/608	BOD, TS	hra	Oh			Turn Around Time if different from	Hold
209 433	5B-62	214	419	402											10-01.	1330																			X
34	5B-62	5'	[4]	1				Ш		\perp	\perp				10-01	1337							L				\bot	\perp							X
35	SB-62	15	12				1_					\perp			16-01	1353			4				\perp				_		_	\perp					×
36	58-62	25'	1.2	12	_			Ш		_		\perp	\perp		10-01	142/	_		1	1		_	1	_	L		_		1	_		\perp			X
37	SB-62	40'	14	<u> </u>	_					1	_ _	\perp	\perp	1_	10-01	1512				_	_	_	L	_	<u> </u>	_	_	_ -		<u> </u>		\bot	$oxed{oxed}$		×
38	SB-62		14	}_	_					_			1		1001	BYS	_		_	_ _	_	\perp	\perp	_	_				_			\perp	$\perp \downarrow$		×
39	5B-52	5'	4	1	_					_					10-00	1240			_	_	_	1	1	↓_			_	1	1	X	1		Ш		
40	5B-52	10'	2		_					\perp			_		10-67	125	0		_	1	\perp	1	1.	_				_							×
41	SB-52	25'	3	1/_								_	_		1002	1342			4	\perp	\perp	_	\perp	<u> </u>	_	_	\perp	_	1.	13	2	\perp			
42	SB-52	35′	1_	\Box	_					_ .	_	\perp	_		10-00	1408			_	1	\perp		↓	_	_		_	\perp		_			$\perp \perp$		X
43	5B-52	<u> 4D'</u>	3		<u>_</u>									\perp	10-02	1416		Ц			丄														<u>火</u>
Non (ol: Da 10 - en	te: Time: -Q3-02 0900	Rece	d believe	<u>ν }</u> y:	Sh	لگ	LETA		Date		1	ime 2_		08	00		L		VĽ.	SE Y			REM	IAH	KS:		į	2	+1	1	,	_		
lelinguished	11/140 . 1	te: Time:	- 1	ived by ا.ا	y:				_	Date	∋:	` 1	ime):			1.754	act_ adsp	1	<u>) / </u>	N Y /	N						ļ		l	0//	4/0	1	~	
elinquished				ved at	Lat	orato	y by:	1	/	Date	1	ا در	ime	10 i	,	/		np <u>e</u> g-in F	· · · ·	ew_	M	F					k II S s Are			portin	g				
Submittal of s	samples constitutes	agreement to Term	s and e	ondition	ns lis	sted or	reve	rse s	ide o	f C.C	o.c.	30	1.6	W.	rolls-	45	Car	rier :	<u>-</u>	W	1	U	(0	u	1	1	KS	LI	30	0	419	-68	PS-3	}	
						OR	IGINA	4L (יייטי	r		_ =	A		1	47										-									

6701 Aberdeen Av Ste. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

TraceAnalysis, Inc.

AcCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 CHAIN-OF-CUSTODY AND ANALYSIS REGUEST

LAB Order ID # ADQIDD420

Company Na	EIGL				Ph	one #: (191	\$) <u>:</u>	52	<u>ب</u>	-//	39											QUI							
Address:	(Street, City, Zip)	7	197	1/3	Fa	(#: (9)	5)	52	8.	-43	39		ı	1	1	ا۔	1 1	Circle	e or ∣	Spec	city N	Лetho	a No	(;) 	1	1	1 1	ı	,
Contact Pers				<u> </u>			71 -				<u>ر</u> .	10		•			Se Hg 6010B/200.7				'									
Invoice to: (If different fr		<u> </u>															g 6010	운											ndard	
Project #:	CH2100				Pro	ject N	ame:										Se H	Cr Pb Se										a	om sta	
Project Local		521	Fa	(1)	h h	pler S	Signa	tug	f er	_	_	_					Cd Cr Pb	8				4	70C/625				4	1	Turn Around Time if different from standard	
		1	l		MATAIX		F	RES	ERV	ATA OC	Æ.	SAME	LING	/602	502	8	g As Ba	Ag As Ba	lles	Sel		GC/MS Vol. 8260B/624	Vol. 827	Pesticides 8081A/608	-	des	MI	4	ime if di	
LAB#	FIELD CODE	CONTAINERS	Volume/Amount	65	JGE		-		_		ш			8021B/602	BTEX 8021B/602	PAH 8270C	Total Metals Ag As	TCLP Metals Ag	TCLP Volatiles	TCLP Pesticides		S Vol. 8	GC/MS Semi. Vo	ides 80	BOD, TSS, pH	lorid	pc.	80	Around 1	
(LAB USE)) #	Volur	WATER	SOIL AIR SLUDGE	Ē	S S	H ₂ SO ₄	NaOH	핑	NON	DATE	TIME	MTBE	BTEX	E A	Total	TCLP	10LP	길	泛	GC/M	GC/M	Pestic	B B D	C	7	FF	Tg.	Hold
20964	58-52 45'	4	402							X		1002	1445							\prod						٠X١	2			
45	SB-50 2	4	1				_			\prod		1601	0940			\perp					_			_		-	\perp		\perp	X
46	SB-56 5'	3	1		<u> </u>		_	_		$\langle $		7001	0947						_		\perp									M
47	3B-56 10	4	1							\coprod		1061	6954		χ̈́>		1		_		<u> </u>			_	_	رالا	ŻX		\perp	
48	SB-50 251		1		44		_			Ц		10-01	1017		XV		_			_						Ż	ZX	2	\perp	
49	5B-61 2'	4					<u> </u>			\bigcup		10-01	1245						_	1	_			\perp					\perp	X
50	5B-61 5'	2)		1001		\perp	\perp	\perp														X
	5B-61 10'	4								Ц		10-61	1303		χ̈́χ											×۷	ز ز	2		
52	5B-60 2.5'	4			/					\prod		4	835				-													X
53	5B-60 5.	4	ζ							II		17	842					$ \ $							T					×
54	5B-60 10'	21	(T					0-01	852																	V
Reinquished	/ //-07-02 <i>OSO</i> O	Rece	ived by): 	1		Di	ite:	10-	Tin 03		ک ۵					US			REN	IARI	KS:								
Relinquished	There / 10/04/02 1435	N	ived by	CQ	The	to	(te: /		Tip	ne:)2_	14~	35	Hea		ice _	ا <i>لر</i> ۲	/ N												
Relinguished	by: Date: Time: 10/03/02 18:30	Rece	ived at	1.	ratory by:	1	Da 10	4	<i>(</i>)	Tim	10.			Log	po2 in R	evie	 	411)			k II Sp s Are i			orting				
Submittal of s	amples constitutes agreement to Terms	ande	ondition	ıs liste	d on rever ORIGIN	se side	of C	.O.C		38	S 01	ryles	-45	Carr	ier #	<u>ر</u>	YY	ب	16	<u></u>	ۍ(W	J	G	11	3	50-	-619-	695	.3

TraceAnalysis, Inc.

El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

LAB Order ID # AD 21054 20

Company Nar	6/91					PI	none	#:	(9	15.) :	52	2-11. 131C	39										REQ								
Address:	(Street, City, Zip)	Jall	70	370.	3	Fa	x #:	[916	5) 3	52	8-0	13/C)			ı	1	. 1		cie c	, Sp	ecny	/ IVIE		No.)		1	1 1	j	1 1	
Contact Perso	on: Todd	Chob																Se Ho 6010B/200 7														
Invoice to: (If different fro				.														40 80 10	Se Hg												andard	
Project #:	H2100					Pr	oject	Nam	9:									AS 4d	Pb Se			-							ad		Irom st	
Project Locati		oion I	-60i	lita		Sa		r Sigi	nature	1	on the		/					5	8 8					0C/625					1		fferent	
	1,22,07(), 42,17	7				MATRY	7	Y Y:	PRES	ETH		VE 7	SAME	LING	95	N	SS	Ac Ba	As Ba		atiles	S	30B/62	ol. 827	_	A/608		3 -6	1		ne if di	
LAB#	FIELD CO	DE	CONTAINERS	/Ато		u	\prod					T			8021B/602	23.1960	Š	S S	etals A	atiles	ımi Vol	sticide	Vol. 82	Semi. V	382/60	ss 8081	S, pH	140	1		und Tir	, \
(LAB USE)			# CON	Volume/Amount	WATER	AIR		ᅙ	H ₂ SO ₄	NaOH	ICE	NONE	DATE	TIME	MTBE 8	BTEX 8021B/602	TPH 418.1)TX1005	FAH 82/0C	TCLP Metals Ag As	TCLP Volatiles	TCLP Semi Volatiles	TCLP Pesticides	HCI GC/MS Vol 8260B/624	GC/MS Semi. Vol. 8270C/625	PCB's 8082/608	Pesticides 8081A/608	BOD, TSS, pH	Chrom	Arsen		Turn Around Time if different from standard	Hold
209 655	SB-55	51	2	402									1002		_													× ×				
54	SB-55	20'	2	2									10-02	1001	L		\perp		_	_		\perp	\perp	1	_	\coprod		2 ×				
57	SB-55	40'	2)									16-02	10.27			\perp	\perp		<u> </u>			1	_	_			(')				
58	SB-56	5 ^	2	5		11							18-07				_	1	1	_		\downarrow	_	1	<u> </u>			<u> </u>				
55	SB-56	20'	1	<u> </u>					1_			_ _	10-63		_		_	_ _	\perp	_		_	\perp	\perp	-	$\perp \perp$		· v	\sqcup	\bot		
60	5B-56	40'.	2	1									100)	9-05			\dashv		_	_		_	_	_	-	\sqcup	ب_	<u> </u>				
6	SB-48	2,50	4			1-1-	\perp		1_				100		<u> </u>		\dashv	_ _	_	_		_	\perp	_	╀	$\downarrow \downarrow$	4		1-1			×
(2)	SB-48	5'	42	<u> </u>			\perp		-				10-01	1012	_	-	_	_	_	1		_	4	_	╄	\sqcup	_					X
1,3	53-47	2,5	2				1-1							920			1		1	_		_	_	_	_	$\perp \perp$	\bot					$ \Sigma $
64	SB-47	5'	4				44						1	928		X	X	_	_	_		_	\perp	\perp	_	$\perp \downarrow$		XX				[
(\(\)	SB-64		4	Ļ <u>.</u> .			لـلِـ		<u></u>				10-01	9-05	_	X	بب		1.					Ţ	\perp			c x	LX.			
Relifiquished	Date: 10-03-02	Time: . 0 800	Z	ived by	U.		5	>	Date: /(<u>G</u>) ~	33-	Tin ゼユ		800)		L	AE OI	NL'	SE /		"	EMA	MKS.	o:								
elinquished	- <i>11</i>	Time: 402 (435	Rege	iyed by	nd	hel	tor	10	Pate: 03	/อ	Tim		43	5	Не	act_ adsp	ace) / <u> </u> 	N Y /	N												
Telinguished		Time:	Rece	ived at	Labora	tory by	1	10	Date:	٤	Tin	\$ 3, 5 /	u_			mp <u>e</u> g-in l		•w	М	<i>*</i>	10					ecial R eeded		ing				
Submittal of s	amples constitutes agreen	nent to Terms	and Co	ondition	is listed	on reve	rse s	ide of	C.O.0).	29	90	mple	1-45	Ca	rrier	#_(XV	10	4		0	L	V	de	<u>ئ-د</u>	<u></u>	300	1-6,	19-6	,85	-3

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: March 12, 2003Order Number: A02100420

CH2100

Champion Tech

Page Number: 1 of 1 Hobbs,NM

Summary Report

Todd Choban

Report Date:

March 12, 2003

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

Order ID Number: A02100420

Project Number:

CH2100

Project Name:

Champion Tech

Project Location: Hobbs,NM

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
209647	SB-50 10	Soil	10/1/02	9:54	10/4/02
209648	SB-50 25	Soil	10/1/02	10:17	10/4/02

Comment: Chloride LCS results have been corrected. Method Blank (Matrix) was added.

This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 209647 - SB-50 10

Param	Flag	Result	Units
Chloride		2660	mg/Kg

Sample: 209648 - SB-50 25

Param	Flag	Result	Units
Chloride		3020	mg/Kg

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79932 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

Report Date:

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

Order ID Number: A02100420

March 12, 2003

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Todd Choban

E.T.G.I.

PO Box 4845

Midland, Tx. 79704

CH2100

Project Number: Project Name:

Champion Tech

Project Location: Hobbs, NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	${f Time}$	Date
Sample	Description	Matrix	Taken	Taken	Received
209647	SB-50 10	Soil	10/1/02	9:54	10/4/02
209648	SB-50 25	Soil	10/1/02	10:17	10/4/02

Comment: Chloride LCS results have been corrected. Method Blank (Matrix) was added.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Dr. Blair Leftwich, Director

Report Date: March 12, 2003 CH2100

Order Number: A02100420 Champion Tech

Page Number: 2 of 4 Hobbs,NM

Analytical Report

Sample:

209647 - SB-50 10

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC24021 Date Analyzed: 10/8/02

Analyst:

JSW

Preparation Method:

N/A

Prep Batch: PB22436 Date Prepared: 10/8/02

Param Chloride Flag Result 2660

Units mg/Kg Dilution

Sample:

209648 - SB-50 25

Analysis:

Ion Chromatography (IC) Analytical Method:

E 300.0 QC Batch:

QC24021 Date Analyzed: 10/8/02

Analyst:

JSW

Flag

Preparation Method:

N/A Prep Batch: PB22436 Date Prepared: 10/8/02

Param Chloride Result 3020

Units mg/Kg Dilution 1

RDL 1

RDL

Report Date: March 12, 2003

CH2100

Order Number: A02100420 Champion Tech Page Number: 3 of 4 Hobbs,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC24021

				Reporting
Param	Flag	Results	Units	Limit
Chloride	1	<1.0	mg/L	1

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC24021

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	² 40.1	³ 41.1	mg/Kg	1	12.50	<1.0	91	2	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch:

QC24021

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	9160	9220	mg/Kg	1	6250	2940	99	0	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02

¹Method Blank (Matrix) 29.57 mg/kg in soil.

²Blank soil should be subtracted from the sample. %IA = 91 and RPD = 0.

 $^{^3}$ Blank soil should be subtracted from the sample. %IA = 91 and RPD = 0.

Report Date: March 12, 2003 CH2100

Order Number: A02100420 Champion Tech

Page Number: 4 of 4 Hobbs,NM

ICV (1)

QCBatch:

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.76	94	90 - 110	10/8/02

CHAIN-OF-CUSTODY AND ANALYSIS REQ

TraceAnalysis, Inc. El Paso, Texas 79932 Tel (806) 794-1296 Tel (915) 585-3443 Fax (806) 794-1298 Fax (915) 585-4944 1 (800) 378-1296 1 (888) 588-3443 mpany Name: **ANALYSIS REQUEST** (Circle or Specify Method No.) dress: /(Street, City, Zip) 79763 ntact Person: oice to: different from above) ject #: Project Name: piect Location: Sampler Signature GC/MS Vol. 8260B/624 PRESERVATIVE METHOD SAMPLING **ICLP** Pesticides LAB # FIELD CODE SLUDGE NONE NaOH AB USE E S 5 ONLY 1002 1445 1601 0941 1001 0947 25 1303 Time: OSOO Date: REMARKS: LAB USE 10-07-02 10-03-02 0800 inquished W Time: Headspace Y/N Check II Special Reporting Log-in Review 1 Limits Are Needed

3701 Aberdeen Avenue

Lubbock, Texas 79424

701 Aberdeen Avenue, Sie. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

TraceAnalysis, Inc.

155 McCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

LAB Order ID # AD 21004 20

npany Name: ETGI						ne	#:	6	115	7	5%	20	3/O	39									S R					٠					
ress: Justreet, City, Zip) Wall	19	10	3		Fax	#:		91	5)	52	8-	4	3/0		1	} }	ſ	1~	1	(Circ	ie 0.	r ap	ecity	Ivie	1	(40.) 	Í	ı	1	1		1	
tact Person: Todd Chobo																		Se Ho 6010B/200.7															
ice to: ifferent from above)																		Ho 601	Se Hg										1			andard	
ect #: CH2100						1	Nam											le	[윤.											20		from st	
ect Location: Hobbs/Champion Fa	Eci	lito			Sar		r Sig	nature	1	1/2	u	- /	/					Ö	8				4	0C/62					-			fferent	
	ŧ			MA	TRI			PRE	SER IETH	VATI	VE 4	1	SAMP	LING	502	72	2005	As Ba	g As Ba		latiles	ş	60B/62	Vol. 827	, a	14/608		H I	8	1		me if di	
AB # FIELD CODE	CONTAINERS	e/Amo	æ		3E										80218/602	02198	Š	70C	letals A	olatiles	emi Vo	esticide	Vol. 82	Semi.	082/60	es 808	SS. pH	6m	77	26.11		Dund T	İ
B USE)	# CON	Volume/Amount	WATER	SOIL	SLUDGE		호	H,SO,	NaOH	핑	NONE		DATE	TIME	MTBE 80218/602	BTEX 8	(TPH 418.1)TX1005	PAH 8270C Total Metals Ac As	TCLP Metals Ag	TCLP Volatiles	TCLP Semi Volatiles	TCLP Pesticides	GC/MS Vol. 8260B/624	GC/MS Semi. Vol. 8270C/625	PCB's 8082/608	Pesticides 8081A/608	BOD, TSS, pH	Chram	र्दे	1		Turn Around Time if different from standard	Hold
\$55 SB-55 5'	2	402						1			$\overline{}$	1,		0955	_			- -	†				1	Ť	T			汐:	У		\sqcap		
54 313-55 20'	2	2											10-02	1001										I				٧.	×				
57 SB-55 401	2												16-02	10.27				\perp										į.	X				
58 SB-50 5 1	2	5											18-Q	937														Ż	X				
55 SB-56 20'	1												10-67	945														Ż,	ķ				
10 5B-56 40'. 6	2	Ý											100)	9-05										T				χÌ	V	T			
U 5B-48 258'	4										\top		1001	1004	,									T					T				X
	4												10-0X	1012				\top									\exists				\Box		<u></u>
13 SB-47 25	42										7	_	10-01				1			П	7		\top	T		П	7	\top	\top		П	1	\checkmark
	4				1								10-01			X	V				1			T	1		7	Ý,	、	:/			
	4	-							Γ			_	10-01		,	X	ί	\top				7	\top	T	Γ		7		, X	; }	П	\exists	
quished by Date: Time:	Recei	ved by	7/	1	_ <			Date:			ne:		300			L	AE	J NL)	SE		RE	MA	RKS	:	<u> </u>	4t		`I_					
equished by: Date: Time:	Regei	yed by	į	. 1	~	<		Date:			ne:	_	700		Inta	2400	~	\rangle_{i}												,			
ma Jun 2190402 1435	De	le	<u>~ (</u>		elt	81	10	03	/0	2		14	139	5	Hea	idsp	ace		1 - 12														
quished by: Date: Time: 1	//	ved at	/	[]			10	4.0	΄ Σ		ne: //				Log	ı-in f	Pevi				2_					cial F		ting		4.			
nittal of samples constitutes agreement to Terms a	nd Co	ndition	s list	ed on OR	rever	se si AL (ide of	C.O. Y	C. 6	29	41	W	gles	15	Car	rier	#	*	4	4	<u> </u>	<u> </u>	L	4	16	<u>;</u> _	<u> </u>	30	0-	619	-6.	<u>gc</u> -	3