
$1R - \frac{120}{120}$

REPORTS

DATE: 3/4/1999

SUBSURFACE INVESTIGATION REPORT SOIL BORING B11-10

TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE 11 UNIT A, SECTION 30, TOWNSHIP 19 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

PREPARED FOR:

TEXAS - NEW MEXICO PIPE LINE COMPANY P. O. Box 1030 Jal, New Mexico 88252

Mr. Tony Savoie

PREPARED BY:

KEI

Monica Slentz Project Manager

Theresa Nix Project Manager

Pat Bullinger, P.E.

KEI Job No. 610057-2-11

March 4, 1999

PURPOSE AND SCOPE	1
PREVIOUS ACTIVITIES	1
SOIL INVESTIGATION SOIL DESCRIPTION SOIL SAMPLING AND ANALYTICAL RESULTS	1
SOIL CLOSURE STANDARDS	2
CONCLUSIONS AND RECOMMENDATIONS	3
FIGURES FIG. 1 - SITE DETAILS FIG. 2 - LOG AND DETAILS OF SOIL BORING B11-10	
TABLES GENERAL NOTES TABLE I - SUMMARY OF SOIL RESULTS - BTEX AND TPH TABLE II - SUMMARY OF SOIL RESULTS - SPLP	
APPENDICES APPENDIX A - ANALYTICAL LABORATORY REPORTS - SOIL CHAIN-OF-CUSTODY DOCUMENTATION APPENDIX B - QA/QC PROCEDURES	

-- -- ---

PURPOSE AND SCOPE

The purpose of the subsurface investigation was to determine the vertical extent of hydrocarbon impact and approximate depth to ground water at the site. The scope consisted of installing 1 soil boring in the vicinity of the previously installed soil boring B11-2. The release site is located in Unit A, Section 30, Township 19 South, Range 37 East in Lea County, New Mexico.

PREVIOUS ACTIVITIES

A previous subsurface investigation consisting of the installation of soil borings B11-1 through B11-9 was conducted at the subject site in January 1998 and documented in a Comprehensive Assessment Report dated June 11, 1998.

SOIL INVESTIGATION

During the subsurface investigation, 1 soil boring was installed utilizing air rotary drilling. Soil samples were collected at selected intervals from the ground surface to the bottom of the boring. The soils were classified in the field, soil samples were field screened, and selected samples were prepared and shipped to the laboratory for analysis.

Soil boring location B11-10 was surveyed by a Professional Land Surveyor registered in the State of New Mexico. The locations of all soil borings installed to date are presented on FIG. 1. Upon completion of sampling activities, the soil boring was backfilled to the surface with cement/bentonite grout.

SOIL DESCRIPTION

The subsurface soil profile was classified in general accordance with the Unified Soil Classification System by visually observing the soil samples obtained during the investigation. In general, 4 soil types were encountered. A general description, approximate thickness, and head-space sample results for each soil type are as follows:

Soil Type I

This soil type consisted of brown clay. The clay was sandy, firm, and was slightly moist. The observed thickness of this soil type was approximately 3.5 feet. Head-space readings from samples of this soil type ranged from 1 to 2 ppm.

Soil Type II

This soil type consisted of tan to white calcareous gravel encountered below Soil Type I. The gravel was medium dense and dry. The observed thickness of this soil type was approximately 1 foot. Head-space readings from samples of this soil type was 533 ppm.

Soil Type III

This soil type consisted of tan to brown sand encountered below Soil Type II and again beneath Soil Type IV to the bottom of the boring. The sand was fine grained and silty with calcareous nodules, medium dense and slightly moist to wet. The observed thickness of

this soil type ranged from approximately 1 to 12 feet. Head-space reading from samples of this soil type varied from 295 to 587 ppm.

Soil Type IV

This soil type consisted of a tan to white limestone encountered beneath the first layer of Soil Type III. The limestone was hard and brittle. The observed thickness of this soil type was approximately 5 feet. The head-space reading from a sample of this soil type was 284 ppm.

A log indicating the typical subsurface soil profile, depths at which soil samples were obtained, head-space results, and laboratory results are presented on FIG. 2.

SOIL SAMPLING AND ANALYTICAL RESULTS

Two samples were selected from the soil boring based on the following criteria:

- the sample with the highest PID reading between the surface and ground water
- the sample directly above the ground water level measured at the time of drilling

Soil samples selected for analytical testing consisted of the following:

- two soil samples from the soil boring were tested for benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons diesel range organics (TPH-DRO)
- the soil sample exhibiting the highest concentration of TPH was tested for SPLP volatile organic compounds (VOC), SPLP semi-volatile organic compounds (SVOC), and SPLP TPH
- laboratory results for the selected soil sample indicated the following concentration ranges:

CONSTITUENT	CONCENTRATION RANGE
BENZENE	0.76 and 0.83 mg/kg
BTEX	3.61 and 10.77 mg/kg
ТРН	466 and 5,910 mg/kg
SPLP SVOC	ND
SPLP VOC	ND to 0.026 mg/L
SPLP TPH	ND

Soil laboratory results are summarized in TABLES I and II. Soil analytical laboratory reports and chain-of-custody documentation are presented in APPENDIX A. QA/QC procedures are presented in APPENDIX B.

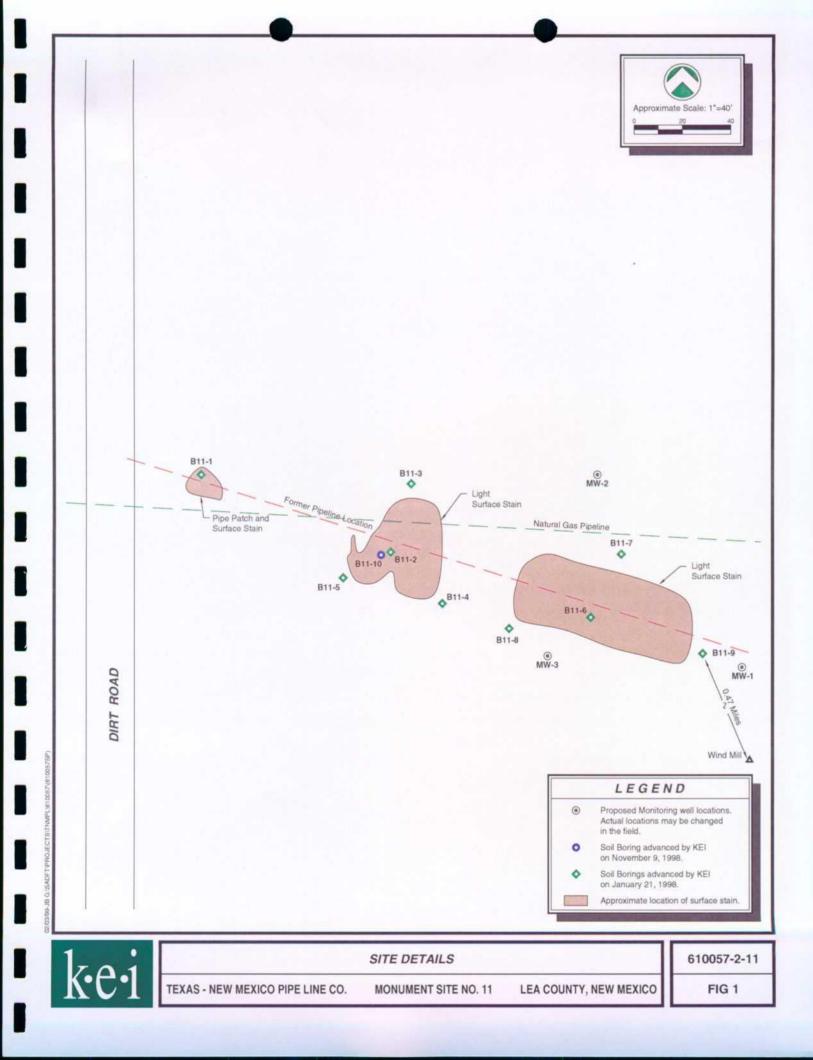
SOIL CLOSURE STANDARDS

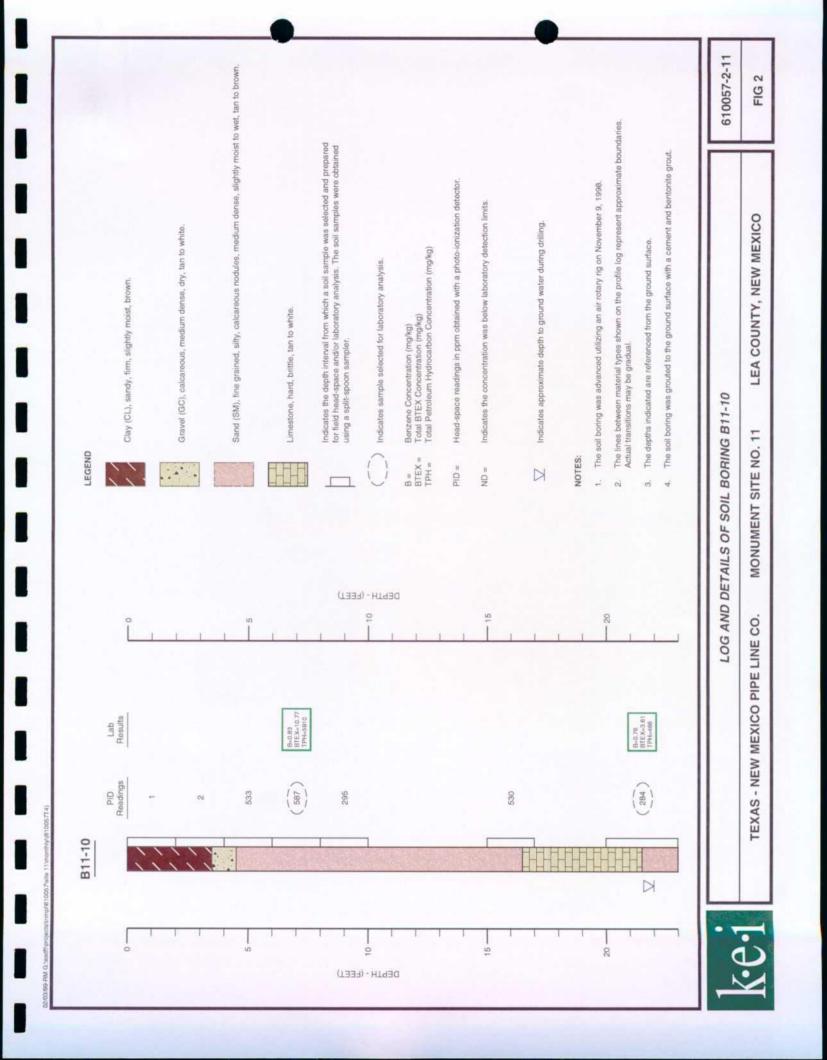
The New Mexico OCD Guidelines for Remediation of Leaks, Spills, and Releases contains the standard criteria for remediation activities. A ranking analysis for the site was performed to determine appropriate soil remediation levels. The ranking analysis is as follows:

Depth to Ground Water	Less Than 50 Feet	20 Points
Well Head Protection	Greater Than 1000 Feet to Water Source Greater Than 200 Feet to Private Water Source	0 Points
Surface Water Body	Greater Than 1000 Feet	0 Points
<u>.</u>	Total Ranking Score	20 Points

Based on the total ranking score, the closure objectives for this site for concentrations of benzene, BTEX, and TPH in soil are summarized below.

CONSTITUENT	CONCENTRATION RANGE (mg/kg)	CLOSURE CONCENTRATIONS (mg/kg)
BENZENE	0.76 and 0.83	10
BTEX	3.610 and 10.770	50
ТРН	466 and 5,910	100 + Background


CONCLUSIONS AND RECOMMENDATIONS


The following conclusions are presented based on the field observations, drilling activities, and soil laboratory results:

- apparent hydrocarbon impact to ground water has occurred at the subject site
- extent of ground water impact has been neither quantified nor delineated
- hydrocarbon impact to soil appears to extend from the surface to approximately 23 feet below ground surface at the soil boring
- TPH concentrations in the soil boring are above the OCD closure standards

Recommendations include the following:

- Install 3 delineation monitoring wells as indicated on FIG. 1. Monitoring well MW10-7 at Monument Site 10 (located up gradient to the northwest of the subject site) will be used as the upgradient well for Monument Site 11.
- Collect ground water samples for determination of BTEX, polycyclic aromatic hydrocarbon (PAH), metals, major cations/anions, and total dissolved solid (TDS) concentrations.
- Develop a work plan for soil and ground water remediation, if necessary.

GENERAL NOTES

- -- -- ---

ND - Indicates constituent was not detected above the method detection or reporting limit.

Depth to ground water is referenced from ground surface unless otherwise noted.

Method detection or reporting limits:

- -----

BTEX	-	0.050 to 1.00 mg/kg
TPH	-	10.0 to 250 ppm
SPLP VOC	-	0.005 to 0.050 mg/l
SPLP SVOC	-	0.005 to 0.013 mg/l
SPLP TPH	-	0.9 ppm

Laboratory test methods:

BTEX	- EPA Method SW846-8021B
TPH	- Modified EPA Method 8015 Diesel Range
	Organics
SPLP VOC	- EPA Method 1312/8260
SPLP SVOC	- EPA Method 1312/8270
SPLP TPH	- EPA Method 1312/418.1

TABLE I

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY TNM-96-11 LEA COUNTY, NEW MEXICO

SAMPLE LOCATION	SAMPLE DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	TPH (mg/kg)
B11-10	11/9/98	6 - 8	0.83	1.51	2.44	5.99	10.770	5,910
	11/9/98	20 - 23	0.76	0.46	0.68	1.71	3.610	466

TABLE II

SUMMARY OF SOIL RESULTS - SPLP TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE 11 LEA COUNTY, NEW MEXICO

PARAMETER	CONCENTRATION (mg/l)
svoc	
All Constituents	ND
voc	
1,2-Dichloroethane	0.010
Ethylbenzene	0.014
Isopropylbenzene (Cumene)	0.006
p-Isopropyltoluene (p-Cymene)	0.007
Toluene	0.009
sec-Butylbenzene	0.007
1,3,5-Trimethylbenzene	0.026
o-Xylene	0.007
TPH (ppm)	ND

NOTES:

1. Sample was collected from soil boring B11-10 from 6 to 8 feet on 11/09/98.

2. Those constituents not listed above were ND.

ANALYTICAL REPORT 1-84388

for

K.E.I. Consultants, Inc.

Project Manager: Theresa Nix

I

Project Name: Monument 11

Project Id: 610057-2-11

December 8, 1998

 11381
 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281)
 589-0692
 Fax (281)
 589-0695

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallos - San Antonio - Latin America

December 8, 1998

Project Manager: Theresa Nix K.E.I. Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-84388 Project Name: Monument 11 Project ID: 610057-2-11 Project Address: Lea Co., NM

Dear Theresa Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-84388. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-84388 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISO/IEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Eddie L. Clemons, II

QA/QC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

ANALYTICAL CHAIN OF CUSTODY REPORT CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: Monument 11

Project ID: 610057-2-11

Project Manager: Theresa Nix Project Location: Lea Co., NM

Xénco COC#: 1-84388

Date Received in Lab: Nov 13, 1998 10:00 by LY XENCO contact : Carlos Castro/Karen Olson

							Dafe	Date and Time	
						-			
Field ID	Lab. ID	Method	Method	l Inits	Turn	Sample	Addition	-	
		Name	٩	2	Around	Collected	Requested	Extraction	Analvsis
1 B11-10	184388-001 BTFX	BTFX	CM. DAG						
			0+0-140	udd	l days	Nov 9, 1998 10:15		Nov 17, 1998 by HL	Nov 17. 1998 16:42 bv HI
7		TPH8015M-D	SW-846 8015 M	malka		10.0 4000 40 4F			
				Ru/Rin	r udys	NOV 9, 1998 10:15		Nov 19, 1998 by RK	Nov 20, 1998 00:03 by MM
		VOA (8260)	FPA1117/8760	malka		M 0 4000 40 40			
				sken I Svisio		NOV 9, 1998 10:15	Nov20,1998 13:00	Dec 1, 1998 by CCE	NOV 9, 1998 10:15 NOV20,1998 13:00 Dec 1, 1998 by CCE Dec 1, 1998 14:45 hy CCF
4		SPLP TPH	FPA			1			
			- 1	Indd	r uays II	NOV 9, 1998 10:15	NOV 9, 1998 10:15 NOV20,1998 13:00 NOV 24, 1998 by EZ	Nov 24, 1998 by EZ	Nov 24, 1998 12:30 hv FZ
<u>0</u>		SPLP-SV(TCL)	SW846-111702					•	
		1		uyır	l ays	NOV 9, 1998 10:15	NOV 9, 1998 10:15 Nov20, 1998 13:00 Dec 1, 1998 by SS	Dec 1, 1998 by SS	Dec 3, 1998, 02:57 hv MM
6	184388-002 RTFX	RTFX	CIAL BAC		Γ				
		2	0+0-440	шdd	/ days	Nov 9, 1998 11:00		Nov 17, 1998 by HL	Nov 17, 1998, 16-24 hv HI
7		TPHR015M.D	CW DIE OUTE M						
			W CI NO 0+0-110	ing/kg / days		Nov 9, 1998 11:00		Nov 19, 1998 by RK	Nov 20, 1998, 00-23 hv MM

Page

i.

i I I

ļ

K.E.I. Consultants, Inc. Project Name: Monument 11

Project ID: 610057-2-11 Project Manager: Theresa Nix Project Location: Lea Co., NM

Date Received in Lab : Nov 13, 1998 10:00 Date Report Faxed: Dec 8, 1998 xenco contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	B1 6	88 00 1-10 i-8' olid 98 10		E	4388 00 311-10 20-23' Solid 9/98 11				
TPH-DRO (Diesel) EPA 8015 M		11/20/98 mg/kg		R.L.	11/20/98 mg/kg		R.L.			
Total Petroleum Hydrocarbons			5910	(100)		466	(25.0)			
BTEX EPA 8021B	Analyzed: Units:	11/17/98		R.L.	11/17/98 ppm		R.L.	<u> </u>		
Benzene		1	0.83	(0.20)		0.76	(0.10)			
Toluene			1.51	(0.20)		0.46	(0.10)			
Ethylbenzene			2.44	(0.20)		0.68	(0.10)			
m,p-Xylene			4.02	(0.40)		1.16	(0.20)			
o-Xylene			1.97	(0.20)	·····	0.55	(0.10)			
Total BTEX				10.770			3.610			
SPLP-Semivolatiles	Analyzed:	12/02/09				- <u></u>				
EPA1312/8270	Units:			R.L.						
Acenaphthene		-	005	(0.005)						
Acenaphthylene				(0.005)	<u> </u>		·	<u></u>		
Anthracene				(0.005)						·······
Benz(a)anthracene	z(a)anthracene zo(a)pyrene			(0.005)						
Benzo(a)pyrene				(0.005)						
Benzo(b)fluoranthene			005 (0.005)						
Benzo(g,h,i)perylene	l	< 0.(005 (0.005)					~	
Benzo(k)fluoranthene		< 0.0	005 (0.005)		·····		<u> </u>		
4-Bromophenyl-phenylether		< 0.0	005 (0.005)				·····		
Butyl benzyl phthalate		< 0.0	005 (0.005)						
Carbazole		< 0.0	005 (0.005)	··	····-		··		
4-Chloro-3-methylphenol		< 0.0	005 (0.005)	·······					
4-Chloroaniline		< 0.0	005 (0.005)						······································
2-Chloronaphthalene		< 0.0	005 (0.005)				<u></u>		
2-Chlorophenol		< 0.0	005 (0.005)						
4-Chlorophenyl-phenyl ether				0.005)	·					
Chrysene				0.005)						
Di-n-butyl phthalate				0.005)						
Di-n-octylphthalate			_	0.005)						
Dibenz(a,h)anthracene				0.005)						
Dibenzofuran				0.005)						
1,2-Dichlorobenzene				0.005)						
1,3-Dichlorobenzene				0.005)			[
1,4-Dichlorobenzene		< 0.0	05 (0	0.005)						
This report summary, and the entire report ise of K.E.I. Consultants, Inc The interpretations and results expressed (ENCO Laboratories, Xenco Laboratories,	through this a	nalytical repo	ort rep	resent ti	he best jud	gment o	of C	E		Clemons, II COManager

K.E.I. Consultants, Inc. Project Name: Monument 11

Project ID: 610057-2-11 Project Manager: Theresa Nix

Project Location: Lea Co., NM

Date Received in Lab : Nov 13, 1998 10:00 Date Report Faxed: Dec 8, 1998 xenco contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	184388 001 B11-10 6-8' Solid 11/09/98 10:15	184388 002 B11-10 20-23' Solid 11/09/98 11:00		
SPLP-Semivolatiles	Analyzed:	12/03/98 R.L.			
EPA1312/8270	Units:				
3,3'-Dichlorobenzidine	L	< 0.005 (0.005)			
2,4-Dichlorophenol		< 0.005 (0.005)			
Diethyl phthalate		< 0.005 (0.005)			
2,4-Dimethylphenol		< 0.005 (0.005)		1	
Dimethyl phthalate		< 0.005 (0.005)			
4,6-Dinitro-2-methylphenol		< 0.013 (0.013)			
2,4-Dinitrophenol		< 0.013 (0.013)			
2,4-Dinitrotoluene		< 0.005 (0.005)		<u> </u>	
2,6-Dinitrotoluene		< 0.005 (0.005)	<u> </u>		
Fluoranthene		< 0.005 (0.005)			
Fluorene		< 0.005 (0.005)			1
Hexachlorobenzene		< 0.005 (0.005)			
Hexachlorobutadiene		< 0.005 (0.005)			
Hexachlorocyclopentadiene		< 0.005 (0.005)			•
Hexachloroethane		< 0.005 (0.005)			
Indeno(1,2,3-cd)pyrene		< 0.005 (0.005)			
Isophorone		< 0.005 (0.005)			
2-Methylnaphthalene		< 0.005 (0.005)	·····		
2-Methylphenol		< 0.005 (0.005)			
4-Methylphenol		< 0.005 (0.005)			
N-Nitrosodi-n-propylamine		< 0.005 (0.005)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodiphenylamine		< 0.005 (0.005)			
Naphthalene		< 0.005 (0.005)			
2-Nitroaniline		< 0.013 (0.013)			
3-Nitroaniline		< 0.013 (0.013)			
4-Nitroaniline		< 0.013 (0.013)			
Nitrobenzene		< 0.005 (0.005)		······································	
2-Nitrophenol		< 0.005 (0.005)		<u> </u>	
4-Nitrophenol		< 0.005 (0.005)			
Pentachlorophenol		< 0.013 (0.013)		· · · <u>· · · · · · · · · · · · · · · · </u>	
Phenanthrene		< 0.005 (0.005)		<u>. </u>	
Phenol		< 0.005 (0.005)			
Pyrene		< 0.005 (0.005)			· · · · · · · · · · · · · · · · · · ·
1,2,4-Trichlorobenzene		< 0.005 (0.005)			
2,4,5-Trichlorophenol		< 0.013 (0.013)			

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II

QA/QC Manager

K.E.I. Consultants, Inc. Project Name: Monument 11

Project ID: 610057-2-11 Project Manager: Theresa Nix

Project Location: Lea Co., NM

Date Received in Lab : Nov 13, 1998 10:00 Date Report Faxed: Dec 8, 1998 xenco contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	184388 001 B11-10 6-8' Solid 11/09/98 10:15	184388 002 B11-10 20-23' Solid 11/09/98 11:00		
SPLP-Semivolatiles	Analyzed:	12/03/98 R.L.			
EPA1312/8270	Units:	mg/L			
2,4,6-Trichlorophenol		< 0.005 (0.005)			
bis(2-Chloroethoxy) methane	•	< 0.005 (0.005)			
bis(2-Chloroethyl) ether	<u></u>	< 0.005 (0.005)		1	
bis(2-Chloroisopropyl) ether		< 0.005 (0.005)		· · · · · · · · · · · · · · · · · · ·	
bis(2-Ethylhexyl) phthalate		< 0.005 (0.005)			
SPLP Volatiles	Analyzed:	12/01/98 R.L.	<u></u>	·	
EPA 8260	Units:				
Benzene		< 0.005 (0.005)			1
Bromobenzene		< 0.005 (0.005)	<u> </u>		
Bromochloromethane		< 0.005 (0.005)			
Bromodichloromethane		< 0.005 (0.005)		[
		< 0.005 (0.005)			
Bromomethane					
Carbon tetrachloride		< 0.005 (0.005)			
Chlorobenzene		< 0.005 (0.005)			1
Chlorodibromomethane		< 0.005 (0.005)			
Chloroethane		< 0.010 (0.010)			· · · · · · · · · · · · · · · · · · ·
Chloroform		< 0.005 (0.005)		· ·	
Chloromethane		< 0.010 (0.010)			
2-Chlorotoluene		< 0.005 (0.005)			
4-Chlorotoluene		< 0.005 (0.005)			
1,2-Dibromo-3-chloropropane		< 0.005 (0.005)			
1,2-Dibromoethane		< 0.005 (0.005)			
Dibromomethane		< 0.005 (0.005)			
1,2-Dichlorobenzene		< 0.005 (0.005)			
1,3-Dichlorobenzene		< 0.005 (0.005)		······································	
1,4-Dichlorobenzene		< 0.005 (0.005)			
Dichlorodifluoromethane		< 0.005 (0.005)			
1,1-Dichloroethane		< 0.005 (0.005)			
1,2-Dichloroethane		0.010 (0.005)			
1,1-Dichloroethene		< 0.005 (0.005)			
1,2-Dichloropropane		< 0.005 (0.005)			
1,3-Dichloropropane		< 0.005 (0.005)			
2,2-Dichloropropane		< 0.005 (0.005)			

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc.,

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II

QA/QC Manager

K.E.I. Consultants, Inc. Project Name: Monument 11

Project ID: 610057-2-11

Project Manager: Theresa Nix Project Location: Lea Co., NM Date Received in Lab : Nov 13, 1998 10:00 Date Report Faxed: Dec 8, 1998 XENCO contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix:	184388 001 B11-10 6-8' Solid	184388 002 B11-10 20-23' Solid		
	Sampled:	11/09/98 10:15	11/09/98 11:00		ļ
SPLP Volatiles	Analyzed:	12/01/98 R.L.			
EPA 8260	Units:	mg/L			
1,1-Dichloropropene		< 0.005 (0.005)			
Ethylbenzene		0.014 (0.005)			
Hexachlorobutadiene		< 0.005 (0.005)			
Isopropylbenzene (Cumene)		0.006 (0.005)			
MTBE		< 0.010 (0.010)			
Methylene chloride		< 0.010 (0.010)			
Naphthalene		< 0.005 (0.005)			
Styrene		< 0.005 (0.005)			
1,1,1,2-Tetrachloroethane		< 0.005 (0.005)			
1,1,2,2-Tetrachloroethane		< 0.005 (0.005)			
Tetrachloroethene		< 0.005 (0.005)		······································	
Toluene		0.009 (0.005)			
1,2,3-Trichlorobenzene		< 0.005 (0.005)		· · · · · · · · · · · · · · · · · · ·	
1,2,4-Trichlorobenzene		< 0.005 (0.005)			
1,1,1-Trichloroethane		< 0.005 (0.005)	<u></u>		
1,1,2-Trichloroethane		< 0.005 (0.005)			
Trichloroethene		< 0.005 (0.005)	·		
Trichlorofluoromethane		< 0.005 (0.005)			
1,2,3-Trichloropropane		< 0.005 (0.005)			·····
1,2,4-Trimethylbenzene		< 0.005 (0.005)	<u> </u>		· · · · · · · · · · · · · · · · · · ·
1,3,5-Trimethylbenzene		0.026 (0.005)		·····	
Vinyl chloride		< 0.005 (0.005)			
cis-1,2-Dichloroethene		< 0.005 (0.005)			
cis-1,3-Dichloropropene		< 0.005 (0.005)			· · · · · · · · · · · · · · · · · · ·
m,p-Xylene		< 0.005 (0.005)			
n-Butylbenzene		< 0.005 (0.005)			
n-Propylbenzene		< 0.005 (0.005)			
o-Xylene	ł	0.007 (0.005)			
p-Isopropyltoluene (p-Cymene)		0.007 (0.005)			
sec-Butylbenzene		0.007 (0.005)			<u> </u>
tert-Butylbenzene		< 0.005 (0.005)			
trans-1,2-Dichloroethene		< 0.005 (0.005)		<u> </u>	<u></u>
trans-1,3-Dichloropropene	<u>+</u>	< 0.005 (0.005)			

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II

QA/QC Manager

Page 4

K.E.I. Consultants, Inc. Project Name: Monument 11

Project ID: 610057-2-11

Project Manager: Theresa Nix Project Location: Lea Co., NM Date Received in Lab : Nov 13, 1998 10:00 Date Report Faxed: Dec 8, 1998 xenco contact : Carlos Castro/Karen Olson

Analysis Requested	Lab ID: Field ID: Depth: Matrix: Sampled:	184388 001 B11-10 6-8' Solid 11/09/98 10:15	184388 002 B11-10 20-23' Solid 11/09/98 11:00	
SPLP TPH	Analyzed:	11/24/98 R.L.		
1312/418.1	Units:	ppm		
Total Petroleum Hydrocarbons		< 0.6 (0.6)		

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, II

QA/QC Manager

Certificate Of Quality Control for Batch :: 18A02D56

SW- 846 8015 M TPH- DRO (Diesel)

Date Validated: Nov 20, 1998 11:45 Date Analyzed: Nov 19, 1998 19:28 Analyst: MM Matrix: Solid

			BLANK SPI	KE ANALYS	SIS		
	(A) Blank	[B] Blank Spike	(C) Blank	[D]	[E] QC	(F) LIMITS	[G]
Parameter	Result	Result	Spike Amount	Detection Limit	Blank Spike Recovery	Recovery	Qualifier
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	
Total Petroleum Hydrocarbons	< 5.00	124	100	5.00	124.0	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II QA/QC Manager

	18A02D56
	10
,	- History
	0
	1
	8
1	-
2	•
	••
	~
	<u> </u>
i.	U U
1	ب ا
1	6
	m i
A A A GAME CAR AND A A A A A A A A A A A A A A A A A A	
	•
	0
	4
	5
	9
1	
1	
	0
1	~
i	
1	>
ł	ىيە
1	
į	
	3
1	α
the family of the second	Certificate Of Quality Control for Batch: 1
1	
	~
1	U.
	-
l	a
ł	تب
ľ	3
i	- ii
l	
Í	-
1	T
l	
	<u> </u>
	\mathbf{O}
l	-

SW- 846 8015 M TPH- DRO (Diesel)

 Date Validated:
 Nov 20, 1998
 11:45

 Date Analyzed:
 Nov 19, 1998
 22:05

Analyst: MM Matrix: Solid

			MATF	RIX SPIKE /	MATRIX S	PIKE DUPL	MATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	RECOVERY			
	[Y]	[8]		[0]	[8]	Matrix	Ŀ	[6]	[H]	Ξ	5
	Sample	Matrix Spike Matrix Spike	Matrix Spike	Matrix		Limit	gc	СC	g	Matrix Spike	
	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative Matrix Spike	Matrix Spike	M.S.D.	Recovery Qualifier	Qualifier
Daramator			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%	
Total Petroleum Hydrocarbons	5.68	114	115	100	5.00	30.0	0.9	108.3	109.3	65-135	

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected N.D. = Below detection limit or not detected

Houston - Dallas - San Antonio

Eddie L. Clemons, I QA/QC Manager

Page

SW- 846 5030/8021B BTEX

Date Validated: Nov 18, 1998 15:00 Date Analyzed: Nov 17, 1998 12:21 Analyst: HL

Matrix: Solid

l				BLANK SPII				
		[A]	[B]	[C]	[D]	[E]	(F)	[G]
		Blank	Blank Spike	Blank		QC	LIMITS	1
	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
				Amount	Limit	Recovery	Range	
		ppm	ppm	ppm	ppm	%	%	
	Benzene	< 0.0010	0.1080	0.1000	0.0010	108.0	65-135	
	Toluene	< 0.0010	0.1050	0.1000	0.0010	105.0	65-135	
	Ethylbenzene	< 0.0010	0.1030	0.1000	0.0010	103.0	65-135	
	m,p-Xylene	< 0.0020	0.2100	0.2000	0.0020	105.0	65-135	
	o-Xylene	< 0.0010	0.1030	0.1000	0.0010	103.0	65-135	

Blank Spike Recovery [E] ≈ 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II QA/QC Manager

Certificate Of Quality Control for Batch: 18A23E79

EPA1312/8260 SPLP Volatiles

 Date Validated:
 Dec
 3, 1998
 12:00

 Date Analyzed:
 Dec
 1, 1998
 19:45

Analyst: CCE Matrix: Solid

	l		:	BLANK SPI	KE ANALY	SIS		
		[A]	(B)	[C]	[D]	[E]	[F]	[G]
1	Parameter	Blank Result	Blank Spike Result	Blank Spike Amount	Detection Limit	QC Blank Spike Recovery	LIMITS Recovery Range	Qualifier
٦	•	mg/kg	mg/kg	mg/kg	mg/kg	%	%	
ľ	Benzene	< 0.0010	0.0383	0.0500	0.0010	76.6	66-142	
٩	Chlorobenzene	< 0.0010	0.0400	0.0500	0.0010	80.0	60-133	
	1,1-Dichloroethene	< 0.0040	0.0358	0.0500	0.0040	71.6	59-172	
	Toluene	< 0.0010	0.0395	0.0500	0.0010	79.0	59-139	
I	Trichloroethene	< 0.0030	0.0372	0.0500	0.0030	74.4	62-137	

Blank Spike Recovery [E] = 100°(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

ddie L. Clemons, II

QA/QC Manager

Investor - Davins - Son Antonia

Project ID Collection Collect	Lab Only Additions	-	0 Working Days	Remarks	7		lyc/	05 5 h	70	ət		10	5 A	iu IS		3	3	4	Ŷ	2	<u>o</u>		Final Fax Due:		lesting them. All Terms Apply	, 12
Queservoltives Queservoltivervoltivervoltives Queservoltivervolti	ervices ar XENCO .com Work Order No:	4S	14d 21d Standard TAT is 1 ported in 5-7 Working Days	<u> </u>			-						н арол	Ag :nbbA								s per COC: 0		a Package Due Date:	re Pre-Approved upon Requ	N2401476068
H+ASD A A A A A A A A B	& Tec	- 388						רבו ביו וכו	E1 /E/						XXX	XXX							16:00	Final Report Date	10:04 Rush Charges a	
	Com	Lab Only:	~				Other 624 80	12D6 205 254	.08) (2) (9)	10 90660 850	83. 8019 108	8100 1911 051 051	8 2220 8 1002 41 2052 40	втех by втех-мтв прн by т г yd ич рень by	l	IceX X						Date	101/11			Ĉ.
1078 Morrison Road, Sulte D. 5309 Wurzbach Road, Sulte D. 1078 Morrison Road, Sulte D. 2 MM 2 MM	iausian i <i>x / / / ua</i> z zał	Phone (2) 460-37		Prolact Diractor (PD)	NUKE Hawther	Fax Star Con	X		Proj. PM)	hich	ק	Poss Me	ieiz je r b 2 M	Matrix A Compos Grab	S X /	S X 1 822 6						allnquished to (Initials and Sig	1	- 1	A HIGH A REAL	I I
	5309 Wurzbach Road, Sulte 10 11078 Morrison Road, Sulte D,	Careultants	Nome U Previously done at XENCO のロンレルル・シャート		- Y 1		g 🔲 include Invoice with Fi	P.O.N	Special DLs (RR I RR II DW QAPP See Lab PM Call		ring yours	CA Slentz Signature.	, , , , , , , , , , , , , , , , , , ,		9/98 10:15	lei Fi8					 			0		() HCI pH<2 (H), H2304 pH<2

QA/QC PROCEDURES

DECONTAMINATION OF EQUIPMENT

Cleaning of drilling equipment was the responsibility of the drilling company. In general, the cleaning procedures consisted of using high pressure steam to wash the drilling and sampling equipment prior to drilling and prior to starting each hole. Prior to use, the sampling equipment was cleaned with Liqui-Nox detergent and rinsed with distilled water.

SOIL SAMPLING

Samples of the subsurface soils were obtained utilizing an air rotary drilling rig with split spoon samples at discrete intervals. Representative soil samples were divided into 2 separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil sample was placed in a disposable sample bag. The bag was labeled and sealed for head-space analysis using a photo-ionization detector (PID) calibrated to a 100 ppm isobutylene standard. Each sample was allowed to volatilize for approximately 30 minutes at ambient temperature prior to conducting the analysis.

The other portion of the soil sample was placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container was filled to capacity to limit the amount of head-space present. Each container was labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler was sealed for shipment to the laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

Soil samples were express mailed to Xenco Laboratories of San Antonio, Texas for BTEX, TPH-DRO, SPLP SVOC, SPLP VOC, and SPLP TPH analyses using the methods described below. Soil samples were prepared for analysis by the analytical laboratory for BTEX, TPH, and SPLP concentrations within 14 days following the collection date.

The soil samples were analyzed in accordance with the methods as follows:

- BTEX concentrations in accordance with EPA Method SW846-8021B
- TPH concentrations in accordance with modified EPA Method 8015-DRO
- SPLP TPH concentrations in accordance with EPA Method 1312/418.1
- SPLP VOC concentrations in accordance with EPA Method SW846-1312/8260
- SPLP SVOC concentrations in accordance with EPA Method SW846-1312/8270