2R -

GENERAL CORRESPONDENCE

YEAR(S): 2006-2002

Mesa Com #1 File

VonGonten, Glenn, EMNRD

From:	Biagi, Chris [Chris.Biagi@dvn.com]
Sent:	Friday, August 11, 2006 9:43 AM
То:	VonGonten, Glenn, EMNRD
Cc:	Sanchez, Victoria; Mayberry, Don
Subject:	Mesa Com #1 File
Attachments	: Mesa Com 1 - Devon File.pdf

Glenn – please find attached a .pdf file containing those documents regarding the above referenced site which you had indicated to Ms. Sanchez were missing from your files. As with your group, we have had personnel changes since this work was conducted and no one associated with the project is currently employed with Devon. I appreciate your help on this and please contact me if you have any questions. Thanks, Chris

<<Mesa Com 1 - Devon File.pdf>>

Chris Biagi, REM Senior Remediation Specialist Devon Energy Corporation 405.228.8327 - office 405.850.2649 - cell 405.552.7839 - fax

Confidentiality Warning: This message and any attachments are intended only for the use of the intended recipient(s), are confidential, and may be privileged. If you are not the intended recipient, you are hereby notified that any review, retransmission, conversion to hard copy, copying, circulation or other use of all or any portion of this message and any attachments is strictly prohibited. If you are not the intended recipient, please notify the sender immediately by return e-mail, and delete this message and any attachments from your system.

To: Mike Stubblefield

September 25, 2002

New Mexico Oil Conservation Division – District 2 1301 W. Grand Avenue Artesia, NM 88210 Attn: Mike Stubblefield

Re: Complaint No. 30-005-60690 Mesa State Com. #1

Dear Mr. Stubblefield:

The following is a workplan to investigate a spill area near the Mesa State Com. # 1 in Chaves County, NM:

- 1. Soil samples will be taken at 1-foot intervals from one boring in the central portion of the lakebed in which the spill occurred.
- 2. Samples will be analyzed in the laboratory for total chlorides as part of the full salinity range analysis. The results will then be reviewed to determine if further sampling is necessary (according to guidance given by NMOCD personnel, if chloride levels less than 250 ppm are measured at any depth, no further sampling will be needed).
- 3. A water sample will be taken from the nearby windmill owned by the Turkey Track Ranch and analyzed for chlorides.

Once we have NMOCD approval of this plan, we will schedule the work. If you have any questions, please call me at (713) 265-6832.

Yours very truly,

Kent Weissling

Kent Weissling, PE Environmental & Special Projects Manager

cc: Tim Smith Eric Grossman Derold Maney

> Laurie Cocharo Exco Resources, Inc. 1775 Sherman Street, Suite 2650 Denver, CO 80203

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

GARY E. JOHNSON Governor Betty Rivera Cabinet Secretary Lori Wrotenbery Director Oil Conservation Division

10/22/2002

Ocean Energy Inc. Att: Kent Weissling 1001 Fanning, Suite 1600 Houston, Texas 77002-6794

Re: Workplan received 10/22/2002 Complaint of water contamination/Lewis Derrick 30-015-60690 Mesa State Com. #1

Dear Kent Weissling,

O.C.D. has received the Workplan provided by Ocean Energy Inc. dated September 25, 2002.

The workplan as submitted by Ocean Energy Inc. is accepted with no addition requirements attached.

Please notifie N.M.O.C.D. 24 hours in advace of soil boring actions & soil or water sampling events taken for analyticals that will be conducted at the Mesa State Com. #1, therefore giving O.C.D. the opportunity to witness.

Sincerely,

millshell

Mike Stubblefield

Envir. Eng. Spec.

N.M.O.C.D.

January 13, 2003

New Mexico Energy, Minerals and Natural Resources Department Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Attn: Roger Anderson

Re: Complaint No. 30–005-60690 Mesa State Com. #1

Dear Mr. Anderson:

This letter will respond to the letter dated May 24, 2002 from Mr. Mike Stubblefield to Ms Jeanie McMillian at Ocean Energy (Ocean) in connection with the above-referenced well. That letter referred to a complaint which had apparently been made by Mr. Lewis Derrick, who is the foreman for a ranching operation known as the Turkey Track Ranch.

Personnel from the Turkey Creek Ranch had filed a complaint stating that a livestock water well (Turkey Creek Ranch water well) in Section 31, T15S, R28E had gone salty. The NMOCD notified Ocean that a salt water spill had occurred at the Mesa State Com #1 wellsite in 1980 during drilling operations, and requested that Ocean investigate to determine if the spill was the cause of the water well problems.

At the outset, please be advised that Ocean was not the operator of this well until 2002. Thus, Ocean personnel do not have personal knowledge of the facts and circumstances surrounding the drilling of well. or its operational history, and the information that we are providing in this letter is based on our review of historical documents, and other investigative efforts.

Apparently, the Mesa State Com #1 was drilled by Depco, Inc. in 1980. When drilling reached a depth of approximate 1138', the well apparently began to flow back, and the produced water was then routed to a nearby playa lake. Once the well was under control, the water was pumped and trucked to a salt lake approximately 2 miles east. The affected soil and salt residue were then reportedly excavated and hauled to the salt lake for disposal.

After meeting with representatives from the New Mexico Department of Energy, Minerals and Natural Resources, Ocean began its investigation, consistent with the investigative work plan outlined in a letter dated September 25, 2002, sent by the undersigned to Mr. Mike Stubblefield. Ocean's investigation in November 2002 consisted of sampling the soil at one-foot intervals at a central point in the spill area and analyzing the samples for chlorides. The spill area is located approximately 1700' NW of the Turkey Creek Ranch water well. During soil boring activities,

groundwater was encountered at approximately 6' below ground surface. A sample was collected for major cation and anion analysis. Also, a sample was collected from the Turkey Creek Ranch water well for analysis. A copy of the sampling report is attached, along with previous water analyses of the Turkey Creek Ranch water well.

The soil and water analyses from the spill area showed elevated chlorides and other constituents. However, the sample from the Turkey Creek Ranch water well, while showing elevated chlorides, Total Dissolved Solids (TDS), etc., was much improved compared to a sample analyzed in May 2002. Over that six month period, chlorides in the well water dropped from 3040 mg/L to 1790 mg/L and TDS decreased from 8825 mg/L to 7245 mg/L. The analysis from November 2002 compared closely to a sample taken in September 2002. It should also be noted that the chloride levels measured in the water well were much lower than the shallow groundwater in the spill area. The water analyses from the water well and the groundwater sample are shown in Table 1.

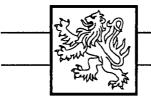
Ocean requests that neither the NMOCD nor the New Mexico Energy, Minerals and Natural Resources Department take any further action in connection with this complaint, based on the foregoing, and for the following reasons:

- The spill occurred in a dry playa lake which may have previously contained salt water and therefore could have contributed to the elevated chloride levels. There are numerous dry playas and salt lakes in the area.
- Based on the relatively small size of the playa in which the spill occurred, the groundwater encountered at 6' is most likely an isolated lens of no beneficial use. There are no known water wells in the area producing from this depth.
- The Turkey Creek Ranch water well produces from a depth of approximately 50' while the groundwater in the spill area was found at 6'. Based on the differences in the water analyses and their corresponding depths, there doesn't seem to be a connection between the two aquifers.
- The Turkey Creek Ranch well water quality has improved considerably over the past six months. In fact, cattle have recently been observed drinking from the well's stock tank. This improvement could be due to a recent increase in rainfall. It is fairly common for well water quality to decline during drought conditions.

If you have any questions, please call me at (713) 265-6832.

Yours very truly,

Kent Waissby


Kent Weissling, PE Environmental & Special Projects Manager

cc: Mike Stubblefield
 New Mexico Oil Conservation Division - District 2
 1301 W. Grand Avenue
 Artesia, New Mexico 88210

Laurie Cocharo Exco Resources, Inc. 1775 Sherman Street, Suite 2650 Denver, Colorado 80203

Highlander Environmental Corp.

Midland, Texas

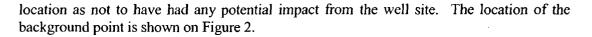
November 26, 2002

Mr. Kent M. Weissling Ocean Energy, Inc. Environmental & Special Projects Manager 1001 Fannin, Suite 1600 Houston, Texas 77002-6794

RE: Mesa State Com #1 Spill Assessment, Chaves County, New Mexico.

Dear Mr. Weissling:

Highlander Environmental Corp. (Highlander) was contacted by Mr. Kent Weissling, with Ocean Energy (Ocean), to perform an investigation of an historic produced water spill. The spill occurred approximately 22 years ago at the Mesa State Com #1 in Chaves County, New Mexico, when the well flowed back during drilling operations. The produced water flowed into a nearby dry playa, where it was contained and transferred to a salt lake approximately 2 miles to the east for disposal. The well is located in the SE/4 Section 31, T-15-S, R-28-E, Chaves County, New Mexico (Site). The general location is shown on Figure 1.


Highlander personnel met onsite with Mr. Kent Weissling of Ocean and Mr. Mike Stubblefield of the New Mexico Oil Conservation Division (NMOCD) on November 14, 2002. The scope of work consisted of installing a single auger hole in the center of the playa bed to collect subsurface soil samples for chloride evaluation, installation of one auger hole north of the location for background chloride evaluation, and collecting a water sample from the Derrick windmill for major anion and cation analysis.

One auger hole (AH-1) was placed south-southeast of the tank battery in the playa to an approximate depth of 6.5' below ground surface (BGS) as shown in Figure 2. Soil samples were collected at 1-foot intervals for potential laboratory testing. Water was encountered at approximately 6.0' BGS. It was decided to bail a sample of water from this auger hole for major anion and cation analysis. A clean, dedicated bailer was used to collect a water sample from this auger hole. After sampling, the auger hole was backfilled with bentonite and hydrated.

Two background samples (0-1.0' and 1.0'-2.0' BGS) were take in an area north of the location for background chloride evaluation. The location was sufficiently far from the

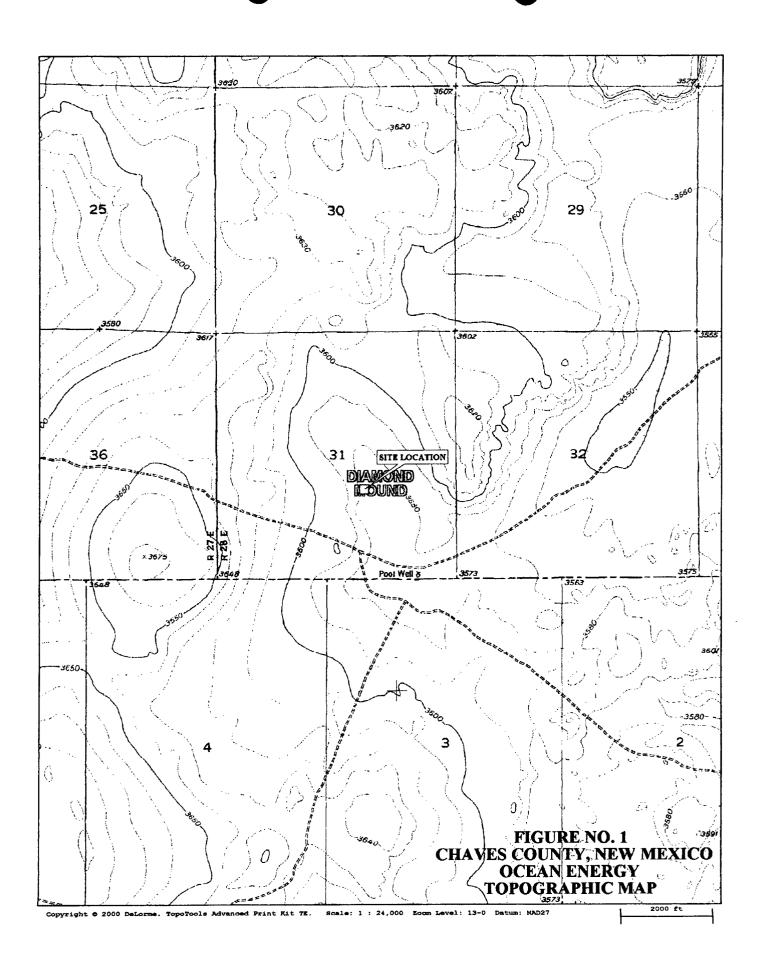
Midland, Texas 79705

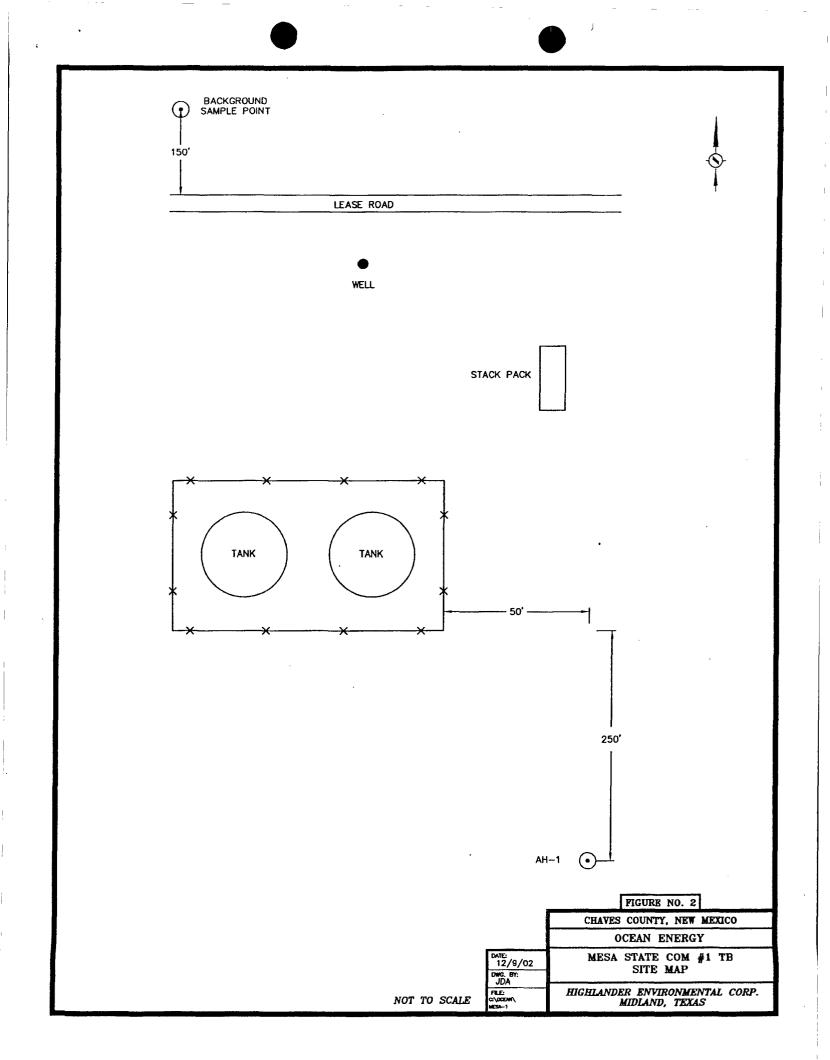
(915) 682-4559

One sample of water was collected for the Derrick windmill. It appeared at the time of sampling that the windmill was not pumping efficiently, however, sufficient sample was collected over time for full analysis of major anions, cations and total dissolved solids.

All samples collected for laboratory analysis were preserved according to EPA protocols and analyzed within appropriate holding times. Selected soil samples were evaluated for chloride by method 9253. The laboratory reports and the chain of custody documentation are included in Appendix A.

If you require any additional information or have any questions or comments concerning the assessment, please call.


Very truly yours,


m

Timothy M. Reed, REM Vice President

Midland, Texas

TraceAnalysis, Inc.	6701 Aberdeen	Ave., Suite 9	Lubbock, TX 79424-1515	(806) 794-1296
Report Date: November 27 1868	,	Number: A02111802 N.M. Mesa State Com	#1	Page Number: 1 of 2 N/A
		Summary Rep	port	

Tim Reed Highlander Environmental Services 1910 N. Big Spring St. Midland, TX 79705

Report Date:

November 27, 2002

Order ID Number: A02111802

Project Number: 1868 Project Name: Charez Co. N.M. Mesa State Com #1 Project Location: N/A

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
213670	AH-1 Water Sample	Water	11/14/02	12:05	11/16/02
213671	Derrick Windmill	Water	11/14/02	12:40	11/16/02

0 This report consists of a total of 2 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 213670 - AH-1 Water Sample

Param	Flag	Result	Units
Hydroxide Alkalinity		<1.0	mg/L as CaCo3
Carbonate Alkalinity		<1.0	mg/L as CaCo3
Bicarbonate Alkalinity		100	mg/L as CaCo3
Total Alkalinity		100	mg/L as CaCo3
Specific Conductance		94200	μ MHOS/cm
Hardness		28968	mg/L as CaCo3
Chloride		68900	mg/L
Fluoride		<10.0	mg/L
Nitrate-N		54.2	mg/L
Sulfate		18100	mg/L
Dissolved Calcium		1030	mg/L
Dissolved Magnesium		6410	mg/L
Dissolved Potassium		1030	mg/L
Dissolved Sodium		34200	mg/L
Total Dissolved Solids		124800	mg/L
рН	1	7.2	s.u.

Sample: 213671 - Derrick Windmill

Param	Flag	Result	Units
Hydroxide Alkalinity		<1.0	mg/L as CaCo3
Carbonate Alkalinity		<1.0	mg/L as CaCo3
Bicarbonate Alkalinity		138	mg/L as CaCo3
Total Alkalinity		138	mg/L as CaCo3
			Continued on next page

¹The sample was received out of holding time

This is only a summary. Please, refer to the complete report package for quality control data.

TraceAnalysis, Inc.	6701 Aberdeen Ave., Suite 9	Lubbock, TX 79424-1515	(806) 794-1296
Report Date: November 1868	27, 2002 Order Number: A021118 Charez Co. N.M. Mesa State		Page Number: 2 of 2 N/A
Sample 213671 continued	ł	· · · · · · · · · · · · · · · · · · ·	
Param	Flag	Result	Units
Specific Conductance		8940	µMHOS/cm
Hardness		3674	mg/L as CaCo3
Chloride		1790	mg/L
Fluoride		2.00	mg/L
Nitrate-N		12.42	mg/L
Sulfate		3740	mg/L
Dissolved Calcium		581	mg/L
Dissolved Magnesium		540	mg/L
Dissolved Potassium		68.6	mg/L
Dissolved Sodium		710	mg/L
Total Dissolved Solids		7245	mg/L
pH	2	8.4	s.u.

²The sample was received out of holding time

This is only a summary. Please, refer to the complete report package for quality control data.

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 800+378+1295 806+794+1296 FAX 806+794+1298

155 McCutcheon, Suite H

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79932 888•588•3443 E-Mail: lab@traceanalysis.com 806•794•1296 F 915•585•3443 F

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

Analytical and Quality Control Report

Tim Reed Highlander Environmental Services 1910 N. Big Spring St. Midland, TX 79705 Report Date:

November 27, 2002

Order ID Number: A02111802

Project Number:1868Project Name:Charez Co. N.M. Mesa State Com #1Project Location:N/A

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
213670	AH-1 Water Sample	Water	11/14/02	12:05	11/16/02
213671	Derrick Windmill	Water	11/14/02	12:40	11/16/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 10 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Director

Report Date: November 27, 2002 1868

Order Number: A02111802 Charez Co. N.M. Mesa State Com #1

Analytical Report

Sample: 213 Analysis: Alkali Analyst: RS	670 - AH-1 Water Sam nity Analytical Method: Preparation Method:	E 310.1	QC Batch: Prep Batch:	QC25139 PB23368	Date Analyzed: Date Prepared:	11/25/02 11/25/02
Param	Flag	Result	Uni	ts	Dilution	RDL
Hydroxide Alkalini	ty	<1.0	mg/L as	CaCo3	1	1
Carbonate Alkalini	ty	<1.0	mg/L as	CaCo3	1	1
Bicarbonate Alkali	nity	100	mg/L as	CaCo3	1	4
Total Alkalinity	-	100	mg/L as	CaCo3	1	4
-	670 - AH-1 Water Sam ctivity Analytical Method: Preparation Method	SM 2510B	QC Batch: Prep Batch	•	Date Analyzed: Date Prepared:	11/19/02 11/19/02

Param	Flag	Result	Units	Dilution	RDL
Specific Conductance		94200	μ MHOS/cm	1	

Sample: 213670 - AH-1 Water Sample

Analysis: Analyst:	Hardness BC	2	cal Method: tion Method:	SM 2340I N/A	3 QC Batch: Prep Batch:	QC25183 PB23395	Date Analyzed: Date Prepared:	$\frac{11/26/02}{11/26/02}$
Param	F	ag	Result		Units	Ľ	Dilution	RDL
Hardness			28968	1	mg/L as CaCo3		1	1

Sample: 213670 - AH-1 Water Sample

Analysis:Ion Chromatography (IC) Analytical Method:E 300.0QC Batch:QC25076Date Analyzed:11/20/02Analyst:JSWPreparation Method:N/APrep Batch:PB23314 Date Prepared: 11/20/02

Param	Flag	Result	Units	Dilution	RDL
Chloride		68900	mg/L	5000	1
Fluoride		<10.0	mg/L	50	0.20
Nitrate-N		54.2	mg/L	50	0.20
Sulfate		18100	mg/L	1000	. 1

Sample: 213670 - AH-1 Water Sample

Analysis: Analyst:	Salts BC	Analytical Method: Preparation Method:	E 200.7 S 3005A	QC Batch: Prep Batch:	QC25182 PB23303	Date Analyzed: Date Prepared:	11/25/02 11/21/02
Param		Flag	Result	;	Units	Dilution	RDL
Dissolved (Calcium	······································	1030)	mg/L	1	0.50
Dissolved I	Magnesium	l	6410)	mg/L	1	0.50
Dissolved I	Potassium		1030)	mg/L	1	0.50
Dissolved S	Sodium		34200		mg/L	1	0.50

1868	te: Novemł	oer 27, 2	2002		er Number: A02 o. N.M. Mesa S	Page Number: 3 of 10 N/A			
Sample: Analysis: Analyst:	21367 TDS JSW	Analy	H-1 Water tical Method: ration Method	E 160.1	QC Batch: Prep Batch:	QC25065 PB23306	Date Analyzed: Date Prepared:	11/22/0 11/21/0	
Param			Flag	Re	esult	Units	Dilution	RDI	
Total Disso	lved Solids			124	1800	mg/L	100	10	
Sample: Analysis: Analyst:	pH .	Analytic	I-1 Water cal Method: tion Method:	E 150.1	QC Batch: Prep Batch:	QC25132 PB23357	Date Analyzed: Date Prepared:	11/18/0 11/18/0	
Param	F	lag	Resu		Units	Dilution		RDI	
pH		1	7.	.2	s.u.	1			
Sample: Analysis: Analyst:	21367 Alkalinity RS	7 An	errick Wind alytical Metho eparation Metho	od: E 310	.1 QC Batch Prep Batc		Date Analyzed: Date Prepared:	11/25/02 11/25/02	
Param			Flag	Result		Units	Dilution	RDI	
Hydroxide A				<1.0		∠ as CaCo3 ∠ as CaCo3	1		
Carbonate 🛛	Aikalınıtv			<1.0	mg/l	AS CAUDS	1		
Bicarbonate	e Alkalinity	, 		138 138	mg/I	as CaCo3 as CaCo3	1	4	
Bicarbonate Total Alkali Sample: Analysis:	e Alkalinity	l - De vity A	rrick Win c nalytical Meth reparation Me	138 138 imill nod: SM	mg/I mg/I 2510B QC Ba	as CaCo3 as CaCo3 tch: QC2502	1 1 1 Date Analyzed:	11/19/02	
Bicarbonate Total Alkali Sample: Analysis: Analyst:	e Alkalinity inity 21367 Conductiv	l - De vity A	nalytical Meth reparation Me	138 138 imill nod: SM	mg/I mg/I 2510B QC Ba Prep B	as CaCo3 as CaCo3 tch: QC2502	1 1 1 Date Analyzed:	11/19/02 11/19/02	
Bicarbonate Total Alkali Sample: Analysis: Analyst: Param	e Alkalinity inity 21367 Conductiv JSW	l - De vity A	nalytical Meth	138 138 Imill nod: SM thod: N/A	mg/I mg/I 2510B QC Ba Prep B	as CaCo3 as CaCo3 tch: QC2502 atch: PB2326	1 1 1 Date Analyzed: 4 Date Prepared:	11/19/02 11/19/02	
Bicarbonate Total Alkali Sample: Analysis: Analyst: Param Specific Con Sample: Analysis: Analyst: Param	e Alkalinity inity 21367 Conductiv JSW nductance 21367 Hardness BC	l - De vity A P	nalytical Meth reparation Me Flag rrick Wind ytical Method aration Method Resul	138 138 138 Imill hod: SM thod: N/A Result 8940 Imill :: SM 234 od: N/A t	mg/I mg/I 2510B QC Ba Prep B U μΜΙ 0B QC Batcl Prep Bat Units	as CaCo3 as CaCo3 tch: QC2502 atch: PB2326 Jnits IOS/cm h: QC25183 ch: PB23395	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/19/02 11/19/02 RDI 11/26/02 11/26/02 RDI	
Bicarbonate Total Alkali Sample: Analysis: Analyst: Param Specific Con Sample: Analysis: Analysis: Analysis: Analysis:	e Alkalinity inity 21367 Conductiv JSW nductance 21367 Hardness BC	l - De vity A P - De Anal Prep	nalytical Meth reparation Me Flag rrick Wind ytical Method aration Method	138 138 138 Imill hod: SM thod: N/A Result 8940 Imill :: SM 234 od: N/A t	mg/I mg/I 2510B QC Ba Prep B μΜΙ 0B QC Batcl Prep Bat	as CaCo3 as CaCo3 tch: QC2502 atch: PB2326 Jnits IOS/cm h: QC25183 ch: PB23395	1 1 2 1 Date Analyzed: 4 Date Prepared: 1 Date Analyzed: Date Prepared:	11/19/02 11/19/02 RDI 11/26/02 11/26/02	
Bicarbonate Total Alkali Sample: Analysis: Analyst: Param Specific Con Sample: Analysis: Analysis: Analyst: Param	e Alkalinity inity 213671 Conduction JSW nductance 213671 Hardness BC F 213671	l - De vity A P - De Anal Prep Flag	nalytical Meth reparation Me Flag rrick Wind ytical Method aration Method Resul 367 rrick Wind phy (IC) Analy	138 138 138 138 138 138 138 138 138 138	mg/I mg/I 2510B QC Ba Prep B U μMI 0B QC Batcl Prep Bat Units mg/L as CaCc d: E 300.0Q0	as CaCo3 as CaCo3 tch: QC2502 atch: PB2326 Jnits IOS/cm h: QC25183 ch: PB23395 J 33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/19/0: 11/19/0: RDI 11/26/02 11/26/02 RDI 1 1 d:11/20/02	
Bicarbonate Total Alkali Cample: Analysis: Analysis: Param Specific Con Sample: Analysis:	e Alkalinity inity 21367 Conductiv JSW nductance 21367 Hardness BC F 21367 In Chrom	l - De vity A P - De Anal Prep Flag	nalytical Meth reparation Me Flag rrick Wind ytical Method aration Method Resul 367 rrick Wind phy (IC) Analy	138 138 138 138 138 138 138 138	mg/I mg/I 2510B QC Ba Prep B U μMI 0B QC Batcl Prep Bat Units mg/L as CaCc d: E 300.0Q0	as CaCo3 as CaCo3 tch: QC2502 atch: PB2326 Jnits IOS/cm h: QC25183 ch: PB23395 J 33	1 1 1 Date Analyzed: 4 Date Prepared: Dilution 1 Date Prepared: Dilution Dilution 1 25076 Date Analyzed	11/19/0: 11/19/0: RDI 11/26/02 11/26/02 RDI 1 1 d:11/20/02	

¹The sample was received out of holding time

Report Date: 1868	November 27,	2002		Number: A02111802 N.M. Mesa State Com #1	Page Number: 4 of 10 N/A
Continued	Sample: 2136	671 Analysis:	Ion Chromato	graphy (IC)	
Param	Flag	Result	Units	Dilution	RDL
Fluoride	· · · · · · · · · · · · · · · · · · ·	2.00	mg/L	5	0.20
Nitrate-N		12.42	mg/L	5	0.20
Sulfate		3740	mg/L	100	1

Sample: 213671 - Derrick Windmill

Analysis:	Salts	Analytical Method:	E 200.7	QC Batch:	QC25182	Date Analyzed:	11/25/02	
Analyst: BC		Preparation Method:	S 3005A	Prep Batch:	PB23303	Date Prepared:	11/21/02	
Param	•	Flag	Result	,	Units	• Dilution	RDL	
Dissolved (Calcium	••••••••••••••••••••••••••••••••••••••	581		mg/L	1	0.50	
Dissolved 1	Magnesium		540	1	mg/L	1	0.50	
Dissolved I	Potassium		68.6	i	mg/L	1	0.50	
Dissolved S	Sodium	•	710)	mg/L	1	0.50	

Sample: 213671 - Derrick Windmill

Analysis: Analyst:	TDS JSW	Analytical Method: Preparation Method:	E 160.1 N/A	QC Batch: Prep Batch:	QC25065 PB23306	Date Analyzed: Date Prepared:	11/22/02 11/21/02
Param		Flag	. Resu	lt	Units	Dilution	RDL
Total Disso	olved Solids	5	724	15	mg/L	5	10

Sample: 213671 - Derrick Windmill

Analysis: Analyst:	pH RS		al Method: ion Method:	E 150.1 N/A	QC Batch: Prep Batch:	QC25132 PB23357	Date Analyzed: Date Prepared:	11/18/02 11/18/02
Param		Flag	Resu	lt	Units	Diluti	on	RDL
pH		2	8	.4	s.u.	1		1

²The sample was received out of holding time

Report Date: November 27, 2002 1868

Quality Control Report Method Blank

Method Blank	QCBatch:	QC25021		
Param	Flag	Results	Units	Reporting Limit
Specific Conductance	·····	11.0	μ MHOS/cm	
Method Blank	QCBatch:	QC25065		
Michiou Dialik	QODaton.	QC2000		
Param Total Dissolved Solids	Flag	Results	Units mg/L	Reporting Limit 10
Total Dissolved Solids		<10	mg/L	10
Method Blank	QCBatch:	QC25076		Reporting
Param	Flag	Results	Units	Limit
Chloride Fluoride Nitrate-N Sulfate		<1.0 <0.2 <0.2 <1.0	mg/L mg/L mg/L mg/L mg/L	1 0.20 0.20 1
Method Blank	QCBatch:	QC25139		
Param	Flag	Results	Units	Reporting Limit
Hydroxide Alkalinity		<1.0	mg/L as CaCo3	1
Carbonate Alkalinity		<1.0	mg/L as CaCo3	1
Bicarbonate Alkalinity		<4.0	mg/L as CaCo3	4
Total Alkalinity		<4.0	mg/L as CaCo3	4
Method Blank	QCBatch:	QC25182		Dec estis a
Param	Flag	Results	Units	Reporting Limit
Dissolved Calcium	, indg	<0.5	mg/L	0.50
Dissolved Magnesium		0.614	mg/L	0.50
Dissolved Potassium		1.06	mg/L	0.50
Dissolved Sodium		0.911	mg/L	0.50

Method Blank

QCBatch: QC25183

Report Date: No 1868	wember 27, 2002		er: A02111802 Mesa State Com #1	Page Number: 6 of 10 N/A
Param	Flag	Results	Units	Reporting Limit
Hardness		< 0.5	mg/L as CaCo3	1

Quality Control Report Duplicate Samples

RPD RPD Limit 4 20	Dilution F	ТТ::4 Т	nple				
4 20	1		sult	Result R	Flag	Param Specific Conductance	
	1	AHOS/cm	μN	19800 1		Specific Conductance	
				QC25065	QCBatch:	e	Duplicat
RPD RPD Limit	Dilution RI	Units Dil	Sample Result	Duplicate Result	Flag		Param
4 9.7		mg/L	1938	2022		red Solids	Total Dissolv
				QC25132	QCBatch:	е	Duplicat
RPD Limit	n RPD	Dilution	Units	e Sample Result	Duplicate Result	Flag	Param
0 0	0	1	s.u.	8.4	8.4		pH
	······			Result	Result	Flag	Param pH

Param	Flag	Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
Hydroxide Alkalinity		<1.0	<1.0	mg/L as CaCo3	1	0	9.2
Carbonate Alkalinity		<1.0	<1.0	mg/L as CaCo3	1	0	9.2
Bicarbonate Alkalinity		100	100	mg/L as CaCo3	1	0	9.2
Total Alkalinity		100	100	mg/L as CaCo3	1	0	9.2

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes QCBatch: QC25076

QCBatch:

QC25139

Duplicate

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	12.10	14.12	mg/L	1	12.50	<1.0	96	15	90 - 110	20
Fluoride	2.49	2.51	mg/L	1	2.50	< 0.2	99	0	90 - 110	20
									Conta	nuad

Continued ...

Report Da 1868	te: Novemb	er 27, 2002			Order Numbe z Co. N.M. N		Page Number: 7 of 10 N/A				
Continue	ed			Spike							
	LCS	LCSD			Amount	Matrix			% Rec	RPD	
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit	
Nitrate-N	2.59	2.69	mg/L	1	2.50	< 0.2	103	3	90 - 110	20	
Sulfate	13.22	15.32	mg/L	1	12.50	<1.0	105	14	90 - 110	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes QCBatch: QC25182

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Dissolved Calcium	108	109	mg/L	1	100	< 0.5	108	0	75 - 125	20
Dissolved Magnesium	106	106	mg/L	1	100	0.614	106	0	75 - 125	20
Dissolved Potassium	113	110	mg/L	1	100	1.06	113	2	75 - 125	20
Dissolved Sodium	112	113	mg/L	1	100	0.911	112	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes QCBatch: QC25076

Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Chloride	141600	140000	mg/L	1	62500	68900	116	2	48 - 127	20
Fluoride	³ 12800	⁴ 12900	mg/L	1	12500	<10.0	102	0	82 - 101	20
Nitrate-N	⁵ 14000	⁶ 14000	mg/L	1	12500	54.2	111	0	87 - 100	20
Sulfate	⁷ 94600	⁸ 95800	mg/L	1	6 2 500	18100	122	1	59 - 121	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

QCBatch: QC25182

					Spike					
	MS	MSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Dissolved Calcium	⁹ 626	10 640	mg/L	1	100	500	126	10	75 - 125	20
Dissolved Magnesium	¹¹ 240	12 255	mg/L	1	100	200	40	31	75 - 125	20

Continued ...

³The sample was spiked at a different dilution than that was reported. MS %EA = 103 and RPD = 0.

⁴The sample was spiked at a different dilution than that was reported. MS %EA = 103 and RPD = 0.

⁵The sample was spiked at a different dilution than that was reported. MS %EA = 112 and RPD = 4. ⁶The sample was spiked at a different dilution than that was reported. MS %EA = 112 and RPD = 4.

⁷The sample was spiked at a different dilution than that was reported. MS %EA = 120 and RPD = 10.

⁸The sample was spiked at a different dilution than that was reported. MS %EA = 120 and RPD = 10. ⁹MS RECOVERY INVALID DUE TO MATRIX EFFECT

¹⁰MS RECOVERY INVALID DUE TO MATRIX EFFECT

¹¹MS RECOVERY INVALID DUE TO MATRIX EFFECT

¹²MS RECOVERY INVALID DUE TO MATRIX EFFECT

Report Date: November 27, 2002 1868			Order Number: A02111802 Charez Co. N.M. Mesa State Com #1						Page Number: 8 of 10 N/A		
Continued					Spike						
	MS	MSD			Amount	Matrix			% Rec	RPD	
Param	\mathbf{Result}	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit	
Dissolved Potassium	13 82.9	143	mg/L	1	100	62.5	20	119	75 - 125	20	
Dissolved Sodium ¹⁴ 1380 ¹⁵ 1440			0 mg/L 1 100 1170 210 23					25	75 - 125	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)	QCBatch:	QC25021					
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Specific Conductan		μ MHOS/cm	1412	1420	100	90 - 110	11/19/02
ICV (1)	QCBatch:	QC25021	CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Specific Conductan		µMHOS/cm	1409	1410	100	90 - 110	11/19/02
CCV (1)	QCBatch: Flag	QC25065 Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Dissolved Soli ICV (1)	QCBatch:	mg/L QC25065	1000	992	99	90 - 110	11/22/02
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Dissolved Soli		mg/L	1000	992	99	90 - 110	11/22/02

CCV (1) QCBatch: QC25076

¹³MS RECOVERY INVALID DUE TO MATRIX EFFECT
 ¹⁴MS RECOVERY INVALID DUE TO MATRIX EFFECT
 ¹⁵MS RECOVERY INVALID DUE TO MATRIX EFFECT

Report Date: 1868	November 2	7, 2002		der Number: A Co. N.M. Mesa	Page Number: 9 of 10 N/A		
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/L	12.50	12.11	96	90 - 110	11/20/02
Fluoride		mg/L	2.50	2.53	101	90 - 110	11/20/02
Nitrate-N	Nitrate-N mg/L		2.50	2.61	104	90 - 110	11/20/02
Sulfate	Sulfate mg/L		12.50	13.74	109	90 - 110	11/20/02

ICV (1)	\mathbf{QC}	Batch: QC	25076				
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	13.01	104	90 - 110	11/20/02
Fluoride		mg/L	2.50	2.25	90	90 - 110	11/20/02
Nitrate-N		mg/L	2.50	2.39	95	90 - 110	11/20/02
Sulfate		mg/L	12.50	12.66	101	90 - 110	11/20/02

CCV (1)	QCBatch:	QC25132				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pН		s.u.	7	7.1	101	-0.1 s.u +0.1 s.u.	11/18/02

ICV (1) QCBatch: QC25132

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pН		s.u.	7	7.0	100	-0.1 s.u +0.1 s.u.	11/18/02

CCV (1) QCBatch: QC25139

			CCVs	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hydroxide Alkalinity		mg/L as CaCo3	0	0	0	-	11/25/02
Carbonate Alkalinity		mg/L as CaCo3	0	228	0	-	11/25/02
Bicarbonate Alkalinity		mg/L as CaCo3	0,	8	0	-	11/25/02
Total Alkalinity		mg/L as CaCo3	250	236	94	90 - 110	11/25/02

ICV (1) QCBatch: QC25139

Report Date: November 2 1868	Ord Charez Co	Page Number: 10 of 10 N/A					
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hydroxide Alkalinity		mg/L as CaCo3	0	0	0	~	11/25/02
Carbonate Alkalinity		mg/L as CaCo3	0	232	0	-	11/25/02
Bicarbonate Alkalinity		mg/L as CaCo3	0	6	0	-	11/25/02
Total Alkalinity		mg/L as CaCo3	250	238	95	90 - 110	11/25/02

CCV (1)	QCBatch:	QC25182					
				CCVs	CCVs	Percent	Dete
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/I.	25	24.6	98	90 - 110	11/25/02
Dissolved Magnesium		mg/L	25	22.8	91	90 - 110	11/25/02
Dissolved Potassium		mg/L	25	25.9	103	90 - 110	11/25/02
Dissolved Sodium		mg/L	25	25.5	102	90 - 110	11/25/02

ICV (1)	QCBatch:	QC25182					
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Calcium	×	mg/L	25	24.9	99	95 - 105	11/25/02
Dissolved Magnesium	1	mg/L	25	25.7	102	95 - 105	11/25/02
Dissolved Potassium		mg/L	25	26.8	107	95 - 105	11/25/02
Dissolved Sodium	•	mg/L	25	24.9	99	95 - 105	11/25/02

or: Z		No.)						(4774) 167	ale Bota Sof Bota Sofesi	Alph Mpb							Date: 11/15/02	Render		Results by:	KUSH Charges Authorised:	
PAGE: 2	ANALYSIS REQUEST	ъĹ	 	2 Pd 9d 1011	دیا دیا ال	10\624	601 4 4 5 5 6 5 8 5 6 5 8 5 6 5 8 5 6 5 8 5 6 5 8 5 1 6 5 8 5 1 6 5 8 5 1 6 5 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 7 1 6 7 1 7 1	09 909/ 909/ 70A 70768 70777 70768 70777 70768 707777 70777 70777 70777 70777 707777 70777 707777 707777 70777 70777 707777 707777 707777 70777777	1, 86870 1, 86870 1, 8080 1, 80800 1, 80800 1, 80800 1, 80800 1, 80800 1, 80800 1, 8	CCL CCL LCL LCL LCL LCL LCL LCL LCL LCL	X						Lan Part	L.	San Ban	HIGHLANDER CONTACT PERSON:	Tim Rool	
Custody Record					Fax (915) 682-3946	PRESERVATIVE		6 Cont 8 2	60 60	ION ICE ICE INH ICH	0-6" X	Z, 0' // X					Reited XX Rete: 11 15/02			(Stansture) (1) (1000	16-02 mm 0903	
and Chain of		ENVIRONMENTAL CORP.	1910 N. Big Spring St.	Midland, Texas 79705		SITE MANAGER	-	2 Co. N. M. Mess Show	SAMPLE IDENTIFICATION		Back of ound Sumply	Back gound Sample					Dete: 11115 102 Representation (1990-1970)	Date: 11/15/02 RECEIVED BY: (8 Time: 1830	Date:			
Analvsis Request	ana har ar fin-	HIGHLANDER	1910		8004-200 (CIA)	DERNT NAME: DERN F. METOU		1868 Chavez	LAB I.D. NUMBER DATE TIME RE 9. 18		213672 1/4/nz 1310 5 X E	23 11/4/12 1320 5 X B				2			ELNQUISHED BY: (Sugnature) Dat	ECETTING LABORATORY: 100CC HILL	CUTY: 2 UNITY STATE	C CONDITION RECEIVED:

Report Date: November 27, 2002 Order Number: A02111802 Page Number: 1 of	-1290	is, Inc. 6701 Aberdeen Ave., Suite 9 Lubbock, TX 79424-1515 (806	n Ave., Suite 9 Lubbock, TX 79424-1515	(806) 794-1296
	: 1 of 2 N/A	,		e Number: 1 of 2 N/A

Summary Report

Tim Reed Highlander Environmental Services 1910 N. Big Spring St. Midland, TX 79705 Report Date:

n....

November 27, 2002

-- -

Order ID Number: A02111802

Project Number: 1868 Project Name: Charez Co. N.M. Mesa State Com #1 Project Location: N/A

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
213663	AH-1 0-6	Soil	11/14/02	11:00	11/16/02
213664	AH-1 1.0'	Soil	11/14/02	11:05	11/16/02
213665	AH-1 2.0'	Soil	11/14/02	11:15	11/16/02
213666	AH-1 3.0'	Soil	11/14/02	11:20	11/16/02
213667	AH-1 4.0'	Soil	11/14/02	11:25	11/16/02
213668	AH-1 5.0'	Soil	11/14/02	11:30	11/16/02
213669	AH-1 6.0'	Soil	11/14/02	11:55	11/16/02
213672	Background Sample 0-6	Soil	11/14/02	13:10	11/16/02
213673	Background Sample 2.0'	Soil	11/14/02	13:20	11/16/02

0 This report consists of a total of 2 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 213663 - AH-1 0-6

Param	Flag	Result	Units
Chloride		1820	mg/Kg
The second s			

Sample: 213664 - AH-1 1.0' Param Flag Result

Param	Flag	Result	Units
Chloride		1950	mg/Kg

Sample: 213665 - AH-1 2.0'

Param	Flag	Result	Units
Chloride		4470	mg/Kg
the second se			

This is only a summary. Please, refer to the complete report package for quality control data.

TraceAnalysis, Inc.	6701 Aberdeen Ave., Suite S	Lubbock, TX 79424-1515	(806) 794-1296	
Report Date: Nover 1868	nber 27, 2002 Order Number: AC Charez Co. N.M. Mesa		Page Number: 2 of 2 N/A	
Sample: 21366	3 - AH-1 3.0'			
Param	Flag	Result	Units	
Chloride		1890	mg/Kg	
Sample: 21366	7 - AH-1 4.0'			
Param	Flag	Result	Units	
Chloride		4740	mg/Kg	
Sample: 213668 Param Chloride	3 - AH-1 5.0' Flag	Result 6480	Units mg/Kg	
Sample: 213669 Param	9 - AH-1 6.0' Flag	Result	Units	
Chloride	F lag	8210	mg/Kg	
	- Background Sample 0-6			
Param	Flag Rest		Units	
Chloride	<	5	mg/Kg	
	- Background Sample 2.0'	14	Inite	
Param Chloride	Flag Resu		Units mg/Kg	
Chiomdo	//			

This is only a summary. Please, refer to the complete report package for quality control data.

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 800 • 378 • 1296 806 • 794 • 1296 FAX 806 • 794 • 1298

155 McCutcheon, Suite H

El Paso, Texas 79932 888 • 588 • 3443 E-Mail: lab@traceanalysis.com 915 • 585 • 3443

FAX 915 • 585 • 4944

Analytical and Quality Control Report

Tim Reed Highlander Environmental Services 1910 N. Big Spring St. Midland, TX 79705

Report Date:

November 27, 2002

Order ID Number: A02111802

Project Number: 1868 Project Name: Charez Co. N.M. Mesa State Com #1 Project Location: N/A

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
213663	AH-1 0-6	Soil	11/14/02	11:00	11/16/02
213664	AH-1 1.0'	Soil	11/14/02	11:05	11/16/02
213665	AH-1 2.0'	Soil	11/14/02	11:15	11/16/02
213666	AH-1 3.0'	Soil	11/14/02	11:20	11/16/02
213667	AH-1 4.0'	Soil	11/14/02	11:25	11/16/02
213668	AH-1 5.0'	Soil	11/14/02	11:30	11/16/02
213669	AH-1 6.0'	Soil	11/14/02	11:55	11/16/02
213672	Background Sample 0-6	Soil	11/14/02	13:10	11/16/02
213673	Background Sample 2.0'	Soil	11/14/02	13:20	11/16/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

The test results contained within this report meet all requirements of LAC 33:I unless otherwise noted.

This report consists of a total of 7 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Note: Samples will be disposed of 30 days from the report date unless the lab is contacted before the 30 days has past.

Report Date: November 27, 2002	Order Number: A02111802	Page Number: 3 of 7
1868	Charez Co. N.M. Mesa State Com $#1$	N/A

Analytical Report

Sample: 213663 - AH-1 0-6 Analysis: Ion Chromatography (IC)Analytical Method: E 300.0 QC Batch: QC25153Date Analyzed:11/25/02 Analyst: JSW Preparation Method: N/A Prep Batch: PB23377 Date Prepared: 11/25/02

Param	Flag	Result	Units	Dilution	RDL
Chloride		1820	mg/Kg	100	1

Sample: 213664 - AH-1 1.0'

Analysis:	Ion Chromatography (IC) Analytical Method:		E 300.	.0QC Batch:	QC25153Date Analyzed:11/25/02	
Analyst:	JSW	Pr	eparation Method:	N/A	Prep Batch:	PB23377 Date Prepared: 11/25/02
Param	Flag	Result	Units	Dilution		RDL
Chloride		1950	mg/Kg	10	10	1

Sample: 213665 - AH-1 2.0'

Analysis: Analyst:			Analytical Method: Preparation Method:		0QC Batch: Prep Batch:	QC25153Date Analyzed:11/25/02 PB23377Date Prepared:11/25/02	
Param	Flag	Result	Units	Dilution		RDL	
Chloride		4470	mg/Kg	50	0	1	

Sample: 213666 - AH-1 3.0'

Analysis: Analyst:	Ion Chromatog JSW		Analytical Method: Preparation Method:		0QC Batch: Prep Batch:	QC25153Date Analyzed:11/25/02 PB23377Date Prepared:11/25/02
Param	Flag	Result	Units	Dilu	tion	RDL
Chloride		1890	mg/Kg	50	0	1

Sample: 213667 - AH-1 4.0'

Analysis: Analyst:	Ion Chromatog JSW		Analytical Method: Preparation Method:		QC Batch: Prep Batch:	QC25153Date Analyzed:11/25/0 PB23377Date Prepared:11/25/0	
Param	Flag	Result	Units	Diluti	on	RD	L
Chloride	E	4740	mg/Kg	500)		1

Sample: 213668 - AH-1 5.0'

Analysis:	Ion Chromato	graphy (IC)	Analytical Method:	E 300.0QC Bate	h: QC25153Date Analyzed:11/25/02
Analyst:	JSW		Preparation Method:	N/A Prep Ba	tch: PB23377 Date Prepared: 11/25/02
•			-	, -	
Param	\mathbf{F} lag	Result	Units	Dilution	RDL
Chloride		6480	mg/Kg	500	1

Report Dat 1868	te: November	27, 2002			A02111802 sa State Com 5	Page Number: 4 of 7 #1 N/A		
Sample:	213669 -	AH-1 6.0'						
Analysis:	Ion Chromat	ography (IC)An	alytical Method:	E 300	.0QC Batch:	QC25153Date Analyzed:11/25/02		
Analyst:	JSW	, ,	eparation Method:	N/A	Prep Batch:	PB23377 Date Prepared: 11/25/02		
Param	Flag	Result	Units	Dilu	tion	RDL		
Chloride	Chloride 8210		mg/Kg	10	00	1		
Sample: Analysis: Analyst:		Background ography (IC)An Pre	-	E 300. N/A	.0QC Batch: Prep Batch:	QC25154Date Analyzed:11/25/02 PB23378Date Prepared:11/25/02		
Param	Flag	Result	Units	Dilu	tion	RDL		
Chloride	······································	< 5	mg/Kg	5))	. 1		
Sample: Analysis: Analyst:		ography (IC)An	Sample 2.0' alytical Method: paration Method:	E 300. N/A	0QC Batch: Prep Batch:	QC25154Date Analyzed:11/25/02 PB23378Date Prepared:11/25/02		
Param	Flag	Result	Units	Dilu	tion	RDL		
Chloride	~	< 50	mg/Kg	50)	1		

.

Report Date: November 27, 2002 1868

Order Number: A02111802 Charez Co. N.M. Mesa State Com #1

Quality Control Report Method Blank

Method Blank	QCBatch:	QC25153		
Param	Flag	Results	Units	Reporting Limit
Chloride		<1.0	mg/Kg	1
Method Blank	QCBatch:	QC25154		
Param	Flag	Results	Units	Reporting Limit
Chloride		<10	mg/Kg	1

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laborat	tory Con	trol Spil	kes	QCBatch :	QC251	53				
Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
				<u>DII.</u>		Itesuit				
Chloride	25.42	25 45	mg/Kg	1	12.50	<10	203	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes QCBatch: QC25154

					Spike	•				
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	1 25.59	² 25.62	mg/Kg	1	12.50	<1.0	204	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

QCBatch: QC25153

¹The soil blank needs to be subtracted from the sample spiked. %EA = 93 and RPD = 0.

²The soil blank needs to be subtracted from the sample spiked. %EA = 93 and RPD = 0.

Report Da 1868	ber 27, 200	2	Chare	•	Page Numb	er: 6 of 7 N/A				
Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	RPD	% Rec Limit	RPD Limit	
Chloride	38860	38700	mg/Kg	1	12500	27900	% Rec 87	1	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix	Matrix Spikes		QCBatch:							
	MS	MSD			Spike Amount	Matrix			% Rec	RPD
	1VIO	MOD			Amount	Mauna			70 1100	nu D
Param	\mathbf{Result}	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	9550	8860	mg/Kg	1	6250	3220	101	11	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV(1)	Q	CBatch:	QC25153				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.53	92	90 - 110	11/25/02
ICV (1)	QC	Batch:	QC25153				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.51	92	90 - 110	11/25/02
CCV (1)	Q	CBatch:	QC25154				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.43	91	90 - 110	11/25/02

ICV (1) QCBatch: QC25154

Report Da 1868	ate: November 27, 2002				Order Number z Co. N.M. N		Page Number: 6 of 7 N/A			
Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
Chloride	38860	38700	mg/Kg	1	12500	27900	87	1	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix	Spikes	\mathbf{QC}	Batch:	QC25154						
					Spike				~ ~	
	MS	MSD			\mathbf{A} mount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Chloride	9550	8860	mg/Kg	1	6250	3220	101	11	35 - 144	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV(1)	Q	CBatch:	QC25153				
		•	CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.53	92	90 - 110	11/25/02
ICV (1)	QC	Batch: (QC25153				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.50	11.51	92	90 - 110	11/25/02
CCV (1)	Q	CBatch:	QC25154				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Param			12.50	11.43	91	90 - 110	11/25/02

ICV (1) QCBatch: QC25154

Report Date: November 27, 2002 1868				rder Number: A Co. N.M. Mesa	Page N	Page Number: 7 of 7 N/A	
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/L	12.50	11.53	92	90 - 110	11/25/02
					·		
			x				

-Return original copy to Highlander Enviromental Corp. - Project Manager retains pink copy - Accounting receives Gold copy. Najor 5401+078 SUDINH ŝ Survey States RUSH Charges Authorized: <u>ça</u> AD 2111807 Results by: (solesdes) MIG OF: Biel adla 2 Date: Time: OTHER No. PHILIP! PH. TDS. (Chloride) '581 'aoa Circle or Specify Method ANALYSIS REQUEST 809/808 809/0808 **....** 9**39/**0128 'TOA HIGHLANDER CONTACT PERSON: STOP herd The second second PAGE: 129/0928/0129 S**M** 39 RCT SAMPLE SHIPPED BY: Semi Volatiles and i m d TOJ HAND DELIVERED NOIGUILO NE VE LA CA CF PA HE Se Freist d Tal न्छ मैंस पुत VB BE CG CI-STO197 **FC:KV** ž HVd 0185 BOIS MOD. Hal 900 DLL 1.814 808/0308 SULL 809/0209 XXLB PRESERVATIVE METHOD NONE Fax (915) 682-3946 and Chain of Custody Record ICE X × REMARKS Date: _____ Date: Time: HIGHLANDER ENVIRONMENTAL CORP. 0903 GONH TOH (N/X) CENELTLE × \succ NUMBER OF CONTAINERS TURK: BAULLAN (###) SD-Solid 0-Other RECEIVED BY (Supering) RECEIVED BY: (Signature) RECEIVED BY: (Signature) 20-91-11 Water Sample V.M. Mesa State Derrice Windmi SI-Sudge 1910 N. Big Spring St. SAMPLE IDENTIFICATION Midland, Texas 79705 4-4F SITE MANAGER: 5 6.0 4.0 5.0 30 0-0 ିତ୍ୱ 2.0 ろう Please Fill out all copies - Laboratory retains yellow copy KATTRUC: Ë RECEIVING LABORATORY: TILLE HIA 14 515. ADDRESS: JANNON STATE - H A Date: 111 Date: 151 Date: 1111 AH-AH-AH - I ١ ł ١ t PROJECT NAME: 4 H H T A AH T Date: Analysis Request harez J PHONE: × × BARD \mathbf{X} X X COME 12-2011 11155 115575 SAMPLE CONDITION WHEN RECEIVED: 7^{0} 11255 W0721 11305 1205M **MATRIX** 5 RELINGUISHED BY: (ELEMAND) N NU N N N L TEA RELINGUISHED BY: (ELEMAND) 1100 1120 RELINGENTATED BY: (Scheleure) **T**DAT (915) 682-4559 rera 213403 1/4/02 DATE CLEWT NAME: ≫ PROJECT NO .: z 808 LAB I.D. NUMBER 64 5 5 60 20 ८ Z 7

213643-73

SAMPLE LOG

Boring /Well:Auger Hole 1 (AH-1)Investigated Area:Mesa State Com #1Location:Chaves County, New MexicoTotal Depth:6.5'Date Installed:11/14/02

SAMPLE DESCRIPTION
Brown Top soil, with roots.
Dark brown silty loam.
Dark brown silty loam.
Dark brown silty loam, some silty clay loam, some evaporates.
Silty loam to silty clay loam, some evaporates.
Clay loam to clay.
Clay loam to clay, large evaporite crystals, damp.
Clay and gray clayey caliche, wet.
TD – 6.5'
,
· ·

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

GARY E. JOHNSON Governor Betty Rivera Cabinet Secretary Lori Wrotenbery Director Oil Conservation Division

5/10/2002

(off

OCEAN ENERGY, INC. ATT: JEANIE McMILLIAN 1001 FANNIN, SUITE 1600 DALLAS, TX 75206 RECEIVED MAY 1 3 2002 Environmental Bureau Oll Conservation Division

RE : COMPLAINT OF WATER CONTAMINATION 30-005-60690 J-31-15s-28e MESA STATE COM. #1

DEAR JEANIE McMILLIAN,

O.C.D. HAS RECEIVED A COMPLAINT MADE BY LEWIS DERRICK WHO IS THE RANCH FOREMAN FOR THE TURKEY TRACK RANCH ON WHICH THE MESA STATE COM.#1 IS LOCATED.

MR. DERRICK HAS INFORMED O.C.D. THAT THE WATER QUALITY IN A WINDMILL LOCATED OFF SET THE MESA STATE COM. #1 HAS DECLINED AND IN NOW NOT USABLE TO WATER HIS COWS.

HE REPORTED A LOSS OF FIFTEEN COWS FROM DRINKING THE WATER BEFORE IT WAS TAKEN OUT OF SERVICE.

MR. DERRICK SAYS THE WATERS IN HIS WINDMILL ARE BEING AFFECTED BY SALT RESIDUES LEFT IN THE LAKE PLAYAS ON WHICH THE MESA STATE COM. #1 AND THE WINDMILL RESIDE.

THE MESA STATE COM. # 1 ENCOUNTERED A BRINE WATER FLOW AT 1138' WHILE DRILLING TO SET 8.625" CASING AT 1949'.

THE BRINE WATER FLOW WAS NOT CONTAINED TO THE WELL LOCATION DUE TO A FAILURE OF BLOWOUT PREVENTORS DURING DRILLING OPERATIONS. A RELEASE OF 117,500 BARRELS OF SALT WATER INTO THE DRY LAKE AREA COVERING TWO ACRES WAS REPORTED.

PLEASE SEND TO O.C.D. A WORKPLAN FOR APPROVAL WITH ACTIONS TO BE TAKEN IN ADDRESSING THIS COMPLAINT MADE BY MR. DERRICK AND THE TURKEY TRACK RANCH.

PLEASE SEND THIS REQUESTED WORKPLAN WITHIN THIRTY DAYS FROM THE DATE OF THIS LETTER .

IF I CAN BE OF ASSISTANCE PLEASE DO NOT HESTATE TO CALL ME AT 505-748-1283 OR E-MAIL ME AT <u>MSTUBBLEFIELD@STATE.NM.US</u>.

SINCERELY,

marelstuddefield

MIKE STUBBLEFIELD ENVIR. ENG. SPEC.

C.C. ROGER ANDERSON LEWIS DERRICK