3R - <u>77</u>

REPORTS

DATE: Jan. 1989

DAMES & MOORE JOB NO. 14819-005-31

SALT LAKE CITY, UTAH

JANUARY 1989

٠.

WATER QUALITY DATA SUMMARY REPORT FOR COMPLETION OF THE HYDROGEOLOGIC EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.

TABLE OF CONTENTS

APPENDIX B - FIELD AND LABORATORY WATER QUALITY DATA FOR ROUNDS 1, 2 AND 3 SAMPLING AND ANALYSES AND QA/QC FOR ROUND 3

Page

LIST OF TABLES

Table 1 - Sample Round 3 Laboratory Water Quality Parameters

- Table 2 Laboratory Results for Major Ions Sample Rounds 1 and 2 for Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico
- Table 3 Sample Rounds 1, 2 and 3 Laboratory Results for Detected Organic Constituents for Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico

Table 4 - Characteristics of Organic Compounds Detected

LIST OF PLATES

Plate 1 - Vicinity Map

E

Plate 2 - Site Sampling Location Map

Dames & Moore

EXECUTIVE SUMMARY

This report summarizes the results of the Dames & Moore Phase I Study and Report, "Hydrogeologic Evaluation, Maverik Refinery and Tank Farm" (February 1988) and the subsequent Addendum Report (June 1988) and presents the data from Rounds 1, 2 and 3 water quality sampling, water level measurements and data analyses thereof. This report completes the comprehensive "Hydrogeologic Investigation" at the site. Background information detailing the purpose and scope of the investigation are presented in the Phase I Report. Data from the Phase II Study and Report, "Subsurface Soil and Solid Waste Contaminant Evaluation" (June 1988) are not presented herein. However, Phase II results pertinent to ground water contamination from the Tank Farm are included and summarized in the "Detailed Summary Conclusions" of this report.

The Round 3 selective water quality and water level monitoring data confirm the following:

- 1. Significant subsurface contamination from Maverik's Tank Farm is present in the west-southwest corner of the Tank Farm in the shallow silty-sand zone above the gravel aquifer. Movement of the organic compounds off-site has not been significant and based on Round 3 water quality data, has improved since March 1988 with the on-site construction and operation of the 350-foot long product interceptor trench.
- 2. The Farmer's Mutual and Westside Irrigation Ditches significantly influence the ground water quality and the rate and direction of ground water movement near the Tank Farm. When the ditches are full and ditch seepage results, recharge and aquifer flushing occur. When dry, the Westside Irrigation Ditch serves as a hydraulic sink and receives ground water inflow.
- 3. Biodegradation of organic compounds on-site and possibly off-site to the southwest was previously documented based on the inorganic water quality data that were obtained in Round 2. Lower levels of organic compounds detected during Rounds 2 and 3 are further evidence of biodegradation.

Rounds 1, 2 and 3 water quality data confirm that significant concentrations of the typical refinery-related volatile organics benzene, toluene, xylene, ethylbenzene and 1,2-dichloroethane (DCA) are only found on-site in one well located in the upper silty-sand zone in the southwest corner of the refinery. The only significant off-site contamination found was along the Westside Irrigation Ditch along the portion that parallels and receives ground water seepage from the west boundary of the refinery. Only trace levels (1.1 and 1.6 ug/1, i.e., parts per billion) of DCA and xylene, respectively, were detected farther downstream in ground water seeps along the Westside Irrigation Ditch.

Rounds 1, 2 and 3 water quality data verify the presence off-site of trace levels of benzene, ethylbenzene or xylene in 3 of 10 off-site wells. The concentrations were far below New Mexico drinking water standards. DCA was found in three other off-site wells. Only one measurement of 16 ug/l in

one of the wells exceeded the New Mexico drinking water standard of 10 ug/1 for this compound. Concentrations of DCA in this well decreased to 7.7 ug/1 in Round 2 and to 4.9 ug/1 in Round 3.

Based on the analytical data from Rounds 1, 2 and 3 sampling and the EID analytical data from sampling conducted during the spring of 1987, ground water contamination by refinery-related organics is confined to the upper portion of the alluvial aquifer over a 200 to 400 foot area in an east-west direction and a 1,800 to 2,000 foot length downgradient (southwest) of the southwest corner of the tank farm. The low concentrations of the contaminants, their characteristics, the hydrogeologic setting, and the non-use of water for drinking water purposes from private wells in the contaminated area, all lead to the conclusion that the releases from the tank farm do not pose a threat to human health and the environment.

As agreed to by Maverik and the EID, the on-site interceptor trench product capture and cleanout will continue until additional remediation work begins. Periodic water quality monitoring at critical sites, as detailed in the September 14, 1988 ground water remediation work plan, will continue after remediation begins. WATER QUALITY DATA SUMMARY REPORT FOR COMPLETION OF THE HYDROGEOLOGIC EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.

INTRODUCTION

This data summary report presents the data and final results of Rounds 1 and 2 (Phase I) comprehensive water quality sampling analysis and Round 3 selective water quality sampling (monitoring) analysis to complete the comprehensive hydrogeologic evaluation at the Maverik Refinery and Tank Farm in Kirtland, New Mexico. In addition, key results of the Phase II Subsurface Soil and Solid Waste Contaminant Study are presented. Detailed hydrogeologic and water quality conditions have been evaluated by Dames & Moore since November 1987, both on-site and approximately one mile downgradient (south) of the refinery property boundaries. The general site location map and detailed plot plan showing all of the sample sites and water level elevation measuring points for Rounds 1, 2 and 3 sampling, (monitor wells, private wells, well points, staff gauges), are included on Plates 1 and 2, respectively.

PURPOSE AND SCOPE

The purpose of the Round 3 selective sampling and monitoring was to continue to monitor, at key sites and prior to any additional ground water remediation, the changes in concentration of the organic contaminants in the ground water. Phase I (Rounds 1 and 2) comprehensive data and study results are presented in detail in the Dames & Moore reports dated February 1988 and June 1988. Those results and the Round 3 data evaluation are presented and summarized in this report.

-3-

The Phase II study, "Subsurface Soil and Solid Waste Contaminant Evaluation for The Maverik Refinery and Tank Farm" (June 1988), was conducted after the Round 2 water quality sampling to define the extent of and potential for soil contamination to act as a continuing source of ground water contamination. Although the data from the Phase II study are not included in this report, the key results have been presented in the "Detailed Summary Conclusions" herein.

The Round 3 hydrogeologic data were collected near the end of the irrigation season. The data were used to evaluate seasonal fluctuations and to confirm Rounds 1 and 2 water quality data and preliminary conclusions. These conclusions were used in defining the future remediation work plan (September 14, 1988). In particular, Round 3 data were used to confirm, prior to future remediation, the extent to which the irrigation ditch flows impact ground water levels, contaminant concentrations, ground water flow rates and directions.

Round 3 sampling included only those 7 monitor well sites (MW-6 and MW-8 through MW-13) where organic contaminants had previously been detected. Volatile and, for the first time, semivolatile refinery-related organic constituents were analyzed.

The Round 3 sampling program was approved by the New Mexico EID (September 19, 1988). Dames & Moore split Round 3 samples with the EID for their analysis of both inorganic and organic constituents. The EID results were not available at the time of this report preparation.

GROUND WATER AND SURFACE WATER LEVELS

Water level elevation data and water level changes from Round 1 to Round 2, and from Round 2 to Round 3 confirm that the nearby irrigation ditches have significant impacts on ground water levels and flow directions. All of the wells measured for water levels in Rounds 1 and 2, if accessible, were measured in Round 3. Rounds 1 and 3 data were collected at the end of the irri-

-4-

gation seasons, following nine months of flow in the irrigation ditches in both 1987 and 1988, respectively. Consequently the general hydrogeologic conditions encountered during these two sampling rounds were similar. Round 2 data however, were collected about three months after irrigation flows had ceased, just prior to the 1988 irrigation season. Ground water levels were at their lowest at this time.

Waters in the tributary Westside Irrigation Ditch have less impact on ground water levels than waters in the Farmer's Mutual Ditch. Flow rates are much lower in the former averaging several hundred gallons per minute (gpm) versus 40,000+ gpm, and typically waters flow for a shorter time period. Waters in the Farmer's Mutual Irrigation Ditch generally flow for about nine months from early to mid-March to early December of each year. Water flow in the Westside Irrigation Ditch typically begins about the same time but is shut off in late September to late November.

As presented in detail in Appendix A (Plate A-1 and Table A-1), major water level declines occurred between Rounds 1 and 2 in the northern part of the study area near the Farmer's Mutual Irrigation Ditch and along the Westside Irrigation Ditch. Round 1 water level data reflected the recharge of irrigation ditch waters to the ground water while Round 2 water level data did not. The largest ground water level decline from Round 1 to Round 2 (5.65 feet) occurred in monitor well 1 (MW-1), the well closest to and most significantly impacted by seepage from the Farmer's Mutual Irrigation Ditch. Conversely, the largest water level rise from Round 2 to Round 3 (5.58 feet) occurred in the same well. This water level rise resulted from Farmer's Mutual Irrigation Ditch waters recharging the ground water during the irrigation season.

The hydraulic gradient in the northern and eastern parts of the study area also decreased from about 0.01 ft/ft in November 1987 (Round 1) to about 0.008 ft/ft in February 1988 (Round 2), during the three month period after irrigation flows in both ditches had stopped. The gradient then increased

-5-

back to its previous level of 0.01 ft/ft in October 1988 (Round 3), as a result of recharge to the ground water from flows in the irrigation ditches.

In summary, the magnitude of water level changes in the northern part of the study area near the irrigation ditches and the types of water level changes as compared to those in the southern part of the study area, (e.g., increases versus decreases) illustrates the impact that the irrigation ditches have on the surrounding ground water levels.

ROUND 3 WATER QUALITY EVALUATIONS

GROUND WATER QUALITY

INTRODUCTION

Ð

R

As discussed previously, only the 3 on-site and 4 off-site monitor wells in which organic constituents had been detected in Rounds 1 and 2 were sampled in Round 3. Analysis included the volatile and semivolatile organic constituents that had been detected in the previous ground water, soils and solid waste samples.

Conductivity, pH and temperature were the only inorganic constituents tested in Round 3 and were analyzed in the field. Although Round 3 sampling conditions were similar to those in Round 1 in terms of irrigation ditch flows and ground water levels, waters in the monitor wells closest to the Westside Irrigation Ditch (MW-11, MW-12 and MW-13) had higher conductivities and higher temperatures than those measured in either Rounds 1 or 2 (Table B-1). In view of the fact that the concentrations of the organic constituents did not change significantly from Rounds 1 and 2 (except for MW-12 where they dropped), the field test results most likely reflect very short-term localized effects from the irrigation ditch waters and not from impacts of the refinery tank farm.

-6-

Although no inorganic constituents were analyzed for Round 3, the data results and isocon maps of the key inorganic constituents that were analyzed in Rounds 1 and 2 are included and summarized in Appendix B (Table B-1 and Plates B-1 through B-5). Detailed discussion of this data is included in the Phase I Report Addendum (June 1988).

ORGANIC CONSTITUENTS

On-Site

In addition to the five volatile organic constituents found on-site during Rounds 1 and 2 sampling which consisted of benzene, toluene, xylene, ethylbenzene and DCA, the semivolatiles naphthalene and m&p-cresols were detected in Round 3 (Table 3). They were detected only in MW-12 and at very low levels of 33 ug/1 and 11 ug/1, respectively, with detection limits at 10 ug/1. As in the analytical results from Rounds 1 and 2, the only volatile organic constituents found at very high levels in Round 3 were found in the on-site shallow MW-12 completed in the upper silty sand above the deeper gravel aquifer.

Semivolatiles were not analyzed in Rounds 1 and 2. These constituents were included in the Round 3 analysis only after the results of the Phase II soil investigation verified the presence of these and other semivolatile constituents at high concentrations on-site in the soils and solid wastes.

As noted in our previous Phase I and II reports (February and June 1988), volatilization and biodegradation along with some adsorption are probably the primary mechanisms tending to reduce concentrations of the organic constituents found in the water and soils. Because of these active mechanisms, persistence of these compounds does not appear to be great. 1,2-DCA was the only organic constituent detected at enough monitor sites for which an isoconcentration contour map could be drawn (Plate B-6). The contour of 1,2-DCA for Round 3 illustrates lower 1,2-DCA concentrations detected in Round 3 as compared to those detected in Rounds 1 and 2.

-7-

Maps summarizing the concentrations for benzene, toluene, ethylbenzene and xylene for Rounds 1, 2 and 3 are also included (Plates B-7 through B-10). These maps also depict lower concentrations of these organic constituents detected during the Round 3 sampling period as compared to Rounds 1 and 2.

The concentrations of the organic constituents detected in the three monitor wells sampled on-site (MW-10, 11 and 12) were either lower in Round 3 or remained essentially the same as in the two previous sample rounds. The most significant changes occurred in on-site MW-12, where the concentration levels of all of the volatile organics decreased by an order of magnitude (see Table 3). Concentrations in MW-11, the deeper well next to MW-12, decreased to below detection limits.

H

A very slight increase in 1-2-DCA occurred at MW-10, the southernmost onsite monitor well. However, the concentration detected in Round 3 was still very low, measuring 5.7 ug/l as compared to 3.2 and 1.3 ug/l measured in Rounds 1 and 2, respectively.

The significantly lower concentrations of the volatile organic constituents found in MW-12 in Round 3 compared to Rounds 1 and 2 may be partially attributed to the removal of refinery-related product from the surrounding ground water by the interceptor trench. Although MW-12 is located about 100 feet north and east and slightly upgradient from this trench, the skimming of free product from the ground water flowing into the trench would also reduce the amount of contamination in the surrounding ground water.

Flows in the Westside Irrigation Ditch had only been shut off for about two weeks prior to Round 3 sampling. As a result of the large volume of recharge and changes in the hydraulic gradient to the ground water from the irrigation ditches there was also significant dilution of the contaminants in the surrounding ground water. This dilution effect from the irrigation ditch waters on the concentrations of the organic constituents in the aquifer was

-8-

also observed in Round 1 (in particular, at MW-12) and is discussed in detail in the Phase I Addendum Report.

Water levels measured during Round 1 sampling were slightly higher than those measured in Round 3. This indicates that there had been more ground water recharge at the time of Round 1 sampling and that there should have been more dilution of the contaminants in the aquifer in Round 1. As previously discussed, this was not the case. Other factors, most notably operation of the interceptor trench, contributed to the better quality ground waters found in MW-12 during the Round 3 sampling.

As noted previously, the semivolatiles, naphthalene and m&p cresols, which are often associated with refineries, were found in the ground water onsite only at MW-12. Naphthalene is rather soluble but does tend to be adsorbed by the soils. The Phase II study results indicated naphthalene concentrations at low levels (5,800 ug/kg) in the subsurface sediments at a depth of about 7 feet and at a distance of about 100 feet slightly upgradient and northwest of MW-12 at borehole 2 (BH-2). The highly soluble m&p cresols, however, were not detected in any of the four Phase II borehole sediment or solid waste samples which were analyzed for semivolatiles. It appears that the typical refinery semivolatile organic constituents are not present at significant concentrations in the on-site ground waters.

OFF-SITE

l

The concentrations of the volatile organic constituents detected in the four monitor wells that were sampled off-site for Round 3 (MW-6, MW-8, MW-9 and M-13) were slightly lower, but essentially the same as those concentrations that were measured in the previous two sampling rounds (see Table 3 and Plates B-6 through B-10).

-9-

Only one organic constituent, 1,2-DCA, was detected off-site in Round 3. The concentrations were very low and ranged from 2.3 ug/l at MW-8 to 5.6 ug/l at MW-9. Concentrations at MW-6 and MW-13 measured 4.9 ug/l and 1.9 ug/l, respectively.

The highest concentration of 1-2-DCA detected off-site was 16 ug/l at MW-6 in Round 1. The only other organic contaminants that have been detected off-site are xylene, ethylbenzene and total organic lead. These were detected at extremely low levels near detection limits during Rounds 1 and 2 only.

DETAILED SUMMARY CONCLUSIONS: PHASES I AND II, AND ROUND 3 WATER QUALITY

These summary conclusions are based on all of Dames & Moore's work at the Maverik Refinery and Tank Farm since 1987 and incorporate the results of the Round 3 water quality monitor data; the results of Dames & Moore's previous Phase I (Rounds 1 and 2 water quality data) Hydrogeologic Evaluation (February 1988 and June 1988); and the Phase II Subsurface Soil and Solid Waste Contaminant Evaluation (June 1988). This work has resulted in the following major conclusions.

ON-SITE GROUND WATER CONDITIONS

- o Significant concentrations of the typical refinery-related volatile organics benzene, toluene, xylene, ethylbenzene and 1,2-dichloroethane (DCA), and low concentrations of the semivolatiles naphthalene and m&p cresols have been found in the ground water in one of six monitor wells completed in the upper silty-sand zone in the southwest corner of the refinery tank farm where a leaded gasoline spill occurred several years ago.
- o The shallow silty sand alluvial zone on-site that has been significantly impacted by the tank farm has not impacted the deeper gravel zone. Very low levels of contaminants were observed in the deeper monitor wells and private wells downgradient from the tank farm. This is a result of the high permeability and flow rates, recharge and dilution from waters from the irrigation ditches and apparent lithologic separation of the lower gravel zone from the upper silty-sand zone. In addition, significant biodegradation of organic compounds also appears to be occurring on-site in the shallow zone at the highly contaminated monitor well on-site.

OFF-SITE GROUND WATER CONDITIONS

- The significantly high concentrations of the volatile and semi-0 volatile organic compounds at the tank farm in both the sludges and subsurface soils, versus the low concentrations of these same constituents in the ground water off-site can be accounted for in part by the Westside Irrigation Ditch effects. When dry, this ditch has served as an effective collection sump for contaminated ground waters that move off-site to the southwest. This ditch has prevented widespread movement of contaminated ground water off-site, as demonstrated by the fact that ground water contamination by refineryrelated organics is limited to the upper part of the alluvial aquifer over a 200 to 400-foot wide (east-west) zone and a 1,800 to 2,000-foot long (north to southwest trending) zone. When flowing, the Westside Irrigation Ditch has served as a ground water boundary and recharge (dilution) mechanism to ground water movement off-site. Due to its location and depth, the interceptor trench built in March 1988 has been even more effective than the irrigation ditch in collecting refinery related contaminants on the ground water before they can migrate off-site.
- Benzene, xylene or ethylbenzene have only been found in 3 of 10 offsite monitor wells at concentrations just above detection limits and far below New Mexico drinking water standards for these compounds. DCA was found in three other off-site monitor wells, only one of which, with DCA levels ranging from 4.9 to 16 ug/1, exceeded the New Mexico drinking water standard of 10 ug/1.
- o The private wells surrounding the Tank Farm average about 20 feet in depth and are generally open through at least 15 feet of saturated, highly permeable gravels, cobbles and sands. The ground water flow velocity through the coarse alluvial aquifer is estimated at 3 ft/day to the southwest toward the San Juan River.
- o In more than 25 off-site private wells tested by the NMEID or by Dames & Moore, DCA has only been found in two wells, benzene in another and ethylbenzene in yet another. The concentrations were below New Mexico's drinking water standards for all of these compounds. These wells are utilized for irrigation or stock-watering purposes rather than for drinking water.

ON-SITE (SOILS AND SOLID WASTES)

- o The major contaminant source areas on-site and as detailed in the Phase II study, include: the solid waste sludges in the northwest corner of the tank farm; the eastern sludge pit; the subsurface soils in the southwest corner contaminated from the leaded gasoline spill; the west-central part of the tank farm near the No. 5 Fuel Oil Tank; the Crude Oil Tank and the No-Lead Gas tanks; and the sludge disposal area south of the Crude Oil Tank.
- o The concentrations of the eight RCRA metals tested using the EP toxicity test indicated that these metals concentrations in the sub-surface soils are very low and not at levels considered toxic. The total metals concentrations in the subsurface soils in the southwest part of the tank farm as well as in the surface solid waste (sludge) samples in the east and northwest corner are low and typical of metals concentrations in soils.
- High concentrations of the volatile organic constituents (xylene, ethylbenzene, toluene, benzene) and total organic lead, and the semivolatile organics including bis(2-ethylhexyl)phthalate, 1methyl-naphthalene, naphthalene, phenanthrene and chrysene have been detected in the subsurface soil and solid wastes on-site.
- o The organic compounds in the subsurface soil and solid wastes were found primarily in the upper 7 to 12 feet of the silty-clayey sand zone in the southwest corner of the refinery tank farm where a leaded gasoline spill occurred, where the sludge from the Crude Oil Tank was placed and in the area near the Gasoline and Gasoline Blending Tanks. High levels of the volatile organics were also detected in the northwest corner of the refinery tank farm in the shallow sands and gravels which grade into silty-clayey sands to the south. No 1,2-DCA or m & p cresols were detected in the soils or sludge due probably to high solubility and subsequent transport of these organic compounds by ground and surface waters.

OFF-SITE (SOILS AND SOLID WASTES)

o Off-site contamination of the subsurface soils appears to be limited to two areas: a small 100-foot long, 10-foot deep and 100-foot wide zone immediately west of the southwest corner of the tank farm in the silty clayey sand, and a small 80-foot diameter area just south of the refinery and about 300 feet west of the northwest corner of the tank farm. The concentrations of the volatile organics in the subsurface soils off-site to the southwest are either below detection levels and/or are much lower than on-site concentrations, with

-12-

xylene, ethylbenzene, toluene and benzene being the only volatile organics detected. This contaminated zone is principally a siltyclayey fine sand zone of low permeability that overlies the coarser sand and gravel zone. It is from the latter zone that downgradient private wells draw their water. In the 80-foot diameter off-site zone referred to above, contamination was indicated by elevated field organic vapor analyzer results.

I

B

8

B

In conclusion, and as presented in our Phase I and Phase II reports, only low concentrations of organic contaminants have been detected off-site in the soils. In the water, organic contaminants have been detected off-site only at trace levels or slightly above NMEID drinking water standards. This and the fact that downgradient wells are not used for drinking water purposes confirm that the releases from the tank farm have not and do not pose an immediate threat to human health and the environment. Implementation in 1989 of the NMEID-approved Maverik Refinery Tank Farm ground water remediation plan will significantly reduce any potential future risks from ground water contamination.

REFERENCES

I

ł

- Dames & Moore, February 1988. Phase I Hydrogeologic Evaluation, Maverik Refinery and Tank Farm, Kirtland, New Mexico.
- Dames & Moore, June 1988. Addendum to Phase I Hydrogeologic Evaluation, Maverik Refinery and Tank Farm, Kirtland, New Mexico.
- Dames & Moore, June 1988. Phase II Subsurface Soil and Solid Waste Contaminant Evaluation For Maverik Refinery and Tank Farm, Kirtland, New Mexico.
- Dames & Moore, September 14, 1988. Ground Water Remediation Plan for Maverik Country Stores, Inc., Kirtland, New Mexico Refinery Tank Farm.
- EPA, October 1986. Superfund Public Health Evaluation Manual, EPA 540/1-86/ 060.

Freeze, R.A., and Cherry, J.A., 1979. Groundwater. Prentice-Hall, Inc.

New Mexico EID, September 19, 1988. Letter of Concurrence to Dames & Moore for Round 3 Sampling and Analytical Plan for Maverik Country Stores Kirtland, New Mexico Refinery Tank Farm.

TABLE 1

į.

SAMPLE ROUND 3

LABORATORY WATER QUALITY PARAMETERS

Refinery Hazardous Constituent Semivolatiles	Halogenated Volatile Organics
EPA Method 625	EPA Method 601
Anthracene	Chloromethane
Benzo(a)anthracene	Bromomethane (Methylbromide)
Benzo(b)fluoranthene	Vinyl chloride
Benzo(k)fluoranthene	Chloroethane
Benzo(a)pyrene	Methylene chloride
bis(2-Ethylhexyl)phthalate	1,1-Dichloroethene
Butyl benzyl phthalate	l,l-Dichloroethane
Chrysene	l,2-Dichloroethene (cis/trans)
Dibenzo(a,h)anthracene	Chloroform
Di-n-butyl phthalate	1,1,2-Trichloro-2,2,1-trifluoroethane
l,2-Dichlorobenzene	l,2-Dichloroethane
l,3-Dichlorobenzene	l,l,l-Trichloroethane
l,4-Dichlorobenzene	Carbon tetrachloride
Diethyl phthalate	Bromodichloromethane
7,12-Dimethylbenz-anthracene	l,2-Dichloropropane
Dimethyl phthalate	trans-1,3-Dichloropropene
Di-n-octyl phthalate	Trichloroethene
Fluoranthene	Chlorodibromomethane
Indene	cis-1,3-Dichloropropene
l-Methylnaphthalene	1,1,2-Trichloroethane
Naphthalene	EDB (1,2-Dibromoethane)
Phenanthrene	Bromoform
Pyrene	1,1,2,2-Tetrachloroethane
Pyridine	Chlorobenzene
Quinoline	
Benzenethiol	
o-Cresol	Aromatic Volatile Organics
m & p-Cresol(s)	EPA Method 602
2,4-Dimethylphenol	
2,4-Dinitrophenol	Benzene
4-Nitrophenol	Toluene
Phenol	Chlorobenzene
	Ethylbenzene
	Total xylenes

1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene

Note: For detail of methodology see ENSECO's (RMAL) attached report (Appendix B)

11

11

TABLE 2

LABORATORY RESULTS FOR MAJOR IONS SAMPLE ROUNDS 1 AND 2 FOR MAVERIK COUNTRY STORES, REFINERY TANK FARM, KIRTLAND, NEW MEXICO

(Round 1 Sampled November 10-27, 1987) (Round 2 Sampled February 22-24, 1988) (Round 3 Sampled October 12-13, 1988 no laboratory analysis for inorganics)

							Total	v	
Sample Site Designation(1) NM MCL EPA MCL	pH (field) 6-9 <u>6.5-8.5</u>	TDS (mg/1) 1,000 500	Sulfate mg/1 600 250	Chloride mg/1 250 250	Sodium mg/l NA NA	Calcium mg/l NA NA	as CaCO ₃ mg/l NA NA	Iron mg/1 1.0 0.3	Manganese mg/l 0.2 .05
Wells									
<u>On-Site</u>									
MW1 MW2 MW10 MW11 MW12(3)	9.64;7.51 7.75;6.63 7.66;8.22 7.85;7.80 6.74;7.25	360;537 1,360;2,000 1,240;2,725 1,250;1,470 1,200;1,310	176;198 526;955 568;1,640 592;615 16;9	26;33 67;101 46;191 45;184 321;360	44;50 243;334 250;578 234;263 222;239	44;112 152;268 126;196 138;186 148;133	34;159 309;365 153;271 267;242 508;541	<.05(2) <.05 <.05 <.05 .13;.09	- ;.013 - ;1.10* - ;5.20* - ;1.0* - ;3.6
W-3	- ;7.72	- ;960	- ;387	- ;50	- ;207	- ;103	- ;363	- ;<.05	- ;.28*
Off-Site									
MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW13 R. Ball Well (W-1) V. Murray Well (W-2) <u>Farmer's Mutual I</u> SW1(3)	7.78;7.16 7.46;7.31 7.85;7.19 7.51;7.18 7.66;7.03 7.41;7.00 7.11;7.08 8.14;8.36 7.96;8.63 8.06;8.55 rrigation Ditc	1,620;1,730 1,540;1,380 1,250;1,190 2,130;2,000 1,400;1,510 950;1,230 1,520;2,160 3,700;1,850 2,300;2,140 600;640 <u>h</u>	670;713 654;601 499;545 843;960 558;675 401;605 863;1,510 1,980;920 433;610 114;97 136	97;138 87;73 68;61 288;260 126;169 67;65 43;81 257;82 1,170;527 43;37	349;377 337;294 258;244 386;361 256;266 166;174 146;357 666;370 1,020;696 147;126	148;167 142;131 129;142 230;267 152;205 159;193 324;396 364;219 25;15 42;28 86	215;387 332;332 397;301 367;324 166;320 273;256 372;250 419;581 221;289 368;297	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	- ;.64* - ;.78* - ;.76* - ;2.3* - ;.48* - ;2.7* - ;.11 - ;1.90* - ;.02 - ;.03
West Side Irrigat	ion Ditch								
SW4(3) SW5(3) SW2 SW3	7.28 - 7.6;7.41 8.05:8.16	790 - 1,120;1,210 1,400:1,200	147 476;550 602:550	29 - 49;50 77:52	40 - 159;190 223:205	113 - 162;147 178:146	253 - 277;274 297:253	.12; - - <.05	- - - ;.55* - :.16*
V. Murray's Drain	age Ditch	-,,-,-,-	,	,	,	,		,	,
SW6	7.28.7.95	_	_	_	-	-	_	_	-
540	1.20,1.33	-	-	-	-	-	-	-	-

MW11 & MW12 (Composite of Cuttings)

Analyzed for EP Toxicity for 8 RCRA metals and sulfide and cyanide reactivity. Only barium detected at 0.94 mg/1.

Footnotes:

(1) Data from Rounds 1 and 2 presented for each sample site in the first and second columns, respectively. Where Round 1 results = Round 2 results, column 2 left blank. Indicates not analyzed.

(2) The values indicated as less than (<) are detection limits only, and not actual concentrations.

(3) Sample sites SW-4 and SW-5 (and MW-12 in Round 1 only) were contaminated with product and not representative of the water itself. SW-4 and SW-5, and SW-1 which was dry, were not sampled for Round 2.

* Exceeds New Mexico MCL For Drinking Water.

TABLE 3	ROUNDS 1, 2 and 3 LABORATORY RESULTS FOR DETECTED ORGANIC CONSTITUENTS R MAVERIK COUNTRY STORES, REFINERY TANK FARM, KIRTLAND, NEW MEXICO
	MAVE
	SAMPLE FOR

(Round 1 Sampled November 10-27, 1987) (Round 2 Sampled February 22-24, 1988) (Round 3 Selective Sampling October 12-13, 1988)

Sample Site Designation(1) NH MCL EPA MCL	1-2 DCA (ug/1) 10 5	Total Xylene (ug/l) 620 MA	Ethylbenzene (ug/l) 750 NA	Toluene (ug/1) 50 2,000	Benzene (ug/1) 10 5	Total Organic Lead mg/l NA NA	Naphchalene (ug/l) N/A N/A	m & p Cresols (ug/l) N/A N/A
Wells On-Site								
		< 0.5	< 0.5	< 0.5	0.53(3);<0.5	<0.01;<0.002		
MW10(2)	3.2;1.3;5.7	C 0 5	<pre></pre>	c.0 >	<pre></pre>	0.004 0.02;0.009;	;;<10	01>::
HWI (2,5,6,7) HWI 2(2,5,6,7) H-3	1.0;4.6;41.0 450.*;2,400*;<200 < 1;30*?	<pre>< 0.5 3,000.*;10,000*;470 5.8;<0.5</pre>	<pre>< 0.5 1,300.*;1,500*;180* 1.3;<0.5</pre>	< 0.5 2,000.*;20,000*;1,000* < 0.5	0.81;3.8;<0.5 19,000.* ;24,000*;6,200* < 0.5	0.007;0.004; 0.02;0.06; - ;0.002	;;410	;;<10
Of f-Site								
EVM	< 1	< 0.5	< 0.5	< 0.5	< 0.5	<0.01;0.005		
5MM	1 >	< 0.5	< 0.5	< 0.5	< 0.5	<0.002;0.003		
НИ5 МЦ6 (2)	< 1 6*-7.7.4.9	< 0.5		< 0.5		<pre><0.02;0.002 </pre>	017	017
HU7		< 0.5	< 0.5	< 0.5	() () () () () () () () () ()	0.02:0.002	012	
MW8(2)	2.8;1.1;2.3	< 0.5	< 0.5	< 0.5	< 0.5	<0.02;<0.004;-	01>!!	~ <10
(2) EINM	8.3;8.6;5.6			< 0.5	< 0.5	<0.01:0.004:-	;;<10	01>!!
R. Ball Well	< 1 < 1 < 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2	v.v.s;1.06;vu.vv	0.09;<0.50;<0.50 0.89;<0.5	<pre>< 0.5 < 0.5</pre>	< 0.5 < 0.5	<pre><0.01;<0.004;- <0.02;<0.002</pre>	015:!	01>::
(W-1) V. Murray Well (W-2)	1 >	< 0.5	< 0.5	< 0.5	1.0;<0.5	<0.01;<0.002		
Farmer's Mutual I	rrigation Ditch							
SW1(5)	< 1	< 0.5	< 0.5	< 0.5	< 0.5			
West Side Irrigat	ion Ditch							
Su4(5,6)	<10	61	<10	<10	<10			
(9,C)2WS	<250 1 1:61 0	57,000*	2,500*	47U 205	<250	0.3; -;		
5W3	<pre></pre>	< 0.5	< 0.5	< 0.5	< 0.5	<0.002;0.002		
V. Murray's Drain	age Ditch					<0.01;<0.004		
SW6	< 1	< 0.5	< 0.5	< 0.5	< 0.5	1		

Fornotes: (1) Data from Rounde 1, 2 and 3 are presented for each sample site in the first, second and third columns, respectively. Where Round 1 results - Round 2 and Round 3 results, columns 2 and 3 are left blank. - Indicates not analyzed. (2) Sampled for Round 3 Selective Sampling Program. (3) Benzene was not detected in a blind duplicate of this sample in Round 1. (4) The values indicated as less than (<) are detection limits only, and not actual concentrations. (5) Sample sites SW-4 and SW-5 (and WW-12 in Round 1 only) were contaminated with product and not representative (5) Sample sites SW-4 and SW-5 and SW-1 which was dry, were not sampled for Round 1. (6) Volatile organics in samples for SW-4 and SW-5 were analyzed using CC/MS methods in Round 1, and for WW-12 in Rounds 1 and 2. All other samples were analyzed using CC methods. (7) Napthelene and m6 p creaols were only analyzed in Round 3 and only detected in MW-12. * Exceeda New Mexico MCL for drinking water. 7 Bara Questionable M. Not Applicable

	Molecular Weight	Density (gm/cm ³)	Water Solubility (mg/l)	Vapor Pressure (mm Hg)	K _{oc} (1) (m1/g)	K _{ow} (2)
Volatile Organic Para	neters					
Benzene	78	0.88	1,750	95	83	132
Ethylbenzene	106	0.87	152	7	1,100	1,412
Toluene	92	0.87	535	28	300	537
Xylene, m	106	0.86	130	10	871	1,820
Xylene, p	106	0.86	192	10	676	1,412
Xylene, o	106	0.88	175	10	426	891
1,2-Dichloroethane	99	1.26	8,520	64	14	3 0
Tetraethyl lead	323	1.65	0.3-0.8	0.1	4 ,9 00	-
Semivolatile Organic I	Parameters					
Phthlate Esters						
Bis(2-ethylhexyl phthalate	391	0.99	0.28	3x10-7	-	75,850
Polycyclic Aromatic	Hydrocarbo	ns (PAH)				
l-Methyl naphthalene	e 142	1.02	12	-	-	-
Naphthalene	128	1.02	32	0.05	1,300	2,340
Phenanthrene	178	1.06	1	0.00068	14,000	28,8 40
Chrysene	228	1.27	0.001	6x10 ⁻⁹	200,000	410,000
Phenols and Cresols						
m-Cresol p-Cresol	108 108		25,000 25,000			6 6

CHARACTERISTICS OF ORGANIC COMPOUNDS DETECTED

TABLE 4

(1) Organic carbon partition coefficient, a measure of the tendency for organics to be adsorbed by soil and sediment.

(2) Octanol-water partition coefficient, a measure of the tendency of a chemical at equilibrium to distribute between an organic phase (octanol) and water.

Source: Superfund Public Health Evaluation Manual, EPA 540/1-86/060, October 1986; Land Treatment of Appendix VIII Constituents in Petroleum Industry Wastes, American Petroleum Institute Publication 4379, May 1984.

FO

11.1

APPENDIX A

WATER LEVEL ELEVATION DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES: ROUNDS 1, 2 AND 3

.

1 1

APPENDIX A

ROUNDS 1, 2 AND 3 WATER LEVEL ELEVATION DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES

An electric water level probe was used during Round 1 (November 22-27, 1987), Round 2 (February 24-25, 1988) and Round 3 (October 12-14, 1988) to obtain static water levels to within 0.01 foot at the 13 monitor well sites, at the 5 well points and at the 19 to 21 private water wells that were accessible for water level monitoring. These sites are located on Plate A-1. Ten private wells, 4 well points and 2 staff gauges measured in previous sampling rounds were not accessible in Round 3. Well casing measuring point elevations, ground surface elevations and Rounds 1, 2 and 3 water level elevations and changes are presented in Table A-1. The well specification details including depths and screened intervals, are presented in the February 1988 report.

The Westside Irrigation Ditch was in use from mid-March 1987 through late October 1987 and from mid-March 1988 through late September 1988, but it was not in use during Rounds 1, 2 and 3 water level data reconnaissance. Consequently, all of the water level elevation measurements taken in this ditch reflect ground water level elevations and not surface water elevations in the ditch in late November 1987, late February 1988 and mid-October 1988. Water level measurements taken above ground surface at the staff gauges along and near the Westside Irrigation Ditch were similar during all three rounds, with water levels at their lowest in Round 2. The water level along the irrigation ditch and downgradient in the San Juan River declined continuously over the study period from Round 1 through Round 3 monitoring.

Comparison of water levels in Round 2 as compared to Rounds 1 and 3 shows that ground water levels were at their lowest in Round 2 in wells in the northern part of the study area after irrigation flows had been shut off for several months. The most significant water level declines in Round 2 (the measured declines as compared to Rounds 1 and 3) were recorded at MW-2 (at -2.07 and -1.17 feet), in MW-11 (at -1.69 and -0.78 feet), in C. Curley's well (at -3.17 and -2.42 feet) and in R. Madrid's well (at -5.25 and -5.24 feet). Water levels were slightly lower in Round 2 in five other private wells in the northeast part of the study area (Table A-1).

A-1

Less pronounced ground water level changes were observed in six wells to the south and southwest, with maximum depths to ground water also occurring in Round 2. The largest water level decline measured was about 1 foot which occurred at MW-4 over the period from Round 1 to 2. Wells to the south and southwest (MW-4, MW-5, MW-6, MW-7, MW-8 and W-1) are downgradient from the Westside Irrigation Ditch and though not as significantly affected as wells closer to the Ditch in the north and east, still demonstrate some influence of the Westside Irrigation Ditch on the ground water.

Ground water flow into the Westside Irrigation Ditch has been observed in the area between sample sites SW-5 and SW-3. This ditch has functioned as a hydraulic sink, receiving ground water when it was not full with irrigation water. When full, the ditch serves as a ground water recharge source and localized shallow ground water divide. It appears that the completion and operation of the on-site interceptor trench in March of 1988 may have also reduced the volume of ground water flowing into the irrigation ditch (Plate A-1).

Ground water levels in private wells located farther away from the irrigation ditches and to the southeast rose slightly in Round 2 as compared to Round 1. Round 3 water levels dropped below the Round 1 water levels. The decline in water levels in Round 3 in these private wells was probably due to increased well pumpage or possibly reduced ground water recharge to this area.

The Round 1, 2 and Round 3 water level elevation data show that the water level elevations in MW-11 and MW-12, the two nested wells, located 33.5 feet apart, are essentially the same. Based on the differences in these monitor well water level elevations, the shallow zone had a slightly higher hydraulic potential ranging from +0.07 to +0.27 feet. This difference can be accounted for by the horizontal distance between the wells and the horizontal hydraulic gradient. The vertical hydraulic gradient that may exist is very small and not significant with respect to influencing vertical downward movement of contaminants to the deeper gravel zone.

A-2

TABLE A-1

WATER LEVEL ELEVATION DATA⁽¹⁾ Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico

		U.s.a. Fran	(1)	Measur	ing						Ground
Site Designation	Measur:	water from ing Point (fr)	,	Elevat	ion	Water Le	vel Elevat	ion	Water Level	Change(4)	Elevation
Site peargnation	Round 1	lound 2	Round 3			Round 1	Round 2	Round 3	Rounds 1-2	Rounds 2-3	
Surface Water Sites											
Westside Irrigation Ditch											
Staff Gauge 1	3.90	Dry	4.47	5194	. 65	5190.75	(5)	5190.18			-
Staif Gauge 2 Staif Gauge 3	2.70	2.71	2.45	5186	. 22	5185.70	5184.69	5184.15	-1.11	-0.54	
Staff Gauge 4	2.83	2.84	Dry	5171	. 59	5168.76	5168.75		-0.01 -0.01	-0.20	
San Juan River											
Staff Gauge 5	3.70	4.08	4.35		-				-0.38	-0.27	
Monitor Well Sites				Steel Casing	PVC Casing						
MW-1	8.15	13.8	8.77(3)	5207.79	5207.24	5199.09	5193.44	5199.02	-5.65	+5.58	\$205.75
MW-2 MU-3	3.85	5.92 3.26(3)	4.75 / BO(3)	5197.10	5196.93	5193.08	5191.01	5192.18	-2.07	+1.17	5195.25
HW-3	6.71(3)	6.44	7.75(3)	5178.41	5177.10	5179.0	5170.66	5170.66	-0.14	-1.54	5181.06
HW-5	5.72	5.84	6.65	5175.62	5175.09	5169.37	5169.25	5168.44	-1.04	0.00	5176.14
NW-6	4.37	4.41	5.28	5176.40	5176.01	5172.03	5171.6	5170.73	-0.43	-0.87	5174.23
HW-7 MU-8	5.13(3)	4.93	6.33(3)	5183.71	5182.84	5178.58	5177.91	5177.38	-0.67	-0.53	5181.73
MW-9	2.51	3.43	3.24	5191.39	5191.22	5188.71	5187.79	5187.98	-0.18	-0.53	5184.02
MW-10	2.70	3.43	3.78	5189.80	5189.30	5186.6	5185.87	5185.52	-0.92	+0.19	5189.53
HW-11	5.89	7.58	6.80	5197.26	5197.15	5191.26	5189.57	5190.35	-1.69	+0.78	5194.97
HW-12 MW-13	4.86	6.35	5.96	5196.66	5196.19	5191.33	5189.84	5190.23	-1.49	+0.39	5194.80
¥-3	5.10	6.78	5.96	5196.40	N.A.	5191.30	5189.62	5180.90	-0.22	-0.30	5187.56
Well Drive Point Sites									-1.68	+0.82	5194.62
WP 1	-	2.79	Dry	5175	.61		5172.82				5175 07
WP 2	3.65(2)	3.4		5173	.43	5169.78	5170.03		+0.25		5173.30
WP 3	3.0 (2)	1.44	3.85	5180	.92	5177.92	5179.48	5177.07	+1.56	-2.41	5180.79
WP 5	0.34	1.35	Destroyed	5189	. 54	5189.20	5188.19		-1.01		5193.11 5189.23
Private Wells (Inventoried)			By Ditch								
William Walker	No Access	No Access	No Access	5177	. 21						
E.M. Jackson (House)	4.0	3.83	4.90	5175	.73	5171.73	5171.9	5170.83	+0.17	-1.07	
(Field)	3.5	3.64		5175	.85 Jacksd)	5172.35	5172.21		-0.14		
n. Smouse M. Stone	NO ACCESS No Access	No Access	No Access	(BUIIG	- LOCKEG) -						
J. Bloomfield	8.06	No Access	No Access	5188	.10	5180.04					
V. Murray (Corral)W-2	3.2	4.27	3.41	5191	.69	5188.49	5187.42	5188.28	-1 07	+0 86	
(House)	3.55	5.74	No Access		-				-2.19		
A. Jackson	Z.JJ No Access	2.33	No Access	5104	. / 3	5182.40	5182.20	5181.63	-0.20	-0.57	
R. Jackson (Field)	4.95	4.63	6.08	5178	.02	5173.07	5173.39	5171.94			
R. Housh	No Access	No Access	No Access		-				+0.32	-1.45	
R. Neff	5.22	4.47	6.55	5179	. 53	5174.31	5175.06	5172.98	+0.75	-2.08	
P. Fickard (Shed)	9.25 No Access	8.68 No Access	9.95 No Access	5180	.14	5170.89	51/1.46	5170.19	+0.57	-1.27	
R. Eshome	6.65	5.98	6.90	5179	.76	5173.11	5173.78	5172.86			
G. Nelson	7.50	7.07	8.40	5178	.40	5170.90	5171.33	5170.00	+0.67	-0.92	
E. Mclemore	1.59	1.97	3.80	5186	. 15	5184.56	5184.18	5182.35	-0.36	-1.83	
E. Grey I. Hull	No Access	NO Access	No Access			5100 PC	5180 3/	5100 27			
C. Curley	4.49	7.85	5.43	5194	.92	5109.03	5192.1	5194 57	-0.49	+1.03	
R. Madrid	8.23	13.48	8.24	5208	.89	5200.66	5195.41	5200.65	-3.17	+2.42	
W. York	8.80	11.25		5206	.05	5197.25	5194.8		-2.45		
C. Hill	6.40	9.47		5202	. 54	5196.14	5193.07		-3.07		
D. Howell	6.61 8 18	8.85 No Acces	6.96	5201	. 51	5194.90	5192.66	5194.55	-2.24	+1.89	
R. Tracey	1.63	2.39		5190	. 32	5188.69	5187.93				
V. Lucero	7.33	9.94	7.66	5200	.16	5192.83	5190.22	5192.50	-0.76	+2.28	

Measured November 22 - 27, 1987, for Round 1; February 24-25, 1988 for Round 2, except where footnote (2) designated; and October 12-14, 1988 for Round 3.
 Measured October 30, 1987
 Measured from the top of the steel casing.
 A negative number indicates a water level decline from Round 1 to Round 2 and from Round 2 to Round 3.
 Round 1 measurements were taken immediately after the West Side Irrigation Ditch flows ceased.
 Round 2 measurements were taken about 3 months later, just prior to any Irrigation Ditch flows.
 Round 3 measurements were taken several weeks after the Westside Irrigation Ditch flows had ceased, but while there was flow in the Farmer's Mutual Irrigation Canal.
 Source and a measurement available.

7.11

(5) -Indicates no measurement available.

,

11

PLATE A-1

Dames & Moore

ANER

SAN

JUAN

ELEVATIONS GROUND WATER TABLE CONTOURS ROUNDS 1, 2 AND 3 MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988 AND OCTOBER 1988

SURFACE WATER LEVEL

200 400 SCALE IN FEET

WATER LEVEL ELEVATION CONTOURS (ROUND 2, FEBRUARY 1988) WATER LEVEL ELEVATION CONTOURS (ROUND 3,

OCTOBER 1988)

ØØ

APPENDIX B

FIELD AND LABORATORY WATER QUALITY DATA FOR ROUNDS 1, 2 AND 3 SAMPLING AND ANALYSES, AND QA/QC FOR ROUND 3

APPENDIX B

FIELD AND LABORATORY WATER QUALITY DATA FOR ROUNDS 1, 2 AND 3 SAMPLING AND ANALYSES AND QA/QC FOR ROUND 3

WATER QUALITY SAMPLING

The monitor wells sampled during Round 3 (MW-6 and MW-8 through MW-13) were purged with a teflon bailer as they were in Rounds 1 and 2. Ground water samples were then collected, preserved and analyzed in accordance with EPA guidance. Field measurements for pH, conductivity and temperature were measured by Dames & Moore at the time the water quality samples were collected. A Beckman No. 21 digital pH meter and an Amber Science, Inc. No. 605 electric conductivity meter were used. The meters were calibrated using standards of pH 4.0 and 10.0 buffer solutions and potassium chloride solutions of 718 umhos/cm and 6680 umhos/cm, respectively. Bottom samples were collected by lowering a teflon bailer with an end ball valve to the bottom of the wells. Samples were collected after 3 to 5 casing volumes of water had been removed. The field water quality data are presented in Table B-1.

The drop pipes that had been installed in monitor wells MW-12 and MW-13 prior to Round 2 sampling were also used during Round 3 sampling. These are described in our February 1988 report. They were installed after a free oil phase had been detected in specific monitor wells during Round 1 sampling. Such a phase was present only in monitor wells MW-12 and MW-13 during Round 3 sampling.

Sample bottles, with appropriate preservatives as detailed in RMAL's report, herein, were shipped directly to the site by RMAL. All samples were iced immediately after collection and shipped to RMAL on the day of collection via overnight courier. Chain-of-custody documentation was maintained.

LABORATORY ANALYSIS

RMAL conducted the analysis on the water quality samples for Rounds 1, 2 and 3. Analytical findings for the major inorganic (Rounds 1 and 2 only) and organic parameters for Rounds 1, 2 and 3 are included in Table B-2. The data are presented in columns for comparative purposes. The detailed report from RMAL for Round 3 analyses is also included in this appendix.

WATER QUALITY ANALYSES

Round 3 water quality analyses included a select list of analytes based on those detected previously in wells in Rounds 1 and 2 as agreed to by the EID. RMAL conducted analyses for 25 halogenated volatile organics, 8 aromatic volatile organics and 38 refinery semivolatile hazardous constituents. The specific parameters are listed in Table 1 along with the analytical methods used. GC methods 601 and 602 were used to detect volatile organics and GC/MS method 625 was used in the analysis of the semivolatiles.

ROCKY MOUNTAIN ANALYTICAL LABORATORY QA/QC PROGRAM

All analyses were conducted within approved holding times except for MW-12 and the field blank. Samples were originally extracted within the correct holding times but due to poor recovery of an internal standard (D4-1,4-dichlorobenzene) and two surrogate compounds (2-fluorophenol and D5-phenol), re-extractions were then performed. The re-extractions were performed outside of the maximum holding times. A surrogate recovery for MW-13 for D14-terphenyl was also conducted outside of the maximum holding time.

Chloroform and bromodichloromethane were detected in the field blank at 2.8 ug/l and 1.4 ug/l, respectively. These compounds were not however detected in any other water samples and are not refinery-related contaminants.

A duplicate of the sample from MW-6, designated by RMAL as MW-16, was subjected to the full suite of analyses in Round 3. The relative percent difference of 17 percent for 1,2-dichloroethane between the two samples (4.9 ug/1 versus 5.8 ug/1) was within acceptable limits. No other compounds were detected in either sample.

B-2

	<u></u>	(3)	1	•		1	Same Conditions		1	Same Conditions	Same Conditions	Same Conditions Same Conditions	same Conditions	Same Conditions	1	ı	1	Renarks	Rounds	(2)	Conditions Same Condi	Conditions. Ground Water Same Condi	ow only. Conditions. Ground Water Same Foodi	by only.	Dry - No o	Conditions. Pooled product. No oil 17 contaminated and not sam- for Round 2.	istinct oil or sheen Occasional
rke	ds / / /	(7)	Same Conditions	Same Conditions	Same Conditions	Same Conditions	Same Conditions Sitatt Act	yellow particulates	Same Conditions	Same Conditions	Same Conditions	Same Conditions Same Conditions	same conditions Same Conditions	Same Conditions	Same Conditions	Same Conditions	Same Conditions				or sheen noted Same	or sheen noted Same	infl of wheen noted Same	infl	d sheen noted Dry	Same I sheen noted High pled	l sheen noted No d
Rema	Roun	•	ed in glass bailer	TATTON GOOTS IN DE	ed in glass bailer	ed in glass bailer	ed in glass bailer	ed in glass bailer ed in class bailer	Ferris	or. ⊡ulti-colored	ed in glass bailer	d in glass bailer	terous		"		No distinct oil	No distinct oil	No distinct oil		Distinct oil an	Distinct oil and	Distinct oil and				
		E :	No oil or sheen note	No oil or sheen note	No oil or sheen note	No ail ar sheen note	No oil or sheen note		No oil or sheen note	No oil or sheen note	to oil or sheen note	do oil or sheen note do oil or sheen note	vo oit or sneen note Vellow sheen odorif	fellow sheen, no odd	No oil or sheen note	No oil or sheen note	fellow sheen, odorii	lov CFS	12) (2)		Flowing Dry no mea- surement	1-28pm 1-28pm	2~3epm 1-2epm		Dry Dry	Ponded Dry	<0.5gpm 0.59gpm
er		6	1	1	1	1	 	18.0		17.3 N	15.5	15.6	19.4	1.81		1		ί.	(1) Ro		46,675gpm	<5gpm	5ena		<5 gpm	<5gpm	<2gpm
Leaperat • C	Round	(1) (2)	15.3 14.9	14.2 9.7	12.0 8.9	14.1 10.8	15.5 10.8	1.1	13.5 11.0	14.8 12.0	13.3 13.9	12.5 9.1	14.0 I C.41	9.5 1.8 9.6	14.3 13.5	12.9 13.0	- 14.3	erature °C	Rounds		1	- 6.8 -	1 8.3 -		۱ ۱		- 15.4 -
Hd	Rounds	(2) (3)	4 7.51 -	5 6.63 -	8 7.16 -	6 7.31 -	5 7.19 -	- 01./ 1	6 7.03 -	1 7.00 7.60	1 7.08 6.52	6 8.22 6.25) /.80 6.94 / 7 75 6 92	4 8.36 7.51	6 8.63 -	6 8.55 -	7.72 -	Lee L	1) (1) (1)		- - -	41 - 10.0	16 - 6.6		- 7.8	ontami- ough for	95 - 14.2
~ 1		(3) (1)	- 6		- 1.7	- 7.4		(.) (77)	- 7.6	,600 7.4	,600 7.1	.,375 7.6			6.7	- 8.0	•	펍	1) (1) (2	7) /T) /r	- 8.5 -	- 7.60 7.4	- 8.05 8.		- 1.28 -	layer too c r probes thre	- 1.28 7.9
Conductivity (umhos/cm)	Rounds	(1) (2)	400 595	,100 2,000	,080 1,700	,510 1,500	,310 1,340	, UUU,2 UOD,	,060 1,600	,060 1,210 1	400 2,200 1	,280 3,600 1	010 2 013	300 2.600 4	500 3,400	700 840	- 1,500	Conductivity (umhos/cm)	Rounds (2) (1)		280 -	,080 1,800	.210 1,620		565 -	Upper surface nated to love field tests.	,080 3,150
ample Site Designation	Ground Water		H4-1	MW-2 1	MW-3	MW-4	1 S-MM-S	7 0-RE	Т 2-мы	HW-8 1	MW-9 1	MW-10 I I I I I I I I I I I I I I I I I I I		MU-13 2	Ball Well (W-1) 3	V. Murray Well (W-2)	On-Site Steel Well (W-3)		Surface Water	10101 10101 101	SW-1 Farmers Mutual Irriga- tion Ditch (Upstream)	SW-2 West Irrigation Ditch (at Hwy 489) l	5W-3 West Irrigation Ditch (Downstream) I	34-6 Vest Irrigation Ditch	(Across from Tank Farm)	SW-5 West Irrigation Ditch (Across from Tank Farm)	SW-6 V. Murray's Ditch (West of Tank Farm) 3,

Round I Data, November 10-27, 1987
 Round Z Data, February 22-24, 1988
 Round Z Data, October 12-13, 1988
 Round Z Data, October 12-13, 1988
 Indicates no sample collected.

TABLE B-1

TABLE B-2

:

|

MAVERIK-KIRTLAND WATER QUALITY

					QUALITI
	MTT	-		· · · · · · · · · · · · ·	 ********
SAMPLE IDENIIFICATION	- F1W -	·1 07	- mw-		
DATE SAMPLED			2 - 2 		
INORGANIC PARAMETERS (mg/L exc	ept a	is noted)			
Calcium (Ca)	•	44.0		112.0	
Magnesium (Mg)		6.4		17.0	
Sodium (Na)		44.0		50.0	
Potassium (K)	<	5.0	<	5.0	
Iron (Fe)	<	.05	<	.05	
Manganese (Mn)		*		.013	
Ammonia (as N)	<	.1	<	.1	
Chloride (Cl)		26.0		33.0	
Sulfate (SO4)		176.		198.	
Fluoride (F)		.4		.3	
Nitrate and Nitrite (as N))	.2		.7	
Total Alkalinity		20.4		159.0	
Bicarbonate Alkalinity		20.4		159.0	
Carbonate Alkalinity		5.0		*	
Bicarbonate (HCO3)		24.9		193.9	
Carbonate (CO3)		3.0		*	
FIELD AND LABORATORY MEASUREM	ENTS				
Temperature (Degrees C)		15.3		*	
Field pH		9.64		7.51	
Lab pH (units)		8.60		7.85	
Field Conductivity (umhos,	/cm	400.0		595.0	
Lab Conductivity (umhos/cr	n)	497.0		755.0	
Total Dissolved Solids(mg,	/1)	360.0		537.0	
VOLATILE ORGANICS DETECTED (ug	g/L)				
Benzene		. 53	<	.50	
Ethylbenzene	<	.50	<	.50	
Toluene	<	. 50	<	.50	
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	. 50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane	<	1.00	<	1.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead	<	.010	<	.002	
<: Less than given detection *: Parameter value not dete: @: At least one sample used summary is below detection	n lim rmine in s on li	its. d. tatistica mit.	1		

- #: All samples are below detection limit.

+: Data questionable DUP: Indicates duplicate sample

TABLE B-2 (Cont. 2)

11

MAVERIK-KIRTLAND WATER QUALITY

			LUU.	AEVIV-VIVI	LAND WATER	QUALITI
		•				
SAMPLE IDENTIFICATION	MW	-2	MW	-2		
DATE SAMPLED	11-	11-87	2-2	22-88		
		* • • • • • • •				
TNORCANIC RADAVETERS (/I						
Coloium (Co)	cept	as noted)		268 0		
Marraafur (Ma)		152.0		200.0		
fadium (Na)		25.0		43.0		
		243.0		334.0		
Trans (Ta)		5.0	<	5.0		
Tron (Fe)	<	.05	<	.05		
manganese (mn)		*	-	1.100		
Ammonia (as N)	<	.1	<	.1		
Chloride (Cl)		67.0		101.0		
Sulfate (SO4)		526.		955.		
Fluoride (F)		.4		.3		
Nitrate and Nitrite (as N)	.4	<	.1		
Total Alkalinity		3 09.0		365.0		
Bicarbonate Alkalinity		3 09.0		365.0		
Carbonate Alkalinity	<	5.0		*		
Bicarbonate (HCO3)		376.7		445.0		
Carbonate (CO3)	<	3.0		*		
FIELD AND LABORATORY MEASUREM	ENTS					
Temperature (Degrees C)		14.2		*		
Field pH		7.75		6.63		
Lab pH (units)		7.65		7.63		
Field Conductivity (umhos	/cm	1100.0		2000.0		
Lab Conductivity (umhos/c	m)	1770.0		2500.0		
Total Dissolved Solids(mg	/1)	1360.0		2000.0		
VOLATILE ORGANICS DETECTED (11	₽/I.)					
Renzene	6/2/	50		50		
Ethulhenzene	2	.50		.50		
Toluene	\geq	.50		.50		
	\geq	.50		.50		
		.50		.50		
o,p-Aylene Tobol Yulaas	<	.50	<	.50		
10tal Aylene		*		*		
1,2 Dichioroethane	<	1.00	<	1.00		
TOTAL ORGANIC LEAD (mg/L)						
Total Organic Lead	<	.004		.004		
-						
<: Less than given detection	n lim	its.				
*: Parameter value not dete	rmine	d.				
	•		-			

- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

TABLE B-2 (Cont. 3)

MAVERIK-KIRTLAND WATER QUALITY

			MA	VERIK-KII
SAMPLE IDENTIFICATION	M	<i>w</i> -3	MU	••••••••••
DATE SAMPLED	11-	-11-87	2-	22-88
			••••	•••••
THOPCANTS DADAWEREDS (C				
INURGANIC PARAMETERS (mg/L e	xcept	as noted)		
		148.0		167.0
Sodium (No)		21.0		24.0
Potaccium (K)		349.0		377.0
Trop (Fe)	<	5.0	<	5.0
Manganasa (Mn)	<	.05	<	.05
Ammonia (ac N)		*		.640
Chloride (Cl)	•	.1	<	.1
Sulfate (SO4)		97.0		138.0
Fluoride (F)		670.		/13.
Nitrate and Nitrite (pc)	a)	.0		.8
Total Alkalinity	•	.∠ 21/ 0		.3
Bicarbonate Alkalinity		214.0		387.0
Carbonate Alkalinity		214.0		387.0
Bicarbonate (HCO3)		261 0		× (71 0
Carbonate (CO3)	<	3.0		4/1.8
FIELD AND LABORATORY MEASUREN	IENTS			
Temperature (Degrees C)		12.0		*
Field pH		7.78		7.16
Lab pH (units)		7.53		7.58
Field Conductivity (umhos	s/cm	1080.0		1700.0
Lab Conductivity (umhos/c	:m)	2160.0		2300.0
lotal Dissolved Solids(mg	<u>z/1)</u>	1620.0		1730.0
VOLATILE ORGANICS DETECTED (1	17/1.)			
Benzene	<	50		50
Ethylbenzene	<	50	2	.50
Toluene	<	.50	è	50
m -Xylene	<	.50	è	50
o,p-Xylene	<	.50	è	50
Total Xylene		*	•	*
1,2 Dichloroethane	<	1.00	<	1.00
TOTAL ORGANIC TEAD (C)				
Total Organia Load				
Total olBanic Deso	<	.010		.005
<: Less than given detectio	n lim:	its.		
	rmined	1.		

@: At least one sample used in statistical summary is below detection limit.
#: All samples are below detection limit.
+: Data questionable
DUP: Indicates duplicate sample
TABLE B-2 (Cont. 4)

1

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	MW	-4	MW-4		
DATE SAMPLED	11-	10-87	2-22-88		
INORGANIC PARAMETERS (mg/L e:	KCEDT	as noted)			
Calcium (Ca)		142.0		131.0	
Magnesium (Mg)		20.0		19.0	
Sodium (Na)		337.0		294.0	
Potassium (K)	<	5 0	<	5.0	
Iron (Fe)	<	.05	č	.05	
Manganese (Mn)	•	*		.780	
Ammonia (as N)	<	.1	<	.1	
Chloride (Cl)		87.0	-	73.0	
Sulfate (SO4)		654.		601	
Fluoride (F)		.8		.7	
Nitrate and Nitrite (as)	(8	.3		.2	
Total Alkalinity		332.0		332.0	
Bicarbonate Alkalinity		332.0		332.0	
Carbonate Alkalinity	<	5.0		*	
Bicarbonate (HCO3)	-	404.8		404.8	
Carbonate (CO3)	<	3.0		*	
FIELD AND LABORATORY MEASURE	MENTS				
Temperature (Degrees C)		14.1		*	
Field pH		7.46		7.31	
Lab pH (units)		7.44		7.84	
Field Conductivity (umho	s/cm	1510.0		1500.0	
Lab Conductivity (umhos/	cm)	2060.0		1920.0	
Total Dissolved Solids(m	g/1)	1540.0		1380.0	
VOLATILE ORGANICS DETECTED (1	ug/L)				
Benzene	<	.50	<	.50	
Ethylbenzene	<	.50	<	.50	
Toluene	<	.50	<	.50	
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	. 50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane	<	1.00	<	1.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead	<	.002		.003	

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 5)

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	MW	-5	MW	- 5	
DATE SAMPLED	11-	10-87	2-2	22-88	
	• • • •	•••••			
INORGANIC PARAMETERS (mg/L et	cent	as noted)			
Calcium (Ca)	leepe	129 0		142 0	
Magnesium (Mg)		20.0		22 0	
Sodium (Na)		258 0		244 0	
Potassium (K)	<	5.0	<	5 0	
ITOD (Fe)	è	05	- Z	05	
Manganese (Mn)		.05		760	
Ammonia (ac N)	6	1	-	.700	
Chloride (Cl)		68 0		<u>61</u> 0	
Sulfate $(SO4)$		499		545	
Flueride (SU4)		477.		242.	
Nitrata and Nitrita (ar.)	a N	.0		. /	
Total Alkalinity		307 0		2.1	
Picarbaneta Alkalimitu		397.0		301.0	
Carbonate Alkalinity		597.0		301.0	
Ricerbenete (UCO2)		1.0		367 0	
Grabonate (RCCS)		404.0		367.0	
Carbonate (COS)	 	3.0		×	
FIELD AND LABORATORY MEASURE	MENTS				
Temperature (Degrees C)		15.5		*	
Field pH		7.85		7,19	
Lab pH (units)		7.42		7.60	
Field Conductivity (unho.	s/cm	1310.0		1340.0	
Lab Conductivity (umhos/	ćm)	1730.0		1700.0	
Total Dissolved Solids(m	g/1)	1250.0		1190.0	
VOLATILE ORGANICS DETECTED (10 /1)				
Renzene		50		50	
Fthylbenzene	È	50	è	50	
Toluene	è	50	2	50	
m-Xvlene	ć	50	è	50	
		50		50	
Total Yulana					
1 2 Dieblereethane		1 00		1 00	
1,2 Dichiologinane		1.00		1.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead	<	.020		.002	

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit. #: All samples are below detection limit.

+: Data questionable

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION		MW-6		MW-6		MW-6		
DATE SAMPLED	11-	11-87	2 -	22-88	10-1	12-88		
INORGANIC PARAMETERS (mg/L exc	ept	as noted)						
Calcium (Ca)		230.0		267.0		*		
Magnesium (Mg)		33.0		37.0		*		
Sodium (Na)		386.0		361.0		*		
Potassium (K)	<	5.0	<	5.0		*		
Iron (Fe)	<	.05	<	.05		*		
Manganese (Mn)		*	•	2.300		*		
Ammonia (as N)	<	.1	<	.1		*		
Chloride (Cl)		288.0	•	260.0		*		
Sulfate (SO4)		843.		960.		*		
Fluoride (F)		.6		.5		*		
Nitrate and Nitrite (as N)	<	.1	<	.1		*		
Total Alkalinity	-	367.0	-	324.0		*		
Bicarbonate Alkalinity		367.0		324.0		*		
Carbonate Alkalinity	<	5.0		*		*		
Bicarbonate (HCO3)	-	447.5		395.0		*		
Carbonate (CO3)	<	3.0		*		*		
TTELD AND IABODATODY MEACIDEMI	TNTC							
Temperature (Degrees C)	2141.2	12 1		4		10 0		
Field pH		7 51		7 10		10.0		
Ish pH (units)		7.51		7.10		~ ~		
Field Conductivity (umbos)	/	1880 0		2050 0		2225 0		
Lab Conductivity (umbos/cr	, СШ л)	2870 0		2700 0		<i>ZZZJ</i> .0 +		
Total Dissolved Solids(mg.	ײַ /1\	2130 0		2000.0		*		
Total Dibbolved Dollas(mg/	1)	2150.0		2000.0				
VOLATILE ORGANICS DETECTED (ug	g/L)							
Benzene	<	. 50	<	.50	<	. 50		
Ethylbenzene	<	.50	<	. 50	<	.50		
Toluene	<	.50	<	.50	<	.50		
m-Xylene	<	. 50	<	.50		*		
o,p-Xylene	<	.50	<	.50	-	*		
lotal Xylene		*		*	<	. 50		
1,2 Dichloroethane		16.00		7.70		4.90		
SEMIVOLATILE ORGANICS DETECTED) (ug	g/L)						
Naphthalene	-	*		*	<	10.00		
m & p-Cresol(s)		*		*	<	10.00		
TOTAL ORGANIC LEAD (mg/L)								
Total Organic Lead		.004		.005		*		
-								

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 7)

MAVERIK-KIRTLAND WATER QUALITY

			MA	ERIK-KIR	ILAND WATE	R QUALITY		
SAMPLE IDENTIFICATION DATE SAMPLED		MW-7 11-11-87		MW-7 2-22-88				
TNODCANTO DADAWETEDS (voont	nc matad)						
Calcium (Ca)	xcept	152 N		205 0				
Magnesium (Mg)		22 0		205.0				
Sodium (Na)		256 0		29.0				
Potassium (K)	6	20.0		200.0				
Iron (Fe)	È	05	2	05				
Manganese (Mn)		.05		480	•			
Ammonia (as N)		ĩ		.400				
Chloride (Cl)		126 0		160 0				
Sulfate $(SO4)$		559		475				
Fluoride (F)		JJ0. K		5				
Nitrate and Nitrite (sc)	N)	.0		1 0				
Total Alkalinity		166 2		320 0				
Ricarbonata Alkalinity		166 2		320.0				
Carbonate Alkalinity		5.0		320.0				
Bicarbonate (HCO3)		202.6		300 2				
Carbonate (CO3)	<	3.0		*				
FIELD AND LABORATORY MEASURE	MENTS							
Temperature (Degrees C)		13.5		*				
Field pH		7.66		7.03				
Lab pH (units)		7.40		7.64				
Field Conductivity (umho	s/cm	1060.0		1600.0				
Lab Conductivity (umhos/	cm)	1840.0		2100.0				
Total Dissolved Solids(m	g/1)	1400.0		1510.0				
VOLATILE ORGANICS DETECTED (1	ug/L)							
Benzene	ົ <	.50	<	.50				
Ethylbenzene	<	.50	<	.50				
Toluene	<	.50	<	.50				
m-Xyle ne	<	.50	<	.50				
o,p-Xylene	<	.50	<	.50				
Total Xylene		*		*				
1,2 Dichloroethane	<	1.00	<	1.00				
TOTAL ORGANIC LEAD (mg/L)								
Total Organic Lead		.020		.002				

<: Less than given detection limits.

*: Parameter value not determined.

- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

TABLE	3	
MAVERIK-KIRTLAND	WATER	QUALITY

-

ì

SAMPLE IDENTIFICATION DATE SAMPLED		8 23-87	MW- 2-	MW-8 2-22-88		MW-8 10-12-88		
INORGANIC PARAMETERS (mg/L exc	ept	as noted)						
Calcium (Ca)		159.0		193.0		*		
Magnesium (Mg)		21.0		26.0		*		
Sodium (Na)		166 0		174 0		*		
Potessium (K)	<	5 0		5.0		*		
Iron (Fe)	è	05	2	05		*		
Manganese (Mn)		.05		2 700		*		
Ammonia (as N)		1	/	2.700		*		
Chlorido (Cl)		.1		.1		*		
Sulfate $(SO(4))$		67.0		65.0		* *		
Fluorido (E)		4UI. 7		605.		т х		
rituoride (r) Niturata and Niturita (N)		. /		.0		★		
Nitrate and Nitrite (as N)	<	.1	<	.1		*		
lotal Alkalinity		2/3.0		256.0		*		
Bicarbonate Alkalinity		*		256.0		*		
Carbonate Alkalinity		*		*		*		
Bicarbonate (HCO3)		*		312.1		*		
Carbonate (CO3)		*		*		*		
FIELD AND LABORATORY MEASUREME	NTS							
Temperature (Degrees C)		14.8		*		173		
Field pH		7 41		7 00		7 60		
Ish pH (upits)		7.41		7.00		7.00 ¥		
Field Conductivity (umbog)	~ m	1060 0		1210 0		1600 0		
Leb Conductivity (umios/	СШ N	1000.0		1210.0		1000.0		
Tabel Disseluted Calida (mm) 1	1300.0		1040.0		*		
Total Dissolved Solids(mg/	1)	950.0		1230.0		*		
VOLATILE ORGANICS DETECTED (ug	/L)							
Benzene	<	.50	<	.50	<	.50		
Ethylbenzene	<	.50	<	.50	<	.50.		
Toluene	<	. 50	<	. 50	<	. 50		
m-Xylene	<	.50	<	.50		*		
o,p-Xylene	<	. 50	<	. 50		*		
Total Xylene	-	*		*	<	. 50		
1.2 Dichloroethane		2 80		1 10		2.30		
		2.00		T .TA		2.30		
SEMIVOLATILE ORGANICS DETECTED	(ug	g/L)						
Naphthalene	_	*		*	<	10.00		
m & p-Cresol(s)		*		*	<	10.00		
TOTAL OPCANIC LEAD ((1)								
Total Organia Load		020		00/		4.		
iotal organic Lead	<	.020	<	.004		×		

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical

summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

DUP: Indicates duplicate sample

uplicate sa

TABLE MAVERIK-KIRTLAND WATER QUALITY

i

SAMPLE IDENTIFICATION		MW-9		MW-9		MW-9		
DATE SAMPLED	11-	23-87	2-	22-88	10-1	L3-88		
		••••••	**					
INORGANIC PARAMETERS (mg/L exc	ept	as noted)						
Calcium (Ca)	-	324.0		396.0		*		
Magnesium (Mg)		29.0		41.0		*		
Sodium (Na)		146.0		357.0		*		
Potassium (K)	<	5.0	<	5.0		*		
Iron (Fe)	<	.05	<	.05		*		
Manganese (Mn)	•	*	•	110		*		
Ammonia (as N)	<	1	<	1		*		
Chloride (Cl)		43 0	-	81 0		*		
Sulfate (SO4)		863		1510		*		
Fluoride (F)		1 0		τστο. 8		*		
Nitrate and Nitrite (an N)	/	1.0	/	, o 1		ب		
Total Albalisity		372 0		250 0		ب ب		
Biographoneto Alkelinitu		572.0		250.0		т х		
Corbonate Alkalinity		-r ×		250.0		*		
Disorbarate (UCO2)		*		20/ 0		*		
Bicarbonate (HUUS)		*		304.8		*		
Carbonate (CU3)		*		*		*		
FIELD AND LABORATORY MEASUREMEN	STV							
Temperature (Degrees C)		12 2		4		15 5		
Field pH		7 11		7 08		6 52		
Ish pH (unite)		7.11		7.00		0.JZ		
Field Conductivity (umbes/	~~	1400 0		2200 0		1600 0		
Lab Conductivity (umbac/om	СШ N	1950.0		2200.0		1000.0		
Total Dissolved Solids/mg/) 1 \	1520.0		3000.0		ب ×		
iotal Dissolved Solids(mg/	- /	1520.0		2100.0		Ŷ.		
VOLATILE ORGANICS DETECTED (ug.	/L)							
Benzene	<	. 50	<	.50	<	. 50		
Ethylbenzene	<	.50	<	.50	<	.50		
Toluene	<	. 50	<	.50	<	.50		
m-Xylene	<	.50	<	. 50	-	*		
o,p-Xylene	<	. 50	<	. 50		*		
Total Xvlene	-	*	•	*	<	.50		
1.2 Dichloroethane		8.30		8 60		5.60		
_,						2.00		
SEMIVOLATILE ORGANICS DETECTED	(ug	;/L)						
Naphthalene	-	*		*	<	10.00		
m & p-Cresol(s)		*		*	<	10.00		
TOTAL ORGANIC LEAD (mg/L)								
Total Organic Lead	<	.010		.004		*		

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	MW-	10	MW-	10	MW-1	LO
DATE SAMPLED	11-	23-87	2 - 3	23-88	10-1	L2-88
INORGANIC PARAMETERS (mg/L ex	cept	as noted)				
Calcium (Ca)		126.0		196.0		*
Magnesium (Mg)		22.0		41.0		*
Sodium (Na)		250.0		578.0		*
Potassium (K)	<	5.0	<	5.0		*
Iron (Fe)	<	.05	<	.05		*
Manganese (Mn)		*		5.200		*
Ammonia (as N)	<	.1	<	.1		*
Chloride (Cl)		46.0		191.0		*
Sulfate (SO4)		568.		1640.		*
Fluoride (F)		. 8		.7		*
Nitrate and Nitrite (as N	() <	.1	<	.1		*
Total Alkalinity	•	153.0		271.0		*
Bicarbonate Alkalinity		*		271.0		*
Carbonate Alkalinity		*		*		*
Bicarbonate (HCO3)		*		330.4		*
Carbonate (CO3)		*		*		*
TELD AND LABORATORY MEASUREM	LENTS	10 5				
Temperature (Degrees C)		12.5		*		15.6
Fleid pH		/.66		8.22		6.25
Lab pH (units)		1.74		1.70		*
Field Conductivity (umhos	/cm	1280.0		3600.0		1375.0
Lab Conductivity (unhos/c	:m)	1640.0		3720.0		*
Total Dissolved Solids(mg	;/1)	1240.0		2725.0		*
OLATILE ORGANICS DETECTED (u	ug/L)					
Benzene	<	.50	<	.50	<	. 50
Ethylbenzene	<	.50	<	.50	<	. 50
Toluene	<	.50	<	. 50	<	. 50
m-Xylene	<	. 50	<	. 50	-	*
o.p-Xvlene	<	. 50	<	. 50		*
Total Xvlene	-	*	•	*	<	. 50
1,2 Dichloroethane		3.20		1.30		5.70
ENTIONATILE ORGANIZO RETERT						
MULATILE ORGANIUS DETECTE	u (ug	(/L)				10.00
Naphthalene		*		*	<	10.00
m & p-Cresol(s)		*		*	<	10.00
						,
TOTAL ORGANIC LEAD (mg/L)						

- <: Less than given detection limits.
- *: Parameter value not determined.
- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

			MAV	VERIK-KIR	TABL TLAND	E WATER QUALITY
SAMPLE IDENTIFICATION DATE SAMPLED	MW-1	l1 l1-87	MW-1 2-1	L1 23-88	MW- 10-	11 12-88
Calcium (Ca)	серт а	is noted)		186 0		*
Magnesium (Mg)		21 0		28 0		*
Sodium (Na)		234.0		263.0		*
Potassium (K)	<	5.0	<	5.0		*
Iron (Fe)	<	.05	<	.05		*
Manganese (Mn)		*		1.000		*
Ammonia (as N)	<	.1	<	.1		*
Chloride (Cl)		45.0		184.0		*
Sulfate (SO4)		592.		615.		*
Fluoride (F)		. 5		.5		*
Nitrate and Nitrite (as N	i) <	.1	<	.1		*
Total Alkalinity		267.0		242.0		*
Bicarbonate Alkalinity		267.0		242.0		*
Carbonate Alkalinity	<	5.0		*		*
Bicarbonate (HCO3)		325.5		295.1		*
Carbonate (CO3)	<	3.0		*		*
FIELD AND LABORATORY MEASUREM	IENTS					
Temperature (Degrees C)		14.5		*		19.4
Field pH		7.85		7.80		6.94
Lab pH (units)		7.80		7.62		*
Field Conductivity (umhos	/cm	1050.0		2050.0		2600.0
Lab Conductivity (umhos/c	:m)	1720.0		2120.0		*
Total Dissolved Solids(mg	;/1)	1250.0		1470.0		*
VOLATILE ORGANICS DETECTED (1)	g/L)					
Benzene	6/ - /	. 81		25.00	<	. 50
Ethylbenzene	<	.50	<	.50	<	.50
Toluene	<	.50	<	.50	<	.50
m-Xylene	<	. 50	<	.50		*
o,p-Xylene	<	.50	<	.50		*
Total Xylene		*		*	<	.50
1,2 Dichloroethane		1.00		4.60	<	1.00
SEMIVOLATILE ORGANICS DETECTE	D (119	/1.)				
Naphthalene		*		*	<	10.00
m & p-Cresol(s)		*		*	<	10.00
TOTAL ORGANIC LEAD (ma /1)						
Total Organic Lead		.007	<	.004		*

<: Less than given detection limits.

*: Parameter value not determined.

- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable

- - -

SAMPLE IDENTIFICATION MW-12 MW-12 MW-12 DATE SAMPLED 11-27-87 2-23-88 10-12-88 INORGANIC PARAMETERS (mg/L except as noted)	ITY
INORGANIC PARAMETERS (mg/L except as noted) Calcium (Ca) 148.0 133.0 * Magnesium (Mg) 42.0 39.0 * Sodium (Na) 222.0 239.0 * Potassium (K) < 5.0 < 5.0 * Iron (Fe) .13 .09 *	
Calcium (Ca) 148.0 133.0 * Magnesium (Mg) 42.0 39.0 * Sodium (Na) 222.0 239.0 * Potassium (K) < 5.0	
Magnesium (Mg) 42.0 39.0 * Sodium (Na) 222.0 239.0 * Potassium (K) < 5.0	
Sodium (Na) 222.0 239.0 * Potassium (K) < 5.0	
Potassium (K) < 5.0 < 5.0 * Iron (Fe) .13 .09 *	
Iron (Fe) .13 .09 *	
Manganese (Mn) * 3.600 *	
Ammonia (as N) < .1 < .1 *	
Chloride (Cl) 321.0 360.0 *	
Sulfate (SO4) 16. 9. *	
Fluoride (F) .3 .3 *	
Nitrate and Nitrite (as N) $<$.1 $<$.1 $*$	
Total Alkalinity 508.0 541.0 *	
Bicarbonate Alkalinity * 541.0 *	
Carbonate Alkalinity * * *	
Bicarbonate (HCO3) * 659.6 *	
Carbonate (CO3) * * * *	
FIELD AND LABORATORY MEASUREMENTS	
Temperature (Degrees C) 17.0 * 23.0	
Field pH 6.74 7.25 6.93	
Lab pH (units) 6.99 7.05 *	
Field Conductivity (umhos/cm 1510.0 2010.0 2100.0	
Lab Conductivity (umhos/cm) 1930.0 2070.0 *	
Total Dissolved Solids(mg/l) 1200.0 1310.0 *	
VOLATILE ORGANICS DETECTED (ug/L)	
Benzene 19000,00 24000,00 6200.00	
Ethylbenzene 1300.00 1500.00 180.00	
Toluene 2000.00 20000.00 1000.00	
m-Xylene * * *	
o,p-Xylene * * *	
Total Xylene 3000.00 10000.00 470.00	
1,2 Dichloroethane 450.00 2400.00 < 200.00	
SEMIVOLATILE ORGANICS DETECTED (ug/L)	
Naphthalene * 33.00	
m & p-Cresol(s) * * 11.00	
TOTAL ORGANIC LEAD (mg/L)	
Total Organic Lead < .020 .060 *	

- <: Less than given detection limits.
- *: Parameter value not determined.
- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

			MAVERIK-KIRTLAND WATER QUALITY					
SAMPLE IDENTIFICATION DATE SAMPLED		MW-13 11-27-87		MW-13 2-24-88		MW-13 10-12-88		
INORGANIC PARAMETERS (mg/L exc	ept	as noted)						
Calcium (Ca)		364.0		219.0		*		
Magnesium (Mg)		105.0		47.0		*		
Sodium (Na)		666.0		370.0		*		
Potassium (K)		24.0	<	5.0		*		
Iron (Fe)		. 39		.12		*		
Manganese (Mn)		*		1.900		*		
Ammonia (as N)		. 5		. 5		*		
Chloride (Cl)		257.0		82.0		*		
Sulfate (SO4)		1980.		9 20.		*		
Fluoride (F)		1.0		. 8		*		
Nitrate and Nitrite (as N)		. 3	<	.1		*		
Total Alkalinity		419.0		581.0		*		
Bicarbonate Alkalinity		*		581.0		*		
Carbonate Alkalinity		*		*		*		
Bicarbonate (HCO3)		*		708.4		*		
Carbonate (CO3)		*		*		*		
FIELD AND LABORATORY MEASUREME	NTS							
Temperature (Degrees C)		8.1		*		18.3		
Field pH		8.14		8.36		7.51		
Lab pH (units)		7.89		8.11		*		
Field Conductivity (umhos/	'cm	2300.0		2600.0		4350.0		
Lab Conductivity (umhos/cm	ı)	4300.0		2650.0		*		
Total Dissolved Solids(mg/	1)	3700.0		1850.0		*		
VOLATILE ORGANICS DETECTED (ug	;/L)							
Benzene	<	. 50	<	.50	<	.50		
Ethylbenzene		.54	<	.50	<	. 50		
Toluene	<	.50	<	. 50	<	. 50		
m-Xylene		1.40		1.10		*		
o,p-Xylene		. 83		.58		*		
Total Xylene		*		*	<	.50		
1,2 Dichloroethane	<	1.00		1.90		1.90		
SEMIVOLATILE ORGANICS DETECTED) (ug	;/L)						
Naphthalene		*		*	<	10.00		
m & p-Cresol(s)		*		*	<	10.00		
TOTAL ORGANIC LEAD (mg/L)								
Total Organic Lead	<	.010	<	.004		*		

- <: Less than given detection limits.
- *: Parameter value not determined.
- @: At least one sample used in statistical
- summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable

			MAV	VERIK-KIR	TLAND WATER QUALITY		
SAMPLE IDENTIFICATION	MW-1	DUP	MW-1	L1 DUP	 MW-6	5 DUP	
DATE SAMPLED	11-1	1-87	2-2	23-88	10-1	L2-88	
INORGANIC PARAMETERS (mg/L exc	cept a	s noted)					
Calcium (Ca)	- -	44.0		182.0		*	
Magnesium (Mg)		6.2		28.0		*	
Sodium (Na)		43.0		277.0		*	
Potassium (K)	<	5.0	<	5.0		*	
Iron (Fe)	<	.05		.19		*	
Manganese (Mn)		*		1.200		*	
Ammonia (as N)	<	.1	<	.1		*	
Chloride (C1)		25.0		171.0		*	
Sulfate (SO4)		178.		615.		*	
Fluoride (F)		. 4		. 5		*	
Nitrate and Nitrite (as N))	. 2	<	.1		*	
Total Alkalinity		16.8		254.0		*	
Bicarbonate Alkalinity		*		254.0		*	
Carbonate Alkalinity		15.0		*		*	
Bicarbonate (HCO3)		*		309.7		*	
Carbonate (CO3)		9.0		*		*	
FIELD AND LABORATORY MEASUREM	ENTS						
Temperature (Degrees C)		*		*		18.0	
Field pH		*		*		*	
Lab pH (units)		9.01		7.64		*	
Field Conductivity (umhos)	/cm	*		*		2225.0	
Lab Conductivity (umhos/cr	n)	488.0		2130.0		*	
Total Dissolved Solids(mg,	/1)	360.0		1470.0		*	
VOLATILE ORGANICS DETECTED (us	2/L)						
Benzene	,, , <	. 50		3.80	<	. 50	
Ethylbenzene	<	. 50	<	.50	<	. 50	
Toluene	<	. 50	<	. 50		. 50	
Total Xylene		*	-	*	<	.50	
1,2 Dichloroethane	<	1.00		3.60		5.80	
SEMIVOLATILE ORGANICS DETECTED) (110)	(1.)					
Naphthalene		*		*	1	10 00	
$\mathbf{m} \in \mathbf{p}$ -Cresol(s)		*		*	è	10.00	
						10,00	
TOTAL ORGANIC LEAD (mg/L)							
Total Organic Lead	<	.020		.003		*	

ł

<: Less than given detection limits.</p>
*: Parameter value not determined.
@: At least one sample used in statistical summary is below detection limit.
#: All samples are below detection limit.
+: Data questionable

MAVERIK-KIRTLAND WATER QUALITY EQBLK EQBLK SAMPLE IDENTIFICATION EQBLK 11-23-87 2-23-88 10-12-88 DATE SAMPLED -----------INORGANIC PARAMETERS (mg/L except as noted) 3.6 Calcium (Ca) 5.5 * . 5 . 6 Magnesium (Mg) * .5 2.5 5.6

 Sodium (Na)
 2.5
 5.6

 Potassium (K)
 < 5.0</td>
 < 5.0</td>

 Iron (Fe)
 < .05</td>
 < .05</td>

 Manganese (Mn)
 *
 .021

 Ammonia (as N)
 < .0</td>
 < .1</td>

 Chloride (Cl)
 < 3.0</td>
 < 3.0</td>

 Sulfate (S04)
 < 5.</td>
 < 5.</td>

 Fluoride
 (F)
 < .1</td>
 < .1</td>

 Nitrate and Nitrite (as N)
 .0
 < .1</td>
 1

 Total Alkalinity
 < 5.0</td>
 < 5.0</td>
 < 5.0</td>

 Bicarbonate Alkalinity
 *
 < 5.0</td>
 < 5.0</td>

 Sodium (Na) * * * * * * * * * * * * Carbonate Alkalinity * * * < Bicarbonate (HCO3) 6.1 * Carbonate (CO3) * * * FIELD AND LABORATORY MEASUREMENTS Temperature (Degrees C) * * * Field pH * * * 5.17 Lab pH (units) 5.14 * Field Conductivity (umhos/cm*Lab Conductivity (umhos/cm)2.0 * * * 2.0 Total Dissolved Solids(mg/l)< 10.0 < 10.0 * VOLATILE ORGANICS DETECTED (ug/L)

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 .50

 Benzene < Ethylbenzene < Toluene < * Total Xylene * < . 50 < 1.00 < 1.00 .50 1,2 Dichloroethane < SEMIVOLATILE ORGANICS DETECTED (ug/L) Naphthalene * * < 10.00 m & p-Cresol(s) * * < 10.00 TOTAL ORGANIC LEAD (mg/L) .020 .002 Total Organic Lead < *

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable DUP: Indicates duplicate sample

TABLE B-2 (Cont. 15) MAVERIK-KIRTLAND WATER OUALITY

11

1R

			mA.	ERIK-KIRI	LAND WATER QU	MLIII
CANDIE TRENTIETCATION	17-1		••••			•••••
SAMPLE IDENTIFICATION	- W-	1	W-1			
DATE SAMPLED		20-87		23-88		
INORGANIC PARAMETERS (mg/L exc	ept	as noted)				
Calcium (Ca)		25.0		15.0		
Magnesium (Mg)		3.8		2.6		
Sodium (Na)		1020.0		696.0		
Potassium (K)	<	5.0	<	5.0		
Iron (Fe)	<	.10	<	.05		
Manganese (Mn)		*		.021		
Ammonia (as N)		.3	<	.1		
Chloride (Cl)		1170.0		527.0		
Sulfate (SO4)		433.		610.		
Fluoride (F)		1.0		1.2		
Nitrate and Nitrite (as N)	<	.1	<	.1		
Total Alkalinity		221.0		289.0		
Bicarbonate Alkalinity		221.0		289.0		
Carbonate Alkalinity		*		*		
Bicarbonate (HCO3)		269.5		352.4		
Carbonate (CO3)		*		*		
FIELD AND LABORATORY MEASUREME	NTS					
Temperature (Degrees C)		14 3		*		
Field nH		7 96		8 63		
Lah nH (units)		8 38		8 39		
Field Conductivity (umbos/	'cm	3500 0		3400 0		
Lab Conductivity (umbos/cm	<u>.</u>	4520 0		3360 0		
Total Dissolved Solids(mg/	'1)	2300.0		2140.0		
VOLATILE OPCANICS DETECTED (<i>.</i>					
Benzene		50	-	50		
Ethylhendene	>	. 50	\geq	. 50		
Toluopo	\geq	. 6 7		. 50		
		.50		.50		
	\geq	.50	\geq			
Total Vulana						
1 2 Dieblemeethere		1 00		1 00		
1,2 Dichlordelnane		1.00		1.00		
TOTAL ORGANIC LEAD (mg/L)						
Total Organic Lead	<	.020	<	. 0 02		
<: Less than given detection *: Parameter value not deter @: At least one sample used	lin mine in s	nits. ed. statistica	1			
summary is below detection	n 11	lmit.				

34

#: All samples are below detection limit. +: Data questionable DUP: Indicates duplicate sample

TABLE B-2 (Cont. 16)

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	W	- 2	W-	2	
DATE SAMPLED	11	-23-87	2-	24-88	
	* • •		* • • •	••••	
TNODCANTE DADANETEDO (L. 17					
INORGANIC PARAMETERS (mg/L ex	cept	as noted)			
Calcium (Ca)		42.0		28.0	
Magnesium (Mg)		28.0		26.0	
Sodium (Na)		147.0		126.0	
Potassium (K)		13.0		7.0	
Iron (Fe)		.31	<	.05	
Manganese (Mn)		*		.032	
Ammonia (as N)		.9		.7	
Chloride (Cl)		43.0		37.0	
Sulfate (SO4)		114.		97	
Fluoride (F)		.4		27.	
Nitrate and Nitrite (as N)	<	.1	<	1	
Total Alkalinity		368.0	•	297 0	
Bicarbonate Alkalinity		368.0		207.0	
Carbonate Alkalinity		*		297.0	
Bicarbonate (HCO3)		448 7		362 1	
Carbonate (CO3)		*		*	
FIELD AND LABORATORY MEASUDEME	NTC				
Temperature (Degroes ())	1112	10.0		<u>.</u>	
Field pH		12.9		*	
Lab nH (unite)		6.06		8.55	
Field Conductivity (unber		0.24		8.25	
Lab Conductivity (unios/	CD .	700.0		840.0	
Total Discolved Selide (2	895.0		845.0	
Iocal Dissolved Solids (mg/	1)	600.0		640.0	
VOLATILE ORGANICS DETECTED (ug	/L)				
Benzene		1.00	<	. 50	
Ethylbenzene	<	.50	<	50	
Toluene	<	.50	<	.50	
m-Xylene	<	. 50	< l	.50	
o,p-Xylene	<	.50	è	50	
Total Xylene	•	*			
1,2 Dichloroethane	<	1.00	<	1.00	
TOTAL OPCANIC IEAD (C)				-	
Total Oreanda total	_			_	
TOCAL OLEAUIC TESO	<	.010	<	.002	

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 17)

11

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION DATE SAMPLED	W-3 11-27	- 87	W-3 2-2	3 23-88	
INORGANIC PARAMETERS (mg/L exce	ept as	noted)			
Calcium (Ca)	•	*		103.0	
Magnesium (Mg)		*		22.0	
Sodium (Na)		*		207.0	
Potassium (K)		*		6.0	
Iron (Fe)		*	<	.05	
Manganese (Mn)		*		.280	
Ammonia (as N)		*		9.8	
Chloride (Cl)		*		50.0	
Sulfate (SO4)		*		387.	
Fluoride (F)		*		.4	
Nitrate and Nitrite (as N)		*		1.1	
Total Alkalinity		*		363.0	
Bicarbonate Alkalinity		*		363.0	
Carbonate Alkalinity		*		*	
Bicarbonate (HCO3)		*		442.6	
Carbonate (CO3)		*		*	
FIELD AND LABORATORY MEASUREMEN	NTS				
Temperature (Degrees C)		*		*	
Field pH		*		7.72	
Lab pH (units)		*		7.81	
Field Conductivity (umhos/	C III	*		1500.0	
Lab Conductivity (umhos/cm))	*		1550.0	
Total Dissolved Solids(mg/)	1)	*		960.0	
VOLATILE ORGANICS DETECTED (ug	/L)				
Benzene	<	.50	<	.50	
Ethylbenzene		1.30	<	.50	
Toluene	<	.50	<	.50	
m -Xylene		2.60	<	.50	
o,p-Xylene		3.20	<	.50	
Total Xylene		*		*.	
1,2 Dichloroethane	<	1.00		30.00+	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead		*		.002	
<: Less than given detection	limit	5.			

*: Parameter value not determined.

@: At least one sample used in statistical
 summary is below detection limit.
#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 18)

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION DATE SAMPLED	SW- 11-1	-1 LO-87	SW-1 0- 0- 0
INORGANIC PARAMETERS (mg/1. •	xcent 4	s noted)	
Calcium (Ca)	Acope .	86 D	*
Magnesium (Mg)		13 0	*
Sodium (Na)		29 0	*
Potassium (K)	<	5.0	*
Iron (Fe)	<	.05	*
Manganese (Mn)	•	*	*
Ammonia (as N)	<	1	*
Chloride (Cl)	-	16.0	*
Sulfate (SO4)		136.	*
Fluoride (F)		.3	*
Nitrate and Nitrite (as	N)	.3	*
Total Alkalinity		159.0	*
Bicarbonate Alkalinity		159.0	*
Carbonate Alkalinity	<	5.0	*
Bicarbonate (HCO3)		193.9	*
Carbonate (CO3)	<	3.0	*
FIELD AND LABORATORY MEASURE	MENTS		
Temperature (Degrees C)		6.5	*
Field pH		8.50	*
Lab pH (units)		8.12	*
Field Conductivity (umho	s/cm	280.0	*
Lab Conductivity (umhos/	cm)	581.0	*
Total Dissolved Solids(m	g/l)	400.0	*
VOLATILE ORGANICS DETECTED (ug/L)		
Benzene	<	.50	*
Ethylbenzene	<	.50	*
Toluene	<	.50	*
m-Xylene	<	.50	*
o,p-Xylene	<	.50	*
Total Xylene		*	*
1,2 Dichloroethane	<	1.00	*
TOTAL ORGANIC LEAD (mg/L)		_	
Total Organic Lead	<	.002	*

*: Parameter value not determined.

@: At least one sample used in statistical
 summary is below detection limit.
#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 19)

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	S	W-2	SV	1-2	
DATE SAMPLED	11	-10-87	2.	24-88	
	•••				
INORGANIC PARAMETERS (mg/L exc	ept	as noted)			
Calcium (Ca)		162.0		147 0	
Magnesium (Mg)		26.0		25 0	
Sodium (Na)		159.0		190.0	
Potassium (K)	<	5 0		5 0	
Iron (Fe)	~	05	2	J.U 05	
Manganese (Mn)	•	.05		.05	
Ammonia (as N)	~	1		.550	
Chloride (Cl)				.2	
Sulfate (SO4)		43.0		50.0	
Fluoride (F)		470.		55 0.	
Nitrate and Nitrite (as N)		.4			
Total Alkalinity		1.2		./	
Bicarbonate Alkalinity		277.0		274.0	
Carbonate Alkalinity		2//.0		2/4.0	
Bicarbonate (HCO3)		5.0		*	
Carbonate (CO3)		337.7		334.1	
Carbonace (COS)	<	3.0		*	
FIELD AND LABORATORY MEASUREME	NTS				
Temperature (Degrees C)		10.0		-	
Field pH		7.60		×	
Lab pH (units)		7.60		7.41	
Field Conductivity (umbos/	~ m	1000 0		7.82	
Lab Conductivity (umbos/om		1680.0		1800.0	
Total Dissolved Solids(ma)	1	1480.0		1680.0	
Total presolved Sollas(mg/	1)	1120.0		1210.0	
VOLATILE ORGANICS DETECTED (ug	/L)				
Benzene	<	.50	<	. 50	
Ethylbenzene	<	. 50	<	.50	
Toluene	<	.50	è	50	
m-Xylene	<	. 50	è	50	
o,p-Xylene		1.60	è	50	
Total Xylene		*			
1,2 Dichloroethane		1.10	<	1.00	
TOTAL ORGANIC IFAD (()					
Total Organic Land		000			
Total ofBault Deau	<	.002		.002	
	_				
<: Less than given detection	lim	its.			•
G: At lost one send to deter	bine.	α.			

C: At least one sample used in statistical summary is below detection limit. #: All samples are below detection limit. +: Data questionable

÷r.

TABLE B-2 (Cont. 20)

			MA	VERIK-KIH	TABLE	E B-2 WATER	(Cont. 20 QUALITY
SAMPLE IDENTIFICATION		SW-3		• 3			
TE SAMPLED	11-	10-87	2-2	24-88			
ORGANIC PARAMETERS (mg/L exc	ent	as noted)					
Calcium (Ca)	epe	178 0		146 0			
Negnesium (Mg)		32 0		26.0			
Sodium (Na)		223 0		205 0			
Potassium (K)	<	5.0	<	5.0			
Iron (Fe)		. 06	•	.13			
Manganese (Mn)		*		.160			
Ammonia (as N)	<	.1	<	.1			
Chloride (Cl)	-	77.0	-	52.0			
Sulfate (SO4)		602		550			
Fluoride (F)		.6		.5			
Nitrate and Nitrite (as N)		1.0		.5			
Total Alkalinity		297.0		253.0			
Bicarbonate Alkalinity		297.0		253.0			
Carbonate Alkalinity	<	5.0		*			
Bicarbonate (HCO3)		362.1		308.5			
Carbonate (CO3)	<	3.0		*			
ELD AND LABORATORY MEASUREME	NTS						
Temperature (Degrees C)		6.8		*			
Field pH		8.05		8.16			
Lab pH (units)		8.00		8.19			
Field Conductivity (umhos/	′cm	1210.0		1620.0			
Lab Conductivity (umhos/cm))	1830.0		1650.0			
Total Dissolved Solids(mg/	1)	1400.0		1200.0			
LATILE ORGANICS DETECTED (ug	;/L)						
Benzene	<	.50	<	.50			
Ethylbenzene	<	.50	<	.50			
Toluene	<	.50	<	.50			
m -Xylene	<	.50	<	.50			
o,p-Xylene	<	.50	<	.50			
Total Xylene		*		*			
1,2 Dichloroethane	<	1.00	<	1.00			
TAL ORGANIC LEAD (mg/L)							
Total Organic Lead	<	.010	<	.004			
Total Organic Lead <: Less than given detection	<	.010 nits.	<	. 0 04	·		

*: Parameter value not determined.

6: At least one sample used in statistical summary is below detection limit. #: All samples are below detection limit. +: Data questionable

DUP: Indicates duplicate sample

......

· •·-·

TABLE B-2 (Cont. 21)

ł

MAVERIK-KIRTLAND WATER QUALITY

.

SAMPLE IDENTIFICATION	SW	1-4	SW-4				
DATE SAMPLED	11-	10-87	0-0-0				
			• • • • • • • • • • • •				
INORGANIC PARAMETERS (mg/L exc	ept	as noted)					
Calcium (Ca)		113.0	*				
Magnesium (Mg)		17.0	*				
Sodium (Na)		40.0	*				
Potassium (K)	<	5.0	*				
Iron (Fe)		.12	*				
Manganese (Mn)		*	*				
Ammonia (as N)	<	.0	*				
Chloride (Cl)		29.0	*				
Sulfate (SO4)		147.	*				
Fluoride (F)		.3	*				
Nitrate and Nitrite (as N)	<	.1	*				
Total Alkalinity		253.0	*				
Bicarbonate Alkalinity		253.0	*				
Carbonate Alkalinity	<	5.0	*				
Bicarbonate (HCO3)	-	308 5					
Carbonate (CO3)	<	3.0	*				
FIELD AND LABORATORY MEASUREMEN	NTS						
Temperature (Degrees C)		7.8	*				
Field pH		7.28	*				
Lab pH (units)		7.29	*				
Field Conductivity (umhos/	m	565.0	*				
Lab Conductivity (umhos/cm))	790.0	*				
Total Dissolved Solids(mg/1	Ĺ)	790.0	*				
VOLATILE ORGANICS DETECTED (UE)	/L)						
Benzene	-	*	*				
Ethylbenzene		*	*				
Toluene		*	*				
m-Xylene		*	*				
o,p-Xylene		*	*				
Total Xylene		*	*				
1,2 Dichloroethane		10.00	*				
TOTAL ORGANIC LEAD (mg/L)							
Total Organic Lead		.300	*				
S: Less than given detection	lim:	its.					

*: Parameter value not determined.

Q: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 22)

1

MAVERIK-KIRTLAND WATER QUALITY

		•••••		
SAMPLE IDENTIFICATION	SW-5	SW-5		
DATE SAMPLED	11-10-87	0-0-0		
INORGANIC PARAMETERS (mg/L	except as noted)			
Calcium (Ca)	*	*		
Magnesium (Mg)	*	*		
Sodium (Na)	*	*		
Potassium (K)	*	*		
Iron (Fe)	*	*		
Manganese (Mn)	*	*		
Ammonia (as N)	*	*		
Chloride (Cl)	*	*		
Sulfate (SO4)	*	*		
Fluoride (F)	*	*		
Nitrate and Nitrite (as	N) *	*		
Total Alkalinity	*	*		
Bicarbonate Alkalinity	*	*		
Carbonate Alkalinity	*	*		
Bicarbonate (HCO3)	*	*		
Carbonate (CO3)	*	*		
FIELD AND LABORATORY MEASUR	EMENTS			
Temperature (Degrees C)	*	*		
Field pH	*	*		
Lab pH (units)	*	*		
Field Conductivity (umh	ios/cm *	*		
Lab Conductivity (umhos	/cm) *	*		
Total Dissolved Solids(mg/1) *	*		
VOLATILE ORGANICS DETECTED	(ug/L)			
Benzene	< 250.00	*		
Ethylbenzene	2500.00	*		
Toluene	470.00	*		
m-Xylene	*	*		
o.p-Xylene	*	*		
Total Xvlene	*	*		
1,2 Dichloroethane	< 250.00	*		
TOTAL ORGANIC LEAD (mg/L)				
Total Organic Lead	*	*		
	1 11-1-1			
<: Less than given detect	ion limits.			
raiameter value not de	LEIMINEU.	-		

@: At least one sample used in statistical summary is below detection limit.
#: All samples are below detection limit.
+: Data questionable

ł

TABLE B-2 (Cont. 23) TLAND WATER QUALITY

•

11

đ

b l

1

SW-6 2-24-88 * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * *	
() * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * 7.95	
* * * * * * * * * * *	
* * * * * * * * * *	
* * * * * * 7.95	
* * * * * * 7.95	
* * * * * 7.95	
* * * * 7.95	
* * * * 7.95	
* * * 7.95	
* * 7.95	
* * 7.95	
* 7.95	
* 7.95	
7.95	
*	
3150.0	
*	
*	
< .50	
< .50	
< .50	
< .50	
< .50	
*	
< 1.00	
*	
	* 3150.0 * * < .50 < .50 < .50 < .50 < .50 < .50 * < 1.00 *

DUP: Indicates duplicate sample

1

nt. 25)

•

			MAV	ERIK-KIRT	TABLE B- LAND WATE	2 (Cont. 2) R QUALITY
SAMPLE IDENTIFICATION DATE SAMPLED	TB-0 11-23	007 3-87	TB- 2-2	017 3-88		•••••
	•••••	••••	••••			
INORGANIC PARAMETERS (mg/L	excent as	noted)				
Calcium (Ca)	cheepe a	*		*		
Magnesium (Mg)		*		*		
Sodium (Na)		*		*		
Potassium (K)		*		*		
Iron (Fe)		*		*		
Manganese (Mn)		*		*		
Ammonia (as N)		*		*		
Chloride (Cl)		*		*		
Sulfate (SO4)		*		*		
Fluoride (F)		*		*		
Nitrate and Nitrite (as	N)	*		*		
Total Alkalinity	·	*		*		
Bicarbonate Alkalinity		*		*		
Carbonate Alkalinity		*		*		
Bicarbonate (HCO3)		*		*		
Carbonate (CO3)		*		*		
FIELD AND LABORATORY MEASUR	EMENTS					
Temperature (Degrees C)		*		*		
Field pH		*		*		
Lab pH (units)		*		*		
Field Conductivity (umh	os/cm	*		*		
Lab Conductivity (unhos	/cm)	*		*		
Total Dissolved Solids(mg/1)	*		*		
VOLATILE ORGANICS DETECTED	(ug/L)					
Benzene	<	. 50	<	.50		
Ethylbenzene	<	.50	<	.50		
Toluene	<	.50	<	. 50		
m-Xyle ne	<	. 50	<	.50		
o,p-Xylene	<	.50	<	.50		
Total Xylene		*		*		
1,2 Dichloroethane	<	. 50	<	1.00		
TOTAL ORGANIC LEAD (mg/L)						
Total Organic Lead		*		*		

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 26)

I.

WATER QUALITY

			MAV	ERIK-KIRT	LAND
SAMPLE IDENTIFICATION DATE SAMPLED	TB-0 11-11)16 L-87	TB-(2-2	D23 4-88	
INORGANIC PARAMETERS (mg/L exc	ept as	noted)			
Calcium (Ca)	•	*		*	
Magnesium (Mg)		*		*	
Sodium (Na)		*		*	
Potassium (K)		*		*	
Iron (Fe)		*		*	
Manganese (Mn)		*		*	
Ammonia (as N)		*		*	
Chloride (Cl)		*		*	
Sulfate (SO4)		*		*	
Fluoride (F)		*		*	
Nitrate and Nitrite (as N)		*		*	
Total Alkalinity		*		*	
Bicarbonate Alkalinity		*		*	
Carbonate Alkalinity		*		*	
Bicarbonate (HCO3)		*		*	
Carbonate (CO3)		*		Ŧ	
FIELD AND LABORATORY MEASUREME	NTS				
Temperature (Degrees C)		*		*	
Field pH		*		*	
Lab pH (units)		*		*	
Field Conductivity (unhos/	Cm	*		*	
Lab Conductivity (umhos/cm Total Dissolved Solids(mg/) 1)	*		*	
VOLATILE ORGANICS DETECTED (ug	/L)				
Benzene	<	.50	<	.50	
Ethylbenzene	<	.50	<	.50	
Toluene	<	.50	<	.50	
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	.50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane	<	.50	<	1.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead		*		*	
<: Less than given detection	limi	ts.			. •
*: Farameter value not deter	mineo		•		
W. AL LEASE ONE SAMPLE USED	11 SC:	scistiCa ≀←	Ŧ		
Summary 15 Delow detection	n 11m	16. 11-1-			
T. Data quastionable	ECLID				
DUP: Indicates dunlicate can	nle				
THETERSA ACLTTERC DE					

.......

. _. .

DATE

21-87

JUAN	
L LOCATION SAMPLED (W1-W3) ELL LOCATION (MW1-MW13)	
ER SAMPLE SITE LOCATION (SW1-SW6)	
VI), ROUND 2	
ROUND 1	
200 400	
	1
119	
TDS (mg/l)	
GRAVEL ZONE	
ROUNDS 1 AND 2 ONLY	
MAVERIK REFINERY STUDY AREA	
KIRTLAND, NEW MEXICO	
NOVEMBER 1987, FEBRUARY 1988	
Dames & Moore	
PLATE B-1	

PLATE.

MADL
LL LOCATION SAMPLED (WI-W3) WELL LOCATION (MWI-MW13) TER SAMPLE SITE LOCATION (SWI-SW6) EL (mg/I), ROUND 1 EL (mg/I), ROUND 2 TOUR, ROUND 1 TOUR, ROUND 2
SCALE IN FEET
ISOCONCENTRATION CONTOUR MAP SODIUM (mg/l) GRAVEL ZONE ROUNDS 1 AND 2 ONLY MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988
Dames & Moore

Som	
JUAN	
LL LOCATION LL LOCATION SAMPLED (W1-W3) WELL LOCATION (MW1-MW13) TER SAMPLE SITE LOCATION (SW1-SW6) VEL (mg/l), ROUND 1 VEL (mg/l), ROUND 2 NTOUR, ROUND 2 NTOUR, ROUND 2	
200 400 CALE IN FEET	-
ISOCONCENTRATION CONTOUR MAP CHLORIDE (mg/l) GRAVEL ZONE ROUNDS 1 AND 2 ONLY MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988	
Dames & Moore PLATE 8-3	

ISOCONCENTRATION CONTOUR MAP 1, 2 - DICHLOROETHANE (DCA) GRAVEL ZONE ROUNDS 1, 2 AND 3 MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988 AND OCTOBER 1988

0 200 400 SCALE IN FEET

DCA CONTOUR, ROUND 1 DCA CONTOUR, ROUND 2 DCA CONTOUR, ROUND 3 DATA QUESTIONABLE

PRIVATE WELL LOCATION EXISTING WELL LOCATION SAMPLED (W1 - W3) MONITOR WELL LOCATION (ROUNDS 1 & 2, MW1 - MW13) MONITOR WELL LOCATION (ROUND 3, MW6, MW8 - MW13) SURFACE WATER SAMPLE SITE LOCATION (SWI - SW6) 1,2 - DCA LEVEL (40/1), ROUND 1 (AND ROUND 2 IF SAME) 1,2 - DCA LEVEL (wg/I), ROUND 2 (IF DIFFERENT FROM ROUND 1) 1,2 - DCA LEVEL (wg/I), ROUND 3 (IF DIFFERENT FROM ROUNDS 1 & 2, FOR MW6, MW8 - MW13)

PLATE B-6

Dames & Moore

43AIA

SAN

JUAN

WEST) - PREPARED BY SAN JUAN COUNTY - UNDATED,

11.07 DATE 123 CHECKED

DATE

Dames & Moore PLATE B-7

AJAR

SAN

JUAN

BENZENE ROUNDS 1, 2 AND 3 MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988 AND OCTOBER 1988

CONCENTRATION MAP

200 400 SCALE IN FEET

EXISTING WELL LOCATION SAMPLED (WI-W3) MONITOR WELL LOCATION (ROUNDS 1 & 2, MW1 - MW13) MONITOR WELL LOCATION (ROUND 3, MW6, MW8 - MW13) SURFACE WATER SAMPLE SITE LOCATION (SW1 - SW6) BENZENE LEVEL (ug/1), ROUND 1 (AND ROUND 2 IF SAME) BENZENE LEVEL (wg/I), ROUND 2 (IF DIFFERENT FROM ROUND 1) BENZENE LEVEL (ug/I), ROUND 3 (IF DIFFERENT FROM ROUNDS 1 & 2, FOR MW6, MW8 - MW13)

PLATE B-8

Dames & Moore

SAN

JUAN

4

43AIA

TOLUENE ROUNDS 1, 2 AND 3 MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988 AND OCTOBER 1988

TOLUENE LEVEL (ug/I), ROUND 1 (AND ROUND 2 IF SAME) TOLUENE LEVEL (ug/I), ROUND 2 (IF DIFFERENT FROM ROUND 1) TOLUENE LEVEL (ug/I), ROUND 3 (IF DIFFERENT FROM ROUNDS 1 & 2, FOR MW6, MW8 - MW13)

CONCENTRATION MAP ETHYLBENZENE ROUNDS 1, 2 AND 3 MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO NOVEMBER 1987, FEBRUARY 1988 AND OCTOBER 1988 Dames & Moore

MONITOR WELL LOCATION (ROUND 3, MW6, MW8 - MW13) SURFACE WATER SAMPLE SITE LOCATION (SWI - SW6) ETHYLBENZENE LEVEL (ug/I), ROUND 1 (AND ROUND 2 IF SAME) ETHYLBENZENE LEVEL (ug/I), ROUND 2 (IF DIFFERENT FROM ROUND 1) ETHYLBENZENE LEVEL (vg/I), ROUND 3 (IF DIFFERENT FROM ROUNDS 1 & 2, FOR MW6, MW8 - MW13)

400

200

EXISTING WELL LOCATION SAMPLED (WI - W3) MONITOR WELL LOCATION (ROUNDS 1 & 2, MW1 - MW13)

PRIVATE WELL LOCATION

PLATE B-9

SAN

JUAN

1

RIVER

20	1 2
	JAN
i	
	lla d
	13 - 11
))\
	P = BI
TE WELL LOCATION	11
TING WELL LOCATION SAMPLED (W1 - W3)	141
TOR WELL LOCATION (ROUNDS 1 & Z. MW1 - MW13)	4 []]
TOR WELL LOCATION (ROUND 3, MW6, MW8 - MW13)	11
ACE WATER SAMPLE SITE LOCATION (SWI - SW6)	//
L XYLENE LEVEL (ug/I), ROUND 1 (AND ROUND 2 IF SAME)	11
L XYLENE LEVEL (ug/I), ROUND 2 (IF DIFFERENT FROM ROUND 1)	11
L XYLENE LEVEL (49/1), ROUND 3 (IF DIFFERENT FROM ROUNDS 1 & 2	11
FOR MW6, MW8 - MW13)	11
RTING LIMIT	11 -
QUESTIONABLE	/
a and 400	
0 200 400	
SCALE IN FEET	
	ſ
11 . 14	1
· · · · · · · · · · · · · · · · · · ·	
CONCENTRATION MAP	
XYLENE	
ROUNDS 1 20ND 3	
ROONDO T, ZANDO	1
MAVERIK REFINERY STUDY AREA	
KIRTLAND, NEW MEXICO	1
NOVEMBER 1987, FEBRUARY 1988	
AND OCTOBER 1988	1
Dames & I	Noore

SAN

1

November 10, 1988

Peter F. Olsen, PH.D. Dames and Moore 250 E. Broadway Suite 200 Salt Lake City, UT 84111

Dear Pete:

Enclosed is the report for eight aqueous samples received at Rocky Mountain Analytical Laboratory on October 13, 1988.

Samples 2044-06 and 08 were originally extracted within holding times. Due to poor recovery of one of the internal standards (D4-1,4-Dichlorobenzene) and two of the surrogate compounds (2-Fluorophenol and D5-Phenol) in the original analysis, a reextraction of these samples was performed. The reextraction took place outside of holding times.

If you have any questions the Client Service Representative assigned to this project is Jeannie B. Howbert.

Sincerely, bevox Tracy Giberson

Data Control Supervisor

Enclosures

cc: Jeannie B. Howbert, Client Service Rep.

RMAL #002044

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

Enseco

- o Sample Description Information
- o Analytical Results
- o Quality Control Report

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The discussion below describes the format, content and organization for the three components of this report.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Quality Control Results

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. These QC checks include analysis of blanks, laboratory control samples (LCS) and surrogate control samples. Results from these analyses are presented along with the control limits.

SAMPLE DESCRIPTION INFORMATION for Dames and Moore

Lab ID	Client ID	Matrix	Sample Date	ed Time	Received Date
002044-0001-SA 002044-0002-SA 002044-0003-SA 002044-0004-SA 002044-0005-SA 002044-0006-SA 002044-0007-SA 002044-0008-SA	MW-16 (Duplicate of MS-6) MW-6 MW-8 MW-13 MW-10 MW-12 MW-11 FIELD BLANK	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	12 OCT 88 12 OCT 88	15:00 14:30 15:00 16:00 10:30 12:30 12:10 16:30	13 OCT 88 13 OCT 88
Enseco

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name:	Dames and Moore						
Lab ID: Matrix: Authorized:	002044-0001-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016329 12 OCT 14 OCT	9 88 88	Received: 13 Analyzed: 31	OCT 8 OCT C	38)8
Parameter			Result	Wet wt Units	. Reporting Limit		
Anthracene Benzo(a)anthi Benzo(b)fluoi Benzo(k)fluoi Benzo(a)pyrei bis(2-Ethylbi	racene ranthene ranthene ne avv1)		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10		
phthalate Butyl benzyl Chrysene Dibenzo(a,h); Di-n-butyl pl 1.2-Dichlorol	phthalate anthracene hthalate benzene		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10		
1,3-Dichlorol 1,4-Dichlorol Diethyl phth 7,12-Dimethy	benzene benzene alate lbenz-		ND ND ND	ug/L ug/L ug/L	10 10 10		
Dimethyl pht Di-n-octyl pl Fluoranthene Indene	halate hthalate		ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10		
l-Methylnaph Naphthalene Phenanthrene Pyrene Pyridine	thalene		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10		
Quinoline Benzenethiol o-Cresol m & p-Cresol 2,4-Dimethyl 2,4-Dinitrop 4-Nitropheno Phenol	(s) phenol henol l		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 50 50 10		
Nitrobenzene 2-Fluorobipho Terphenyl-dl Phenol-d5 2-Fluoropheno 2.4.6-Tribro	-d5 enyl 4 ol nophenol		67.0 66.9 66.5 73.5 66.0 61.3	% % % %			

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

Enseco

I.

Halogenated Volatile Organics

Method 601

Client Name: Dames and Moore Client ID: MW-16				
Lab ID: 002044-0001-SA Matrix: AQUEOUS Authorized: 13 OCT 88	Enseco ID: 1016329 Sampled: 12 OCT 88 Prepared: NA		Received: 13 Analyzed: 18	0CT 88 0CT 88
Parameter	Result	Units	Reporting Limit	
Chloromethane Promomethane	ND	ug/L	5.0	
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene	ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	5.0 1.0 5.0 5.0 0.50 0.50	
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50	
1,1,2 Trifluoroethane 1,2-Dichloroethane 1,1-Trichloroethane Carbon tetrachloride Bromodichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane	ND 5.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 0.50 1.0 1.0 1.0 2.0 1.0 2.0 5.0 1.0	
Tétrachloroethene Chlorobenzene	ND ND	ug/L ug/L	0.50 2.0	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-16 002044-0001-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016329 12 OCT 88 NA		Received: Analyzed:	13 18	0CT 0CT	88 88
Parameter			Result	Units	Report Limit	ing t		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorol 1,4-Dichlorol 1,2-Dichlorol	e s Soenzene Senzene Senzene Senzene		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		50 50 50 50 50 50 50		

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

ł

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name: Dames and Moore Client ID: MW-6		
Lab ID: 002044-0002-SA Matrix: AQUEOUS	Enseco ID: 1016330 Sampled: 12 OCT 88	Received: 13 OCT 88
Authorized: 13 OCT 88	Prepared: 14 OCT 88	Analyzed: 31 OCT 88
Parameter	Wet Result Un	wt. Reporting its Limit
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	ND ug, ND ug, ND ug, ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10 /L 10 /L 10
bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate	ND ug, ND ug,	/L 10 /L 10
Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate	ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate	ND ug, ND ug, ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10 /L 10
7,12-Dimethylbenz- anthracene Dimethyl phthalate	ND ug, ND ug,	/L 10 /L 10
Fluoranthene Indene	ND ug, ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10
Naphthalene Phenanthrene Pyrene	ND ug, ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10
Pyridine Quinoline Benzenethiol	ND ug, ND ug, ND ug,	/L /L 10 /L
o-Cresol m & p-Cresol(s) 2,4-Dimethylphenol 2.4-Dinitrophenol	ND ug, ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10
4-Nitrophenol Phenol	ND ug, ND ug,	/L 50 /L 10
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	62.9 % 58.7 % 71.9 %	
Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	30.2 % 24.2 % 25.0 %	

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

Enseco

ł

Halogenated Volatile Organics

Method 601

Client Name: Client ID:	Dames and Moore MW-6	-			
Lab ID:	002044-0002-SA	Enseco ID: 1016330	•	0	0CT 00
Matrix:		Sampled: 12 ULI 8	8	Received: 13	
Authorizeu:	13 001 00	Frepareu: NA		Analyzeu. 17	001 00
				Reporting	
Parameter		Result	Units	Limit	
Chloromethan	9	ND	ug/L	5.0	
Bromomethane		ND		F 0	
(Metnyidi Vinvl chlorid	romiae)		ug/L	5.0	
Chloroothano	16		ug/L	5.0	
Methvlene ch	loride	ND	ug/L ug/L	5.0	
1.1-Dichloro	ethene	ND		0.50	
1.1-Dichloro	ethane	ND	ug/L	0.50	
1,2-Dichloro	ethene		- J/ -		
(cis/trai	ns)	ND	ug/L	0.50	
Chloroform	· · ·	ND	ug/L	0.50	
1,1,2-Trichle	pro-2,2,				
l-trifluo	proethane	NU	ug/L	1.0	
1,2-UICHIORO	etnane	4.9	ug/L	1.0	
Combon totan	shlamida		ug/L	0.50	
Bromodichlor	omethane		ug/L	0.50	
1.2-Dichloro	oronane	ND		1.0	
trans-1.3-Dic	chloropropene	ND	ua/l	1.0	
Trichloroethe	ene	ND		0.50	
Chlorodibrom	omethane	ND	uq/L	1.0	
cis-1,3-Dich	loropropene	ND	ug/L	2.0	
1,1,2-Trichlo	proethane	ND	ug/L	1.0	
EDB (1,2-Dib)	romoethane)	ND	ug/L	2.0	
Bromoform		ND	ug/L	5.0	
1,1,2,2-Tetra	achloroethane	ND	ug/L	1.0	
letrachloroe	thene	ND	ug/L	0.50	
Uniorobenzen	5	ND	ug/L	2.0	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

The cover letter is an integral part of this report. Rev $230787\,$

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-6 002044-0002-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016330 12 OCT 88 NA		Received: 13 Analyzed: 17	OCT 2 OCT 2	88 88
Parameter			Result	Units	Reporting Limit		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorol 1,4-Dichlorol 1,2-Dichlorol	e s S benzene benzene benzene		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

The cover letter is an integral part of this report. Rev $230787\,$

Enseco

Enseco

Ļ

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name: Dames and Moore				
Lifent ID: MW-8 Lab ID: 002044-0003-SA Matrix: AQUEOUS Authorized: 13 OCT 88	Enseco ID: 1016 Sampled: 12 C Prepared: 14 C	332 ICT 88 ICT 88	Received: 13 Analyzed: 31	OCT 88 OCT 88
Parameter	Resul	Wet wt t Units	. Reporting Limit	
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylbeyyl)	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
biological phthalate Butyl benzyl phthalate Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10	
7,12-Dimethylbenz- anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine Quinoline Benzenethiol o-Cresol m & p-Cresol(s) 2,4-Dimethylphenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
2,4-Dinitrophenol 4-Nitrophenol Phenol	ND ND ND	ug/L ug/L ug/L	50 50 10	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	58. 52. 63. 22. 19. 22.	1 % 2 % 9 % 8 % 9 % 6 %		

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

Enseco

Halogenated Volatile Organics

Method 601

Client Name: Client ID:	Dames and Moore MW-8					
Lab ID:	002044-0003-SA	Enseco_ID: 1016332				
Matrix:	AQUEOUS	Sampled: 12 OCT 88		Received: 1	3 OCT	88
Authorized:	13 001 88	Prepared: NA		Analyzed: 1	1 001	88
				Reportin	a	
Parameter		Result	Units	Limit	5	
Chlavamathan	_	ND		F 0		
Bromomethane		DN	ug/L	5.0		
(Methylb	romide)	ND	uq/L	5.0		
Vinyl chlorid	de	ND	ug/L	1.0		
Chloroethane		ND	ug/L	5.0		
Methylene ch	loride	ND	ug/L	5.0	~	
1,1-Dichloro	ethene	ND	ug/L	0.5	0	
1,1-Dichloro	ethane	ND	ug/L	0.5	U	
1,2-Dichioro	ethene	ND	ug /1	0 5	0	
Chloroform	15)		ug/L	0.5	n n	
1 1 2-Trichl	nro-2.2	ND	ug/ L	0.5	0	
1-triflu	proethane	ND	ua/L	1.0		
1,2-Dichloro	ethane	2.3	uq/L	1.0		
1,1,1-Trichl	oroethane	ND	ug/L	0.5	0	
Carbon tetra	chloride	ND	ug/L	0.5	0	
Bromodichlor	omethane	ND	ug/L	1.0		
1,2-Dichloro	propane	ND	ug/L	1.0		
Trans-1,3-Die	chioropropene		ug/L	1.0	0	
Chlorodibrom	ene		ug/L	1 0	U	
cis-1 3-Dich	loronronene		ug/L ug/L	2 0		
1.1.2-Trichle	oroethane	ND	ug/L ug/l	1.0		
EDB (1.2-Dib	romoethane)	ND	ug/L	2.0		
Bromoform	· ·······	ND	ug/L	5.0		
1,1,2,2-Tetra	achloroethane	ND	ug/L	1.0		
Tetrachloroe	thene	ND	ug/L	0.5	0	
Chlorobenzen	e	ND	uq/L	2.0		

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-8 002044-0003-SA AQUEOUS 13 OCT 88	Enseco ID: 1016 Sampled: 12 O Prepared: NA	332 CT 88	Received: Analyzed:	13 OCT 17 OCT	88 88
Parameter		Resul	t Units	Reporti Limit	ng	
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1.2-Dichloro	e s benzene benzene benzene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.! 0.! 0.! 0.! 0.!	50 50 50 50 50 50 50 50	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Enseco

Halogenated Volatile Organics

Method 601

Client Name:	Dames and Moore				
Lab ID: Matrix: Authorized:	002044-0004-SA AQUEOUS 13 OCT 88	Enseco ID: 1016335 Sampled: 12 OCT 88 Prepared: NA		Received: 13 Analyzed: 17	OCT 88 OCT 88
Parameter		Result	Units	Reporting Limit	
Chloromethane	9	ND	ug/L	5.0	
(Methylbi Vinyl chlorid Chloroethane	comide) de	ND ND ND	ug/L ug/L ug/L	5.0 1.0 5.0	
Methylene ch 1,1-Dichlorod 1,1-Dichlorod 1,2-Dichlorod	loride ethene ethane ethene	ND ND ND	ug/L ug/L ug/L	5.0 0.50 0.50	
(cis/tran Chloroform 1.1.2-Trichl(pro-2.2.	ND ND	ug/L ug/L	0.50 0.50	
1-trifluc 1,2-Dichloroc 1,1,1-Trichlo	proethane ethane proethane	ND 1.9 ND	ug/L ug/L ug/L	1.0 1.0 0.50	
Carbon tetrac Bromodichloro 1,2-Dichloro	chloride omethane oropane	ND ND ND	ug/L ug/L ug/L	0.50 1.0 1.0	
trans-1,3-Did Trichloroethe Chlorodibrom	chloropropene ene pmethane	ND ND ND	ug/L ug/L ug/L	1.0 0.50 1.0	
1,1,2-Trichlo EDB (1,2-Dib)	loropropene proethane romoethane)	ND ND ND	ug/L ug/L ug/L	2.0 1.0 2.0	
Bromotorm 1,1,2,2-Tetra Tetrachloroet	achloroethane thene	ND ND ND	ug/L ug/L ug/L	5.0 1.0 0.50	
Chlorobenzene	9	ND	uq/L	2.0	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	MW-13 002044-0004-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016335 12 OCT 88 NA		Received: Analyzed:	13 17	OCT OCT	88 88
Parameter			Result	Units	Reporti Limit	ng		
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e e s benzene benzene benzene		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0. 0. 0. 0. 0. 0. 0.	50 50 50 50 50 50 50		

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

I

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name:	Dames and Moore					
Lifent ID: Lab ID: Matrix: Authorized:	MW-10 002044-0005-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016334 12 OCT 83 14 OCT 83	8 8	Received: 13 (Analyzed: 31 (007 88 007 88
Parameter		I	Result	Wet wt. Units	Reporting Limit	
Anthracene Benzo(a)anthi Benzo(b)fluoi Benzo(k)fluoi Benzo(a)pyrei bis(2-Ethylbi	racene ranthene ranthene ne exv1)		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
bis(2-bthalat phthalat Butyl benzyl Chrysene Dibenzo(a,h) Di-n-butyl ph	phthalate anthracene hthalate		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10	
1,2-Dichloro 1,3-Dichloro 1,4-Dichloro Diethyl phth 7,12-Dimethy anthrace	benzene benzene alate lbenz- ne		ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10	
Dimethyl phti Di-n-octyl pl Fluoranthene Indene 1-Methylnaph	halate hthalate thalene		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
Naphthalene Phenanthrene Pyrene Pyridine Quinoline			ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10	
Benzenethiol o-Cresol m & p-Cresol 2,4-Dimethyl 2,4-Dinitrop 4-Nitropheno Phenol	(s) phenol henol l		ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 50 50 10	
Nitrobenzene 2-Fluorobipho Terphenyl-dlo Phenol-d5 2-Fluoropheno 2,4,6-Tribro	-d5 enyl 4 ol nophenol		72.6 67.1 70.2 58.8 49.3 47.3	% % % % %	 	

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

Halogenated Volatile Organics

Method 601

Client Name: Dames and Moore				
Lab ID: 002044-0005-SA Matrix: AQUEOUS Authorized: 13 OCT 88	Enseco ID: 1016334 Sampled: 12 OCT 88 Prepared: NA		Received: 13 Analyzed: 18	OCT 88 OCT 88
Parameter	Result	Units	Reporting Limit	
Chloromethane Bromomethane	ND	ug/L	5.0	
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50	
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50	
1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane	ND 5.7 ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 0.50 1.0 1.0 1.0 1.0 0.50 1.0 2.0 1.0	
EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethane	ND ND ND ND	ug/L ug/L ug/L ug/L	2.0 5.0 1.0 0.50	
uniorobenzene	NU	uq/L	2.0	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

L

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-10 002044-0005-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016334 12 OCT 88 NA		Received: Analyzed:	13 18	OCT OCT	88 88
Parameter			Result	Units	Reporti Limit	ng		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorot 1,4-Dichlorot 1,2-Dichlorot	e S Denzene Denzene Denzene		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0. 0. 0. 0. 0. 0. 0.	50 50 50 50 50 50 50		

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Enseco

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name: Dames and Moore				
Lab ID: MW-12 Lab ID: 002044-0006-SA Matrix: AQUEOUS Authorized: 13 OCT 88	Enseco ID: 1016336 Sampled: 12 OCT Prepared: 01 NOV	88 88	Received: 13 Analyzed: 07	OCT 88 NOV 88
Parameter	Result	Wet wt. Units	Reporting Limit	
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylbayyl)	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
phthalate Butyl benzyl phthalate Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate 7,12-Dimethylbenz-	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10	
anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
l-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine	ND 33 ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10	
Quinoline Benzenethiol o-Cresol m & p-Cresol(s) 2,4-Dimethylphenol 2,4-Dinitrophenol	ND ND ND 11 ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 50	
4-Nitrophenol Phenol	ND ND	ug/L ug/L	50 10	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	79.1 74.1 44.6 36.5 32.6 39.5	% % % %		

ND=Not Detected NA=Not Applicable

Reported By: Tim Miller

Approved By: Jeff Lowry

.

Halogenated Volatile Organics

Method 601

Client Name: Dames and Moore Client ID: MW-12			
Lab ID: 002044-0006-SA Matrix: AQUEOUS Authorized: 13 OCT 88	Enseco ID: 1016336 Sampled: 12 OCT 88 Prepared: NA		Received: 13 OCT 88 Analyzed: 21 OCT 88
Parameter	Result	Units	Reporting Limit
Chloromethane	ND	ug/L	1000
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	1000 200 1000 1000 100 100
(cis/trans)	ND	ug/L	100
1,1,2-Trichloro-2,2, 1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	200 200 100 100 200 200
trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene	ND ND ND ND	ug/L ug/L ug/L ug/L	200 100 200 400 200
EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND ND ND ND	ug/L ug/L ug/L ug/L	400 1000 200 100 400

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-12 OO2O44-OOO6-SA AQUEOUS 13 OCT 88	Enseco ID Sampled Prepared	: 1016336 : 12 OCT 88 : NA		Received: Analyzed:	13 19	OCT OCT	88 88
Parameter			Result	Units	Report Limit	ing t		
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e e s benzene benzene benzene		6200 1000 ND 180 470 ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100			

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

The cover letter is an integral part of this report. Rev 230787 Enseco

Ť.

i

1

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name: Dames and Moore			
Client ID: MW-11 Lab ID: 002044-0007-SA Matrix: AQUEOUS Authorized: 13 OCT 88	Enseco ID: 1016337 Sampled: 12 OCT 8 Prepared: 14 OCT 8	8	Received: 13 OCT 88 Analyzed: 31 OCT 88
Parameter	Result	Wet wt. Units	Reporting Limit
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylhexyl)	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
phthalate Butyl benzyl phthalate Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate 7,12-Dimethylbenz-	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
l-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
Quinoline Benzenethiol o-Cresol m & p-Cresol(s) 2,4-Dimethylphenol 2,4-Dinitrophenol	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 50
4-Nitrophenol Phenol	ND ND	ug/L ug/L	50 10
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	70.2 62.1 51.4 39.6 35.4 42.4	% % %	

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

Enseco

Halogenated Volatile Organics

Method 601

Client Name: Client ID:	Dames and Moore MW-11	Encoco ID: 1016227	,		
LdD ID: Matrix:		Sampled: 12 0CT	88	Pacaivade 13	007 88
Authorized.	13 OCT 88	Prenared NA	00	Analyzed · 21	001 00 001 88
Author izeu.	15 001 88	Trepared. NA		Analyzeu. zi	001 00
				Reporting	
Parameter		Result	Units	limit	
			••••	2	
Chloromethan	e	ND	ug/L	5.0	
Bromomethane			•		
(Methylb	romide)	ND	ug/L	5.0	
Vinyl chlorid	de	ND	ug/L	1.0	
Chloroethane		ND	ug/L	5.0	
Methylene ch	loride	ND	ug/L	5.0	
1,1-Dichloro	ethene	ND	ug/L	0.50	
1,1-Dichloro	ethane	ND	ug/L	0.50	
1,2-Dichloro	ethene		-		
(cis/trai	ns)	ND	ug/L	0.50	
Chloroform		ND	ug/L	0.50	•
1,1,2-Trichlo	oro-2,2,				
1-triflu	oroethane	ND	ug/L	1.0	
1,2-Dichloro	ethane	ND	ug/L	1.0	
1,1,1-Trichle	proethane	ND	ug/L	0.50	
Carbon tetra	chloride	ND	ug/L	0.50	
Bromodichlor	omethane	ND	ug/L	1.0	
1,2-Dichloro	propane	ND	ug/L	1.0	
trans-1,3-Die	chloropropene	ND	ug/L	1.0	
Trichloroeth	ene	ND	ug/L	0.50	
Chlorodibrom	omethane	ND	ug/L	1.0	
cis-1,3-Dich	loropropene	ND	ug/L	2.0	
1,1,2-Trichlo	proethane	ND	ug/L	1.0	
EDB (1,2-Dibi	romoethane)	ND	ug/L	2.0	
Bromoform		ND	ug/L	5.0	
1,1,2,2-Tetra	achloroethane	ND	ug/L	1.0	
Tetrachloroe	thene	ND	ug/L	0.50	
Chlorobenzen	9	ND	ug/L	2.0	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

- Enseco

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-11 002044-0007-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016337 12 OCT 88 NA		Received: 13 Analyzed: 23	8 OCT	88 88
Parameter			Result	Units	Reporting Limit	J	
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e e s benzene benzene benzene		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50)))))	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

i

ł

÷

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore FIELD BLANK 002044-0008-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016338 12 OCT 8 01 NOV 8	38 38	Received: 13 Analyzed: 07	OCT NOV	88 88
Parameter			Result	Wet wt Units	. Reporting Limit		
Anthracene Benzo(a)anth Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre bis(2-Fthylb	racene ranthene ranthene ne exvl)		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10		
phthalat Butyl benzyl Chrysene Dibenzo(a,h) Di-n-butyl p 1,2-Dichloro 1,3-Dichloro 1,4-Dichloro Diethyl phth	phthalate phthalate hthalate benzene benzene benzene alate		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10		
7,12-Dimethy anthrace Dimethyl pht Di-n-octyl p Fluoranthene I-Methylnaph Naphthalene Phenanthrene Pyrene Pyridine Quinoline Benzenethiol o-Cresol m & p-Cresol 2,4-Dimethyl 2,4-Dinitrop 4-Nitropheno	lbenz- ne halate hthalate thalene (s) phenol henol 1		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 10 50 50		
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	-d5 enyl 4 ol nophenol		65.7 69.4 89.3 59.4 53.5 67.8	* _, _ % % % %	 		

ND=Not Detected NA=Not Applicable

.

Reported By: Tim Miller

Approved By: Jeff Lowry

.

The cover letter is an integral part of this report. Rev 230787

11.3

Halogenated Volatile Organics

Method 601

Client ID: Lab ID: Matrix: Authorized:	FIELD BLANK 002044-0008-SA AQUEOUS 13 OCT 88	Enseco ID: Sampled: Prepared:	1016338 12 OCT 88 NA	·	Received: 13 Analyzed: 19	0CT 88 0CT 88
Parameter			Result	Units	Reporting Limit	
Chloromethane Bromomethane	e		ND	ug/L	5.0	
(Methylbi Vinyl chlorid Chloroethane	romide) de		ND ND ND	ug/L ug/L ug/L	5.0 1.0 5.0	
1,1-Dichloro 1,1-Dichloro 1,2-Dichloro	ethene ethane ethane		ND ND ND	ug/L ug/L ug/L	0.50 0.50 0.50	
(cis/tra Chloroform 1.1.2-Trichle	ns) 2ro-2.2.		ND 2.8	ug/L ug/L	0.50 0.50	
1-trifluc 1,2-Dichloroc 1,1,1-Trichlo Carbon tetrad	broethane ethane proethane chloride		ND ND ND ND	ug/L ug/L ug/L ug/L	1.0 1.0 0.50 0.50	
Bromodichloro 1,2-Dichloro trans-1,3-Dic Trichloroeth	omethane propane chloropropene ene		1.4 ND ND ND	ug/L ug/L ug/L ug/L	1.0 1.0 1.0 0.50	
cis-1,3-Dich 1,1,2-Trichle EDB (1,2-Dib)	omethane loropropene oroethane romoethane)		ND ND ND ND	ug/L ug/L ug/L ug/L	1.0 2.0 1.0 2.0	
1,1,2,2-Tetra Tetrachloroet Chlorobenzene	achloroethane thene a		ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 1.0 0.50 2.0	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	FIELD BLANK OO2044-0008-SA AQUEOUS 13 OCT 88	Enseco ID: 1016338 Sampled: 12 OCT 88 Prepared: NA	3	Received: 1 Analyzed: 1	13 OCT 19 OCT	88 88
Parameter		Result	Units	Reportir Limit	ıg	
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorol 1,4-Dichlorol 1,2-Dichlorol	e S Denzene Denzene Denzene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5	50 50 50 50 50 50 50 50 50	

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	Test	QC Lot Nu LCS	umber SCS
002044-0001-SA	AQUEOUS	625-A	881014A	881014A
002044-0002-SA	AQUEOUS	625-A	881014A	881014A
002044-0003-SA	AQUEOUS	625-A	881014A	881014A
002044-0005-SA	AQUEOUS	625-A	881014A	881014A
002044-0006-SA	AQUEOUS	625-A	881031A	881101A
002044-0007-SA	AQUEOUS	625-A	881014A	881014A
002044-0008-SA	AQUEOUS	625-A	881031A	88101A

- 🔁 Enseco

ļ

LABORATORY CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Conc Spiked	entratior Measur LCS1	red LCS2	Accuracy LCS1 LCS2	/(%) P Limits	recisio LCS L	n(RPD) imits
Category: 625-A Matrix: AQUEOUS QC Lot: 881014A Concentration Units: ug/L							
Phenol 2-Chlorophenol 1,4-Dichlorobenzene	100 100 50	75.9 93.4 35.1	79.5 94.4 31.6	76 80 93 94 70 63	12- 89 27-123 36- 97	$5.1\\1.1\\11$	42 40 28
n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 50 100 50	49.8 33.8 94.6 45.9 90.0 48.2 53.4 53.9	51.4 31.4 101 44.2 99.5 48.5 41.4 57.8	100 103 68 63 95 101# 92 88 90# 100# 96 97# 53 41 108 116	41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127	2.9 7.6 6.1 4.4 10 1.0 26 7.1	38 28 31 50 38 50 31
Category: 625-A Matrix: AQUEOUS QC Lot: 881031A Concentration Units: ug/L							
Phenol 2-Chlorophenol 1,4-Dichlorobenzene	100 100 50	86.6 121 39.4	77.3 105 34.5	87 77 121 105 79 69	12- 89 27-123 36- 97	12 14 14	42 40 28
n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 50 100 50	54.6 44.8 141 50.9 118 59.9 87.8 57.4	46.3 37.3 123 41.0 102 52.4 76.8 42.9	109 93 90 75 141# 123# 102 82 118# 102# 120# 105# 88 77 115 86	41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127	16 18 14 22 14 13 13 29	38 28 42 31 50 38 50 31

= Recovery outside standard QC limits.

SURROGATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

.

Analyte	Concentra Spiked I	ation Measured	Accur SCS	acy(%) Limits
Category: 625-A Matrix AQUEOUS LCS Lot: 881014A SCS Lot: 881014A Concentration Units: ug/L				
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	100 100 200 200 200	99.2 93.0 95.2 178 181 204	99 93 95 89 90 102	35-114 43-116 33-141 21-100 10- 94 10-123
Category: 625-A Matrix AQUEOUS LCS Lot: 881031A SCS Lot: 881101A Concentration Units: ug/L				
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	100 100 200 200 200	77.6 76.1 97.8 132 138 217	78 76 98 66 69 108	35-114 43-116 33-141 21-100 10- 94 10-123

- 🗧 Enseco

i

1

BLANK REPORT Semivolatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 625-REF-A Matrix: AQUEOUS LCS Lot: 881014A SCS Lot: 881014A			
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylhexyl phthalate Butyl benzyl phthalate	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate 7,12-Dimethylbenz	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine Quinoline Benzenethiol o-Cresol m & p-Cresol(s)	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10
2,4-Dimethylphenol 2,4-Dinitrophenol 4-Nitrophenol Phenol	ND ND ND ND	ug/L ug/L ug/L ug/L	10 50 50 10

Enseco

I

BLANK REPORT Semivolatile Organics by GC/MS (cont.)

10

Analyte	Result	Units	Reporting Limit
Test: 625-REF-A Matrix: AQUEOUS LCS Lot: 881031A SCS Lot: 881101A			
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylheyyl	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
phthalate Butyl benzyl phthalate Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10
7,12-Dimethylbenz anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine Quinoline Benzenethiol o-Cresol m & n-Cresol(s)	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10
2,4-Dimethylphenol 2,4-Dinitrophenol 4-Nitrophenol Phenol	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 50 50 10

QC LOT ASSIGNMENT REPORT Volatile Organics by GC

Laboratory Sample Number	QC Matrix	Test	QC Lot Nu LCS	ımber SCS
002044-0001-SA 002044-0001-SA 002044-0002-SA 002044-0002-SA 002044-0003-SA 002044-0003-SA 002044-0004-SA 002044-0004-SA 002044-0005-SA 002044-0005-SA 002044-0005-SA 002044-0006-SA 002044-0006-SA 002044-0007-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	601-A 602-A 601-A 602-A 601-A 602-A 601-A 602-A 601-A 602-A 601-A 602-A 601-A 602-A	881018W 881018W 881017L 881017L 881017L 881017L 881017L 881017L 881018W 881021W 881021W 881021P 881021P	881018W 881018W 881017L 881017L 881017L 881017L 881017L 881017L 881018W 881021W 881021W 881021P 881021P
002044-0008-SA 002044-0008-SA	AQUEOUS AQUEOUS	601-A 602-A	881019P 881019P	881019P 881019P

Enseco

L

1

I

L

ì

i.

LABORATORY CONTROL SAMPLE REPORT Volatile Organics by GC

10.00

Analyte		Conce Spiked	ntration Measure	d	Acc LCS1	uracy LCS2	(%) Pr Limits	recisio LCS L	n(RPD) imits
		·	LCS1	LCS2					
Category: 601-A Matrix: AQUEOUS QC Lot: 881018W Concentration Units:	ug/L								
1,1-Dichloroethane Chloroform Bromodichloromethane Trichloroethene Chlorobenzene		5.0 5.0 10 5.0 5.0	5.14 5.07 10.1 4.16 5.16	5.11 5.08 10.3 4.31 5.14	103 101 101 83 103	102 102 103 86 103	60-140 60-140 60-140 60-140 60-140	1.0 1.0 2.0 3.6 0.0	20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 881018W Concentration Units:	ug/L								
Benzene Toluene 1,3-Dichlorobenzene Ethyl benzene Chlorobenzene		5.0 5.0 5.0 5.0 5.0	4.87 4.51 4.17 4.51 4.76	4.85 4.49 4.10 4.47 4.71	97 90 83 90 95	97 90 82 89 94	77-123 77-123 77-123 77-123 77-123 77-123	0.0 0.0 1.2 1.1 1.1	20 20 20 20 20
Category: 601-A Matrix: AQUEOUS QC Lot: 881017L Concentration Units:	ug/L								
l,l-Dichloroethane Chloroform Bromodichloromethane Trichloroethene Chlorobenzene		5.0 5.0 10 5.0 5.0	5.15 5.10 8.63 3.93 5.05	5.14 5.09 9.04 4.50 5.12	103 102 86 79 101	103 102 90 90 102	60-140 60-140 60-140 60-140 60-140	0.0 0.0 4.5 13 1.0	20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 881017L Concentration Units:	ug/L								
Benzene Toluene 1,3-Dichlorobenzene Ethyl benzene		5.0 5.0 5.0 5.0	4.45 5.00 5.13 5.17	4.52 4.89 4.65 4.82	89 100 103 103	90 98 93 96	77-123 77-123 77-123 77-123 77-123	1.1 2.0 10 7.0	20 20 20 20

Enseco

LABORATORY CONTROL SAMPLE REPORT Volatile Organics by GC (cont.)

1 H Q

يُعتاد ال

Analyte	Conce Spiked	ntration Measured LCS1 LCS2	Accuracy LCS1 LCS2	(%) Pr Limits	ecision LCS Li	(RPD) mits
Category: 602-A Matrix: AQUEOUS QC Lot: 881017L Concentration Units: ug	` /L					
Chlorobenzene	5.0	5.21 5.38	104 108	77-123	3.8	20
Category: 601-A Matrix: AQUEOUS QC Lot: 881021W Concentration Units: ug	/L					
l,l-Dichloroethane Chloroform Bromodichloromethane Trichloroethene Chlorobenzene	5.0 5.0 10 5.0 5.0	4.985.005.275.0010.310.34.305.075.345.24	100 100 105 100 103 103 86 101 107 105	60-140 60-140 60-140 60-140 60-140	0.0 4.9 0.0 16 1.9	20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 881021W Concentration Units: ug	/L					
Benzene Toluene 1,3-Dichlorobenzene Ethyl benzene Chlorobenzene	5.0 5.0 5.0 5.0 5.0 5.0	4.974.874.624.554.214.144.564.434.834.73	99 97 92 91 84 83 91 89 97 95	77-123 77-123 77-123 77-123 77-123 77-123	2.0 1.1 1.2 2.2 2.1	20 20 20 20 20 20
Category: 601-A Matrix: AQUEOUS QC Lot: 881021P Concentration Units: ug	·/L					
1,1-Dichloroethane Chloroform Bromodichloromethane Trichloroethene Chlorobenzene	5.0 5.0 10 5.0 5.0	5.94 6.28 5.48 5.56 9.92 9.85 5.08 5.03 5.54 5.58	119 126 110 111 99 98 102 101 111 112	60-140 60-140 60-140 60-140 60-140	5.7 0.9 1.0 1.0 0.9	20 20 20 20 20 20

Enseco

LABORATORY CONTROL SAMPLE REPORT Volatile Organics by GC (cont.)

Analyte		Conce Spiked	ntration Measure LCS1	ed LCS2	Acc LCS1	uracy(LCS2	%) Pr Limits	recisio LCS L	on(RPD) imits
Category: 602-A Matrix: AQUEOUS QC Lot: 881021P Concentration Units:	ug/L								
Benzene Toluene 1,3-Dichlorobenzene Ethyl benzene Chlorobenzene		5.0 5.0 5.0 5.0 5.0	4.91 4.87 4.67 4.77 5.08	5.01 4.67 4.59 4.72 5.08	98 97 93 95 102	100 93 92 94 102	77-123 77-123 77-123 77-123 77-123 77-123	2.0 4.2 1.1 1.1 0.0	20 20 20 20 20
Category: 601-A Matrix: AQUEOUS QC Lot: 881019P Concentration Units:	ug/L			-					
1,1-Dichloroethane Chloroform Bromodichloromethane Trichloroethene Chlorobenzene		5.0 5.0 10 5.0 5.0	5.87 5.51 9.79 5.02 5.40	4.93 6.26 8.57 4.46 4.84	117 110 98 100 108	99 125 86 89 97	60-140 60-140 60-140 60-140 60-140	17 13 13 12 11	20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 881019P Concentration Units:	ug/L								
Benzene Toluene 1,3-Dichlorobenzene Ethyl benzene Chlorobenzene		5.0 5.0 5.0 5.0 5.0	4.86 4.70 4.54 4.68 5.04	4.86 4.71 4.54 4.64 5.02	97 94 91 94 101	97 94 91 93 100	77-123 77-123 77-123 77-123 77-123 77-123	0.0 0.0 0.0 1.1 1.0	20 20 20 20 20

Enseco

T

i

SURROGATE CONTROL SAMPLE REPORT Volatile Organics by GC

	Concentration		Accuracy(%)		
Analyte	Spiked	Measured	SCS	Limits	
Category: 601-A Matrix AQUEOUS LCS Lot: 881018W SCS Lot: 881018W Concentration Units: ug/L					
Bromochloromethane	30.0	26.0	87	20-160	
Category: 602-A Matrix AQUEOUS LCS Lot: 881018W SCS Lot: 881018W Concentration Units: ug/L	20.0	20.0	00	20, 160	
a, a, a- 17 11 100702010ene	50.0	29.0	33	20-100	
Category: 601-A Matrix AQUEOUS LCS Lot: 881017L SCS Lot: 881017L Concentration Units: ug/L Bromochloromethane	30.0	20.7	69	20-160	
Category: 602-A Matrix AQUEOUS LCS Lot: 881017L SCS Lot: 881017L Concentration Units: ug/L a,a,a-Trifluorotoluene	30.0	18.2	61	20-160	
Category: 601-A Matrix AQUEOUS LCS Lot: 881021W SCS Lot: 881021W Concentration Units: ug/L					
Bromochloromethane	30.0	26.4	88	20-160	

- 🖉 Enseco

I

i.

SURROGATE CONTROL SAMPLE REPORT Volatile Organics by GC (cont.)

1 1 1

	Concenti	ration	Accur	acy(%)
Analyte	Spiked	Measured	SCS	Limits
Category: 602-A Matrix AQUEOUS LCS Lot: 881021W SCS Lot: 881021W Concentration Units: ug/L				
a,a,a-Trifluorotoluene	30.0	29.3	98	20-160
Category: 601-A Matrix AQUEOUS LCS Lot: 881021P SCS Lot: 881021P Concentration Units: ug/L				
Bromochloromethane	30.0	28.6	95	20-160
Category: 602-A Matrix AQUEOUS LCS Lot: 881021P SCS Lot: 881021P Concentration Units: ug/L a,a,a-Trifluorotoluene	30.0	30.3	101	20-160
Category: 601-A Matrix AQUEOUS LCS Lot: 881019P SCS Lot: 881019P Concentration Units: ug/L Bromochloromethane	30.0	25.6	85	20-160
Category: 602-A Matrix AQUEOUS LCS Lot: 881019P SCS Lot: 881019P Concentration Units: ug/L				
a,a,a-Trifluorotoluene	30.0	27.9	93	20-160

BLANK REPORT Volatile Organics by GC

Analyte	Result	Units	Reporting Limit
Test: 601-A Matrix: AQUEOUS LCS Lot: 881018W SCS Lot: 881018W			
Chloromethane	ND	ug/L	5.0
Vinyl chloride) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethane 1,2 Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50
1,1,2-Trichloro-2,2 1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 1.0\\ 1.0\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 0.50\\ 2.0\\ 0.50\\ 2.0\\ 0.50\\ $
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881018W SCS Lot: 881018W			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50

- 🔁 Enseco

į

ł

Enseco

ļ

I

I I

i

BLANK REPORT Volatile Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881018W SCS Lot: 881018W			
1,2-Dichlorobenzene	ND	ug/L	0.50
Test: 601-A Matrix: AQUEOUS LCS Lot: 881017L SCS Lot: 881017L			
Chloromethane Bromomethan	ND	ug/L	5.0
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50
<pre>1,1,2-Trichloro-2,2 1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 0.50 0.50 1.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
- 🖉 Enseco

1

i.

BLANK REPORT Volatile Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881017L SCS Lot: 881017L			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Test: 601-A Matrix: AQUEOUS LCS Lot: 881021W SCS Lot: 881021W			
Chloromethane	ND	ug/L	5.0
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50
<pre>1,1,2-Trichloro-2,2 1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 1.0\\ 1.0\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5$

Enseco

BLANK REPORT Volatile Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 601-A Matrix: AQUEOUS LCS Lot: 881021W SCS Lot: 881021W Chlorobenzene	ND	ug/L	2.0
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881021W SCS Lot: 881021W			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Test: 601-A Matrix: AQUEOUS LCS Lot: 881021P SCS Lot: 881021P			
Chloromethane	ND	ug/L	5.0
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50
1,1,2-Trichloro-2,2 1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 1.0\\ 1.0\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 0.50\\ \end{array} $

BLANK REPORT Volatile Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 601-A Matrix: AQUEOUS LCS Lot: 881021P SCS Lot: 881021P			
Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene	ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 2.0 1.0 2.0 5.0 1.0 0.50 2.0
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881021P SCS Lot: 881021P			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Test: 601-A Matrix: AQUEOUS LCS Lot: 881019P SCS Lot: 881019P			
Chloromethane Promomethan	ND	ug/L	5.0
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50
1,2-Dichioroethen (cis/trans) Chloroform 1 1 2-Trichloro-2 2	ND ND	ug/L ug/L	0.50 0.50
1-trifluoroethane	ND	ua/L	1.0

Enseco

l

BLANK REPORT Volatile Organics by GC (cont.)

Analyte	Result	Units	Limit
Test: 601-A Matrix: AQUEOUS LCS Lot: 881019P SCS Lot: 881019P			
1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 0.50 1.0 1.0 1.0 1.0 2.0 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881019P SCS Lot: 881019P			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

A DIVISION OF ENSECO INCORPORATED

10/14/88

...

Peter Olsen Dames and Moore Suite 200 250 East Broadway Salt Lake City, UT 84111

Dear Dr. Olsen:

This is to acknowledge that we received your 8 samples at our laboratory. They have been assigned our lab project number 002044. Enclosed is a sample description form indicating our sample numbers and your corresponding identifications and a copy of the Chain of Custody.

If you have any questions regarding your project or need additional sample bottles please contact me.

Sincerely,

learnettowbert

Jeanne Howbert Project Coordinator

Rocky Mountain Analytical Lab

.

10/14/88

for

SAMPLE DESCRIPTION INFORMATION

Dames and Moore

Date Date Sample Type Sampled Rece	AQUEOUS 10/12/88 10/11 AQUEOUS 10/112/88 10/11
Sample Description	MW-16 MW-6 MW-8 MW-13 MW-10 MW-12 MW-11 FIELD BLANK
RMA Sample No.	*002044-0001 *002044-0002 *002044-0003 *002044-0004 *002044-0004 *002044-0005 *002044-0005 *002044-0005

* = Receipt of this new sample is acknowledged by this letter

Page 1 of 1

I

. 1

I

i

Enseco Incorporated

Rocky Mountain Analytical Laboratory

November 4, 1988

Pete F. Olsen, Ph.D. Dames and Moore 250 East Broadway Suite 200 Salt Lake City, UT 84111

Dear Pete:

Enclosed is the report for two aqueous samples received at Rocky Mountain Analytical Laboratory on October 14, 1988.

The surrogate recovery for D14-Terphenyl in sample 2061-02 is outside the control limits. Both samples were very clean and target compounds were relatively unaffected. All other surrogate recoveries are within limits.

If you have any questions the Client Service Representative assigned to this project is Jeannie B. Howbert.

Sincerely, beison

Tracy Giberson Data Control Supervisor

Enclosures

cc: Jeannie B. Howbert. Client Service Rep.

RMAL #002061

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Facsimile: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

Enseco

- o Sample Description Information
- o Analytical Results
- o Quality Control Report

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The discussion below describes the format, content and organization for the three components of this report.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Quality Control Results

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. These QC checks include analysis of blanks, laboratory control samples (LCS) and surrogate control samples. Results from these analyses are presented along with the control limits.

SAMPLE DESCRIPTION INFORMATION for Dames and Moore

Lab ID	Client ID	Matrix	Sample Date	ed Time	Received Date
002061-0001-SA	MW-9	AQUEOUS	13 OCT 88	09:40	14 OCT 88
002061-0002-SA	MW-13	AQUEOUS	13 OCT 88	08:30	14 OCT 88

- Enseco

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name:	Dames and Moore					
Lab ID: Matrix: Authorized:	002061-0001-SA AQUEOUS 14 OCT 88	Enseco ID: Sampled: Prepared:	1016431 13 OCT 18 OCT	88 88	Received: 14 Analyzed: 31	0CT 88 0CT 88
Parameter			Result	Wet wt Units	. Reporting Limit	
Anthracene Benzo(a)anthi Benzo(b)fluoi Benzo(k)fluoi Benzo(a)pyrer bis(2-5thylb)	racene ranthene ranthene ne		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
phthalate Butyl benzyl Chrysene Dibenzo(a,h)a Di-n-butyl ph	phthalate anthracene athalate		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
1,2-Dichlorol 1,3-Dichlorol 1,4-Dichlorol Diethyl phtha 7,12-Dimethy	benzene benzene benzene alate lbenz-		ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10	
anthracer Dimethyl phth Di-n-octyl ph Fluoranthene Indene	ne nalate nthalate		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
l-Methylnaphi Naphthalene Phenanthrene Pyrene Pyridine	thalene		ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10	
Benzenethiol o-Cresol m & p-Cresol 2,4-Dimethylp 2,4-Dinitropheno Phenol	(s) phenol henol l		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 50 50	
Nitrobenzene 2-Fluorobiphe Terphenyl-dl Phenol-d5 2-Fluorophene 2,4,6-Tribror	-d5 enyl 4 ol nophenol		69.3 62.3 57.2 31.0 42.4 45.2	% % % %	 	

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

The cover letter is an integral part of this report. Rev 230787 $% \left({\frac{{{\left({{{\left({{{\left({{{\left({{{}}} \right)}} \right.}} \right)}}}} \right)} \right)$

Halogenated Volatile Organics

Method 601

Client Name:	Dames and Moore							
Lab ID: Matrix: Authorized:	002061-0001-SA AQUEOUS 14 OCT 88	Enseco ID: Sampled: Prepared:	1016431 13 OCT 88 NA		Received: Analyzed:	14 24	0CT 0CT	88 88
Parameter		ſ	Result	Units	Report Limi	ing t		
Chloromethane	9		ND	ug/L	5	.0		
(Methylbr Vinyl chlorid Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe	romide) de loride ethene ethane		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5 1 5 5 0 0	.0 .0 .0 .50 .50		
(cis/trar Chloroform	is)		ND ND	ug/L ug/L	0 0	.50 .50		
1,1,2-Trichlo 1-trifluo 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrao Bromodichloro 1,2-Dichlorop trans-1,3-Dic Trichloroethe Chlorodibromo cis-1,3-Dichl 1,1,2-Trichlo EDB (1,2-Dibh Bromoform 1,1,2,2-Tetra	pro-2,2, proethane ethane proethane chloride propane chloropropene ene pomethane loropropene proethane romoethane comoethane		ND 5.6 ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 0 1 1 1 1 2 1 2 5			
Chlorobenzene	2 2		ND	ug/L	2	.0		

ND=Not Detected NA=Not Applicable

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

The cover letter is an integral part of this report. Rev 230787

Refinery Hazardous Constituent Semivolatiles

Method 625

Client Name:	Dames and Moore						
Lab ID: Matrix: Authorized:	MW-13 002061-0002-SA AQUEOUS 14 OCT 88	Enseco ID: Sampled: Prepared:	1016433 13 OCT 18 OCT	2 88 88	Received: 14 Analyzed: 31	OCT OCT	88 88
Parameter			Result	Wet wt. Units	. Reporting Limit		
Anthracene Benzo(a)anthi Benzo(b)fluoi Benzo(k)fluoi Benzo(a)pyrei bis(2-ftbylb)	racene ranthene ranthene ne		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10		
bis(2-triying phthalate Butyl benzyl Chrysene Dibenzo(a,h);	phthalate anthracene		ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10		
1,2-Dichlorol 1,3-Dichlorol 1,4-Dichlorol Diethyl phth 7,12-Dimethy	benzene benzene benzene alate lbenz-		ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10		
anthracer Dimethyl phth Di-n-octyl ph Fluoranthene Indene	ne nalate hthalate		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/l	10 10 10 10		
I-Methylnaph Naphthalene Phenanthrene Pyrene Pyridine	thalene		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10		
Quinoline Benzenethiol o-Cresol m & p-Cresol 2,4-Dimethyl 2,4-Dinitrop 4-Nitropheno Phenol	(s) phenol henol l		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 50 50 10		
Nitrobenzene 2-Fluorobiphe Terphenyl-dl Phenol-d5 2-Fluorophene 2,4,6-Tribro	-d5 enyl 4 ol nophenol		56.8 50.0 17.0 43.6 41.7 42.6	% % %			

ND=Not Detected NA=Not Applicable

Reported By: Martin Koby

Approved By: Jeff Lowry

The cover letter is an integral part of this report. Rev 230787

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Dames and Moore MW-9 002061-0001-SA AQUEOUS 14 OCT 88	Enseco ID: Sampled: Prepared:	1016431 13 OCT 88 NA		Received: Analyzed:	14 24	OCT OCT	88 88
Parameter			Result	Units	Reporti Limit	ng		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorot 1,4-Dichlorot 1,2-Dichlorot	e S Denzene Denzene Denzene		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0. 0. 0. 0. 0. 0. 0.	50 500 500 500 500 500 500 500		

ND=Not Detected NA=Not Applicable

ы М.,

Reported By: Stan Dunlavy

Approved By: Kathy Humphreys

The cover letter is an integral part of this report. Rev 230787

i

. .

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	Test	QC Lot Nur LCS	nber SCS
002061-0001-SA	AQUEOUS	625-A	881017A	881018A
002061-0002-SA	AQUEOUS	625-A	881017A	881018A

- Enseco

LABORATORY CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

	Conce	entration		Acc	uracy(%) P	recisio	n(RPD)
Analyte	Spiked	Measure LCS1	d LCS2	LCS1	LCS2	Limits	LCS L	imits.
Category: 625-A Matrix: AQUEOUS QC Lot: 881017A Concentration Units: ug/L								
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di	100 100 50	57.0 66.6 26.1	74.5 85.5 34.1	57 67 52	74 86 68	12- 89 27-123 36- 97	26 25 27	42 40 28
n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 - 50 100 50	39.3 27.6 79.0 37.7 85.2 41.5 51.8 45.1	50.0 33.7 93.8 44.3 89.1 48.1 49.5 58.0	79 55 79 75 85# 83 52 90	100 67 94 89 89# 96 50 116	41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127	23 20 17 4.6 14 3.9 25	38 28 42 31 50 38 50 31

= Recovery outside standard QC limits.

.

I.

SURROGATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Concent Spiked	ration Measured	Accur SCS	acy(%) Limits
Category: 625-A Matrix AQUEOUS LCS Lot: 881017A SCS Lot: 881018A Concentration Units: ug/L				
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	100 100 200 200 200	93.0 86.8 110 149 166 156	93 87 110 74 83 78	35-114 43-116 33-141 21-100 10- 94 10-123

- Enseco

BLANK REPORT Semivolatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 625-REF-A Matrix: AQUEOUS LCS Lot: 881017A SCS Lot: 881018A			
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylbexyl	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
phthalate Butyl benzyl phthalate Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10
7,12-Dimethylbenz anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine Quinoline Benzenethiol o-Cresol m & p-Cresol(s) 2,4-Dimethylphenol 2,4-Dinitrophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 10 10 1
4-Nitrophenol Phenol	ND ND	ug/L ug/L	50 10

- 🖉 Enseco

QC LOT ASSIGNMENT REPORT Volatile Organics by GC

Laboratory Sample Number	QC Matrix	Test	QC Lot Nu LCS	mber SCS
002061-0001-SA	AQUEOUS	601-A	881024W	881024W
002061-0001-SA	AQUEOUS	602-A	881024W	881024W

Ì.

LABORATORY CONTROL SAMPLE REPORT Volatile Organics by GC

ji Ji

Analyte		Conce Spiked	ntration Measure LCS1	d LCS2	Acc LCS1	uracy(LCS2	%) Pr Limits	ecisio LCS L	n(RPD) imits
Category: 601-A Matrix: AQUEOUS QC Lot: 881024W Concentration Units:	ug/L								
l,l-Dichloroethane Chloroform Bromodichloromethane Trichloroethene Chlorobenzene		5.0 5.0 10 5.0 5.0	5.11 5.03 10.2 4.42 5.00	5.19 5.14 10.3 4.43 5.23	102 101 102 88 100	104 103 103 89 105	60-140 60-140 60-140 60-140 60-140	1.9 2.0 1.0 1.1 4.9	20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 881024W Concentration Units:	ug/L								
Benzene Toluene 1,3-Dichlorobenzene Ethyl benzene Chlorobenzene		5.0 5.0 5.0 5.0	5.02 4.68 4.12 4.58 4.80	5.01 4.68 4.20 4.64 4.84	100 94 82 92 96	100 94 84 93 97	77-123 77-123 77-123 77-123 77-123 77-123	0.0 0.0 2.4 1.1 1.0	20 20 20 20 20 20

i.

SURROGATE CONTROL SAMPLE REPORT Volatile Organics by GC

Analyte	Concent Spiked	ration Measured	Accur SCS	acy(%) Limits
Category: 601-A Matrix AQUEOUS LCS Lot: 881024W SCS Lot: 881024W Concentration Units: ug/L				
Bromochloromethane	30.0	26.3	88	20-160
Category: 602-A Matrix AQUEOUS LCS Lot: 881024W SCS Lot: 881024W Concentration Units: ug/L				
a,a,a-Trifluorotoluene	30.0	29.3	98	20-160

BLANK REPORT Volatile Organics by GC

Analyte	Result	Units	Reporting Limit
Test: 601-A Matrix: AQUEOUS LCS Lot: 881024W SCS Lot: 881024W			
Chloromethane Bromomethan	ND	ug/L	5.0
(Methylbromide) Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 5.0 5.0 0.50 0.50
(cis/trans) Chloroform	ND ND	ug/L ug/L	0.50 0.50
<pre>1,1,2-Trichloro-2,2 1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane cis-1,3-Dichloropropene 1,1,2-Trichloroethane EDB (1,2-Dibromoethane) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 1.0\\ 1.0\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 0.50\\ 2.0\\ 0.50\\ 2.0\\ 0.50\\$
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881024W SCS Lot: 881024W			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1.4-Dichlorobenzene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 0.50 0.50

BLANK REPORT Volatile Organics by GC (cont.)

Analyte			Result	Units	Reporting Limit
Test: 602-AP Matrix: AQUEOUS LCS Lot: 881024W	SCS Lot:	881024W			
1,2-Dichlorobenze	ne		ND	ug/L	0.50

A DIVISION OF ENSECO INCORPORATED

10/14/88

١

Peter Olsen Dames and Moore Suite 200 250 East Broadway Salt Lake City, UT 84111

Dear Dr. Olsen:

This is to acknowledge that we received your 2 samples at our laboratory. They have been assigned our lab project number 002061. Enclosed is a sample description form indicating our sample numbers and your corresponding identifications and a copy of the Chain of Custody.

If you have any questions regarding your project or need additional sample bottles please contact me.

Sincerely,

anneHowbert

Jeanne Howbert Project Coordinator

RMA Bulle No. Sample Type Date Sample Type Date Sample Type Date Sample Type Date Received 20061-0001 Mm-9 30000005 10/13/88 10/13/88 10/14/88 20061-0001 Mm-9 30000005 10/13/88 10/14/88	RMA Sample Description Sam 02061-0001 WW-9 02061-0002 WW-13			SAMPLE DESCRIPTION INFORMATION for Dames and Moore	10/14/88
22061-0001 WW-9 22061-0002 WW-13 IO/13/88 I0/14/88 201E0US I0/13/88 I0/14/88	22061-0001 MW-9 22061-0002 MW-13 	RMA mple No.			
		02061-0001	Sample Description		Date <u>Sample Type Sampled</u>
		7000-70070	Sample Description MW-9 MW-13		Date Sample Type Sampled 1 AQUEOUS 10/13/88 AQUEOUS 10/13/88
			Sample Description MW-9 MW-13		Date Date Sample Type Sampled AQUEOUS 10/13/88 AQUEOUS 10/13/88
	·		Sample Description MW-13 MW-13		Date Date Sample Type Sampled AQUEOUS 10/13/88 AQUEOUS 10/13/88
			Sample Description MW-9 MW-13		Sample Type Date Sampled 10/13/88 AQUEOUS 10/13/88
			Sample Description MW-9 MW-13		Sample Type Date AQUEOUS 10/13/88 AQUEOUS 10/13/88
			Sample Description MW-9 MW-13		Sample Type Date Sampled 10/13/88 AQUEOUS 10/13/88 IO/13/88 10/13/88

Page 1 of 1

i

* = Receipt of this new sample is acknowledged by this letter

o - Rocky Mountain Analytical	CHAIN OF	CUSTODY		No. 5769
ow Street blorado 80002 611 Facsimile: 303/431-7171 Te Annie Houber		1. Packed by: _ 2. Seal Intact U	SAMPLE SAFE" CONDITIONS Sampling Co.: Ye	Seal # No
" march Carbon 4 Conero	- Kinttend N	3. Condition of 4. Sealed for St	Contents:	
Ognes + more + ED reg +	fell olar	5. Initial Conter 6. Sampling St	nts Temp.:°C Seal atus: Done Continuing Until	# []
. L. Cardwell		7. Seal Intact U 8. Contents Ter 9. Condition of	pon Receipt by Laboratory: Yes mperature Upon Receipt by Lab: Contents:	° °
ne Sample ID/Description	Sample Type	No. Containers	Analysis Parameters	Remärks
16 MW-9	Ground weter	S	asper ant with our and	leon un's
0 MW-13	`	`	BNA'S as Per list a	unt with reflection
	<u>.</u>			
		~		
	- 2 '			•
				•
CUSTODY TRANSFERS PRIOR TO SHIPPING	Date	elivered to Shinner hv	SHIPPING DETAILS	
or Bordial FEd. X Entruster	10/13 1630	envered to Shipment:	Airbill #	
	E	eceived for Lab: RMA	+ Signed: ++	Date/Time $\frac{\lambda/\eta/\beta g}{03.35}$
	ш —	Decision No		5000