3R - 155

REPORTS

DATE:

Certified Mail: #Z 295 387 297; #Z 295 387 296

RECEIVED

February 27, 1998

MAR 0 2 1998

Environmental Bureau Oil Conservation Division

Mr. William C. Olson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87504

Re: 1997 Groundwater Annual Report

Dear Mr. Olson:

In accordance with reporting requirements, El Paso Field Services (EPFS) has enclosed annual updates for 57 groundwater impacted locations that were identified during our pit closure project of 1994/1995.

Of the 57 reports, EPFS hereby requests your approval for closure of 11 of these locations. The 11 reports for which EPFS requests closure, are in 2 separate binders entitled "Request for Closure".

After you have had an opportunity to review these updates, EPFS would like to schedule a meeting with you to discuss issues related to closure criteria for some of the more complex locations that are currently being addressed.

If you have any questions regarding this information, please call me at 505/599-2141. I will contact you within the next quarter to schedule a meeting.

Sincerely,

Sandra D. Miller

Environmental Manager

xc: Mr. Bill Liesse, BLM w/o enclosures

Mr. Denny Foust, NMOCD - Aztec w/enclosures; Certified Mail #Z 295 387 298; #Z 295 387 299

Ms. Charmaine Tso, Navajo EPA w/enclosures; Certified Mail #Z 295 387 292

SAN JUAN BASIN PIT CLOSURES San Juan Basin, New Mexico

El Paso Field Services Pit Project Groundwater Report Annual Report

March 1998

Prepared For

El Paso Field Services Farmington, New Mexico

Project 17520

EPFS GROUNDWATER PITS 1997 ANNUAL GROUNDWATER REPORT

CANADA MESA #2 Meter/Line ID - 87640

SITE DETAILS

Legals - Twn: 24N

Rng: 6W

Sec: 24

Unit: I

NMOCD Hazard Ranking: 40

Land Type: FEDERAL

Operator: MERRION OIL AND GAS CORP.

PREVIOUS ACTIVITIES

Site Assessment: Jul-94

Excavation: Aug-94 (80 cy)

Soil Boring: Aug-95

Monitor Well: Aug-95

1997 ACTIVITIES

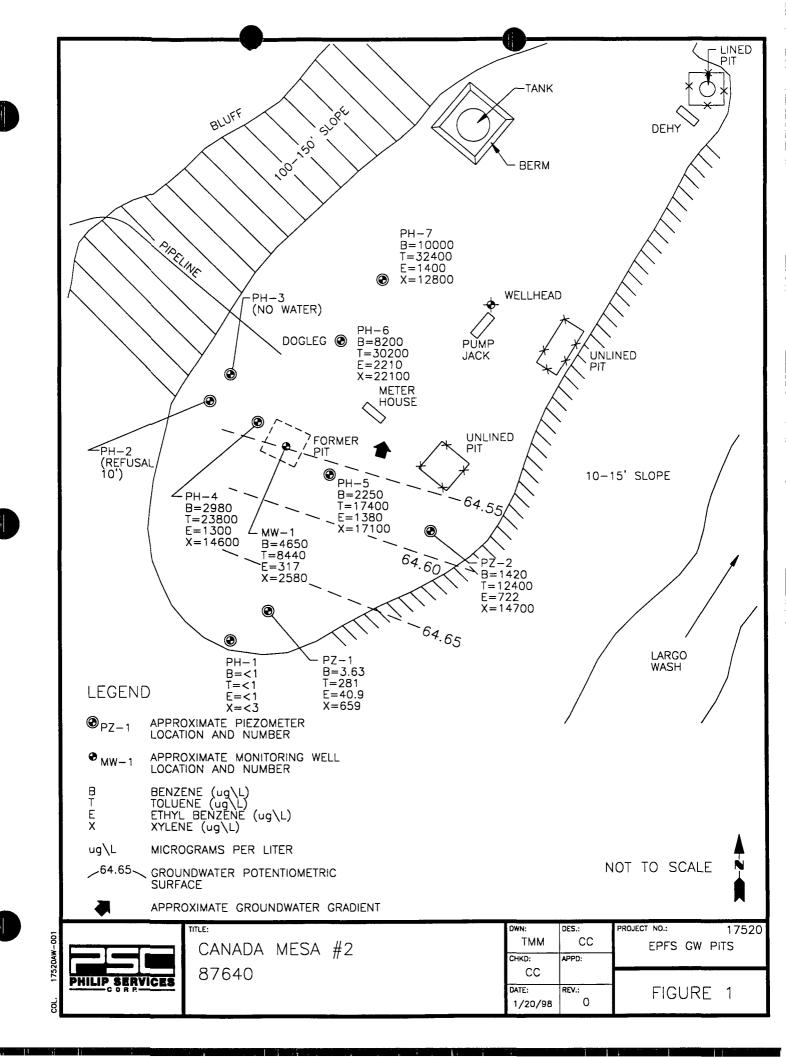
Quarterly Groundwater Monitoring - Quarterly groundwater monitoring was initiated on 11/4/96 and has continued into 1997. Groundwater analytical data are presented in Table 1.

Well Point Installation - Groundwater samples were collected from temporary monitoring wells. In addition, groundwater gradient was determined using the temporary monitoring wells.

Product Removal - A passive product removal system was installed in MW-1 on 8/28/97.

Quarterly groundwater sampling was discontinued when product removal was initiated.

CONCLUSIONS


Based on groundwater levels collected from Well Point data, the groundwater flow trends to the northeast on this site, as presented in Figure 1. The northwestern side of the site is bound by sandstone bluffs, and the eastern edge is bordered by Largo Wash.

Less than one foot of product has been measured in MW-1 since installation. Approximately 9 gallons of product has been removed since the installation of the product skimmer. All product has been disposed of at EPFS' Kutz Separator in Bloomfield, NM. Seven groundwater samples were collected from temporary monitoring wells up and downgradient of MW-1. Two downgradient samples and three cross-gradient samples were all above standards for BTEX. One up-gradient sample collected from PH-1 was below standards for BTEX. No product was measured in any of the temporary wells, after they stabilized for 24 hours. The northeastern and eastern extent of contamination have not been defined at this time. Offsite work will be required to determine the eastern extent of contamination.

In addition to EPFS's former pit, there are two unlined pits on-site which may also be potential contaminant sources.

RECOMMENDATIONS

- EPFS proposes to conduct no further action at this site, until the operator commences with remediation of their production pits.
- Continue product removal at MW-1.
- Discontinue quarterly groundwater sampling at MW-1 until product removal is complete.
- Site is extremely remote. Once free phase product is removed, site may be candidate for risk based closure.

Total BTEX	18789	10634	16000
	Ш	-11	
Total Aylene (PPB)	3920	1770	2580
	- 11	11	11
Ethyl Benzene (PPB)	469	214	317
		. !!	ţ
Toluene (PPB)	0888	5200	8440
	=	-11	
Benzene (PPB)	5520	3450	4650
	н		ll .
Project	Sample 4 - 1st Quarter	Sample 4 - 2nd Qtr	Sample 4 - 3rd Qtr
MW#	1	-	1
Sample Date NIW#	11/04/96	2/5/97	5/7/97
Site Name	Canada Mesa #2	Canada Mesa #2	Canada Mesa #2
Meter/ Line #	87640	87640	87640
Meter! Sample# Line#	960918 87640	690026	970397

RECORD OF SUBSURFACE EXPLORATION

PHILIP ENVIRONMENTAL

4000 Monroe Road

Fermington, New Mexico 87401

(606) 326-2262 FAX (606) 326-2388

Elevation **Borehole Location** QI-524-724-R6 GWL Depth CM CHANCE Logged By Drilled By

Date/Time Started 8/14/95-1230

K Padilla Date/Time Completed 8/15/95-1220

BH-1 Borehole # Well # of 2 Page

EPNG PITS Project Name 14509 Phase Project Number

6000 77 Canada Mesa # 2 87640

Well Logged By

Project Location

CM Chance

Personnel On-Site Contractors On-Site

K Padilla, O. Chaclie 4.14.11

Client Personnel On-Site

Drilling Method

4 1/4" ID HSA +0 35'

PID, CGI Air Monitoring Method

Depth	Sample	Sample	Sample Type &	Sample Description	uscs	Depth Lithology	Ai	r Monito	ring	Drilling Conditions
(Feet)	Number	Interval	Recovery	Classification System: USCS	Symbol	Change	Units	: PPM	<u>s</u>	& Blow Counts
			(inches)			(feet)	BZ	BH	HS.	
°			İ	Backfill +Alai						
 			\							,
5										ĺ
									İ	ļ
		· '	Ì]
l										
l			ĺ							1
10			Į į						[
 										
15	1	15-17	1811	It gry silty SAND, loose, sl mains vf-Fsand, atom			,	80	SLL	-1232 h.
	•	3 . ,		WENT SAND OFF			'		295	1
				of the state of th					l	
	,	•		a pural caso Fot sand						
20	۷	30-97	13	Dr-DIK Clayey SHND, VI - , 34.04,			٥	39	462	-12-29
				Br-BIK clayer SAND, vf-f sand, med dense, st moist, odon					190	
										}
				<u> </u>						
25	3) (-))	15"	BAND, UF-F sand med					,,,	
	٦	7777	'^	dinse den			11	48	220	-1248
									175	
				It Br sandy CLAY, vF sand, med sxiff;						
-				It Br sandy CLAY, uf sand, med sxift, med plastic, sl maiss				_	140	
30	4	26-32		Redish Br Sandstone, subxyly, Land			22	51	2111	-1256
				Length 21 - anitology / 3 08 x >1 3) Kand					ary	
							:			
	i								164	(3, 1
35	5	35-35.1	ا o'' ا	No Recovery			10	90	אלעו	-1311
	_	ا،د ر								GW @ 335 BGS
	ļ									
_						-			<u> </u>	8/15/95
-]	
40) .
									<u> </u>	<u> </u>

Comments:

GW(2 33.5 aftersetting 15 min. Will ream hale to CM(74 (30-32) sent to lab (BTEX, TPH). Will finish

Geologist Signature

RECORD OF SUBSURFACE EXPLORATION	Borehole # BH-1
	Well #
PHILIP ENVIRONMENTAL	Page 2 of 2
4000 Monroe Road	
Farmington, New Mexico 87401	Project Name EPNG PITS
1505) 326-2262 FAX (506) 326-2388	Project Number 14509 Phase 6000 77
	Project Location Canada Mesa # 2 87640
Elevation	Well Logged By CM Chance
Borehole Location QI- SAY-TAY-Rb	Personnel On-Site K Padilla, O Charlie, H. Keil
GWL Depth	Contractors On-Site
Logged By CM CHANCE	Client Personnel On-Site
Drilled By K Padilla	
Date/Time Started 8/14/95-120	Drilling Method 4 1/4" ID HSA / Ream L/ 8 1/4 1.0.
Date/Time Completed 8/19/45 > 1220	Air Monitoring Method PfD, CGI
Sample	Depth

epth eet)	Sample Number	Sample Interval	Sample Type & Recovery	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change	Units	Monitor : PPM	<u>s</u>	Drilling Conditions & Blow Counts
_40			(inches)			(reet)	82	BH		Saturated Cuttings
ule.	ļ									
_45				TOB 45'						
_50								-		
							:			
_5₅										
_ b o										
b 5										
_ 7 60										
	ļ									
_ 1 5								•		
en l										
	_45 _50 _55 _60 _65	_45 _50 _55 _60 _65 _150	_45 _50 _55 _60 _65 _160	_45 _50 _55 _60 _55 _60 _55 _780 _780	_40 _45 _708 4.5' _50 _55 _60 _65 _70 _755	_40 _45 _70845' _50 _55 _60 _65 _760 _755				

Comments:	
	Geologist Signature

MONITORING WELL INSTALLATION RECORD

timith surreor	mental Services Corp
4000 Monroe Ro	•d
farmington, New	Mexico 87401
5061 326-2262	FAX (606) 326-2388

Elevation	
Well Location (2	I-S24-T24-R6
GWL Depth 33.5	,
Installed By K. P.	مادالم
Date/Time Started	8/15/95-1230
Date/Time Completed	91,0100 - 1500

	Well # MW-
Project Name	EPNG PI+S
Project Number	
Project Location	14509 Phase 6001.77 Canada Mesa#2 87640
On-Site Geologist	
Personnel On-Site Contractors On-Si	Allery V. Racine
Client Personnel (On-Site

Top of Protective Casing Bottom of Protective Casing Top of Permanent Borehole Casing Bottom of Permanent Borehole Casing Top of Concrete Bottom of Concrete	9 - 94# TypeI II Paction Comes	Depth NA NA NA NA NA NA NA NA O
Bottom of Protective Casing Top of Permanent Borehole Casing Bottom of Permanent Borehole Casing Top of Concrete Bottom of Concrete	Partland Cement	NA NA NA NA
Top of Permanent Borehole Casing Bottom of Permanent Borehole Casing Top of Concrete Bottom of Concrete Top of Grout	Partland Cement	NA NA NA
Casing Bottom of Permanent Borehole Casing Top of Concrete Bottom of Concrete Top of Grout	Partland Cement	NA NA
Casing Top of Concrete Bottom of Concrete Top of Grout	Partland Cement	NΑ
Bottom of Concrete Top of Grout	Partland Cement	ŊΑ
Top of Grout	Partland Cement	}
	Partland Cement	0'
	1	
Bottom of Grout	.5-SD# Pouler bentonite	93,
Top of Well Riser	30'- Sch 40 PVC	
Bottom of Well Riser	15'- schup Pyc	28'
Top of Well Screen	y" dia flush	38'
Bottom of Well Screen	2-50 H bags	43′
Top of Pettonite Seal	Enviroplus chips	93,
Bottom of Peltonite Seal	Bentonite CAMS	<u> </u>
Top of Gravel Pack	10-20 silica	λs'
Bottom of Gravel Pack	Sand	44'
Top of Natural Cave-In	-	44'
Bottom of Natural Cave-In		45' 33.5'
Top of Groundwater Total Depth of Borehole	-	45'

Comments: Bentonite Lydrated W/ 10 gal potable water

Geologist Signature

WELLPOINTS

SEL 1 Well Points CHAIN OF CUSTUS RECORD

Page.

d RECEIVED OF LABORATORY BY: (Signalure) FIELD SERVICES LABORATORY EL PASO NATURAL GAS COMPANY P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499 SN N PZ FAX: 505-599-2261 RECEIVED BY: (Signature) anaduM 15, # 3 87640 501 D LOOP Drin LD 169 REMARKS CONTRACT LABORATORY P. O. NUMBER Sur rip Dlank 103 1797-8 Juan 18-197 103 DATE/TIME ω 2 n RESULTS & INVOICES TO J カン 505-599-2144 # SEGNENCE S S REQUESTED ANALYSIS RELINQUISHED BY: (Signature) 山sr付り LAB PID **EPA 8020 X**3T8 143b EPA 418.1 HqT 8 *a)* SAMPLE 1 CMC 32 78 2 SAMPLE RECEIPT REMARKS TOTAL NUMBER SAMPLE BOTTLE TAKEN 4 RECEIVED BY: (Signature) RECEIVED BY: (Signature) Trip Blank CHARGE CODE CM C 327 970818 8/6/9/1000 WATH CMC 326 FIELD ID 90/1/6/1/8 Pit Closure Project MATRIX TIME 1720 PATE REQUESTED TURNAROUND TIME: REUNOUISHED BY: (Signatura O RUSH SAMPLERS/(Signature) 970820 618061 PROJECT NUMBER # 24324 97082 LABID RELINDUISH C ROUTINE CARRIER CO BILL NO.:

White · Testing Laboratory Canary · EPNG Lab Pink · Field Sampler

FM-08-0565 A (Rev. 05-94)

SAMPLE IDENTIFICATION

_	Field ID	Lab ID
SAMPLE NUMBER:	CMC327	970820
MTR CODE SITE NAME:	87640	Canada Mesa #2
SAMPLE DATE TIME (Hrs):	8/6/97	1310
PROJECT:	Well	Points
DATE OF BTEX EXT. ANAL.:	8/11/97	8/11/97
TYPE DESCRIPTION:	PZ-1	Water

Field Remarks:	 		 	

PARAMETER RESULT UNITS **QUALIFIERS** DF BENZENE 3.63 **PPB TOLUENE** 281 **PPB** D1 ETHYL BENZENE 40.9 **PPB** TOTAL XYLENES 659 **PPB** D1

PPB

RESULTS

		BTEX is by EPA Method 8	020	
The Surrogate Recovery was at	97.5	% for this sample	All QA/QC was acceptable.	
DF = Dilution Factor Used The "D1" qualifier indicates that the	analyte conc	entration exceeded the	calibration curve limit.	
Narrative:				
	ć		0//	

985

TOTAL BTEX

Approved By: __

970820,8/13/97

SAMPLE IDENTIFICATION

	Field ID	Lab ID	
SAMPLE NUMBER:	CMC328	970821	
MTR CODE SITE NAME:	87640	Canada Mesa #2	
SAMPLE DATE TIME (Hrs):	8/6/97	1430	
PROJECT:	WellPoints		
DATE OF BTEX EXT. ANAL.:	8/12/97	8/12/97	
TYPE DESCRIPTION:	PZ-2	Water	

Field Remarks:			

RESULTS

PARAMETER	RESULT	UNITS		QUALIFI	ERS
			DF	a	
BENZENE	1420	PPB	25	D	
TOLUENE	12400	PPB	100	D	
ETHYL BENZENE	722	РРВ	25	D	
TOTAL XYLENES	14700	PPB	100	D	
TOTAL BTEX	29242	PPB			

--BTEX is by EPA Method 8020 --

		DIEA IS DY EPA Method 8	3020	
The Surrogate Recovery was at	93.4	% for this sample	All QA/QC was acceptable.	
DF = Dilution Factor Used				
The "D" qualifier indiciates that the a	inalyte calcula	ited is based on a seco	ondary dilution factor.	
Narrative:			• ***	
Approved By:	ent du		Date: 8/13/67	

970821,8/13/97

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 970815 - 970821, 970828, 970830 - 970834

QA/QC for 8/11/97 Sample Set

LABORATORY CALIBRATION CHECKS / LABORATORY CONTROL SAMPLES:

LABORATORY CALIBRATION CHECK	S / LABORATORY CONTROL S	AMPLES:				
SAMPLE NUMBER 1CV LA-52589	ТУРЕ	EXPECTED RESULT PPB	ANALYTICAL RESULT PPB	XR.		ACCEPTABLE YES NO
50 PPB					RANGE	
Benzene	Standard	50.0	47.4	94.8	75 - 125 %	X
Toluene	Standard	50.0	47.6	95.1	75 - 125 %	Х
Ethylbenzene	Standard	50.0	47.8	95.7	75 - 125 %	X
m & p - Xylene	Standard	100	94.3	94.3	75 - 125 %	X
o - Xylene	Standard	50.0	48.3	96.5	75 - 125 %	X
SAMPLE NUMBER LCS LA-45476 25 PPB	ТУРЕ	EXPECTED RESULT PPB	ANALYTICAL RESULT PPB	ZR.	RANGE	ACCEPTABLE YES NO
Benzene	Standard	25.0	24.0	96.1	39 - 150	X
Toluene	Standard	25.0	24.4	97.6	46 - 148	x
Ethylbenzene	Standard	25.0	24.5	98.2	32 - 160	X
m & p - Xylene	Standard	50.0	48.3	96.6	Not Given	X
o - Xylene	Standard	25.0	24.0	96.0	Not Given	X
SAMPLE NUMBER CCV LA-52589 50 PPB	TYPE	EXPECTED RESULT PPB	ANALYTICAL RESULT PPB	XR.	RANGE	ACCEPTABLE YES NO
Benzene	Standard	50.0	47.7	95.4	75 - 125 %	Х
Toluene	Standard	50.0	47.5	94.9	75 - 125 %	x
Ethylenzene	Standard	50.0	47.6	95.3	75 - 125 %	x
m & p - Xylene	Standard	100	93.5	93.5	75 - 125 %	x
o - Xylene	Standard	50.0	48.1	96.2	75 - 125 %	x
SAMPLE NUMBER CCV LA-52589 50 PPB	TYPE	EXPECTED RESULT PPB	ANALYTICAL RESULT PPB	XR	RANGE	ACCEPTABLE
Benzene	Standard	50.0	47.0	93.9	75 - 125 %	х
Toluene	Standard	50.0	46.4	92.8	75 - 125 %	x
Ethylbenzene	Standard	50.0	46.3	92.5	75 - 125 %	x
m & p - Xylene	Standard	100	90.3	90.3	75 - 125 %	x
o - Xylene	Standard	50.0	46.8	93.6	75 - 125 %	Χ

Narrative: Acceptable.

EL PASO FIELD SERVICES LAB QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 970815 - 970821, 970828, 970830 - 970834

BORATORY DUPLICATES:

SAMPLE 1D	ТҮРЕ	SAMPLE RESULT PPB	PPB	RPD		
Benzene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X
Toluene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X
Ethylbenzene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X
m & p - Xylene o - Xylene	Matrix Duplicate Matrix Duplicate	<2	<2	0.00	+/- 20 %	X
o - Xylene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	Х

Narrative: Acceptable.

LABORATORY SPIKES:

SAMPLE ID 2nd Analysis	PPB	SAMPLE RESULT PPB	SAMPLE RESULT	%R		CCEPTABLE YES NO
Benzene	50	<1	48.4	96.9	75 - 125 %	х
Toluene	50	<1	47.5	95.0	75 - 125 %	х
Ethylbenzene	50	<1	47.7	95.4	75 - 125 %	x
Ethylbenzene m & p - Xylene o - Xylene	100	<2	93.9	93.9	75 - 125 %	x
o - Xylene	50	<1	48.2	96.4	75 - 125 %	X

Narrative: Acceptable

ITIONAL ANALYTICAL BLANKS:

AUTO BLANK	SOURCE	PPB.	STATUS
Benzene	Boiled Water	<1.0	ACCEPTABLE
Toluene	Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

SOIL VIAL BLANK	SOURCE Lot MB1461	PPB (None analyzed with this set)	STATUS
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

CONTAMINATION CARRYOVER CHECK	SOURCE	PPB (Four analyzed with this set)	STATUS
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

rrative: Acceptable.

Reported By:

Approved By: Olin Tayour

 $\bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \mathsf{Ell} \, \mathsf{Ell} \, \bullet \, \mathsf{Ell} \, \mathsf$

CHAIN OF CUSTODY RECORD

# 24324 Pit Closure Project	•	EB EB		-	REQUEST	REQUESTED ANALYSIS	rsis	CON HACT LABORA LOHY P. C. NOMBER
ature)	,	BMUV BNIAT	BJ4v 3dv			_	ICE	
8/7	147						nen	
LABID (DATE TIME MATRIX FI	FIELD ID	707 130	Τ	Т АЧЭ Г8 АЧЭ	A43 3A1		SEO	REMARKS
970830 8/1/61/1050 W.th. CMC-328	339 C-338/cm		V 8	7	_			Canada Mesa # 3 87640 PHI
	3/8		7	7		9	48/7	17 P H3
Water	180	1	2 2	>				
4/083/	rip Blank		8	>				Irip Ulank
						-		
			/	/	<u> </u>			
				1	/		1	
						/		
RELINQUISHED BY: (Signatura) DATE/TIME	RECKIVED BY: (Signature)	ature)		1	VOUISHED	RELINQUISHED BY: (Signature)	ure)	DATE/TIME RECEIVED BY: (Signature)
1700			4		1 ł		Track	0/8/0/08/9
RELINQUISHEG BY: (Signature) DATE/TIME	RECEIVED BY: (Sign.	ignature)		RELI	RELINGUISABL	ED BY: (Signature)	ture)	-√
<u></u>								8/8/97/0840 Oharle Umente
REQUESTED TURNAROUND TIME: C) ROUTINE C) RUSH	SAMPLE RECEIPT REMARKS	EMARKS		*			RESULTS & INVOICES TO:	FIELD SERVICES LABORATORY
CARRIER CO.	-							P. O. BOX 4990
BILL NO.:	CHARGE CODE						505-599-2144	

White - Testing Laboratory Canary - EPNG Lab Pink - Field Sampler

FM-08-0565 A (Rev. 05-94)

SAMPLE IDENTIFICATION

_	Field	d ID	•	Lab ID		
SAMPLE NUMBER:	CMC	329		970830		
MTR CODE SITE NAME:	876	640	Cai	nada Mesa #	2	
SAMPLE DATE TIME (Hrs):	8/7	/97		1050		
PROJECT:		WellF	oints			
DATE OF BTEX EXT. ANAL.:	8/1	1/97		8/11/97		
TYPE DESCRIPTION:	PH	I-1		Water		
Field Remarks:		RESULTS				
						NAT -
PARAMETER	RESULT	UNITS	::	QUALIFI	ERS	
	-7.1		DF	<u> </u>		
BENZENE	<1	PPB				
TOLUENE	<1	РРВ				
ETHYL BENZENE	<1	РРВ				
TOTAL XYLENES	<3	PPB				
TOTAL BTEX	< 6	PPB				
The Surrogate Recovery was at DF = Dilution Factor Used	94.4	BTEX is by EPA Metho % for this sample		C was accept	able.	
Narrative:				·		
				<u> </u>		

970830,8/13/97

SAMPLE IDENTIFICATION

_	Field ID	Lab ID
SAMPLE NUMBER:	NA	970831
MTR CODE SITE NAME:	87640	Canada Mesa #2
SAMPLE DATE TIME (Hrs):	8/7/97	1050
PROJECT:	Well	Points
DATE OF BTEX EXT. ANAL.:	8/11/97	8/11/97
TYPE DESCRIPTION:	Trip Blank	Water

Field Remarks:	

RESULTS

PARAMETER	RESULT	UNITS		QUALIF	IERS	
			DF	Q		
BENZENE	<1	PPB				
TOLUENE	<1	PPB				
ETHYL BENZENE	<1	PPB				
TOTAL XYLENES	<3	PPB				
TOTAL BTEX	< 6	PPB				

--BTEX is by EPA Method 8020 --

The Surrogate Recovery was at DF = Dilution Factor Used	97.3	_% for this sample	All QA/QC was acceptable.
		we say	

Narrative:		
^		
Approved By: Olin Lov Co.	Date: 4/3/47	

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 970815 - 970821, 970828, 970830 - 970834

QA/QC for 8/11/97 Sample Set

LABORATORY CALIBRATION CHECKS / LABORATORY CONTROL SAMPLES:

SAMPLE S	LABORATORY CALIBRATION CHECK	3 / LABORATORT CONTROL S							
Benzene	NUMBER 1CV LA-52589	ТҮРЕ	RESULT	RESULT	X R			NO	
Toluene Standard So.0 47.6 95.1 75 - 125 % X	озгостроення при при при при при при при при при при								
Ethylbenzene Standard S0.0 47.8 95.7 75 - 125 %	1								
M & p - Xylene	1								
O - Xylene Standard 50.0 48.3 96.5 75 - 125 % X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT XR CES APPE TESULT XR PPB TESULT XR PPB TANGE RANGE Benzene Standard 25.0 24.0 96.1 39 - 150 X Toluene Standard 25.0 24.5 98.2 32 - 160 X EXPLORED Standard 25.0 24.5 98.2 32 - 160 X STANDIE EXPECTED ANALYTICAL ACCEPTABLE MARISTER TYPE RESULT XR YES NO SANDIE STANDIE NO <td co<="" td=""><td>i i</td><td>Standard</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>i i</td> <td>Standard</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	i i	Standard						
SAMPLE NUMBER TYPE RESULT RESULT XX YES NO	, <u> </u>								
NUMBER	o - Xylene	Standard	50.0	48.3	96.5	75 - 125 %	X		
Toluene	NUMBER LCS LA-45476	ТҮРЕ	RESULT	RESULT	XR.	RANGE		NO	
Ethylbenzene Standard 25.0 24.5 98.2 32 - 160 X m & p - Xylene Standard 50.0 48.3 96.6 Not Given X o - Xylene Standard 25.0 24.0 96.0 Not Given X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT RESULT XR CCV LA-52589 PPB PPB PPB YES NO So PPB	Benzene	Standard	25.0	24.0	96.1	39 - 150	х		
m & p - Xylene Standard 50.0 48.3 96.6 Not Given X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT RESULT XR CCV LA-52589 PPB PPB YES NO S0 PPB RANGE RANGE YES NO Benzene Standard 50.0 47.7 95.4 75 - 125 % X Toluene Standard 50.0 47.5 94.9 75 - 125 % X Ethylenzene Standard 50.0 47.6 95.3 75 - 125 % X m & p - Xylene Standard 100 93.5 93.5 75 - 125 % X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT RESULT XR CCV LA-52589 PPB PPB YES NO 50 PPB REANGE RESULT RESULT XR CLV LA-52589 PPB	Toluene	Standard	25.0	24.4	97.6	46 - 148	X		
O - Xylene Standard 25.0 24.0 96.0 Not Given X	Ethylbenzene	Standard	25.0	24.5	98.2	32 - 160	x		
SAMPLE	il .					l			
NUMBER	m & p - Xylene	Standard	50.0	48.3	96.6	Not Given	X		
Toluene Standard 50.0 47.5 94.9 75 - 125 % X Ethylenzene Standard 50.0 47.6 95.3 75 - 125 % X m & p - Xylene Standard 100 93.5 93.5 75 - 125 % X o - Xylene Standard 50.0 48.1 96.2 75 - 125 % X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT RESULT XR CCV LA-52589 PPB PPB RANGE Benzene Standard 50.0 47.0 93.9 75 - 125 % X Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X									
Ethylenzene Standard 50.0 47.6 95.3 75 - 125 % X m & p - Xylene Standard 100 93.5 93.5 75 - 125 % X o - Xylene Standard 50.0 48.1 96.2 75 - 125 % X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT XR CCV LA-52589 PPB PPB YES NO 50 PPB RANGE RANGE RANGE YES NO Toluene Standard 50.0 47.0 93.9 75 - 125 % X Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589	Standard	25.0 EXPECTED RESULT	24.0 ANALYTICAL RESULT	96.0	Not Given	X ACCEPTABLE	NC	
m & p - Xylene Standard 100 93.5 93.5 75 - 125 % X o - Xylene Standard 50.0 48.1 96.2 75 - 125 % X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT RESULT XR CCV LA - 52589 PPB PPB PPB YES NO 50 PPB RANGE Benzene Standard 50.0 47.0 93.9 75 - 125 % X Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB	Standard TYPE	25.0 EXPECTED RESULT PPB	24.0 ANALYTICAL RESULT PPB	96.0 %R	Not Given	X ACCEPTABLE YES	NO	
o - Xylene Standard 50.0 48.1 96.2 75 - 125 % X SAMPLE EXPECTED ANALYTICAL ACCEPTABLE NUMBER TYPE RESULT RESULT XR CCV LA-52589 PPB PPB YES NO 50 PPB RANGE Benzene Standard 50.0 47.0 93.9 75 - 125 % X Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene	Standard TYPE Standard	EXPECTED RESULT PPB 50.0	ANALYTICAL RESULT PPB 47.7	96.0 %R 95.4	Not Given RANGE 75 - 125 %	X ACCEPTABLE YES X	NO	
SAMPLE EXPECTED ANALYTICAL ACCEPTABLE	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene	Standard TYPE Standard Standard	EXPECTED: RESULT PPB 50.0 50.0	ANALYTICAL RESULT PPB 47.7	96.0 %R 95.4 94.9	Not Given RANGE 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X	NO	
NUMBER TYPE RESULT RESULT XR CCV LA-52589 PPB PPB YES NO 50 PPB RANGE RANGE Benzene Standard 50.0 47.0 93.9 75 - 125 % X Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene	Standard Standard Standard Standard	25.0 EXPECTED RESULT PPB 50.0 50.0 50.0	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6	96.0 %R 95.4 94.9 95.3	RANGE 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X X	NO.	
Benzene Standard 50.0 47.0 93.9 75 - 125 % X Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene	Standard Standard Standard Standard Standard Standard	25.0 EXPECTED: RESULT PPB 50.0 50.0 50.0 100	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6 93.5	96.0 %R 95.4 94.9 95.3 93.5	RANGE 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X X X	NO	
Toluene Standard 50.0 46.4 92.8 75 - 125 % X Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589	Standard Standard Standard Standard Standard Standard Standard	25.0 EXPECTED RESULT PPB 50.0 50.0 50.0 100 50.0 EXPECTED RESULT	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6 93.5 48.1 ANALYTICAL RESULT	96.0 %R 95.4 94.9 95.3 93.5 96.2	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X X X ACCEPTABLE		
Ethylbenzene Standard 50.0 46.3 92.5 75 - 125 % X m & p - Xylene Standard 100 90.3 90.3 75 - 125 % X	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB	Standard Standard Standard Standard Standard Standard Standard TYPE	25.0 EXPECTED RESULT PPB 50.0 50.0 100 50.0 EXPECTED RESULT PPB	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6 93.5 48.1 ANALYTICAL RESULT PPB	96.0 %R 95.4 94.9 95.3 93.5 96.2	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X X X ACCEPTABLE		
m & p - Xylene Standard 100 90.3 90.3 75 - 125 % x	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene	Standard Standard Standard Standard Standard Standard Standard Standard	25.0 EXPECTED RESULT PPB 50.0 50.0 100 50.0 EXPECTED RESULT PPB 50.0	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6 93.5 48.1 ANALYTICAL RESULT PPB	96.0 %R 95.4 94.9 95.3 93.5 96.2	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X X X ACCEPTABLE YES		
	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene	Standard Standard Standard Standard Standard Standard Standard Standard Standard	25.0 EXPECTED RESULT PPB 50.0 50.0 100 50.0 EXPECTED RESULT PPB 50.0 50.0 50.0	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6 93.5 48.1 ANALYTICAL RESULT PPB 47.0 46.4	96.0 %R 95.4 94.9 95.3 93.5 96.2	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE X X X X ACCEPTABLE YES X X		
	o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene	Standard Standard Standard Standard Standard Standard Standard Standard Standard	25.0 EXPECTED RESULT PPB 50.0 50.0 100 50.0 EXPECTED RESULT PPB 50.0 50.0 50.0 50.0	24.0 ANALYTICAL RESULT PPB 47.7 47.5 47.6 93.5 48.1 ANALYTICAL RESULT PPB 47.0 46.4 46.3	96.0 %R 95.4 94.9 95.3 93.5 96.2 %R 93.9 92.8 92.5	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X ACCEPTABLE YES X X X X ACCEPTABLE YES X X		

Narrative: Acceptable.

EL PASO FIELD SERVICES LAB QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 970815 - 970821, 970828, 970830 - 970834

MBORATORY DUPLICATES:

SAMPLE 1D 970816		SAMPLE RESULT PPB	PPB	RPD	AC RANGE	YES NO
Benzene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	х
Toluene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	х
Ethylbenzene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X
m & p - Xylene o - Xylene	Matrix Duplicate Matrix Duplicate	<2	<2	0.00	+/- 20 %	X
o - Xylene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X

Narrative: Acceptable.

LABORATORY SPIKES:

070012	SPIKE Added	RESULT PPB	SPIKE SAMPLE RESULT	%R		YES NO
Benzene	50	<1	48.4	96.9		X
Toluene	50	<1	47.5	95.0	75 - 125 %	x
Ethylbenzene	50	<1	47.7	95.4	75 - 125 %	x
Ethylbenzene m & p - Xylene o - Xylene	100	<2	93.9	93.9	75 - 125 %	x
o - Xylene	50	<1	48.2	96.4	75 - 125 %	x

Narrative: Acceptable

ITIONAL ANALYTICAL BLANKS:

AUTO BLANK	SOURCE	PPB	STATUS
Benzene	Boiled Water	<1.0	ACCEPTABLE
Toluene	Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene Total Xylenes	Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

SOIL VIAL BLANK	SOURCE Lot MB1461	PPB (None analyzed with this set)	STATUS
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

CONTAMINATION CARRYOVER CHECK		SOURCE	PPB (Four analyzed with this set)	STATUS
Benzene	Vial 4	Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial →	+ Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial -	+ Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial -	+ Boiled Water	<3.0	ACCEPTABLE

arrative: Acceptable.

Reported By:

Approved By: John Hubdin

Date:__

Qw081197

CHAIN OF CUSTODY RECORD

Page___

PROJECT NUMBER PROJECT NAME			S		RE(REQUESTED ANALYSIS	ANALYSIS	0	CONTRACT LABORATORY P. O. NUMBER
_	Project	1	1EB		-		1	1	
mature)	C	pare: 1	MUN J NIATNO	AMPLE TYPE H		۵Iط		7011	
LABID DATE TIME	MATRIX		ATOT OP CC	s qT A 43	P A 4 3 3 T 8 3 A 4 3	8AJ		# # SEONE	REMARKS
970843 8/1197 -	Water	Trip Blank	_	18					TripBlank
970844	70	CMC 330	6	7/2	7				Lasada Mos,#3 87640 PALY
	0	CMC 331	6	29	<u>\</u>	- i			PHS
241 9789CP	0	CM(332	6	16	>				V PH6
									Note: PH6 HCL reacted
						-			Vigorously W/GW.
									NEGEIMEN
			27	2					
				770	197	-			
								-	
RELINQUISHED BY: (Signature)	DATE/LIME	TIME RECEIVED BY: (Signature)	ature)		RELING	RELINQUISHED BY: (Signature)	Signature)		DATETIME RECEIVED BY: (Sgnature)
RELINQUISHED BY: (Signature)	DATE/FIME	RECEIVED BY:	Signature)	3	HELINOUIS	THE T	D BY: (Signature)		+
						 			8/12/970745 ONarle ysneme
REQUESTED TURNAROUND TIME: DROUTINE DRUSH		SAMPLE RECEIPT REMARKS	IEMARKS				RESULTS & INVOICES TO:	8 INVOIC	FIELD SERVICES LABORATORY
CARRIER CO.									P. O. BOX 4990
BILL NO.:		CHARGE CODE					505-599-2144	2144	FARIMINGTON, NEW MEATOO 87499 FAX: 505-599-2261

SAMPLE IDENTIFICATION

_	Field ID	Lab ID
SAMPLE NUMBER:	N/A	970843
MTR CODE SITE NAME:	87640	Canada Mesa #2
SAMPLE DATE TIME (Hrs):	8/11/97	1135
PROJECT:	Well	Points
DATE OF BTEX EXT. ANAL.:	8/13/97	8/13/97
TYPE DESCRIPTION:	Trip Blank	Water

Field Remarks:			
	RESULTS	 	

PARAMETER	RESULT	UNITS			QUALIFII	ERS	
			D	Farata	Q		
BENZENE	<1	PPB					
TOLUENE	<1	PPB					
ETHYL BENZENE	<1	PPB					
TOTAL XYLENES	<3	PPB					
TOTAL BTEX	< 6	PPB					

--BTEX is by EPA Method 8020 --

The Surrogate Recovery was at	90.0	_% for this sample	All QA/QC was acceptable.
DF = Dilution Factor Used		_	

Narrative:	
Approved By:	Date: 8/28/47

SAMPLE IDENTIFICATION

_	Field ID	Lab ID
SAMPLE NUMBER:	CMC330	970844
MTR CODE SITE NAME:	87640	Canada Mesa #2
SAMPLE DATE TIME (Hrs):	8/11/97	1135
PROJECT:	Well	Points
DATE OF BTEX EXT. ANAL.:	8/13/97	8/13/97
TYPE DESCRIPTION:	PH-4	Water

Field Remarks:			

RESULTS

PARAMETER	RESULT	RESULT UNITS		QUALIFIERS		
			DF	Q		
BENZENE	2980	PPB	100	D		
TOLUENE	23800	РРВ	100	D		
ETHYL BENZENE	1300	PPB	100	D		
TOTAL XYLENES	14600	PPB	100	D		
TOTAL BTEX	42680	PPB				

--RTEY is by EPA Method 8020 --

The Surrogate Recovery was at	84.4	BTEX is by EPA Method 8 % for this sample	All QA/QC was acceptable.	
DF = Dilution Factor Used		<u> </u>	·	
The "D" qualifier indiciates that the a	analyte calcula	ited is based on a seco	ondary dilution factor.	
Narrative:				
Approved By: Approved By:	lı.		Date: 8/28/97	

970844 PH-4 BTEX,8/28/97

SAMPLE IDENTIFICATION

	Field ID	Lab ID
SAMPLE NUMBER:	CMC331	970845
MTR CODE SITE NAME:	87640	Canada Mesa #2
SAMPLE DATE TIME (Hrs):	8/11/97	1330
PROJECT:	Well	Points
DATE OF BTEX EXT. ANAL.:	8/13/97	8/13/97
TYPE DESCRIPTION:	PH-5	Water

Field Remarks:		
	RESULTS	

PARAMETER	RESULT	UNITS		QUALIFI	Market (A)	
			DF	a		
BENZENE	2250	PPB	100	D		
TOLUENE	17400	PPB	100	D		
ETHYL BENZENE	1380	PPB	100	D		
TOTAL XYLENES	17100	PPB	100	D		
TOTAL BTEX	38130	PPB				

--BTEX is by EPA Method 8020 --

Date: 8/28/97

The Surrogate Recovery was at	84.0	% for this sample	All QA/QC was acceptable.
The "D" qualifier indiciates that the a	nalyte calcula	ated is based on a seco	ondary dilution factor.
Narrative:			

John Labour

970845 PH-5 BTEX,8/28/97

SAMPLE IDENTIFICATION

	Field	ID		Lab ID		
SAMPLE NUMBER:	СМС	332				
MTR CODE SITE NAME:	876	40	Cana	ida Mesa #2		
SAMPLE DATE TIME (Hrs):	8/11	/97		1450		
PROJECT:		Well F	oints			
DATE OF BTEX EXT. ANAL.:	8/13	/97		8/13/97		
TYPE DESCRIPTION:	PH	-6	<u> </u>	Water		
Field Pemarke						
Field Remarks:						
		RESULTS				
PARAMETER	RESULT	RESULT UNITS		QUALIFIERS		
			DF	<u> </u>		
BENZENE	8260	PPB	200	D		
TOLUENE	30200	PPB	200	D		
ETHYL BENZENE	2210	PPB	200	D		
TOTAL XYLENES	22100	PPB	200	D		
TOTAL BTEX	62770	PPB				
The Surrogate Recovery was at OF = Dilution Factor Used	81.1	BTEX is by EPA Method % for this sample		was acceptable	··	
The "D" qualifier indiciates that the	analyte calculated	is based on a sec	condary dilutio	n factor.		
Varrative:						
		.,	········			
Approved By:	Fartel.	-	Date:	8/28/97		

970846 PH-6 BTEX,8/28/97

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 970842 to 970846, 970853, 970854

QA/QC for 8/13/97 Sample Set

LABORATORY CALIBRATION CHECKS / LABORATORY CONTROL SAMPLES:

SAMPLE	a. Tar	EXPECTED	ANALYTICAL		ACC	EPTAB	LE
NUMBER	TYPE	RESULT	RESULT	%R			
ICV LA-52589		PPB	PPB			YES	NO
50 PPB					RANGE		
Benzene	Standard	50.0	45.9	91.8	75 - 125 %	Х	
Toluene	Standard	50.0	46.2	92	75 - 125 %	X	
Ethylbenzene	Standard	50.0	46.4	93	75 - 125 %	X	
m & p - Xylene	Standard	100	91.8	91.8	75 - 125 %	X	
o - Xylene	Standard	50.0	46.8	94	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL		AC	CEPTAB	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
LCS LA-45476		PPB:	PPB:			YES	NO
25 PPB					RANGE		
Benzene	Standard	25.0	23.1	92.3	39 - 150	X	
Toluene	Standard	25.0	23.4	94	46 - 148	X	
Ethylbenzene	Standard	25.0	23.4	94	32 - 160	X	
m & p - Xylene	Standard	50.0	46.2	92	Not Given	X	
o - Xylene	Standard	25.0	23.8	95	Not Given	X	
CARADIC		T					
SAMPLE		EXPECTED	ANALYTICAL		AC(CEPTAB	LE
NUMBER	. TYPE	RESULT	ANALYTICAL RESULT	%R	ACC	CEPTAB	LE
1	. TYPE	i		%R	ACC	YES	NO NO
NUMBER	. TYPE	RESULT	RESULT	%R	ACC RANGE		
NUMBER CCV LA-52589	. TYPE Standard	RESULT	RESULT	% R 91.3			
NUMBER CCV LA-52589 50 PPB		RESULT PPB	RESULT PPB		RANGE	YES	
NUMBER CCV LA-52589 50 PPB Benzene	Standard	RESULT PPB 50.0	RESULT PPB 45.6	91.3	RANGE 75 - 125 %	YES	
NUMBER CCV LA-52589 50 PPB Benzene Toluene	Standard Standard	RESULT PPB 50.0 50.0	RESULT PPB 45.6 45.5	91.3 91.0	RANGE 75 - 125 % 75 - 125 %	YES X X	
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene	Standard Standard Standard	FESULT PPB 50.0 50.0 50.0	RESULT PPB 45.6 45.5 45.7	91.3 91.0 91.3	RANGE 75 - 125 % 75 - 125 % 75 - 125 %	YES X X X	
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene	Standard Standard Standard Standard	FESULT PPB 50.0 50.0 50.0 100	RESULT PPB 45.6 45.5 45.7 89.8	91.3 91.0 91.3 89.8	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	YES X X X	NO
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene	Standard Standard Standard Standard	FESULT PPB 50.0 50.0 50.0 100 50.0	RESULT PPB 45.6 45.5 45.7 89.8 46.1	91.3 91.0 91.3 89.8	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X X X	NO
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE	Standard Standard Standard Standard Standard	FESULT PPB 50.0 50.0 50.0 100 50.0 EXPECTED	45.6 45.5 45.7 89.8 46.1 ANALYTICAL	91.3 91.0 91.3 89.8 92	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X X X	NO
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER	Standard Standard Standard Standard Standard	FESULT PPB 50.0 50.0 50.0 100 50.0 EXPECTED RESULT	RESULT PPB 45.6 45.5 45.7 89.8 46.1 ANALYTICAL RESULT	91.3 91.0 91.3 89.8 92	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X X X CEPTAE	NO BLE
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589	Standard Standard Standard Standard Standard	FESULT PPB 50.0 50.0 50.0 100 50.0 EXPECTED RESULT	RESULT PPB 45.6 45.5 45.7 89.8 46.1 ANALYTICAL RESULT	91.3 91.0 91.3 89.8 92	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC	X X X X X CEPTAE	NO BLE
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB	Standard Standard Standard Standard Standard	\$50.0 \$50.0 \$50.0 \$100 \$50.0 EXPECTED RESULT PPB	### RESULT PPB	91.3 91.0 91.3 89.8 92	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC	YES X X X X CEPTAE	NO BLE
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene	Standard Standard Standard Standard Standard TYPE	50.0 50.0 50.0 100 50.0 EXPECTED RESULT PPB	### RESULT PPB	91.3 91.0 91.3 89.8 92 %R	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC RANGE 75 - 125 %	YES X X X CEPTAE YES	NO BLE
NUMBER CCV LA-52589 50 PPB Benzene Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene	Standard Standard Standard Standard Standard TYPE Standard Standard	50.0 50.0 50.0 100 50.0 EXPECTED RESULT PPB	## RESULT PPB 45.6 45.5 45.7 89.8 46.1 ## ANALYTICAL RESULT PPB 44.3 43.8	91.3 91.0 91.3 89.8 92 %R 88.6 87.7	RANGE 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC RANGE 75 - 125 % 75 - 125 % 75 - 125 %	YES X X X X CEPTAE YES X X	NO BLE

Narrative: Acceptable.

SAMPLE NUMBER CCV LA-52589 50 PPB	туре	RESULT	ANALYTICAL RESULT PPB	<u>C</u>	ACCEPTABLE YES NO RANGE
Benzene	Standard	50.0	41.8	83.5	75 - 125 % X
Toluene	Standard	50.0	41.6	83.1	75 - 125 % X
Ethylbenzene	Standard	50.0	41.4	82.8	75 - 125 % X
m & p - Xylene o - Xylene	Standard	100	81.3	81.3	75 - 125 % X
o - Xylene	Standard	50.0	41.9	83.8	75 - 125 % X

Narrative: Acceptable.

LABORATORY DUPLICATES:

			DUPLICATE		AC	СЕРТАВ	LE
SAMPLE	TYPE	RESULT	RESULT	RPD			
ID	,	PPB	PPB			YES	NO
970842					RANGE		
Benzene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X	
Toluene	Matrix Duplicate	11.7	11.7	0.60	+/- 20 %	Χ	
Ethylbenzene	Matrix Duplicate	< 1	<1	0.00	+/- 20 %	Χ	
m & p - Xylene	Matrix Duplicate	< 1	<1	0.00	+/- 20 %	X	
o - Xylene	Matrix Duplicate	< 1	. <1	0.00	+/- 20 %	Χ	

Narrative: Acceptable.

LABORATORY SPIKES:

SAMPLE	SPIKE	SAMPLE	SPIKE		AC	CEPTAE	BLE
ID	ADDED	RESULT	SAMPLE	%R			
2nd Analysis	PPB	PPB	RESULT			YES	NO
970842			PPB		RANGE		
Benzene	50	< 1	46.3	92.5	75 - 125 %	Х	
Toluene	50	11.7	56.1	89	75 - 125 %	X	
Ethylbenzene	50	<1	45.6	91	75 - 125 %	X	
m & p - Xylene	100	<1	89.8	89.8	75 - 125 %	X	
o - Xylene	50	<1	46.2	92	75 - 125 %	X	

Narrative: Acceptable

AUTO BLANK	SOURCE	PPB	STATUS
Benzene	Boiled Water	<1.0	ACCEPTABLE
Toluene	Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

	SOURCE	PPB	STATUS
SOIL VIAL BLANK	Lot MB1461	(2 analyzed with set)	
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	< 3.0	ACCEPTABLE

Narrative: Acceptable.

CONTAMINATION ARRYOVER CHECK	SOURCE	PPB (None analyzed with this set)	STATUS
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

8/13/97 TRIP BLANK	SOURCE	PPB (2 analyzed with (1)	STATUS
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

Reported	By:	(ب۷	

Approved By: Outelli,

Date: <u>9-8-97</u>

 $lackbox{EII}$ $lackbox{ESD}$ Natural Gas Company $\mathcal{N}_{\mathcal{R}} / \mathcal{P} \circ i \land \uparrow \mathcal{S}$

CHAIN OF CUSTODY RECORD

RECEIVED OF LABORATORY BY: (Signature) EL PASO NATURAL GAS COMPANY P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499 FAX: 505-599-2261 [ln FIELD SERVICE\$ LABORATORY roduct may be proceed and Mesa # 3 87640 NEGEIN SEP - 9 1997 RECEIVED BY: (Signature) REMARKS (CC) W) CONTRACT LABORATORY P. O. NUMBER 1020 0 CO1 179/11/8 DATE/TIME RESULTS & INVOICES TO: # SEONENCE 505-599-2144 REQUESTED ANALYSIS (Signature) RELINOUISHED BY: **GIA BAJ** EPA 8020 H9T 1.814 A93 7/2 ∃J9MA2 ∃GYT SAMPLE RECEIPT REMARKS TOTAL NUMBER 0 RECEIVED BY: (Signature) Trip Blank CHARGE CODE 8/12/7/ 1140 WARD CMC 333 FIELD ID 8/12/17 1700 PROJECT NAME Pit Closure Project TIME MATRIX DATE REQUESTED TURNAROUND TIME: RELINQUISHED BY: (Signature) O RUSH SAMPLERS: (Signature 298016 РВОЈЕСТ NUMBER # 24324 970859 LABID CARRIER CO. O ROUTINE BILL NO.:

White - Testing Laboratory Canary - EPNG Lab Pink - Field Sampler

FM-08-0565 A (Rev. 05-94)

SAMPLE IDENTIFICATION

Lab ID

Field ID

SAMPLE NUMBER:	CMC333					
MTR CODE SITE NAME:	876	40	Can	#2		
SAMPLE DATE TIME (Hrs):	8/12	2/97		1140		
PROJECT:		Well i	Points			
DATE OF BTEX EXT. ANAL.:	8/14	/97		8/14/97		
TYPE DESCRIPTION:	PH	-7		Water		
Field Remarks: _				,	18.4	
	1	RESULTS				
PARAMETER	RESULT	UNITS	DF	QUALIF	TERS	
BENZENE	10000	PPB	100	D		
TOLUENE	32400	PPB	200	D		
ETHYL BENZENE	1400	PPB	100	D		
TOTAL XYLENES	12800	PPB	100	D		
TOTAL BTEX	56600	РРВ				
			nd 8020			

970859 PH-7 BTEX,8/28/97

John Taller

Narrative:

SAMPLE IDENTIFICATION

Field	d ID		Lab ID	
N/	/A		970860	
876	640	Car	nada Mesa #2	
8/12	2/97		1140	
	Well F	oints		
8/14	1/97		8/14/97	
Trip I	Blank		Water	
	RESULTS			
RESULT	UNITS	DF	QUALIFIERS	
<1	PPB			
<1	PPB			
<1	PPB			
<3	PPB			
<6	PPB			
98			was acceptable	
	8/14 8/12 8/14 Trip I <1 <1 <1 <3 <6	N/A 87640 8/12/97 Well F 8/14/97 Trip Blank RESULTS RESULT UNITS <1 PPB <1 PPB <1 PPB <1 PPB <3 PPB <3 PPB <6 PPB PPB PPB <6 PPB PPB PPB PPB PPB <6 PPB N/A 87640 Car 8/12/97 Well Points 8/14/97 Trip Blank RESULTS DF	N/A 970860 87640 Canada Mesa #2 8/12/97 1140 Well Points 8/14/97 8/14/97 Trip Blank Water RESULTS OUALIFIERS C1 PPB C1 PPB C1 PPB C1 PPB C3 PPB C6 PPB C6 PPB C8 Canada Mesa #2 Can	

970860 Trip Blank,8/28/97

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 970841, 970852, 970859, 970860

QA/QC for 8/14/97 Sample Set

LABORATORY CALIBRATION CHECKS / LABORATORY CONTROL SAMPLES:

SAMPLE		EXPECTED	ANALYTICAL	4.5 ()	ACC	CEPTAB	LE
NUMBER	TYPE	RESULT	RESULT	%R			
ICV LA-52589		PPB	PPB		• . •	YES	NO
50 PPB		Kirk in the state of the state			RANGE		
Benzene	Standard	50.0	49.3	98.6	75 - 125 %	Χ	
Toluene	Standard	50.0	49.4	99	75 - 125 %	Χ	
Ethylbenzene	Standard	50.0	49.5	99	75 - 125 %	X	
m & p - Xylene	Standard	100	98.7	98.7	75 - 125 %	X	
o - Xylene	Standard	50.0	48.7	97	75 - 125 %	X	
SAMPLE	·	EXPECTED	ANALYTICAL		AC	CEPTAE	LE
NUMBER	TYPE	RESULT	RESULT	%R			
LCS LA-45476		PPB	PPB			YES	NO
25 PPB					RANGE		
Benzene	Standard	25.0	24.7	98.8	39 - 150	Χ	
Toluene	Standard	25.0	24.8	99	46 - 148	X	
Ethylbenzene	Standard	25.0	24.8	99	32 - 160	Χ	
m & p - Xylene	Standard	50.0	49.8	100	Not Given	X	
o - Xylene	Standard	25.0	24.8	99	Not Given	X	
SAMPLE		EXPECTED	ANALYTICAL		AC	CEPTAB	LE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV LA-52589		PPB ⁻	PPB	,		YES	NO
50 PPB					RANGE		
Benzene	Standard	50.0	48.8	97.7	75 - 125 %	Х	
Benzene Toluene	Standard Standard	50.0 50.0	48.8 48.8	97.7 97.6	75 - 125 % 75 - 125 %	X X	
	1	I	i i		ì		
Toluene	Standard	50.0	48.8	97.6	75 - 125 %	Х	
Toluene Ethylenzene	Standard Standard	50.0 50.0	48.8 48.9	97.6 97.7	75 - 125 % 75 - 125 %	X X	
Toluene Ethylenzene m & p - Xylene	Standard Standard Standard	50.0 50.0 100	48.8 48.9 97.4	97.6 97.7 97.4	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X	BLE
Toluene Ethylenzene m & p - Xylene o - Xylene	Standard Standard Standard	50.0 50.0 100 50.0	48.8 48.9 97.4 48.7	97.6 97.7 97.4	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X	BLE
Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE	Standard Standard Standard Standard	50.0 50.0 100 50.0 EXPECTED	48.8 48.9 97.4 48.7 ANALYTICAL	97.6 97.7 97.4 97	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X	BLE NO
Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER	Standard Standard Standard Standard	50.0 50.0 100 50.0 EXPECTED RESULT	48.8 48.9 97.4 48.7 ANALYTICAL RESULT	97.6 97.7 97.4 97	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 %	X X X X CEPTAE	
Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589	Standard Standard Standard Standard	50.0 50.0 100 50.0 EXPECTED RESULT	48.8 48.9 97.4 48.7 ANALYTICAL RESULT	97.6 97.7 97.4 97	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC	X X X X CEPTAE	
Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB	Standard Standard Standard Standard TYPE	50.0 50.0 100 50.0 EXPECTED RESULT	48.8 48.9 97.4 48.7 ANALYTICAL RESULT PPB	97.6 97.7 97.4 97 %R	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC	X X X X CEPTAE	
Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene	Standard Standard Standard Standard TYPE	50.0 50.0 100 50.0 EXPECTED RESULT PPB	48.8 48.9 97.4 48.7 ANALYTICAL RESULT PPB	97.6 97.7 97.4 97 %R	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC	X X X CEPTAE YES	
Toluene Ethylenzene m & p - Xylene o - Xylene SAMPLE NUMBER CCV LA-52589 50 PPB Benzene Toluene	Standard Standard Standard Standard TYPE Standard Standard	50.0 50.0 100 50.0 EXPECTED RESULT PPB	48.8 48.9 97.4 48.7 ANALYTICAL RESULT PPB	97.6 97.7 97.4 97 %R 97.4 97.1	75 - 125 % 75 - 125 % 75 - 125 % 75 - 125 % ACC RANGE 75 - 125 % 75 - 125 %	X X X CEPTAE YES	

Narrative: Acceptable.

ı	Δ	Ė	n	D	Δ	Т	n	R	V	Dt	IP	1 1	C	Δ.	TF	2	
ᆫ	~	ים	u	п	,		u	n	. T	w	JF	L	u.	~		_0	

	SAMPLE ID 970852	ТҮРЕ	SAMPLE RESULT PPB	DUPLICATE RESULT PPB	RPD	AC RANGE	CEPTABLE YES NO
U	Benzene	Matrix Duplicate	<1	< 1	0.00	+/- 20 %	Х
	Toluene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X
	Ethylbenzene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	X
	m & p - Xylene	Matrix Duplicate	<2	< 2	0.00	+/- 20 %	X
	m & p - Xylene o - Xylene	Matrix Duplicate	<1	<1	0.00	+/- 20 %	Χ

Narrative: Acceptable.

LABORATORY SPIKES:

SAMPLE	SPIKE	SAMPLE	SPIKE		AC	CEPTAE	BLE
ID.	ADDED	RESULT	SAMPLE	%R			
2nd Analysis	PPB	PPB	RESULT			YES	NO
970852		<u>lii e eite</u> ge iid	PPB	·	RANGE		
Benzene	50	<1	48.8	97.6	75 - 125 %	Х	
Toluene	50	<1	49.8	100	75 - 125 %	X	
Ethylbenzene	50	<1	49.6	99	75 - 125 %	X	
m & p - Xylene	100	<2	99.2	99.2	75 - 125 %	X	
o - Xylene	50	<1	50.1	100	75 - 125 %	Χ	

Narrative: Acceptable

	AUTO BLANK	SOURCE	PPB	STATUS
ļ	Benzene	Boiled Water	<1.0	ACCEPTABLE
	Toluene	Boiled Water	< 1.0	ACCEPTABLE
	Ethylbenzene	Boiled Water	<1.0	ACCEPTABLE
	Total Xylenes	Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

	SOURCE	PPB	STATUS
SOIL VIAL BLANK	Lot MB1461	(1 analyzed with set)	
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

CONTAMINATION	SOURCE	PPB	STATUS
CARRYOVER CHECK		(None analyzed with this set)	
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

TRIP	SOURCE	PPB	STATUS
BLANK		(None analyzed with this set)	
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	< 3.0	ACCEPTABLE

Narrative: Acceptable.

Reported By: CV

Approved By: Santalla.

Date: 9-8-97

QCWater081497

1997 GROUNDWATER ANALYTICAL

		CHAIN OF (CUSTODY RECORD		
Project No. Project Name	d orby			Requested Analysis	
Samplers: (Signature) A. Prima	who They	24	enbluko.	No.	Remarks
MATRIX Date Time Comp. GRAB		Sample Number ers			
\$171		960918 RE	× × × D, †	CANHOH MES	CAWADA MESA *2 MW MC & RIGH
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1-59	× 2, 7	TRYD BLANK	W
Reinduisned by: (Signature)	Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Date/Time	Received by: (Signature)
William Mash	11-4-18 1710				
reinquisned by: (Signature)	Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Date/Time	Received by: (Signature)
Relinquished by: (Signature)	Date/Time	Borolivad for Johnston A. C.	į		
		M C M O O O O O O O O O O O O O O O O O	11/	irks:	
Carrier Co:		Carrier Phone No	16 0736	Onto Boulds Described August (Strains)	
:			- -	nesults neported / by: (Signature)	
Air Bill No.:					

SAMPLE IDENTIFICATION

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960918
MTR CODE SITE NAME:	87640	Canada Mesa #2 MW-1
SAMPLE DATE TIME (Hrs):	11/4/96	1218
PROJECT:	Sample 4 -	1st Quarter
DATE OF BTEX EXT. ANAL.:	11/6/96	11/6/96
TYPE DESCRIPTION:	Monitor Well	Water

Field Remarks:		
	RESULTS	· · · · · · · · · · · · · · · · · · ·

PARAMETER	RESULT	UNITS	QUALIFIERS:		
			DF	Q	
BENZENE	5520	PPB	100	D	
TOLUENE	8880	РРВ	100	D	
ETHYL BENZENE	469	РРВ	100	D	
TOTAL XYLENES	3920	РРВ	100	D	
TOTAL BTEX	18800	PPB			

		-BTEX is by EPA Method 8	020 —	
The Surrogate Recovery was at	106	% for this sample	All QA/QC was acceptable.	
DF = Dilution Factor Used	· · · · · · · · · · · · · · · · · · ·			
The "D" qualifier indiciates that	the analyte calculat	ed is based on a seco	endary dilution factor.	
Narrative:				
Approved By:	Land		Date: 11/12/91	

960918.XLS,11/11/96

Field Services Laboratory Analytical Report

SAMPLE IDENTIFICATION

960918 **EPFS LAB ID:** 11/04/96 **DATE SAMPLED:** 1218 TIME SAMPLED (Hrs): D. Bird **SAMPLED BY:** Water **MATRIX:** 87640 **METER CODE:** Huerfano SAMPLE SITE NAME: Canada Mesa #2 MW-1 SAMPLE POINT:

FIELD REMARKS:

GENERAL CHEMISTRY WATER ANALYSIS RESULTS

PARAMETER	RESULT	UNITS	DATE ANALYZED
Laboratory pH	7.4	Units	11/06/96
Alkalinity as C0 ₃	0.0	PPM	11/06/96
Alkalinity as HC0 ₃	635	PPM	11/06/96
Calcium as Ca	436	PPM	11/06/96
Magnesium as Mg	43	PPM	11/06/96
Total Hardness as CaC0 ₃	1,265	РРМ	11/06/96
Chloride as Cl	188	PPM	11/06/96
Sulfate as S0 ₄	2,490	PPM	11/06/96
Fluoride as F	0.7	PPM	11/06/96
Nitrate as N0 ₃ -N	< 0.6	PPM	11/06/96
Nitrite as N0 ₂ -N	<0.6	PPM	11/06/96
Ammonium as NH ₄ ⁺	<0.6	PPM	11/06/96
Phosphate as PO ₄	< 0.6	РРМ	11/06/96
Potassium as K	7.7	PPM	11/06/96
Sodium as Na	919	PPM	11/06/96
Total Dissolved Solids	4,490	PPM	11/06/96
Conductivity	4,750	umhos/cm	11/06/96
Anion/Cation %	1.7%	%, <5.0 Accepted	11/07/96

Remarks:

Reported By: 17h

Approved By:

John Latch

Date: __// //2/96

FIELD SERVICES LABORATORY ANALYTICAL REPORT

SAMPLE IDENTIFICATION

SAMPLE NUMBER:	960918
SAMPLE DATE:	11/04/96
SAMPLE TIME (Hrs):	1218
SAMPLED BY:	D. Bird
MATRIX:	Water
METER CODE:	87640
SAMPLE SITE NAME:	Huerfano
SAMPLE POINT:	Canada Mesa #2 MW-1

REMARKS:

RESULTS

PARAME	TER	TOTAL RESULT (mg/L)	N. M. WQCC LIMIT (mg/L)
ARSEN	IC	<0.010	0.100
BARIU	М	0.04	1.00
CADMI	UM	<0.0002	0.010
CHROM	IUM	0.002	0.050
LEAI		< 0.004	0.050
MERCU	RY	<0.00024	0.002
SELENI	UM	< 0.003	0.050
SILVE	R	< 0.0005	0.050

NOTE: The sample results have been corrected for volume adjustment associated with Method 3015.

References:

Method 3015, Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, Test Methods for Evaluating Solid Waste, SW-846, Sept., 1994.

Method 7061A, Arsenic (Atomic Absorption, Gaseous Hydride), Test Methods for Evaluating Solid Waste, SW-846, USEPA, July, 1992.

Method 7081, Barium (Atomic Absorption, Furnace Technique), Test Methods for Evaluating Solid Waste, SW-846, USEPA, July, 1992.

Method 7131, Cadmium (Atomic Absorption, Furnace Technique), Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept., 1986.

Method 7191, Chromium (Atomic Absorption, Furnace Technique), Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept., 1986.

Method 7421, Lead (Atomic Absorption, Furnace Technique), Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept., 1986.

Method 245.5, Mercury (Automated Cold Vapor Technique), Methods for the Determination of Metals in Environmental Samples, EPA 600/4-91/010, USEPA, June, 1991.

Method 7741A, Selenium (Atomic Absorption, Gaseous Hydride), Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept., 1994. Inod 7761, Silver (Atomic Absorption, Furnace Technique), Test Methods for Evaluating Solid Waste, SW-846, USEPA, July, 1992.

Reported By: M

Approved By: John Larely

_____ Da

Date: 12/18/66

QUALITY CONTROL REPORT

Sample ID:

960918 Date Sampled: 11/04/96

Date Reported: 12/16/96

STANDARD REFERENCE MATERIAL

Analyte	Found Result (µg/L)	Known Value (μg/L)	% Recovery
Arsenic	30.6	32.4	94%
Barium	63.4	64.9	98%
Cadmium	2.75	2.38	116%
Chromium	5.07	4.76	107%
Lead	28.8	29.7	97%
Mercury	4.86	4.59	106%
Selenium	36.3	40.5	90%
Silver	4.81	4.32	111%

DUPLICATE ANALYSIS (mg/L)

Analyte	Original Sample Result	Duplicate Sample Result	% RPD
Arsenic	ND	ND	NA NA
Barium	0.04	0.04	0.0%
Cadmium	ND	ND	NA NA
Chromium	0.002	0.002	0.0%
Lead	ND	ND	NA .
Mercury	ND	ND	NA
Selenium	ND	ND	NA I
Silver	ND	ND	NA NA

SPIKE ANALYSIS (µg/L)

<u> </u>				
Analyte	Original Sample Result	Spike Sample Result	Spike Added	Recovery Percent
Arsenic	I ND	115	100	105%
Barium	40	911	1000	87%
Cadmium	ND	9.53	10.0	95%
Chromium	2.3	51.6	50.0	99%
Lead	ND	40.2	50.0	80%
Mercury	ND	1.82	2.00	91%
Selenium	ND	47.9	50.0	96%
Silver	ND	49.6	50.0	99%

METHOD BLANK

Analyte	Found Result (µg/L)	Detection Level (ug/L)	
Arsenic	ND ND	10	
Barium	ND	10	
Cadmium	ND	0.2	
Chromium	ND	2	
Lead	ND	4	
Mercury	ND	0.24	
Selenium	ND	3	
Silver	ND	0.5	

ND: Not Detected at stated detection level.

NA: Not Applicable.

Reported By:_

Approved By:

Well Development and Purging Data

Development	Purging
	×
	•
	_
	A,

MW-1	02840
Well Number	Meter Code

	->
	V 90 90 00
	•
æ	Ē
Έ	3
葩	3
Crite	-
_	è
ပ	•
_	2 to 5 Ceeing Volum
	ū
a	Č
mei	:
	•
ᆽ	•
0	X
╼	•
Š	
Ó	
Ŏ	
_	

Site Name CANADA MESA #2

3 to 5 Casing Volumes of Water Removel	Stabilization of Indicator Parameters	Other

Methods of Development

_	
<u></u>	0
att	ĭ
픬	Ì
<u> </u>	•
Ca	
	A 18 (1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1
ume	77
흦	100
Š	
<u>_</u>	į
Nate	Thursday .
≋	1
	-

יכעומווסוו	45.52	34.42	Vell (feet) 11.10	Gravel Pack
Vaice Volume Calculation	Initial Depth of Well (feet)	Initial Depth to Water (feet)	Height of Water Column in Well (feet)	Diameter (inches): Well

Instru	2

nents	DH Meter	
nstrum	X	

	Meter
DO Monitor	Conductivity

X Temperature Meter KINEMETS KIT

Water Disposal KUTZ SEPARHTOR

Stainless-steel Kemmerer Double Check Valve M Bottom Valve Submersible Pump Centrifugal Peristatic Other

Charleto (monos). seen	٠/٠ ١٠٠٠	Graves ach	NA.
	Water Volume in Well	e in Well	Gallons to be
Item	Cubic Feet	Gallons	Removed
Well Casing		23	220
Gravel Pack			
Drilling Fluids			
Total			

	١.
	Demon
later Removal Data	- teameday and
5	L

		Development	ı	Removal	Intake	Ending Water	Water Volume	iume	Product Volume	Γ	Temperature		Conductivity Dissolved	Dissolved	
Date	Time	Method		Rate		Depth	Removed (gal)	d (gal)	Removed (gallons)		့ပ	£	mmho/cm Oxygen	Oxygen	Comments
		Pump	Bailer	(gal/min)	(feet)	(feet)	Increment Cumulativ	Cumulath	Increment Cumulative	Cumulative				mg/L	
1844	1123										12.8	6.03	12.8 6.03 57%		
11.4.96 11	1130						2:5	6:0			7.51	423	2513 4r9		
11:49%	1138						2.0	10.0			\$21	8,66	2110		
36-4-11	9511						2.0	15.0			241	6.63	5620		
% \ \11	1157						5.0	20.0			13.5		8.61 58%		
11-4-96	3051						5.0	250			13.1	6.65	0.1 858 58.6	1.0	
							1	Ŕ							•

COMMONIA O.75 OF FREE FLORTING HYDROCARBON. STRONG HYDROCARBON SMELL Date 11.4% Reviewer Developer's Signature Memmi Street

A 1995

Ì	CHA	CHAIN OF CUS	OF CUSTODY RECORD		
Project No. Project Name	;	ļ	\	Requested	
07170	PIPECINE	and	1 3/	Alidiyala	
Samplers: (Signature)	Bres Date: 2-5-97	No. of Sample	enbjujage jo		Remarks
MATRIY Date Time Comp. GRAB	Sample Number	Contain-			
14 1235 X	620069	626	X Joh	CANADA MO	878 2N/WN 54 45
		15	× 22	TRID BLANK	
				•	
	/				
	/				
		/			
				/	
nquished by: (Signature)	Date/Time Received by: (Signature)	(6	Relinquished by: (Signature)	Date/Time	Received by: (Signature)
140	Date/Time Received by: (Signature)	(6	Relinquished by: (Signature)	Date/Time	Received by: (Signature)
Relinquished by: (Signature)	Date/Time Received for Laboratory by: (Signature)	Sy by: (Signature)	2 pate/Time Ren /6/97 1/545	Remarks:	
Carrier Co:	Carney	rier Phone No.	Date	Date Results Reported / by: (Signature)	(9)
Air Bill No.:					

	SAMPL	E IDENTIFICA	TION		
	Fic	eld ID		Lab ID	
SAMPLE NUMBER:	N	I/A		970069	
MTR CODE SITE NAME:	87	7640	Canada	Mesa #2 MW	/-1
SAMPLE DATE TIME (Hrs):	2/	5/97		1235	
PROJECT:		Sample 4 -	2nd Quarter		
DATE OF BTEX EXT. ANAL.:	2/	6/97		2/6/97	
TYPE DESCRIPTION:	Monit	or Well		Water	
Field Remarks:		RESULTS			
PARAMETER	RESULT	UNITS	DF	QUALIFIER Q	S
BENZENE	3450	PPB	100	D	
TOLUENE	5200	PPB	100	D	
ETHYL BENZENE	214	PPB	100	D	
TOTAL XYLENES	1770	PPB	100	D	
TOTAL BTEX	10600	РРВ			
The Surrogate Recovery was at DF = Dilution Factor Used The "D" qualifier indiciates that the	94.8 analyte calculated	-BTEX is by EPA Method % for this sample I is based on a seco	All QA/QC		3.
Narrative:					
					

970069.XLS,2/14/97

2-14-97

Date:

John Loubell

EL PASO FIELD SERVICES

Well Development and Purging Data

Development	Purging
	X

7
\exists
2
4
ľ
<u>ē</u> .
뮫
3
=
Ş
>

Meter Code 87640

Instruments

Water Volume Calculation

Development Criteria

Site Name CANHUA MES

3 to 5 Casing Volumes of Water Removel	Stabilization of Indicator Parameters	Other
X		

opment	Baller Bottom Valve	!
Methods of Development	Pump Centrifugal	
Methods		

Double Check Valve	Stainless-steel Kemm
Submersible	Perlatatic

eel Kemmerer	
Stainless-steel	
Peristaltic	

Gallons to be Removed

Gravel Pack

Water Volume in Well
Cubic Feet | Gallons

Well Casing Gravel Pack

Height of Water Column in Well (feet)

Diameter (inches): Well

Initial Depth of Well (feet) 45.54 Initial Depth to Water (feet) 74.35

ļ	
ē ō	

Total

Drilling Fluids

Water Removal Data	emova	I Data														
		Develor	ment	Development Removal	Intake	Ending Water	Water Volume	lume	Product Volume	Volume	Temperature		Conductivity Dissolved	Dissolved		
Date	Time	Method	po	Rate	Depth	Depth	Removed (gal)	d (gal)	Removed (gallons)	(gallons)	ပ	돐	hmho/cm Oxygen	Oxygen	Comments	
		Pump	Baller	(gal/min)	(feet)	(feet)	Increment Cumulativ Increment Cumulative	Cumulativ	Increment	Cumulative				mg/L		
2.5.97	& E//										13.0	6.54	13.0 6.54 4570			
25.97	9411						2.0	5.0			13.9	13.9 537 4780	084			
2.5.97	<i>1911</i>						5.0	190			13.2	294	9264			
2-5-97 1203	1203						5.0	15.0			621	6.63	0584 89.9 621			
2.5-87 12.10	1210						5.0	200			13.5	5.84	13.5 5.84 4870			
2.5-87 1221	1251						5.0	25.0			12.2	2.34	56 0154 455 221	50		

COMMONIS 0,71' OF FREE FLOATING HYDROGARBON. STRONG HYDROGARBON SMELL

Developer's Signature Komman Grand

Date 25-97 Reviewer

Surthelle Date

A 1942

CAMPOR MESPA MAN MC 87640 Received by: (Signature) Received by: (Signature) Remarks Date Results Reported / by: (Signature) Date/Time Date/Time Requested Analysis Remarks: Refinquished by: (Signature) Relinquished by: (Signature) 5080 16/8/ Date/Time nollewegeld euplindsel 400 Cos | 200 R Type and No. of Sample Contain-ers Received for Laboratory by; (Signature) 15 Carrie hone No. Received by: (Signature) Received by: (Signature) OTTO PIPEUNE Date: STO. 97 970397 Sample Number 4191 46-65 Date/Time Date/Time Time Comp. GRAB X Project Name 1/33 Relingwished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Samplers: (Signature) Date MITTER 5777 HB 5777 Air Bill No.: Project No. Carrier Co: WATTRY

					_		_				
SA	M	PΙ	F	ID	F٨	ITI	Fi	CΔ	TI	O	N

Lab ID Field ID N/A 970397 **SAMPLE NUMBER:** MTR CODE | SITE NAME: Canada Mesa #2 MW-1 87640 **SAMPLE DATE | TIME (Hrs):** 5/7/97 1138 PROJECT: Sample 4 - 3rd Quarter DATE OF BTEX EXT. | ANAL.: 5/14/97 5/14/97 TYPE | DESCRIPTION: **Monitor Well** Water

Field Remarks:			
	 RESULTS		

PARAMETER	RESULT	UNITS		QUALIF	ERS
			DF	Q .	
BENZENE	4650	PPB	50	D	ļļ
TOLUENE	8440	PPB	50	D	
ETHYL BENZENE	317	РРВ	50	D	
TOTAL XYLENES	2580	PPB	50	D	
TOTAL BTEX	16000	PPB			

The Surrogate Recovery was DF = Dilution Factor Used The "D" qualifier indiciates to		·		C was acceptable.	
Narrative:					
Approved By:	olu Lall	***************************************	Date:	43/97	

970397.6/2/97

Well Development and Purging Data

Site Name CANADA MESSA#2	_			Development Purging	Well Number //W~{ Meter Code タン6切
Development Criteria M 3 to 5 Casing Volumes of Water Removel	Water Volume Calculat <u>io</u> n	ume Calc	ul <u>a</u> tion		Instruments
Stabilization of Indicator Parameters Other	Initial Depth of Well (feet) 45,56 Initial Depth to Water (feet) 34.34	Vell (feet)	26.36		DO Monttor
Methods of Development	Height of Water Column in Weil (feet) // Diameter (inches): Weil Gravel Pack	Column in Well S. Well	Gravel Pack		Conductivity Meter Temperature Meter
		Water Volume in Well	le in Well	Gallons to be	X Other 0.0 CHEME 15 K1
Centrifugal X Bottom Valve	Item	Cubic Feet	Gailons	Removed]
Submersible Double Check Valve	Well Casing		25	22.4	Water Disposal
Peristaltic Stainless-steel Kemmerer	Gravel Pack			•	KUTZ JEDARATOR
	Drilling Fluids				
Other	Total				

Water Removal Data	emova	i Data														
		Development		Removal	Intake	Ending Water	Water Volume	olume	Product Volume	/olume	Femperature		Conductivity Dissolved	Dissolved		
Date	Time	Method	ק	Rate	Depth	Depth	Removed (gal)	d (gal)	Removed (gallons)	gallons)	ပ	Ŧ	mp/cm	Oxygen	Comments	
		- dwn	Bailer	(gal/min)	(leet)	(feet)	Increment Cumulativ Increment Cumulative	Cumulativ	Increment	Cumulative				mg/L		}
5-297 1658	8591						5.0	2.0								
527-87 1105	5011						5.0	10.0								
675	1112						5.0	15.0								
5-7-97 1118	A117						20	20.0								
8211 CAZS	1126						5.0	250						50		
<u> </u>																
		,														1
Comments	0.	350	\$70	FM	27 23	MLLAG	10/17 5	POCAL	BON.	125	SNOO	ON	ROCH	ABON	COMMONDS OF 63 FEET OF FREE FLOGITIME HY OROCARBON. STRONG HY OROCARRON SMELL.	

Developer's Signature