<u>AP - ÖÖI</u>

STAGE 1 & 2 REPORTS

DATE: June 20, 1996

FINAL SITE INVESTIGATION REPORT FOR THE FORMER BRICKLAND REFINERY STAGE 1 ABATEMENT PLAN

VOLUME 2: APPENDICES E - L

Prepared for:

Office of Environmental Affairs 5005 LBJ Freeway Occidental Tower, 5th Floor Dallas, Texas 75244

June 20, 1996

505 Marquette Avenue, NW Suite 1100 Albuquerque, New Mexico 87102 (505) 842-0001 FAX: (505) 842-0595

Appendix E

_ |

Ì

ļ

I.

El Paso City-County Health Department and Texas Air Control Board Reports

JAN 2 altando y se Tantanda ang 11 Maria

EPEDENIC LEAD ABSORPTION NEAR AN ORE SMELTER:

THE ROLE OF PARTICULATE LEAD

Philip J. Landrigan, M.D.1 Stephen H. Gehlbach, M.D.1 Bernard F. Rosenblum, M.D., M.F.H.2 Jimmie M. Shoults, P.E.J Robert M. Candelaria4 William F. Barthel5 John A. Liddle, Ph.D.6 Ann L. Smrak7 Norman W. Staehling8 JoDean F. Sanders9 J. Julian Chisolm, Jr., M.D.10

1. Medical Epidemiologist, Field Services Branch, Epidemiology Program, Center for Disease Control, Atlanta, Georgia 30333

- 2. Director, El Paso City-County Health Department, El Paso, Texas 79901 Environmental Engineer, El Paso City-County Health Department, El Paso, Texas 79901
- 4. Laboratory Director, El Paso City-County Health Department, El Paso, Texas 79901
- 5. Chief, Toxicology Section, Clinical Chemistry Division, Bureau of Laboratories, Center for Disease Control, Atlanta, Georgia 30333 Supervisor, Research Chemist, Toxicology Section, Clinical Chemistry Division, Bureau of Laboratories, Center for Disease Control, Atlanta,

Georgia 30333 7. Research Chemist, Toxicology Section, Clinical Chemistry Division,

Bureau of Laboratorias, Centar for Disease Control, Atlanta, Georgia 8. Chief, Data Services Section, Smallpox Eradication Program, Center for Disease Control, Atlanta, Georgia 30333 Statistical Assistant, Immunization Branch, Bureau of State Services, 9. Center for Disease Control, Atlants, Georgia 30333 10. Johns Hopkins University, School of Medicine, Department of Pediatrics, and Beltimore City Hospitals, Department of Pediatrics, Baltimore,

30333

Maryland

In December 1971, the City-County Health Department in El Paso, Texas discovered that an ore smelter there had discharged 1,116 tons of lead, 560 tons of sinc, 12 tons of cadmium, and 1.2 tons of arsenic into the atmosphere in the preceding 3 years; environmental concentrations of particulate lead adjacent to the smelter were 100 times background values, fell rapidly within 1-2 miles, but remained elevated for as far as 6.5 miles.

ABSTRACT

To determine the extent and mechanisms of human lead uptake, blood levels were determined for a random sample of all persons living within 4.1 miles of the smelter. Highest levels were found within 1 mile, and values $\geq 40 \text{ µg/100 ml}$ were widespread, but most prevalent in 1-4 year old children. There was a close relationship between blood lead levels and concentrations of lead in household dust; within 1 mile children with levels $\geq 40 \text{ µg/100 ml}$ were exposed to 3.1 times as much lead in dust as those with lower blood values (6447 ppm versus 2067), (p < 0.0001). Exposure to particulate lead in air was also substantial within 1 mile (annual mean 8-10 µg lead/M³ air). Exposure to lead-based paint was less than half that in New York City, and exposure to lead in water, food, and pottery was negligible.

It was concluded that chronic uptake of particulate lead, principally from dust and air, had been the major mechanism of absorption and that within a 1-2 mile radius of itself the smelter had been the predominant source of lead in dust and thus of absorbed lead. The arid climate may have facilitated absorption from dust.

INTRODUCTION

Particulate lead in contaminated dust, soil, and air has been recognized ' as a potentially widespread cause of chronic lead absorption among children in the United States.¹⁻⁴ Environmental concentrations of particulate lead may be aspecially high in the vicinity of point sources of lead emission such as smelters, and study of the mechanisms of lead uptake in such extreme environments might better define the extent to which particulate lead can contribute to human absorption.⁵⁻⁸

The present studies of lead uptake were conducted near an ore smelter on the outskirts of El Paso, Texas. In December 1971, the El Paso City-County Health Department found that this smelter had emitted 1,116 tons of lead, 560 tons of zinc, 12 tons of cadmium, and 1.2 tons of arsenic into the environment from 1969 through 1971.⁹ Blood lead levels were determined in persons living throughout El Paso, and exposure to lead in dust, soil, air, paint, food, water, and pottery was measured. Our intents were (1) to ascertain the prevalence and severity of lead absorption in this locale, end (2) to evaluate the role of particulate lead in lead uptake.

BACKGROUND

El Paso, population 322,261 (1970 U.S. Census) is located in the Rio Grande Valley in west Texas. It is surrounded to the north, northwest, and west by high mountains. The climate is arid (4 to 10 inches of rainfall per year),10 and a fine gritty dust is present in the air on many days. Winds are light; and calm is observed in 25% of hourly readings.11 Thermal inversions occur on 70% of mornings.11 Additional high-volume air samples were analyzed** for lead and bromine content¹⁸ as a measure of the contribution of automotive sources; in commerical gasolines¹⁹ and in automotive exhausts²⁰ the ratio of lead to bromine is 2.6/1.0. Samples taken in February 1972 at a site 600 feat from the smelter showed a mean lead/bromine ratio of 62.8 (Figure 3). Samples from the same location in May 1973 had a ratio of 11.2. Additional 1973 samples showed that ratio to decrease rapidly with distance from the smelter and to approach a baseline value of approximately 2.6 at 3 to 4 miles.

showed concentrations of lead to be highest in particles below 1 micron (Figures2).

103466

5166718440->

Dustfall (settleable particulate) samples were obtained from October 1970 through July 1971 at the smelter and at 10 other sites (Figure 4).¹¹ Dustfall was greatest at the smelter and decreased with distance. Likewise, the content of each metal was highest at the smelter (10-month means: 204 ug/M²-month for lead, 86 for cadmium, 999 for zinc, 553 for arsenic, and 1511 for copper). In areas shielded by mountains, background levels were observed significantly closer to the smelter than in open areas of the valley.

SOIL SAMPLING

Soil samples were collected from March 1972 through June 1973 at 99 sites

*Respiratory lead absorption is inversely proportional to particle size. Reports indicate that between 30 and 100% of particles below 2 µm in diameter are retained and subsequently absorbed in the lungs. Between 10 and 30% of 2-5 µm particles and almost none larger than 5 µm are retained.1,16,17 Larger particles may, however, be swallowed and contribute to gastrointestinal absorption.

****Determinations kindly performed by Dr. Jinmy Payne of the Texas Air Control** Board, Austin, Texas, using an X-ray fluorescence technique. ;10-24-90 10:47AM ;

5166718440→

5058272965;#

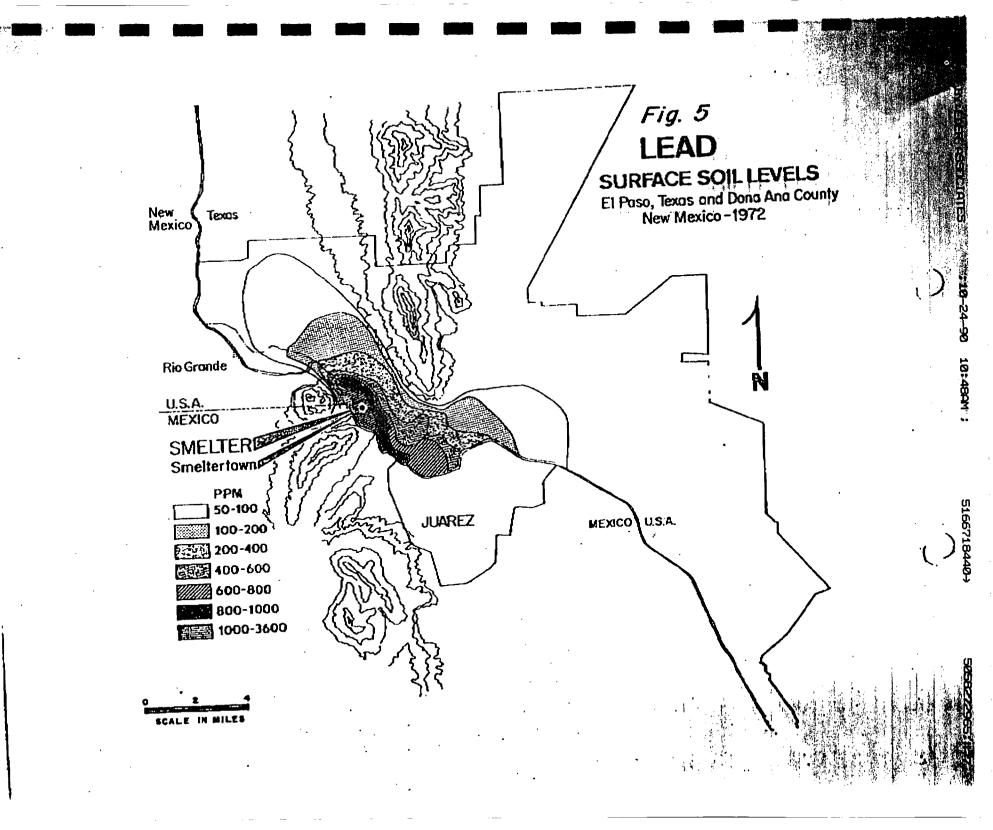
in El Paso and at 3 remote sites. Samples were taken at the surface and at depths of 1, 2, and 3 inches and analyzed for lead content by atomic absorption spectrophotometry. Only trace amounts of lead (< 50 ppm) were found at the remote sites. Within the city, highest levels in 1972 were found within 600 feet of the smelter (mean 3,457 ppm, range 560 - 11,450 for 54 samples); lead content was consistently highest at the surface. Levels fell rapidly in the first 1-2 miles from the smelter, but remained above background for as far as 6.5 miles (Figure 5). Similar though less extensive distributions were noted for zinc, cadmium, and arsenic. Distribution

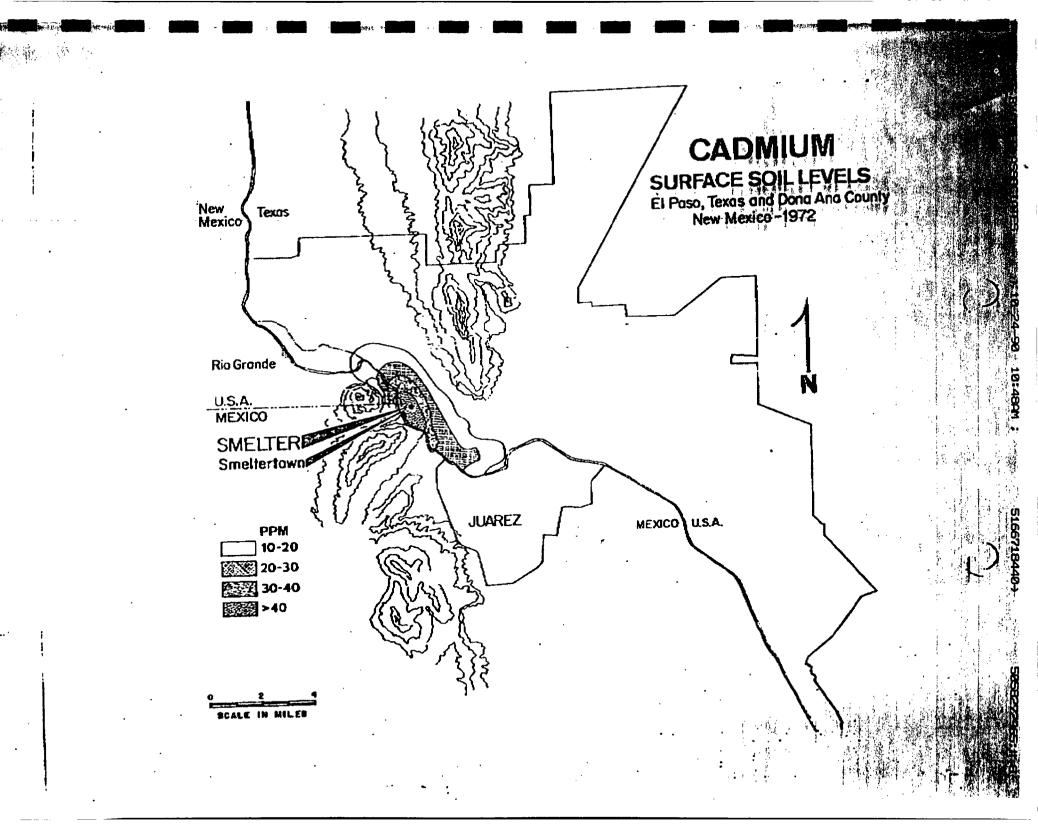
DUST SAMPLING

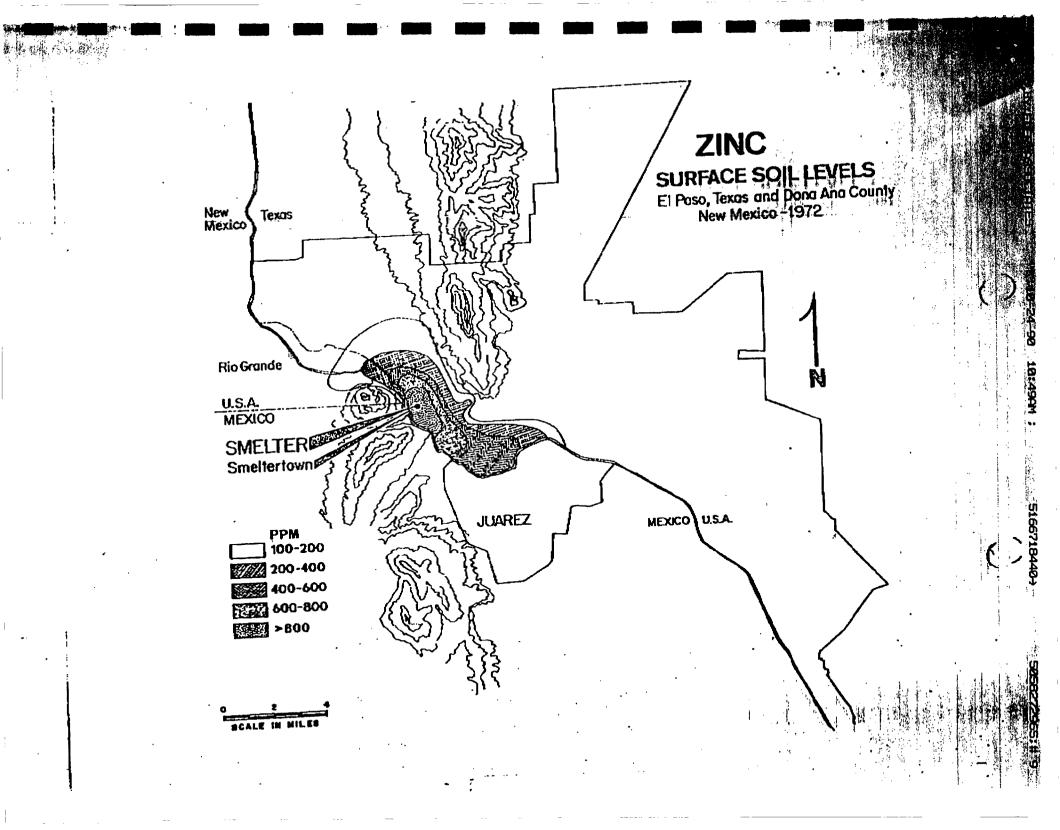
FR OSSICIATES

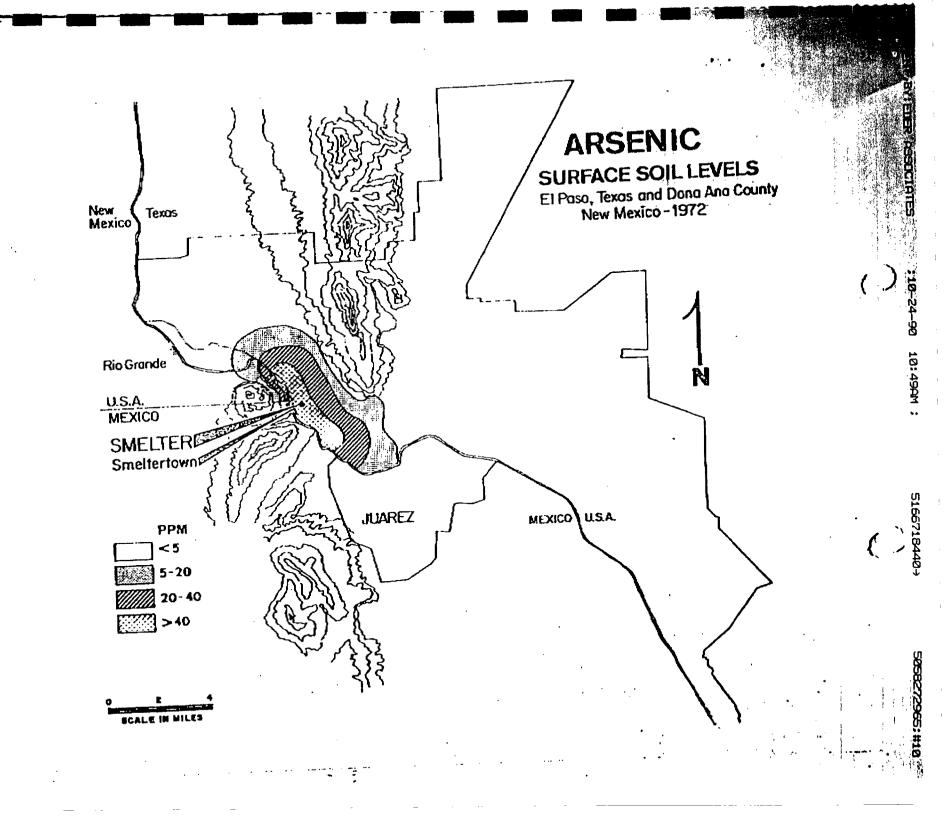
Household dust samples were obtained once monthly from July 1972 through June 1973 at 51 locations. Highest values were obtained in Smaltertown, a village adjacent to the smalter; arithmatic mean lead content in 53 samples there was 36,853 ppm (Table 1). Zinc, cadmium, and arsenic levels were also highest in Smeltertown, and all levels declined rapidly with distance.

patterns for all of these metals in 1973 were virtually unchanged from 1972.


FOOD AND WATER SAMPLING


Food and tap water samples were obtained in March 1972 from 13 homes, 9 of them in Smeltertown. No lead was detected in any of these samples; the lower limit of detection for lead was $0.05 \ \mu g/m l$.


EUMAN STUDIES


In preliminary testing programs conducted throughout El Paso from January to April 1972, whole blood lead levels \geq 40 ug/100 ml* were found in 97

*A whole blood lead level of 40 µg or more per 100 ml is considered by the Surgeon General to be indicative of "undue lead absorption."21

- Archie Clouse Region 11

SAMPLING AND ANALYSIS OF SOIL IN THE VICINITY OF ASARCO IN EL PASO, TEXAS

FINAL REPORT

David Carmichael Texas Air Control Board Sampling and Analysis Division Source Sampling Section August 1989

1. PROJECT DESCRIPTION

1.1 Origin of Project

In response to a request from the Research Division of the Texas Air Control Board (TACB), the Sampling and Analysis Division conducted soil sampling in the vicinity of ASARCO in El Paso, Region 11. The plant is located at 2301 West Paisano Drive in El Paso County. Personnel from the Source Sampling Section collected the soil samples on July 12 and 13, 1989.

1.2 <u>Summary</u>

The project was designed to document the levels of arsenic in the top one-half inch of soil at selected sites in the vicinity of ASARCO. The highest single value of arsenic detected was 1100 micrograms of arsenic/gram of soil (μ g/g). It should be noted that the 1100 μ g/g sample site at the International Boundary and Water Commission was the closest to the ASARCO plant and was located directly across from a brick manufacturing company in Mexico. Figure 1 is a map of the general distribution of arsenic levels found in the soil samples collected in the El Paso area. The minimum detection limit (MDL) for the analysis was 3 μ g/g. The background samples were determined to have an arsenic concentration less than the MDL. The results of the analysis were sent to the Effects Evaluation Section for a health effects determination.

2. SAMPLING, BANKING, AND ANALYTICAL PROCEDURES

2.1 <u>Sampling</u>

Sampling locations were selected by the project leader using maps of the area and on-site observations. An emphasis was placed on collecting soil samples in the vicinity of schools and recreational parks. The general location and description of the sampling sites can be found in Figure 2. Background samples were taken at two locations selected by the project leader. The background sites were in the El Paso area but in areas unaffected by emissions from ASARCO. At each sampling site, twelve samples were taken at evenly spaced locations on the circumference of a circle having a diameter of two feet. Sampling sites on the circumference of the circle were located with an aluminum template with holes numbered 1-12 (See Figure 3). At each location, a soil sample was obtained using a stainless steel coring device capable of removing a soil core 7/8" in diameter and 1/2" in depth. The six samples from holes 1, 3, 5, 7, 9, and 11 were composited, placed in a polyethylene bag, assigned a sample ID and labeled with a sample collection tag which was filled out by the field sampler. The six samples from holes 2, 4, 6, 8, 10, and 12 were composited, bagged and labeled similarly. The sample ID, sample collection tag number and information regarding the sampling location were noted in a field sample logbook. The sampling locations and background sampling sites were also noted on a map of the area in the logbook. A Polaroid photograph was taken of the sampling location, labeled with the sample ID and photographer signature and stapled to the relevant page of the logbook. The samples were stored in a box which remained in the custody of the project leader.

The sampling equipment was cleaned at each location when sampling was completed. Cleaning consisted of removing loose soil particles using paper towels and distilled deionized (DDI) water.

2.2 <u>Banking</u>

The samples and field sampling logbook were returned to the TACB Laboratory and transferred to the custody of the staff member in charge of the sample bank. Each sample was assigned a sample bank number, transferred to a new polyethylene sample bag and labeled with a sample bank tag. As a cross reference, the sample bank number was recorded on the appropriate page of the field sample logbook. The original sample collection bag and tag were stored at the sample bank. The sample bank was responsible for drying, sieving, grinding and mixing each soil sample. Each sample was placed in a beaker and dried in an oven at 100° C for eight hours or until dry. The sample was then sieved using a brass 16-mesh sieve. Once sieved, the sample was ground in a laboratory grinder to approximately 100-mesh. The sample was weighed, mixed and divided into three equal portions. Each portion was placed in an individual polyethylene bag, assigned a sample analysis number and labeled with a sample analysis tag. As a cross reference, the sample analysis number was recorded on the appropriate page of the field sample logbook. The samples used for analysis or quality assurance (QA) were then transferred to the custody of the laboratory analyst. The sieve and laboratory grinder were cleaned with DDI water and paper towel after each sample was prepared.

2.3 <u>Analytical Procedures</u>

All soil samples were analyzed similarly. Each sample was mixed in its polyethylene bag by tumbling the bag three to five times. Approximately 2.0 grams of the sample were dried at 100° C for one hour and then cooled and reweighed. The sample was extracted with nitric acid and hydrogen peroxide according to Environmental Protection Agency (EPA) Method 3050, which can be found in Test Methods for Evaluating Solid Waste, Volume IA: Laboratory Manual: Physical /Chemical Methods (November 1986 SW-846 Third Edition). The filtered extract solution was then analyzed for arsenic by inductively coupled plasma spectroscopy (ICP) according to EPA Method 6010 found in SW-346. The results of the analysis in μ g/g were reported to the sample bank. The data was matched to the sample ID and reported in Table 1.

Like the soil samples, any particulate matter in the field blanks (rinses) or in the DDI water blank was weighed, extracted according to EPA Method 3050 and analyzed for arsenic by ICP.

3. QUALITY ASSURANCE PROCEDURES

3.1 <u>Sampling</u>

A field blank was collected for each group of ten or fewer samples. The field blank consisted of DDI water that had come in contact with the previously cleaned surfaces of the sampling equipment. The field blank was placed in a polyethylene bag and documented and handled in the same manner as the soil samples. The sample bank repackaged, documented and relabeled each field blank and transferred custody to the laboratory analyst. The analyst transferred the entire contents of the polyethylene bag to a tared beaker and evaporated the water at 100° C. Any remaining particulate matter was weighed, extracted using EPA Method 3050 and analyzed for arsenic using ICP. The results were reported in the same manner as that for the soil samples. A DDI water blank was collected once during the day's sampling. The DDI water blank was placed in a polyethylene bag and documented, banked, evaporated, weighed, extracted, analyzed and reported in the same manner as that for the field blanks.

The even-numbered soil samples from each sampling location were composited and used as site duplicates. A site duplicate sample was submitted to the laboratory analyst by the sample bank for each group of ten or fewer samples processed.

3.2 Banking

A banking blank was prepared for each group of ten or fewer samples processed. The banking blanks consisted of DDI water that had come in contact with the previously cleaned surfaces of the sieve and laboratory grinder. The blank sample was placed in a polyethylene bag, documented, analyzed and reported in the same manner as that for the field blanks.

A blind duplicate sample was submitted to the laboratory analyst by the sample bank for each group of ten or fewer samples processed. A blind duplicate sample was one-third of an original soil sample as described in Section 2.2. The blind duplicate samples were documented, analyzed and reported in the same manner as that for the soil samples. The results are reported in Table 2.

A spiked sample blank was submitted to the laboratory analyst by the sample bank for each group of ten or fewer samples processed. The sample bank only labeled the sample as a spiked sample blank. The analyst performed the spiking procedure. The results are reported in Table 2.

3.3 Analysis

Calibration control standards, spiked samples, duplicate samples, split extracts and extract re-analyses were prepared by the analyst and analyzed for each group of ten or fewer samples analyzed. The Sampling and Analysis QA officer prepared the audits for the analyst for each group of ten or fewer samples analyzed. The results are reported in Table 2.

4. SAMPLE CUSTODY

Chain of sample custody was established by using a log. Each time a sample or set of samples changed possession and/or control, the date, time and personnel involved were noted. The log was used from the time the samples were collected until they were relinquished by the sample bank. A new chain of custody log was prepared by the sample bank before transferring samples to the laboratory analyst.

5. CALIBRATION PROCEDURES AND FREQUENCY

The analyst calibrated the ICP during each analytical run by using standards prepared from a Fisher Certified arsenic reference solution containing 1000 micrograms of arsenic per milliliter of solution.

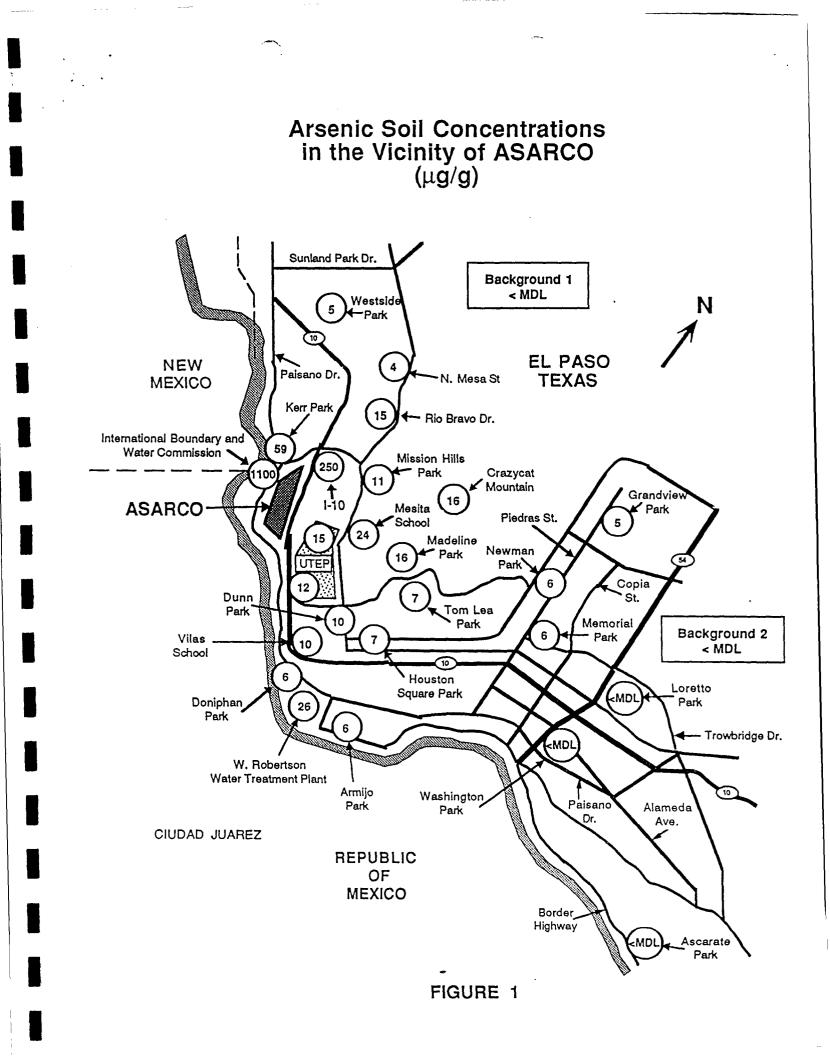
6. **DISTRIBUTION**

6.1 <u>Distribution of Report</u>

Mr. Doyle R. Pendleton, Director, Monitoring Program

Mr. Jim Myers, P.E., Director, Enforcement Program

Mr. Les Montgomery, P.E., Director, Technical Support and Regulation Development Program


Mr. Walter Bradley, Director, Research and Special Projects

Mr. Manuel Aguirre, P.E., Regional Director, Region 11

Mr. John Key, P.E., Assistant to the Director, Monitoring Program

Mr. Scott Mgebroff, Director, Sampling and Analysis Division

Mr. James H. Price, Jr., Ph.D., Director, Research Division

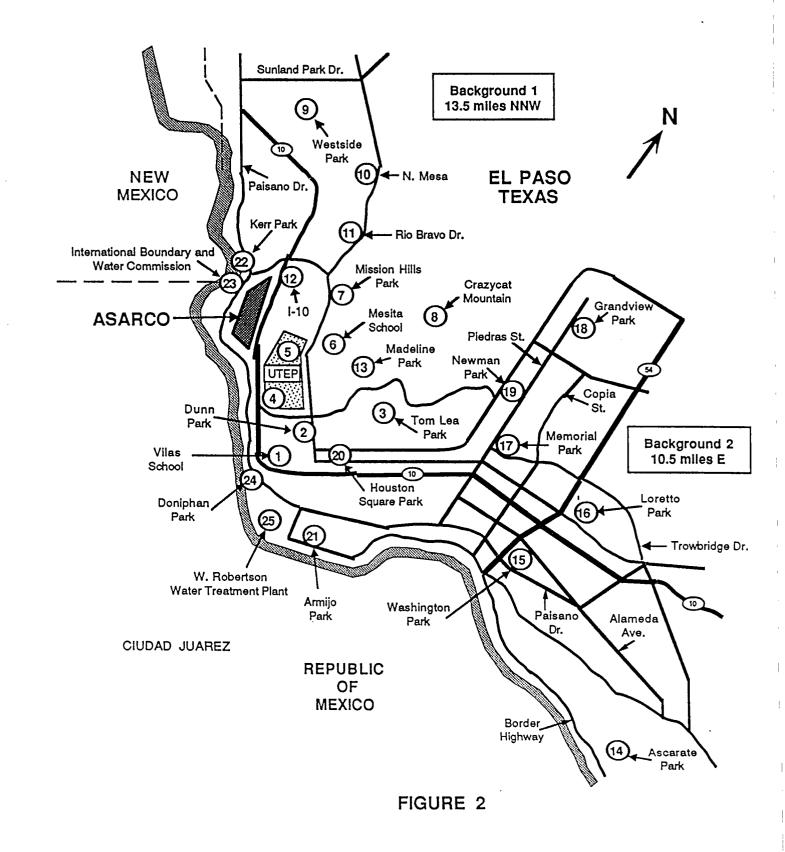
Mr. Paul W. Henry, P.E., Director, Technical Services Division Mr. James P. Barta, Jr., P.E., Sampling and Analysis Division Mr. Robert Brewer, Quality Assurance Division

Mr. Vince Anselmo, Ph.D., Sampling and Analysis Division

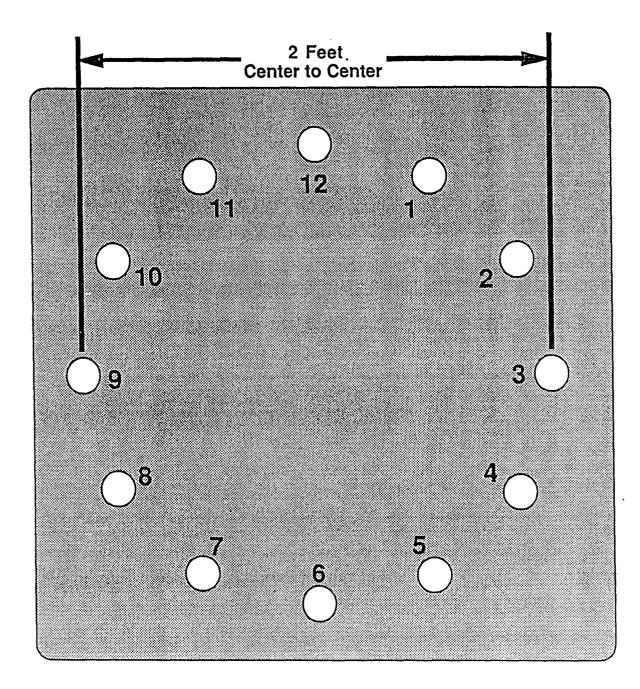
Mr. Wayne Burnop, P.E., Technical Services Division

Ms. JoAnn Wiersema, Research Division

Mr. Tom Dydek, Ph.D., Research Division


Mr. George Dean, Sampling and Analysis Division

Mr. Dewayne Ehman, Ph.D., Sampling and Analysis Division


Ms. Peggy Zimmerman, Sampling and Analysis Division

Mr. Archie Clouse, Region 11

ASARCO Soil Sampling Sites

Aluminum Template

Ì

Analytical Results of Arsenic Sampling Performed in the Vincinity of ASARCO

Sampling Site	Location	Direction from ASARCO	Arsenic Concentration μg/g	
1	Vilas Elem. School	1.85 miles SE	10	
2	Dunn Park	1.75 miles ESE	10	
3	Tom Lea Park	1.85 miles E	7	
4	UTEP	1.40 miles SE	12	
5	UTEP	0.90 miles E	15	
6	Mesita Elem. School	1.10 miles ENE	24	
7	Mission Hills Park	1.25 miles NE	11	
8	Crazycat Mountain	1.75 miles NE	16	
9	Westside Park	2.30 miles NNW	5	
10	N. Mesa Street	1.75 miles NNE	4	
11	Rio Bravo Drive	1.00 miles NNE	15	
12	Interstate Hwy. 10	0.60 miles NNE	250	
13	Madeline Park	1.55 miles ENE	16	
14	Ascarte Park	6.75 miles ESE	< MDL	
15	Washington Park	4.75 miles ESE	< MDL	
16	Loretto Park	5.10 miles E	< MDL	
17	Memorial Park	4.20 miles E	6	
18	Grandview Park	4.40 miles NE	5	
19	Newman Park	3.55 miles ENE	6	
20	Houston Square Park	2.50 miles ESE	7	
21	Armijo Park	3.25 miles SE	6	
22	Kerr Park	0.35 miles NW	59	
23	IBWC ¹	0.20 miles WNW	1100	
24	Doniphan Park	1.45 miles SSE	6	
25	W. Robertson WTP 2	2.75 miles SE	26	
Background	1 City of Vinton, Tx.	13.50 miles NNW	< MDL	
Background 2 Montana/Yarbrough 10.50 miles E < MDL				

Minimum detection limit (MDL) for this method of analysis is 3 μ g/g. Mileage is an approximation.

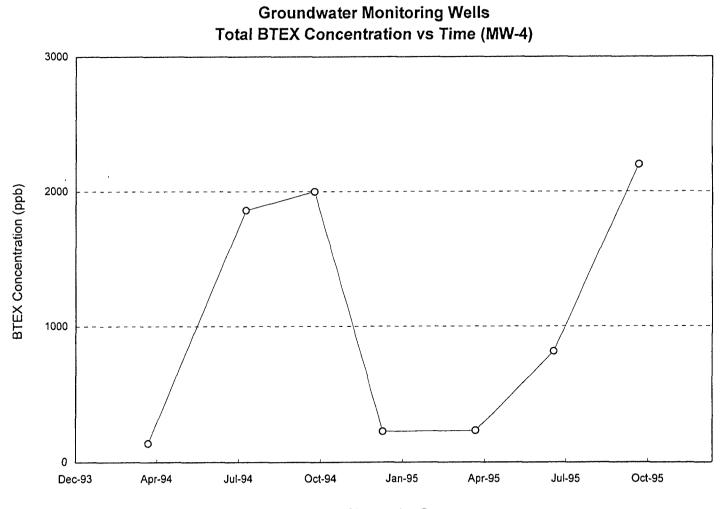
1. International Boundary and Water Commission

2. W. Robertson Water Treatment Plant

TABLE 1

Quality Assurance Results

DUPLICATES CHOSEN BY BANKER	AVERAGE % DIFFERENCE	
Lab Duplicates	+ 10.0	
Site Duplicates	- 2.5	
DUPLICATES CHOSEN BY ANALYST	- 8.2	
SPLIT EXTRACTS	+ 0.5	
EXTRACT RE-ANALYSES	- 2.8	
STANDARDS AS UNKNOWNS	+ 1.0	


	AVERAGE % RECOVERY
SPIKED SAMPLES	97.8

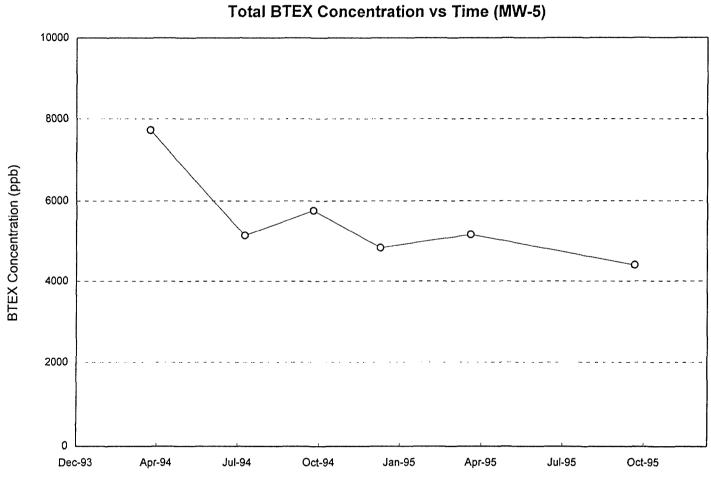
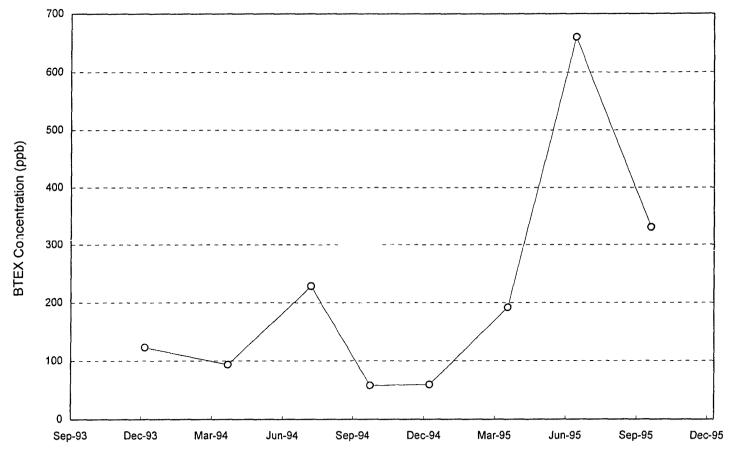
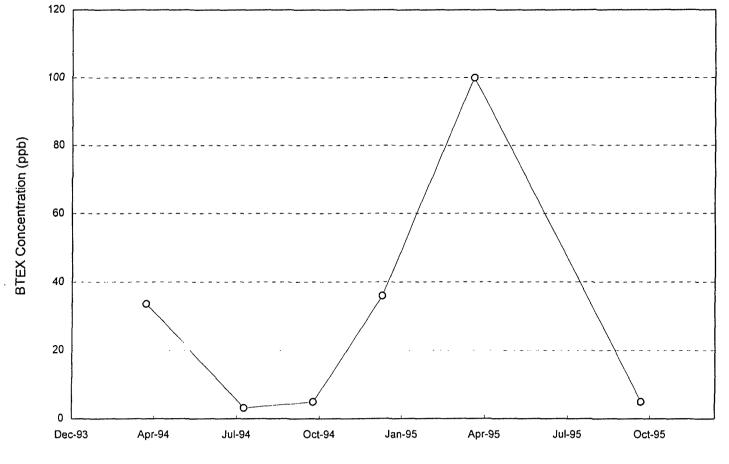

	AVERAGE % DISCREPANCY
AUDIT SAMPLES	+ 3.0

TABLE 2

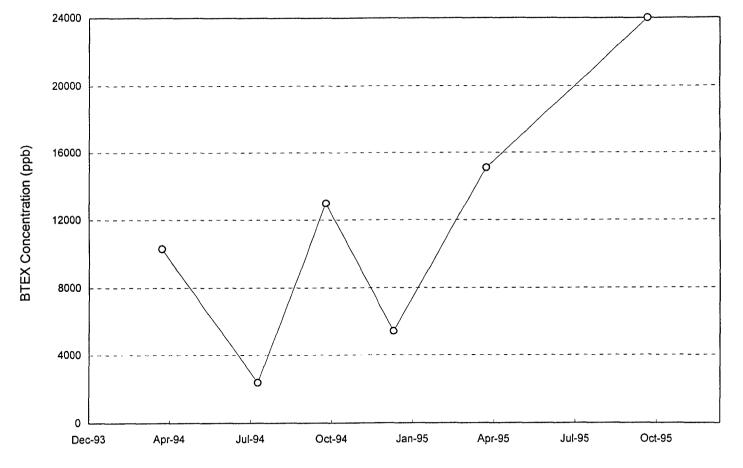
Appendix F

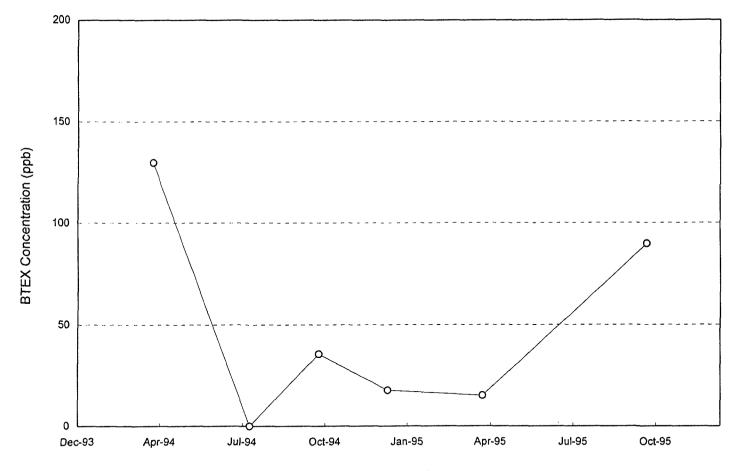
Total BTEX Concentration vs. Time for Selected Monitoring Wells

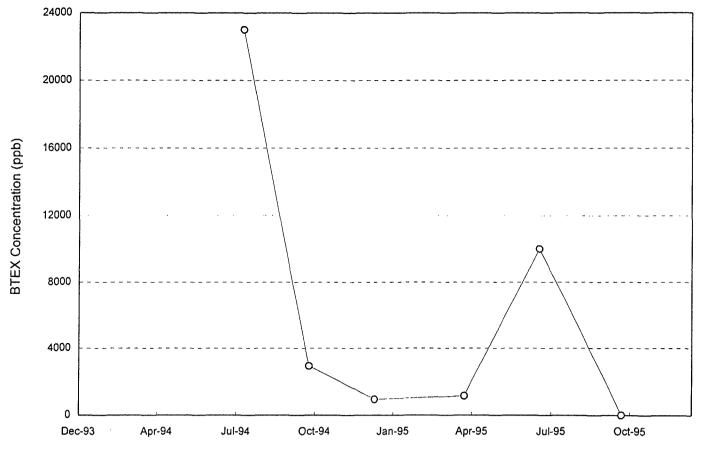


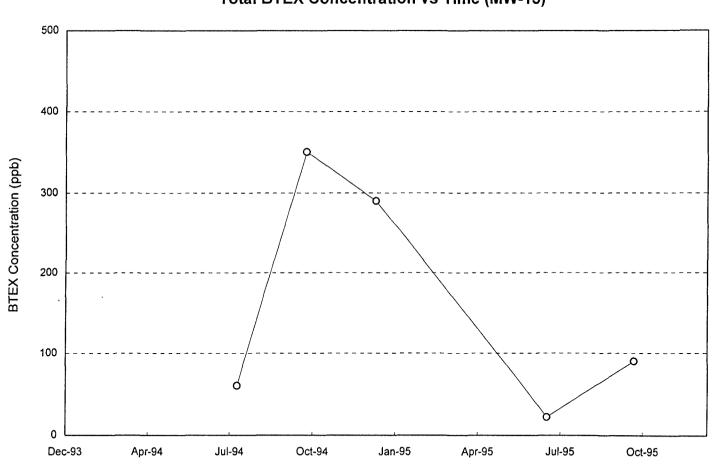

Groundwater Monitoring Wells Total BTEX Concentration vs Time (MW-5)

Observation Date

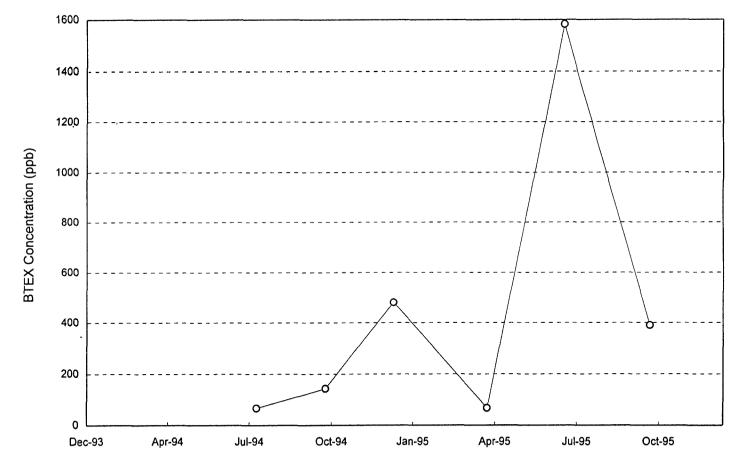








Groundwater Monitoring Wells Total BTEX Concentration vs Time (MW-14)


Observation Date

Groundwater Monitoring Wells Total BTEX Concentration vs Time (MW-15)

Observation Date

Appendix G

PAH Analytical Results for Monitoring Wells

Well ID	Analytes Detected	Results (μg/l)	Total PAH
MW-1	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-9S	ND	-	ND
MW-12	ND	-	ND

Groundwater Monitoring Wells PAH Analytical Results (μ g/L) from December 1993 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

MW-2, MW-4, MW-5, MW-6, MW-7, MW-8 and MW-11 were not sampled.

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND,ND	-	ND,ND
MW-5	1-Methylnaphthalene	79	107
	Naphthalene	28	
MW-6S	ND	-	ND
MW-7	ND	-	ND
MW-8	1-Methylnaphthalene	46	250
	2-Methylnaphthalene	64	
	Naphthalene	140	
MW-9S	ND	-	ND
MW-11	1-Methylnaphthalene	29	29
MW-12	ND	-	ND

Groundwater Monitoring Wells PAH Analytical Results (μg/L) from March 1994 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

MW-6D was not sampled for PAH.

G:\REXWORK\TABLES.XLS

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND	-	ND
MW-5	1-Methylnaphthalene	78	117
	2-Methylnaphthalene	12	
	Naphthalene	27	
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	Naphthalene	93	93
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-12	ND	-	ND
MW-14	1-Methylnaphthalene	160	570
	2-Methylnaphthalene	180	
	Naphthalene	230	
MW-15	1-Methylnaphthalene	61	117
	2-Methylnaphthalene	41	
	Naphthalene	15	
MW-16	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells PAH Analytical Results (µg/L) from June 1994 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

,

I.

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND	-	ND
MW-5	1-Methylnaphthalene	110	191
	2-Methylnaphthalene	32	
	Naphthalene	49	
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	1-Methylnaphthalene	61	366
	2-Methylnaphthalene	75	
	Naphthalene	230	
MW-9S	ND	-	ND
MW-11	Fluorene	12	233
	1-Methylnaphthalene	120	
	2-Methylnaphthalene	18	
	Naphthalene	35	
	Phenanthrene	32	
	Pyrene	16	
MW-12	ND	· -	ND
MW-14	1-Methylnaphthalene	26	40
	2-Methylnaphthalene	14	
MW-15	1-Methylnaphthalene	62	126
	2-Methylnaphthalene	11	
	Naphthalene	53	
MW-16	ND	-	ND
MW-17	1-Methylnaphthalene	20,14	58,37
	2-Methylnaphthalene	14,10	
	Naphthalene	24,13	

Groundwater Monitoring Wells PAH Analytical Results (µg/L) from September 1994 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

20,14 =Duplicate samples

G:\REXWORK\TABLES.XLS

I.

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND	-	ND
MW-5	1-Methylnaphthalene	71	139
	2-MethyInaphthalene	22	
	Naphthalene	46	
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	1-Methylnaphthalene	42	236
	2-Methylnaphthalene	54	
	Naphthalene	140	
MW-9S	ND	-	ND
MW-11	1-Methylnaphthalene	69	148
	Phenanthrene	21	
	Pyrene	58	
MW-12	ND	-	ND
MW-14	ND	-	ND
MW-15	1-Methylnaphthalene	47	84
	Naphthalene	37 .	
MW-16	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells PAH Analytical Results (μ g/L) from December 1994 Sampling Event

.

E

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-5	1-Methylnaphthalene	65	117
	2-Methylnaphthalene	15	
	Naphthalene	37	
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-8	1-Methylnaphthalene	50	180
	2-Methylnaphthalene	42	
	Naphthalene	88	
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-14	ND	-	ND
MW-15	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells PAH Analytical Results (μg/L) from March 1995 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

MW-1, MW-2, MW-4, MW-7, MW-12 and MW-16 were not sampled for PAH.

G:\REXWORK\TABLES.XLS

i

į.

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-6S	Naphthalene	15	15
	Naphthalene	10	10
MW-6D	ND	-	ND
MW-9S	ND	-	ND
MW-14	1-Methylnaphthalene	12	12
MW-15	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells PAH Analytical Results (μg/L) from June 1995 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

MW-1, MW-2, MW-4, MW-5, MW-7, MW-8, MW-11, MW-12 and MW-16 were not sampled for PAH.

G:\REXWORK\TABLES.XLS

ł

Well ID	Analytes Detected	Results (µg/l)	Total PAH
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-5	ND	-	ND
MW-6S	ND	_	ND
MW-6D	ND	-	ND
MW-8	Naphthalene	140	140
MW-9S	ND	-	ND
MW-11	1-Methylnaphthalene	140	140
MW-14	ND	-	ND
MW-15	ND	-	ND
MW-17	ND		ND

Groundwater Monitoring Wells PAH Analytical Results (μ g/L) from September 1995 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

.

MW-1, MW-2, MW-4, MW-7, MW-12 and MW-16 were not sampled for PAH.

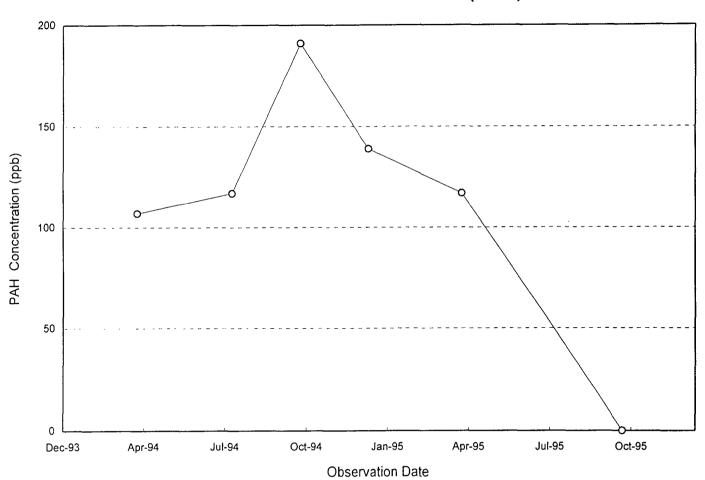
Analyte	Detection Limits(µg/L)
Acenaphthene	10
Acenaphthylene	10
Anthracene	10
Benzo(a)anthracene	10
Benzo(b)fluoranthene	10
Benzo(k)fluoranthene	10
Benzo(g,h,i)perylene	10
Benzo(a)pyrene	10
Chrysene	10
Dibenzo(a,h)anthracene	10
Fluoranthene	10
Fluorene	10
Indeno(1,2,3-cd)pyrene	10
1-Methylnaphthalene	10
2-Methylnaphthalene	10
Naphthalene	10
Phenanthrene	10
Pyrene	10

Brickland Refinery Site PAH Sample Analytes and Detection Limits for EPA Method 8270

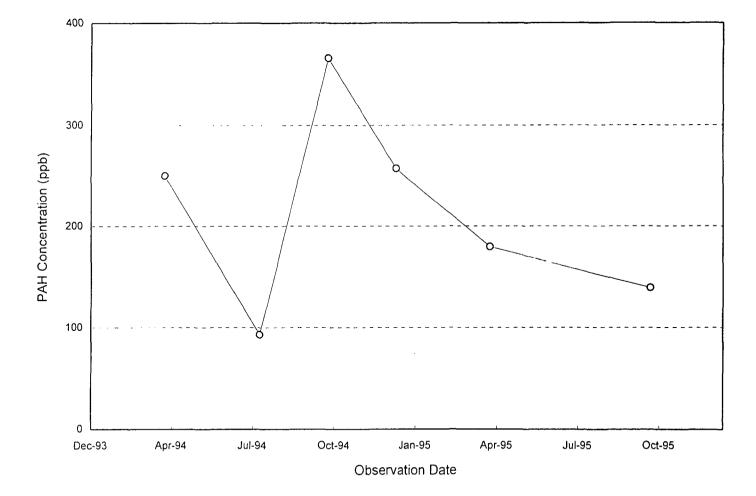
Note: $\mu g/L =$ Micrograms per liter

•

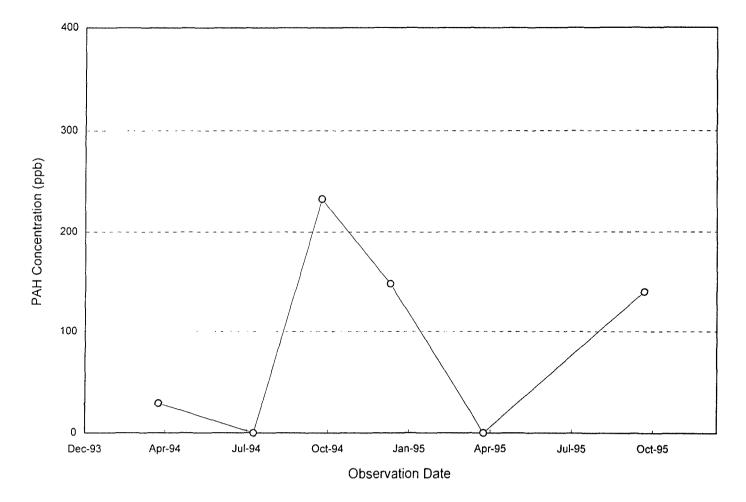
G:\REXWORK\TABLES.XLS

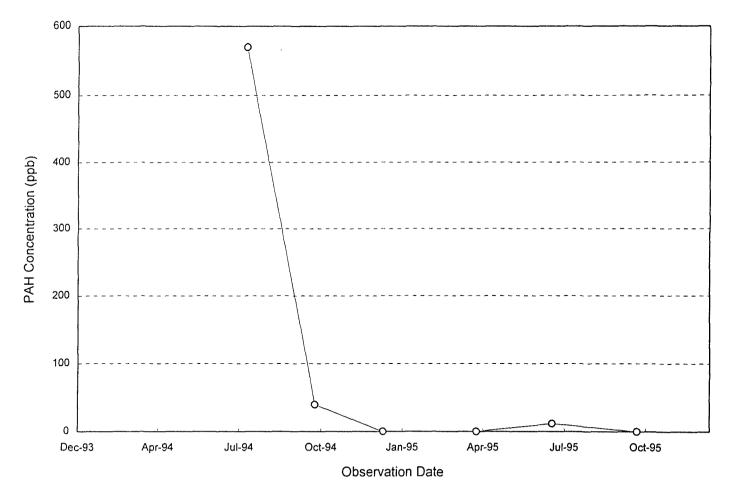

.

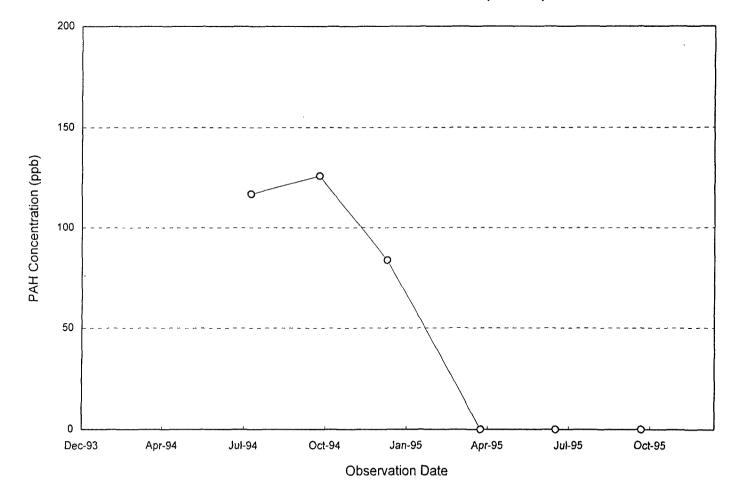
ļ


Appendix H

Total PAH Concentration vs. Time for Selected Monitoring Wells




Groundwater Monitoring Wells Total PAH Concentration vs. Time (MW-5)


Groundwater Monitoring Wells Total PAH Concentration vs. Time (MW-11)

Groundwater Monitoring Wells Total PAH Concentration vs. Time (MW-14)

Groundwater Monitoring Wells Total PAH Concentration vs. Time (MW-15)

Appendix I

i.

ļ

Phenols Analytical Results for Monitoring Wells

Well ID	Analytes Detected	Results (µg/l)	Total Phenols
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND,ND	-	ND,ND
MW-5	2,4-Dimethylphenol	16	16
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	2,4-Dimethylphenol	96	96
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-12	ND	-	ND

 $Groundwater\ Monitoring\ Wells \\ Phenols\ Analytical\ Results\ (\mu g/L)\ from\ March\ 1994\ Sampling\ Event$

₽

Well ID	Analytes Detected	Results (µg/l)	Total Phenols
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND	-	ND
MW-5	ND	-	ND
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	2,4-Dimethylphenol	56	166
	Phenol	110	
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-12	ND	-	ND
MW-14	Phenol	300	300
MW-15	ND	-	ND
MW-16	ND,ND	-	ND,ND
MW-17	ND	-	ND

Groundwater Monitoring Wells Phenols Analytical Results (μ g/L) from June 1994 Sampling Event

,

Į

İ

Well ID	Analytes Detected	Results (µg/l)	Total Phenols
MW-1	ND	_	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	ND	-	ND
MW-5	ND	-	ND
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	2,4-Dimethylphenol	110	110
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-12	ND	-	ND
MW-14	Phenol	20	20
MW-15	ND	-	ND
MW-16	ND	-	ND
MW-17	ND,ND		ND,ND

Groundwater Monitoring Wells Phenols Analytical Results (μ g/L) from September 1994 Sampling Event

G:\REXWORK\TABLES.XLS

Well ID	Analytes Detected	Results (µg/l)	• Total Phenols
MW-1	ND	-	ND
MW-2	ND	-	ND
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-4	Phenol	18	18
MW-5	ND	-	ND
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-7	ND	-	ND
MW-8	ND	-	ND
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-12	ND	-	ND
MW-14	Phenol	54	54
MW-15	ND	-	ND
MW-16	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells Phenols Analytical Results (μ g/L) from December 1994 Sampling Event

ł

Well ID	Analytes Detected	Results (µg/l)	Total Phenols
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-5	ND	-	ND
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-8	2,4-Dimethylphenol	87	87
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-14	Phenol	28	28
MW-15	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells Phenols Analytical Results (μ g/L) from March 1995 Sampling Event

MW-1, MW-2, MW-4, MW-7, MW-12 and MW-16 were not sampled for Phenols.

Well ID	Analytes Detected	Results (µg/l)	Total Phenols
MW-3S	ND		ND
MW-3D	ND	-	ND
MW-6S	ND	_	ND
MW-6D	ND	-	ND
MW-9S	ND	-	ND
MW-14	Phenol	19	19
MW-15	ND	-	ND
MW-17	ND	-	ND

Groundwater Monitoring Wells Phenols Analytical Results (μ g/L) from June 1995 Sampling Event

Note: $\mu g/L = Micrograms per liter$

ND = Not Detected

MW-1, MW-2, MW-4, MW-5, MW-7, MW-8, MW-11, MW-12 and MW-16 were not sampled for Phenols.

G:\REXWORK\TABLES.XLS

L

ł

I.

L

Well ID	Analytes Detected	Results (µg/l)	Total Phenols
MW-3S	ND	-	ND
MW-3D	ND	-	ND
MW-5	ND	-	ND
MW-6S	ND	-	ND
MW-6D	ND	-	ND
MW-8	ND	-	ND
MW-9S	ND	-	ND
MW-11	ND	-	ND
MW-14	ND	-	ND
MW-15	ND	-	ND
MW-17	ND	_	ND

Groundwater Monitoring Wells Phenols Analytical Results (μ g/L) from September 1995 Sampling Event

Note: $\mu g/L =$ Micrograms per liter

ND = Not Detected

MW-1, MW-2, MW-4, MW-7, MW-12 and MW-16 were not sampled for Phenols.

G:\REXWORK\TABLES.XLS

ŀ

i.

Analyte	Detection Limits (µg/L)
2,4,6-Trichlorophenol	10
2,4-Dichlorophenol	10
2,4-Dimethylphenol	10
2,4-Dinitrophenol	50
2-Chlorophenol	10
2-Nitrophenol	10
4,6-Dinitro-2-methylphenol	50
4-Chloro-3-methylphenol	10
4-Nitrophenol	50
Pentachlorophenol	50
Phenol	10

Brickland Refinery Site Phenols Sample Analytes and Detection Limits for EPA Method 8270

Note: $\mu g/L =$ Micrograms per liter

E

G:\REXWORK\TABLES.XLS

i.

1

Ļ

Appendix J

WQCC Metals and Inorganics Analytical Results

Well ID	Aluminum	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
NM WQCC Std.	5.0	0.1	1.0	0.01	ND	ND	1.0	1.0	ND	0.2	0.002	ND	0.2	ND	0.1	10.0
Detection Limit	0.05	0.05	0.01	0.005	0.01	0.03	0.01	0.03	0.05	0.01	0.0002	0.05	0.04	0.1	0.01	0.01
MW-1	NA	0.07	0.14	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-3S	NA	ND	0.08	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	0.1	ND	NA
MW-3D	NA	ND	0.04	ND	ND	ND	0.02	NA	ND	NA	ND	ND	0.04	0.1	ND	0.01
MW-6S	NA	ND	0.04	ND	ND	ND	0.02	NA	ND	NA	ND	ND	0.04	0.1	ND	0.01
MW-6D	NA	ND	0.05	0.029	ND	ND	0.02	NA	ND	NA	ND	ND	0.04	ND	ND	0.02
MW-9S	NA	ND	0.07	0.014	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	0.01
MW-12	NA	ND	0.04	0.005	ND	ND	ND	NA	ND	NA	ND	ND	0.05	ND	0.03	ND

Groundwater Monitoring Wells WQCC Metals Analytical Results (mg/L) from December 1993 Sampling Event

NA = Not Analyzed

mg/L = Milligrams per liter

MW-2, MW-4, MW-5, MW-7, MW-8 and MW-11 were not sampled.

G:\REXWORK\TABLES.XLS

Well ID	Aluminum	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
NM WQCC Std.	5.0	0.1	1.0	0.01	0.05	0.05	1.0	1.0	0.05	0.2	0.002	1.0	0.2	0.05	0.05	10.0
Detection Limit	0.05	0.05	0.01	0.005	0.01	0.03	0.01	0.03	0.05	0.01	0.0002	0.05	0.04	0.1	0.01	0.01
MW-1	NA	0.07	0.11	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-2	NA	ND	0.01	ND	0.01	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-3S	NA	ND	0.08	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-3D	NA	ND	0.04	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-4	NA	0.07	0.05	ND	0.01	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
	NA	ND	0.05	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-5	NA	ND	0.31	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	0.1	ND	ND
MW-6S	NA	0.27	1.07	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-6D	NA	ND	0.02	ND	ND	ND	ND	NA	ND	NA	ND	ND	0.04	ND	ND	ND
MW-7	NA	0.08	0.22	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	0.01
MW-8	NA	0.22	0.52	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	0.2	ND	0.01
MW-9S	NA	ND	0.04	ND	ND	ND	ND	NA	ND	NA	0.0002	ND	ND	ND	ND	ND
MW-11	NA	0.1	1.0	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
MW-12	NA	0.08	0.03	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	0.2	ND	0.02

Groundwater Monitoring Wells WQCC Metals Analytical Results (mg/L) from March 1994 Sampling Event

NA = Not Analyzed

mg/L = Milligrams per liter

ŀ

İ.

Well ID	Aluminum	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
NM WQCC Std.	5.0	0.1	1.0	0.01	0.05	0.05	1.0	1.0	0.05	0.2	0.002	1.0	0.2	0.05	0.05	10.0
Detection Limit	0.05	0.05	0.01	0.005	0.01	0.03	0.01	0.03	0.05	0.01	0.0002	0.05	0.04	0.1	0.01	0.01
MW-1	1.2	ND	0.18	ND	ND	ND	0.01	1.96	ND	1.42	ND	ND	ND	ND	ND	0.01
MW-2	ND	ND	ND	ND	ND	ND	ND	1.83	ND	7.47	ND	ND	ND	ND	ND	ND
MW-3S	2.32	ND	0.13	ND	ND	ND	0.01	3.91	ND	1.12	ND	ND	ND	ND	ND	0.09
MW-3D	0.23	ND	0.04	ND	ND	ND	ND	2.41	ND	3.25	ND	ND	ND	ND	ND	ND
MW-4	ND	ND	0.2	ND	ND	ND	ND	1.78	ND	3.21	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	0.25	ND	ND	ND	ND	0.06	ND	0.01	ND	ND	ND	ND	ND	ND
MW-6S	0.08	0.08	1.16	ND	ND	ND	ND	4.78	ND	1.08	ND	ND	ND	ND	ND	ND
MW-6D	0.06	ND	0.03	ND	ND	ND	ND	1.30	ND	4.20	ND	ND	ND	ND	ND	ND
MW-7	0.07	ND	0.35	ND	ND	ND	ND	1.92	ND	0.80	ND	ND	ND	ND	0.01	ND
MW-8	0.12	0.08	0.70	ND	ND	ND	0.01	5.79	ND	0.23	ND	ND	ND	ND	ND	0.02
MW-9S	ND	ND	0.04	ND	ND	ND	ND	4.80	ND	3.20	ND	ND	ND	ND	ND	ND
MW-11	0.10	0.07	1.10	0.009	ND	ND	0.01	4.68	ND	0.67	ND	ND	ND	ND	0.01	0.01
MW-12	ND	ND	0.02	ND	ND	ND	ND	3.89	ND	5.90	ND	ND	ND	ND	ND	0.01
MW-14	ND	0.05	0.67	ND	ND	ND	ND	4.78	ND	4.13	ND	ND	0.07	ND	ND	ND
MW-15	0.32	ND	0.28	ND	ND	ND	ND	0.52	ND	1.06	ND	ND	ND	ND	ND	ND
MW-16	ND	ND	0.31	ND	ND	ND	ND	ND	ND	2.77	ND	ND	ND	ND	ND	ND
MW-17	0.05	ND	1.24	ND	ND	ND	ND	0.21	ND	3.16	ND	ND	0.05	ND	ND	ND

Groundwater Monitoring Wells WQCC Metals Analytical Results (mg/L) from June 1994 Sampling Event

mg/L = Milligrams per liter

Well ID	Aluminum	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
NM WQCC Std.	5.0	0.1	1.0	0.01	0.05	0.05	1.0	1.0	0.05	0.2	0.002	1.0	0.2	0.05	0.05	10.0
Detection Limit	0.05	0.05	0.01	0.005	0.01	0.03	0.01	0.03	0.05	0.01	0.0002	0.05	0.04	0.1	0.01	0.01
MW-1	0.11	ND	0.13	ND	ND	ND	ND	0.08	ND	1.12	ND	ND	ND	0.1	ND	ND
MW-2	0.12	0.05	0.03	ND	ND	ND	ND	0.05	ND	8.07	ND	ND	ND	ND	ND	0.03
MW-3S	0.19	0.08	0.08	ND	ND	ND	ND	0.16	ND	0.51	ND	ND	ND	ND	ND	ND
MW-3D	0.1	ND	0.06	ND	ND	ND	ND	0.1	ND	2.75	ND	ND	ND	ND	0.01	0.02
MW-4	0.11	0.11	0.39	ND	ND	ND	ND	0.86	ND	3.21	ND	ND	ND	ND	ND	0.01
MW-5	0.12	0.08	0.18	ND	ND	ND	ND	0.17	ND	0.03	ND	ND	ND	ND	ND	0.02
MW-6S	0.1	0.48	0.98	ND	ND	ND	ND	4.68	ND	0.59	0.0003	ND	ND	ND	0.01	0.02
MW-6D	0.09	ND	0.05	ND	ND	ND	ND	0.28	ND	3.1	ND	ND	ND	ND	ND	0.02
MW-7	0.11	0.28	0.36	ND	ND	ND	ND	0.97	ND	0.87	0.0005	ND	ND	ND	ND	ND
MW-8	0.21	0.18	0.74	ND	ND	ND	0.01	5.1	ND	0.18	ND	ND	ND	ND	0.01	0.03
MW-9S	0.12	ND	0.06	0.006	ND	ND	ND	4.66	ND	3.11	ND	ND	ND	ND	0.01	0.01
MW-11	0.12	0.15	1.03	0.009	ND	ND	ND	4.27	ND	0.75	0.0003	ND	ND	ND	ND	0.01
MW-12	0.23	ND	0.11	0.009	0.05	ND	0.01	5.85	ND	10.8	ND	0.05	ND	0.4	0.03	0.04
MW-14	0.2	0.17	0.78	ND	ND	ND	ND	13.1	ND	7.59	0.0009	ND	ND	ND	0.02	0.02
MW-15	0.42	0.14	0.78	ND	ND	ND	ND	2.33	ND	2.9	ND	ND	ND	ND	0.02	0.01
MW-16	0.12	0.05	0.09	ND	ND	ND	ND	2.05	ND	5.21	ND	ND	0.06	ND	ND	0.02
MW-17	0.22	0.16	2.11	ND	ND	0.03	ND	9.7	ND	8.48	ND	ND	ND	ND	0.02	0.02
L	0.20	0.44	1.81	ND	0.01	0.03	0.01	9.41	ND	7.64	ND	ND	ND	0.01	0.02	0.02

Groundwater Monitoring Wells WQCC Metals Analytical Results (mg/L) from September 1994 Sampling Event

Note: ND = Not Detected

· -----

mg/L = Milligrams per liter

: : .

Well ID	Aluminum	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
NM WQCC Std.	5.0	0.1	1.0	0.01	0.05	0.05	1.0	1.0	0.05	0.2	0.002	1.0	0.2	0.05	0.05	10.0
Detection Limit	0.05	0.05	0.01	0.005	0.01	0.03	0.01	0.03	0.05	0.01	0.0002	0.05	0.04	0.1	0.01	0.01
MW-1	0.10	ND	0.12	ND	ND	ND	0.02	0.03	ND	0.21	0.0002	ND	ND	ND	ND	ND
MW-2	ND	ND	ND	ND	ND	ND	0.01	0.18	ND	1.95	ND	ND	ND	ND	ND	ND
MW-3S	0.13	ND	0.08	ND	ND	ND	0.01	0.12	ND	0.06	ND	ND	ND	ND	ND	ND
MW-3D	0.09	ND	0.04	0.006	ND	ND	0.01	0.08	ND	1.27	ND	ND	ND	ND	ND	ND
MW-4	0.12	ND	0.17	ND	ND	ND	ND	1.99	ND	2.43	ND	ND	ND	ND	ND	ND
MW-5	0.06	0.13	0.22	ND	ND	ND	ND	0.09	ND	0.03	ND	ND	ND	ND	ND	ND
MW-6S	0.08	0.08	0.73	ND	ND	ND	ND	1.88	ND	0.46	ND	ND	ND	ND	ND	0.01
MW-6D	0.07	ND	0.03	ND	ND	ND	0.01	0.11	ND	2.19	ND	ND	ND	ND	ND	ND
MW-7	0.10	ND	0.41	ND	ND	ND	ND	0.45	ND	0.64	0.0006	ND	ND	ND	ND	ND
MW-8	0.19	0.14	0.68	ND	ND	ND	0.02	2.06	ND	0.18	ND	ND	ND	ND	ND	ND
MW-9S	0.06	ND	0.04	0.005	ND	ND	ND	2.25	ND	2.30	ND	ND	ND	ND	ND	ND
MW-11	0.09	0.05	0.84	ND	ND	ND	ND	1.58	ND	0.51	ND	ND	ND	ND	ND	ND
MW-12	0.08	ND	0.03	ND	ND	ND	0.02	1.10	ND	6.18	ND	ND	ND	ND	ND	ND
MW-14	0.08	ND	0.22	ND	ND	ND	ND	10.3	ND	5.46	0.0024	ND	ND	ND	ND	ND
MW-15	0.36	ND	0.38	ND	ND	ND	ND	3.69	ND	1.66	ND	ND	ND	ND	0.09	ND
MW-16	0.11	ND	0.07	ND	ND	ND	ND	1.70	ND	4.15	ND	ND	0.05	ND	ND	ND
MW-17	0.10	ND	0.42	ND	ND	ND	ND	8.47	ND	3.37	ND	ND	ND	ND	ND	ND

Groundwater Monitoring Wells WQCC Metals Analytical Results (mg/L) from December 1994 Sampling Event

mg/L = Milligrams per liter

i I

Well ID	Aluminum	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
NM WQCC Std.	5.0	0.1	1.0	0.01	0.05	0.05	1.0	1.0	0.05	0.2	0.002	1.0	0.2	0.05	0.05	10.0
Detection Limit	0.05	0.05	0.01	0.005	0.01	0.03	0.01	0.03	0.05	0.01	0.0002	0.05	0.04	0.1	0.01	0.01
MW-14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA

Groundwater Monitoring Wells WQCC Metals Analytical Results (mg/L) from September 1995 Sampling Event

mg/L = Milligrams per liter

Only MW-14 was sampled for metals.

G:\REXWORK\TABLES.XLS

Well ID	Calcium	Magnesium	Potassium	Sodium	Bicarbonate	Chloride	Nitrate (N)	Sulfate
NM WQCC Std.	None	None	None	None	None	250	10	600
Detection Limit	1.0	0.1	0.1	5.0	5.0	25	0.1	50
MW-1	109	27.2	14	175	456	133	ND	123
MW-2	1130	401	72	3750	728	5680	ND	2280
MW-3S	143	70.6	13.3	1390	624	2030	ND	720
MW-3D	473	246	36	3830	468	4720	ND	2630
MW-4	740	262	57	2920	924	4010	ND	1820
	755	247	69	2930	908	4330	ND	2100
MW-5	402	180	24.2	2880	1860	5280	ND	505
MW-6S	244	104	19.4	1550	1690	5280	ND	505
MW-6D	510	218	25	3520	475	5600	ND	2360
MW-7	300	72.3	22.1	1620	1320	2220	ND	755
MW-8	46.5	33.9	10.2	1560	2680	1210	ND	20
MW-9S	305	104	13.7	1450	628	1280	ND	1800
MW-11	79	62.3	18.3	1050	1620	959	0.2	ND
MW-12	1380	495	55	4340	532	8260	ND	1920

Groundwater Monitoring Wells Major Cations/Anions Analytical Results (mg/L) from March 1994 Sampling Event

mg/L = Milligrams per liter

Well ID	Calcium	Magnesium	Potassium	Sodium	Bicarbonate	Chloride	Nitrate (N)	Sulfate
NM WQCC Std.	None	None	None	None	None	250	10	600
Detection Limit	1.0	0.1	0.1	5.0	5.0	25	0.1	50
MW-1	106	31.0	13.7	105	488	39.3	0.3	150
MW-2	1080	500	125	3040	769	6770	0.3	2790
MW-3S	157	75.9	28	1040	756	2630	0.4	1010
MW-3D	460	220	61	2760	473	6560	0.1	2550
MW-4	430	217	66	2050	1350	4300	2.8	932
MW-5	500	160	58	2230	1710	5450	0.3	962
MW-6S	259	101	40	1120	2020	2090	0.4	84
MW-6D	530	188	62	3100	739	3990	10	2420
MW-7	248	66.8	37	710	1330	1210	0.3	575
MW-8	89.9	36.1	20.0	1150	2670	1380	0.5	60
MW-9S	245	87.3	27	1090	820	1350	1.4	2010
MW-11	116	69.5	29	820	1830	927	1.3	18
MW-12	910	380	76	3300	672	7200	0.2	2350
MW-14	165	81.3	11.4	730	1490	910	ND	200
MW-15	57.7	16.4	23	458	723	436	ND	294
MW-16	237	96.7	35	1500	1100	1910	ND	1510
	243	99.5	30	1490	1090	1870	ND	1780
MW-17	218	63.8	38	610	1100	1350	0.3	318

Groundwater Monitoring Wells Major Cations/Anions Analytical Results (mg/L) from June 1994 Sampling Event

Note: ND = Not Detectedmg/L = Milligrams per liter L

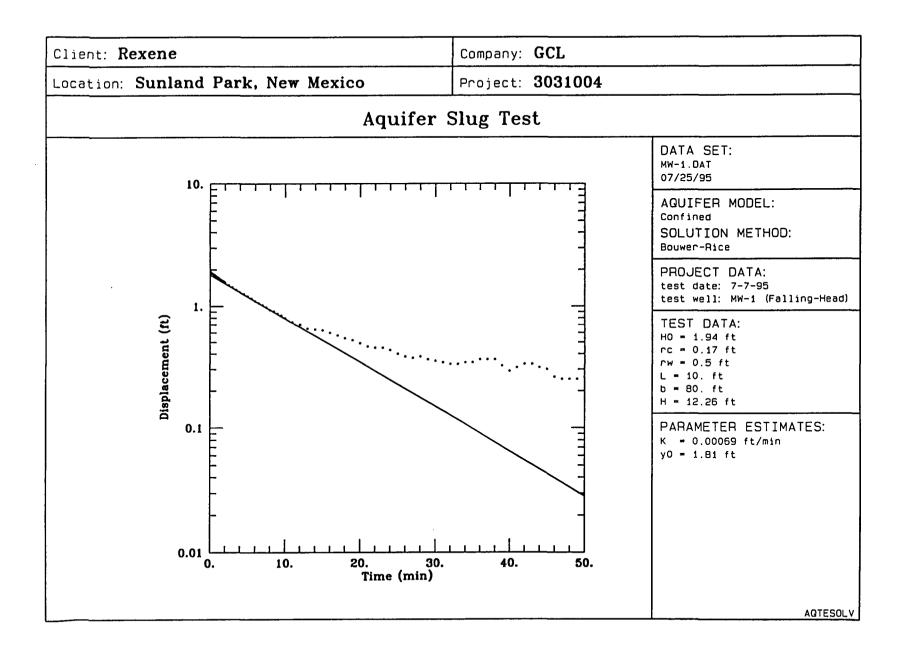
Well ID	Calcium	Magnesium	Potassium	Sodium	Bicarbonate	Chloride	Nitrate (N)	Sulfate
NM WQCC Std.	None	None	None	None	None	250	10	600
Detection Limit	1.0	0.1	0.1	5.0	5.0	25	0.1	50
MW-1	113	31.7	10.6	135	427	115	ND	136
MW-2	985	470	98	3140	671	9600	0.3	2440
MW-3S	97.3	41.9	8.6	1050	692	1240	0.1	620
MW-3D	396	224	21	3230	460	4750	ND	2330
MW-4	370	225	65	2340	1470	4360	0.4	364
MW-5	620	186	60	3040	1630	4310	ND	904
MW-6S	155	125	25	2980	2550	1650	ND	130
MW-6D	411	190	21	3270	506	5000	ND	2150
MW-7	320	73	41.5	1230	1300	1580	0.1	548
MW-8	47.2	38.2	29.8	1550	2930	1450	0.1	73
MW-9S	322	95.6	32	1510	830	1500	ND	1760
MW-11	201	72.2	39.4	950	2100	792	0.6	22
MW-12	1380	585	104	4100	512	8860	ND	2140
MW-14	625	154	42	1800	1160	3190	ND	986
MW-15	99.1	16.8	23.1	950	2420	442	0.2	142
MW-16	261	108	33.5	1510	1130	1950	0.9	2340
MW-17	241	77	36.4	136	1590	2110	0.1	239
	237	76.3	36.7	800	1650	1930	ND	198

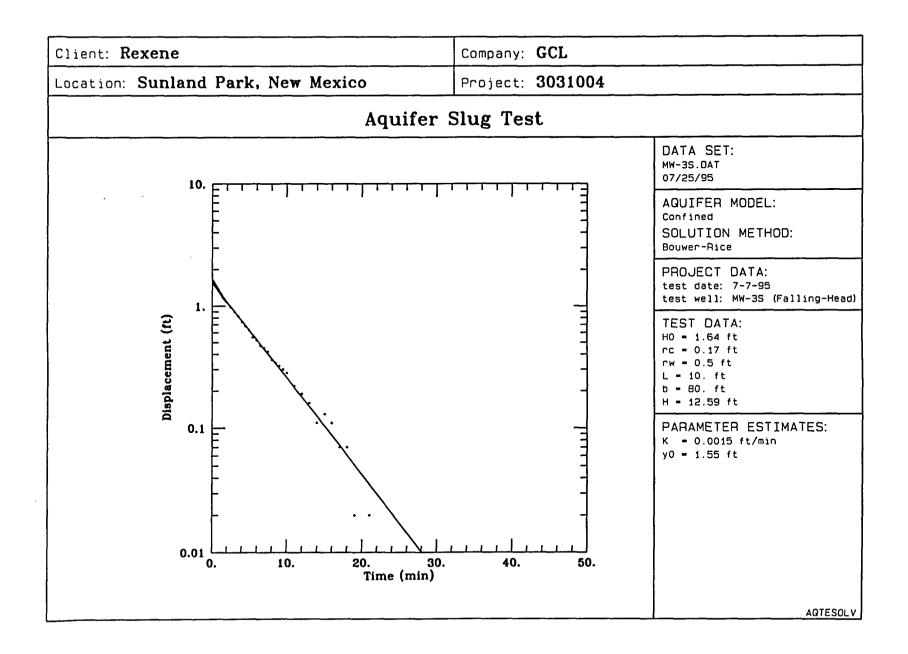
Groundwater Monitoring Wells Major Cations/Anions Analytical Results (mg/L) from September 1994 Sampling Event

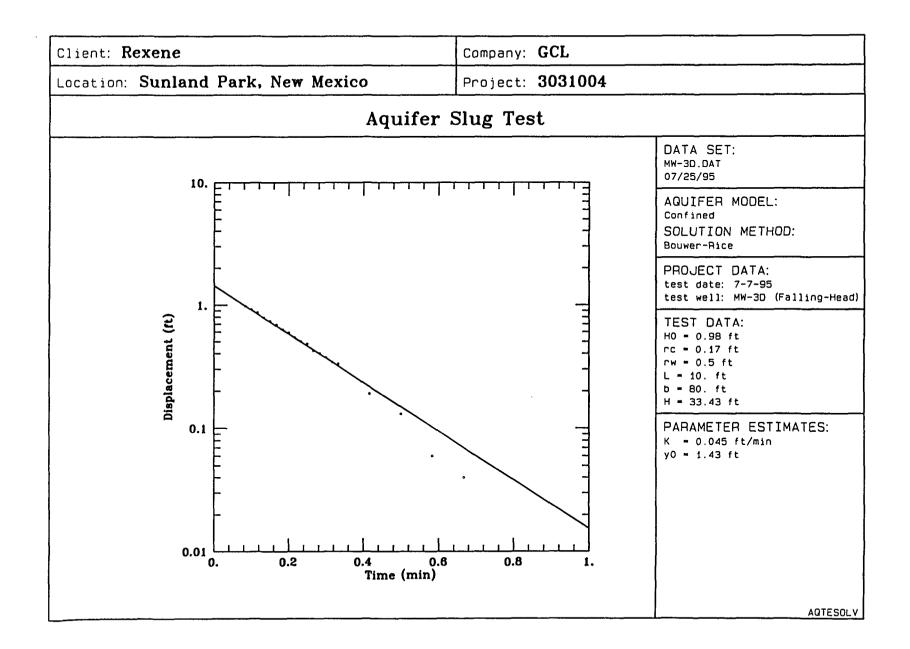
Note: ND = Not Detected mg/L = Milligrams per liter

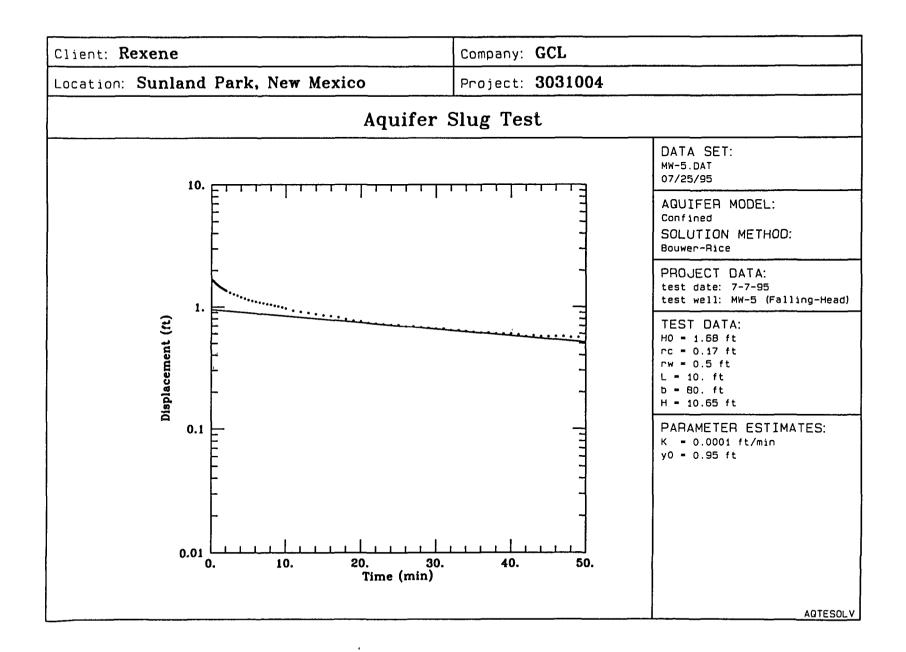
,

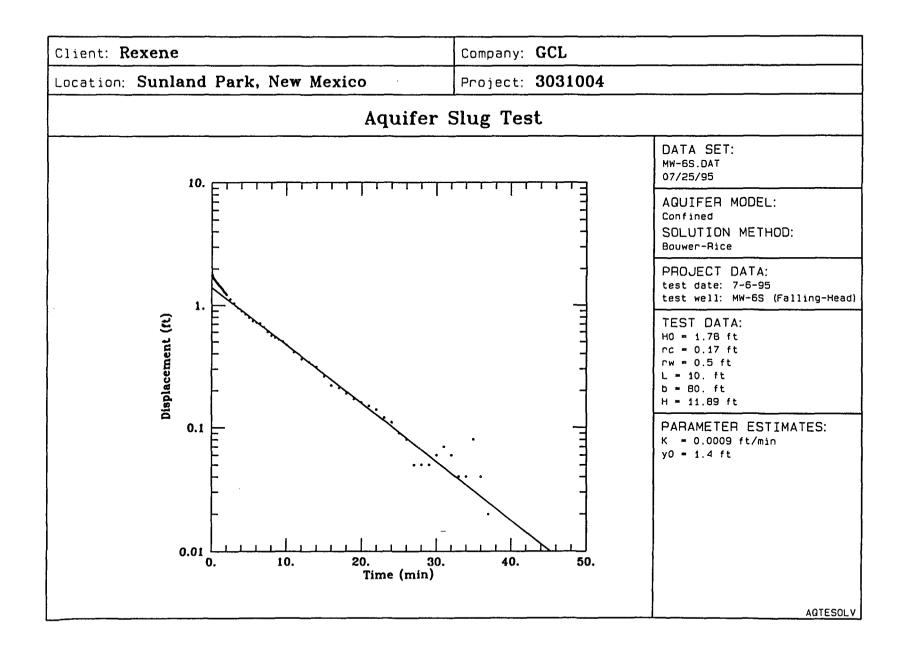
Well ID	Calcium	Magnesium	Potassium	Sodium	Bicarbonate	Chloride	Nitrate (N)	Sulfate
NM WQCC Std.	None	None	None	None	None	250	10	600
Detection Limit	1.0	0.1	0.1	5.0	5.0	25	0.1	50
MW-1	86.9	25.8	5.7	137	464	116	0.3	139
MW-2	950	391	37	3130	688	3240	0.3	2470
MW-3S	97.7	39.8	8.5	985	854	1250	0.3	573
MW-3D	367	207	17	3210	464	4800	0.7	2270
MW-4	298	219	27	2360	1020	4680	ND	3060
MW-5	503	184	21	3070	1830	2430	1.1	705
MW-6S	150	82.3	14	1840	2710	2180	ND	209
MW-6D	379	177	16	3410	525	5210	1	2490
MW-7	229	77.4	15	1100	1500	1570	5.1	333
MW-8	60	36.4	13.1	1870	2940	831	5.5	72
MW-9S	225	88.9	11	1520	866	1440	0.4	978
MW-11	93.4	60.8	12	985	1980	924	0.2	35
MW-12	975	366	27	4060	586	14000	3.1	2490
MW-14	413	154	19	1720	1510	2430	ND	1460
MW-15	68.5	18	11	1290	2700	379	0.2	92
MW-16	224	98.3	15	1870	1160	1980	ND	1840
MW-17	278	80	13	2090	1700	2430	ND	407

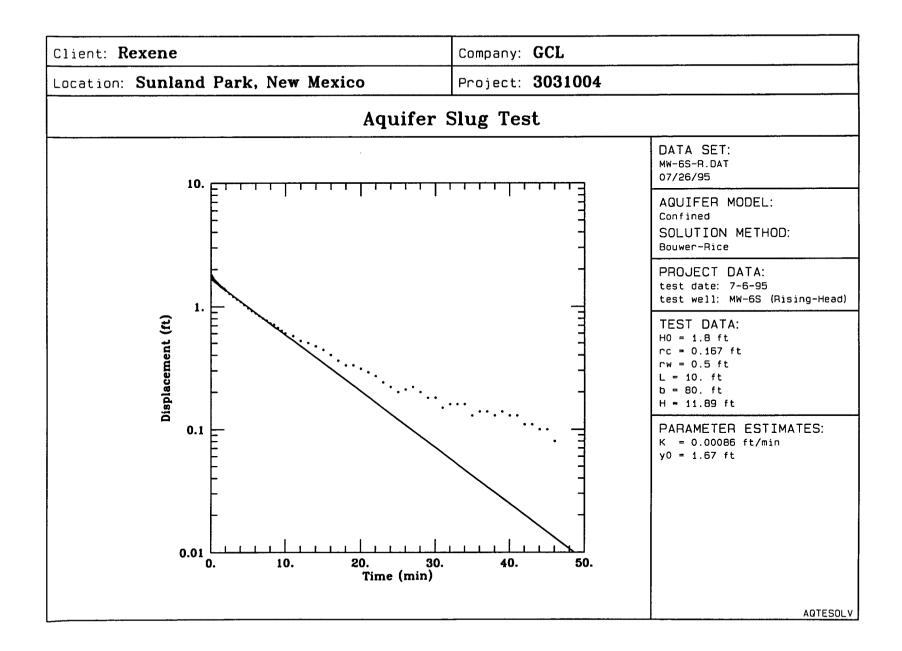

Groundwater Monitoring Wells Major Cations/Anions Analytical Results (mg/L) from December 1994 Sampling Event

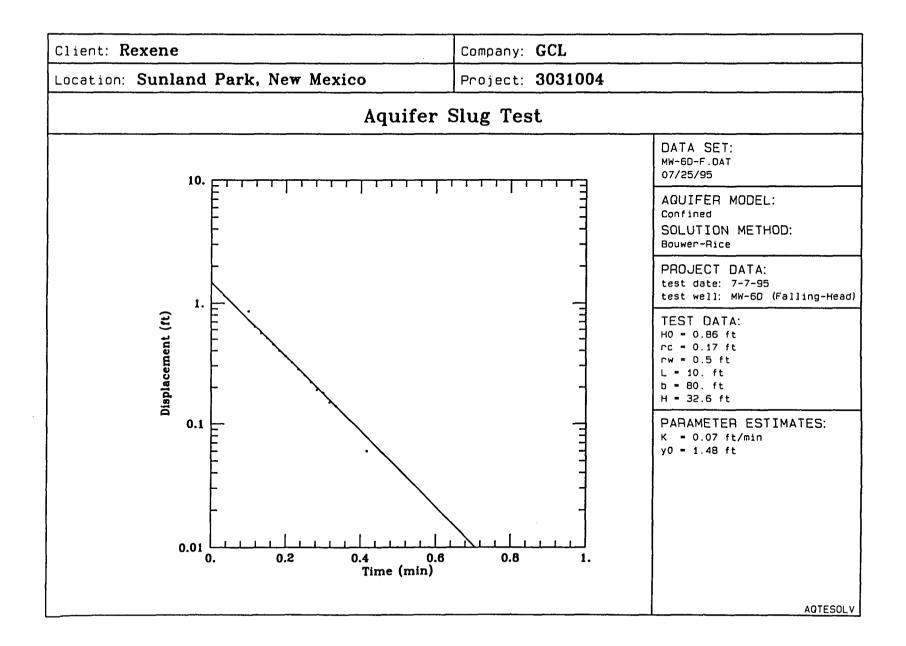

,

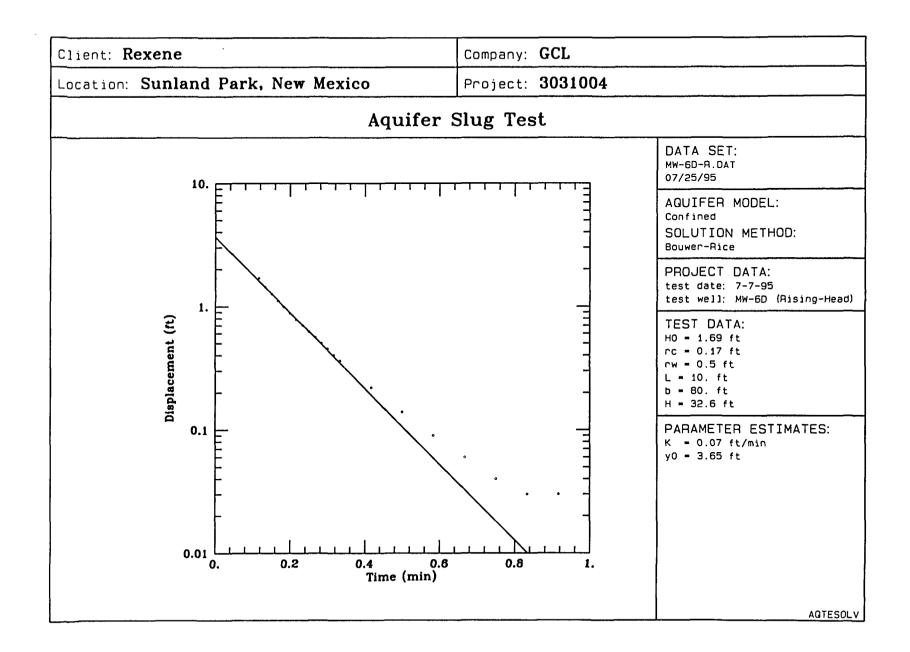

mg/L = Milligrams per liter

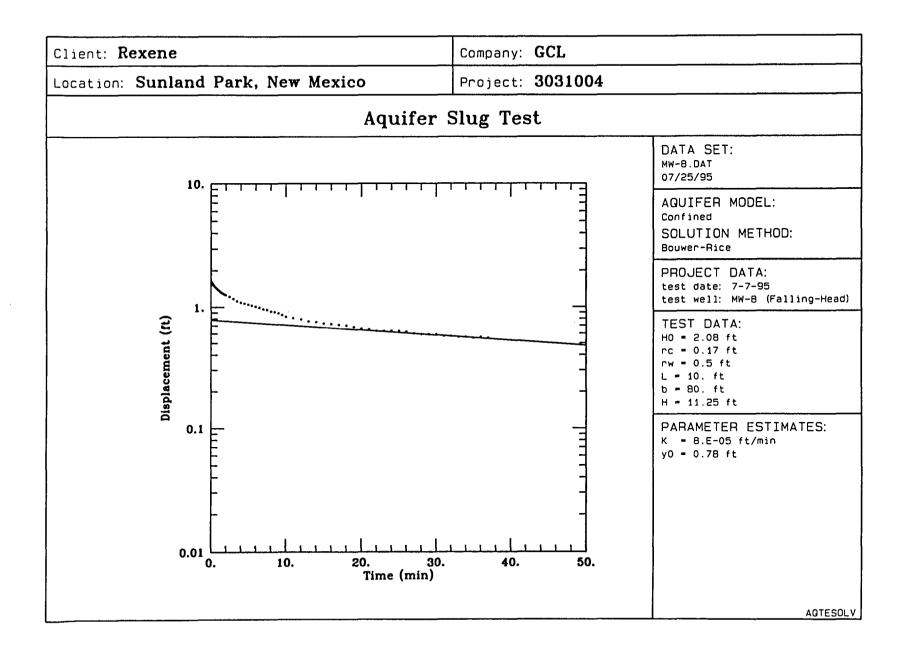

Appendix K

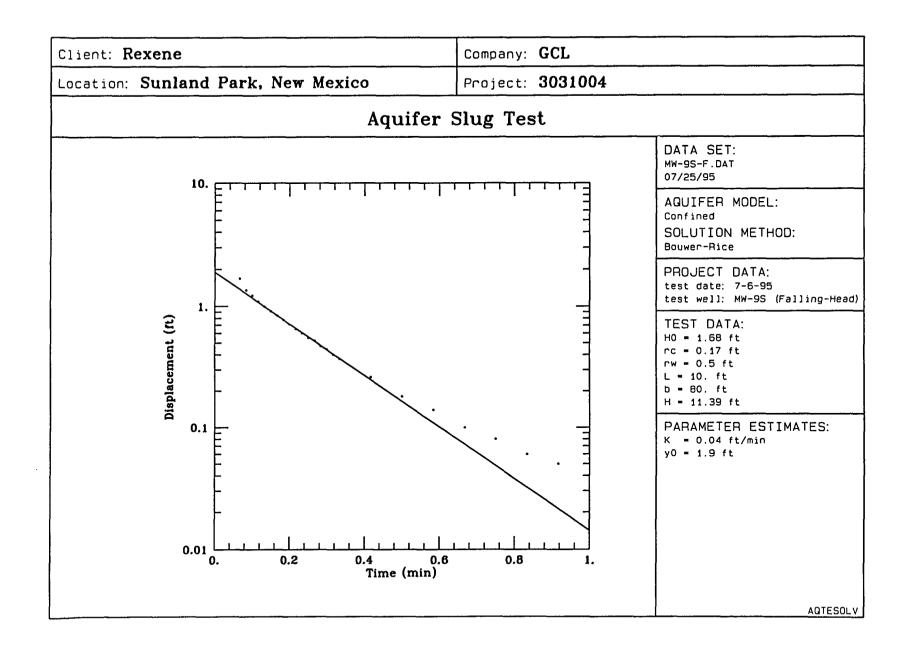

Slug Test Results

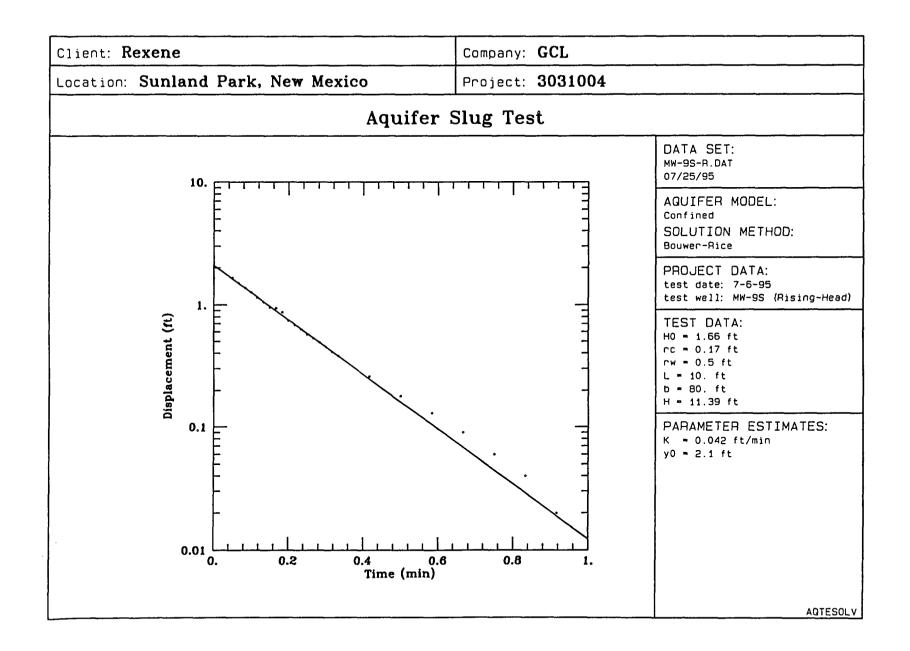


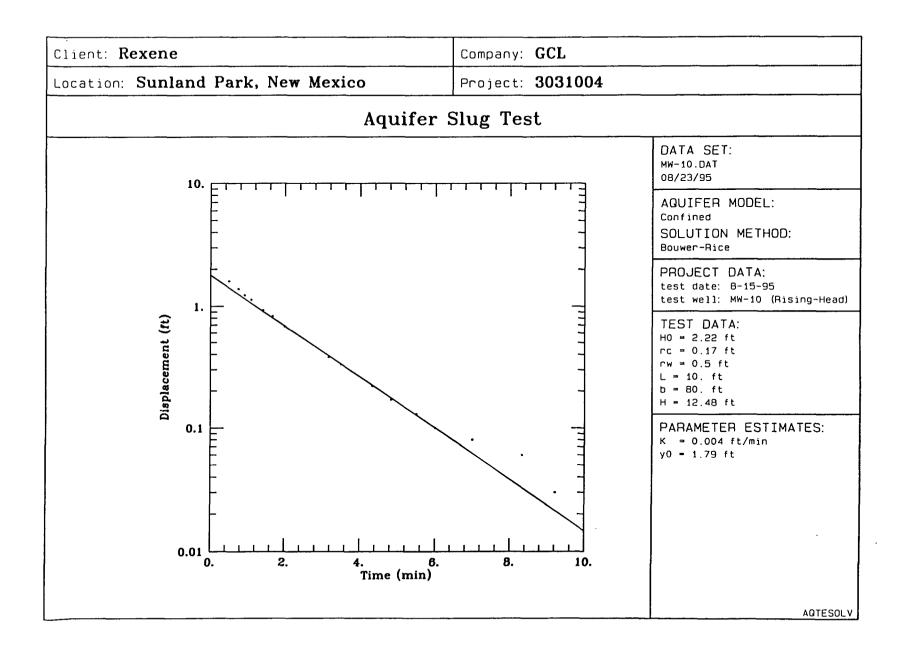


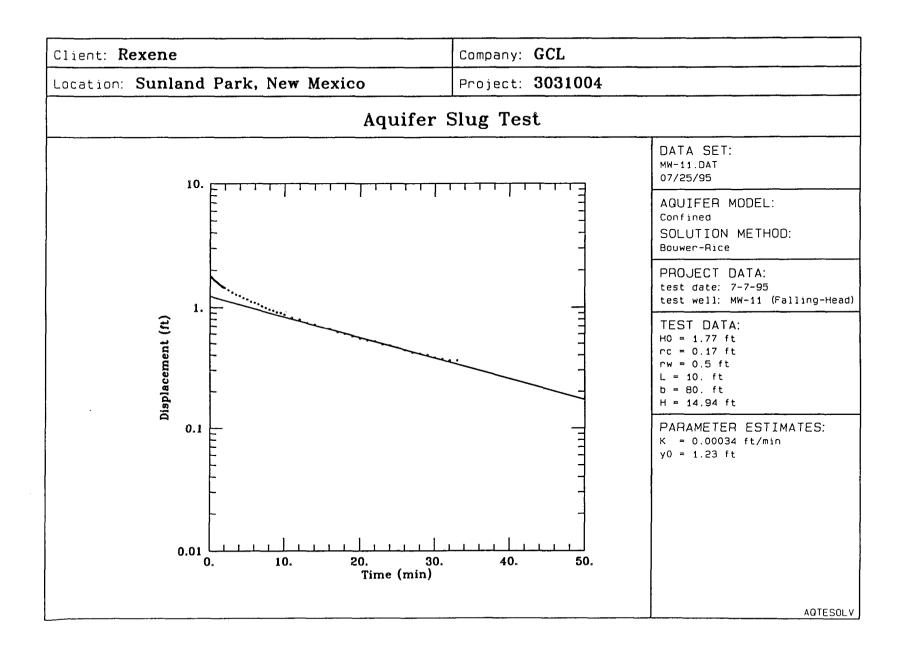












Appendix L

Groundwater Modeling Input/Output

I

| |-

ı.

l

* 2 * * INTERNATIONAL GROUND WATER MODELING CENTER *∶ * INDIANAPOLIS, INDIANA - DELFT, NETHERLANDS * * * SOLUTE 1-2-3 * * * * * ANALYTICAL MODELS FOR SOLUTE TRANSPORT * * 岽 PROJECT.... = USER NAME = DATE..... = 08 - 08 - 1995DATA FILE..... = d:\rexene\model\CASE2.DAT

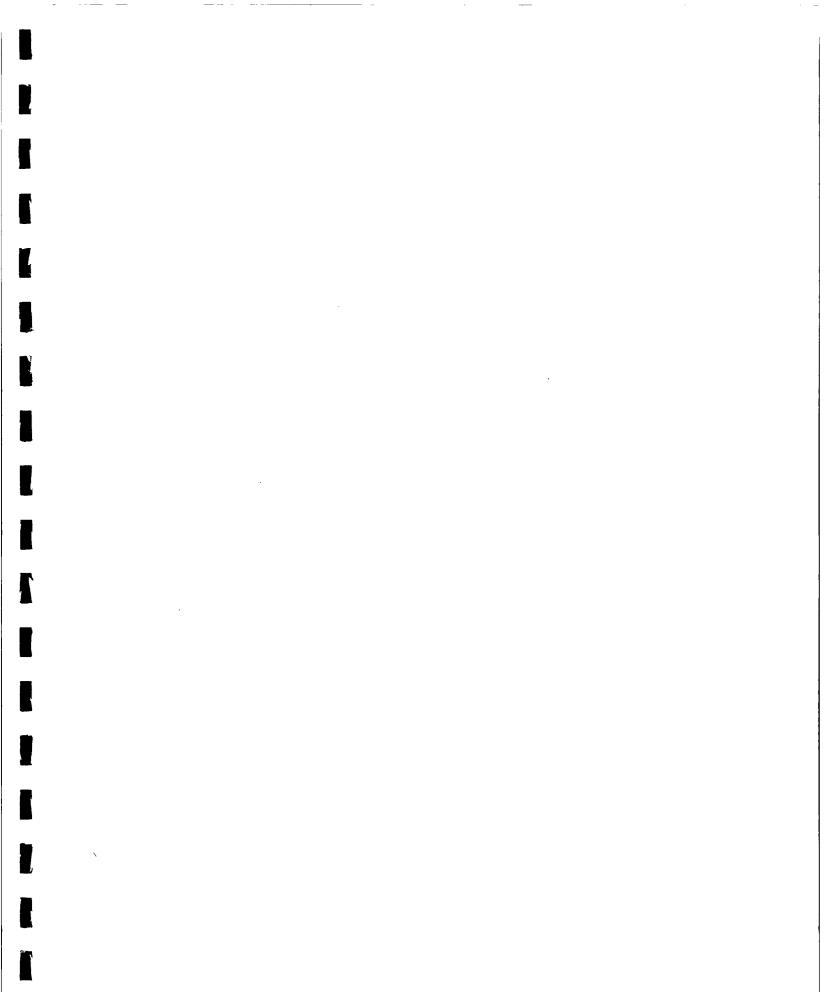
RAGE 1

INFUT DATA:

GROUNDWATER (SEEPAGE) VELOCITY =	.055 [ft/d]
AQUIFER THICKNESS =	15 [ft]
POROSITY =	.25
LONGITUDINAL DISPERSIVITY =	100 [ft]
LATERAL DISPERSIVITY =	10 [ft]
RETARDATION FACTOR =	1
HALF-LIFE =	0 [d]
NUMBER OF POINT SOURCES =	4

SOURCE NO. 1

المرجع والمحارية المحارية والخاط وأر


X-COORDINATE OF THE SOURCE	=	O [ft]
Y-COORDINATE OF THE SOURCE	=	200 [ft]
SOURCE STRENGTH	=	8.99999999999999990-03 [lb/d]
ELAPSED TIME	==	10950 [d]
SOURCE NO. 2		

X-COORDINATE OF THE SOURCE.... = 250 [ft] Y-COORDINATE OF THE SOURCE.... = 300 [ft] SOURCE STRENGTH..... = .025 [16/d] SOURCE NO. 3

X-COORDINATE OF THE SOURCE.... = 400 [ft] Y-COORDINATE OF THE SOURCE.... = 550 [ft] SOURCE STRENGTH..... = .017 [1b/d] ELAPSED TIME..... = 10950 [d] SOURCE NO. 4

X-COORDINATE	OF T	HE :	SOURCE	= 2	00 [ft]
Y-COORDINATE	OF T	HE :	SOURCE	1	00 [ft]
SOURCE STREN	STH			:== "	002 [15/d]
ELAPSED TIME	* * # # #		* * * * * * * * * * * * *	<u>≕ 1</u>	0950 [d]

	15	400.00 [ft]	3.1494	2.9164	2.6571	[2:3826]	2.1031
् 🖛	16	450.00 [ft]	2.9637	2,8052	2.6046	2.3753	2 1294
	· ** 17	500.00 [ft]	4.1014	3.7292	3:3558	2.9874	2.6297
	18	550.00 [ft]	4.9343	4.3469	3.8195	3.3390	2.8984
	19	600.00 [ft]	3.7536	3.3975	3.0461	2.7044	2.3762
	20	650.00 [ft]	1.9136	1.8267	1.7106	1.5740	1.4244
	21	700.00`[ft]	0.7548	0.7531	0.7339	0.6996	0.6532
	22	750.00 [ft]	0.2474	0.2543	0.2551	0.2499	0.2393
_	23	800.00 [ft]	0.0688	0.0721	0.0737	0.0736	0.0718
	24	850.00 [ft]	0.0162	0.0172	0.0178	0.0180	0.0179
	25	900.00 [ft]	0.0032	0.0035	0.0036	0.0037	0.0037

