

# Annual Report of Groundwater Monitoring and Remediation in 2019

Darr Angell #2 SRS LF 1999-62 SW1/4, SE1/4, Section 11, T15S, R37E and NW1/4, NE1/4, Section, 14 T15S, R37E, Lea County, New Mexico NMOCD AP-007

Plains All American Pipeline LP

ininin



## **Table of Contents**

| 1. | Introc              | Introduction                                        |     |  |  |  |  |  |
|----|---------------------|-----------------------------------------------------|-----|--|--|--|--|--|
|    | 1.1                 | Site History                                        | . 1 |  |  |  |  |  |
| 2. | Regu                | latory Framework                                    | . 2 |  |  |  |  |  |
| 3. | Grou                | Groundwater Monitoring                              |     |  |  |  |  |  |
|    | 3.1                 | Groundwater Monitoring Methodology                  | . 3 |  |  |  |  |  |
|    | 3.2                 | The Potentiometric Surface and Gradient             | . 3 |  |  |  |  |  |
|    | 3.3                 | Presence of Light Non-aqueous Phase Liquids (LNAPL) | . 4 |  |  |  |  |  |
|    | 3.4                 | Dissolved-phase Hydrocarbons in Groundwater         | . 4 |  |  |  |  |  |
| 4. | Corre               | ective Action                                       | . 5 |  |  |  |  |  |
| 5. | Summary of Findings |                                                     |     |  |  |  |  |  |
| 6. | Recommendations     |                                                     |     |  |  |  |  |  |

# **Figure Index**

| Figure 1  | Site Location Map                                                      |
|-----------|------------------------------------------------------------------------|
| Figure 2  | Site Details Map                                                       |
| Figure 3  | Map of the Potentiometric Surface—February 25, 2019                    |
| Figure 4  | Map of the Potentiometric Surface—May 20, 2019                         |
| Figure 5  | Map of the Potentiometric Surface—July 23, 2019                        |
| Figure 6  | Map of the Potentiometric Surface—October 22, 2019                     |
| Figure 7  | Dissolved BTEX in Groundwater—February 27, 2019                        |
| Figure 8  | Dissolved BTEX in Groundwater—May 21, 2019                             |
| Figure 9  | Dissolved BTEX in Groundwater—July 23, 2019                            |
| Figure 10 | Dissolved BTEX and PAH in Groundwater—October 22 and November 12, 2019 |

### Table Index

| Tables Embedded in Text |                                                                    |     |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------|-----|--|--|--|--|--|--|
| Table 2.1               | NMWQCC Human Health and Toxic Pollutant Standards                  | . 2 |  |  |  |  |  |  |
| Table 2.2               | Sampling Schedule Approved by NMOCD                                | . 2 |  |  |  |  |  |  |
| Tables Follo            | wing Text                                                          |     |  |  |  |  |  |  |
| Table 1                 | Summary of Fluid Level Measurements—2018 and 2019                  |     |  |  |  |  |  |  |
| Table 2                 | Summary of Analytical Results of BTEX in Groundwater—2018 and 2019 |     |  |  |  |  |  |  |
| Table 3                 | Summary of Analytical Results for PAH Compounds in Groundwater     |     |  |  |  |  |  |  |
|                         |                                                                    |     |  |  |  |  |  |  |



### **Appendix Index**

- Appendix A Charts of Thicknesses of LNAPL in Monitor and Recovery Wells vs. Time
- Appendix B Charts of Concentrations of Dissolved Benzene in Monitor and Recovery Wells vs. Time
- Appendix C Certified Laboratory Reports (not included in draft or printed reports)



### 1. Introduction

This Annual Report of Groundwater Monitoring and Remediation in 2019 presents data collected at the Darr Angell No. 2 site (hereafter referred to as the "Site") by GHD Services, Inc. (GHD) on behalf of Plains All American Pipeline, L.P. (Plains) in compliance with the New Mexico Oil Conservation Division (NMOCD) correspondence dated May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. This Site is part of NMOCD Abatement Plan number AP-007. This report presents results of quarterly gauging and sampling of monitor and recovery wells in February, May, July, and October. Remedial activities included recovery of LNAPL and impacted groundwater by total fluid pumps, soil vapor extraction, hand bailing, and enhanced fluid recovery (EFR).

The location of the Site is SW1/4, SE1/4, Section 11, Township 15 South, Range 37 East and NW1/4, NE1/4, Section 14, Township 15 South, Range 37 East. Latitude and longitude of the Site are 33.0242° North and 103.1667° West. Location of the Site is shown on a topographic map in Figure 1.

#### 1.1 Site History

The Site was formerly the responsibility of Enron Oil Trading and Transportation (EOTT); however, the Site is currently the responsibility of Plains. A pipeline release was discovered by EOTT employees and details were submitted on a Release Notification and Corrective Action Form (C-141) to the NMOCD on July 29, 1999. The C-141 reported the release 60 barrels (bbl.) of crude oil with no recovery. The release occurred from an 8 inch EOTT pipeline and was attributed to external pipeline corrosion.

Initial remediation activities began in August 1999 and consisted of 40 soil borings installed within and around the area of surface staining. In April and May 2000, a contractor for EOTT excavated the impacted area to approximately 4.5 feet below ground surface (bgs). Impacted soils were stockpiled on site. Excavation resumed in April and May 2001 with the additional removal of approximately 3,000 cubic yards of impacted soil. This material was added to soil previously stockpiled on site. Monitor wells MW-1 through MW-10 and recovery wells RW-1 through RW-7 were installed between April 2000 and December 2002. Partial backfilling of the open excavation was conducted subsequent to NMOCD approval of a backfill request, submitted on March 11, 2002. Backfill materials consisted of previously excavated caliche which had been separated from other excavated material by mechanical screening.

Approximately 3100 cubic yards of excavated soils were placed into a treatment area, which was 2-3 feet deep, in October 2003. Quarterly mechanical tilling of this stockpile occurred throughout 2004. Analytical results detailed in the Site Restoration Work Plan and Proposed Soil Closure Strategy of January 2006 indicated concentrations of total petroleum hydrocarbons (TPH) within the soil treatment cell were below NMOCD regulatory standards. In a letter from the NMOCD of April 5, 2006 Plains received approval to backfill the excavation at the Site. The excavation was backfilled with remediated soils contained in the soil treatment cell and contoured to grade in June 2006. A Soil Closure Request was submitted to the NMOCD. Plains received an email approving the soil closure request for the Darr No. 2 location on February 19, 2010.



Nova began managing activities at the Site on May 29, 2004. GHD began monitoring, operation, maintenance, and reporting at the Site on May 2, 2011.

There are 11 groundwater monitor wells (MW-1, MW-2, MW-3, MW-4R, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12) and 12 recovery wells (RW-1, RW-2, RW-3, RW-4, RW-5, RW-6, RW-7R, RW-8, RW-9, RW-10, RW-11, and RW-12) that were installed with NMOCD approval at the Site. Monitor well MW-5 was plugged and abandoned on September 14, 2005. Wells MW-4 and RW-7 were plugged and abandoned on October 7 and October 8, 2014, respectively. Monitor well MW-4R and recovery well RW-9 were installed on October 7, 2014. Recovery wells RW-7R, RW-8 and RW-10 were installed on October 8, 2014. Monitor well MW-12 and recovery wells RW-11 and RW-12 were installed on February 8, 2017. New wells were professionally surveyed on November 11, 2014 and June 28, 2017. A Site Details Map is presented as Figure 2.

### 2. Regulatory Framework

NMOCD guidelines require groundwater to be analyzed for potential contaminants as defined by the New Mexico Administrative Code 20.6.2.3103 Section A, which provides the New Mexico Water Quality Control Commission (NMWQCC) Human Health Standards and Toxic Pollutant Standards for groundwater. The constituents of concern (COCs) in impacted groundwater at the Site are LNAPL, and benzene, toluene, ethylbenzene, total xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAH). NMWQCC Human Health and Toxic Pollutant Standards shown in the Table 2.1 are used to guide assessment and remediation at the Site.

| Analyte                                            | NMWQCC Human Health or Toxic Pollutant Standard |
|----------------------------------------------------|-------------------------------------------------|
| Benzene                                            | 0.01 mg/L                                       |
| Toluene                                            | 0.75 mg/L                                       |
| Ethylbenzene                                       | 0.75 mg/L                                       |
| Total Xylenes                                      | 0.62 mg/L                                       |
| Benzo(a)pyrene                                     | 0.0002 mg/L                                     |
| Combined Naphthalene and<br>Monomethylnaphthalenes | 0.03                                            |

#### Table 2.1 NMWQCC Human Health and Toxic Pollutant Standards

Table 2.2 shows the site sampling schedule approved by the NMOCD in a correspondence dated April 28, 2004 and amended in NMOCD correspondence dated June 20, 2005.

| Location | Schedule      | Location | Schedule  | Location | Schedule  |
|----------|---------------|----------|-----------|----------|-----------|
| MW-1     | Annually      | MW-7     | Annually  | RW-2     | Quarterly |
| MW-2     | Quarterly     | MW-8     | Annually  | RW-3     | Quarterly |
| MW-3     | Semi-Annually | MW-9     | Annually  | RW-4     | Quarterly |
| MW-4     | P&A           | MW-10    | Annually  | RW-5     | Quarterly |
| MW-5     | P&A           | MW-11    | Quarterly | RW-6     | Quarterly |
| MW-6     | Annually      | RW-1     | Quarterly | RW-7     | P&A       |

#### Table 2.2 Sampling Schedule Approved by NMOCD



Monitor and recovery wells MW-4R, MW-12, RW-7R, RW-8, RW-9, RW-10, RW-11, and RW-12 are monitored on a quarterly basis to establish consistent historical data regarding dissolved-phase COCs and LNAPL thicknesses. These wells will be added to the site sampling schedule subsequent to approval by the NMOCD. A letter to the NMOCD requesting modification of the monitoring schedule was submitted along with the 2016 Annual Groundwater Monitoring Report in April 2017.

### 3. Groundwater Monitoring

Quarterly groundwater monitoring was conducted by GHD on February 25-27, May 20-21, July 23, and October 22, 2019. Wells were sampled in accordance with the sampling schedule described in Table 2.2. Wells containing measureable thicknesses of LNAPL (>0.01 feet) were not sampled. All wells were gauged during each quarterly event.

### 3.1 Groundwater Monitoring Methodology

All well caps were removed to allow groundwater levels to stabilize prior to gauging. Static fluid levels were measured with an oil-water interface probe to the nearest hundredth of a foot. After recording fluid levels, wells not containing LNAPL were purged of three casing volumes of groundwater. Samples of groundwater were collected using clean, disposable polyvinyl chloride (PVC) bailers. Laboratory-supplied sample containers were filled directly from the bailers. Duplicate samples of groundwater were collected from the last well to be sampled. Samples were placed on ice immediately after collection and chilled to a temperature of approximately 4°C (39°F). Proper chain-of-custody documentation accompanied samples to Pace Analytical in Mt. Juliet, Tennessee. Samples were analyzed for BTEX according to method EPA 8021B. Selected samples collected in October were analyzed for PAH compounds according to method EPA 8270C-SIM. Volumes of groundwater purged from wells monitored during the first, second, third, and fourth quarters of 2019 were 51 gallons, 54.5 gallons, 68 gallons, and 67 gallons, respectively. The total volume of groundwater purged from wells during quarterly monitoring events in 2019 was 240.5 gallons.

### 3.2 The Potentiometric Surface and Gradient

All fluid level measurements were recorded from professionally surveyed tops of casings. Elevations on the potentiometric surface were calculated using a specific gravity of 0.81 for LNAPL where it was present. Fluid levels and calculated elevations on the potentiometric surface are presented in Table 1. Maps of the potentiometric surface during quarterly monitoring events in February, May, July, and October are provided as Figures 3, 4, 5, and 6, respectively.

Monitor wells MW-1, MW-2, MW-3, MW-6, MW-10, MW-11, and RW-4 were gauged dry at least once during 2019. All were dry during the fourth quarterly monitoring event of the year. The bottoms of LNAPL columns were below the bottoms of casings in recovery wells RW-1, RW-2, and RW-6 during some quarterly monitoring events; therefore, elevations of the potentiometric surface in those wells could not be accurately calculated in those instances.

The groundwater flow direction is toward the southeast and is consistent with previous quarterly monitoring results. Gradients on the potentiometric surface were 0.0016 ft./ft., 0.0016 ft./ft., 0.0015



ft./ft., and 0.0014 ft./ft. during the first, second, third, and fourth quarterly monitoring events, respectively.

Elevations of the potentiometric surface fell in all wells in which elevations of the potentiometric surface could be determined on November 26, 2018 and October 22, 2019. Amounts of decline were between 0.60 foot and 0.79 foot. The average decline was 0.64 foot.

#### 3.3 Presence of Light Non-aqueous Phase Liquids (LNAPL)

LNAPL was observed in recovery wells RW-1, RW-2, RW-3, RW-4, RW-5, RW-6, RW-7R, RW-8, RW-9, RW-10, RW-11, and RW-12 during 2019. Well RW-4 was dry by the end of 2019. Recovery wells RW-8 and RW-10 had greater thicknesses of LNAPL than other wells during 2019. LNAPL was observed in recovery well RW-12 for the first time during the second quarter of 2019; however, LNAPL was not observed in RW-12 at any other time during the year.

Charts of thicknesses of LNAPL versus time in monitor well MW-2 and recovery wells RW-1, RW-2, RW-3, RW-4, RW-5, RW-6, RW-7R, RW-8, RW-9, and RW-10, are in Appendix A. Of these wells, RW-3, RW-5, RW-7R, RW-8, RW-9, and RW-10 consistently had full thicknesses of LNAPL in the casings.

#### 3.4 Dissolved-phase Hydrocarbons in Groundwater

Analytical results for monitoring conducted during 2018 and 2019 are included in Table 2. Results of analyses of BTEX during the first, second, third, and fourth quarterly monitoring events are shown on Figure 7, Figure 8, Figure 9, and Figure 10, respectively. Concentrations of PAH compounds that exceed NMWQCC Human Health or Toxic Pollutant Standards are also included on Figure 10.

Recovery well RW-11 was impacted by LNAPL during the first quarterly monitoring event and was impacted by dissolved benzene at levels exceeding the NMWQCC Human Health Standard of 0.01 mg/L during the second, third, and fourth quarterly events of 2019. Recovery well RW-12 contained dissolved benzene at levels above the NMWQCC Human Health Standard during the first, third, and fourth quarterly monitoring events. RW-12 was not sampled during the second quarterly event, because it was impacted by LNAPL. All other detections of dissolved benzene, toluene, ethylbenzene, and total xylenes were below the respective NMWQCC Human Health Standards. Charts showing dissolved benzene versus time in monitor well MW-3 and recovery wells RW-11 and RW-12 are in Appendix B. Certified laboratory reports are in Appendix C.

During the October groundwater monitoring event, samples for analyses of polycyclic aromatic hydrocarbons (PAHs) were collected from MW-12, RW-11, and RW-12. These wells were sampled in accordance with the NMOCD's email correspondence to Plains dated December 12, 2012, regarding PAHs which provided the following directive:

Annual sampling of wells that have BTEX concentrations above the respective NMWQCC standard; wells where LNAPL has been removed and is no longer present; and continued sampling of each well for at least two consecutive years until each of the PAHs are at a concentration of 0.001 mg/L or less (for PAHs that do not have a NMWQCC standard) and at or below NMWQCC standard for PAHs that have a standard (if applicable).



Results indicated that concentrations of anthracene, dibenzofuran, fluorene, and phenanthrene in RW-11 and dibenzofuran in RW-12 exceeded the standard of 0.001 mg/L required by correspondence from NMOCD in 2012 referenced above. A cumulative summary of analytical results of PAH is in Table 3. Certified laboratory reports including results for PAH compounds are in Appendix C.

### 4. Corrective Action

Remediation at the Site consists recovery of LNAPL and impacted groundwater by hand-bailing and recovery of soil-vapor, LNAPL, and impacted groundwater by a trailer-mounted, automated system which operates total-fluid pumps in a number of wells. Fluids recovered by both methods are transferred to an above-ground storage tank (AST) from which fluids are periodically removed for disposal at a licensed facility per directives of Plains. Fluid levels in the AST are gauged periodically to calculate total volumes fluids recovered at the site. Total volumes recovered less amounts removed for disposal indicate that approximately 690 gallons of LNAPL were recovered during 2019 by operation of the remediation system and by hand-bailing. Approximately 17,014 gallons of groundwater were recovered by the remediation system and hand-bailing. The total volume of liquids recovered by the remediation system and hand-bailing at the Site during 2019 was approximately 17,704 gallons.

Wells MW-6, RW-1, RW-2, RW-3, RW-5, RW-6, RW-7R, RW-8, RW-9, and RW-10 were targeted for periodic abatement of LNAPL by hand. The total volume of LNAPL recovered in this manner during the year was 99.4 gallons.

Semi-monthly hand bailing of MW-3, RW-5, RW-7R, RW-11 and RW12 continued throughout 2019 to reduce concentrations of dissolved-phase contaminants. The total volume of groundwater recovered during BTEX abatement during the year was 110.2 gallons.

A trailer mounted automated groundwater remediation system was operated at the Site for a total of 159 days during 2019. Four total-fluids pumps are deployed at the Site and are moved to different wells periodically. Pumps remain in the locations shown on Figures 3-10 until the following quarterly monitoring event. Pumps were deployed at various times in recovery wells RW-3, RW-5, RW-6, RW-7R, RW-8, RW-9, and RW-10. GHD personnel conducted operation and maintenance (O&M) activities each week to maintain efficient soil vapor and fluid recovery. O&M activities included inspections of well-heads and flow lines, servicing total fluid pumps, adjustments of depths of totalfluids pumps, and gauging of recovered fluids in the storage tank, and general housekeeping tasks. Approximately 590.6 gallons of LNAPL (690 gallons total recovery by system and hand, less 99.4 gallons recovered by hand-bailing) and 16,663 gallons of groundwater (17,014 total recovery by system and hand, less 240.5 gallons recovered by quarterly purging, less 110.2 gallons recovered during BTEX abatement) were recovered by the automated trailer mounted remediation system during 2019. Samples of emissions from the remediation system were collected on June 19, August 30, and November 12, 2019 and used to calculate emission rates and total emissions from the remediation system. Using the designed effluent flow rate of 40 cubic feet per minute, the maximum rate of emissions during 2019 was 3.1289 lb. TPH/hour. Total mass of emissions during 2019 was 3.6374 tons TPH.



Enhanced Fluid Recovery (EFR) events were conducted in MW-6 (7/3), RW-3 (2/6), RW-5 (11/13), RW-6 (5/8, 8/7), and RW-9 (2/6) in 2019. A vacuum truck and drop hose capable of sealing the wellhead and reaching beyond the static water table were used to remove LNAPL and impacted groundwater to reduce concentrations of dissolved BTEX. These events recovered 5.8 gallons of LNAPL and 1848 gallons of impacted groundwater during 2019.

An approximate total of 695.8 gallons of LNAPL were recovered from the Site during 2019 by the remediation system, hand-bailing, and EFR events. Approximately 18,862 gallons of groundwater were recovered from the Site during the year by the remediation system, hand-bailing, and EFR events. Approximately 28,514 gallons of LNAPL have been recovered from the start of the LNAPL abatement program in December 2005.

All fluids recovered from purging, remediation system operation, EFR events, and BTEX and LNAPL abatement via hand bailing were transferred to the AST and later disposed at a licensed disposal facility as directed by Plains.

### 5. Summary of Findings

Based on groundwater assessment, monitoring and remedial activities performed by GHD at the Site in 2019, the following summary of findings is presented:

- Wells MW-1, MW-2, MW-3, MW-6, MW-10, MW-11, and RW-4 were gauged dry at least once during 2019.
- Bottoms of the LNAPL columns were below the bottoms of the casings in recovery wells RW-1, RW-2, and RW-6; therefore, thicknesses of LNAPL in those wells could not be accurately measured.
- Flow of groundwater is toward the southeast and is consistent with previous quarterly monitoring events. Gradients of the potentiometric surface were between 0.0014 ft./ft. and 0.0016 ft./ft. during all four quarterly monitoring events of the year.
- The average decline in the elevation of the potentiometric surface was 0.64 foot between November 26, 2018 and October 22, 2019.
- Dissolved benzene was detected at concentrations exceeding the NMWQCC Human Health Standard of 0.01 mg/L only in recovery wells RW-11 and RW-12 during 2019. All other detections of BTEX constituents were below their respective NMWQCC Human Health Standards.
- Concentrations of anthracene, dibenzofuran, fluorene, and phenanthrene in RW-11 and dibenzofuran in RW-12 exceeded the standard of 0.001 mg/L required by correspondence from NMOCD in 2012. All other detections of PAH compounds in groundwater were below applicable regulatory standards.
- Semi-monthly hand bailing from MW-3, RW-5, RW-7R, RW-11 and RW-12 to reduce BTEX concentrations recovered 110.2 gallons of groundwater during 2019.



- Hand-bailing from MW-6, RW-1, RW-2, RW-3, RW-5, RW-6, RW-7R, RW-8, RW-9, and RW-10 recovered 99.4 gallons of LNAPL.
- The trailer mounted automated remediation system operated for 159 days during 2019 and recovered 590.6 gallons of LNAPL and 16,663 gallons of groundwater. The maximum emission rate during 2019 was 3.1289 lb. TPH/hour. Total gaseous hydrocarbon emissions for 2019 were 3.6374 tons.
- EFR events conducted on February 6, May 8, July 3, August 7, and November 13 recovered 5.8 gallons of LNAPL and 1848 gallons of impacted groundwater.
- Approximately 695.8 gallons of LNAPL were recovered by the trailer-mounted remediation system and by hand-bailing during 2019. Total volume of LNAPL recovered by all methods since the start of the LNAPL abatement program in December 2005 is 28,514 gallons.

### 6. Recommendations

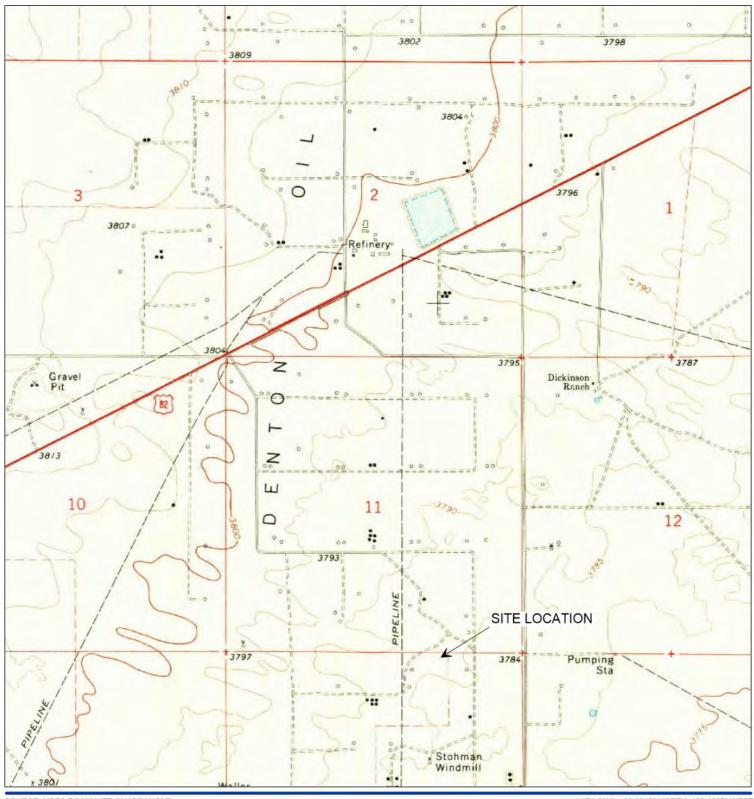
Based upon the data and conclusions presented in this report, the following are recommended for 2020:

- Continue quarterly groundwater monitoring events with annual reporting to the NMOCD.
- Continue annual sampling for PAHs during the fourth quarterly event according to directives of NMOCD. This will include all wells installed during 2020 which are not impacted by LNAPL.
- Continue remediation of the soil profile and groundwater by operating the trailer mounted soil vapor extraction system. Gaseous hydrocarbon emissions will be sampled quarterly to calculate emission rates and total emissions.
- Continue conducting EFR events on select wells with considerable LNAPL thickness as a more aggressive LNAPL abatement, as well as to reduce BTEX constituent concentrations.
- Continue hand bailing of LNAPL-impacted wells in which a pump has not been installed.
- Continue hand bailing from selected wells to reduce concentrations of dissolved-phase contaminants.
- A work plan proposing plugging and abandoning MW-1, MW-2, MW-3, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, and RW-4 was submitted to NMOCD on July 10, 2019. Those wells are dry or had insufficient fluid columns from which to collect samples of groundwater or recover LNAPL. The same work plan proposed installing MW-3R, MW-6R, MW-7R, MW-8R, MW-9R, MW-10R, MW-13, RW-4R, RW-13, and RW-14. The work plan will be implemented during 2020 out of necessity to maintain delineation of the contaminant plume and enhance the ability to recover LNAPL. Details regarding plugging and installation of these wells will be included in the annual report for 2020.



All of Which is Respectfully Submitted,

GHD


John P. Schmable

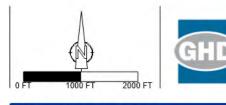
John Schnable Senior Project Manager

Rebena Haskell

Rebecca Haskell Senior Project Manager

# **Figures**



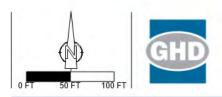

SOURCE: USGS 7.5 MINUTE QUADRANGLE PRAIRIEVIEW, NEW MEXICO (1970)

LAT/LONG: 33.0242° NORTH, 103.1667° WEST COORDINATE: NAD83 DATUM U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

PROJECT 11209891

OCTOBER 15, 2018

**FIGURE 1** 



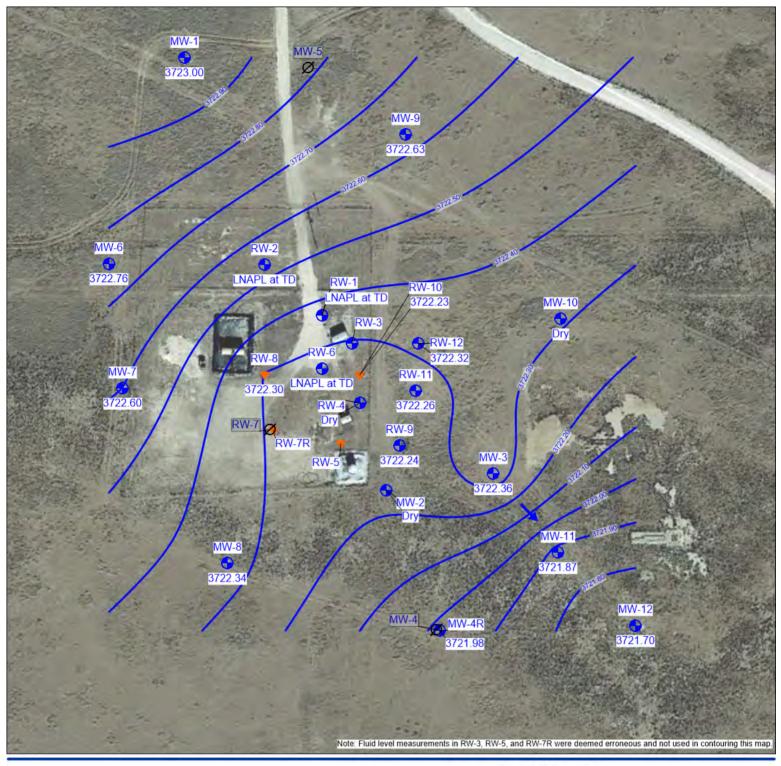

PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2 SRS LF 1999-62, NMOCD REMEDIATION PERMIT AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 SITE LOCATION MAP

11209891-02 GN-MAF-SVR-001 MAR 5 2020

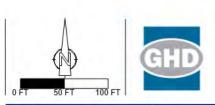


- Well Location
- Ø Plugged Well Location Well Equipped with Remediation Pump (Locations of Pumps May Change)




PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2 SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 SITE DETAILS MAP

PROJECT 11209891


**FIGURE 2** 

March 5, 2020

11209891-02 GN-MAF-SVR-001 MAR 5 2020



- Well Location
- Ø Plugged Well Location
- Well Equipped with Remediation Pump
- 2589.91 Elevation of Potentiometric Surface (famsl)
  - Direction of Groundwater Flow



PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2 SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2018 MAP OF THE POTENTIOMETRIC SURFACE FEBRUARY 25, 2019

PROJECT 11209891

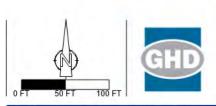
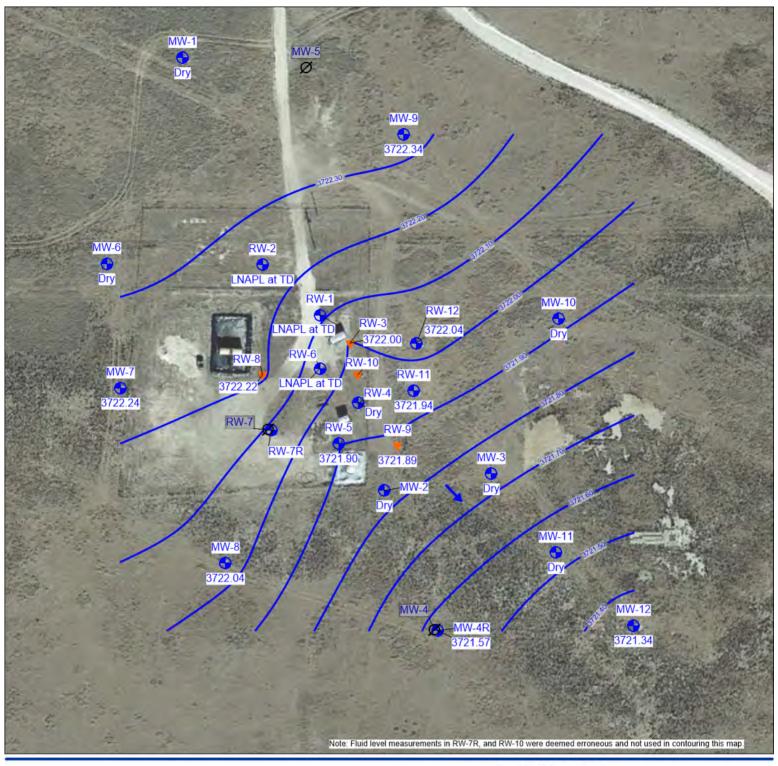

FEBRUARY 25, 2019

FIGURE 3

11209891-02 (11) GN-MAF-SVR-001 FEB 25 2019



- Well Location
- Ø Plugged Well Location
- Well Equipped with Remediation Pump
- 2589.91 Elevation of Potentiometric Surface (famsl)
  - Direction of Groundwater Flow




PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2 SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 MAP OF THE POTENTIOMETRIC SURFACE MAY 20, 2019

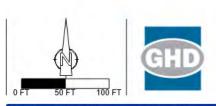

PROJECT 11209891

FIGURE 4

MAY 20, 2019



- Well Location
- Ø Plugged Well Location
- Well Equipped with Remediation Pump
- 2589.91 Elevation of Potentiometric Surface (famsl)
  - Direction of Groundwater Flow




PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2 SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 MAP OF THE POTENTIOMETRIC SURFACE JULY 23, 2019

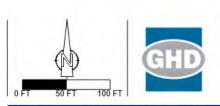

PROJECT 11209891

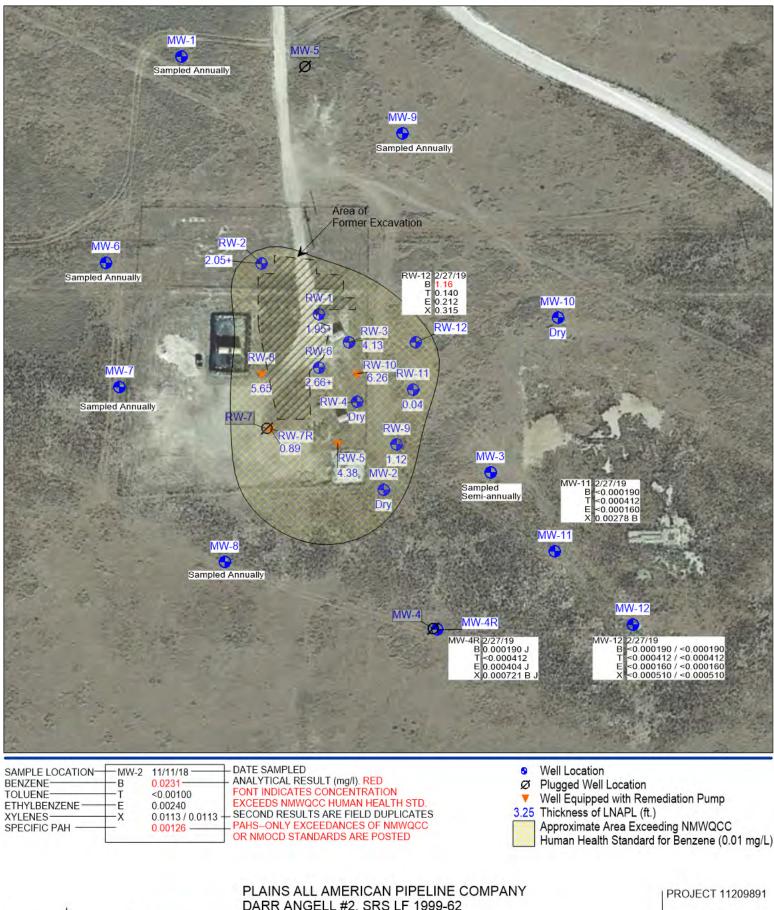
FIGURE 5

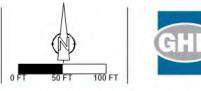
JULY 23, 2019



- Well Location
- Ø Plugged Well Location
- Well Equipped with Remediation Pump
- 2589.91 Elevation of Potentiometric Surface (famsl)
  - Direction of Groundwater Flow



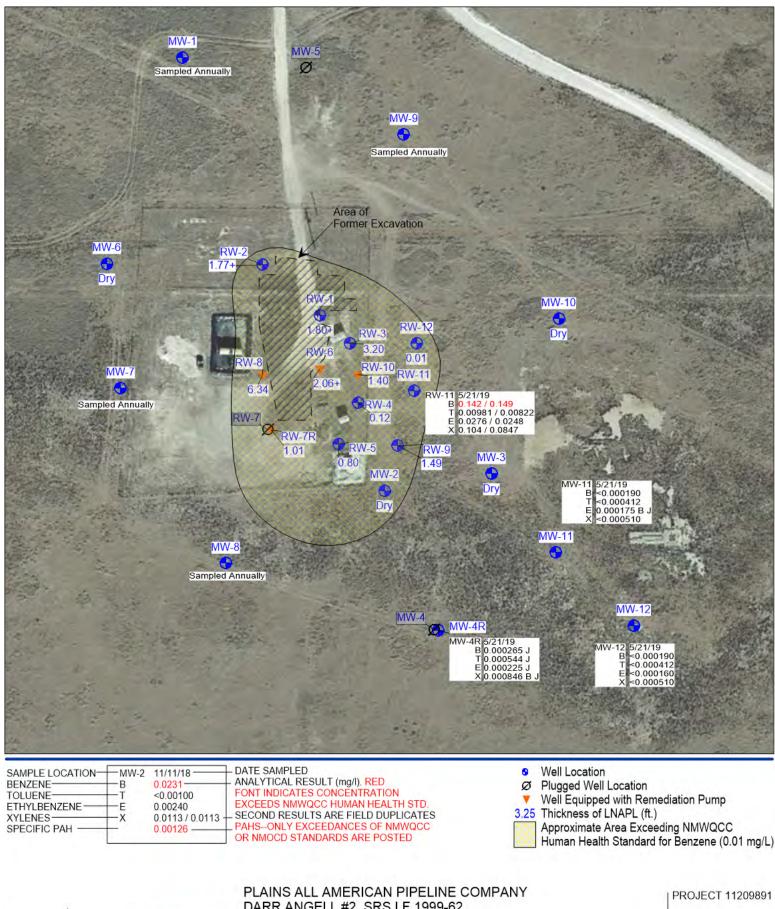

PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2 SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 MAP OF THE POTENTIOMETRIC SURFACE OCTOBER 22, 2019


PROJECT 11209891

OCTOBER 22, 2019

FIGURE 6

11209891-02 (11) GN-MAF-SVR-001 OCT 22 2019






DARR ANGELL #2, SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 DISSOLVED BTEX IN GROUNDWATER **FEBRUARY 27, 2019** 

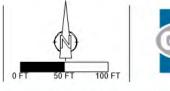

FEBRUARY 27, 2019

FIGURE 7



MAY 21, 2019

FIGURE 8



DARR ANGELL #2, SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 DISSOLVED BTEX IN GROUNDWATER MAY 21, 2019

11209891-02 (11) GN-MAF-SVR-001 MAY 21 2019

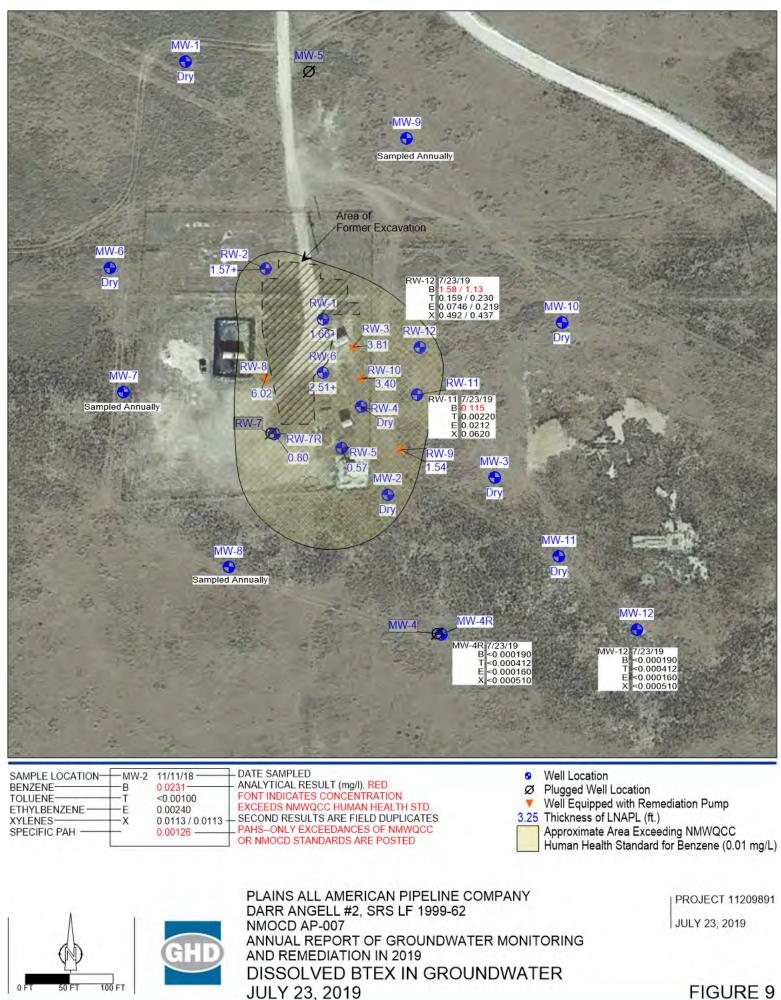
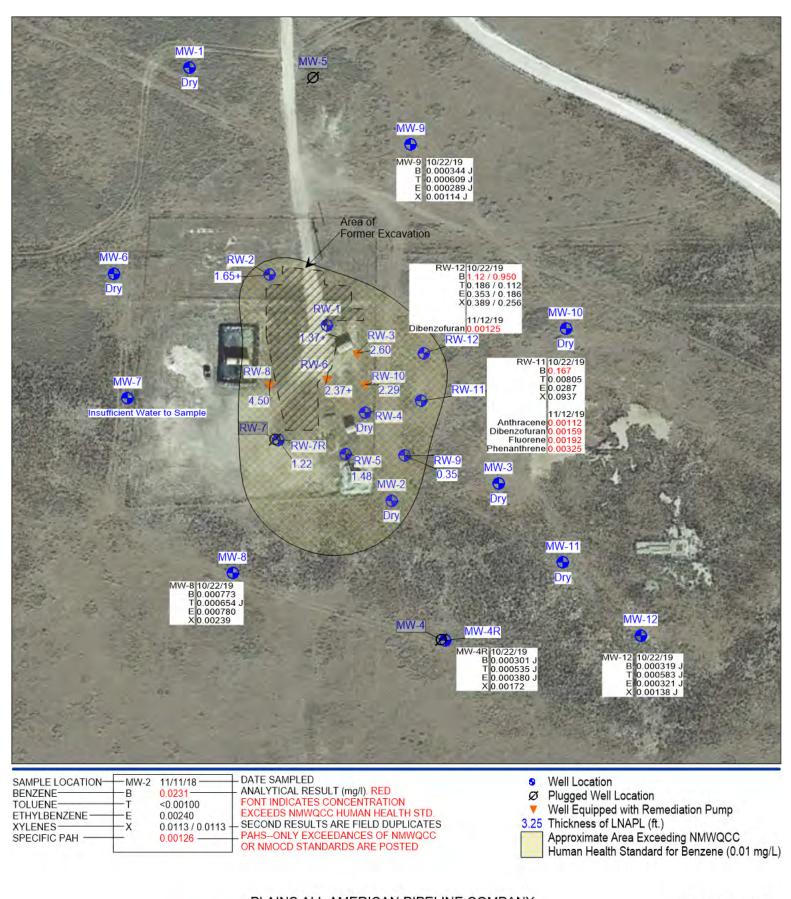




FIGURE 9



0 FT 50 FT 100 FT

PLAINS ALL AMERICAN PIPELINE COMPANY DARR ANGELL #2, SRS LF 1999-62 NMOCD AP-007 ANNUAL REPORT OF GROUNDWATER MONITORING AND REMEDIATION IN 2019 DISSOLVED BTEX IN GROUNDWATER OCTOBER 22 and NOVEMBER 12, 2019

PROJECT 11209891 OCTOBER 22, 2019

FIGURE 10

11209891-02 (11) GN-MAF-SVR-001 OCT 22 2019

| Well ID | Elevation<br>of Top of<br>Casing<br>(famsl) | Date     | Depth to<br>Groundwater<br>(fbtoc) | Depth to<br>LNAPL<br>(fbtoc) | LNAPL<br>Thickness<br>(ft.) | Elevation of<br>Potentiometric<br>Surface (famsl) | Measured<br>Depth of<br>Well (fbtoc) | Well Screen<br>Interval (ft bgs)<br>Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Volume<br>Groundwater<br>Bailed (gal.) | (<br>Rei |
|---------|---------------------------------------------|----------|------------------------------------|------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------|----------|
| MW-01   | 3790.48                                     | 2/27/18  | 66.78                              | (10100)                      | 0.00                        | 3723.70                                           | 68.07                                | 40-65 (2 in.)                                             | Rellioved (gal.)                 | Balled (gal.)                          |          |
| MW-01   | 3790.48                                     | 5/29/18  | 67.00                              |                              | 0.00                        | 3723.48                                           | 68.11                                | 40-05 (2 111.)                                            |                                  |                                        |          |
| MW-01   | 3790.48                                     | 8/29/18  | 67.10                              |                              | 0.00                        | 3723.38                                           | 68.07                                |                                                           |                                  |                                        |          |
| MW-01   | 3790.48                                     | 11/26/18 | 67.31                              |                              | 0.00                        | 3723.17                                           | 68.10                                |                                                           |                                  |                                        |          |
| MW-01   | 3790.48                                     | 2/25/19  | 67.48                              |                              | 0.00                        | 3723.00                                           | 68.10                                |                                                           |                                  |                                        |          |
| MW-01   | 3790.48                                     | 5/20/19  | 67.67                              |                              | 0.00                        | 3722.81                                           | 68.10                                |                                                           |                                  |                                        |          |
| MW-01   | 3790.48                                     | 7/23/19  | 07.07                              |                              | 0.00                        | Dry                                               | 68.01                                |                                                           |                                  |                                        |          |
| MW-01   | 3790.48                                     | 10/22/19 |                                    |                              |                             | Dry                                               | 00.01                                |                                                           |                                  |                                        |          |
|         | 07 00.40                                    | 10/22/15 |                                    |                              |                             | Diy                                               |                                      |                                                           |                                  |                                        |          |
| MW-02   | 3790.80                                     | 2/27/18  |                                    | 67.38                        | 0.83+                       | LNAPL at TD                                       | 68.21                                | 40-65 (2 in.)                                             |                                  |                                        |          |
| MW-02   | 3790.80                                     | 5/29/18  | 68.22                              | 67.51                        | 0.71                        | 3723.16                                           | 00.21                                | 10 00 (2 111)                                             |                                  |                                        |          |
| MW-02   | 3790.80                                     | 8/29/18  |                                    |                              | ••••                        | Dry                                               | 68.47                                |                                                           |                                  |                                        |          |
| MW-02   | 3790.80                                     | 11/26/18 |                                    |                              |                             | Dry                                               | 68.25                                |                                                           |                                  |                                        |          |
| MW-02   | 3790.80                                     | 2/25/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| MW-02   | 3790.80                                     | 5/20/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| MW-02   | 3790.80                                     | 7/23/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| MW-02   | 3790.80                                     | 10/22/19 |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
|         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 2/27/18  | 67.57                              |                              | 0.00                        | 3722.72                                           | 68.14                                | 40-65 (2 in.)                                             |                                  |                                        |          |
| MW-03   | 3790.29                                     | 5/29/18  | 67.75                              |                              | 0.00                        | 3722.54                                           | 68.10                                |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 8/29/18  |                                    |                              |                             | Dry                                               | 68.11                                |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 11/26/18 |                                    |                              |                             | Dry                                               | 68.10                                |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 2/25/19  | 67.93                              |                              | 0.00                        | 3722.36                                           |                                      |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 5/18/19  |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |          |
| MW-03   | 3790.29                                     | 5/20/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 7/23/19  |                                    |                              |                             | Dry                                               | 68.10                                |                                                           |                                  |                                        |          |
| MW-03   | 3790.29                                     | 10/22/19 |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
|         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
|         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 2/27/18  | 66.52                              |                              | 0.00                        | 3722.65                                           | 86.48                                | 59.5-89.5 (2 in.)                                         |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 5/29/18  | 66.67                              |                              | 0.00                        | 3722.50                                           | 86.11                                |                                                           |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 8/29/18  | 66.81                              |                              | 0.00                        | 3722.36                                           | 86.24                                |                                                           |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 11/26/18 | 67.03                              |                              | 0.00                        | 3722.14                                           | 86.24                                |                                                           |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 2/25/19  | 67.19                              |                              | 0.00                        | 3721.98                                           |                                      |                                                           |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 2/27/19  |                                    |                              |                             | 0704.00                                           |                                      |                                                           | 0.0                              | 8.5                                    |          |
| MW-04R  | 3789.17                                     | 5/20/19  | 67.37                              |                              | 0.00                        | 3721.80                                           |                                      |                                                           |                                  |                                        |          |
| MW-04R  | 3789.17                                     | 5/21/19  | 07.00                              |                              |                             | 0704 57                                           |                                      |                                                           | 0.0                              | 9.5                                    |          |
| MW-04R  | 3789.17                                     | 7/23/19  | 67.60                              |                              | 0.00                        | 3721.57                                           |                                      |                                                           | 0.0                              | 7.0                                    |          |
| MW-04R  | 3789.17                                     | 10/22/19 | 67.64                              |                              | 0.00                        | 3721.53                                           | 05.07                                |                                                           |                                  | 8.0                                    |          |
| MW-04R  | 3789.17                                     | 2/10/20  | 67.90                              |                              | 0.00                        | 3721.27                                           | 85.97                                | 59.5-89.5 (2 in.)                                         |                                  | 9.0                                    |          |
|         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| MW-06   | 3790.75                                     | 2/27/18  | 67.24                              |                              | 0.00                        | 3723.51                                           | 60.00                                | 10 60 (0 :~ )                                             |                                  |                                        |          |
| MW-06   | 3790.75                                     | 5/29/18  | 67.41                              |                              | 0.00                        | 3723.51                                           | 68.22<br>68.18                       | 42-62 (2 in.)                                             |                                  |                                        |          |
| MW-06   | 3790.75                                     | 8/29/18  | 67.54                              |                              | 0.00                        | 3723.21                                           | 68.22                                |                                                           |                                  |                                        |          |
| 1010-00 | 5130.15                                     | 0/23/10  | 07.04                              |                              | 0.00                        | 5123.21                                           | 00.22                                |                                                           |                                  |                                        |          |

| Volume<br>Groundwater<br>Removed by EFR<br>(gal.) | Comments  |
|---------------------------------------------------|-----------|
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   | Tip trace |
|                                                   | Tip trace |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |
|                                                   |           |

|   | Well ID | Elevation<br>of Top of<br>Casing<br>(famsl) | Date     | Depth to<br>Groundwater<br>(fbtoc) | Depth to<br>LNAPL<br>(fbtoc) | LNAPL<br>Thickness<br>(ft.) | Elevation of<br>Potentiometric<br>Surface (famsl) | Measured<br>Depth of<br>Well (fbtoc) | Well Screen<br>Interval (ft bgs)<br>Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Volume<br>Groundwater<br>Bailed (gal.) | (<br>Rei |
|---|---------|---------------------------------------------|----------|------------------------------------|------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------|----------|
| _ | MW-06   | 3790.75                                     | 11/26/18 | 67.77                              | (10:00)                      | 0.00                        | 3722.98                                           | 68.15                                | (111)                                                     | Kellioveu (gal.)                 | Daneu (gai.)                           |          |
| - | MW-06   | 3790.75                                     | 2/25/19  | 67.99                              |                              | 0.00                        | 3722.76                                           | 00.10                                |                                                           |                                  |                                        |          |
| - | MW-06   | 3790.75                                     | 5/20/19  | 01.00                              |                              | 0.00                        | Dry                                               |                                      |                                                           |                                  |                                        |          |
| - | MW-06   | 3790.75                                     | 7/3/19   |                                    |                              |                             | Biy                                               |                                      |                                                           | 2.89                             |                                        |          |
| - | MW-06   | 3790.75                                     | 7/23/19  |                                    |                              |                             | Dry                                               | 68.01                                |                                                           | 2.00                             |                                        |          |
| - | MW-06   | 3790.75                                     | 10/22/19 |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| - |         |                                             |          |                                    |                              |                             | ,                                                 |                                      |                                                           |                                  |                                        |          |
| - | MW-07   | 3791.09                                     | 2/27/18  | 67.86                              |                              | 0.00                        | 3723.23                                           | 69.19                                | 42-62 (2 in.)                                             |                                  |                                        |          |
| - | MW-07   | 3791.09                                     | 5/29/18  | 67.88                              |                              | 0.00                        | 3723.21                                           | 69.19                                |                                                           |                                  |                                        |          |
| - | MW-07   | 3791.09                                     | 8/29/18  | 68.13                              |                              | 0.00                        | 3722.96                                           | 69.19                                |                                                           |                                  |                                        |          |
| - | MW-07   | 3791.09                                     | 11/26/18 | 68.35                              |                              | 0.00                        | 3722.74                                           | 69.19                                |                                                           |                                  |                                        |          |
|   | MW-07   | 3791.09                                     | 2/25/19  | 68.49                              |                              | 0.00                        | 3722.60                                           |                                      |                                                           |                                  |                                        |          |
| _ | MW-07   | 3791.09                                     | 5/20/19  | 68.70                              |                              | 0.00                        | 3722.39                                           |                                      |                                                           |                                  |                                        |          |
| _ | MW-07   | 3791.09                                     | 7/23/19  | 68.85                              |                              | 0.00                        | 3722.24                                           |                                      |                                                           |                                  |                                        |          |
| _ | MW-07   | 3791.09                                     | 10/22/19 | 68.99                              |                              | 0.00                        | 3722.10                                           |                                      |                                                           |                                  |                                        |          |
| - |         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| - | MW-08   | 3790.04                                     | 2/27/18  | 67.03                              |                              | 0.00                        | 3723.01                                           | 69.34                                | 42-62 (2 in.)                                             |                                  |                                        |          |
| _ | MW-08   | 3790.04                                     | 5/29/18  | 67.20                              |                              | 0.00                        | 3722.84                                           | 69.25                                |                                                           |                                  |                                        |          |
| - | MW-08   | 3790.04                                     | 8/29/18  | 67.33                              |                              | 0.00                        | 3722.71                                           | 69.34                                |                                                           |                                  |                                        |          |
| - | MW-08   | 3790.04                                     | 11/26/18 | 67.56                              |                              | 0.00                        | 3722.48                                           | 69.34                                |                                                           |                                  |                                        |          |
| - | MW-08   | 3790.04                                     | 2/25/19  | 67.70                              |                              | 0.00                        | 3722.34                                           |                                      |                                                           |                                  |                                        |          |
| - | MW-08   | 3790.04                                     | 5/20/19  | 67.90                              |                              | 0.00                        | 3722.14                                           |                                      |                                                           |                                  |                                        |          |
| - | MW-08   | 3790.04                                     | 7/23/19  | 68.00                              |                              | 0.00                        | 3722.04                                           |                                      |                                                           |                                  | ~-                                     |          |
| - | MW-08   | 3790.04                                     | 10/22/19 | 68.16                              |                              | 0.00                        | 3721.88                                           |                                      |                                                           |                                  | .25                                    |          |
| - | MW-09   | 3789.79                                     | 2/27/18  | 66.44                              |                              | 0.00                        | 3723.35                                           | 68.91                                | 47.67(0 in)                                               |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 5/29/18  | 66.61                              |                              | 0.00                        | 3723.18                                           | 68.88                                | 47-67 (2 in.)                                             |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 8/29/18  | 66.75                              |                              | 0.00                        | 3723.04                                           | 68.91                                |                                                           |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 11/26/18 | 66.97                              |                              | 0.00                        | 3722.82                                           | 68.91                                |                                                           |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 2/25/19  | 67.16                              |                              | 0.00                        | 3722.63                                           | 00.91                                |                                                           |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 5/20/19  | 67.32                              |                              | 0.00                        | 3722.47                                           |                                      |                                                           |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 7/23/19  | 67.45                              |                              | 0.00                        | 3722.34                                           |                                      |                                                           |                                  |                                        |          |
| - | MW-09   | 3789.79                                     | 10/22/19 | 67.61                              |                              | 0.00                        | 3722.18                                           |                                      |                                                           |                                  | 0                                      |          |
| - |         | 0100110                                     | 10,22,10 | 01101                              |                              | 0.00                        | 0122110                                           |                                      |                                                           |                                  | Ŭ                                      |          |
| - | MW-10   | 3789.88                                     | 2/27/18  | 67.02                              |                              | 0.00                        | 3722.86                                           | 67.71                                | 47-67 (2 in.)                                             |                                  |                                        |          |
| - | MW-10   | 3789.88                                     | 5/29/18  | 67.20                              |                              | 0.00                        | 3722.68                                           | 67.70                                |                                                           |                                  |                                        |          |
| - | MW-10   | 3789.88                                     | 8/29/18  | 67.33                              |                              | 0.00                        | 3722.55                                           | 67.71                                |                                                           |                                  |                                        |          |
| - | MW-10   | 3789.88                                     | 11/26/18 |                                    |                              |                             | Dry                                               | 67.70                                |                                                           |                                  |                                        |          |
| - | MW-10   | 3789.88                                     | 2/25/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| - | MW-10   | 3789.88                                     | 5/20/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| - | MW-10   | 3789.88                                     | 7/23/19  |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
| _ | MW-10   | 3789.88                                     | 10/22/19 |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |          |
|   |         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| _ | MW-11   | 3790.65                                     | 2/27/18  | 68.03                              |                              | 0.00                        | 3722.62                                           | 69.18                                | 45-65 (2 in.)                                             |                                  |                                        |          |
| _ | MW-11   | 3790.65                                     | 5/29/18  | 68.29                              |                              | 0.00                        | 3722.36                                           | 69.30                                |                                                           |                                  |                                        |          |
|   |         |                                             |          |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |

| Volume<br>Groundwater<br>Removed by EFR |          |
|-----------------------------------------|----------|
| (gal.)                                  | Comments |
|                                         |          |
|                                         |          |
| 336                                     |          |
| 330                                     |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |

| Well ID            | Elevation<br>of Top of<br>Casing<br>(famsl) | Date             | Depth to<br>Groundwater<br>(fbtoc) | Depth to<br>LNAPL<br>(fbtoc) | LNAPL<br>Thickness<br>(ft.) | Elevation of<br>Potentiometric<br>Surface (famsl) | Measured<br>Depth of<br>Well (fbtoc) | Well Screen<br>Interval (ft bgs)<br>Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Volume<br>Groundwater<br>Bailed (gal.) | Re |
|--------------------|---------------------------------------------|------------------|------------------------------------|------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------|----|
| MW-11              | 3790.65                                     | 8/29/18          | 68.42                              | (15100)                      | 0.00                        | 3722.23                                           | 69.16                                | ("")                                                      | Kelloved (gal.)                  | Ballea (gal.)                          |    |
| <br>MW-11          | 3790.65                                     | 11/26/18         | 68.64                              |                              | 0.00                        | 3722.01                                           | 69.16                                |                                                           |                                  |                                        |    |
| <br>MW-11          | 3790.65                                     | 2/25/19          | 68.78                              |                              | 0.00                        | 3721.87                                           | 00.10                                |                                                           |                                  |                                        |    |
| <br>MW-11          | 3790.65                                     | 2/27/19          | 00.10                              |                              | 0.00                        | 0121.01                                           |                                      |                                                           | 0.0                              | 0.0                                    |    |
| <br>MW-11          | 3790.65                                     | 5/20/19          | 68.97                              |                              | 0.00                        | 3721.68                                           |                                      |                                                           | 010                              | 010                                    |    |
| <br>MW-11          | 3790.65                                     | 7/23/19          | 00101                              |                              | 0.00                        | Dry                                               | 69.11                                |                                                           |                                  |                                        |    |
| <br>MW-11          | 3790.65                                     | 10/22/19         |                                    |                              |                             | Dry                                               |                                      |                                                           |                                  |                                        |    |
| <br>               |                                             |                  |                                    |                              |                             | ,                                                 |                                      |                                                           |                                  |                                        |    |
| <br>MW-12          | 3789.64                                     | 2/27/18          | 67.27                              |                              | 0.00                        | 3722.37                                           | 85.96                                | (2 in.)                                                   |                                  |                                        |    |
| <br>MW-12          | 3789.64                                     | 5/29/18          | 67.47                              |                              | 0.00                        | 3722.17                                           | 86.04                                |                                                           |                                  |                                        |    |
| <br>MW-12          | 3789.64                                     | 8/29/18          | 67.57                              |                              | 0.00                        | 3722.07                                           | 86.14                                |                                                           |                                  |                                        |    |
| <br>MW-12          | 3789.64                                     | 11/26/18         | 67.77                              |                              | 0.00                        | 3721.87                                           | 86.14                                |                                                           |                                  |                                        |    |
| <br>MW-12          | 3789.64                                     | 2/25/19          | 67.94                              |                              | 0.00                        | 3721.70                                           |                                      |                                                           |                                  |                                        |    |
| MW-12              | 3789.64                                     | 2/27/19          |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 9.5                                    |    |
| MW-12              | 3789.64                                     | 5/20/19          | 68.12                              |                              | 0.00                        | 3721.52                                           |                                      |                                                           |                                  |                                        |    |
| MW-12              | 3789.64                                     | 5/21/19          |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 9.0                                    |    |
| MW-12              | 3789.64                                     | 7/23/19          | 68.30                              |                              | 0.00                        | 3721.34                                           |                                      |                                                           |                                  |                                        |    |
| MW-12              | 3789.64                                     | 7/23/19          |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 7.0                                    |    |
| MW-12              | 3789.64                                     | 10/22/19         | 68.40                              |                              | 0.00                        | 3721.24                                           |                                      |                                                           |                                  | 7.0                                    |    |
| <br>MW-12          | 3789.64                                     | 2/10/20          | 68.64                              |                              | 0.00                        | 3721.00                                           | 85.76                                | 45-65 (2 in.)                                             |                                  | 9.0                                    |    |
|                    |                                             |                  |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 2/27/18          | 67.30                              | 65.40                        | 1.90                        | 3724.09                                           | 67.87                                | 40-65 (4 in.)                                             |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 5/29/18          |                                    | 65.50                        | 2.47+                       | LNAPL at TD                                       | 67.97                                |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 8/29/18          |                                    | 65.68                        | 2.24+                       | LNAPL at TD                                       | 67.92                                |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 11/26/18         |                                    | 65.91                        | 2.17+                       | LNAPL at TD                                       | 68.08                                |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 1/29/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 2/25/19          | 68.04                              | 66.09                        | 1.95                        | 3723.39                                           |                                      |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 4/24/19          | 68.11                              | 66.17                        | 1.94                        | 3723.31                                           |                                      |                                                           | 1.0                              | 1.0                                    |    |
| <br>RW-01          | 3789.85                                     | 5/20/19          | 68.04                              | 66.24                        | 1.80                        | 3723.27                                           |                                      |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 6/11/19          |                                    |                              |                             |                                                   |                                      |                                                           | 2.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 6/18/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 6/25/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.3                              | 0.0                                    |    |
| <br>RW-01<br>RW-01 | 3789.85<br>3789.85                          | 7/3/19<br>7/8/19 |                                    |                              |                             |                                                   |                                      |                                                           | <u>3.0</u><br>1.2                | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 7/23/19          |                                    | 66.42                        | 1.66+                       | LNAPL at TD                                       | 68.01                                |                                                           | 1.2                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 8/7/19           |                                    | 00.42                        | 1.00+                       | LINAFLALID                                        | 00.01                                |                                                           | 1.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 8/13/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 8/20/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 8/28/19          |                                    |                              |                             |                                                   |                                      |                                                           | 0.5                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 9/3/19           |                                    |                              |                             |                                                   |                                      |                                                           | 1.5                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 9/10/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 10/2/19          |                                    |                              |                             |                                                   |                                      |                                                           | 1.5                              | 0.0                                    |    |
| <br>RW-01          | 3789.85                                     | 10/22/19         |                                    | 66.55                        | 1.37+                       | LNAPL at TD                                       |                                      |                                                           |                                  |                                        |    |
| <br>RW-01          | 3789.85                                     | 11/20/19         |                                    | 00.00                        |                             |                                                   |                                      |                                                           | 0.8                              |                                        |    |
| <br>RW-01          | 3789.85                                     | 12/10/19         |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              |                                        |    |
| <br>               |                                             |                  |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |    |

| Volume<br>Groundwater<br>Removed by EFR | Commonto |
|-----------------------------------------|----------|
| (gal.)                                  | Comments |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |

#### Summary of Fluid Level Measurements and Fluids Removed Plains Pipeline LP Darr Angell No. 2 Lea County, Mexico NMOCD AP-007

| Elevation       Well Screen         of Top of       Depth to       Depth to       LNAPL       Elevation of       Measured       Interval (ft bgs)         Casing       Groundwater       LNAPL       Thickness       Potentiometric       Depth of       Well Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume Product | Volume<br>Groundwater | Re |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----|
| Well ID         (famsl)         Date         (fbtoc)         (ft.)         Surface (famsl)         Well (fbtoc)         (in)           DW 04         2700.05         42/04/40         (fbtoc)         (fbtoc) | Removed (gal.) | Bailed (gal.)         |    |
| RW-01 3789.85 12/24/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5            | 0.5                   |    |
| RW-01 3789.85 1/8/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0            | 0.0                   |    |
| RW-01         3789.85         1/14/20           RW-01         3789.85         2/10/20         68.14         66.76         1.38         3722.83         68.18         40-65 (4 in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5            | 0.2                   |    |
| RW-01 3789.85 2/10/20 68.14 66.76 1.38 3722.83 68.18 40-65 (4 in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                       |    |
| RW-02 3790.24 2/27/18 67.95 65.90 2.05 3723.95 68.29 40-65 (4 in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                       |    |
| RW-02         3790.24         2/27/18         67.95         65.90         2.05         3723.95         68.29         40-65 (4 in.)           RW-02         3790.24         5/29/18         67.97         65.86         2.11         3723.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                       |    |
| RW-02         3790.24         5/29/16         67.97         65.06         2.11         3723.96           RW-02         3790.24         8/29/18         66.03         2.25+         LNAPL at TD         68.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                       |    |
| RW-02         3790.24         6/29/16         66.05         2.25+         LNAPL at TD         66.20           RW-02         3790.24         11/26/18         66.20         2.34+         LNAPL at TD         68.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                       |    |
| RW-02 3790.24 1/20/18 00.20 2.34+ LINAFL at TD 00.34<br>RW-02 3790.24 1/29/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4            | 0.0                   |    |
| RW-02 3790.24 1/29/19<br>RW-02 3790.24 2/25/19 68.51 66.46 2.05 3723.39 68.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4            | 0.0                   |    |
| RW-02         3790.24         2/20/19         08.51         00.40         2.05         3723.39         08.50           RW-02         3790.24         4/24/19         68.54         66.48         2.06         3723.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                       |    |
| RW-02         3790.24         4/24/19         00.54         00.46         2.00         3723.37           RW-02         3790.24         5/20/19         66.53         1.77+         LNAPL at TD         68.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                       |    |
| RW-02 3790.24 6/11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0            | 0.0                   |    |
| RW-02 3790.24 6/18/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0            | 0.0                   |    |
| RW-02 3790.24 6/25/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2            | 0.0                   |    |
| RW-02 3790.24 7/3/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0            | 0.0                   |    |
| RW-02 3790.24 7/8/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7            | 0.0                   |    |
| RW-02 3790.24 7/23/19 66.73 1.57+ LNAPL at TD 68.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011            | 0.0                   |    |
| RW-02 3790.24 8/7/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5            | 0.0                   |    |
| RW-02 3790.24 8/20/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0            | 0.0                   |    |
| RW-02 3790.24 8/13/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0            | 0.0                   |    |
| RW-02 3790.24 8/28/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1            | 0.0                   |    |
| RW-02 3790.24 9/3/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0            | 0.0                   |    |
| RW-02 3790.24 9/10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5            | 0.0                   |    |
| RW-02 3790.24 10/2/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9            | 0.1                   |    |
| RW-02 3790.24 10/22/19 66.89 1.65+ LNAPL at TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |    |
| RW-02 3790.24 11/20/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0            |                       |    |
| RW-02 3790.24 12/10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5            |                       |    |
| RW-02 3790.24 12/23/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5            | 0.5                   |    |
| RW-02 3790.24 1/8/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0            | 0.0                   |    |
| RW-02 3790.24 1/14/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0            | 1.0                   |    |
| RW-02 3790.24 10/22/19 67.09 1.43+ LNAPL at TD 68.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |    |
| RW-03 3790.24 2/27/18 70.02 66.44 3.58 3723.12 71.27 48-68 (4 in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                       |    |
| RW-03 3790.24 5/29/18 70.76 66.13 4.63 3723.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |    |
| RW-03 3790.24 8/29/18 70.72 66.25 4.47 3723.14 71.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                       |    |
| RW-03 3790.24 11/26/18 70.50 66.73 3.77 3722.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |    |
| RW-03 3790.24 1/29/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0            | 0.0                   |    |
| RW-03 3790.24 2/6/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5            |                       |    |
| RW-03 3790.24 2/25/19 70.76 66.63 4.13 3722.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |    |
| RW-03 3790.24 5/20/19 70.49 67.29 3.20 3722.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |    |
| RW-03 3790.24 7/16/19 71.34 67.77 3.57 3721.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |    |
| RW-03         3790.24         7/16/19         71.34         67.77         3.57         3721.79           RW-03         3790.24         7/23/19         71.33         67.52         3.81         3722.00           RW-03         3790.24         10/22/19         69.80         67.20         2.60         3722.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                       |    |

| Volume<br>Groundwater<br>emoved by EFR<br>(gal.) | Comments |
|--------------------------------------------------|----------|
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |
| 315.0                                            |          |
|                                                  |          |
|                                                  |          |
|                                                  |          |

Elev of pot surf incorrect

|   |                | Elevation          |                    |                        |                  |                    |                                   |                          | Well Screen           |                                  |                              |     |
|---|----------------|--------------------|--------------------|------------------------|------------------|--------------------|-----------------------------------|--------------------------|-----------------------|----------------------------------|------------------------------|-----|
|   |                | of Top of          |                    | Depth to               | Depth to         |                    | Elevation of                      | Measured                 | Interval (ft bgs)     |                                  | Volume                       | 6   |
|   | Well ID        | Casing<br>(famsl)  | Date               | Groundwater<br>(fbtoc) | LNAPL<br>(fbtoc) | Thickness<br>(ft.) | Potentiometric<br>Surface (famsl) | Depth of<br>Well (fbtoc) | Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Groundwater<br>Bailed (gal.) | Rei |
|   | RW-03          | 3790.24            | 2/10/19            | 70.75                  | 67.32            | 3.43               | 3722.27                           | 71.30                    | 48-68 (4 in.)         | Kellioveu (gal.)                 | Dalleu (gal.)                |     |
| - | 1100-05        | 5750.24            | 2/10/19            | 10.15                  | 07.52            | 5.45               | 5122.21                           | 71.50                    | 40-00 (4 111.)        |                                  |                              |     |
| - | RW-04          | 3790.20            | 2/27/18            |                        |                  |                    |                                   | 66.81                    | 49-69 (4 in.)         |                                  |                              |     |
| - | RW-04          | 3790.20            | 5/29/18            |                        |                  |                    |                                   | 66.08                    |                       |                                  |                              |     |
| - | RW-04          | 3790.20            | 8/29/18            | 66.97                  | 66.46            | 0.51               | 3723.64                           | 66.81                    |                       |                                  |                              |     |
| - | RW-04          | 3790.20            | 11/26/18           |                        |                  |                    | Dry                               | 67.06                    |                       |                                  |                              |     |
| - | RW-04          | 3790.20            | 2/25/19            |                        |                  |                    | Dry                               | Dry                      |                       |                                  |                              |     |
| - | RW-04          | 3790.20            | 5/20/19            | 67.10                  | 66.98            | 0.12               | 3723.20                           | <u> </u>                 |                       |                                  |                              |     |
| - | RW-04          | 3790.20            | 7/23/19            |                        |                  |                    | Dry                               | 66.95                    |                       |                                  |                              |     |
|   | RW-04          | 3790.20            | 10/22/19           |                        |                  |                    | Dry                               |                          |                       |                                  |                              |     |
|   | RW-04          | 3790.20            | 1/8/20             |                        |                  |                    |                                   |                          |                       |                                  |                              |     |
|   |                |                    |                    |                        |                  |                    |                                   |                          |                       |                                  |                              |     |
| _ | RW-05          | 3789.81            | 2/27/18            | 71.06                  | 66.00            | 5.06               | 3722.85                           | 71.73                    | 48-68 (4 in.)         |                                  |                              |     |
| - | RW-05          | 3789.81            | 5/29/18            | 71.85                  | 66.08            | 5.77               | 3722.63                           |                          |                       |                                  |                              |     |
| _ | RW-05          | 3789.81            | 8/29/18            | 69.43                  | 66.71            | 2.72               | 3722.58                           | 71.84                    |                       |                                  |                              |     |
| - | RW-05          | 3789.81            | 11/26/18           | 70.75                  | 66.46            | 4.29               | 3722.53                           |                          |                       |                                  |                              |     |
| - | RW-05          | 3789.81            | 2/25/19            | 71.22                  | 66.84            | 4.38               | 3722.14                           |                          |                       |                                  |                              |     |
| _ | RW-05          | 3789.81            | 5/20/19            | 68.38                  | 67.58            | 0.80               | 3722.08                           |                          |                       |                                  |                              |     |
| - | RW-05          | 3789.81            | 6/10/19            | 68.85                  | 67.50            | 1.35               | 3722.05                           |                          |                       |                                  |                              |     |
| - | RW-05          | 3789.81            | 7/16/19            | 68.17                  | 67.79            | 0.38               | 3721.95                           |                          |                       |                                  |                              |     |
| - | RW-05          | 3789.81            | 7/23/19            | 68.37                  | 67.80            | 0.57               | 3721.90                           |                          |                       |                                  | 4.0                          |     |
| - | RW-05          | 3789.81            | 8/20/19            |                        |                  |                    |                                   |                          |                       | 2.0                              | 1.0                          |     |
| - | RW-05<br>RW-05 | 3789.81            | 8/13/19<br>8/28/19 |                        |                  |                    |                                   |                          |                       | 0.5                              | 0.5                          |     |
| - | RW-05          | 3789.81<br>3789.81 | 9/3/19             |                        |                  |                    |                                   |                          |                       | 0.4                              | 2.3                          |     |
| - | RW-05          | 3789.81            | 9/10/19            |                        |                  |                    |                                   |                          |                       | 0.4                              | 0.8                          |     |
| - | RW-05          | 3789.81            | 10/2/19            |                        |                  |                    |                                   |                          |                       | 0.8                              | 0.8                          |     |
| - | RW-05          | 3789.81            | 10/22/19           | 69.26                  | 67.78            | 1.48               | 3721.75                           |                          |                       | 0.0                              | 0.0                          |     |
| - | RW-05          | 3789.81            | 11/13/19           | 70.14                  | 67.68            | 2.46               | 3721.66                           |                          |                       |                                  |                              |     |
| - | RW-05          | 3789.81            | 11/20/19           |                        | 01100            |                    | 0.200                             |                          |                       | 0.2                              | 0.8                          |     |
| - | RW-05          | 3789.81            | 12/10/19           |                        |                  |                    |                                   |                          |                       | 0.4                              | 2.6                          |     |
| - | RW-05          | 3789.81            | 12/23/19           |                        |                  |                    |                                   |                          |                       | 0.6                              | 0.6                          |     |
| - | RW-05          | 3789.81            | 1/8/20             |                        |                  |                    |                                   |                          |                       | 1.5                              | 0.5                          |     |
| - | RW-05          | 3789.81            | 1/14/20            |                        |                  |                    |                                   |                          |                       | 0.0                              | 1.0                          |     |
| - | RW-05          | 3789.81            | 2/10/20            | 69.87                  | 67.90            | 1.97               | 3721.54                           | 71.70                    | 48-68 (4 in.)         |                                  |                              |     |
| - |                |                    |                    |                        |                  |                    |                                   |                          |                       |                                  |                              |     |
| - | RW-06          | 3789.56            | 2/27/18            |                        |                  |                    |                                   |                          |                       |                                  |                              |     |
| - | RW-06          | 3789.56            | 5/29/18            | 70.48                  | 65.83            | 4.65               | 3722.85                           |                          | 49-69 (4 in.)         |                                  |                              |     |
| - | RW-06          | 3789.56            | 8/29/18            | 69.05                  | 66.26            | 2.79               | 3722.77                           | 68.86                    |                       |                                  |                              |     |
| - | RW-06          | 3789.56            | 11/26/18           | 68.56                  | 66.40            | 2.16               | 3722.75                           |                          |                       |                                  |                              |     |
| - | RW-06          | 3789.56            | 1/29/19            |                        |                  |                    |                                   |                          |                       | 3.5                              | 0.0                          |     |
| - | RW-06          | 3789.56            | 2/25/19            |                        | 66.20            | 2.66+              | LNAPL at TD                       | 68.86                    |                       |                                  |                              |     |
| - | RW-06          | 3789.56            | 5/8/19             |                        | 00.00            | 0.00               |                                   |                          |                       | 1.9                              |                              |     |
| - | RW-06          | 3789.56            | 5/20/19            |                        | 66.80            | 2.06+              | LNAPL at TD                       | 68.86                    |                       | 4.0                              |                              |     |
| - | RW-06          | 3789.56            | 6/11/19            |                        |                  |                    |                                   |                          |                       | 4.0                              | 0.0                          |     |
|   |                |                    |                    |                        |                  |                    |                                   |                          |                       |                                  |                              |     |

| Volume<br>Groundwater<br>emoved by EFR<br>(gal.) | Comments          |
|--------------------------------------------------|-------------------|
|                                                  |                   |
|                                                  | Casing Collpased? |
|                                                  | Casing Collpased? |
|                                                  | Sheen             |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
| 504                                              |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
|                                                  | Not Gauged        |
|                                                  |                   |
|                                                  |                   |
|                                                  |                   |
| 546.0                                            |                   |
|                                                  |                   |
|                                                  |                   |

| Well ID          | Elevation<br>of Top of<br>Casing<br>(famsl) | Date               | Depth to<br>Groundwater<br>(fbtoc) | Depth to<br>LNAPL<br>(fbtoc) | LNAPL<br>Thickness<br>(ft.) | Elevation of<br>Potentiometric<br>Surface (famsl) | Measured<br>Depth of<br>Well (fbtoc) | Well Screen<br>Interval (ft bgs)<br>Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Volume<br>Groundwater<br>Bailed (gal.) | G<br>Ren |
|------------------|---------------------------------------------|--------------------|------------------------------------|------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------|----------|
| RW-06            | 3789.56                                     | 6/18/19            |                                    | (1800)                       | (10)                        |                                                   |                                      | ()                                                        | 2.0                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 6/25/19            |                                    |                              |                             |                                                   |                                      |                                                           | 2.2                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 7/8/19             |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 7/16/19            |                                    | 66.77                        | 1.95+                       | LNAPL at TD                                       | 68.86                                |                                                           |                                  |                                        |          |
| RW-06            | 3789.56                                     | 7/23/19            |                                    | 66.35                        | 2.51+                       | LNAPL at TD                                       | 68.70                                |                                                           |                                  |                                        |          |
| RW-06            | 3789.56                                     | 8/7/19             |                                    |                              | -                           |                                                   |                                      |                                                           |                                  |                                        |          |
| RW-06            | 3789.56                                     | 8/13/19            |                                    |                              |                             |                                                   |                                      |                                                           | 1.2                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 8/20/19            |                                    |                              |                             |                                                   |                                      |                                                           | 2.5                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 8/28/19            |                                    |                              |                             |                                                   |                                      |                                                           | 2.5                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 9/3/19             |                                    |                              |                             |                                                   |                                      |                                                           | 4.0                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 9/10/19            |                                    |                              |                             |                                                   |                                      |                                                           | 3.0                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 10/2/19            |                                    |                              |                             |                                                   |                                      |                                                           | 1.3                              | 0.0                                    |          |
| RW-06            | 3789.56                                     | 10/22/19           |                                    | 66.49                        | 2.37+                       | LNAPL at TD                                       |                                      |                                                           |                                  |                                        |          |
| RW-06            | 3789.56                                     | 12/10/19           |                                    |                              |                             |                                                   |                                      |                                                           | 0.7                              | 2.3                                    |          |
| RW-06            | 3789.56                                     | 1/14/20            |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| RW-06            | 3789.56                                     | 2/10/20            |                                    | 66.63                        | 4.16+                       | LNAPL at TD                                       | 70.79                                | 49-69 (4 in.)                                             |                                  |                                        |          |
|                  |                                             |                    |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
|                  |                                             |                    |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 2/27/18            | 68.24                              | 66.68                        | 1.56                        | 3723.60                                           | 81.34                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 5/29/18            | 68.73                              | 66.95                        | 1.78                        | 3723.29                                           |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 8/29/18            | 68.16                              | 67.08                        | 1.08                        | 3723.29                                           | 81.34                                |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 11/26/18           | 68.21                              | 67.28                        | 0.93                        | 3723.12                                           |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 12/4/18            | 68.50                              | 67.24                        | 1.26                        | 3723.10                                           |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 2/25/19            | 68.39                              | 67.50                        | 0.89                        | 3722.91                                           |                                      |                                                           |                                  |                                        |          |
| RW-07R<br>RW-07R | 3790.58<br>3790.58                          | 4/24/19<br>5/20/19 | 68.05<br>68.62                     | 67.68<br>67.61               | 0.37                        | 3722.83<br>3722.78                                |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 6/11/19            | 00.02                              | 07.01                        | 1.01                        | 3122.10                                           |                                      |                                                           | 1.0                              | 1.0                                    |          |
| RW-07R           | 3790.58                                     | 6/18/19            |                                    |                              |                             |                                                   |                                      |                                                           | 0.5                              | 1.5                                    |          |
| RW-07R           | 3790.58                                     | 6/25/19            |                                    |                              |                             |                                                   |                                      |                                                           | 0.3                              | 1.0                                    |          |
| RW-07R           | 3790.58                                     | 7/3/19             |                                    |                              |                             |                                                   |                                      |                                                           | 0.6                              | 0.7                                    |          |
| RW-07R           | 3790.58                                     | 7/8/19             |                                    |                              |                             |                                                   |                                      |                                                           | 0.5                              | 2.0                                    |          |
| RW-07R           | 3790.58                                     | 7/16/19            | 68.44                              | 67.80                        | 0.64                        | 3722.66                                           |                                      |                                                           | 0.0                              | 2.0                                    |          |
| RW-07R           | 3790.58                                     | 7/23/19            | 68.60                              | 67.80                        | 0.80                        | 3722.63                                           |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 8/7/19             |                                    | 01100                        | 0.00                        | 0.22.00                                           |                                      |                                                           | 0.5                              | 0.5                                    |          |
| RW-07R           | 3790.58                                     | 8/20/19            |                                    |                              |                             |                                                   |                                      |                                                           | 0.4                              | 0.9                                    |          |
| RW-07R           | 3790.58                                     | 8/28/19            |                                    |                              |                             |                                                   |                                      |                                                           | 0.3                              | 1.2                                    |          |
| RW-07R           | 3790.58                                     | 9/3/19             |                                    |                              |                             |                                                   |                                      |                                                           | 0.1                              | 1.4                                    |          |
| RW-07R           | 3790.58                                     | 9/10/19            |                                    |                              |                             |                                                   |                                      |                                                           | 0.3                              | 0.2                                    |          |
| RW-07R           | 3790.58                                     | 10/2/19            |                                    |                              |                             |                                                   |                                      |                                                           | 0.5                              | 0.4                                    |          |
| RW-07R           | 3790.58                                     | 10/22/19           | 69.12                              | 67.90                        | 1.22                        | 3722.45                                           |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 11/20/19           |                                    |                              |                             |                                                   |                                      |                                                           | 1.3                              | 1.7                                    |          |
| RW-07R           | 3790.58                                     | 12/24/19           |                                    |                              |                             |                                                   |                                      |                                                           | 0.4                              | 0.6                                    |          |
| RW-07R           | 3790.58                                     | 1/14/20            |                                    |                              |                             |                                                   |                                      |                                                           | 1.0                              | 0.2                                    |          |
| RW-07R           | 3790.58                                     | 1/29/20            | 69.10                              | 68.15                        | 0.95                        |                                                   |                                      |                                                           |                                  |                                        |          |
| RW-07R           | 3790.58                                     | 2/10/20            | 68.48                              | 68.26                        | 0.22                        |                                                   | 81.23                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |

| Volume<br>Groundwater<br>emoved by EFR<br>(gal.) | Comments                   |
|--------------------------------------------------|----------------------------|
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
| 336.0                                            |                            |
| 330.0                                            |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  | anna hairean an an an t    |
|                                                  | pump being repaired        |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  |                            |
|                                                  | Elev of pot surf incorrect |
|                                                  | Elev of pot sun incorrect  |
|                                                  |                            |
|                                                  |                            |
| 462                                              |                            |

|   | Well ID        | Elevation<br>of Top of<br>Casing<br>(famsl) | Date               | Depth to<br>Groundwater<br>(fbtoc) | Depth to<br>LNAPL<br>(fbtoc) | LNAPL<br>Thickness<br>(ft.) | Elevation of<br>Potentiometric<br>Surface (famsl) | Measured<br>Depth of<br>Well (fbtoc) | Well Screen<br>Interval (ft bgs)<br>Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Volume<br>Groundwater<br>Bailed (gal.) | G<br>Ren |
|---|----------------|---------------------------------------------|--------------------|------------------------------------|------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------|----------|
| _ |                | 2700.04                                     | 0/07/40            | 74 55                              | 05.04                        | 5.04                        | 0700.07                                           | 02.04                                | E0 E Z0 E (4 in )                                         |                                  |                                        |          |
|   | RW-08<br>RW-08 | 3790.01                                     | 2/27/18            | 71.55                              | 65.61                        | 5.94                        | 3723.27                                           | 82.94                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
|   | RW-08          | 3790.01<br>3790.01                          | 5/29/18<br>8/29/18 | 70.44<br>69.25                     | 66.08<br>66.50               | 4.36<br>2.75                | 3723.10<br>3722.99                                | 82.94                                |                                                           |                                  |                                        |          |
|   | RW-08          | 3790.01                                     | 11/26/18           | 69.88                              | 66.65                        | 3.23                        | 3722.99                                           | 02.94                                |                                                           |                                  |                                        |          |
|   | RW-08          | 3790.01                                     | 2/25/19            | 72.29                              | 66.64                        | 5.65                        | 3722.30                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-08          | 3790.01                                     | 5/20/19            | 72.75                              | 66.41                        | 6.34                        | 3722.40                                           |                                      |                                                           |                                  |                                        |          |
| _ | RW-08          | 3790.01                                     | 7/16/19            | 72.31                              | 66.68                        | 5.63                        | 3722.26                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-08          | 3790.01                                     | 7/23/19            | 72.67                              | 66.65                        | 6.02                        | 3722.22                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-08          | 3790.01                                     | 8/13/19            | 12.01                              | 00.05                        | 0.02                        | 5122.22                                           |                                      |                                                           | 0.7                              | 0.4                                    |          |
|   | RW-08          | 3790.01                                     | 10/22/19           | 71.54                              | 67.04                        | 4.50                        | 3722.12                                           |                                      |                                                           | 0.7                              | 0.4                                    |          |
|   | RW-08          | 3790.01                                     | 2/10/20            | 73.08                              | 67.00                        | 6.08                        | 3721.85                                           | 82.82                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
|   | 100            | 0700.01                                     | 2/10/20            | 10.00                              | 07.00                        | 0.00                        | 0721.00                                           | 02.02                                | 00.0 70.0 (4 11.)                                         |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 2/27/18            | 67.77                              | 66.95                        | 0.82                        | 3722.89                                           | 82.49                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 5/29/18            | 68.20                              | 67.05                        | 1.15                        | 3722.73                                           | 02.10                                |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 8/29/18            | 67.49                              | 67.36                        | 0.13                        | 3722.62                                           | 82.49                                |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 11/26/18           | 68.05                              | 67.50                        | 0.55                        | 3722.40                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 2/6/19             |                                    |                              |                             |                                                   |                                      |                                                           | 0.5                              |                                        |          |
|   | RW-09          | 3790.00                                     | 2/25/19            | 68.67                              | 67.55                        | 1.12                        | 3722.24                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 4/24/19            | 70.79                              | 66.04                        | 4.75                        | 3723.06                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 5/20/19            | 69.18                              | 67.69                        | 1.49                        | 3722.03                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 7/23/19            | 69.36                              | 67.82                        | 1.54                        | 3721.89                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 10/22/19           | 68.51                              | 68.16                        | 0.35                        | 3721.77                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-09          | 3790.00                                     | 1/8/20             |                                    |                              |                             |                                                   |                                      |                                                           | 1.5                              | 0                                      |          |
|   | RW-09          | 3790.00                                     | 2/10/20            | 68.90                              | 68.38                        | 0.52                        | 3721.52                                           | 82.85                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
|   |                |                                             |                    |                                    |                              |                             |                                                   |                                      |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 2/27/18            | 71.83                              | 65.53                        | 6.30                        | 3722.96                                           | 82.56                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 5/29/18            | 72.95                              | 65.70                        | 7.25                        | 3722.61                                           |                                      |                                                           |                                  |                                        |          |
| _ | RW-10          | 3789.69                                     | 8/29/18            | 72.83                              | 65.78                        | 7.05                        | 3722.57                                           | 82.56                                |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 11/26/18           | 72.95                              | 66.08                        | 6.87                        | 3722.30                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 12/4/18            | 73.41                              | 66.02                        | 7.39                        | 3722.27                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 1/29/19            |                                    |                              |                             |                                                   |                                      |                                                           | 8.0                              | 1.0                                    |          |
|   | RW-10          | 3789.69                                     | 2/25/19            | 72.53                              | 66.27                        | 6.26                        | 3722.23                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 5/20/19            | 70.30                              | 68.90                        | 1.40                        | 3720.52                                           |                                      |                                                           |                                  |                                        |          |
| _ | RW-10          | 3789.69                                     | 7/16/19            | 69.55                              | 67.43                        | 2.12                        | 3721.86                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 7/23/19            | 70.63                              | 67.23                        | 3.40                        | 3721.81                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 10/22/19           | 69.89                              | 67.60                        | 2.29                        | 3721.65                                           | 00.00                                |                                                           |                                  |                                        |          |
|   | RW-10          | 3789.69                                     | 2/10/20            | 73.06                              | 66.96                        | 6.10                        | 3721.57                                           | 82.60                                | 59.5-79.5 (4 in.)                                         |                                  |                                        |          |
|   | D\// 44        | 2700 77                                     | 0/07/40            | 66.94                              |                              | 0.00                        | 2722.02                                           | 0E 11                                | (1:~)                                                     |                                  |                                        |          |
|   | RW-11<br>RW-11 | 3789.77<br>3789.77                          | 2/27/18<br>5/29/18 | <u>66.84</u><br>67.01              |                              | 0.00                        | 3722.93<br>3722.76                                | 85.44<br>85.40                       | (4 in.)                                                   |                                  |                                        |          |
| _ | RW-11<br>RW-11 | 3789.77                                     | 8/29/18            | 67.01                              | 67.14                        | 0.00                        | 3722.62                                           | 00.40                                |                                                           |                                  |                                        |          |
| _ | RW-11          | 3789.77                                     | 11/26/18           | 67.38                              | 67.14                        | 0.03                        | 3722.42                                           |                                      |                                                           |                                  |                                        |          |
|   | RW-11          | 3789.77                                     | 2/25/19            | 67.54                              | 67.50                        | 0.04                        | 3722.26                                           |                                      |                                                           |                                  |                                        |          |
| _ | RW-11          | 3789.77                                     | 4/30/19            | 67.63                              | 67.61                        | 0.04                        | 3722.16                                           |                                      |                                                           | 0.1                              | 2.9                                    |          |
|   | 1111           | 0100.11                                     | -1,00,10           | 01.00                              | 07.01                        | 0.02                        | 0122.10                                           |                                      |                                                           | 0.1                              | 2.3                                    |          |

| Volume<br>Groundwater<br>emoved by EFR<br>(gal.) | Comments                              |
|--------------------------------------------------|---------------------------------------|
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
| 315.0                                            |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  | Elev of pot surf incorrect            |
|                                                  | · · · · · · · · · · · · · · · · · · · |
|                                                  |                                       |

| We  | of 1<br>Ca | vation<br>Top of<br>asing<br>amsl) | Date     | Depth to<br>Groundwater<br>(fbtoc) | Depth to<br>LNAPL<br>(fbtoc) | LNAPL<br>Thickness<br>(ft.) | Elevation of<br>Potentiometric<br>Surface (famsl) | Measured<br>Depth of<br>Well (fbtoc) | Well Screen<br>Interval (ft bgs)<br>Well Diameter<br>(in) | Volume Product<br>Removed (gal.) | Volume<br>Groundwater<br>Bailed (gal.) | Re |
|-----|------------|------------------------------------|----------|------------------------------------|------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------|----|
| RW  |            | 89.77                              | 5/20/19  | 67.62                              |                              | 0.00                        | 3722.15                                           |                                      |                                                           |                                  |                                        |    |
| RW  | /-11 37    | 89.77                              | 5/21/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 36.0                                   |    |
| RW  | /-11 37    | 89.77                              | 6/11/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| RW  | /-11 37    | 89.77                              | 6/25/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| RW  | /-11 37    | 89.77                              | 7/23/19  | 67.83                              |                              | 0.00                        | 3721.94                                           |                                      |                                                           |                                  |                                        |    |
| RW  | /-11 37    | 89.77                              | 7/23/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 28.0                                   |    |
|     |            | 89.77                              | 8/13/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| -   |            | 89.77                              | 8/20/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.77                              | 8/28/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.77                              | 9/3/19   |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.77                              | 9/10/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.77                              | 9/24/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| -   |            | 89.77                              | 10/2/19  |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |    |
|     |            | 89.77                              | 10/22/19 | 67.97                              |                              | 0.00                        | 3721.80                                           |                                      |                                                           |                                  | 28.0                                   |    |
|     |            | 89.77                              | 11/20/19 |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |    |
|     |            | 89.77                              | 12/10/19 |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |    |
|     |            | 89.77                              | 12/24/19 |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| -   |            | 89.77                              | 1/14/20  | 60.00                              |                              | 0.00                        | 2724 54                                           | 95.40                                | (1 in )                                                   | 0.0                              | 3.0                                    |    |
| KV  | 7-11 37    | 89.77                              | 2/10/20  | 68.23                              |                              | 0.00                        | 3721.54                                           | 85.40                                | (4 in.)                                                   | 0.0                              | 34.0                                   |    |
| D\/ | /-12 37    | 89.78                              | 2/27/18  | 66.76                              |                              | 0.00                        | 3723.02                                           | 84.28                                | (4 in.)                                                   |                                  |                                        |    |
|     |            | 89.78                              | 5/29/18  | 66.92                              |                              | 0.00                        | 3722.86                                           | 84.24                                | (4 111.)                                                  |                                  |                                        |    |
|     |            | 89.78                              | 8/29/18  | 67.06                              |                              | 0.00                        | 3722.72                                           | 85.31                                |                                                           |                                  |                                        |    |
|     |            | 89.78                              | 11/26/18 | 67.27                              |                              | 0.00                        | 3722.51                                           | 85.31                                |                                                           |                                  |                                        |    |
|     |            | 89.78                              | 2/25/19  | 67.46                              |                              | 0.00                        | 3722.32                                           | 00101                                |                                                           |                                  |                                        |    |
|     |            | 89.78                              | 2/27/19  | 00                                 |                              | 0.00                        | 0.22.02                                           |                                      |                                                           | 0.0                              | 33.0                                   |    |
| -   |            | 89.78                              | 4/30/19  | 67.54                              | 67.53                        | 0.01                        | 3722.25                                           |                                      |                                                           |                                  |                                        |    |
| RW  |            | 89.78                              | 4/30/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| RW  |            | 89.78                              | 5/20/19  | 67.69                              | 67.68                        | 0.01                        | 3722.10                                           |                                      |                                                           |                                  |                                        |    |
| RW  | /-12 37    | 89.78                              | 6/11/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| RW  | /-12 37    | 89.78                              | 6/25/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| RW  | /-12 37    | 89.78                              | 7/23/19  | 67.74                              |                              |                             | 3722.04                                           |                                      |                                                           | 0.0                              | 26.0                                   |    |
| RW  | /-12 37    | 89.78                              | 8/13/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| RW  | /-12 37    | 89.78                              | 8/20/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.78                              | 8/28/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.78                              | 9/3/19   |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
| -   |            | 89.78                              | 9/10/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.78                              | 9/24/19  |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.78                              | 10/2/19  |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |    |
|     |            | 89.78                              | 10/22/19 | 67.91                              |                              | 0.00                        | 3721.87                                           |                                      |                                                           |                                  | 24.0                                   |    |
|     |            | 89.78                              | 11/20/19 |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |    |
| -   |            | 89.78                              | 12/10/19 |                                    |                              |                             |                                                   |                                      |                                                           |                                  | 3.0                                    |    |
|     |            | 89.78                              | 12/24/19 |                                    |                              |                             |                                                   |                                      |                                                           | 0.0                              | 3.0                                    |    |
|     |            | 89.78                              | 1/14/20  | 60.00                              |                              | 0.00                        | 2724 55                                           | 02.02                                | (1:0)                                                     | 0.0                              | 3.0                                    |    |
| KW  | /-12 37    | 89.78                              | 2/10/20  | 68.23                              |                              | 0.00                        | 3721.55                                           | 82.82                                | (4 in.)                                                   |                                  | 29.0                                   |    |

| Volume<br>Groundwater<br>Removed by EFR |          |
|-----------------------------------------|----------|
| (gal.)                                  | Comments |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |

#### Summary of Fluid Level Measurements and Fluids Removed **Plains Pipeline LP** Darr Angell No. 2 Lea County, Mexico NMOCD AP-007

|         | Elevation |      |             |          |           |                 |              | Well Screen       |                |               |     |
|---------|-----------|------|-------------|----------|-----------|-----------------|--------------|-------------------|----------------|---------------|-----|
|         | of Top of |      | Depth to    | Depth to | LNAPL     | Elevation of    | Measured     | Interval (ft bgs) |                | Volume        | G   |
|         | Casing    |      | Groundwater | LNAPL    | Thickness | Potentiometric  | Depth of     | Well Diameter     | Volume Product | Groundwater   | Ren |
| Well ID | (famsl)   | Date | (fbtoc)     | (fbtoc)  | (ft.)     | Surface (famsl) | Well (fbtoc) | (in)              | Removed (gal.) | Bailed (gal.) |     |

Notes:

1. famsl - feet above mean sea level

2. fbtoc - feet below top of casing
 3. LNAPL - Light non-aqueous phase liquid.
 4. fbgs - feet below ground surface.

5. MW-12, RW-11, and RW-12 were installed in February 20170.00 3722.55

6. Monitor well MW-11 was not surveyed until 06/28/17. The surveyed elevation has been entered for prior monitoring events only for the purpose of determining the relative trend in elevations of the potentiometric surface at that location.

Page 9 of 9

Volume Groundwater emoved by EFR (gal.)

Comments

#### Summary of Analytical Results of BTEX in Ground Water Plains Pipeline LP Darr Angell No. 2 Lea County, Mexico NMOCD AP-007

| Sample        | Sample   | Benzene    | Toluene    | Ethylbenzene                | Total Xylenes |
|---------------|----------|------------|------------|-----------------------------|---------------|
| ID            | Date     | (mg/L)     | (mg/L)     | (mg/L)<br>man Health Standa | (mg/L)        |
|               |          | 0.04       | •          |                             |               |
| NA\A/ 4       | 11/27/18 | 0.01       | 0.75       | 0.75                        | 0.62          |
| MW-1          | 11/27/18 | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-3          | 8/30/18  |            | Dry        |                             |               |
| MW-3          | 11/27/18 |            | Dry        |                             |               |
|               |          |            | 2          |                             |               |
| MW-4R         | 2/28/18  | <0.00200   | <0.00200   | <0.00200                    | <0.00200      |
| MW-4R         | 5/30/18  | <0.00200   | <0.00200   | <0.00200                    | <0.00200      |
| MW-4R         | 8/30/18  | <0.000190  | <0.000412  | 0.000215 J                  | <0.000510     |
| MW-4R         | 11/27/18 | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-4R         | 2/27/19  | 0.000190 J | <0.000412  | 0.000404 J                  | 0.000721 B J  |
| MW-4R         | 5/21/19  | 0.000265 J | 0.000544 J | 0.000225 J                  | 0.000846 B J  |
| MW-4R         | 7/23/19  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-4R         | 10/22/19 | 0.000301 J | 0.000535 J | 0.000380 J                  | 0.00172       |
| MW-4R         | 2/14/20  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
|               |          |            |            |                             |               |
|               |          |            |            |                             |               |
| MW-7          | 11/27/18 | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-7          | 10/22/19 |            |            |                             |               |
|               |          |            |            |                             |               |
| MW-8          | 11/27/18 | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-8          | 10/22/19 | 0.000773   | 0.000654 J | 0.000780                    | 0.00239       |
| MW-9          | 11/27/18 | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-9 (DUP-1)  | 11/27/18 | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-9          | 10/22/19 | 0.000344 J | 0.000609 J | 0.000289 J                  | 0.00114 J     |
| 10100-5       | 10/22/19 | 0.000344 3 | 0.000009.3 | 0.0002893                   | 0.00114 5     |
|               |          |            |            |                             |               |
| MW-11         | 2/28/18  | 0.00223    | <0.00200   | 0.0031                      | <0.00200      |
| MW-11         | 5/30/18  | <0.00200   | <0.00200   | 0.00277                     | 0.0123        |
| MW-11 (DUP-1) | 5/30/18  | <0.00200   | <0.00200   | 0.0115                      | 0.0538        |
| MW-11         | 8/30/18  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-11         | 11/27/18 | <0.000190  | <0.000412  | 0.000446 J                  | <0.000510     |
| MW-11         | 2/27/19  | <0.000190  | <0.000412  | <0.000160                   | 0.00278 B     |
| MW-11         | 5/21/19  | <0.000190  | <0.000412  | 0.000175 B J                | <0.000510     |
|               |          |            |            |                             |               |
| MW-12         | 2/28/18  | <0.00200   | <0.00200   | <0.00200                    | <0.00200      |
| MW-12         | 5/30/18  | <0.00200   | <0.00200   | <0.00200                    | <0.00200      |
| MW-12         | 8/30/18  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-12 (DUP-1) | 8/30/18  | 0.000197 J | <0.000412  | <0.000160                   | 0.00105 J     |
| MW-12         | 11/27/18 | <0.000190  | <0.000412  | 0.000365 J                  | 0.000844 J    |
| MW-12         | 2/27/19  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-12 DUP-1   | 2/27/19  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |
| MW-12         | 5/21/19  | <0.000190  | <0.000412  | <0.000160                   | <0.000510     |

#### Summary of Analytical Results of BTEX in Ground Water Plains Pipeline LP Darr Angell No. 2 Lea County, Mexico NMOCD AP-007

| Sample        | Sample   | Benzene         | Toluene                     | Ethylbenzene     | Total Xylenes |
|---------------|----------|-----------------|-----------------------------|------------------|---------------|
| ID            | Date     | ( <i>mg/L</i> ) | ( <i>mg/L</i> )             | (mg/L)           | (mg/L)        |
|               |          |                 | NMWQCC Hu                   | man Health Stand | lards         |
|               |          | 0.01            | 0.75                        | 0.75             | 0.62          |
| MW-12         | 7/23/19  | <0.000190       | <0.000412                   | <0.000160        | <0.000510     |
| MW-12         | 10/22/19 | 0.000319 J      | 0.000583 J                  | 0.000321 J       | 0.00138 J     |
| MW-12         | 2/14/20  | 0.00285         | <0.000412                   | <0.000160        | <0.000510     |
|               |          |                 |                             |                  |               |
| RW-11         | 2/28/18  | 0.0722          | 0.0208                      | 0.0386           | 0.138         |
| RW-11 (DUP-1) | 2/28/18  | 0.0793          | 0.0230                      | 0.0425           | 0.150         |
| RW-11         | 5/30/18  | 0.0156          | 0.00297                     | 0.00539          | 0.0243        |
| RW-11         | 8/30/18  |                 | LNAPL Present               |                  |               |
| RW-11         | 11/27/18 |                 | <mark>LNAPL Presen</mark> t |                  |               |
| RW-11         | 2/25/19  |                 | LNAPL Present               |                  |               |
| RW-11         | 5/21/19  | 0.142           | 0.00981                     | 0.0276           | 0.104         |
| RW-11 (DUP-1) | 5/21/19  | 0.149           | 0.00822                     | 0.0248           | 0.0847        |
| RW-11         | 7/23/19  | 0.115           | 0.00220                     | 0.0212           | 0.0620        |
| RW-11         | 10/22/19 | 0.167           | 0.00805                     | 0.0287           | 0.0937        |
| RW-11         | 2/14/20  | 0.207           | 0.00300                     | 0.0728           | 0.291         |
|               |          |                 |                             |                  |               |
| RW-12         | 2/28/18  | 0.623           | 0.259                       | 0.281            | 1.060         |
| RW-12         | 5/30/18  | <0.00200        | 0.00548                     | 0.0176           | 0.0465        |
| RW-12         | 8/30/18  | 1.39            | 0.105                       | 0.0968           | 0.307         |
| RW-12         | 11/27/18 | 1.37            | 0.144                       | 0.216            | 0.254         |
| RW-12         | 2/27/19  | 1.16            | 0.140                       | 0.212            | 0.315         |
| RW-12         | 5/20/19  |                 | LNAPL Present               |                  |               |
| RW-12         | 7/23/19  | 1.58            | 0.159                       | 0.0746           | 0.492         |
| RW-12(DUP-1)  | 7/23/19  | 1.13            | 0.230                       | 0.219            | 0.437         |
| RW-12         | 10/22/19 | 1.12            | 0.186                       | 0.353            | 0.389         |
| RW-12 (Dup1)  | 10/22/19 | 0.950           | 0.112                       | 0.186            | 0.256         |
| RW-12         | 2/14/20  | 0.859           | 0.064                       | 0.160            | 0.183         |
|               |          |                 |                             |                  |               |
| Trip Blank    | 8/30/18  | <0.000190       | <0.000412                   | <0.000160        | <0.000510     |
| Trip Blank    | 2/27/19  | <0.000190       | <0.000412                   | <0.000160        | <0.000510     |
| Trip Blank    | 2/14/20  | <0.000190       | <0.000412                   | <0.000160        | <0.000510     |

#### Notes:

1. Shaded cells indicate exceedance of LNAPL New Mexico Oil Conservation Division Regulatory Limit.

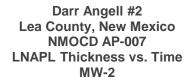
- 2. Bold indicates detection.
- 3. BTEX analyses by EPA Method 8021B.
- 4. Samples collected during March 2011 were collected by Nova Training and Environmental.

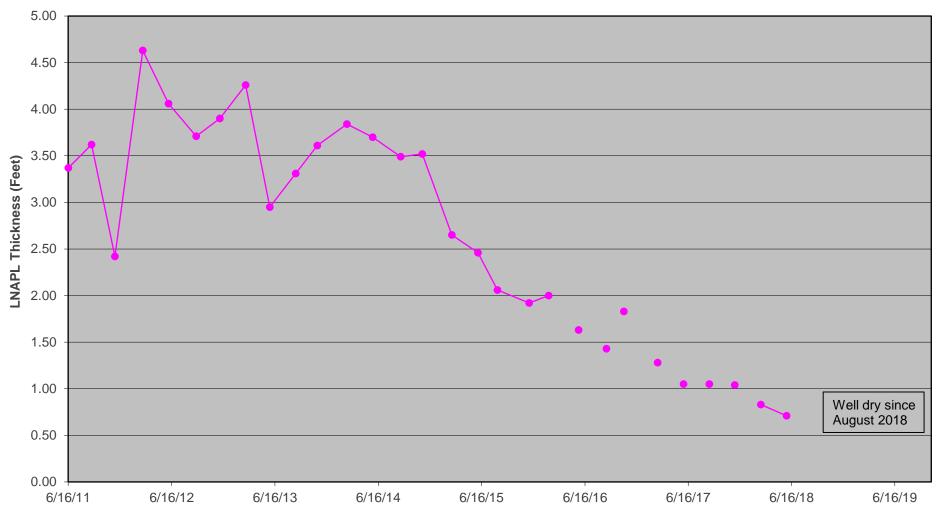
Summary of Analytical Results for PAH Compounds in Groundwater Plains Pipeline LP Darr Angell No. 2 Lea County, Mexico NMOCD AP-007

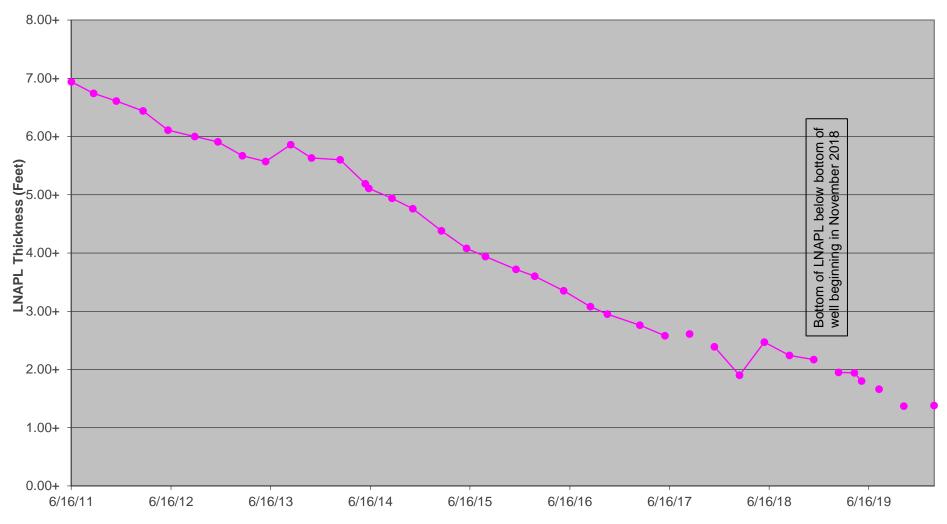
| Sample<br>ID   | Sample<br>Date      | Anthracene (mg/l)                                                                                                                            | Acenaphthene (mg/l)    | Acenaphthylene (mg/l)  | Benzo(a)anthracene (mg/l) | Benzo(a)pyrene (mg/l)  | Benzo(b)fluoranthene (mg/l) | Benzo(g,h,i)perylene (mg/l) | Benzo(k)fluoranthene (mg/l)                                                                                                                  | Chrysene (mg/l)                                                                                                                              | Dibenzo(a,h)anthracene (mg/l) | Dibenzofuran (mg/l)    | Fluoranthene (mg/l)    | Fluorene (mg/l)                                                                                                                              | Indeno(1,2,3-cd)pyrene (mg/l)                                                                                                                | Naphthalene (mg/l)     | Phenanthrene (mg/l)    | Pyrene (mg/l)                | 1-Methylnaphthalene (mg/l)                                                                                                                   | 2-Methylnaphthalene (mg/l)                                                                                                                   |
|----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------------|------------------------|-----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              | l.                                                                                                                                           | NMWQCC Huma                   | an Health Standard     | ls                     |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
|                |                     | 0.001                                                                                                                                        | 0.001                  | 0.001                  | 0.001                     | 0.0002                 | 0.001                       | 0.001                       | 0.001                                                                                                                                        | 0.001                                                                                                                                        | 0.001                         | 0.001                  | 0.001                  | 0.001                                                                                                                                        | 0.001                                                                                                                                        | 0.03                   | 0.001                  | 0.001                        | 0.03                                                                                                                                         | 0.03                                                                                                                                         |
| MW-1           | 12/1/08             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
| MW-1           | 11/30/09            | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
|                | 40/4/00             | 0.000400                                                                                                                                     | 0.0004.00              | 0.0004.00              | 0.0004.00                 | 0.000400               | 0.000400                    | 0.0004.00                   | 0.0004.00                                                                                                                                    | 0.0004.00                                                                                                                                    | 0.0004.00                     | 0.400                  | 0.000400               | 0.470                                                                                                                                        | 0.000400                                                                                                                                     | 0.704                  | 0.020                  | 0.0004.00                    | 4.00                                                                                                                                         | 0.04                                                                                                                                         |
| MW-2           | 12/1/08<br>11/30/09 | <0.000183<br><0.0229                                                                                                                         | <0.000183              | <0.000183<br><0.0229   | <0.000183<br><0.0229      | <0.000183<br><0.0229   | <0.000183<br><0.0229        | <0.000183<br><0.0229        | <0.000183<br><0.0229                                                                                                                         | <0.000183<br><0.0229                                                                                                                         | <0.000183<br><0.0229          | 0.130                  | <0.000183              | 0.178                                                                                                                                        | <0.000183                                                                                                                                    | 0.704                  | 0.230                  | <0.000183                    | 1.68                                                                                                                                         | 2.31                                                                                                                                         |
| MW-2           | 11/30/09            | <0.0229                                                                                                                                      | <0.0229                | <0.0229                | <0.0229                   | <0.0229                | <0.0229                     | <0.0229                     | <0.0229                                                                                                                                      | <0.0229                                                                                                                                      | <0.0229                       | 0.524                  | <0.0229                | 0.755                                                                                                                                        | <0.0229                                                                                                                                      | 2.89                   | 1.04                   | <0.0229                      | 7.25                                                                                                                                         | 9.78                                                                                                                                         |
| MW-3           | 12/1/08             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | 0.0014                 | <0.000183              | 0.00126                                                                                                                                      | <0.000183                                                                                                                                    | 0.0426                 | 0.00103                | <0.000183                    | 0.0260                                                                                                                                       | < 0.000183                                                                                                                                   |
| MW-3           | 11/30/09            | <0.000184                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | 0.00145                | < 0.000184             | 0.00155                                                                                                                                      | <0.000183                                                                                                                                    | 0.0420                 | 0.00134                | <0.000183                    | 0.0306                                                                                                                                       | <0.000184                                                                                                                                    |
| <br>MW-3       | 11/24/10            | <0.000184                                                                                                                                    | <0.000184              | <0.000184              | <0.000184                 | <0.000184              | <0.000184                   | <0.000184                   | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000184                     | 0.00133                | <0.000184              | 0.00132                                                                                                                                      | <0.000184                                                                                                                                    | < 0.000184             | 0.00134                | <0.000184                    | 0.0234                                                                                                                                       | < 0.000184                                                                                                                                   |
| MW-3           | 12/1/11             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | 0.00163                | <0.000183              | 0.00140                                                                                                                                      | <0.000183                                                                                                                                    | 0.00893                | 0.00135                | <0.000183                    | 0.0191                                                                                                                                       | <0.000183                                                                                                                                    |
| MW-3           | 12/6/12             | <0.000191                                                                                                                                    | <0.000191              | <0.000191              | <0.000191                 | <0.000191              | <0.000191                   | <0.000191                   | <0.000191                                                                                                                                    | <0.000191                                                                                                                                    | <0.000191                     | 0.00080                | <0.000191              | 0.00066                                                                                                                                      | <0.000191                                                                                                                                    | <0.000191              | 0.00063                | <0.000191                    | 0.0016                                                                                                                                       | <0.000191                                                                                                                                    |
| MW-3           | 12/3/15             | < 0.000199                                                                                                                                   | < 0.000199             | <0.000199              | < 0.000199                | <0.000199              | <0.000199                   | < 0.000199                  | <0.000199                                                                                                                                    | < 0.000199                                                                                                                                   | < 0.000199                    | <0.000199              | <0.000199              | < 0.000199                                                                                                                                   | <0.000199                                                                                                                                    | <0.000199              | <0.000199              | < 0.000199                   | <0.000199                                                                                                                                    | <0.000199                                                                                                                                    |
| MW-3           | 11/3/16             | < 0.000229                                                                                                                                   | < 0.000229             | <0.000229              | <0.000229                 | <0.000229              | <0.000229                   | < 0.000229                  | < 0.000229                                                                                                                                   | < 0.000229                                                                                                                                   | < 0.000229                    | 0.000321               | < 0.000229             | <0.000229                                                                                                                                    | < 0.000229                                                                                                                                   | 0.00184                | <0.000229              | 0.000370                     | 0.00230                                                                                                                                      | <0.000229                                                                                                                                    |
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
| MW-4           | 11/30/09            | <0.000184                                                                                                                                    | <0.000184              | <0.000184              | <0.000184                 | <0.000184              | <0.000184                   | < 0.000184                  | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000184                     | <0.000184              | <0.000184              | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | 0.00118                | <0.000184              | <0.000184                    | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    |
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                        |
| MW-4R          | 11/19/14            | <0.000198                                                                                                                                    | <0.000198              | <0.000198              | <0.000198                 | <0.000198              | <0.000198                   | <0.000198                   | <0.000198                                                                                                                                    | <0.000198                                                                                                                                    | <0.000198                     | <0.000198              | <0.000198              | <0.000198                                                                                                                                    | <0.000198                                                                                                                                    | <0.000198              | <0.000198              | <0.000198                    | <0.000198                                                                                                                                    | <0.000198                                                                                                                                    |
| MW-4R          | 12/3/15             | <0.000200                                                                                                                                    | <0.000200              | <0.000200              | <0.000200                 | <0.000200              | <0.000200                   | <0.000200                   | <0.000200                                                                                                                                    | <0.000200                                                                                                                                    | <0.000200                     | <0.000200              | <0.000200              | <0.000200                                                                                                                                    | <0.000200                                                                                                                                    | <0.000200              | <0.000200              | <0.000200                    | <0.000200                                                                                                                                    | <0.000200                                                                                                                                    |
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
| MW-6           | 12/1/08             | <0.000185                                                                                                                                    | <0.000185              | <0.000185              | <0.000185                 | <0.000185              | <0.000185                   | <0.000185                   | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    | <0.000185                     | <0.000185              | <0.000185              | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    | <0.000185              | <0.000185              | <0.000185                    | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    |
| MW-6           | 11/30/09            | <0.000184                                                                                                                                    | <0.000184              | <0.000184              | <0.000184                 | <0.000184              | <0.000184                   | <0.000184                   | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000184                     | <0.000184              | <0.000184              | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000184              | <0.000184              | <0.000184                    | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    |
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
| MW-7           | 12/1/08             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
| MW-7           | 11/30/09            | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
| MW-8           | 12/1/08             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    |                                                                                                                                              | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
| MW-8           | 11/30/09            | <0.000184                                                                                                                                    | <0.000184              | <0.000184              | <0.000184                 | <0.000184              | <0.000184                   | <0.000184                   | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000184                     | <0.000184              | <0.000184              | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000184              | <0.000184              | <0.000184                    | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    |
|                | 10/1/00             |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              | 0.000400                      |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
| MW-9           | 12/1/08             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
| MW-9           | 11/30/09            | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
|                | 10/1/00             | -0.000400                                                                                                                                    | -0.0004.00             | -0.000400              | -0.0004.00                | -0.0004.00             | -0.000400                   | -0.000400                   | -0.0004.00                                                                                                                                   | -0.000400                                                                                                                                    | -0.0004.00                    | -0.0004.00             | -0.0004.00             | -0.0004.00                                                                                                                                   | -0.0004.00                                                                                                                                   | -0.0004.00             | -0.000400              | -0.000400                    | -0.0004.00                                                                                                                                   | -0.000100                                                                                                                                    |
| MW-10<br>MW-10 | 12/1/08<br>11/30/09 | <0.000183<br><0.000183                                                                                                                       | <0.000183<br><0.000183 | <0.000183<br><0.000183 | <0.000183<br><0.000183    | <0.000183<br><0.000183 | <0.000183<br><0.000183      | <0.000183<br><0.000183      | <0.000183<br><0.000183                                                                                                                       |                                                                                                                                              | <0.000183<br><0.000183        | <0.000183<br><0.000183 | <0.000183<br><0.000183 | <0.000183<br><0.000183                                                                                                                       | <0.000183<br><0.000183                                                                                                                       | <0.000183<br><0.000183 | <0.000183<br><0.000183 | <0.000183<br><0.000183       | <0.000183<br><0.000183                                                                                                                       | <0.000183<br><0.000183                                                                                                                       |
| 10100-10       | 11/30/09            | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | <0.000103              | <0.000103              | <0.000103                 | <0.000103              | <0.000103                   | <0.000103                   | <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | <0.000103                     | <0.000103              | <0.000103              | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | <0.000103              | <0.000103              | <u><u></u> &lt;0.000103 </u> | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |
| MW-11          | 12/1/08             | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                 | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    |
| MW-11          | 11/30/09            | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | < 0.000183                | <0.000183              | <0.000183                   | <0.000183                   | <0.000183                                                                                                                                    |                                                                                                                                              | <0.000183                     | <0.000183              | <0.000183              | <0.000183                                                                                                                                    | <0.000183                                                                                                                                    | <0.000183              | <0.000183              | <0.000183                    | <0.000183                                                                                                                                    | <0.000184                                                                                                                                    |
| MW-11          | 12/3/15             | <0.000104                                                                                                                                    | <0.000104              | <0.000104              | <0.000104                 | <0.000104              | <0.000104                   | <0.000104                   | <0.000104                                                                                                                                    |                                                                                                                                              | <0.000184                     | <0.000199              | <0.000199              | <0.000199                                                                                                                                    | <0.000199                                                                                                                                    | <0.000184              | <0.000199              | <0.000199                    | 0.000336                                                                                                                                     | <0.000199                                                                                                                                    |
| MW-11          | 11/3/16             | <0.000185                                                                                                                                    | <0.000185              | <0.000185              | <0.000185                 | <0.000185              | <0.000185                   | <0.000185                   | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    | <0.000185                     | <0.000185              | <0.000185              | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    | <0.000185              | <0.000185              | 0.000303                     | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    |
| MW-11          | 12/1/17             | < 0.000184                                                                                                                                   | < 0.000184             | <0.000184              | < 0.000184                | <0.000184              | <0.000184                   | <0.000184                   | <0.000184                                                                                                                                    |                                                                                                                                              | <0.000184                     | <0.000184              | <0.000184              | <0.000184                                                                                                                                    | <0.000184                                                                                                                                    | <0.000368              | <0.000184              | < 0.000184                   |                                                                                                                                              |                                                                                                                                              |
|                |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               | · · · · · ·            |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |
| MW-12          | 12/1/17             | <0.000185                                                                                                                                    | <0.000185              | <0.000185              | <0.000185                 | <0.000185              | <0.000185                   | <0.000185                   | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    | <0.000185                     | <0.000185              | <0.000185              | <0.000185                                                                                                                                    | <0.000185                                                                                                                                    | <0.000369              | <0.000185              | <0.000185                    |                                                                                                                                              |                                                                                                                                              |
| MW-12          | 11/27/18            | <0.0000140                                                                                                                                   | <0.0000100             | <0.0000120             | <0.0000410                | <0.0000116             | <0.0000212                  | <0.0000227                  | < 0.0000136                                                                                                                                  | < 0.0000108                                                                                                                                  | <0.0000396                    | 0.00000254 J           | <0.0000157             | <0.0000850                                                                                                                                   | <0.0000148                                                                                                                                   | 0.0000280 J            | <0.0000820             | <0.0000117                   | <0.0000821                                                                                                                                   | <0.0000902                                                                                                                                   |
| GHD 074        |                     |                                                                                                                                              |                        |                        |                           |                        |                             |                             |                                                                                                                                              |                                                                                                                                              |                               |                        |                        |                                                                                                                                              |                                                                                                                                              |                        |                        |                              |                                                                                                                                              |                                                                                                                                              |

Summary of Analytical Results for PAH Compounds in Groundwater Plains Pipeline LP Darr Angell No. 2 Lea County, Mexico NMOCD AP-007

| Sample<br>ID        | Sample<br>Date      | Anthracene (mg/l) | Acenaphthene (mg/l) | Acenaphthylene (mg/l) | Benzo(a)anthracene (mg/l) | Benzo(a)pyrene (mg/l) | Benzo(b)fluoranthene (mg/l) | Benzo(g,h,i)perylene (mg/l) | Benzo(k)fluoranthene (mg/l) | Chrysene (mg/l)       | Dibenzo(a,h)anthracene (mg/l) | Dibenzofuran (mg/l) | Fluoranthene (mg/l) | Fluorene (mg/l) | Indeno(1,2,3-cd)pyrene (mg/l) | Naphthalene (mg/l)   | Phenanthrene (mg/l) | Pyrene (mg/l)         | 1-Methylnaphthalene (mg/l) | 2-Methylnaphthalene (mg/l) |
|---------------------|---------------------|-------------------|---------------------|-----------------------|---------------------------|-----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|-------------------------------|---------------------|---------------------|-----------------|-------------------------------|----------------------|---------------------|-----------------------|----------------------------|----------------------------|
|                     |                     |                   |                     |                       |                           |                       |                             |                             |                             |                       |                               | n Health Standard   |                     |                 |                               |                      |                     |                       |                            |                            |
|                     | / /                 | 0.001             | 0.001               | 0.001                 | 0.001                     | 0.0002                | 0.001                       | 0.001                       | 0.001                       | 0.001                 | 0.001                         | 0.001               | 0.001               | 0.001           | 0.001                         | 0.03                 | 0.001               | 0.001                 | 0.03                       | 0.03                       |
| MW-12               | 10/22/19            | <0.000014         | <0.00001            | <0.000012             | <0.0000041                | <0.0000116            | <0.0000212                  | <0.0000227                  | <0.0000136                  | <0.0000108            | <0.0000396                    | 0.0000235 B J       | <0.0000157          | 0.0000217 J     | <0.0000148                    | 0.000197 J           | 0.0000231 J         | <0.0000117            | 0.000123 B J               | 0.000101 B J               |
|                     | 12/1/08             | <0.00459          | <0.00459            | <0.00459              | <0.00459                  | <0.00459              | <0.00459                    | <0.00459                    | <0.00459                    | <0.00459              | <0.00459                      | 0.000               | <0.00459            | 0.074           | <0.00459                      | 4.04                 | 0.240               | -0.00450              | 2.42                       | 2.00                       |
| <u>RW-1</u><br>RW-1 | 11/30/09            | <0.00459          | <0.00459            | <0.00459              | <0.00459                  | <0.00459              | <0.00459                    | <0.00459                    | <0.00459                    | <0.00459              | <0.00459                      | 0.208               | <0.00459            | 0.274           | <0.00459                      | <u>1.01</u><br>0.102 | 0.346               | <0.00459<br><0.000922 | 2.42<br>0.118              | 3.20<br>0.154              |
|                     | 11/30/09            | <0.000922         | <0.000922           | <0.000922             | <0.000922                 | <0.000922             | <0.000922                   | <0.000922                   | <0.000922                   | <0.000922             | <0.000922                     | 0.00042             | <0.000922           | 0.0117          | <0.000922                     | 0.102                | 0.0134              | <0.000922             | 0.110                      | 0.154                      |
| RW-2                | 12/1/08             | <0.00184          | <0.00184            | <0.00184              | <0.00184                  | <0.00184              | <0.00184                    | <0.00184                    | <0.00184                    | <0.00184              | <0.00184                      | 0.0350              | <0.00184            | 0.0507          | <0.00184                      | 0.224                | 0.0569              | <0.00184              | 0.410                      | 0.526                      |
| RW-2                | 11/30/09            | <0.000922         | <0.000922           | < 0.000922            | <0.000922                 | <0.000922             | <0.000922                   | < 0.000922                  | < 0.000922                  | < 0.000922            | <0.000922                     | 0.0178              | <0.000922           | 0.0254          | <0.000922                     | 0.157                | 0.0322              | <0.000922             | 0.266                      | 0.347                      |
|                     |                     |                   |                     |                       |                           |                       |                             |                             |                             |                       |                               |                     |                     |                 |                               |                      |                     |                       |                            |                            |
| RW-3                | 12/2/08             | <0.000922         | <0.000922           | < 0.000922            | < 0.000922                | < 0.000922            | <0.000922                   | <0.000922                   | <0.000922                   | < 0.000922            | <0.000922                     | 0.0309              | <0.000922           | 0.0447          | <0.000922                     | 0.203                | 0.0523              | <0.000922             | 0.362                      | 0.480                      |
| RW-3                | 11/30/09            | <0.000922         | <0.000922           | <0.000922             | <0.000922                 | < 0.000922            | <0.000922                   | <0.000922                   | < 0.000922                  | < 0.000922            | <0.000922                     | 0.0101              | <0.000922           | 0.0114          | <0.000922                     | 0.113                | 0.0132              | <0.000922             | 0.128                      | 0.164                      |
|                     |                     |                   |                     |                       |                           |                       |                             |                             |                             |                       |                               |                     |                     |                 |                               |                      |                     |                       |                            |                            |
| RW-4                | 12/2/08             | <0.00183          | <0.00183            | <0.00183              | <0.00183                  | <0.00183              | <0.00183                    | <0.00183                    | <0.00183                    | <0.00183              | <0.00183                      | 0.122               | <0.00183            | 0.173           | <0.00183                      | 0.637                | 0.216               | <0.00183              | 1.58                       | 2.14                       |
| RW-4                | 11/30/09            | <0.000922         | <0.000922           | <0.000922             | <0.000922                 | <0.000922             | <0.000922                   | <0.000922                   | <0.000922                   | <0.000922             | <0.000922                     | 0.0184              | <0.000922           | 0.0263          | <0.000922                     | 0.169                | 0.0337              | <0.000922             | 0.276                      | 0.367                      |
|                     |                     |                   |                     |                       |                           |                       |                             |                             |                             |                       |                               |                     |                     |                 |                               |                      |                     |                       |                            |                            |
| RW-5                | 12/1/08             | < 0.000922        | <0.000922           | < 0.000922            | <0.000922                 | <0.000922             | <0.000922                   | < 0.000922                  | < 0.000922                  | < 0.000922            | <0.000922                     | 0.0654              | <0.000922           | 0.0938          | <0.000922                     | 0.283                | 0.117               | <0.000922             | 0.835                      | 0.910                      |
| RW-5                | 11/30/09            | <0.000922         | <0.000922           | <0.000922             | <0.000922                 | <0.000922             | <0.000922                   | <0.000922                   | <0.000922                   | <0.000922             | <0.000922                     | 0.0155              | <0.000922           | 0.0201          | <0.000922                     | 0.147                | 0.0284              | <0.000922             | 0.217                      | 0.295                      |
|                     | 10/0/00             | -0.00192          | -0.00182            | -0.00192              | -0.00192                  | -0.00192              | -0.00182                    | -0.00192                    | -0.00192                    | -0.00102              | -0.00192                      | 0.420               | -0.00192            | 0.400           | -0.00192                      | 0.000                | 0.044               | -0.00192              | 4 77                       | 2.44                       |
| <u>RW-6</u><br>RW-6 | 12/2/08<br>11/30/09 | <0.00183          | <0.00183            | <0.00183              | <0.00183                  | <0.00183              | <0.00183<br><0.000922       | <0.00183<br><0.000922       | <0.00183<br><0.000922       | <0.00183<br><0.000922 | <0.00183<br><0.000922         | 0.138               | <0.00183            | 0.188           | <0.00183<br><0.000922         | 0.693                | 0.244               | <0.00183              | <u>1.77</u><br>0.36        | 2.44<br>0.481              |
|                     | 11/30/09            | <0.000922         | <0.000922           | <0.000922             | <0.000922                 | <0.000922             | <0.000922                   | <0.000922                   | <0.000922                   | <0.000922             | <0.000922                     | 0.0255              | <0.000922           | 0.0352          | <0.000922                     | 0.20                 | 0.0452              | <0.000922             | 0.30                       | 0.401                      |
| RW-11               | 12/1/17             | 0.000374          | 0.00104             | 0.000469              | <0.000183                 | <0.000183             | <0.000183                   | <0.000183                   | <0.000183                   | 0.000806              | <0.000183                     | 0.00281             | 0.000196            | 0.00301         | <0.000183                     | 0.0270               | 0.00629             | 0.000216              |                            |                            |
| RW-11               | 11/12/19            | 0.00112           | < 0.0000100         |                       | 0.000318                  | 0.0000296             | 0.0000490                   |                             | <0.0000255                  |                       | <0.0000454                    | 0.00159             | 0.000153            | 0.00192         | <0.0000739                    | 0.00242              | 0.00325             | 0.000402              | 0.00511                    | 0.00334                    |
|                     |                     |                   |                     |                       |                           |                       |                             |                             |                             |                       |                               |                     |                     |                 |                               |                      |                     |                       |                            |                            |
| RW-12               | 12/1/17             | <0.000183         | 0.000248            | <0.000183             | <0.000183                 | <0.000183             | <0.000183                   | <0.000183                   | <0.000183                   | < 0.000183            | <0.000183                     | 0.000857            | <0.000183           | 0.000194        | <0.000183                     | 0.0183               | 0.000635            | <0.000183             |                            |                            |
| RW-12               | 11/27/18            | 0.0000715         | 0.000281            | <0.0000120            | < 0.00000410              | <0.0000116            | < 0.0000212                 | < 0.0000227                 | < 0.0000136                 | < 0.0000108           | < 0.0000396                   | 0.00169             | <0.0000157          | 0.000354        | <0.0000148                    | 0.0248               | 0.00118             | <0.0000117            | 0.0185                     | 0.0217                     |
| RW-12               | 11/12/19            | 0.0000849         | <0.00001            | < 0.0000700           | <0.000083                 | <0.0000158            | < 0.0000212                 | < 0.0000227                 | < 0.0000255                 | < 0.0000144           | <0.00000454                   | 0.00125             | <0.0000165          | 0.000319        | <0.0000739                    | 0.0104               | 0.000714            | <0.0000155            | 0.00597                    | 0.00660                    |
|                     |                     |                   |                     |                       |                           |                       |                             |                             |                             |                       |                               |                     |                     |                 |                               |                      |                     |                       |                            |                            |

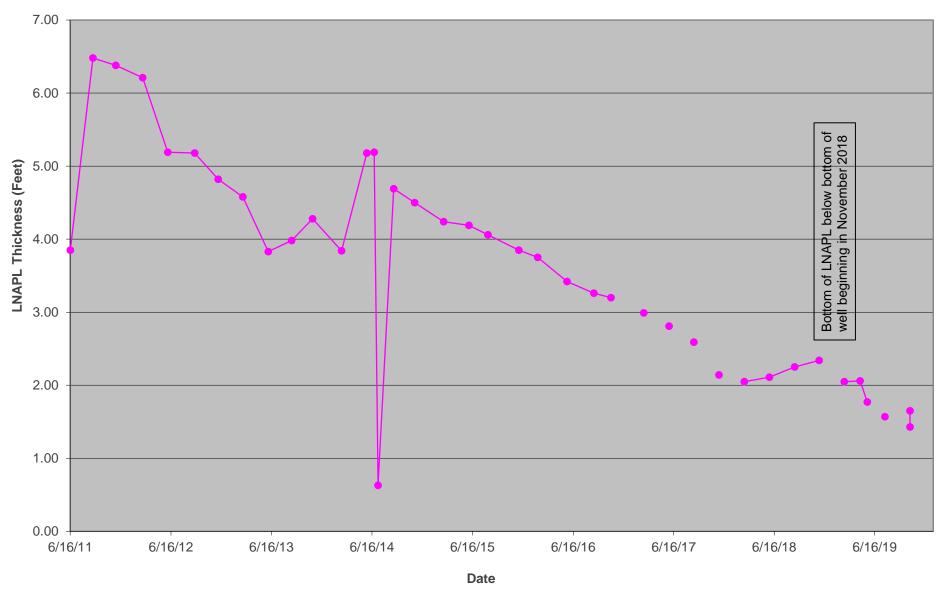

#### Notes:

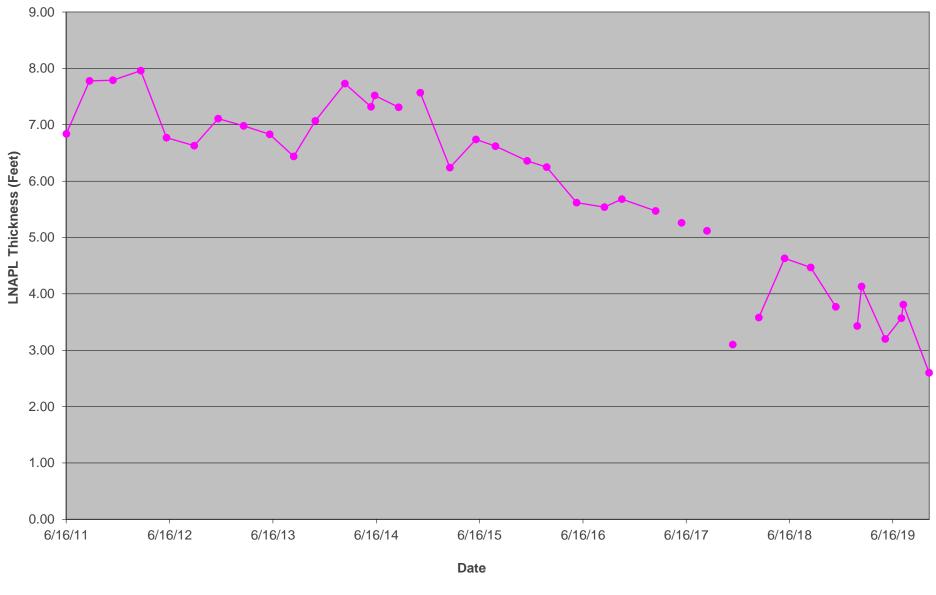

Shaded cells indicate New Mexico Water Quality Control Commission Limit (NMWQCC) exceedance.
 PAH analyses by EPA Method 8270.
 Bold indicates detection.

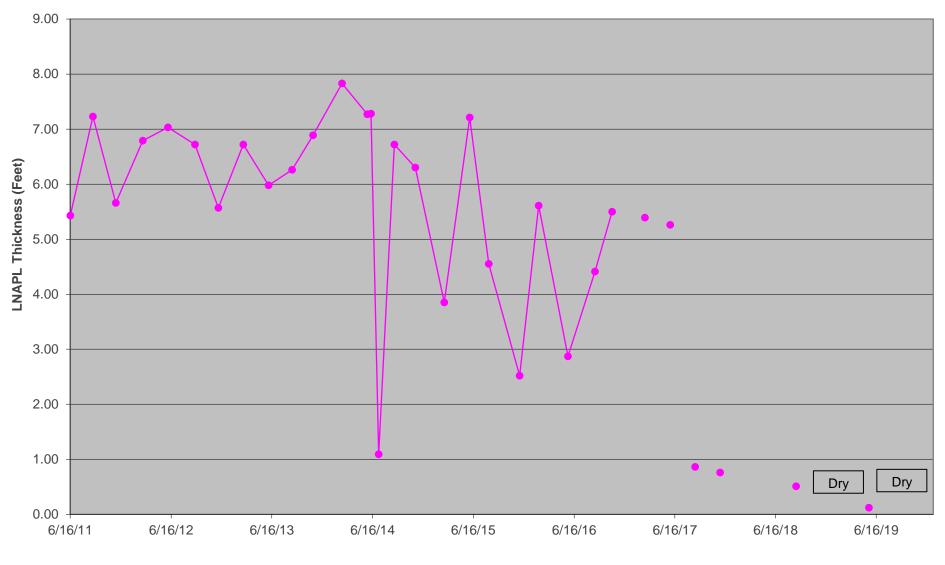

4. Nova Training and Environmental collected samples dated between 2008 and 2010.
 5. --- indicates 1- & 2-Methylnaphthalene was not originally analyzed for and not enough fluid was available to extract for re-run.

## Appendices

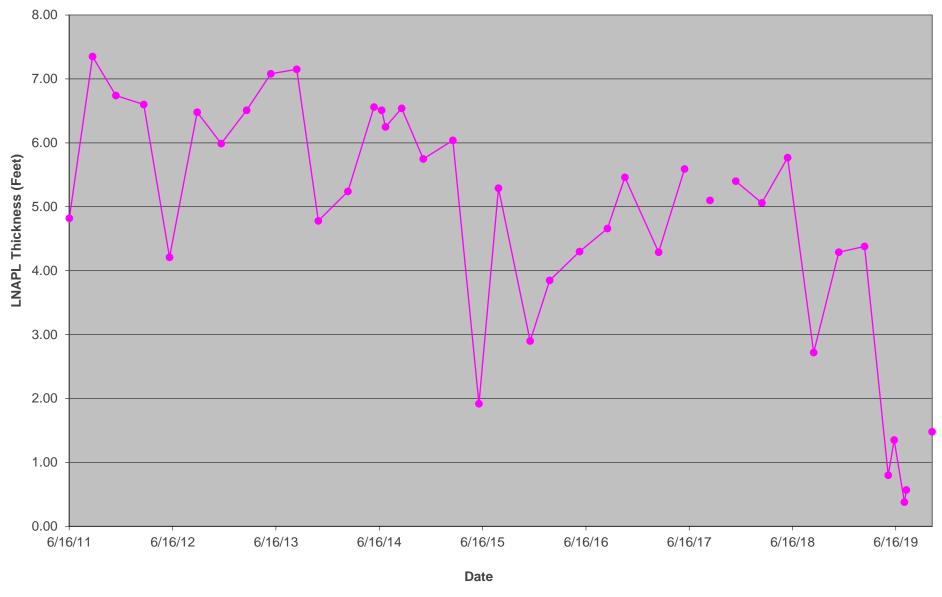
## Appendix A Charts of Thicknesses of LNAPL in Monitor and Recovery Wells vs. Time



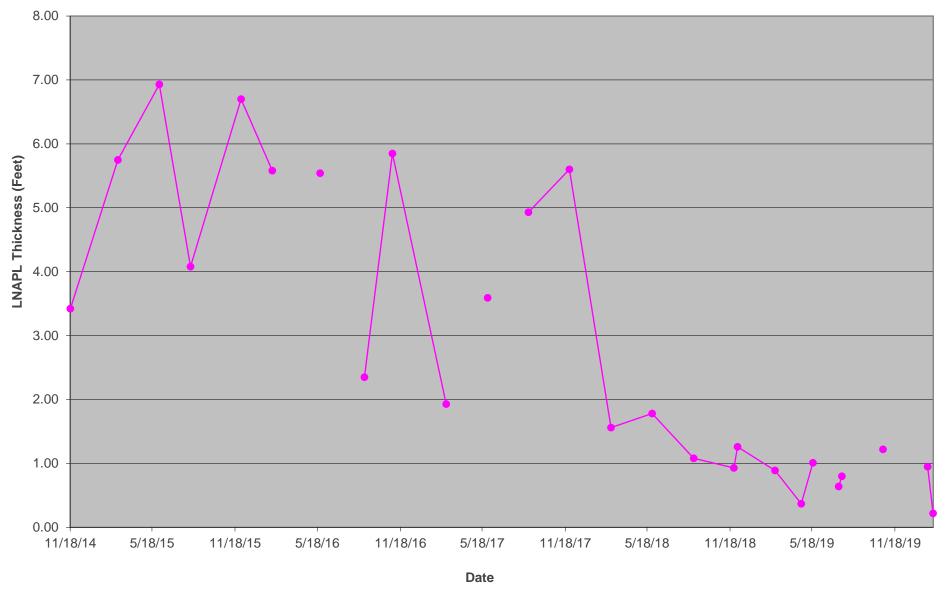




Date


Darr Angell #2 Lea County, New Mexico NMOCD AP-007 LNAPL Thickness vs. Time RW-2

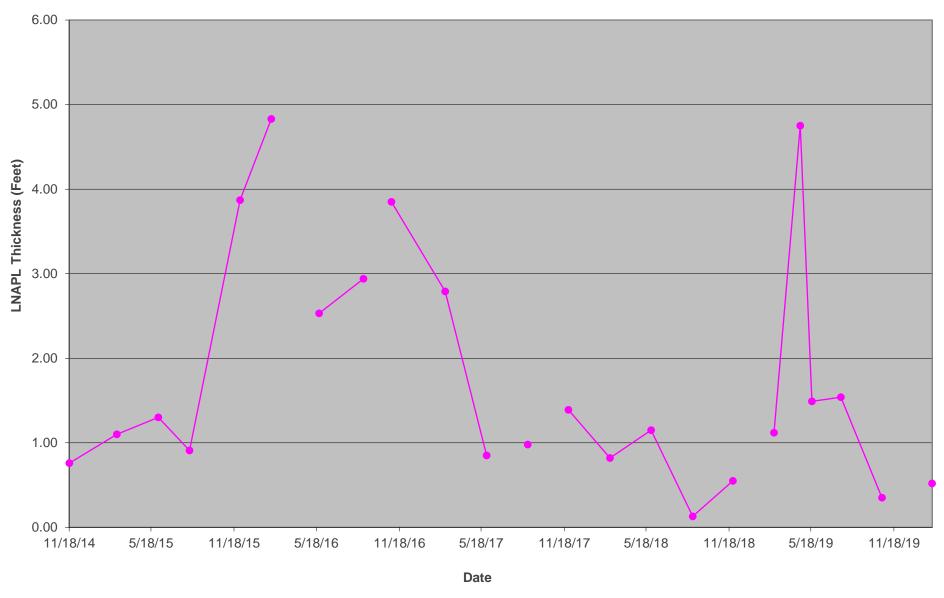




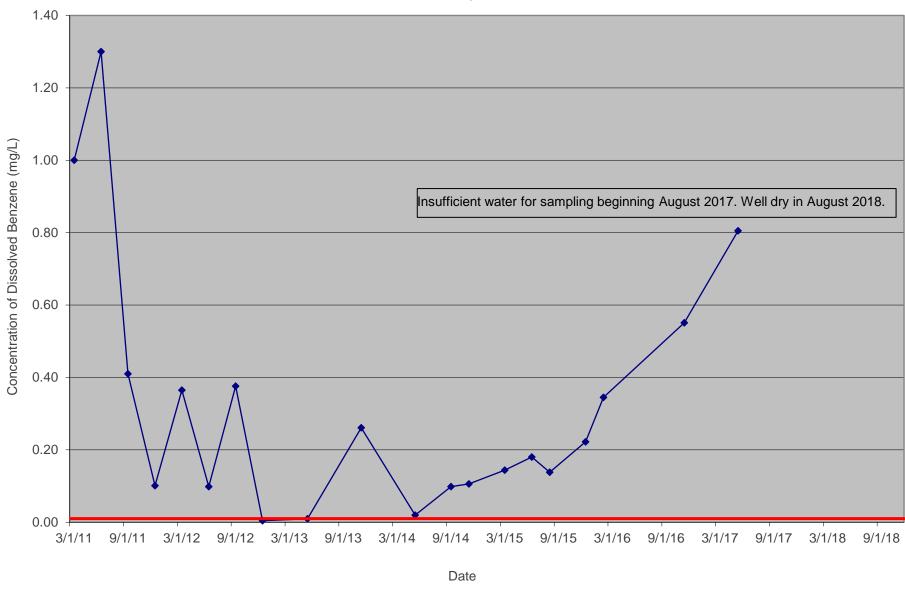

Date




Darr Angell #2 Lea County, New Mexico NMOCD AP-007 LNAPL Thickness vs. Time RW-7R

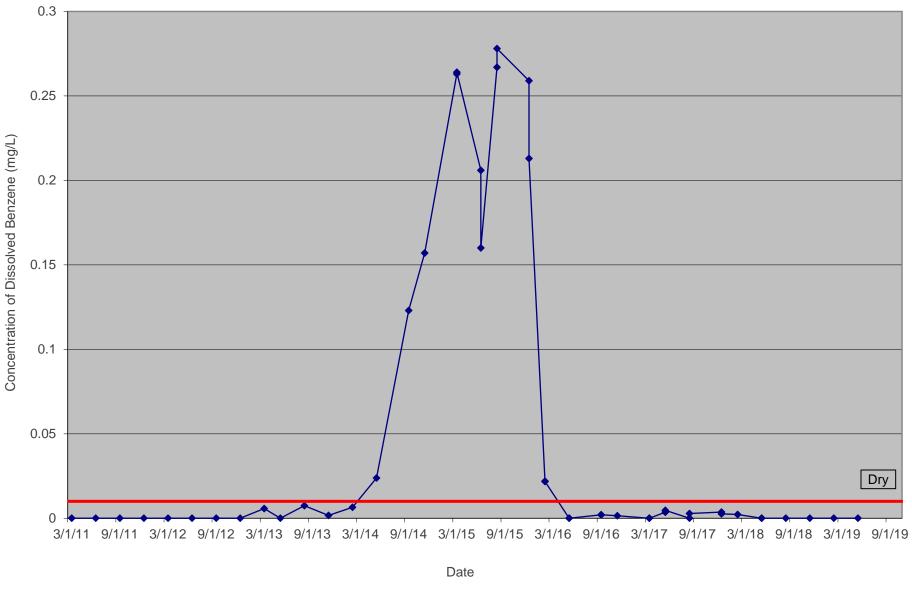



Darr Angell #2 Lea County, New Mexico NMOCD AP-007 LNAPL Thickness vs. Time RW-8



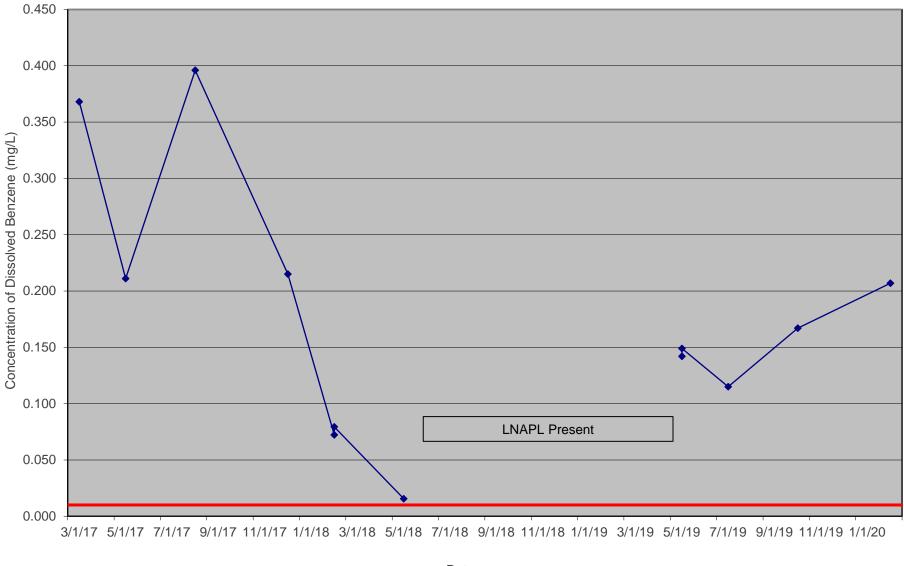





Appendix B Charts of Concentrations of Dissolved Benzene in Monitor and Recovery Wells vs. Time



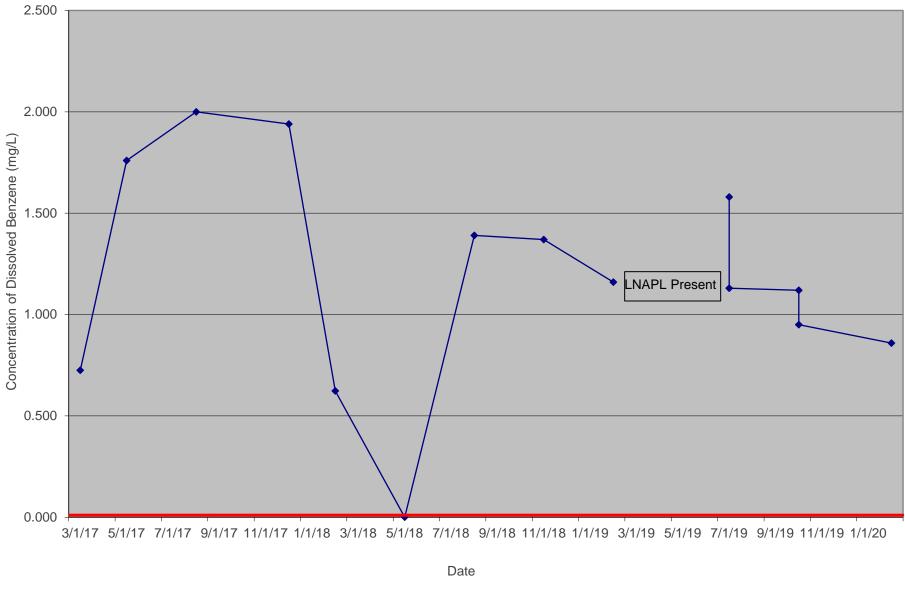
#### Darr Angell #2 Lea County, New Mexico NMOCD AP-007 Concentration of Dissolved Benzene vs. Time MW-3


----Benzene -----NMWQCC Human Health Standard

Darr Angell #2 Lea County, New Mexico NMOCD AP-007 Concentration of Dissolved Benzene vs. Time MW-11



----Benzene -----NMWQCC Human Health Standard


Darr Angell #2 Lea County, New Mexico NMOCD AP-007 Concentration of Dissolved Benzene vs. Time RW-11



Date

----Benzene -----NMWQCC Human Health Standard

Darr Angell #2 Lea County, New Mexico NMOCD AP-007 Concentration of Dissolved Benzene vs. Time RW-12





## Appendix C Certified Laboratory Reports (not included in draft or printed reports)



# ANALYTICAL REPORT

### Plains All American, LP - GHD

| Sample Delivery Group: | L1075016                               |
|------------------------|----------------------------------------|
| Samples Received:      | 03/02/2019                             |
| Project Number:        | 074685                                 |
| Description:           | Darr Angell #2- Lea County, New Mexico |
| Site:                  | SRS#: LF 1999-62                       |
| Report To:             | Chris G. Knight, John Schnable         |
|                        | 2135 S Loop 250 W                      |
|                        | Midland, TX 79703                      |

Entire Report Reviewed By:

Unio S

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

### TABLE OF CONTENTS

| Cp: Cover Page                                  | 1  |
|-------------------------------------------------|----|
| Tc: Table of Contents                           | 2  |
| Ss: Sample Summary                              | 3  |
| Cn: Case Narrative                              | 4  |
| Tr: TRRP Summary                                | 5  |
| TRRP form R                                     | 6  |
| TRRP form S                                     | 7  |
| TRRP Exception Reports                          | 8  |
| Sr: Sample Results                              | 9  |
| RW-12-022719 L1075016-01                        | 9  |
| MW-4R-022719 L1075016-02                        | 10 |
| MW-12-022719 L1075016-03                        | 11 |
| MW-11-022719 L1075016-04                        | 12 |
| DUPE-01-022719 L1075016-05                      | 13 |
| TRIP BLANK L1075016-06                          | 14 |
| Qc: Quality Control Summary                     | 15 |
| Volatile Organic Compounds (GC) by Method 8021B | 15 |
| GI: Glossary of Terms                           | 17 |
| Al: Accreditations & Locations                  | 18 |
| Sc: Sample Chain of Custody                     | 19 |
|                                                 |    |

<sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Tr <sup>6</sup> Sr <sup>7</sup> Qc <sup>8</sup> GI <sup>9</sup> AI <sup>10</sup> Sc

\*

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1075016 DATE/TIME: 03/11/19 14:25 PAGE: 2 of 19

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

⁵Tr

Sr

Qc

GI

A

<sup>10</sup>Sc

| RW-12-022719 L1075016-01 GW                                                                        |                        |          | Collected by                     | Collected date/time<br>02/27/19 10:46 | Received da 03/02/19 08    |                                  |
|----------------------------------------------------------------------------------------------------|------------------------|----------|----------------------------------|---------------------------------------|----------------------------|----------------------------------|
| Method                                                                                             | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B<br>Volatile Organic Compounds (GC) by Method 8021B | WG1244728<br>WG1246510 | 1<br>25  | 03/04/19 17:15<br>03/08/19 22:56 | 03/04/19 17:15<br>03/08/19 22:56      | DWR<br>ACG                 | Mt. Juliet, TN<br>Mt. Juliet, TN |
| MW-4R-022719 L1075016-02 GW                                                                        |                        |          | Collected by                     | Collected date/time 02/27/19 11:50    | Received da<br>03/02/19 08 |                                  |
| Method                                                                                             | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B<br>Volatile Organic Compounds (GC) by Method 8021B | WG1244728<br>WG1246510 | 1<br>1   | 03/04/19 17:39<br>03/08/19 23:18 | 03/04/19 17:39<br>03/08/19 23:18      | DWR<br>ACG                 | Mt. Juliet, TN<br>Mt. Juliet, TN |
| MW-12-022719 L1075016-03 GW                                                                        |                        |          | Collected by                     | Collected date/time<br>02/27/19 12:48 | Received da<br>03/02/19 08 |                                  |
| Method                                                                                             | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B<br>Volatile Organic Compounds (GC) by Method 8021B | WG1244728<br>WG1246510 | 1<br>1   | 03/04/19 18:03<br>03/08/19 23:39 | 03/04/19 18:03<br>03/08/19 23:39      | DWR<br>ACG                 | Mt. Juliet, TN<br>Mt. Juliet, TN |
| MW-11-022719 L1075016-04 GW                                                                        |                        |          | Collected by                     | Collected date/time<br>02/27/19 13:55 | Received da 03/02/19 08    |                                  |
| Method                                                                                             | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B<br>Volatile Organic Compounds (GC) by Method 8021B | WG1244728<br>WG1246510 | 1<br>1   | 03/04/19 18:27<br>03/09/19 00:00 | 03/04/19 18:27<br>03/09/19 00:00      | DWR<br>ACG                 | Mt. Juliet, TN<br>Mt. Juliet, TN |
| DUPE-01-022719 L1075016-05 GW                                                                      |                        |          | Collected by                     | Collected date/time 02/27/19 00:00    | Received da<br>03/02/19 08 |                                  |
| Method                                                                                             | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                    | WG1244728              | 1        | 03/04/19 18:51                   | 03/04/19 18:51                        | DWR                        | Mt. Juliet, TN                   |
| TRIP BLANK L1075016-06 GW                                                                          |                        |          | Collected by                     | Collected date/time 02/27/19 00:00    | Received da 03/02/19 08    |                                  |
| Method                                                                                             | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                    | WG1244728              | 1        | 03/04/19 12:03                   | 03/04/19 12:03                        | DWR                        | Mt. Juliet, TN                   |

SDG: L1075016

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Tr Sr Qc Gl AI Sc

DATE/TIME: 03/11/19 14:25 PAGE:

4 of 19

### Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

1 . . .

Olivia Studebaker Project Manager

### Laboratory Review Checklist: Reportable Data

ļ k

| Lab                             | orato                                              | ry Name: Pace Analytical National                                                                                                                                                                                                                | LRC Date: 03/11/2019 14:25                                     |        |          |                 |                 |                  |
|---------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|----------|-----------------|-----------------|------------------|
| Proj<br>Me×                     |                                                    | lame: Darr Angell #2- Lea County, New                                                                                                                                                                                                            | Laboratory Job Number: L1075016-01, 02, 03, 04, 05             | and O  | 5        |                 |                 |                  |
| Rev                             | iewe                                               | <sup>r</sup> Name: Olivia Studebaker                                                                                                                                                                                                             | Prep Batch Number(s): WG1244728 and WG1246510                  |        |          |                 |                 |                  |
| # <sup>1</sup>                  | A <sup>2</sup>                                     | Description                                                                                                                                                                                                                                      |                                                                | Yes    | No       | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |
| R1                              | OI                                                 | Chain-of-custody (C-O-C)                                                                                                                                                                                                                         |                                                                |        |          |                 |                 |                  |
|                                 |                                                    | Did samples meet the laboratory's standard conditions                                                                                                                                                                                            | of sample acceptability upon receipt?                          | Х      |          |                 |                 |                  |
|                                 |                                                    | Were all departures from standard conditions describe                                                                                                                                                                                            | d in an exception report?                                      |        |          | Х               |                 |                  |
| R2                              | OI                                                 | Sample and quality control (QC) identification                                                                                                                                                                                                   |                                                                |        |          |                 |                 |                  |
|                                 |                                                    | Are all field sample ID numbers cross-referenced to the                                                                                                                                                                                          | e laboratory ID numbers?                                       | Х      |          |                 |                 |                  |
|                                 |                                                    | Are all laboratory ID numbers cross-referenced to the c                                                                                                                                                                                          | corresponding QC data?                                         | Х      |          |                 |                 |                  |
| R3                              | OI                                                 | Test reports                                                                                                                                                                                                                                     |                                                                |        |          |                 |                 |                  |
|                                 |                                                    | Were all samples prepared and analyzed within holding                                                                                                                                                                                            | g times?                                                       | Х      |          |                 |                 |                  |
|                                 |                                                    | Other than those results < MQL, were all other raw values                                                                                                                                                                                        | es bracketed by calibration standards?                         | Х      |          |                 |                 |                  |
|                                 |                                                    | Were calculations checked by a peer or supervisor?                                                                                                                                                                                               |                                                                | Х      |          |                 |                 |                  |
|                                 |                                                    | Were all analyte identifications checked by a peer or su                                                                                                                                                                                         | upervisor?                                                     | Х      |          |                 |                 |                  |
|                                 |                                                    | Were sample detection limits reported for all analytes r                                                                                                                                                                                         | Х                                                              |        |          |                 |                 |                  |
|                                 |                                                    | Were all results for soil and sediment samples reported                                                                                                                                                                                          |                                                                | X      |          | <b> </b>        | ļ               | $\vdash$         |
|                                 |                                                    | Were % moisture (or solids) reported for all soil and sec                                                                                                                                                                                        | liment samples?                                                |        |          | Х               |                 |                  |
|                                 |                                                    | Were bulk soils/solids samples for volatile analysis extr                                                                                                                                                                                        | acted with methanol per SW846 Method 5035?                     |        |          | Х               |                 |                  |
|                                 |                                                    | If required for the project, are TICs reported?                                                                                                                                                                                                  |                                                                |        |          | Х               |                 |                  |
| २४                              | 0                                                  | Surrogate recovery data                                                                                                                                                                                                                          |                                                                | -      |          | _               | -               | 1                |
|                                 |                                                    | Were surrogates added prior to extraction?                                                                                                                                                                                                       |                                                                | Х      |          |                 |                 |                  |
|                                 |                                                    | Were surrogate percent recoveries in all samples within                                                                                                                                                                                          | n the laboratory QC limits?                                    | Х      |          |                 |                 |                  |
| 25                              | OI                                                 | Test reports/summary forms for blank samples                                                                                                                                                                                                     |                                                                | -      |          | _               | -               | 1                |
|                                 |                                                    | Were appropriate type(s) of blanks analyzed?                                                                                                                                                                                                     |                                                                | Х      |          |                 |                 |                  |
|                                 |                                                    | Were blanks analyzed at the appropriate frequency?                                                                                                                                                                                               |                                                                | X      |          |                 |                 |                  |
|                                 |                                                    | Were method blanks taken through the entire analytica                                                                                                                                                                                            | al process, including preparation and, if applicable,          | Х      |          |                 |                 |                  |
|                                 |                                                    | cleanup procedures?                                                                                                                                                                                                                              |                                                                |        | V        |                 |                 |                  |
|                                 |                                                    | Were blank concentrations < MQL?                                                                                                                                                                                                                 |                                                                |        | X        |                 |                 | 1                |
| R6                              | OI                                                 | Laboratory control samples (LCS):                                                                                                                                                                                                                |                                                                |        | 1        | 1               | r –             | 1                |
|                                 |                                                    | Were all COCs included in the LCS?                                                                                                                                                                                                               | adure including area and cleaning stans?                       | X<br>X |          |                 |                 |                  |
|                                 |                                                    | Was each LCS taken through the entire analytical proce                                                                                                                                                                                           | edure, including prep and cleanup steps?                       | X      |          |                 |                 |                  |
|                                 |                                                    | Were LCSs analyzed at the required frequency?<br>Were LCS (and LCSD, if applicable) %Rs within the labo                                                                                                                                          | rates (OC limits?                                              | X      |          |                 |                 | <u> </u>         |
|                                 |                                                    |                                                                                                                                                                                                                                                  | e laboratory's capability to detect the COCs at the MDL        |        |          |                 |                 | <u> </u>         |
|                                 |                                                    | used to calculate the SDLs?                                                                                                                                                                                                                      | e laboratory's capability to detect the COCs at the MDE        | X      |          |                 |                 |                  |
|                                 |                                                    | Was the LCSD RPD within QC limits?                                                                                                                                                                                                               |                                                                | Х      |          |                 |                 |                  |
| R7                              | OI                                                 | Matrix spike (MS) and matrix spike duplicate (MSD) data                                                                                                                                                                                          | 3                                                              |        |          |                 |                 |                  |
|                                 |                                                    | Were the project/method specified analytes included in                                                                                                                                                                                           |                                                                |        |          | X               |                 | T                |
|                                 |                                                    | Were MS/MSD analyzed at the appropriate frequency?                                                                                                                                                                                               |                                                                |        |          | Х               |                 |                  |
|                                 |                                                    | Were MS (and MSD, if applicable) %Rs within the labora                                                                                                                                                                                           | atory QC limits?                                               |        |          | Х               | 1               |                  |
|                                 |                                                    | Were MS/MSD RPDs within laboratory QC limits?                                                                                                                                                                                                    |                                                                |        |          | Х               |                 |                  |
| 85                              | OI                                                 | Analytical duplicate data                                                                                                                                                                                                                        |                                                                |        |          |                 |                 |                  |
|                                 |                                                    | Were appropriate analytical duplicates analyzed for ea                                                                                                                                                                                           | ch matrix?                                                     |        |          | Х               |                 |                  |
|                                 |                                                    | Were analytical duplicates analyzed at the appropriate                                                                                                                                                                                           | frequency?                                                     |        |          | Х               |                 |                  |
|                                 |                                                    | Were RPDs or relative standard deviations within the la                                                                                                                                                                                          | boratory QC limits?                                            |        |          | Х               |                 |                  |
| 29                              | OI                                                 | Method quantitation limits (MQLs):                                                                                                                                                                                                               |                                                                |        |          |                 |                 |                  |
|                                 |                                                    | Are the MQLs for each method analyte included in the                                                                                                                                                                                             | laboratory data package?                                       | Х      |          |                 |                 |                  |
|                                 |                                                    | Do the MQLs correspond to the concentration of the lo                                                                                                                                                                                            | west non-zero calibration standard?                            | Х      |          |                 |                 |                  |
|                                 |                                                    | Are unadjusted MQLs and DCSs included in the labora                                                                                                                                                                                              | tory data package?                                             | Х      |          |                 |                 |                  |
| 210                             | OI                                                 | Other problems/anomalies                                                                                                                                                                                                                         |                                                                | -      |          | _               | -               |                  |
|                                 |                                                    | Are all known problems/anomalies/special conditions r                                                                                                                                                                                            | noted in this LRC and ER?                                      | Х      |          |                 |                 |                  |
|                                 |                                                    | Was applicable and available technology used to lower the sample results?                                                                                                                                                                        | r the SDL to minimize the matrix interference effects on       | x      |          |                 |                 |                  |
|                                 |                                                    | Is the laboratory NELAC-accredited under the Texas La<br>and methods associated with this laboratory data pack                                                                                                                                   | boratory Accreditation Program for the analytes, matrices age? | x      |          |                 |                 |                  |
| shoul<br>2. O<br>3. NA<br>4. NF | d be r<br>= orga<br>\ = No <sup>-</sup><br>? = Not | ntified by the letter "R" must be included in the laborator<br>etained and made available upon request for the appropriation of the applicable;<br>reviewed; | ry data package submitted in the TRRP-required report(s).      |        | dentifie | ed by th        | e letter        | "S"              |

### Laboratory Review Checklist: Supporting Data

1 ķ

| CCV analyzed at the method-required freque<br>ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>absolute value of the analyte concentration<br>pectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | met?<br>nethod used for all analytes?<br>ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>nd CCV) and continuing calibration blank (CCB):<br>nency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA <sup>3</sup><br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NR <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ER# <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| tion<br>alibration (ICAL)<br>response factors and/or relative response factors<br>arcent RSDs or correlation coefficient criteria<br>a number of standards recommended in the m<br>I points generated between the lowest and hi<br>L data available for all instruments used?<br>initial calibration curve been verified using an<br>and continuing calibration verification (ICCV an<br>a CCV analyzed at the method-required frequent<br>ercent differences for each analyte within the<br>a ICAL curve verified for each analyte?<br>a absolute value of the analyte concentration<br>bectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method. | ors for each analyte within QC limits?<br>met?<br>nethod used for all analytes?<br>ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>nd CCV) and continuing calibration blank (CCB):<br>tency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                     | Yes  X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NR <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| alibration (ICAL)<br>response factors and/or relative response factors<br>ercent RSDs or correlation coefficient criteria<br>e number of standards recommended in the m<br>I points generated between the lowest and hi<br>L data available for all instruments used?<br>initial calibration curve been verified using an<br>ind continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequences<br>incert differences for each analyte within the<br>e ICAL curve verified for each analyte?<br>absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method        | met?<br>nethod used for all analytes?<br>ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>nd CCV) and continuing calibration blank (CCB):<br>nency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| sponse factors and/or relative response factors<br>ercent RSDs or correlation coefficient criteria<br>e number of standards recommended in the m<br>I points generated between the lowest and hi<br>L data available for all instruments used?<br>initial calibration curve been verified using an<br>d continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequ-<br>ercent differences for each analyte within the<br>E ICAL curve verified for each analyte?<br>e absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                   | met?<br>nethod used for all analytes?<br>ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>nd CCV) and continuing calibration blank (CCB):<br>nency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                               | X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ercent RSDs or correlation coefficient criteria<br>a number of standards recommended in the m<br>I points generated between the lowest and hi<br>L data available for all instruments used?<br>initial calibration curve been verified using an<br>ad continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequ-<br>ercent differences for each analyte within the<br>e ICAL curve verified for each analyte?<br>e absolute value of the analyte concentration<br>beectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                    | met?<br>nethod used for all analytes?<br>ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>nd CCV) and continuing calibration blank (CCB):<br>nency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                               | X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| e number of standards recommended in the m<br>I points generated between the lowest and hi<br>L data available for all instruments used?<br>initial calibration curve been verified using an<br>d continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequer<br>ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>e absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                          | nethod used for all analytes?<br>ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>id CCV) and continuing calibration blank (CCB):<br>iency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                       | X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| I points generated between the lowest and hi<br>L data available for all instruments used?<br>initial calibration curve been verified using an<br>od continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequ-<br>ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>e absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                                                                        | ighest standard used to calculate the curve?<br>n appropriate second source standard?<br>id CCV) and continuing calibration blank (CCB):<br>iency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                        | X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| L data available for all instruments used?<br>initial calibration curve been verified using an<br>ad continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequ-<br>ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>e absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                                                                                                                        | n appropriate second source standard?<br>Id CCV) and continuing calibration blank (CCB):<br>Inency?<br>Immethod-required QC limits?<br>In the inorganic CCB < MDL?<br>If for tuning?<br>Id QC limits?                                                                                                                                                                                                                                                                                                                                   | X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| L data available for all instruments used?<br>initial calibration curve been verified using an<br>ad continuing calibration verification (ICCV an<br>e CCV analyzed at the method-required frequ-<br>ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>e absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                                                                                                                        | n appropriate second source standard?<br>Id CCV) and continuing calibration blank (CCB):<br>Inency?<br>Immethod-required QC limits?<br>In the inorganic CCB < MDL?<br>If for tuning?<br>Id QC limits?                                                                                                                                                                                                                                                                                                                                   | X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| nd continuing calibration verification (ICCV an<br>a CCV analyzed at the method-required freque-<br>ercent differences for each analyte within the<br>a ICAL curve verified for each analyte?<br>a absolute value of the analyte concentration<br>bectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                                                                                                                                                                                                                         | Ind CCV) and continuing calibration blank (CCB):<br>pency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                | X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| nd continuing calibration verification (ICCV an<br>a CCV analyzed at the method-required freque-<br>ercent differences for each analyte within the<br>a ICAL curve verified for each analyte?<br>a absolute value of the analyte concentration<br>bectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                                                                                                                                                                                                                         | Ind CCV) and continuing calibration blank (CCB):<br>pency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| CCV analyzed at the method-required freque<br>ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>absolute value of the analyte concentration<br>bectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the method                                                                                                                                                                                                                                                                                                                                                                                                   | ency?<br>method-required QC limits?<br>in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                     | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ercent differences for each analyte within the<br>ICAL curve verified for each analyte?<br>absolute value of the analyte concentration<br>bectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| <ul> <li>ICAL curve verified for each analyte?</li> <li>absolute value of the analyte concentration</li> <li>bectral tuning</li> <li>appropriate compound for the method used</li> <li>n abundance data within the method-required</li> <li>standards (IS)</li> <li>area counts and retention times within the method</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           | in the inorganic CCB < MDL?<br>I for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| e absolute value of the analyte concentration<br>bectral tuning<br>e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ectral tuning<br>appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l for tuning?<br>d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| e appropriate compound for the method used<br>n abundance data within the method-required<br>standards (IS)<br>area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| n abundance data within the method-required standards (IS) area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | гт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>г</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| standards (IS)<br>area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| area counts and retention times within the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Internal standards (IS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acthod required OC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | гт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | actual data) reviewed by an analyst?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>г т</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| e raw data (for example, chromatograms, spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ata associated with manual integrations flagge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed on the raw data?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| lumn confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| I column confirmation results meet the metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ba-required QC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| vely identified compounds (TICs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>г т</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| vere requested, were the mass spectra and T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IC data subject to appropriate checks?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ence Check Sample (ICS) results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ercent recoveries within method QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ilutions, post digestion spikes, and method of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ity within the QC limits specified in the method?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| detection limit (MDL) studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| IDL study performed for each reported analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| DL either adjusted or supported by the analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sis of DCSs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ncy test reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| e laboratory's performance acceptable on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | applicable proficiency tests or evaluation studies?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ds documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| standards used in the analyses NIST-traceable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e or obtained from other appropriate sources?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| und/analyte identification procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| procedures for compound/analyte identificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion documented?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| stration of analyst competency (DOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| OC conducted consistent with NELAC Chapter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r 5?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| mentation of the analyst's competency up-to-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | date and on file?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| tion/validation documentation for methods (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IELAC Chapter 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| he methods used to deparate the data decur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nented, verified, and validated, where applicable?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ne memous used to generate the data docun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ory standard operating procedures (SOPs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hod performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | laboratory's performance acceptable on the<br>ds documentation<br>tandards used in the analyses NIST-traceabl<br>ind/analyte identification procedures<br>procedures for compound/analyte identificat<br>tration of analyst competency (DOC)<br>C conducted consistent with NELAC Chapten<br>nentation of the analyst's competency up-to-<br>ion/validation documentation for methods (None methods used to generate the data document<br>pry standard operating procedures (SOPs)<br>pratory SOPs current and on file for each methods | laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?<br>ds documentation<br>tandards used in the analyses NIST-traceable or obtained from other appropriate sources?<br>ind/analyte identification procedures<br>procedures for compound/analyte identification documented?<br>tration of analyst competency (DOC)<br>C conducted consistent with NELAC Chapter 5?<br>mentation of the analyst's competency up-to-date and on file?<br>ion/validation documentation for methods (NELAC Chapter 5)<br>me methods used to generate the data documented, verified, and validated, where applicable?<br>by standard operating procedures (SOPs)<br>ratory SOPs current and on file for each method performed<br>the letter "R" must be included in the laboratory data package submitted in the TRRP-required repoind | Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Is documentation       X         tandards used in the analyses NIST-traceable or obtained from other appropriate sources?       X         und/analyte identification procedures       X         procedures for compound/analyte identification documented?       X         tration of analyst competency (DOC)       X         C conducted consistent with NELAC Chapter 5?       X         nentation of the analyst's competency up-to-date and on file?       X         ion/validation documentation for methods (NELAC Chapter 5)       X         ne methods used to generate the data documented, verified, and validated, where applicable?       X         ory standard operating procedures (SOPs)       X         trater "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items in a made available upon request for the appropriate retention period.       X | Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Is documentation       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification procedures       X       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification procedures       X       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification procedures       X       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification procedures       X       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification procedures       X       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification documented?       X       Implicable or obtained from other appropriate sources?       X         C conducted consistent with NELAC Chapter 5?       X       Implicable or obtained from other applicable?       X         Ion/validation documentation for methods (NELAC Chapter 5)       Implicable or obtained, verified, and validated, where applicable?       X         Interver standard operating procedures (SOPs)       Implicable or obtained for each method performed       X       Implicable or obtain | Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Is documentation       Implicable or obtained from other appropriate sources?       X         Ind/analyte identification procedures       Implicable or obtained from other appropriate sources?       X         Implicable of analyses for compound/analyte identification documented?       X       Implicable         Intration of analyst competency (DOC)       Implicable       X         C conducted consistent with NELAC Chapter 5?       X       Implicable         Intration of the analyst's competency up-to-date and on file?       X       Implicable         Ion/validation documentation for methods (NELAC Chapter 5)       Implicable       X         Intration of operating procedures (SOPs)       Implicable?       X       Implicable?         Intratory SOPs current and on file for each method performed       X       Implicable?       X         Interference       Implicable for each method performed       X       Implicable?       Implicable | Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable on the applicable proficiency tests or evaluation studies?       X         Iaboratory's performance acceptable or obtained from other appropriate sources?       X         Iaboratory identification procedures       X         Ind/analyte identification procedures       X         procedures for compound/analyte identification documented?       X         Itration of analyst competency (DOC)       X         C conducted consistent with NELAC Chapter 5?       X         Inentation of the analyst's competency up-to-date and on file?       X         Ioin/validation documentation for methods (NELAC Chapter 5)       X         Ine methods used to generate the data documented, verified, and validated, where applicable?       X         Iony standard operating procedures (SOPs)       X |  |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1075016

| Laborato            | ory Name: Pace Analytical National      | LRC Date: 03/11/2019 14:25                                |  |  |  |  |  |
|---------------------|-----------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Project N<br>Mexico | Name: Darr Angell #2- Lea County, New   | Laboratory Job Number: L1075016-01, 02, 03, 04, 05 and 06 |  |  |  |  |  |
| Reviewe             | r Name: Olivia Studebaker               | Prep Batch Number(s): WG1244728 and WG1246510             |  |  |  |  |  |
| ER # <sup>1</sup>   | Description                             |                                                           |  |  |  |  |  |
| 1                   | 8021B WG1244728 Total Xylene L1075016-0 | 02 and 04: Concentration in the Blank >MQL.               |  |  |  |  |  |

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; 1 = inorganic analyses (and general chemistry, when applicable);
3. NA = Not applicable;
4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

#### SAMPLE RESULTS - 01 L1075016



Ср

⁵Tr

Qc

GI

ΆI

Sc

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     | _   |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|-----|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | E E |
| Benzene                         | 1.16   |           | 0.00475  | 0.000500   | 0.0125   | 25       | 03/08/2019 22:56 | WG1246510 |     |
| Toluene                         | 0.140  |           | 0.000412 | 0.00100    | 0.00100  | 1        | 03/04/2019 17:15 | WG1244728 | L   |
| Ethylbenzene                    | 0.212  |           | 0.000160 | 0.000500   | 0.000500 | 1        | 03/04/2019 17:15 | WG1244728 |     |
| Total Xylene                    | 0.315  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 03/04/2019 17:15 | WG1244728 |     |
| (S) a,a,a-Trifluorotoluene(PID) | 91.5   |           |          |            | 79.0-125 |          | 03/04/2019 17:15 | WG1244728 | ſ   |
| (S) a,a,a-Trifluorotoluene(PID) | 97.2   |           |          |            | 79.0-125 |          | 03/08/2019 22:56 | WG1246510 |     |
|                                 |        |           |          |            |          |          |                  |           |     |

## SAMPLE RESULTS - 02

### \*

⁵Tr

Qc

GI

ΆI

Sc

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result   | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     | — Cp            |
|---------------------------------|----------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
| Analyte                         | mg/l     |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.000190 | J         | 0.000190 | 0.000500   | 0.000500 | 1        | 03/08/2019 23:18 | WG1246510 | Tc              |
| Toluene                         | U        |           | 0.000412 | 0.00100    | 0.00100  | 1        | 03/04/2019 17:39 | WG1244728 |                 |
| Ethylbenzene                    | 0.000404 | J         | 0.000160 | 0.000500   | 0.000500 | 1        | 03/04/2019 17:39 | WG1244728 | <sup>3</sup> Ss |
| Total Xylene                    | 0.000721 | ВJ        | 0.000510 | 0.00150    | 0.00150  | 1        | 03/04/2019 17:39 | WG1244728 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 96.4     |           |          |            | 79.0-125 |          | 03/04/2019 17:39 | WG1244728 | 4               |
| (S) a,a,a-Trifluorotoluene(PID) | 101      |           |          |            | 79.0-125 |          | 03/08/2019 23:18 | WG1246510 | Cn              |
|                                 |          |           |          |            |          |          |                  |           |                 |

## SAMPLE RESULTS - 03

### ₩

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |  |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|--|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           |  |
| Benzene                         | U      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 03/08/2019 23:39 | WG1246510 |  |
| Toluene                         | U      |           | 0.000412 | 0.00100    | 0.00100  | 1        | 03/04/2019 18:03 | WG1244728 |  |
| Ethylbenzene                    | U      |           | 0.000160 | 0.000500   | 0.000500 | 1        | 03/04/2019 18:03 | WG1244728 |  |
| Total Xylene                    | U      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 03/04/2019 18:03 | WG1244728 |  |
| (S) a,a,a-Trifluorotoluene(PID) | 96.4   |           |          |            | 79.0-125 |          | 03/04/2019 18:03 | WG1244728 |  |
| (S) a,a,a-Trifluorotoluene(PID) | 102    |           |          |            | 79.0-125 |          | 03/08/2019 23:39 | WG1246510 |  |

| 2 | Тс |
|---|----|
| _ |    |
| 3 | Ss |
|   |    |
| _ | Cn |
| _ |    |
| 5 | Tr |
|   |    |
| 5 | Sr |
| 7 |    |
| / | Qc |
|   | _  |
| 8 | GI |
|   |    |
| 9 | AI |
|   |    |

Sc

#### SAMPLE RESULTS - 04 L1075016

### <u>پو</u>

⁵Tr

Qc

GI

ΆI

Sc

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result  | <u>Qualifier</u> | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
|---------------------------------|---------|------------------|----------|------------|----------|----------|------------------|-----------|-----------------|
| Analyte                         | mg/l    |                  | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | U       |                  | 0.000190 | 0.000500   | 0.000500 | 1        | 03/09/2019 00:00 | WG1246510 | Ťτ              |
| Toluene                         | U       |                  | 0.000412 | 0.00100    | 0.00100  | 1        | 03/04/2019 18:27 | WG1244728 |                 |
| Ethylbenzene                    | U       |                  | 0.000160 | 0.000500   | 0.000500 | 1        | 03/04/2019 18:27 | WG1244728 | <sup>3</sup> Ss |
| Total Xylene                    | 0.00278 | В                | 0.000510 | 0.00150    | 0.00150  | 1        | 03/04/2019 18:27 | WG1244728 | 5.              |
| (S) a,a,a-Trifluorotoluene(PID) | 96.2    |                  |          |            | 79.0-125 |          | 03/04/2019 18:27 | WG1244728 | 4               |
| (S) a,a,a-Trifluorotoluene(PID) | 99.3    |                  |          |            | 79.0-125 |          | 03/09/2019 00:00 | WG1246510 | C               |

## SAMPLE RESULTS - 05

### ₩

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     | ( |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|---|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2 |
| Benzene                         | U      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 03/04/2019 18:51 | WG1244728 |   |
| Toluene                         | U      |           | 0.000412 | 0.00100    | 0.00100  | 1        | 03/04/2019 18:51 | WG1244728 |   |
| Ethylbenzene                    | U      |           | 0.000160 | 0.000500   | 0.000500 | 1        | 03/04/2019 18:51 | WG1244728 | 3 |
| Total Xylene                    | U      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 03/04/2019 18:51 | WG1244728 |   |
| (S) a,a,a-Trifluorotoluene(PID) | 96.3   |           |          |            | 79.0-125 |          | 03/04/2019 18:51 | WG1244728 | 4 |

| <sup>∠</sup> Tc  |
|------------------|
| <sup>3</sup> Ss  |
| <sup>4</sup> Cn  |
| ⁵Tr              |
| <sup>6</sup> Sr  |
| <sup>7</sup> Qc  |
| <sup>°</sup> GI  |
| <sup>9</sup> Al  |
| <sup>10</sup> Sc |

DATE/TIME: 03/11/19 14:25

## SAMPLE RESULTS - 06



Ср

Tc

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |   |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|---|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2 |
| Benzene                         | U      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 03/04/2019 12:03 | WG1244728 |   |
| Toluene                         | U      |           | 0.000412 | 0.00100    | 0.00100  | 1        | 03/04/2019 12:03 | WG1244728 | L |
| Ethylbenzene                    | U      |           | 0.000160 | 0.000500   | 0.000500 | 1        | 03/04/2019 12:03 | WG1244728 | 3 |
| Total Xylene                    | U      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 03/04/2019 12:03 | WG1244728 |   |
| (S) a,a,a-Trifluorotoluene(PID) | 96.3   |           |          |            | 79.0-125 |          | 03/04/2019 12:03 | WG1244728 | 4 |

| <sup>3</sup> ( | SS |
|----------------|----|
|                |    |
| 4              | Cn |
|                |    |
| 5              | ٢r |
|                |    |
| <sup>6</sup> ( | Sr |
|                |    |
| 7              | JC |
|                |    |
| 8              | GI |
|                |    |
| 0              |    |
| 9              | 71 |
|                |    |
| 10             | Sc |

Volatile Organic Compounds (GC) by Method 8021B

## QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

### Method Blank (MB)

| (MB) R3389451-3 03/04/             | 19 11:15  |              |          |          |
|------------------------------------|-----------|--------------|----------|----------|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |
| Benzene                            | U         |              | 0.000190 | 0.000500 |
| Toluene                            | U         |              | 0.000412 | 0.00100  |
| Ethylbenzene                       | U         |              | 0.000160 | 0.000500 |
| Total Xylene                       | U         |              | 0.000510 | 0.00150  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 95.6      |              |          | 79.0-125 |

### Laboratory Control Sample (LCS)

#### (LCS) R3389451-1 03/04/19 09:46

|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                            | mg/l         | mg/l       | %        | %           |               |
| Benzene                            | 0.0500       | 0.0501     | 100      | 77.0-122    |               |
| Toluene                            | 0.0500       | 0.0468     | 93.5     | 80.0-121    |               |
| Ethylbenzene                       | 0.0500       | 0.0481     | 96.2     | 80.0-123    |               |
| Total Xylene                       | 0.150        | 0.147      | 97.8     | 47.0-154    |               |
| (S)<br>a,a,a-Trifluorotoluene(PID) |              |            | 95.9     | 79.0-125    |               |

SDG: L1075016 DATE/TIME: 03/11/19 14:25 PAGE: 15 of 19

### WG1246510

Volatile Organic Compounds (GC) by Method 8021B

## QUALITY CONTROL SUMMARY

Τс

Ss

Cn

٢r

Sr

Qc

GI

ΆΙ

Sc

### Method Blank (MB)

| (MB) R3390411-5 03/08/19 21:32     |           |              |          |          |  |
|------------------------------------|-----------|--------------|----------|----------|--|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |  |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |  |
| Benzene                            | U         |              | 0.000190 | 0.000500 |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 102       |              |          | 79.0-125 |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3390411-1 03/08/1           | 19 19:45 • (LCSD | ) R3390411-2 | 03/08/19 20:07 | 7        |           |             |               |                |       |            |
|------------------------------------|------------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                                    | Spike Amount     | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                            | mg/l             | mg/l         | mg/l           | %        | %         | %           |               |                | %     | %          |
| Benzene                            | 0.0500           | 0.0436       | 0.0438         | 87.1     | 87.5      | 77.0-122    |               |                | 0.491 | 20         |
| (S)<br>a.a.a-Trifluorotoluene(PID) |                  |              |                | 99.1     | 99.8      | 79.0-125    |               |                |       |            |

DATE/TIME: 03/11/19 14:25 PAGE: 16 of 19

### GLOSSARY OF TERMS

### \*

Τс

Ss

Cn

Tr

Śr

Qc

GI

AI

Sc

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MQL                             | Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SDL                             | Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                              |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unadj. MQL                      | Unadjusted Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                   |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                               |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resu<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                             |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detec or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                         |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                       |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                             |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                            |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                           |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В                               | The same analyte is found in the associated blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

The identification of the analyte is acceptable; the reported value is an estimate.

J

# **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska                    |
|------------------------|-------------|-----------------------------|
| Alaska                 | 17-026      | Nevada                      |
| Arizona                | AZ0612      | New Hampshire               |
| Arkansas               | 88-0469     | New Jersey–NELAF            |
| California             | 2932        | New Mexico <sup>1</sup>     |
| Colorado               | TN00003     | New York                    |
| Connecticut            | PH-0197     | North Carolina              |
| Florida                | E87487      | North Carolina <sup>1</sup> |
| Georgia                | NELAP       | North Carolina <sup>3</sup> |
| Georgia <sup>1</sup>   | 923         | North Dakota                |
| Idaho                  | TN00003     | Ohio-VAP                    |
| Illinois               | 200008      | Oklahoma                    |
| Indiana                | C-TN-01     | Oregon                      |
| lowa                   | 364         | Pennsylvania                |
| Kansas                 | E-10277     | Rhode Island                |
| Kentucky <sup>16</sup> | 90010       | South Carolina              |
| Kentucky <sup>2</sup>  | 16          | South Dakota                |
| Louisiana              | AI30792     | Tennessee <sup>1 4</sup>    |
| Louisiana 1            | LA180010    | Texas                       |
| Maine                  | TN0002      | Texas ⁵                     |
| Maryland               | 324         | Utah                        |
| Massachusetts          | M-TN003     | Vermont                     |
| Michigan               | 9958        | Virginia                    |
| Minnesota              | 047-999-395 | Washington                  |
| Mississippi            | TN00003     | West Virginia               |
| Missouri               | 340         | Wisconsin                   |
| Montana                | CERT0086    | Wyoming                     |
|                        |             |                             |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1075016

PAGE: 18 of 19

03/11/19 14:25

|                                                                                    |                                    | 1                                       | ing with                                                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TT                | <u></u>  |          | Analy | sis / Containe | er / Preser | vative                | T        |                                                                                          | n of Custody                                                                      | Page of                                          |
|------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----------|-------|----------------|-------------|-----------------------|----------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|
| Plains All American, LP - GHD<br>2135 S Loop 250 W                                 |                                    |                                         | Billing Information:<br>Accounts Payable<br>505 N. Big Spring, Ste. 600<br>Midland, TX 79701 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pres<br>Chk       |          |          |       |                |             |                       |          |                                                                                          | Pace And<br>National Conter                                                       | alytical <sup>®</sup><br>tor Testing & Innovatio |
| Aidland, TX 79703<br>eport to:<br>Chris G. Knight, John Schnable                   |                                    | 3                                       | Email To: Ch<br>Iohn.Schnal                                                                  | ristopher.Knight@<br>ble@ghd.com | Øghd.com;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | ALL CALL |          |       |                |             |                       |          | Mo<br>Pho<br>Pho                                                                         | unt Juliet, TN 37122<br>one: 615-758-5858<br>one: 800-767-5859<br>c: 615-758-5859 |                                                  |
| Project<br>Description: Darr Angell #2- Lea C                                      | ounty, New N                       | Aexico                                  |                                                                                              | City/State<br>Collected:         | 1. 1. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |          |       |                |             |                       | No.      | Lŧ                                                                                       | # 1075                                                                            | 016                                              |
| Phone: 432-686-0086                                                                | Client Project # 074685            |                                         |                                                                                              | Lab Project #<br>PLAINSGHD-0     | 74685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |          | A. Maria |       |                |             |                       |          |                                                                                          | G092                                                                              |                                                  |
| Fax:<br>Collected by (print):                                                      | Site/Facility ID #<br>SRS#: LF 199 | 99-62                                   |                                                                                              | P.O. #                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | HCI      |          |       |                |             |                       |          | Т                                                                                        | emplate:T139                                                                      | 790                                              |
| Collected by (signature):<br>Immediately<br>Packed on Ice N Y                      | Rush? (Lal                         | b MUST Be M<br>Five D<br>5 Day<br>10 Da | ay<br>(Rad Only)                                                                             | Quote #<br>Date Resu             | ults Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.<br>of<br>Cntr | 40mlAmb- |          |       |                |             |                       |          | Prelogin: P695137<br>TSR: 134 - Mark W. Beasl<br>PB:<br>Shipped Via:<br>Remarks Sample # |                                                                                   |                                                  |
| Sample ID                                                                          | Comp/Grab                          | Matrix *                                | Depth                                                                                        | Date                             | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | RTEX     |          |       |                | -           |                       |          |                                                                                          | 1999 - 1999<br>1999 - 1999<br>1999 - 1999                                         | -                                                |
| TRIP BLANK                                                                         |                                    | GW                                      |                                                                                              | 1                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                 |          | c ·      |       |                |             |                       |          |                                                                                          |                                                                                   | -01                                              |
| RW-12-072719                                                                       | Grab                               | GW                                      |                                                                                              | 161611                           | and the second sec |                   |          |          |       |                |             |                       |          |                                                                                          |                                                                                   | -02                                              |
| MW-4R-022719                                                                       | Grab                               | GW                                      |                                                                                              | 212716                           | 11150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83                |          | Ś        |       |                |             |                       |          |                                                                                          |                                                                                   | -03                                              |
| MW-12-022719                                                                       | Grab                               | GW                                      |                                                                                              | - 2127/                          | 9125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | X        | 1        |       |                |             | 1.00                  | _        | -                                                                                        |                                                                                   | -04                                              |
| MW-11-022719                                                                       | Grab                               | GW                                      |                                                                                              | 21211                            | 9 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                 | XX       | 5        |       |                | -           |                       |          | _                                                                                        |                                                                                   | -06                                              |
| Dupe-01-022719<br>Trip Blank                                                       | Grab                               | Gw                                      |                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |          |          |       |                |             |                       |          |                                                                                          |                                                                                   |                                                  |
|                                                                                    |                                    |                                         |                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |          | -        |       |                |             |                       |          |                                                                                          |                                                                                   |                                                  |
| * Matrix:                                                                          | Remarks:                           |                                         |                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |          |          |       | рн             | Te          | mp                    |          | C Seal P<br>C Signed                                                                     | ole <u>Receipt</u><br>resent/Intac<br>/Accurate:<br>rive intact                   | ct:                                              |
| SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Samples returned via:              |                                         |                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |          | 290      | Flow_ | 01             | her         | Su                    | fficient | ttles used:<br>volume sent<br><u>If Applic</u><br>Headspace:<br>ion Correct/             | able                                                                              |                                                  |
| OT - Other UPSFe                                                                   |                                    | edExC                                   | ourier                                                                                       | Time:                            | Tracking #<br>Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Signatur         | re)      |          | Cur   | Trip Blank F   | Received:   | HCL/M                 | eoH      | FUDS                                                                                     | W. Samerin                                                                        | and south                                        |
| Relinquished by : (Signature)                                                      | 1-1-1-                             | 3/1                                     | 119                                                                                          | OSO0<br>Time;                    | Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : (Signatu        | re)      |          |       | Temp:          | °C          | TBR<br>Bottles Receiv | ved: If  | preservati                                                                               | ion required by                                                                   | Login: Date/                                     |
| Relinquished by : (Signature)<br>Relinquished by : (Signature)                     | e) Date: 31-7=3. (34 (4 = 4 7      |                                         | lold:                                                                                        |                                  | Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |          |       |                |             |                       |          |                                                                                          |                                                                                   |                                                  |



# ANALYTICAL REPORT

## Plains All American, LP - GHD

| Sample Delivery Group: | L1102383                               |
|------------------------|----------------------------------------|
| Samples Received:      | 05/24/2019                             |
| Project Number:        | 074685                                 |
| Description:           | Darr Angell #2- Lea County, New Mexico |
| Site:                  | SRS#: LF 1999-62                       |
| Report To:             | James Ornelas                          |
|                        | 2135 S Loop 250 W                      |
|                        | Midland, TX 79703                      |

<sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Tr <sup>6</sup> Sr <sup>7</sup> Qc <sup>8</sup> GI <sup>9</sup> AI <sup>10</sup> Sc

Entire Report Reviewed By:

Mh

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1102383 DATE/TIME: 06/03/19 13:46 PAGE: 1 of 18

# TABLE OF CONTENTS

| Cp: Cover Page                                  | 1  |
|-------------------------------------------------|----|
| Tc: Table of Contents                           | 2  |
| Ss: Sample Summary                              | 3  |
| Cn: Case Narrative                              | 4  |
| Tr: TRRP Summary                                | 5  |
| TRRP form R                                     | 6  |
| TRRP form S                                     | 7  |
| TRRP Exception Reports                          | 8  |
| Sr: Sample Results                              | 9  |
| MW-11 L1102383-01                               | 9  |
| MW-12 L1102383-02                               | 10 |
| RW-11 L1102383-03                               | 11 |
| MW-4R L1102383-04                               | 12 |
| DUP-01 L1102383-05                              | 13 |
| Qc: Quality Control Summary                     | 14 |
| Volatile Organic Compounds (GC) by Method 8021B | 14 |
| GI: Glossary of Terms                           | 16 |
| Al: Accreditations & Locations                  | 17 |
| Sc: Sample Chain of Custody                     | 18 |

SDG: L1102383 DATE/TIME: 06/03/19 13:46

\*

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

⁵Tr

Sr

Qc

GI

A

<sup>10</sup>Sc

|                                                                                   |                    |               | Collected by                                                                                               | Collected date/time                                                                                                       | Received da                                                  | te/time                                                                  |
|-----------------------------------------------------------------------------------|--------------------|---------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|
| MW-11 L1102383-01 GW                                                              |                    |               | Heath Boyd                                                                                                 | 05/21/19 07:43                                                                                                            | 05/24/19 08:                                                 | 30                                                                       |
| Method                                                                            | Batch              | Dilution      | Preparation<br>date/time                                                                                   | Analysis<br>date/time                                                                                                     | Analyst                                                      | Location                                                                 |
| Volatile Organic Compounds (GC) by Method 8021B                                   | WG1288830          | 1             | 05/30/19 20:11                                                                                             | 05/30/19 20:11                                                                                                            | JAH                                                          | Mt. Juliet, TN                                                           |
|                                                                                   |                    |               | Collected by                                                                                               | Collected date/time                                                                                                       | Received da                                                  |                                                                          |
| MW-12 L1102383-02 GW                                                              |                    |               | Heath Boyd                                                                                                 | 05/21/19 08:39                                                                                                            | 05/24/19 08:                                                 | 30                                                                       |
| Method                                                                            | Batch              | Dilution      | Preparation<br>date/time                                                                                   | Analysis<br>date/time                                                                                                     | Analyst                                                      | Location                                                                 |
| /olatile Organic Compounds (GC) by Method 8021B                                   | WG1288830          | 1             | 05/30/19 20:35                                                                                             | 05/30/19 20:35                                                                                                            | JAH                                                          | Mt. Juliet, TN                                                           |
| RW-11 L1102383-03 GW                                                              |                    |               | Collected by<br>Heath Boyd                                                                                 | Collected date/time 05/21/19 10:12                                                                                        | Received da<br>05/24/19 08:                                  |                                                                          |
| Method                                                                            | Batch              | Dilution      | Preparation                                                                                                | Analysis                                                                                                                  | Analyst                                                      | Location                                                                 |
|                                                                                   |                    |               | date/time                                                                                                  | date/time                                                                                                                 | ·                                                            |                                                                          |
| Volatile Organic Compounds (GC) by Method 8021B                                   | WG1288830          | 1             | date/time<br>05/30/19 20:59                                                                                | date/time<br>05/30/19 20:59                                                                                               | JAH                                                          |                                                                          |
| Volatile Organic Compounds (GC) by Method 8021B<br>MW-4R L1102383-04 GW           | WG1288830          | 1             |                                                                                                            |                                                                                                                           | JAH<br>Received da<br>05/24/19 08:                           | Mt. Juliet, TN                                                           |
|                                                                                   | WG1288830<br>Batch | 1<br>Dilution | 05/30/19 20:59<br>Collected by                                                                             | 05/30/19 20:59<br>Collected date/time                                                                                     | Received da                                                  | Mt. Juliet, TN                                                           |
| MW-4R L1102383-04 GW                                                              |                    |               | 05/30/19 20:59<br>Collected by<br>Heath Boyd<br>Preparation                                                | 05/30/19 20:59<br>Collected date/time<br>05/21/19 09:02<br>Analysis                                                       | Received da<br>05/24/19 08:                                  | Mt. Juliet, TN<br>te/time<br>30                                          |
| MW-4R L1102383-04 GW<br>Method                                                    | Batch              | Dilution      | 05/30/19 20:59<br>Collected by<br>Heath Boyd<br>Preparation<br>date/time                                   | 05/30/19 20:59<br>Collected date/time<br>05/21/19 09:02<br>Analysis<br>date/time                                          | Received da<br>05/24/19 08:<br>Analyst<br>BMB                | Mt. Juliet, TN<br>te/time<br>30<br>Location<br>Mt. Juliet, TN<br>te/time |
| MW-4R L1102383-04 GW<br>Method<br>/olatile Organic Compounds (GC) by Method 8021B | Batch              | Dilution      | 05/30/19 20:59<br>Collected by<br>Heath Boyd<br>Preparation<br>date/time<br>06/01/19 16:51<br>Collected by | 05/30/19 20:59<br>Collected date/time<br>05/21/19 09:02<br>Analysis<br>date/time<br>06/01/19 16:51<br>Collected date/time | Received da<br>05/24/19 08:<br>Analyst<br>BMB<br>Received da | Mt. Juliet, TN<br>te/time<br>30<br>Location<br>Mt. Juliet, TN<br>te/time |

SDG: L1102383 DATE/TIME: 06/03/19 13:46

## CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

Τс Ss Cn Tr Sr Qc GI AI Śc

SDG: L1102383

C

PAGE: 4 of 18

## Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

# Laboratory Review Checklist: Reportable Data

| Lab                    | orato                                    | ry Name: Pace Analytical National                                                                                                                  | LRC Date: 06/03/2019 13:46                              |                                               |          |                 |                 |                  |  |  |
|------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|----------|-----------------|-----------------|------------------|--|--|
| Proj<br>Me>            |                                          | ame: Darr Angell #2- Lea County, New                                                                                                               | Laboratory Job Number: L1102383-01, 02, 03, 04 and 05   |                                               |          |                 |                 |                  |  |  |
| Rev                    | viewei                                   | Name: Mark W. Beasley                                                                                                                              | Prep Batch Number(s): WG1288830 and WG1289067           | Prep Batch Number(s): WG1288830 and WG1289067 |          |                 |                 |                  |  |  |
| # <sup>1</sup>         | A <sup>2</sup>                           | Description                                                                                                                                        |                                                         | Yes                                           | No       | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |  |  |
| R1                     | OI                                       | Chain-of-custody (C-O-C)                                                                                                                           |                                                         |                                               |          |                 |                 |                  |  |  |
|                        |                                          | Did samples meet the laboratory's standard conditions                                                                                              | of sample acceptability upon receipt?                   | Х                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were all departures from standard conditions described                                                                                             | in an exception report?                                 |                                               |          | Х               | 1               |                  |  |  |
| R2                     | OI                                       | Sample and quality control (QC) identification                                                                                                     |                                                         |                                               |          |                 |                 |                  |  |  |
|                        |                                          | Are all field sample ID numbers cross-referenced to the                                                                                            | laboratory ID numbers?                                  | Х                                             | 1        |                 |                 |                  |  |  |
|                        |                                          | Are all laboratory ID numbers cross-referenced to the co                                                                                           | orresponding QC data?                                   | Х                                             |          |                 |                 |                  |  |  |
| R3                     | 0                                        | Test reports                                                                                                                                       |                                                         |                                               |          |                 |                 |                  |  |  |
| -                      |                                          | Were all samples prepared and analyzed within holding                                                                                              | times?                                                  | X                                             | Г        | Г               | 1               |                  |  |  |
|                        |                                          | Other than those results < MQL, were all other raw value                                                                                           |                                                         | X                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were calculations checked by a peer or supervisor?                                                                                                 |                                                         | X                                             |          |                 | 1               |                  |  |  |
|                        |                                          | Were all analyte identifications checked by a peer or su                                                                                           | nervisor?                                               | X                                             | 1        |                 |                 | 1                |  |  |
|                        |                                          | Were sample detection limits reported for all analytes no                                                                                          | •                                                       | X                                             | <u> </u> |                 |                 |                  |  |  |
|                        |                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                              |                                                         | X                                             |          |                 | <u> </u>        | <u> </u>         |  |  |
|                        |                                          | Were all results for soil and sediment samples reported                                                                                            | · · ·                                                   |                                               |          | X               | <u> </u>        |                  |  |  |
|                        |                                          | Were % moisture (or solids) reported for all soil and sed                                                                                          | •                                                       |                                               |          | _               | <u> </u>        | <u> </u>         |  |  |
|                        |                                          | Were bulk soils/solids samples for volatile analysis extra                                                                                         | acted with methanol per SW846 Method 5035?              |                                               |          | X               | <u> </u>        | <u> </u>         |  |  |
| <b>D</b> 4             |                                          | If required for the project, are TICs reported?                                                                                                    |                                                         |                                               |          | Х               |                 |                  |  |  |
| R4                     | 0                                        | Surrogate recovery data                                                                                                                            |                                                         |                                               | -        | 1               | -               |                  |  |  |
|                        |                                          | Were surrogates added prior to extraction?                                                                                                         |                                                         | Х                                             |          |                 | ļ               |                  |  |  |
|                        |                                          | Were surrogate percent recoveries in all samples within                                                                                            | the laboratory QC limits?                               | Х                                             |          |                 |                 |                  |  |  |
| R5                     | OI                                       | Test reports/summary forms for blank samples                                                                                                       |                                                         | -                                             |          | _               |                 |                  |  |  |
|                        |                                          | Were appropriate type(s) of blanks analyzed?                                                                                                       |                                                         | Х                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were blanks analyzed at the appropriate frequency?                                                                                                 | Х                                                       |                                               |          |                 |                 |                  |  |  |
|                        |                                          | Were method blanks taken through the entire analytical                                                                                             | process, including preparation and, if applicable,      | X                                             |          |                 |                 |                  |  |  |
|                        |                                          | cleanup procedures?                                                                                                                                |                                                         | ^                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were blank concentrations < MQL?                                                                                                                   |                                                         |                                               | Х        |                 |                 | 1                |  |  |
| R6                     | OI                                       | Laboratory control samples (LCS):                                                                                                                  |                                                         | -                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were all COCs included in the LCS?                                                                                                                 |                                                         | Х                                             |          |                 |                 |                  |  |  |
|                        |                                          | Was each LCS taken through the entire analytical proce                                                                                             | dure, including prep and cleanup steps?                 | Х                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were LCSs analyzed at the required frequency?                                                                                                      |                                                         | Х                                             |          |                 |                 |                  |  |  |
|                        |                                          | Were LCS (and LCSD, if applicable) %Rs within the labor                                                                                            | ratory QC limits?                                       | Х                                             |          |                 |                 |                  |  |  |
|                        |                                          | Does the detectability check sample data document the<br>used to calculate the SDLs?                                                               | a laboratory's capability to detect the COCs at the MDL | x                                             |          |                 |                 |                  |  |  |
|                        |                                          | Was the LCSD RPD within QC limits?                                                                                                                 |                                                         | x                                             |          |                 |                 |                  |  |  |
| R7                     | OI                                       | Matrix spike (MS) and matrix spike duplicate (MSD) data                                                                                            |                                                         |                                               |          |                 | •               |                  |  |  |
|                        |                                          | Were the project/method specified analytes included in                                                                                             |                                                         |                                               | 1        | X               |                 |                  |  |  |
|                        |                                          | Were MS/MSD analyzed at the appropriate frequency?                                                                                                 |                                                         |                                               |          | Х               | 1               |                  |  |  |
|                        |                                          | Were MS (and MSD, if applicable) %Rs within the laboration                                                                                         | tory QC limits?                                         |                                               |          | X               |                 |                  |  |  |
|                        |                                          | Were MS/MSD RPDs within laboratory QC limits?                                                                                                      | ,                                                       |                                               | 1        | X               | 1               | 1                |  |  |
| R8                     | OI                                       | Analytical duplicate data                                                                                                                          |                                                         |                                               |          | <u> </u>        |                 |                  |  |  |
|                        | 01                                       | Were appropriate analytical duplicates analyzed for eac                                                                                            | h matrix?                                               |                                               | T        | X               | 1               |                  |  |  |
|                        |                                          | Were analytical duplicates analyzed at the appropriate f                                                                                           |                                                         |                                               | 1        | X               |                 |                  |  |  |
|                        |                                          | Were RPDs or relative standard deviations within the lab                                                                                           | · ·                                                     |                                               |          | X               |                 |                  |  |  |
| R9                     | 01                                       |                                                                                                                                                    |                                                         | I                                             |          | ^               | 1               |                  |  |  |
| R9                     | 0                                        | Method quantitation limits (MQLs):                                                                                                                 | abaratany data paalaara?                                | V                                             | r —      | T               | 1               | 1                |  |  |
|                        |                                          | Are the MQLs for each method analyte included in the la                                                                                            |                                                         | X                                             |          |                 |                 |                  |  |  |
|                        |                                          | Do the MQLs correspond to the concentration of the low                                                                                             |                                                         | X                                             |          |                 | I               |                  |  |  |
| 240                    |                                          | Are unadjusted MQLs and DCSs included in the laborate                                                                                              | ory data package?                                       | X                                             |          |                 | I               |                  |  |  |
| R10                    | OI                                       | Other problems/anomalies                                                                                                                           |                                                         |                                               | <b>r</b> | <b>.</b>        | r —             | T                |  |  |
|                        |                                          | Are all known problems/anomalies/special conditions no                                                                                             |                                                         | X                                             | <b> </b> |                 | <u> </u>        | <u> </u>         |  |  |
|                        |                                          | Was applicable and available technology used to lower the sample results?                                                                          | the SDL to minimize the matrix interference effects on  | X                                             |          |                 |                 |                  |  |  |
|                        |                                          | Is the laboratory NELAC-accredited under the Texas Lal<br>and methods associated with this laboratory data packa                                   | х                                                       |                                               |          |                 |                 |                  |  |  |
| shoul<br>2. O<br>3. NA | ld be re<br>= orga<br>A = Not<br>R = Not | etained and made available upon request for the appropri-<br>nic analyses; I = inorganic analyses (and general chemist<br>applicable;<br>reviewed; |                                                         |                                               | dentifie | ed by th        | e letter        | "S"              |  |  |

# Laboratory Review Checklist: Supporting Data

1 ķ

| Lab            | orato          | ory Name: Pace Analytical National                                                                             | LRC Date: 06/03/2019 13:46                            |     |    |                 |                 |                  |  |  |  |
|----------------|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|----|-----------------|-----------------|------------------|--|--|--|
|                | iect N<br>kico | Name: Darr Angell #2- Lea County, New                                                                          | Laboratory Job Number: L1102383-01, 02, 03, 04 and 05 |     |    |                 |                 |                  |  |  |  |
| Rev            | iewe           | r Name: Mark W. Beasley                                                                                        | Prep Batch Number(s): WG1288830 and WG12890           | 067 |    |                 |                 |                  |  |  |  |
| # <sup>1</sup> | A <sup>2</sup> | Description                                                                                                    |                                                       | Yes | No | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |  |  |  |
| 51             | OI             | Initial calibration (ICAL)                                                                                     |                                                       |     |    |                 |                 |                  |  |  |  |
|                |                | Were response factors and/or relative response facto                                                           | rs for each analyte within QC limits?                 |     |    | Х               |                 |                  |  |  |  |
|                |                | Were percent RSDs or correlation coefficient criteria r                                                        | net?                                                  | Х   |    |                 |                 |                  |  |  |  |
|                |                | Was the number of standards recommended in the m                                                               | ethod used for all analytes?                          | Х   |    |                 |                 |                  |  |  |  |
|                |                | Were all points generated between the lowest and high                                                          | ghest standard used to calculate the curve?           | Х   |    |                 |                 |                  |  |  |  |
|                |                | Are ICAL data available for all instruments used?                                                              |                                                       | X   |    |                 |                 |                  |  |  |  |
|                |                | Has the initial calibration curve been verified using an                                                       | appropriate second source standard?                   | Х   |    |                 |                 |                  |  |  |  |
| 52             | OI             | Initial and continuing calibration verification (ICCV and                                                      | CCV) and continuing calibration blank (CCB):          |     |    |                 |                 |                  |  |  |  |
|                |                | Was the CCV analyzed at the method-required freque                                                             | ency?                                                 | Х   |    |                 |                 |                  |  |  |  |
|                |                | Were percent differences for each analyte within the                                                           | •                                                     | X   |    |                 | T               |                  |  |  |  |
|                |                | Was the ICAL curve verified for each analyte?                                                                  |                                                       | X   |    |                 |                 |                  |  |  |  |
|                |                | Was the absolute value of the analyte concentration in                                                         | n the inorganic CCB < MDL?                            |     |    | Х               | 1               |                  |  |  |  |
| 53             | 0              | Mass spectral tuning                                                                                           |                                                       |     |    |                 |                 |                  |  |  |  |
|                |                | Was the appropriate compound for the method used                                                               | for tuning?                                           |     |    | X               | 1               | 1                |  |  |  |
|                |                | Were ion abundance data within the method-required                                                             | QC limits?                                            |     |    | Х               |                 |                  |  |  |  |
| 54             | 0              | Internal standards (IS)                                                                                        |                                                       |     |    |                 |                 |                  |  |  |  |
|                |                | Were IS area counts and retention times within the me                                                          | ethod-required QC limits?                             | X   | Т  | Т               | Г               | 1                |  |  |  |
| 5              | OI             | Raw data (NELAC Section 5.5.10)                                                                                |                                                       |     |    |                 | 1               |                  |  |  |  |
|                | 0.             | Were the raw data (for example, chromatograms, spec                                                            | X                                                     | 1   | 1  | 1               | 1               |                  |  |  |  |
|                |                | Were data associated with manual integrations flagge                                                           |                                                       | X   |    |                 |                 |                  |  |  |  |
| 66             | 0              | Dual column confirmation                                                                                       |                                                       |     |    |                 | 1               |                  |  |  |  |
|                | Ŭ              | Did dual column confirmation results meet the method                                                           | d-required QC?                                        |     | 1  | X               | 1               | 1                |  |  |  |
| 57             | 0              | Tentatively identified compounds (TICs)                                                                        |                                                       | - I |    | ~               |                 | 1                |  |  |  |
|                | l •            | If TICs were requested, were the mass spectra and TI                                                           | C data subject to appropriate checks?                 |     | Т  | X               | T               | T                |  |  |  |
| 88             | 1              | Interference Check Sample (ICS) results                                                                        |                                                       | I   |    | ~               | 1               |                  |  |  |  |
|                |                | Were percent recoveries within method QC limits?                                                               |                                                       |     | T  | X               | T               | 1                |  |  |  |
| 59             | 1              | Serial dilutions, post digestion spikes, and method of                                                         | standard additions                                    | I   |    |                 | I               |                  |  |  |  |
| 55             |                | Were percent differences, recoveries, and the linearity                                                        |                                                       |     | 1  | X               | 1               | 1                |  |  |  |
| 510            | OI             | Method detection limit (MDL) studies                                                                           | y within the QC limits specified in the method:       |     |    |                 | I               | <u> </u>         |  |  |  |
| 10             |                | Was a MDL study performed for each reported analytic                                                           | 2                                                     | X   | 1  | 1               | T               | 1                |  |  |  |
|                |                | Is the MDL either adjusted or supported by the analyst                                                         |                                                       |     |    |                 |                 |                  |  |  |  |
| 511            | OI             | Proficiency test reports                                                                                       |                                                       | ^   |    |                 | I               | 1                |  |  |  |
| 211            |                | Was the laboratory's performance acceptable on the a                                                           | applicable proficiency tests or evaluation studies?   | X   | 1  | 1               | T               | T                |  |  |  |
| 512            | OI             | Standards documentation                                                                                        | applicable proficiency tests of evaluation studies:   |     |    |                 | 1               |                  |  |  |  |
|                |                | Are all standards used in the analyses NIST-traceable                                                          | or obtained from other appropriate sources?           | X   | T  | <b>1</b>        | T T             | 1                |  |  |  |
| 513            | OI             |                                                                                                                | or obtained nom other appropriate sources:            | ^   |    |                 | 1               |                  |  |  |  |
| 515            | 0              | Compound/analyte identification procedures<br>Are the procedures for compound/analyte identification           | an de sumante d?                                      | X   | T  | 1               | <u>т</u>        | 1                |  |  |  |
| 514            | OI             |                                                                                                                | Sil documented :                                      | ^   |    |                 |                 |                  |  |  |  |
| 014            | 0              | Demonstration of analyst competency (DOC)                                                                      | F2                                                    |     | 1  | 1               | T               | 1                |  |  |  |
|                |                | Was DOC conducted consistent with NELAC Chapter                                                                |                                                       | X X |    |                 | <u> </u>        |                  |  |  |  |
| 15             |                | Is documentation of the analyst's competency up-to-or<br>Verification/validation documentation for methods (NE |                                                       |     |    |                 | L               | 1                |  |  |  |
| 515            | OI             |                                                                                                                |                                                       |     | 1  |                 | 1               | 1                |  |  |  |
| 210            |                | Are all the methods used to generate the data docum                                                            | entea, verifiea, and validated, where applicable?     | X   | I  | I               | 1               | <u> </u>         |  |  |  |
| 516            | OI             | Laboratory standard operating procedures (SOPs)                                                                | a di se a sfa una a d                                 |     | -  |                 |                 | -                |  |  |  |
|                |                | Are laboratory SOPs current and on file for each meth                                                          | log performed                                         |     | 1  | 1               | 1               | 1                |  |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1102383

| Laborato                                             | ry Name: Pace Analytical National                                          | LRC Date: 06/03/2019 13:46                            |  |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Project Name: Darr Angell #2- Lea County, New Mexico |                                                                            | Laboratory Job Number: L1102383-01, 02, 03, 04 and 05 |  |  |  |  |
| Reviewer Name: Mark W. Beasley                       |                                                                            | Prep Batch Number(s): WG1288830 and WG1289067         |  |  |  |  |
| ER # <sup>1</sup>                                    | Description                                                                |                                                       |  |  |  |  |
| 1                                                    | 8021B WG1289067 Total Xylene L1102383-04: Concentration in the Blank >MQL. |                                                       |  |  |  |  |

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; 1 = inorganic analyses (and general chemistry, when applicable);
3. NA = Not applicable;
4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

# SAMPLE RESULTS - 01

# \*

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 |          |           |          |            |          |          | L' Cra           |           |                 |
|---------------------------------|----------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
|                                 | Result   | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     | Cp              |
| Analyte                         | mg/l     |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | U        |           | 0.000190 | 0.000500   | 0.000500 | 1        | 05/30/2019 20:11 | WG1288830 | Tc              |
| Toluene                         | U        |           | 0.000412 | 0.00100    | 0.00100  | 1        | 05/30/2019 20:11 | WG1288830 |                 |
| Ethylbenzene                    | 0.000175 | ВJ        | 0.000160 | 0.000500   | 0.000500 | 1        | 05/30/2019 20:11 | WG1288830 | <sup>3</sup> Ss |
| Total Xylene                    | U        |           | 0.000510 | 0.00150    | 0.00150  | 1        | 05/30/2019 20:11 | WG1288830 | 53              |
| (S) a,a,a-Trifluorotoluene(PID) | 99.8     |           |          |            | 79.0-125 |          | 05/30/2019 20:11 | WG1288830 | 4               |

| <sup>3</sup> Ss  |
|------------------|
| 4                |
| ⁴Cn              |
|                  |
| ⁵Tr              |
|                  |
| <sup>6</sup> Sr  |
|                  |
| <sup>7</sup> Qc  |
|                  |
| <sup>°</sup> Gl  |
|                  |
| <sup>9</sup> Al  |
|                  |
| <sup>10</sup> Sc |

#### SAMPLE RESULTS - 02 L1102383

# <u>پو</u>

Ср

<sup>5</sup>Tr

Qc

GI

ΆI

Sc

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | U      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 05/30/2019 20:35 | WG1288830 | Tc              |
| Toluene                         | U      |           | 0.000412 | 0.00100    | 0.00100  | 1        | 05/30/2019 20:35 | WG1288830 |                 |
| Ethylbenzene                    | U      |           | 0.000160 | 0.000500   | 0.000500 | 1        | 05/30/2019 20:35 | WG1288830 | <sup>3</sup> Ss |
| Total Xylene                    | U      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 05/30/2019 20:35 | WG1288830 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 99.9   |           |          |            | 79.0-125 |          | 05/30/2019 20:35 | WG1288830 | <sup>4</sup> Cr |

#### SAMPLE RESULTS - 03 L1102383

# <u>پو</u>

#### Volatile Organic Compounds (GC) by Method 8021B

| Volatile Organic Comp           | pounds (GC | ) by Meth | od 8051B |            |          |          |                  |           | 1               |
|---------------------------------|------------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
|                                 | Result     | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
| Analyte                         | mg/l       |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.142      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 05/30/2019 20:59 | WG1288830 | Tc              |
| Toluene                         | 0.00981    |           | 0.000412 | 0.00100    | 0.00100  | 1        | 05/30/2019 20:59 | WG1288830 |                 |
| Ethylbenzene                    | 0.0276     |           | 0.000160 | 0.000500   | 0.000500 | 1        | 05/30/2019 20:59 | WG1288830 | <sup>3</sup> Ss |
| Total Xylene                    | 0.104      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 05/30/2019 20:59 | WG1288830 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 99.2       |           |          |            | 79.0-125 |          | 05/30/2019 20:59 | WG1288830 | 4               |

| Ss              |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Tr             |
|                 |
| <sup>6</sup> Sr |
|                 |
| <sup>7</sup> Qc |
|                 |
| <sup>°</sup> Gl |
|                 |
| PAI             |
|                 |
| 10              |

SDG: L1102383

DATE/TIME: 06/03/19 13:46 PAGE: 11 of 18

# SAMPLE RESULTS - 04

# \*

### Volatile Organic Compounds (GC) by Method 8021B

| volatile organie oomp           |          | by moun    | 00.002.10 |            |          |          |                  |           | l'Cr            |
|---------------------------------|----------|------------|-----------|------------|----------|----------|------------------|-----------|-----------------|
|                                 | Result   | Qualifier  | SDL       | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
| Analyte                         | mg/l     |            | mg/l      | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.000265 | J          | 0.000190  | 0.000500   | 0.000500 | 1        | 06/01/2019 16:51 | WG1289067 | Tc              |
| Toluene                         | 0.000544 | J          | 0.000412  | 0.00100    | 0.00100  | 1        | 06/01/2019 16:51 | WG1289067 |                 |
| Ethylbenzene                    | 0.000225 | J          | 0.000160  | 0.000500   | 0.000500 | 1        | 06/01/2019 16:51 | WG1289067 | <sup>3</sup> Ss |
| Total Xylene                    | 0.000846 | <u>B J</u> | 0.000510  | 0.00150    | 0.00150  | 1        | 06/01/2019 16:51 | WG1289067 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 98.0     |            |           |            | 79.0-125 |          | 06/01/2019 16:51 | WG1289067 | 4               |

| 55               |
|------------------|
| 4                |
| <sup>4</sup> Cn  |
| -                |
| ⁵Tr              |
|                  |
| <sup>6</sup> Sr  |
|                  |
| <sup>7</sup> Qc  |
|                  |
| <sup>°</sup> Gl  |
|                  |
| <sup>9</sup> Al  |
|                  |
| <sup>10</sup> Sc |

#### SAMPLE RESULTS - 05 L1102383

# <u>پو</u>

#### Volatile Organic Compounds (GC) by Method 8021B

| Volatile Organic Comp           | pounds (GC | ) by Meth | 20 802 IB |            |          |          |                  |           | 1               |
|---------------------------------|------------|-----------|-----------|------------|----------|----------|------------------|-----------|-----------------|
|                                 | Result     | Qualifier | SDL       | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     | —   Cp          |
| Analyte                         | mg/l       |           | mg/l      | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.149      |           | 0.000950  | 0.000500   | 0.00250  | 5        | 06/01/2019 17:11 | WG1289067 | Tc              |
| Toluene                         | 0.00822    |           | 0.00206   | 0.00100    | 0.00500  | 5        | 06/01/2019 17:11 | WG1289067 |                 |
| Ethylbenzene                    | 0.0248     |           | 0.000800  | 0.000500   | 0.00250  | 5        | 06/01/2019 17:11 | WG1289067 | <sup>3</sup> Ss |
| Total Xylene                    | 0.0847     |           | 0.00255   | 0.00150    | 0.00750  | 5        | 06/01/2019 17:11 | WG1289067 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 95.5       |           |           |            | 79.0-125 |          | 06/01/2019 17:11 | WG1289067 | 4               |

| ³Ss             |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Tr             |
|                 |
| <sup>6</sup> Sr |
|                 |
| <sup>7</sup> Qc |
|                 |
| °GI             |
|                 |
| <sup>9</sup> Al |
|                 |
| 10              |

Sc

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685

SDG: L1102383

DATE/TIME: 06/03/19 13:46 PAGE: 13 of 18 Volatile Organic Compounds (GC) by Method 8021B

# QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| (MB) R3416511-3 05/30/19           | (MB) R3416511-3 05/30/19 12:00 |              |          |          |  |  |  |  |
|------------------------------------|--------------------------------|--------------|----------|----------|--|--|--|--|
|                                    | MB Result                      | MB Qualifier | MB MDL   | MB RDL   |  |  |  |  |
| Analyte                            | mg/l                           |              | mg/l     | mg/l     |  |  |  |  |
| Benzene                            | U                              |              | 0.000190 | 0.000500 |  |  |  |  |
| Toluene                            | U                              |              | 0.000412 | 0.00100  |  |  |  |  |
| Ethylbenzene                       | 0.000169                       | J            | 0.000160 | 0.000500 |  |  |  |  |
| Total Xylene                       | U                              |              | 0.000510 | 0.00150  |  |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 98.8                           |              |          | 79.0-125 |  |  |  |  |

#### Laboratory Control Sample (LCS)

#### (LCS) R3416511-1 05/30/19 10:42

|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                            | mg/l         | mg/l       | %        | %           |               |
| Benzene                            | 0.0500       | 0.0484     | 96.8     | 77.0-122    |               |
| Toluene                            | 0.0500       | 0.0528     | 106      | 80.0-121    |               |
| Ethylbenzene                       | 0.0500       | 0.0538     | 108      | 80.0-123    |               |
| Total Xylene                       | 0.150        | 0.169      | 113      | 47.0-154    |               |
| (S)<br>a,a,a-Trifluorotoluene(PID) |              |            | 98.7     | 79.0-125    |               |

SDG: L1102383 DATE/TIME: 06/03/19 13:46 PAGE: 14 of 18 Volatile Organic Compounds (GC) by Method 8021B

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

#### Method Blank (MB)

| (MB) R3417212-4 06/01/19           | 9 14:52   |              |          |          |
|------------------------------------|-----------|--------------|----------|----------|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |
| Benzene                            | U         |              | 0.000190 | 0.000500 |
| Toluene                            | U         |              | 0.000412 | 0.00100  |
| Ethylbenzene                       | U         |              | 0.000160 | 0.000500 |
| Total Xylene                       | U         |              | 0.000510 | 0.00150  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 96.6      |              |          | 79.0-125 |

#### Laboratory Control Sample (LCS)

#### (LCS) R3417212-1 06/01/19 13:30

|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                            | mg/l         | mg/l       | %        | %           |               |
| Benzene                            | 0.0500       | 0.0471     | 94.3     | 77.0-122    |               |
| Toluene                            | 0.0500       | 0.0465     | 93.0     | 80.0-121    |               |
| Ethylbenzene                       | 0.0500       | 0.0497     | 99.4     | 80.0-123    |               |
| Total Xylene                       | 0.150        | 0.154      | 103      | 47.0-154    |               |
| (S)<br>a,a,a-Trifluorotoluene(PID) |              |            | 96.2     | 79.0-125    |               |

SDG: L1102383 DATE/TIME: 06/03/19 13:46 PAGE: 15 of 18

# GLOSSARY OF TERMS

# ¥

Τс

Ss

Cn

Tr

Śr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| В                               | The same analyte is found in the associated blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                   |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                      |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                              |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                            |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Unadj. MQL                      | Unadjusted Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                                           |
| SDL                             | Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MQL                             | Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1102383 DATE/TIME: 06/03/19 13:46

# **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska                    |
|------------------------|-------------|-----------------------------|
| Alaska                 | 17-026      | Nevada                      |
| Arizona                | AZ0612      | New Hampshire               |
| Arkansas               | 88-0469     | New Jersey-NELA             |
| California             | 2932        | New Mexico <sup>1</sup>     |
| Colorado               | TN00003     | New York                    |
| Connecticut            | PH-0197     | North Carolina              |
| Florida                | E87487      | North Carolina <sup>1</sup> |
| Georgia                | NELAP       | North Carolina <sup>3</sup> |
| Georgia <sup>1</sup>   | 923         | North Dakota                |
| Idaho                  | TN00003     | Ohio-VAP                    |
| Illinois               | 200008      | Oklahoma                    |
| Indiana                | C-TN-01     | Oregon                      |
| lowa                   | 364         | Pennsylvania                |
| Kansas                 | E-10277     | Rhode Island                |
| Kentucky <sup>16</sup> | 90010       | South Carolina              |
| Kentucky <sup>2</sup>  | 16          | South Dakota                |
| Louisiana              | Al30792     | Tennessee <sup>14</sup>     |
| Louisiana 1            | LA180010    | Texas                       |
| Maine                  | TN0002      | Texas ⁵                     |
| Maryland               | 324         | Utah                        |
| Massachusetts          | M-TN003     | Vermont                     |
| Michigan               | 9958        | Virginia                    |
| Minnesota              | 047-999-395 | Washington                  |
| Mississippi            | TN00003     | West Virginia               |
| Missouri               | 340         | Wisconsin                   |
| Montana                | CERT0086    | Wyoming                     |
|                        |             |                             |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Vevada                      | TN-03-2002-34    |
| lew Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| lorth Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Dregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Гехаs                       | T104704245-18-15 |
| 「exas ⁵                     | LAB0152          |
| Jtah                        | TN00003          |
| /ermont                     | VT2006           |
| /irginia                    | 460132           |
| Vashington                  | C847             |
| Vest Virginia               | 233              |
| Visconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

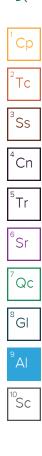
| A2LA – ISO 17025              | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|-------------------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 | DOD                | 1461.01       |
| Canada                        | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto                    | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.




074685

L1102383

PAGE: 17 of 18

06/03/19 13:46



| Plaine All American                            | 1.0.000                   |                                       | Billing      | Information:                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T                  | 1      |               |          | Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10        |                |            |                |                         |                                                               |                                   |
|------------------------------------------------|---------------------------|---------------------------------------|--------------|---------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------|----------------|-------------------------|---------------------------------------------------------------|-----------------------------------|
| Plains All American,                           | LP - GHI                  | D                                     | Acco         | unts Payabl                     | e                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pr                 | es     |               |          | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s / Conta | ainer / Pre    | servativ   | 2              |                         | Chain of Cus                                                  | stody Page o                      |
| 2135 S Loop 250 W                              |                           |                                       | 505 N        | I. Big Spring                   | g, Ste. 600        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH                 |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            |                | 1                       | 0                                                             | 7                                 |
| Midland, TX 79703                              |                           |                                       | Midla        | and, TX 7970                    | 01                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               | New York |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Et alla   |                | The second |                |                         | - Pa                                                          | Ce Analytical "                   |
| Report to:                                     |                           |                                       | Consil 7     |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               | 1998     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 12      |                |            |                |                         | //                                                            | a contract for resulting or ininc |
| Chris G. Knight, John Schnab                   | le                        |                                       | John.So      | o: Christopher<br>chnable@ghd.c | .Knight@ghd<br>com | d.com;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            |                |                         |                                                               |                                   |
| Project<br>Description: Darr Angell #2- Lea    | County N                  | our Manier                            |              | City/State                      | 8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |            |                |                         | 12065 Lebanor<br>Mount Juliet, T<br>Phone: 615-758            | N 37122                           |
|                                                | Client Proje              |                                       |              | Collected                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               | 1 Ala    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | - Internet     |            |                |                         | Phone: 800-767<br>Fax: 615-758-58                             | -5859                             |
| Phone: <b>432-686-0086</b><br>Fax:             | 074685                    |                                       |              | Lab Project                     | ct #<br>GHD-07468  | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | No.    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            |                |                         | L# 110                                                        | 2383                              |
| Collected by (print):<br>Heath Boys            | Site/Facility<br>SRS#: LF |                                       |              | P.O. #                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            |                |                         | B059                                                          | •                                 |
| Collected by (signature):                      |                           | (Lab MUST Be                          |              | Quote #                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | mb-HCI |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            | and the second | -                       | Acctnum: PI                                                   |                                   |
| Immediately                                    | Next D                    | Day Five<br>Day 5 Day                 | y (Rad Only) | Date                            | e Results Nee      | dod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Aml    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -              |            |                |                         | Template: <b>T</b>                                            |                                   |
| Packed on Ice N Y                              | Two D                     |                                       | ay (Rad Only | )                               | e nesults Nee      | eueu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                | 40mlAi |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1              |            |                |                         |                                                               | ark W. Beasley                    |
| Sample ID                                      | Comp/Grab                 | Matrix *                              | Depth        | 1                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of                 | X 40   |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | SIN AL         | 24         | and the second |                         | PB:                                                           | Cusicy                            |
| 44.42                                          |                           | 1                                     | Depth        | Date                            |                    | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cntrs              | BTEX   |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            |                |                         | Shipped Via:                                                  |                                   |
| MW-11                                          | Grab                      | GW                                    | DTW          | 5/21/                           | 19 74              | +3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | 1      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -              | -          | - Find         | -                       | Remarks                                                       | Sample # (lab only)               |
| MW-12                                          |                           | GW                                    |              | 1                               |                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                  | 3      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | - 133          | -          |                |                         |                                                               | -01                               |
| RW-11                                          |                           | GW                                    |              |                                 |                    | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | 3      |               |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100       |                |            | 13.42          |                         |                                                               | -02                               |
| MW-4R                                          |                           | GW                                    |              |                                 |                    | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |               | A and    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                | 1          | 14/2           |                         |                                                               | -03                               |
| Dup-01                                         | V                         | GW                                    | V            | V                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                 | 3      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | 3          |                |                         |                                                               | -04                               |
|                                                |                           | GW                                    |              |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 3      |               | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            | and and a      | -                       |                                                               | - 05                              |
|                                                |                           | GW                                    |              | 1                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |                |            |                |                         |                                                               |                                   |
|                                                |                           | GW                                    |              |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E. M.     |                |            |                |                         |                                                               |                                   |
|                                                |                           | GW                                    |              | -                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        | 1             | 1.32     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |            | E. Lange To    |                         |                                                               |                                   |
| RIP BLANK                                      |                           | GW                                    |              |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | 1          |                |                         |                                                               | States and                        |
| Matrix:                                        | Remarks: 7                | Contraction of the Contraction of the | 1711         | 1                               |                    | RAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000               |        |               | 10.1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1000           |            |                |                         |                                                               |                                   |
| W - Groundwater B - Bioassay<br>W - WasteWater | Remarks: R.<br>Flas       | eport :                               | ted 1        | Concent                         | an le              | · ····L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SCH                | EEN:   | <0.5 n        | nR/hr    | рн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         | Гетр           |            | COC Se         | <u>Sampl</u><br>Bal Pre | e Receipt Ch                                                  | echist<br>NP _ y _ N<br>_ y _ N   |
|                                                | Samples return            | ned via:<br>IExCourie                 |              | 2 States - 1                    | Tracking #         | 4/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2)                |        | 112           | 1        | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | Other          |            | Correc         | ct bott                 | les used.                                                     |                                   |
| elinquished by : (Signature)                   |                           | Date:                                 |              |                                 | Received by:       | (Signatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ire)               | - 8    | 63            | Trip     | Blank R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/a       | 23/1<br>Yes/No | 5          | VOA Ze         | ro Head                 | olume sent:<br><u>If Applicabl</u><br>dspace:<br>Correct/Chec | Y N                               |
| linquished by : (Signature)                    |                           | Date:                                 | Ti           |                                 | Received by:       | (Signatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | re)                |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | HCL/1<br>TBR   | Меон       | Ref and        |                         |                                                               |                                   |
| linguished but /Sin                            |                           |                                       |              |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |               | Tem      | 1.4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | °C        | Bottles Rece   | eived:     | If preser      | vation r                | equired by Logir                                              | n: Date/Time                      |
| linquished by : (Signature)                    |                           | Date:                                 | Tir          | ne: F                           | Received for I     | lab by: (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ignator            | e)     | 100 March 100 | Date     | and the state of t | Si        | 15             | - Anders   |                |                         |                                                               |                                   |
|                                                |                           |                                       |              |                                 | 1                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | -      |               | Cale     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AZ        | Time:          |            | Hold:          |                         |                                                               | Condition:                        |
|                                                |                           |                                       |              |                                 | /                  | and the second se | Call Colored State |        | 2             | 15/      | 21/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9         | 000            | 0          |                |                         | TO BEACH                                                      | NCF / OR                          |

Re



# ANALYTICAL REPORT

# Plains All American, LP - GHD

Sample Delivery Group:L1110887Samples Received:06/20/2019Project Number:074685Description:Darr Angell #2- Lea County, New MexicoSite:SRS#: LF 1999-62Report To:James Ornelas2135 S Loop 250 WMidland, TX 79703

<sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Tr <sup>6</sup> Sr <sup>7</sup> Qc <sup>8</sup> Gl <sup>9</sup> Al <sup>10</sup> Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1110887 DATE/TIME: 06/25/19 09:18

PAGE: 1 of 15

# TABLE OF CONTENTS

\*

Ср

Ss

Cn

⁵Tr

Sr

Qc

Ğ

A

<sup>10</sup>Sc

| Cp: Cover Page                                    | 1  |
|---------------------------------------------------|----|
| Tc: Table of Contents                             | 2  |
| Ss: Sample Summary                                | 3  |
| Cn: Case Narrative                                | 4  |
| Tr: TRRP Summary                                  | 5  |
| TRRP form R                                       | 6  |
| TRRP form S                                       | 7  |
| TRRP Exception Reports                            | 8  |
| Sr: Sample Results                                | 9  |
| DARR2-PUMP OFF-061919 L1110887-01                 | 9  |
| DARR2-PUMP ON-061919 L1110887-02                  | 10 |
| Qc: Quality Control Summary                       | 11 |
| Volatile Organic Compounds (MS) by Method M18-Mod | 11 |
| GI: Glossary of Terms                             | 13 |
| Al: Accreditations & Locations                    | 14 |
| Sc: Sample Chain of Custody                       | 15 |

SDG: L1110887 DATE/TIME: 06/25/19 09:18

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

|                                                   |           |          | Collected by   | Collected date/time | Received da | te/time        |
|---------------------------------------------------|-----------|----------|----------------|---------------------|-------------|----------------|
| DARR2-PUMP OFF-061919 L1110887-01 Air             |           |          | Justin Nixon   | 06/19/19 09:30      | 06/20/19 09 | :00            |
| Method                                            | Batch     | Dilution | Preparation    | Analysis            | Analyst     | Location       |
|                                                   |           |          | date/time      | date/time           |             |                |
| Volatile Organic Compounds (MS) by Method M18-Mod | WG1299139 | 20       | 06/21/19 00:03 | 06/21/19 00:03      | MBF         | Mt. Juliet, TN |
| Volatile Organic Compounds (MS) by Method M18-Mod | WG1299904 | 400      | 06/22/19 00:41 | 06/22/19 00:41      | AMC         | Mt. Juliet, TN |
|                                                   |           |          | Collected by   | Collected date/time | Received da | te/time        |
| DARR2-PUMP ON-061919 L1110887-02 Air              |           |          | Justin Nixon   | 06/19/19 09:55      | 06/20/19 09 | :00            |
| Method                                            | Batch     | Dilution | Preparation    | Analysis            | Analyst     | Location       |
|                                                   |           |          | date/time      | date/time           |             |                |
| Volatile Organic Compounds (MS) by Method M18-Mod | WG1299139 | 80       | 06/21/19 00:45 | 06/21/19 00:45      | MBF         | Mt. Juliet, TN |

<u>پو</u>

Ср

Тс

## CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

Τс Ss Cn Tr Sr Qc GI AI Śc

SDG: L1110887 DATE/TIME: 06/25/19 09:18 PAGE: 4 of 15

## Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

# Laboratory Review Checklist: Reportable Data

ļ k

| Lab                  | orato                       | ry Name: Pace Analytical National                                                                                                                                                                             | LRC Date: 06/25/2019 09:18                                                           |          |           |                 |                 |          |
|----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------|-----------|-----------------|-----------------|----------|
|                      | ject N<br>xico              | lame: Darr Angell #2- Lea County, New                                                                                                                                                                         | Laboratory Job Number: L1110887-01 and 02                                            |          |           |                 |                 |          |
| Rev                  | viewe                       | r Name: Mark W. Beasley                                                                                                                                                                                       | Prep Batch Number(s): WG1299139 and WG1299904                                        |          |           |                 |                 |          |
| # <sup>1</sup>       | A <sup>2</sup>              | Description                                                                                                                                                                                                   |                                                                                      | Yes      | No        | NA <sup>3</sup> | NR <sup>4</sup> | ER#      |
| 71                   | OI                          | Chain-of-custody (C-O-C)                                                                                                                                                                                      |                                                                                      |          |           |                 |                 |          |
|                      |                             | Did samples meet the laboratory's standard condition                                                                                                                                                          | ns of sample acceptability upon receipt?                                             | Х        |           |                 |                 |          |
|                      |                             | Were all departures from standard conditions describ                                                                                                                                                          | ped in an exception report?                                                          |          |           | Х               |                 |          |
| 2                    | OI                          | Sample and quality control (QC) identification                                                                                                                                                                |                                                                                      |          |           |                 |                 |          |
|                      |                             | Are all field sample ID numbers cross-referenced to t                                                                                                                                                         | he laboratory ID numbers?                                                            | Х        |           |                 |                 |          |
|                      |                             | Are all laboratory ID numbers cross-referenced to the                                                                                                                                                         | e corresponding QC data?                                                             | X        |           |                 |                 |          |
| 3                    | OI                          | Test reports                                                                                                                                                                                                  |                                                                                      |          |           |                 |                 |          |
|                      |                             | Were all samples prepared and analyzed within holdi                                                                                                                                                           | ng times?                                                                            | X        |           |                 |                 |          |
|                      |                             | Other than those results < MQL, were all other raw va                                                                                                                                                         | lues bracketed by calibration standards?                                             | Х        |           |                 |                 |          |
|                      |                             | Were calculations checked by a peer or supervisor?                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                | Х        |           |                 |                 |          |
|                      |                             | Were all analyte identifications checked by a peer or                                                                                                                                                         | supervisor?                                                                          | X        |           |                 |                 |          |
|                      |                             | Were sample detection limits reported for all analytes                                                                                                                                                        | s not detected?                                                                      | X        |           |                 |                 |          |
|                      |                             | Were all results for soil and sediment samples reported                                                                                                                                                       |                                                                                      | X        |           |                 |                 |          |
|                      |                             | Were % moisture (or solids) reported for all soil and so                                                                                                                                                      |                                                                                      |          |           | Х               |                 |          |
|                      |                             | Were bulk soils/solids samples for volatile analysis ex                                                                                                                                                       |                                                                                      | <u> </u> | 1         | X               |                 | 1        |
|                      |                             | If required for the project, are TICs reported?                                                                                                                                                               | aracted with methanol per 50046 method 5055.                                         |          |           | X               |                 |          |
| 4                    | 0                           | Surrogate recovery data                                                                                                                                                                                       |                                                                                      | <u> </u> | <u> </u>  |                 | <b>I</b>        |          |
| 4                    |                             | Were surrogates added prior to extraction?                                                                                                                                                                    |                                                                                      | X        | 1         | 1               | T               | T        |
|                      |                             | Were surrogate percent recoveries in all samples with                                                                                                                                                         | hin the laboratory OC limite?                                                        | 1 x      | -         |                 |                 |          |
| 25                   | 01                          |                                                                                                                                                                                                               |                                                                                      |          |           |                 |                 |          |
| (5                   | 0                           | Test reports/summary forms for blank samples                                                                                                                                                                  |                                                                                      |          | -         | 1               | <u> </u>        | 1        |
|                      |                             | Were appropriate type(s) of blanks analyzed?                                                                                                                                                                  |                                                                                      | X        |           |                 |                 |          |
|                      |                             | Were blanks analyzed at the appropriate frequency?                                                                                                                                                            |                                                                                      | X        |           |                 |                 | <u> </u> |
|                      |                             | Were method blanks taken through the entire analytic cleanup procedures?                                                                                                                                      | cal process, including preparation and, if applicable,                               | X        |           |                 |                 |          |
|                      |                             | Were blank concentrations < MQL?                                                                                                                                                                              |                                                                                      | X        | -         |                 |                 |          |
| 26                   | OI                          | Laboratory control samples (LCS):                                                                                                                                                                             |                                                                                      |          |           | 1               | I               | I        |
| 10                   | 0                           | Were all COCs included in the LCS?                                                                                                                                                                            |                                                                                      |          | T         | 1               | r –             | 1        |
|                      |                             |                                                                                                                                                                                                               | podure including prop and cleanup stops?                                             | X<br>X   |           |                 |                 |          |
|                      |                             | Was each LCS taken through the entire analytical pro                                                                                                                                                          | cedure, including prep and cleanup steps?                                            | X        |           |                 |                 |          |
|                      |                             | Were LCSs analyzed at the required frequency?                                                                                                                                                                 |                                                                                      |          |           |                 |                 |          |
|                      |                             | Were LCS (and LCSD, if applicable) %Rs within the lab                                                                                                                                                         |                                                                                      | X        |           |                 |                 |          |
|                      |                             | used to calculate the SDLs?                                                                                                                                                                                   | the laboratory's capability to detect the COCs at the MDL                            | X        |           |                 |                 |          |
|                      |                             | Was the LCSD RPD within QC limits?                                                                                                                                                                            |                                                                                      | X        |           |                 |                 |          |
| 87                   | OI                          | Matrix spike (MS) and matrix spike duplicate (MSD) da                                                                                                                                                         | ata                                                                                  | <u> </u> |           | 1               |                 |          |
|                      |                             | Were the project/method specified analytes included                                                                                                                                                           |                                                                                      | T        | 1         | X               | 1               | 1        |
|                      |                             | Were MS/MSD analyzed at the appropriate frequency                                                                                                                                                             |                                                                                      | <u> </u> |           | X               |                 |          |
|                      |                             | Were MS (and MSD, if applicable) %Rs within the labo                                                                                                                                                          |                                                                                      | 1        |           | X               |                 |          |
|                      |                             | Were MS/MSD RPDs within laboratory QC limits?                                                                                                                                                                 |                                                                                      | <u> </u> | 1         | X               |                 |          |
| 88                   | OI                          | Analytical duplicate data                                                                                                                                                                                     |                                                                                      | <u> </u> |           |                 | 1               | I        |
| .0                   |                             | Were appropriate analytical duplicates analyzed for e                                                                                                                                                         | each matrix?                                                                         | 1        | Т         | X               | 1               | T        |
|                      |                             | Were analytical duplicates analyzed at the appropriat                                                                                                                                                         |                                                                                      |          | 1         | X               | <u> </u>        |          |
|                      |                             | Were RPDs or relative standard deviations within the                                                                                                                                                          | • •                                                                                  |          |           | X               |                 |          |
| 89                   | 01                          | Method quantitation limits (MQLs):                                                                                                                                                                            |                                                                                      | I        |           |                 | I               |          |
| .9                   |                             | Are the MQLs for each method analyte included in th                                                                                                                                                           | a laboratony data packaga?                                                           | X        | 1         | 1               | 1               | 1        |
|                      |                             | Do the MQLs correspond to the concentration of the                                                                                                                                                            |                                                                                      | X        |           |                 |                 | -        |
|                      |                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                         |                                                                                      | X        | -         |                 |                 |          |
| 10                   |                             | Are unadjusted MQLs and DCSs included in the labor                                                                                                                                                            |                                                                                      | <u> </u> |           | 1               |                 |          |
| 10                   | OI                          | Other problems/anomalies                                                                                                                                                                                      | a poted in this LDC and ED2                                                          |          | 1         |                 | 1               | 1        |
|                      |                             | Are all known problems/anomalies/special conditions                                                                                                                                                           |                                                                                      | X        |           |                 |                 |          |
|                      |                             | the sample results?                                                                                                                                                                                           | er the SDL to minimize the matrix interference effects on                            | X        |           |                 |                 |          |
|                      |                             | Is the laboratory NELAC-accredited under the Texas and methods associated with this laboratory data page                                                                                                      | Laboratory Accreditation Program for the analytes, matrices kage?                    | Х        |           |                 |                 |          |
| shou<br>2. O<br>3. N | ld be r<br>= orga<br>A = No | ntified by the letter "R" must be included in the laborat<br>etained and made available upon request for the appro-<br>nic analyses; I = inorganic analyses (and general chen<br>t applicable;<br>t reviewed; | ory data package submitted in the TRRP-required report(s). opriate retention period. |          | identifie | ed by th        | e letter        | "S"      |

# Laboratory Review Checklist: Supporting Data

1 ķ

| Labo                      | orato                      | ory Name: Pace Analytical National                       | LRC Date: 06/25/2019 09:18                                                        |               |          |                 |          |                  |
|---------------------------|----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|---------------|----------|-----------------|----------|------------------|
| Proje<br>Mexi             |                            | Name: Darr Angell #2- Lea County, New                    | Laboratory Job Number: L1110887-01 and 02                                         |               |          |                 |          |                  |
| Revi                      | ewe                        | r Name: Mark W. Beasley                                  | Prep Batch Number(s): WG1299139 and WG12999                                       | 04            |          |                 |          |                  |
| # <sup>1</sup>            | A <sup>2</sup>             | Description                                              |                                                                                   | Yes           | No       | NA <sup>3</sup> | NR⁴      | ER# <sup>5</sup> |
| 51                        | OI                         | Initial calibration (ICAL)                               |                                                                                   |               |          |                 |          |                  |
|                           |                            | Were response factors and/or relative response fact      | ors for each analyte within QC limits?                                            | Х             |          |                 |          |                  |
|                           |                            | Were percent RSDs or correlation coefficient criteria    | met?                                                                              | Х             |          |                 |          |                  |
|                           |                            | Was the number of standards recommended in the           | method used for all analytes?                                                     | Х             |          |                 |          |                  |
|                           |                            | Were all points generated between the lowest and h       | highest standard used to calculate the curve?                                     | Х             |          |                 |          |                  |
|                           |                            | Are ICAL data available for all instruments used?        |                                                                                   | Х             |          |                 |          |                  |
|                           |                            | Has the initial calibration curve been verified using a  | an appropriate second source standard?                                            | Х             |          |                 |          |                  |
| 52                        | OI                         | Initial and continuing calibration verification (ICCV ar |                                                                                   |               |          |                 |          |                  |
|                           |                            | Was the CCV analyzed at the method-required frequ        |                                                                                   | Х             |          |                 | 1        | 1                |
|                           |                            | Were percent differences for each analyte within the     | •                                                                                 | Х             |          |                 |          |                  |
|                           |                            | Was the ICAL curve verified for each analyte?            | •                                                                                 | X             |          |                 |          |                  |
|                           |                            | Was the absolute value of the analyte concentration      | in the inorganic CCB < MDL?                                                       |               |          | X               |          |                  |
| 3                         | 0                          | Mass spectral tuning                                     | 3                                                                                 |               |          |                 |          |                  |
|                           |                            | Was the appropriate compound for the method used         | d for tuning?                                                                     | X             |          |                 | Г        | Γ                |
|                           |                            | Were ion abundance data within the method-require        |                                                                                   | X             |          |                 |          |                  |
| 54                        | 0                          | Internal standards (IS)                                  |                                                                                   |               |          |                 |          |                  |
|                           | -                          | Were IS area counts and retention times within the r     | nethod-required QC limits?                                                        | X             |          | Т               | 1        | 1                |
| 5                         | OI                         | Raw data (NELAC Section 5.5.10)                          |                                                                                   |               |          |                 |          |                  |
|                           |                            | Were the raw data (for example, chromatograms, sp        | ectral data) reviewed by an analyst?                                              | X             |          | 1               | 1        | T                |
|                           |                            | Were data associated with manual integrations flage      |                                                                                   | X             |          |                 |          |                  |
| 66                        | 0                          | Dual column confirmation                                 |                                                                                   |               |          |                 |          |                  |
|                           |                            | Did dual column confirmation results meet the meth-      | od-required QC?                                                                   |               |          | X               | 1        | 1                |
| 57                        | 0                          | Tentatively identified compounds (TICs)                  |                                                                                   |               |          |                 |          |                  |
|                           | -                          | If TICs were requested, were the mass spectra and        | TIC data subject to appropriate checks?                                           |               |          | X               | Γ        | 1                |
| 58                        | 1                          | Interference Check Sample (ICS) results                  |                                                                                   |               | 1        | 1               |          |                  |
|                           |                            | Were percent recoveries within method QC limits?         |                                                                                   |               |          | X               | T        | T                |
| 59                        | 1                          | Serial dilutions, post digestion spikes, and method o    | f standard additions                                                              |               |          |                 | · · · ·  |                  |
|                           |                            | Were percent differences, recoveries, and the linear     |                                                                                   |               |          | X               | T        | T                |
| 510                       | 0                          | Method detection limit (MDL) studies                     |                                                                                   |               |          |                 |          |                  |
|                           |                            | Was a MDL study performed for each reported analy        | /te?                                                                              | X             |          | T               | T        | 1                |
|                           |                            | Is the MDL either adjusted or supported by the analy     |                                                                                   | X             |          |                 |          |                  |
| 511                       | OI                         | Proficiency test reports                                 |                                                                                   |               |          |                 |          |                  |
|                           |                            | Was the laboratory's performance acceptable on the       | e applicable proficiency tests or evaluation studies?                             | X             |          |                 | Γ        | <u> </u>         |
| 512                       | OI                         | Standards documentation                                  | ······································                                            |               |          |                 |          |                  |
|                           |                            | Are all standards used in the analyses NIST-traceabl     | le or obtained from other appropriate sources?                                    | X             |          | 1               | Г        | Г                |
| 513                       | OI                         | Compound/analyte identification procedures               |                                                                                   |               |          |                 | •        |                  |
|                           |                            | Are the procedures for compound/analyte identifica       | tion documented?                                                                  | X             |          |                 | 1        | 1                |
| 514                       | OI                         | Demonstration of analyst competency (DOC)                |                                                                                   |               |          |                 |          |                  |
|                           |                            | Was DOC conducted consistent with NELAC Chapte           | er 5?                                                                             | Х             |          |                 | 1        | 1                |
|                           |                            | Is documentation of the analyst's competency up-to-      |                                                                                   | X             | 1        | 1               | 1        | 1                |
| 615                       | OI                         | Verification/validation documentation for methods (N     |                                                                                   |               |          |                 |          |                  |
|                           |                            | Are all the methods used to generate the data docu       | mented, verified, and validated, where applicable?                                | Х             |          |                 |          |                  |
| 516                       | OI                         | Laboratory standard operating procedures (SOPs)          |                                                                                   |               |          |                 |          |                  |
|                           |                            | Are laboratory SOPs current and on file for each me      | thod performed                                                                    | X             |          |                 |          |                  |
| should<br>2. O =<br>3. NA | d be r<br>= orga<br>\ = No |                                                          | tory data package submitted in the TRRP-required repor ropriate retention period. | t(s). Items i | dentifie | ed by th        | e letter | "S"              |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1110887

DATE/TIME: 06/25/19 09:18

#### Laboratory Review Checklist: Exception Reports ONE LAB. NATIONWIDE.

| Laboratory Name: Pace Analytical National               | LRC Date: 06/25/2019 09:18                    |
|---------------------------------------------------------|-----------------------------------------------|
| Project Name: Darr Angell #2- Lea County, New<br>Mexico | Laboratory Job Number: L1110887-01 and 02     |
| Reviewer Name: Mark W. Beasley                          | Prep Batch Number(s): WG1299139 and WG1299904 |
| ER # <sup>1</sup> Description                           |                                               |

The Exception Report intentionally left blank, there are no exceptions applied to this SDG.

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

a. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
NA = Not applicable;
NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

# SAMPLE RESULTS - 01

# \*

Ср

Тс

Ss

Cn

Ϋ́r

Qc

GI

ΆI

Sc

#### Volatile Organic Compounds (MS) by Method M18-Mod

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result  | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|---------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3   |           |          |           |
| Benzene                    | 71-43-2   | 78.10    | 4.00     | 12.8  | 204    | 652     |           | 20       | WG1299139 |
| Toluene                    | 108-88-3  | 92.10    | 4.00     | 15.1  | 365    | 1370    |           | 20       | WG1299139 |
| Ethylbenzene               | 100-41-4  | 106      | 4.00     | 17.3  | 79.4   | 344     |           | 20       | WG1299139 |
| m&p-Xylene                 | 1330-20-7 | 106      | 8.00     | 34.7  | 399    | 1730    |           | 20       | WG1299139 |
| o-Xylene                   | 95-47-6   | 106      | 4.00     | 17.3  | 128    | 556     |           | 20       | WG1299139 |
| Methyl tert-butyl ether    | 1634-04-4 | 88.10    | 4.00     | 14.4  | ND     | ND      |           | 20       | WG1299139 |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 20000    | 82600 | 403000 | 1660000 |           | 400      | WG1299904 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 104    |         |           |          | WG1299139 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 97.5   |         |           |          | WG1299904 |

#### SAMPLE RESULTS - 02 L1110887

# <u>پو</u>

Ŝr

Qc

GI

ΆI

Sc

#### Volatile Organic Compounds (MS) by Method M18-Mod

|                        | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| alyte                  |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| nzene                  | 71-43-2   | 78.10    | 16.0     | 51.1  | 39.0   | 125    |           | 80       | WG1299139 |
| ene                    | 108-88-3  | 92.10    | 16.0     | 60.3  | 135    | 510    |           | 80       | WG1299139 |
| Ibenzene               | 100-41-4  | 106      | 16.0     | 69.4  | 111    | 480    |           | 80       | WG1299139 |
| Xylene                 | 1330-20-7 | 106      | 32.0     | 139   | 344    | 1490   |           | 80       | WG1299139 |
| ne                     | 95-47-6   | 106      | 16.0     | 69.4  | 66.8   | 290    |           | 80       | WG1299139 |
| tert-butyl ether       | 1634-04-4 | 88.10    | 16.0     | 57.7  | ND     | ND     |           | 80       | WG1299139 |
| GC/MS) Low Fraction    | 8006-61-9 | 101      | 4000     | 16500 | 19000  | 78600  |           | 80       | WG1299139 |
| 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 98.1   |        |           |          | WG1299139 |

SDG: L1110887

DATE/TIME: 06/25/19 09:18 Volatile Organic Compounds (MS) by Method M18-Mod

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

#### Method Blank (MB)

| (MB) R3422972-3 | 06/20/19 11:00 |              |
|-----------------|----------------|--------------|
|                 | MB Result      | MB Qualifier |
|                 |                |              |

| Analyte                    | ppbv | ppbv   | ppbv     |
|----------------------------|------|--------|----------|
| Benzene                    | U    | 0.0460 | 0.200    |
| Ethylbenzene               | U    | 0.0506 | 0.200    |
| MTBE                       | U    | 0.0505 | 0.200    |
| Toluene                    | U    | 0.0499 | 0.200    |
| m&p-Xylene                 | U    | 0.0946 | 0.400    |
| o-Xylene                   | U    | 0.0633 | 0.200    |
| TPH (GC/MS) Low Fraction   | U    | 6.91   | 50.0     |
| (S) 1,4-Bromofluorobenzene | 96.2 |        | 60.0-140 |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

MB MDL

MB RDL

| (LCS) R3422972-1 06/20/19 09:30 • (LCSD) R3422972-2 06/20/19 10:14 |              |            |             |          |           |             |               |                |        |            |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|--------|------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD    | RPD Limits |
| Analyte                                                            | ppbv         | ppbv       | ppbv        | %        | %         | %           |               |                | %      | %          |
| MTBE                                                               | 3.75         | 4.28       | 4.24        | 114      | 113       | 70.0-130    |               |                | 1.03   | 25         |
| Benzene                                                            | 3.75         | 4.57       | 4.46        | 122      | 119       | 70.0-130    |               |                | 2.55   | 25         |
| Toluene                                                            | 3.75         | 4.41       | 4.34        | 118      | 116       | 70.0-130    |               |                | 1.54   | 25         |
| Ethylbenzene                                                       | 3.75         | 4.42       | 4.38        | 118      | 117       | 70.0-130    |               |                | 0.928  | 25         |
| m&p-Xylene                                                         | 7.50         | 8.63       | 8.56        | 115      | 114       | 70.0-130    |               |                | 0.824  | 25         |
| o-Xylene                                                           | 3.75         | 4.32       | 4.33        | 115      | 115       | 70.0-130    |               |                | 0.0960 | 25         |
| TPH (GC/MS) Low Fraction                                           | 203          | 235        | 234         | 116      | 116       | 70.0-130    |               |                | 0.386  | 25         |
| (S) 1,4-Bromofluorobenzene                                         |              |            |             | 99.0     | 99.5      | 60.0-140    |               |                |        |            |

<sup>7</sup>Qc <sup>8</sup>Gl <sup>9</sup>Al <sup>10</sup>Sc

SDG: L1110887 DATE/TIME: 06/25/19 09:18 PAGE: 11 of 15

### WG1299904

Volatile Organic Compounds (MS) by Method M18-Mod

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

#### Method Blank (MB)

| (MB) R3423605-3 06/21/19 10:24 |           |              |        |          |  |  |  |  |  |  |
|--------------------------------|-----------|--------------|--------|----------|--|--|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL   |  |  |  |  |  |  |
| Analyte                        | ppbv      |              | ppbv   | ppbv     |  |  |  |  |  |  |
| TPH (GC/MS) Low Fraction       | U         |              | 6.91   | 50.0     |  |  |  |  |  |  |
| (S) 1,4-Bromofluorobenzene     | 95.2      |              |        | 60.0-140 |  |  |  |  |  |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3423605-1 06/21/19 08:53 • (LCSD) R3423605-2 06/21/19 09:37 |              |            |             |          |           |             |               |                |       |            |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                                                            | ppbv         | ppbv       | ppbv        | %        | %         | %           |               |                | %     | %          |
| TPH (GC/MS) Low Fraction                                           | 203          | 238        | 239         | 118      | 118       | 70.0-130    |               |                | 0.192 | 25         |
| (S) 1,4-Bromofluorobenzene                                         |              |            |             | 98.5     | 99.2      | 60.0-140    |               |                |       |            |

Sc

SDG: L1110887 DATE/TIME: 06/25/19 09:18 PAGE: 12 of 15

# GLOSSARY OF TERMS

# \*

Τс

Ss

Cn

Tr

Śr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1110887

# **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama 40660                   | Ne |
|---------------------------------|----|
| Alaska 17-026                   | Ne |
| Arizona AZ0612                  | Ne |
| Arkansas 88-0469                | Ne |
| California 2932                 | Ne |
| Colorado TN00003                | Ne |
| Connecticut PH-0197             | No |
| Florida E87487                  | No |
| Georgia NELAP                   | No |
| Georgia <sup>1</sup> 923        | No |
| Idaho TN00003                   | Oł |
| Illinois 200008                 | O  |
| Indiana C-TN-01                 | Or |
| lowa 364                        | Pe |
| Kansas E-10277                  | Rł |
| Kentucky <sup>16</sup> 90010    | Sc |
| Kentucky <sup>2</sup> 16        | Sc |
| Louisiana Al30792               | Te |
| Louisiana <sup>1</sup> LA180010 | Te |
| Maine TN0002                    | Te |
| Maryland 324                    | Ut |
| Massachusetts M-TN003           | Ve |
| Michigan 9958                   | Vi |
| Minnesota 047-999-395           | W  |
| Mississippi TN00003             | W  |
| Missouri 340                    | W  |
| Montana CERT0086                | W  |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1110887

PAGE: 14 of 15

06/25/19 09:18

|                                                                                                                                                                                               |                                 | Billing Information: |                   |                                                     |              |            | Analysis / Container / Preservative |          |           |                              |          |        |                                                                                                                                                                                                                                                                              | Chain of Custody Page of                      |                                                                |                                                        |                                                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------------|-----------------------------------------------------|--------------|------------|-------------------------------------|----------|-----------|------------------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| 505 N.                                                                                                                                                                                        |                                 |                      | 505 N. B          | nts Payable<br>Big Spring, Ste. 600<br>nd, TX 79701 |              |            | Contra la                           |          |           |                              |          | 1      |                                                                                                                                                                                                                                                                              |                                               |                                                                | Pac                                                    | e Analytical <sup>®</sup><br>Center for Testing & Inne |  |  |  |  |
| Report to:<br>Chris G. Knight, John Schnable                                                                                                                                                  |                                 |                      |                   | Christopher.Knigh<br>able@ghd.com                   | t@ghd.com;   |            |                                     |          | ALL PARTY |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                | 12065 Lebanon F<br>Mount Juliet, TN<br>Phone: 615-758- | 37122                                                  |  |  |  |  |
| Project<br>Description: Darr Angell #2- Lea C                                                                                                                                                 | County, New                     | Mexico               |                   | City/State<br>Collected:                            |              |            |                                     |          |           |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                | Phone: 800-767-<br>Fax: 615-758-585                    | 5859                                                   |  |  |  |  |
|                                                                                                                                                                                               | Client Project #<br>074685      | I                    |                   | Lab Project #<br>PLAINSGHD                          | -074685      | Hur Ser    |                                     |          | Water -   |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                | L# A                                                   | 110887                                                 |  |  |  |  |
|                                                                                                                                                                                               | Site/Facility ID<br>SRS#: LF 19 |                      |                   | P.O. #                                              |              | R.         |                                     |          |           |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                | Acctnum: PL                                            | AINSGHD                                                |  |  |  |  |
| Collected by (signature):                                                                                                                                                                     | Same Day                        |                      | Day               | nly) Date Results Needed                            |              | Veeded No. |                                     |          |           |                              |          |        | No. of Concession                                                                                                                                                                                                                                                            |                                               |                                                                | and the second                                         |                                                        |  |  |  |  |
| Sample ID                                                                                                                                                                                     | Comp/Grab                       | Matrix *             | Depth             | Date                                                | Time         | Cntrs      | M18-MOD                             | -        |           |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                |                                                        | FedEX Ground                                           |  |  |  |  |
| Par 2- Purpoff-06/9/19                                                                                                                                                                        | G                               | Air                  | -                 | 6-19-19                                             | 930          | 1          | x                                   |          |           |                              |          | -      |                                                                                                                                                                                                                                                                              |                                               |                                                                |                                                        | -0                                                     |  |  |  |  |
| Durz-pumpon-Ublym                                                                                                                                                                             | G                               | Air                  | -                 | 6-19-19                                             | 955          | 1          | X                                   |          |           |                              | New York |        |                                                                                                                                                                                                                                                                              | 1.                                            |                                                                |                                                        | - 0                                                    |  |  |  |  |
|                                                                                                                                                                                               |                                 | Air                  |                   |                                                     |              | 1          | X                                   |          |           |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                | 1-24                                                   |                                                        |  |  |  |  |
| 一種                                                                                                                                                                                            |                                 | Air                  |                   |                                                     |              | 1          | X                                   |          | 1         |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                |                                                        |                                                        |  |  |  |  |
|                                                                                                                                                                                               |                                 | Air                  |                   |                                                     |              | 1          | X                                   |          |           |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                |                                                        |                                                        |  |  |  |  |
|                                                                                                                                                                                               |                                 |                      |                   |                                                     |              |            |                                     |          | The Days  |                              |          | 1      |                                                                                                                                                                                                                                                                              |                                               |                                                                |                                                        |                                                        |  |  |  |  |
|                                                                                                                                                                                               |                                 |                      |                   |                                                     |              | 1          |                                     |          |           |                              |          |        |                                                                                                                                                                                                                                                                              |                                               |                                                                | a filler<br>B                                          |                                                        |  |  |  |  |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater<br>DW - Drinking Water<br>OT - Other Samples returned via:<br>UPSFedEx Courier Tracking # 444 |                                 |                      |                   |                                                     |              |            |                                     |          | pH _      |                              | Temp     |        | COC Se<br>COC Si<br>Bottle                                                                                                                                                                                                                                                   | <u>Sampl</u><br>eal Pre<br>igned//<br>es arr: | <u>le Receipt (</u><br>esent/Intac<br>Accurate:<br>ive intact: | Checklist<br>t:NPY<br>Y                                |                                                        |  |  |  |  |
|                                                                                                                                                                                               |                                 |                      |                   |                                                     | racking # 44 | Flow Other |                                     |          |           |                              |          |        | Sample Receipt Checklist         COC Seal Present/Intact:       NP         COC Signed/Accurate:       Y         Bottles arrive intact:       Y         Correct bottles used:       Y         Sufficient volume sent:       Y         If Applicable       VOA Zero Headspace: |                                               |                                                                |                                                        |                                                        |  |  |  |  |
| Relinquished by : (Signature) Date:                                                                                                                                                           |                                 |                      |                   |                                                     |              |            |                                     | ip Blank | Receive   | ed: Yes/No<br>HCL/N<br>TBR   |          | Preser | rvation                                                                                                                                                                                                                                                                      | n Correct/Ch                                  | necked:Y                                                       |                                                        |                                                        |  |  |  |  |
| Relinquished by : (Signature)                                                                                                                                                                 | Date: T                         |                      | ïme: R            | eceived by: (Sign                                   | Temp:<br>AMB |            |                                     |          | ₽°C       | CONTRACTOR OF TAXABLE PARTY. |          |        |                                                                                                                                                                                                                                                                              | required by Lo                                | gin: Date/Time                                                 |                                                        |                                                        |  |  |  |  |
| Relinquished by : (Signature) Date: Tin                                                                                                                                                       |                                 | ïme: R               | eceived for lab b | y: (Signat                                          | ture)        |            | Da                                  | ate:     | 19        | Time:<br>9:00                | -        | Hold:  |                                                                                                                                                                                                                                                                              | 188                                           | Condition:<br>NCF / OK                                         |                                                        |                                                        |  |  |  |  |



# ANALYTICAL REPORT

## Plains All American, LP - GHD

| Sample Delivery Group: | L1122862                               |
|------------------------|----------------------------------------|
| Samples Received:      | 07/26/2019                             |
| Project Number:        | 074685                                 |
| Description:           | Darr Angell #2- Lea County, New Mexico |
| Site:                  | SRS#: LF 1999-62                       |
| Report To:             | James Ornelas                          |
|                        | 2135 S Loop 250 W                      |
|                        | Midland, TX 79703                      |

<sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Tr <sup>6</sup> Sr <sup>7</sup> Qc <sup>8</sup> GI <sup>9</sup> AI <sup>10</sup> Sc

Entire Report Reviewed By:


Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1122862 DATE/TIME: 08/02/19 19:27 PAGE: 1 of 19

### TABLE OF CONTENTS

| Cp: Cover Page                                  | 1  |
|-------------------------------------------------|----|
| Tc: Table of Contents                           | 2  |
| Ss: Sample Summary                              | 3  |
| Cn: Case Narrative                              | 4  |
| Tr: TRRP Summary                                | 5  |
| TRRP form R                                     | 6  |
| TRRP form S                                     | 7  |
| TRRP Exception Reports                          | 8  |
| Sr: Sample Results                              | 9  |
| MW-4R-072319 L1122862-01                        | 9  |
| MW-12-072319 L1122862-02                        | 10 |
| RW12-072319 L1122862-03                         | 11 |
| RW-11-072319 L1122862-04                        | 12 |
| DUP-1-072319 L1122862-05                        | 13 |
| Qc: Quality Control Summary                     | 14 |
| Volatile Organic Compounds (GC) by Method 8021B | 14 |
| GI: Glossary of Terms                           | 17 |
| Al: Accreditations & Locations                  | 18 |
| Sc: Sample Chain of Custody                     | 19 |
|                                                 |    |



\*

SDG: L1122862 DATE/TIME: 08/02/19 19:27

PAGE: 2 of 19

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

⁵Tr

Sr

Qc

GI

A

<sup>10</sup>Sc

| MW-4R-072319 L1122862-01 GW                     |           |          | Collected by<br>Justin Nixon | Collected date/time<br>07/23/19 15:35 | Received da 07/26/19 08:             |                                      |  |
|-------------------------------------------------|-----------|----------|------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|
| Method                                          | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                              | Location                             |  |
| Volatile Organic Compounds (GC) by Method 8021B | WG1319205 | 1        | 07/29/19 19:10               | 07/29/19 19:10                        | BMB                                  | Mt. Juliet, TN                       |  |
| MW-12-072319 L1122862-02 GW                     |           |          | Collected by<br>Justin Nixon | Collected date/time 07/23/19 10:00    | Received da 07/26/19 08:             |                                      |  |
| Method                                          | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                              | Location                             |  |
| Volatile Organic Compounds (GC) by Method 8021B | WG1319205 | 1        | 07/29/19 19:33               | 07/29/19 19:33                        | BMB                                  | Mt. Juliet, TN                       |  |
| RW12-072319 L1122862-03 GW                      |           |          | Collected by<br>Justin Nixon | Collected date/time<br>07/23/19 10:45 |                                      | Received date/time<br>07/26/19 08:45 |  |
| Method                                          | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                              | Location                             |  |
| Volatile Organic Compounds (GC) by Method 8021B | WG1319205 | 10       | 07/29/19 20:21               | 07/29/19 20:21                        | BMB                                  | Mt. Juliet, TN                       |  |
| RW-11-072319 L1122862-04 GW                     |           |          | Collected by<br>Justin Nixon | Collected date/time<br>07/23/19 17:30 | Received da 07/26/19 08:             |                                      |  |
| Method                                          | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                              | Location                             |  |
| Volatile Organic Compounds (GC) by Method 8021B | WG1319205 | 1        | 07/29/19 19:57               | 07/29/19 19:57                        | BMB                                  | Mt. Juliet, TN                       |  |
| DUP-1-072319 L1122862-05 GW                     |           |          | Collected by<br>Justin Nixon | Collected date/time<br>07/23/19 00:00 | Received date/time<br>07/26/19 08:45 |                                      |  |
| Method                                          | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                              | Location                             |  |
| Volatile Organic Compounds (GC) by Method 8021B | WG1319881 | 1        | 07/30/19 13:01               | 07/30/19 13:01                        | DWR                                  | Mt. Juliet, TN                       |  |

SDG: L1122862 DATE/TIME: 08/02/19 19:27

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

Τс Ss Cn Tr Sr Qc GI AI Śc

DATE/TIME: 08/02/19 19:27

### Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

### Laboratory Review Checklist: Reportable Data

ķ

| Labo                               | orato                                   | ry Name: Pace Analytical National                                                                                                                                                                             | LRC Date: 08/02/2019 19:27                                                            |        |          |                 |                 |                  |
|------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|----------|-----------------|-----------------|------------------|
| Proje<br>Mex                       |                                         | lame: Darr Angell #2- Lea County, New                                                                                                                                                                         | Laboratory Job Number: L1122862-01, 02, 03, 04 and                                    | l 05   |          |                 |                 |                  |
| Revi                               | ewe                                     | r Name: Mark W. Beasley                                                                                                                                                                                       | Prep Batch Number(s): WG1319881, WG1319205 and V                                      | NG1320 | 0778     |                 |                 |                  |
| # <sup>1</sup>                     | <b>A</b> <sup>2</sup>                   | Description                                                                                                                                                                                                   |                                                                                       | Yes    | No       | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |
| R1                                 | OI                                      | Chain-of-custody (C-O-C)                                                                                                                                                                                      |                                                                                       |        |          |                 |                 |                  |
|                                    |                                         | Did samples meet the laboratory's standard conditions                                                                                                                                                         | s of sample acceptability upon receipt?                                               | X      |          |                 |                 |                  |
|                                    |                                         | Were all departures from standard conditions describe                                                                                                                                                         | ed in an exception report?                                                            |        |          | Х               |                 |                  |
| R2                                 | OI                                      | Sample and quality control (QC) identification                                                                                                                                                                |                                                                                       |        |          |                 |                 |                  |
|                                    |                                         | Are all field sample ID numbers cross-referenced to the                                                                                                                                                       | e laboratory ID numbers?                                                              | X      |          |                 |                 |                  |
|                                    |                                         | Are all laboratory ID numbers cross-referenced to the                                                                                                                                                         | corresponding QC data?                                                                | Х      |          |                 |                 |                  |
| R3                                 | OI                                      | Test reports                                                                                                                                                                                                  |                                                                                       |        |          |                 |                 |                  |
|                                    |                                         | Were all samples prepared and analyzed within holdin                                                                                                                                                          | g times?                                                                              | Х      |          |                 |                 |                  |
|                                    |                                         | Other than those results < MQL, were all other raw values                                                                                                                                                     | ues bracketed by calibration standards?                                               | Х      |          |                 |                 |                  |
|                                    |                                         | Were calculations checked by a peer or supervisor?                                                                                                                                                            |                                                                                       | Х      |          |                 |                 |                  |
|                                    |                                         | Were all analyte identifications checked by a peer or s                                                                                                                                                       | upervisor?                                                                            | Х      |          |                 |                 |                  |
|                                    |                                         | Were sample detection limits reported for all analytes                                                                                                                                                        | not detected?                                                                         | X      |          |                 |                 |                  |
|                                    |                                         | Were all results for soil and sediment samples reported                                                                                                                                                       | d on a dry weight basis?                                                              | Х      |          |                 |                 |                  |
|                                    |                                         | Were % moisture (or solids) reported for all soil and see                                                                                                                                                     | diment samples?                                                                       |        |          | Х               |                 |                  |
|                                    |                                         | Were bulk soils/solids samples for volatile analysis ext                                                                                                                                                      | racted with methanol per SW846 Method 5035?                                           |        |          | Х               |                 |                  |
|                                    |                                         | If required for the project, are TICs reported?                                                                                                                                                               |                                                                                       |        |          | Х               |                 |                  |
| R4                                 | 0                                       | Surrogate recovery data                                                                                                                                                                                       |                                                                                       | -      | -        | -               |                 |                  |
|                                    |                                         | Were surrogates added prior to extraction?                                                                                                                                                                    |                                                                                       | Х      |          |                 |                 |                  |
|                                    |                                         | Were surrogate percent recoveries in all samples with                                                                                                                                                         | in the laboratory QC limits?                                                          | Х      |          |                 |                 |                  |
| 75                                 | OI                                      | Test reports/summary forms for blank samples                                                                                                                                                                  |                                                                                       | 1      | 1        |                 | r               |                  |
|                                    |                                         | Were appropriate type(s) of blanks analyzed?                                                                                                                                                                  |                                                                                       | Х      |          |                 |                 |                  |
|                                    |                                         | Were blanks analyzed at the appropriate frequency?                                                                                                                                                            |                                                                                       | X      |          |                 |                 |                  |
|                                    |                                         | Were method blanks taken through the entire analytica<br>cleanup procedures?                                                                                                                                  | al process, including preparation and, if applicable,                                 | X      |          |                 |                 |                  |
|                                    |                                         | Were blank concentrations < MQL?                                                                                                                                                                              |                                                                                       | X      |          |                 |                 |                  |
| R6                                 | OI                                      | Laboratory control samples (LCS):                                                                                                                                                                             |                                                                                       | 1      | -        | 1               | r               | 1                |
|                                    |                                         | Were all COCs included in the LCS?                                                                                                                                                                            |                                                                                       | X      |          |                 |                 |                  |
|                                    |                                         | Was each LCS taken through the entire analytical proc                                                                                                                                                         | edure, including prep and cleanup steps?                                              | X      | <u> </u> |                 |                 | ļ                |
|                                    |                                         | Were LCSs analyzed at the required frequency?                                                                                                                                                                 |                                                                                       | X      |          |                 |                 |                  |
|                                    |                                         | Were LCS (and LCSD, if applicable) %Rs within the labo                                                                                                                                                        |                                                                                       | X      | <u> </u> |                 |                 |                  |
|                                    |                                         | used to calculate the SDLs?                                                                                                                                                                                   | ne laboratory's capability to detect the COCs at the MDL                              | X      |          |                 |                 |                  |
|                                    |                                         | Was the LCSD RPD within QC limits?                                                                                                                                                                            |                                                                                       | X      |          |                 |                 |                  |
| R7                                 | OI                                      | Matrix spike (MS) and matrix spike duplicate (MSD) dat                                                                                                                                                        |                                                                                       | 1      | 1        |                 | 1               |                  |
|                                    |                                         | Were the project/method specified analytes included i                                                                                                                                                         |                                                                                       |        |          | X               |                 |                  |
|                                    |                                         | Were MS/MSD analyzed at the appropriate frequency?                                                                                                                                                            |                                                                                       |        | <u> </u> | X               |                 | -                |
|                                    |                                         | Were MS (and MSD, if applicable) %Rs within the labor                                                                                                                                                         | atory QC limits?                                                                      |        |          | X               |                 |                  |
| 20                                 |                                         | Were MS/MSD RPDs within laboratory QC limits?                                                                                                                                                                 |                                                                                       |        |          | Х               |                 |                  |
| R8                                 | OI                                      | Analytical duplicate data                                                                                                                                                                                     |                                                                                       | 1      | 1        |                 | r               | r                |
|                                    |                                         | Were appropriate analytical duplicates analyzed for ea                                                                                                                                                        |                                                                                       |        |          | X               |                 |                  |
|                                    |                                         | Were analytical duplicates analyzed at the appropriate                                                                                                                                                        | · · ·                                                                                 |        |          | X               |                 | <u> </u>         |
| R9                                 | OI                                      | Were RPDs or relative standard deviations within the la                                                                                                                                                       | aboratory QC limits?                                                                  | 1      |          | <u> </u>        | I               | L                |
| КЭ                                 |                                         | Method quantitation limits (MQLs):<br>Are the MQLs for each method analyte included in the                                                                                                                    | laboratory data packago?                                                              | X      | 1        | 1               | 1               |                  |
|                                    |                                         | Do the MQLs correspond to the concentration of the lo                                                                                                                                                         |                                                                                       | X      |          |                 |                 |                  |
|                                    |                                         | Are unadjusted MQLs and DCSs included in the labora                                                                                                                                                           |                                                                                       | X      |          |                 |                 |                  |
| R10                                | OI                                      | Other problems/anomalies                                                                                                                                                                                      |                                                                                       |        |          | 1               | I               | L                |
|                                    |                                         | Are all known problems/anomalies/special conditions                                                                                                                                                           | noted in this LRC and FR?                                                             | X      | 1        |                 | 1               |                  |
|                                    |                                         |                                                                                                                                                                                                               | r the SDL to minimize the matrix interference effects on                              | x      |          |                 |                 |                  |
|                                    |                                         |                                                                                                                                                                                                               | aboratory Accreditation Program for the analytes, matrices                            | x      |          |                 |                 | <u> </u>         |
| should<br>2. O =<br>3. NA<br>4. NR | d be re<br>= orga<br>( = Not<br>! = Not | ntified by the letter "R" must be included in the laborato<br>etained and made available upon request for the appro-<br>nic analyses; I = inorganic analyses (and general chemi<br>t applicable;<br>reviewed; | ry data package submitted in the TRRP-required report(s).<br>oriate retention period. |        | dentifie | d by th         | e letter        | "S"              |

### Laboratory Review Checklist: Supporting Data

1 ķ

| Labo           | orato          | ory Name: Pace Analytical National                       | LRC Date: 08/02/2019 19:27           Laboratory Job Number: L1122862-01, 02, 03, 04 and 05           Prep Batch Number(s): WG1319881, WG1319205 and WG1320778 |          |          |                 |                 |     |  |  |
|----------------|----------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------|-----------------|-----|--|--|
| Proj<br>Mex    |                | Jame: Darr Angell #2- Lea County, New                    |                                                                                                                                                               |          |          |                 |                 |     |  |  |
| Revi           | iewe           | r Name: Mark W. Beasley                                  |                                                                                                                                                               |          |          |                 |                 |     |  |  |
| # <sup>1</sup> | A <sup>2</sup> | Description                                              | •                                                                                                                                                             | Yes      | No       | NA <sup>3</sup> | NR <sup>4</sup> | ER# |  |  |
| 51             | OI             | Initial calibration (ICAL)                               |                                                                                                                                                               |          | •        |                 |                 |     |  |  |
|                |                | Were response factors and/or relative response factor    | ors for each analyte within QC limits?                                                                                                                        |          |          | X               |                 | 1   |  |  |
|                |                | Were percent RSDs or correlation coefficient criteria    | met?                                                                                                                                                          | Х        |          |                 |                 |     |  |  |
|                |                | Was the number of standards recommended in the n         | nethod used for all analytes?                                                                                                                                 | X        |          |                 |                 |     |  |  |
|                |                | Were all points generated between the lowest and h       | ighest standard used to calculate the curve?                                                                                                                  | X        |          |                 |                 | 1   |  |  |
|                |                | Are ICAL data available for all instruments used?        |                                                                                                                                                               | Х        |          |                 |                 |     |  |  |
|                |                | Has the initial calibration curve been verified using a  | n appropriate second source standard?                                                                                                                         | X        |          |                 |                 |     |  |  |
| 52             | OI             | Initial and continuing calibration verification (ICCV an | nd CCV) and continuing calibration blank (CCB):                                                                                                               |          |          |                 |                 |     |  |  |
|                |                | Was the CCV analyzed at the method-required frequ        | iency?                                                                                                                                                        | Х        |          |                 | Ι               | 1   |  |  |
|                |                | Were percent differences for each analyte within the     | •                                                                                                                                                             | X        |          |                 | 1               | 1   |  |  |
|                |                | Was the ICAL curve verified for each analyte?            | ·                                                                                                                                                             | X        | 1        | 1               |                 | 1   |  |  |
|                |                | Was the absolute value of the analyte concentration      | in the inorganic CCB < MDL?                                                                                                                                   |          |          | Х               | 1               | 1   |  |  |
| 3              | 0              | Mass spectral tuning                                     |                                                                                                                                                               |          |          |                 |                 |     |  |  |
|                |                | Was the appropriate compound for the method used         | I for tuning?                                                                                                                                                 |          |          | X               | 1               |     |  |  |
|                |                | Were ion abundance data within the method-require        |                                                                                                                                                               |          |          | Х               |                 |     |  |  |
| 54             | 0              | Internal standards (IS)                                  |                                                                                                                                                               |          |          |                 |                 |     |  |  |
|                |                | Were IS area counts and retention times within the m     | nethod-required QC limits?                                                                                                                                    | X        |          | Т               | 1               | 1   |  |  |
| 5              | OI             | Raw data (NELAC Section 5.5.10)                          | ·····                                                                                                                                                         |          |          |                 | <u> </u>        |     |  |  |
| -              |                | Were the raw data (for example, chromatograms, spe       | ectral data) reviewed by an analyst?                                                                                                                          | X        |          | T               | Г               | T   |  |  |
|                |                | Were data associated with manual integrations flagg      |                                                                                                                                                               | X        |          |                 |                 |     |  |  |
| 6              | 0              | Dual column confirmation                                 |                                                                                                                                                               |          |          |                 |                 |     |  |  |
|                | -              | Did dual column confirmation results meet the metho      | od-required QC?                                                                                                                                               |          |          | X               | Г               | 1   |  |  |
| 57             | 0              | Tentatively identified compounds (TICs)                  |                                                                                                                                                               |          |          |                 |                 |     |  |  |
|                |                | If TICs were requested, were the mass spectra and T      | IC data subject to appropriate checks?                                                                                                                        |          |          | X               | Ι               | 1   |  |  |
| 8              | 1              | Interference Check Sample (ICS) results                  |                                                                                                                                                               |          | 1        | 1               | 1               |     |  |  |
|                |                | Were percent recoveries within method QC limits?         |                                                                                                                                                               |          |          | ΙX              | T               | 1   |  |  |
| 59             | 1              | Serial dilutions, post digestion spikes, and method of   | f standard additions                                                                                                                                          |          |          |                 |                 |     |  |  |
|                |                | Were percent differences, recoveries, and the lineari    |                                                                                                                                                               |          |          | X               | Г               | 1   |  |  |
| 510            | 0              | Method detection limit (MDL) studies                     |                                                                                                                                                               | <b>I</b> | 1        | 1               | •               |     |  |  |
|                |                | Was a MDL study performed for each reported analy        | te?                                                                                                                                                           | X        |          | Т               | Г               | 1   |  |  |
|                |                | Is the MDL either adjusted or supported by the analy     |                                                                                                                                                               | X        |          |                 |                 |     |  |  |
| 511            | 0              | Proficiency test reports                                 |                                                                                                                                                               |          | 1        |                 | •               |     |  |  |
|                |                | Was the laboratory's performance acceptable on the       | applicable proficiency tests or evaluation studies?                                                                                                           | X        |          | Т               | Г               | 1   |  |  |
| 512            | OI             | Standards documentation                                  |                                                                                                                                                               |          | 1        |                 | 1               |     |  |  |
|                |                | Are all standards used in the analyses NIST-traceable    | e or obtained from other appropriate sources?                                                                                                                 | Х        |          | Т               | T               | 1   |  |  |
| 513            | OI             | Compound/analyte identification procedures               | · · · · · · · · · · · · · · · · · · ·                                                                                                                         |          |          |                 |                 |     |  |  |
|                |                | Are the procedures for compound/analyte identificat      | ion documented?                                                                                                                                               | X        |          | T               | Г               | 1   |  |  |
| 514            | 0              | Demonstration of analyst competency (DOC)                |                                                                                                                                                               |          | 1        |                 | •               |     |  |  |
|                |                | Was DOC conducted consistent with NELAC Chapte           | r 5?                                                                                                                                                          | X        |          |                 | 1               | 1   |  |  |
|                |                | Is documentation of the analyst's competency up-to-      |                                                                                                                                                               | X        | 1        |                 | 1               | 1   |  |  |
| 515            | OI             | Verification/validation documentation for methods (N     |                                                                                                                                                               |          |          |                 |                 |     |  |  |
|                |                | Are all the methods used to generate the data docur      |                                                                                                                                                               | X        |          |                 | 1               | 1   |  |  |
| 516            | OI             | Laboratory standard operating procedures (SOPs)          |                                                                                                                                                               |          |          |                 |                 |     |  |  |
|                |                | Are laboratory SOPs current and on file for each met     | hod performed                                                                                                                                                 | X        |          |                 | 1               | 1   |  |  |
|                |                | ,                                                        | tory data package submitted in the TRRP-required report                                                                                                       |          | dentifie | ed by th        | e letter        | "S" |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1122862

| Laboratory Name: Pace Analytical National               | LRC Date: 08/02/2019 19:27                               |
|---------------------------------------------------------|----------------------------------------------------------|
| Project Name: Darr Angell #2- Lea County, New<br>Mexico | Laboratory Job Number: L1122862-01, 02, 03, 04 and 05    |
| Reviewer Name: Mark W. Beasley                          | Prep Batch Number(s): WG1319881, WG1319205 and WG1320778 |
| ER #1 Description                                       |                                                          |

The Exception Report intentionally left blank, there are no exceptions applied to this SDG.

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

a. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
NA = Not applicable;
NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).



Тс

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |   |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|---|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | - |
| Benzene                         | U      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 07/29/2019 19:10 | WG1319205 |   |
| Toluene                         | U      |           | 0.000412 | 0.00100    | 0.00100  | 1        | 07/29/2019 19:10 | WG1319205 | L |
| Ethylbenzene                    | U      |           | 0.000160 | 0.000500   | 0.000500 | 1        | 07/29/2019 19:10 | WG1319205 | 1 |
| Total Xylene                    | U      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 07/29/2019 19:10 | WG1319205 |   |
| (S) a,a,a-Trifluorotoluene(PID) | 102    |           |          |            | 79.0-125 |          | 07/29/2019 19:10 | WG1319205 | 7 |

| <sup>3</sup> Ss  |
|------------------|
| <sup>4</sup> Cn  |
| ⁵Tr              |
| <sup>6</sup> Sr  |
| <sup>7</sup> Qc  |
| <sup>°</sup> GI  |
| -                |
| PAI              |
| 40               |
| <sup>10</sup> Sc |



Тс

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |     |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|-----|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | E E |
| Benzene                         | U      |           | 0.000190 | 0.000500   | 0.000500 | 1        | 07/29/2019 19:33 | WG1319205 |     |
| Toluene                         | U      |           | 0.000412 | 0.00100    | 0.00100  | 1        | 07/29/2019 19:33 | WG1319205 | L   |
| Ethylbenzene                    | U      |           | 0.000160 | 0.000500   | 0.000500 | 1        | 07/29/2019 19:33 | WG1319205 | :   |
| Total Xylene                    | U      |           | 0.000510 | 0.00150    | 0.00150  | 1        | 07/29/2019 19:33 | WG1319205 |     |
| (S) a,a,a-Trifluorotoluene(PID) | 102    |           |          |            | 79.0-125 |          | 07/29/2019 19:33 | WG1319205 | 5   |

| <sup>3</sup> Ss  |
|------------------|
|                  |
| ⁴Cn              |
|                  |
| ⁵Tr              |
|                  |
| <sup>6</sup> Sr  |
|                  |
| <sup>7</sup> Qc  |
|                  |
| <sup>8</sup> Gl  |
|                  |
| <sup>9</sup> Al  |
|                  |
| <sup>10</sup> Sc |

SDG: L1122862 DATE/TIME: 08/02/19 19:27 PAGE: 10 of 19

### \*

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL     | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |   |
|---------------------------------|--------|-----------|---------|------------|----------|----------|------------------|-----------|---|
| Analyte                         | mg/l   |           | mg/l    | mg/l       | mg/l     |          | date / time      |           | 2 |
| Benzene                         | 1.58   |           | 0.00190 | 0.000500   | 0.00500  | 10       | 07/29/2019 20:21 | WG1319205 |   |
| Toluene                         | 0.159  |           | 0.00412 | 0.00100    | 0.0100   | 10       | 07/29/2019 20:21 | WG1319205 | L |
| Ethylbenzene                    | 0.0746 |           | 0.00160 | 0.000500   | 0.00500  | 10       | 07/29/2019 20:21 | WG1319205 | 3 |
| Total Xylene                    | 0.492  |           | 0.00510 | 0.00150    | 0.0150   | 10       | 07/29/2019 20:21 | WG1319205 |   |
| (S) a,a,a-Trifluorotoluene(PID) | 101    |           |         |            | 79.0-125 |          | 07/29/2019 20:21 | WG1319205 | 4 |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Tr             |
|                 |
| <sup>6</sup> Sr |
| <sup>7</sup> Qc |
|                 |
| <sup>°</sup> GI |
|                 |
| ٩٩              |
|                 |

Sc

SDG: L1122862 DATE/TIME: 08/02/19 19:27 PAGE: 11 of 19

### ₩

Гс

### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result  | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     | \ |
|---------------------------------|---------|-----------|----------|------------|----------|----------|------------------|-----------|---|
| Analyte                         | mg/l    |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2 |
| Benzene                         | 0.115   |           | 0.000190 | 0.000500   | 0.000500 | 1        | 07/29/2019 19:57 | WG1319205 |   |
| Toluene                         | 0.00220 |           | 0.000412 | 0.00100    | 0.00100  | 1        | 07/29/2019 19:57 | WG1319205 |   |
| Ethylbenzene                    | 0.0212  |           | 0.000160 | 0.000500   | 0.000500 | 1        | 07/29/2019 19:57 | WG1319205 | 3 |
| Total Xylene                    | 0.0620  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 07/29/2019 19:57 | WG1319205 |   |
| (S) a,a,a-Trifluorotoluene(PID) | 100     |           |          |            | 79.0-125 |          | 07/29/2019 19:57 | WG1319205 | 4 |

| <sup>3</sup> Ss  |
|------------------|
|                  |
| <sup>4</sup> Cn  |
|                  |
| ⁵Tr              |
|                  |
| <sup>6</sup> Sr  |
|                  |
| <sup>7</sup> Qc  |
|                  |
| <sup>°</sup> Gl  |
|                  |
| <sup>9</sup> Al  |
|                  |
| <sup>10</sup> Sc |

SDG: L1122862 DATE/TIME: 08/02/19 19:27 PAGE: 12 of 19

### \*

٦r

Qc

GI

ΆI

Sc

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 1.13   |           | 0.00475  | 0.000500   | 0.0125   | 25       | 08/01/2019 06:47 | WG1320778 | Ťc              |
| Toluene                         | 0.230  |           | 0.000412 | 0.00100    | 0.00100  | 1        | 07/30/2019 13:01 | WG1319881 |                 |
| Ethylbenzene                    | 0.219  |           | 0.000160 | 0.000500   | 0.000500 | 1        | 07/30/2019 13:01 | WG1319881 | <sup>3</sup> Ss |
| Total Xylene                    | 0.437  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 07/30/2019 13:01 | WG1319881 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 95.5   |           |          |            | 79.0-125 |          | 07/30/2019 13:01 | WG1319881 | 4               |
| (S) a,a,a-Trifluorotoluene(PID) | 103    |           |          |            | 79.0-125 |          | 08/01/2019 06:47 | WG1320778 | Cn              |
|                                 |        |           |          |            |          |          |                  |           |                 |

Volatile Organic Compounds (GC) by Method 8021B

## QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| /19 10:39 |
|-----------|
| //1       |

|                                    | 10 10:00  |              |          |          |
|------------------------------------|-----------|--------------|----------|----------|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |
| Benzene                            | U         |              | 0.000190 | 0.000500 |
| Toluene                            | U         |              | 0.000412 | 0.00100  |
| Ethylbenzene                       | U         |              | 0.000160 | 0.000500 |
| Total Xylene                       | U         |              | 0.000510 | 0.00150  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 102       |              |          | 79.0-125 |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3436571-1 07/29/19 09:28 • (LCSD) R3436571-3 07/29/19 20:45 |              |            |             |          |           |             |               |                |      |            |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
| Analyte                                                            | mg/l         | mg/l       | mg/l        | %        | %         | %           |               |                | %    | %          |
| Benzene                                                            | 0.0500       | 0.0534     | 0.0470      | 107      | 94.1      | 77.0-122    |               |                | 12.7 | 20         |
| Toluene                                                            | 0.0500       | 0.0519     | 0.0455      | 104      | 90.9      | 80.0-121    |               |                | 13.2 | 20         |
| Ethylbenzene                                                       | 0.0500       | 0.0563     | 0.0497      | 113      | 99.4      | 80.0-123    |               |                | 12.5 | 20         |
| Total Xylene                                                       | 0.150        | 0.168      | 0.146       | 112      | 97.0      | 47.0-154    |               |                | 14.1 | 20         |
| (S)<br>a,a,a-Trifluorotoluene(PID)                                 |              |            |             | 101      | 103       | 79.0-125    |               |                |      |            |

Volatile Organic Compounds (GC) by Method 8021B

## QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

٦r

Sr

Qc

Ĝ

ΆI

Sc

#### Method Blank (MB)

| Method Blank (MB)                  |           |              |          |          |  |                 |  |
|------------------------------------|-----------|--------------|----------|----------|--|-----------------|--|
| (MB) R3436079-3 07/30/19 11:57     |           |              |          |          |  |                 |  |
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |  | 2               |  |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |  | ⁻Tc             |  |
| Toluene                            | U         |              | 0.000412 | 0.00100  |  |                 |  |
| Ethylbenzene                       | U         |              | 0.000160 | 0.000500 |  | <sup>3</sup> Ss |  |
| Total Xylene                       | U         |              | 0.000510 | 0.00150  |  | 00              |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 102       |              |          | 79.0-125 |  | ⁴Cn             |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3436079-1 07/30/19 10:31    |              |            |          |             |               |  |  |  |
|------------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |
| Analyte                            | mg/l         | mg/l       | %        | %           |               |  |  |  |
| Toluene                            | 0.0500       | 0.0449     | 89.7     | 80.0-121    |               |  |  |  |
| Ethylbenzene                       | 0.0500       | 0.0487     | 97.4     | 80.0-123    |               |  |  |  |
| Total Xylene                       | 0.150        | 0.144      | 95.7     | 47.0-154    |               |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) |              |            | 102      | 79.0-125    |               |  |  |  |

PROJECT: 074685 SDG: L1122862 DATE/TIME: 08/02/19 19:27 PAGE: 15 of 19

### WG1320778

Volatile Organic Compounds (GC) by Method 8021B

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

#### Method Blank (MB)

| (MB) R3436592-2 08/01/19 00:38     |           |              |          |          |  |  |  |  |
|------------------------------------|-----------|--------------|----------|----------|--|--|--|--|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |  |  |  |  |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |  |  |  |  |
| Benzene                            | U         |              | 0.000190 | 0.000500 |  |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 103       |              |          | 79.0-125 |  |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3436592-1 07/31/19 23:39    |              |            |          |             |               |  |  |  |
|------------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |
| Analyte                            | mg/l         | mg/l       | %        | %           |               |  |  |  |
| Benzene                            | 0.0500       | 0.0517     | 103      | 77.0-122    |               |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) |              |            | 102      | 79.0-125    |               |  |  |  |

| <sup>2</sup> Tc |
|-----------------|
| <sup>3</sup> Ss |
| <sup>4</sup> Cn |
| ⁵Tr             |
| <sup>6</sup> Sr |
| <sup>7</sup> Qc |
| <sup>8</sup> Gl |
| <sup>9</sup> AI |
|                 |

Sc

SDG: L1122862 DATE/TIME: 08/02/19 19:27 PAGE: 16 of 19

### GLOSSARY OF TERMS

### \*

Τс

ŚS

Cn

Tr

Śr

Qc

GI

AI

Śc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MQL                             | Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SDL                             | Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unadj. MQL                      | Unadjusted Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1122862

### **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska                    |
|------------------------|-------------|-----------------------------|
| Alaska                 | 17-026      | Nevada                      |
| Arizona                | AZ0612      | New Hampshire               |
| Arkansas               | 88-0469     | New Jersey–NELAF            |
| California             | 2932        | New Mexico <sup>1</sup>     |
| Colorado               | TN00003     | New York                    |
| Connecticut            | PH-0197     | North Carolina              |
| Florida                | E87487      | North Carolina <sup>1</sup> |
| Georgia                | NELAP       | North Carolina <sup>3</sup> |
| Georgia <sup>1</sup>   | 923         | North Dakota                |
| Idaho                  | TN00003     | Ohio-VAP                    |
| Illinois               | 200008      | Oklahoma                    |
| Indiana                | C-TN-01     | Oregon                      |
| lowa                   | 364         | Pennsylvania                |
| Kansas                 | E-10277     | Rhode Island                |
| Kentucky <sup>16</sup> | 90010       | South Carolina              |
| Kentucky <sup>2</sup>  | 16          | South Dakota                |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     |
| Louisiana 1            | LA180010    | Texas                       |
| Maine                  | TN0002      | Texas <sup>5</sup>          |
| Maryland               | 324         | Utah                        |
| Massachusetts          | M-TN003     | Vermont                     |
| Michigan               | 9958        | Virginia                    |
| Minnesota              | 047-999-395 | Washington                  |
| Mississippi            | TN00003     | West Virginia               |
| Missouri               | 340         | Wisconsin                   |
| Montana                | CERT0086    | Wyoming                     |
|                        |             |                             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | Δ2Ι Δ            |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1122862

PAGE: 18 of 19

08/02/19 19:27

| -                                                                                                                                                                  |                                 |                                                  | Billing Info                                                   | rmation:                                                             |                   |           |             |               | A                     | nalysis / | Contai     | ner / Pre              | servative                  |                                                                                                                                        |                                                                        | 0                                      | Chain of Custody                                             | Page of                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-------------------|-----------|-------------|---------------|-----------------------|-----------|------------|------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|-----------------------------------------|
| Plains All American, LP - GHD<br>2135 S Loop 250 W<br>Midland, TX 79703                                                                                            |                                 |                                                  | 505 N. B                                                       | Accounts Payable<br>505 N. Big Spring, Ste. 600<br>Midland, TX 79701 |                   |           |             |               |                       |           |            | ales<br>Subs           |                            |                                                                                                                                        |                                                                        |                                        | Pace,<br>Netional Co                                         | Analytical * Inter for Testing & Innove |
| Report to:<br>lames Ornelas                                                                                                                                        |                                 |                                                  | Email To: Christopher.Knight@ghd.com;<br>james.ornelas@ghd.com |                                                                      |                   |           |             |               |                       | 1         |            |                        |                            | 1.00                                                                                                                                   |                                                                        |                                        | 12065 Lebanon Rd<br>Mount Juliet, TN 37<br>Phone: 615-758-58 | 8 <b>325 3</b>                          |
| Project<br>Description: Darr Angell #2- Lea                                                                                                                        | County, New                     | / Mexico                                         |                                                                |                                                                      |                   |           | 1.4         |               |                       |           | inter .    |                        | 20                         |                                                                                                                                        |                                                                        | Phone: 800-767-58<br>Fax: 615-758-5859 | 03037                                                        |                                         |
| Phone: <b>432-686-0086</b><br>Fax:                                                                                                                                 | Client Project<br>074685        | #                                                |                                                                | Lab Project #<br>PLAINSGHD-                                          | 074685            |           |             | Carlos Carlos |                       |           |            |                        |                            |                                                                                                                                        |                                                                        |                                        | L# L[]<br> 24                                                | 2286 A<br>3                             |
| Collected by (print):                                                                                                                                              | Site/Facility ID<br>SRS#: LF 19 |                                                  |                                                                | P.O. #                                                               |                   |           | Ţ           |               |                       |           |            |                        |                            |                                                                                                                                        |                                                                        | -                                      | Acctnum: PLAINSGHD                                           |                                         |
| Collected by (signature):<br>Immediately<br>Packed on Ice N Y                                                                                                      | Same Da                         | ab MUST Be<br>ay Five<br>y 5 Day<br>y 10 D<br>ay | Day<br>y (Rad Only)                                            | Quote #<br>Date Rest                                                 | ults Needed       | No.<br>of | 40mlAmb-HCl | Page -        |                       |           |            | A                      |                            |                                                                                                                                        | Template:T139790<br>Prelogin: P719649<br>TSR: 134 - Mark W. Ber<br>PB: |                                        | 9649                                                         |                                         |
| Sample ID                                                                                                                                                          | Comp/Grab                       | Matrix *                                         | Depth                                                          | Date                                                                 | Time              | Cntrs     | BTEX        |               |                       |           |            |                        |                            |                                                                                                                                        |                                                                        |                                        | Shipped Via:<br>Remarks                                      | Sample # (lab on                        |
| MW-4K-072319                                                                                                                                                       | G                               | GW                                               |                                                                | 7-23-19                                                              | 1535              | 3         | X           |               |                       | -         |            |                        |                            | and a                                                                                                                                  |                                                                        |                                        |                                                              | -0                                      |
| MW-12-072319                                                                                                                                                       | Pering of                       | GW                                               | *                                                              | 1-1-5                                                                | 1600              | 3         | X           | 11            |                       |           |            | 1.1                    |                            | -                                                                                                                                      |                                                                        |                                        | A.                                                           | 00                                      |
| Rw12-072317                                                                                                                                                        |                                 | GW                                               |                                                                |                                                                      | 1645              | 3         | X           |               |                       |           |            |                        |                            |                                                                                                                                        | 925 A                                                                  |                                        |                                                              | 0                                       |
| Rw-11-072319                                                                                                                                                       |                                 | GW                                               |                                                                |                                                                      | 1730              | 3         | X           |               |                       |           |            | < 6                    |                            | 194                                                                                                                                    |                                                                        | AREA.                                  |                                                              | 0                                       |
| Dun-1-072219                                                                                                                                                       |                                 | GW                                               |                                                                | V                                                                    | -                 | 3         | X           |               |                       |           |            |                        |                            |                                                                                                                                        |                                                                        |                                        | in the second second                                         | 0                                       |
| · / ·                                                                                                                                                              |                                 | GW                                               |                                                                |                                                                      |                   |           |             |               |                       |           |            | 2                      |                            |                                                                                                                                        |                                                                        |                                        | 7.4                                                          |                                         |
|                                                                                                                                                                    |                                 | GW                                               |                                                                |                                                                      |                   |           |             | -             |                       |           | The second |                        |                            |                                                                                                                                        |                                                                        |                                        |                                                              |                                         |
|                                                                                                                                                                    |                                 | GW                                               |                                                                |                                                                      |                   |           |             |               |                       |           | Sec.       | Series .               |                            | -                                                                                                                                      |                                                                        |                                        | an de la                                                     |                                         |
|                                                                                                                                                                    |                                 | GW                                               |                                                                |                                                                      | 100               |           |             | 1             |                       | 1.2.2     |            |                        | A STATE                    |                                                                                                                                        |                                                                        |                                        |                                                              |                                         |
| TRIP BLANK                                                                                                                                                         |                                 | GW                                               |                                                                |                                                                      | 1200              |           | 1212        |               |                       | 1         | 4          | -                      |                            |                                                                                                                                        |                                                                        |                                        |                                                              |                                         |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater                                                                    | Remarks:                        | Report                                           | SDLS<br>Costino                                                | a) Cancentr                                                          | trug              |           |             |               | pH Temp<br>Flow Other |           |            | -                      | COC S:<br>Bottle<br>Correc | Sample Receipt Checklist<br>COC Seal Present/Intact: WP Y<br>COC Signed/Accurate:<br>Bottles arrive intact: C<br>Correct bottles used: |                                                                        |                                        |                                                              |                                         |
| DW - Drinking Water     Samples returned via:       OT - Other     UPS       Relinquished by : (Signature)     Date:       Relinquished by : (Signature)     Date: |                                 |                                                  | urier                                                          | Tr                                                                   | acking# 4         | 51        | 0           | 16            | ,50                   | 1         | 57         | 174                    | has t                      |                                                                                                                                        | Constant of                                                            |                                        | volume sent:<br><u> If Applical</u><br>adspace:              |                                         |
|                                                                                                                                                                    |                                 |                                                  | Time: Received by: (Signa                                      |                                                                      |                   |           | 1.55        |               | Trip Blar             | nk Rece   | eived: N   | es No<br>HCL/Me<br>TBR | еоН                        | VOA Zero Headspace: Y<br>Preservation Correct/Checked: Y<br>AD SCRIII: <0.5 mR/h:                                                      |                                                                        |                                        |                                                              |                                         |
|                                                                                                                                                                    |                                 | 1                                                | 1                                                              | eceived by: (Sign                                                    | ature)            |           | a A         |               | Temp:<br>5.3          | mp: °C    |            | Bottles Receive        |                            |                                                                                                                                        |                                                                        | preservation required by Login: Dat    |                                                              |                                         |
| Relinquished by : (Signature)                                                                                                                                      |                                 | Date:                                            | 1                                                              | lime: Re                                                             | eceived for lab b | y: (Signa | iture)      |               |                       | Date:     | 6/19       | Tin                    | ne:<br>3145                |                                                                                                                                        | Hold:                                                                  |                                        |                                                              | Condition<br>NCF / O                    |



# ANALYTICAL REPORT

### Plains All American, LP - GHD

| Sample Delivery Group: | L1133471                               |
|------------------------|----------------------------------------|
| Samples Received:      | 08/28/2019                             |
| Project Number:        | 074685                                 |
| Description:           | Darr Angell #2- Lea County, New Mexico |
| Site:                  | SRS#: LF 1999-62                       |
| Report To:             | James Ornelas                          |
|                        | 2135 S Loop 250 W                      |
|                        | Midland, TX 79703                      |

Cp <sup>2</sup>Tc <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Tr <sup>6</sup>Sr <sup>7</sup>Qc <sup>8</sup>Gl <sup>9</sup>Al <sup>10</sup>Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

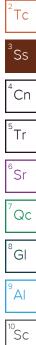
ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1133471 DATE/TIME: 08/30/19 14:38

PAGE: 1 of 13

### TABLE OF CONTENTS

\*

| Cp: Cover Page                                    | 1  | 1                |
|---------------------------------------------------|----|------------------|
| Tc: Table of Contents                             | 2  | Ср               |
| Ss: Sample Summary                                | 3  | <sup>2</sup> Tc  |
| Cn: Case Narrative                                | 4  |                  |
| Tr: TRRP Summary                                  | 5  | <sup>3</sup> Ss  |
| TRRP form R                                       | 6  | 4                |
| TRRP form S                                       | 7  | Cn               |
| TRRP Exception Reports                            | 8  | <sup>5</sup> Tr  |
| Sr: Sample Results                                | 9  |                  |
| DARR-2-EZHAUST-PUMPOFF-081419 L1133471-01         | 9  | <sup>6</sup> Sr  |
| Qc: Quality Control Summary                       | 10 | 7                |
| Volatile Organic Compounds (MS) by Method M18-Mod | 10 | Qc               |
| GI: Glossary of Terms                             | 11 | °GI              |
| Al: Accreditations & Locations                    | 12 |                  |
| Sc: Sample Chain of Custody                       | 13 | <sup>9</sup> Al  |
|                                                   |    | <sup>10</sup> Sc |


SDG: L1133471

DATE/TIME: 08/30/19 14:38 PAGE: 2 of 13

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

|                                                   |           |      | Collected by   | Collected date/time | Received date/ | 'time          |
|---------------------------------------------------|-----------|------|----------------|---------------------|----------------|----------------|
| DARR-2-EZHAUST-PUMPOFF-081419 L1133471-01         | Air       |      |                | 08/14/19 13:00      | 08/28/19 08:45 | ;              |
| Method                                            | Batch     |      | Preparation    | Analysis            | Analyst        | Location       |
|                                                   |           |      | date/time      | date/time           |                |                |
| Volatile Organic Compounds (MS) by Method M18-Mod | WG1336161 | 2000 | 08/28/19 23:58 | 08/28/19 23:58      | MBF            | Mt. Juliet, TN |



\*

Ср

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1133471 DATE/TIME: 08/30/19 14:38 PAGE: 3 of 13

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

Τс Ss Cn Tr Sr Qc GI AI Śc

SDG: L1133471

PAGE: 4 of 13

### Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

### Laboratory Review Checklist: Reportable Data

\*

| Lab                             | orato                                    | ry Name: Pace Analytical National                                                                                                              | LRC Date: 08/30/2019 14:38                                       |          |          |                 |                 |                  |  |  |  |  |
|---------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|----------|-----------------|-----------------|------------------|--|--|--|--|
| Proj<br>Me>                     |                                          | lame: Darr Angell #2- Lea County, New                                                                                                          | Laboratory Job Number: L1133471-01                               |          |          |                 |                 |                  |  |  |  |  |
| Rev                             | iewe                                     | r Name: Mark W. Beasley                                                                                                                        | Prep Batch Number(s): WG1336161                                  |          |          |                 |                 |                  |  |  |  |  |
| # <sup>1</sup>                  | <b>A</b> <sup>2</sup>                    | Description                                                                                                                                    | •                                                                | Yes      | No       | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |  |  |  |  |
| R1                              | OI                                       | Chain-of-custody (C-O-C)                                                                                                                       |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Did samples meet the laboratory's standard conditions                                                                                          | s of sample acceptability upon receipt?                          | Х        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were all departures from standard conditions describe                                                                                          | ed in an exception report?                                       |          |          | Х               |                 |                  |  |  |  |  |
| 72                              | OI                                       | Sample and quality control (QC) identification                                                                                                 |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Are all field sample ID numbers cross-referenced to th                                                                                         | e laboratory ID numbers?                                         | X        |          | 1               |                 |                  |  |  |  |  |
|                                 |                                          | Are all laboratory ID numbers cross-referenced to the                                                                                          | corresponding QC data?                                           | X        |          |                 |                 |                  |  |  |  |  |
| 23                              | OI                                       | Test reports                                                                                                                                   |                                                                  |          | •        | •               |                 |                  |  |  |  |  |
|                                 |                                          | Were all samples prepared and analyzed within holdin                                                                                           | q times?                                                         | X        | 1        | 1               | 1               |                  |  |  |  |  |
|                                 |                                          | Other than those results < MQL, were all other raw values                                                                                      | -                                                                | Х        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were calculations checked by a peer or supervisor?                                                                                             |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were all analyte identifications checked by a peer or s                                                                                        | upen/isor?                                                       | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were sample detection limits reported for all analytes                                                                                         |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          |                                                                                                                                                |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were all results for soil and sediment samples reported                                                                                        | · · ·                                                            | <u> </u> |          | ×               |                 |                  |  |  |  |  |
|                                 |                                          | Were % moisture (or solids) reported for all soil and se                                                                                       | •                                                                |          |          | X               | <b> </b>        |                  |  |  |  |  |
|                                 |                                          | Were bulk soils/solids samples for volatile analysis ext                                                                                       |                                                                  |          | X        |                 |                 |                  |  |  |  |  |
|                                 |                                          | If required for the project, are TICs reported?                                                                                                |                                                                  |          |          | Х               |                 |                  |  |  |  |  |
| 24                              | 0                                        | Surrogate recovery data                                                                                                                        |                                                                  | ·        | 1        | -               |                 |                  |  |  |  |  |
|                                 |                                          | Were surrogates added prior to extraction?                                                                                                     |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were surrogate percent recoveries in all samples with                                                                                          | Х                                                                |          |          |                 |                 |                  |  |  |  |  |
| 25                              | OI                                       | Test reports/summary forms for blank samples                                                                                                   |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were appropriate type(s) of blanks analyzed?                                                                                                   |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were blanks analyzed at the appropriate frequency?                                                                                             |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were method blanks taken through the entire analytic                                                                                           | al process, including preparation and, if applicable,            | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | cleanup procedures?                                                                                                                            |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were blank concentrations < MQL?                                                                                                               |                                                                  | Х        |          |                 |                 |                  |  |  |  |  |
| 86                              | OI                                       | Laboratory control samples (LCS):                                                                                                              |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were all COCs included in the LCS?                                                                                                             |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Was each LCS taken through the entire analytical proc                                                                                          | edure, including prep and cleanup steps?                         | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were LCSs analyzed at the required frequency?                                                                                                  |                                                                  | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were LCS (and LCSD, if applicable) %Rs within the labo                                                                                         | pratory QC limits?                                               | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          |                                                                                                                                                | ne laboratory's capability to detect the COCs at the MDL         | x        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | used to calculate the SDLs?                                                                                                                    |                                                                  |          |          |                 | L               |                  |  |  |  |  |
|                                 |                                          | Was the LCSD RPD within QC limits?                                                                                                             |                                                                  | Х        |          |                 |                 |                  |  |  |  |  |
| 87                              | OI                                       | Matrix spike (MS) and matrix spike duplicate (MSD) dat                                                                                         |                                                                  | -        |          | -               | -               | -                |  |  |  |  |
|                                 |                                          | Were the project/method specified analytes included i                                                                                          | n the MS and MSD?                                                |          |          | Х               |                 |                  |  |  |  |  |
|                                 |                                          | Were MS/MSD analyzed at the appropriate frequency?                                                                                             | 2                                                                |          |          | Х               |                 |                  |  |  |  |  |
|                                 |                                          | Were MS (and MSD, if applicable) %Rs within the labor                                                                                          | atory QC limits?                                                 |          |          | Х               |                 |                  |  |  |  |  |
|                                 |                                          | Were MS/MSD RPDs within laboratory QC limits?                                                                                                  |                                                                  |          |          | Х               |                 |                  |  |  |  |  |
| 88                              | OI                                       | Analytical duplicate data                                                                                                                      |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Were appropriate analytical duplicates analyzed for ea                                                                                         | ach matrix?                                                      |          |          | Х               |                 |                  |  |  |  |  |
|                                 |                                          | Were analytical duplicates analyzed at the appropriate                                                                                         | e frequency?                                                     |          |          | Х               |                 |                  |  |  |  |  |
|                                 |                                          | Were RPDs or relative standard deviations within the la                                                                                        | aboratory QC limits?                                             |          |          | Х               |                 |                  |  |  |  |  |
| 89                              | OI                                       | Method quantitation limits (MQLs):                                                                                                             |                                                                  |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Are the MQLs for each method analyte included in the                                                                                           | laboratory data package?                                         | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | Do the MQLs correspond to the concentration of the lo                                                                                          |                                                                  | Х        |          | 1               | 1               | 1                |  |  |  |  |
|                                 |                                          | Are unadjusted MQLs and DCSs included in the labora                                                                                            |                                                                  | Х        |          |                 | 1               | 1                |  |  |  |  |
| 10                              | OI                                       | Other problems/anomalies                                                                                                                       | · · ·                                                            | •        | •        | •               | •               | •                |  |  |  |  |
|                                 | 1 - '                                    | Are all known problems/anomalies/special conditions                                                                                            | noted in this LRC and ER?                                        | X        |          |                 |                 |                  |  |  |  |  |
|                                 |                                          |                                                                                                                                                | er the SDL to minimize the matrix interference effects on        |          |          |                 |                 |                  |  |  |  |  |
|                                 |                                          | the sample results?                                                                                                                            |                                                                  | X        |          |                 |                 | 1                |  |  |  |  |
|                                 |                                          | Is the laboratory NELAC-accredited under the Texas L<br>and methods associated with this laboratory data pack                                  | aboratory Accreditation Program for the analytes, matrices kage? | х        |          |                 |                 |                  |  |  |  |  |
| shoul<br>2. O<br>3. NA<br>1. NF | ld be re<br>= orga<br>A = Not<br>R = Not | etained and made available upon request for the appro<br>nic analyses; I = inorganic analyses (and general chemi<br>t applicable;<br>reviewed; |                                                                  |          | dentifie | ed by th        | e letter        | "S"              |  |  |  |  |

### Laboratory Review Checklist: Supporting Data

1 ķ

| Lab                    | orato                      | ory Name: Pace Analytical National                                                                                                                                                                             | LRC Date: 08/30/2019 14:38                          |                    |           |                 |              |                  |  |  |  |  |
|------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|-----------|-----------------|--------------|------------------|--|--|--|--|
| Proj<br>Me>            |                            | Name: Darr Angell #2- Lea County, New                                                                                                                                                                          | Laboratory Job Number: L1133471-01                  |                    |           |                 |              |                  |  |  |  |  |
| Rev                    | iewe                       | r Name: Mark W. Beasley                                                                                                                                                                                        | Prep Batch Number(s): WG1336161                     | nber(s): WG1336161 |           |                 |              |                  |  |  |  |  |
| # <sup>1</sup>         | A <sup>2</sup>             | Description                                                                                                                                                                                                    |                                                     | Yes                | No        | NA <sup>3</sup> | NR⁴          | ER# <sup>5</sup> |  |  |  |  |
| 51                     | 01                         | Initial calibration (ICAL)                                                                                                                                                                                     |                                                     |                    |           |                 |              |                  |  |  |  |  |
|                        |                            | Were response factors and/or relative response factor                                                                                                                                                          | ors for each analyte within QC limits?              | Х                  | 1         | 1               | 1            | T                |  |  |  |  |
|                        |                            | Were percent RSDs or correlation coefficient criteria                                                                                                                                                          | • •                                                 | X                  |           |                 |              |                  |  |  |  |  |
|                        |                            | Was the number of standards recommended in the m                                                                                                                                                               |                                                     | Х                  |           |                 | 1            |                  |  |  |  |  |
|                        |                            | Were all points generated between the lowest and hi                                                                                                                                                            | ighest standard used to calculate the curve?        | Х                  |           |                 |              |                  |  |  |  |  |
|                        |                            | Are ICAL data available for all instruments used?                                                                                                                                                              | 5                                                   | X                  |           |                 |              |                  |  |  |  |  |
|                        |                            | Has the initial calibration curve been verified using a                                                                                                                                                        | appropriate second source standard?                 | X                  |           |                 |              |                  |  |  |  |  |
| 52                     | OI                         | Initial and continuing calibration verification (ICCV an                                                                                                                                                       | · · · ·                                             |                    |           |                 | I            |                  |  |  |  |  |
| _                      | •                          | Was the CCV analyzed at the method-required freque                                                                                                                                                             | · · · · · ·                                         | X                  | 1         | 1               | T            | T                |  |  |  |  |
|                        |                            | Was the eev analyzed at the method required negative<br>Were percent differences for each analyte within the                                                                                                   | •                                                   | X                  | +         |                 | <u> </u>     |                  |  |  |  |  |
|                        |                            | Was the ICAL curve verified for each analyte?                                                                                                                                                                  |                                                     | X                  | 1         | 1               | <u> </u>     |                  |  |  |  |  |
|                        |                            | Was the absolute value of the analyte concentration                                                                                                                                                            | in the inerganic CCR $<$ MDI 2                      |                    |           | X               |              |                  |  |  |  |  |
| 33                     | 0                          | Mass spectral tuning                                                                                                                                                                                           |                                                     |                    |           |                 | I            |                  |  |  |  |  |
| 55                     | 10                         | Was the appropriate compound for the method used                                                                                                                                                               | for tuning?                                         | X                  | T         | T               | T T          | <u> </u>         |  |  |  |  |
|                        |                            | Were ion abundance data within the method-required                                                                                                                                                             |                                                     | +                  |           |                 |              |                  |  |  |  |  |
| 64                     | 0                          | · · ·                                                                                                                                                                                                          | ^                                                   |                    |           | I               |              |                  |  |  |  |  |
| 94                     | 0                          | Internal standards (IS)                                                                                                                                                                                        | athed required OC limits?                           |                    | 1         | <b>1</b>        | т —          | r                |  |  |  |  |
|                        |                            | Were IS area counts and retention times within the m                                                                                                                                                           | ethod-required QC limits?                           |                    |           |                 |              |                  |  |  |  |  |
| 5                      | OI                         | Raw data (NELAC Section 5.5.10)                                                                                                                                                                                |                                                     |                    | 1         | <u> </u>        | 1            | <u> </u>         |  |  |  |  |
|                        |                            | Were the raw data (for example, chromatograms, spe                                                                                                                                                             |                                                     | <u> </u>           |           |                 |              |                  |  |  |  |  |
|                        |                            | Were data associated with manual integrations flagge                                                                                                                                                           | ed on the raw data?                                 | X                  |           |                 |              |                  |  |  |  |  |
| 6                      | 0                          | Dual column confirmation                                                                                                                                                                                       |                                                     |                    | -         |                 |              | 1                |  |  |  |  |
| _                      |                            | Did dual column confirmation results meet the metho                                                                                                                                                            | d-required QC?                                      |                    |           | Х               |              |                  |  |  |  |  |
| 57                     | 0                          | Tentatively identified compounds (TICs)                                                                                                                                                                        |                                                     |                    | <b>1</b>  |                 | т —          |                  |  |  |  |  |
|                        |                            | If TICs were requested, were the mass spectra and T                                                                                                                                                            | IC data subject to appropriate checks?              |                    |           | Х               |              |                  |  |  |  |  |
| 8                      |                            | Interference Check Sample (ICS) results                                                                                                                                                                        |                                                     |                    |           |                 | <del>.</del> | 1                |  |  |  |  |
|                        |                            | Were percent recoveries within method QC limits?                                                                                                                                                               |                                                     |                    |           | Х               |              |                  |  |  |  |  |
| 59                     |                            | Serial dilutions, post digestion spikes, and method of                                                                                                                                                         |                                                     |                    | 1         | 1               | 1            | <u> </u>         |  |  |  |  |
|                        |                            | Were percent differences, recoveries, and the linearit                                                                                                                                                         | ty within the QC limits specified in the method?    |                    |           | Х               |              |                  |  |  |  |  |
| 510                    | OI                         | Method detection limit (MDL) studies                                                                                                                                                                           |                                                     |                    | -         | -               | r            | <b>-</b>         |  |  |  |  |
|                        |                            | Was a MDL study performed for each reported analy                                                                                                                                                              |                                                     | X                  |           |                 | <b> </b>     |                  |  |  |  |  |
|                        |                            | Is the MDL either adjusted or supported by the analy                                                                                                                                                           | sis of DCSs?                                        | X                  |           |                 |              |                  |  |  |  |  |
| 511                    | OI                         | Proficiency test reports                                                                                                                                                                                       |                                                     |                    | -         |                 | <u> </u>     |                  |  |  |  |  |
|                        |                            | Was the laboratory's performance acceptable on the                                                                                                                                                             | applicable proficiency tests or evaluation studies? | X                  |           |                 |              |                  |  |  |  |  |
| 512                    | OI                         | Standards documentation                                                                                                                                                                                        |                                                     |                    | -         |                 | -            |                  |  |  |  |  |
|                        |                            | Are all standards used in the analyses NIST-traceable                                                                                                                                                          | e or obtained from other appropriate sources?       | Х                  |           |                 |              |                  |  |  |  |  |
| 513                    | OI                         | Compound/analyte identification procedures                                                                                                                                                                     |                                                     | -                  |           |                 |              |                  |  |  |  |  |
|                        |                            | Are the procedures for compound/analyte identification                                                                                                                                                         | on documented?                                      | Х                  |           |                 |              |                  |  |  |  |  |
| 14                     | OI                         | Demonstration of analyst competency (DOC)                                                                                                                                                                      |                                                     |                    |           |                 |              |                  |  |  |  |  |
|                        |                            | Was DOC conducted consistent with NELAC Chapter                                                                                                                                                                | Х                                                   |                    |           |                 |              |                  |  |  |  |  |
|                        |                            | Is documentation of the analyst's competency up-to-                                                                                                                                                            | date and on file?                                   | Х                  |           |                 |              |                  |  |  |  |  |
| 515                    | OI                         | Verification/validation documentation for methods (N                                                                                                                                                           | ELAC Chapter 5)                                     |                    |           |                 |              |                  |  |  |  |  |
|                        |                            | Are all the methods used to generate the data docun                                                                                                                                                            | nented, verified, and validated, where applicable?  | Х                  |           |                 |              |                  |  |  |  |  |
| 516                    | OI                         | Laboratory standard operating procedures (SOPs)                                                                                                                                                                |                                                     |                    |           |                 |              |                  |  |  |  |  |
|                        |                            | Are laboratory SOPs current and on file for each met                                                                                                                                                           | hod performed                                       | Х                  |           |                 |              |                  |  |  |  |  |
| shoul<br>2. O<br>3. NA | d be r<br>= orga<br>A = No | ntified by the letter "R" must be included in the laborat<br>etained and made available upon request for the appro-<br>anic analyses; I = inorganic analyses (and general chen<br>t applicable;<br>t reviewed; |                                                     | t(s). Items        | identifie | ed by th        | e letter     | "S"              |  |  |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1133471

#### Laboratory Review Checklist: Exception Reports ONE LAB. NATIONWIDE.

| Laboratory Name: Pace Analytical National            | LRC Date: 08/30/2019 14:38         |  |  |  |  |  |
|------------------------------------------------------|------------------------------------|--|--|--|--|--|
| Project Name: Darr Angell #2- Lea County, New Mexico | Laboratory Job Number: L1133471-01 |  |  |  |  |  |
| Reviewer Name: Mark W. Beasley                       | Prep Batch Number(s): WG1336161    |  |  |  |  |  |
| ER #1 Description                                    |                                    |  |  |  |  |  |

The Exception Report intentionally left blank, there are no exceptions applied to this SDG.

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

a. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
NA = Not applicable;
NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Ср

Тс

Ss

Cn

Ϋ́r

Qc

GI

ΆI

Sc



#### Volatile Organic Compounds (MS) by Method M18-Mod

| -                          |           |          |          |        |         |          |           |          |           |
|----------------------------|-----------|----------|----------|--------|---------|----------|-----------|----------|-----------|
|                            | CAS #     | Mol. Wt. | RDL1     | RDL2   | Result  | Result   | Qualifier | Dilution | Batch     |
| Analyte                    |           |          | ppbv     | ug/m3  | ppbv    | ug/m3    |           |          |           |
| Benzene                    | 71-43-2   | 78.10    | 400      | 1280   | 36600   | 117000   |           | 2000     | WG1336161 |
| Toluene                    | 108-88-3  | 92.10    | 400      | 1510   | 49400   | 186000   |           | 2000     | WG1336161 |
| Ethylbenzene               | 100-41-4  | 106      | 400      | 1730   | 7050    | 30500    |           | 2000     | WG1336161 |
| m&p-Xylene                 | 1330-20-7 | 106      | 800      | 3470   | 36800   | 160000   |           | 2000     | WG1336161 |
| o-Xylene                   | 95-47-6   | 106      | 400      | 1730   | 10600   | 46100    |           | 2000     | WG1336161 |
| Methyl tert-butyl ether    | 1634-04-4 | 88.10    | 400      | 1440   | ND      | ND       |           | 2000     | WG1336161 |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100000   | 413000 | 5060000 | 20900000 |           | 2000     | WG1336161 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |        | 101     |          |           |          | WG1336161 |
|                            |           |          |          |        |         |          |           |          |           |

Volatile Organic Compounds (MS) by Method M18-Mod

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

#### Method Blank (MB)

| (MB) R3445016-3 08/28/19 10:33 |           |              |        |          |  |  |  |  |  |  |  |
|--------------------------------|-----------|--------------|--------|----------|--|--|--|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL   |  |  |  |  |  |  |  |
| Analyte                        | ppbv      |              | ppbv   | ppbv     |  |  |  |  |  |  |  |
| Benzene                        | U         |              | 0.0460 | 0.200    |  |  |  |  |  |  |  |
| Ethylbenzene                   | U         |              | 0.0506 | 0.200    |  |  |  |  |  |  |  |
| MTBE                           | U         |              | 0.0505 | 0.200    |  |  |  |  |  |  |  |
| Toluene                        | U         |              | 0.0499 | 0.200    |  |  |  |  |  |  |  |
| m&p-Xylene                     | U         |              | 0.0946 | 0.400    |  |  |  |  |  |  |  |
| o-Xylene                       | U         |              | 0.0633 | 0.200    |  |  |  |  |  |  |  |
| TPH (GC/MS) Low Fraction       | 34.5      | J            | 6.91   | 50.0     |  |  |  |  |  |  |  |
| (S) 1,4-Bromofluorobenzene     | 97.5      |              |        | 60.0-140 |  |  |  |  |  |  |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3445016-1 08/28/19 09:08 • (LCSD) R3445016-2 08/28/19 09:51 |              |            |             |          |           |             |               |                |       |            |  |  |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|--|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |  |
| Analyte                                                            | ppbv         | ppbv       | ppbv        | %        | %         | %           |               |                | %     | %          |  |  |
| MTBE                                                               | 3.75         | 4.46       | 4.39        | 119      | 117       | 70.0-130    |               |                | 1.59  | 25         |  |  |
| Benzene                                                            | 3.75         | 4.64       | 4.59        | 124      | 122       | 70.0-130    |               |                | 1.13  | 25         |  |  |
| Toluene                                                            | 3.75         | 4.58       | 4.49        | 122      | 120       | 70.0-130    |               |                | 1.94  | 25         |  |  |
| Ethylbenzene                                                       | 3.75         | 4.74       | 4.65        | 126      | 124       | 70.0-130    |               |                | 1.87  | 25         |  |  |
| m&p-Xylene                                                         | 7.50         | 9.52       | 9.19        | 127      | 123       | 70.0-130    |               |                | 3.56  | 25         |  |  |
| o-Xylene                                                           | 3.75         | 4.73       | 4.60        | 126      | 123       | 70.0-130    |               |                | 2.73  | 25         |  |  |
| TPH (GC/MS) Low Fraction                                           | 203          | 239        | 236         | 118      | 117       | 70.0-130    |               |                | 0.981 | 25         |  |  |
| (S) 1,4-Bromofluorobenzene                                         |              |            |             | 99.7     | 97.9      | 60.0-140    |               |                |       |            |  |  |

SDG: L1133471 DATE/TIME: 08/30/19 14:38 PAGE: 10 of 13

### GLOSSARY OF TERMS

### ₩

Ср

Τс

Ss

Cn

Tr

Śr

Qc

GI

AI

Śc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1133471 DATE/TIME: 08/30/19 14:38

### **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Ne |
|------------------------|-------------|----|
| Alaska                 | 17-026      | Ne |
| Arizona                | AZ0612      | Ne |
| Arkansas               | 88-0469     | Ne |
| California             | 2932        | Ne |
| Colorado               | TN00003     | Ne |
| Connecticut            | PH-0197     | No |
| Florida                | E87487      | No |
| Georgia                | NELAP       | No |
| Georgia <sup>1</sup>   | 923         | No |
| ldaho                  | TN00003     | Oł |
| Illinois               | 200008      | 01 |
| Indiana                | C-TN-01     | Or |
| lowa                   | 364         | Pe |
| Kansas                 | E-10277     | Rh |
| Kentucky <sup>16</sup> | 90010       | Sc |
| Kentucky <sup>2</sup>  | 16          | Sc |
| Louisiana              | AI30792     | Te |
| Louisiana <sup>1</sup> | LA180010    | Te |
| Maine                  | TN0002      | Te |
| Maryland               | 324         | Ut |
| Massachusetts          | M-TN003     | Ve |
| Michigan               | 9958        | Vi |
| Minnesota              | 047-999-395 | W  |
| Mississippi            | TN00003     | W  |
| Missouri               | 340         | W  |
| Montana                | CERT0086    | W  |
|                        |             |    |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1133471

PAGE: 12 of 13

08/30/19 14:38

Τс Ss Cn Tr Sr Qc GI AI Śc

|                                                                                    | 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                         |                        | Billing Info                                                                                                                                                                                                                       | rmation:                                                            | 2 - 17 Stars                                |             |        | Sec. 19 | Analysis / Co                                   | ntainer / Preserva | ative                           | Pinters.                                                                                 | Chain of Custody                                         | Page of                |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-------------|--------|---------|-------------------------------------------------|--------------------|---------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|--|
| Plains All American, LP - GHD<br>2135 S Loop 250 W<br>Midland, TX 79703            |                                                                                 |                        | Accounts Payable<br>505 N. Big Spring, Ste. 600<br>Midland, TX 79701                                                                                                                                                               |                                                                     |                                             | Pres<br>Chk |        |         |                                                 |                    |                                 |                                                                                          | Pace                                                     | nalytical <sup>®</sup> |  |
|                                                                                    |                                                                                 |                        |                                                                                                                                                                                                                                    |                                                                     |                                             |             | 10     |         |                                                 |                    |                                 | Hanshar Gariur kur tesuny a litticiviti                                                  |                                                          |                        |  |
| Report to:<br>ames Ornelas John S                                                  | hable                                                                           |                        | Email To: C<br>james.orm                                                                                                                                                                                                           | o: Christopher.Knight@ghd.com;<br>ornelas@ghd.com Jonn. Schnabil(@c |                                             |             | stom   | M       |                                                 |                    |                                 | 12065 Lebanon Rd<br>Mount Juliet, TN 37122<br>Phone: 615-758-5858<br>Phone: 800-767-5859 |                                                          |                        |  |
| Project<br>Description: Darr Angell #2- Lea C                                      | ounty, New                                                                      | Mexico                 |                                                                                                                                                                                                                                    | City/State<br>Collected:                                            |                                             |             |        |         |                                                 |                    |                                 |                                                                                          | Fax: 615-758-5859                                        |                        |  |
|                                                                                    | Client Project #<br>074685                                                      |                        |                                                                                                                                                                                                                                    | Lab Project #<br>PLAINSGHD                                          | Lab Project #<br>PLAINSGHD-074685<br>P.O. # |             |        |         |                                                 |                    |                                 |                                                                                          |                                                          | L# /133471<br>G229     |  |
|                                                                                    | Site/Facility ID<br>SRS#: LF 19                                                 |                        |                                                                                                                                                                                                                                    | P.O. #                                                              |                                             |             |        |         |                                                 |                    |                                 |                                                                                          | Acctnum: PLAINSGHD                                       |                        |  |
| Collected by (signature):                                                          | Rush? (La<br>Same Day                                                           | ab MUST Be<br>y Five D |                                                                                                                                                                                                                                    | Quote #                                                             |                                             |             | Tedlar |         |                                                 |                    |                                 | Template: <b>T140</b><br>Prelogin: <b>P720</b>                                           |                                                          | 014                    |  |
| Immediately<br>Packed on Ice N Y                                                   | Next Day Five Day Next Day S Day (Rad Only) Two Day 10 Day (Rad Only) Three Day |                        | Date Re                                                                                                                                                                                                                            | Date Results Needed                                                 |                                             | MOD         |        |         |                                                 |                    |                                 | PB: To -                                                                                 | 4 - Mark W. Beasley<br>Tb 7-17-19<br>d Via: FedEX Ground |                        |  |
| Sample ID                                                                          | Comp/Grab                                                                       | Matrix *               | Depth                                                                                                                                                                                                                              | Date                                                                | Time                                        | Cntrs       | M18-I  |         | a damp                                          |                    | - Cornel or                     |                                                                                          | Remarks                                                  | Sample # (lab only     |  |
| Darr-2-Exhaugt - Pumpoff-081419                                                    | Grub                                                                            | Air                    | -                                                                                                                                                                                                                                  | 8/14/19                                                             | 1300                                        | 1           | Х      |         | 1                                               |                    | 1                               | 1                                                                                        |                                                          | -01                    |  |
|                                                                                    | 1 1 1                                                                           | Air                    | 1.14                                                                                                                                                                                                                               | 1                                                                   |                                             | 1           | X      |         | Carlo I                                         |                    |                                 |                                                                                          |                                                          |                        |  |
|                                                                                    |                                                                                 | Air                    | 1                                                                                                                                                                                                                                  | -                                                                   |                                             | 1           | X      |         |                                                 | 11.11              |                                 | 1                                                                                        |                                                          |                        |  |
|                                                                                    |                                                                                 |                        |                                                                                                                                                                                                                                    | L. T                                                                | R. A.F.                                     |             | 20.3   |         |                                                 |                    |                                 |                                                                                          |                                                          |                        |  |
| and and the                                                                        |                                                                                 |                        | 1.1.1                                                                                                                                                                                                                              | 124                                                                 | a sale s                                    |             |        |         |                                                 |                    | in the second                   |                                                                                          |                                                          |                        |  |
| <u> </u>                                                                           | in stall                                                                        | 2. 18 - 11<br>2. 19    | - porta                                                                                                                                                                                                                            | -                                                                   | and the second                              | 1           | -      |         |                                                 |                    | Juliantes                       |                                                                                          |                                                          |                        |  |
|                                                                                    |                                                                                 | la Photos              |                                                                                                                                                                                                                                    | 1. 11 fe                                                            |                                             |             |        |         |                                                 |                    | 12                              |                                                                                          |                                                          |                        |  |
|                                                                                    |                                                                                 |                        |                                                                                                                                                                                                                                    |                                                                     | 1 P - 1                                     |             |        |         |                                                 |                    |                                 |                                                                                          | 1600                                                     |                        |  |
|                                                                                    |                                                                                 |                        | 1. 17.28                                                                                                                                                                                                                           |                                                                     | A Starting                                  | 3 1 3       |        |         |                                                 |                    |                                 |                                                                                          | A second second                                          |                        |  |
| Alexandra and a second and a second                                                | Demeslues                                                                       | an Talaitea<br>A       | L                                                                                                                                                                                                                                  |                                                                     | - Andrew M                                  |             | 1      |         |                                                 |                    | 12 10.00                        | -                                                                                        | ample Receipt ()                                         | ocklist                |  |
| SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater |                                                                                 | e Ling                 | in de la composition de la composition<br>Composition de la composition de la comp | -                                                                   | 4.000                                       |             |        |         | PH<br>Flow                                      | Temp<br>Other      |                                 | Bottles                                                                                  | ed/Accurate:<br>arrive intact:<br>bottles used:          | 444                    |  |
| DW - Drinking Water<br>OT - Other                                                  | Samples returned via:<br>UPSFedExCourier Tracking # 10 8                        |                        |                                                                                                                                                                                                                                    |                                                                     |                                             | 82          | 59     | 91 4    | 1540                                            |                    | 2                               | Sufficie<br>VOA Zero                                                                     | nt volume sent:<br><u>If Applicab</u><br>Headspace:      | Y                      |  |
| Relinquished by : (Signature)                                                      |                                                                                 | Date:<br>0/14/1        | 9                                                                                                                                                                                                                                  | Time: Received by: (Signatu                                         |                                             |             |        |         | Trip Blank Received: Yes No<br>HCL7 MeoH<br>TBR |                    | Preservation Correct/Checked:YN |                                                                                          |                                                          |                        |  |
| Relinquished by : (Signature)                                                      |                                                                                 | Date:                  |                                                                                                                                                                                                                                    | Time: Received by: (Signature)                                      |                                             |             |        |         | Temp:                                           | 4.6 /              |                                 | If preservation required by Login: Date/Time                                             |                                                          | gin: Date/Time         |  |
| Relinquished by : (Signature)                                                      |                                                                                 | Date:                  |                                                                                                                                                                                                                                    | Time:                                                               | Received for lab                            | y: (Signa:  | ture)  |         | Date:                                           | Time:              | 45                              | Hold:                                                                                    | 12 3%                                                    | Condition:<br>NCF / OK |  |



# ANALYTICAL REPORT

November 06, 2019

### Plains All American, LP - GHD

Sample Delivery Group: L1154397 Samples Received: 10/26/2019 Project Number: 074685 Description: Darr Angell #2- Lea County, New Mexico SRS#: LF 1999-62 Site: Report To: John Schnable 2135 S Loop 250 W Midland, TX 79703

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685

SDG: L1154397

DATE/TIME: 11/06/19 14:32

PAGE: 1 of 23

### TABLE OF CONTENTS

| Cp: Cover Page                                              | 1  |
|-------------------------------------------------------------|----|
| Tc: Table of Contents                                       | 2  |
| Ss: Sample Summary                                          | 3  |
| Cn: Case Narrative                                          | 4  |
| Tr: TRRP Summary                                            | 5  |
| TRRP form R                                                 | 6  |
| TRRP form S                                                 | 7  |
| TRRP Exception Reports                                      | 8  |
| Sr: Sample Results                                          | 9  |
| MW-8-102219 L1154397-01                                     | 9  |
| MW-9-102219 L1154397-02                                     | 10 |
| MW-4R-102219 L1154397-03                                    | 11 |
| MW-12-102219 L1154397-04                                    | 12 |
| RW11-102219 L1154397-05                                     | 13 |
| RW12-102219 L1154397-06                                     | 14 |
| DUP-1-102219 L1154397-07                                    | 15 |
| Qc: Quality Control Summary                                 | 16 |
| Volatile Organic Compounds (GC) by Method 8021B             | 16 |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM | 18 |
| GI: Glossary of Terms                                       | 20 |
| Al: Accreditations & Locations                              | 21 |
| Sc: Sample Chain of Custody                                 | 22 |
|                                                             |    |

\*

SDG: L1154397 DATE/TIME: 11/06/19 14:32

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

⁵Tr

Sr

Qc

GI

A

<sup>10</sup>Sc

|                                                                                                                | 0/ 22 0                |          |                                  |                                    |                                      |                                  |
|----------------------------------------------------------------------------------------------------------------|------------------------|----------|----------------------------------|------------------------------------|--------------------------------------|----------------------------------|
| MW-8-102219 L1154397-01 GW                                                                                     |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 17:05 | Received da 10/26/19 08:             |                                  |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                                | WG1374701              | 1        | 11/05/19 04:06                   | 11/05/19 04:06                     | ACG                                  | Mt. Juliet, TN                   |
| MW-9-102219 L1154397-02 GW                                                                                     |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 17:30 | Received da<br>10/26/19 08:          |                                  |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                                | WG1374701              | 1        | 11/05/19 04:26                   | 11/05/19 04:26                     | ACG                                  | Mt. Juliet, TN                   |
| MW-4R-102219 L1154397-03 GW                                                                                    |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 17:45 | Received da<br>10/26/19 08:          |                                  |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                                | WG1374701              | 1        | 11/05/19 04:47                   | 11/05/19 04:47                     | ACG                                  | Mt. Juliet, TN                   |
| MW-12-102219 L1154397-04 GW                                                                                    |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 18:10 | Received da<br>10/26/19 08:          |                                  |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B<br>Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM | WG1374701<br>WG1370550 | 1<br>1   | 11/05/19 05:08<br>10/29/19 17:41 | 11/05/19 05:08<br>10/30/19 03:54   | ACG<br>AAT                           | Mt. Juliet, TN<br>Mt. Juliet, TN |
| RW11-102219 L1154397-05 GW                                                                                     |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 18:30 | Received date/time<br>10/26/19 08:00 |                                  |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                                | WG1374701              | 1        | 11/05/19 05:28                   | 11/05/19 05:28                     | ACG                                  | Mt. Juliet, TN                   |
| RW12-102219 L1154397-06 GW                                                                                     |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 19:05 | Received date/time<br>10/26/19 08:00 |                                  |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |
| Volatile Organic Compounds (GC) by Method 8021B                                                                | WG1374701              | 10       | 11/05/19 05:49                   | 11/05/19 05:49                     | ACG                                  | Mt. Juliet, TN                   |
| DUP-1-102219 L1154397-07 GW                                                                                    |                        |          | Collected by<br>Justin Nixon     | Collected date/time 10/22/19 00:00 | Received date/time<br>10/26/19 08:00 |                                  |
|                                                                                                                |                        |          | <b>D</b>                         | Arealis                            |                                      | Leastion                         |
| Method                                                                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time              | Analyst                              | Location                         |

PROJECT: 074685 SDG: L1154397 DATE/TIME: 11/06/19 14:32

### CASE NARRATIVE

×

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mark W. Beasley Project Manager

#### Sample Delivery Group (SDG) Narrative

VOC pH outside of method requirement.

Lab Sample ID L1154397-01 Project Sample ID MW-8-102219 Method 8021B



PROJECT: 074685 SDG: L1154397 DATE/TIME: 11/06/19 14:32 PAGE:

4 of 23

### Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

#### Laboratory Review Checklist: Reportable Data

| Lab                                                     | orato                                    | ry Name: Pace Analytical National LR                                                                                                                                                                                                                                                               | LRC Date: 11/06/2019 14:32                               |        |          |                 |                 |                  |  |  |  |
|---------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------|----------|-----------------|-----------------|------------------|--|--|--|
| Project Name: Darr Angell #2- Lea County, New<br>Mexico |                                          |                                                                                                                                                                                                                                                                                                    | ooratory Job Number: L1154397-01, 02, 03, 04, 05,        | 06 and | d 07     |                 |                 |                  |  |  |  |
| Rev                                                     | viewei                                   | r Name: Mark W. Beasley Pre                                                                                                                                                                                                                                                                        | Prep Batch Number(s): WG1370550, WG1374701 and WG1375386 |        |          |                 |                 |                  |  |  |  |
| #1                                                      | A <sup>2</sup>                           | Description                                                                                                                                                                                                                                                                                        |                                                          | Yes    | No       | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |  |  |  |
| R1                                                      | OI                                       | Chain-of-custody (C-O-C)                                                                                                                                                                                                                                                                           |                                                          |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Did samples meet the laboratory's standard conditions of sa                                                                                                                                                                                                                                        | ample acceptability upon receipt?                        | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were all departures from standard conditions described in a                                                                                                                                                                                                                                        | an exception report?                                     |        |          | Х               |                 |                  |  |  |  |
| R2                                                      | OI                                       | Sample and quality control (QC) identification                                                                                                                                                                                                                                                     |                                                          |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Are all field sample ID numbers cross-referenced to the labo                                                                                                                                                                                                                                       | pratory ID numbers?                                      | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Are all laboratory ID numbers cross-referenced to the corres                                                                                                                                                                                                                                       | sponding QC data?                                        | Х      |          |                 |                 |                  |  |  |  |
| R3                                                      | OI                                       | Test reports                                                                                                                                                                                                                                                                                       |                                                          |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were all samples prepared and analyzed within holding time                                                                                                                                                                                                                                         | es?                                                      | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Other than those results < MQL, were all other raw values br                                                                                                                                                                                                                                       | racketed by calibration standards?                       | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were calculations checked by a peer or supervisor?                                                                                                                                                                                                                                                 |                                                          | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were all analyte identifications checked by a peer or superv                                                                                                                                                                                                                                       | risor?                                                   | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were sample detection limits reported for all analytes not de                                                                                                                                                                                                                                      | etected?                                                 | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were all results for soil and sediment samples reported on a                                                                                                                                                                                                                                       |                                                          | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were % moisture (or solids) reported for all soil and sedimen                                                                                                                                                                                                                                      | nt samples?                                              |        |          | Х               |                 |                  |  |  |  |
|                                                         |                                          | Were bulk soils/solids samples for volatile analysis extracted                                                                                                                                                                                                                                     | d with methanol per SW846 Method 5035?                   |        |          | Х               |                 |                  |  |  |  |
|                                                         |                                          | If required for the project, are TICs reported?                                                                                                                                                                                                                                                    |                                                          |        |          | Х               |                 |                  |  |  |  |
| R4                                                      | 0                                        | Surrogate recovery data                                                                                                                                                                                                                                                                            |                                                          |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were surrogates added prior to extraction?                                                                                                                                                                                                                                                         | Х                                                        |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were surrogate percent recoveries in all samples within the                                                                                                                                                                                                                                        | Х                                                        |        |          |                 |                 |                  |  |  |  |
| R5                                                      | OI                                       | Test reports/summary forms for blank samples                                                                                                                                                                                                                                                       |                                                          |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were appropriate type(s) of blanks analyzed?                                                                                                                                                                                                                                                       |                                                          | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were blanks analyzed at the appropriate frequency?                                                                                                                                                                                                                                                 |                                                          | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were method blanks taken through the entire analytical proc                                                                                                                                                                                                                                        | cess, including preparation and, if applicable,          | х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | cleanup procedures?                                                                                                                                                                                                                                                                                |                                                          | X      |          |                 | I               |                  |  |  |  |
|                                                         |                                          | Were blank concentrations < MQL?                                                                                                                                                                                                                                                                   |                                                          | Х      |          |                 |                 |                  |  |  |  |
| R6                                                      | OI                                       | Laboratory control samples (LCS):                                                                                                                                                                                                                                                                  |                                                          | V      | 1        | 1               | <u>г</u>        | r –              |  |  |  |
|                                                         |                                          | Were all COCs included in the LCS?                                                                                                                                                                                                                                                                 | X<br>X                                                   |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Was each LCS taken through the entire analytical procedure                                                                                                                                                                                                                                         | e, including prep and cleanup steps?                     | X      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were LCSs analyzed at the required frequency?<br>Were LCS (and LCSD, if applicable) %Rs within the laboratory                                                                                                                                                                                      | - OC limite?                                             | X      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Does the detectability check sample data document the laboratory                                                                                                                                                                                                                                   |                                                          | ^      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | used to calculate the SDLs?                                                                                                                                                                                                                                                                        | Х                                                        |        |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Was the LCSD RPD within QC limits?                                                                                                                                                                                                                                                                 | Х                                                        |        |          |                 |                 |                  |  |  |  |
| R7                                                      | OI                                       | Matrix spike (MS) and matrix spike duplicate (MSD) data                                                                                                                                                                                                                                            |                                                          |        |          | 1               |                 | 1                |  |  |  |
|                                                         |                                          | Were the project/method specified analytes included in the                                                                                                                                                                                                                                         | MS and MSD?                                              | Х      |          |                 | ļ               | L                |  |  |  |
|                                                         |                                          | Were MS/MSD analyzed at the appropriate frequency?                                                                                                                                                                                                                                                 |                                                          | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were MS (and MSD, if applicable) %Rs within the laboratory                                                                                                                                                                                                                                         | QC limits?                                               | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Were MS/MSD RPDs within laboratory QC limits?                                                                                                                                                                                                                                                      |                                                          | Х      |          |                 |                 |                  |  |  |  |
| R8                                                      | OI                                       | Analytical duplicate data                                                                                                                                                                                                                                                                          |                                                          |        | -        |                 | -               | -                |  |  |  |
|                                                         |                                          | Were appropriate analytical duplicates analyzed for each ma                                                                                                                                                                                                                                        |                                                          |        |          | X               |                 |                  |  |  |  |
|                                                         |                                          | Were analytical duplicates analyzed at the appropriate frequ                                                                                                                                                                                                                                       |                                                          |        |          | X               |                 |                  |  |  |  |
| <b>D</b> O                                              |                                          | Were RPDs or relative standard deviations within the laborat                                                                                                                                                                                                                                       | tory QC limits?                                          |        |          | Х               |                 |                  |  |  |  |
| R9                                                      | OI                                       | Method quantitation limits (MQLs):                                                                                                                                                                                                                                                                 |                                                          | X      | 1        | T               | 1               | 1                |  |  |  |
|                                                         |                                          | Are the MQLs for each method analyte included in the labor                                                                                                                                                                                                                                         | , , , , , , , , , , , , , , , , , , , ,                  | X      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Do the MQLs correspond to the concentration of the lowest                                                                                                                                                                                                                                          |                                                          | X      |          |                 |                 |                  |  |  |  |
| D40                                                     |                                          | Are unadjusted MQLs and DCSs included in the laboratory c                                                                                                                                                                                                                                          | data package?                                            | Х      |          |                 |                 |                  |  |  |  |
| R10                                                     | OI                                       | Other problems/anomalies                                                                                                                                                                                                                                                                           | in this LDC and ED2                                      |        | V        | 1               | r               |                  |  |  |  |
|                                                         |                                          | Are all known problems/anomalies/special conditions noted<br>Was applicable and available technology used to lower the s                                                                                                                                                                           |                                                          |        | X        |                 |                 |                  |  |  |  |
|                                                         |                                          | the sample results?                                                                                                                                                                                                                                                                                | SDL to minimize the matrix interference effects on       | Х      |          |                 |                 |                  |  |  |  |
|                                                         |                                          | Is the laboratory NELAC-accredited under the Texas Laborat<br>and methods associated with this laboratory data package?                                                                                                                                                                            |                                                          | х      |          |                 |                 |                  |  |  |  |
| shoul<br>2. O<br>3. N/<br>4. NF                         | ld be re<br>= orga<br>A = Not<br>R = Not | ntified by the letter "R" must be included in the laboratory dat<br>etained and made available upon request for the appropriate<br>nic analyses; I = inorganic analyses (and general chemistry, w<br>t applicable;<br>; reviewed;<br>cception Report identification number (an Exception Report sh | retention period.<br>when applicable);                   |        | dentifie | d by th         | e letter        | "S"              |  |  |  |

#### Laboratory Review Checklist: Supporting Data

1 ķ

| LdD                                                     | orato                                                | ory Name: Pace Analytical National                                                                               | LRC Date: 11/06/2019 14:32                                        |     |    |                 |                 |                  |  |  |  |
|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|----|-----------------|-----------------|------------------|--|--|--|
| Project Name: Darr Angell #2- Lea County, New<br>Mexico |                                                      |                                                                                                                  | Laboratory Job Number: L1154397-01, 02, 03, 04, 05, 06 and 07     |     |    |                 |                 |                  |  |  |  |
| Rev                                                     | iewe                                                 | r Name: Mark W. Beasley                                                                                          | Prep Batch Number(s): WG1370550, WG1374701 and WG1375386          |     |    |                 |                 |                  |  |  |  |
| #1                                                      | A <sup>2</sup>                                       | Description                                                                                                      |                                                                   | Yes | No | NA <sup>3</sup> | NR <sup>4</sup> | ER# <sup>5</sup> |  |  |  |
| S1                                                      | OI                                                   | Initial calibration (ICAL)                                                                                       |                                                                   |     |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Were response factors and/or relative response factor                                                            | ors for each analyte within QC limits?                            | Х   |    |                 | 1               | Τ                |  |  |  |
|                                                         |                                                      | Were percent RSDs or correlation coefficient criteria                                                            | met?                                                              | Х   |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Was the number of standards recommended in the m                                                                 | nethod used for all analytes?                                     | X   |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Were all points generated between the lowest and hi                                                              | ghest standard used to calculate the curve?                       | Х   |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Are ICAL data available for all instruments used?                                                                | Х                                                                 |     |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Has the initial calibration curve been verified using ar                                                         | X                                                                 |     |    | 1               |                 |                  |  |  |  |
| 52                                                      | OI                                                   | Initial and continuing calibration verification (ICCV and                                                        | · · · ·                                                           |     |    |                 |                 | -                |  |  |  |
|                                                         |                                                      | Was the CCV analyzed at the method-required freque                                                               |                                                                   | X   | Т  | T               | Г               | Τ                |  |  |  |
|                                                         |                                                      | Were percent differences for each analyte within the                                                             |                                                                   | X   |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Was the ICAL curve verified for each analyte?                                                                    |                                                                   | X   |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Was the absolute value of the analyte concentration i                                                            | in the inorganic CCB < MDI ?                                      |     |    | Х               |                 |                  |  |  |  |
| 53                                                      | 0                                                    | Mass spectral tuning                                                                                             |                                                                   |     |    | 1               | 1               |                  |  |  |  |
|                                                         | -                                                    | Was the appropriate compound for the method used                                                                 | for tuning?                                                       | X   | T  | 1               | Г               | Т                |  |  |  |
|                                                         |                                                      | Were ion abundance data within the method-required                                                               |                                                                   | X   |    |                 |                 |                  |  |  |  |
| 54                                                      | 0                                                    | Internal standards (IS)                                                                                          |                                                                   | ^   |    |                 | 1               |                  |  |  |  |
|                                                         | ļ,                                                   | Were IS area counts and retention times within the m                                                             | ethod-required QC limits?                                         | X   | 1  | T               | T               | Т                |  |  |  |
| 55                                                      | OI                                                   | Raw data (NELAC Section 5.5.10)                                                                                  |                                                                   |     | •  |                 | 1               | L                |  |  |  |
|                                                         |                                                      | Were the raw data (for example, chromatograms, spe                                                               | ctral data) reviewed by an analyst?                               | X   | Т  | 1               | Г               | Т                |  |  |  |
|                                                         | Were data associated with manual integrations flagge |                                                                                                                  |                                                                   |     |    |                 |                 |                  |  |  |  |
| 66                                                      | 0                                                    | Dual column confirmation                                                                                         |                                                                   | ^   | -  | <u> </u>        | I               | L                |  |  |  |
| 50                                                      |                                                      | Did dual column confirmation results meet the metho                                                              | d required OC2                                                    | -   | 1  | X               | 1               | T                |  |  |  |
| 57                                                      | 0                                                    | Tentatively identified compounds (TICs)                                                                          |                                                                   |     |    |                 | I               | L                |  |  |  |
| 57                                                      |                                                      | If TICs were requested, were the mass spectra and T                                                              | IC data subject to appropriate checks?                            |     | 1  | X               | T               | Τ                |  |  |  |
| 58                                                      | 1.                                                   | Interference Check Sample (ICS) results                                                                          |                                                                   |     |    |                 | I               | <u> </u>         |  |  |  |
| 00                                                      |                                                      | Were percent recoveries within method QC limits?                                                                 |                                                                   |     | T  | X               | T T             | T                |  |  |  |
| 59                                                      | 1.                                                   | •                                                                                                                | standard additions                                                |     |    | <u> </u>        | I               | <u> </u>         |  |  |  |
| 59                                                      |                                                      | Serial dilutions, post digestion spikes, and method of<br>Were percent differences, recoveries, and the linearit |                                                                   |     | T  | X               | <u>т</u>        | Т                |  |  |  |
| 10                                                      |                                                      | •                                                                                                                | sy within the QC limits specified in the method?                  |     |    | <u> </u>        |                 |                  |  |  |  |
| 510                                                     | OI                                                   | Method detection limit (MDL) studies                                                                             |                                                                   |     | 1  | 1               | T T             | T                |  |  |  |
|                                                         |                                                      | Was a MDL study performed for each reported analytic                                                             |                                                                   | X   |    |                 |                 |                  |  |  |  |
| - 44                                                    |                                                      | Is the MDL either adjusted or supported by the analys                                                            | sis of DCSs?                                                      | X   |    | I               | I               | <u> </u>         |  |  |  |
| 511                                                     | OI                                                   | Proficiency test reports                                                                                         |                                                                   |     | 1  | 1               | <u> </u>        |                  |  |  |  |
| ~4~                                                     |                                                      | Was the laboratory's performance acceptable on the                                                               | applicable proticiency tests or evaluation studies?               | X   |    |                 | <u> </u>        | <u> </u>         |  |  |  |
| 512                                                     | OI                                                   | Standards documentation                                                                                          |                                                                   |     | 1  | 1               | 1               | T                |  |  |  |
| 10                                                      |                                                      | Are all standards used in the analyses NIST-traceable                                                            | or obtained from other appropriate sources?                       | X   |    |                 | I               | L                |  |  |  |
| 513                                                     | OI                                                   | Compound/analyte identification procedures                                                                       |                                                                   |     | -  | 1               | 1               | <b>—</b>         |  |  |  |
|                                                         |                                                      | Are the procedures for compound/analyte identificati                                                             | on documented?                                                    | X   |    |                 |                 |                  |  |  |  |
| 514                                                     | OI                                                   | Demonstration of analyst competency (DOC)                                                                        |                                                                   | -   | 1  | <u> </u>        | 1               |                  |  |  |  |
|                                                         |                                                      | Was DOC conducted consistent with NELAC Chapter                                                                  |                                                                   |     | -  |                 | -               |                  |  |  |  |
|                                                         |                                                      |                                                                                                                  | becomentation of the analyst's competency up-to-date and on file? |     |    |                 |                 |                  |  |  |  |
| 515                                                     | OI                                                   | Verification/validation documentation for methods (N                                                             |                                                                   | -   | 1  | r –             |                 |                  |  |  |  |
|                                                         |                                                      | Are all the methods used to generate the data docum                                                              | X                                                                 |     | 1  | I               | L               |                  |  |  |  |
| 516                                                     | OI                                                   | Laboratory standard operating procedures (SOPs)                                                                  |                                                                   | -   |    |                 |                 |                  |  |  |  |
|                                                         |                                                      | Are laboratory SOPs current and on file for each meth                                                            | and performed                                                     |     | 1  | 1               | 1               | 1                |  |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1154397

| Laborato          | ory Name: Pace Analytical National                                 | LRC Date: 11/06/2019 14:32                                    |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| Project Mexico    | Name: Darr Angell #2- Lea County, New                              | Laboratory Job Number: L1154397-01, 02, 03, 04, 05, 06 and 07 |  |  |  |  |  |  |
| Reviewe           | r Name: Mark W. Beasley                                            | Prep Batch Number(s): WG1370550, WG1374701 and WG1375386      |  |  |  |  |  |  |
| ER # <sup>1</sup> | Description                                                        |                                                               |  |  |  |  |  |  |
| 1                 | 8021B WG1374701 L1154397-01: VOC pH outside of method requirement. |                                                               |  |  |  |  |  |  |

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
 O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

#### SAMPLE RESULTS - 01 L1154397

#### <u>پو</u>

#### Volatile Organic Compounds (GC) by Method 8021B

| Volatile Organic Compounds (GC) by Method 8021B |          |           |          |            |          |          |                  |           | 1               |
|-------------------------------------------------|----------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
|                                                 | Result   | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
| Analyte                                         | mg/l     |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                                         | 0.000773 |           | 0.000190 | 0.000500   | 0.000500 | 1        | 11/05/2019 04:06 | WG1374701 | Ťτ              |
| Toluene                                         | 0.000654 | J         | 0.000412 | 0.00100    | 0.00100  | 1        | 11/05/2019 04:06 | WG1374701 |                 |
| Ethylbenzene                                    | 0.000780 |           | 0.000160 | 0.000500   | 0.000500 | 1        | 11/05/2019 04:06 | WG1374701 | <sup>3</sup> Ss |
| Total Xylene                                    | 0.00239  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 11/05/2019 04:06 | WG1374701 | 5.              |
| (S) a,a,a-Trifluorotoluene(PID)                 | 100      |           |          |            | 79.0-125 |          | 11/05/2019 04:06 | WG1374701 | 4               |

| <sup>³</sup> Ss  |
|------------------|
|                  |
| <sup>4</sup> Cn  |
|                  |
| ⁵Tr              |
|                  |
| <sup>6</sup> Sr  |
|                  |
| <sup>7</sup> Qc  |
|                  |
| <sup>°</sup> GI  |
|                  |
| <sup>9</sup> Al  |
|                  |
| <sup>10</sup> Sc |

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685

SDG: L1154397

DATE/TIME: 11/06/19 14:32 PAGE: 9 of 23

#### \*

Τс

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result   | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                |
|---------------------------------|----------|-----------|----------|------------|----------|----------|------------------|-----------|----------------|
| Analyte                         | mg/l     |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2              |
| Benzene                         | 0.000344 | J         | 0.000190 | 0.000500   | 0.000500 | 1        | 11/05/2019 04:26 | WG1374701 | T              |
| Toluene                         | 0.000609 | J         | 0.000412 | 0.00100    | 0.00100  | 1        | 11/05/2019 04:26 | WG1374701 |                |
| Ethylbenzene                    | 0.000289 | J         | 0.000160 | 0.000500   | 0.000500 | 1        | 11/05/2019 04:26 | WG1374701 | <sup>3</sup> c |
| Total Xylene                    | 0.00114  | J         | 0.000510 | 0.00150    | 0.00150  | 1        | 11/05/2019 04:26 | WG1374701 |                |
| (S) a,a,a-Trifluorotoluene(PID) | 100      |           |          |            | 79.0-125 |          | 11/05/2019 04:26 | WG1374701 | 4              |
|                                 |          |           |          |            |          |          |                  |           |                |

| <sup>³</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Tr             |
|                 |
| <sup>6</sup> Sr |
|                 |
| <sup>7</sup> Qc |
|                 |
| <sup>°</sup> Gl |
|                 |
| <sup>9</sup> Al |
|                 |
| 10              |

Sc

#### \*

#### Volatile Organic Compounds (GC) by Method 8021B

| volatile Organic Comp           |          | i by meth | JU 0021D |            |          |          |                  |           | $^{1}$ C $\sim$ |
|---------------------------------|----------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
|                                 | Result   | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
| Analyte                         | mg/l     |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.000301 | J         | 0.000190 | 0.000500   | 0.000500 | 1        | 11/05/2019 04:47 | WG1374701 | Tc              |
| Toluene                         | 0.000535 | J         | 0.000412 | 0.00100    | 0.00100  | 1        | 11/05/2019 04:47 | WG1374701 |                 |
| Ethylbenzene                    | 0.000380 | J         | 0.000160 | 0.000500   | 0.000500 | 1        | 11/05/2019 04:47 | WG1374701 | <sup>3</sup> Ss |
| Total Xylene                    | 0.00172  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 11/05/2019 04:47 | WG1374701 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 100      |           |          |            | 79.0-125 |          | 11/05/2019 04:47 | WG1374701 | 4               |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Tr             |
|                 |
| <sup>6</sup> Sr |
|                 |
| <sup>7</sup> Qc |
|                 |
| °GI             |
|                 |
| <sup>9</sup> Al |
|                 |
| 10              |

Sc

SDG: L1154397 DATE/TIME: 11/06/19 14:32

PAGE: 11 of 23

#### MW-12-102219 Collected date/time: 10/22/19 18:10

#### SAMPLE RESULTS - 04 L1154397

ONE LAB. NATIONWIDE.

#### 

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result   | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
|---------------------------------|----------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
| Analyte                         | mg/l     |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.000319 | J         | 0.000190 | 0.000500   | 0.000500 | 1        | 11/05/2019 05:08 | WG1374701 | Tc              |
| Toluene                         | 0.000583 | J         | 0.000412 | 0.00100    | 0.00100  | 1        | 11/05/2019 05:08 | WG1374701 |                 |
| Ethylbenzene                    | 0.000321 | J         | 0.000160 | 0.000500   | 0.000500 | 1        | 11/05/2019 05:08 | WG1374701 | <sup>3</sup> Ss |
| Total Xylene                    | 0.00138  | J         | 0.000510 | 0.00150    | 0.00150  | 1        | 11/05/2019 05:08 | WG1374701 | 55              |
| (S) a,a,a-Trifluorotoluene(PID) | 100      |           |          |            | 79.0-125 |          | 11/05/2019 05:08 | WG1374701 | 4               |
|                                 |          |           |          |            |          |          |                  |           | Cr              |

#### Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

|                        | Result    | Qualifier | SDL        | Unadj. MQL | MQL       | Dilution | Analysis         | Batch     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|-----------|-----------|------------|------------|-----------|----------|------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte                | mg/l      |           | mg/l       | mg/l       | mg/l      |          | date / time      |           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Anthracene             | U         |           | 0.0000140  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Acenaphthene           | U         |           | 0.0000100  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acenaphthylene         | U         |           | 0.0000120  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzo(a)anthracene     | U         |           | 0.00000410 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | , in the second s |
| Benzo(a)pyrene         | U         |           | 0.0000116  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzo(b)fluoranthene   | U         |           | 0.00000212 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzo(g,h,i)perylene   | U         |           | 0.00000227 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Benzo(k)fluoranthene   | U         |           | 0.0000136  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chrysene               | U         |           | 0.0000108  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | Ĵ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dibenz(a,h)anthracene  | U         |           | 0.00000396 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dibenzofuran           | 0.0000235 | ВJ        | 0.00000105 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fluoranthene           | U         |           | 0.0000157  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fluorene               | 0.0000217 | J         | 0.00000850 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Indeno(1,2,3-cd)pyrene | U         |           | 0.0000148  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Naphthalene            | 0.000197  | J         | 0.0000198  | 0.000250   | 0.000250  | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Phenanthrene           | 0.0000231 | J         | 0.00000820 | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pyrene                 | U         |           | 0.0000117  | 0.0000500  | 0.0000500 | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1-Methylnaphthalene    | 0.000123  | ВJ        | 0.00000821 | 0.000250   | 0.000250  | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2-Methylnaphthalene    | 0.000101  | ВJ        | 0.00000902 | 0.000250   | 0.000250  | 1        | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S) Nitrobenzene-d5    | 127       |           |            |            | 31.0-160  |          | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S) 2-Fluorobiphenyl   | 117       |           |            |            | 48.0-148  |          | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S) p-Terphenyl-d14    | 117       |           |            |            | 37.0-146  |          | 10/30/2019 03:54 | WG1370550 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

SDG: L1154397

DATE/TIME: 11/06/19 14:32

#### \*

#### Volatile Organic Compounds (GC) by Method 8021B

| volatile organie oomp           |         | , by moun | 000210   |            |          |          |                  |           |                 |
|---------------------------------|---------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|
|                                 | Result  | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |
| Analyte                         | mg/l    |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |
| Benzene                         | 0.167   |           | 0.000190 | 0.000500   | 0.000500 | 1        | 11/05/2019 05:28 | WG1374701 | Tc              |
| Toluene                         | 0.00805 |           | 0.000412 | 0.00100    | 0.00100  | 1        | 11/05/2019 05:28 | WG1374701 |                 |
| Ethylbenzene                    | 0.0287  |           | 0.000160 | 0.000500   | 0.000500 | 1        | 11/05/2019 05:28 | WG1374701 | <sup>3</sup> Ss |
| Total Xylene                    | 0.0937  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 11/05/2019 05:28 | WG1374701 | 53              |
| (S) a,a,a-Trifluorotoluene(PID) | 120     |           |          |            | 79.0-125 |          | 11/05/2019 05:28 | WG1374701 | 4               |

| Ss              |
|-----------------|
| <sup>4</sup> Cn |
|                 |
| ⁵Tr             |
|                 |
| <sup>6</sup> Sr |
|                 |
| <sup>7</sup> Qc |
|                 |
| °GI             |
|                 |
| <sup>9</sup> Al |
|                 |
| 10<br>SC        |

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1154397 DATE/TIME: 11/06/19 14:32

PAGE: 13 of 23

#### \*

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL     | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                |
|---------------------------------|--------|-----------|---------|------------|----------|----------|------------------|-----------|----------------|
| Analyte                         | mg/l   |           | mg/l    | mg/l       | mg/l     |          | date / time      |           | 2              |
| Benzene                         | 1.12   |           | 0.00190 | 0.000500   | 0.00500  | 10       | 11/05/2019 05:49 | WG1374701 | [1]            |
| Toluene                         | 0.186  |           | 0.00412 | 0.00100    | 0.0100   | 10       | 11/05/2019 05:49 | WG1374701 |                |
| Ethylbenzene                    | 0.353  |           | 0.00160 | 0.000500   | 0.00500  | 10       | 11/05/2019 05:49 | WG1374701 | <sup>3</sup> c |
| Total Xylene                    | 0.389  |           | 0.00510 | 0.00150    | 0.0150   | 10       | 11/05/2019 05:49 | WG1374701 | `              |
| (S) a,a,a-Trifluorotoluene(PID) | 118    |           |         |            | 79.0-125 |          | 11/05/2019 05:49 | WG1374701 | 4              |

| Тс              |
|-----------------|
| ³Ss             |
| <sup>4</sup> Cn |
| ⁵Tr             |
| <sup>6</sup> Sr |
| <sup>7</sup> Qc |
| <sup>8</sup> Gl |
| <sup>9</sup> Al |

<sup>10</sup>Sc

#### \*

٦r

Qc

GI

ΆI

Sc

#### Volatile Organic Compounds (GC) by Method 8021B

|                                 | Result | Qualifier | SDL      | Unadj. MQL | MQL      | Dilution | Analysis         | Batch     |                 |  |  |  |
|---------------------------------|--------|-----------|----------|------------|----------|----------|------------------|-----------|-----------------|--|--|--|
| Analyte                         | mg/l   |           | mg/l     | mg/l       | mg/l     |          | date / time      |           | 2               |  |  |  |
| Benzene                         | 0.950  |           | 0.00475  | 0.000500   | 0.0125   | 25       | 11/05/2019 17:56 | WG1375386 | Tc              |  |  |  |
| Toluene                         | 0.112  |           | 0.000412 | 0.00100    | 0.00100  | 1        | 11/05/2019 06:09 | WG1374701 |                 |  |  |  |
| Ethylbenzene                    | 0.186  |           | 0.000160 | 0.000500   | 0.000500 | 1        | 11/05/2019 06:09 | WG1374701 | <sup>3</sup> Ss |  |  |  |
| Total Xylene                    | 0.256  |           | 0.000510 | 0.00150    | 0.00150  | 1        | 11/05/2019 06:09 | WG1374701 | 55              |  |  |  |
| (S) a,a,a-Trifluorotoluene(PID) | 109    |           |          |            | 79.0-125 |          | 11/05/2019 06:09 | WG1374701 | 4               |  |  |  |
| (S) a,a,a-Trifluorotoluene(PID) | 105    |           |          |            | 79.0-125 |          | 11/05/2019 17:56 | WG1375386 | Ċr              |  |  |  |
|                                 |        |           |          |            |          |          |                  |           |                 |  |  |  |

Volatile Organic Compounds (GC) by Method 8021B

## QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| (MB) R3468588-2 11/04/1            | 9 23:18   |              |          |          |
|------------------------------------|-----------|--------------|----------|----------|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |
| Benzene                            | U         |              | 0.000190 | 0.000500 |
| Toluene                            | U         |              | 0.000412 | 0.00100  |
| Ethylbenzene                       | U         |              | 0.000160 | 0.000500 |
| Total Xylene                       | U         |              | 0.000510 | 0.00150  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 99.8      |              |          | 79.0-125 |

#### Laboratory Control Sample (LCS)

#### (LCS) R3468588-1 11/04/19 22:22

|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                            | mg/l         | mg/l       | %        | %           |               |
| Benzene                            | 0.0500       | 0.0534     | 107      | 77.0-122    |               |
| Toluene                            | 0.0500       | 0.0498     | 99.6     | 80.0-121    |               |
| Ethylbenzene                       | 0.0500       | 0.0532     | 106      | 80.0-123    |               |
| Total Xylene                       | 0.150        | 0.148      | 98.7     | 47.0-154    |               |
| (S)<br>a,a,a-Trifluorotoluene(PID) |              |            | 114      | 79.0-125    |               |

#### L1154298-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                            | mg/l         | mg/l            | mg/l      | mg/l       | %       | %        |          | %           |              |               | %    | %          |
| Benzene                            | 0.0500       | 0.000335        | 0.0624    | 0.0517     | 124     | 103      | 1        | 10.0-160    |              |               | 18.8 | 21         |
| Toluene                            | 0.0500       | U               | 0.0554    | 0.0469     | 111     | 93.8     | 1        | 12.0-148    |              |               | 16.6 | 21         |
| Ethylbenzene                       | 0.0500       | 0.000173        | 0.0569    | 0.0484     | 113     | 96.5     | 1        | 22.0-149    |              |               | 16.1 | 21         |
| Fotal Xylene                       | 0.150        | 0.00102         | 0.158     | 0.133      | 105     | 88.0     | 1        | 13.0-155    |              |               | 17.2 | 21         |
| (S)<br>a.a.a-Trifluorotoluene(PID) |              |                 |           |            | 112     | 110      |          | 79.0-125    |              |               |      |            |

SDG: L1154397 DATE/TIME: 11/06/19 14:32 Ср

#### WG1375386

Volatile Organic Compounds (GC) by Method 8021B

# QUALITY CONTROL SUMMARY

Тс

Ss

Cn

٢r

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3468898-2 11/05/19 11:47     |           |              |          |          |  |  |  |  |  |  |
|------------------------------------|-----------|--------------|----------|----------|--|--|--|--|--|--|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |  |  |  |  |  |  |
| Analyte                            | mg/l      |              | mg/l     | mg/l     |  |  |  |  |  |  |
| Benzene                            | U         |              | 0.000190 | 0.000500 |  |  |  |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 103       |              |          | 79.0-125 |  |  |  |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3468898-1 11/05/1           | CS) R3468898-1 11/05/19 10:40 |            |          |             |               |  |  |  |  |  |
|------------------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                                    | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                            | mg/l                          | mg/l       | %        | %           |               |  |  |  |  |  |
| Benzene                            | 0.0500                        | 0.0597     | 119      | 77.0-122    |               |  |  |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(PID) |                               |            | 104      | 79.0-125    |               |  |  |  |  |  |

DATE/TIME: 11/06/19 14:32

PAGE: 17 of 23

L1154397-04

Тс

Ss

Cn

. Tr

Sr

Qc

GI

ΆΙ

Sc

#### Method Blank (MB)

| (MB) R3466490-3 10/29/1 | 19 21:40   |              |            |           |
|-------------------------|------------|--------------|------------|-----------|
|                         | MB Result  | MB Qualifier | MB MDL     | MB RDL    |
| Analyte                 | mg/l       |              | mg/l       | mg/l      |
| Anthracene              | U          |              | 0.0000140  | 0.0000500 |
| Acenaphthene            | U          |              | 0.0000100  | 0.0000500 |
| Acenaphthylene          | U          |              | 0.0000120  | 0.0000500 |
| Benzo(a)anthracene      | U          |              | 0.00000410 | 0.0000500 |
| Benzo(a)pyrene          | U          |              | 0.0000116  | 0.0000500 |
| Benzo(b)fluoranthene    | U          |              | 0.00000212 | 0.0000500 |
| Benzo(g,h,i)perylene    | U          |              | 0.00000227 | 0.0000500 |
| Benzo(k)fluoranthene    | U          |              | 0.0000136  | 0.000500  |
| Chrysene                | U          |              | 0.0000108  | 0.0000500 |
| Dibenz(a,h)anthracene   | U          |              | 0.00000396 | 0.0000500 |
| Fluoranthene            | U          |              | 0.0000157  | 0.0000500 |
| Fluorene                | U          |              | 0.00000850 | 0.0000500 |
| Indeno(1,2,3-cd)pyrene  | U          |              | 0.0000148  | 0.0000500 |
| Naphthalene             | U          |              | 0.0000198  | 0.000250  |
| Phenanthrene            | U          |              | 0.00000820 | 0.0000500 |
| Pyrene                  | U          |              | 0.0000117  | 0.0000500 |
| 1-Methylnaphthalene     | 0.0000124  | J            | 0.00000821 | 0.000250  |
| 2-Methylnaphthalene     | 0.0000200  | J            | 0.00000902 | 0.000250  |
| Dibenzofuran            | 0.00000719 | J            | 0.00000105 | 0.0000500 |
| (S) Nitrobenzene-d5     | 131        |              |            | 31.0-160  |
| (S) 2-Fluorobiphenyl    | 114        |              |            | 48.0-148  |
| (S) p-Terphenyl-d14     | 138        |              |            | 37.0-146  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

|                       | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
|-----------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
| Analyte               | mg/l         | mg/l       | mg/l        | %        | %         | %           |               |                | %     | %          |
| Dibenzofuran          | 0.00200      | 0.00210    | 0.00207     | 105      | 103       | 67.0-134    |               |                | 1.44  | 20         |
| Anthracene            | 0.00200      | 0.00206    | 0.00207     | 103      | 103       | 67.0-150    |               |                | 0.484 | 20         |
| Acenaphthene          | 0.00200      | 0.00209    | 0.00206     | 105      | 103       | 65.0-138    |               |                | 1.45  | 20         |
| Acenaphthylene        | 0.00200      | 0.00231    | 0.00224     | 115      | 112       | 66.0-140    |               |                | 3.08  | 20         |
| Benzo(a)anthracene    | 0.00200      | 0.00223    | 0.00214     | 111      | 107       | 61.0-140    |               |                | 4.12  | 20         |
| Benzo(a)pyrene        | 0.00200      | 0.00223    | 0.00220     | 111      | 110       | 60.0-143    |               |                | 1.35  | 20         |
| Benzo(b)fluoranthene  | 0.00200      | 0.00216    | 0.00205     | 108      | 102       | 58.0-141    |               |                | 5.23  | 20         |
| Benzo(g,h,i)perylene  | 0.00200      | 0.00222    | 0.00218     | 111      | 109       | 52.0-153    |               |                | 1.82  | 20         |
| Benzo(k)fluoranthene  | 0.00200      | 0.00224    | 0.00230     | 112      | 115       | 58.0-148    |               |                | 2.64  | 20         |
| Chrysene              | 0.00200      | 0.00216    | 0.00214     | 108      | 107       | 64.0-144    |               |                | 0.930 | 20         |
| Dibenz(a,h)anthracene | 0.00200      | 0.00217    | 0.00214     | 108      | 107       | 52.0-155    |               |                | 1.39  | 20         |

| ACCOUNT:                      | PROJECT: | SDG:     | DATE/TIME:     | PAGE:    |
|-------------------------------|----------|----------|----------------|----------|
| Plains All American, LP - GHD | 074685   | L1154397 | 11/06/19 14:32 | 18 of 23 |

L1154397-04

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3466490-1 10/2  | 9/19 20:58 • (LCS | D) R3466490 | -2 10/29/19 21:1 | 9        |           |             |               |                |       |            |
|------------------------|-------------------|-------------|------------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                        | Spike Amount      | LCS Result  | LCSD Result      | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                | mg/l              | mg/l        | mg/l             | %        | %         | %           |               |                | %     | %          |
| Fluoranthene           | 0.00200           | 0.00231     | 0.00226          | 115      | 113       | 69.0-153    |               |                | 2.19  | 20         |
| Fluorene               | 0.00200           | 0.00214     | 0.00210          | 107      | 105       | 64.0-136    |               |                | 1.89  | 20         |
| Indeno(1,2,3-cd)pyrene | 0.00200           | 0.00224     | 0.00220          | 112      | 110       | 54.0-153    |               |                | 1.80  | 20         |
| Naphthalene            | 0.00200           | 0.00191     | 0.00192          | 95.5     | 96.0      | 61.0-137    |               |                | 0.522 | 20         |
| Phenanthrene           | 0.00200           | 0.00214     | 0.00211          | 107      | 105       | 62.0-137    |               |                | 1.41  | 20         |
| Pyrene                 | 0.00200           | 0.00229     | 0.00222          | 114      | 111       | 60.0-142    |               |                | 3.10  | 20         |
| 1-Methylnaphthalene    | 0.00200           | 0.00199     | 0.00201          | 99.5     | 100       | 66.0-142    |               |                | 1.00  | 20         |
| 2-Methylnaphthalene    | 0.00200           | 0.00189     | 0.00188          | 94.5     | 94.0      | 62.0-136    |               |                | 0.531 | 20         |
| (S) Nitrobenzene-d5    |                   |             |                  | 121      | 119       | 31.0-160    |               |                |       |            |
| (S) 2-Fluorobiphenyl   |                   |             |                  | 105      | 108       | 48.0-148    |               |                |       |            |
| (S) p-Terphenyl-d14    |                   |             |                  | 125      | 121       | 37.0-146    |               |                |       |            |
|                        |                   |             |                  |          |           |             |               |                |       |            |

SDG: L1154397

DATE/TIME: 11/06/19 14:32

PAGE: 19 of 23

#### GLOSSARY OF TERMS

#### \*

Тс

ŚS

Cn

Τr

Śr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MQL                             | Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SDL                             | Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unadj. MQL                      | Unadjusted Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| В | The same analyte is found in the associated blank.                                  |
|---|-------------------------------------------------------------------------------------|
| J | The identification of the analyte is acceptable; the reported value is an estimate. |
|   |                                                                                     |

SDG: L1154397

#### **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | N  |
|------------------------|-------------|----|
| Alaska                 | 17-026      | N  |
| Arizona                | AZ0612      | N  |
| Arkansas               | 88-0469     | N  |
| California             | 2932        | N  |
| Colorado               | TN00003     | N  |
| Connecticut            | PH-0197     | N  |
| Florida                | E87487      | N  |
| Georgia                | NELAP       | N  |
| Georgia <sup>1</sup>   | 923         | N  |
| Idaho                  | TN00003     | 0  |
| Illinois               | 200008      | 0  |
| Indiana                | C-TN-01     | 0  |
| lowa                   | 364         | Pe |
| Kansas                 | E-10277     | RI |
| Kentucky <sup>16</sup> | 90010       | So |
| Kentucky <sup>2</sup>  | 16          | So |
| Louisiana              | Al30792     | Te |
| Louisiana <sup>1</sup> | LA180010    | Te |
| Maine                  | TN0002      | Te |
| Maryland               | 324         | Ut |
| Massachusetts          | M-TN003     | Ve |
| Michigan               | 9958        | Vi |
| Minnesota              | 047-999-395 | W  |
| Mississippi            | TN00003     | W  |
| Missouri               | 340         | W  |
| Montana                | CERT0086    | W  |
|                        |             |    |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 14                | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1154397

PAGE: 21 of 23

11/06/19 14:32

Τс Ss Cn Tr Sr Qc GI AI Śc

| Plains All American,                                                            | LP - GHD                                     |                         | Billing Inf                        |                              | ł                  |             |                  | Analysis / Container / Preservative |       |            |            |                   |           |              |                                             |                    |
|---------------------------------------------------------------------------------|----------------------------------------------|-------------------------|------------------------------------|------------------------------|--------------------|-------------|------------------|-------------------------------------|-------|------------|------------|-------------------|-----------|--------------|---------------------------------------------|--------------------|
|                                                                                 |                                              |                         |                                    | nts Payable<br>Big Spring, S | Sta 600            |             | Pres<br>Chk      |                                     |       |            |            | inner / Pres      | ervative  |              | Chain of                                    | Custody Page_      |
| 2135 S Loop 250 W<br>Midland, TX 79703                                          |                                              |                         | Midlan                             | d, TX 79701                  | ste. 600           | L           | CIIK             |                                     |       |            |            |                   |           |              | 0                                           | 7                  |
|                                                                                 |                                              |                         |                                    |                              |                    |             |                  |                                     |       |            |            |                   |           |              | -11                                         | ace Analytica      |
| Report to:<br>John Schnable<br>Project                                          |                                              | Email To:.<br>Christoph | John.Schnable<br>her.Knight@ghd    | @ghd.com,                    |                    |             |                  |                                     | 1     |            |            |                   |           |              | ownee for resting a                         |                    |
|                                                                                 | N. Same                                      | City/State              |                                    |                              |                    | se Circle:  |                  |                                     |       |            |            |                   | and and   |              | 12065 Lebar                                 | Ion 8d             |
| Description: Darr Angell #2- Lea                                                |                                              | Collected:              |                                    | And a second second          | PT N               | AT CT ET    |                  |                                     | E     |            |            |                   |           |              | Phone: 615-                                 | , TN 37122         |
| Phone: <b>432-686-0086</b><br>Fax:                                              | Client Project<br>074685                     | #                       |                                    | Lab Project #<br>PLAINSGH    |                    |             |                  |                                     | res-w |            |            |                   |           |              | Fax: 615-758-                               | 67-5859<br>5859    |
| Collected by (print): Justin                                                    | Site/Facility ID<br>SRS#: LF 19              |                         |                                    | P.O. #                       |                    |             | -                | 40mlAmb-Nob                         | Inn-d |            |            |                   |           |              |                                             | 115939°<br>243     |
| Collected by (signature):                                                       | Rush? (Lab MUST Be Notified)                 |                         | Notified)                          | Quote #                      |                    |             |                  | I Any                               |       | 1          |            |                   |           |              | Acctnum: B                                  | LAINSGHD           |
| Immediately<br>Packed on Ice N Y Y                                              | Same Day Same Day Next Day Two Day Three Day | y5 Day<br>y10 Day       | Day<br>(Rad Only)<br>iy (Rad Only) | Date R                       | esults Needed      | No.         | 40mlAmh-Hci      | VI 40m                              |       |            |            |                   | The same  |              | Template: <b>T</b> :<br>Prelogin: <b>P7</b> | 139790<br>/36583   |
| Sample ID                                                                       | Comp/Grab                                    | Matrix *                | Depth                              | Date                         | Time               | of<br>Cntr  | Distances of the |                                     |       |            |            |                   |           |              | PM: <b>134 - M</b> ;<br>PB:                 | ark W. Beasley     |
| MW-8-102219                                                                     | G                                            | GW                      |                                    | 10-22-19                     | 17:05              | 12          | 8                | PA                                  |       | 12         |            |                   |           |              | Shipped Via:<br>Remarks                     | 1                  |
| MW-9-102219                                                                     |                                              | GW                      |                                    | 10-22-19                     | 11.00              |             | X                | -                                   |       |            | 1          |                   |           |              | Hernarka                                    | Sample # (lab only |
| MW-4R-102219                                                                    |                                              | GW                      |                                    | 10-22-14                     | 11.30              |             | X                |                                     |       |            |            |                   |           |              |                                             | -01                |
| MW-12-102219                                                                    |                                              | GW                      |                                    | 10-22-19                     |                    | 3           | X                | 1                                   |       |            |            |                   |           |              | E.                                          | 02                 |
| RW-11-102219                                                                    |                                              | GW                      |                                    | 10-22-19                     | 1 4. 2             | 5           | X                | X                                   |       |            |            |                   |           |              |                                             | 03                 |
| RW-12-102219                                                                    |                                              | GW                      |                                    | 10-22-19                     | 18:30              | 3           | X                |                                     |       |            |            |                   |           |              | . Ander                                     | 04                 |
| Dup-1-102219                                                                    | V                                            | GW                      |                                    | 10-22-19                     |                    | 3           | X                |                                     |       |            |            |                   |           | ++           |                                             | 05                 |
| Trip blank                                                                      | 4                                            | GW                      | -                                  | 10-22-19                     | INTE               | 3           | X                |                                     |       |            | -          |                   |           |              |                                             | 06                 |
| Sec. Stranger                                                                   |                                              | GW                      | 1                                  |                              | NIA                | No          | ×                |                                     |       |            |            |                   | -         | ++           |                                             | 59                 |
| TRIP BLANK                                                                      |                                              | GW                      |                                    |                              | San Ir             |             |                  |                                     |       |            | 11.00      |                   |           |              |                                             |                    |
| S - Soil AIR - Air F - Filter<br>W - Groundwater B - Bioassay<br>W - WasteWater | Remarks: R<br>FI                             | leport t                | in SPLs                            | s<br>Concentratio            | ions               |             |                  |                                     |       | рн         | Tem;       | P                 | Cog s     | Sample       | Receipt Chec                                | klist              |
|                                                                                 | Samples returned via:<br>UPSFedExCourier     |                         |                                    | Tra                          | Tracking #         |             |                  |                                     |       | Flow Other |            | Bottle            | es arrive | urate: 7     | NP Y N                                      |                    |
| Relinquished by : (Signature)                                                   | D                                            | Date:<br>10-25-1        | IG Time                            | e:<br>fius Rece              | eived by: (Signat  | ture)       |                  | -                                   | Trip  | Blank Rec  | ceived: Ye | S (NO)            | VOA Ze    | To Headsp    | Applicable<br>Dace:                         |                    |
| telinguished by : (Signature)                                                   | - 0                                          | Date:                   | Time:                              | Rece                         | eived by: (Signat  | turo)       |                  |                                     |       |            | Н          | ICL / MeoH        | RAD Sc    | reen <0.5    | mR/hr:                                      |                    |
| and                                                                             | 0                                            | 0-5-1                   | 7 (2)                              | S au:                        | 1                  | urej        |                  |                                     | Tem   | ip: Asert  | °C Bottle  | BR<br>s Received: |           |              |                                             |                    |
| elinquished by : (Signature)                                                    | D                                            | Date:                   | Time:                              |                              | ived for lab by: ( | (Signature) |                  | 1000                                | 1-8   | 1-0-28     | 2          | 3                 | in preser | vation requi | ired by Login: D                            | ate/Time           |
|                                                                                 |                                              |                         | and a                              | 1º                           | 110C               | the         |                  |                                     | Date: | - 122      | Time:      | 8:00              | Hold:     |              |                                             |                    |

# Matt Shacklock

Pace Analytical <sup>®</sup> National Center for Testing & Innovation

| Login #: L1154397 Client: PLAINSGHI      | D Date: 10/26/19 | Evaluated by: Jeremy |
|------------------------------------------|------------------|----------------------|
| von-Conformance (check applicable items) | ems)             |                      |

| Sample Integrity                  | Chain of Custody Clarification                   |                                                    |
|-----------------------------------|--------------------------------------------------|----------------------------------------------------|
| Parameter(s) past holding<br>time | Login Clarification Needed                       | If Broken Container:                               |
| Temperature not in<br>range       | Chain of custody is incomplete                   | Insufficient packing material around container     |
| Improper container<br>type        | Please specify Metals requested.                 | Insufficient packing material inside<br>cooler     |
| pH not in range.                  | Please specify TCLP requested.                   | Improper handling by carrier (FedEx / UPS / Courie |
| Insufficient sample volume.       | Received additional samples not listed on coc.   | Sample was<br>frozen                               |
| Sample is biphasic.               | Sample ids on containers do not match ids on coc | Container lid not intact                           |
| Vials received with headspace.    | x Trip Blank not received.                       | If no Chain of Custody:                            |
| Broken container                  | Client did not "X" analysis.                     | Received by:                                       |
| Broken container:                 | Chain of Custody is missing                      | Date/Time:                                         |
| Sufficient sample remains         |                                                  | Temp./Cont. Rec./pH:                               |
|                                   |                                                  | Carrier:                                           |
|                                   |                                                  | Tracking#                                          |

# Login Comments: Did not receive TRIP BLANK

| Client informed by: | Call         | Email | Voice Mail | Date: 10/28/19 | Time: 1030 |
|---------------------|--------------|-------|------------|----------------|------------|
| TSR Initials: MB    | Client Conta | ct:   |            |                |            |

Disregard this TB - reference L1154385-14, L1154391-15, & L1154393-16 for trip blank data

Notice: This communication and any attached files may contain privileged or other confidential information. If you have received this in error, please contact the sender immediately via reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.



# ANALYTICAL REPORT

November 26, 2019

#### Plains All American, LP - GHD

Sample Delivery Group: L1160934 Samples Received: 11/14/2019 Project Number: 074685 Description: Site: Report To:

Darr Angell #2- Lea County, New Mexico SRS#: LF 1999-62 John Schnable 2135 S Loop 250 W Midland, TX 79703

Тс Ss Cn Ϋ́r Śr Qc GI AI Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685

SDG: L1160934

DATE/TIME: 11/26/19 08:18 PAGE: 1 of 16

#### TABLE OF CONTENTS

| Cp: Cover Page                                               | 1  |
|--------------------------------------------------------------|----|
| Tc: Table of Contents                                        | 2  |
| Ss: Sample Summary                                           | 3  |
| Cn: Case Narrative                                           | 4  |
| Tr: TRRP Summary                                             | 5  |
| TRRP form R                                                  | 6  |
| TRRP form S                                                  | 7  |
| TRRP Exception Reports                                       | 8  |
| Sr: Sample Results                                           | 9  |
| RW-11-111219 L1160934-01                                     | 9  |
| RW-12-111219 L1160934-02                                     | 10 |
| Qc: Quality Control Summary                                  | 11 |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM | 11 |
| GI: Glossary of Terms                                        | 14 |
| Al: Accreditations & Locations                               | 15 |
| Sc: Sample Chain of Custody                                  | 16 |

<sup>1</sup>Cp <sup>2</sup>Tc <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Tr <sup>6</sup>Sr <sup>7</sup>Qc <sup>8</sup>Gl <sup>9</sup>Al <sup>10</sup>Sc

\*

ACCOUNT: Plains All American, LP - GHD PROJECT: 074685 SDG: L1160934 DATE/TIME: 11/26/19 08:18

**PAGE**: 2 of 16

#### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

|                                                              |           |          | Collected by   | Collected date/time | Received date/time<br>11/14/19 09:30 |                |
|--------------------------------------------------------------|-----------|----------|----------------|---------------------|--------------------------------------|----------------|
| RW-11-111219 L1160934-01 GW                                  |           |          | Justin Nixon   | 11/12/19 13:00      |                                      |                |
| Method                                                       | Batch     | Dilution | Preparation    | Analysis            | Analyst                              | Location       |
|                                                              |           |          | date/time      | date/time           |                                      |                |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM | WG1382732 | 1        | 11/18/19 18:13 | 11/19/19 06:18      | ADF                                  | Mt. Juliet, TN |
|                                                              |           |          | Collected by   | Collected date/time | Received da                          | te/time        |
| RW-12-111219 L1160934-02 GW                                  |           |          | Justin Nixon   | 11/12/19 13:30      | 11/14/19 09:3                        | 0              |
| Method                                                       | Batch     | Dilution | Preparation    | Analysis            | Analyst                              | Location       |
|                                                              |           |          | date/time      | date/time           |                                      |                |
| Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM | WG1382732 | 1        | 11/18/19 18:13 | 11/19/19 06:40      | ADF                                  | Mt. Juliet, TN |

\*

Ср

SDG: L1160934 DATE/TIME: 11/26/19 08:18

#### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

Τс Ss Cn Tr Sr Qc GI AI Śc

SDG: L1160934

PAGE: 4 of 16

#### Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

#### Laboratory Review Checklist: Reportable Data

ķ

| Lab                             | orato                                  | ry Name: Pace Analytical National                                                                                                                           | LRC Date: 11/26/2019 08:18                                 |          |          |                 |          |                                              |
|---------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|----------|-----------------|----------|----------------------------------------------|
| Proj<br>Me>                     |                                        | lame: Darr Angell #2- Lea County, New                                                                                                                       | Laboratory Job Number: L1160934-01 and 02                  |          |          |                 |          |                                              |
| Rev                             | viewe                                  | r Name: Mark W. Beasley                                                                                                                                     | Prep Batch Number(s): WG1382732                            |          |          |                 |          |                                              |
| # <sup>1</sup>                  | A <sup>2</sup>                         | Description                                                                                                                                                 |                                                            | Yes      | No       | NA <sup>3</sup> | NR⁴      | ER# <sup>5</sup>                             |
| R1                              | OI                                     | Chain-of-custody (C-O-C)                                                                                                                                    |                                                            |          |          |                 |          |                                              |
|                                 |                                        | Did samples meet the laboratory's standard conditions                                                                                                       | s of sample acceptability upon receipt?                    | Х        |          |                 |          |                                              |
|                                 |                                        | Were all departures from standard conditions describe                                                                                                       | d in an exception report?                                  |          |          | Х               |          |                                              |
| R2                              | OI                                     | Sample and quality control (QC) identification                                                                                                              |                                                            |          |          |                 |          |                                              |
|                                 |                                        | Are all field sample ID numbers cross-referenced to the                                                                                                     | e laboratory ID numbers?                                   | Х        |          |                 |          |                                              |
|                                 |                                        | Are all laboratory ID numbers cross-referenced to the                                                                                                       | corresponding QC data?                                     | Х        |          |                 |          |                                              |
| R3                              | OI                                     | Test reports                                                                                                                                                |                                                            |          |          |                 |          |                                              |
|                                 |                                        | Were all samples prepared and analyzed within holding                                                                                                       | g times?                                                   | Х        |          |                 |          |                                              |
|                                 |                                        | Other than those results < MQL, were all other raw values                                                                                                   | ues bracketed by calibration standards?                    | Х        |          |                 |          |                                              |
|                                 |                                        | Were calculations checked by a peer or supervisor?                                                                                                          |                                                            | Х        |          |                 |          |                                              |
|                                 |                                        | Were all analyte identifications checked by a peer or s                                                                                                     | upervisor?                                                 | Х        |          |                 |          |                                              |
|                                 |                                        | Were sample detection limits reported for all analytes r                                                                                                    | not detected?                                              | Х        |          |                 |          |                                              |
|                                 |                                        | Were all results for soil and sediment samples reported                                                                                                     | d on a dry weight basis?                                   | Х        |          |                 |          |                                              |
|                                 |                                        | Were % moisture (or solids) reported for all soil and see                                                                                                   | diment samples?                                            |          |          | Х               |          |                                              |
|                                 |                                        | Were bulk soils/solids samples for volatile analysis extr                                                                                                   | racted with methanol per SW846 Method 5035?                |          |          | Х               |          |                                              |
|                                 |                                        | If required for the project, are TICs reported?                                                                                                             |                                                            |          |          | Х               |          |                                              |
| २४                              | 0                                      | Surrogate recovery data                                                                                                                                     |                                                            |          |          |                 |          |                                              |
|                                 |                                        | Were surrogates added prior to extraction?                                                                                                                  |                                                            | Х        |          |                 |          |                                              |
|                                 |                                        | Were surrogate percent recoveries in all samples withi                                                                                                      | n the laboratory QC limits?                                | Х        |          |                 |          |                                              |
| 75                              | OI                                     | Test reports/summary forms for blank samples                                                                                                                |                                                            |          |          |                 |          |                                              |
|                                 |                                        | Were appropriate type(s) of blanks analyzed?                                                                                                                |                                                            | X        |          |                 |          |                                              |
|                                 |                                        | Were blanks analyzed at the appropriate frequency?                                                                                                          |                                                            | Х        |          |                 |          |                                              |
|                                 |                                        | Were method blanks taken through the entire analytica                                                                                                       | al process, including preparation and, if applicable,      | X        |          |                 |          |                                              |
|                                 |                                        | cleanup procedures?                                                                                                                                         |                                                            |          |          |                 |          | <u> </u>                                     |
|                                 |                                        | Were blank concentrations < MQL?                                                                                                                            |                                                            | X        |          |                 |          |                                              |
| R6                              | OI                                     | Laboratory control samples (LCS):                                                                                                                           |                                                            | r        | 1        | 1               | 1        | -                                            |
|                                 |                                        | Were all COCs included in the LCS?                                                                                                                          |                                                            | X        |          |                 |          | <u> </u>                                     |
|                                 |                                        | Was each LCS taken through the entire analytical proc                                                                                                       | edure, including prep and cleanup steps?                   | X        |          |                 |          | <u> </u>                                     |
|                                 |                                        | Were LCSs analyzed at the required frequency?                                                                                                               |                                                            | X        |          |                 |          |                                              |
|                                 |                                        | Were LCS (and LCSD, if applicable) %Rs within the labo                                                                                                      |                                                            | X        |          |                 | I        |                                              |
|                                 |                                        | Does the detectability check sample data document th<br>used to calculate the SDLs?                                                                         | e laboratory's capability to detect the COCs at the MDL    | X        |          |                 |          |                                              |
|                                 |                                        | Was the LCSD RPD within QC limits?                                                                                                                          |                                                            | x        |          |                 |          |                                              |
| R7                              | OI                                     | Matrix spike (MS) and matrix spike duplicate (MSD) dat                                                                                                      | 2                                                          |          | I        | 1               | I        |                                              |
| ()                              |                                        | Were the project/method specified analytes included in                                                                                                      |                                                            | X        | 1        | 1               | 1        | <u>г</u>                                     |
|                                 |                                        | Were MS/MSD analyzed at the appropriate frequency?                                                                                                          |                                                            | X        |          |                 |          |                                              |
|                                 |                                        | Were MS (and MSD, if applicable) %Rs within the laborate                                                                                                    |                                                            |          | Х        |                 |          | 1                                            |
|                                 |                                        | Were MS/MSD RPDs within laboratory QC limits?                                                                                                               |                                                            | x        | ^        |                 |          | <u>+                                    </u> |
| 78                              | 0                                      | Analytical duplicate data                                                                                                                                   |                                                            |          |          | 1               | 1        | <u> </u>                                     |
| 10                              |                                        | Were appropriate analytical duplicates analyzed for ea                                                                                                      | ch matrix?                                                 | 1        | 1        | X               | 1        | T                                            |
|                                 |                                        | Were analytical duplicates analyzed to real                                                                                                                 |                                                            | <u> </u> | 1        | X               |          | +                                            |
|                                 |                                        | Were RPDs or relative standard deviations within the la                                                                                                     | • •                                                        |          |          | X               |          | <del> </del>                                 |
| 29                              | OI                                     | Method quantitation limits (MQLs):                                                                                                                          |                                                            | l        | I        |                 | I        |                                              |
| 19                              | 10                                     | Are the MQLs for each method analyte included in the                                                                                                        | laboratory data package?                                   | X        | 1        | 1               | 1        | T                                            |
|                                 |                                        | Do the MQLs correspond to the concentration of the lo                                                                                                       |                                                            | X        |          |                 |          |                                              |
|                                 |                                        | Are unadjusted MQLs and DCSs included in the labora                                                                                                         |                                                            | X        |          |                 |          |                                              |
| R10                             | OI                                     | Other problems/anomalies                                                                                                                                    |                                                            |          | I        | 1               | I        | L                                            |
| 10                              |                                        | Are all known problems/anomalies/special conditions r                                                                                                       | noted in this LPC and EP2                                  | X        | 1        | T               | 1        | 1                                            |
|                                 |                                        | Was applicable and available technology used to lowe                                                                                                        | r the SDL to minimize the matrix interference effects on   | X        |          | 1               |          | +                                            |
|                                 |                                        |                                                                                                                                                             | aboratory Accreditation Program for the analytes, matrices | x        | -        |                 | -        |                                              |
|                                 |                                        | and methods associated with this laboratory data pack                                                                                                       | kage?                                                      |          | Ļ        | <u> </u>        | <u> </u> |                                              |
| shoul<br>2. O<br>3. NA<br>4. NF | ld be r<br>= orga<br>A = No<br>R = Not | etained and made available upon request for the appropriate appropriate analyses; I = inorganic analyses (and general chemic applicable; etails); reviewed; |                                                            |          | dentifie | ed by th        | e letter | "S"                                          |

#### Laboratory Review Checklist: Supporting Data

1 ķ

| Lab                                     | orato                       | ory Name: Pace Analytical National                                                                                                                                                                           | LRC Date: 11/26/2019 08:18                            |                |              |                 |                 |          |  |  |  |
|-----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|--------------|-----------------|-----------------|----------|--|--|--|
|                                         | ject N<br>xico              | Name: Darr Angell #2- Lea County, New                                                                                                                                                                        | Laboratory Job Number: L1160934-01 and 02             |                |              |                 |                 |          |  |  |  |
| Rev                                     | viewe                       | er Name: Mark W. Beasley                                                                                                                                                                                     | Prep Batch Number(s): WG1382732                       |                |              |                 |                 |          |  |  |  |
| # <sup>1</sup>                          | A <sup>2</sup>              | Description                                                                                                                                                                                                  |                                                       | Yes            | No           | NA <sup>3</sup> | NR <sup>4</sup> | ER#⁵     |  |  |  |
| "<br>S1                                 | 01                          | Initial calibration (ICAL)                                                                                                                                                                                   |                                                       | 1100           | 1.10         | 1.04            | 1               |          |  |  |  |
| 51                                      |                             | Were response factors and/or relative response factors                                                                                                                                                       | tors for each analyte within QC limits?               | X              | 1            | 1               | T               | 1        |  |  |  |
|                                         |                             | Were percent RSDs or correlation coefficient criteria                                                                                                                                                        | •                                                     | X              |              |                 |                 |          |  |  |  |
|                                         |                             | Was the number of standards recommended in the                                                                                                                                                               |                                                       | X              |              |                 | 1               |          |  |  |  |
|                                         |                             | Were all points generated between the lowest and                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                 | X              |              |                 |                 |          |  |  |  |
|                                         |                             | Are ICAL data available for all instruments used?                                                                                                                                                            |                                                       | X              |              |                 |                 |          |  |  |  |
|                                         |                             | Has the initial calibration curve been verified using a                                                                                                                                                      | an appropriate second source standard?                | X              |              |                 | 1               |          |  |  |  |
| 52                                      | OI                          | Initial and continuing calibration verification (ICCV a                                                                                                                                                      |                                                       |                |              |                 | I               | I        |  |  |  |
|                                         |                             | Was the CCV analyzed at the method-required freq                                                                                                                                                             |                                                       | X              | Т            | 1               | Т               | 1        |  |  |  |
|                                         |                             | Was the Cev analyzed at the method required neq<br>Were percent differences for each analyte within the                                                                                                      |                                                       | X              |              |                 | 1               |          |  |  |  |
|                                         |                             | Was the ICAL curve verified for each analyte?                                                                                                                                                                |                                                       | X              |              |                 |                 |          |  |  |  |
|                                         |                             | Was the absolute value of the analyte concentration                                                                                                                                                          | in the inorganic CCB < MDL?                           |                |              | Х               |                 |          |  |  |  |
| S3                                      | 0                           | Mass spectral tuning                                                                                                                                                                                         |                                                       |                |              |                 | 1               | · · · ·  |  |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ĭ                           | Was the appropriate compound for the method use                                                                                                                                                              | d for tuning?                                         | X              | T            | T               | 1               | 1        |  |  |  |
|                                         |                             | Was the appropriate compound for the method use                                                                                                                                                              |                                                       | X              | +            |                 | <u> </u>        |          |  |  |  |
| 54                                      | 0                           | Internal standards (IS)                                                                                                                                                                                      |                                                       |                | <u> </u>     |                 | I               |          |  |  |  |
| 7                                       |                             | Were IS area counts and retention times within the                                                                                                                                                           | method-required OC limits?                            | X              | 1            | 1               | 1               | <u> </u> |  |  |  |
| 55                                      | OI                          | Raw data (NELAC Section 5.5.10)                                                                                                                                                                              | nethod-required de ninits:                            | ^              |              | <u> </u>        | <u> </u>        |          |  |  |  |
| 50                                      |                             | Were the raw data (for example, chromatograms, sp                                                                                                                                                            | poetral data) roviowod by an analyst?                 | X              | 1            | T               | T               | T        |  |  |  |
|                                         |                             | Were data associated with manual integrations flage                                                                                                                                                          |                                                       |                |              |                 |                 | <u> </u> |  |  |  |
| 56                                      | 0                           | Dual column confirmation                                                                                                                                                                                     |                                                       | ^              |              | 1               | I               | <u> </u> |  |  |  |
| 50                                      | 10                          | Did dual column confirmation results meet the meth                                                                                                                                                           | ad required QC2                                       | -              | T            | X               | 1               | r        |  |  |  |
| 57                                      | 0                           | Tentatively identified compounds (TICs)                                                                                                                                                                      |                                                       |                |              |                 | I               | I        |  |  |  |
| 57                                      |                             | If TICs were requested, were the mass spectra and                                                                                                                                                            | TIC data subject to appropriate sheeks?               |                | 1            | X               | T               | T T      |  |  |  |
| 58                                      |                             | Interference Check Sample (ICS) results                                                                                                                                                                      |                                                       |                |              | ^               | L               | I        |  |  |  |
| 50                                      |                             | Were percent recoveries within method QC limits?                                                                                                                                                             |                                                       |                | 1            | X               | T               | <u> </u> |  |  |  |
| 59                                      |                             | Serial dilutions, post digestion spikes, and method of                                                                                                                                                       | of standard additions                                 |                |              |                 | I               | <u> </u> |  |  |  |
| 59                                      |                             | Were percent differences, recoveries, and the linear                                                                                                                                                         |                                                       |                | 1            | X               | T               | T        |  |  |  |
| 510                                     | OI                          | Method detection limit (MDL) studies                                                                                                                                                                         | ity within the QC limits speched in the method:       |                | I            |                 | I               | I        |  |  |  |
| 310                                     |                             | Was a MDL study performed for each reported anal                                                                                                                                                             | uto2                                                  | X              | 1            | 1               | T               | r –      |  |  |  |
|                                         |                             | Is the MDL either adjusted or supported by the anal                                                                                                                                                          |                                                       | $-\frac{x}{x}$ |              |                 |                 | <u> </u> |  |  |  |
| S11                                     | OI                          | Proficiency test reports                                                                                                                                                                                     |                                                       | ^              | I            | I               | I               | L        |  |  |  |
| 211                                     |                             | Was the laboratory's performance acceptable on the                                                                                                                                                           | a applicable proficiency tests or evaluation studies? | X              | 1            | 1               | T               | r –      |  |  |  |
| 512                                     | OI                          | Standards documentation                                                                                                                                                                                      | e applicable proficiency tests of evaluation studies: | ^              |              | 1               | 1               |          |  |  |  |
| 712                                     |                             | Are all standards used in the analyses NIST-traceab                                                                                                                                                          | le or obtained from other appropriate sources?        | X              | 1            | 1               | T               | 1        |  |  |  |
| S13                                     | OI                          | Compound/analyte identification procedures                                                                                                                                                                   | te of obtained nom other appropriate sources.         |                |              | 1               | 1               |          |  |  |  |
| 515                                     |                             | Are the procedures for compound/analyte identification                                                                                                                                                       | tion documented?                                      | X              | 1            | T               | 1               | 1        |  |  |  |
| S14                                     | OI                          | Demonstration of analyst competency (DOC)                                                                                                                                                                    | tion documented:                                      | ^              |              |                 | <u> </u>        |          |  |  |  |
|                                         |                             | Was DOC conducted consistent with NELAC Chapte                                                                                                                                                               | or 52                                                 | X              | 1            | 1               | T               | <u> </u> |  |  |  |
|                                         |                             | Is documentation of the analyst's competency up-to                                                                                                                                                           |                                                       | ×              |              |                 | -               |          |  |  |  |
| 515                                     | OI                          | Verification/validation documentation for methods (                                                                                                                                                          |                                                       | ^              | 1            | 1               | 1               | I        |  |  |  |
| 515                                     |                             | Are all the methods used to generate the data docu                                                                                                                                                           |                                                       | X              |              | T               | Г               | 1        |  |  |  |
| S16                                     | OI                          | Laboratory standard operating procedures (SOPs)                                                                                                                                                              | mented, vermed, and valuated, where applicable?       | I ^            | 1            | 1               | 1               | I        |  |  |  |
| טוכ                                     |                             |                                                                                                                                                                                                              | thed performed                                        | X              |              | 1               | 1               | <u>г</u> |  |  |  |
| 1 14.                                   | -1 o an                     | Are laboratory SOPs current and on file for each me                                                                                                                                                          | •                                                     |                | l<br>alartif | <br>            |                 | "C"      |  |  |  |
| shou<br>2. O<br>3. N/                   | ld be r<br>= orga<br>A = No | entified by the letter of must be included in the labora<br>retained and made available upon request for the app<br>anic analyses; I = inorganic analyses (and general che<br>ot applicable;<br>ot reviewed; |                                                       | us). items     |              | եղ որ էլ        | elletter        | 3        |  |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1160934

#### Laboratory Review Checklist: Exception Reports ONE LAB. NATIONWIDE.

| Laborato            | ry Name: Pace Analytical National                                                            | LRC Date: 11/26/2019 08:18                |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|
| Project N<br>Mexico | lame: Darr Angell #2- Lea County, New                                                        | Laboratory Job Number: L1160934-01 and 02 |  |  |  |  |  |
| Reviewe             | r Name: Mark W. Beasley                                                                      | Prep Batch Number(s): WG1382732           |  |  |  |  |  |
| ER # <sup>1</sup>   | Description                                                                                  |                                           |  |  |  |  |  |
| 1                   | 8270 C-SIM WG1382732 Naphthalene: Percent Recovery is outside of established control limits. |                                           |  |  |  |  |  |

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; 1 = inorganic analyses (and general chemistry, when applicable);
3. NA = Not applicable;
4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

#### SAMPLE RESULTS - 01 L1160934

#### Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM

|                             | Result    | Qualifier | SDL        | Unadj. MQL | MQL       | Dilution | Analysis         | Batch     |
|-----------------------------|-----------|-----------|------------|------------|-----------|----------|------------------|-----------|
| Analyte                     | mg/l      |           | mg/l       | mg/l       | mg/l      |          | date / time      |           |
| Anthracene                  | 0.00112   |           | 0.00000800 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Acenaphthene                | U         |           | 0.0000100  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Acenaphthylene              | U         |           | 0.00000700 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Benzo(a)anthracene          | 0.000318  |           | 0.0000830  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Benzo(a)pyrene              | 0.0000296 | J         | 0.0000158  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Benzo(b)fluoranthene        | 0.0000490 | J         | 0.00000212 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Benzo(g,h,i)perylene        | 0.0000273 | J         | 0.00000227 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Benzo(k)fluoranthene        | U         |           | 0.0000255  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Chrysene                    | 0.000157  |           | 0.0000144  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Dibenz(a,h)anthracene       | U         |           | 0.00000454 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Dibenzofuran                | 0.00159   |           | 0.00000105 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Fluoranthene                | 0.000153  |           | 0.0000165  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Fluorene                    | 0.00192   |           | 0.0000898  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Indeno(1,2,3-cd)pyrene      | U         |           | 0.00000739 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Naphthalene                 | 0.00242   |           | 0.0000120  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:18 | WG1382732 |
| Phenanthrene                | 0.00325   |           | 0.0000184  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| Pyrene                      | 0.000402  |           | 0.0000155  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:18 | WG1382732 |
| 1-Methylnaphthalene         | 0.00511   |           | 0.0000189  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:18 | WG1382732 |
| 2-Methylnaphthalene         | 0.00334   |           | 0.0000155  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:18 | WG1382732 |
| 2-Chloronaphthalene         | U         |           | 0.0000165  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:18 | WG1382732 |
| (S) Nitrobenzene-d5         | 103       |           |            |            | 11.0-135  |          | 11/19/2019 06:18 | WG1382732 |
| (S) 2-Fluorobiphenyl        | 88.5      |           |            |            | 32.0-120  |          | 11/19/2019 06:18 | WG1382732 |
| (S) p-Terphenyl-d14         | 94.5      |           |            |            | 23.0-122  |          | 11/19/2019 06:18 | WG1382732 |
| (S) 2-Methylnaphthalene-D10 | 83.0      |           |            |            | 50.0-150  |          | 11/19/2019 06:18 | WG1382732 |
| (S) Fluoranthene-D10        | 103       |           |            |            | 50.0-150  |          | 11/19/2019 06:18 | WG1382732 |

SDG: L1160934

#### SAMPLE RESULTS - 02 L1160934

#### Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM

|                             | Result    | Qualifier | SDL        | Unadj. MQL | MQL       | Dilution | Analysis         | Batch     |
|-----------------------------|-----------|-----------|------------|------------|-----------|----------|------------------|-----------|
| Analyte                     | mg/l      |           | mg/l       | mg/l       | mg/l      |          | date / time      |           |
| Anthracene                  | 0.0000849 |           | 0.00000800 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Acenaphthene                | U         |           | 0.0000100  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Acenaphthylene              | U         |           | 0.00000700 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Benzo(a)anthracene          | U         |           | 0.0000830  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Benzo(a)pyrene              | U         |           | 0.0000158  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Benzo(b)fluoranthene        | U         |           | 0.00000212 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Benzo(g,h,i)perylene        | U         |           | 0.00000227 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Benzo(k)fluoranthene        | U         |           | 0.0000255  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Chrysene                    | U         |           | 0.0000144  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Dibenz(a,h)anthracene       | U         |           | 0.00000454 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Dibenzofuran                | 0.00125   |           | 0.00000105 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Fluoranthene                | U         |           | 0.0000165  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Fluorene                    | 0.000319  |           | 0.0000898  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Indeno(1,2,3-cd)pyrene      | U         |           | 0.00000739 | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Naphthalene                 | 0.0104    |           | 0.0000120  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:40 | WG1382732 |
| Phenanthrene                | 0.000714  |           | 0.0000184  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| Pyrene                      | U         |           | 0.0000155  | 0.0000500  | 0.0000500 | 1        | 11/19/2019 06:40 | WG1382732 |
| 1-Methylnaphthalene         | 0.00597   |           | 0.0000189  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:40 | WG1382732 |
| 2-Methylnaphthalene         | 0.00660   |           | 0.0000155  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:40 | WG1382732 |
| 2-Chloronaphthalene         | U         |           | 0.0000165  | 0.000250   | 0.000250  | 1        | 11/19/2019 06:40 | WG1382732 |
| (S) Nitrobenzene-d5         | 134       |           |            |            | 11.0-135  |          | 11/19/2019 06:40 | WG1382732 |
| (S) 2-Fluorobiphenyl        | 80.5      |           |            |            | 32.0-120  |          | 11/19/2019 06:40 | WG1382732 |
| (S) p-Terphenyl-d14         | 91.5      |           |            |            | 23.0-122  |          | 11/19/2019 06:40 | WG1382732 |
| (S) 2-Methylnaphthalene-D10 | 112       |           |            |            | 50.0-150  |          | 11/19/2019 06:40 | WG1382732 |
| (S) Fluoranthene-D10        | 106       |           |            |            | 50.0-150  |          | 11/19/2019 06:40 | WG1382732 |

L1160934-01,02

#### Method Blank (MB)

| (MB) R3473468-2 11/19/19    | 00:22      |              |            |           | Ср              |
|-----------------------------|------------|--------------|------------|-----------|-----------------|
|                             | MB Result  | MB Qualifier | MB MDL     | MB RDL    |                 |
| Analyte                     | mg/l       |              | mg/l       | mg/l      | Tc              |
| Anthracene                  | U          |              | 0.00000800 | 0.0000500 |                 |
| Acenaphthene                | U          |              | 0.0000100  | 0.0000500 | <sup>3</sup> Ss |
| Acenaphthylene              | U          |              | 0.00000700 | 0.0000500 | 00              |
| Benzo(a)anthracene          | U          |              | 0.00000830 | 0.0000500 | 4               |
| Benzo(a)pyrene              | U          |              | 0.0000158  | 0.0000500 | Cn              |
| Benzo(b)fluoranthene        | U          |              | 0.00000212 | 0.0000500 |                 |
| Benzo(g,h,i)perylene        | U          |              | 0.00000227 | 0.0000500 | ⁵Tr             |
| Benzo(k)fluoranthene        | U          |              | 0.0000255  | 0.0000500 |                 |
| Chrysene                    | U          |              | 0.0000144  | 0.0000500 | 6               |
| Dibenz(a,h)anthracene       | U          |              | 0.00000454 | 0.0000500 | ँSr             |
| Fluoranthene                | U          |              | 0.0000165  | 0.0000500 |                 |
| Fluorene                    | U          |              | 0.00000898 | 0.0000500 | <sup>7</sup> Qc |
| Indeno(1,2,3-cd)pyrene      | U          |              | 0.00000739 | 0.0000500 | ~~~             |
| Naphthalene                 | 0.0000325  | J            | 0.0000120  | 0.000250  | 8               |
| Phenanthrene                | U          |              | 0.0000184  | 0.0000500 | Ğ               |
| Pyrene                      | U          |              | 0.0000155  | 0.0000500 |                 |
| 1-Methylnaphthalene         | U          |              | 0.0000189  | 0.000250  | <sup>9</sup> Al |
| 2-Methylnaphthalene         | 0.0000161  | J            | 0.0000155  | 0.000250  | 2 M             |
| 2-Chloronaphthalene         | U          |              | 0.0000165  | 0.000250  | 10              |
| Dibenzofuran                | 0.00000195 |              | 0.00000105 | 0.0000500 | Sc              |
| (S) Nitrobenzene-d5         | 102        |              |            | 11.0-135  |                 |
| (S) 2-Methylnaphthalene-d10 | 83.5       |              |            | 50.0-150  |                 |
| (S) 2-Fluorobiphenyl        | 80.5       |              |            | 32.0-120  |                 |
| (S) Fluoranthene-d10        | 106        |              |            | 50.0-150  |                 |
| (S) p-Terphenyl-d14         | 95.5       |              |            | 23.0-122  |                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3473468-1 11/19/ | /19 00:01    |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | mg/l         | mg/l       | %        | %           |               |
| Anthracene              | 0.00200      | 0.00196    | 98.0     | 43.0-127    |               |
| Acenaphthene            | 0.00200      | 0.00169    | 84.5     | 42.0-120    |               |
| Acenaphthylene          | 0.00200      | 0.00172    | 86.0     | 43.0-120    |               |
| Benzo(a)anthracene      | 0.00200      | 0.00192    | 96.0     | 46.0-120    |               |
| Benzo(a)pyrene          | 0.00200      | 0.00195    | 97.5     | 44.0-122    |               |
| Benzo(b)fluoranthene    | 0.00200      | 0.00175    | 87.5     | 43.0-122    |               |
| Benzo(g,h,i)perylene    | 0.00200      | 0.00160    | 80.0     | 25.0-137    |               |
| Benzo(k)fluoranthene    | 0.00200      | 0.00199    | 99.5     | 39.0-128    |               |
|                         |              |            |          |             |               |

PROJECT: 074685 SDG: L1160934 DATE/TIME: 11/26/19 08:18 PAGE: 11 of 16

LCS Qualifier

L1160934-01,02

Тс

Ss

Cn

Tr

Sr

Qc

GI

ΆΙ

Sc

#### Laboratory Control Sample (LCS)

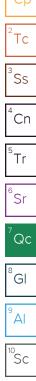
#### (LCS) R3473468-1 11/19/19 00:01

| (200) 10 17 0 100 1 17 10 10 |              |            |          |             |
|------------------------------|--------------|------------|----------|-------------|
|                              | Spike Amount | LCS Result | LCS Rec. | Rec. Limits |
| Analyte                      | mg/l         | mg/l       | %        | %           |
| Chrysene                     | 0.00200      | 0.00189    | 94.5     | 42.0-129    |
| Dibenz(a,h)anthracene        | 0.00200      | 0.00167    | 83.5     | 25.0-139    |
| Fluoranthene                 | 0.00200      | 0.00199    | 99.5     | 48.0-131    |
| Fluorene                     | 0.00200      | 0.00182    | 91.0     | 42.0-120    |
| Indeno(1,2,3-cd)pyrene       | 0.00200      | 0.00168    | 84.0     | 37.0-133    |
| Naphthalene                  | 0.00200      | 0.00155    | 77.5     | 30.0-120    |
| Phenanthrene                 | 0.00200      | 0.00181    | 90.5     | 42.0-120    |
| Pyrene                       | 0.00200      | 0.00173    | 86.5     | 38.0-124    |
| 1-Methylnaphthalene          | 0.00200      | 0.00162    | 81.0     | 43.0-120    |
| 2-Methylnaphthalene          | 0.00200      | 0.00156    | 78.0     | 40.0-120    |
| 2-Chloronaphthalene          | 0.00200      | 0.00163    | 81.5     | 39.0-120    |
| Dibenzofuran                 | 0.00200      | 0.00174    | 87.0     | 70.0-130    |
| (S) Nitrobenzene-d5          |              |            | 113      | 11.0-135    |
| (S) 2-Methylnaphthalene-d10  |              |            | 87.5     | 50.0-150    |
| (S) 2-Fluorobiphenyl         |              |            | 85.5     | 32.0-120    |
| (S) Fluoranthene-d10         |              |            | 108      | 50.0-150    |
| (S) p-Terphenyl-d14          |              |            | 98.0     | 23.0-122    |

Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM

#### L1160934-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|                        | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte                | mg/l         | mg/l            | mg/l      | mg/l       | %       | %        |          | %           |              |               | %     | %          |
| Anthracene             | 0.00200      | 0.0000849       | 0.00207   | 0.00204    | 99.3    | 97.8     | 1        | 28.0-120    |              |               | 1.46  | 25         |
| Acenaphthene           | 0.00200      | U               | 0.00187   | 0.00186    | 93.5    | 93.0     | 1        | 16.0-120    |              |               | 0.536 | 25         |
| Acenaphthylene         | 0.00200      | U               | 0.00177   | 0.00176    | 88.5    | 88.0     | 1        | 16.0-121    |              |               | 0.567 | 26         |
| Benzo(a)anthracene     | 0.00200      | U               | 0.00184   | 0.00181    | 92.0    | 90.5     | 1        | 19.0-125    |              |               | 1.64  | 26         |
| Benzo(a)pyrene         | 0.00200      | U               | 0.00111   | 0.00121    | 55.5    | 60.5     | 1        | 10.0-126    |              |               | 8.62  | 32         |
| Benzo(b)fluoranthene   | 0.00200      | U               | 0.00106   | 0.00110    | 53.0    | 55.0     | 1        | 10.0-125    |              |               | 3.70  | 36         |
| Benzo(g,h,i)perylene   | 0.00200      | U               | 0.000279  | 0.000291   | 13.9    | 14.5     | 1        | 10.0-128    |              |               | 4.21  | 37         |
| Benzo(k)fluoranthene   | 0.00200      | U               | 0.00116   | 0.00130    | 58.0    | 65.0     | 1        | 10.0-124    |              |               | 11.4  | 32         |
| Chrysene               | 0.00200      | U               | 0.00173   | 0.00172    | 86.5    | 86.0     | 1        | 18.0-127    |              |               | 0.580 | 26         |
| Dibenz(a,h)anthracene  | 0.00200      | U               | 0.000270  | 0.000250   | 13.5    | 12.5     | 1        | 10.0-132    |              |               | 7.69  | 43         |
| Fluoranthene           | 0.00200      | U               | 0.00203   | 0.00199    | 102     | 99.5     | 1        | 37.0-122    |              |               | 1.99  | 23         |
| Fluorene               | 0.00200      | 0.000319        | 0.00218   | 0.00217    | 93.0    | 92.5     | 1        | 20.0-120    |              |               | 0.460 | 26         |
| Indeno(1,2,3-cd)pyrene | 0.00200      | U               | 0.000341  | 0.000369   | 17.0    | 18.4     | 1        | 10.0-130    |              |               | 7.89  | 38         |
| Naphthalene            | 0.00200      | 0.0104          | 0.0107    | 0.0106     | 15.0    | 10.0     | 1        | 14.0-120    |              | V             | 0.939 | 20         |
| Phenanthrene           | 0.00200      | 0.000714        | 0.00254   | 0.00255    | 91.3    | 91.8     | 1        | 26.0-120    |              |               | 0.393 | 24         |
| Pyrene                 | 0.00200      | U               | 0.00182   | 0.00175    | 91.0    | 87.5     | 1        | 29.0-120    |              |               | 3.92  | 24         |


 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Plains All American, LP - GHD
 074685
 L1160934
 11/26/19 08:18
 12 of 16

L1160934-01,02

#### L1160934-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1160934-02 11/19/19 0 | 6:40 • (MS) R3 | 3473468-3 11/1  | 9/19 07:01 • (M | SD) R3473468- | 4 11/19/19 07:2 | 2        |          |             |              |               |       |            |
|-----------------------------|----------------|-----------------|-----------------|---------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                             | Spike Amount   | Original Result | MS Result       | MSD Result    | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                     | mg/l           | mg/l            | mg/l            | mg/l          | %               | %        |          | %           |              |               | %     | %          |
| 1-Methylnaphthalene         | 0.00200        | 0.00597         | 0.00698         | 0.00687       | 50.5            | 45.0     | 1        | 10.0-145    |              |               | 1.59  | 24         |
| 2-Methylnaphthalene         | 0.00200        | 0.00660         | 0.00750         | 0.00737       | 45.0            | 38.5     | 1        | 10.0-143    |              |               | 1.75  | 24         |
| 2-Chloronaphthalene         | 0.00200        | U               | 0.00158         | 0.00158       | 79.0            | 79.0     | 1        | 16.0-120    |              |               | 0.000 | 25         |
| (S) Nitrobenzene-d5         |                |                 |                 |               | 118             | 115      |          | 11.0-135    |              |               |       |            |
| (S) 2-Methylnaphthalene-d10 |                |                 |                 |               | 96.5            | 93.0     |          | 50.0-150    |              |               |       |            |
| (S) 2-Fluorobiphenyl        |                |                 |                 |               | 83.0            | 82.5     |          | 32.0-120    |              |               |       |            |
| (S) Fluoranthene-d10        |                |                 |                 |               | 112             | 111      |          | 50.0-150    |              |               |       |            |
| (S) p-Terphenyl-d14         |                |                 |                 |               | 92.0            | 90.5     |          | 23.0-122    |              |               |       |            |



SDG: L1160934 DATE/TIME: 11/26/19 08:18

PAGE: 13 of 16

#### GLOSSARY OF TERMS

#### ₩

Тс

ŚS

Cn

Τr

Śr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MQL                             | Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SDL                             | Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                                           |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unadj. MQL                      | Unadjusted Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                            |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                        |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol<br>observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will<br>be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                   |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | The identification of the analyte is acceptable: the reported value is an estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Qualifier | Description                                                                         |
|-----------|-------------------------------------------------------------------------------------|
| J         | The identification of the analyte is acceptable; the reported value is an estimate. |
| V         | The sample concentration is too high to evaluate accurate spike recoveries.         |

#### **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska                    |
|------------------------|-------------|-----------------------------|
| Alaska                 | 17-026      | Nevada                      |
| Arizona                | AZ0612      | New Hampshire               |
| Arkansas               | 88-0469     | New Jersey–NELAF            |
| California             | 2932        | New Mexico <sup>1</sup>     |
| Colorado               | TN00003     | New York                    |
| Connecticut            | PH-0197     | North Carolina              |
| Florida                | E87487      | North Carolina <sup>1</sup> |
| Georgia                | NELAP       | North Carolina <sup>3</sup> |
| Georgia <sup>1</sup>   | 923         | North Dakota                |
| Idaho                  | TN00003     | Ohio-VAP                    |
| Illinois               | 200008      | Oklahoma                    |
| Indiana                | C-TN-01     | Oregon                      |
| lowa                   | 364         | Pennsylvania                |
| Kansas                 | E-10277     | Rhode Island                |
| Kentucky <sup>16</sup> | 90010       | South Carolina              |
| Kentucky <sup>2</sup>  | 16          | South Dakota                |
| Louisiana              | Al30792     | Tennessee <sup>1 4</sup>    |
| Louisiana 1            | LA180010    | Texas                       |
| Maine                  | TN0002      | Texas ⁵                     |
| Maryland               | 324         | Utah                        |
| Massachusetts          | M-TN003     | Vermont                     |
| Michigan               | 9958        | Virginia                    |
| Minnesota              | 047-999-395 | Washington                  |
| Mississippi            | TN00003     | West Virginia               |
| Missouri               | 340         | Wisconsin                   |
| Montana                | CERT0086    | Wyoming                     |
|                        |             | , , ,                       |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1160934

PAGE: 15 of 16

11/26/19 08:18

| Plains All American, LP - GHD<br>2135 S Loop 250 W |                                                                   | Billing Information:<br>Accounts Payable<br>505 N. Big Spring, Ste. 600<br>Midland, TX 79701 |                                 |                             | T                   |        | Analysis / Container / Preservative Chai |                                             |                            |    |                                                                                                                                           | hain of Custod | Page of                                      |                                       |                                      |                                                                 |                                          |  |
|----------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|---------------------|--------|------------------------------------------|---------------------------------------------|----------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------------|--|
|                                                    |                                                                   |                                                                                              |                                 |                             | Pres<br>Chk         |        |                                          |                                             |                            |    |                                                                                                                                           |                |                                              |                                       | Pace                                 | Analytical                                                      |                                          |  |
| Midland, TX 79703                                  |                                                                   |                                                                                              | Innaran                         | u, 177701                   |                     |        |                                          |                                             |                            |    |                                                                                                                                           |                |                                              |                                       | 1                                    |                                                                 |                                          |  |
|                                                    |                                                                   |                                                                                              | Christopher.Kn<br>nable@ghd.com |                             |                     |        |                                          |                                             |                            |    |                                                                                                                                           |                | N                                            | 2065 Lebanon Rd<br>Iount Juliet, TN 3 | 122                                  |                                                                 |                                          |  |
|                                                    |                                                                   |                                                                                              |                                 | City/State<br>Collected:    |                     |        |                                          | ΝT                                          |                            |    |                                                                                                                                           |                |                                              |                                       | P                                    | Phone: 615-758-5858<br>Phone: 800-767-5859<br>Fax: 615-758-5859 |                                          |  |
| Phone: <b>432-686-0086</b><br>Fax:                 | Client Project<br>074685                                          | #                                                                                            |                                 | Lab Project #<br>PLAINSGH   |                     |        | 1000-00<br>1000-00                       | 40mlAmb-NoPres-WT                           |                            |    |                                                                                                                                           |                |                                              |                                       | -                                    | L# L11 60434<br>H033                                            |                                          |  |
| Collected by (print):                              | Site/Facility ID<br>SRS#: LF 1                                    |                                                                                              |                                 |                             |                     |        |                                          | N-qm                                        |                            |    |                                                                                                                                           |                | 1                                            |                                       | -                                    | cctnum: PLA                                                     | INSGHD                                   |  |
| Collected by (signature):                          | and the second second second                                      | ab MUST Be                                                                                   | 1.000                           | Quote #                     | Quote #             |        | 40mlAmb-HCl                              | 40mlA                                       |                            |    |                                                                                                                                           |                |                                              |                                       | 1                                    | Template: <b>T139790</b><br>Prelogin: <b>P681709</b>            |                                          |  |
| Immediately<br>Packed on Ice N Y 🗶                 | Next Day5 Day (Rad Only)<br>Two Day10 Day (Rad Only)<br>Three Day |                                                                                              |                                 | Date F                      | Date Results Needed |        |                                          | PAHSIMLVI                                   |                            |    |                                                                                                                                           |                |                                              |                                       | T.                                   |                                                                 | k W. Beasley                             |  |
| Sample ID                                          | Comp/Grab                                                         | Matrix *                                                                                     | Depth                           | Date                        | Time                | Cntrs  | втех                                     | AHS                                         | -                          | -  |                                                                                                                                           |                |                                              | 1                                     | SI                                   | nipped Via:                                                     |                                          |  |
| Rw-11-111219                                       | IG                                                                | GW                                                                                           |                                 | 11-12-19                    | 1300                | 11     |                                          | X                                           | -                          |    |                                                                                                                                           |                | 1                                            |                                       |                                      | Remarks                                                         | Sample # (lab only)                      |  |
| Rw-12-111219                                       | G                                                                 | GW                                                                                           |                                 | 11-12-10                    |                     | 1      |                                          | $\hat{X}$                                   |                            |    |                                                                                                                                           |                |                                              |                                       |                                      |                                                                 | -01                                      |  |
|                                                    | i santa                                                           | GW                                                                                           |                                 |                             |                     |        | 1                                        |                                             |                            |    |                                                                                                                                           |                | 1.5                                          |                                       |                                      |                                                                 |                                          |  |
|                                                    |                                                                   | GW                                                                                           | -                               |                             | Sec. 1              | 1      |                                          |                                             |                            |    |                                                                                                                                           |                |                                              |                                       | 6                                    |                                                                 |                                          |  |
| Alter Alter                                        |                                                                   | GW                                                                                           |                                 |                             | 12-12               |        |                                          |                                             |                            |    |                                                                                                                                           |                | 2.1                                          |                                       |                                      |                                                                 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |  |
|                                                    | 111-113                                                           | GW                                                                                           |                                 |                             |                     |        |                                          |                                             |                            |    |                                                                                                                                           |                | 1                                            |                                       |                                      |                                                                 |                                          |  |
| and a second second                                | and a second                                                      | GW                                                                                           |                                 |                             |                     |        |                                          |                                             |                            |    |                                                                                                                                           |                |                                              |                                       | 19.0                                 |                                                                 |                                          |  |
| t the second second                                |                                                                   | GW                                                                                           | and the                         | a standard                  |                     |        |                                          |                                             |                            |    |                                                                                                                                           |                |                                              |                                       | 24                                   |                                                                 |                                          |  |
| and the                                            | 1 mart                                                            | GW                                                                                           | desc.                           | 1 Same                      |                     |        |                                          |                                             |                            | 27 |                                                                                                                                           |                |                                              |                                       | 3.19                                 |                                                                 |                                          |  |
| and the second                                     | 1                                                                 | GW                                                                                           |                                 |                             |                     |        |                                          |                                             |                            |    |                                                                                                                                           |                |                                              |                                       |                                      |                                                                 |                                          |  |
|                                                    |                                                                   |                                                                                              |                                 |                             |                     |        |                                          | pH Temp                                     |                            |    | Sample Receipt Checklyst<br>COC Seal Present/Intact: NP Y N<br>COC Signed/Accurate: N<br>Bottles arrive intact: N<br>Correct bottles used |                |                                              |                                       |                                      |                                                                 |                                          |  |
|                                                    |                                                                   | ier <u>S</u> i                                                                               | Swf Tracking #                  |                             |                     |        | 1 au                                     |                                             | Flow Other                 |    |                                                                                                                                           |                | Correct<br>Suffic:                           | t bottle<br>ient vo.<br><u>I</u>      | es used:<br>lume sent:<br>f Applicab |                                                                 |                                          |  |
|                                                    |                                                                   | Time:<br>630 p.m                                                                             |                                 |                             |                     | 1      |                                          | Trip Blank Received: Yes / No<br>HCL / MeoH |                            |    | Preserv                                                                                                                                   |                | Correct/Che                                  |                                       |                                      |                                                                 |                                          |  |
| Relinquished by : (Signature) Date: Tir            |                                                                   |                                                                                              | rime:<br>15:00                  | e: Received by: (Signature) |                     |        |                                          | Ter                                         | Temp: °C Bottles Received: |    |                                                                                                                                           |                | If preservation required by Login: Date/Time |                                       |                                      |                                                                 |                                          |  |
| Relinquished by : (Signature) Date:                |                                                                   | Т                                                                                            | ſime:                           | Received for lab by:        | (Signat             | ature) |                                          |                                             | Date: Time: Time: 1430     |    |                                                                                                                                           |                | Hold:                                        |                                       |                                      | Condition:<br>NCF / OK                                          |                                          |  |



# ANALYTICAL REPORT

November 20, 2019

#### Plains All American, LP - GHD

Entire Report Reviewed By:

Sample Delivery Group: L1161076 Samples Received: 11/15/2019 Project Number: 074685 Description: Darr Angell #2- Lea County, New Mexico SRS#: LF 1999-62 Site: Report To: John Schnable 2135 S Loop 250 W Midland, TX 79703

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: Plains All American, LP - GHD

PROJECT: 074685

SDG: L1161076

DATE/TIME: 11/20/19 16:02 PAGE: 1 of 14 Тс

Ss

Cn

Ϋ́r

Śr

Qc

GI

AI

Sc

#### TABLE OF CONTENTS

| Cp: Cover Page        |                                                   |    |  |  |  |  |
|-----------------------|---------------------------------------------------|----|--|--|--|--|
| Tc: Table of Contents |                                                   |    |  |  |  |  |
|                       | Ss: Sample Summary                                | 3  |  |  |  |  |
|                       | Cn: Case Narrative                                | 4  |  |  |  |  |
|                       | Tr: TRRP Summary                                  | 5  |  |  |  |  |
|                       | TRRP form R                                       | 6  |  |  |  |  |
|                       | TRRP form S                                       | 7  |  |  |  |  |
|                       | TRRP Exception Reports                            | 8  |  |  |  |  |
|                       | Sr: Sample Results                                | 9  |  |  |  |  |
|                       | PUMP OFF L1161076-01                              | 9  |  |  |  |  |
|                       | PUMP ON L1161076-02                               | 10 |  |  |  |  |
|                       | Qc: Quality Control Summary                       | 11 |  |  |  |  |
|                       | Volatile Organic Compounds (MS) by Method M18-Mod | 11 |  |  |  |  |
|                       | GI: Glossary of Terms                             | 12 |  |  |  |  |
|                       | Al: Accreditations & Locations                    | 13 |  |  |  |  |
|                       | 14                                                |    |  |  |  |  |
|                       |                                                   |    |  |  |  |  |

<sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Tr <sup>6</sup> Sr <sup>7</sup> Qc <sup>8</sup> GI <sup>9</sup> AI <sup>10</sup> Sc

\*

SDG: L1161076 DATE/TIME: 11/20/19 16:02

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

| PUMP OFF L1161076-01 Air                          |           |          | Collected by<br>Heath Boyd | Collected date/time<br>11/12/19 14:00 | Received da<br>11/15/19 08:3 |                |
|---------------------------------------------------|-----------|----------|----------------------------|---------------------------------------|------------------------------|----------------|
| Method                                            | Batch     | Dilution | Preparation<br>date/time   | Analysis<br>date/time                 | Analyst                      | Location       |
| Volatile Organic Compounds (MS) by Method M18-Mod | WG1381132 | 2000     | 11/15/19 22:54             | 11/15/19 22:54                        | CAW                          | Mt. Juliet, TN |
|                                                   |           |          | Collected by               | Collected date/time                   | Received da                  | te/time        |
| PUMP ON L1161076-02 Air                           |           |          | Heath Boyd                 | 11/12/19 14:30                        | 11/15/19 08:3                | 0              |
| Method                                            | Batch     | Dilution | Preparation                | Analysis                              | Analyst                      | Location       |
|                                                   |           |          | date/time                  | date/time                             |                              |                |
| Volatile Organic Compounds (MS) by Method M18-Mod | WG1381132 | 2000     | 11/15/19 23:44             | 11/15/19 23:44                        | CAW                          | Mt. Juliet, TN |

<sup>10</sup>Sc

\*

Ср

SDG: L1161076 DATE/TIME: 11/20/19 16:02

PAGE:

3 of 14

## CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

Τс Ss Cn Tr Sr Qc GI AI Śc

SDG: L1161076 DATE/TIME: 11/20/19 16:02 PAGE: 4 of 14

# Laboratory Data Package Cover Page

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
  - a. Items consistent with NELAC Chapter 5,
  - b. dilution factors,
  - c. preparation methods,
  - d. cleanup methods, and
  - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
  - a. Calculated recovery (%R), and
  - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a. LCS spiking amounts,
  - b. Calculated %R for each analyte, and
  - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a. Samples associated with the MS/MSD clearly identified,
  - b. MS/MSD spiking amounts,
  - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d. Calculated %Rs and relative percent differences (RPDs), and
  - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
  - a. The amount of analyte measured in the duplicate,
  - b. The calculated RPD, and
  - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte
  - for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

# Laboratory Review Checklist: Reportable Data

ķ

| Lab                                                     | orato                                 | ry Name: Pace Analytical National                                                                                                                                                                             | LRC Date: 11/20/2019 16:02                                                       |          |                      |                 |               |                  |
|---------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|----------------------|-----------------|---------------|------------------|
| Project Name: Darr Angell #2- Lea County, New<br>Mexico |                                       |                                                                                                                                                                                                               | Laboratory Job Number: L1161076-01 and 02                                        |          |                      |                 |               |                  |
| Rev                                                     | viewe                                 | r Name: Mark W. Beasley                                                                                                                                                                                       | Prep Batch Number(s): WG1381132                                                  |          |                      |                 |               |                  |
| # <sup>1</sup>                                          | A <sup>2</sup>                        | Description                                                                                                                                                                                                   |                                                                                  | Yes      | No                   | NA <sup>3</sup> | NR⁴           | ER# <sup>5</sup> |
| R1                                                      | OI                                    | Chain-of-custody (C-O-C)                                                                                                                                                                                      |                                                                                  |          |                      |                 |               |                  |
|                                                         |                                       | Did samples meet the laboratory's standard conditions                                                                                                                                                         | of sample acceptability upon receipt?                                            | X        |                      |                 |               |                  |
|                                                         |                                       | Were all departures from standard conditions described                                                                                                                                                        | d in an exception report?                                                        |          |                      | Х               |               |                  |
| ۲2                                                      | OI                                    | Sample and quality control (QC) identification                                                                                                                                                                |                                                                                  |          |                      |                 |               |                  |
|                                                         |                                       | Are all field sample ID numbers cross-referenced to the                                                                                                                                                       | e laboratory ID numbers?                                                         | Х        |                      |                 |               |                  |
|                                                         |                                       | Are all laboratory ID numbers cross-referenced to the c                                                                                                                                                       | orresponding QC data?                                                            | X        |                      |                 |               |                  |
| 23                                                      | OI                                    | Test reports                                                                                                                                                                                                  |                                                                                  |          | •                    |                 |               |                  |
|                                                         |                                       | Were all samples prepared and analyzed within holding                                                                                                                                                         | g times?                                                                         | X        |                      |                 |               |                  |
|                                                         |                                       | Other than those results < MQL, were all other raw value                                                                                                                                                      |                                                                                  | Х        |                      |                 |               |                  |
|                                                         |                                       | Were calculations checked by a peer or supervisor?                                                                                                                                                            |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Were all analyte identifications checked by a peer or su                                                                                                                                                      | ipervisor?                                                                       | X        |                      |                 |               |                  |
|                                                         |                                       | Were sample detection limits reported for all analytes r                                                                                                                                                      | •                                                                                | X        |                      |                 |               |                  |
|                                                         |                                       | Were all results for soil and sediment samples reported                                                                                                                                                       |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Were % moisture (or solids) reported for all soil and sec                                                                                                                                                     |                                                                                  |          | <u> </u>             | X               | <u> </u>      | <u> </u>         |
|                                                         |                                       | Were bulk soils/solids samples for volatile analysis extr                                                                                                                                                     |                                                                                  |          |                      | X               |               |                  |
|                                                         |                                       |                                                                                                                                                                                                               | acted with methanol per SW846 Method 5055!                                       |          |                      | X               | l             |                  |
| 24                                                      |                                       | If required for the project, are TICs reported?                                                                                                                                                               |                                                                                  |          |                      |                 | I             | I                |
| 24                                                      | 0                                     | Surrogate recovery data                                                                                                                                                                                       |                                                                                  |          | 1                    | 1               | r –           | 1                |
|                                                         |                                       | Were surrogates added prior to extraction?                                                                                                                                                                    | - the lab and a CO line it - 2                                                   | X        |                      |                 |               |                  |
| 25                                                      |                                       | Were surrogate percent recoveries in all samples within                                                                                                                                                       | n the laboratory QC limits?                                                      | X        |                      | I               | I             |                  |
| 25                                                      | OI                                    | Test reports/summary forms for blank samples                                                                                                                                                                  |                                                                                  |          | 1                    | 1               | 1             | 1                |
|                                                         |                                       | Were appropriate type(s) of blanks analyzed?                                                                                                                                                                  |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Were blanks analyzed at the appropriate frequency?                                                                                                                                                            |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Were method blanks taken through the entire analytica                                                                                                                                                         | I process, including preparation and, if applicable,                             | X        |                      |                 |               |                  |
|                                                         |                                       | cleanup procedures?<br>Were blank concentrations < MQL?                                                                                                                                                       |                                                                                  | x        |                      |                 |               |                  |
|                                                         | 01                                    |                                                                                                                                                                                                               |                                                                                  |          |                      | L               | I             | I                |
| 76                                                      |                                       | Laboratory control samples (LCS):                                                                                                                                                                             |                                                                                  |          | 1                    | 1               | r –           | 1                |
|                                                         |                                       | Were all COCs included in the LCS?                                                                                                                                                                            | adura including area and classic stand?                                          | X        |                      |                 |               |                  |
|                                                         |                                       | Was each LCS taken through the entire analytical proce                                                                                                                                                        | edure, including prep and cleanup steps?                                         | X        |                      |                 |               |                  |
|                                                         |                                       | Were LCSs analyzed at the required frequency?                                                                                                                                                                 |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Were LCS (and LCSD, if applicable) %Rs within the labo                                                                                                                                                        |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Does the detectability check sample data document the<br>used to calculate the SDLs?                                                                                                                          | e laboratory's capability to detect the COCs at the MDL                          | X        |                      |                 |               |                  |
|                                                         |                                       | Was the LCSD RPD within QC limits?                                                                                                                                                                            |                                                                                  | X        |                      |                 |               |                  |
| 27                                                      | OI                                    | Matrix spike (MS) and matrix spike duplicate (MSD) data                                                                                                                                                       |                                                                                  |          | I                    | 1               | I             | I                |
| ()                                                      |                                       | Were the project/method specified analytes included in                                                                                                                                                        |                                                                                  | <u> </u> | 1                    | X               | 1             | 1                |
|                                                         |                                       | Were MS/MSD analyzed at the appropriate frequency?                                                                                                                                                            |                                                                                  |          |                      | X               |               |                  |
|                                                         |                                       | , , , , ,                                                                                                                                                                                                     | to a c C limite?                                                                 |          |                      | X               |               |                  |
|                                                         |                                       | Were MS (and MSD, if applicable) %Rs within the labora<br>Were MS/MSD RPDs within laboratory QC limits?                                                                                                       |                                                                                  |          |                      | X               |               |                  |
| 0                                                       |                                       |                                                                                                                                                                                                               |                                                                                  |          | 1                    |                 | I             |                  |
| 8                                                       | OI                                    | Analytical duplicate data                                                                                                                                                                                     | ale martela 2                                                                    | 1        | 1                    |                 | 1             | r –              |
|                                                         |                                       | Were appropriate analytical duplicates analyzed for each                                                                                                                                                      |                                                                                  |          |                      | X               |               |                  |
|                                                         |                                       | Were analytical duplicates analyzed at the appropriate                                                                                                                                                        |                                                                                  |          |                      | X               |               |                  |
|                                                         |                                       | Were RPDs or relative standard deviations within the la                                                                                                                                                       | boratory QC limits?                                                              |          |                      | Х               |               |                  |
| 89                                                      | OI                                    | Method quantitation limits (MQLs):                                                                                                                                                                            |                                                                                  |          | 1                    |                 | 1             | -                |
|                                                         |                                       | Are the MQLs for each method analyte included in the                                                                                                                                                          |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Do the MQLs correspond to the concentration of the lo                                                                                                                                                         |                                                                                  | X        |                      |                 |               |                  |
|                                                         |                                       | Are unadjusted MQLs and DCSs included in the laborat                                                                                                                                                          | tory data package?                                                               | X        |                      |                 |               |                  |
| 210                                                     | OI                                    | Other problems/anomalies                                                                                                                                                                                      |                                                                                  | -        |                      |                 | -             |                  |
|                                                         |                                       | Are all known problems/anomalies/special conditions n                                                                                                                                                         |                                                                                  | X        | <u> </u>             |                 | <u> </u>      | ┝──              |
|                                                         |                                       | Was applicable and available technology used to lower the sample results?                                                                                                                                     | the SDL to minimize the matrix interference effects on                           | X        |                      | 1               |               |                  |
|                                                         |                                       |                                                                                                                                                                                                               | boratory Accreditation Program for the analytes, matrices                        | x        |                      |                 |               |                  |
| shou<br>2. O<br>3. N/<br>4. NI                          | ld be r<br>= orga<br>A = No<br>R = No | ntified by the letter "R" must be included in the laborator<br>etained and made available upon request for the approp<br>nic analyses; I = inorganic analyses (and general chemis<br>applicable;<br>reviewed; | y data package submitted in the TRRP-required report(s). riate retention period. |          | <b>I</b><br>dentifie | L<br>ed by th   | L<br>e letter | "S"              |

# Laboratory Review Checklist: Supporting Data

1 ķ

| 161076-01 and 02<br>381132<br>nits? |                   |                     |                                           |                     |                   |  |  |  |  |  |
|-------------------------------------|-------------------|---------------------|-------------------------------------------|---------------------|-------------------|--|--|--|--|--|
|                                     |                   |                     | Laboratory Job Number: L1161076-01 and 02 |                     |                   |  |  |  |  |  |
| nits?                               |                   |                     |                                           |                     |                   |  |  |  |  |  |
| nits?                               | Yes               | No                  | NA <sup>3</sup>                           | NR⁴                 | ER# <sup>5</sup>  |  |  |  |  |  |
| nits?                               |                   |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     | Γ                 |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
| the curve?                          | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
| ndard?                              | X                 |                     |                                           |                     |                   |  |  |  |  |  |
| n blank (CCB):                      | -                 |                     |                                           |                     | -                 |  |  |  |  |  |
|                                     | Х                 | Т                   | 1                                         | T                   | Т                 |  |  |  |  |  |
|                                     | X                 | 1                   |                                           | 1                   | <u> </u>          |  |  |  |  |  |
|                                     | X                 | 1                   | 1                                         | 1                   | 1                 |  |  |  |  |  |
|                                     |                   | 1                   | X                                         | <u> </u>            | +                 |  |  |  |  |  |
|                                     |                   | -                   |                                           | 1                   |                   |  |  |  |  |  |
|                                     | X                 | T                   | 1                                         | 1                   | T                 |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | ^                 |                     | 1                                         | I                   |                   |  |  |  |  |  |
|                                     | X                 | 1                   | 1                                         | T                   | T                 |  |  |  |  |  |
|                                     | ^                 |                     | I                                         | I                   |                   |  |  |  |  |  |
| -42                                 |                   | 1                   | 1                                         | 1                   | T                 |  |  |  |  |  |
| st?                                 | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | X                 |                     | 1                                         | I                   |                   |  |  |  |  |  |
|                                     |                   | T                   |                                           | T                   | T                 |  |  |  |  |  |
|                                     |                   |                     | X                                         |                     |                   |  |  |  |  |  |
|                                     |                   | <b>1</b>            |                                           | r –                 | T                 |  |  |  |  |  |
| ecks?                               |                   |                     | Х                                         |                     |                   |  |  |  |  |  |
|                                     |                   |                     |                                           | -                   | 1                 |  |  |  |  |  |
|                                     |                   |                     | Х                                         |                     |                   |  |  |  |  |  |
|                                     |                   | -                   | 1                                         | -                   | <u> </u>          |  |  |  |  |  |
| n the method?                       |                   |                     | Х                                         |                     |                   |  |  |  |  |  |
|                                     |                   | -                   |                                           | T                   | 1                 |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     |                   |                     | -                                         |                     |                   |  |  |  |  |  |
| valuation studies?                  | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     |                   |                     | -                                         |                     | -                 |  |  |  |  |  |
| iate sources?                       | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     |                   | -                   | -                                         |                     |                   |  |  |  |  |  |
|                                     | Х                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     |                   |                     |                                           | _                   |                   |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | Х                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     |                   |                     |                                           |                     |                   |  |  |  |  |  |
| horo applicable?                    | Х                 |                     |                                           |                     |                   |  |  |  |  |  |
| mere applicable:                    |                   |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | X                 |                     |                                           |                     |                   |  |  |  |  |  |
|                                     | where applicable? | where applicable? X | where applicable? X                       | where applicable? X | where applicable? |  |  |  |  |  |

4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SDG: L1161076

#### Laboratory Review Checklist: Exception Reports ONE LAB. NATIONWIDE.

|                                | ory Name: Pace Analytical National<br>Name: Darr Angell #2- Lea County, New | Laboratory Job Number: L1161076-01 and 02 |  |
|--------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|
| Mexico                         |                                                                             | ·                                         |  |
| Reviewer Name: Mark W. Beasley |                                                                             | Prep Batch Number(s): WG1381132           |  |
| ER # <sup>1</sup>              | Description                                                                 |                                           |  |

The Exception Report intentionally left blank, there are no exceptions applied to this SDG.

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

a. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
NA = Not applicable;
NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

# SAMPLE RESULTS - 01

# \*

Ср

Тс

Ss

Cn

Ϋ́r

Qc

GI

ΆI

Sc

## Volatile Organic Compounds (MS) by Method M18-Mod

| -                          |           |          |          |        |         |          |           |          |           |
|----------------------------|-----------|----------|----------|--------|---------|----------|-----------|----------|-----------|
|                            | CAS #     | Mol. Wt. | RDL1     | RDL2   | Result  | Result   | Qualifier | Dilution | Batch     |
| Analyte                    |           |          | ppbv     | ug/m3  | ppbv    | ug/m3    |           |          |           |
| Benzene                    | 71-43-2   | 78.10    | 400      | 1280   | 19500   | 62300    |           | 2000     | WG1381132 |
| Toluene                    | 108-88-3  | 92.10    | 400      | 1510   | 14100   | 53100    |           | 2000     | WG1381132 |
| Ethylbenzene               | 100-41-4  | 106      | 400      | 1730   | 2190    | 9490     |           | 2000     | WG1381132 |
| m&p-Xylene                 | 1330-20-7 | 106      | 800      | 3470   | 7210    | 31300    |           | 2000     | WG1381132 |
| o-Xylene                   | 95-47-6   | 106      | 400      | 1730   | 2240    | 9710     |           | 2000     | WG1381132 |
| Methyl tert-butyl ether    | 1634-04-4 | 88.10    | 400      | 1440   | ND      | ND       |           | 2000     | WG1381132 |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100000   | 413000 | 4150000 | 17100000 |           | 2000     | WG1381132 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |        | 99.0    |          |           |          | WG1381132 |
|                            |           |          |          |        |         |          |           |          |           |

# SAMPLE RESULTS - 02

# \*

Ср

Тс

Ss

Cn

Ϋ́Γr

Qc

GI

ΆI

Sc

## Volatile Organic Compounds (MS) by Method M18-Mod

| -                          |           |          |          |        |         |          |           |          |           |  |
|----------------------------|-----------|----------|----------|--------|---------|----------|-----------|----------|-----------|--|
|                            | CAS #     | Mol. Wt. | RDL1     | RDL2   | Result  | Result   | Qualifier | Dilution | Batch     |  |
| Analyte                    |           |          | ppbv     | ug/m3  | ppbv    | ug/m3    |           |          |           |  |
| Benzene                    | 71-43-2   | 78.10    | 400      | 1280   | 21600   | 69000    |           | 2000     | WG1381132 |  |
| Toluene                    | 108-88-3  | 92.10    | 400      | 1510   | 15200   | 57300    |           | 2000     | WG1381132 |  |
| Ethylbenzene               | 100-41-4  | 106      | 400      | 1730   | 2340    | 10100    |           | 2000     | WG1381132 |  |
| m&p-Xylene                 | 1330-20-7 | 106      | 800      | 3470   | 7120    | 30900    |           | 2000     | WG1381132 |  |
| o-Xylene                   | 95-47-6   | 106      | 400      | 1730   | 2170    | 9410     |           | 2000     | WG1381132 |  |
| Methyl tert-butyl ether    | 1634-04-4 | 88.10    | 400      | 1440   | ND      | ND       |           | 2000     | WG1381132 |  |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100000   | 413000 | 4330000 | 17900000 |           | 2000     | WG1381132 |  |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |        | 99.2    |          |           |          | WG1381132 |  |
|                            |           |          |          |        |         |          |           |          |           |  |

Volatile Organic Compounds (MS) by Method M18-Mod

# QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| MB) R3472424-3 11/15/19 11:23 |           |              |        |          |  |  |  |  |
|-------------------------------|-----------|--------------|--------|----------|--|--|--|--|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL   |  |  |  |  |
| Analyte                       | ppbv      |              | ppbv   | ppbv     |  |  |  |  |
| Benzene                       | U         |              | 0.0460 | 0.200    |  |  |  |  |
| Ethylbenzene                  | U         |              | 0.0506 | 0.200    |  |  |  |  |
| MTBE                          | U         |              | 0.0505 | 0.200    |  |  |  |  |
| Toluene                       | U         |              | 0.0499 | 0.200    |  |  |  |  |
| m&p-Xylene                    | U         |              | 0.0946 | 0.400    |  |  |  |  |
| o-Xylene                      | U         |              | 0.0633 | 0.200    |  |  |  |  |
| TPH (GC/MS) Low Fraction      | 21.3      | J            | 6.91   | 50.0     |  |  |  |  |
| (S) 1,4-Bromofluorobenzene    | 95.9      |              |        | 60.0-140 |  |  |  |  |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3472424-1 11/15/19 09:40 • (LCSD) R3472424-2 11/15/19 10:32 |              |            |             |          |           |             |               |                |       |            |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                                                            | ppbv         | ppbv       | ppbv        | %        | %         | %           |               |                | %     | %          |
| MTBE                                                               | 3.75         | 3.73       | 3.81        | 99.5     | 102       | 70.0-130    |               |                | 2.12  | 25         |
| Benzene                                                            | 3.75         | 3.73       | 3.73        | 99.5     | 99.5      | 70.0-130    |               |                | 0.000 | 25         |
| Toluene                                                            | 3.75         | 3.78       | 3.86        | 101      | 103       | 70.0-130    |               |                | 2.09  | 25         |
| Ethylbenzene                                                       | 3.75         | 3.77       | 3.88        | 101      | 103       | 70.0-130    |               |                | 2.88  | 25         |
| m&p-Xylene                                                         | 7.50         | 7.78       | 7.78        | 104      | 104       | 70.0-130    |               |                | 0.000 | 25         |
| o-Xylene                                                           | 3.75         | 3.89       | 3.93        | 104      | 105       | 70.0-130    |               |                | 1.02  | 25         |
| TPH (GC/MS) Low Fraction                                           | 203          | 221        | 227         | 109      | 112       | 70.0-130    |               |                | 2.68  | 25         |
| (S) 1,4-Bromofluorobenzene                                         |              |            |             | 101      | 101       | 60.0-140    |               |                |       |            |

SDG: L1161076 DATE/TIME: 11/20/19 16:02

PAGE: 11 of 14

# GLOSSARY OF TERMS

# ₩

Ср

Τс

Ss

Cn

Tr

Śr

Qc

GI

AI

Śc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Method Quantitation Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Sample Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1161076

# **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| 40660       | Nebraska                                                                                                                                                                                                                                                                                                                                                     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17-026      | Nevada                                                                                                                                                                                                                                                                                                                                                       |
| AZ0612      | New Hampshire                                                                                                                                                                                                                                                                                                                                                |
| 88-0469     | New Jersey-NELA                                                                                                                                                                                                                                                                                                                                              |
| 2932        | New Mexico 1                                                                                                                                                                                                                                                                                                                                                 |
| TN00003     | New York                                                                                                                                                                                                                                                                                                                                                     |
| PH-0197     | North Carolina                                                                                                                                                                                                                                                                                                                                               |
| E87487      | North Carolina <sup>1</sup>                                                                                                                                                                                                                                                                                                                                  |
| NELAP       | North Carolina <sup>3</sup>                                                                                                                                                                                                                                                                                                                                  |
| 923         | North Dakota                                                                                                                                                                                                                                                                                                                                                 |
| TN00003     | Ohio-VAP                                                                                                                                                                                                                                                                                                                                                     |
| 200008      | Oklahoma                                                                                                                                                                                                                                                                                                                                                     |
| C-TN-01     | Oregon                                                                                                                                                                                                                                                                                                                                                       |
| 364         | Pennsylvania                                                                                                                                                                                                                                                                                                                                                 |
| E-10277     | Rhode Island                                                                                                                                                                                                                                                                                                                                                 |
| 90010       | South Carolina                                                                                                                                                                                                                                                                                                                                               |
| 16          | South Dakota                                                                                                                                                                                                                                                                                                                                                 |
| AI30792     | Tennessee 14                                                                                                                                                                                                                                                                                                                                                 |
| LA180010    | Texas                                                                                                                                                                                                                                                                                                                                                        |
| TN0002      | Texas ⁵                                                                                                                                                                                                                                                                                                                                                      |
| 324         | Utah                                                                                                                                                                                                                                                                                                                                                         |
| M-TN003     | Vermont                                                                                                                                                                                                                                                                                                                                                      |
| 9958        | Virginia                                                                                                                                                                                                                                                                                                                                                     |
| 047-999-395 | Washington                                                                                                                                                                                                                                                                                                                                                   |
| TN00003     | West Virginia                                                                                                                                                                                                                                                                                                                                                |
| 340         | Wisconsin                                                                                                                                                                                                                                                                                                                                                    |
|             | Wyoming                                                                                                                                                                                                                                                                                                                                                      |
|             | 17-026         AZ0612         88-0469         2932         TN00003         PH-0197         E87487         NELAP         923         TN00003         200008         C-TN-01         364         E-10277         90010         16         AI30792         LA180010         TN0002         324         M-TN003         9958         047-999-395         TN00003 |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Vevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|-------------------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 | DOD                | 1461.01       |
| Canada                        | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto                    | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Plains All American, LP - GHD

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



074685

L1161076

PAGE: 13 of 14

11/20/19 16:02

|                                                                              |                                        |                              | Billing Information:                                                 |                            |                                                 |           | Analvsis / Container / Preservative |                      |        |            |                      |                                         |         |                                                                                     |                                              | Chain of Custody                                | Page                                                       | _ of       |
|------------------------------------------------------------------------------|----------------------------------------|------------------------------|----------------------------------------------------------------------|----------------------------|-------------------------------------------------|-----------|-------------------------------------|----------------------|--------|------------|----------------------|-----------------------------------------|---------|-------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------------------------------------|------------|
| Plains All American, LP - GHD<br>2135 S Loop 250 W<br>Midland, TX 79703      |                                        |                              | Accounts Payable<br>505 N. Big Spring, Ste. 600<br>Midland, TX 79701 |                            |                                                 | Pres      |                                     |                      | 80     |            |                      |                                         |         |                                                                                     |                                              | 2                                               | Apple tipels                                               |            |
|                                                                              |                                        |                              |                                                                      |                            |                                                 |           |                                     |                      |        |            |                      |                                         |         |                                                                                     |                                              | National C                                      | Analytical <sup>®</sup><br>Jenter for Testing & Innovation |            |
|                                                                              |                                        |                              | Atta: Camille Bryant                                                 |                            |                                                 |           |                                     |                      |        |            |                      |                                         |         |                                                                                     |                                              | 1                                               |                                                            |            |
| Report to: Email To:                                                         |                                        |                              |                                                                      | John.Schnable@g            |                                                 | epo       |                                     |                      |        |            |                      |                                         |         |                                                                                     | 12065 Lebanon Rd                             | <b>a</b>                                        | an l                                                       |            |
|                                                                              |                                        |                              |                                                                      | er.Knight@ghd.co           | yank                                            |           | aal                                 | 2.Co                 | m      |            |                      |                                         | 1.00    |                                                                                     | Mount Juliet, TN 3712<br>Phone: 615-758-5858 |                                                 |                                                            |            |
| Project<br>Description: Darr Angell #2- Lea                                  | County, Ne                             | City/State<br>Collected:     |                                                                      |                            | Please Ci                                       | rcle:     |                                     |                      |        |            |                      |                                         |         |                                                                                     |                                              | Phone: 800-767-58<br>Fax: 615-758-5859          |                                                            | 圖          |
| Phone: <b>432-686-0086</b><br>Fax:                                           | Client Project #<br>074685             |                              |                                                                      | Lab Project #<br>PLAINSGHD |                                                 |           | 22                                  | 610                  |        |            |                      |                                         |         |                                                                                     | SDG # 116 076                                |                                                 |                                                            |            |
| Collected by (print):<br>Heath Boyd                                          | Site/Facility ID #<br>SRS#: LF 1999-62 |                              |                                                                      | P.O. #                     |                                                 |           |                                     | 7 801,               | 99 802 |            |                      |                                         |         |                                                                                     | Acctnum: PLAINSGHD                           |                                                 |                                                            |            |
| Collected by (signature):                                                    | Rush? (L                               | Rush? (Lab MUST Be Notified) |                                                                      |                            | Quote #                                         |           |                                     |                      |        |            |                      |                                         |         | 1                                                                                   |                                              | Template: <b>T140281</b>                        |                                                            |            |
|                                                                              | Same Day Five Day                      |                              |                                                                      | 112                        | 12                                              | Tedlar    | V                                   | Vi                   |        |            |                      |                                         |         | Prelogin: <b>P740764</b>                                                            |                                              |                                                 |                                                            |            |
| Immediately Next Da<br>Two Day<br>Packed on Ice N X Y Three D                |                                        | 10 Da                        | r (Rad Only)<br>ay (Rad Only)                                        | Date Results Needed        |                                                 | No.<br>of | LOOM                                | H                    | X      |            |                      |                                         |         |                                                                                     |                                              | PM: 134 - Mark W. Beasley<br>PB:                |                                                            | y          |
| Sample ID                                                                    | Comp/Grab                              | Matrix *                     | Depth                                                                | Date                       | Time                                            | Cntrs     | M18-MOD                             | TW                   | BI     |            |                      |                                         |         |                                                                                     |                                              | Shipped Via:<br>Remarks                         | Sample # (                                                 | lab only)  |
| Pump Off<br>Pump On                                                          | Grab<br>Grab                           | Air                          |                                                                      | 11-12-19                   | 7 1400                                          | 1         | 1                                   | X                    | X      |            |                      |                                         | 2       |                                                                                     | 1992                                         |                                                 |                                                            | 51         |
| Pump On                                                                      | Grah                                   | Air                          |                                                                      | 11-12-10                   | 7 1430                                          | 6         | 1                                   | x                    | X      |            |                      |                                         |         |                                                                                     |                                              |                                                 |                                                            | or         |
|                                                                              |                                        | Air                          |                                                                      |                            |                                                 | 14        |                                     |                      |        |            |                      |                                         |         |                                                                                     |                                              |                                                 |                                                            |            |
|                                                                              |                                        |                              |                                                                      |                            | n north and |           |                                     |                      |        |            |                      |                                         |         |                                                                                     | -                                            |                                                 |                                                            |            |
|                                                                              |                                        |                              |                                                                      |                            |                                                 |           | 1                                   |                      |        |            |                      | 1967                                    |         |                                                                                     |                                              |                                                 |                                                            |            |
|                                                                              |                                        |                              | 1                                                                    |                            |                                                 |           | 1. A.S.                             |                      |        |            |                      |                                         |         | -                                                                                   |                                              |                                                 |                                                            |            |
|                                                                              |                                        |                              |                                                                      |                            |                                                 |           |                                     |                      |        |            | -                    | -                                       |         |                                                                                     |                                              |                                                 |                                                            |            |
|                                                                              |                                        |                              |                                                                      | alter son alter            |                                                 |           |                                     |                      |        |            |                      |                                         |         |                                                                                     |                                              |                                                 |                                                            |            |
|                                                                              |                                        |                              |                                                                      |                            |                                                 | 1         |                                     |                      |        |            |                      | 1                                       |         |                                                                                     |                                              |                                                 |                                                            |            |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks: Re                            | ag est                       | to SU                                                                | Concentrations             |                                                 |           |                                     |                      |        | рН _       | -94-1<br>2 (6        | Temp                                    |         | Sample Receipt Checklist<br>COC Seal Present/Intact: ANP _Y<br>COC Signed/Accurate: |                                              |                                                 |                                                            | Y N<br>Y N |
| WW - WasteWater                                                              |                                        |                              |                                                                      |                            |                                                 | 1.10      |                                     |                      | Flow_  |            | Other                |                                         |         | Bottles arrive intact:<br>Correct bottles used:                                     |                                              |                                                 | YN                                                         |            |
| DW - Drinking Water<br>OT - Other                                            | Samples return<br>UPSFee               | ned via:<br>dExCou           | rier                                                                 | Tracking #                 |                                                 |           |                                     |                      |        |            |                      |                                         |         | Suffi                                                                               | icient                                       | volume sent:<br><u>If Applicat</u><br>eadspace: |                                                            | Y N        |
| Alten Schmable                                                               |                                        | 11-14-19 14                  |                                                                      | rime: R<br>14:45           | 4:45 Latte                                      |           | C                                   | 1                    | -      | Trip Blank | Receive              | Received: Yes / No<br>HCL / MeoH<br>TBR |         | Prese                                                                               | ervatio                                      | <pre>con Correct/Ch &lt;0.5 mR/hr:</pre>        |                                                            |            |
|                                                                              |                                        | Date: Ti                     |                                                                      | Time: R                    |                                                 |           |                                     |                      |        | HAB        | °C Bottles Received: |                                         | If pres | servation                                                                           | n required by Lo                             | d by Login: Date/Time                           |                                                            |            |
| Relinquished by : (Signature)                                                |                                        | Date: Ti                     |                                                                      | Time:                      | eceived for lab b                               | ture)     | >                                   | Date:<br>/S-/9 (SS-) |        |            | Hold:                |                                         |         | Condit<br>NCF /                                                                     |                                              |                                                 |                                                            |            |



# about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

John Schnable John.Schnable@ghd.com 432.203.8668

Rebecca Haskell Rebecca.Haskell@ghd.com 4632.686.0086

www.ghd.com