

August 24, 2020

District Supervisor
Oil Conservation Division, District 1
1625 N. French Dr.
Hobbs, NM 88240

Re: Release Characterization and Remediation Work Plan

ConocoPhillips

Golden Spur to Wilder Pipeline Release

Unit Letter D, Section 29, Township 26 South, Range 32 East

Lea County, New Mexico

1RP-5622

Incident ID: NDHR1921234950

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from a check valve in a tinhorn cellar along the Golden Spur to Wilder Federal Pipeline. The release footprint is located in Unit Letter D, Section 29, Township 26 South, Range 32 East, Lea County, New Mexico (Site). The approximate release site coordinates are 32.020140°, -103.704774°. The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), a release occurred from a tinhorn at the Golden Spur to Wilder Federal Pipeline on July 2, 2019 as a result of a check valve failure. Approximately 644 barrels (bbls) of produced water were reported released and approximately 110 bbls of produced water were recovered. Immediate notice was provided to the New Mexico Oil Conservation District (NMOCD) the day following the discovery of the release. The release notification was received by the NMOCD on July 19, 2019 and subsequently assigned the District Remediation Permit (RP) number 1RP-5622 and the Incident ID ndhr1921234950.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is in a high karst potential area.

There are no water wells listed in Section 29 on the New Mexico Office of the State Engineer (NMOSE) database. The nearest wells are in Section 21 and Section 31 with groundwater documented at 251 feet below ground surface on average. Site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action

TETRA TECH

ConocoPhillips

levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based upon the Site characterization and the high karst potential, the proposed RRALs for soil are:

• Benzene: 10 milligrams per kilogram (mg/kg)

• Total BTEX (sum of benzene, toluene, ethylbenzene, and xylene): 50 mg/kg

• TPH (GRO + DRO + ORO): 100 mg/kg

• Chloride: 600 mg/kg

INITIAL SITE ASSESSMENT

Tetra Tech personnel were onsite to delineate and sample the release area in October 2019. Four (4) borings (BH-1 through BH-4) were installed using an air rotary drilling rig to various depths to evaluate the vertical and horizontal extents of the release in the northern portion of the footprint. Three (3) additional borings (AH-1 through AH-3) were installed using a hand auger to a depth of 3 feet to evaluate the horizontal extents in the southern portion of the release footprint. A total of 34 soil samples were collected from these 7 boring locations on October 7, 2019 (Figure 3). Boring logs, included as Appendix C, present soil descriptions, sample depths and field screening data from the additional site assessment.

Selected samples were submitted to Pace Analytical Laboratory for total petroleum hydrocarbons (TPH) by EPA Method 8015, benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8021B and chloride (EPA Method 300.0) analysis. Copies of laboratory analytical reports and chain-of-custody documentation are included in Appendix D.

SUMMARY OF SAMPLING RESULTS

The results of the initial sampling event in October 2019 are summarized in Table 1. The sample locations are shown on Figure 3. The analytical results from sample locations BH-1 and BH-4 (inside the footprint) had chloride concentrations above the RRAL of 600 mg/kg from 0 – 55 feet below ground surface (bgs) and 0 – 5 feet bgs, respectively. The vertical extents of the release footprint were delineated, however, as the analytical results associated with BH-1 (at 59-60 feet bgs) and BH-4 (at 6-7 feet bgs) were below the RRAL for chloride of 600 mg/kg. The analytical results associated with boring locations AH-1, AH-2, AH-3, BH-2 and BH-3 (borings for horizontal delineation) were below the RRAL for chloride. The analytical results associated with the remainder of samples collected from the Site were below the proposed RRALs for TPH and BTEX.

REMEDIATION WORK PLAN

Based on the soil sample results, ConocoPhillips proposes to remove the impacted material to a depth of 4 feet below surface as shown in Table 1 and as depicted in Figure 4. Excavation in the area will be performed using heavy equipment (backhoes and track hoes) within the release area footprint. The impacted areas within a 3-foot radius of the subsurface produced water and water lines and tinhorn cellar are excluded from the proposed excavation area due to safety concerns. Any visibly impacted soil within these areas will be hand-dug to the maximum extent practicable.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation floor and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chloride. Once the sample results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 1850 cubic yards.

ConocoPhillips

VARIANCE REQUEST

After characterization of this release, COP proposes to leave impacted soils (with concentrations greater than those specified in Table I) located below four (4) feet bgs in place. The contamination is fully delineated, groundwater in this area is below 200 feet bgs, and the release footprint is located in areas immediately under or around pipelines where any further excavation past four feet bgs could cause a major facility deconstruction, and/or additional unwanted impact to the environment.

Thus, in accordance with 19.15.29.14(A) NMAC, ConocoPhillips requests a variance for the placement of a liner within the excavated area. A 20-mil reinforced poly liner will be installed and properly seated throughout the base of the excavation (at 4 feet below surrounding grade). The liner will provide a engineering control that will serve as a barrier and inhibit the downward migration of residual constituents.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 5. Twenty-three (23) confirmation floor samples and forty-nine (49) confirmation sidewall samples are proposed for verification of remedial activities. Confirmation samples will be sent to Pace Laboratories for analysis of TPH, BTEX and chloride. The proposed excavation encompasses an area of approximately 12,600 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH, BTEX and chloride. If the analytical results associated with these sample locations exceed the respective RRAL, additional excavation will be conducted at those locations until closure criteria are attained, or the excavation floor reaches four feet bgs.

REVEGETATION PLAN

The backfilled areas will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soil types present at the site, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix E.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 90 days of the date of NMOCD approval of this submittal. Upon completion of the proposed work, a final report detailing the remediation activities, the results of the confirmation sampling, and conformance with the above-mentioned variance request will be submitted to the NMOCD.

Contamination in the impacted areas within a 3-foot radius of the tinhorn and subsurface pipelines does not cause an imminent risk to human health, the environment, or groundwater. ConocoPhillips respectfully requests that NMOCD will consider delaying remediation activities at these portions of the site until the tinhorn and pipelines are decommissioned.

ConocoPhillips

If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call me at (512) 338-2861 or (432) 682-4559.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

cc:

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips

Mr. Jim Amos, BLM

Greg W. Pope, P.G. Program Manager

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location/Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Release Assessment Map

Figure 4 – Proposed Remediation Extents

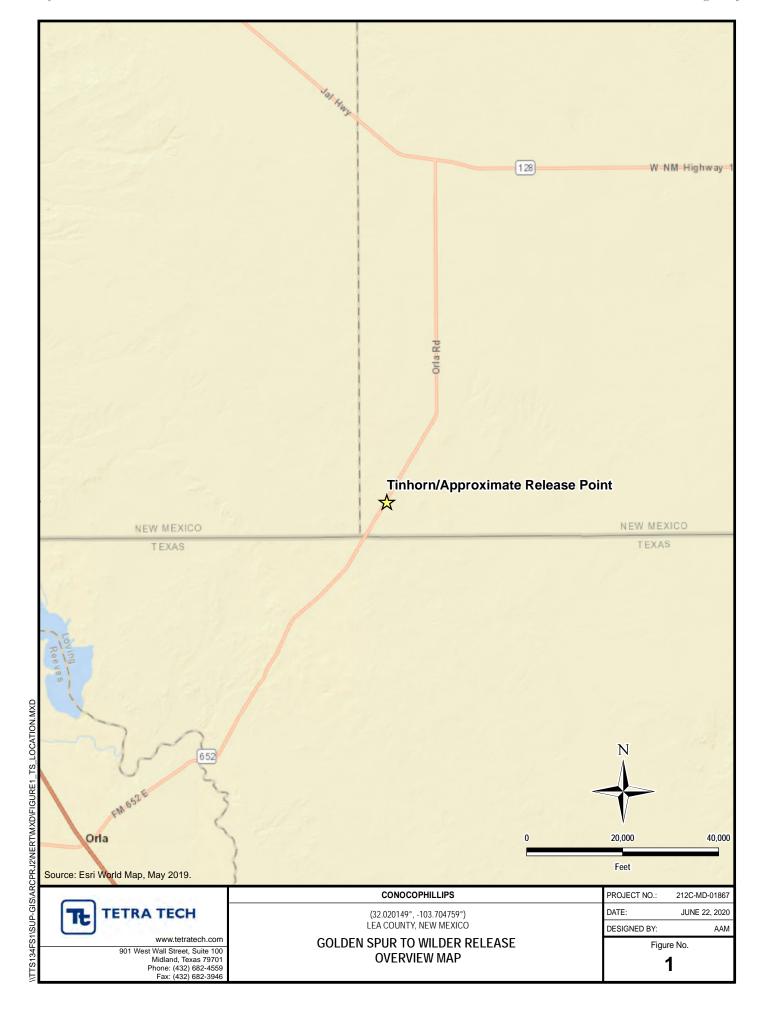
Figure 5 – Alternative Confirmation Sampling Plan

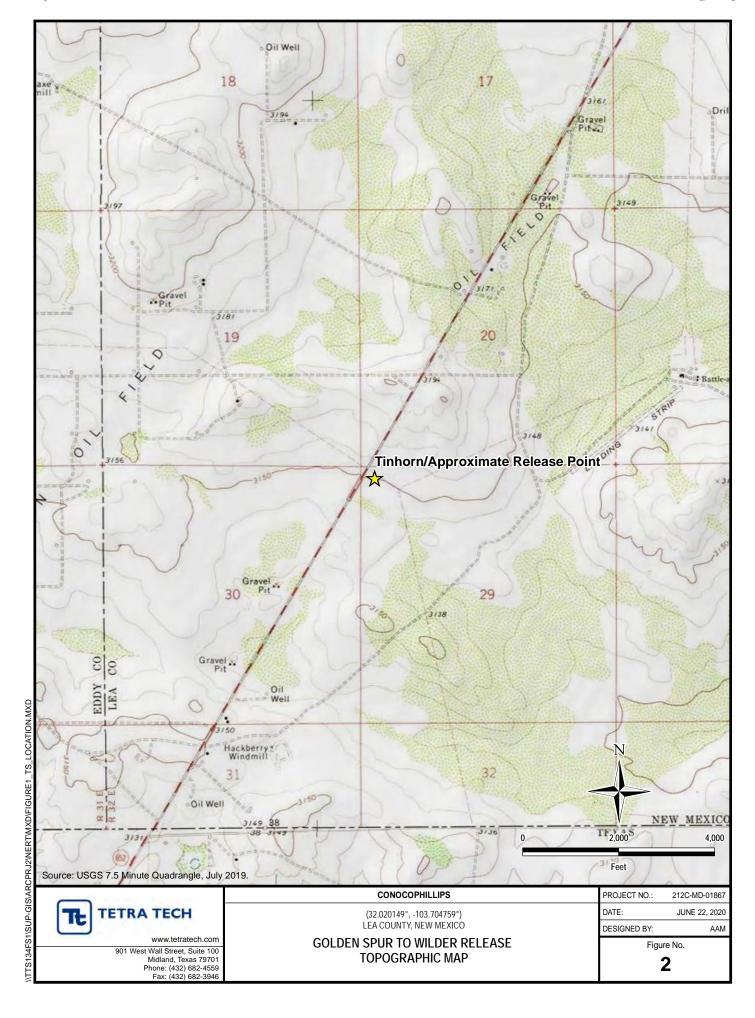
Tables:

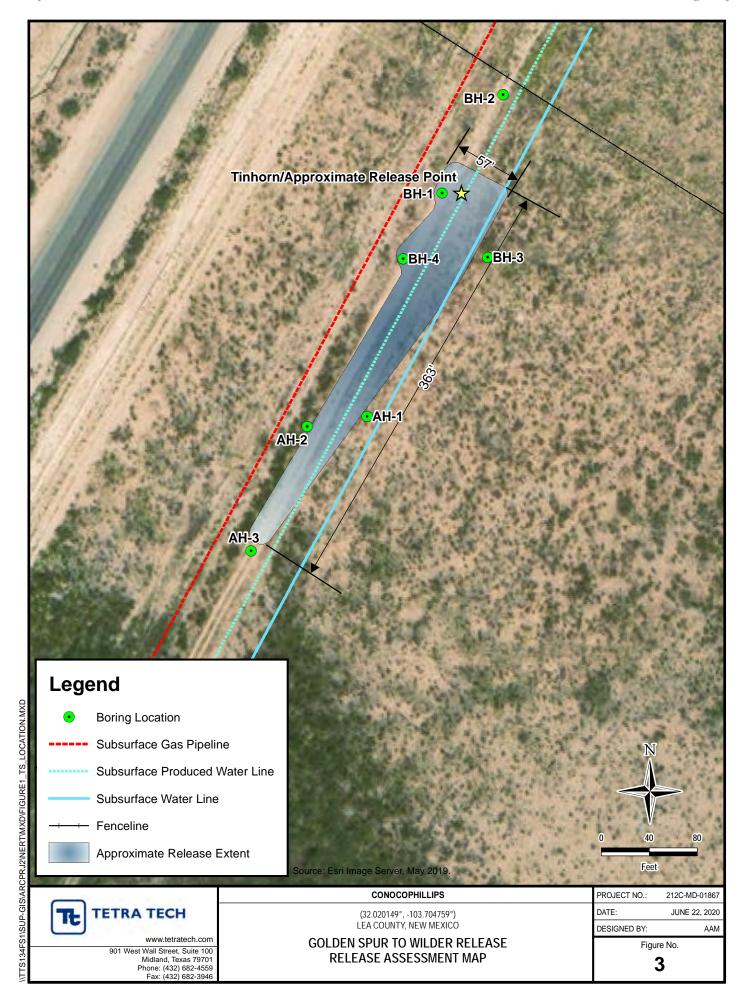
Table 1 – Summary of Analytical Results – Soil Assessment

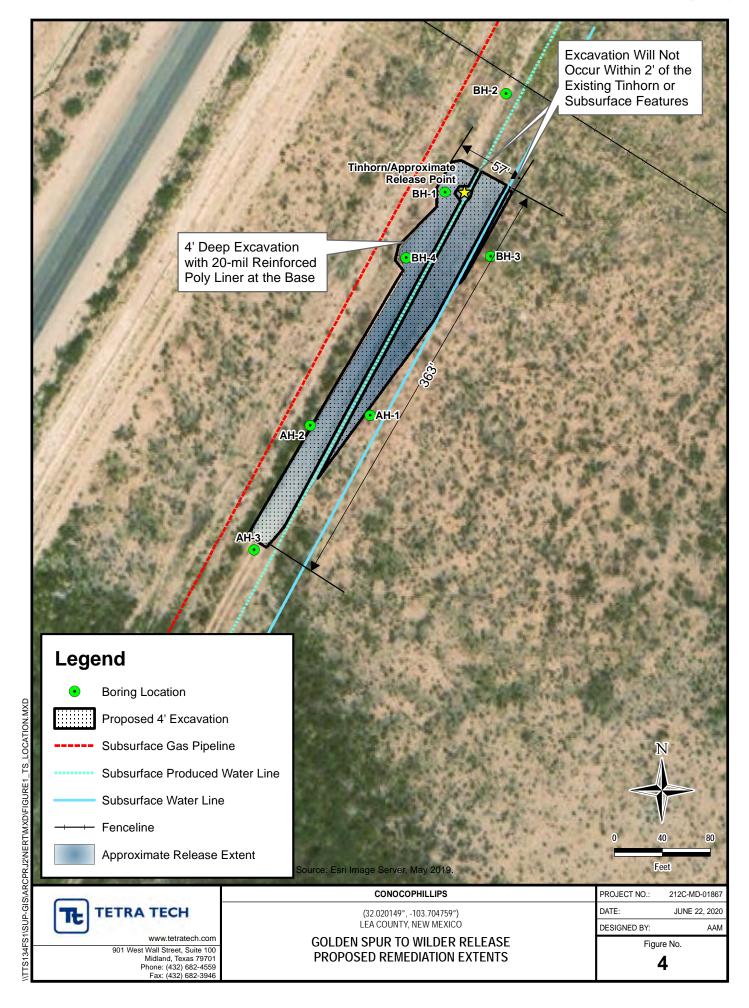
Appendices:

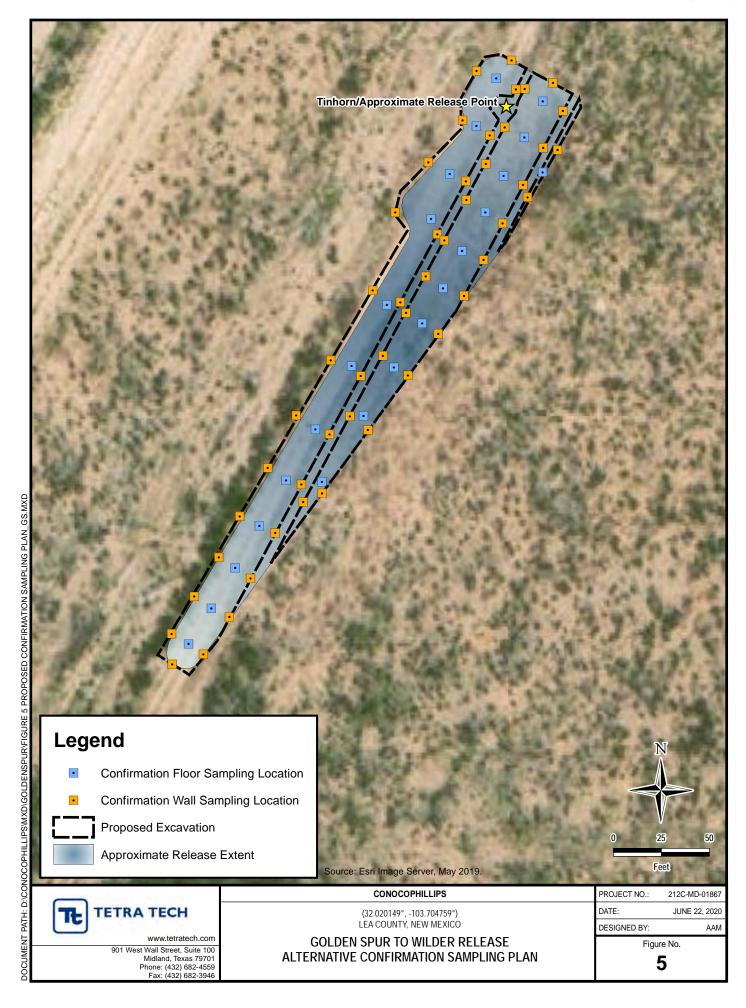
Appendix A – C-141 Forms


Appendix B - Site Characterization Data


Appendix C - Soil Boring Logs


Appendix D - Laboratory Analytical Data


Appendix E - NMSLO Seed Mixture Details


FIGURES

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT GOLDEN SPUR TO WILDER RELEASE 1RP-5622 LEA COUNTY, NM

		Sample									BTEX ²		TPH ³									
Sample ID	Sample Date	Interval		Field Screening Results		1	Benzene	Benzene			Ethylbenze	ne	Xylene		Total BTEX	GRO (C ₃ - C	(₁₀) ⁴	DRO (C ₁₀ - 0	C ₂₈)	ORO (C ₂₈ -	C ₄₀)	TPH (C ₃ - C ₄₀)
		ft bgs	Chloride	PID										_			Ι.				-	
		0.1	pp		mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	10/07/19	0-1 2-3	146 NM	0.9	23.4 11.7	В	< 0.00103 < 0.00103		< 0.00514 < 0.00514		< 0.00257 < 0.00257		< 0.00669 < 0.00668		-	0.0827	B J B J	< 4.12 < 4.11		2.62	J	2.7027 2.9148
		2-3	INIVI	0.9	11.7	В	< 0.00103		< 0.00514		< 0.00257	<u> </u>	< 0.00668		-	0.0848	BJ	< 4.11		2.83	11	2.9148
AH-2	10/07/19	0-1	112	1.1	64.2		< 0.00105		< 0.00523		< 0.00262		< 0.00680		9	0.0947	ВJ	< 4.19		1.34	J	1.4347
AII-Z	10/07/19	2-3	NM	1.0	71.5		< 0.00103		< 0.00517		< 0.00258		< 0.00672		-	0.0779	ВJ	< 4.13		1.97	J	2.0479
		0-1	98	1.1	56.1		< 0.00103		< 0.00517		< 0.00258	1	< 0.00672		_	0.0815	ВЈ	1.72	П	2.99		4.7915
AH-3	10/07/19	2-3	NM	0.8	74.8		< 0.00103		< 0.00517		< 0.00258		< 0.00672			0.0773	BJ	< 4.12	,	0.917	,	0.9943
		2.5	11111	0.0	74.0		(0.00103		10.00313		₹ 0.00230	l	\ 0.00070			0.0773	,	14.12		0.517		0.5545
		0-1	NM	10	1550		< 0.00108	T8	< 0.00538	T8	< 0.00269	T8	< 0.00700	T8	-	0.0300	J T8	2.48	J T8	5.19	T8	7.70
		2-3	3690	2.1	5090		< 0.00108	T8	< 0.00542	T8	< 0.00271	T8	< 0.00704	T8	-	< 0.108	T8	9.35	T8	16.6	T8	25.95
		4-5	3300	1.1	4310		< 0.00111	T8	< 0.00557	T8	< 0.00278	T8	< 0.00724	T8	-	0.0331	J T8	< 4.45	T8	0.537	J T8	0.5701
		6-7	NM	1.2											-							=
		9-10	2340	1.1			-								-							-
		14-15	NM	0.8											-							-
	10/07/19	19-20	3010	0.9											-							-
BH-1		24-25	2400	0.9			-								-							-
		29-30	1970	NM			-								-							-
		34-35	NM	NM			-								-						1	-
		39-40	2640	NM	3150		< 0.00106		0.00153	J	< 0.00264		< 0.00687		-	< 0.106		< 4.23		< 4.23		-
		44-45	NM	NM	3060		< 0.00106		< 0.00531		< 0.00265		< 0.00690		-	0.0968	B J	< 4.25		0.515	J	0.6118
		49-50	1990	NM	2370		< 0.00105		< 0.00526		< 0.00263		< 0.00684		-	0.0975	B J	< 4.21	1	0.432	J	0.5295
		54-55	3110	NM	4320		< 0.00114		< 0.00568		< 0.00284		< 0.00739		-	0.0993	BJ	1.99	J	0.631	J	2.7203
		59-60	419	NM	355	Ш	< 0.00102		< 0.00509		< 0.00255	<u> </u>	< 0.00662		-	0.0845	B J	< 4.08		0.319	l 1	0.4035
		0-1	136	1.4	65.6		< 0.00102		< 0.00512		< 0.00256		< 0.00665		-	0.0912	ВJ	< 4.09		1.71	J	1.8012
BH-2	10/07/19	2-3	159	1.1	56.6		< 0.00102		< 0.00512		< 0.00256		< 0.00666		-	0.0795	ВJ	1.67	J	0.646	J	2.3955
		4-5	216	0.9	56.3		< 0.00104		< 0.00522		< 0.00261		< 0.00679		-	0.0879	ВЈ	< 4.18		1.08	J	1.1679
		0.1	NA	2.4	0.22	n :	-0.00103		.0.00545		.0.00355	1	.0.00555			0.0026	ВЈ	2.05	T.	F.04		7.0726
DU 2	10/07/19	0-1	NM 61.7	2.1	9.33	BJ	< 0.00102	-	< 0.00511		< 0.00256	-	< 0.00665		-	0.0836	4	2.85	J	5.04	+	7.9736
BH-3	10/07/19	2-3 4-5	100	0.8	24.8		< 0.00103	-	< 0.00513		< 0.00257		< 0.00667	-		0.0821	B J	< 4.11	\vdash	3.40	1	3.4821
		4-5	100	0.9	<u> </u>	Щ.		_						_	-				_		щ	-
		0-1	NM	4.4	1460		< 0.00108	T8	< 0.00542	T8	< 0.00271	T8	< 0.00704	T8	=	< 0.108	T8	2.95	J T8	5.21	T8	8.16
		2-3	3380	3.2	3450		< 0.00109	Т8	< 0.00547	T8	< 0.00274	T8	< 0.00712	Т8	-	0.0239	J T8	3.24	JT8	3.27	J T8	6.5339
		4-5	2270	1.6	2490		< 0.00112	T8	< 0.00560	T8	< 0.00280	T8	< 0.00727	T8	9	< 0.112	T8	< 4.48	T8	1.80	J T8	1.80
BH-4	10/07/19	6-7	768	1.1	24.6		< 0.00103		< 0.00513		< 0.00256		< 0.00666		-	0.0768	ВJ	< 4.10		3.32	J	3.3968
		9-10	941	1.2	183		< 0.00108		< 0.00539		< 0.00269		< 0.00700		-	0.0779	ВJ	1.90	J	1.48	J	3.4579
		14-15	894	0.8	19.8	В	< 0.00110		< 0.00548		< 0.00274		< 0.00712		-	0.0706	ВJ	< 4.38		0.963	J	1.0336
		19-20	336	0.9	66.5		< 0.00102		< 0.00509		< 0.00255		< 0.00662		-	0.0681	ВJ	5.24		8.08		13.3881

NOTES:

ft Feet

 ${\it Bold\ and\ italicized\ values\ indicate\ exceedance\ of\ proposed\ RRALs.}$

bgs Below ground surface

Method 300.0
 Method 8260B

ppm Parts per million mg/kg Milligrams per kilogram

3 Method 8015

NM Not measured

4 Method 8015D/GRO

-- Not analyzed
TPH Total Petroleum Hydrocarbons

B The same analyte is found in the associated blank.

TPH Total Petroleum Hydrocarbon

J The identification of the analyte is acceptable; the reported value is an estimate.

GRO Gasoline range organics

T8 Sample(s) received past/too close to --ing time expiration.

APPENDIX A C-141 Forms

__trict1 .625 N. French Dr., Hobbs, NM 88240 <u>District II</u> 811 S. First St., Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party ConocoPhillips

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NDHR1921234950
District RP	1RP-5622
Facility ID	fDHR1921234800
Application ID	pDHR1921234384

Release Notification

Responsible Party

OGRID 217817

Contact Name	1 1 0		Contact Telephone					
Contact Name	Charles Beau	vais	, , , , , , , , , , , , , , , , , , , ,	575-745-1959				
Contact email	arles.r. beauvais	@ conocophillips,	Incident # (assigned by OCD)					
Contact mailing ac	Idress 15 West	London Rd	Loving, NM &	38256				
			3					
		Location of	Release Source					
ntituda 32.07	028° or 32°1'1	3"N	Langitude - 103 704	72° or 103°42 17"W				
ittude	, , ,	(NAD 83 in decimal	egrees to 5 decimal places)	<u> </u>				
Site Name / 11	- 111 -1		Site Type 0 / /	71.				
Golder Golder	vered 7/2/19	eral Pipeline	Site Type Produced	water pipelhe				
Date Release Disco	vered 7/2/19		API# (if applicable)					
Unit Letter Sec	tion Township	Range	County					
D 2		32E	LEA					
0 6	1 203	JZL	LEA	e				
urface Owner:	State K Federal Ti	ribal Private (Nam	BLM	Υ.				
irrace Owner.	State M redetat 11	ivai Frivate (Nam	<u> </u>					
		Nature and V	lume of Release					
		Titletal C tilla T	Tune of Itelease					
Crude Oil	Material(s) Released (Select al Volume Release		tions or specific justification for the					
			Volume Reco					
Produced Water	r Volume Release	ed (bbls) 644	Volume Recov	vered (bbls)				
		ion of total dissolved	ids (TDS) 🔀 Yes 🗌 No					
Condensate	Volume Release	water >10,000 mg/l?	Volume Recov	vered (bbls)				
Natural Gas	Volume Release			Volume Recovered (Mcf)				
Other (describe)) Volume/Weight	Released (provide uni	S) Volume/Weight Recovered (provide units)					
Cause of Release –	Fating faile	re of check	to he					
	July ration	c o occ	701/12					

Received by OCD: 8/24	1/2020 9:43:42 PM of New Mexico
2	Oil Conservation Division

19.15, 29.7 (A) (1) Yes \(\sum \) No 19.15, 29.7 (A) (1) An unauthorized release of a volume, expanses or more	ecluding gases, of 25
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what me Notice was made by Charles Beauvais, Environmental Coordinated Via email to bradford billings Dstate and dylanham made to Jim Gris wald & NMOCD, however, voicemails were received Initial Response The responsible party must undertake the following actions immediately unless they could create a safe	ose-cross@state.nm.us. Calls we multiple times,
 ☑ The source of the release has been stopped. ☑ The impacted area has been secured to protect human health and the environment. ☑ Released materials have been contained via the use of berms or dikes, absorbent pads, or o ☑ All free liquids and recoverable materials have been removed and managed appropriately. 	ther containment devices.
If all the actions described above have <u>not</u> been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately a	
has begun, please attach a narrative of actions to date. If remedial efforts have been success within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information. I hereby certify that the information given above is true and complete to the best of my knowledge and ur regulations all operators are required to report and/or file certain release notifications and perform correct public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operafailed to adequately investigate and remediate contamination that pose a threat to groundwater, surface was addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance and/or regulations. Printed Name: Signature: Date: Date: Date:	fully completed or if the release occurred on needed for closure evaluation. Inderstand that pursuant to OCD rules and ive actions for releases which may endanger ator of liability should their operations have ater, human health or the environment. In with any other federal, state, or local laws
OCD Only Received by: Dylan Rose-Coss Date: 07/31/2019	

Received by OCD: 8/24/2020 9:43:42 PM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 17 of 125
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release □ Boring or excavation logs □ Photographs including date and GIS information □ Topographic/Aerial maps □ Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/24/2020 9:43:42 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 18 of 1.	25
Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	oCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	
Printed Name: Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 8/24/2020 9:43:42 PM Form C-141 State of New Mexico Page 5 Oil Conservation Division

	Page 19 of 1.	25
Incident ID		
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.							
Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)								
Deferral Requests Only: Each of the following items must be con-	stirmed as part of any request for deferral of remediation.							
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.								
Extents of contamination must be fully delineated.								
Contamination does not cause an imminent risk to human health	n, the environment, or groundwater.							
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
Printed Name:	Title:							
Signature:	Date:							
email:	Telephone:							
OCD Only								
Received by:	Date:							
☐ Approved ☐ Approved with Attached Conditions of	Approval							
Signature: Justin 2	Date:							

APPENDIX BSite Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

	0.1	POD Sub-	•		Q		•	_			v	v	-	-	Water
POD Number			County								X	Y	_		Column
C 02271	R	CUB	LE		2	3	21	26S	32E	624449	9	3544111* 🌍	150	125	25
C 02271 POD2		CUB	LE	3	2	3	21	26S	32F	624348	R	3544010*	270	250	20
0 022711 002		OOD		Ü	_	•	- '	200	022	02 10 10	0	0011010	210	200	20
C 02274		CUB	LE	2	1	2	31	26S	32E	621742	2	3541730* 🌑	300	295	5
		_													
<u>C 02323</u>		С	LE	3	2	3	21	26S	32E	624348	8	3544010*	405	405	0
C 03537 POD1		CUB	LE	3	2	3	21	26S	32F	624250	n	3543985	850		
<u> </u>		005		Ü	_	•	- '	200	022	02 1200	0	0010000	000		
C 03595 POD1		CUB	LE	4	2	3	21	26S	32E	624423	3	3544045 🌕	280	180	100

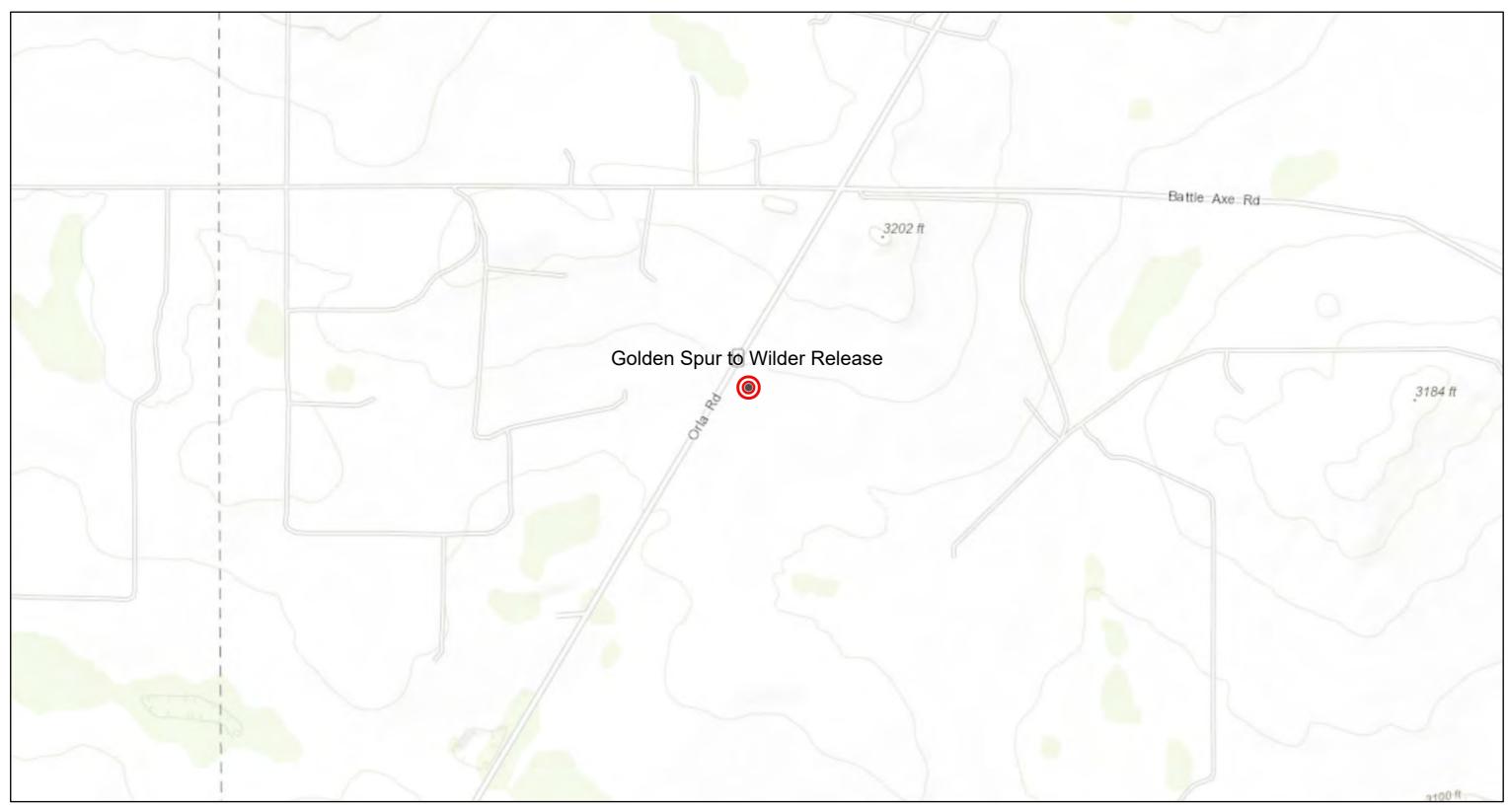
Average Depth to Water: 251 feet

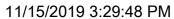
Minimum Depth: 125 feet

Maximum Depth: 405 feet

Record Count: 6

PLSS Search:

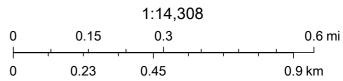

Section(s): 19, 20, 21, 28, **Township:** 26S **Range:** 32E


30, 31, 32, 33,

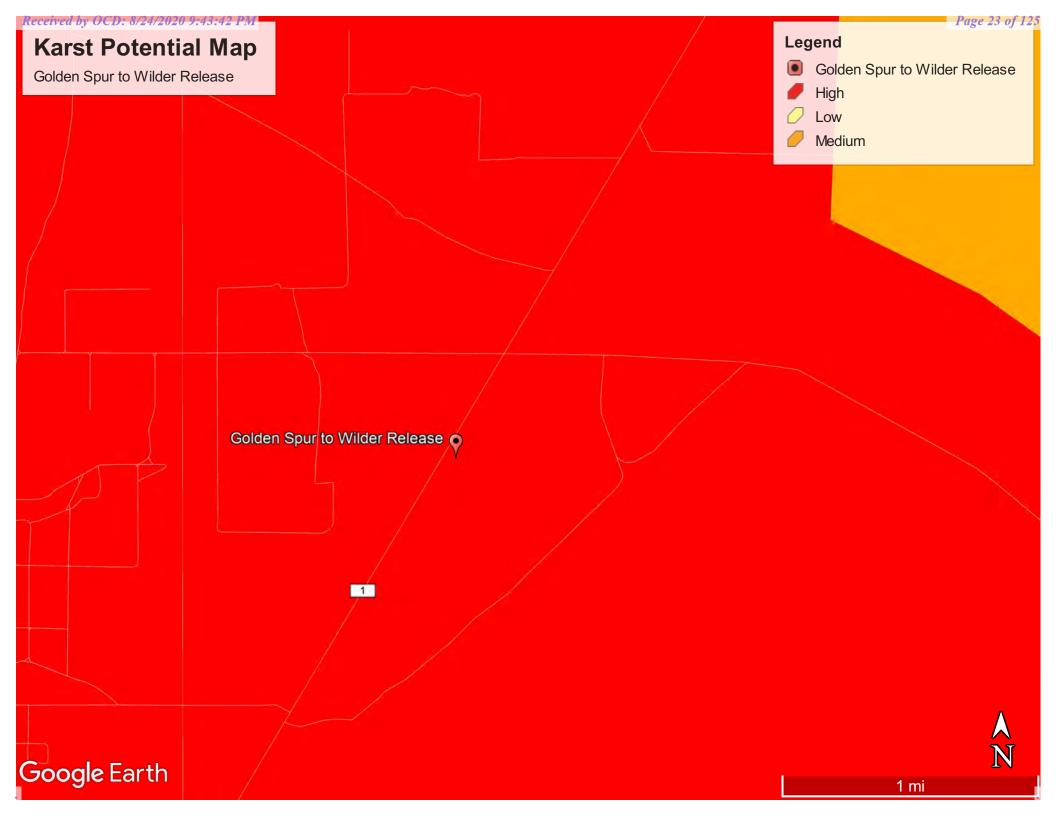
29

*UTM location was derived from PLSS - see Help

Golden Spur to Wilder Release NMOCD Map


New Mexico Counties

New Mexico Towns



OSE Water-bodies

OSE Streams

US Census Bureau, NMDOT, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

APPENDIX CSoil Boring Logs

eçe	ceived by OCD: 8/24/2020 9:43:42 PM													<u>Page 25 of</u>				
	212C-MD-01867 TETRA TECH												LOG OF BORING AH-1	Page 1 of 1				
F	Proje	ct N	lam	e: Gol	den Spi	ur to	Wild	der F	ede	ral P	ipelin	e Re	lease					
E	Borel	hole	Loc	cation:	GPS: N	32.0	1965	5° E	-103.	7050	12°		Surface Elevation: 3151 ft					
E	Borel	hole	Nu	mber:	AH-1						B	oreho Diame	ole ter (in.): 2 Date Started: 10/7/2019 Date Finishe	ed: 10/7/2019				
	m) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M									DEX			WATER LEVEL OBSERVATIONS	DRY_ft				
	DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (#)	REMARKS				
		*****	~~ ~~	146	1.2								-SM- SILTY SAND; Brown, medium dense, with no hydrocarbon odor, with no staining.	AH-1 (0'-1')				
		1	٣		0.9								Bottom of borehole at 3.0 feet.	AH-1 (2'-3')				
													Bottom of Bottomore at 0.0 feet.					
	Samp ype	oler s:	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Split Spoon Shelby Bulk Sample Grab Sample				r T	opera ypes	Mud Rota	ary itinuous ht Auge sh		Auger Notes: Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" surface elevation is an estimated value.	column.				

212C-MD-01867 TETRA TECH											LOG OF BORING AH-2		Page 20 0j Page 1 of 1				
Project	Nam	ie: Gol	den Spi	ur to	Wild	der F	ede	al Pi	pelin	e Re	ease						
Boreho	ole Lo	cation:	GPS: N	32.0	1963	3° E	-103.	7051	74°		ourface Elevation: 3152 ft						
Boreho	le Nu	ımber:	AH-2						B	oreho Diame	ole oter (in.): 2 Date Started: 10/7/2019 Date Finished: 10/7/2019						
	Dm) Sm) Sm) St (%) ENT (%) DEX							NDEX			WATER LEVEL OBSERVATIONS	<u></u> ✓ D	RY_ft				
DEPTH (ft)	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG		DEPTH (ft)	REMARKS				
		112	1.1								-SM- SILTY SAND; Brown, medium dense, with no hydrocarbon odor, with no staining.		AH-1 (0'-1')				
			1								Bottom of borehole at 3.0 feet.	3	AH-1 (2'-3')				
Sample Types:		Split Spoon Shelby Bulk Sample Grab Sample		cetato d'ane s' Califor est P	nia	r T)pera ypes	Mud Rota	ary tinuous nt Auge sh	s E	Auger Notes: Air Rotary Analytical samples are shown in the "Remark Surface elevation is an estimated value. Direct Push	ks" c	column.				

ceived by OCD: 8/24/2020 9:43:42	PM		Page 27 of				
212C-MD-01867	TECH	LOG OF BORING AH-3 Page 1 of					
Project Name: Golden Spur to Wilde	er Federal Pipeline Rele	ease					
Borehole Location: GPS: N 32.019348	s° E -103.705326° S	Surface Elevation: 3151 ft					
Borehole Number: AH-3	Borehole Diamete	e Date Started: 10/7/2019 Date Finished:	10/7/2019				
PE IELD (ppm) (ppm) /ERY (%)	Maria Landina	WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ DR Remarks:	<u>tY</u> ft				
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm) COCFIELD COCFIELD COCFIELD SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf) LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG	MATERIAL DESCRIPTION (1) HE HE HE HE HE HE HE HE HE H	REMARKS				
_ 98 1.1 _ m		-	AH-1 (0'-1')				
0.8		Bottom of borehole at 3.0 feet.	AH-1 (2'-3')				
Sampler Types: Split Spoon Acetate Liner Shelby Vane Shear	Operation Types: Mud Rotary	Auger Notes: Analytical samples are shown in the "Remarks" co Surface elevation is an estimated value.	olumn.				

Continuous Flight Auger

Wash Rotary

Bulk Sample

Grab Sample

California

Test Pit

Core Barrel

Direct Push

212	C-M	D-0	1867	T	ETR	ATE	Н					LOG OF BORING BH-1						Page 1 of 3			
Proje	ect N	lam	e: Go	lden Spi	ur to	Wild	der F	eder	al P	ipelii	ne R	elease)								•
Bore	hole	Lo	cation:	GPS: N	32.0	2016	5° E	-103.	7048				Surface Elevation: 3155 ft								
Bore	hole	Nu	mber:	BH-1							Borel Diam	hole eter (in	.): 8		Date Sta	rted:	10/7/20	19	Date F	inishe	d: 10/7/2019
			lmd)	(mda	:RY (%)	ENT (%)	J.		DEX			Whil	e Drillin		VATER L ☑ DRY ft		OBSE			Ā D	PRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHICLOG		М	ATE	ERIAL DE	ESCF	RIPTIOI	N		DEPTH (ft)	REMARKS
_	$\langle \langle \rangle \rangle$	M		10								-SI	/I- SIL ⁻ hydroc	TY S	SAND; Bro on odor, w	wn, n	nedium staining	dense, v g.	with		BH-1 (0'-1')
_		X	3690	2.1																_	BH-1 (2'-3')
5_		X	3300	1.1								CI	M CII -	TV C	SAND; Tar	2 100	no to ma	odium d	ongo	5.5	BH-1 (4'-5')
_		X		1.2								wit	h interr h no st	nitte	nt gravel,	with r	no hydro	carbon	odor,		BH-1 (6'-7')
10		X	2340	1.1																_ _ _	BH-1 (9'-10')
_ _ _ _ 15		X		0.8																_	DII 4 (44' 45')
				0.6																_	BH-1 (14'-15')
20		X	3010	0.9																_	BH-1 (19'-20')
			2400	0.9								-SI hyd	M- SIL ⁻ drocarb	TY S	SAND; Tar odor, with i	n, me no sta	dium de aining.	nse, wit	h no		BH 1 (24' 25')
25 Sam Type	pler	<u> </u>	Split Spoon		cetat	e Line	r [Dpera Types	ition			Aug	ıer	Note	es:						BH-1 (24'-25')
Туре	s:	1, 1, 2, 4	Spoon Shelby Shelby Bulk Sampl Grab Sampl	e No		Shear rnia	• 1	ypes	Muc Rota	ary itinuoi ht Auç sh	us ger		Rotary e rel	Ana	es: alytical sai face eleva	mples ation	s are sho is an es	own in t timated	he "Rem value.	arks" (column.

212C-MD-0 ⁻	2C-MD-01867									LOG OF BORING BH-1					Page 2 of 3		
Project Name	e: Gol	lden Spu	ur to	Wild	ler F	eder	al Pi	ipelir	ne Re	elease							
Borehole Loc	ation:	GPS: N	32.0	2016	5° E -	-103.	7048	07°		Surface Elev	Surface Elevation: 3155 ft						
Borehole Nur	nber:	BH-1						E	Boreh Diame	ole eter (in.):		Date Started:	10/7/2019	Date Finishe	d: 10/7/2019		
	LD pm)	(mdı	RY (%)	ENT (%)	f)		DEX			While Drillin	ing		L OBSERVATIO		DRY_ft		
DEPTH (ft) OPERATION TYPE SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	N	ИΑТ	TERIAL DESCF	RIPTION	DEPTH (ft)	REMARKS		
30 30 35 40 45 45 Sampler Types:	1970 2640 Split Spoon									-SM- SII no hydro	ocart	SAND; Brown, r	medium dense, w		BH-1 (29'-30') BH-1 (34'-35') BH-1 (44'-45')		
Types:	v e C	Acetate Liner Vane Shear California Test Pit Operation Types: Mud Rotary Flight Auger Wash Rotary							Air Rotary Core Barrel Direct Push	Α	nalytical samples	s are shown in the is an estimated v	e "Remarks" ⁄alue.	column.			

212C-MD-01867	TE TETRAT	TECH	LOG OF BORING BH-1 Page 3 of 3					
Project Name: G	olden Spur to Wilde	r Federal Pipeline F	Release	I				
Borehole Location:	GPS: N 32.020165°	E -103.704807°	Surface Elevation: 3155 ft					
Borehole Number:	BH-1	Bore Dian	chole neter (in.): 8 Date Started: 10/7/2019 Date Finishe	d: 10/7/2019				
rPE FIELD 3 (DOM)	3 (ppm) VERY (%) NTENT (%)	ă X	WATER LEVEL OBSERVATIONS While Drilling ▼ DRY ft Upon Completion of Drilling Remarks:	DRY_ft				
DEPTH (ft) OPERATION TYPE SAMPLE THE CHLORIDE FIELD SCREENING (DDM)	<u> </u>	DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (a) HE HE HE HE HE HE HE HE HE H	REMARKS				
55 3110			-SP- SAND: Tan, loose, with no hydrocarbon odor, with no staining.	BH-1 (54'-55')				
			Bottom of borehole at 60.0 feet.					
Sampler Types: Spi Spi Spo She	by Vane Shear California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary Drilling Equipment:	Auger Air Rotary Core Barrel Direct Push Air Rotary Driller: Scarborough Drilling	column.				

eceived by OCD: 8/24/2020 9:43:42 PM														<u>Page 31 of</u>
	212C-MD-01867												LOG OF BORING BH-2	Page 1 of 1
	Proje	ct N	ame	e: Gold	den Spı	ur to	Wild	der F	ede	ral Pi	pelin	e Re	ease	
	Borel	nole	Loc	ation:	GPS: N	32.0	2038	9° E	-103.	7046			Surface Elevation: 3157 ft	
	Borel	nole	Nur	nber: I	3H-2						B	oreho iame	le er (in.): 8 Date Started: 10/7/2019 Date Finishe	ed: 10/7/2019
				u)	(u	۲ (%)	NT (%)			X			WATER LEVEL OBSERVATIONS	DRY_ft
	DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT			GRAPHIC LOG	MATERIAL DESCRIPTION (£)	REMARKS
	_		X	136 159	1.4								-SM- SILTY SAND; White, loose, with gravel, with no hydrocarbon odor, with no staining.	BH-2 (0'-1') BH-2 (2'-3')
-	5	((Δ	216	0.9								Bottom of borehole at 5.0 feet.	BH-2 (4'-5')
	Samp Type	oler s:	S. S	Split Spoon Shelby Bulk Sample Grab Sample	v X	cetato d'ane s' Califor	nia	r T)pera ypes	Muc Rota Con	ary tinuous nt Auge sh		Auger Notes: Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" Surface elevation is an estimated value.	column.

ceived by OCD: 8	8/24/2020 9:43:42 PM		<u>Page 32 of</u>				
212C-MD-01867	TE TETRATECH	LOG OF BORING BH-3	Page 1 of 1				
Project Name: G	olden Spur to Wilder Federal Pipeline F	Release					
Borehole Location:	GPS: N 32.020016° E -103.704686°	Surface Elevation: 3155 ft					
Borehole Number:	BH-3 Bore	ole ter (in.): 8 Date Started: 10/7/2019 Date Finished: 10/7/2					
QÊ	m) IY (%) NT (%) EX	WATER LEVEL OBSERVATIONS While Drilling	RY_ft				
OPERATION TYPE SAMPLE CHORIDE FIELD SCREENING (ppm)	<u> </u>	MATERIAL DESCRIPTION (a) HLdag	REMARKS				
	2.1	-SM- SILTY SAND; Brown, loose to medium dense, with few gravel, with no hydrocarbon odor, with no staining.	BH-3 (0'-1')				
61.7			BH-3 (2'-3')				
5 (100.0	0 0.9	Bottom of borehole at 5.0 feet.	BH-3 (4'-5')				
Sampler Spin Spin Spin Spin Spin Spin Spin Spin	Vane Shear California California Mud Rotary Continuous Flight Auger Wash	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" or Surface elevation is an estimated value.	olumn.				

212	212C-MD-01867											LOG OF BORING BH-4	Page 1 of 1				
Proje	ct N	ame	e: Gol	den Spı	ur to	Wild	der F	ede	ral Pi	pelir	ne Re	elease					
Bore	hole	Loc	cation:	GPS: N	32.0	2001	4° E	-103.	7049	13°		Surface Elevation: 3155 ft					
Bore	hole	Nu	mber:	BH-4						E	Boreh Diame	nole eter (in.): 8 Date Started: 10/7/2019 Date Finished: 10/7/2019					
	DEX						of)		NDEX			WATER LEVEL OBSERVATIONS	RY_ft				
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS				
_	$\langle \langle $	X		4.4								-SM- SILTY SAND; Brown, medium dense, with no hydrocarbon odor, with no staining.	BH-4 (0'-1')				
_		X	3380	3.2									BH-4 (2'-3')				
5_		X	2270	1.6								5.5	BH-4 (4'-5')				
_ _ _		X	968	1.1								-SP- SAND; Tan, loose, with few gravel, with no hydrocarbon odor, with no staining.	BH-4 (6'-7')				
10_		X	641	1.2									BH-4 (9'-10')				
- -																	
15_		X	894	0.8									BH-4 (14'-15')				
_ _ _																	
20		X	336	0.9								20	BH-4 (19'-20')				
	20))/\ 336 0.9																
Sampler Types: Split Spoon Acetate Liner Vane Shear Bulk Sample California Grab Sample Test Pit Operation Types: Mud Rotary Flight Auger Wash Rotary							r (Opera ypes	Muc Rota Con Fligh	ary tinuou nt Aug sh	as er	Auger Air Rotary Core Barrel Direct Push Notes: Analytical samples are shown in the "Remarks" of Surface elevation is an estimated value.	column.				
Logg	er:	Joe	Tyler				[Drillin	g Equ	uipme	ent: Air	r Rotary Driller: Scarborough Drilling					

APPENDIX D Laboratory Analytical Data

ANALYTICAL REPORT

October 24, 2019

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1150103

Samples Received:

10/15/2019

Project Number:

212C-MD-01867

Description:

COP Golden Spur to Wilder Release

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
BH-1 (39'-40') L1150103-01	8
BH-1 (44'-45') L1150103-02	9
BH-1 (49'-50') L1150103-03	10
BH-1 (54'-55') L1150103-04	11
BH-1 (59'-60') L1150103-05	12
BH-2 (0'-1') L1150103-06	13
BH-2 (2'-3') L1150103-07	14
BH-2 (4'-5') L1150103-08	15
BH-3 (0'-1') L1150103-09	16
BH-3 (2'-3') L1150103-10	17
BH-4 (6'-7') L1150103-11	18
BH-4 (9'-10') L1150103-12	19
BH-4 (14'-15') L1150103-13	20
BH-4 (19'-20') L1150103-14	21
AH-1 (0'-1') L1150103-15	22
AH-1 (2'-3') L1150103-16	23
AH-2 (0'-1') L1150103-17	24
AH-2 (2'-3') L1150103-18	25
AH-3 (0'-1') L1150103-19	26
AH-3 (2'-3') L1150103-20	27
Qc: Quality Control Summary	28
Total Solids by Method 2540 G-2011	28
Wet Chemistry by Method 300.0	31
Volatile Organic Compounds (GC) by Method 8015D/GRO	32
Volatile Organic Compounds (GC/MS) by Method 8260B	35
Semi-Volatile Organic Compounds (GC) by Method 8015	38
GI: Glossary of Terms	40
Al: Accreditations & Locations	41

Sc: Sample Chain of Custody

42

BH-1 (39'-40') L1150103-01 Solid			Collected by JT	Collected date/time 10/07/19 11:20	10/15/19 09:15	e/ume
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1363821	5	10/17/19 10:08	10/17/19 11:50	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1366338	1	10/16/19 08:07	10/21/19 17:58	ACG	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365835	1	10/16/19 08:07	10/19/19 12:45	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366255	1	10/16/19 08:07	10/20/19 18:58	ADM	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1364761	1	10/17/19 17:33	10/18/19 16:55	TJD	Mt. Juliet, TI
DI I 4 /4 41 4EN 1 44E0400 00 C 17 I			Collected by JT	Collected date/time 10/07/19 11:25	Received date 10/15/19 09:15	e/time
BH-1 (44'-45') L1150103-02 Solid	Dotah	Dilution				Lagation
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1363821	5	10/17/19 10:08	10/17/19 12:09	ST	Mt. Juliet, Th
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 15:47	DWR	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1365835	1	10/16/19 08:07	10/19/19 13:06	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1364761	1	10/17/19 17:33	10/18/19 17:09	TJD	Mt. Juliet, TI
			Collected by	Collected date/time	Received date	e/time
BH-1 (49'-50') L1150103-03 Solid			JT	10/07/19 11:30	10/15/19 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1363821	5	10/17/19 10:08	10/17/19 12:18	ST	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 16:09	DWR	Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365835	1	10/16/19 08:07	10/19/19 13:26	DWR	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1364761	1	10/17/19 17:33	10/18/19 17:23	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		e/time
BH-1 (54'-55') L1150103-04 Solid			JT	10/07/19 11:45	10/15/19 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, Ti
Vet Chemistry by Method 300.0	WG1363821	10	10/17/19 10:08	10/17/19 12:28	ST	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 16:32	DWR	Mt. Juliet, Ti
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1365835	1	10/16/19 08:07	10/19/19 13:47	DWR	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1364761	1	10/17/19 17:33	10/18/19 17:36	TJD	Mt. Juliet, Ti
			Collected by	Collected date/time	Received date	e/time
BH-1 (59'-60') L1150103-05 Solid			JT	10/07/19 11:50	10/15/19 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 12:37	ST	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 16:54	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1365835	1	10/16/19 08:07	10/19/19 14:07	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1364761	1	10/17/19 17:33	10/18/19 17:49	TJD	Mt. Juliet, Ti

	JAMII LL V		VI AIV I			
BH-2 (0'-1') L1150103-06 Solid			Collected by JT	Collected date/time 10/07/19 11:55	Received da 10/15/19 09:1	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Welliou	Daten	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1367803 WG1363821	1	10/23/13 14.33	10/17/19 12:47	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 17:16	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 12:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 18:40	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (2'-3') L1150103-07 Solid			JT	10/07/19 12:00	10/15/19 09:1	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367005	1	10/23/19 14:35	10/23/19 14:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 12:56	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 17:38	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 13:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 18:53	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
BH-2 (4'-5') L1150103-08 Solid			JT	10/07/19 12:10	10/15/19 09:1	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 13:25	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 18:01	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 13:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 19:06	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
BH-3 (0'-1') L1150103-09 Solid			JT	10/07/19 12:25	10/15/19 09:1	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 13:34	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 18:23	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 13:55	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 19:18	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
BH-3 (2'-3') L1150103-10 Solid			JT	10/07/19 12:40	10/15/19 09:1	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 13:44	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 18:45	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 14:15	DWR	Mt. Juliet, TN
J						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1365094

10/18/19 06:39

10/18/19 19:31

KME

Mt. Juliet, TN

	JAMII LL					
BH-4 (6'-7') L1150103-11 Solid			Collected by JT	Collected date/time 10/07/19 13:50	Received date 10/15/19 09:15	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 13:54	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 19:07	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 14:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 19:44	KME	Mt. Juliet, TN
BH-4 (9'-10') L1150103-12 Solid			Collected by	Collected date/time 10/07/19 14:00	Received date 10/15/19 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 14:03	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 19:30	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 14:54	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 19:57	KME	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-4 (14'-15') L1150103-13 Solid			JT	10/07/19 14:10	10/15/19 09:15)
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 14:13	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 19:52	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 15:13	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 20:10	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	e/time
BH-4 (19'-20') L1150103-14 Solid			JT	10/07/19 14:30	10/15/19 09:15	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 14:41	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 20:14	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 15:33	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 20:22	KME	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-1 (0'-1') L1150103-15 Solid			JT	10/07/19 14:35	10/15/19 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1363821	1	10/17/19 10:08	10/17/19 14:51	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1364083	1	10/16/19 08:07	10/17/19 20:36	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1365838	1	10/16/19 08:07	10/19/19 15:52	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/19/19 06:54	KME	Mt. Juliet, TN

		Collected by	Collected date/time		
		JI	10/07/19 14.40	10/13/19 09.1	<u> </u>
Batch	Dilution	Preparation	Analysis	Analyst	Location
WG1367007	1			KDW	Mt. Juliet, T
					Mt. Juliet, T
					Mt. Juliet, T
					Mt. Juliet, T
WG1365094	1	10/18/19 06:39	10/18/19 20:48	KME	Mt. Juliet, T
		Collected by	Collected date/time	Received dat	te/time
		JT	10/07/19 14:45	10/15/19 09:1	5
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1367007	1	10/23/19 14:23	10/23/19 14:32	KDW	Mt. Juliet, T
WG1363821	1	10/17/19 10:08	10/17/19 15:29	ST	Mt. Juliet, T
WG1365550	1	10/16/19 08:07	10/20/19 15:51	DWR	Mt. Juliet, T
WG1365838	1	10/16/19 08:07	10/19/19 16:31	DWR	Mt. Juliet, T
WG1365094	1	10/18/19 06:39	10/18/19 21:01	KME	Mt. Juliet, T
		Collected by	Collected date/time	Received dat	te/time
		JT	10/07/19 14:50	10/15/19 09:1	5
Batch	Dilution	Preparation	Analysis	Analyst	Location
	1				Mt. Juliet, 1
					Mt. Juliet, 1
					Mt. Juliet, T
					Mt. Juliet, T
WG1365094	1	10/18/19 06:39	10/18/19 21:13	KME	Mt. Juliet, T
		Collected by	Callanda databia	Donoi cod dot	
		Collected by	Collected date/time	Received dai	te/time
		JT	10/07/19 15:00	10/15/19 09:1	
Batch	Dilution	JT Preparation	10/07/19 15:00 Analysis		
		JT Preparation date/time	10/07/19 15:00 Analysis date/time	10/15/19 09:19 Analyst	5 Location
Batch WG1367008	Dilution	Preparation date/time 10/23/19 13:53	10/07/19 15:00 Analysis date/time 10/23/19 14:05	10/15/19 09:19 Analyst KDW	Location Mt. Juliet, T
		JT Preparation date/time	10/07/19 15:00 Analysis date/time	10/15/19 09:1! Analyst KDW ST	Location Mt. Juliet, T Mt. Juliet, T
WG1367008	1	Preparation date/time 10/23/19 13:53	10/07/19 15:00 Analysis date/time 10/23/19 14:05	10/15/19 09:19 Analyst KDW	Location Mt. Juliet, T Mt. Juliet, T
WG1367008 WG1363821	1 1	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48	10/15/19 09:1! Analyst KDW ST	Location Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
WG1367008 WG1363821 WG1365550	1 1 1	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40	Analyst KDW ST DWR	Location Mt. Juliet, 1 Mt. Juliet, 1 Mt. Juliet, 1 Mt. Juliet, 1
WG1367008 WG1363821 WG1365550 WG1365838	1 1 1 1	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 08:07	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10	Analyst KDW ST DWR DWR	Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
WG1367008 WG1363821 WG1365550 WG1365838	1 1 1 1	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 08:07 10/18/19 06:39	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10 10/18/19 21:26	Analyst KDW ST DWR DWR KME	Location Mt. Juliet, T
WG1367008 WG1363821 WG1365550 WG1365838	1 1 1 1	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 08:07 10/18/19 06:39 Collected by JT Preparation	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10 10/18/19 21:26 Collected date/time 10/07/19 15:10 Analysis	Analyst KDW ST DWR DWR KME	Location Mt. Juliet, T
WG1367008 WG1363821 WG1365550 WG1365838 WG1365094	1 1 1 1 1	Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 08:07 10/18/19 06:39 Collected by JT Preparation date/time	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10 10/18/19 21:26 Collected date/time 10/07/19 15:10 Analysis date/time	Analyst KDW ST DWR DWR KME Received dat 10/15/19 09:1!	Location Mt. Juliet, T
WG1367008 WG1363821 WG1365550 WG1365838 WG1365094 Batch	1 1 1 1 1 1 Dilution	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 06:39 Collected by JT Preparation date/time 10/23/19 13:53	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10 10/18/19 21:26 Collected date/time 10/07/19 15:10 Analysis date/time 10/23/19 14:05	Analyst KDW ST DWR DWR KME Received dat 10/15/19 09:1: Analyst KDW	Location Mt. Juliet, T te/time Location Mt. Juliet, T
WG1367008 WG1363821 WG1365550 WG1365838 WG1365094 Batch WG1367008 WG1363821	1 1 1 1 1 1 Dilution	Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 08:07 10/18/19 06:39 Collected by JT Preparation date/time 10/23/19 13:53 10/17/19 10:08	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10 10/18/19 21:26 Collected date/time 10/07/19 15:10 Analysis date/time 10/23/19 14:05 10/17/19 15:57	Analyst KDW ST DWR DWR KME Received dat 10/15/19 09:11 Analyst KDW ST	Location Mt. Juliet, T te/time Location Mt. Juliet, T Mt. Juliet, T
WG1367008 WG1363821 WG1365550 WG1365838 WG1365094 Batch	1 1 1 1 1 1 Dilution	JT Preparation date/time 10/23/19 13:53 10/17/19 10:08 10/16/19 08:07 10/16/19 06:39 Collected by JT Preparation date/time 10/23/19 13:53	10/07/19 15:00 Analysis date/time 10/23/19 14:05 10/17/19 15:48 10/20/19 16:40 10/19/19 17:10 10/18/19 21:26 Collected date/time 10/07/19 15:10 Analysis date/time 10/23/19 14:05	Analyst KDW ST DWR DWR KME Received dat 10/15/19 09:1: Analyst KDW	Location Mt. Juliet, T
	Batch WG1367007 WG1363821 WG1365550 WG1365838 WG1365094	WG1367007 1 WG1363821 1 WG1365550 1 WG1365838 1 WG1365094 1 WG1363821 1 WG1365550 1 WG1365838 1 WG1365694 1 Batch Dilution WG1365838 1 WG1365838 1 WG1365838 1 WG1365838 1	WG1367007	Batch Dilution Preparation date/time date/time	Batch

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ONE LAB. NAT Page 42 of \$25

Collected date/time: 10/07/19 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.6		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3150		4.20	10.0	52.8	5	10/17/2019 11:50	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.106	1	10/21/2019 17:58	WG1366338
(S) a,a,a-Trifluorotoluene(FID)	95.0				77.0-120		10/21/2019 17:58	WG1366338

СQс

GI

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000423	0.00100	0.00106	1	10/19/2019 12:45	WG1365835
Toluene	0.00153	J	0.00132	0.00500	0.00528	1	10/20/2019 18:58	WG1366255
Ethylbenzene	U		0.000560	0.00250	0.00264	1	10/19/2019 12:45	WG1365835
Total Xylenes	U		0.00505	0.00650	0.00687	1	10/19/2019 12:45	WG1365835
(S) Toluene-d8	103				75.0-131		10/19/2019 12:45	WG1365835
(S) Toluene-d8	107				75.0-131		10/20/2019 18:58	WG1366255
(S) 4-Bromofluorobenzene	98.0				67.0-138		10/19/2019 12:45	WG1365835
(S) 4-Bromofluorobenzene	102				67.0-138		10/20/2019 18:58	WG1366255
(S) 1,2-Dichloroethane-d4	102				70.0-130		10/19/2019 12:45	WG1365835
(S) 1,2-Dichloroethane-d4	74.3				70.0-130		10/20/2019 18:58	WG1366255

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.23	1	10/18/2019 16:55	WG1364761
C28-C40 Oil Range	U		0.290	4.00	4.23	1	10/18/2019 16:55	WG1364761
(S) o-Terphenyl	68.9				18.0-148		10/18/2019 16:55	WG1364761

ONE LAB. NAT Bage 13. of \$25

Collected date/time: 10/07/19 11:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.2		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3060		4.22	10.0	53.1	5	10/17/2019 12:09	WG1363821

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0968	ВЈ	0.0230	0.100	0.106	1	10/17/2019 15:47	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 15:47	WG1364083

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000425	0.00100	0.00106	1	10/19/2019 13:06	WG1365835
Toluene	U		0.00133	0.00500	0.00531	1	10/19/2019 13:06	WG1365835
Ethylbenzene	U		0.000563	0.00250	0.00265	1	10/19/2019 13:06	WG1365835
Total Xylenes	U		0.00507	0.00650	0.00690	1	10/19/2019 13:06	WG1365835
(S) Toluene-d8	104				75.0-131		10/19/2019 13:06	WG1365835
(S) 4-Bromofluorobenzene	103				67.0-138		10/19/2019 13:06	WG1365835
(S) 1,2-Dichloroethane-d4	106				70.0-130		10/19/2019 13:06	WG1365835

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.00	4.25	1	10/18/2019 17:09	WG1364761
C28-C40 Oil Range	0.515	<u>J</u>	0.291	4.00	4.25	1	10/18/2019 17:09	WG1364761
(S) o-Terphenyl	78.2				18.0-148		10/18/2019 17:09	WG1364761

ONE LAB. NAT Page 44 of 125

Collected date/time: 10/07/19 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	2370		4.18	10.0	52.6	5	10/17/2019 12:18	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0975	ВЈ	0.0228	0.100	0.105	1	10/17/2019 16:09	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 16:09	WG1364083

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	10/19/2019 13:26	WG1365835
Toluene	U		0.00131	0.00500	0.00526	1	10/19/2019 13:26	WG1365835
Ethylbenzene	U		0.000557	0.00250	0.00263	1	10/19/2019 13:26	WG1365835
Total Xylenes	U		0.00503	0.00650	0.00684	1	10/19/2019 13:26	WG1365835
(S) Toluene-d8	101				75.0-131		10/19/2019 13:26	WG1365835
(S) 4-Bromofluorobenzene	98.4				67.0-138		10/19/2019 13:26	WG1365835
(S) 1,2-Dichloroethane-d4	105				70.0-130		10/19/2019 13:26	WG1365835

Sc

Gl

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.00	4.21	1	10/18/2019 17:23	WG1364761
C28-C40 Oil Range	0.432	<u>J</u>	0.288	4.00	4.21	1	10/18/2019 17:23	WG1364761
(S) o-Terphenyl	68.2				18.0-148		10/18/2019 17:23	WG1364761

ONE LAB. NAT Page 45 of 125

Collected date/time: 10/07/19 11:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.0		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	4320		9.04	10.0	114	10	10/17/2019 12:28	WG1363821

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0993	ВЈ	0.0247	0.100	0.114	1	10/17/2019 16:32	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 16:32	WG1364083

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00100	0.00114	1	10/19/2019 13:47	WG1365835
Toluene	U		0.00142	0.00500	0.00568	1	10/19/2019 13:47	WG1365835
Ethylbenzene	U		0.000602	0.00250	0.00284	1	10/19/2019 13:47	WG1365835
Total Xylenes	U		0.00543	0.00650	0.00739	1	10/19/2019 13:47	WG1365835
(S) Toluene-d8	99.8				75.0-131		10/19/2019 13:47	WG1365835
(S) 4-Bromofluorobenzene	97.4				67.0-138		10/19/2019 13:47	WG1365835
(S) 1,2-Dichloroethane-d4	101				70.0-130		10/19/2019 13:47	WG1365835

Sc

•								
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.99	<u>J</u>	1.83	4.00	4.55	1	10/18/2019 17:36	WG1364761
C28-C40 Oil Range	0.631	J	0.311	4.00	4.55	1	10/18/2019 17:36	WG1364761
(S) o-Terphenyl	78.2				18.0-148		10/18/2019 17:36	WG1364761

ONE LAB. NATRAGE 46 of \$25

Collected date/time: 10/07/19 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.1		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	355		0.810	10.0	10.2	1	10/17/2019 12:37	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0845	ВЈ	0.0221	0.100	0.102	1	10/17/2019 16:54	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 16:54	WG1364083

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000408	0.00100	0.00102	1	10/19/2019 14:07	WG1365835
Toluene	U		0.00127	0.00500	0.00509	1	10/19/2019 14:07	WG1365835
Ethylbenzene	U		0.000540	0.00250	0.00255	1	10/19/2019 14:07	WG1365835
Total Xylenes	U		0.00487	0.00650	0.00662	1	10/19/2019 14:07	WG1365835
(S) Toluene-d8	101				75.0-131		10/19/2019 14:07	WG1365835
(S) 4-Bromofluorobenzene	97.1				67.0-138		10/19/2019 14:07	WG1365835
(S) 1,2-Dichloroethane-d4	105				70.0-130		10/19/2019 14:07	WG1365835

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.00	4.08	1	10/18/2019 17:49	WG1364761
C28-C40 Oil Range	0.319	<u>J</u>	0.279	4.00	4.08	1	10/18/2019 17:49	WG1364761
(S) o-Terphenyl	76.4				18.0-148		10/18/2019 17:49	WG1364761

ONE LAB. NAT Page 47. of 125

Collected date/time: 10/07/19 11:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.7		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	65.6		0.814	10.0	10.2	1	10/17/2019 12:47	WG1363821

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0912	ВЈ	0.0222	0.100	0.102	1	10/17/2019 17:16	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		10/17/2019 17:16	WG1364083

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000409	0.00100	0.00102	1	10/19/2019 12:57	WG1365838
Toluene	U		0.00128	0.00500	0.00512	1	10/19/2019 12:57	WG1365838
Ethylbenzene	U		0.000542	0.00250	0.00256	1	10/19/2019 12:57	WG1365838
Total Xylenes	U		0.00489	0.00650	0.00665	1	10/19/2019 12:57	WG1365838
(S) Toluene-d8	101				75.0-131		10/19/2019 12:57	WG1365838
(S) 4-Bromofluorobenzene	92.5				67.0-138		10/19/2019 12:57	WG1365838
(S) 1,2-Dichloroethane-d4	110				70.0-130		10/19/2019 12:57	WG1365838

Sc

	'	, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.00	4.09	1	10/18/2019 18:40	WG1365094
C28-C40 Oil Range	1.71	<u>J</u>	0.280	4.00	4.09	1	10/18/2019 18:40	WG1365094
(S) o-Terphenyl	84.7				18.0-148		10/18/2019 18:40	WG1365094

Collected date/time: 10/07/19 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.7		1	10/23/2019 14:44	WG1367005

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	56.6		0.814	10.0	10.2	1	10/17/2019 12:56	WG1363821

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0795	ВЈ	0.0222	0.100	0.102	1	10/17/2019 17:38	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		10/17/2019 17:38	WG1364083

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000410	0.00100	0.00102	1	10/19/2019 13:17	WG1365838
Toluene	U		0.00128	0.00500	0.00512	1	10/19/2019 13:17	WG1365838
Ethylbenzene	U		0.000543	0.00250	0.00256	1	10/19/2019 13:17	WG1365838
Total Xylenes	U		0.00489	0.00650	0.00666	1	10/19/2019 13:17	WG1365838
(S) Toluene-d8	102				75.0-131		10/19/2019 13:17	WG1365838
(S) 4-Bromofluorobenzene	89.7				67.0-138		10/19/2019 13:17	WG1365838
(S) 1,2-Dichloroethane-d4	108				70.0-130		10/19/2019 13:17	WG1365838

Sc

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.67	<u>J</u>	1.65	4.00	4.10	1	10/18/2019 18:53	WG1365094
C28-C40 Oil Range	0.646	<u>J</u>	0.281	4.00	4.10	1	10/18/2019 18:53	WG1365094
(S) o-Terphenyl	85.4				18.0-148		10/18/2019 18:53	WG1365094

ONE LAB. NAT Bage 49 of \$25

Collected date/time: 10/07/19 12:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.7		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	56.3		0.831	10.0	10.4	1	10/17/2019 13:25	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0879	ВЈ	0.0227	0.100	0.104	1	10/17/2019 18:01	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		10/17/2019 18:01	WG1364083

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00100	0.00104	1	10/19/2019 13:36	WG1365838
Toluene	U		0.00131	0.00500	0.00522	1	10/19/2019 13:36	WG1365838
Ethylbenzene	U		0.000554	0.00250	0.00261	1	10/19/2019 13:36	WG1365838
Total Xylenes	U		0.00499	0.00650	0.00679	1	10/19/2019 13:36	WG1365838
(S) Toluene-d8	103				75.0-131		10/19/2019 13:36	WG1365838
(S) 4-Bromofluorobenzene	89.4				67.0-138		10/19/2019 13:36	WG1365838
(S) 1,2-Dichloroethane-d4	108				70.0-130		10/19/2019 13:36	WG1365838

Sc

Gl

	· · · · · · · · · · · · · · · · · · ·	, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.00	4.18	1	10/18/2019 19:06	WG1365094
C28-C40 Oil Range	1.08	<u>J</u>	0.286	4.00	4.18	1	10/18/2019 19:06	WG1365094
(S) o-Terphenyl	81.3				18.0-148		10/18/2019 19:06	WG1365094

ONE LAB. NAT Page 50 of 125

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.8		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	9.33	ВЈ	0.813	10.0	10.2	1	10/17/2019 13:34	WG1363821

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0836	ВЈ	0.0222	0.100	0.102	1	10/17/2019 18:23	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 18:23	WG1364083

[°]Qc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000409	0.00100	0.00102	1	10/19/2019 13:55	WG1365838
Toluene	U		0.00128	0.00500	0.00511	1	10/19/2019 13:55	WG1365838
Ethylbenzene	U		0.000542	0.00250	0.00256	1	10/19/2019 13:55	WG1365838
Total Xylenes	U		0.00489	0.00650	0.00665	1	10/19/2019 13:55	WG1365838
(S) Toluene-d8	103				75.0-131		10/19/2019 13:55	WG1365838
(S) 4-Bromofluorobenzene	91.4				67.0-138		10/19/2019 13:55	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 13:55	WG1365838

Sc

PAGE:

16 of 46

	'	, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.85	J	1.65	4.00	4.09	1	10/18/2019 19:18	WG1365094
C28-C40 Oil Range	5.04		0.280	4.00	4.09	1	10/18/2019 19:18	WG1365094
(S) o-Terphenyl	91.6				18.0-148		10/18/2019 19:18	WG1365094

SAMPLE RESULTS - 10 L1150103

ONE LAB. NAT Paga 51 of 125

Collected date/time: 10/07/19 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	24.8		0.816	10.0	10.3	1	10/17/2019 13:44	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0821	ВЈ	0.0223	0.100	0.103	1	10/17/2019 18:45	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 18:45	WG1364083

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000411	0.00100	0.00103	1	10/19/2019 14:15	WG1365838
Toluene	U		0.00128	0.00500	0.00513	1	10/19/2019 14:15	WG1365838
Ethylbenzene	U		0.000544	0.00250	0.00257	1	10/19/2019 14:15	WG1365838
Total Xylenes	U		0.00491	0.00650	0.00667	1	10/19/2019 14:15	WG1365838
(S) Toluene-d8	99.4				75.0-131		10/19/2019 14:15	WG1365838
(S) 4-Bromofluorobenzene	95.2				67.0-138		10/19/2019 14:15	WG1365838
(S) 1,2-Dichloroethane-d4	115				70.0-130		10/19/2019 14:15	WG1365838

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.00	4.11	1	10/18/2019 19:31	WG1365094
C28-C40 Oil Range	3.40	<u>J</u>	0.281	4.00	4.11	1	10/18/2019 19:31	WG1365094
(S) o-Terphenyl	85.0				18.0-148		10/18/2019 19:31	WG1365094

SAMPLE RESULTS - 11 L1150103

ONE LAB. NAT Paga 52 of 125

Collected date/time: 10/07/19 13:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.6		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	24.6		0.815	10.0	10.3	1	10/17/2019 13:54	WG1363821

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0768	ВЈ	0.0222	0.100	0.103	1	10/17/2019 19:07	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 19:07	WG1364083

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000410	0.00100	0.00103	1	10/19/2019 14:34	WG1365838
Toluene	U		0.00128	0.00500	0.00513	1	10/19/2019 14:34	WG1365838
Ethylbenzene	U		0.000543	0.00250	0.00256	1	10/19/2019 14:34	WG1365838
Total Xylenes	U		0.00490	0.00650	0.00666	1	10/19/2019 14:34	WG1365838
(S) Toluene-d8	101				75.0-131		10/19/2019 14:34	WG1365838
(S) 4-Bromofluorobenzene	90.9				67.0-138		10/19/2019 14:34	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 14:34	WG1365838

Sc

PAGE:

18 of 46

Semi-Volatile Organic Compounds (GC) by Method 8015

ACCOUNT:

	'	, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.00	4.10	1	10/18/2019 19:44	WG1365094
C28-C40 Oil Range	3.32	<u>J</u>	0.281	4.00	4.10	1	10/18/2019 19:44	WG1365094
(S) o-Terphenyl	88.1				18.0-148		10/18/2019 19:44	WG1365094

ONE LAB. NAT Baga 53 of \$25

Collected date/time: 10/07/19 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.8		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	183		0.856	10.0	10.8	1	10/17/2019 14:03	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0779	ВЈ	0.0234	0.100	0.108	1	10/17/2019 19:30	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 19:30	WG1364083

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	10/19/2019 14:54	WG1365838
Toluene	U		0.00135	0.00500	0.00539	1	10/19/2019 14:54	WG1365838
Ethylbenzene	U		0.000571	0.00250	0.00269	1	10/19/2019 14:54	WG1365838
Total Xylenes	U		0.00515	0.00650	0.00700	1	10/19/2019 14:54	WG1365838
(S) Toluene-d8	103				75.0-131		10/19/2019 14:54	WG1365838
(S) 4-Bromofluorobenzene	89.6				67.0-138		10/19/2019 14:54	WG1365838
(S) 1,2-Dichloroethane-d4	110				70.0-130		10/19/2019 14:54	WG1365838

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.90	J	1.73	4.00	4.31	1	10/18/2019 19:57	WG1365094
C28-C40 Oil Range	1.48	J	0.295	4.00	4.31	1	10/18/2019 19:57	WG1365094
(S) o-Terphenyl	81.9				18.0-148		10/18/2019 19:57	WG1365094

SAMPLE RESULTS - 13 L1150103

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.3		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	19.8	В	0.871	10.0	11.0	1	10/17/2019 14:13	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0706	ВЈ	0.0238	0.100	0.110	1	10/17/2019 19:52	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 19:52	WG1364083

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000438	0.00100	0.00110	1	10/19/2019 15:13	WG1365838
Toluene	U		0.00137	0.00500	0.00548	1	10/19/2019 15:13	WG1365838
Ethylbenzene	U		0.000580	0.00250	0.00274	1	10/19/2019 15:13	WG1365838
Total Xylenes	U		0.00523	0.00650	0.00712	1	10/19/2019 15:13	WG1365838
(S) Toluene-d8	101				75.0-131		10/19/2019 15:13	WG1365838
(S) 4-Bromofluorobenzene	92.1				67.0-138		10/19/2019 15:13	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 15:13	WG1365838

Sc

PAGE:

20 of 46

9		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.00	4.38	1	10/18/2019 20:10	WG1365094
C28-C40 Oil Range	0.963	<u>J</u>	0.300	4.00	4.38	1	10/18/2019 20:10	WG1365094
(S) o-Terphenyl	90.3				18.0-148		10/18/2019 20:10	WG1365094

ONE LAB. NAT Baga 55 of \$25

Collected date/time: 10/07/19 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.1		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	66.5		0.810	10.0	10.2	1	10/17/2019 14:41	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0681	ВЈ	0.0221	0.100	0.102	1	10/17/2019 20:14	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 20:14	WG1364083

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	<u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000408	0.00100	0.00102	1	10/19/2019 15:33	WG1365838
Toluene	U		0.00127	0.00500	0.00509	1	10/19/2019 15:33	WG1365838
Ethylbenzene	U		0.000540	0.00250	0.00255	1	10/19/2019 15:33	WG1365838
Total Xylenes	U		0.00487	0.00650	0.00662	1	10/19/2019 15:33	WG1365838
(S) Toluene-d8	105				75.0-131		10/19/2019 15:33	WG1365838
(S) 4-Bromofluorobenzene	93.3				67.0-138		10/19/2019 15:33	WG1365838
(S) 1,2-Dichloroethane-d4	109				70.0-130		10/19/2019 15:33	WG1365838

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.24		1.64	4.00	4.08	1	10/18/2019 20:22	WG1365094
C28-C40 Oil Range	8.08		0.279	4.00	4.08	1	10/18/2019 20:22	WG1365094
(S) o-Terphenyl	88.9				18.0-148		10/18/2019 20:22	WG1365094

SAMPLE RESULTS - 15 L1150103

Collected date/time: 10/07/19 14:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.2		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	23.4		0.818	10.0	10.3	1	10/17/2019 14:51	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0827	ВЈ	0.0223	0.100	0.103	1	10/17/2019 20:36	WG1364083
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		10/17/2019 20:36	WG1364083

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00100	0.00103	1	10/19/2019 15:52	WG1365838
Toluene	U		0.00129	0.00500	0.00514	1	10/19/2019 15:52	WG1365838
Ethylbenzene	U		0.000545	0.00250	0.00257	1	10/19/2019 15:52	WG1365838
Total Xylenes	U		0.00492	0.00650	0.00669	1	10/19/2019 15:52	WG1365838
(S) Toluene-d8	99.9				75.0-131		10/19/2019 15:52	WG1365838
(S) 4-Bromofluorobenzene	88.7				67.0-138		10/19/2019 15:52	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 15:52	WG1365838

Sc

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.00	4.12	1	10/19/2019 06:54	WG1365094
C28-C40 Oil Range	2.62	<u>J</u>	0.282	4.00	4.12	1	10/19/2019 06:54	WG1365094
(S) o-Terphenyl	87.9				18.0-148		10/19/2019 06:54	WG1365094

SAMPLE RESULTS - 16 L1150103

ONE LAB. NAT Paga 57. of 125

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.3		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	11.7	В	0.817	10.0	10.3	1	10/17/2019 15:19	WG1363821

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0848	ВЈ	0.0223	0.100	0.103	1	10/20/2019 15:28	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 15:28	WG1365550

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000411	0.00100	0.00103	1	10/19/2019 16:11	WG1365838
Toluene	U		0.00128	0.00500	0.00514	1	10/19/2019 16:11	WG1365838
Ethylbenzene	U		0.000545	0.00250	0.00257	1	10/19/2019 16:11	WG1365838
Total Xylenes	U		0.00491	0.00650	0.00668	1	10/19/2019 16:11	WG1365838
(S) Toluene-d8	103				75.0-131		10/19/2019 16:11	WG1365838
(S) 4-Bromofluorobenzene	92.6				67.0-138		10/19/2019 16:11	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 16:11	WG1365838

Sc

9		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.00	4.11	1	10/18/2019 20:48	WG1365094
C28-C40 Oil Range	2.83	J	0.282	4.00	4.11	1	10/18/2019 20:48	WG1365094
(S) o-Terphenyl	88.9				18.0-148		10/18/2019 20:48	WG1365094

ONE LAB. NATRAGE 58 of \$25

Collected date/time: 10/07/19 14:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.6		1	10/23/2019 14:32	WG1367007

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	64.2		0.832	10.0	10.5	1	10/17/2019 15:29	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0947	ВЈ	0.0227	0.100	0.105	1	10/20/2019 15:51	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 15:51	WG1365550

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	<u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00100	0.00105	1	10/19/2019 16:31	WG1365838
Toluene	U		0.00131	0.00500	0.00523	1	10/19/2019 16:31	WG1365838
Ethylbenzene	U		0.000555	0.00250	0.00262	1	10/19/2019 16:31	WG1365838
Total Xylenes	U		0.00500	0.00650	0.00680	1	10/19/2019 16:31	WG1365838
(S) Toluene-d8	103				75.0-131		10/19/2019 16:31	WG1365838
(S) 4-Bromofluorobenzene	93.3				67.0-138		10/19/2019 16:31	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 16:31	WG1365838

Sc

Gl

		, ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.00	4.19	1	10/18/2019 21:01	WG1365094
C28-C40 Oil Range	1.34	<u>J</u>	0.287	4.00	4.19	1	10/18/2019 21:01	WG1365094
(S) o-Terphenyl	87.2				18.0-148		10/18/2019 21:01	WG1365094

ONE LAB. NAT Page 59 of \$25

Collected date/time: 10/07/19 14:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.7		1	10/23/2019 14:05	WG1367008

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	71.5		0.822	10.0	10.3	1	10/17/2019 15:38	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0779	ВЈ	0.0224	0.100	0.103	1	10/20/2019 16:18	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 16:18	WG1365550

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000413	0.00100	0.00103	1	10/19/2019 16:50	WG1365838
Toluene	U		0.00129	0.00500	0.00517	1	10/19/2019 16:50	WG1365838
Ethylbenzene	U		0.000548	0.00250	0.00258	1	10/19/2019 16:50	WG1365838
Total Xylenes	U		0.00494	0.00650	0.00672	1	10/19/2019 16:50	WG1365838
(S) Toluene-d8	104				75.0-131		10/19/2019 16:50	WG1365838
(S) 4-Bromofluorobenzene	93.5				67.0-138		10/19/2019 16:50	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 16:50	WG1365838

Sc

Gl

		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.00	4.13	1	10/18/2019 21:13	WG1365094
C28-C40 Oil Range	1.97	J	0.283	4.00	4.13	1	10/18/2019 21:13	WG1365094
(S) o-Terphenyl	89.0				18.0-148		10/18/2019 21:13	WG1365094

SAMPLE RESULTS - 19 L1150103

ONE LAB. NAT Page 60 of 125

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.7		1	10/23/2019 14:05	WG1367008

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	56.1		0.822	10.0	10.3	1	10/17/2019 15:48	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0815	ВЈ	0.0224	0.100	0.103	1	10/20/2019 16:40	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 16:40	WG1365550

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000414	0.00100	0.00103	1	10/19/2019 17:10	WG1365838
Toluene	U		0.00129	0.00500	0.00517	1	10/19/2019 17:10	WG1365838
Ethylbenzene	U		0.000548	0.00250	0.00258	1	10/19/2019 17:10	WG1365838
Total Xylenes	U		0.00494	0.00650	0.00672	1	10/19/2019 17:10	WG1365838
(S) Toluene-d8	102				75.0-131		10/19/2019 17:10	WG1365838
(S) 4-Bromofluorobenzene	92.2				67.0-138		10/19/2019 17:10	WG1365838
(S) 1,2-Dichloroethane-d4	112				70.0-130		10/19/2019 17:10	WG1365838

Sc

		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.72	<u>J</u>	1.66	4.00	4.14	1	10/18/2019 21:26	WG1365094
C28-C40 Oil Range	2.99	J	0.283	4.00	4.14	1	10/18/2019 21:26	WG1365094
(S) o-Terphenyl	85.9				18.0-148		10/18/2019 21:26	WG1365094

Collected date/time: 10/07/19 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	10/23/2019 14:05	WG1367008

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	74.8		0.819	10.0	10.3	1	10/17/2019 15:57	WG1363821

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0773	ВЈ	0.0224	0.100	0.103	1	10/20/2019 17:03	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 17:03	WG1365550

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	<u>Qualifier</u>	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00100	0.00103	1	10/19/2019 17:29	WG1365838
Toluene	U		0.00129	0.00500	0.00515	1	10/19/2019 17:29	WG1365838
Ethylbenzene	U		0.000546	0.00250	0.00258	1	10/19/2019 17:29	WG1365838
Total Xylenes	U		0.00493	0.00650	0.00670	1	10/19/2019 17:29	WG1365838
(S) Toluene-d8	103				75.0-131		10/19/2019 17:29	WG1365838
(S) 4-Bromofluorobenzene	90.0				67.0-138		10/19/2019 17:29	WG1365838
(S) 1,2-Dichloroethane-d4	109				70.0-130		10/19/2019 17:29	WG1365838

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

ACCOUNT:

ConocoPhillips - Tetra Tech

		, , ,						
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.00	4.12	1	10/18/2019 21:39	WG1365094
C28-C40 Oil Range	0.917	<u>J</u>	0.282	4.00	4.12	1	10/18/2019 21:39	WG1365094
(S) o-Terphenyl	80.5				18.0-148		10/18/2019 21:39	WG1365094

ONE LAB. NAT Page 62 of \$25

Total Solids by Method 2540 G-2011

L1150103-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3464469-1 10/23/19 14:44 MB RDL MB Result MB Qualifier MB MDL Analyte % % % Total Solids 0.00700

L1150103-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1150103-01 10/23/19 14:44 • (DUP) R3464469-3 10/23/19 14:44

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.6	94.7	1	0.124		10

Ss

Laboratory Control Sample (LCS)

(LCS) R3464469-2 10/23/	Spike Amount	unt LCS Res	ult LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.9	85.0-115	

ONE LAB. NAT Page 63 of 125

Total Solids by Method 2540 G-2011

L1150103-08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3464466-1 10/	23/19 14:32					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	%		%	%		
Total Solids	0.00400					

L1150103-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1150103-12 10/23/1	9 14:32 • (DUP)	R3464466-3 1	10/23/19 14	32		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.8	93.4	1	0.562		10

Laboratory Control Sample (LCS)

(LCS) R3464466-2 10/23	3/19 14:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

ONE LAB. NAT Page 64 of \$25

Total Solids by Method 2540 G-2011

L1150103-18,19,20

Method Blank (MB)

(MB) R3464454-1 10	0/23/19 14:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Тс

Ss

[†]Cn

L1150106-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1150106-01	10/23/19 14:05 • (DUP) R3464454-3 10/23/19 14:09	5

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.1	85.7	1	0.723		10

60

Laboratory Control Sample (LCS)

(LCS) R3464454-2 10/23/19 14:05

(LCS) R3464454-2 10/23/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

20

ONE LAB. NAT Page 65 of 125

Wet Chemistry by Method 300.0

L1150103-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

Chloride

(MB) R3462178-1 10/17/19	9 11:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	1.92	1	0.795	10.0

L1150103-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1150103-01 10/17/19 1	1:50 • (DUP) R3	462178-3 10/	17/19 11:59			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ma/ka	ma/ka		%		%

3050

(OS) L1150103-20 10/17/19 15:57 • (DUP) R3462178-6 10/17/19 16:07

3150

, ,	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	74.8	72.1	1	3.69		20

5

3.06

Laboratory Control Sample (LCS)

(LCS) R3462178-2 10/17/19 11:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	102	90.0-110	

L1150103-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150103-13 10/17/19 14:13 • (MS) P3462178-4 10/17/19 14:22 • (MSD) P3462178-5 10/17/19 14:32

(03) [1130103-13 10/17/19 1	` '	Original Result (dry)	•	,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	548	19.8	555	550	97.7	96.9	1	80.0-120			0.844	20

ONE LAB. NAT Page 66 of \$25

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1150103-02,03,04,05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

(MB) R3462951-2 10/17/19	9 12:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0599	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120

Method Blank (MB)

(MB) R3463345-3 10/21/19	9 12:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0704	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3462951-1	10/17/19 11:11
------------------	----------------

(LCS) R3462951-1 10/17/19	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.29	96.2	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3463345-2 10/21/19 11:3	(LCS	23463345-	2 10/21/19	11:32
--------------------------------	------	-----------	------------	-------

(ECS) 113+033+3 2 10/21/1	15 11.52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.73	86.0	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120	

10/24/19 21:35

ONE LAB. NAT Page 67 of \$25

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1150103-16,17,18,19,20

Method Blank (MB)

(MB) R3463029-2 10/20/	19 14:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0731	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3463029-1 10/20/	19 13:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.45	99.1	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

L1150129-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1150129-29	10/20/19 17:25 • (MS) R3463029-3	10/20/19 23:24 • ((MSD) R3463029-4	10/20/19 23:46

(00) E1100120 20 10/20/10 17:20 (110) NO 100020 0 10/20/10 20:21 (1100) NO 100020 1 10/20/10 20:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	0.0758	1.18	2.12	20.1	37.2	1	10.0-151		<u>J3</u>	57.0	28
(S) a,a,a-Trifluorotoluene(FID)					101	90.9		77.0-120				

ACCOUNT:

ONE LAB. NATRAGE 68 of 125

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1150103-01

Method Blank (MB)

MB) R3463571-2 10/21/19	9 14:22				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120	

^⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3463571-1 10/21/19	9 13:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.06	92.0	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

ONE LAB. NATRAGA 69 of \$25

Volatile Organic Compounds (GC/MS) by Method 8260B

L1150103-01,02,03,04,05

Method Blank (MB)

•	MB Result	MB Qualifier	MB MDL	MB RDL	
		MD Qualifier			
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	104			75.0-131	
(S) 4-Bromofluorobenzene	97.0			67.0-138	
(S) 1,2-Dichloroethane-d4	101			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3462907-1 10/19	/19 10:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.129	103	70.0-123	
Ethylbenzene	0.125	0.125	100	74.0-126	
Toluene	0.125	0.115	92.0	75.0-121	
Xylenes, Total	0.375	0.310	82.7	72.0-127	
(S) Toluene-d8			99.9	75.0-131	
(S) 4-Bromofluorobenzene			100	67.0-138	
(S) 1,2-Dichloroethane-d4			108	70.0-130	

L1149279-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1149279-06 10/19/19	` '		,	*								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.00500	44.0	0.0144	0.0144	0.000	0.000	.04	10.0-149	\vee	\vee	0.000	37
Ethylbenzene	0.00500	81.6	0.0206	0.0218	0.000	0.000	.04	10.0-160	$\underline{\vee}$	$\underline{\vee}$	5.66	38
Toluene	0.00500	213	0.0455	0.0473	0.000	0.000	.04	10.0-156	\vee	$\underline{\vee}$	3.88	38
Xylenes, Total	0.0150	U	0.0839	0.0890	559	593	.04	10.0-160	<u>J5</u>	<u>J5</u>	5.90	38
(S) Toluene-d8					101	104		75.0-131				
(S) 4-Bromofluorobenzene					107	110		67.0-138				
(S) 1,2-Dichloroethane-d4					107	111		70.0-130				

10/24/19 21:35

Reserve de la 1860 8/24/2020 9:43:42 PM

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

L1150103-06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

ONE LAB. NATRAGE 70 of \$15

Method Blank (MB)

metriod Biariit (imb										
(MB) R3463061-2 10/19/1	(MB) R3463061-2 10/19/19 12:20									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						

Laboratory Control Sample (LCS)

106

(S) 1,2-Dichloroethane-d4

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(LCS) R3463061-1 10)/19/19 10:56				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.124	99.2	70.0-123	
Ethylbenzene	0.125	0.124	99.2	74.0-126	
Toluene	0.125	0.0997	79.8	75.0-121	
Xylenes, Total	0.375	0.365	97.3	72.0-127	
(S) Toluene-d8			100	75.0-131	

70.0-130

67.0-138

70.0-130

97.3

115

ONE LAB. NATRAGE 71 of \$25

Volatile Organic Compounds (GC/MS) by Method 8260B

L1150103-01

Method Blank (MB)

(MB) R3463027-3 10/20/19	IB) R3463027-3 10/20/19 12:03								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Toluene	U		0.00125	0.00500					
(S) Toluene-d8	109			<i>75.0-131</i>					
(S) 4-Bromofluorobenzene	100			67.0-138					
(S) 1,2-Dichloroethane-d4	86.8			70.0-130					

3 C G

4 (n

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3463027-1 10/20/1	CS) R3463027-1 10/20/19 10:48 • (LCSD) R3463027-2 10/20/19 11:07												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Toluene	0.125	0.123	0.118	98.4	94.4	75.0-121			4.15	20			
(S) Toluene-d8				108	106	75.0-131							
(S) 4-Bromofluorobenzene				103	99.4	67.0-138							
(S) 1 2-Dichloroethane-d4				90.2	88.9	70 0-130							

ONE LAB. NAT Page 72 of 125

Semi-Volatile Organic Compounds (GC) by Method 8015

L1150103-01,02,03,04,05

Method Blank (MB)

(MB) R3462392-1 10/18/	MB) R3462392-1 10/18/19 05:42								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
C10-C28 Diesel Range	U		1.61	4.00					
C28-C40 Oil Range	U		0.274	4.00					
(S) o-Terphenyl	82.0			18.0-148					

Laboratory Control Sample (LCS)

(LCS) R3462392-2 10/18	8/19 05:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	41.1	82.2	50.0-150	
(S) o-Terphenyl			73.7	18.0-148	

L1149605-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 11/10605 06 10/18/10 12:27 - (MS) P3/162302 3 10/18/10 12:40 - (MSD) P3/162302 / 10/18/10 12:5/

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.9	2.15	40.7	38.0	69.0	64.2	1	50.0-150			6.82	20
(S) o-Terphenyl					59.2	54.4		18.0-148				

L1150103-06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

ONE LAB. NAT Page 73 of \$25

Semi-Volatile Organic Compounds (GC) by Method 8015

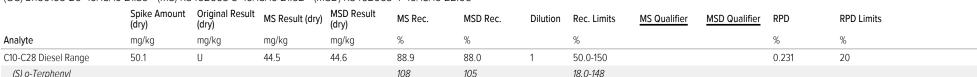
Method Blank (MB)

(S) o-Terphenyl

(MB) R3462663-1 10/18	/19 13:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	84.5			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3462663-2 10/18	3/19 13:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	43.1	86.2	50.0-150	
(S) o-Terphenyl			105	18.0-148	



GI

L1150103-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150103-20 10/18/19 21:39 • (MS) R3462663-3 10/18/19 21:52 • (MSD) R3462663-4 10/18/19 22:05

108

18.0-148

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 ConocoPhillips - Tetra Tech
 212C-MD-01867
 L1150103
 10/24/19 21:35

Ss

Cn

Sr

Qc

GI

PAGE:

40 of 46

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

	st of Chain of Custody Record											- /	1					1 = 5		Paç	je:	1	of	4
nalysis Reques	Tetra Tech. Inc.			901	Mid Te	land, T	Street, exas 79) 682-45 2) 682-39	559	0				F	-1	99									
lient Name:	Conoco Phillips	Site Manager:		Christi	an L	lull						((Cir				/SIS					No.)	
roject Name:	COP Golden Spur to Wilder Release	210												-	1			ĺ		-			15	
roject Location: county, state)	Lea County, New Mexico	Project #:		212	2C-M	ID-01	867										/si						2	
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01		i							(RO)		1g	Hg								ed list)		
Receiving Laboratory		Sampler Signal	ture:	7.7	5			-		m	NO - N	4		2			и	0				e attach		
Comments: Ru	n deeper samples if GRO+DRO exceeds 100 mg/kg or /kg or if total BTEX exceeds 50 mg/kg or if chlorides ex	f benzene exceed 600 mg/kg	eds 10		COP	TETF	RA Acc	ctnum		x 8260F	TX1005 (Ext to C35)		5	Sa Cd Cr			1/624 8270C/825	ZIOOIS			TDS	General Water Chemistry (see attached	0	
IIIg	AND OF IT COLOR DY EXCENSES	SAMP		MATR	IX		THOD	ERS	(N/Y)	BTE	TX1005 (Ext to 8015M (GRO -		Ag As Ba	CLP Metals Ag As Ba Cd	Volatiles Semi Volatiles	t	8260B /	808		(SC	Sulfate	er Chem	Balance	
	SAMPLE IDENTIFICATION	YEAR: 2019	* 4				16	N N	ED (8021B	1005	8270C	stals /	etals	olatile emi V		Vol. 8	8082		sbest	ĕ	Wate	n/Cation 8015R	
LAB#	SAMPLE IDENTIFICATION	DATE	TIME	WATER	3	HNO3	ICE	# CONTAINERS	FILTERED (Y/N)	BTEX 8	TPH TX	PAH 82	Total Metals	TCLP M	TCLP Volatiles TCLP Semi Vol	RCI	GC/MS Vol. 8260B / 624	GC/MS PCB's	NORM	PLM (Asbestos)	Chloride	General	Anion/Cation TPH 8015R	НОГР
ONLY)	BH-1 (0'- 1')	10/7/2019	1000	X			X	1	N				L										1	X
	BH-1 (2'- 3')	10/7/2019	1005	X			Х	1	N										\perp			П		X
	BH-1 (4'- 5')	10/7/2019	1010	X			X	1	N		<i></i>										1	\sqcup		X
	BH-1 (6'- 7')	10/7/2019	1020	X			X	1	N														- 65	X
	BH-1 (9'- 10')	10/7/2019	1030	X			X	1.	N															X
	BH-1 (14'- 15')	10/7/2019	1035	X		1	X	1	N						3 4			1						X
	BH-1 (19'- 20')	10/7/2019	1040	X		1	X	1	N									1	\perp			\sqcup		X
	BH-1 (24'- 25')	10/7/2019	1050	X			X	1	N									+	+	1	46			X
	BH-1 (29'- 30')	10/7/2019	1055	X			X	1	N	1		+					\sqcup	+	-		1	\square		X
	BH-1 (34'- 35')	10/7/2019	1100	X			X	1	N	1				Ц	REM	ADI		\perp				Ш		X
Relinquished by:	Date: Time: 10-14-19 14:05	Received by Received by	21	1	10	Date:	A	ne: /40 ne:	10		C	BU	Υ		300	S	TANE			y 24	hr 4	48 hr	72 hr	
Relinquished by:	Date: Time:	T TOO TOO TO								Sa	mple	emp	eratt	ne.		7-								
Relinquished by:	Date: Time:	Received by	1	MA		Date	: Tii 5/19	me:	15								ush Ch					Repor	t	
		Mark	1	100			9		1,3	(C	ircle)	HAI	ND DI	ELIV	EREC) F	EDEX	UF	es :	Frack	ing #:			. #7
SALE.		ORIGINA	LCOPY				1															- 4	3	

RAD SCREEN: <0.5 mR/hr

Conoco Phillips Conoco Phillips (Circle or Specify Method No.) Project Name: COP Golden Spur to Wilder Release Project Location: (county, state) Lea County, New Mexico Invoice to: Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical (Circle or Specify Method No.) Sampler Signature: Description: (Circle or Specify Method No.) Sampler Signature: Description: (Circle or Specify Method No.)	Analysis Request	of Chain of Custody Record														4 =				7	Р	age	e: _2	2 (of 4	4
Concoc Phillips	TŁ	Tetra Tech, Inc.				901 \	Midlar Tel (nd,Te 432) (xas 79 682-45	9701 559	00															
Comments Cope Control Cope Cope	Client Name:	Conoco Phillips	Site Manager:		Ch	ristia				400																
Lea County, New Mexico	Project Name:									b	***	1	1.1	((iro	ele 	or	Sp	eci	fy I\	leth 	100	I No).)		
Sol West Wall Street, Suite 100 Midland, Texas 79701 Pace Analytical Sampler Signature:			Project #:		1	2120	-MD-	018	67																	
DATE TIME	nvoice to:					*							RO)	100	6	ñ							od liet)	ad hot		
DATE TIME	Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:	0	1.70	in a	-	S.		Į.		RO - M		b Se H	90 0							attache	Gillaco		
DATE TIME	Comments: Run de mg/kg	eeper samples if GRO+DRO exceeds 100 mg/kg o or if total BTEX exceeds 50 mg/kg or if chlorides e	r if benzene exce exceed 600 mg/kg	eds 10	Ì,	C	OPTE	TRA	A Acc	tnum		X 8260B	DRO - 0		a Cd Cr P	2000			100	÷						
DATE TIME			SAMP	LING	M	ATRIX	PR			SHS	(N)	BTE	GRO-		g As B	ig As E	latiles	/ 8000			(6)		fate	alance		
DATE TIME	LAP#	SAMPLE IDENTIFICATION	YEAR: 2019		-					AINE	ED ()21B	5M (200	tals A	latiles	mi Vo			082/	pestos	300.0	Sul	tion B	SR	
BH-1 (39- 40')	/ LABUSE		DATE	TIME	WATER	SOIL	HCL	ICE ICE	NONE	# CONT	FILTER	BTEX 80	TPH 801	PAH 827	Total Met	TCLPVO	TCLP Se	RCI	GC/MS S	PCB's 8(NORM PLM (Ast	Chloride	Chloride	Anion/Ca	TPH 801	НОГР
072	-01	BH-1 (39'- 40')	10/7/2019	1120				X		1	N	Х	X						T		, ,	Х				
BH-1 (54'-55') 10/7/2019 1145 X		BH-1 (44'- 45')	10/7/2019	1125		Х		X		1	N	Х	X						# P1 5		2 1	Х		Sun		
BH-1 (59'- 60')	63	BH-1 (49'- 50')	10/7/2019	1130		Х		×		1	N	X	Х						4			X				
BH-2 (0'- 1')	04	BH-1 (54'- 55')	10/7/2019	1145		X		X		1	N	X	X								4	X			Ġā.	1
BH-2 (2'-3')	05	BH-1 (59'- 60')	10/7/2019	1150		X		×		1	N	X	X									X				
BH-2 (2'-3')	06	BH-2 (0'- 1')	10/7/2019	1155		Х		X		_ 1	N	Х	Х									X				
BH-3 (0'-1')		BH-2 (2'- 3')	10/7/2019	1200		X		×		- 1	N	X	X									X				
BH-3 (0'- 1')	08	BH-2 (4'- 5')	10/7/2019	1210		Х		×	(- 1	N	X	X									Х				
Relinquished by: Date: Time: Received by: Circle) HAND DELIVERED FEDEX UPS Tracking #:		BH-3 (0'- 1')	10/7/2019	1225		Х		×		- 1	N	X	X									X				
Relinquished by: Date: Time: Received by: Date: Time: Received by: Date: Time: Received by: Date: Time: Date: Time: Received by: Date: Time: Sample Temperature Rush: Same Day 24 hr 48 hr 72 hr Rush Charges Authorized Rush Charges Authorized Special Report Limits or TRRP Report (Circle) HAND DELIVERED FEDEX UPS Tracking #:	5	BH-3 (2'- 3')	10/7/2019	1240		X		×		1	N	X	X									X				
Relinquished by: Date: Time: Received by: Date: Time: Received by: Date: Time: Special Report Limits or TRRP Report (Circle) HAND DELIVERED FEDEX UPS Tracking #:	Relinquished by:		1/1/	for (1	- 11			-		a					R		STA	ANDA							
Relinquished by: Date: Time: Received by: Date: Time: Special Report Limits or TRRP Report (Circle) HAND DELIVERED FEDEX UPS Tracking #:	Relinquished by:	Date: Time:	Received by:				Da	te:	Tim	e:		San	ple Ter	mpe	rature	-							48 h	72	hr	
(Circle) HAND DELIVERED FEDEX UPS Tracking #:	Relinquished by:	Date: Time:	11		11	1					5												RP Rep	port		
							1071	011	-	(•)	,	(Cir	cle) H	AND	DEL	IVE	RED	FED	EX	UPS	Trac	cking	#:		-4	

0,2-0-0,2 ASM

TE:	Total Took Inc																								
	Tetra Tech, Inc.				901	Midl Tel	and, (432	Texas 2) 682 2) 682	7970	9	0														
Client Name:	Conoco Phillips	Site Manager:		Chris	stia	n Ll	ıll					2/10		10	i mal			/SIS					la \		
Project Name:	COP Golden Spur to Wilder Release	- 400				1						1	1	(e oı 	2	ec			luo		10.)		-
Project Location: (county, state)	Lea County, New Mexico	Project #:		2	120	C-MI	D-01	1867		£ .												ś			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701								1-12			(0)										d list)		
Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:	9	7.	h	7	574					10 - MF	Se Ho	Se								(see attached		
Comments: Run deepe	er samples if GRO+DRO exceeds 100 mg/kg or fotal BTEX exceeds 50 mg/kg or if chlorides e	r if benzene exce xceed 600 mg/kg	eds 10		C	ОРТ	ETI	RA A	cctr	num	*	8260B	DRO - OF	Cd Cr Pb	a Cd Cr P			8 / 624	5			TDS			
		SAMP	LING	MAT	TRIX	x I		ERVATI	IVE	ERS	(N/A		GRO - I	An As Ba	Ag As B	solatiles		260B / 6	3.0		(S)	fate	er Chemis		
LAB# (LABUSE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2019 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED (Y/N)		TPH 1X1005 (EXTID C35) TPH 8015M (GRO - DRO - ORO - MRO)	PAH 8270C	TCLP Metals Ag As Ba Cd Cr Pb	TCLP Volatiles	RCI	GC/MS Vol. 8260B / 624	3082 /	NORM	PLM (Asbestos) Chloride 300.0		General Water Chemistry Anion/Cation Balance	H 8015R	ногр
	BH-3 (4'- 5')	10/7/2019	1255		X			X		1	N										1				X
	BH-4 (0'- 1')	10/7/2019	1310		X			Х		1	N				y 37≥	1, 2									X
	BH-4 (2'- 3')	10/7/2019	1330		X		1	X		1	N			75											X
	BH-4 (4'- 5')	10/7/2019	1340	2	X			X		1	N	Ш				-	L								X
11	BH-4 (6'- 7')	10/7/2019	1350		Х			X		1	N	X	X							Ш	×				
12	BH-4 (9'- 10')	10/7/2019	1400		X			X		-1	N	X	X								×				
13	BH-4 (14'- 15')	10/7/2019	1410		X			Х		1	N	X	X								X				
14	BH-4 (19'- 20')	10/7/2019	1430		Х			X	4	1.	N	X	X						1	Ш	×				
15	AH-1 (0'- 1')	10/7/2019	1435		X			X		1	N	X	X						1		×				
10	AH-1 (2'- 3')	10/7/2019	1440		X			X		1	N	X	X		Ц	DEM	ADV				X				
Relinquished by:	Date: Time: 10-14-19 14:00	1907/	pc	1		6				0	,			USE		REM	s s	TAND			241	vr. 48	hr 7	2 hr	
Relinquished by:	Date: Time:	Received by		14-5			ate:		Γime:			Sam	ple Te	mpera	ture		_	ish Cha				11 40	1111 2	E 111	
Relinquished by:	Date: Time:	Received by	1 ///	2			ate:		rime:	:15							Sp	ecial F	Repor	t Limit:	or TF	RRP F	leport		
		ORIGINAL $-0 = 0.2$	LCOPY									(Cir	cle) H	IAND	DELIV	ERED	FE	DEX	UPS	S T	ackin	g #: .			

RAD SCREEN: <0.5 mR/hr

analysis Request	t of Chain of Custody Record			_					-											_		Г	aye	٠	4	OI	4
TE	Tetra Tech, Inc.					Midla	and, (432	Texas 2) 682 2) 682 2) 683	797	9	0							٠,		4		Ĺ			r/n		
lient Name:	Conoco Phillips	Site Manager:		Chr	ristia	n Llu	ıll							(Cir						REQ y M			d N	lo.)	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
roject Name:	COP Golden Spur to Wilder Release			i	7									1			1	1	1				1		1		
Project Location: county, state)	Lea County, New Mexico	Project #:			2120	D-MI	0-0	1867	1																		
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	1							- 16				RO)		9	1g									ed list)		
Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:		A	2	10			1			OBO - MRO		b Se H	Pb Se I			-						attached		
Comments: Run o	deeper samples if GRO+DRO exceeds 100 mg/kg or if g or if total BTEX exceeds 50 mg/kg or if chlorides exce	benzene exce eed 600 mg/kg	eds 10		C	ОРТ	ETI	RA A	Acct	num		X 8260B	1		a Cd Cr P	a Cd Cr			624	8270C/625				TDS	nistry (see		
		SAMP	1.5	MA	ATRIX			ERVAT		ERS	(N/N)	BTE	(Ext to	2	g As B	Ag As E	Salatilos	olatiles	260B/	Vol. 82	809	(S)		0	TI DE	Salaro	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2019 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	ONE	CONTAINERS	FILTERED ()	X 8021B	PH TX1005 (Ext to C35)		otal Metals Ag As Ba Cd Cr Pb Se Hg	CLP Metals Ag As Ba Cd Cr Pb Se Hg	CLP Volatiles	ICLP Semi Volatiles	GC/MS Vol. 8260B / 624	aC/MS Semi. Vol.	CB's 8082 /	LM (Asbestos)	Chloride 300.0	Chloride Su	General Water Ch	TPH 8015R	ногр
ONLY)	AH-2 (0'- 1')	10/7/2019	1445	5	X	T	_	× X		1	N	Х)	Χ									X				
17	AH-2 (2'- 3')	10/7/2019	1450		Х			X		1	N	Х)	X									Х				
18	AH-3 (0'- 1')	10/7/2019	1500	1	Х			X		1	N	X		X									X				
20	AH-3 (2'- 3')	10/7/2019	1510		X			X		1	N	X	2	X									X				
																	3										
																							+			5	
Relinquished by:	Date: Time: 10-14-19 14-00	Received by	by	/		10		1-19	_	14.	à	,		BU	SE			X	KS:	NDA	RD	Day	24 h	- 40	hr 1	70 hr	
Relinquished by:	Date: Time:	Received by	r.			1	Date	:	Time):		Sar	nple	Fem	erati	are					ges Ai			40		2111	
Relinquished by:	Date: Time:	Received by	111	la			0/1		Time	9:/!	5										port L				eport		
		ORIGINA	7		慧		4	ig ex				(Ci	rcle)	HAI	ND D	ELIV	ERE	D F	EDE	X	UPS	Tra	cking	g #: _			

RAD SCREEN: <0.5 mR/hr 02-020,2 ASA

Pace Analytical National Center for Testing & Innov	vation	
Cooler Receipt Form		1000
Client: COPTETRA	115010	03
Cooler Received/Opened On: 0115/19 Temperature:	0.2	
Received By: Hailey Melson		
Signature: Value M		
Constitution of the second	V	No
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
The state of the s		
COC Signed / Accurate?		
COC Signed / Accurate? Bottles arrive intact?		
COC Signed / Accurate? Bottles arrive intact? Correct bottles used?		
COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?		
COC Signed / Accurate? Bottles arrive intact? Correct bottles used?		

ANALYTICAL REPORT

November 11, 2019

Cp

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1155443

Samples Received:

10/15/2019

Project Number:

212C-MD-01867

Description:

COP Golden Spur to Wilder Release

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Results relate only to the items bested or calibrated and are reported as sounded values. This test report shall not be reporduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pice of the information provided, and as the samples are received.

BIN-SOP-MITLE-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1						
Tc: Table of Contents	2						
Ss: Sample Summary	3						
Cn: Case Narrative	5						
Sr: Sample Results	6						
BH-1 (0'-1') L1155443-01	6						
BH-1 (2'-3') L1155443-02	7						
BH-1 (4'-5') L1155443-03	8						
BH-4 (0'-1') L1155443-04	9						
BH-4 (2'-3') L1155443-05	10						
BH-4 (4'-5') L1155443-06	11						
Qc: Quality Control Summary	12						
Total Solids by Method 2540 G-2011	12						
Wet Chemistry by Method 300.0	14						
Volatile Organic Compounds (GC) by Method 8015D/GRO	15						
Volatile Organic Compounds (GC/MS) by Method 8260B	16						
Semi-Volatile Organic Compounds (GC) by Method 8015	18						
GI: Glossary of Terms	19						
Al: Accreditations & Locations	20						
Sc: Sample Chain of Custody							

ate/time :15 Location Mt. Juliet, T
Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T
IVIL. Juliet, I
ate/time
:15
Location
Mt. Juliet, T
ate/time
:15
Location
Mt. Juliet, T
ate/time
ate/time :15
:15
:15
Location Mt. Juliet, T
Location Mt. Juliet, T Mt. Juliet, T
Location Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Location Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Mt. Juliet, T
Mt. Juliet, T
Mt. Juliet, T
Mt. Juliet, T
Mt. Juliet, T
Location Mt. Juliet, T ate/time 15 Location Mt. Juliet, T
Location Mt. Juliet, T ate/time 15 Location Mt. Juliet, T Mt. Juliet, T
da

SAMPLE SUMMARY

Collected by

Collected date/time Received date/time

BH-4 (4'-5') L1155443-06 Solid			JT	10/07/19 13:30	10/15/19 09:15	j.
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1375373	1	11/06/19 12:38	11/06/19 12:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1373812	10	11/03/19 14:30	11/03/19 21:17	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1377102	1	10/31/19 14:34	11/08/19 08:18	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1374392	1	10/31/19 14:34	11/04/19 06:01	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1373323	1	11/01/19 07:45	11/01/19 21:11	JDG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord

PAGE:

Collected date/time: 10/07/19 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.9		1	11/06/2019 13:48	WG1375370

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1550		4.28	53.8	5	11/03/2019 20:30	WG1373812

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0300	J T8	0.0234	0.108	1	11/08/2019 06:35	WG1377102
(S) a,a,a-Trifluorotoluene(FID)	98.0			77.0-120		11/08/2019 06:35	<u>WG1377102</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>T8</u>	0.000430	0.00108	1	11/03/2019 20:19	WG1374328
Toluene	U	<u>T8</u>	0.00135	0.00538	1	11/03/2019 20:19	WG1374328
Ethylbenzene	U	<u>T8</u>	0.000570	0.00269	1	11/03/2019 20:19	WG1374328
Total Xylenes	U	<u>T8</u>	0.00514	0.00700	1	11/03/2019 20:19	WG1374328
(S) Toluene-d8	92.7			75.0-131		11/03/2019 20:19	WG1374328
(S) 4-Bromofluorobenzene	94.9			67.0-138		11/03/2019 20:19	WG1374328
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		11/03/2019 20:19	WG1374328

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.48	<u>J T8</u>	1.73	4.30	1	11/01/2019 20:07	WG1373323
C28-C40 Oil Range	5.19	<u>T8</u>	0.295	4.30	1	11/01/2019 20:07	WG1373323
(S) o-Terphenyl	59.3			18.0-148		11/01/2019 20:07	WG1373323

ONE LAB. NAT Page 87. of 125

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.3		1	11/06/2019 12:48	<u>WG1375373</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5090		8.61	108	10	11/03/2019 20:39	WG1373812

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U	<u>T8</u>	0.0235	0.108	1	11/08/2019 06:56	WG1377102
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120		11/08/2019 06:56	<u>WG1377102</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·	•	,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>T8</u>	0.000433	0.00108	1	11/03/2019 20:41	WG1374328
Toluene	U	<u>T8</u>	0.00135	0.00542	1	11/03/2019 20:41	WG1374328
Ethylbenzene	U	<u>T8</u>	0.000574	0.00271	1	11/03/2019 20:41	WG1374328
Total Xylenes	U	<u>T8</u>	0.00518	0.00704	1	11/03/2019 20:41	WG1374328
(S) Toluene-d8	93.0			<i>75.0-131</i>		11/03/2019 20:41	WG1374328
(S) 4-Bromofluorobenzene	94.8			67.0-138		11/03/2019 20:41	WG1374328
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		11/03/2019 20:41	WG1374328

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.35	<u>T8</u>	1.74	4.33	1	11/01/2019 20:20	WG1373323
C28-C40 Oil Range	16.6	<u>T8</u>	0.297	4.33	1	11/01/2019 20:20	WG1373323
(S) o-Terphenyl	70.6			18.0-148		11/01/2019 20:20	WG1373323

ONE LAB. NAT Page 88 of 125

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.8		1	11/06/2019 12:48	WG1375373

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4310		8.85	111	10	11/03/2019 20:49	WG1373812

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0331	<u>J T8</u>	0.0242	0.111	1	11/08/2019 07:17	WG1377102
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		11/08/2019 07:17	WG1377102

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•			-				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>T8</u>	0.000445	0.00111	1	11/03/2019 21:04	WG1374328
Toluene	U	<u>T8</u>	0.00139	0.00557	1	11/03/2019 21:04	WG1374328
Ethylbenzene	U	<u>T8</u>	0.000590	0.00278	1	11/03/2019 21:04	WG1374328
Total Xylenes	U	<u>T8</u>	0.00532	0.00724	1	11/03/2019 21:04	WG1374328
(S) Toluene-d8	94.9			75.0-131		11/03/2019 21:04	WG1374328
(S) 4-Bromofluorobenzene	96.8			67.0-138		11/03/2019 21:04	WG1374328
(S) 1,2-Dichloroethane-d4	90.9			70.0-130		11/03/2019 21:04	WG1374328

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U	<u>T8</u>	1.79	4.45	1	11/01/2019 20:33	WG1373323
C28-C40 Oil Range	0.537	<u>J T8</u>	0.305	4.45	1	11/01/2019 20:33	WG1373323
(S) o-Terphenyl	48.6			18.0-148		11/01/2019 20:33	WG1373323

ONE LAB. NAT Page 89 of \$25

Collected date/time: 10/07/19 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.3		1	11/06/2019 12:48	WG1375373

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1460		4.31	54.2	5	11/03/2019 20:58	WG1373812

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U	<u>T8</u>	0.0235	0.108	1	11/08/2019 07:37	WG1377102
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		11/08/2019 07:37	<u>WG1377102</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	<u></u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>T8</u>	0.000433	0.00108	1	11/03/2019 21:26	WG1374328
Toluene	U	<u>T8</u>	0.00135	0.00542	1	11/03/2019 21:26	WG1374328
Ethylbenzene	U	<u>T8</u>	0.000574	0.00271	1	11/03/2019 21:26	WG1374328
Total Xylenes	U	<u>T8</u>	0.00518	0.00704	1	11/03/2019 21:26	WG1374328
(S) Toluene-d8	95.3			75.0-131		11/03/2019 21:26	WG1374328
(S) 4-Bromofluorobenzene	92.5			67.0-138		11/03/2019 21:26	WG1374328
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		11/03/2019 21:26	WG1374328

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.95	<u>J T8</u>	1.74	4.33	1	11/01/2019 20:45	WG1373323
C28-C40 Oil Range	5.21	<u>T8</u>	0.297	4.33	1	11/01/2019 20:45	WG1373323
(S) o-Terphenyl	70.2			18.0-148		11/01/2019 20:45	WG1373323

ONE LAB. NAT Page 90 of \$25

Collected date/time: 10/07/19 13:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	11/06/2019 12:48	WG1375373

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3450		8.70	109	10	11/03/2019 21:08	WG1373812

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0239	J T8	0.0238	0.109	1	11/08/2019 07:58	WG1377102
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		11/08/2019 07:58	<u>WG1377102</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·	•	,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>T8</u>	0.000438	0.00109	1	11/04/2019 05:37	WG1374392
Toluene	U	<u>T8</u>	0.00137	0.00547	1	11/04/2019 05:37	WG1374392
Ethylbenzene	U	<u>T8</u>	0.000580	0.00274	1	11/04/2019 05:37	WG1374392
Total Xylenes	U	<u>T8</u>	0.00523	0.00712	1	11/04/2019 05:37	WG1374392
(S) Toluene-d8	102			75.0-131		11/04/2019 05:37	WG1374392
(S) 4-Bromofluorobenzene	95.3			67.0-138		11/04/2019 05:37	WG1374392
(S) 1,2-Dichloroethane-d4	105			70.0-130		11/04/2019 05:37	WG1374392

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.24	<u>J T8</u>	1.76	4.38	1	11/01/2019 20:58	WG1373323
C28-C40 Oil Range	3.27	<u>J T8</u>	0.300	4.38	1	11/01/2019 20:58	WG1373323
(S) o-Terphenyl	64.2			18.0-148		11/01/2019 20:58	WG1373323

ONE LAB. NATRAGE 91 of 125

Collected date/time: 10/07/19 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.4		1	11/06/2019 12:48	WG1375373

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2490		8.90	112	10	11/03/2019 21:17	WG1373812

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U	<u>T8</u>	0.0243	0.112	1	11/08/2019 08:18	WG1377102
(S) a,a,a-Trifluorotoluene(FID)	97.5			77.0-120		11/08/2019 08:18	<u>WG1377102</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>T8</u>	0.000448	0.00112	1	11/04/2019 06:01	WG1374392
Toluene	U	<u>T8</u>	0.00140	0.00560	1	11/04/2019 06:01	WG1374392
Ethylbenzene	U	<u>T8</u>	0.000593	0.00280	1	11/04/2019 06:01	WG1374392
Total Xylenes	U	<u>T8</u>	0.00535	0.00727	1	11/04/2019 06:01	WG1374392
(S) Toluene-d8	101			75.0-131		11/04/2019 06:01	WG1374392
(S) 4-Bromofluorobenzene	91.2			67.0-138		11/04/2019 06:01	WG1374392
(S) 1,2-Dichloroethane-d4	104			70.0-130		11/04/2019 06:01	WG1374392

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U	<u>T8</u>	1.80	4.48	1	11/01/2019 21:11	WG1373323
C28-C40 Oil Range	1.80	<u>J T8</u>	0.307	4.48	1	11/01/2019 21:11	WG1373323
(S) o-Terphenyl	61.1			18.0-148		11/01/2019 21:11	WG1373323

ONE LAB. NATRAGE 92 of 125

Total Solids by Method 2540 G-2011

L1155443-01

Method Blank (MB)

(MB) R3469317-1 11/0	06/19 13:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1155439-02 Original Sample (OS) • Duplicate (DUP)

	Original Resu	ılt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	87.7	88.4	1	0.861		10

Laboratory Control Sample (LCS)

(LCS) R3469317-2 11,	/06/19 13:48
----------------------	--------------

(LCS) R3469317-2 11/06/19	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

ONE LAB. NATRAGA 93 of \$25

Total Solids by Method 2540 G-2011

L1155443-02,03,04,05,06

Method Blank (MB)

MB Result MB Qualifier MB MDL MB RDL Analyte % % %	(MB) R3469450-1 11/06	5/19 12:48	6/19 12:48		
Analyte % % % %		MB Result MB (MB Result MB Qualifier MB MDL	MB RDL	
	Analyte	%	%	%	

L1155443-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1155443-04 11/06/19	9 12:48 • (DUP) F	R3469450-3	11/06/19 12	48		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.3	91.9	1	0.381		10

Laboratory Control Sample (LCS)

(LCS) R3469450-2 11/06/	19 12:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAT Page 94 of \$25

Wet Chemistry by Method 300.0

L1155443-01,02,03,04,05,06

Method Blank (MB)

(MB) R3468123-1 11/03/19	17:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.54	<u>J</u>	0.795	10.0

L1155170-05 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	90.1	85.5	1	5.15		20

L1155443-06 Original Sample (OS) • Duplicate (DUP)

(OS) LT155443-06 11/03	Original Result (dry)			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	2490	2620	10	5.10		20

Laboratory Control Sample (LCS)

(LCS) R3468123-2 11/03/19 17:34

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	210	105	90.0-110	

L1155443-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 11554/3 01 11/03/19 20:01 - (MS) P3/68123 / 11/03/19 20:11 - (MSD) P3/68123 5 11/03/19 20:20

(03) 11133443-01 11/03	(OS) [1103/14 20.01 • (NIS) R3406123-4 11/03/14 20.11 • (NIS) R3406123-5 11/03/14 20.20											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	538	1510	2220	2160	132	122	1	80.0-120	<u>E J5</u>	<u>E J5</u>	2.52	20

ONE LAB. NATRAGE 95 of \$25

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1155443-01,02,03,04,05,06

Method Blank (MB)

(MB) R3470250-3 11/08/19	MB) R3470250-3 11/08/19 05:54							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	U		0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120				

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3470250-1 11/08/19 04:53 • (LCSD) R3470250-2 11/08/19 05:13										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.56	6.08	101	111	72.0-127			8.93	20
(S) a,a,a-Trifluorotoluene(FID)				112	117	77.0-120				

ONE LAB. NATRAGE 96 of \$15

Volatile Organic Compounds (GC/MS) by Method 8260B

L1155443-01,02,03,04

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Kylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	95.9			75.0-131	
(S) 4-Bromofluorobenzene	94.6			67.0-138	
(S) 1,2-Dichloroethane-d4	94.7			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3468652-1 11/03/1											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.127	0.121	102	96.8	70.0-123			4.84	20	
Ethylbenzene	0.125	0.131	0.130	105	104	74.0-126			0.766	20	
Toluene	0.125	0.125	0.122	100	97.6	75.0-121			2.43	20	
Xylenes, Total	0.375	0.387	0.380	103	101	72.0-127			1.83	20	
(S) Toluene-d8				94.3	94.5	75.0-131					
(S) 4-Bromofluorobenzene				97.7	91.6	67.0-138					
(S) 1,2-Dichloroethane-d4				99.1	97.1	70.0-130					

L1155443-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.135	U	0.0701	0.0873	51.8	64.5	1	10.0-149			21.9	37
Ethylbenzene	0.135	U	0.0710	0.0938	52.4	69.3	1	10.0-160			27.7	38
Toluene	0.135	U	0.0693	0.0939	51.2	69.4	1	10.0-156			30.1	38
Xylenes, Total	0.406	U	0.226	0.300	55.7	73.9	1	10.0-160			28.0	38
(S) Toluene-d8					92.8	96.2		75.0-131				
(S) 4-Bromofluorobenzene					93.9	94.9		67.0-138				
(S) 1,2-Dichloroethane-d4					95.8	93.8		70.0-130				

ONE LAB. NATRAGARY OF \$15

Volatile Organic Compounds (GC/MS) by Method 8260B

L1155443-05,06

Method Blank (MB)

(MB) R3468428-3 11/04/19	9 00:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	101			75.0-131
(S) 4-Bromofluorobenzene	97.1			67.0-138
(S) 1,2-Dichloroethane-d4	104			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3468428-1 11/03/19	9 22:11 • (LCSD)	R3468428-2	11/03/19 22:35								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.116	0.115	92.8	92.0	70.0-123			0.866	20	
Ethylbenzene	0.125	0.119	0.118	95.2	94.4	74.0-126			0.844	20	
Toluene	0.125	0.117	0.115	93.6	92.0	75.0-121			1.72	20	
Xylenes, Total	0.375	0.345	0.343	92.0	91.5	72.0-127			0.581	20	
(S) Toluene-d8				104	103	75.0-131					
(S) 4-Bromofluorobenzene				97.1	96.9	67.0-138					
(S) 1,2-Dichloroethane-d4				101	104	70.0-130					

L1153641-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1153641-02 11/04/19 06:24 • (MS) R3468428-4 11/04/19 08:22 • (MSD) R3468428-5 11/04/19 08:46												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	5.97	14.4	16.7	14.2	38.7	0.000	40	10.0-149		<u>J6</u>	15.8	37
Ethylbenzene	5.97	44.8	41.1	37.7	0.000	0.000	40	10.0-160	$\underline{\vee}$	$\underline{\vee}$	8.47	38
Toluene	5.97	12.6	15.4	12.6	46.2	0.000	40	10.0-156		<u>J6</u>	19.9	38
Xylenes, Total	18.0	66.6	68.3	61.5	9.29	0.000	40	10.0-160	<u>J6</u>	<u>J6</u>	10.5	38
(S) Toluene-d8					104	103		75.0-131				
(S) 4-Bromofluorobenzene					96.8	98.8		67.0-138				
(S) 1,2-Dichloroethane-d4					104	105		70.0-130				

ONE LAB. NATRAGE 98 of \$25

Semi-Volatile Organic Compounds (GC) by Method 8015 <u>L1155443-01,02,03,04,05,06</u>

Semi-Volatile Organic Compounds (GC) by Method 8019

Method Blank (MB)

(MB) R3467668-1 11/01/1	(MB) R3467668-1 11/01/19 18:52								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
C10-C28 Diesel Range	U		1.61	4.00					
C28-C40 Oil Range	U		0.274	4.00					
(S) o-Terphenyl	62.6			18.0-148					

3_CC

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3467668-2 11/01/19 19:04									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	37.7	75.4	50.0-150					
(S) o-Terphenyl			89.6	18.0-148					

Ss

Cn

Sr

Qc

GI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	C	escri)	ption

	•
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
T8	Sample(s) received past/too close to holding time expiration.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

45443 KP 10/30

TE .	Tetra Tech. Inc.					Aidla Tel	Wall and, To (432) (432)	682-	7970 4559	1	0		· P		F		99		VI			er e						
ent Name:	Conoco Phillips	Site Manager:		Chri	stian	Llu	ااد							((Circ							UES eth		1 No	0.)			
oject Name:	COP Golden Spur to Wilder Release											1	1		1					4	1	11				1		
oject Location: ounty, state)	Lea County, New Mexico	Project #:		2	212C-	ME	D-01	867															47					
oice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	san - B		Fa.									(NRO)		40	61								and liet)	ilen noi			
ceiving Laboratory:	Pace Analytical	Sampler Signa	(7.	to							8	C35) DRO - ORO - MRO)		1	7	1			52	a L			- attach	alian of			
mments: Run de	eeper samples if GRO+DRO exceeds 100 mg/kg or if or if total BTEX exceeds 50 mg/kg or if chlorides exceeds 60 mg/kg or if chlorides	benzene exce eed 600 mg/kg	eds 10	-	co	PT	ETR	A A	cctr	num		×	C35)			Ba Cd Cr			624	8270C/6) 5			TDS	iisiry (at			
mg/kg	of it total of a second	SAMP		MA	TRIX	-	PRESE	RVATI	VE	AINERS	(N/N)	BTE	(Ext to		Ag As B	Ag As	es /otatiles	No.		L. Vol. 8	900 /	(so	0.	ulfate	Balanc		ž,	1777.54.74 1877.54.74
LAB #	SAMPLE IDENTIFICATION	YEAR: 2019 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAIN	FILTERED	BTEX 8021B	TPH TX1005	PAH 8270C	Total Metals	TCLP Metals	TCLP Volatile	RCI	GC/MS Vol.	GC/MS Semi	NORM	PLM (Asbest	Chloride 300	Chloride S	Anion/Cation	TPH 8015R	ион р	10/3
ONLY	BH-1 (0'- 1')	10/7/2019	1000		Х	No.		X		-1	N			1						-65						$\parallel \parallel$	X	1-0
	BH-1 (2'- 3')	10/7/2019	1005		Х			Х		1	N			-	Н			-			- 1	13	H		+		+X	-0
· · · · · · · · · · · · · · · · · · ·	BH-1 (4'- 5')	10/7/2019	1010		Х			X		1	N	Н			Н	1				+			H		+	H	+	1
	BH-1 (6'- 7')	10/7/2019	1020		X	1		X		1	N					-							Н		-	H	+	1
	BH-1 (9'- 10')	10/7/2019	1030		X	1		X		1	N					+						+			+	\mathbb{H}	+	
	BH-1 (14'- 15')	10/7/2019	1035		X	+		X		1	N				Н						+			+	+	H	+	
11.00	BH-1 (19'- 20')	10/7/2019	1040		Х	+	4	X		1	N										+		H			+	+	
	BH-1 (24'- 25')	10/7/2019	1050		X	1		X		1	N										+			\Box		H	X	
	BH-1 (29'- 30')	10/7/2019	1055		X	+		X		-	N												H	H			1	1 750
Relinquished by: Relinquished by: Relinquished by:	BH-1 (34'-35') Date: Time: Date: Time: Date: Time:	Received by Receiv	y: 1	1 M	× 	Date: Time: Date: Time: Date: Time: Date: Time:				כו	LAB U ONL Sample Tem			Y		ב ב	X S	USH Jush C	: Sa	me D es Au	me Day 24 hr 48 hr 72 hr es Authorized on Limits or TRRP Report							
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IMM	TA	NF V		3		100	1	130	137		ircle)	HAI	ND DE	ELIV	ERE	D F	EDE)	K U	PS	Trac	cking	#:_			- 1	

02-0-02 A50

TE .	Tetra Tech. Inc.	Construction of the second						682-45 682-3	559							1 · · ·	4							
nt Name:	Conoco Phillips	Site Manager: Christian Llull									ANALYSIS REQUEST (Circle or Specify Method No.)													
ect Name:	COP Golden Spur to Wilder Release		7	1	Ma			4					1		Ĭ	Ĭ		1	11			1		1
ect Location:	Lea County, New Mexico	Project #:		2	212C	-MD	-018	867													=		2	
ce to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	A STATE	103	4	1	c . A			1000	1		MRO)		0	万.		1		The state of the s			d list)		
iving Laboratory:	Pace Analytical	Sampler Signal	ture:	9	1.	to)	Lune Control	309			ORO - ME	A Go H	Pb Se Hg								attache		
ments: Run de mg/kg d	eper samples if GRO+DRO exceeds 100 mg/kg or if to or if total BTEX exceeds 50 mg/kg or if chlorides exce	penzene exce ed 600 mg/kg	eds 10	P	co	PTE	TR	A Acc	etnum	**	X 8260B	DRO-	3	s Ba Cd Cr Pb			624	8270C/625	*		TDS	listry (see		
		SAMPI	LING	MA	TRIX	PF		HOD	ERS	(N)	BTE (Fxt to	GRO.	A A C	Ag As i	Salasia	Slaties		Vol. 8		(8)	Ifate	Chem		1
LAB #	SAMPLE IDENTIFICATION	YEAR: 2019 DATE	TIME	WATER	SOIL	+CL	HNO3	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH 8015M (PAH 8270C	TCLP Metals /	TCLP Volatiles	RCI Semi Vo	Vol.	GC/MS Semi, PCR's 80827	NORM	PLM (Asbestos) Chloride 300.0	Chloride Su	General Water Anion/Cation E	TPH 8015R	HOLD
ONLY /	BH-3 (4'- 5')	10/7/2019	1255		X			X	-1	N							iii)
	BH-4 (0'- 1')	10/7/2019	1310		X			X	1	N										3 3				
	BH-4 (2'- 3')	10/7/2019	1330		X	in the		x	1	N			27											
	BH-4 (4'- 5')	10/7/2019	1340		X			×	1	N		9				96						4		1
11	BH-4 (6'- 7')	10/7/2019	1350		X			X	1	N	Х	X			edi	E	- 直			X				
RATES BATTERS	BH-4 (9'- 10')	10/7/2019	1400		X			X	1	N	X	X								X				1
12	BH-4 (14'- 15')	10/7/2019	1410		X	13		X	- 1	N	X	X								X				1
14	BH-4 (19'- 20')	10/7/2019	1430	1	X			X	1	N	Х	X					Ш			X				1
15	AH-1 (0'- 1')	10/7/2019	1435		X			X	-1	N	X	X		111		1				X				1
quished by:	AH-1 (2'-3') Date: Time: 10-14-19 (4:00) Date: Time:	Received by	ceived by: Date: Time: 14:00									AB ON	LY											
nquished by:	Date: Time:	Received by	ıMı				ate:	Tin	9:15	;						s	pecial	Repor	t Limit	or TF		port		
			0000								(Circ	le) H	AND	DELIV	ERE	D F	EDEX	UP	ST	rackin	g #:		35,	D.A
RAD SC	HEEN CUSTINVIII	ORIGINA = 0.2	ASM							*								Š,		و المراجعة		,	~	

Katie Ingram

Shr5511

From: Chris McCord < CMcCord@pacenational.com>

Sent: Wednesday, October 30, 2019 5:01 PM

To: Project Service < ProjServ@pacenational.com>

Subject: L1150103 *COPTETRA* relog from hold 10-0091

300, GRO, V8260BTEX, DRORLA, TS. Log as R5 due 11/6. Please relog hold samples BH-1 (0'-1'), BH-1 (2'-3'), BH-1 (4'-5'), BH-4 (0'-1'), BH-4 (2'-3'), and BH-4 (4'-5') for CHLORIDE-

Christopher McCord

Project Manager

12065 Lebanon Road | Mt. Juliet, TN 37122 Pace Analytical National Center for Testing & Innovation

615.773.3281 | Cell 615.504.3183

cmccord@pacenational.com | pacenational.com

make note of my new email address and website. ESC Lab Sciences is now Pace Analytical National Center for Testing & Innovation! Please

From: Furse, Nik [mailto:Nik.Furse@tetratech.com]

Sent: Wednesday, October 30, 2019 10:44 AM

To: Chris McCord

Subject: Pace National SDG: L1150103

recognize the sender and know the content is safe. CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you

Email regarding SDG: L1150103

currently on hold. We are requesting those six (6) samples to be analyzed Laboratory analysis for samples: BH-1 (0'-1'), BH-1 (2'-3'), BH-1 (4'-5'), BH-4 (0'-1'), BH-4 (2'-3'), and BH-4 (4'-5') are

Project Name: COP Golden Spur to Wilder Release

Project #: 212C-MD-01867

Nicholas Furse | Staff Environmental Chemist

Direct: 512.338.2863 | Main: 512.338.1667 | Cell: 480.297.7928 | nik.furse@tetratech.com

TETRA TECH | Leading with Science® | Oil and Gas Division 8911 N. Capitals of Texas Hwy, Bldg. 2, Suite 2310 | Austin, TX 78759 | tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

APPENDIX E NMSLO Seed Mixture Details

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Lea County, New Mexico	
PT—Pyote loamy fine sand	13
SE—Simona fine sandy loam, 0 to 3 percent slopes	
SR—Simona-Upton association	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(©)

Blowout

 \boxtimes

Borrow Pit

*

Clay Spot

 \wedge

Closed Depression

Š

Gravel Pit

...

Gravelly Spot

0

Landfill

٨.

Lava Flow

Marsh or swamp

@

Mine or Quarry

衆

Miscellaneous Water

0

Perennial Water

0

Rock Outcrop

4

Saline Spot

. .

Sandy Spot

-

Severely Eroded Spot

Λ

Sinkhole

Ø.

Sodic Spot

Slide or Slip

8

Spoil Area Stony Spot

-

Very Stony Spot

Ø?

Wet Spot

Δ

Other

**

Special Line Features

Water Features

_

Streams and Canals

Transportation

ransp

Rails

~

Interstate Highways

~

US Routes

 \sim

Major Roads

 \sim

Local Roads

Background

The same

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Sep 17, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
PT	Pyote loamy fine sand	0.0	0.0%	
SE	Simona fine sandy loam, 0 to 3 percent slopes	1.1	67.2%	
SR	Simona-Upton association	0.5	32.8%	
Totals for Area of Interest		1.6	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the

development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

PT—Pyote loamy fine sand

Map Unit Setting

National map unit symbol: dmqp Elevation: 3,000 to 3,900 feet

Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Pyote and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pyote

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 25 inches: loamy fine sand Bt - 25 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: A

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Minor Components

Maljamar

Percent of map unit: 8 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

Palomas

Percent of map unit: 7 percent

Ecological site: Loamy Sand (R042XC003NM)

Hydric soil rating: No

SE—Simona fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: dmr2 Elevation: 3,000 to 4,200 feet

Mean annual precipitation: 10 to 15 inches
Mean annual air temperature: 58 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sandy loam

Bk - 8 to 16 inches: gravelly fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): 6s Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow Sandy (R042XC002NM)

Hydric soil rating: No

Minor Components

Kimbrough

Percent of map unit: 8 percent

Ecological site: Very Shallow 16-21" PZ (R077CY037TX)

Hydric soil rating: No

Lea

Percent of map unit: 7 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Hydric soil rating: No

SR—Simona-Upton association

Map Unit Setting

National map unit symbol: dmr3 Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 58 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 50 percent Upton and similar soils: 35 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly fine sandy loam Bk - 8 to 16 inches: fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 50 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow Sandy (R042XC002NM)

Hydric soil rating: No

Description of Upton

Setting

Landform: Ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly loam

Bkm - 8 to 18 inches: cemented material BCk - 18 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately

high (0.01 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 75 percent

Gypsum, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 2.0

Available water storage in profile: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow (R042XC025NM)

Hydric soil rating: No

Minor Components

Kimbrough

Percent of map unit: 6 percent

Ecological site: Very Shallow 16-21" PZ (R077CY037TX)

Hydric soil rating: No

Stegall

Percent of map unit: 5 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Hydric soil rating: No

Slaughter

Percent of map unit: 4 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Sandy Loam (SL)

SANDY LOAM (SL) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Galleta grass	Viva, VNS, So.	2.5	\mathbf{F}	
Little bluestem	Cimmaron, Pastura	2.5	\mathbf{F}	
Blue grama	Hachita, Lovington	2.0	D	
Sideoats grama	Vaughn, El Reno	2.0	${f F}$	
Sand dropseed	VNS, Southern	1.0	\mathbf{S}	
Forbs:				
Indian blanketflower	VNS, Southern	1.0	D	
Parry penstemon	VNS, Southern	1.0	D	
Blue flax	Appar	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	2.0	D	
Common winterfat	VNS, Southern	1.0	${f F}$	
Apache plume	VNS, Southern	0.75	F	
	Total PLS/acro	e 17.75		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

- VNS, Southern No Variety Stated, seed should be from a southern latitude collection of this species.
- Double above seed rates for broadcast or hydroseeding.
- If Parry penstemon is not available, substitute firecracker penstemon.
- If desert globemallow is not available, substitute scarlet globemallow or Nelson globemallow.
- If a species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.

