

June 2, 2016

Mr. Lucas Smith WPX Energy Inc. One Williams Center Tulsa, OK 74103

RE: Excavation Oversight Work-Plan

WPX Energy, Inc.
North Brushy Draw 35-12
Eddy County, NM

Dear Mr. Smith:

WPX Energy Inc. (WPX) contracted Enviro Clean Services (ECS) to oversee the delineation and excavation services being performed by KO Construction, LLC (KO) at the North Brushy Draw 35-12 in Eddy County, NM. ECS will also perform all confirmation sampling. The proposed soil assessment and remediation activities are presented below.

#### **Site Information**

The North Brushy Draw 35-12 is located on New Mexico State Land (NMSLO) 12 miles southeast of Malaga in Eddy County, New Mexico. The legal description is within Unit D, Section 2, Township 25S, Range 29E, with a latitude of 32.07898°N and a longitude of 103.94493°W. The Site Plan is provided in **Appendix A**.

According to the US Department of Agriculture Natural Resource Conservation Service soil survey, the soil in this area is made up of Upton-Simona complex with 1 to 15% eroded slopes. Per the New Mexico Bureau of Geology and Mineral Resources, the local surface geology is Holocene to middle Pleistocene in age and is comprised of eolian sands. Drainage courses in the area are normally dry.

Groundwater in this area is greater than 100 feet below ground surface (bgs), according to the New Mexico Office of the State Engineer. See **Appendix B** for the referenced groundwater data. The nearest well to the site and it approximately three miles southeast of the site.

Ranking for this site, according to the New Mexico Oil Conservation Division (OCD) *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993), is **0** based on the following:

Depth to groundwater >100'
Wellhead protection area >1,000'

Distance to surface water body >1,000'

Based on the site ranking score the OCD Recommended Remediation Action Level (RRAL) as defined in Table 1. OCD also requires all oilfield releases to be assessed for chlorides, which are to be delineated vertically to 250 mg/Kg.

#### **Incident Description**

This release occurred due to a valve malfunctioning at a water header, and an estimated 150 barrels (bbl) of produced water was released. The runoff path of the spill impacted approximately 1.25 square acres.

#### **Initial Soil Investigation**

On May 16, 2016, ECS personnel visited the location to assess the release. ECS mapped the spill area and estimated the spill area. Initial samples were taken in 12 locations (001 through 012) between 0.5 to 3 feet bgs. Samples were collected in 4-ounce glass jars and transferred to Xenco Laboratories in Midland, Texas (accredited by the National Laboratory Accreditation Program (NELAP) for the technology and analytes necessary to demonstrate regulatory compliance) for Chlorides per EPA Method 300.0, total petroleum hydrocarbons (TPH) by method 8015 modified and benzene, toluene, ethylene, and xylenes (BTEX) by EPA method 8021B. A summary of the analytical results is provided in Table 1. Copies of the laboratory report and chain of custody documentation are provided in **Appendix C.** 

Referring to Table 1 below, all samples were below the RRAL of 10 mg/Kg and 50 mg/Kg for Benzene and BTEX, respectively. TPH concentrations exceeded the RRAL of 5,000 mg/Kg in sample locations 002 (9,350 mg/Kg) and 003 (5,490 mg/Kg). Chloride concentrations exceeded the WQCC value of 250 mg/Kg in all sample locations 001 through 005, 007 through 008, and 010 through 011 Chloride concentrations ranged between 276 mg/Kg in sample location 009 to 10,900 mg/Kg in sample location 003. Chloride was not delineated vertically in the sample locations.

**Table 1 Soil Analytical Data Summary** 

| Sample ID | Date     | Depth<br>(ft) | Benzene<br>(mg/Kg) | BTEX<br>(mg/Kg) | TPH<br>C6 – C35<br>(mg/Kg) | Chlorides<br>(mg/Kg)<br>250* |
|-----------|----------|---------------|--------------------|-----------------|----------------------------|------------------------------|
| RRAL      |          |               | 10                 | 50              | 5,000                      |                              |
| 001       | 05/16/16 | 1             | <0.0015            | <0.0015         | <15.0                      | 4,800                        |
| 002       | 05/16/16 | 1             | <0.0015            | 0.140           | 9,350                      | 3,790                        |
| 003       | 05/16/16 | 1             | <0.0015            | 0.0041          | 5,490                      | 10,900                       |
| 004       | 05/16/16 | 0.5           | <0.0015            | <0.0015         | 34.9                       | 9,060                        |
| 005       | 05/16/16 | 1.5           | <0.0015            | <0.0015         | 16.0                       | 8,910                        |
| 006       | 05/16/16 | 2             | <0.0015            | <0.0015         | <15.0                      | 641                          |
| 007       | 05/16/16 | 3             | <0.0015            | <0.0015         | 28.5                       | 1,680                        |
| 008       | 05/16/16 | 2             | <0.0015            | 0.0046          | 573                        | 8,260                        |
| 009       | 05/16/16 | 3             | <0.0015            | <0.0015         | 27.2                       | 276                          |
| 010       | 05/16/16 | 2.5           | <0.0015            | <0.0015         | 71.5                       | 6,110                        |
| 011       | 05/16/16 | 2.5           | <0.0015            | <0.0015         | <15.0                      | 5,770                        |
| 012       | 05/16/16 | 2.6           | <0.0015            | <0.0015         | <15.0                      | 4,090                        |
| Backfill  | 05/16/16 | Soil Pile     | <0.0015            | <0.0015         | 33.3                       | 230                          |

#### Notes:

- 1. BTEX, TPH, and Chloride analyses were by EPA 8021B, SW 8015M, and EPA 300, respectively.
- 2. \*Cleanup goal not defined by OCD regulations, value based on Water Quality Control Commission (WQCC) requirements.
- 3. < indicates the concentration is below the reporting limit (RL)
- 4. mg/Kg indicates concentrations in milligrams per kilogram.
- 5. Red values are above the RRAL.

#### **Proposed Remedial Actions**

ECS proposes the following activities:

- Obtain Right of Entry (ROE) Request for Remediation from the New Mexico State Land Office (NMOSE), form provided in Appendix D.
- Delineate chloride to 250 mg/Kg in all sample locations by excavation.
- Excavate contaminated areas and conduct field tests to guide excavation.
- Collect confirmation samples in the bottom of the excavated areas to confirm vertical delineation.
- If sample locations are not delineated through excavation, soil borings will be drilled by an air rotary rig in sample locations in order to properly delineate the chloride concentrations vertically.

Following receipt of chloride and TPH delineation of sample locations through excavation, permission will be requested from the OCD in order to backfill the location. Impacted soil will be hauled to the R360 Waste Facility in Carlsbad, New Mexico by KO. Backfill material will be acquired from the North Bushy Draw 35-4 reclamation area. Backfill material has been analyzed, and is below the OCD RRAL. ECS also recommends seeding the Site with native seed in order or to revegetate impacted area in compliance with

#### NMSLO requirements.

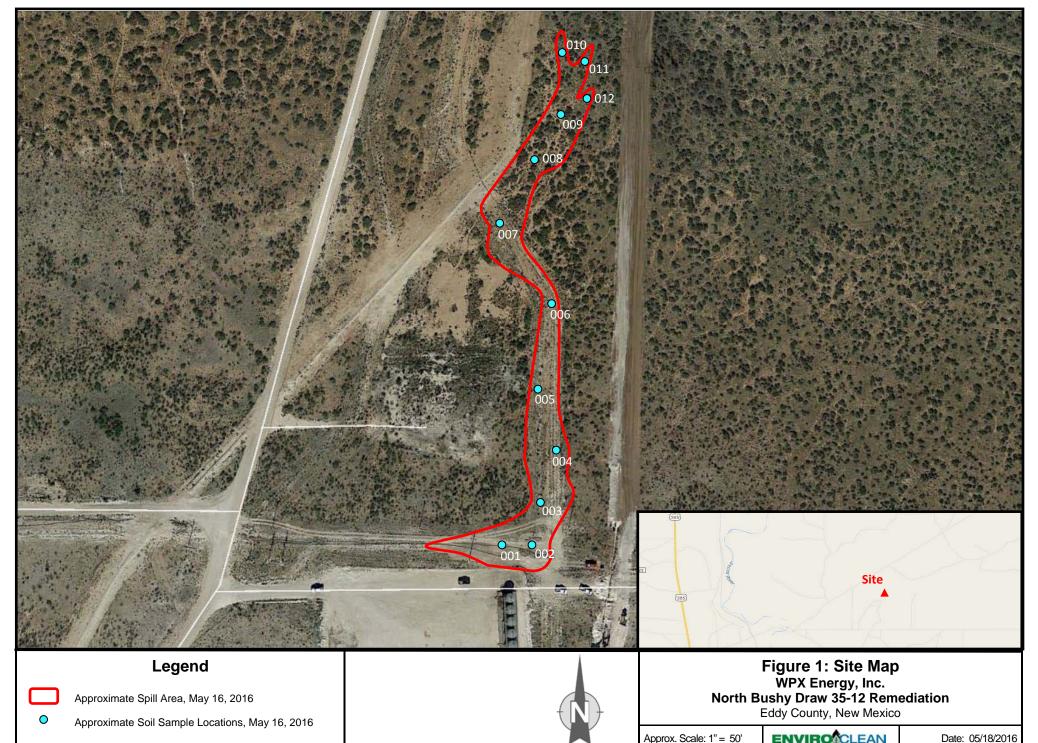
A report detailing the excavation activities and sample results will be generated upon completion of the project and provided to WPX, and will include a copy of the initial and final C-141 Form. If you have any questions about the information presented in this work plan, please don't hesitate to contact Brittany Neal or me at (432) 301-0209.

Sincerely,

**Enviro Clean Services, LLC** 

Tom J. Weber, PE

Texas Regional Manager


Attachments: Appendix A: Site Plan

Appendix B: Groundwater Data

Appendix C: Laboratory Analytical Report

Appendix D: Right of Entry Request for Remediation

## APPENDIX A SITE MAP



32.07898°N 103.94493°W Approx. Scale: 1" = 50'

ENVIRO CLEAN

2405 E. Co. Rd. 123, Midland, Texas 79706

Proj. No.: WPXRTX0004

## APPENDIX B GROUNDWATER DATA



#### New Mexico Office of the State Engineer

### **Water Right Summary**



WR File Number: C 03483 Subbasin: CUB Cross Reference:-

Primary Purpose: EXP EXPLORATION

Primary Status: PMT PERMIT

Total Acres: Subfile: Total Diversion: 0 Cause/Case: -

Owner: BYRON W (SHOT) PASCHAL

Owner: BUREAU OF LAND MANAGEMENT

Contact: STEVE DALY

**Documents on File** 

|          |                      |       |            | Sta | tus |                   | From/ |       |                              |
|----------|----------------------|-------|------------|-----|-----|-------------------|-------|-------|------------------------------|
|          | Trn #                | Doc   | File/Act   | 1   | 2   | Transaction Desc. | То    | Acres | <b>Diversion Consumptive</b> |
| <b>E</b> | get<br>images 543409 | COWNF | 2014-03-17 | CHG | PRC | C 03483           | Т     | 0     | 0                            |
|          | get<br>images 476565 | EXPL  | 2011-04-15 | PMT | LOG | C 03483           | Т     | 0     | 0                            |

**Current Points of Diversion** 

(NAD83 UTM in meters)

 POD Number
 Source 6416 4 Sec Tws Rng
 X
 Y
 Other Location Desc

 C 03483
 Shallow 4 4 4 05 26S 30E
 604296 3548251
 .5 MI E. OF C

1361; PIPELINE RD

Source

Acres Diversion CU Use Priority Source Description
0 0 EXP GW

QQQ

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/12/16 9:41 AM Page 1 of 1 WR SUMMARY - C 03483

# APPENDIX C LABORATORY ANALYTICAL REPORT

#### **Analytical Report 530225**

### for Enviroclean- Midland

Project Manager: BILL GREEN
N Bushy Draw

18-MAY-16

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-15-19), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534-15-1) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD ( L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)





18-MAY-16

Project Manager: BILL GREEN

**Enviroclean- Midland** 

2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): 530225

**N** Bushy Draw

Project Address: Loving, NM

#### **BILL GREEN:**

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 530225. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 530225 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America



#### **Sample Cross Reference 530225**



#### Enviroclean- Midland, Midland, TX

N Bushy Draw

| Sample Id | Matrix | <b>Date Collected</b> | Sample Depth | Lab Sample Id |
|-----------|--------|-----------------------|--------------|---------------|
| SP-001    | S      | 05-16-16 11:10        | - 1 ft       | 530225-001    |
| SP-002    | S      | 05-16-16 11:20        | - 1 ft       | 530225-002    |
| SP-003    | S      | 05-16-16 11:30        | - 1 ft       | 530225-003    |
| SP-004    | S      | 05-16-16 11:37        | - 6 In       | 530225-004    |
| SP-005    | S      | 05-16-16 11:45        | - 1.5 ft     | 530225-005    |
| SP-006    | S      | 05-16-16 11:50        | - 2 ft       | 530225-006    |
| SP-007    | S      | 05-16-16 11:59        | - 3 ft       | 530225-007    |
| SP-008    | S      | 05-16-16 12:10        | - 2 ft       | 530225-008    |
| SP-009    | S      | 05-16-16 12:20        | - 3 ft       | 530225-009    |
| SP-010    | S      | 05-16-16 13:30        | - 2.5 ft     | 530225-010    |
| SP-011    | S      | 05-16-16 12:45        | - 2.5 ft     | 530225-011    |
| SP-012    | S      | 05-16-16 12:50        | - 2.5 ft     | 530225-012    |
| SP-BF     | S      | 05-16-16 13:10        |              | 530225-013    |



#### **CASE NARRATIVE**



Client Name: Enviroclean- Midland Project Name: N Bushy Draw

Project ID: Report Date: 18-MAY-16
Work Order Number(s): 530225
Date Received: 05/17/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None



#### CASE NARRATIVE



Client Name: Enviroclean- Midland Project Name: N Bushy Draw

Project ID: Report Date: 18-MAY-16
Work Order Number(s): 530225

Date Received: 05/17/2016

Batch: LBA-994515 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

010,530225-011,530225-012,530225-007.

Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.



#### **Certificate of Analysis Summary 530225**

#### Enviroclean- Midland, Midland, TX

**Project Name: N Bushy Draw** 



**Project Id:** 

**Project Location:** 

**Contact:** BILL GREEN

Loving, NM

Date Received in Lab: Tue May-17-16 10:40 am

**Report Date:** 18-MAY-16 **Project Manager:** Kelsey Brooks

|                                    | Lab Id:    | 530225-   | 001     | 530225-   | 002     | 530225-   | 003     | 530225-0  | 004     | 530225-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 005     | 530225-   | 006     |
|------------------------------------|------------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|
| Analysis Requested                 | Field Id:  | SP-00     | )1      | SP-00     | )2      | SP-00     | 3       | SP-00     | 4       | SP-005 SP- 1.5 ft 2 SOIL SO 1:37 May-16-16 11:45 May-16- 3:00 May-17-16 13:00 May-17- 9:39 May-17-16 19:56 May-17- RL mg/kg RL mg/kg 0.00150 ND 0.00149 N 0.00200 ND 0.00199 N 0.002100 ND 0.00199 N 0.00210 ND 0.00199 N 0.00210 ND 0.00199 N 0.00210 ND 0.00199 N 0.002200 ND 0.00199 N 0.00220 ND 0.00199 N 0.00220 ND 0.00199 N 0.00220 ND 0.00199 N 0.00220 ND 0.001 | SP-00   | 6         |         |
| Analysis Requested                 | Depth:     | 1 ft      |         | 1 ft      |         | 1 ft      |         | 6 In      |         | 1.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2 ft      |         |
|                                    | Matrix:    | SOIL      | _       | SOII      | _       | SOIL      |         | SOIL      |         | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,       | SOIL      | _       |
|                                    | Sampled:   | May-16-16 | 11:10   | May-16-16 | 11:20   | May-16-16 | 11:30   | May-16-16 | 11:37   | May-16-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11:45   | May-16-16 | 11:50   |
| BTEX by EPA 8021B                  | Extracted: | May-17-16 | 13:00   | May-17-16 | 13:00   | May-17-16 | 13:00   | May-17-16 | 13:00   | May-17-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13:00   | May-17-16 | 13:00   |
|                                    | Analyzed:  | May-17-16 | 18:51   | May-17-16 | 19:07   | May-18-16 | 10:55   | May-17-16 | 19:39   | May-17-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19:56   | May-17-16 | 20:12   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg     | RL      | mg/kg     | RL      | mg/kg     | RL      | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL      | mg/kg     | RL      |
| Benzene                            |            | ND        | 0.00150 | ND        | 0.00150 | ND        | 0.00149 | ND        | 0.00150 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00149 | ND        | 0.00150 |
| Toluene                            |            | ND        | 0.00200 | 0.0154    | 0.00200 | ND        | 0.00199 | ND        | 0.00200 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00199 | ND        | 0.00200 |
| Ethylbenzene                       |            | ND        | 0.00200 | 0.0109    | 0.00200 | ND        | 0.00199 | ND        | 0.00200 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00199 | ND        | 0.00200 |
| m,p-Xylenes                        |            | ND        | 0.00200 | 0.0856    | 0.00200 | 0.00411   | 0.00199 | ND        | 0.00200 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00199 | ND        | 0.00200 |
| o-Xylene                           |            | ND        | 0.00300 | 0.0282    | 0.00299 | ND        | 0.00299 | ND        | 0.00299 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00299 | ND        | 0.00299 |
| Total Xylenes                      |            | ND        | 0.00200 | 0.114     | 0.00200 | 0.00411   | 0.00199 | ND        | 0.00200 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00199 | ND        | 0.00200 |
| Total BTEX                         |            | ND        | 0.00150 | 0.140     | 0.00150 | 0.00411   | 0.00149 | ND        | 0.00150 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00149 | ND        | 0.00150 |
| Inorganic Anions by EPA 300        | Extracted: | May-17-16 | 16:00   | May-17-16 | 16:00   | May-17-16 | 16:00   | May-17-16 | 16:00   | May-17-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16:00   | May-17-16 | 16:00   |
|                                    | Analyzed:  | May-17-16 | 21:08   | May-17-16 | 21:20   | May-17-16 | 21:33   | May-17-16 | 21:45   | May-17-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21:57   | May-17-16 | 22:09   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg     | RL      | mg/kg     | RL      | mg/kg     | RL      | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL      | mg/kg     | RL      |
| Chloride                           |            | 4800      | 400     | 3790      | 400     | 10900     | 400     | 9060      | 400     | 8910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400     | 641       | 40.0    |
| TPH by SW 8015B                    | Extracted: | May-17-16 | 13:00   | May-17-16 | 13:00   | May-17-16 | 13:00   | May-17-16 | 13:00   | May-17-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13:00   | May-17-16 | 13:00   |
|                                    | Analyzed:  | May-18-16 | 07:18   | May-18-16 | 09:54   | May-18-16 | 09:27   | May-18-16 | 10:46   | May-18-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06:20   | May-18-16 | 06:43   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg     | RL      | mg/kg     | RL      | mg/kg     | RL      | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL      | mg/kg     | RL      |
| C6-C10 Gasoline Range Hydrocarbons |            | ND        | 15.0    | 194       | 74.8    | 26.2      | 15.0    | 16.1      | 14.9    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.0    | ND        | 15.0    |
| C10-C28 Diesel Range Hydrocarbons  |            | ND        | 15.0    | 8730      | 74.8    | 5280      | 15.0    | 18.8      | 14.9    | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.0    | ND        | 15.0    |
| C28-C35 Oil Range Hydrocarbons     |            | ND        | 15.0    | 423       | 74.8    | 184       | 15.0    | ND        | 14.9    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.0    | ND        | 15.0    |
| Total TPH                          |            | ND        | 15.0    | 9350      | 74.8    | 5490      | 15.0    | 34.9      | 14.9    | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.0    | ND        | 15.0    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah



#### **Certificate of Analysis Summary 530225**

#### Enviroclean- Midland, Midland, TX

**Project Name: N Bushy Draw** 



**Project Id:** 

**Project Location:** 

Contact: BILL GREEN

Loving, NM

**Date Received in Lab:** Tue May-17-16 10:40 am

**Report Date:** 18-MAY-16 **Project Manager:** Kelsey Brooks

|                                    | I I        |           |         |           |         |           |         |           |         | ı         |         |           |         |
|------------------------------------|------------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|
|                                    | Lab Id:    | 530225-   | 007     | 530225-   | 008     | 530225-0  | 009     | 530225-0  | 010     | 530225-0  | 011     | 530225-   | 012     |
| Analysis Requested                 | Field Id:  | SP-00     | 7       | SP-00     | 8       | SP-00     | 9       | SP-01     | 0       | SP-01     | 1       | SP-01     | 2       |
| Anaiysis Requesieu                 | Depth:     | 3 ft      |         | 2 ft      |         | 3 ft      |         | 2.5 ft    |         | 2.5 ft    |         | 2.5 ft    | t       |
|                                    | Matrix:    | SOIL      | _       | SOIL      | ,       | SOIL      | ,       | SOIL      | ,       | SOIL      | ,       | SOIL      | _       |
|                                    | Sampled:   | May-16-16 | 11:59   | May-16-16 | 12:10   | May-16-16 | 12:20   | May-16-16 | 13:30   | May-16-16 | 12:45   | May-16-16 | 12:50   |
| BTEX by EPA 8021B                  | Extracted: | May-17-16 | 13:00   |
|                                    | Analyzed:  | May-17-16 | 20:28   | May-17-16 | 20:44   | May-17-16 | 21:00   | May-17-16 | 21:17   | May-17-16 | 22:06   | May-17-16 | 22:22   |
|                                    | Units/RL:  | mg/kg     | RL      |
| Benzene                            |            | ND        | 0.00149 | ND        | 0.00150 | ND        | 0.00149 | ND        | 0.00150 | ND        | 0.00149 | ND        | 0.00149 |
| Toluene                            |            | ND        | 0.00199 | ND        | 0.00200 | ND        | 0.00199 | ND        | 0.00200 | ND        | 0.00199 | ND        | 0.00199 |
| Ethylbenzene                       |            | ND        | 0.00199 | ND        | 0.00200 | ND        | 0.00199 | ND        | 0.00200 | ND        | 0.00199 | ND        | 0.00199 |
| m,p-Xylenes                        |            | ND        | 0.00199 | 0.00460   | 0.00200 | ND        | 0.00199 | ND        | 0.00200 | ND        | 0.00199 | ND        | 0.00199 |
| o-Xylene                           |            | ND        | 0.00299 | ND        | 0.00299 | ND        | 0.00298 | ND        | 0.00299 | ND        | 0.00299 | ND        | 0.00299 |
| Total Xylenes                      |            | ND        | 0.00199 | 0.00460   | 0.00200 | ND        | 0.00199 | ND        | 0.00200 | ND        | 0.00199 | ND        | 0.00199 |
| Total BTEX                         |            | ND        | 0.00149 | 0.00460   | 0.00150 | ND        | 0.00149 | ND        | 0.00150 | ND        | 0.00149 | ND        | 0.00149 |
| Inorganic Anions by EPA 300        | Extracted: | May-17-16 | 16:00   |
|                                    | Analyzed:  | May-17-16 | 22:45   | May-17-16 | 22:57   | May-17-16 | 23:33   | May-17-16 | 23:46   | May-17-16 | 23:58   | May-18-16 | 00:10   |
|                                    | Units/RL:  | mg/kg     | RL      |
| Chloride                           |            | 1680      | 100     | 8260      | 400     | 276       | 20.0    | 6110      | 400     | 5770      | 400     | 4090      | 400     |
| TPH by SW 8015B                    | Extracted: | May-17-16 | 13:00   |
|                                    | Analyzed:  | May-18-16 | 07:06   | May-18-16 | 07:29   | May-18-16 | 07:53   | May-18-16 | 08:15   | May-18-16 | 08:39   | May-18-16 | 09:01   |
|                                    | Units/RL:  | mg/kg     | RL      |
| C6-C10 Gasoline Range Hydrocarbons |            | ND        | 15.0    | 16.7      | 15.0    | ND        | 15.0    | ND        | 15.0    | ND        | 15.0    | ND        | 15.0    |
| C10-C28 Diesel Range Hydrocarbons  |            | 28.5      | 15.0    | 556       | 15.0    | 27.2      | 15.0    | 71.5      | 15.0    | ND        | 15.0    | ND        | 15.0    |
| C28-C35 Oil Range Hydrocarbons     |            | ND        | 15.0    |
| Total TPH                          |            | 28.5      | 15.0    | 573       | 15.0    | 27.2      | 15.0    | 71.5      | 15.0    | ND        | 15.0    | ND        | 15.0    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah



#### **Certificate of Analysis Summary 530225**

#### Enviroclean- Midland, Midland, TX

Project Name: N Bushy Draw



Project Id: Contact:

**Project Location:** 

BILL GREEN

Loving, NM

**Date Received in Lab:** Tue May-17-16 10:40 am

**Report Date:** 18-MAY-16 **Project Manager:** Kelsey Brooks

|                                    |            |                 | 1 |  | 1 |
|------------------------------------|------------|-----------------|---|--|---|
|                                    | Lab Id:    | 530225-013      |   |  |   |
| Analysis Requested                 | Field Id:  | SP-BF           |   |  |   |
| Analysis Requesieu                 | Depth:     |                 |   |  |   |
|                                    | Matrix:    | SOIL            |   |  |   |
|                                    | Sampled:   | May-16-16 13:10 |   |  |   |
| BTEX by EPA 8021B                  | Extracted: | May-17-16 13:00 |   |  |   |
|                                    | Analyzed:  | May-17-16 22:38 |   |  |   |
|                                    | Units/RL:  | mg/kg RL        |   |  |   |
| Benzene                            |            | ND 0.00150      |   |  |   |
| Toluene                            |            | ND 0.00200      |   |  |   |
| Ethylbenzene                       |            | ND 0.00200      |   |  |   |
| m,p-Xylenes                        |            | ND 0.00200      |   |  |   |
| o-Xylene                           |            | ND 0.00300      |   |  |   |
| Total Xylenes                      |            | ND 0.00200      |   |  |   |
| Total BTEX                         |            | ND 0.00150      |   |  |   |
| Inorganic Anions by EPA 300        | Extracted: | May-17-16 16:00 |   |  |   |
|                                    | Analyzed:  | May-18-16 00:22 |   |  |   |
|                                    | Units/RL:  | mg/kg RL        |   |  |   |
| Chloride                           |            | 230 20.0        |   |  |   |
| TPH by SW 8015B                    | Extracted: | May-17-16 13:00 |   |  |   |
|                                    | Analyzed:  | May-18-16 09:25 |   |  |   |
|                                    | Units/RL:  | mg/kg RL        |   |  |   |
| C6-C10 Gasoline Range Hydrocarbons |            | ND 15.0         |   |  |   |
| C10-C28 Diesel Range Hydrocarbons  |            | 33.3 15.0       |   |  |   |
| C28-C35 Oil Range Hydrocarbons     |            | ND 15.0         |   |  |   |
| Total TPH                          |            | 33.3 15.0       |   |  |   |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah



#### Flagging Criteria



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

**DL** Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

 Phone
 Fax

 4147 Greenbriar Dr, Stafford, TX 77477
 (281) 240-4200
 (281) 240-4280

 9701 Harry Hines Blvd , Dallas, TX 75220
 (214) 902 0300
 (214) 351-9139

 5332 Blackberry Drive, San Antonio TX 78238
 (210) 509-3334
 (210) 509-3335

 1211 W Florida Ave, Midland, TX 79701
 (432) 563-1800
 (432) 563-1713

 2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282
 (602) 437-0330



**Project Name: N Bushy Draw** 

 Work Orders: 530225,
 Project ID:

 Lab Batch #: 994515
 Sample: 530225-001 / SMP
 Batch: 1 Matrix: Soil

| Units:       | mg/kg      | <b>Date Analyzed:</b> 05/17/16 18:51 | SU                     | RROGATE RI            | RECOVERY STUDY |                         |       |  |
|--------------|------------|--------------------------------------|------------------------|-----------------------|----------------|-------------------------|-------|--|
|              | ВТЕХ       | K by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery %R    | Control<br>Limits<br>%R | Flags |  |
|              |            | Analytes                             |                        |                       | [D]            |                         |       |  |
| 1,4-Difluoro | benzene    |                                      | 0.0343                 | 0.0300                | 114            | 80-120                  |       |  |
| 4-Bromofluo  | orobenzene |                                      | 0.0509                 | 0.0300                | 170            | 80-120                  | **    |  |

| Units:      | mg/kg       | <b>Date Analyzed:</b> 05/17/16 19:07 | SU                     | RROGATE RI            | ECOVERY S   | STUDY                   |       |
|-------------|-------------|--------------------------------------|------------------------|-----------------------|-------------|-------------------------|-------|
|             | ВТЕ         | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery %R | Control<br>Limits<br>%R | Flags |
|             |             | Analytes                             |                        |                       | [D]         |                         |       |
| 1,4-Difluor | robenzene   |                                      | 0.0292                 | 0.0300                | 97          | 80-120                  |       |
| 4-Bromoflu  | uorobenzene |                                      | 0.0355                 | 0.0300                | 118         | 80-120                  |       |

**Lab Batch #:** 994515 **Sample:** 530225-004 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 05/17/16 19:39 SURROGATE RECOVERY STUDY

| BTEX by EPA 8021B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|-----------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1,4-Difluorobenzene         | 0.0329                 | 0.0300                | 110                   | 80-120                  |       |
| 4-Bromofluorobenzene        | 0.0414                 | 0.0300                | 138                   | 80-120                  | **    |

**Lab Batch #:** 994515 **Sample:** 530225-005 / SMP **Batch:** 1 **Matrix:** Soil

| Units:      | mg/kg       | <b>Date Analyzed:</b> 05/17/16 19:56 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|-------------|-------------|--------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
|             | ВТЕ         | X by EPA 8021B  Analytes             | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluor | robenzene   | -                                    | 0.0295                 | 0.0300                | 98                    | 80-120                  |       |
| 4-Bromoflu  | uorobenzene |                                      | 0.0412                 | 0.0300                | 137                   | 80-120                  | **    |

| Units:        | mg/kg    | <b>Date Analyzed:</b> 05/17/16 20:12 | SU                     | RROGATE RE            | ECOVERY S             | STUDY                   |       |
|---------------|----------|--------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
|               | ВТЕ      | X by EPA 8021B  Analytes             | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluorob | enzene   |                                      | 0.0336                 | 0.0300                | 112                   | 80-120                  |       |
| 4-Bromofluor  | obenzene |                                      | 0.0457                 | 0.0300                | 152                   | 80-120                  | **    |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

 Work Orders: 530225,
 Project ID:

 Lab Batch #: 994515
 Sample: 530225-007 / SMP
 Batch: 1 Matrix: Soil

| Units: mg/kg         | <b>Date Analyzed:</b> 05/17/16 20:28 | SU                     | RROGATE RE            | ECOVERY S   | STUDY                   |       |
|----------------------|--------------------------------------|------------------------|-----------------------|-------------|-------------------------|-------|
| BTEX by EPA 8021B    |                                      | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery %R | Control<br>Limits<br>%R | Flags |
| A                    | nalytes                              |                        |                       | [D]         |                         |       |
| 1,4-Difluorobenzene  |                                      | 0.0334                 | 0.0300                | 111         | 80-120                  |       |
| 4-Bromofluorobenzene |                                      | 0.0471                 | 0.0300                | 157         | 80-120                  | **    |

| Units:               | mg/kg     | <b>Date Analyzed:</b> 05/17/16 20:44 | SURROGATE RECOVERY STUDY |                       |             |                         |       |  |
|----------------------|-----------|--------------------------------------|--------------------------|-----------------------|-------------|-------------------------|-------|--|
|                      | ВТЕ       | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery %R | Control<br>Limits<br>%R | Flags |  |
|                      |           | Analytes                             |                          |                       | [D]         |                         |       |  |
| 1,4-Difluor          | robenzene |                                      | 0.0359                   | 0.0300                | 120         | 80-120                  |       |  |
| 4-Bromofluorobenzene |           |                                      | 0.0296                   | 0.0300                | 99          | 80-120                  |       |  |

Units: mg/kg Date Analyzed: 05/17/16 21:00 SURROGATE RECOVERY STUDY

| BTEX by EPA 8021B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|-----------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1,4-Difluorobenzene         | 0.0343                 | 0.0300                | 114                   | 80-120                  |       |
| 4-Bromofluorobenzene        | 0.0468                 | 0.0300                | 156                   | 80-120                  | **    |

Lab Batch #: 994515 Sample: 530225-010 / SMP Batch: 1 Matrix: Soil

| Units:               | mg/kg     | <b>Date Analyzed:</b> 05/17/16 21:17 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|----------------------|-----------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|                      | ВТЕ       | X by EPA 8021B  Analytes             | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1,4-Difluor          | robenzene | <del>-</del>                         | 0.0332                   | 0.0300                | 111                   | 80-120                  |       |  |  |
| 4-Bromofluorobenzene |           |                                      | 0.0456                   | 0.0300                | 152                   | 80-120                  | **    |  |  |

| Units: mg/kg Date Analyzed: 05/17/16 22:06 SURROGATE RECOVERY STUDY |                   |          |                        |                       |                |                         |       |  |
|---------------------------------------------------------------------|-------------------|----------|------------------------|-----------------------|----------------|-------------------------|-------|--|
|                                                                     | BTEX by EPA 8021B |          | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R | Control<br>Limits<br>%R | Flags |  |
|                                                                     |                   | Analytes |                        |                       | [D]            |                         |       |  |
| 1,4-Difluorobenzene                                                 |                   |          | 0.0325                 | 0.0300                | 108            | 80-120                  |       |  |
| 4-Bromofluo                                                         | orobenzene        |          | 0.0434                 | 0.0300                | 145            | 80-120                  | **    |  |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

Work Orders: 530225,
Lab Batch #: 994515
Sample: 530225-012 / SMP
Batch: 1 Matrix: Soil

| Units: mg/kg Date Analyzed: 05/17/16 22:22 SURROGATE RECOVERY STUDY |                        |                       |             |                         |       |  |  |  |
|---------------------------------------------------------------------|------------------------|-----------------------|-------------|-------------------------|-------|--|--|--|
| BTEX by EPA 8021B                                                   | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery %R | Control<br>Limits<br>%R | Flags |  |  |  |
| Analytes                                                            |                        |                       | [D]         |                         |       |  |  |  |
| 1,4-Difluorobenzene                                                 | 0.0333                 | 0.0300                | 111         | 80-120                  |       |  |  |  |
| 4-Bromofluorobenzene                                                | 0.0468                 | 0.0300                | 156         | 80-120                  | **    |  |  |  |

**Date Analyzed:** 05/17/16 22:38 **Units:** mg/kg SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0341 0.0300 114 80-120 4-Bromofluorobenzene 0.0487 0.0300 \*\* 162 80-120

Units: mg/kg Date Analyzed: 05/18/16 06:20 SURROGATE RECOVERY STUDY

| TPH by SW 8015B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|---------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1-Chlorooctane            | 97.5                   | 99.9                  | 98                    | 70-135                  |       |
| o-Terphenyl               | 45.1                   | 50.0                  | 90                    | 70-135                  |       |

| Units:                    | mg/kg | <b>Date Analyzed:</b> 05/18/16 06:43 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|---------------------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
| TPH by SW 8015B  Analytes |       |                                      | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chlorooc                | etane |                                      | 104                      | 100                   | 104                   | 70-135                  |       |  |  |
| o-Terphenyl               |       |                                      | 47.9                     | 50.0                  | 96                    | 70-135                  |       |  |  |

| Units:      | mg/kg | <b>Date Analyzed:</b> 05/18/16 07:06 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|-------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|             | TP    | H by SW 8015B  Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chlorooct | ane   |                                      | 98.6                     | 99.8                  | 99                    | 70-135                  |       |  |  |
| o-Terphenyl |       |                                      | 46.3                     | 49.9                  | 93                    | 70-135                  |       |  |  |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

Work Orders: 530225, Lab Batch #: 994548 Sample: 530225-001 / SMP Batch: 1 Matrix: Soil

| Units: mg/kg Date Analyzed: 05/18/16 07:18 SURROGATE RECOVERY STUDY |          |                        |                       |                       |                         |       |  |  |
|---------------------------------------------------------------------|----------|------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
| TPH by SW 8015B  Analytes                                           |          | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
|                                                                     | Analytes |                        |                       |                       |                         |       |  |  |
| 1-Chlorooctane                                                      |          | 113                    | 99.8                  | 113                   | 70-135                  |       |  |  |
| o-Terphenyl                                                         |          | 57.0                   | 49.9                  | 114                   | 70-135                  |       |  |  |

Lab Batch #: 994548 Sample: 530225-008 / SMP Batch: 1 Matrix: Soil

**Date Analyzed:** 05/18/16 07:29 **Units:** mg/kg SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW 8015B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 98.4 100 98 70-135 o-Terphenyl 45.7 50.0 70-135 91

Units: mg/kg Date Analyzed: 05/18/16 07:53 SURROGATE RECOVERY STUDY

| TPH by SW 8015B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|---------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1-Chlorooctane            | 93.4                   | 99.7                  | 94                    | 70-135                  |       |
| o-Terphenyl               | 42.6                   | 49.9                  | 85                    | 70-135                  |       |

Lab Batch #:994548Sample:530225-010 / SMPBatch:1Matrix:Soil

| Units:                    | mg/kg | <b>Date Analyzed:</b> 05/18/16 08:15 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|---------------------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
| TPH by SW 8015B  Analytes |       |                                      | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chlorooc                | tane  |                                      | 99.0                     | 99.9                  | 99                    | 70-135                  |       |  |  |
| o-Terphenyl               |       |                                      | 46.5                     | 50.0                  | 93                    | 70-135                  |       |  |  |

Lab Batch #: 994548 Sample: 530225-011 / SMP Batch: 1 Matrix: Soil

| Units:      | mg/kg | <b>Date Analyzed:</b> 05/18/16 08:39 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|-------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|             | TP    | H by SW 8015B  Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chlorooct | ane   |                                      | 94.9                     | 99.9                  | 95                    | 70-135                  |       |  |  |
| o-Terphenyl |       |                                      | 43.0                     | 50.0                  | 86                    | 70-135                  |       |  |  |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

 Work Orders: 530225,
 Project ID:

 Lab Batch #: 994548
 Sample: 530225-012 / SMP
 Batch: 1 Matrix: Soil

| Units: mg/kg Date Analyzed: 05/18/16 09:01 SURROGATE RECOVERY STUDY |    |                        |                       |                       |                         |        |  |  |
|---------------------------------------------------------------------|----|------------------------|-----------------------|-----------------------|-------------------------|--------|--|--|
| TPH by SW 8015B  Analytes                                           |    | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags  |  |  |
|                                                                     |    | Analytes               |                       |                       | [2]                     |        |  |  |
| 1-Chlorooctan                                                       | ie |                        | 98.2                  | 99.8                  | 98                      | 70-135 |  |  |
| o-Terphenyl                                                         |    |                        | 45.0                  | 49.9                  | 90                      | 70-135 |  |  |

Lab Batch #: 994548 Sample: 530225-013 / SMP Batch: 1 Matrix: Soil

| Units:     | mg/kg | <b>Date Analyzed:</b> 05/18/16 09:25 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|            | TP    | H by SW 8015B  Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1.011      |       | Analytes                             | 04.5                     | 00.0                  | 1                     | 50.105                  |       |  |  |
| 1-Chlorooc | tane  |                                      | 91.5                     | 99.9                  | 92                    | 70-135                  |       |  |  |
| o-Terpheny | 1     |                                      | 40.6                     | 50.0                  | 81                    | 70-135                  |       |  |  |

Units: mg/kg Date Analyzed: 05/18/16 09:27 SURROGATE RECOVERY STUDY

| TPH by SW 8015B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|---------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1-Chlorooctane            | 99.3                   | 99.8                  | 99                    | 70-135                  |       |
| o-Terphenyl               | 52.4                   | 49.9                  | 105                   | 70-135                  |       |

Lab Batch #: 994548 Sample: 530225-002 / SMP Batch: 1 Matrix: Soil

| Units:     | mg/kg | <b>Date Analyzed:</b> 05/18/16 09:54 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|            | TP    | H by SW 8015B  Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chlorooc | tane  |                                      | 103                      | 99.7                  | 103                   | 70-135                  |       |  |  |
| o-Terpheny | 1     |                                      | 50.4                     | 49.9                  | 101                   | 70-135                  |       |  |  |

 Lab Batch #: 994548
 Sample: 530225-003 / DL
 Batch: 1
 Matrix: Soil

| Units:      | mg/kg | <b>Date Analyzed:</b> 05/18/16 10:19 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|-------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|             | TPI   | H by SW 8015B  Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chlorooct | ane   |                                      | 93.3                     | 99.8                  | 93                    | 70-135                  |       |  |  |
| o-Terphenyl |       |                                      | 48.3                     | 49.9                  | 97                    | 70-135                  |       |  |  |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

Work Orders: 530225, **Project ID: Lab Batch #:** 994548 Matrix: Soil Sample: 530225-004 / SMP Batch:

| Units:         | mg/kg | <b>Date Analyzed:</b> 05/18/16 10:46 | SU                     | SURROGATE RECOVERY STUDY |                       |                         |       |  |  |
|----------------|-------|--------------------------------------|------------------------|--------------------------|-----------------------|-------------------------|-------|--|--|
|                | TPF   | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B]    | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
|                |       | Analytes                             |                        |                          | L- 3                  |                         |       |  |  |
| 1-Chlorooctane | ;     |                                      | 105                    | 99.6                     | 105                   | 70-135                  |       |  |  |
| o-Terphenyl    |       |                                      | 51.3                   | 49.8                     | 103                   | 70-135                  |       |  |  |

**Lab Batch #:** 994515 Sample: 530225-003 / SMP Batch: Matrix: Soil

**Units:** mg/kg Date Analyzed: 05/18/16 10:55 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Flags Found Limits Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0351 0.0300 117 80-120 4-Bromofluorobenzene 0.0302 0.0300 101 80-120

Lab Batch #: 994515 Sample: 708952-1-BLK / BLK Matrix: Solid Batch:

**Units:** mg/kg Date Analyzed: 05/16/16 21:25 SURROGATE RECOVERY STUDY

| BTEX by EPA 8021B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|-----------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1,4-Difluorobenzene         | 0.0268                 | 0.0300                | 89                    | 80-120                  |       |
| 4-Bromofluorobenzene        | 0.0355                 | 0.0300                | 118                   | 80-120                  |       |

Sample: 708971-1-BLK / BLK **Lab Batch #:** 994548 Batch: Matrix: Solid

**Units:** Date Analyzed: 05/18/16 03:21 mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH by SW 8015B Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1-Chlorooctane 98.3 100 98 70-135 o-Terphenyl 50.0 93 70-135 46.6

Lab Batch #: 994515 Sample: 708952-1-BKS / BKS Batch: 1 Matrix: Solid

| Units:               | mg/kg | <b>Date Analyzed:</b> 05/16/16 20:04 | SURROGATE RECOVERY STUDY |                       |                |                         |       |  |
|----------------------|-------|--------------------------------------|--------------------------|-----------------------|----------------|-------------------------|-------|--|
|                      | ВТЕ   | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R | Control<br>Limits<br>%R | Flags |  |
|                      |       | Analytes                             |                          |                       | [D]            |                         |       |  |
| 1,4-Difluorobenzene  |       |                                      | 0.0253                   | 0.0300                | 84             | 80-120                  |       |  |
| 4-Bromofluorobenzene |       |                                      | 0.0359                   | 0.0300                | 120            | 80-120                  |       |  |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

Work Orders: 530225,
Lab Batch #: 994548
Sample: 708971-1-BKS / BKS
Batch: 1 Matrix: Solid

| Units: mg/kg Date Analyzed: 05/18/16 03:44 SURROGATE RECOVERY STUDY |     |               |                        |                       |             |                         |       |
|---------------------------------------------------------------------|-----|---------------|------------------------|-----------------------|-------------|-------------------------|-------|
|                                                                     | TPI | H by SW 8015B | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery %R | Control<br>Limits<br>%R | Flags |
|                                                                     |     | Analytes      |                        |                       | [D]         |                         |       |
| 1-Chlorooctan                                                       | ie  |               | 112                    | 100                   | 112         | 70-135                  |       |
| o-Terphenyl                                                         |     |               | 45.9                   | 50.0                  | 92          | 70-135                  |       |

Lab Batch #: 994515 Sample: 708952-1-BSD / BSD Batch: 1 Matrix: Solid

| Units:      | mg/kg      | <b>Date Analyzed:</b> 05/16/16 20:20 | SURROGATE RECOVERY STUDY |                       |                |                         |       |  |  |
|-------------|------------|--------------------------------------|--------------------------|-----------------------|----------------|-------------------------|-------|--|--|
|             | ВТЕ        | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R | Control<br>Limits<br>%R | Flags |  |  |
|             |            | Analytes                             |                          |                       | [D]            |                         |       |  |  |
| 1,4-Difluor | obenzene   |                                      | 0.0276                   | 0.0300                | 92             | 80-120                  |       |  |  |
| 4-Bromoflu  | orobenzene |                                      | 0.0359                   | 0.0300                | 120            | 80-120                  |       |  |  |

Lab Batch #: 994548 Sample: 708971-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 05/18/16 04:07 SURROGATE RECOVERY STUDY

| TPH by SW 8015B  Analytes | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|---------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| 1-Chlorooctane            | 116                    | 100                   | 116                   | 70-135                  |       |
| o-Terphenyl               | 52.4                   | 50.0                  | 105                   | 70-135                  |       |

Lab Batch #: 994515 Sample: 530085-001 S / MS Batch: 1 Matrix: Soil

| Units:       | mg/kg      | <b>Date Analyzed:</b> 05/16/16 20:37 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|--------------|------------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|              | вте        | X by EPA 8021B  Analytes             | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1,4-Difluoro | benzene    |                                      | 0.0278                   | 0.0300                | 93                    | 80-120                  |       |  |  |
| 4-Bromofluo  | orobenzene |                                      | 0.0354                   | 0.0300                | 118                   | 80-120                  |       |  |  |

| Units:       | mg/kg | <b>Date Analyzed:</b> 05/18/16 07:44 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |
|--------------|-------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|
|              | TPI   | H by SW 8015B  Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |
| 1-Chloroocta | ane   |                                      | 112                      | 99.8                  | 112                   | 70-135                  |       |  |  |
| o-Terphenyl  |       |                                      | 50.5                     | 49.9                  | 101                   | 70-135                  |       |  |  |

<sup>\*</sup> Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 \* A / B

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



**Project Name: N Bushy Draw** 

 Work Orders: 530225,
 Project ID:

 Lab Batch #: 994515
 Sample: 530085-001 SD / MSD
 Batch: 1 Matrix: Soil

| Units: mg/kg Date Analyzed: 05/16/16 | 20:53 SU               | 3 SURROGATE RECOVERY STUDY |             |                         |       |  |  |  |
|--------------------------------------|------------------------|----------------------------|-------------|-------------------------|-------|--|--|--|
| BTEX by EPA 8021B                    | Amount<br>Found<br>[A] | True<br>Amount<br>[B]      | Recovery %R | Control<br>Limits<br>%R | Flags |  |  |  |
| Analytes                             |                        |                            | [D]         |                         |       |  |  |  |
| 1,4-Difluorobenzene                  | 0.0277                 | 0.0300                     | 92          | 80-120                  |       |  |  |  |
| 4-Bromofluorobenzene                 | 0.0353                 | 0.0300                     | 118         | 80-120                  |       |  |  |  |

| Units: mg/kg Date Analyzed: 05/18/16 08:10 SURROGATE RECOVERY STU |      |               |                        |                       |                |                         |       |
|-------------------------------------------------------------------|------|---------------|------------------------|-----------------------|----------------|-------------------------|-------|
|                                                                   | TP   | H by SW 8015B | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R | Control<br>Limits<br>%R | Flags |
|                                                                   |      | Analytes      |                        |                       | [D]            |                         |       |
| 1-Chlorooct                                                       | tane |               | 111                    | 99.9                  | 111            | 70-135                  |       |
| o-Terpheny                                                        | 1    |               | 49.5                   | 50.0                  | 99             | 70-135                  |       |

Surrogate Recovery [D] = 100 \* A / B

<sup>\*</sup> Surrogate outside of Laboratory QC limits

<sup>\*\*</sup> Surrogates outside limits; data and surrogates confirmed by reanalysis

<sup>\*\*\*</sup> Poor recoveries due to dilution



#### **BS / BSD Recoveries**



**Project Name: N Bushy Draw** 

Work Order #: 530225 Project ID:

 Analyst:
 PJB
 Date Prepared: 05/16/2016
 Date Analyzed: 05/16/2016

**Lab Batch ID:** 994515 **Sample:** 708952-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

| BTEX by EPA 8021B  Analytes | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|-----------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|----------|-------------------------|---------------------------|------|
| Benzene                     | < 0.00150                     | 0.100                 | 0.0967                          | 97                          | 0.100                 | 0.0824                                    | 82                            | 16       | 70-130                  | 35                        |      |
| Toluene                     | < 0.00200                     | 0.100                 | 0.0961                          | 96                          | 0.100                 | 0.0821                                    | 82                            | 16       | 70-130                  | 35                        |      |
| Ethylbenzene                | < 0.00200                     | 0.100                 | 0.0962                          | 96                          | 0.100                 | 0.0823                                    | 82                            | 16       | 71-129                  | 35                        |      |
| m,p-Xylenes                 | < 0.00200                     | 0.200                 | 0.201                           | 101                         | 0.200                 | 0.172                                     | 86                            | 16       | 70-135                  | 35                        |      |
| o-Xylene                    | < 0.00300                     | 0.100                 | 0.0995                          | 100                         | 0.100                 | 0.0851                                    | 85                            | 16       | 71-133                  | 35                        |      |

Analyst: MNR Date Prepared: 05/17/2016 Date Analyzed: 05/17/2016

Lab Batch ID: 994552 Sample: 708944-1-BKS Batch #: 1 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

| Inorganic Anions by EPA 300 Solution Analytes | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|-----------------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|----------|-------------------------|---------------------------|------|
| Chloride                                      | <2.00                         | 20.0                  | 19.7                            | 99                          | 20.0                  | 19.7                                      | 99                            | 0        | 90-110                  | 20                        |      |

Relative Percent Difference RPD = 200\*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100\*(C)/[B]Blank Spike Duplicate Recovery [G] = 100\*(F)/[E]All results are based on MDL and Validated for QC Purposes



#### **BS / BSD Recoveries**



**Project Name: N Bushy Draw** 

Work Order #: 530225 Project ID:

 Analyst:
 ARM
 Date Prepared: 05/17/2016
 Date Analyzed: 05/18/2016

 Lab Batch ID:
 994548
 Sample:
 708971-1-BKS
 Batch #:
 1
 Matrix:
 Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

| TPH by SW 8015B  Analytes          | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|----------|-------------------------|---------------------------|------|
| C6-C10 Gasoline Range Hydrocarbons | <15.0                         | 1000                  | 802                             | 80                          | 1000                  | 853                                       | 85                            | 6        | 70-135                  | 35                        |      |
| C10-C28 Diesel Range Hydrocarbons  | <15.0                         | 1000                  | 855                             | 86                          | 1000                  | 925                                       | 93                            | 8        | 70-135                  | 35                        |      |

Relative Percent Difference RPD = 200\*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100\*(C)/[B] Blank Spike Duplicate Recovery [G] = 100\*(F)/[E] All results are based on MDL and Validated for QC Purposes



#### Form 3 - MS Recoveries

**Project Name: N Bushy Draw** 



**Work Order #:** 530225

**Project ID:** Lab Batch #: 994552

**Date Analyzed:** 05/17/2016 **Date Prepared:** 05/17/2016 Analyst: MNR **QC- Sample ID:** 530051-001 S Batch #: Matrix: Soil

Reportir

| Reporting Units: mg/kg                | MATI                              | RIX / MA              | TRIX SPIKE                     | RECO      | VERY STU                | DY   |
|---------------------------------------|-----------------------------------|-----------------------|--------------------------------|-----------|-------------------------|------|
| Inorganic Anions by EPA 300  Analytes | Parent<br>Sample<br>Result<br>[A] | Spike<br>Added<br>[B] | Spiked Sample<br>Result<br>[C] | %R<br>[D] | Control<br>Limits<br>%R | Flag |
| Chloride                              | 2.74                              | 20.0                  | 23.2                           | 102       | 80-120                  |      |

Lab Batch #: 994552

**Date Analyzed:** 05/17/2016 Date Prepared: 05/17/2016Analyst: MNR **QC- Sample ID:** 530225-006 S Batch #: Matrix: Soil

| Reporting Units: mg/kg                | MATI                              | RIX / MA              | TRIX SPIKE                     | RECO      | VERY STU                | DY   |
|---------------------------------------|-----------------------------------|-----------------------|--------------------------------|-----------|-------------------------|------|
| Inorganic Anions by EPA 300  Analytes | Parent<br>Sample<br>Result<br>[A] | Spike<br>Added<br>[B] | Spiked Sample<br>Result<br>[C] | %R<br>[D] | Control<br>Limits<br>%R | Flag |
| Chloride                              | 641                               | 400                   | 1070                           | 107       | 80-120                  |      |

Matrix Spike Percent Recovery [D] = 100\*(C-A)/B Relative Percent Difference [E] = 200\*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit



#### Form 3 - MS / MSD Recoveries



**Project Name: N Bushy Draw** 

Work Order #: 530225 Project ID:

**Lab Batch ID:** 994515 **QC- Sample ID:** 530085-001 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

| BTEX by EPA 8021B | Parent<br>Sample<br>Result | Spike<br>Added | Spiked Sample<br>Result<br>[C] | Sample<br>%R | Added  | Duplicate<br>Spiked Sample<br>Result [F] | %R  | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|-------------------|----------------------------|----------------|--------------------------------|--------------|--------|------------------------------------------|-----|----------|-------------------------|---------------------------|------|
| Analytes          | [A]                        | [B]            |                                | [D]          | [E]    |                                          | [G] |          |                         |                           |      |
| Benzene           | < 0.00149                  | 0.0994         | 0.0547                         | 55           | 0.0998 | 0.0532                                   | 53  | 3        | 70-130                  | 35                        | X    |
| Toluene           | < 0.00199                  | 0.0994         | 0.0378                         | 38           | 0.0998 | 0.0457                                   | 46  | 19       | 70-130                  | 35                        | X    |
| Ethylbenzene      | < 0.00199                  | 0.0994         | 0.0266                         | 27           | 0.0998 | 0.0382                                   | 38  | 36       | 71-129                  | 35                        | XF   |
| m,p-Xylenes       | <0.00199                   | 0.199          | 0.0518                         | 26           | 0.200  | 0.0768                                   | 38  | 39       | 70-135                  | 35                        | XF   |
| o-Xylene          | < 0.00298                  | 0.0994         | 0.0283                         | 28           | 0.0998 | 0.0375                                   | 38  | 28       | 71-133                  | 35                        | X    |

**Lab Batch ID:** 994548 **QC- Sample ID:** 530225-001 S **Batch #:** 1 **Matrix:** Soil

**Date Analyzed:** 05/18/2016 **Date Prepared:** 05/17/2016 **Analyst:** ARM

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

| TPH by SW 8015B  Analytes          | Parent<br>Sample<br>Result<br>[A] | Spike<br>Added<br>[B] | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R<br>[D] | Spike<br>Added<br>[E] | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|------------------------------------|-----------------------------------|-----------------------|--------------------------------|-------------------------------|-----------------------|------------------------------------------|-----------------------------|----------|-------------------------|---------------------------|------|
| C6-C10 Gasoline Range Hydrocarbons | <15.0                             | 998                   | 880                            | 88                            | 999                   | 876                                      | 88                          | 0        | 70-135                  | 35                        |      |
| C10-C28 Diesel Range Hydrocarbons  | <15.0                             | 998                   | 915                            | 92                            | 999                   | 906                                      | 91                          | 1        | 70-135                  | 35                        |      |

Matrix Spike Percent Recovery [D] = 100\*(C-A)/B Relative Percent Difference RPD = 200\*|(C-F)/(C+F)|



#### **Sample Duplicate Recovery**



**Project Name: N Bushy Draw** 

**Work Order #:** 530225

 Lab Batch #:
 994552
 Project ID:

 Date Analyzed:
 05/17/2016 19:32
 Date Prepared:
 05/17/2016
 Analyst:
 MNR

 QC- Sample ID:
 530051-001 D
 Batch #:
 1
 Matrix:
 Soil

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/kg Sample Control **Inorganic Anions by EPA 300** Parent Sample Duplicate RPD Limits Result Flag Result %RPD [A] [B] Analyte Chloride 2.74 2.83

**Lab Batch #:** 994552

 Date Analyzed:
 05/17/2016 22:21
 Date Prepared:
 05/17/2016
 Analyst: MNR

 QC- Sample ID:
 530225-006 D
 Batch #:
 1
 Matrix:
 Soil

| Reporting Units: mg/kg               | SAMPLE / SAMPLE DUPLICATE RECOVERY |                                      |     |                           |      |  |
|--------------------------------------|------------------------------------|--------------------------------------|-----|---------------------------|------|--|
| Inorganic Anions by EPA 300  Analyte | Parent Sample<br>Result<br>[A]     | Sample<br>Duplicate<br>Result<br>[B] | RPD | Control<br>Limits<br>%RPD | Flag |  |
| Chloride                             | 641                                | 670                                  | 4   | 20                        |      |  |

Spike Relative Difference RPD 200 \* | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit



# CHAIN OF CUSTODY

|                    | ation        |        | Page |
|--------------------|--------------|--------|------|
|                    |              |        | 7    |
| S = Soil/Sed/Solid | Matrix Codes | 530225 |      |

| Paper Name   Paper     | Relinquished by: | Relinquished by: | Relinguished by Sampler: | SAMPLE CUSTODY MUST   | TAT Starts Day received by I ah if received | 3 Day EMERGENCY | 2 Day EMERGENCY Col | Next Day EMERGENCY | Same Day TAT 5.0  | Turnaround Time ( Business days) | 12 SP-01Z | 11 9,011 | 10 50-010 | 9 SP- C09 | 8 58-008 | 7 SP-007 | 6 SP-006 | 5 SP-005 | 4 SP-604 | 3 58-003 | 2 50-002 | 1 50-001 | No. Field ID / Point of Collection |                 | Samplers's Name: | Project Contact: Bill Green | wendy.north@eccgrp.com bill.green@eccgrp.com 432 | lidland, TX 79706 | 2405 E. County Rd. 123 | Enviro Clean / Midland Texas |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------------|-----------------------|---------------------------------------------|-----------------|---------------------|--------------------|-------------------|----------------------------------|-----------|----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------------------------|-----------------|------------------|-----------------------------|--------------------------------------------------|-------------------|------------------------|------------------------------|
| BTEX - 8021B  SW = Grid  WW = Gri | Date Time:       | Date Time:       | Date Time:               | LE CUSTODY MUST BE DO | red hy 3:00 pm                              | =               | itract TAT          | у тат              | ау ТАТ            |                                  | 8.6.      | 20'6"    | 2.6"      | 3         | &        | ω        |          | ).6"     |          | 1,       | -        |          |                                    |                 |                  | √ اط                        | 0209                                             |                   | . 70                   | 2                            |
| BTEX - 8021B  S = Suiva  DW = Ori  DW = Ori  SW = Suiva  SW = Suiv | 5 Recei          | Recei            | Rece                     | CUMENTED BELC         |                                             |                 |                     |                    | ×                 |                                  | 12:5      | 12:4     | 13, 3     | 17:2      | 1:31     | 11.5     | 11:5     | 11:0     | =        | 1:2      | 10.20    |          |                                    | Collection      |                  | ukon, OK 73099              | nviro Clean<br>1717 N. Morgan Rd                 | S                 | roject Location:       | COSKY OS                     |
| BTEX - 8021B  SW = Grid  WW = Gri | ved By:          | ved By:          | Nod By Wh                | W EACH TIME S         |                                             | TRRP Checklis   | Level 3 (CLP F      | Level III Std Q    | Level II Std QC   | Data                             |           |          |           |           |          | -0       | S        |          |          |          |          |          | Matrix                             |                 | 9009             |                             | ab(@envirociea                                   | MA                | 4 1. 4 4               | 5                            |
| S = Solvy GW = Gric DW = Dri NW = Ori N |                  |                  | ahr                      | AMPLES CHANGE PO      |                                             | st              | orms)               | C+ Forms           |                   | a Deliverable Informati          |           |          |           |           |          |          |          |          | _        | _        |          |          | HCI<br>NaOH/Zn<br>Acetate          | P               |                  |                             | anps.com                                         |                   |                        |                              |
| BTEX - 8021B  S = Suiva  DW = Ori  DW = Ori  SW = Suiva  SW = Suiv | Custody Seal #   | Relinquished By  | Relinduished B           | SSESSION, INCLUDIN    |                                             |                 | UST / RG -411       | TRRP Level IV      | Level IV (Full t  | on                               |           |          |           |           |          |          |          |          |          |          |          |          | HNO3<br>H2SO4<br>NaOH<br>NaHSO4    | eservative Used |                  |                             |                                                  |                   |                        |                              |
| BTEX - 8021B  SW = Grid  WW = Gri | 7                | <i>;</i>         | Capa                     | IG ÇOURIER DELIV      |                                             |                 |                     |                    | Data Pkg /raw dat |                                  |           |          |           | ×         | ×        | 7        | ×        | ×        | ×        | *        | <b>~</b> | ×        | Texas TI                           | -               |                  |                             |                                                  |                   |                        |                              |
| Www = Green was a second with  | reserved v       | Date 7           |                          | /ERY                  |                                             |                 |                     |                    | a)                |                                  |           |          | x         | X         | x<br>x   | X        | x x      | 7        | 7        | YX       | 7        | イテ       |                                    |                 |                  | - 80                        | 15M                                              |                   |                        |                              |
| GW =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | where applicable | Time:            | 0                        | דהט-הא / כ            | E                                           |                 |                     |                    |                   | Notes                            | *         | ×        | ×         | ×         | X        | ×        | ×        | メ        | ~        | ~        | ~        | ~        | Chloride                           | es -            | 300 S            | erie                        | S                                                |                   |                        |                              |
| GW = Grown DW = Drill WW = Wala P = Production SW = Sluc OW = Oce W = Wipe O = Other A = Air  Cooler Temp.  Cooler Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Received By: (/  | Réceivéed By             | JPS: Iracking #       | Do. Tracking #                              |                 |                     |                    |                   |                                  |           |          |           |           |          |          |          |          |          |          |          |          |                                    |                 |                  |                             |                                                  |                   |                        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooler Temp.     |                  | 1 (Owens) 1              |                       |                                             |                 |                     |                    |                   |                                  |           |          |           |           |          |          |          |          |          |          |          |          | Field Commen                       |                 | A = Air          | W= Wipe                     | SW = Surface water SL = Sludge OW = Ocean Water  | P = Product/Oil   | DW = Drinking Wate     | GW = Ground Water            |



# CHAIN OF CHAIN

| 8   B   B   B   B   B   B   B   B   B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Enviro Clean / Midland Texas  2405 E. County Rd. 123 Midland, TX 79706  Email: Wendy.north@eccgrp.com bill.green@eccgrp.com bill.green@eccgrp.com Samplers's Name:  1 \$\infty - \infty \Gamma  Field ID / Point of Collection  Field ID / Point of Collection  5  6  6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Deliverable Information    S Day TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | int of Collection                                                                                                                                                                                                                                                       |
| Level II Std QC  Level II Std QC  Level IV (Full Data Pkg /raw data)  Level IV (Full Data Pkg /raw data)  TRRP Level IV  Level 3 (CLP Forms)  Level 1V  Level 3 (CLP Forms)  Level WST / RG -411  TRRP Checklist  Received By:  Received By: |                                                                                                                                                                                                                                                                         |
| TRRP Checklist  BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVER Time: Received By: Relinquished By: Relinquished By: Relinquished By: Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | received by Lab, if recei                                                                                                                                                                                                                                               |
| Received By:  Refinquished By:  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * (                                                                                                                                                                                                                                                                     |



## XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: Enviroclean- Midland

Date/ Time Received: 05/17/2016 10:40:00 AM

Work Order #: 530225

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: R8

|                                                                                                  | Sample Receipt Checklist              | Comments                |
|--------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|
| #1 *Temperature of cooler(s)?                                                                    |                                       | 3.2                     |
| #2 *Shipping container in good condition                                                         | ?                                     | N/A                     |
| #3 *Samples received on ice?                                                                     | Yes                                   |                         |
| #4 *Custody Seal present on shipping co                                                          | ntainer/ cooler?                      | N/A                     |
| #5 *Custody Seals intact on shipping cor                                                         | tainer/ cooler?                       | N/A                     |
| #6 Custody Seals intact on sample bottle                                                         | es?                                   | N/A                     |
| #7 *Custody Seals Signed and dated?                                                              |                                       | N/A                     |
| #8 *Chain of Custody present?                                                                    |                                       | Yes                     |
| #9 Sample instructions complete on Cha                                                           | in of Custody?                        | Yes                     |
| #10 Any missing/extra samples?                                                                   |                                       | No                      |
| #11 Chain of Custody signed when relind                                                          | quished/ received?                    | Yes                     |
| #12 Chain of Custody agrees with sample                                                          | e label(s)?                           | Yes                     |
| #13 Container label(s) legible and intact?                                                       | )                                     | Yes                     |
| #14 Sample matrix/ properties agree with                                                         | Chain of Custody?                     | Yes                     |
| #15 Samples in proper container/ bottle?                                                         |                                       | Yes                     |
| #16 Samples properly preserved?                                                                  |                                       | Yes                     |
| #17 Sample container(s) intact?                                                                  |                                       | Yes                     |
| #18 Sufficient sample amount for indicate                                                        | ed test(s)?                           | Yes                     |
| #19 All samples received within hold time                                                        | 9?                                    | Yes                     |
| #20 Subcontract of sample(s)?                                                                    |                                       | No                      |
| #21 VOC samples have zero headspace                                                              | (less than 1/4 inch bubble)?          | N/A                     |
| #22 <2 for all samples preserved with HN<br>samples for the analysis of HEM or HEM-<br>analysts. |                                       | N/A                     |
| #23 >10 for all samples preserved with N                                                         | aAsO2+NaOH, ZnAc+NaOH?                | N/A                     |
| * <b>Must be completed for after-hours de</b><br>Analyst:                                        | livery of samples prior to placing in | n the refrigerator      |
| Checklist completed by:                                                                          | Mary Olegis Negron Mary Negron        | Date: <u>05/17/2016</u> |
| Checklist reviewed by:                                                                           | Kelsey Brooks                         | Date: 05/18/2016        |

# APPENDIX D RIGHT OF ENTRY FOR REMEDIATION

#### **New Mexico State Land Office**

Rights of Way Division
(505) 827-5842 P.O. Box 1148 Santa Fe, NM 87504



#### RIGHT OF ENTRY (ROE) REQUEST FOR REMEDIATION

| Company Nan           | me                                                                                |     |
|-----------------------|-----------------------------------------------------------------------------------|-----|
| Address City State 7i | ip                                                                                |     |
| Contact Person        | on:                                                                               |     |
| Telephone #:          |                                                                                   |     |
| Email:                |                                                                                   |     |
|                       | quest:                                                                            |     |
|                       | Township Range Unit Letter                                                        |     |
| Qtr/Qtr               | County                                                                            |     |
| GPS Location          | n (decimal degrees): Latitude W Longitude N                                       |     |
| If this is a rem      | mediation for a spill please attach a copy of the OCD C-141 form.                 |     |
| Is the complet        | eted C-141 attached? Yes No No                                                    |     |
| Square footage        | ge of spill impacted surface:                                                     |     |
| Estimated squ         | uare footage of total disturbance:                                                |     |
| Reclamation F         | Plan (attach addl. sheet if necessary)                                            |     |
|                       | etions from nearest state highway or road (attach a map of the location):         |     |
| Lease number          | r associated with the ROE request:                                                |     |
| Well Name an          | nd/or Operator (if applicable):                                                   |     |
| Time expected         | ed to complete remediation:                                                       |     |
| Personnel pres        | esent on State Land                                                               |     |
| Equipment &           | materials present on State Land                                                   |     |
| \$30.00 applic        | cation fee and \$500.00 permit amount (based on 180 days) renewable for up to 3 y | rs. |
| Payable to:           | The Commissioner of Public Lands P. O. Box 1148 Santa Fe, NM 87504-1148           |     |

Revised (12/23/2015) \* When you provide a check as payment, you authorize the State of New Mexico to either use information from your check to make a one-time electronic fund transfer from your account or to process the payment as a check transaction.