

Sampling Summary Report and Remediation Plan North Brushy Draw 35-12 Produced Water Spill Unit D, Section 2, Township 25S, Range 29E, Eddy County, NM Spill Incident # NAB1613135790

WPX Energy Inc. (WPX) contracted Enviro Clean Services (ECS) to oversee the delineation and excavation services being performed by KO Construction, LLC (KO) at the North Brushy Draw 35-12 in Eddy County, NM. The investigation is in response to a produced water release of approximately 200 barrels (bbls) of produced water with 70 bbls recovered. The incident was reported by Lucas Smith on May 8, 2016; the initial C-141 is attached as **Appendix A**. The proposed soil assessment and remediation activities are presented below.

Site Information

The North Brushy Draw 35-12 is located on New Mexico State Land (NMSLO) 12 miles southeast of Malaga in Eddy County, New Mexico. The legal description is: Unit D, Section 2, Township 25S, Range 29E, with the GPS coordinates of 32.07898°N, 103.94493°W. A Site Map is provided in **Appendix B**.

According to the US Department of Agriculture Natural Resource Conservation Service Web Soil Survey, the surface in this area is primarily "US – Upton-Simona complex with 1 to 15% slope, eroded". This soil is found on fans and ridges, and is composed of gravelly loam with up to 75% calcium carbonate in the profile. The New Mexico Bureau of Geology and Mineral Resources Web Map indicates the local surface geology is "Qep – Quaternary (Holocene to middle Pleistocene) Eolian and piedmont deposits". Drainage courses in the area are normally dry.

A search of the New Mexico Office of the State Engineer's (OSE) Water Rights and Points of Diversion databases did not reveal any water wells within approximately three miles of the site. Groundwater in nearest well is greater than 100 feet below ground surface (bgs). **Appendix C** includes the nearest Point of Diversion information retrieved from the OSE.

Regulatory Framework

The remediation of a produced water release in New Mexico are managed under regulatory jurisdiction of the New Mexico Oil Conservation Division (OCD). Releases greater than five barrels (bbl) in volume are reportable to the OCD and are evaluated by the Recommended Remediation Action Levels (RRAL). RRALs are a ranking system used to evaluate regulatory requirements based upon depth to groundwater, distance to surface water, and distance from wellhead protection area. Using the New Mexico Oil Conservation Division (OCD) Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993), ranking criteria for this site indicates the following:

Depth to groundwater	>100'	0
Wellhead protection area	>1,000'	0
Distance to surface water body	>1,000'	0

Based on the site ranking score of 0, the OCD RRAL are as defined in **Table 1**. In addition to the hydrocarbon RRALs, the OCD also requires all oilfield releases to be delineation assessed for chlorides to Water Quality Control Commission (WQCC) values (250 mg/Kg).

Incident Description

This release occurred when a valve malfunctioning at a water header released approximately 200 bbl of produced water. The runoff path of the spill is to the north, paralleling two pipelines downslope approximately 10 vertical feet, and impacting approximately 1.25 acres.

Initial Soil Investigation

On May 16, 2016, ECS personnel visited the location to assess the release. ECS mapped the spill area and estimated the spill area. Initial samples were taken in 12 locations (001 through 012) between 0.5 to 3 feet bgs. All samples were collected in 4-ounce glass jars, preserved on ice and transferred to Xenco Laboratories (Xenco) in Midland, Texas.

Xenco is accredited by the National Laboratory Accreditation Program (NELAP) for the technology and analytes necessary to demonstrate regulatory compliance) for total petroleum hydrocarbons (TPH) by EPA method 8015M (modified), benzene, toluene, ethylene, and xylenes (BTEX) by EPA method 8021B, and chlorides by EPA method 300.0. A summary of the analytical results is provided in **Table 1**. Copies of the laboratory report and chain of custody documentation are provided in **Appendix D**.

Laboratory analytical results indicate all samples were below the RRAL of 10 mg/kg and 50 mg/kg for benzene and BTEX, respectively. Surface sample TPH concentrations exceeded the 5,000 mg/kg RRAL in sample locations SP-002 (9,350 mg/kg) and SP-003 (5,490 mg/Kg). Chloride concentrations exceeded the WQCC value of 250 mg/Kg in all sample locations.

On June 23 - 24, 2016, an ECS crew mobilized to the location to vertically delineate the sample locations by hand auger. Bedrock refusal was encountered in sample locations SP-001 through SP-008, SP-011, and SP-012. TPH concentrations were delineated in sample locations SP-002 (589 mg/Kg) and SP-003 (738 mg/Kg). A summary of the analytical results is provided in Table 1. Copies of the laboratory report and chain of custody documentation are provided in **Appendix D**.

·		_				
Sample ID	Date	Depth (ft)	Benzene	BTEX	ТРН C6 – C35	Chlorides
RRAL			10	50	5,000	250*
SP-001	05/16/16	$1 \\ 0 - 1$	<0.0015	<0.0015	<15.0	4,800
5D 002	00/23/10	1	<0.001E	0.140	0.250	2,870
SP-002	05/10/10		<0.0015	0.140	9,350	3,790
002-A	06/23/16	0-1			589	
SP-003	05/16/16	1	<0.0015	0.0041	5,490	10,900
003-A	06/23/16	0-1			738	
SP-004	05/16/16	0.5	< 0.0015	< 0.0015	34.9	9,060
004-A	06/23/16	0 - 1				11.300
SP-005	05/16/16	1.5	< 0.0015	< 0.0015	16.0	8,910
005-B	06/23/16	1-2				2.150
SP-006	05/16/16	2	< 0.0015	< 0.0015	<15.0	641
006-B	06/23/16	1 – 2				3,510
SP-007	05/16/16	3	< 0.0015	< 0.0015	28.5	1.680
007-D	06/23/16	3 – 4				2,620
SP-008	05/16/16	2	< 0.0015	0.0046	573	8.260
008-E	06/23/16	4 – 5				1,240
SP-009	05/16/16	3	< 0.0015	< 0.0015	27.2	276
009-E	06/23/16	4 – 5				205
SP-010	05/16/16	2.5	< 0.0015	< 0.0015	71.5	6,110
010-C	06/23/16	2 – 3				17.1
SP-011	05/16/16	2.5	< 0.0015	<0.0015	<15.0	5,770
011-E	06/23/16	4 – 5				6,560
SP-012	05/16/16	2.5	<0.0015	< 0.0015	<15.0	4,090
012-E	06/23/16	4 – 5				3,170
Backfill Material	05/16/16	Soil Pile	< 0.0015	< 0.0015	33.3	230

Table 1 - Soil Analytical Data Summary

Notes:

BTEX, TPH, and Chloride analyzed via methods 8021B, 8015M, and 300.0, respectively.

* Cleanup value based on WQCC requirements.

< indicates the concentration is below the reporting limit (RL)

All concentrations reported in milligrams per kilogram (mg/kg).

Bold values indicate the analyte was detected.

Bold and shaded values are above the RRAL.

On June 28, 2016, the OCD approved drilling a soil boring in the area with the highest chloride impact, near SP-003 and SP-004. The OCD approval correspondence is provided as **Appendix E**.

On June 29, 2016, one soil boring was installed in the area of apparent pooling and as close to the pipelines as safety allows. The soil boring was drilled with an air rotary rig by White Drilling Company (WDC), of Clyde, Texas. A right of entry permit was acquired by WPX from the NMSLO for soil investigation.

Drill cuttings were described according to the Unified Soil Classification System (USCS). Cuttings were collected every 2-feet to a depth of 20 feet, then every 5-feet from 20 to 40 feet bgs for field and laboratory analyses. Laboratory samples were collected in 4-ounce glass jars and transferred to XENCO. Samples were analyzed for Chlorides per EPA Method 300.0. A summary of the analytical results is provided in **Table 2**. Copies of the laboratory report and chain of custody documentation are provided in **Appendix D**. Soil boring log is provided in **Appendix F**.

,	2011.07	
Sample	Depth	Chloride
Date	(ft. bgs)	
		*250
06/29/16	1.5 – 2.0	1,180
06/29/16	3.5 – 4.0	260
06/29/16	5.5 – 6.0	206
06/29/16	7.5 – 8.0	356
06/29/16	9.5 - 10.0	289
06/29/16	11.5 – 12.0	321
06/29/16	13.5 – 14.0	305
06/29/16	15.5 – 16.0	110
06/29/16	17.5 – 18.0	123
06/29/16	19.5 – 20.0	34.4
06/29/16	24.5 – 25.0	33.0
06/29/16	29.5 – 30.0	14.2
06/29/16	34.5 – 35.0	19.9
06/29/16	35.5 – 40.0	11.1
	Sample Date Date 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16	Sample Date Depth (ft. bgs) 06/29/16 1.5 - 2.0 06/29/16 3.5 - 4.0 06/29/16 5.5 - 6.0 06/29/16 7.5 - 8.0 06/29/16 9.5 - 10.0 06/29/16 11.5 - 12.0 06/29/16 13.5 - 14.0 06/29/16 15.5 - 16.0 06/29/16 17.5 - 18.0 06/29/16 19.5 - 20.0 06/29/16 24.5 - 25.0 06/29/16 29.5 - 30.0 06/29/16 34.5 - 35.0 06/29/16 35.5 - 40.0

 Table 2 - Summary of Soil Boring Analytical Results

Notes:

Chloride analyzed by EPA CWA method 300.0.

* Cleanup value based on WQCC requirements.

< indicates the concentration is below the reporting limit (RL) mg/Kg indicates concentrations in milligrams per kilogram. Bold values indicate the analyte was detected.

Bold and shaded values are above the RRAL.

Proposed Remedial Actions

ECS respectfully requests a 2,500 mg/kg maximum chloride concentration remediation level. All soils exceeding this value will be excavated to vertical depth of 4-feet bgs. If laboratory delineation values exceed the 2,500 mg/kg remediation level at 4-feet bgs, an impervious clay liner will be installed over the exceedance area outside the pipeline right-of-way. To aid in excavation, ECS will conduct field testing using a calibrated Myron[®] conductivity pen and a 1 to1 soil and distilled water solution to guide excavation. Vertical and horizontal confirmation samples will be collected from the bottom and side walls of the excavated areas at a rate of one sample every 100 linear feet along the flow path. While awaiting disposal transportation, excavated soil will be placed on a polyethylene liner.

Following receipt of chloride confirmation samples, permission will be requested from the OCD and the BLM to backfill the location. Impacted soil will be transported to the R360 Red Bluff Facility in Orla, Texas. Backfill material will be imported from the North Bushy Draw 35-4 reclamation area. Backfill material has been analyzed, and is below the OCD RRAL.

As part of the final site reclamation and rehabilitation, ECS will seed the Site with native seed in order or to revegetate the impacted area in compliance with NMSLO requirements. This includes tilling the clean topsoil and dispersing BLM seed mix #2 at a rate of approximately 10-pounds per acre. To help establish

revegetation, the site will be watered once after the distribution of seeds, rain patterns will be monitored, and the Site will be monitored approximately 30 days later to determine if additional actions are needed. In the event of noxious weeds, a roustabout crew will remove weeds manually and the Site will be seeded again.

Upon completion of activities, a report detailing the excavation, sample results, and rehabilitation efficacy will be generated for WPX, and will include a copy of the initial and final C-141 Form.

Attachments: Appendix A: Initial C-141 Appendix B: Site Map Appendix C: Groundwater Data Appendix D: Laboratory Analytical Report Appendix E: OCD Correspondence Appendix F: Boring Log

APPENDIX A INITIAL C-141

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Flan	icis Di., Salita	a 1°C, 19191 0730.	,	Sa	inta Fe	e, NM 875	05					
			Rel	ease Notific	catior	n and Co	orrective A	ction				
						OPERA	ГOR	\triangleright	Initia	al Report		Final Report
Name of Co	ompany	WPX Energ	y Inc/ RH	KI E&P, LLC	(Contact	Lucas Smith					
Address	3500 Or	e Williams	Center T	ulsa, OK 74172	,	Telephone N	No. 539-573-01	76				
Facility Nat	me: North	n Brushy Dra	ıw]	Facility Typ	e: Produced wa	ter gathe	ring line	9		
Surface Ow	ner: Fede	ral		Mineral C)wner: l	Federal			API No			
				LOCA	TION	N OF REI	FASE					
Unit Letter	Section	Township	Range	Feet from the	North/	South Line	Feet from the	East/We	st Line	County		
		1										
Α	1	26S	29E	330	FSL		500	FWL		Eddy		
				Latitude: 32.0	0926101	Longitude	e: -103.9468205					
				NA'I	URE	OF REL	EASE	-				. 1
Type of Rele	ase. Produce	ced Water				Volume of	Release: 200 Bb	ls	Volum	e Recovered:	70 BI	ols
Source of Re Leaking con	nection on l	header manifo	old			Date and F 05/08/16	lour of Occurrenc	e	Date ar 05/08/1	16 Hour of Di 6 - 11:50hrs	MT	:у
Was Immediate Notice Given?						If YES, To Message le	Whom? oft at Artesia Field	Office				
By Whom? I	Lucas Smith					Date and Hour: 05/08/16–1504hrs MT						
Was a Water	course Read	ched?		7		If YES, Vo	olume Impacting t	he Waterc	ourse.			
			Yes 🖄	(] No		N/A						
If a Watercon	urse was Im	pacted, Descr	ibe Fully.	* N/A								
Describe Cau	use of Probl	em and Reme	dial Actio	n Taken.*								
Produced wa	ater gatherir	ng system hea	der develo	ped a leak. The s	ystem w	as shut in an	d the free fluids w	ere vacuu	med up.	The remainin	ng imp	acted soils
with be remo	oved for disp	oosal and conf	firmation	samples will be co	ollected.							
Describe Arc	a Affected	and Cleanup	Action Tal	kon *								
Describe Are	ta Allecteu			Kell.								
Primarily the	e fluids pool	ed on the pipe	eline right	-of-way. At one p	oint the	fluid left the	right-of-way and	followed a	a low spo	ot approximat	ely 15	0yds by 4ft.
I harabu aart	fu that the	nformation a	wan abou	a is true and some	lata to th	a bast of my	knowledge and u	ndorstand	that pure	ugent to NMC		los and
regulations a	Il operators	are required t	o report a	nd/or file certain r	elease no	otifications a	nd perform correct	tive action	that purs is for rele	eases which r	nav en	danger
public health	or the envi	ronment. The	acceptan	ce of a C-141 repo	ort by the	e NMOCD m	arked as "Final R	eport" doe	s not reli	eve the operation	tor of	liability
should their	operations h	ave failed to a	adequately	v investigate and r	emediate	e contaminati	on that pose a thr	eat to grou	nd water	, surface wat	er, hui	nan health
or the enviro	nment. In a	ddition, NMC	CD accep	ptance of a C-141	report de	oes not reliev	e the operator of	responsibi	lity for c	ompliance wi	th any	other
federal, state	, or local lav	ws and/or regu	ilations.					CEDVA	TION	סואוניס	NT	
							<u>UIL CON</u>	SEKVA		01810	<u>1 N</u>	
Signature:												
Printed Nam	e: Lucas Sr	nith				Approved by	Environmental S	pecialist:				
1 milliou ridill	c. Eucas 51											
Title: EHS N	Manager					Approval Dat	te:	Ex	piration	Date:		
F-mail ∆ddr	ess. These	smith@wnver	ierov com			Conditions of	f Approval:				_	
	css. Eucas.	mune whver	iergy.com		— '		rippiovai.			Attached		
Date: 05/09	/16		Phone	: 539-573-0176								

* Attach Additional Sheets If Necessary

APPENDIX B SITE MAP

APPENDIX C GROUNDWATER DATA

		New Mexi Wa t	ico Office of t er Right	the Sta	te E ma	Engineer ry
get image list	WR File Number: Primary Purpose: Primary Status: Total Acres: Total Diversion: Owner: Owner: Contact:	C 03483 EXP EXPLORA PMT PERMIT 0 BYRON W (SHOT) BUREAU OF LAND STEVE DALY	Subbasin: CUB TION Subfile: - Cause/Case: - PASCHAL MANAGEMENT	Cross Refe	rence:	-
Document	Frn # Doc File/ 643409 COWNF 20 ⁻ 176565 EXPL 2011-	Status Act 1 2 14-03-17 CHG PRC -04-15 PMT LOG	Transaction Desc. C 03483 C 03483	From/ To A T T	ocres I 0 0	Diversion Consumptive 0 0
Current Po	Dints of Diversion POD Number C 03483 Acres Div	QQQ Source 6416 4 Shallow 4 4 4 Version CU Us	(NAD83 UTM Sec Tws Rng X 05 26S 30E 604296 Se Priority Source De	A in meters) Y C 3548251 1 2 2 2 3 3	Dther Lo 5 MI E. 1 1361;PIF	Desc OF C- PELINE RD

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

APPENDIX D LABORATORY ANALYTICAL REPORT

Analytical Report 530225

for Enviroclean- Midland

Project Manager: BILL GREEN

N Bushy Draw

18-MAY-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-15-19), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534-15-1) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

18-MAY-16

TNI ACCREONES

Project Manager: **BILL GREEN Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): **530225 N Bushy Draw** Project Address: Loving, NM

BILL GREEN:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 530225. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 530225 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 530225

Enviroclean- Midland, Midland, TX

N Bushy Draw

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SP-001	S	05-16-16 11:10	- 1 ft	530225-001
SP-002	S	05-16-16 11:20	- 1 ft	530225-002
SP-003	S	05-16-16 11:30	- 1 ft	530225-003
SP-004	S	05-16-16 11:37	- 6 In	530225-004
SP-005	S	05-16-16 11:45	- 1.5 ft	530225-005
SP-006	S	05-16-16 11:50	- 2 ft	530225-006
SP-007	S	05-16-16 11:59	- 3 ft	530225-007
SP-008	S	05-16-16 12:10	- 2 ft	530225-008
SP-009	S	05-16-16 12:20	- 3 ft	530225-009
SP-010	S	05-16-16 13:30	- 2.5 ft	530225-010
SP-011	S	05-16-16 12:45	- 2.5 ft	530225-011
SP-012	S	05-16-16 12:50	- 2.5 ft	530225-012
SP-BF	S	05-16-16 13:10		530225-013

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: N Bushy Draw

Project ID: Work Order Number(s): 530225
 Report Date:
 18-MAY-16

 Date Received:
 05/17/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: N Bushy Draw

Project ID: Work Order Number(s): 530225 Report Date: *18-MAY-16* Date Received: *05/17/2016*

Batch: LBA-994515 BTEX by EPA 8021B Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 530225-001,530225-004,530225-005,530225-006,530225-013,530225-009,530225-010,530225-011,530225-012,530225-007.

Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.

Project Id:Contact:BILL GREENProject Location:Loving, NM

Certificate of Analysis Summary 530225

Enviroclean- Midland, Midland, TX

Project Name: N Bushy Draw

Date Received in Lab:Tue May-17-16 10:40 amReport Date:18-MAY-16Project Manager:Kelsey Brooks

	Lab Id:	530225-	001	530225-002		530225-003		530225-004		530225-005		530225-006		
An alugia Deguasted	Field Id:	SP-00	1	SP-002		SP-003		SP-004		SP-00	5	SP-006		
Analysis Kequestea	Depth:	1 ft		1 ft		1 ft		6 In		1.5 ft	1.5 ft		2 ft	
	Matrix:	SOIL		SOII	_	SOIL		SOIL	,	SOIL	,	SOII	-	
	Sampled:	May-16-16	11:10	May-16-16	511:20	May-16-16	11:30	May-16-16	11:37	May-16-16	11:45	May-16-16	11:50	
BTEX by EPA 8021B	Extracted:	May-17-16	May-17-16 13:00 Ma		13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	
	Analyzed:	May-17-16	May-17-16 18:51 May-17-		19:07	May-18-16	10:55	May-17-16	19:39	May-17-16	19:56	May-17-16	20:12	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Benzene		ND	0.00150	ND	0.00150	ND	0.00149	ND	0.00150	ND	0.00149	ND	0.00150	
Toluene		ND	0.00200	0.0154	0.00200	ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00200	
Ethylbenzene		ND	0.00200	0.0109	0.00200	ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00200	
m,p-Xylenes		ND	0.00200	0.0856	0.00200	0.00411	0.00199	ND	0.00200	ND	0.00199	ND	0.00200	
o-Xylene		ND	0.00300	0.0282	0.00299	ND	0.00299	ND	0.00299	ND	0.00299	ND	0.00299	
Total Xylenes		ND	0.00200	0.114	0.00200	0.00411	0.00199	ND	0.00200	ND	0.00199	ND	0.00200	
Total BTEX		ND	0.00150	0.140	0.00150	0.00411	0.00149	ND	0.00150	ND	0.00149	ND	0.00150	
Inorganic Anions by EPA 300	Extracted:	May-17-16	16:00	May-17-16	16:00	May-17-16 16:00 May-17-16 16:00		16:00	May-17-16 16:00		May-17-16 16:00			
	Analyzed:	May-17-16	21:08	May-17-16	21:20	May-17-16	21:33	May-17-16 21:45		May-17-16	21:57	May-17-16	22:09	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		4800	400	3790	400	10900	400	9060	400	8910	400	641	40.0	
TPH by SW 8015B	Extracted:	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	
	Analyzed:	May-18-16	07:18	May-18-16	09:54	May-18-16	09:27	May-18-16	10:46	May-18-16	06:20	May-18-16	06:43	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	194	74.8	26.2	15.0	16.1	14.9	ND	15.0	ND	15.0	
C10-C28 Diesel Range Organics		ND	15.0	8730	74.8	5280	15.0	18.8	14.9	16.0	15.0	ND	15.0	
Total TPH		ND	15.0	9350	74.8	5490	15.0	34.9	14.9	16.0	15.0	ND	15.0	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Project Id:Contact:BILL GREENProject Location:Loving, NM

Certificate of Analysis Summary 530225

Enviroclean- Midland, Midland, TX

Project Name: N Bushy Draw

Date Received in Lab:Tue May-17-16 10:40 amReport Date:18-MAY-16Project Manager:Kelsey Brooks

	Lab Id:	530225-0	07	530225-	008	530225-009		530225-010		530225-011		530225-012	
An alugia Deguasted	Field Id:	SP-007	,	SP-00	8	SP-00	9	SP-010)	SP-01	1	SP-012	
Analysis Kequesieu	Depth:	3 ft		2 ft		3 ft		2.5 ft		2.5 ft		2.5 ft	
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL	,	SOIL	-
	Sampled:	May-16-16	11:59	May-16-16	12:10	May-16-16	12:20	May-16-16	13:30	May-16-16	12:45	May-16-16	12:50
BTEX by EPA 8021B	Extracted:	May-17-16	ay-17-16 13:00 Ma		13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00
	Analyzed:	May-17-16	y-17-16 20:28 N		20:44	May-17-16	21:00	May-17-16	21:17	May-17-16	22:06	May-17-16	22:22
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.00149	ND	0.00150	ND	0.00149	ND	0.00150	ND	0.00149	ND	0.00149
Toluene		ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00199
Ethylbenzene		ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00199
m,p-Xylenes		ND	0.00199	0.00460	0.00200	ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00199
o-Xylene		ND	0.00299	ND	0.00299	ND	0.00298	ND	0.00299	ND	0.00299	ND	0.00299
Total Xylenes		ND	0.00199	0.00460	0.00200	ND	0.00199	ND	0.00200	ND	0.00199	ND	0.00199
Total BTEX		ND	0.00149	0.00460	0.00150	ND	0.00149	ND	0.00150	ND	0.00149	ND	0.00149
Inorganic Anions by EPA 300	Extracted:	May-17-16	16:00	May-17-16	16:00	May-17-16 16:00 May-17-		May-17-16	May-17-16 16:00 May-17-16 1		16:00) May-17-16 16:00	
	Analyzed:	May-17-16	22:45	May-17-16	22:57	May-17-16	23:33	May-17-16	23:46	May-17-16	23:58	May-18-16	00:10
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1680	100	8260	400	276	20.0	6110	400	5770	400	4090	400
TPH by SW 8015B	Extracted:	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00	May-17-16	13:00
	Analyzed:	May-18-16	07:06	May-18-16	07:29	May-18-16	07:53	May-18-16	08:15	May-18-16	08:39	May-18-16	09:01
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	16.7	15.0	ND	15.0	ND	15.0	ND	15.0	ND	15.0
C10-C28 Diesel Range Organics		28.5	15.0	556	15.0	27.2	15.0	71.5	15.0	ND	15.0	ND	15.0
Total TPH		28.5	15.0	573	15.0	27.2	15.0	71.5	15.0	ND	15.0	ND	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Project Id:Contact:BILL GREENProject Location:Loving, NM

Certificate of Analysis Summary 530225

Enviroclean- Midland, Midland, TX Project Name: N Bushy Draw

Date Received in Lab:Tue May-17-16 10:40 amReport Date:18-MAY-16Project Manager:Kelsey Brooks

	Lab Id:	530225-013			
Anglusia Deguasted	Field Id:	SP-BF			
Analysis Kequestea	Depth:				
	Matrix:	SOIL			
	Sampled:	May-16-16 13:10			
BTEX by EPA 8021B	Extracted:	May-17-16 13:00			
	Analyzed:	May-17-16 22:38			
	Units/RL:	mg/kg RL			
Benzene		ND 0.00150			
Toluene		ND 0.00200			
Ethylbenzene		ND 0.00200			
m,p-Xylenes		ND 0.00200			
o-Xylene		ND 0.00300			
Total Xylenes		ND 0.00200			
Total BTEX		ND 0.00150			
Inorganic Anions by EPA 300	Extracted:	May-17-16 16:00			
	Analyzed:	May-18-16 00:22			
	Units/RL:	mg/kg RL			
Chloride		230 20.0			
TPH by SW 8015B	Extracted:	May-17-16 13:00			
	Analyzed:	May-18-16 09:25			
	Units/RL:	mg/kg RL			
C6-C10 Gasoline Range Hydrocarbons		ND 15.0			
C10-C28 Diesel Range Organics		33.3 15.0			
Total TPH		33.3 15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(432) 563-1800	(432) 563-1713
(602) 437-0330	
	(281) 240-4200 (214) 902 0300 (210) 509-3334 (432) 563-1800 (602) 437-0330

Project Name: N Bushy Draw

Work Or	rders : 53022	25,	Project ID:								
Lab Batch	#: 994515	Sample: 530225-001 / SMP	Batch:	1 Matrix:	: Soil						
Units:	mg/kg	Date Analyzed: 05/17/16 18:51	SUF	ROGATE R	ECOVERY	STUDY					
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
140.0	1	Analytes	0.0242	0.0000		00.100					
1,4-Diffuoro	obenzene		0.0343	0.0300	114	80-120	di di				
4-Bromofiu	uorobenzene	Samely 520225 002 / SMD	0.0509	0.0300	170	80-120	**				
Lab Batch	#: 994515	Sample: 530225-002 / SMP	Batch		: 5011						
Units:	mg/kg	Date Analyzed: 05/17/16 19:07	SURROGATE RECOVERY STUDY								
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	obenzene		0.0292	0.0300	97	80-120					
4-Bromoflu	orobenzene		0.0355	0.0300	118	80-120					
Lab Batch	#: 994515	Sample: 530225-004 / SMP	Batch:	1 Matrix:	: Soil						
Units:	mg/kg	Date Analyzed: 05/17/16 19:39	SURROGATE RECOVERY STUDY								
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluor	obenzene		0.0329	0.0300	110	80-120					
4-Bromoflu	orobenzene		0.0414	0.0300	138	80-120	**				
Lab Batch	#: 994515	Sample: 530225-005 / SMP	Batch:	1 Matrix:	Soil	00120					
Units:	mg/kg	Date Analyzed: 05/17/16 19:56	SURROGATE RECOVERY STUDY								
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	obenzene		0.0295	0.0300	98	80-120					
4-Bromoflu	orobenzene		0.0412	0.0300	137	80-120	**				
Lab Batch	#: 994515	Sample: 530225-006 / SMP	Batch:	1 Matrix:	Soil						
Units:	mg/kg	Date Analyzed: 05/17/16 20:12	SUR	ROGATE R	ECOVERY	STUDY					
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	obenzene		0.0336	0.0300	112	80-120					
1 Promoflu					1						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work Or	:ders : 53022	25,		Project ID:			
Lab Batch	#: 994515	Sample: 530225-007 / SMP	Batch	a: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/17/16 20:28	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0334	0.0300	111	80-120	
4-Bromoflu	orobenzene		0.0471	0.0300	157	80-120	**
Lab Batch	#: 994515	Sample: 530225-008 / SMP	Batch	: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/17/16 20:44	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4 Difluor	hanzana	Analytes	0.0250	0.0200	120	80.120	
1,4-Diffuor	orobenzene		0.0359	0.0300	120	80-120	
Lab Batch	#• 994515	Sample: 530225-009 / SMP	Batch	• 1 Matrix	Soil	80-120	
Units:	mg/kg	Date Analyzed: 05/17/16 21:00	SU		FCOVERV	STUDV	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[**]	[2]	[D]	,	
1,4-Difluoro	obenzene		0.0343	0.0300	114	80-120	
4-Bromoflu	orobenzene		0.0468	0.0300	156	80-120	**
Lab Batch	#: 994515	Sample: 530225-010 / SMP	Batch	a: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/17/16 21:17	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0332	0.0300	111	80-120	
4-Bromoflu	orobenzene		0.0456	0.0300	152	80-120	**
Lab Batch	#: 994515	Sample: 530225-011 / SMP	Batch	a: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/17/16 22:06	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene		0.0325	0.0300	108	80-120	
4-Bromoflu	orobenzene		0.0434	0.0300	145	80-120	**

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work Or	ders : 53022	25,		Project ID:			
Lab Batch	#: 994515	Sample: 530225-012 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/17/16 22:22	SU	RROGATE RI	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro	benzene	Anaryus	0.0222	0.0300	111	80.120	
4-Bromoflue	orobenzene		0.0333	0.0300	111	80-120	**
Lab Batch	#: 994515	Sample: 530225-013 / SMP	Batch	1 Matrix:	Soil	00 120	
Units:	mg/kg	Date Analyzed: 05/17/16 22:38	SU	RROGATE RI	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro	benzene		0.0341	0.0300	114	80-120	
4-Bromoflue	orobenzene		0.0487	0.0300	162	80-120	**
Lab Batch	#: 994548	Sample: 530225-005 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 06:20	SU	RROGATE RI	ECOVERY	STUDY	
	TPI	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			נטן		
1-Chlorooct	ane		97.5	99.9	98	70-135	
o-Terphenyl			45.1	50.0	90	70-135	
Lab Batch	#: 994548	Sample: 530225-006 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 06:43	SU	RROGATE RI	ECOVERY	STUDY	
	TPI	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		104	100	104	70-135	
o-Terphenyl			47.9	50.0	96	70-135	
Lab Batch	#: 994548	Sample: 530225-007 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 07:06	SU	RROGATE RI	ECOVERY	STUDY	
	TPI	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		98.6	99.8	99	70-135	
o-Terphenyl			46.3	49.9	93	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work Or	ders : 53022	25,		Project ID:			
Lab Batch	#: 994548	Sample: 530225-001 / SMP	Batch:	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 07:18	SUF	ROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes					
1-Chlorooct	ane		113	99.8	113	70-135	
o-Terphenyl			57.0	49.9	114	70-135	
Lab Batch	#: 994548	Sample: 530225-008 / SMP	Batch:	: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 07:29	SUF	RROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		98.4	100	98	70-135	
o-Terphenyl			45.7	50.0	91	70-135	
Lab Batch	#: 994548	Sample: 530225-009 / SMP	Batch:	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 07:53	SUR	ROGATE R	ECOVERYS	STUDY	
	TPI	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 Chlorooct	200	1 mary tes	02.4	00.7	04	70.125	
o Terphenyl			93.4	40.0	94	70-135	
Lab Batch	#• 994548	Sample: 530225-010 / SMP	42.0 Batch:	49.9	Soil	70-133	
Lab Daten	ma/ka	Data Analyzed: 05/18/16 08:15					
Units.	ilig/kg	Date Analyzeu. 03/18/10 08.13	SUR	ROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		99.0	99.9	99	70-135	
o-Terphenyl	l		46.5	50.0	93	70-135	
Lab Batch	#: 994548	Sample: 530225-011 / SMP	Batch:	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 08:39	SUR	RROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		94.9	99.9	95	70-135	
o-Terphenyl	1		43.0	50.0	86	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work Or	rders : 53022	25,		Project ID:			
Lab Batch	#: 994548	Sample: 530225-012 / SMP	Batch	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 09:01	SUI	RROGATE R	ECOVERY	STUDY	
	TPH	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes					
1-Chlorooc	tane		98.2	99.8	98	70-135	
o-Terpheny	1		45.0	49.9	90	70-135	
Lab Batch	#: 994548	Sample: 530225-013 / SMP	Batch	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 09:25	SUI	RROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		91.5	99.9	92	70-135	
o-Terpheny	1		40.6	50.0	81	70-135	
Lab Batch	#: 994548	Sample: 530225-003 / SMP	Batch	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 09:27	SUI	RROGATE R	ECOVERY	STUDY	
	TPH	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		99.3	99.8	99	70-135	
o-Terpheny	1		52.4	49.9	105	70-135	
Lab Batch	#: 994548	Sample: 530225-002 / SMP	Batch	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 09:54	SU	RROGATE R	ECOVERY	STUDY	
	TPH	H by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		103	99.7	103	70-135	
o-Terpheny	1		50.4	49.9	101	70-135	
Lab Batch	#: 994548	Sample: 530225-003 / DL	Batch	: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 10:19	SUI	RROGATE R	ECOVERY	STUDY	
	TPH	I by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		93.3	99.8	93	70-135	
o-Terpheny	1		48.3	49.9	97	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work Or	rders : 53022	25,		Project ID:	;		
Lab Batch	#: 994548	Sample: 530225-004 / SMP	Batch	: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 10:46	SUI	RROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[U]		
1-Chlorooct	tane		105	99.6	105	70-135	
o-Terpheny	1		51.3	49.8	103	70-135	
Lab Batch	#: 994515	Sample: 530225-003 / SMP	Batch	: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 10:55	SUI	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluor	obenzene		0.0351	0.0300	117	80-120	
4-Bromoflu	orobenzene		0.0302	0.0300	101	80-120	
Lab Batch	#: 994515	Sample: 708952-1-BLK / B	LK Batch	: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/16/16 21:25	SUI	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0268	0.0300	89	80-120	
4-Bromoflu	orobenzene		0.0355	0.0300	118	80-120	
Lab Batch	#: 994548	Sample: 708971-1-BLK / B	LK Batch	: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/18/16 03:21	SUI	RROGATE R	ECOVERY	STUDY	
	TPI	I by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		98.3	100	98	70-135	
o-Terpheny	1		46.6	50.0	93	70-135	
Lab Batch	#: 994515	Sample: 708952-1-BKS / B	KS Batch	: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/16/16 20:04	SUI	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0253	0.0300	84	80-120	
4 Decemently	1		0.0250	0.0200	100	00.100	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work Or	ders : 53022	25,		Project ID:			
Lab Batch	#: 994548	Sample: 708971-1-BKS7B	KS Batch	n: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/18/16 03:44	SU.	RROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes	112	100	110	70.125	
1-Chlorooc			112	100	112	70-135	
Lob Botoh	H. 004515	Somelar 708052 1 BSD / B	45.9	50.0	92 Solid	/0-135	
	#: 994313		SD Batch		: Solid		
Units:	mg/kg	Date Analyzed: 05/16/18 20:20	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0276	0.0300	92	80-120	
4-Bromoflu	orobenzene		0.0359	0.0300	120	80-120	
Lab Batch	#: 994548	Sample: 708971-1-BSD / B	SD Batch	n: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/18/16 04:07	SU	RROGATE R	ECOVERY	STUDY	
	TPI	H by SW 8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	tane		116	100	116	70-135	
o-Terpheny	1		52.4	50.0	105	70-135	
Lab Batch	#: 994515	Sample: 530085-001 S / M3	S Batch	n: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/16/16 20:37	SU.	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0278	0.0300	93	80-120	
4-Bromoflu	orobenzene		0.0354	0.0300	118	80-120	
Lab Batch	#: 994548	Sample: 530225-001 S / MS	S Batch	n: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/18/16 07:44	SU	RROGATE R	ECOVERY	STUDY	
	TPI	I by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		112	99.8	112	70-135	
o-Terpheny	1		50.5	49.9	101	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: N Bushy Draw

Work O	rders : 53022	5,		Project ID:			
Lab Batch	n#: 994515	Sample: 530085-001 SD / M	ASD Batcl	h: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 05/16/16 20:53	SU	RROGATE RI	ECOVERYS	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	robenzene		0.0277	0.0300	92	80-120	
4-Bromoflu	uorobenzene		0.0353	0.0300	118	80-120	
Lab Batch	n #: 994548	Sample: 530225-001 SD / M	ASD Bate	h: 1 Matrix:	Soil	1	
Units:	mg/kg	Date Analyzed: 05/18/16 08:10	SU	RROGATE RI	ECOVERYS	STUDY	
	TPE	I by SW 8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	ctane		111	99.9	111	70-135	
o-Terpheny	yl		49.5	50.0	99	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: N Bushy Draw

Work Order #: 530225							Pro	ject ID:			
Analyst: PJB		Date Prepa	red: 05/16/20	16			Date A	nalyzed: (05/16/2016		
Lab Batch ID: 994515	Sample: 708952-1-BKS	Bate	2 h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	NK /BLANK	SPIKE /	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA	8021B Blank Sample Resu [A]	Spike lt Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Besult [E]	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]			[E]	Kesult [F]	[0]				ļ
Benzene	<0.00150	0.100	0.0967	97	0.100	0.0824	82	16	70-130	35	
Toluene	<0.00200	0.100	0.0961	96	0.100	0.0821	82	16	70-130	35	
Ethylbenzene	<0.00200	0.100	0.0962	96	0.100	0.0823	82	16	71-129	35	
m,p-Xylenes	<0.00200	0.200	0.201	101	0.200	0.172	86	16	70-135	35	
o-Xylene	<0.00300	0.100	0.0995	100	0.100	0.0851	85	16	71-133	35	
Analyst: MNR		Date Prepa	red: 05/17/20	16	-		Date A	nalyzed: ()5/17/2016	ł	
Lab Batch ID: 994552	Sample: 708944-1-BKS	Bate	2 h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	NK /BLANK	SPIKE /	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by Analytes	y EPA 300 Blank Sample Resu [A]	lt Spike [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<2.00	20.0	19.7	99	20.0	19.7	99	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: N Bushy Draw

Work Order	#: 530225							Proj	ect ID:			
Analyst:	ARM	D	ate Prepai	red: 05/17/201	6			Date A	nalyzed: (5/18/2016		
Lab Batch ID:	Sample: 708971-1-E	SKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUE	Y	
	TPH by SW 8015B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	tes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C10 Ga	asoline Range Hydrocarbons	<15.0	1000	802	80	1000	853	85	6	70-135	35	
C10-C28 I	Diesel Range Organics	<15.0	1000	855	86	1000	925	93	8	70-135	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: N Bushy Draw

Work Order #: 530225 **Project ID:** Lab Batch #: 994552 Date Analyzed: 05/17/2016 Date Prepared: 05/17/2016 Analyst: MNR QC- Sample ID: 530051-001 S Batch #: Matrix: Soil 1 **Reporting Units:** mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [C] [D] %R [A] [B] Analytes Chloride 2.74 20.0 23.2 102 80-120 Lab Batch #: 994552 **Date Analyzed:** 05/17/2016 Date Prepared: 05/17/2016 Analyst: MNR QC- Sample ID: 530225-006 S Batch #: Matrix: Soil 1 Reporting Units: mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Flag Spike Result %R Limits Result Added %R [C] [D] [A] [B] Analytes Chloride 641 400 1070 107 80-120

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: N Bushy Draw

Work Order # : 530225						Project II):				
Lab Batch ID: 994515	QC- Sample ID:	530085	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 05/16/2016	Date Prepared:	05/16/2	016	Ar	nalyst: F	PJB					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample Bosult [F]	Spiked Dup. % P	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Kesutt [F]	[G]	/0		/on D	
Benzene	<0.00149	0.0994	0.0547	55	0.0998	0.0532	53	3	70-130	35	X
Toluene	< 0.00199	0.0994	0.0378	38	0.0998	0.0457	46	19	70-130	35	X
Ethylbenzene	< 0.00199	0.0994	0.0266	27	0.0998	0.0382	38	36	71-129	35	XF
m,p-Xylenes	< 0.00199	0.199	0.0518	26	0.200	0.0768	38	39	70-135	35	XF
o-Xylene	<0.00298	0.0994	0.0283	28	0.0998	0.0375	38	28	71-133	35	X
Lab Batch ID:994548	QC- Sample ID:	530225	-001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed: 05/18/2016	Date Prepared:	05/17/2	016	Ar	nalyst: A	ARM					
Reporting Units: mg/kg		Ν	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by SW 8015B	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]		[G]				
C6-C10 Gasoline Range Hydrocarbons	<15.0	998	880	88	999	876	88	0	70-135	35	
C10-C28 Diesel Range Organics	<15.0	998	915	92	999	906	91	1	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: N Bushy Draw

Work Order #: 530225

Lab Batch #: 994552			Project I	D:	
Date Analyzed: 05/17/2016 19:32 Date Prepar	ed: 05/17/2010	5 Anal	yst:MNR		
QC- Sample ID: 530051-001 D Batel	n#: 1	Mat	rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	2.74	2.83	3	20	
Lab Batch #: 994552					
Lab Batch #: 994552 Date Analyzed: 05/17/2016 22:21 Date Prepar	ed: 05/17/2010	6 Anal	yst:MNR		
Lab Batch #: 994552 Date Analyzed: 05/17/2016 22:21 Date Prepar QC- Sample ID: 530225-006 D Batch	red: 05/17/2016	5 Anal Mat	l yst: MNR rix: Soil		
Lab Batch #: 994552 Date Analyzed: 05/17/2016 22:21 Date Prepar QC- Sample ID: 530225-006 D Batch Reporting Units: mg/kg Image: March Market	red: 05/17/2010 h #: 1 SAMPLE	6 Anal Mat / SAMPLE	lyst:MNR rix: Soil DUPLIC	ATE REC	OVERY
Lab Batch #: 994552 Date Analyzed: 05/17/2016 22:21 Date Prepar QC- Sample ID: 530225-006 D Batch Reporting Units: mg/kg Inorganic Anions by EPA 300 Analyte	red: 05/17/2016 n #: 1 SAMPLE Parent Sample Result [A]	5 Anal Mat / SAMPLE 5 Sample Duplicate Result [B]	yst:MNR rix: Soil DUPLIC RPD	ATE REC Control Limits %RPD	OVERY Flag

		CHAIN OF	CUSTODY		Page Of 7																											
SERVICES, L.L.C.					-	530225																										
				-	Analytical Information	Matrix Codes																										
Enviro Clean / Midland Texas	ZProj	15WV Draw				S = Soil/Sed/Solid GW = Ground Water																										
2405 E. County Rd. 123 Midland. TX 79706	Proje	octLocation: WWW				DW = Drinking Water WW = Waste Water																										
Email: Phone No:	Invoi	ice To: ap@envirocleanps.com				SW = Surface water																										
wendy.north@eccgrp.com 432.301.0209 bill.green@eccgrp.com	Envir 1171	ro Clean 17 N. Morgan Rd.		15M	S	SL = Sludge OW = Ocean Water																										
Project Contact: Bill Green	PON	n, OK 73099 Number:	005	- 80	erie	W = Wipe O = Other																										
Samplers's Name:	3	HODO X12XA	TX 1	TPH B	00 S	A = Air																										
	Col	llection	Preservative Used	xico 8021	es - 3																											
No. Field ID / Point of Collection	Sample Depth D	Time Matrix # of bottles	Acetate HNO3 H2SO4 NaOH NaHSO4 MEOH ICE Texas T	New Me BTEX - 8	Chloride	Field Comments																										
1 50-001	11 05	16 11:10 S 1	x	rk	~																											
2 50-002	11	10.20 5 1	<i>}</i>	r r	Χ																											
3 58-003	1,	1:30 2 1	*	r x																												
4 SP-604	6"	11:37 5 1	×	XX	Y .																											
5 SD-005),6	11:43 5 1	X	XX																												
6 SP- 006	2	11:50 5 1	×	r	X																											
7 58-007	3,	11:59 5 1	7	XX	X																											
8 58 - 008	8	12:10 5 1	×	k k	X																											
9 SP - (204	3	12:26 5 1	×	XX	X																											
10 50-010	2:6"	13,30 5 1	*	x x	X																											
110 . 021	26"	1 5 54:21	*	XX	× 																											
12 SP-012	3,6"	12:36)	X	XX	*																											
Tumaround Time (Business days)		Data Deliverable Inf	ormation		Notes:																											
Same Day TAT 5 Day TAT		X Level II Std QC	Level IV (Full Data Pkg /raw	data)																												
Next Day EMERGENCY		Level III Std QC+ Forms	TRRP Level IV																													
2 Day EMERGENCY		Level 3 (CLP Forms)	UST / RG -411																													
3 Day EMERGENCY		TRRP Checklist																														
TAT Starts Day received by Lab, if received by 3:0	00 pm				FED-EX / UPS: Tracking #																											
Relinguished by Sampler:	Date Time:	Received By WLADW	Relinduished By:	5-11-16		Anna																										
Relinquished by:	Date Time:	Received By:	Relinquished By! 4	Date T	ime: Received By:	COUNT OF ST																										
Relinquished by: 5	Date Time:	Received By: 5	Custody Seal #	Preserved w	there applicable On Ice	Cooler Temp. Thermo. Corr. Factor $\mathcal{S}_{\mathcal{A}} \mathcal{A}' \mathcal{C} \qquad \bigcirc \mathcal{O} \mathcal{O} \mathcal{O}$																										
	3 Relinquished by:	1 Rélinquished by:	Relinguished by Sampler:	TAT Starts Day received by	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	Turnaround Time (Business	12 /	11	10	9	8	7	6	5	4	3	2	1 SP-BE	No. Field ID / Poin		Samplers's Name:	Project Contact: Bill Green	bill.green@eccgrp.com	Email: wendy.north@eccarp.com	2409 E. County Kd. 123 Midland, TX 79706	Enviro Clean		• -	ENVIRO
-----------------------------------	-----------------------	--------------------	---------------------------	----------------------------	-----------------	-----------------	--------------------	---------------	----------------------------	------	----	----	---	---	---	---	---	---	---	---	----------	---------------------------	---------	------------------	--------------------------------	--------------------------------	---------------------------------------	---	---	---------------	------------------	------------
			SAMPLE CUSTODY	Lab, if received by 3:00		Contract TAT	7 Day TAT	5 Day TAT	i days)									/				t of Collection				432.301.0209	Phone No:		/ Midland Texas		SERVICES, L.L.C.	CLEAN
Date lime:		Data Timo-	MUST BE DOC Date Time:	pm																	Com	Sample Depth										
5	3	1	CUMENTED BE																		05/16 1	Date	1100	LOVP	PO Number:	Enviro Clean 11717 N. Morga	Invoice To:	Louin	Project Name/			
ceived By:	cerved BY: /	July	LOW EACH T		TRRP Ch	Level 3 (Level II S													:10. 3	Time	12 0 0	TV MAN		in Rd.	ap@env	S II	SWY C	.a		CH/
		Luba	ME SAMPLES		ecklist	CLP Forms)	Std QC+ Forn	td QC	Data Delive												-	ix # of bottles		761			irocleanps.	No.	stan			Z
			CHANGE POS				ns		rable Informati													HCI NaOH/Zn Acetate					com		200-			P F
Custody S	Relinquis 4	A H	SESSION, INC			UST / RO			3						_	_	_					HNO3 H2SO4 NaOH						2	n			CUS
ieal #	heft By:	nd Lab	LUDING COUR			3-411	er IV	(Full Data Pk													1	NaHSO4							×			TOL
P		5	RIER DELIV					g /raw data									-	-			×	CE Texas TPH	- T)	(1)	005							¥
reserved	Date	-17-1	ERY					a)		+	+	_	+	-	_	_	-	_	_	2		New Mexico		ЪН	- 80	15M	I					
where applica	Time:	6 (04)		FED-F																>	, T (Chlorides -	300) Se	eries	;				Analytica		
able	Receiv 4	C 2 Receiv		=X / IIPS: Tra					Notes:																					I Information		Pag
On Ice	ed By:	ed By:	aving #	rkinn #								_													Ľ						(of Of
Cooler Temp. Themno. Corr. Factor	A	AMMA																				Field Comments	A = AIr	O = Other	W = Wipe	SL = Sludge	P = Product/Oil SW = Surface water	DW = Drinking Water WW = Waste Water	S = Soil/Sed/Solid GW = Ground Water	1 JURR	70000	7

Final 1.000

Client: Enviroclean- Midland

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Enviroclean- Midland	Acceptable Tempera	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 05/17/2016 10:40:00 AM	Air and Metal sample	es Acceptable Range: Ambient							
Work Order #: 530225	Temperature Measu	ring device used: R8							
Samp	le Receipt Checklist	Comments							
#1 *Temperature of cooler(s)?	3.	.2							
#2 *Shipping container in good condition?	N	Α							
#3 *Samples received on ice?	Ye	es							
#4 *Custody Seal present on shipping container/ co	oler? N	Α							
#5 *Custody Seals intact on shipping container/ cod	bler? N	Α							
#6 Custody Seals intact on sample bottles?	N	Α							
#7 *Custody Seals Signed and dated?	N	Α							
#8 *Chain of Custody present?	Ye	es							
#9 Sample instructions complete on Chain of Custo	ody? Ye	es							
#10 Any missing/extra samples?	N	0							
#11 Chain of Custody signed when relinquished/ re	ceived? Ye	es							
#12 Chain of Custody agrees with sample label(s)?	Ye	es							
#13 Container label(s) legible and intact?	Ye	es							
#14 Sample matrix/ properties agree with Chain of	Custody? Ye	es							
#15 Samples in proper container/ bottle?	Ye	es							
#16 Samples properly preserved?	Ye	es							
#17 Sample container(s) intact?	Ye	es							
#18 Sufficient sample amount for indicated test(s)?	Ye	es							
#19 All samples received within hold time?	Ye	es							
#20 Subcontract of sample(s)?	N	0							
#21 VOC samples have zero headspace (less than	1/4 inch bubble)?	Α							
#22 <2 for all samples preserved with HNO3,HCL, I samples for the analysis of HEM or HEM-SGT which analysis	H2SO4? Except for N/ are verified by the	/Α							
#23 >10 for all samples preserved with NaAsO2+Na	aOH, ZnAc+NaOH? N	/Α							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Alexis Negron Mary Negron Checklist reviewed by: Mary Moah Kelsey Brooks

Date: 05/17/2016

Date: 05/18/2016

Analytical Report 532413

for Enviroclean- Midland

Project Manager: BILL GREEN

WPX-N. Bushy Draw 35-12

WPXRTX0004

07-JUL-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

07-JUL-16

SUP ACCREDIES

Project Manager: **BILL GREEN Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): **532413 WPX-N. Bushy Draw 35-12** Project Address: NM

BILL GREEN:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 532413. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 532413 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Julian Martinez Odessa Laboratory Director

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 532413

Enviroclean- Midland, Midland, TX

WPX-N. Bushy Draw 35-12

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-23-16 11:18	0 - 1 ft	532413-001
S	06-23-16 11:25	0 - 1 ft	532413-002
S	06-23-16 11:30	0 - 1 ft	532413-003
S	06-23-16 11:40	0 - 1 ft	532413-004
S	06-23-16 11:50	1 - 2 ft	532413-005
S	06-23-16 12:00	1 - 2 ft	532413-006
S	06-23-16 12:10	3 - 4 ft	532413-007
S	06-23-16 12:20	4 - 5 ft	532413-008
S	06-23-16 12:30	4 - 5 ft	532413-009
S	06-23-16 12:15	2 - 3 ft	532413-010
S	06-23-16 12:40	4 - 5 ft	532413-011
S	06-23-16 12:50	4 - 5 ft	532413-012

Sample Id

001-A (0-1')
002-A (0-1')
003-A (0-1')
004-A (0-1')
005-B (1-2')
006-B (1-2')
007-D (3-4')
008-E (4-5')
009-E (4-5')
010-C (2-3')
011-E (4-5')
012-E (4-5')

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: WPX-N. Bushy Draw 35-12

Project ID: WPXRTX0004 Work Order Number(s): 532413
 Report Date:
 07-JUL-16

 Date Received:
 06/28/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id:WPXRTX0004Contact:BILL GREENProject Location:NM

Certificate of Analysis Summary 532413

Enviroclean- Midland, Midland, TX Project Name: WPX-N. Bushy Draw 35-12

Date Received in Lab:Tue Jun-28-16 10:35 amReport Date:07-JUL-16Project Manager:Kelsey Brooks

Lab Id:	532413-0	001	532413-002		532413-0	003	532413-0	004	532413-005		532413-006	
Field Id:	001-A (0	-1')	002-A (0-	002-A (0-1')		003-A (0-1')		-1')	005-B (1-2')		006-B (1-2')	
Depth:	0-1 ft		0-1 ft		0-1 ft		0-1 ft		1-2 ft		1-2 ft	
Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
Sampled:		Jun-23-16 11:18		1:25	Jun-23-16 11:30		Jun-23-16 11:40		Jun-23-16 11:50		Jun-23-16 12:00	
Extracted:	Jul-06-16 1	14:00	1				Jul-06-16 1	4:00	Jul-06-16 1	4:00	Jul-06-16 1	14:00
Analyzed:	Jul-07-16 1	1:15					Jul-07-16 1	1:39	Jul-07-16 1	1:46	Jul-07-16 1	12:10
Units/RL:	mg/kg	RL					mg/kg	RL	mg/kg	RL	mg/kg	RL
	2870	200					11300	1000	2150	100	3510	200
Extracted:			Jun-28-16 1	1:00	Jun-28-16 1	1:00						
Analyzed:			Jun-28-16 1	8:12	Jun-28-16 1	8:35						
Units/RL:			mg/kg	RL	mg/kg	RL						
			20.4	15.0	ND	15.0						
			569	15.0	738	15.0						
C28-C35 Oil Range Hydrocarbons			ND	15.0	ND	15.0						
			589	15.0	738	15.0						
	Lab Id: Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Units/RL:	Lab Id: 532413-0 Field Id: 001-A (0 Depth: 0-1 ft Matrix: SOIL Sampled: Jun-23-16 Extracted: Jul-06-16 Analyzed: Jul-07-16 Units/RL: mg/kg Extracted: Analyzed: Units/RL:	Lab Id: 532413-001 Field Id: 001-A (0-1') Depth: 0-1 ft Matrix: SOIL Sampled: Jun-23-16 11:18 Extracted: Jul-06-16 14:00 Analyzed: Jul-07-16 11:15 Units/RL: mg/kg RL 2870 200 Extracted: Analyzed: Units/RL: Units/RL:	Lab Id: 532413-001 532413-00 Field Id: 001-A (0-1') 002-A (0-1') Depth: 0-1 ft 0-1 ft Matrix: SOIL SOIL Sampled: Jun-23-16 11:18 Jun-23-16 11 Extracted: Jul-06-16 14:00 Analyzed: Mits/RL: mg/kg RL Extracted: Jun-28-16 11 Jun-28-16 11 Matis/RL: mg/kg Jun-28-16 11 Manalyzed: Jun-28-16 11 Jun-28-16 11 Manalyzed: Manalyzed: Jun-28-16 11 Manalyzed: Manalyzed: S00-4 Manalyzed: S00-4 S00-4	Lab Id: 532413-001 532413-002 Field Id: 001-A (0-1') 002-A (0-1') Depth: 0-1 ft 0-1 ft Matrix: SOIL SOIL Sampled: Jun-23-16 11:18 Jun-23-16 11:25 Extracted: Jul-06-16 14:00 Jun-23-16 11:15 Units/RL: mg/kg RL Extracted: Jun-07-16 11:15 Jun-28-16 11:00 Analyzed: Jun-28-16 11:00 Jun-28-16 18:12 Units/RL: mg/kg RL Units/RL: 100 20.4 15.0 Matrix/RL: ND 15.0 15.0 Mainty/RL: ND 15.0 15.0	Lab Id: 532413-001 532413-002 532413-002 Field Id: 001-A (0-1') 002-A (0-1') 003-A (0-1') Depth: 0-1 ft 0-1 ft 0-1 ft Matrix: SOIL SOIL SOIL SOIL Sampled: Jun-23-16 11:18 Jun-23-16 11:25 Jun-23-16 11 Extracted: Jul-06-16 14:00 Jun-23-16 11:15 Jun-28-16 11:25 Jun-23-16 11 Mits/RL: mg/kg RL K K K K Vinits/RL: mg/kg RL Jun-28-16 11:00 Jun-28-16 11 Jun-28-16 11<	Lab Id: 532413-001 532413-002 532413-003 Field Id: 001-A (0-1') 002-A (0-1') 003-A (0-1') Depth: 0-1 ft 0-1 ft 0-1 ft 0-1 ft Matrix: SOIL SOIL SOIL SOIL Sampled: Jun-23-16 11:18 Jun-23-16 11:25 Jun-23-16 11:30 Extracted: Jul-06-16 14:00	Lab Id: 532413-001 532413-002 532413-003 532413-003 Field Id: 001-A (0-1') 002-A (0-1') 003-A (0-1') 004-A (0-1') Depth: 0-1 ft 0-1 ft 0-1 ft 0-1 ft 0-1 ft 0-1 ft Matrix: SOIL SOIL SOIL SOIL SOIL SOIL SOIL Sampled: Jun-23-16 11:18 Jun-23-16 11:25 Jun-23-16 11:30 Jun-23-16 11 Extracted: Jul-06-16 14:00 Z Z Jul-06-16 1 Jul-07-16 1 Units/RL: mg/kg RL Jun-28-16 11:00 Jun-28-16 11:00 Jun-28-16 11:00 Jun-28-16 11:00 Extracted: Jun-28-16 18:12 Jun-28-16 18:35 Ing/kg RL Ing/kg Units/RL: mg/kg RL mg/kg RL Ing/kg RL Units/RL: Img/kg RL mg/kg RL Img/kg RL Img/kg RL Img/kg RL Img/kg RL Img/kg Img/kg RL Img/kg RL Img/kg RL Img/kg Img/kg				$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Julian Martinez Odessa Laboratory Director

Project Id:WPXRTX0004Contact:BILL GREENProject Location:NM

Certificate of Analysis Summary 532413

Enviroclean- Midland, Midland, TX Project Name: WPX-N. Bushy Draw 35-12

Date Received in Lab:Tue Jun-28-16 10:35 amReport Date:07-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532413-0	07	532413-0	008	532413-0)09	532413-0	010	532413-(011	532413-0)12
Analysis Paguastad	Field Id:	007-D (3-	4')	008-E (4-5')		009-E (4-5')		010-C (2-3')		011-E (4-5')		012-Е (4-	-5')
Analysis Kequestea	Depth:	3-4 ft	3-4 ft		4-5 ft		4-5 ft		2-3 ft			4-5 ft	
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Jun-23-16 1	Jun-23-16 12:10		Jun-23-16 12:20		Jun-23-16 12:30		12:15	Jun-23-16	12:40	0 Jun-23-16 12:	
Inorganic Anions by EPA 300	Extracted:	Jul-06-16 1	4:00	Jul-06-16 1	4:00	Jul-06-16 1	4:00	Jul-06-16 1	4:00	Jul-06-16 1	4:00	Jul-06-16 1	4:00
	Analyzed:	Jul-07-16 1	Jul-07-16 12:18		2:41	Jul-07-16 1	2:49	Jul-07-16 1	2:57	Jul-07-16 1	3:04	Jul-07-16 1	3:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2620	200	1240	100	205	10.0	17.1	10.0	6560	500	3170	200

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Julian Martinez Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

-4200 (281) 240-4280
0300 (214) 351-9139
-3334 (210) 509-3335
-1800 (432) 563-1713
-0330

Form 2 - Surrogate Recoveries

Project Name: WPX-N. Bushy Draw 35-12

Work Or Lab Batch	ders : 53241	13, Sample: 532413-002 / SMP	Project ID: WPXRTX0004 IP Batch: 1 Matrix: Soil									
Units:	mσ/kσ	Date Analyzed: 06/28/16 18:12				STUDY						
	ing/kg	Dute Muly2eu. 00/20/10/10.12	501	KUGAIE K								
	TPE	I by SW 8015M	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			[D]							
1-Chlorooct	tane		101	99.9	101	70-135						
o-Terphenyl	1		53.3	50.0	107	70-135						
Lab Batch	#: 997172	Sample: 532413-003 / SMP	AP Batch: 1 Matrix: Soil									
Units:	mg/kg	Date Analyzed: 06/28/16 18:35	SURROGATE RECOVERY STUDY									
	TPH	I by SW 8015M Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooct	tane		102	99.8	102	70-135						
o-Terphenyl	1		48.4	49.9	97	70-135						
Lab Batch	#: 997172	Sample: 710459-1-BLK / Bl	LK Batch	: 1 Matrix	: Solid							
Units:	mg/kg	Date Analyzed: 06/28/16 13:32	SUF	ROGATE R	ECOVERY	STUDY						
	TPH	H by SW 8015M	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			נען							
1-Chlorooct	tane		110	100	110	70-135						
o-Terphenyl	1		51.8	50.0	104	70-135						
Lab Batch	#: 997172	Sample: 710459-1-BKS / BI	KS Batch	: 1 Matrix	: Solid							
Units:	mg/kg	Date Analyzed: 06/28/16 13:56	SUF	RROGATE R	ECOVERY S	STUDY						
	TPE	I by SW 8015M Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooct	tane		123	100	123	70-135						
o-Terphenyl	1		61.9	50.0	124	70-135						
Lab Batch	#: 997172	Sample: 710459-1-BSD / BS	SD Batch	: 1 Matrix	: Solid							
Units:	mg/kg	Date Analyzed: 06/28/16 14:20	SUF	RROGATE R	ECOVERY S	STUDY						
	TPF	I by SW 8015M Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooct	tane	-	117	100	117	70-135						
					1	1						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: WPX-N. Bushy Draw 35-12

Work O	rders : 53241	3,		Project ID:	WPXRTX0	004					
Lab Batch	#: 997172	Sample: 532336-006 S / MS	S Batcl	h: 1 Matrix:	Soil						
Units:	mg/kg	Date Analyzed: 06/28/16 15:06	5 SURROGATE RECOVERY STUDY								
	TPH	I by SW 8015M	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1 Chloroog	tana	Anaryus	127	00.0	107	70.125					
1-C1101000	talle		127	99.9	127	70-135					
o-Terpheny	yl		57.7	50.0	115	70-135					
Lab Batch	#: 997172	Sample: 532336-006 SD / M	ASD Batcl	h: 1 Matrix:	Soil						
Units:	mg/kg	Date Analyzed: 06/28/16 15:30	SU	RROGATE RE	ECOVERY S	STUDY					
	ТРН	l by SW 8015M Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooc	ctane		122	100	122	70-135					
o-Terpheny	yl		55.1	50.0	110	70-135					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: WPX-N. Bushy Draw 35-12

Work Order #: 532413					Project ID: WPXRTX0004									
Analyst: MNR		D	ate Prepar	ed: 07/06/201	6		Date Analyzed: 07/07/2016							
Lab Batch ID: 997641	Sample: 710669-1-	BKS	Matrix: Solid											
Units: mg/kg			BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
Inorganic Anions by	y EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Bosult [F]	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analytes			լոյ	[C]	נטן	[E]	Kesuit [F]	[G]						
Chloride		<10.0	250	231	92	250	233	93	1	90-110	20			
nalyst: ARM Date Prepared: 06/28/2016											+			
Analyst: ARM		D	ate Prepar	ed: 06/28/201	6	1		Date A	nalyzed: (6/28/2016				
Analyst: ARM Lab Batch ID: 997172	Sample: 710459-1-	D	ate Prepar Batcl	ed: 06/28/201 h #: 1	6			Date A	nalyzed: (Matrix: S)6/28/2016 Solid	•			
Analyst:ARMLab Batch ID:997172Units:mg/kg	Sample: 710459-1-	D BKS	ate Prepar Batcl BLAN	ed: 06/28/201 h #: 1 K /BLANK \$	6 SPIKE / 1	BLANK S	SPIKE DUP	Date A	nalyzed: (Matrix: S RECOVI)6/28/2016 Solid E RY STUI)Y			
Analyst: ARM Lab Batch ID: 997172 Units: mg/kg TPH by SW 80 Analytes	Sample: 710459-1-	D BKS Blank Sample Result [A]	ate Prepar Batcl BLAN Spike Added [B]	ed: 06/28/201 h #: 1 K /BLANK S Blank Spike Result [C]	6 SPIKE / J Blank Spike %R [D]	BLANK S Spike Added [E]	SPIKE DUP Blank Spike Duplicate Result [F]	Date A LICATE Blk. Spk Dup. %R [G]	nalyzed: (Matrix: S RECOVI RPD %	06/28/2016 Solid ERY STUI Control Limits %R)Y Control Limits %RPD	Flag		
Analyst: ARM Lab Batch ID: 997172 Units: mg/kg TPH by SW 80 Analytes C6-C10 Gasoline Range Hydrocar	Sample: 710459-1- 015M	D BKS Blank Sample Result [A] <15.0	ate Prepar Batcl BLAN Spike Added [B] 1000	ed: 06/28/201 h #: 1 K /BLANK S Blank Spike Result [C] 966	6 SPIKE / J Blank Spike %R [D] 97	BLANK S Spike Added [E] 1000	Blank Spike Duplicate Result [F] 903	Date A LICATE Blk. Spk Dup. %R [G] 90	nalyzed: (Matrix: S RECOVI RPD % 7	06/28/2016 Solid ERY STUE Control Limits %R 70-135	DY Control Limits %RPD 35	Flag		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries Project Name: WPX-N. Bushy Draw 35-12

Work Order #: 532413 Project ID: WPXRTX0004 Lab Batch #: 997641 Date Analyzed: 07/07/2016 Date Prepared: 07/06/2016 Analyst: MNR QC- Sample ID: 532368-022 S Batch #: Matrix: Soil 1 **Reporting Units:** mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [C] [D] %R [A] [B] Analytes Chloride <10.8 270 231 86 80-120 Lab Batch #: 997641 Date Analyzed: 07/07/2016 Date Prepared: 07/06/2016 Analyst: MNR QC- Sample ID: 532413-005 S Batch #: Matrix: Soil 1 Reporting Units: mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Flag Spike Result %R Limits Result Added %R [C] [D] [A] [B] Analytes Chloride 2150 2500 4800 106 80-120

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: WPX-N. Bushy Draw 35-12

Work Order # :						Project II): WPXR	TX0004				
Lab Batch ID:	997172 Q	C- Sample ID:	532336	-006 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	Date Prepared:	06/28/2	016	An	alyst: A	ARM						
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	TPH by SW 8015M	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C10 Gasoline	Range Hydrocarbons	213	999	1040	83	1000	1060	85	2	70-135	35	
C10-C28 Diesel	Range Hydrocarbons	22.0	999	972	95	1000	966	94	1	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Sample Duplicate Recovery

Project Name: WPX-N. Bushy Draw 35-12

Work Order #: 532413

Lab Batch #: 997641				Project I	D: WPXRT	X0004
Date Analyzed: 07/07/2016 10:05 D	ate Prepar	ed: 07/06/2016	5 Ana	yst:MNR		
QC- Sample ID: 532368-022 D	Batch	n#: 1	Mat	rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300		Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Chloride		<10.8	<10.8	0	20	U
Lab Batch #: 997641						
Date Analyzed: 07/07/2016 11:54 D	ate Prepar	ed: 07/06/2016	5 Anal	yst:MNR		
QC- Sample ID: 532413-005 D	Batch	n#: 1	Mat	rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		2150	2280	6	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

FILE PAGE #3 - ENVIRO CLEAN QA/QC DEPT	2 - ENVIRO CLEAN PROJECT	PAGE #	NG LAB	PAGE #1 - RECEIVII		
GTON IMIDLAND OTHER:	NOODWARD	IORMAN		OKLAHOMA CITY	F OF ORIGIN:	POIN
C/F:0						
	LABORATORY ADDRESS				Y CONTACT:	LABORATOR
JICE (if applicable) to: JULIE CZECH at jczech@envirocleanps.com	Send PDF, EDD, and INV	DATE TIME		IY BY:	LABORATOR	RECEIVED IN
	AIRBILL NUMBER:				SHIPMENT:	METHOD OF
TIME		TIME				
DATE	RECEIVED BY:	DATE			DBY:	RELINQUISH
$\frac{\text{DATE}(\beta \beta d)}{\text{TIME}(\beta) \leq 2} \leq 2$	RECEIVED BY:	TIME 10 3 4			AND	RELINQUISH
		12		AINERS	ER OF CONT/	TOTAL NUME
		V V				U
	×		(4-5)	012-E	1250	
	×		(4-5)	011-E	1240	
	×		(2-3)	010-0	1917	12/5
	×		(4-5)	009-E	1230	
	×		(4-5)	J-800	1220	
	×		(3-41)	007-D	1210	
	×		(1-2)	006-B	1200	
	X		(1-2')	005-8	1150	
	X		(0-))	004-A	1140	
	X	51	(0-1)	003-A	1130	
	×	N V	(0-11)	002-A (1125	
	×	S 1	(0-1')	001-A	3/11	6/23/1
REMARKS	(7)	# c	8	2	Moorta	
with specific TRH Ranges	:1- р́µ-)	Sample f Sample	ple ID	Sam	Time	Date
TPH is NM modified BOISN	300 VM 9	e Matri			IGNATURE:	SAMPLER'S
ASOW:).0 2013	x	etrozzi	Walter P	HINTED NAM	SAMPLER'S
Willian Green Mormal			• • • • • • • • • • • • • • • • • • •	(918) 794-7828		
WPX-N.Brusky Draw 35-12 coc_l of	X0004	WPX RT	A	ROCCLE	IV	m
S32413 No. 00732	AIN OF CUSTODY F	ç				

Page 14 of 15

Final 1.000

Client: Enviroclean- Midland

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC

Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/28/2016 10:35:00 AM Temperature Measuring device used : R8 Work Order #: 532413 Comments Sample Receipt Checklist 4.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? N/A #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? No #21 VOC samples have zero headspace (less than 1/4 inch bubble)? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Alexis Negron Mary Negron Checklist reviewed by: Mary Morah Kelsey Brooks

Date: 06/28/2016

Date: 06/28/2016

Analytical Report 532561

for Enviroclean- Midland

Project Manager: BILL GREEN

N. Brushy Draw 35-12

WPXRTX0004

30-JUN-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

30-JUN-16

Project Manager: **BILL GREEN Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): **532561 N. Brushy Draw 35-12** Project Address: New Mexico

BILL GREEN:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 532561. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 532561 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Id

@ 1.5-2'
@ 3.5-4'
@ 5.5-6'
@ 7.5-8'
@ 9.5-10'
@ 11.5-12'
@ 13.5-14'
@ 15.5-16'
@ 17.5-18'
@ 19.5-20'
@ 24.5-25'
@ 29.5-30'
@ 34.5-35'
@ 39.5-40'

Sample Cross Reference 532561

Enviroclean- Midland, Midland, TX

N. Brushy Draw 35-12

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-29-16 08:32	1.5 - 2 ft	532561-001
S	06-29-16 08:33	3.5 - 4 ft	532561-002
S	06-29-16 08:34	5.5 - 6 ft	532561-003
S	06-29-16 08:35	7.5 - 8 ft	532561-004
S	06-29-16 08:38	9.5 - 10 ft	532561-005
S	06-29-16 08:40	11.5 - 12 ft	532561-006
S	06-29-16 08:42	13.5 - 14 ft	532561-007
S	06-29-16 08:43	15.5 - 16 ft	532561-008
S	06-29-16 08:44	17.5 - 18 ft	532561-009
S	06-29-16 08:45	19.5 - 20 ft	532561-010
S	06-29-16 08:48	24.5 - 25 ft	532561-011
S	06-29-16 08:50	29.5 - 30 ft	532561-012
S	06-29-16 08:52	34.5 - 35 ft	532561-013
S	06-29-16 08:54	39.5 - 40 ft	532561-014

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: N. Brushy Draw 35-12

Project ID: WPXRTX0004 Work Order Number(s): 532561
 Report Date:
 30-JUN-16

 Date Received:
 06/29/2016

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Project Id:WPXRTX0004Contact:BILL GREENProject Location:New Mexico

Certificate of Analysis Summary 532561

Enviroclean- Midland, Midland, TX Project Name: N. Brushy Draw 35-12

Date Received in Lab:Wed Jun-29-16 03:18 pmReport Date:30-JUN-16Project Manager:Kelsey Brooks

	Lab Id:	532561-0	01	532561-0	02	532561-0	003	532561-0	004	532561-0	005	532561-0	006
Analysis Requested	Field Id:	SB-1 @ 1.	5-2'	SB-1@3.	5-4'	SB-1 @ 5.	5-6'	SB-1 @ 7.	.5-8'	SB-1 @ 9.5	5-10'	SB-1 @ 11	.5-12'
Analysis Kequestea	Depth:	1.5-2 ft		3.5-4 f	t	5.5-6 f	t	7.5-8 f	t	9.5-10 f	ft	11.5-12	ft
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-29-16 0	8:32	Jun-29-16 ()8:33	Jun-29-16 ()8:34	Jun-29-16 ()8:35	Jun-29-16 ()8:38	Jun-29-16	08:40
Inorganic Anions by EPA 300	Extracted:	Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16	15:30
	Analyzed:	Jun-29-16 1	8:18	Jun-29-16 1	8:25	Jun-29-16 1	8:33	Jun-29-16 1	8:41	Jun-29-16 1	8:49	Jun-29-16	18:57
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1180	100	260	10.0	206	10.0	356	50.0	289	50.0	321	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Project Id:WPXRTX0004Contact:BILL GREENProject Location:New Mexico

Certificate of Analysis Summary 532561

Enviroclean- Midland, Midland, TX Project Name: N. Brushy Draw 35-12

Date Received in Lab:Wed Jun-29-16 03:18 pmReport Date:30-JUN-16Project Manager:Kelsey Brooks

	Lab Id:	532561-0	07	532561-0	08	532561-0)09	532561-0	10	532561-0)11	532561-0)12
Analysis Requested	Field Id:	SB-1 @ 13.	5-14'	SB-1 @ 15.	.5-16'	SB-1 @ 17.	.5-18'	SB-1 @ 19.	5-20'	SB-1 @ 24.	5-25'	SB-1 @ 29.	.5-30'
Analysis Requested	Depth:	13.5-14	ft	15.5-16	ft	17.5-18	ft	19.5-20	ft	24.5-25	ft	29.5-30	ft
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-29-160	8:42	Jun-29-16 (08:43	Jun-29-16 08:44		Jun-29-16 (08:45	Jun-29-16 ()8:48	Jun-29-16 (08:50
Inorganic Anions by EPA 300	Extracted:	Jun-29-16 15:30		Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16 1	5:30	Jun-29-16 1	15:30
	Analyzed:	Jun-29-16 1	9:20	Jun-29-16 1	9:28	Jun-29-16 1	9:36	Jun-29-16 1	9:59	Jun-29-16 2	20:07	Jun-29-16 2	20:15
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		305	50.0	110	10.0	123	10.0	34.4	10.0	33.0	10.0	14.2	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Project Id:WPXRTX0004Contact:BILL GREENProject Location:New Mexico

Certificate of Analysis Summary 532561

Enviroclean- Midland, Midland, TX Project Name: N. Brushy Draw 35-12

Date Received in Lab:Wed Jun-29-16 03:18 pmReport Date:30-JUN-16Project Manager:Kelsey Brooks

	Lab Id:	532561-0	13	532561-	014		
Analysis Paguested	Field Id:	SB-1 @ 34.	5-35'	SB-1 @ 39	.5-40'		
Analysis Requested	Depth:	34.5-35	ft	39.5-40	ft		
	Matrix:	SOIL		SOIL	,		
	Sampled:	Jun-29-16 0	8:52	Jun-29-16	08:54		
Inorganic Anions by EPA 300	Extracted:	Jun-29-16 1	5:30	Jun-29-16	15:30		
	Analyzed:	Jun-29-16 2	0:22	Jun-29-16	20:30		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		19.9	10.0	11.1	10.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

FIIOIIC	1 ax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(432) 563-1800	(432) 563-1713
(602) 437-0330	
	(281) 240-4200 (214) 902 0300 (210) 509-3334 (432) 563-1800 (602) 437-0330

BS / BSD Recoveries

Project Name: N. Brushy Draw 35-12

Work Order #: 532561, 532561							Proj	ject ID:	WPXRTX0	004			
Analyst: MNR	D	ate Prepar	ed: 06/29/201	6			Date A	nalyzed: (06/29/2016				
Lab Batch ID: 997244 Sample: 710495-1-B	SKS	Batcl	h #: 1					Matrix: S	Solid				
Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY													
Inorganic Anions by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Chloride	<10.0	250	248	99	250	249	100	0	90-110	20			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: N. Brushy Draw 35-12

Work Order #: 532561 Project ID: WPXRTX0004 Lab Batch #: 997244 Date Analyzed: 06/29/2016 Date Prepared: 06/29/2016 Analyst: MNR QC- Sample ID: 532558-001 S Batch #: Matrix: Soil 1 **Reporting Units:** mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [C] [D] %R [A] [B] Analytes Chloride 2960 5000 7760 96 80-120 Lab Batch #: 997244 **Date Analyzed:** 06/29/2016 Date Prepared: 06/29/2016 Analyst: MNR QC- Sample ID: 532561-009 S Batch #: Matrix: Soil 1 Reporting Units: mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Flag Spike Result %R Limits Result Added %R [C] [D] [A] [B] Analytes Chloride 123 250 343 88 80-120

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Project Name: N. Brushy Draw 35-12

Work Order #: 532561

Lab Batch #: 997244				Project I	D: WPXRT	X0004
Date Analyzed: 06/29/2016 17:54	Date Prepar	ed: 06/29/2016	5 Ana	yst:MNR		
QC- Sample ID: 532558-001 D	Batch	n#: 1	Mat	rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300)	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Chloride		2960	3080	4	20	
Lab Batch #: 997244						
Date Analyzed: 06/29/2016 19:43	Date Prepar	ed: 06/29/2016	5 Anal	yst:MNR		
QC- Sample ID: 532561-009 D	Batch	n#: 1	Mat	rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300 Analyte)	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		123	121	2	2.0	

CHAIN OF CUSTOPY	Relinquished by: 5 Notice: Signature of this document and relinquishment of samples constitutes a	ω.	Reinquished by:	Relinquished by sampler:	SAMPLE CUSTODY	TAT Starts Day received by I at it received by a co	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	Turnaroung time (Business days)	10 20-1-00 1-02 01	· 55-1 (2) 17.5 - 18.	° 28-1 @ 15.5 - 16	7 26-1 @ 13.5 - 14	6 58-1 (2) 11-5 - 12'	5 50-1 0 9.5 - 10'	4 58-1 @ 7.5 - 8'	3 56-1 @ 5.5 - 6.	2 58-1@ 3.5-4'	1 55-1@ 1.5-2'		No. Field ID / Point of Collection	Samplers's Name:	rioject connact: Bill Gres	bill green@ eccarp. con	Email: Phone No:	Midland TX	Company Addisor	Client / Reporting Information		Service Center - San Antonio, Texas (210-509-3334)	Dallas, Texas (214-902-0300)	Stafford,Texas (281-240-4200)	Setting the Standard since 1990	XENCO
	Date Time: alid purchase order fro		12C J/S	Date Time:								V									6/29	Sample Depth Date	Collect		PO Nu		Invoic	Project	Projec							
CUSTODY Aleand, Florida (83-93) Morrores, Georgia (770-443-880) Tamp, Florida (83-93) Free Ousset Free Ousset Free Ousset Free Outset Free Outset Free Outset Free Outset Free Outset Free Outset Free Outset Free Outset Free Outset	Received By: 5 5	3 Heceived ay:	ILAND IT MY	Received By:			TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data Deliverable Informati	N 548	844	843	842	C48	838	835	1 1 688	83311	083251	Time Matrix bottles HCI NaOH/Zn Acctate	ion Numbe		mber:		e To:	New Mexico	St Name/Number: Brushin Braw 35-12/	Project Information		www.xenco.com			Page / Of	CHAIN OF
sa, Texas (432-563-1800) Lakeland, Florida (883-64 ross, Georgia (770-4438800) Tampa, Florida (813-620- <u>Noree Noree Noree Noree Notee: Noree Notee: Noree Notee: Noree Nore</u>	Gustody Seal # Pr Custody Seal # Pr filiates, subcontractors and assigns XENC	Relinquished By:	2	Relinquished By:				UST / RG -411	TRRP Level IV	Level IV (Full Data Pkg /raw dat	9	C &	-								X	HNO3 H2SO4 NaOH NaHSO4 MEOH NONE	ar of preserved bottles	-ide	5	-		300	WPXIRTX2004	2		Xenco	Nore	Odes		CUSTODY
100 Lakeland, Florida (883-64 3-8800) Tampa, Florida (883-64 Tampa, Florida (813-520- Tampa,	Served where applicable	Date Time:		IVERY Date Time:	FED-EX /					3)	Not																				Analytical Infor	Quote #	oss, Georgia (770-44s	sa, Texas (432-563-18		
	e On Ice Cooler Temp. Thermo	Received By:	N	Received By:	UPS: Tracking #																	1	WWW	0=	= W	SW SW		GW S=	A=		mation USA UV	Xenco Job # RAARTA	9-8800) Tampa Elevida (213 600 0	300) Lakeland Florida /863_644		

Final 1.000

Page 12 of 14

Feilinguished by: Date 5 Particle: Signature of this document and relinguishment of samples constitutes a valid	ω.	1 Wett	Relinquished by Sampler: Da	TAT Starts Day received by Lab, if received by 3:00 p	J J J J J J J J J J J J J J J J J J J	Contract TAT			Same Day TAT 5 Day TAT	Turnaround Time (Business days)	10	00	л с	57 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SR-1@ 29.5 - 40'	3 58-1@ 34.5 - 35'	2 58-1@ 29.5 - 30'	1 SB-1@ 24.5 - 25			Samplers's Name: William. Green	Project Contact:	bill green BCCGrp. con	Email: Midland, T	Company Address:	Company Name / Branch: ENUITO Clean	Client / Reporting Information		Service Center - San Antonia Tayas /240-500 222/1	Dallas, Texas (214-902-0300)	Stafford,Texas (281-240-4200)	Setting the Standard since 1990	LABORATORIES
te Time: Received By: Custody Sea	Relinquisher	129 318 1111 (UUUDA	te Time: Received By: Relationship		TRRP Checklist	Level 3 (CLP Forms) UST / RG	Level III Std QC+ Forms TRRP Leve			Data Dolivorobio Information				~ ~ ~ ~	V O EN W W	063	1 850 1	6/20 848 5 2	Depth Date Time Matrix bottles HCI NaOH/Zn Acetate HNO3 12SO4 NaOH	Collection Number of preserved		PO Number:		× Eddy Co. New Mexico	Project Location:	Project Name/Number:	Project Information	www.xenco.com				Page / Of	CHAIN OF CUST
I # Preserved where applicable On Ice	d By: Date Time: Received By:	neceived by:	4 BV: Data Times Decision and Aller	FED-EX / UPS: Tracking #		411		uli Data Pkg /raw data)	Notes:										Nahso4 MEOH None Chii	bonies off	des	*>		30		. 10	Analytical Information	Xenco Job #	Norcross, Georgia (770-449-8800)		Odessa Texas (123,563,4000)		FODY
Cooler Temp. Thermo. Corr. Factor																		Field Comments		WW= Waste Water	0 = 0il	WW= Waste Water W = Wipe	SW = Surface water SL = Sludge	DW = Drinking Water P = Product	S = Soil/Sed/Solid	A= Air	Matrix Codes	334561	Tampa, Florida (813-620-2000)	Lakeland, Florida (863-646-8526)			

Page 13 of 14

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Enviroclean- Midland	Acceptable Temperature Range: 0 - 6 deoC										
Date/ Time Received: 06/29/2016 03:18:00 PM	Air and Metal samp	Air and Metal samples Acceptable Range: Ambient									
Work Order #: 532561	Temperature Meas	Temperature Measuring device used : R8									
Sample Reco	eipt Checklist	Comments									
#1 *Temperature of cooler(s)?		-1									
#2 *Shipping container in good condition?	1	N/A									
#3 *Samples received on ice?	١	/es									
#4 *Custody Seal present on shipping container/ cooler?	1	N/A									
#5 *Custody Seals intact on shipping container/ cooler?	1	N/A									
#6 Custody Seals intact on sample bottles?	1	N/A									
#7 *Custody Seals Signed and dated?	1	N/A									
#8 *Chain of Custody present?	١	/es									
#9 Sample instructions complete on Chain of Custody?	١	/es									
#10 Any missing/extra samples?		No									
#11 Chain of Custody signed when relinquished/ received?	١	/es									
#12 Chain of Custody agrees with sample label(s)?	١	/es									
#13 Container label(s) legible and intact?	١	/es									
#14 Sample matrix/ properties agree with Chain of Custody	? I	/es									
#15 Samples in proper container/ bottle?	١	/es									
#16 Samples properly preserved?	١	/es									
#17 Sample container(s) intact?	١	/es									
#18 Sufficient sample amount for indicated test(s)?	١	/es									
#19 All samples received within hold time?	١	/es									
#20 Subcontract of sample(s)?	I	No									
#21 VOC samples have zero headspace (less than 1/4 inch	n bubble)?	N/A									
#22 <2 for all samples preserved with HNO3,HCL, H2SO43 samples for the analysis of HEM or HEM-SGT which are very analysis	P Except for rified by the	N/A									
#23 >10 for all samples preserved with NaAsO2+NaOH, Zr	Ac+NaOH?	N/A									

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

 Checklist completed by:
 Carley Owens

 Carley Owens
 Carley Owens

 Checklist reviewed by:
 Masses

 Kelsey Brooks
 Kelsey Brooks

Date: 06/29/2016

Date: 06/30/2016

APPENDIX E OCD CORRESPONDENCE

From:	Bratcher, Mike, EMNRD
То:	Kimberly Huckaba
Cc:	Patterson, Heather, EMNRD; Tucker, Shelly; "agroves@slo.state.nm.us"
Subject:	FW: Correction 2RP-3684 Delineation Requirements
Date:	Tuesday, June 28, 2016 10:24:34 AM

Kimberly,

Sorry for any confusion. Looks like the release is on State surface, but associated with a Federal well.

Thanks,

Mike Bratcher NMOCD District 2 811 S. First Street Artesia, NM 88210 O: 575-748-1283 X108 C: 575-626-0857 F: 575-748-9720

From: Bratcher, Mike, EMNRD
Sent: Tuesday, June 28, 2016 8:37 AM
To: 'Kimberly Huckaba'; Patterson, Heather, EMNRD; Tucker, Shelly
Cc: Smith, Lucas; Bill Green; Craig McMahon; Brittany Neal
Subject: RE: Correction 2RP-3684 Delineation Requirements

RE: 2RP-3684

Kimberly,

OCD does request a representative delineation of the impacted area. The pooling area, which theoretically should be the "worst" spot along the release area, and you have identified as sample locations 003 and 004, will be acceptable for vertical delineation purposes for this site. OCD does agree to a 4' excavation with liner placement to retard migration of contaminants left behind. Especially in rocky areas, OCD does request adequate cushioning be installed for liner protection . Please provide OCD with analytical data from the proposed delineation prior to backfilling, and provide updates as the project progresses. Federal sites will require like approval from BLM.

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

If you have any questions or concerns, and for notification, please contact me.

Thanks.

Mike Bratcher NMOCD District 2 811 S. First Street Artesia, NM 88210 O: 575-748-1283 X108 C: 575-626-0857 F: 575-748-9720

From: Kimberly Huckaba [mailto:khuckaba@eccgrp.com]
Sent: Monday, June 27, 2016 7:53 PM
To: Bratcher, Mike, EMNRD; Patterson, Heather, EMNRD
Cc: Smith, Lucas; Bill Green; Craig McMahon; Brittany Neal
Subject: RE: Correction 2RP-3684 Delineation Requirements

Please note the following correction.

After reviewing the work plan and data presented therein, the pooling area is not in the vicinity of 010, 011, and 012, but near the source of the release in the vicinity of sample locations 003 and 004 where the highest Cl values were detected.

Kimberly Huckaba Project Coordinator/Geologist 432.741.0855 <u>khuckaba@eccgrp.com</u> www.EnviroCleanPS.com

From: Kimberly Huckaba
Sent: Monday, June 27, 2016 6:47 PM
To: 'mike.bratcher@state.nm.us' <<u>mike.bratcher@state.nm.us</u>>; 'heather.patterson@state.nm.us'
<<u>heather.patterson@state.nm.us</u>>
Cc: 'Smith, Lucas' <<u>Lucas.Smith@wpxenergy.com</u>>; Bill Green <<u>Bill.Green@eccgrp.com</u>>; Craig

McMahon <<u>Craig.McMahon@eccgrp.com</u>>; Brittany Neal <<u>Brittany.Neal@eccgrp.com</u>> Subject: 2RP-3684 Delineation Requirements

Mike,

I am emailing you after a conversation I had with Heather Patterson last Wednesday, June 22, 2016.

We are working on project 2RP-3684 together with WPX Energy. I understand Heather is on vacation this week and referred me to you with any questions.

Heather and I had discussed the delineation requirement after the second attempt to delineate the area and finding refusal at the restrictive layer. We discussed placing a liner in the areas where chloride exceeded 2,500 mg/Kg at the bedrock or at 4 feet below ground surface. We also discussed sampling a boring in the area of sample locations 010, 011, and 012 where the spill pooled. However, I did not receive this in writing and wanted to be sure we had OCD approval before continuing with the boring, excavation and liner placement.

If OCD grants approval to continue we would like to begin work beginning with the soil boring in the vicinity of 010, 011, and 012 on Wednesday, June 29, 2016.

Thank you for your time.

Sincerely,

Kimberly Huckaba Project Coordinator/Geologist 432.741.0855 <u>khuckaba@eccgrp.com</u> <u>www.EnviroCleanPS.com</u>

APPENDIX F BORING LOG

BORING LOG

Site Name:		WPX N. Brushy Draw 35-12			Boring ID:	SB-1; 32° 4' 45.13" N, 103° 56' 41.9" W
Jo	b Number:	V	VPXRTX000)4	Date:	6/29/2016
	Driller:	White	e Drilling/Bo	Atkins	Geologist:	William D. Green, TX PG No. 136
Depth	Time	μS/cm @ °C	Lab Chloride	USCS	Munsell Color	Description
1.5-2	832	2,155 @ 21.1°	1,180	SP	10YR 7/4	Very pale brown fine sand; rounded and spherical grains, with slight carbonate reaction
3.5-4	833	269 @ 20.3°	260	SP	10YR 7/3	Very pale brown fine sand; rounded and spherical grains, with slight carbonate reaction
5.5-6	834	473 @ 20.1°	206	SS	7.5YR 7/4	Rock ledge at ~5 feet. Pink very fine sandstone with carbonate cement
7.5-8	835	1,139 @ 19.8°	356	SP	7.5YR 7/3	Pink very fine sand; rounded and spherical grains
9.5-10	838	867 @ 20.3°	289	SS	7.5YR 7/3	Pink very fine sandstone with carbonate cement
11.5-12	840	522 @ 20.8°	321	SS	7.5YR 7/3	Pink very fine sandstone with carbonate cement
13.5-14	842	540 @ 20.2°	305	SP	5YR 7/3	Pink fine rounded sand
15.5-16	843	296 @ 19.9°	110	SS	10YR 4/2	Abrupt lithology change at 15.5 feet. Dark grayish brown well-lithified fine-grained sandstone
17.5-18	844	314 @ 20.8°	123	SS/Shale	10YR 5/1	Gray fine-grained sandstone with carbonate cement and thin shales interbedded
19.5-20	845	152 @ 20.8°	34.4	SW	10YR 7/2	Light gray fine sand and 1/4- to 1/2-inch smoothed gravels with carbonate cement
						Lithology change at about 23 feet.
24.5-25	848	161 @ 21.6°	33.0	SM	7.5YR 6/4	Light brown silty to fine-grained sand; about 10% 1/4- inch to 1-inch gravel
29.5-30	850	148 @ 21.8°	14.2	SM	10YR 6/6	Brownish yellow silty to fine-grained sand; round and spherical
34.5-35	852	154 @ 21.4°	19.9	SM	10YR 6/4	Light yellowish brown silty to fine-grained sand; round and spherical
39.5-40	854	200 @ 21.5°	11.1	SM	10YR 6/4	Light yellowish brown silty to fine-grained sand; round and spherical

Note: Boring installed with Air Rotary and samples collected from return cuttings.