September 22,

2020

Quarterly (3rd) Groundwater Monitoring Report (July-September) 3 Bear Energy Services, LLC, Cottonwood Facility (2RF-128) Eddy County, New Mexico

Prepared for:

3Bear Energy

415 W. Wall St., Suite 1212 Midland, TX 79701

Prepared by:

A arson & ssociates, Inc.

507 N. Marienfeld St., Suite 202 Midland, Texas 79701 (432) 687-0901

Mark J Larson Certified Professional Geologist #10490

//

Robert Nelson Sr. Geologist

LAI Project No: 18-0167-01

Table	of Contents		
1.0	EXECUTIVE S	SUMMARY	2
2.0	INTRODUCTION	ON	4
3.0		FER POTENTIONMETRIC SURFACE ELEVATION	
4.0		FER SAMPLES AND ANALYSIS	
4.1		lysis	
4.2		alysis	
5.0		NS	
6.0	RECOMMEN	DATIONS	Ö
List of T	ables		
	Table 1	Monitor Well Completion and Gauging Summary	
	Table 2	Groundwater Organic and Inorganic Analytical Data Summary	
List of F	igures		
	Figure 1	Topographic Map	
	Figure 2	Aerial Map	
	Figure 3	Groundwater Potentiometric Map, May 7, 2020	
	Figure 4	Chloride Concentration in Groundwater Map, May 7, 2020	
List of A	Appendices		

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) submits this report to the New Mexico Oil Conservation Division (OCD) on behalf of 3 Bear Energy Services, LLC (3 Bear) to report the results of 2020 third (3rd) quarter (July – September) groundwater monitoring at the Cottonwood Facility (Site). The Site is in Unit N (SE/4, SW/4), Section 20, Township 20 South, and Range 26 East in Eddy County, New Mexico. The geodetic position is North 32.0210483° and West -104.31879°. The surface and mineral owner is the U.S. Government administered by the Bureau of Land Management (BLM).

The following activities occurred on August 13, 2020:

- Gauge four (4) monitoring wells MW-1 through MW-4) for light non-aqueous phase liquid (LNAPL) and depth to groundwater.
- Purge and sample groundwater from four (4) wells (MW-1 through MW-4) utilizing the low stress (low flow) method.
- Analyze samples for benzene, toluene, ethylbenzene, xylenes (BTEX), total petroleum hydrocarbons (TPH) and chloride.

The following observations are documented in this report:

- Depth to groundwater ranged from 29.06 feet below ground surface (bgs) at MW-1 to 67.12 feet bgs at MW-4.
- Depth to groundwater decreased (rising) in wells MW-3 and MW-4 at 0.04 and 2.10 feet, respectively, compared to the previous monitoring period (May 7, 2020).
- Depth to groundwater increased (lowering) in wells MW-1 and MW-2 at 0.1 and .239 feet, respectively, compared to the previous monitoring period (May 7, 2020).
- The groundwater potentiometric surface elevation ranged from 3,431.23 feet above mean sea level (MSL) at well MW-1 (up gradient) to 3,388.94 feet above MSL at MW-4 (down gradient).
- An apparent groundwater divide occurs in the area between monitoring well MW-1 causes groundwater to flow to the northeast towards wells MW-2 and MW-3 and southeast towards well MW-4 at gradients between 0.04 and 0.18 feet per foot.
- No significant change in the groundwater flow direction or gradient was observed on August 13, 2020.
- BTEX was less than the analytical method reporting limit (RL) in all samples.
- TPH was reported above the RL in samples from wells MW-1 (0.107 mg/L) and MW-4 (0.137 mg/L).
- The Site does not appear to be the source for the TPH reported in samples from wells MW-1 and MW-4.
- Chloride was reported below the WQCC domestic water quality standard (250 mg/L) in samples from monitoring wells MW-1 (228 mg/L), MW-2 (124 mg/L), and MW-3 (125 mg/L) on August 13, 2020.
- Chloride exceeded the WQCC domestic water quality standard (250 mg/L) in the sample from MW-4 (19,800 mg/L), which is consistent with previous monitoring periods.

Conclusions

Chloride in the sample from well MW-3 was confirmed by laboratory analysis to be the result of cross contamination during well gauging and/or sample collection. LAI modified its sampling and

Quarterly (3rd) Groundwater Monitoring Report (July - September) 3 Bear Energy Services, LLC, Cottonwood Facility (2RF-128) Eddy County, New Mexico September 22, 2020

decontamination procedures to gauge and sample the monitoring wells in the following order: MW-2, MW-3, MW-1, and MW-4.

3 Bear will continue monitor the leak detection system and immediately report any changes to the OCD. 3 Bear will also continue monitoring groundwater on a quarterly (4 times per year) schedule. Notification will be provided to the OCD at least 7 working days prior to each monitoring event, and as soon as possible upon any significant change in analyte concentrations.

2.0 INTRODUCTION

Larson & Associates, Inc. (LAI) submits this report to the New Mexico Oil Conservation Division (OCD) on behalf of 3 Bear Energy Services LLC (3 Bear) to present quarterly (4 times per year) groundwater monitoring results from four (4) monitoring wells (MW-1, MW-2, MW-3 and MW-4) at the Cottonwood Facility (Site) in Eddy County, New Mexico. This report is for groundwater samples collected for the third (3rd) quarter on August 13, 2020. The Site is in Unit N (SE 1/4, SW 1/4), Section 20, Township 26 South, and Range 26 East, in Eddy County, New Mexico. The surface and mineral owner is the U.S. Government administered by the Bureau of Land Management (BLM). The geodetic position is North 32.02104833° and West -104.318793°. Figure 1 presents a location and topographic map. Figure 2 presents an aerial map.

3.0 GROUNDWATER POTENTIONMETRIC SURFACE ELEVATION

On August 13, 2020, LAI personnel gauged monitoring wells MW-1 through MW-4 for light non-aqueous phase liquid (LNAPL) and depth to groundwater. LNAPL was not present in the monitoring wells. Groundwater was gauged in wells MW-1, MW-2, MW-3, and MW-4 at 31.82, 51.69, 45.64 and 70.10 feet below top of casing (TOC), respectively. Depth to groundwater decreased (rising) in wells MW-3 and MW-4 at 0.04 and 2.10 feet, respectively, compared to the previous monitoring period (May 7, 2020). Depth to groundwater increased (lowering) in wells MW-1 and MW-2 at 0.1 and .239 feet, respectively, compared to the previous monitoring period (May 7, 2020).

The groundwater potentiometric surface elevation ranged from 3,431.23 feet above mean sea level (MSL) at well MW-1 (up gradient) to 3,388.94 feet above MSL at MW-4 (down gradient). An apparent groundwater divide occurs in the area between monitoring well MW-1 that causes groundwater to flow to the northeast towards wells MW-2 and MW-3 and southeast towards well MW-4 at gradients between 0.04 and 0.18 feet per foot. No significant change in the groundwater flow direction or gradient was observed on August 13, 2020. Table 1 presents the groundwater gauging summary. Figure 3 presents the groundwater potentiometric map for August 13, 2020.

4.0 GROUNDWATER SAMPLES AND ANALYSIS

On August 13, 2020, LAI personnel collected groundwater samples from wells MW-1 through MW-4 using the low stress or low flow method, according to EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low rate until environmental parameters stabilize. Groundwater samples were collected from the discharge of the dedicated disposable Tygon tubing. The tubing was discarded after each use and the pump was thoroughly cleaned with a solution potable water and laboratory grade detergent (Alconox®) and rinsed with distilled water. The samples were carefully transferred to laboratory containers that were labeled, sealed with custody labels, packed in an ice filled chest and delivered under chain of custody control to DHL Analytical, Inc. (DHL), a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory, located in Round Rock, Texas. A duplicate sample was collected from well MW-1 for laboratory quality assurance and quality control (QA/QC). DHL analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8021B and total petroleum hydrocarbons (TPH) according to EPA SW-846 Method 8015M including gasoline range organics (C6 to C10), diesel range organics (>C10 to C28) and oil range organics (>C28 to C35) and chloride by EPA Method 300. Table 2 presents the laboratory analytical data summary. Appendix A presents the laboratory report.

4.1 Organic Analysis

BTEX was not detected at concentrations above the analytical method reporting limits (RL) in the groundwater samples. TPH was reported above the analytical method reporting limit in samples from monitoring wells MW-1 at 0.107 milligrams per liter (mg/L) and MW-4 at 0.137 mg/L. The Site does not appear to be the source for the TPH. No data quality exceptions were noted in the DHL case narratives.

4.2 Inorganic Analysis

On May 7, 2020, the laboratory reported chloride above the New Mexico Water Quality Control Commission (WQCC) domestic water quality standard of 250 mg/L, in the sample from well MW-3 (305 mg/L). LAI reviewed its sampling and decontamination procedures and found that it was possible the chloride could have been carried over from well MW-4 which was sampled prior to sampling well MW-3. On August 13, 2020, monitoring well MW-4 was last to be gauged and sample to eliminate the potential for sample cross contamination in the other monitoring wells. On August 13, 2020, chloride was below the WQCC domestic water quality standard (250 mg/L) in samples from monitoring wells MW-1 (228 mg/L), MW-2 (124 mg/L) and MW-3 (125 mg/L). Chloride remained above the WQCC domestic water quality standard in well MW-4 (19,800 mg/L) on August 13, 2020. The Site does not appear to be the source for chloride in well MW-4. The duplicate (QA/QC) sample from monitoring well MW-1 was consistent with the original sample confirming no laboratory QA/QC issues. Figure 4 presents a map showing chloride concentrations in groundwater on August 13, 2020.

On January 29, 2019 and May 15, 2019, the laboratory analyzed a layer of naturally occurring salts that formed as a precipitate in samples from monitoring well MW-4. The laboratory reported chloride in the precipitate at 87,700 mg/L and 25,900 mg/L, on January 29, 2019 and May 15, 2019, respectively. The precipitate is considered as naturally occurring and contributes to the elevated chloride reported in the groundwater samples. No data quality exceptions were noted in the DHL case narratives for chloride.

5.0 CONCLUSIONS

The following observations are documented in this report:

- A hydrologic divide in the vicinity of monitoring well MW-1 causes groundwater to flow to the northeast to southeast at gradients between 0.04 and 0.18 feet per foot.
- No significant changes in the groundwater flow direction and gradient were observed on August 13, 2020.
- BTEX was below the RL in all samples on August 13, 2020.
- TPH was reported above the RL in samples from monitoring wells MW-1 (0.107 mg/L) and MW-4 (0.137 mg/L) on August 13, 2020.
- The Site does not appear to be the source for the TPH.
- The laboratory confirmed that chloride (305 mg/L) previously reported in the sample from well MW-3 (May 7, 2020) was most likely due to cross contamination during sampling since chloride was 125 mg/L and below the WQCC domestic water quality standard (250 mg/L) on August 13, 2020.
- Chloride was below the WQCC domestic water quality standard in samples from wells MW-1 (228 mg/L), MW-2 (124 mg/L), and MW-3 (125 mg/L) on August 13, 2020.
- Chloride in well MW-4 (19,800 mg/L) is considered naturally occurring and unrelated to 3 Bear operations.

Quarterly (3rd) Groundwater Monitoring Report (July - September) 3 Bear Energy Services, LLC, Cottonwood Facility (2RF-128) Eddy County, New Mexico September 22, 2020

6.0 RECOMMENDATIONS

3 Bear will continue quarterly (4 times per year) groundwater monitoring. LAI will conduct quarterly gauging and sampling wells in the following order: MW-2, MW-3, MW-1, and MW-4. Notification will be provided to the OCD at least 7 working days prior to each monitoring event, and as soon as possible upon any significant change in analyte concentrations.

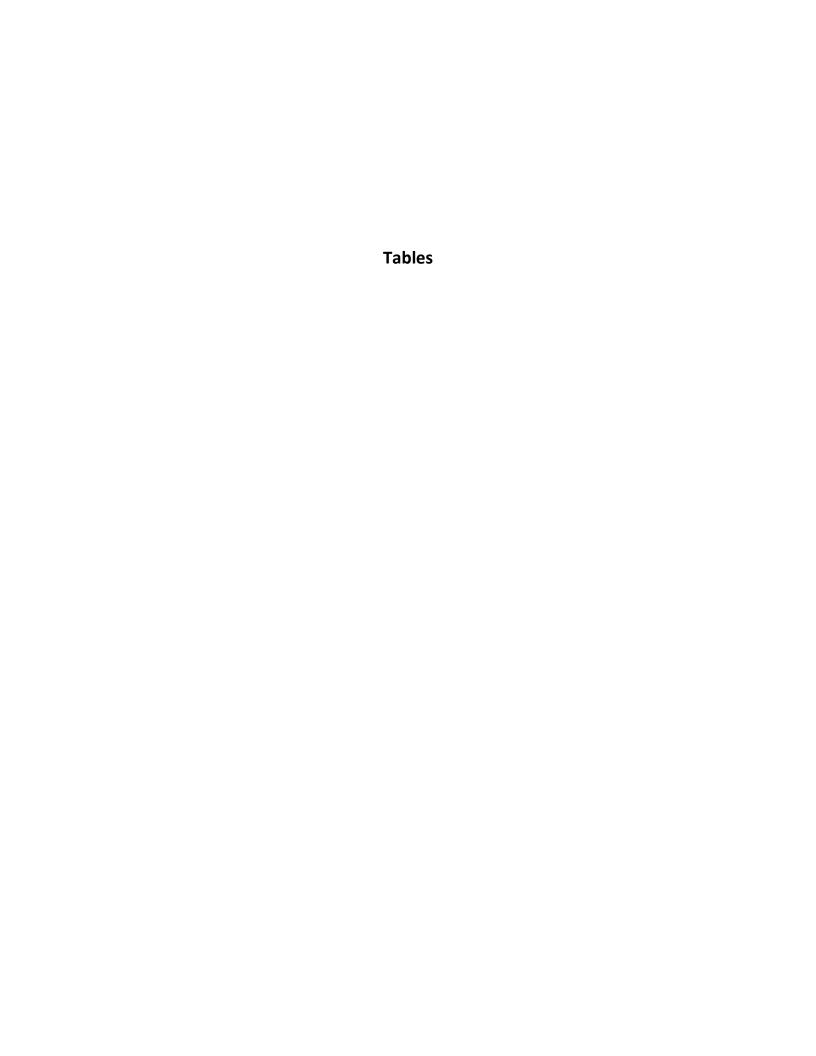


Table 1
Monitoring Well Completion and Gauging Summary
3 Bear Energy, LLC, Eddy County, New Mexico

			We	ll Informatio	Groundwater Data								
Well No.	Date Drilled	Well Depth (Feet TOC)	(Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	,	(Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
MW-1	8/15/2018	92.40	89.40	2	3,460.29	74.40 - 89.40	2.76	3,463.05	9/25/2018 11/13/2018 12/12/2018	31.85 31.81 31.69	29.09 29.05 28.93	60.55 60.59 60.71	3,431.20 3,431.24 3,431.36
									01/29/2019 5/15/2019 9/12/2019 9/20/2019 12/4/2019	32.62 32.50 31.51 32.40 31.73	29.86 29.74 28.75 29.64 28.97	59.78 59.90 60.89 60.00 60.67	3,430.43 3,430.55 3,431.54 3,430.65 3,431.32
									2/18/2020 5/7/2020 8/13/2020	31.50 31.72 31.82	28.74 28.96 29.06	60.90 60.68 60.58	3,431.55 3,431.33 3,431.23
MW-2	08/16/2018	58.70	61.70	2	3,455.22	40.70 - 55.70	3.04	3,458.26	09/25/2018 11/13/2018		Dr Dr		l
									12/12/2018	42.52	39.48	16.18	3,415.74
									01/29/2019 5/15/2019 9/12/2019 9/20/2019 12/4/2019	42.07 42.70 43.98 44.78 45.01	39.03 39.66 40.94 41.74 41.97	16.63 16.00 14.72 13.92 13.69	3,416.19 3,415.56 3,414.28 3,413.48 3,413.25
									2/18/2020 5/7/2020 8/13/2020	45.10 49.30 51.69	42.06 46.26 48.65	13.60 9.40 7.01	3,413.16 3,408.96 3,406.57
MW-3	08/16/2018	52.90	49.90	2	3,455.52	34.90 - 49.90	3.00	3,458.33	09/25/2018 11/13/2018 12/12/2018	43.55 42.65 42.16	40.55 39.65 39.16	9.35 10.25 10.74	3,414.78 3,415.68 3,416.17
									01/29/2019 5/15/2019 9/12/2019 9/20/2019 12/4/2019	41.85 42.61 44.30 44.10 44.83	38.85 39.61 41.30 41.10 41.83	11.05 10.29 8.60 8.80 8.07	3,416.48 3,415.72 3,414.03 3,412.23 3,413.50
									2/18/2020 5/7/2020 8/13/2020	45.60 45.68 45.64	42.60 42.68 42.64	7.30 7.22 7.26	3,412.73 3,412.65 3,412.69

Table 1
Monitoring Well Completion and Gauging Summary
3 Bear Energy, LLC, Eddy County, New Mexico

			We	ll Informatio	Groundwater Data								
Well No.		Well Depth (Feet TOC)	Denth	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
MW-4	08/14/2018	78.10	75.10	2	3,456.06	60.10 - 75.00	2.98	3,459.04	09/25/2018		Dr	,	
									11/13/2018		Dr		
									12/12/2018	74.36	71.38	3.74	3,384.68
									01/29/2019	71.34	68.36	6.76	3,387.70
									5/15/2019	71.50	68.52	6.60	3,387.54
									9/12/2019	67.38	64.40	10.72	3,391.66
									9/20/2019	71.41	68.43	6.69	3,387.63
									12/4/2019	66.31	63.33	11.79	3,392.73
									2/18/2020 5/7/2020	71.80 72.20	68.82 69.22	6.30 5.90	3,387.24 3,386.84
									8/13/2020	70.10	67.12	8.00	3,388.94

Notes: monitoring wells installed by Environ-Drill, Albuquerque, New Mexico with 2 inch schedule 40 PVC casing and screen

bgs - below ground surface

TOC - top of casing

AMSL: denotes elevation in feet above mean sea level

Table 2
GroundwaterSample Organic and Inorganic Analytical Data Summary
3Bears Cottonwood Facility
Eddy County, New Mexico

Well No.	Collection	Benzene	Ethylbenzene	Toluene	Xylenes	C6 -C10	>C10-C28	>C28-C35	C6-C35	Chloride
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:		*0.01	*0.75	*0.75	*0.62					**250
MW-1	9/25/2018	<0.000800	<0.00200	<0.00200	<0.00200	<0.556	<0.556	<0.556	<0.556	210
	11/13/2018	0.00124	<0.00200	< 0.00200	<0.00200	<0.527	<0.527	<0.527	<0.527	1,220
	12/12/2018	0.00130	<0.00200	<0.00200	<0.00200	<0.537	<0.537	<0.537	<0.537	677
	1/29/2019	0.00489	<0.00400	<0.00400	<0.00400	<0.0600	<0.0789	<0.0789	<0.2178	1,750
	5/15/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	< 0.0749	<0.0749	<0.7498	214
	9/20/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0730	<0.0730	<0.206	248
	12/4/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0739	<0.0739	<0.2078	224
	2/18/2020	<0.00800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0772	<0.0772	<0.2144	214
	5/7/2020	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0787	<0.0787	<0.2174	246
	8/13/2020	<0.0008.00	<0.00200	<0.00200	<0.00200	<0.0600	0.107	<0.0758	0.107	228
MW-2	9/25/2018					Dry				
	11/13/2018					Dry	<u>-</u>	Ī	ı	
	1/29/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0767	<0.0767	<0.0767	136
	5/15/2019	<0.000800	<0.00200	< 0.00200	<0.00200	<0.0600	<0.0744	<0.0744	<0.2088	106
	9/20/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0748	<0.0748	<0.2096	117
	12/4/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0751	<0.0751	<0.2102	105
	2/40/2020	.0.00000	.0.0000	-0.0000	10 00200	.0.000	10 07CC	.0.0766	.0.2422	120
	2/18/2020 5/7/2020	<0.00800 <0.00800	<0.00200 <0.00200	<0.00200 <0.00200	<0.00200 <0.00200	<0.0600 <0.0600	<0.0766 <0.0823	<0.0766 <0.0823	<0.2132 <0.2246	120 121
	8/13/2020	<0.00800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0823	<0.0823	<0.2282	121
	8/13/2020	<0.00800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0841	<0.0641	<0.2282	124
MW-3	9/25/2018	<0.000800	<0.00200	<0.00200	<0.00200	<0.554	<0.554	<0.554	<0.554	101
	11/13/2018	<0.000800	<0.00200	<0.00200	<0.00200	<0.574	<0.574	<0.574	<0.574	103
	1/29/2019	<0.00800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0780	<0.0780	<0.0780	140
	5/15/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0758	<0.0758	<0.2116	121
	9/20/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0737	<0.0737	<0.2074	130
	12/4/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0752	<0.0752	<0.2104	111
	5/15/2019 9/20/2019	<0.000800 <0.000800	<0.00200 <0.00200	<0.00200 <0.00200	<0.00200 <0.00200	<0.0600 <0.0600	<0.0758 <0.0737	<0.0758 <0.0737	<0.2116 <0.2074	

Table 2
GroundwaterSample Organic and Inorganic Analytical Data Summary
3Bears Cottonwood Facility
Eddy County, New Mexico

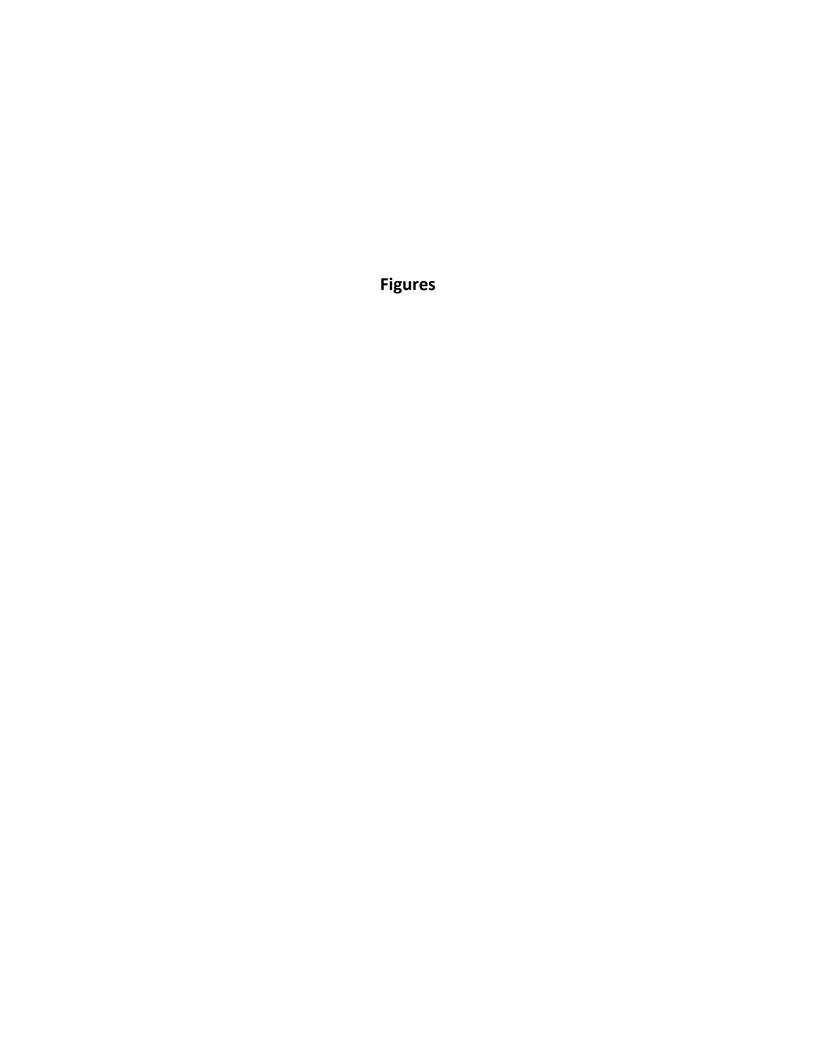

Well No.	Collection	Benzene	Ethylbenzene	Toluene	Xylenes	C6 -C10	>C10-C28	>C28-C35	C6-C35	Chloride
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:		*0.01	*0.75	*0.75	*0.62					**250
	2/18/2020	<0.00800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0794	<0.0794	<0.2188	120
	5/7/2020	<0.00800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0997	<0.0997	<0.2594	305
	8/13/2020	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0822	<0.0822	<0.2244	125
MW-4	9/25/2018					Dry				
	11/13/2018		•	1	-	Dry	•	-	-	•
	1/29/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	0.216	<0.110	0.216	22,300
	5/15/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.762	<0.762	<0.2114	22,900
	9/20/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.741	<0.741	<0.082	26,000
	12/4/2019	<0.000800	<0.00200	<0.00200	<0.00200	<0.600	<0.752	<0.752	<2.104	24,400
	2/18/2020	<0.00800	<0.0200	<0.0200	<0.0200	<0.600	<0.577	<0.577	<1.754	25,800
	5/7/2020	<0.00800	<0.0200	<0.0200	<0.0200	<0.600	<0.110	<0.110	<0.820	25,400
	8/13/2020	<0.00800	<0.00200	<0.00200	<0.00200	<0.600	0.137	<0.0566	0.137	19,800
					QC (Duplicate) San					
Dup - 1	2/18/2020	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0802	<0.0802	<0.2204	210
(MW-1)	5/7/2020	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0800	<0.0800	<0.2200	221
Dup - 1	8/13/2020	<0.000800	<0.00200	<0.00200	<0.00200	<0.0600	<0.0747	<0.0747	<0.2094	213
(MW-1)										
					Precipitate					
Well No.	Collection	Barium	Calcium	Iron	Magnesium	Potassium	Sodium	Strontium		
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
MW-4	1/29/2019	< 0.463	347	46.9	20,500	894	87,700	8.87		
	5/15/2019		333		50,500	2,370	25,900			
					Alkalinity					
Well No.	Collection Date	Bicarbonate	Carbonate	Hydroxide	Total					
	Date	mg/L	mg/L	mg/L	mg/L					
MW-4	1/29/2019									
	5/15/2019	5140	<	<	5140					
MW-2	5/15/2019	116	<	<	116					

Table 2

GroundwaterSample Organic and Inorganic Analytical Data Summary 3Bears Cottonwood Facility Eddy County, New Mexico

Notes: Analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B (BTEX), Method 8015M (TPH) and Method 300 (chloride) All values reported in milligrams per liter (mg/L) equivelent to parts per million (ppm)

- -- No data vailable
- < values denootes concentration is less than method reporting limit (RL).
- * Human health standard
- ** Domestic water quality standard

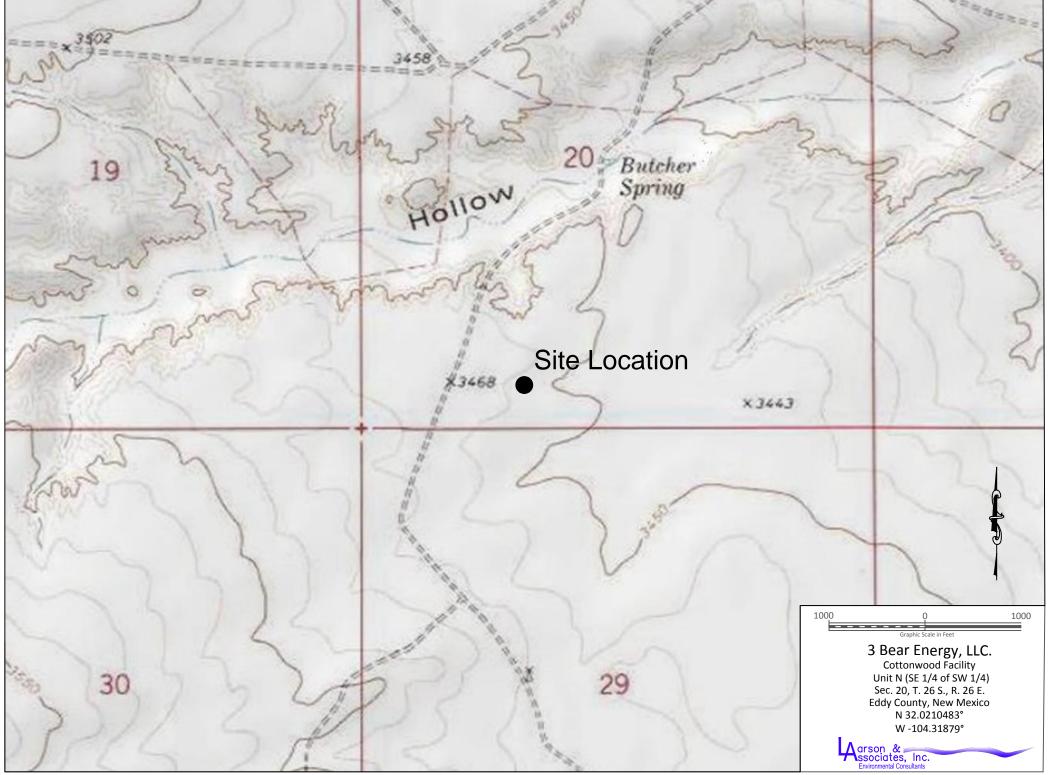


Figure 1 - Topographic Map



Figure 2 - Aerial Map

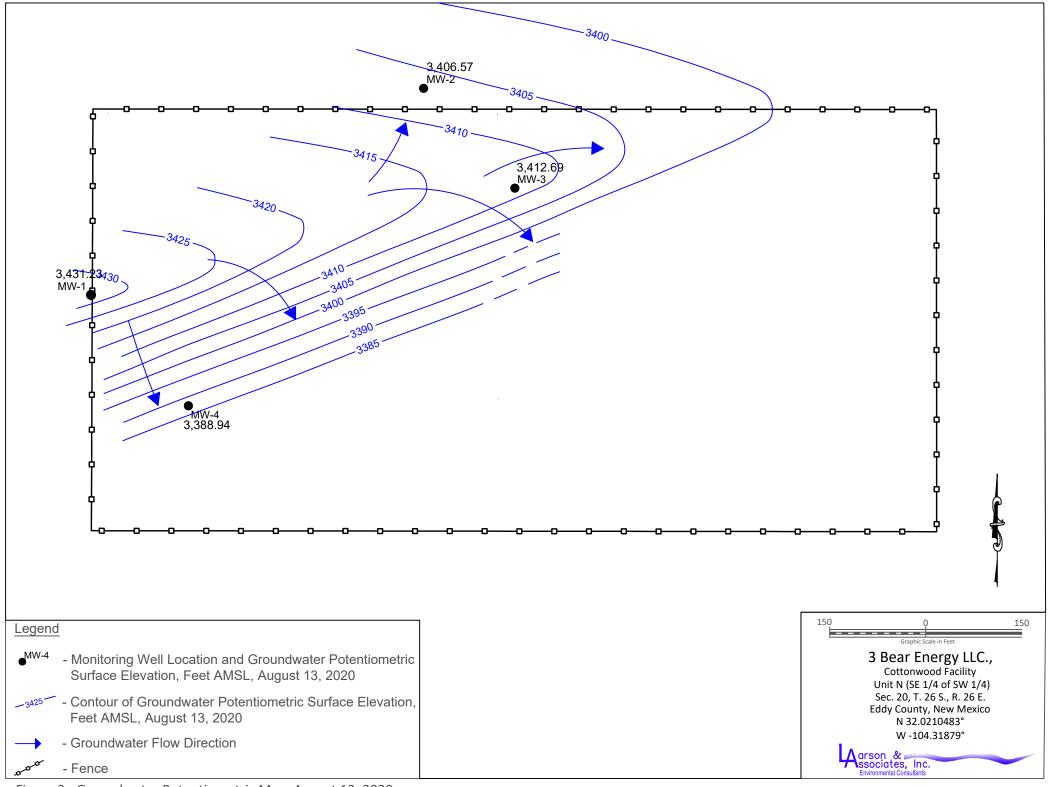


Figure 3 - Groundwater Potentiometric Map, August 13, 2020

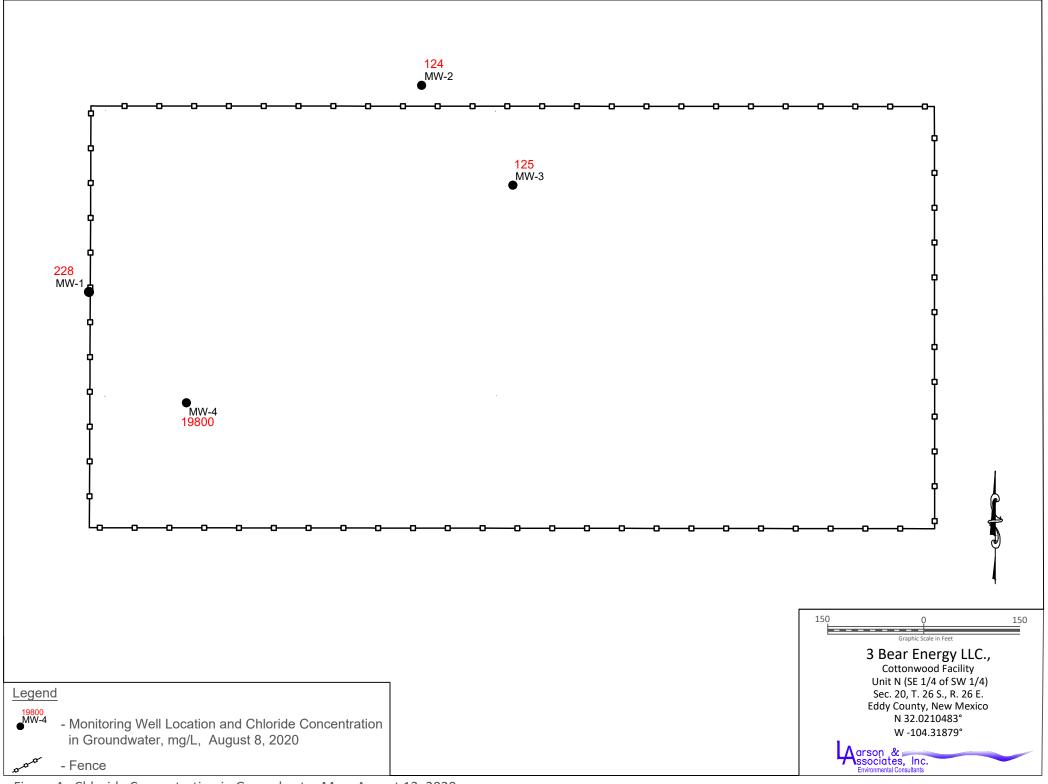


Figure 4 - Chloride Concentration in Groundwater Map, August 13, 2020

Appendix A Laboratory Reports

August 25, 2020

Mark Larson Larson & Associates 507 N. Marienfeld #205

Midland, TX 79701

TEL: (432) 687-0901

FAX: (432) 687-0456 Order No.: 2008152

RE: 3 Bear - Cottonwood

Dear Mark Larson:

DHL Analytical, Inc. received 5 sample(s) on 8/18/2020 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-20-25

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2008152	6
WorkOrderSampleSummary 2008152	7
PrepDatesReport 2008152	8
AnalyticalDatesReport 2008152	9
Analytical Report 2008152	10
AnalyticalOCSummaryReport 2008152	15

CHAIN-OF-CUSTODY

7 SSOCIOT Environment	Aarson & ssociates, Inc. Environmental Consultants Data Reported to:					507 N. Marienfeld, Ste. 200 Midland, TX 79701 432-687-0901						DATE: \$\\\ 17\\\ 2020 PAGE \\ PO#: LAB WORK ORDER#: \(\frac{200815}{5}\) PROJECT LOCATION OR NAME: \(\frac{3Bear}{5}\) LAI PROJECT #: \(\frac{18-0176-01}{5}\) COLLECTOR: \(\frac{15}{5}\)						52	=_(
Data Reported to:				-	T	1				1	L		41 P	RC	JJE									_	<u> </u>	JLL						
TRRP report?	S=SOIL W=WATE A=AIR		AINT SLUDGE OTHER			PRE	SER'							/													\ \{\					
TIME ZONE: Time zone/State:					ners				ERVE!			,S, /	/			*]/ 3/							\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			} //		
MST/NM					# of Containers		HNO ₃ H,SO, □ NaOH	4	UNPRESSERVED		NY'S						3/ \/\			/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										//		
Field Sample I.D.	Lab #	Date	Time	Matrix	# of (모	HNO.	밀	NN	P.																		_	_	FIEL	D NOT	ES
/4w-1	01	8/13/20	14:00	W	10	6		λ		X		χ	X	X			T									X	\exists					
Min-2	02	Ī	11:40					ì		1		1	Ì	1												1				-		***************************************
MW-3	03		13:00																													
MW-4	04		15:00							Name of the last																						
MW-3 MW-4 Dup-1	05		13:30	1	1.1							1	L	L												1						
				:																												
																		1		T												
				i																												
TOTAL																												1				
RELINQUISHED BY:	Siĝnature)	81	DATE/TI		RECE	IVED SC		igna	iture))				- 1					TIME	- 1	LAB				C	_ f ~	_			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	78	
RELINQUISHED BY:(Signature)	8/12	DATE/TI	ME 0843	RECE	IVED	BY: (S	igna	iture))	1 DAY			r		USED																
RELINQUISHED BY:(Signature)		DATE/TI		RECE	ÍVED	BY: (S	igna	iture)					_,,,,,																		
LABORATORY: D	t L										3			1.						_	□н	AND	DEL	IVER	RED	3	V°.	Ü	الم	50		

CUSTODY &

SIGNATURE

L DHL
ANALYTICAL

Sample Receipt Checklist

Client Name Larson & Associates			Date Recei	ved: 8/18/	2020
Work Order Number 2008152			Received by	: RA	
Checklist completed by:	8/18/202	20	Reviewed by	, DD	8/18/2020
Signature	Date		May Ansure	Initials	Date
	Carrier name:	LoneStar			
Shipping container/cooler in good condition	n?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shippping contain	er/cooler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished	d and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labe	ls?	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated tes	t?	Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗸	No 🗌		
Container/Temp Blank temperature in con	npliance?	Yes 🗹	No 🗌	5.6 °C	
Water - VOA vials have zero headspace?		Yes 🗸	No 🗌	No VOA vials submi	tted
Water - pH<2 acceptable upon receipt?		Yes	No 🗌	NA 🗹 LOT#	
		Adjusted?		Checked by	
Water - ph>9 (S) or ph>10 (CN) acceptable	e upon receipt?	Yes	No 🗌	NA 🗹 LOT#	
		Adjusted?		Checked by	
Any No response must be detailed in the	comments section below.				
Client contacted:	Date contacted:		Pers	on contacted	
Contacted by:	Regarding:				
Comments:					
		1992 1998 AST CO. 1994 A			
Corrective Action:	11979 11970 1				
			-		
					· · · · · · · · · · · · · · · · · · ·

CLIENT: Larson & Associates

Project: 3 Bear - Cottonwood

Lab Order: 2008152

CASE NARRATIVE

Date: 25-Aug-20

Sample was analyzed using the methods outlined in the following references:

Method M8015V - GRO Analysis Method M8015D - DRO Analysis Method SW8260D - Volatile Aromatics Analysis Method E300 - Anions Analysis

LOG IN

The samples were received and log-in performed on 8/18/2020. A total of 5 samples were received and analyzed. The samples arrived in good condition and were properly packaged. The samples were collected in Mountain Standard time-zone.

DRO ANALYSIS

For DRO Analysis, the recovery of surrogate Isopropylbenzene for Sample MW-4 was below the method control limits. This is flagged accordingly in the Analytical Data Report. The remaining surrogate for this sample was within method control limits. No further corrective action was taken.

ANIONS ANALYSIS

For Anions Analysis, the recovery of Chloride for the Matrix Spike (2008152-01 MS) was below the method control limits. This is flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS/MSD. No further corrective action was taken.

Date: 25-Aug-20

CLIENT: Larson & Associates
Project: 3 Bear - Cottonwood

Lab Order: 2008152

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2008152-01	MW-1		08/13/20 02:00 PM	8/18/2020
2008152-02	MW-2		08/13/20 11:40 AM	8/18/2020
2008152-03	MW-3		08/13/20 01:00 PM	8/18/2020
2008152-04	MW-4		08/13/20 03:00 PM	8/18/2020
2008152-05	Dup-1		08/13/20 01:30 PM	8/18/2020

Lab Order: 2008152

Client: Larson & Associates
Project: 3 Bear - Cottonwood

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2008152-01A	MW-1	08/13/20 02:00 PM	Aqueous	SW5030C	Purge and Trap Water GC/MS	08/19/20 10:15 AM	97658
2008152-01B	MW-1	08/13/20 02:00 PM	Aqueous	SW5030C	Purge and Trap Water GC-Gas	08/20/20 08:10 AM	97664
2008152-01C	MW-1	08/13/20 02:00 PM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
2008152-01D	MW-1	08/13/20 02:00 PM	Aqueous	SW3510C	Aq Prep Sep Funnel: DRO	08/19/20 11:07 AM	97660
2008152-02A	MW-2	08/13/20 11:40 AM	Aqueous	SW5030C	Purge and Trap Water GC/MS	08/19/20 10:15 AM	97658
2008152-02B	MW-2	08/13/20 11:40 AM	Aqueous	SW5030C	Purge and Trap Water GC-Gas	08/20/20 08:10 AM	97664
2008152-02C	MW-2	08/13/20 11:40 AM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
2008152-02D	MW-2	08/13/20 11:40 AM	Aqueous	SW3510C	Aq Prep Sep Funnel: DRO	08/19/20 11:07 AM	97660
2008152-03A	MW-3	08/13/20 01:00 PM	Aqueous	SW5030C	Purge and Trap Water GC/MS	08/19/20 10:15 AM	97658
008152-03B	MW-3	08/13/20 01:00 PM	Aqueous	SW5030C	Purge and Trap Water GC-Gas	08/20/20 08:10 AM	97664
008152-03C	MW-3	08/13/20 01:00 PM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
008152-03D	MW-3	08/13/20 01:00 PM	Aqueous	SW3510C	Aq Prep Sep Funnel: DRO	08/19/20 11:07 AM	97660
008152-04A	MW-4	08/13/20 03:00 PM	Aqueous	SW5030C	Purge and Trap Water GC/MS	08/19/20 10:15 AM	97658
2008152-04B	MW-4	08/13/20 03:00 PM	Aqueous	SW5030C	Purge and Trap Water GC-Gas	08/20/20 08:10 AM	97664
008152-04C	MW-4	08/13/20 03:00 PM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
	MW-4	08/13/20 03:00 PM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
008152-04D	MW-4	08/13/20 03:00 PM	Aqueous	SW3510C	Aq Prep Sep Funnel: DRO	08/19/20 11:07 AM	97660
008152-05A	Dup-1	08/13/20 01:30 PM	Aqueous	SW5030C	Purge and Trap Water GC/MS	08/19/20 10:15 AM	97658
2008152-05B	Dup-1	08/13/20 01:30 PM	Aqueous	SW5030C	Purge and Trap Water GC-Gas	08/20/20 08:10 AM	97664
008152-05C	Dup-1	08/13/20 01:30 PM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
	Dup-1	08/13/20 01:30 PM	Aqueous	E300	Anion Preparation	08/19/20 10:04 AM	97657
008152-05D	Dup-1	08/13/20 01:30 PM	Aqueous	SW3510C	Aq Prep Sep Funnel: DRO	08/19/20 11:07 AM	97660

Lab Order: 2008152

Client: Larson & Associates

Project: 3 Bear - Cottonwood

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2008152-01A	MW-1	Aqueous	SW8260D	Volatile Aromatics by GC/MS	97658	1	08/19/20 12:28 PM	GCMS3_200819A
2008152-01B	MW-1	Aqueous	M8015V	TPH Purgeable by GC - Water	97664	1	08/20/20 12:14 PM	GC4_200820A
2008152-01C	MW-1	Aqueous	E300	Anions by IC method - Water	97657	100	08/19/20 02:41 PM	IC2_200819A
2008152-01D	MW-1	Aqueous	M8015D	TPH Extractable by GC - Water	97660	1	08/20/20 09:39 AM	GC15_200820A
2008152-02A	MW-2	Aqueous	SW8260D	Volatile Aromatics by GC/MS	97658	1	08/19/20 12:53 PM	GCMS3_200819A
2008152-02B	MW-2	Aqueous	M8015V	TPH Purgeable by GC - Water	97664	1	08/20/20 12:38 PM	GC4_200820A
2008152-02C	MW-2	Aqueous	E300	Anions by IC method - Water	97657	10	08/19/20 05:03 PM	IC2_200819A
2008152-02D	MW-2	Aqueous	M8015D	TPH Extractable by GC - Water	97660	1	08/20/20 09:48 AM	GC15_200820A
2008152-03A	MW-3	Aqueous	SW8260D	Volatile Aromatics by GC/MS	97658	1	08/19/20 01:17 PM	GCMS3_200819A
2008152-03B	MW-3	Aqueous	M8015V	TPH Purgeable by GC - Water	97664	1	08/20/20 01:01 PM	GC4_200820A
2008152-03C	MW-3	Aqueous	E300	Anions by IC method - Water	97657	10	08/19/20 05:19 PM	IC2_200819A
2008152-03D	MW-3	Aqueous	M8015D	TPH Extractable by GC - Water	97660	1	08/20/20 09:57 AM	GC15_200820A
2008152-04A	MW-4	Aqueous	SW8260D	Volatile Aromatics by GC/MS	97658	10	08/19/20 01:42 PM	GCMS3_200819A
2008152-04B	MW-4	Aqueous	M8015V	TPH Purgeable by GC - Water	97664	10	08/20/20 01:27 PM	GC4_200820A
2008152-04C	MW-4	Aqueous	E300	Anions by IC method - Water	97657	1000	08/19/20 02:25 PM	IC2_200819A
	MW-4	Aqueous	E300	Anions by IC method - Water	97657	1000	08/19/20 04:15 PM	IC2_200819A
2008152-04D	MW-4	Aqueous	M8015D	TPH Extractable by GC - Water	97660	1	08/20/20 10:06 AM	GC15_200820A
2008152-05A	Dup-1	Aqueous	SW8260D	Volatile Aromatics by GC/MS	97658	1	08/19/20 02:07 PM	GCMS3_200819A
2008152-05B	Dup-1	Aqueous	M8015V	TPH Purgeable by GC - Water	97664	1	08/20/20 01:51 PM	GC4_200820A
2008152-05C	Dup-1	Aqueous	E300	Anions by IC method - Water	97657	100	08/19/20 03:29 PM	IC2_200819A
	Dup-1	Aqueous	E300	Anions by IC method - Water	97657	10	08/19/20 05:35 PM	IC2_200819A
2008152-05D	Dup-1	Aqueous	M8015D	TPH Extractable by GC - Water	97660	1	08/20/20 10:15 AM	GC15_200820A

CLIENT: Larson & Associates Client Sample ID: MW-1

Project: 3 Bear - Cottonwood Lab ID: 2008152-01

Project No: 18-0176-01 **Collection Date:** 08/13/20 02:00 PM

Lab Order: 2008152 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80 ²	15D			Analyst: BTJ
TPH-DRO C10-C28	0.107	0.0758	0.0947	mg/L	1	08/20/20 09:39 AM
TPH-ORO >C28-C35	<0.0758	0.0758	0.0947	mg/L	1	08/20/20 09:39 AM
Surr: Isopropylbenzene	63.9	0	47-142	%REC	1	08/20/20 09:39 AM
Surr: Octacosane	90.3	0	51-124	%REC	1	08/20/20 09:39 AM
VOLATILE AROMATICS BY GC/MS		SW82	60D			Analyst: SNM
Benzene	<0.00800	0.000800	0.00200	mg/L	1	08/19/20 12:28 PM
Ethylbenzene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 12:28 PM
Toluene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 12:28 PM
Total Xylenes	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 12:28 PM
Surr: 1,2-Dichloroethane-d4	104	0	72-119	%REC	1	08/19/20 12:28 PM
Surr: 4-Bromofluorobenzene	98.8	0	76-119	%REC	1	08/19/20 12:28 PM
Surr: Dibromofluoromethane	109	0	85-115	%REC	1	08/19/20 12:28 PM
Surr: Toluene-d8	106	0	81-120	%REC	1	08/19/20 12:28 PM
TPH PURGEABLE BY GC - WATER		M80 ⁻	15V			Analyst: BTJ
TPH-GRO (C6-C10)	< 0.0600	0.0600	0.100	mg/L	1	08/20/20 12:14 PM
Surr: Tetrachlorethene	126	0	74-138	%REC	1	08/20/20 12:14 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: SNM
Chloride	228	30.0	100	mg/L	100	08/19/20 02:41 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 25-Aug-20

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Project:

CLIENT: Larson & Associates Client Sample ID: MW-2

3 Bear - Cottonwood **Lab ID:** 2008152-02

Project No: 18-0176-01 **Collection Date:** 08/13/20 11:40 AM

Lab Order: 2008152 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80 ²	15D			Analyst: BTJ
TPH-DRO C10-C28	< 0.0841	0.0841	0.105	mg/L	1	08/20/20 09:48 AM
TPH-ORO >C28-C35	< 0.0841	0.0841	0.105	mg/L	1	08/20/20 09:48 AM
Surr: Isopropylbenzene	56.6	0	47-142	%REC	1	08/20/20 09:48 AM
Surr: Octacosane	89.6	0	51-124	%REC	1	08/20/20 09:48 AM
VOLATILE AROMATICS BY GC/MS		SW82	60D			Analyst: SNM
Benzene	<0.00800	0.000800	0.00200	mg/L	1	08/19/20 12:53 PM
Ethylbenzene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 12:53 PM
Toluene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 12:53 PM
Total Xylenes	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 12:53 PM
Surr: 1,2-Dichloroethane-d4	104	0	72-119	%REC	1	08/19/20 12:53 PM
Surr: 4-Bromofluorobenzene	99.5	0	76-119	%REC	1	08/19/20 12:53 PM
Surr: Dibromofluoromethane	109	0	85-115	%REC	1	08/19/20 12:53 PM
Surr: Toluene-d8	107	0	81-120	%REC	1	08/19/20 12:53 PM
TPH PURGEABLE BY GC - WATER		M80 ⁻	15V			Analyst: BTJ
TPH-GRO (C6-C10)	< 0.0600	0.0600	0.100	mg/L	1	08/20/20 12:38 PM
Surr: Tetrachlorethene	113	0	74-138	%REC	1	08/20/20 12:38 PM
ANIONS BY IC METHOD - WATER	E300					Analyst: SNM
Chloride	124	3.00	10.0	mg/L	10	08/19/20 05:03 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 25-Aug-20

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Project:

CLIENT: Larson & Associates Client Sample ID: MW-3

3 Bear - Cottonwood **Lab ID:** 2008152-03

Project No: 18-0176-01 **Collection Date:** 08/13/20 01:00 PM

Lab Order: 2008152 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80 ²	15D			Analyst: BTJ
TPH-DRO C10-C28	< 0.0822	0.0822	0.103	mg/L	1	08/20/20 09:57 AM
TPH-ORO >C28-C35	< 0.0822	0.0822	0.103	mg/L	1	08/20/20 09:57 AM
Surr: Isopropylbenzene	63.5	0	47-142	%REC	1	08/20/20 09:57 AM
Surr: Octacosane	90.6	0	51-124	%REC	1	08/20/20 09:57 AM
VOLATILE AROMATICS BY GC/MS		SW82	60D			Analyst: SNM
Benzene	<0.000800	0.000800	0.00200	mg/L	1	08/19/20 01:17 PM
Ethylbenzene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 01:17 PM
Toluene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 01:17 PM
Total Xylenes	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 01:17 PM
Surr: 1,2-Dichloroethane-d4	104	0	72-119	%REC	1	08/19/20 01:17 PM
Surr: 4-Bromofluorobenzene	100	0	76-119	%REC	1	08/19/20 01:17 PM
Surr: Dibromofluoromethane	109	0	85-115	%REC	1	08/19/20 01:17 PM
Surr: Toluene-d8	106	0	81-120	%REC	1	08/19/20 01:17 PM
TPH PURGEABLE BY GC - WATER		M80 ⁻	15V			Analyst: BTJ
TPH-GRO (C6-C10)	< 0.0600	0.0600	0.100	mg/L	1	08/20/20 01:01 PM
Surr: Tetrachlorethene	114	0	74-138	%REC	1	08/20/20 01:01 PM
ANIONS BY IC METHOD - WATER		E30			Analyst: SNM	
Chloride	125	3.00	10.0	mg/L	10	08/19/20 05:19 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 25-Aug-20

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Project:

CLIENT: Larson & Associates Client Sample ID: MW-4

3 Bear - Cottonwood **Lab ID:** 2008152-04

Project No: 18-0176-01 **Collection Date:** 08/13/20 03:00 PM

Lab Order: 2008152 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M801	5D			,	Analyst: BTJ
TPH-DRO C10-C28	0.137	0.0566	0.0708		mg/L	1	08/20/20 10:06 AM
TPH-ORO >C28-C35	< 0.0566	0.0566	0.0708		mg/L	1	08/20/20 10:06 AM
Surr: Isopropylbenzene	39.6	0	47-142	S	%REC	1	08/20/20 10:06 AM
Surr: Octacosane	102	0	51-124		%REC	1	08/20/20 10:06 AM
VOLATILE AROMATICS BY GC/MS		SW82	60D			,	Analyst: SNM
Benzene	< 0.00800	0.00800	0.0200		mg/L	10	08/19/20 01:42 PM
Ethylbenzene	< 0.0200	0.0200	0.0600		mg/L	10	08/19/20 01:42 PM
Toluene	< 0.0200	0.0200	0.0600		mg/L	10	08/19/20 01:42 PM
Total Xylenes	< 0.0200	0.0200	0.0600		mg/L	10	08/19/20 01:42 PM
Surr: 1,2-Dichloroethane-d4	107	0	72-119		%REC	10	08/19/20 01:42 PM
Surr: 4-Bromofluorobenzene	100	0	76-119		%REC	10	08/19/20 01:42 PM
Surr: Dibromofluoromethane	109	0	85-115		%REC	10	08/19/20 01:42 PM
Surr: Toluene-d8	106	0	81-120		%REC	10	08/19/20 01:42 PM
TPH PURGEABLE BY GC - WATER		M801	5V			,	Analyst: BTJ
TPH-GRO (C6-C10)	< 0.600	0.600	1.00		mg/L	10	08/20/20 01:27 PM
Surr: Tetrachlorethene	125	0	74-138		%REC	10	08/20/20 01:27 PM
ANIONS BY IC METHOD - WATER	E300				Analys		Analyst: SNM
Chloride	19800	300	1000		mg/L	1000	08/19/20 04:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection LimitS Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 25-Aug-20

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Larson & Associates Client Sample ID: Dup-1

Project: 3 Bear - Cottonwood Lab ID: 2008152-05

Project No: 18-0176-01 **Collection Date:** 08/13/20 01:30 PM

Lab Order: 2008152 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80 ⁻	15D			Analyst: BTJ
TPH-DRO C10-C28	< 0.0747	0.0747	0.0934	mg/L	1	08/20/20 10:15 AM
TPH-ORO >C28-C35	< 0.0747	0.0747	0.0934	mg/L	1	08/20/20 10:15 AM
Surr: Isopropylbenzene	65.3	0	47-142	%REC	1	08/20/20 10:15 AM
Surr: Octacosane	92.7	0	51-124	%REC	1	08/20/20 10:15 AM
VOLATILE AROMATICS BY GC/MS		SW82	260D			Analyst: SNM
Benzene	<0.000800	0.000800	0.00200	mg/L	1	08/19/20 02:07 PM
Ethylbenzene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 02:07 PM
Toluene	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 02:07 PM
Total Xylenes	< 0.00200	0.00200	0.00600	mg/L	1	08/19/20 02:07 PM
Surr: 1,2-Dichloroethane-d4	105	0	72-119	%REC	1	08/19/20 02:07 PM
Surr: 4-Bromofluorobenzene	101	0	76-119	%REC	1	08/19/20 02:07 PM
Surr: Dibromofluoromethane	108	0	85-115	%REC	1	08/19/20 02:07 PM
Surr: Toluene-d8	106	0	81-120	%REC	1	08/19/20 02:07 PM
TPH PURGEABLE BY GC - WATER		M80 ⁻	15V			Analyst: BTJ
TPH-GRO (C6-C10)	< 0.0600	0.0600	0.100	mg/L	1	08/20/20 01:51 PM
Surr: Tetrachlorethene	121	0	74-138	%REC	1	08/20/20 01:51 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: SNM
Chloride	213	3.00	10.0	mg/L	10	08/19/20 05:35 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 25-Aug-20

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Date: 25-Aug-20

ANALYTICAL QC SUMMARY REPORT

CLIENT: Larson & Associates

Work Order: 2008152

Project: 3 Bear - Cottonwood RunID: GC15_200820A

		1 0000	450.04B.00004	50 00D 0	000450 005	000045	0.000		
plies to the fo	llowing	samples: 2008	152-01D, 20081	52-02D, 2	008152-03D,	2008152	2-04D, 20081	52-05D	
Batch ID:	97660		TestNo:	M8	015D		Units:	mg/L	-
Run ID:	GC15	_200820A	Analysis	Date: 8/2	0/2020 9:11:	52 AM	Prep Date:	8/19/	/2020
	Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit ⁽	%RPD	RPDLimit Qual
<	0.0800	0.100							
<	0.0800	0.100							
	0.0650		0.1000		65.0	47	142		
	0.0855		0.1000		85.5	51	124		
Batch ID:	97660		TestNo:	М8	015D		Units:	mg/L	-
Run ID:	GC15	_200820A	Analysis	Date: 8/2	0/2020 9:20:	55 AM	Prep Date:	8/19/	/2020
	Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit ⁽	%RPD	RPDLimit Qual
	1.33	0.100	1.250	0	107	50	114		
	0.0892		0.1000		89.2	47	142		
	0.0902		0.1000		90.2	51	124		
Batch ID:	97660		TestNo:	M8	015D		Units:	mg/L	-
Run ID:	GC15	_200820A	Analysis	Date: 8/2	0/2020 9:29:	59 AM	Prep Date:	8/19/	/2020
	Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit ^o	%RPD	RPDLimit Qual
	1.25	0.100	1.250	0	99.7	50	114	6.70	30
	0.0796		0.1000		79.6	47	142	0	0
	0.0920		0.1000		92.0	51	124	0	0
	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	Batch ID: 97660 Run ID: GC15 Result <0.0800 <0.0800 0.0650 0.0855 Batch ID: 97660 Run ID: GC15 Result 1.33 0.0892 0.0902 Batch ID: 97660 Run ID: GC15 Result Result 1.33 0.892 0.9902 Run ID: GC15	Batch ID: 97660 Run ID: GC15_200820A Result RL <0.0800 0.100 <0.0800 0.100 0.0650 0.0855 Batch ID: 97660 Run ID: GC15_200820A Result RL 1.33 0.100 0.0892 0.0902 Batch ID: 97660 Run ID: GC15_200820A Result RL 1.25 0.100 0.0796	Batch ID: 97660 TestNo: Run ID: GC15_200820A Analysis Result RL SPK value <0.0800	Batch ID: 97660 TestNo: M8 Run ID: GC15_200820A Analysis Date: 8/2 Result RL SPK value Ref Val <0.0800	Batch ID: 97660 TestNo: M8015D Run ID: GC15_200820A Analysis Date: 8/20/2020 9:11: Result RL SPK value Ref Val %REC <0.0800	Batch ID: 97660 TestNo: M8015D Run ID: GC15_200820A Analysis Date: 8/20/2020 9:11:52 AM Result RL SPK value Ref Val %REC LowLin <0.0800	Batch ID: 97660 TestNo: M8015D Units: Run ID: GC15_200820A Analysis Date: 8/20/2020 9:11:52 AM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit 9 <0.0800	Run ID: GC15_200820A Analysis Date: 8/20/2020 9:11:52 AM Prep Date: 8/19/20/2020 9:12:52 AM Analysis Date: 8/20/2020 9:29:52 AM Prep Date: 8/19/20/2020 9:29:52 AM Prep Date: 8/19/20/2020 AM

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 1 of 9

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

CLIENT: Larson & Associates

Work Order: 2008152

ANALYTICAL QC SUMMARY REPORT

Project: 3 Bear - Cottonwood RunID: GC15_200820A

Sample ID: ICV-200820 SampType: ICV	Batch ID: Run ID:		1 200820A	TestNo Analys		3015D 20/2020 8:57:	36 AM	Units: Prep Date	mg/L :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
TPH-DRO C10-C28		445	0.100	500.0	0	89.0	80	120	
TPH-ORO >C28-C35		0.484	0.100	0					
Surr: Isopropylbenzene		24.5		25.00		98.2	80	120	
Surr: Octacosane		20.6		25.00		82.5	80	120	

Sample ID: CCV1-200820	Batch ID:	R11202	21	TestNo	: M8 0	015D		Units:	mg/L	
SampType: CCV	Run ID:	GC15_	200820A	Analys	is Date: 8/2 0	0/2020 10:34	:31 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDI	_imit Qual
TPH-DRO C10-C28		237	0.100	250.0	0	94.8	80	120		
TPH-ORO >C28-C35		0.116	0.100	0						
Surr: Isopropylbenzene		14.2		12.50		113	80	120		
Surr: Octacosane		10.7		12.50		85.5	80	120		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 2 of 9

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: Larson & Associates

Work Order: 2008152

ANALYTICAL QC SUMMARY REPORT

Project: 3 Bear - Cottonwood RunID: GC4_200820A

								_		
The QC data in batch 97664 app	olies to the fo	llowing s	samples: 2008	152-01B, 2008 ⁻	152-02B, 20	008152-03B,	2008152	-04B, 200815	2-05B	
Sample ID: LCS-97664	Batch ID:	97664		TestNo	: M8	015V		Units:	mg/L	
SampType: LCS	Run ID:	GC4_2	200820A	Analysi	s Date: 8/20	0/2020 9:47:	55 AM	Prep Date:	8/20/2	020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-GRO (C6-C10)		2.42	0.100	2.500	0	96.8	67	136		
Surr: Tetrachlorethene		0.334		0.4000		83.4	74	138		
Sample ID: LCSD-97664	Batch ID:	97664		TestNo	: M8	015V		Units:	mg/L	
SampType: LCSD	Run ID:	GC4_2	200820A	Analysi	s Date: 8/20	0/2020 10:11	1:28 AM	Prep Date:	8/20/2	020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-GRO (C6-C10)		2.75	0.100	2.500	0	110	67	136	12.7	30
Surr: Tetrachlorethene		0.386		0.4000		96.4	74	138	0	0
Sample ID: MB-97664	Batch ID:	97664		TestNo	: M8	015V		Units:	mg/L	
SampType: MBLK	Run ID:	GC4_2	200820A	Analysi	s Date: 8/20	0/2020 11:24	1:27 AM	Prep Date:	8/20/2	020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-GRO (C6-C10)	<	:0.0600	0.100							
Surr: Tetrachlorethene		0.489		0.4000		122	74	138		
Sample ID: 2008152-01BMS	Batch ID:	97664		TestNo	: M8	015V		Units:	mg/L	
SampType: MS	Run ID:	GC4_2	200820A	Analysi	s Date: 8/20	0/2020 2:15:	09 PM	Prep Date:	8/20/2	020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-GRO (C6-C10)		2.75	0.100	2.500	0	110	67	136		
Surr: Tetrachlorethene		0.430		0.4000		107	74	138		
Sample ID: 2008152-01BMSD	Batch ID:	97664		TestNo	: M8	015V		Units:	mg/L	
SampType: MSD	Run ID:	GC4_2	200820A	Analysi	s Date: 8/20	0/2020 2:38:	26 PM	Prep Date:	8/20/2	020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-GRO (C6-C10)		2.85	0.100	2.500	0	114	67	136	3.38	30
Surr: Tetrachlorethene		0.444		0.4000		111	74	138	0	0

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 3 of 9

S Spike Recovery outside control limits

CLIENT: Larson & Associates ANALYTICAL QC SUMMARY REPORT

Work Order: 2008152

GC4_200820A **RunID: Project:** 3 Bear - Cottonwood

Sample ID: ICV-200820 SampType: ICV	Batch ID: Run ID:	R112016 GC4_2008	20A	TestNo: Analysis		015V 0/2020 9:22:3	5 AM	Units: Prep Date:	mg/l	L
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
TPH-GRO (C6-C10) Surr: Tetrachlorethene		5.16 0.361	0.100	5.000 0.4000	0	103 90.3	80 74	120 138		

Sample ID: CCV1-200820	Batch ID	R112016	5	TestNo	: M8 0	15V		Units:	mg/l	L
SampType: CCV	Run ID:	GC4_20	0820A	Analys	is Date: 8/20	/2020 3:29:	38 PM	Prep Date) :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
TPH-GRO (C6-C10)		2.77	0.100	2.500	0	111	80	120		
Surr: Tetrachlorethene		0.431		0.4000		108	74	138		

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

Page 4 of 9 RPD outside accepted control limits

R Spike Recovery outside control limits

CLIENT: Larson & Associates

Work Order: 2008152

Project: 3 Bear - Cottonwood RunID: GCMS3_200819A

ANALYTICAL QC SUMMARY REPORT

•	ottonwood	Hande		450.044.0000	2450.004.00	Kunii		JCN183_20		
The QC data in batch 97658 app	olles to the fo	llowing sa	mples: 2008	152-01A, 2008	3152-02A, 20	008152-03A,	2008152	-u4A, 200815	2-05A	
Sample ID: LCS-97658	Batch ID:	97658		TestNo	o: SW	8260D		Units:	mg/L	
SampType: LCS	Run ID:	GCMS3	_200819A	Analys	sis Date: 8/19	9/2020 11:37	7:00 AM	Prep Date:	8/19/2	020
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Benzene	C	0.0447	0.00200	0.0464	0	96.4	81	122		
Ethylbenzene	C	0.0421	0.00600	0.0464	0	90.8	73	127		
Toluene	C	0.0465	0.00600	0.0464	0	100	77	122		
Total Xylenes	(0.125	0.00600	0.139	0	90.2	80	121		
Surr: 1,2-Dichloroethane-d4		52.4		50.00		105	72	119		
Surr: 4-Bromofluorobenzene		50.0		50.00		100	76	119		
Surr: Dibromofluoromethane		54.7		50.00		109	85	115		
Surr: Toluene-d8		53.0		50.00		106	81	120		
Sample ID: MB-97658	Batch ID:	97658		TestN	o: SW	8260D		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS3	_200819A	Analys	sis Date: 8/19	9/2020 12:04	4:00 PM	Prep Date:	8/19/2	020
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Benzene	<0.	.008000	0.00200							
Ethylbenzene	<0	0.00200	0.00600							
Toluene	<0	0.00200	0.00600							
Total Xylenes	<0	0.00200	0.00600							
Surr: 1,2-Dichloroethane-d4		51.6		50.00		103	72	119		
Surr: 4-Bromofluorobenzene		50.7		50.00		101	76	119		
Surr: Dibromofluoromethane		54.0		50.00		108	85	115		
Surr: Toluene-d8		52.6		50.00		105	81	120		
Sample ID: 2008152-01AMS	Batch ID:	97658		TestNo	o: SW	8260D		Units:	mg/L	
SampType: MS	Run ID:	GCMS3	_200819A	Analys	sis Date: 8/19	9/2020 4:36:	00 PM	Prep Date:	8/19/2	020
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Benzene	C	0.0486	0.00200	0.0464	0	105	81	122		
Ethylbenzene	C	0.0449	0.00600	0.0464	0	96.8	73	127		
Toluene	C	0.0505	0.00600	0.0464	0	109	77	122		
Total Xylenes		0.133	0.00600	0.139	0	95.9	80	121		
Surr: 1,2-Dichloroethane-d4		51.9		50.00		104	72	119		
Surr: 4-Bromofluorobenzene		49.8		50.00		99.7	76	119		
Surr: Dibromofluoromethane		53.8		50.00		108	85	115		
Surr: Toluene-d8		52.8		50.00		106	81	120		
Sample ID: 2008152-01AMSD	Batch ID:	97658		TestN	o: SW	8260D		Units:	mg/L	
SampType: MSD	Run ID:	GCMS3	_200819A	Analys	sis Date: 8/19	9/2020 5:02:	00 PM	Prep Date:	8/19/2	020
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Benzene	C	0.0492	0.00200	0.0464	0	106	81	122	1.27	20
Qualifiers: B Analyte det	ected in the as	sociated M	Iethod Blank	DF	Dilution Factor	or				
J Analyte det	ected between	MDL and	RL	MDL	Method Detec	ction Limit			I	Page 5 of 9
ND Not Detected	ed at the Metho	od Detection	on Limit	R	RPD outside	accepted cont	trol limits			
RL Reporting I	Limit			S	Spike Recove	ery outside co	ntrol limits	S		

N Parameter not NELAP certified

J Analyte detected between SDL and RL

CLIENT: Larson & Associates ANALYTICAL QC SUMMARY REPORT

Work Order: 2008152

GCMS3_200819A **RunID: Project:** 3 Bear - Cottonwood

Sample ID: 2008152-01AMSD SampType: MSD	Batch ID:		3 200819A	TestNo	-	/8260D 9/2020 5:02:	OO DM	Units:	mg/L	- /2020
оапртурс. МОВ	IXUITID.	GCINIO.	J_200013A	Allalys	13 Date. 6/1	3/2020 3.02.	00 1 101	T TOP Date	. 0/13/	72020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Ethylbenzene		0.0454	0.00600	0.0464	0	97.9	73	127	1.14	20
Toluene		0.0508	0.00600	0.0464	0	109	77	122	0.513	20
Total Xylenes		0.132	0.00600	0.139	0	95.3	80	121	0.681	20
Surr: 1,2-Dichloroethane-d4		52.0		50.00		104	72	119	0	0
Surr: 4-Bromofluorobenzene		49.6		50.00		99.1	76	119	0	0
Surr: Dibromofluoromethane		54.2		50.00		108	85	115	0	0
Surr: Toluene-d8		52.9		50.00		106	81	120	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 6 of 9

CLIENT: Larson & Associates

Work Order: 2008152

Project: 3 Bear - Cottonwood RunID: GCMS3_200819A

Sample ID: ICV-200819 SampType: ICV	Batch ID: Run ID:	R112002 GCMS3_200819A		TestNo: SW8260D Analysis Date: 8/19/2020 11:13			:00 AM	Units: Prep Date	mg/L	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Q	ual
Benzene		0.0861	0.00200	0.0928	0	92.8	70	130		
Ethylbenzene		0.0818	0.00600	0.0928	0	88.1	70	130		
Toluene		0.0893	0.00600	0.0928	0	96.2	70	130		
Total Xylenes		0.243	0.00600	0.278	0	87.5	70	130		
Surr: 1,2-Dichloroethane-d4		52.4		50.00		105	72	119		
Surr: 4-Bromofluorobenzene		50.2		50.00		100	76	119		
Surr: Dibromofluoromethane		54.2		50.00		108	85	115		
Surr: Toluene-d8		52.6		50.00		105	81	120		

ANALYTICAL QC SUMMARY REPORT

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 7 of 9

CLIENT: Larson & Associates

Work Order: 2008152

Project: 3 Bear - Cottonwood RunID: IC2_200819A

ANALYTICAL QC SUMMARY REPORT

The QC data in batch 97657 app	lies to the fo	ollowing sampl	es: 2008	3152-01C, 20081	52-02C, 200	8152-03C,	2008152	-04C, 200815	2-05C
Sample ID: MB-97657	Batch ID:	97657		TestNo:	E300			Units:	mg/L
SampType: MBLK	Run ID:	IC2_200819	Α	Analysis	Date: 8/19/2	2020 12:06	:15 PM	Prep Date:	8/19/2020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Chloride		<0.300	1.00						
Sample ID: LCS-97657	Batch ID:	97657		TestNo:	E300			Units:	mg/L
SampType: LCS	Run ID:	IC2_200819	Α	Analysis	Date: 8/19/2	2020 12:22	:15 PM	Prep Date:	8/19/2020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Chloride		9.97	1.00	10.00	0	99.7	90	110	
Sample ID: LCSD-97657	Batch ID:	97657		TestNo:	E300			Units:	mg/L
SampType: LCSD	Run ID:	IC2_200819	Α	Analysis	Date: 8/19/2	2020 12:38	:14 PM	Prep Date:	8/19/2020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Chloride		9.95	1.00	10.00	0	99.5	90	110	0.123 20
Sample ID: 2008152-01CMS	Batch ID:	97657		TestNo:	E300			Units:	mg/L
SampType: MS	Run ID:	IC2_200819	Α	Analysis	Date: 8/19/2	2020 2:57:	19 PM	Prep Date:	8/19/2020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Chloride		1940	100	2000	227.7	85.8	90	110	S
Sample ID: 2008152-01CMSD	Batch ID:	97657		TestNo:	E300			Units:	mg/L
SampType: MSD	Run ID:	IC2_200819	Α	Analysis Date: 8/19/2020 3:13:1			19 PM	Prep Date:	8/19/2020
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Chloride		2190	100	2000	227.7	98.1	90	110	11.9 20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R PD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 8 of 9

CLIENT: Larson & Associates ANALYTICAL QC SUMMARY REPORT

Work Order: 2008152

RunID: IC2_200819A **Project:** 3 Bear - Cottonwood

Sample ID: ICV-200819	Batch ID:	R11200	5	TestNo:	E300)		Units:	mg/l	-
SampType: ICV	Run ID:	IC2_200	0819A	Analysis Date: 8/19/2020 11:34:14 AM				Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride		24.8	1.00	25.00	0	99.2	90	110		
Sample ID: CCV1-200819	Batch ID:	R11200	5	TestNo:	E300)		Units:	mg/L	-
SampType: CCV	Run ID:	IC2_200	0819A	Analysis Date: 8/19/2020 6:55:58 PM				Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride		10.0	1.00	10.00	0	100	90	110		

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

Page 9 of 9

R RPD outside accepted control limits

S Spike Recovery outside control limits