

December 30, 2019

Vertex Project #: 19E-00614-013

Spill Closure Report: El Presidente State 24 27 2 WA #005H Unit P, Section 02, Township 24 South, Range 27 East County: Eddy API: 30-015-44483 Tracking Number: NRM1935232619

Prepared For: Marathon Oil Permian, LLC 4111 S. Tidwell Road Carlsbad, New Mexico 88220

New Mexico Oil Conservation Division – District 2 – Artesia 811 South First Street Artesia, New Mexico 88210

Marathon Oil Permian, LLC (Marathon) retained Vertex Resource Services Inc. (Vertex) to conduct a spill assessment and remediation for an oil release that occurred at El Presidente State 24 27 2 WA #005H, API 30-015-44483 (hereafter referred to as "El Presidente"). Marathon provided immediate notification of the spill to New Mexico Oil Conservation Division (NM OCD) District 2 on October 12, 2019, followed by submission of an initial C-141 Release Notification (Attachment 1) on October 28, 2019. The tracking number for this incident is NRM1935232619.

This letter provides a description of the spill assessment and remediation activities, and demonstrates that closure criteria established in 19.15.29.12 *New Mexico Administrative Code* (NMAC) have been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NM OCD for closure of this release, with the understanding that any restoration of the site required as a result of this incident will be deferred until such time as oil and gas activities are terminated and the site is reclaimed per 19.15.29.13 NMAC.

Incident Description

On October 12, 2019, a release occurred at Marathon's El Presidente site when a rubber gasket on a sight glass failed. This incident resulted in the release of approximately 73.5 barrels (bbls) of oil into a lined secondary containment. A small section of the pad outside of containment was affected due to overspray. No oil was released into undisturbed areas or waterways. Upon discovery of the release, the gasket was repaired and an hydrovac truck was dispatched to the site to recover free liquids. Approximately 60 bbls of oil was recovered

vertex.ca

201 S Mesa Street, Carlsbad, New Mexico 88220, USA | P 575.725.5001

Marathon Oil Permian, LLC
El Presidente State 24 27 2 WA #005H

from the secondary containment and removed for disposal off-site. Visibly saturated or oily soil outside of the lined containment was excavated and removed from site for disposal as part of the initial incident response.

Site Characterization

The release at El Presidente occurred on state-owned land, N 32.24021836, W 104.15572919, approximately 10 miles south of Carlsbad, New Mexico. The legal description for the site is Unit P, Section 02, Township 24 South, Range 27 East, Lea County, New Mexico. This location is within the Permian Basin in southeast New Mexico and has historically been used for oil and gas exploration and production, and farmland. An aerial photograph and site schematic are included in Attachment 2.

El Presidente is typical of oil and gas exploration and production sites in the western portion of the Permian Basin, and is currently used for oil and gas production, and storage. The following sections specifically describe the release area on the northwest portion of the constructed pad where the heater treaters are located.

The surrounding landscape has historically been associated with limestone hills, the summits of ridges and crests, and the foot slopes and toeslopes of low, elongated hills at elevations of 1,100 to 4,400 feet above sea level. The plant community has the aspect of a grassland/shrub mix, dominated by grasses, with shrubs common throughout, and a semiarid climate with average annual precipitation ranging between 7 and 15 inches. The dominant grass species are principally threeawns and black grama, and the dominant shrub species is creosote bush with some broom snakeweed and scattered mesquite. Large, connected bare areas are present throughout the terrain (United States Department of Agriculture, 2019). Limited to no vegetation is allowed to grow on the compacted production pad.

The Geological Map of New Mexico indicates the surface geology at El Presidente is comprised primarily of Qa – alluvium from the Holocene to upper Pleistocene, with some aspects of nearby Pr – Rustler formation (Upper Permian) consisting of siltstone, gypsum, sandstone and dolomite (New Mexico Bureau of Geology and Mineral Resources, 2014 – 2017). The National Resource Conservation Service (NRCS) Web Soil Survey characterizes the soil at the site as Upton gravelly loam predominantly found on fans and ridges. The soil is typically a gravelly loam over a layer of cemented material and deep, very gravelly loam. It tends to be well-drained with high runoff and very low available moisture levels in the soil profile (United States Department of Agriculture, 2019). There is medium potential for karst geology to be present near El Presidente (United States Department of the Interior – Bureau of Land Management, 2019).

There is no surface water located on-site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, is Bond Draw located approximately 3,430 feet south of the site (Google Earth Pro, 2019). There are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

vertex.ca

Marathon Oil Permian, LLC El Presidente State 24 27 2 WA #005H

The nearest active well to the site is a New Mexico Office of the State Engineer (NM OSE)-identified well from 2008 located approximately 4,700 feet to the southeast. Depth to groundwater at this well is 56 feet below ground surface (bgs). The shallowest depth to groundwater identified in the vicinity is a 2003 NM OSE well located approximately 4,800 feet southeast of the site with a depth of 27 feet bgs. The most recent United States Geological Survey (USGS) well is from 1993 and is located 2.5 miles northeast of the site. Data for that well shows a depth to groundwater at 57 feet bgs (United States Department of the Interior – United States Geological Survey 2019). The Chevron Texaco Depth to Ground Water map for Eddy County confirms that depth to groundwater in the vicinity of El Presidente is between 51 and 100 feet bgs (Chevron Texaco, 2005). Documentation pertaining to site characterization and depth to groundwater determination is included in Attachment 3.

Closure Criteria Determination

Using site characterization information, a closure criteria determination worksheet (Attachment 3) was completed to determine if the release was subject to any of the special case scenarios outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Based on data included in the closure criteria determination worksheet, the release at El Presidente is not subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC and the closure criteria for the site is determined to be associated with the following constituent concentration limits.

Table 1: Closure Criteria for Soils Impacted by a Release			
Depth to Groundwater	Constituent	Limit	
51 <u>≤</u> 100 feet	Chloride	10,000 mg/kg	
	TPH ¹		
	(GRO + DRO + MRO)	2,500 mg/kg	
	GRO + DRO	1,000 mg/kg	
	BTEX ²	50 mg/kg	
	Benzene	10 mg/kg	

¹ total petroleum hydrocarbons = gasoline range organics + diesel range organics + motor oil range organics

² benzene, toluene, ethyl benzene and xylene

Remedial Actions

An initial spill inspection, completed on October 16, 2019, identified and mapped the boundaries of the remediated overspray area. The release area, including the impacted area within production equipment lined secondary containment and the area of impact outside of secondary containment, was determined to be approximately 60 feet long and 30 feet wide; the total affected area was determined to be 1,800 square feet. The Daily Field Report (DFR) associated with the site inspection is included as Attachment 4.

vertex.ca

Marathon Oil Permian, LLC El Presidente State 24 27 2 WA #005H

On October 28, 2019, after the production equipment secondary containment was cleaned, Vertex provided 48-hour notification of confirmation sampling and the liner inspection to NM OCD, as required by Subparagraph (a) of Paragraph (1) of Subsection D 19.15.29.12 NMAC (Attachment 5). On October 30, 2019, Vertex conducted a visual liner inspection of the production equipment secondary containment and collected a single composite confirmatory soil sample representative of no more than 200 square feet per the alternate sampling method outlined in Subparagraph (c) of Paragraph (1) of Subsection D 19.15.29.12 NMAC, which does not require prior NM OCD approval. The composite sample was placed into a laboratory-provided container, preserved on ice, and submitted to a National Environmental Laboratory Accreditation Program (NELAP)-approved laboratory for chemical analysis.

Laboratory analyses included Method 300.0 for chlorides, Method 8021B for volatile organics, including benzene, toluene, ethyl benzene and xylene (BTEX), and EPA Method 8015 for total petroleum hydrocarbon (TPH) including motor oil range organics (MRO), diesel range organics (DRO), and gasoline range organics (GRO). Final confirmatory sample analytical data is summarized in Attachment 6. Laboratory data reports and chain of custody forms are included in Attachment 7.

A GeoExplorer 7000 Series Trimble global positioning system (GPS) unit was used to map the approximate center of the five-point composite sample. The confirmation sampling location is presented on Figure 1 (Attachment 2). Relevant equipment and prominent features/reference points at the site are mapped as well.

Closure Request

Vertex recommends no additional remediation action to address the release at El Presidente. Laboratory analysis for the confirmation sample showed constituent of concern concentration levels below NM OCD Closure Criteria for areas where depth to groundwater is greater than 50 feet and less than 100 feet bgs as shown in Table 1 above. The secondary containment liner appeared to be intact and had the ability to contain the leak in question, as shown in the inspection photographs (Attachment 4). There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

The area of overspray previously scraped has been backfilled with clean material to the extent necessary. As this portion of the release occurred on an active wellpad, Vertex requests that restoration and reclamation of the overspray area be deferred until such time as the tank battery is removed and the pad is reclaimed per 19.15.29.13 NMAC.

Vertex requests that this incident (no RP yet assigned) be closed as all closure requirements set forth in Subsection E of 19.15.29.12 and Subsections A to D of 19.15.29.13 NMAC have been met. Marathon certifies that all information in this report and the attachments is correct and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NM OCD requirements to obtain closure on the October 12, 2019 release at El Presidente State 24 27 2 WA #005H.

vertex.ca

Should you have any questions or concerns, please do not hesitate to contact me at 505.506.0040 or ngordon@vertex.ca.

Sincerely,

atalie Fordon

Natalie Gordon PROJECT MANAGER

Attachments

- Attachment 1. NM OCD C-141 Report
- Attachment 2. Figure 1 Site Schematic and Confirmatory Sample Location
- Attachment 3. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 4. Daily Field Report(s) with Photographs
- Attachment 5. Required 48-hr Notification of Confirmation Sampling to Regulatory Agencies
- Attachment 6. Table 2 Confirmatory Sample Laboratory Results
- Attachment 7. Laboratory Data Reports/COCs

References

Chevron Texaco. (2005). Eddy Co. Depth to Ground Water, Water Wells, Facilities.

- Google Earth Pro. (2019). *Measured Distance from the Subject Site to Nearest Waterway*. Retrieved from https://earth.google.com.
- New Mexico Bureau of Geology and Mineral Resources. (2019). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- NM Office of the State Engineer, New Mexico Water Rights Reporting System. (2019). *Well Log/Meter Information Report*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html.
- New Mexico Oil Conservation Division. (2019). *Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- New Mexico Water Rights Reporting System. (2019). *Water Column/Average Depth to Water Report.* Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html.
- United States Department of Agriculture, Natural Resources Conservation Service, (2019). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of the Interior, Bureau of Land Management. (2019). *New Mexico Cave/Karsts*. Retrieved from https://www.blm.gov/programs/recreation/recreation-programs/caves/new-mexico.
- United States Department of the Interior, United States Geological Survey. (2019). *Groundwater for New Mexico: Water Levels*. Retrieved from https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels? .

Marathon Oil Permian, LLC El Presidente State 24 27 2 WA #005H

Limitations

This report has been prepared for the sole benefit of Marathon Oil Permian, LLC. This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Marathon Oil Permian, LLC. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented liabilities.

•

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Marathon Oil Permian LLC	OGRID 372098
Contact Name Isaac Castro	Contact Telephone 575-988-0561
Contact email <u>icastro@marathonoil.com</u>	Incident # (assigned by OCD)
Contact mailing address 4111 S. Tidwell Rd., Carlsbad, NM 8220	

Location of Release Source

Latitude <u>32.24021836</u>		Longitude	-104.15572919	
(NAD 83 in decimal degrees to 5 decimal places)				
Site Name EL PRESIDENTE STATE 24	27 2 WA #005H	Site Type O	il and gas drilling facility	
Date Release Discovered 10/12/19		API# (if appli	icable) 30-015-44483	

Unit Letter	Section	Township	Range	County
Р	02	24S	27E	Eddy

Surface Owner: State Federal Tribal Private (Name: _____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)			
Crude Oil	Volume Released (bbls) 73.5 bbls	Volume Recovered (bbls) 60 bbls	
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)	
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No	
Condensate	Volume Released (bbls)	Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)	
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)	
Cause of Release			

Operator reported a spill due to the rubber gaskets on a sight glass failing. An estimated 73.5 bbls of oil were released inside lined secondary containment and partially outside containment due to overspray. A vac truck was immediately dispatched to recover fluids and recovered 60 bbls. All spillage is contained on location.

Form C-141 Page 2	State of New Mexico Oil Conservation Division	Incident IDDistrict RPFacility IDApplication ID
Was this a major release as defined by 19.15.29.7(A) NMAC? ⊠ Yes □ No	If YES, for what reason(s) does the responsible p This was a major release as defined by NMAC 19	party consider this a major release? 9.15.29.7(A) based on volume of material released.
If YES, was immediate no Yes, to Mike Bratcher, V	otice given to the OCD? By whom? To whom? Wictoria Venegas, Robert Hamlet, Ryan Mann	When and by what means (phone, email, etc)?

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Isaac Castro	Title: <u>Environmental Professional</u>
Signature: <u>Isaac Castro</u>	Date: <u>10/28/19</u>
email: <u>icastro@marathonoil.com</u>	Telephone: <u>575-988-0561</u>
OCD Only	
Received by:	Date:

Received by OCD: 1/7/2020 3:57:55 PM

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	NRM1935232619
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>56</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗶 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗶 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗶 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

- X Field data
- X Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

eived by OCD: 1	/7/2020 3:57:55 PM			Page 12
Form C-141 Page 4	State of New Mexico Oil Conservation Divisi	on	Incident ID District RP Facility ID Application ID	NRM1935232619
I hereby certify th regulations all op public health or th failed to adequate addition, OCD ac and/or regulations	at the information given above is true and complete to erators are required to report and/or file certain release the environment. The acceptance of a C-141 report by ly investigate and remediate contamination that pose a ceptance of a C-141 report does not relieve the operate s. MELODIE SANIARI	the best of my knowledge notifications and perform the OCD does not relieve th a threat to groundwater, sur or of responsibility for com	and understand that purs corrective actions for rele he operator of liability sh face water, human health pliance with any other fe	uant to OCD rules and eases which may endanger ould their operations have or the environment. In deral, state, or local laws
Signature:	Melodie Sanjari	Date: 1/7/2020		
1		TT 1 1	FRE 000 05(1	
email:	msanjari(<i>a</i>)marathonoil.com	Telephone:	575-988-0561	

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NRM1935232619
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Nar	ne: MELODIE SANJARI	Title:	ENVIRONMENTAL PROFESSIONAL
Signature: 1	Melodie Sanjari	Date: 1/7/202	0
email: <u>m</u>	sanjari@marathonoil.com	Telephone:	575-988-0561
OCD Only			
Received by	y:	D	ate:
Closure app remediate co party of cor	proval by the OCD does not relieve the responsible p ontamination that poses a threat to groundwater, surf npliance with any other federal, state, or local laws a	arty of liability s ace water, huma and/or regulation	should their operations have failed to adequately investigate and n health, or the environment nor does not relieve the responsible ns.
Closure Ap	proved by:	Da	ate:
Printed Nar	ne:	Ti	tle:

•

ATTACHMENT 2

•

ATTACHMENT 3

•

Closure Cr	iteria Determination Worksheet		
Site Name	e: El Presidente State 24 27 2 WA #005H		
Spill Coor	dinates:	X: 32.24020	Y: -104.15570
Site Speci	fic Conditions	Value	Unit
1	Depth to Groundwater	56	feet
2	Within 300 feet of any continuously flowing	2 702	foot
2	watercourse or any other significant watercourse	5,762	leet
2	Within 200 feet of any lakebed, sinkhole or playa lake	0 575	feet
5	(measured from the ordinary high-water mark)	9,575	ieet
1	Within 300 feet from an occupied residence, school,	6.946	feet
4	hospital, institution or church	0,540	leet
	i) Within 500 feet of a spring or a private, domestic		
5	fresh water well used by less than five households for	4,951	feet
5	domestic or stock watering purposes, or		
	ii) Within 1000 feet of any fresh water well or spring	8,556	feet
	Within incorporated municipal boundaries or within a		
	defined municipal fresh water field covered under a		
6	municipal ordinance adopted pursuant to Section 3-27-	No	(Y/N)
	3 NMSA 1978 as amended, unless the municipality		
	specifically approves		
7	Within 300 feet of a wetland	3,782	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
			Critical
0		N 4 a aliuna	High
9	within an unstable area (Karst Map)	iviedium	Medium
			Low
10	Within a 100 year Floodalain	>100	
10	within a 100-year Floodplain	>100	year
			<50'
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	51-100'	51-100'
			>100'

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

					(R=POD has bee	en replaced	artore ar	5 1_NIM	2_NE 2_91	(A_SE)				
		(acr	e ft per annum)		and no longer serves this file, (quarters are $1 = NVV 2 = NV 3 = 5VV 4 = SE$) C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in meters									
	Sub		. ,			Well		, (4-	qqq			,	,	
WR File Nbr	basin	Use	Diversion Owner	County	y POD Number	Тад	Code Grant	Source	e 6416 4	Sec	Tws Rng	Х	Y	Distance
<u>C 03260</u>	С	STK	3 CLARAMAI R HAYHURST	ED	C 03260 POD1			Shallov	w 333	12	24S 27E	579994	3565935 🌍	1507
<u>C 03837</u>	С	PRO	0 DEVON ENERGY CO	ED	C 03260 POD1			Shallov	w 333	12	24S 27E	579994	3565935 🌍	1507
<u>C 03838</u>	С	PRO	0 DEVON ENERGY CO	ED	C 03260 POD1			Shallov	w 333	12	24S 27E	579994	3565935 🌍	1507
<u>C 03839</u>	С	PRO	0 DEVON ENERGY CO	ED	C 03260 POD1			Shallov	w 333	12	24S 27E	579994	3565935 🔵	1507
<u>C 02976</u>	С	STK	3 GEORGE BRANTLEY	ED	<u>C 02976</u>			Shallov	w 423	12	24S 27E	580519	3566195* 🌍	1531
SP 01349	CUB	IRR	2967.41 NM INTERSTATE STREAM	ED	SP 01349				14	12	24S 27E	580832	3566301* 🌍	1677
<u>C 03147</u>	С	MUL	3 GEORGE BRANTLEY	ED	<u>C 03147</u>				333	12	24S 27E	579884	3565715 🌍	1692
<u>C 03333</u>	С	PRO	0 OGX RESOURCES LLC	ED	<u>C 03147</u>				333	12	24S 27E	579884	3565715 🌍	1692
<u>C 03352</u>	С	PRO	0 NOVA MUD	ED	<u>C 03147</u>				333	12	24S 27E	579884	3565715 🌍	1692
<u>C 03869</u>	С	STK	3 GEORGE BRANTLEY	ED	C 03869 POD1		NON		134	12	24S 27E	580677	3566039 🌍	1752
<u>C 02937</u>	С	PRO	0 MEWBOURNE OIL COMPANY	ED	<u>C 02937</u>				343	12	24S 27E	580315	3565789* 🌍	1763
<u>C 02941</u>	С	PRO	0 PATTERSON DRILLING	ED	<u>C 02941</u>				343	12	24S 27E	580315	3565789* 🌍	1763
				ED	C 02941 POD1				343	12	24S 27E	580315	3565789* 🌍	1763
SD 00431	CUB	IRR	840 POLLED ANGUS CATTLE	ED	SD 00431				2	10	24S 27E	577807	3566860* 🌍	1808
<u>C 03032</u>	С	DOL	3 GEORGE BRANTLEY	ED	C 03032				414	12	24S 27E	580931	3566200* 🌍	1818
<u>C 03253</u>	С	PRO	0 MEWBOURNE OIL	ED	<u>C 03032</u>				414	12	24S 27E	580931	3566200* 🌍	1818
<u>C 00347</u>	CUB	EXP	0 BRANTLEY GEORGE	ED	<u>C 00347</u>			Shallov	w 11	13	24S 27E	580010	3565479* 🌍	1951
<u>C 01836</u>	CUB	IRR	0 GEORGE BRANTLEY	ED	<u>C 01836</u>				1 1	13	24S 27E	580010	3565479* 🌍	1951

*UTM location was derived from PLSS - see Help

		(acr	re ft per annum)				and no longer serves this C=the file is closed)	file, (quarters) (quarters	s are s are	1=N smal	W 2=N llest to	NE 3=SW · (argest)	4=SE) (NAD83	UTM in meters)	
	Sub	,	. ,			Well		q	qq	onna		, la gool)	,	,	
WR File Nbr	basin	Use	Diversion Owner	County	/ POD Number	Tag	Code Grant	Source 64	64	Sec	Tws	Rng	Х	Y	Distance
<u>C 03055</u>	С	DOL	0 GEORGE BRANTLEY	ED	<u>C 03055</u>			2	34	12	24S	27E	580930	3565995* 🌍	1956
C 00365	CUB	IRR	185.7 CARLETON JOE O	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 00464</u>	CUB	IRR	314.245 JACKIE DALE MCDONALD	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 00513</u>	CUB	IRR	1422 PARDUE LIMITED COMPANY	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 00574</u>	CUB	IRR	55.05 TOMMY JR. OR CARLA DUARTE	ED	<u>SP 01927</u>				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 00738</u>	CUB	IRR	343.5 W.J. BURKHAM	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 00750</u>	CUB	IRR	74.7 BETH ANN BOTROS	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 00764</u>	CUB	IRR	117.9 MIKE M. VASQUEZ	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 01082</u>	CUB	IRR	240 DAMON U. BOND	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
SD 01886	CUB	IRR	100 DICK CALDERON	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
SP 01927	CUB	CLS	0 UNITED STATES OF AMERICA	ED	SP 01927		С		4	12	24S	27E	581032	3566097* 🌍	1962
<u>SP 01927 1</u>	CUB	IRR	2171.91 EDWARD F. JUDKINS	ED	<u>SP 01927</u>				4	12	24S	27E	581032	3566097* 🌍	1962
SP 01927 2	CUB	IRR	796.367 LUCAS BROTHERS	ED	<u>SP 01927</u>				4	12	24S	27E	581032	3566097* 🌍	1962
<u>SP 01927 3</u>	CUB	IRR	144.794 JULIAN SMITH	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>SP 01927 4</u>	CUB N	MDW	2800 CARLSBAD IRRIGATION DISTRICT	ED	<u>SP 01927</u>				4	12	24S	27E	581032	3566097* 🌍	1962
SP 01927 5	CUB	IRR	2413.209 D.R. HARKEY	ED	<u>SP 01927</u>				4	12	24S	27E	581032	3566097* 🌍	1962
<u>SP 01927 6</u>	CUB	IRR	108.596 DANIEL BEACH	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>SP 01927 7</u>	CUB	IRR	5067.79 EDWARD F. JUDKIN	ED	SP 01927				4	12	24S	27E	581032	3566097* 🌍	1962
<u>C 03037</u>	С	DOL	3 GEORGE BRANTLEY	ED	<u>C 03037</u>			Shallow 4	34	12	24S	27E	580930	3565795* 🌍	2102
<u>C 03246</u>	C	PRO	0 MARBOB ENERGY CORP.	ED	<u>C 01986</u>			3	43	12	24S	27E	581302	3566124 🌍	2159
<u>C 03300</u>	CI	PRO	0 YATES PETROLEUM	ED	<u>C 01986</u>			3	43	12	24S	27E	581302	3566124 🌍	2159
<u>C 03311</u>	C	PRO	0 MARBOB ENERGY	ED	<u>C 01986</u>			3	43	12	24S	27E	581302	3566124 🌍	2159

(R=POD has been replaced

*UTM location was derived from PLSS - see Help

.

	(acre ft per annum)						and no longer serves this C=the file is closed)	s file, (quai (quai	rters are rters are	= 1=NV = small	V 2=NE 3=SW est to largest)	NE 3=SW 4=SE) o largest) (NAD83 UTM in meters)					
	Sub					Well			qqq								
WR File Nbr	basin	Use Dive		County	POD Number	Tag	Code Grant	Source	6416 4	Sec	Tws Rng	X	Y	Distance			
<u>C 03353</u>	C	PRO	U MARBOB ENERGY	ED	<u>C 01986</u>				343	12	248 27E	581302	3566124	2159			
<u>C 03354</u>	С	PRO	0 NOVA MUD	ED	<u>C 01986</u>				343	12	24S 27E	581302	3566124 🌍	2159			
<u>C 03031</u>	С	DOL	3 ROBBY WALTERSCHEID	ED	<u>C 03031</u>			Shallow	133	35	23S 27E	578315	3569206* 🌍	2205			
<u>C 01646</u>	CUB	IRR	0 GEORGE BRANTLEY	ED	<u>C 01646 X</u>				1	13	24S 27E	580221	3565275* 🌍	2205			
<u>C 01943</u>	С	STK	3 GARY THOMPSON	ED	<u>C 01943</u>				1	13	24S 27E	580221	3565275* 🌍	2205			
<u>C 03740</u>	С	DOL	0 GEORGE BRANTLEY	ED	C 03740 POD1				444	12	24S 27E	581283	3565795 🌍	2350			
RA 00873	RA	IRR	0 LINDA A SCHULTZ	СН	RA 00873				121	10	24S 27E	577104	3567159* 🥘	2446			
<u>C 00342</u>	CUB	CLS	0 UNION OIL CO. OF CALIFORNIA	ED	<u>C 00342</u>		С		4 1	13	24S 27E	580432	3565080* 🌍	2460			
<u>C 01646</u>	CUB	IRR	0 GEORGE BRANTLEY	ED	<u>C 01646 X 2</u>				2	13	24S 27E	581045	3565286* 🌍	2572			
				ED	<u>C 01646</u>					13	24S 27E	580641	3564866* 🌍	2737			
C 00232	CUB	IRR	280.5 L.T. LEWIS	ED	<u>C 00232</u>				132	07	24S 28E	582362	3566826* 🌍	2873			
<u>C 01646</u>	CUB	IRR	0 GEORGE BRANTLEY	ED	<u>C 01646 X 3</u>				3	13	24S 27E	580239	3564464* 🌍	2991			
<u>C 03145</u>	С	STK	3 GEORGE BRANTLEY	ED	<u>C 03145</u>			Shallow	314	13	24S 27E	580749	3564579* 🌍	3044			
<u>C 02022</u>	С	PRO	0 AMOCO PRODUCTION COMPANY	ED	<u>C 02022</u>			Shallow	143	31	23S 28E	581941	3569250* 🌍	3046			
<u>C 02955</u>	С	PRO	0 MARBOB ENERGY	ED	<u>C 02955</u>				143	31	23S 28E	581941	3569250* 🌍	3046			
<u>C 03218</u>	С	PRO	0 NADEL & GUSSMAN	ED	<u>C 02022</u>			Shallow	143	31	23S 28E	581941	3569250* 🌍	3046			
<u>C 01646</u>	CUB	IRR	0 GEORGE BRANTLEY	ED	<u>C 01646 X 4</u>				4	13	24S 27E	581057	3564476* 🌍	3269			
<u>C 01244</u>	С	DOL	3 BLAS L. URQUIDEZ	ED	<u>C 01244</u>			Shallow	44	06	24S 28E	582860	3567543* 🌍	3323			
<u>C 00364</u>	CUB	CLS	0 A.J. CRAWFORD	ED	<u>C 00364</u>		С		12	09	24S 27E	575997	3567043* 🌍	3559			
<u>C 00821</u>	С	PRO	0 UNION OIL CO. OF CALIFORNIA	ED	<u>C 00821</u>			Shallow	32	09	24S 27E	575996	3566635* 😜	3621			
<u>C 01963</u>	С	DOL	0 WILLA L MCPHEARSON	ED	<u>C 01963</u>				44	07	24S 28E	582877	3565921* 🌍	3638			
SD 01886	CUB	IRR	100 DICK CALDERON	ED	SD 01886				44	07	24S 28E	582877	3565921* 🌍	3638			

(R=POD has been replaced

*UTM location was derived from PLSS - see Help

.

(acre ft per annum)							and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE)							
	Sub	(ac				Well	C=the file is closed	u) (qua		e sina I	liest to largest,		o nivi in meters)	
WR File Nbr	basin	Use	Diversion Owner	County	/ POD Number	Tag	Code Grant	Source	6416 4	Sec	Tws Rng	х	Y	Distance
C 04085	С	SAN	1 SUMMIT PERMIAN TRANS LLC	ED	C 04085 POD2	NA		Shallow	241	31	23S 28E	582082	3569982 🌍	3642
				ED	C 04085 POD1			Shallow	141	31	23S 28E	582039	3570027 🌍	3644
<u>C 04205</u>	С	PRO	0 B & R TRUCKING	ED	C 04085 POD1	NA		Shallow	141	31	23S 28E	582039	3570027 🌍	3644
<u>C 04206</u>	С	PRO	0 B & R TRUCKING	ED	C 04085 POD1	NA		Shallow	141	31	23S 28E	582039	3570027 🌍	3644
<u>C 04207</u>	С	PRO	0 B & R TRUCKING	ED	C 04085 POD1	NA		Shallow	141	31	23S 28E	582039	3570027 🌍	3644
<u>C 04311</u>	С	SAN	1 TRAVIS MANN	ED	C 04311 POD1	22215			214	31	23S 28E	582490	3569583 🌍	3685
<u>C 00406</u>	С	DOM	3 JAMES G. LAXSON	ED	<u>C 00406</u>			Shallow	1 1	08	24S 28E	583270	3567142* 🌍	3735
<u>C 04281</u>	С	SAN	1 TRAVIS MANN	ED	<u>C 04281 POD1</u>	22157		Shallow	241	31	23S 28E	582192	3570055 🌍	3771
<u>C 03108</u>	CUB	STK	6 LOVING RANCH WATTS LAND	ED	<u>C 03108</u>				132	2 31	23S 28E	582348	3570063* 🌍	3887
<u>C 01936</u>	С	PRO	0 AMOCO PRODUCTION COMPANY	ED	<u>C 01936</u>				3 2	2 31	23S 28E	582449	3569964* 🌍	3894
<u>C 01473</u>	CUB	IRR	354 WILLIAM D. COLWELL	ED	<u>C 01473</u>			Shallow	113	8 25	23S 27E	579919	3571254* 🌍	3899
<u>C 04037</u>	С	SAN	1 SENDERO CARLSBAD MIDSTREAM LLC	ED	C 04037 POD1			Shallow	432	2 31	23S 28E	582575	3569872 🌍	3931
<u>C 00361</u>	CUB	CLS	0 C.D. DONAHO	ED	<u>C 00361</u>		С		3 3	8 08	24S 28E	583283	3565926* 🌍	4011
<u>C 00365</u>	CUB	IRR	185.7 CARLETON JOE O	ED	<u>C 00365 S</u>				3 3	8 08	24S 28E	583283	3565926* 🌍	4011
<u>C 00054</u>	CUB	IRR	0 ARTHUR LANCASTER	ED	<u>C 00054</u>				114	25	23S 27E	580727	3571263* 🌍	4066
<u>C 00850</u>	С	PRO	0 UNION OIL CO. OF CALIFORNIA	ED	<u>C 00850</u>			Shallow	23	8 09	24S 27E	575595	3566223* 🌍	4110
<u>C 03366</u>	С	DOL	0 DAN MOORE	ED	C 03366 POD1				412	2 31	23S 28E	582597	3570199 🌍	4162
<u>C 04147</u>	CUB	MON	0 EOG RESOURCES	ED	C 04147 POD1	NA	NON		413	3 24	24S 27E	580100	3562969 🌍	4438
<u>C 02567</u>	С	DOM	3 JEROME SMITH	ED	<u>C 02567</u>			Shallow	212	2 26	23S 27E	579314	3572049* 🌍	4681
<u>C 01452</u>	С	STK	3 WILLIAM DIESCHER	ED	<u>C 01452</u>			Shallow		22	24S 27E	577435	3563175* 🌍	4696
<u>C 00365</u>	CUB	IRR	185.7 CRAFT JAMES R	ED	<u>C 00365</u>			Shallow	241	17	24S 28E	583791	3565226* 🌍	4761
<u>C 02942</u>	С	PRO	0 SAMSON	ED	<u>C 02942</u>				343	3 23	24S 27E	578748	3562516* 🌍	4921

(R=POD has been replaced

*UTM location was derived from PLSS - see Help

.

							(R=POD has been and no longer ser	n replaced ves this fil	l e, (quarte	ers are	1=N\	V 2=NE 3=SW	4=SE)		
		(acre	e ft per annum)				C=the file is close	ed)	(quarte	ers are	smal	lest to largest)	(NAD83	UTM in meters)	
	Sub					Well			q	qq					
WR File Nbr	basin	Use D	Diversion Owner	County	POD Number	Tag	Code Grant	5	Source 6	416 4	Sec	Tws Rng	Х	Y	Distance
<u>C 00010 A</u>	CUB	IRR	28.8 WILLIAM E NYMAN	ED	<u>C 00010</u>			S	Shallow 1	22	25	23S 27E	581129	3572075* 🌍	4962
<u>C 00010 AA</u>	CUB	IRR	375.615 JOHN MORRIS	ED	C 00010 POD5				1	22	25	23S 27E	581129	3572075* 🌍	4962
C 00010 ENLGD	CUB	IRR	90 BRUCE D PARDUE TRUSTEE	ED	C 00010 ENLGD				1	22	25	23S 27E	581129	3572075* 🌍	4962
<u>C 03197</u>	С	DOL	3 DIANE WALTERS	ED	<u>C 03197</u>				4	43	24	23S 27E	580520	3572274* 🌍	4997

Radius: 5000

Record Count: 88

UTMNAD83 Radius Search (in meters):

Easting (X): 579541.29

g (x). 579541.29

Northing (Y): 3567373.21

Sorted by: Distance

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=P been O=orµ C=the close	OD has replace phaned, e file is d)	d,	(qua (qua	rter rter	s a s a	are 1= are sm	NW :	2=NE : st to lai	3=SW 4= rgest)	SE) (NA) AD83 UTM in me	ters)	(In feet)	
		POD		•	~	~								- 4	D (1	
POD Number	Code	Sub-	Count	Q y 64	Q 16	Q 4	Sec [·]	Tws	Rng		х	Y	Distance	Well	Depth Water	Water Column
C 03260 POD2	0	С	ED	1	3	3	12	24S	27E	58010	00	3565984 🌍	1497	80	56	24
C 03260 POD1		С	ED	3	3	3	12	24S	27E	57999	95	3565935 🌍	1507	80	56	24
<u>C 02976</u>		С	ED	4	2	3	12	24S	27E	58051	19	3566195* 🌍	1531	57	27	30
<u>C 03147</u>		С	ED	3	3	3	12	24S	27E	57988	35	3565715 🌍	1692	140		
<u>C 00347</u>		CUB	ED		1	1	13	24S	27E	58001	10	3565479* 🌍	1951	60	30	30
<u>C 03037</u>		С	ED	4	3	4	12	24S	27E	58093	30	3565795* 🌍	2102	116	25	91
<u>C 03031</u>		С	ED	1	3	3	35	23S	27E	57831	15	3569206* 🌍	2205	150	67	83
<u>C 01943</u>		С	ED			1	13	24S	27E	58022	21	3565275* 🌍	2205	30	25	5
C 03740 POD1		С	ED	4	4	4	12	24S	27E	58128	33	3565795 🌍	2350	340		
<u>C 00342</u>	С	CUB	ED		4	1	13	24S	27E	58043	32	3565080* 🌍	2460	2565		
<u>C 00232</u>		CUB	ED	1	3	2	07	24S	28E	58236	62	3566826* 🌍	2873	160		
<u>C 03145</u>		С	ED	3	1	4	13	24S	27E	58074	19	3564579* 🌍	3044	103	40	63
<u>C 01244</u>		С	ED		4	4	06	24S	28E	58286	60	3567543* 🌍	3323	109	70	39
<u>C 00364</u>	С	CUB	ED		1	2	09	24S	27E	57599	97	3567043* 🌍	3559	2270		
<u>C 00821</u>		С	ED		3	2	09	24S	27E	57599	96	3566635* 🌍	3621	97	50	47
C 04085 POD2		CUB	ED	2	4	1	31	23S	28E	58208	33	3569982 🌍	3642	240	100	140
C 04085 POD1		С	ED	1	4	1	31	23S	28E	58203	39	3570027 🌍	3644	250	200	50
<u>C 00406</u>		С	ED		1	1	08	24S	28E	58327	70	3567142* 🌍	3735	78	50	28
C 04281 POD1		С	ED	2	4	1	31	23S	28E	58219	93	3570055 🌍	3771	200	100	100
C 04037 POD1		С	ED	4	3	2	31	23S	28E	58257	76	3569872 🌍	3931	99	60	39
<u>C 00361</u>	С	CUB	ED		3	3	80	24S	28E	58328	33	3565926* 🌍	4011	2575		
<u>C 00850</u>		С	ED		2	3	09	24S	27E	57559	95	3566223* 🌍	4110	108	35	73
C 04147 POD1		CUB	ED	4	1	3	24	24S	27E	58010	01	3562969 🌍	4438	35		
C 00010 CLW191724	0	CUB	ED	2	3	2	25	23S	27E	58092	26	3571666* 🌍	4510	259		
<u>C 02567</u>		С	ED	2	1	2	26	23S	27E	57931	14	3572049* 🌍	4681	187	89	98
<u>C 01452</u>		С	ED				22	24S	27E	57743	35	3563175* 🌍	4696	95	70	25

*UTM location was derived from PLSS - see Help

Received by OCD: 1/7/2020 3:57:55 PM

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=P0 been O=orp C=the closed	DD has replace haned file is d)	s ed, I,	(qua (qua	rter rter	rs a rs a	re 1	=NW malle:	2=NE 3 st to lar	3=SW 4=S	SE) (NAD8	3 UTM in n	neters)	(In feet)	
POD Number	Code	POD Sub- basin	Count	Q y 64	Q 16	Q 4	Sec	Tws	Rng	2	x	Y	Distance	Depth Well	Depth Water	Water Column
C 00365		CUB	ED	2	4	1	17	24S	28E	58379	1 35	565226* 🧧	4761	238	26	212
<u>C 00010</u>		CUB	ED	1	2	2	25	23S	27E	58112	9 35	572075* 🧧	4962	250	103	147
C 00010 CLW191759	0	CUB	ED	1	2	2	25	23S	27E	58112	9 35	572075* 🍯	4962	259		
C 00010 ENLGD		CUB	ED	1	2	2	25	23S	27E	58112	9 35	572075* 🧲	4962	259		
												Ave	age Depth to	Water:	63	feet
													Minimum	Depth:	25	feet
													Maximum	Depth:	200	feet
Record Count: 30																

UTMNAD83 Radius Search (in meters):

Easting (X): 579541.29

Northing (Y): 3567373.21

Radius: 5000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

El Presidente 5H - 3,782 ft to Riverine

Page 25 of 83

October 17, 2019

Wetlands

- Estuarine and Marine Deepwater

Estuarine and Marine Wetland

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland

Freshwater Pond

El Presidente 5H - 29,857 ft to Lake

Page 27 of 83

October 17, 2019

Wetlands

- Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Forested/Shrub Wetland

Freshwater Emergent Wetland

Freshwater Pond

El Presidente 5H - 9,575 ft to Pond

October 17, 2019

Wetlands

- Estuarine and Marine Deepwater

Estuarine and Marine Wetland

- Freshwater Forested/Shrub Wetland
 - Freshwater Pond

Freshwater Emergent Wetland

El Presidente 5H - 3,782 ft to Wetland

Page 32 of 83

October 17, 2019

Wetlands

- Estuarine and Marine Deepwater

Estuarine and Marine Wetland

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland

Freshwater Pond

Active Mines near El Presidente 5H

* Aggregate, Stone etc.

U.S. Bureau of Land Management - New Mexico State Office, Sources: Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS

Received by OCD: 1/7/2020 3:57:55 PM

32°14'39.94"N

National Flood Hazard Layer FIRMette

Legend SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D GENERAL - - - Channel, Culvert, or Storm Sewer STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation - - Coastal Transect <u>_</u> Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary --- Coastal Transect Baseline OTHER Profile Baseline FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of

digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/17/2019 at 5:49:01 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

250

C

500

1,500

1,000

Feet 2,000

1:6,000

USGS The National Map: Orthoimagery. Data refreshed April, 2019.

32°14'9.50"N

Page 35 of 83

El Presidente

R042XC007NM — Loamy: Historic Climax Plant Community

Plant Community Photos

Plant Communities Photo Display & Descriptive Diagnosis

MLRA 42; SD-3; Loamy

Grassland

. . .

Transition towards shrub Dominated

•Tarbush / burrograss, with some tobosa •Fine textured calcareous soils •Bare patches evident •Soil surface sealing •Reagan silt loam

•Tobosa-black grama, some yucca and prickly pear •Grass cover moderate, distributed fairly uniform •Few large bare patches

•Tobosa-burrograss, with some black grama and scattered prickly pear •Grass cover moderate •Few large bare patches •Russler silt loam

Shrub-Dominated

 Mesquite / burrograss, with scattered patches of tobosa Sandy surface over finer textured soils ·Grass cover moderate to low ·Bare patches evident

Historic Climax Plant Community

Plant Community Description

State Containing Historic Climax Plant Community

Grassland:

The historic plant community has a grassland aspect, dominated by grasses with shrubs and half-shrubs sparse and evenly distributed. Black grama, blue grama, and tobosa are the dominant grass species. There are a variety of perennial forbs and their production varies widely by season and year. Globernallow, verbena, groundsels, croton and filaree are forbs commonly found on this site. Fourwing saltbush and winterfat are two of the more palatable shrubs. The Loamy ecological site encompasses a wide variety of soils, with surface textures ranging from sandy loams to clay loams. Soil depths range from shallow to very deep and can include sub surface features such as calcic, petrocalcic, and gypsic horizons. These variations cause differences in plant community composition and dynamics. Black grama is found at highest densities on coarser textured sandy loams, with blue grama preferring finer textured loam and silt loam, and tobosa favoring lower landscape positions and loam to clay loam surface textures. Burrograss may often be the dominant grass species on silty soils, perhaps in part due to the seedlings ability to auger into and establish on physically crusted soils. Gypsum influenced soils typically have greater amounts of tobosa, burrograss, and ephedra. There is greater representation of sideoats and vine mesquite within the tobosa-blue grama community. Retrogression under continuous heavy grazing results in a decrease of black grama, blue grama, sideoats grama, plains bristlegrass, bush muhly, cane bluestem, vine mesquite, winterfat, and fourwing saltbush. Species such as burrograss, threeawns, sand dropseed, sand muhly, and broom snakeweed increase under continuous heavy grazing or prolonged periods of drought. Under continued retrogression burrograss can completely dominate the site. Creosotebush, tarbush, and mesquite, can also dominate. Cholla and prickly pear can increase on areas that are disturbed or overgrazed.

Diagnosis: Tobosa, black grama, and blue grama are the dominant species. Grass cover is uniformly distributed with few large bare areas. Shrubs are sparse and evenly distributed. Slopes range from level to gently sloping and usually display limited evidence of active rills and gully formation if plant cover remains intact. Litter movement associated with overland flow is limited to smaller size class litter and short distances.

Other shrubs include: yucca, mesquite, tarbush, cholla and creosote bush.

Other forbs include: desert holly, scorpionweed, bladderpod, flax, nama, fleabane, Indianwheat, Indian blanket flower, groundcherry, deerstongue, and rayless goldenrod.

R042XC007NM -- Loamy: Historic Climax Plant Community---Eddy Area, New Mexico

Plant Community Tables

Plant Type	Low	Representative Value	High
Grass/Grasslike	585	833	1,080
Forb	39	55	72
Shrub/Vine	26	37	48
Totals	650	925	1,200

Grass/Grasslike								
Group Plant Common Name		Plant Scientific Name	Annual Pr Pounds	Annual Production Pounds Per Acre				
			Low	High				
1: Warm Season			278	324				
	tobosa	Pleuraphis mutica	278	324				
2: Warm Season			9	46				
	burrograss	Scleropogon brevifolius	9	46				
3: Warm Season			231	278				
	black grama	Bouteloua eriopoda	231	278				
	blue grama	Bouteloua gracilis	231	278				
4: Warm Season			28	46				
	sideoats grama	Bouteloua curtipendula	28	46				
5: Warm Season			46	93				
	bush muhly	Muhlenbergia porteri	46	93				
	plains bristlegrass	Setaria vulpiseta	46	93				
6: Warm Season			9	28				
	arizona cottontop	Digitaria californica	9	28				
7: Warm Season			46	93				
	perennial threeawn spp.	Aristida	46	93				
	muhly	Muhlenbergia	46	93				
	sand dropseed	Sporobolus cryptandrus	46	93				
8: Warm Season			28	46				

USDA

R042XC007NM -- Loamy: Historic Climax Plant Community---Eddy Area, New Mexico

P. J.									
Forb									
Group	Plant Common Name	Plant Scientific Name	Annual P Pounds	Annual Production Pounds Per Acre					
			Low	High					
12: Forb			9	46					
	threadleaf groundsel	Senecio flaccidus var. flaccidus	9	46					
	gloemallow spp.	Sphaeralcea	9	46					
			9	46					
13: Forb			9	28					
	croton spp.	Croton	9	28					
	woolly groundsel	Packera cana	9	28					
14: Forb			9	28					
	Goodding's tansyaster	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	9	28					
	woolly paperflower	Psilostrophe tagetina	9	28					
15: Forb			9	28					
	alfileria (redstem, storksbill)	Erodium cicutarium	9	28					
	texas filaree	Erodium texanum	9	28					
16: Forb			9	28					

Shrub/Vine							
Group	Plant Common Name	Plant Scientific Name	Annual Production Pounds Per Acre				
			Low	High			
9: Shrub			9	28			
	fourwing saltbush	Atriplex canescens	9	28			
	ephedra spp.	Ephedra	9	28			
	winterfat	Krascheninnikovia lanata	9	28			
10: Shrub			9	28			
	javilina bush	Condalia ericoides	9	28			
	broom snakeweed	Gutierrezia sarothrae	9	28			
11: Shrubs			9	28			

Growth Curve Name R042XC007NM Loamy HCPC											
Growth Curve Description R042XC007NM Loamy HCPC Warm Season Plant Community.											
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0%	0%	0%	5%	10%	10%	25%	30%	15%	5%	0%	0%

USDA

R042XC007NM -- Loamy: Historic Climax Plant Community---Eddy Area, New Mexico

El Presidente

Vegetative Cover Type	Minimum	Maximum
Grass/grasslike	15.000%	30.000%
Forb	_	_
Shrub/vine/liana	_	_
Tree	_	_
Non-vascular plants	_	_
Biological crust		
Non-Vegetative Cover Type	Minimum	Maximum
Litter	25.000%	30.000%
Surface fragments > 0.25" and <= 3"	_	
Surface fragments > 3"		
Bedrock		
Water	_	_
Bare ground	40.000%	50.000%
Down wood, fine-small	_	_
Down wood, fine-medium	_	_
Down wood, fine-large	_	_
Down wood, coarse-small	_	_
Down wood, coarse-large	_	_
Tree snags	_	_
Hard snags		
Soft snags		

Eddy Area, New Mexico

UG—Upton gravelly loam, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1w64 Elevation: 1,100 to 4,400 feet Mean annual precipitation: 7 to 15 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Upton and similar soils: 96 percent Minor components: 4 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Upton

Setting

Landform: Fans, ridges Landform position (three-dimensional): Side slope, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam
H2 - 9 to 13 inches: gravelly loam
H3 - 13 to 21 inches: cemented
H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 9 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 75 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0

Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s

USDA

Hydrologic Soil Group: D *Ecological site:* Shallow (R042XC025NM) *Hydric soil rating:* No

Minor Components

Atoka

Percent of map unit: 1 percent Ecological site: Loamy (R042XC007NM) Hydric soil rating: No

Upton

Percent of map unit: 1 percent Ecological site: Shallow (R042XC025NM) Hydric soil rating: No

Atoka

Percent of map unit: 1 percent Ecological site: Loamy (R042XC007NM) Hydric soil rating: No

Reagan

Percent of map unit: 1 percent Ecological site: Loamy (R042XC007NM) Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 15, Sep 15, 2019

R042XC025NM — Shallow Ecological Site

Plant Community Photos

Plant Communities Photo Display & Descriptive Diagnosis

MLRA 42; SD-3; Shallow

Grass/Shrub mix

•Threeawns-black grama community •Grass recovery following treatment with tebuthiuron •Transition back to Grass/Shrub mix

Shrub-Dominated

-Creosotebush-catclaw mimosa, with some broom snakeweed and a few scattered mesquite -Grass cover (hairy tridens-black grama) patchy, large connected bare areas present -Upton graveily loam, Eddy Co., NM

Grass/Shrub Mix

Plant Communities and Transitional Pathways (diagram)

MLRA-42, SD-3, Shallow

Extended drought, overgrazing, no fire
 Brush control, Prescribed grazing

State Transition Diagram for R042XC025NM — Shallow Ecological Site

Ecological Dynamics Description

Overview:

The Shallow site is associated with and Limestone Hills, Loamy, and Shallow Sandy sites. When associated with Limestone Hills, the Shallow site occurs on the summits, foot slopes and toeslopes of hills. Loamy sites often occur as areas between low elongated hills with rounded crests (Shallow site). When the Shallow Sandy site and Shallow site occur in association, the Shallow Sandy soils occupy the tops of low ridges and the Shallow site soils occur on the steeper sideslopes of the ridge. The historic plant community of the Shallow site has the aspect of a grassland/shrub mix, dominated by grasses, but with shrubs common throughout the site. Black grama is the dominant grass species; creosotebush, mesquite, and catclaw mimosa are common shrubs. Overgrazing and or extended drought can reduce grass cover, effect a change in grass species dominance, and may result in a shrub-dominated state. 1

•

•

ATTACHMENT 4

Returned to Office

10/16/2019 6:00 PM

Daily Site Visit Report

Client: Site Location Name:	Marathon Oil Permian LLC El Presidente State 24 27	Inspection Date: Report Run Date:	10/16/2019 10/17/2019 7:00 PM
	2 WA #005H		
Project Owner:	Isaac Castro	File (Project) #:	19E-00614
Project Manager:	Natalie Gordon	API #:	30-015-44483
Client Contact Name:	Isaac Castro	Reference	Sight Glass Spill
Client Contact Phone #:	(575) 988-0561		
		Summary of	Times
Left Office	10/16/2019 2:18 PM		
Arrived at Site	10/16/2019 3:40 PM		
Departed Site	10/16/2019 4:41 PM		

.

VERTEX

Site Sketch Project El Praidente 24 27 2 WA 005H Dave 10-16-2019 Client MARATHON 012 Here Sepanator Separator Separator = Spill Area - Raiser -Batten n4A

Received by OCD: 1/7/2020 3:57:55 PM

Daily Site Visit Report

Summary of Daily Operations

15:57 Conduct initial site visit.

Next Steps & Recommendations

1

.

Site Photos

Excavated area below spill - Waiting on Marathon for verification.

V

VERTEX

Daily Site Visit Report

Daily Site Visit Signature

Inspector: Sharlene Harvester

Signature:

.

Returned to Office

10/30/2019 4:19 PM

Daily Site Visit Report

Client:	Marathon Oil Permian LLC	Inspection Date:	10/30/2019
Site Location Name:	El Presidente State 24 27 2 WA #005H	Report Run Date:	10/31/2019 10:50 PM
Project Owner:	Isaac Castro	File (Project) #:	19E-00614
Project Manager:	Natalie Gordon	API #:	30-015-44483
Client Contact Name:	Isaac Castro	Reference	Sight Glass Spill
Client Contact Phone #:	(575) 988-0561		
		Summary of T	Times
Left Office	10/30/2019 1:30 PM		
Arrived at Site	10/30/2019 2:00 PM		
Departed Site	10/30/2019 3:30 PM		

.

VERTEX

Site Sketch Project El Presidente 24272 Client Marathon Date 10/30/19 Sheet 5 SPILL AREA 30 10 (QV) 8519501

Summary of Daily Operations

14:38 Arrive on site.

Complete safety paperwork.

Field screen and obtain confirmatory sample.

Complete DFR.

Return to office.

Next Steps & Recommendations

1 Send sample for lab analysis.

2 Confirm lab results.

3 Backfill scrape area (tbd)

4 Close.

	Sampling								
ES-Base19-01									
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	0 ft.	0 ppm	454 ppm	Low (30-600 ppm)	430 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW- 4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	32.24069125, - 104.15414460	Yes

V

VERTEX

Daily Site Visit Report

Daily Site Visit Signature

Inspector: Austin Harris

Signature:

.

Client:	Marathon Oil Permian LLC	Inspection Date:	10/30/2019
Site Location Name:	El Presidente State 24 27 2 WA #005H	Report Run Date:	1/7/2020 3:55 PM
Project Owner:	Isaac Castro	File (Project) #:	19E-00614
Project Manager:	Natalie Gordon	API #:	30-015-44483
Client Contact Name:	Isaac Castro	Reference	Sight Glass Spill
Client Contact Phone #:	(575) 988-0561		

Summary of Times				
Left Office	10/30/2019 3:31 PM			
Arrived at Site	10/30/2019 3:31 PM			
Departed Site	10/30/2019 3:56 PM			
Returned to Office	10/30/2019 4:18 PM			

Summary of Daily Operations

15:33 Arrive on site.

Complete safety paperwork. Perform liner inspection.

Document.

Complete DFR.

Return to office.

Next Steps & Recommendations

1 Send report to client.

Viewing Direction: North Viewing Direction: East South side production area West side production area Viewing Direction: East Viewing Direction: East Middle production area Middle production area

Site Photos

South side of tanks from southwest corner

V

VERTEX

Daily Site Visit Report

Daily Site Visit Signature

Inspector: Austin Harris

Signature:

.

•

•

ATTACHMENT 5

Natalie Gordon

From:	Dennis Williams
Sent:	Monday, October 28, 2019 2:11 PM
То:	Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD; Venegas, Victoria, EMNRD
Cc:	icastro@marathonoil.com; Natalie Gordon; Dhugal Hanton
Subject:	Marathon Oil – El Presidente State 24 27 2 WA 005H – Liner Inspection Notification - No
	RP Number Assigned

Afternoon All,

Please accept this email as 48hr notification that Vertex Resource Services Inc. has scheduled a liner inspection at the above named location on October 30, 2019 at 2:00 p.m. Austin Harris from Vertex will be on site performing the inspection and can be reached at 432-250-5003. If you need assistance with directions to site please do not hesitate to contact them. If you have any questions or concerns, please do not hesitate to contact me.

Dennis

Dennis Williams Environmental Earthworks Advisor

Vertex Resource Group Ltd.

213 S. Mesa Street Carlsbad, NM 88220

P 575.645.3111 Ext. 701 C 575.361.1137 F

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

•

•

ATTACHMENT 6

Client Name: Marathon Oil Permian, LLC Site Name: El Presidente State 24 27 2 WA #005H Project #: 19E-00614-013 Lab Report: 641743

Table 2. Confirmatory Soil Sample - Depth to Groundwater 51 ft < 100 ft													
Sample Description				Petroleum Hydrocarbons								Inorganic	
			Volatile					Extractable				morganic	
Sample ID	Depth (ft)	Sample Date	Benzene	Toluene	Ethylbenzene	, Xylenes (o&m)	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
BS 19-01	0	10/31/2019	<0.000998	< 0.000998	< 0.000998	<0.00200	< 0.000998	<49.9	59.9	<49.9	59.9	59.9	290

Bold and shaded indicates exceedance outside of applied action level

•

•

•

ATTACHMENT 7

Project Id:19E-00614Contact:Isaac Castro

Project Location:

Certificate of Analysis Summary 641743

Marathon Oil Company, Tulsa, OK Project Name: El Presidente 24.27.2 WA 5H

Date Re

Date Received in Lab:Thu Oct-31-19 02:45 pmReport Date:04-NOV-19Project Manager:Jessica Kramer

Analysis Requested	Lab Id:	641743-001			
	Field Id:	BS19-01 0.0'			
	Depth:	0- ft			
	Matrix:	SOIL			
	Sampled:	Oct-30-19 15:00			
BTEX by EPA 8021B	Extracted:	Oct-31-19 15:00			
	Analyzed:	Oct-31-19 17:57			
	Units/RL:	mg/kg RL			
Benzene		<0.000998 0.000998			
Toluene	<0.000998 0.000998				
Ethylbenzene	<0.000998 0.000998				
m,p-Xylenes		< 0.00200 0.00200			
o-Xylene		<0.000998 0.000998			
Total Xylenes		<0.000998 0.000998			
Total BTEX		<0.000998 0.000998			
Inorganic Anions by EPA 300	Extracted:	Oct-31-19 15:10			
	Analyzed:	Oct-31-19 17:39			
	Units/RL:	mg/kg RL			
Chloride	290 99.4				
TPH by SW8015 Mod	Extracted:	** ** ** **			
	Analyzed:	Oct-31-19 17:07			
	Units/RL:	mg/kg RL			
Gasoline Range Hydrocarbons (GRO)		<49.8 49.8			
Diesel Range Organics (DRO)	59.9 49.8				
Motor Oil Range Hydrocarbons (MRO)	<49.8 49.8				
Total TPH		59.9 49.8			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kramer

Jessica Kramer Project Assistant

Final 1.000
Analytical Report 641743

for Marathon Oil Company

Project Manager: Isaac Castro

El Presidente 24.27.2 WA 5H

19E-00614

04-NOV-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142), North Carolina (681)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

04-NOV-19

Project Manager: **Isaac Castro Marathon Oil Company** P. O. Box 22164 Tulsa, OK 74121-2164

Reference: XENCO Report No(s): 641743 El Presidente 24.27.2 WA 5H Project Address:

Isaac Castro:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 641743. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 641743 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession Vermer

 Jessica Kramer

 Project Assistant

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 641743

Marathon Oil Company, Tulsa, OK

El Presidente 24.27.2 WA 5H

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-30-19 15:00	0 ft	641743-001

Sample Id BS19-01 0.0'

.

CASE NARRATIVE

Client Name: Marathon Oil Company Project Name: El Presidente 24.27.2 WA 5H

Project ID:19E-00614Work Order Number(s):641743

 Report Date:
 04-NOV-19

 Date Received:
 10/31/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3106150 TPH by SW8015 Mod Surrogate o-Terphenyl recovered below QC limits. Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 641648-001 S,641648-001 SD.

Batch: LBA-3106175 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analytical Results 641743

Marathon Oil Company, Tulsa, OK

El Presidente 24.27.2 WA 5H

Sample Id: Lab Sample Id	BS19-01 0.0' : 641743-001		Matrix: Date Collec	Soil eted: 10.30.19 15.00		Date Received:10.31.19 14.45 Sample Depth:0 ft				
Analytical Mer Tech: Analyst: Seq Number:	thod: Inorganic Anion MAB MAB 3106108	s by EPA 300	Date Prep:	10.31.19 15.10		Prep Method: E30 % Moisture: Basis: Wet	00P t Weight			
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Chloride		16887-00-6	290	99.4	mg/kg	10.31.19 17.39		10		
Analytical Me	thod: TPH by SW8015	5 Mod				Prep Method: SW	8015P			
Tech:	DTH			10 21 10 11 00		% Moisture:	Waight			
Seq Number:	3106150		Date Prep:	10.31.19 11.00		Dasis. Wei	weight			
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Gasoline Range H	Hydrocarbons (GRO)	PHC610	<49.8	49.8	mg/kg	10.31.19 17.07	U	1		

Diesel Range Organics (DRO)	C10C28DRO	59.9	49.8		mg/kg	10.31.19 17.07		1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	10.31.19 17.07	U	1	
Total TPH	PHC635	59.9	49.8		mg/kg	10.31.19 17.07		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	76	%	70-135	10.31.19 17.07			
o-Terphenyl		84-15-1	75	%	70-135	10.31.19 17.07			

.

Certificate of Analytical Results 641743

Marathon Oil Company, Tulsa, OK

El Presidente 24.27.2 WA 5H

Sample Id:	BS19-01 0.0'		Matrix:	Soil	Date Re	eceived:10.31.19 14.	.45		
Lab Sample I	d: 641743-001		Date Collecte	d: 10.30.19 15.00	Sample Depth: 0 ft				
Analytical Me	ethod: BTEX by EPA 802	1B			Prep M	ethod: SW5030B			
Tech:	MAB				% Mois	sture:			
Analyst:	MAB		Date Prep:	10.31.19 15.00	Basis:	Wet Weight			
Seq Number:	3106175								
Parameter		Cas Number	Result R	L	Units An:	alvsis Date Flag	D		

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	<0.000998	0.000998		mg/kg	10.31.19 17.57	U	1
Toluene	108-88-3	< 0.000998	0.000998		mg/kg	10.31.19 17.57	U	1
Ethylbenzene	100-41-4	< 0.000998	0.000998		mg/kg	10.31.19 17.57	U	1
m,p-Xylenes	179601-23-1	< 0.00200	0.00200		mg/kg	10.31.19 17.57	U	1
o-Xylene	95-47-6	< 0.000998	0.000998		mg/kg	10.31.19 17.57	U	1
Total Xylenes	1330-20-7	< 0.000998	0.000998		mg/kg	10.31.19 17.57	U	1
Total BTEX		< 0.000998	0.000998		mg/kg	10.31.19 17.57	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	118	%	70-130	10.31.19 17.57		
1,4-Difluorobenzene		540-36-3	101	%	70-130	10.31.19 17.57		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable

SMP Clier	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Laboration	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Marathon Oil Company

El Presidente 24.27.2 WA 5H

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	od: E30	OP	
Seq Number:	3106108]	Matrix:	Solid				Date Pre	ep: 10.3	1.19	
MB Sample Id:	7689340-1-BLK		LCS San	nple Id:	7689340-1	-BKS		LCS	D Sample	d: 7689	9340-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	<10.0	250	270	108	271	108	90-110	0	20	mg/kg	10.31.19 14:56	

Analytical Method:	Inorganic A	nions by	EPA 300						Pr	ep Metho	od: E3	00P	
Seq Number:	3106108			ľ	Matrix:	Soil				Date Pre	ep: 10	.31.19	
Parent Sample Id:	641648-001			MS Sam	ple Id:	641648-00	1 S		MSI	D Sample	e Id: 64	1648-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride		2010	2470	4570	104	4580	104	90-110	0	20	mg/kg	10.31.19 15:15	

Analytical Method:	Inorganic A	nions by	7 EPA 300						Pr	ep Meth	od: E30)0P	
Seq Number:	3106108]	Matrix:	Soil				Date Pr	ep: 10.	31.19	
Parent Sample Id:	641647-006			MS San	nple Id:	641647-00)6 S		MS	D Sample	e Id: 641	647-006 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride		288	1260	1490	95	1470	94	90-110	1	20	mg/kg	10.31.19 17:01	

Analytical Method:	TPH by S	W8015 M	bd						F	rep Method	i: SW	8015P	
Seq Number:	3106150				Matrix:	Solid				Date Prep	p: 10.3	31.19	
MB Sample Id:	7689349-1	-BLK		LCS San	nple Id:	7689349-	I-BKS	LCSD Sample Id: 7689349-1-BSD					
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<50.0	1000	883	88	862	86	70-135	2	35	mg/kg	10.31.19 12:16	
Diesel Range Organics	(DRO)	<50.0	1000	774	77	768	77	70-135	1	35	mg/kg	10.31.19 12:16	
Surrogate		MB %Rec	MB Flag	L %	CS Rec	LCS Flag	LCSI %Re	D LCS c Flag	D I g	Limits	Units	Analysis Date	
1-Chlorooctane		132		1	35		135		7	0-135	%	10.31.19 12:16	
o-Terphenyl		133		1	26		129		7	0-135	%	10.31.19 12:16	

Analytical Method: Seq Number:	TPH by SW8015 Mod 3106150	Matrix:	Solid	Prep Method: Date Prep:	SW8 10.31	015P .19	
		MB Sample Id:	/689349-1-BLK				
Parameter		MB Result		τ	J nits	Analysis Date	Flag
Motor Oil Range Hydrocarb	ons (MRO)	<50.0		m	ng/kg	10.31.19 11:56	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Page 9 of 12

Final 1.000

El Presidente 24.27.2 WA 5H

Analytical Method:	TPH by SW	/8015 M	od						Р	rep Method	l: SW	8015P	
Seq Number:	3106150]	Matrix:	Soil				Date Prep	b: 10.3	31.19	
Parent Sample Id:	641648-001			MS San	nple Id:	641648-00	01 S		MS	D Sample	ld: 641	648-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	< 50.0	1000	702	70	706	70	70-135	1	35	mg/kg	10.31.19 12:36	
Diesel Range Organics (DRO)	<50.0	1000	642	64	637	63	70-135	1	35	mg/kg	10.31.19 12:36	Х
Surrogate				N %	1S Rec	MS Flag	MSD %Ree	o MSD c Flag		imits	Units	Analysis Date	
1-Chlorooctane				7	70		71		70	0-135	%	10.31.19 12:36	
o-Terphenyl				e	58	**	69	**	70	0-135	%	10.31.19 12:36	

Analytical Method:	BTEX by EPA 8021]	Prep Meth	nod: SW:	5030B													
Seq Number:	3106175]	Matrix:	Solid			Date Prep: 10.31.19										
MB Sample Id:	7689419-1-BLK	LCS San	nple Id:	7689419-2	I-BKS		LC	LCSD Sample Id: 7689419-1-BSD										
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Lii	nit Units	Analysis Date	Flag						
Benzene	< 0.00100	0.100	0.0936	94	0.100	100	70-130	7	35	mg/kg	10.31.19 10:21							
Toluene	< 0.00100	0.100	0.0940	94	0.100	100	70-130	6	35	mg/kg	10.31.19 10:21							
Ethylbenzene	< 0.00100	0.100	0.0980	98	0.105	105	71-129	7	35	mg/kg	10.31.19 10:21							
m,p-Xylenes	< 0.00200	0.200	0.199	100	0.213	107	70-135	7	35	mg/kg	10.31.19 10:21							
o-Xylene	< 0.00100	0.100	0.0982	98	0.106	106	71-133	8	35	mg/kg	10.31.19 10:21							
Surrogate	MB %Rec	MB Flag	L %	CS Rec	LCS Flag	LCSI %Re	D LCS c Flag	D 1 g	Limits	Units	Analysis Date							
1,4-Difluorobenzene	98		ç	99		102		2	70-130	%	10.31.19 10:21							
4-Bromofluorobenzene	109		1	06		112		2	70-130	%	10.31.19 10:21							

Analytical Method:	BTEX by EPA 8021	B			I	Prep Meth	od: SW:	5030B						
Seq Number:	3106175]	Matrix:	Soil	Date Prep: 10.31.19								
Parent Sample Id:	641648-001		MS San	nple Id:	641648-00		MSD Sample Id: 641648-001 SD							
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPE	RPD Lir	nit Units	Analysis Date	Flag		
Benzene	< 0.00100	0.100	0.0966	97	0.0840	84	70-130	14	35	mg/kg	10.31.19 11:02			
Toluene	< 0.00100	0.100	0.0978	98	0.0842	84	70-130	15	35	mg/kg	10.31.19 11:02			
Ethylbenzene	< 0.00100	0.100	0.102	102	0.0864	87	71-129	17	35	mg/kg	10.31.19 11:02			
m,p-Xylenes	< 0.00201	0.201	0.207	103	0.176	88	70-135	16	35	mg/kg	10.31.19 11:02			
o-Xylene	< 0.00100	0.100	0.103	103	0.0880	88	71-133	16	35	mg/kg	10.31.19 11:02			
Surrogate			MS %Rec		MS Flag	MSD %Ree	o MSD c Flag)] ;	Limits	Units	Analysis Date			
1,4-Difluorobenzene			ç	99		100		7	0-130	%	10.31.19 11:02			
4-Bromofluorobenzene	1	13		110		7	0-130	%	10.31.19 11:02					

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

Final 1.000

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

00000	En la la la la	Relinquished by: (Sig	Service. Signature of this docum service. Xenco will be liable c Xenco. A minimum charge of	Circle Method(s) and				5019-01 0.	Sample Identific	sample Custody Seals:	Sooler Custody Seals:	Received Intact:	Femperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name: E1	Phone: (57	City, State ZIP: Ca	Address: 41	Company Name: Ma	Project Manager: Isa
/	(cmm)	nature)	ent and reinquishment of only for the cost of sample \$75.00 will be applied to e	200.8 / 6020: d Metal(s) to be ana				0' Seil	ation Matrix	Yes No) N/A	Yes No NIA	(Yes No	1-0	Temp Blank	JUSTIN HARPERS		9E-00614	Presidente 24.2	75) 988-0561	rlsbad NM 88220	11 S. Tidwell Rd.	arathon Oil	ac Castro
Control 1	Dert by log	Reneived by: / Cinn	samples constitutes a vali s and shall not assume ar ach project and a charge	8RCRA 13 alyzed TCLP / 1				10-30-19 3:00	Date Time Sampled Sampl	Total Contair	Correction Fa	T-N	Thermon	Yes No We				7.2, WA 5H					
	iduie)	internal and inter	id purchase order from cl ny responsibility for any lu of \$5 for each sample sub	3PPM Texas 11 , SPLP 6010: 8RCR				P 0.0'	e Depth	ners:	ctor: -D.2	t00-11	neter ID	tice: Reg No	Due Date:	Rush:	Routine	Turn Around	mail: lcastro@mar	City, State ZIP	Address:	Company Nam	Bill to: (if differen
0-31-17 A	Date/Time		ent company to Xenco, ir osses or expenses incurr omitted to Xenco, but not	Al Sb As Ba Be A Sb As Ba Be				8 8 8	BTEX TPH S Chlori	SW80 W801	f Co 021 5	onta	iner	S					athonoil.com			<u>e</u>	ť
45	Relinquished by: (Sign		ts affiliates and subcontractors. It a red by the client if such losses are du analyzed. These terms will be enfor	B Cd Ca Cr Co Cu Fe Cd Cr Co Cu Pb Mn N														ANALYSIS RE					
	nature) Received by: (Sig		issigns standard terms and conditions ue to circumstances beyond the control rced unless previously negotiated.	Pb Mg Mn Mo Ni K Se Ag S Ao Ni Se Ag TI U														OUFST	Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: IIST/PST Dppp	- (Pro Loop) Work (
	nature) Date/Tim	-		iO2 Na Sr TI Sn U V Zn 1631/245.1/7470 /7471					Sample Commer	lab, if received by 4:30	TAT starts the Jacobs -							Work Order Not	ADaPT Other:	PST/UST PRRP Plevel		Brownfields BBC Demonstration	Indor Commonto

Page 82 of 83

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Marathon Oil Company Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/31/2019 02:45:00 PM Temperature Measuring device used : T-NM-007 Work Order #: 641743 Sample Receipt Checklist Comments

Sample Receipt Sheckist	
#1 *Temperature of cooler(s)?	1
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 Custody Seals intact on sample bottles?	Yes
#6*Custody Seals Signed and dated?	Yes
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	No
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	No
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan

Date: 10/31/2019

Checklist reviewed by: Jessica Vramer

Date: 11/01/2019