

CLOSURE REPORT

Property:

Grama Ridge Release S5, T22S, R34E Lea County, New Mexico NMOCD No. 1RP-5547

March 4, 2020 Ensolum Project No. 03B1206009

Prepared for:

Marathon Oil Permian LLC 4111 S. Tidwell Road Carlsbad, New Mexico 88220

Attn: Mr. Isaac Castro

Prepared by:

0

Beaux Jennings Senior Project Manager

Elizabeth Scaggs, PG

Principal Geoscientist

•

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Site Description & Background	1
	1.2	Project Objective	1
2.0	CLOS	SURE CRITERIA	1
3.0	SOIL	REMEDIATION ACTIVITIES	3
4.0	SOIL	SAMPLING PROGRAM	3
5.0	SOIL	LABORATORY ANALYTICAL METHODS	4
6.0	DATA	A EVALUATION	4
7.0	RECL	_AMATION AND RE-VEGETATION	4
8.0	FIND	INGS AND RECOMMENDATION	4
9.0	STAN	IDARDS OF CARE, LIMITATIONS, AND RELIANCE	5
	9.1	Standard of Care	5
	9.2	Limitations	5
	9.3	Reliance	5

LIST OF APPENDICES

•

Appendix A:	Figures
Appendix B:	Supporting Figures and Documentation
Appendix C:	Photographic Documentation
Appendix D:	Table 1 - Soil Analytical Summary
Appendix E:	Laboratory Data Sheets & Chain of Custody Documentation
Appendix F:	C-141

CLOSURE REPORT

ENSOLUM

Grama Ridge Release S5, T22S, R34E Lea County, New Mexico NMOCD No. 1RP-5547

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Marathon Oil Permian LLC (Marathon)
Site Name:	Grama Ridge
Location:	32.399529 N, 103.489403 W Section 5, Township 22 South, Range 34 East Lea County, New Mexico
Property:	Marathon Oil Permian LLC
Regulatory:	New Mexico Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On September 5, 2019, a Marathon operator observed and reported a release of crude oil from a leaking lease automatic custody transfer (LACT) unit air eliminator. Approximately 12.5 barrels (bbls) of crude oil was released onto the ground surface and flowed approximately 100 feet west and 80 feet north of the LACT unit. Subsequent to the discovery of the release, Marathon dispatched a vacuum truck to recover standing crude oil that was released onto the pad surrounding the LACT unit. Approximately 10 bbls of crude oil were recovered the vacuum truck.

The **Topographic Map** depicting the location of the Site is included as **Figure 1**, and the **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 **Project Objective**

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-Site soils to below the applicable New Mexico EMNRD OCD closure criteria concentrations.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. In order to address activities related to exempt oil and gas releases, the New Mexico EMNRD OCD references New Mexico Administrative Code (NMAC) 19.15.29 *Releases*, which establishes investigation and abatement action requirements for sites subject to reporting and/or corrective action. Ensolum, LLC (Ensolum) utilized information provided by Marathon, the general site characteristics, and information available from the New Mexico Office of the State Engineer (OSE) and the New Mexico EMNRD OCD Imaging database to determine the appropriate closure criteria for the Site. Supporting documentation and figures associated with the following bullets are provided in **Appendix B**. No water wells were identified within a half-mile of the Site. However, the closest water well was identified approximately 0.88 miles northeast of the Site on the OSE Water Rights Reporting System (WRRS) database with a depth to water of 31 feet below ground surface (bgs).

- The Site is not located within 300 feet of a New Mexico ENMRD OCD-defined continuously flowing watercourse or significant watercourse.
- The Site is not located within 200 feet of a lakebed, sinkhole or playa lake.
- The Site is not located within 300 feet from a permanent residence, school, hospital, institution or church.
- According to the OSE WRSS database there are no private, domestic freshwater wells used by less than five (5) households for domestic or stock water purposes identified within 500 feet of the Site.
- According to the OSE WRSS database there are no freshwater wells identified within 1,000 feet of the Site as declared in the previous bullet.
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3.
- The Site is not located within 300 feet of a wetland.
- Based on information identified on the New Mexico Mining and Minerals Division's GIS, Maps and Mine Data database, the Site is not located within an area overlying a subsurface mine.
- The Site is not located within an unstable area.
- The Site is not located within a 100-year floodplain.

Based on the identified siting criteria, cleanup goals for soils remaining in place at the Site include:

	Closure Criteria for Soils Impacted by a Release								
Minimum depth below any point within horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Method	Limit						
	Chloride	EPA 300.0 or SM4500 CI B	600 mg/kg						
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg						
≤50 feet	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg						
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg						

Closure Report Grama Ridge Release March 4, 2020

3.0 SOIL REMEDIATION ACTIVITIES

On September 5, 2019, a Marathon operator observed and reported a release of crude oil from a leaking LACT unit air eliminator. Approximately 12.5 bbls of crude oil was released onto the ground surface and flowed approximately 100 feet west and 80 feet north of the LACT unit. Subsequent to the discovery of the release, Marathon dispatched a vacuum truck to recover standing crude oil that was released onto the pad surrounding the LACT unit. Approximately 10 bbls of crude oil were recovered the vacuum truck. During remediation activities, Lighthouse Environmental, LLC (Lighthouse) utilized a backhoe and hand digging during soil remediation activities, beginning near the point of release near the LACT unit and flow path. Remediation activities were conducted by Lighthouse, with oversight by Ensolum, on October 2, 2019 through February 14, 2020.

The initial Closure Report was submitted by Marathon on November 13, 2019 and received by the OCD on November 15, 2019. The Closure Report was reviewed and denied by the OCD on January 13, 2020 due to inadequate delineation and lack of composite soil sampling. On January 20, 2020, Ensolum proposed a sampling plan to Ms. Victoria Venegas with the OCD for additional sampling at the Site. On January 22, 2020, Ensolum returned to the Site to install eight (8) hand auger soil sample locations and collect composite soil samples (CS-6 through CS-13). Analytical results revealed an exceedance for total petroleum hydrocarbons (TPH) and chloride at soil sample location CS-8. On February 14, 2020, Ensolum and Lighthouse returned to the Site to excavate the impacts observed at soil sample location CS-8. A backhoe was utilized to remove approximately 8 cubic yards (cy) from the Site and was subsequently taken off-site for disposal. The additional excavation area was sampled with one (1) composite soil sample taken of the floor (CS-14) and side wall (CS-15) of the excavation.

The flow path area measured approximately 5,000 square feet. The maximum depth of COC impacts measured approximately two and a half feet (2.5) bgs.

The lithology encountered during the completion of closure activities consisted primarily of caliche, underlain by silty sand.

A total of approximately 278 cy of petroleum hydrocarbon affected soils were transported off-site for disposal. The excavation was backfilled with imported clean fill then contoured to surrounding grade.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the LACT unit (**Appendix A**). Photographic documentation of the field activities is included in **Appendix C**.

4.0 SOIL SAMPLING PROGRAM

Ensolum's soil sampling program included the collection of fifteen (15) confirmation soil samples (CS-1 through CS-15) from the impacted area for laboratory analysis. The location and depth of the confirmation soil samples were taken within the flow path to horizontally and vertically delineate the crude oil released from the on-site LACT unit. Prior to Ensolum's arrival, a portion of the impacted soil had been removed and placed on a plastic liner on the northwest portion of the Site. A stockpile soil sample (STP) was also taken to characterize the impacted soil for disposal purposes.

The soil samples were collected and placed in laboratory prepared glassware, labeled/sealed using laboratory supplied labels and custody seals, and stored on ice in a cooler. The samples were relinquished to Xenco Laboratories in Midland, Texas, under proper chain-of-custody procedures.

Closure Report Grama Ridge Release March 4, 2020

5.0 SOIL LABORATORY ANALYTICAL METHODS

The confirmation soil samples and stockpile soil sample were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) using Environmental Protection Agency (EPA) SW-846 Methods #8021B and #8260B, total petroleum hydrocarbon (TPH) gasoline range organics (GRO), diesel range organics (DRO), and motor oil/lube oil range organics (MRO) using EPA SW-846 Method #8015M, and chloride using EPA Method #300.0.

Laboratory analytical results are summarized in **Table 1** in **Appendix D**. The executed chain-of-custody and laboratory documentation are provided in **Appendix E**.

6.0 DATA EVALUATION

Ensolum compared the BTEX, TPH GRO/DRO/MRO, and chloride concentrations associated with the final confirmation soil samples (CS-1 through CS-7 and CS-9 through CS-15) remaining in place to the New Mexico EMNRD OCD closure criteria.

- Laboratory analytical results indicate benzene concentrations for soils remaining in place do not exceed the laboratory sample detection limits (SDLs) or the New Mexico EMNRD OCD closure criteria of 10 milligrams per kilogram (mg/kg).
- Laboratory analytical results indicate that total BTEX concentrations for soils remaining in place do not exceed the laboratory SDLs or the New Mexico EMNRD OCD closure criteria of 50 mg/kg.
- Laboratory analytical results indicate combined TPH GRO/DRO/MRO concentrations for soils remaining in place do not exceed the laboratory SDLs or the New Mexico EMNRD OCD closure criteria of 100 mg/kg.
- Laboratory analytical results indicate chloride concentrations for soils remaining in place do not exceed the laboratory SDLs or the New Mexico EMNRD OCD closure criteria of 600 mg/kg.

Laboratory analytical results are summarized in **Table 1** in **Appendix D**.

7.0 RECLAMATION AND RE-VEGETATION

The impacted area was backfilled with clean backfill and then contoured to original surface grade. The release area is located inside an active oil and gas production and storage facility; therefore, Lighthouse compacted the backfilled excavation in order to minimize dust and erosion at the site.

8.0 FINDINGS AND RECOMMENDATION

- The primary objective of the closure activities was to reduce COC concentrations in the on-Site soils to below the applicable New Mexico EMNRD OCD closure criteria using the New Mexico EMNRD OCD's NMAC 19.15.29 *Releases* as guidance.
- During remediation activities, Lighthouse utilized a backhoe and hand digging during soil remediation activities, beginning near the point of release near the LACT unit and flow path. Remediation activities were conducted by Lighthouse, with oversight by Ensolum, on October 2, 2019 through February 14, 2020.
- A total of 15 confirmation soil samples were collected from the impacted area. Based on laboratory analytical results, soils remaining in place do not exhibit COC concentrations above the applicable New Mexico EMNRD OCD closure criteria.

Closure Report Grama Ridge Release March 4, 2020

- The location and depth of the 15 confirmation soil samples taken within the flow path are adequate to effectively horizontally and vertically delineate the crude oil released from the on-site LACT unit.
- A total of approximately 278 cy of petroleum hydrocarbon affected soils were transported off-site for disposal. The excavation was backfilled with imported clean fill then contoured to surrounding grade.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

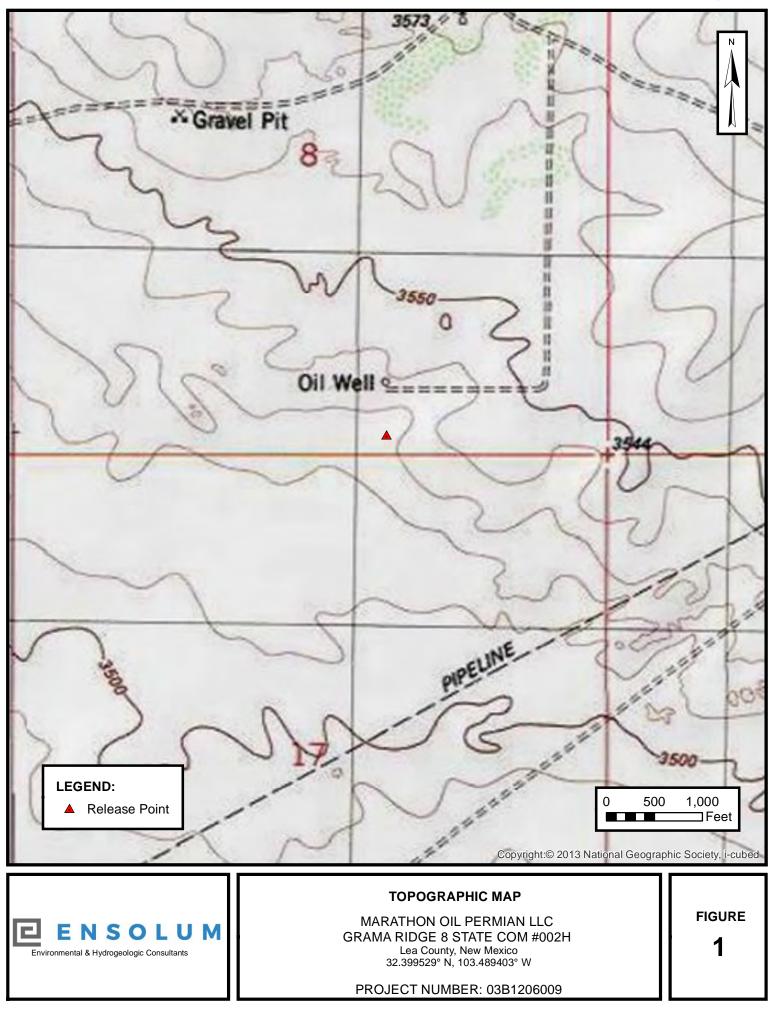
9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client, as detailed in our proposal.

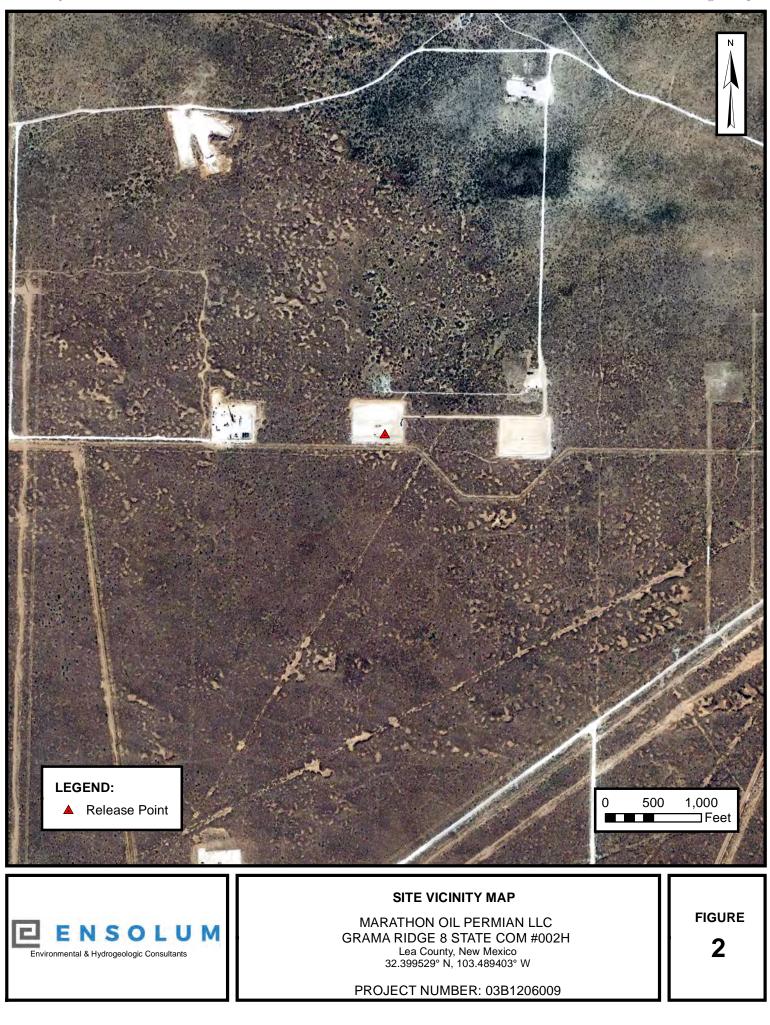
9.2 Limitations

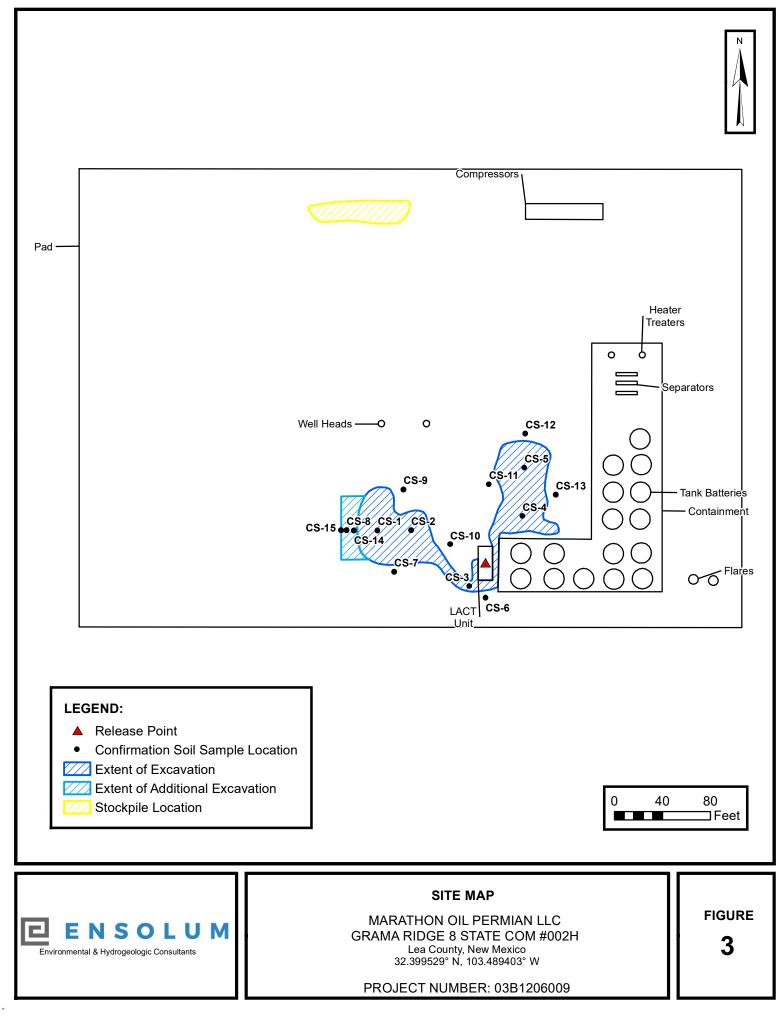
Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings, and recommendations are based solely upon data available to Ensolum at the time of these services.

9.3 Reliance


This report has been prepared for the exclusive use of Marathon Oil Permian LLC, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization Marathon Oil Permian LLC and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the Closure Report.

ENSOLUM


APPENDIX A


Figures

Received by OCD: 3/4/2020 2:22:12 PM

Received by OCD: 3/4/2020 2:22:12 PM

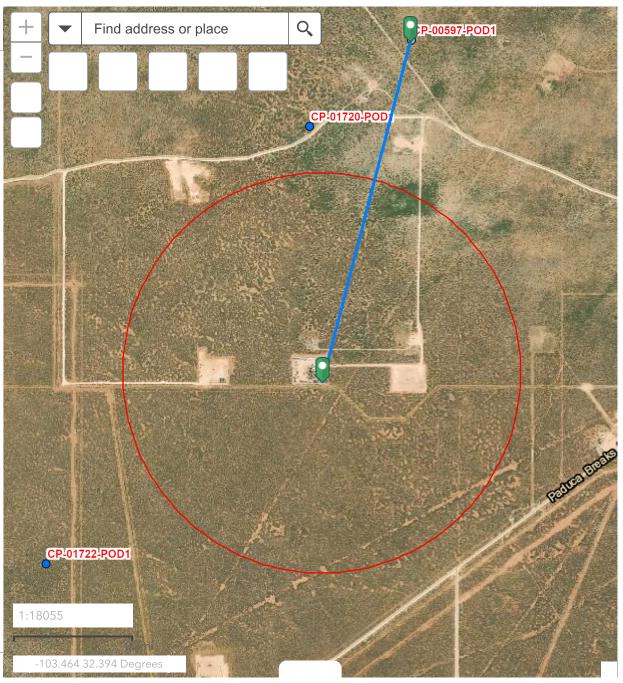
ENSOLUM

APPENDIX B

Supporting Figures & Documentation

Water Rights Look Up

Measurement


| Miles

Measurement Result

0.88 Miles

Clear

Press **CTRL** to enable snapping

All Rights Reserved

Received by	OCD:	3/4/2020	2:22:1	2 PM
- Sh i		*		3

Revised December 1975 IMPORTANT --- READ INSTRUCTIONS ON BACK BEFORE FILLING OUT THIS FORM. Declaration of Owner of Underground Water Right CAPITAN BASIN **BASIN NAME** April 17. 1979APA 20 PH 3 AL Declaration No. ______ _Date received_ STATEMENT STATE ENGINEER OFFICE 1. Name of Declarant THE MERCHANT LIVESTOCK COMPANY SANTA FE. N.M. 87501 Carlsbad Mailing Address P.O. Box 548 Eddy County of _, State of <u>New Mexico</u> 2. Source of water supply shallow (artesian or shallow water aquifer) 3. Describe well location under one of the following subheadings: ____ ¼ ____ **NE**___ ¼ ___ **NE**____ ¼ of Sec. ____ <u>8</u> Twp. <u>22 S</u> Rge. <u>3) E</u> N.M.P.M., in a. ___ Lea ___County. b. Tract No. _ of Map No. ___ ___ of the __ c. X = ____ _ feet. Y = ___ ____ feet, N. M. Coordinate System ___ _ Zone in the _ _ Grant. On land owned by ____ 4. Description of well: date drilled <u>1918</u> driller ____depth____351 feet. outside diameter of casing 5/8 inches; original capacity_____gal. per min.; present capacity___ 3____ gal. per min.; pumping lift_____feet; static water level_31___feet (above) (below) land surface; make and type of pump____ make, type, horsepower, etc., of power plant____ 100% Fractitional or percentage interest claimed in well____ 5. Quantity of water appropriated and beneficially used____ up to (NOXEX DE EN XORIXAKOR) (acre feet per annum) for<u>stock water</u> purposes. _____ acres, located and described as follows (describe only lands actually irrigated): 6. Acreage actually irrigated____ Acres Owner Subdivision Sec. Twp. Range Irrigated stock only The Merchant Livestock Co. 6/3 in a S E (Note: location of well and acreage actually irrigated must be shown on plat on reverse side.) 1918 and since that time day has been used fully and continuously on all of the above described lands or for the above described purposes except as follows: с m <u>\</u> 8. Additional statements or explanations_ name of well - Hamilton THE LIVESTOCK CO. MERCHANT _, declarant. ŝ 0 Merchan President

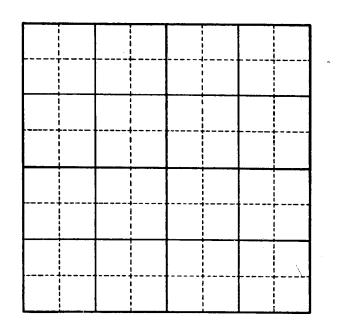
14 of 109

90 My commission expires Notary Public FILED WINDER NEWE SHORE O LAW A DECLARATION IS ONLY A STATEMENT OF DECLARANT'S CLAIM. ACCEPTANCE FOR FILING DOES NOT CONSTITUTE APPROVAL OR REJECTION OF THE CLAIM.

day

_, A.D. 19_79

dirg


Subscribed and sworn to before he thi

Locate well and areas actually irrigated as accurately as possible on following plat:

Section (s) _____, Township _____, Range ____

....., nauge

INSTRUCTIONS

Declaration shall be executed (preferably typewritten) in triplicate and must be accompanied by a \$1.00 filing fee. Each of triplicate copies must be properly signed and attested.

A separate declaration must be filed for each well in use.

All blanks shall be filled out fully. Required information which cannot be sworn to by declarant shall be supplied by affidavit of person or persons familiar with the facts and shall be submitted herewith.

Secs. 1-3. Complete all blanks.

Sec. 4. Fill out all blanks applicable as fully as possible.

Sec. 5. Irrigation use shall be stated in acre feet of water per acre per year applied on the land. If used for domestic, municipal. or other purposes, state total quantity in acre feet used annually.

Sec. 6. Describe only the acreage actually irrigated. When necessary to clearly define irrigated acreages, describe to nearest 2½ acre subdivision. If located on unsurveyed lands, describe by legal supdivision "as projected" from the nearest government survey corners, or describe by metes and bounds and the survey to some permanent, easily-located natural object.

Sec. 7. Explain and give dates as nearly as possible of any years when all or part of acreage claimed was not irrigated.

Sec. 8. If well irrigates or supplies supplemental water to any other land than that described above, or if land is also irrigated from any other source, explain under this section. Give any other data necessary to fully describe water right.

و •

If additional space is necessary, use a separate sheet or sheets and attach securely hereto.

April 17, 1979

Files: CP-584; CP-583; CP-586; CP-587; CP-588; CP-589; CP-590; CP-591; CP-592; CP-593; GP-594; CP-595; CP-596; CP-597; CP-598; CP-599; CP-600; CP-601; CP-602

The Merchant Livestock Company P. O. Box 548 Carlabad, CM - 88220

Gentlemen:

Unclosed are your copies of Declarations of Owner of Underground Dater Night as numbered above, which have been filed for record in the office of the State Engineer.

Please refer to each individual number in all future correspondence concerning these declarations.

The filing of these declarations does not indicate affirmation or rejection of the statements contained therein.

Yours very truly,

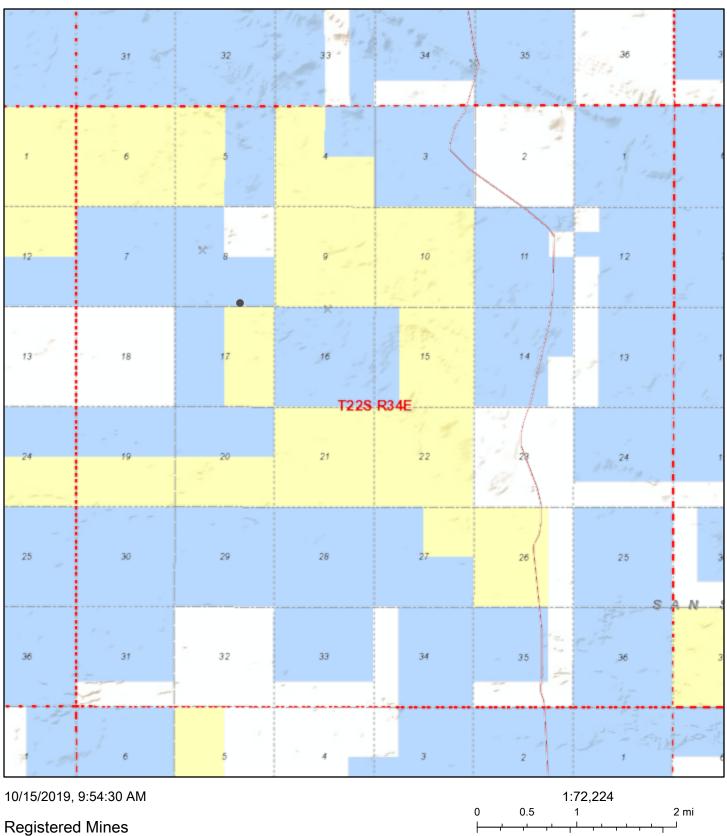
J. C. Groseclose Basin Supervisor

JCG/fh Encls. cc: Canta Fe

U.S. Fish and Wildlife Service National Wetlands Inventory

Gi

Grama Ridge


October 15, 2019

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Active Mines in New Mexico

* Aggregate, Stone etc.

U.S. Bureau of Land Management - New Mexico State Office, Sources:

3 km

U.S. Bureau of Land Management - New Mexico State Office, Sour Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS

1.5

0

ENSOLUM

APPENDIX C

Photographic Documentation

View of the release area during remediation activities, facing south.

View of the release area during remediation activities, facing south.

View of the release area during remediation activities, facing east.

View of flow path during remediation activities, facing southwest.

View of the release area during remediation activities, facing south.

View of the release area during remediation activities, facing south.

View of the release area during remediation activities, facing east.

View of the release area during remediation activities, facing east.

View of the release area subsequent to remediation activities, facing northeast.

View of the release area subsequent to remediation activities, facing north.

ENSOLUM

APPENDIX D

Table 1 – Soil Analytical Summary

Marathon Oil Permian LLC - Grama Ridge 8 State Com #002H Lea County, New Mexico

Lea County, New Mexico

					Enso	olum Project No. 03B	1206009					
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total TPH (GRO+DRO+MRO) (mg/kg)	Chloride (mg/kg)
New Mexico Oil Conservation Division Closure Criteria for Soils Impacted by a Release (≤ 50 feet)		10	NE	NE	NE	50	NE	NE	NE	100	600	
					Confirmat	ion Soil Sample Ana	lytical Results					
CS-1	10/4/2019	1.5	<0.000207	<0.000998	<0.000335	< 0.000436	<0.000207	<15.0	<15.0	<15.0	<15.0	6.36
CS-2	10/4/2019	1	<0.000207	<0.000998	<0.000335	<0.000436	<0.000207	<15.0	<15.0	<15.0	<15.0	200
CS-3	10/4/2019	2.5	<0.000206	<0.000996	<0.000334	<0.000435	<0.000206	<15.0	<15.0	<15.0	<15.0	9.01
CS-4	10/4/2019	2	<0.000207	<0.00100	<0.000336	<0.000438	<0.000207	<14.9	<14.9	<14.9	<14.9	4.02 J
CS-5	10/4/2019	1	<0.000208	<0.00101	0.000795 J	0.00305	0.00385	<15.0	74.0	<15.0	74.0	201
CS-6	1/22/2020	0 - 2.5	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<50.0	<50.0	<50.0	<50.0	249
CS-7	1/22/2020	0 - 2.5	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<49.9	<49.9	<49.9	<49.9	18.5
CS-8	1/22/2020	0 - 2.5	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<50.0	110	<50.0	110	886
CS-9	1/22/2020	0 - 2.5	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<50.0	<50.0	<50.0	<50.0	388
CS-10	1/22/2020	0 - 2.5	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	51.5	<49.9	<49.9	51.5	107
CS-11	1/22/2020	0 - 2.5	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	52.0	<49.8	<49.8	52.0	94.8
CS-12	1/22/2020	0 - 2.5	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.0	58.4	<50.0	58.4	524
CS-13	1/22/2020	0 - 2.5	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<49.9	<49.9	<49.9	<49.9	441
CS-14	2/14/2020	2.5			NS	•		<50.0	<50.0	<50.0	<50.0	499
CS-15	2/14/2020	0 - 2.5			NS			<49.8	<49.8	<49.8	<49.8	460
			<u>.</u>		Stockpil	e Soil Sample Analy	tical Results	-	-		-	
STP	10/4/2019	NA	0.0514	0.863	0.759	3.78	5.45	489	6,030	549	7,070	166

Concentrations in bold and yellow exceed the New Mexico Oil Conservation Division Closure Criteria for Soils Impacted by a Release (<50 feet)

Over Ecavated and/or Re-Sampled

bgs: below ground surface

J: The target analyte was positively identified below the quantitation limit and above the detection limit.

mg/kg: milligrams per kilogram

NA: Not Applicable

NE: Not Established

NS: Not Sampled

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

TPH = Total Petroleum Hydrocarbon

Page 26 of 109

ENSOLUM

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

Analytical Report 639137

for

Ensolum

Project Manager: Beaux Jennings

Gramma Ridge

03B1206009

10-OCT-19

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142), North Carolina (681)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

.

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	6
Explanation of Qualifiers (Flags)	20
SURR_QC_V62	21
LCS / LCSD Recoveries	24
MS / MSD Recoveries	26
Chain of Custody	28
IOS_COC_49447	30
IOS_Check_List_49447	31
Sample Receipt Conformance Report	32

Received by OCD: 3/4/2020 2:22:12 PM

10-OCT-19

Project Manager: **Beaux Jennings Ensolum** 2351 W Northwest Highway Suite 1203 Dallas, TX 75220

Reference: XENCO Report No(s): 639137 Gramma Ridge Project Address:

Beaux Jennings:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 639137. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 639137 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Vramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

.

Ensolum, Dallas, TX

Gramma Ridge

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CS-1	S	10-04-19 09:50	1.5 ft	639137-001
CS-2	S	10-04-19 09:52	1 ft	639137-002
CS-3	S	10-04-19 09:55	2.5 ft	639137-003
CS-4	S	10-04-19 10:00	2 ft	639137-004
CS-5	S	10-04-19 10:02	1 ft	639137-005
STP	S	10-04-19 09:25		639137-006

CASE NARRATIVE

Client Name: Ensolum Project Name: Gramma Ridge

Project ID:03B1206009Work Order Number(s):639137

TORIES

Report Date: 10-OCT-19 Date Received: 10/07/2019

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-1		Matrix:	Soil		Sample	Depth: 1.5 ft		
Lab Sample Id: 639137-001		Date Collecte	d: 10.04.19 0	9.50	Date R	eceived: 10.07.	19 08.3	0
Analytical Method: Chloride by EPA 300					Prep M	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3103554		Date Prep: 10	0.07.19 14.00					
	Prep seq: 7687628							
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	6.36	4.96	0.852	mg/kg	10.07.19 18:53		1

Analytical Method: TPH by SW8015 Mod	1				Prep M	lethod: 8015		
Analyst: ARM		% Moist:			Tech:	DVM		
Seq Number: 3103878		Date Prep: 10	0.09.19 17.00					
		Prep seq: 76	587811					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	50.0	15.0	mg/kg	10.09.19 22:41	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	50.0	15.0	mg/kg	10.09.19 22:41	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	50.0	15.0	mg/kg	10.09.19 22:41	U	1
Total TPH	PHC635	<15.0		15.0	mg/kg	10.09.19 22:41	U	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		83		70 - 1	35 %			
o-Terphenyl		91		70 - 1	35 %)		

.

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-1	Matrix: Soil	Sample Depth:	1.5 ft	
Lab Sample Id: 639137-001	Date Collected: 10.04.19 09.50	Date Received:	10.07.19 08.3	0
Analytical Method: BTEX by SW 8260C		Prep Method:	5035A	
Analyst: CRL	% Moist:	Tech:	CRL	
Seq Number: 3103624	Date Prep: 10.08.19 13.45			
Subcontractor: SUB: T104704215-19-30	Prep seq: 7687687			
CAS		Anal	lvsis	Dil Fa

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000207	0.000998	0.000207	mg/kg	10.08.19 14:15	U	1
Toluene	108-88-3	< 0.000998	0.00499	0.000998	mg/kg	10.08.19 14:15	U	1
Ethylbenzene	100-41-4	< 0.000335	0.000998	0.000335	mg/kg	10.08.19 14:15	U	1
m,p-Xylenes	179601-23-1	< 0.000436	0.00200	0.000436	mg/kg	10.08.19 14:15	U	1
o-Xylene	95-47-6	< 0.000983	0.000998	0.000983	mg/kg	10.08.19 14:15	U	1
Total Xylenes	1330-20-7	< 0.000436		0.000436	mg/kg	10.08.19 14:15	U	
Total BTEX		< 0.000207		0.000207	mg/kg	10.08.19 14:15	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

Surrogate	/0 Recovery	Linits	Onus	Analysis Date	Thag
Dibromofluoromethane	96	53 - 142	%		
1,2-Dichloroethane-D4	91	53 - 150	%		
Toluene-D8	96	70 - 130	%		

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-2		Matrix:	Soil		Sample	Depth: 1 ft		
Lab Sample Id: 639137-002		Date Collected	d: 10.04.19 0	9.52	Date R	eceived: 10.07.	19 08.3	80
Analytical Method: Chloride by EPA 300					Prep M	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3103554		Date Prep: 10	.07.19 14.00					
		Prep seq: 76	87628					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	200	4.99	0.857	mg/kg	10.07.19 18:58		1

Analytical Method: TPH by SW8015 Mod	l				Prep M	lethod: 8015		
Analyst: ARM		% Moist:			Tech:	DVM		
Seq Number: 3103878		Date Prep: 10	0.09.19 17.00					
		Prep seq: 76	587811					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	50.0	15.0	mg/kg	10.09.19 23:43	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	50.0	15.0	mg/kg	10.09.19 23:43	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	50.0	15.0	mg/kg	10.09.19 23:43	U	1
Total TPH	PHC635	<15.0		15.0	mg/kg	10.09.19 23:43	U	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		84		70 - 1	135 %			
o-Terphenyl		91		70 - 1	135 %			

.

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-2		Matrix:	Soil	Sample Depth:	1 ft
Lab Sample Id: 639137-002		Date Collected	1: 10.04.19 09.52	Date Received	: 10.07.19 08.30
Analytical Method: BTEX by SW 8260C				Prep Method:	5035A
Analyst: CRL		% Moist:		Tech:	CRL
Seq Number: 3103624		Date Prep: 10.	08.19 13.45		
Subcontractor: SUB: T104704215-19-30		Prep seq: 768	37687		
	CAS			Ana	lysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dirractor
Benzene	71-43-2	< 0.000207	0.000998	0.000207	mg/kg	10.08.19 14:33	U	1
Toluene	108-88-3	< 0.000998	0.00499	0.000998	mg/kg	10.08.19 14:33	U	1
Ethylbenzene	100-41-4	< 0.000335	0.000998	0.000335	mg/kg	10.08.19 14:33	U	1
m,p-Xylenes	179601-23-1	< 0.000436	0.00200	0.000436	mg/kg	10.08.19 14:33	U	1
o-Xylene	95-47-6	< 0.000983	0.000998	0.000983	mg/kg	10.08.19 14:33	U	1
Total Xylenes	1330-20-7	< 0.000436		0.000436	mg/kg	10.08.19 14:33	U	
Total BTEX		<0.000207		0.000207	mg/kg	10.08.19 14:33	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

Surrogate	70 Recovery	Linits	Onto	Analysis Date	Tiag
Dibromofluoromethane	100	53 - 142	%		
1,2-Dichloroethane-D4	96	53 - 150	%		
Toluene-D8	97	70 - 130	%		

Ensolum, Dallas, TX

Gramma Ridge

	Matrix:	Soil		Sample	Depth: 2.5 ft		
	Date Collecte	ed: 10.04.19 (9.55	Date R	eceived: 10.07.	19 08.3	80
				Prep M	lethod: E300P		
	% Moist:			Tech:	CHE		
	Date Prep: 10	0.07.19 14.00					
	Prep seq: 76	587628					
CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
16887-00-6	9.01	4.95	0.850	mg/kg	10.07.19 19:14		1
	Number	Date Collecte % Moist: Date Prep: 10 Prep seq: 76 CAS Number Result	Date Collected: 10.04.19 0 % Moist: Date Prep: 10.07.19 14.00 Prep seq: 7687628 CAS Number Result MQL	Date Collected: 10.04.19 09.55 % Moist: Date Prep: 10.07.19 14.00 Prep seq: 7687628 CAS Number Result MQL SDL	Date Collected: 10.04.19 09.55 Date R Prep M % Moist: Tech: Date Prep: 10.07.19 14.00 Prep seq: 7687628 CAS Number Result MQL SDL Units	Date Collected: 10.04.19 09.55 Date Received: 10.07. Prep Method: E300P % Moist: Tech: CHE Date Prep: 10.07.19 14.00 Prep seq: 7687628 CAS Number Result MQL SDL Units Analysis Date	Date Collected: 10.04.19 09.55 Date Received: 10.07.19 08.3 Prep Method: E300P % Moist: Tech: CHE Date Prep: 10.07.19 14.00 Prep seq: 7687628 CAS Number Result MQL SDL Units Analysis Flag

Analytical Method: TPH by SW8015 Mod					Prep M	lethod: 8015		
Analyst: ARM		% Moist:			Tech:	DVM		
Seq Number: 3103878		Date Prep: 10	0.09.19 17.00					
		Prep seq: 76	587811					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	49.9	15.0	mg/kg	10.10.19 00:04	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	49.9	15.0	mg/kg	10.10.19 00:04	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	49.9	15.0	mg/kg	10.10.19 00:04	U	1
Total TPH	PHC635	<15.0		15.0	mg/kg	10.10.19 00:04	U	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		81		70 - 1	135 %)		
o-Terphenyl		89		70 - 1	135 %)		

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-3	Matrix: Soil	Sample Depth: 2.5 ft
Lab Sample Id: 639137-003	Date Collected: 10.04	.19 09.55 Date Received: 10.07.19 08.30
Analytical Method: BTEX by SW 8260C		Prep Method: 5035A
Analyst: CRL	% Moist:	Tech: CRL
Seq Number: 3103624	Date Prep: 10.08.19 1	3.45
Subcontractor: SUB: T104704215-19-30	Prep seq: 7687687	
	CAS	Analysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dirractor
Benzene	71-43-2	< 0.000206	0.000996	0.000206	mg/kg	10.08.19 14:50	U	1
Toluene	108-88-3	< 0.000996	0.00498	0.000996	mg/kg	10.08.19 14:50	U	1
Ethylbenzene	100-41-4	< 0.000334	0.000996	0.000334	mg/kg	10.08.19 14:50	U	1
m,p-Xylenes	179601-23-1	< 0.000435	0.00199	0.000435	mg/kg	10.08.19 14:50	U	1
o-Xylene	95-47-6	< 0.000981	0.000996	0.000981	mg/kg	10.08.19 14:50	U	1
Total Xylenes	1330-20-7	< 0.000435		0.000435	mg/kg	10.08.19 14:50	U	
Total BTEX		< 0.000206		0.000206	mg/kg	10.08.19 14:50	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

8	č		v	0
Dibromofluoromethane	95	53 - 142 %		
1,2-Dichloroethane-D4	92	53 - 150 %		
Toluene-D8	89	70 - 130 %		

Ensolum, Dallas, TX

Gramma Ridge

Chloride	16887-00-6	4.02	5.00	0.858	mg/kg	10.07.19 19:20	J	1
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
		Prep seq: 76	87628					
Seq Number: 3103554		Date Prep: 10	0.07.19 14.00					
Analyst: CHE		% Moist:			Tech:	CHE		
Analytical Method: Chloride by EPA 300					Prep M	ethod: E300P		
Lab Sample Id: 639137-004		Date Collecte	d: 10.04.19 1	0.00	Date R	eceived: 10.07.	19 08.3	0
Sample Id: CS-4		Matrix:	Soil		Sample	Depth: 2 ft		

Analytical Method: TPH by SW8015 Mod	l				Prep M	ethod: 8015		
Analyst: ARM		% Moist:			Tech:	DVM		
Seq Number: 3103878		Date Prep: 10	0.09.19 17.00					
		Prep seq: 76	587811					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	49.8	14.9	mg/kg	10.10.19 00:25	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	49.8	14.9	mg/kg	10.10.19 00:25	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<14.9	49.8	14.9	mg/kg	10.10.19 00:25	U	1
Total TPH	PHC635	<14.9		14.9	mg/kg	10.10.19 00:25	U	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		82		70 - 1	135 %	1		
o-Terphenyl		91		70 - 1	135 %	•		

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-4		Matrix:	Soil	Sample Depth:	2 ft
Lab Sample Id: 639137-004		Date Collected:	10.04.19 10.00	Date Received:	10.07.19 08.30
Analytical Method: BTEX by SW 8260C				Prep Method:	5035A
Analyst: CRL		% Moist:		Tech:	CRL
Seq Number: 3103624		Date Prep: 10.0	08.19 13.45		
Subcontractor: SUB: T104704215-19-30		Prep seq: 768	7687		
	CAS			Ana	lysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dii Factor
Benzene	71-43-2	< 0.000207	0.00100	0.000207	mg/kg	10.08.19 15:08	U	1
Toluene	108-88-3	< 0.00100	0.00501	0.00100	mg/kg	10.08.19 15:08	U	1
Ethylbenzene	100-41-4	< 0.000336	0.00100	0.000336	mg/kg	10.08.19 15:08	U	1
m,p-Xylenes	179601-23-1	< 0.000438	0.00200	0.000438	mg/kg	10.08.19 15:08	U	1
o-Xylene	95-47-6	< 0.000987	0.00100	0.000987	mg/kg	10.08.19 15:08	U	1
Total Xylenes	1330-20-7	< 0.000438		0.000438	mg/kg	10.08.19 15:08	U	
Total BTEX		<0.000207		0.000207	mg/kg	10.08.19 15:08	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

	,,			J ~-~	8
Dibromofluoromethane	95	53 - 142	%		
1,2-Dichloroethane-D4	89	53 - 150	%		
Toluene-D8	93	70 - 130	%		

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-5		Matrix:	Soil		Sample	Depth: 1 ft	
Lab Sample Id: 639137-005		Date Collecte	d: 10.04.19 1	0.02	Date R	eceived: 10.07	19 08.30
Analytical Method: Chloride by EPA 300					Prep M	ethod: E3001)
Analyst: CHE		% Moist:			Tech:	CHE	
Seq Number: 3103554		Date Prep: 10	.07.19 14.00				
		Prep seq: 76	87628				
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Dil Factor Flag
Parameter Chloride		Result 201	MQL 5.04	SDL 0.865	Units mg/kg	-	Dil Factor Flag
	Number					Date	Dil Factor Flag
	Number 16887-00-6					Date 10.07.19 19:25	Dil Factor Flag 1

Seq Number: 3103878		Date Prep: 10.09.19 17.00						
		Prep seq: 7687811						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	50.0	15.0	mg/kg	10.10.19 00:46	U	1
Diesel Range Organics (DRO)	C10C28DRO	74.0	50.0	15.0	mg/kg	10.10.19 00:46		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	50.0	15.0	mg/kg	10.10.19 00:46	U	1
Total TPH	PHC635	74.0		15.0	mg/kg	10.10.19 00:46		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		82		70 - 1	135 %			
o-Terphenyl		91		70 - 1	135 %)		

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-5	Matrix: Soil	Sample Depth: 1 ft
Lab Sample Id: 639137-005	Date Collected: 10.04.19 10.02	Date Received: 10.07.19 08.30
Analytical Method: BTEX by SW 8260C		Prep Method: 5035A
Analyst: CRL	% Moist:	Tech: CRL
Seq Number: 3103624	Date Prep: 10.08.19 13.45	
Subcontractor: SUB: T104704215-19-30	Prep seq: 7687687	
C	AS	Analysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dirractor
Benzene	71-43-2	< 0.000208	0.00101	0.000208	mg/kg	10.08.19 15:25	U	1
Toluene	108-88-3	< 0.00101	0.00503	0.00101	mg/kg	10.08.19 15:25	U	1
Ethylbenzene	100-41-4	0.000795	0.00101	0.000338	mg/kg	10.08.19 15:25	J	1
m,p-Xylenes	179601-23-1	0.00168	0.00201	0.000439	mg/kg	10.08.19 15:25	J	1
o-Xylene	95-47-6	0.00137	0.00101	0.000991	mg/kg	10.08.19 15:25		1
Total Xylenes	1330-20-7	0.00305		0.000439	mg/kg	10.08.19 15:25		
Total BTEX		0.00385		0.000208	mg/kg	10.08.19 15:25		
Surrogate		% Recovery		I imite	Un	ite Analveie	Data	Flag

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
Dibromofluoromethane	99	53 - 142	%		
1,2-Dichloroethane-D4	97	53 - 150	%		
Toluene-D8	99	70 - 130	%		

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: STP		Matrix:	Soil	0.25	-	Sample Depth: Date Received: 10.07.19 08.30			
Lab Sample Id: 639137-006		Date Collecte	a: 10.04.19 0	9.25				00	
Analytical Method: Chloride by EPA 300					Prep M	lethod: E300P			
Analyst: CHE		% Moist:			Tech:	CHE			
Seq Number: 3103554		Date Prep: 10	0.07.19 14.00						
		Prep seq: 76	587628						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
Chloride	16887-00-6	166	5.05	0.867	mg/kg	10.07.19 19:30		1	
Analytical Method: TPH by SW8015 Mod Analyst: ARM	1	% Moist:			Prep M Tech:	lethod: 8015 DVM			
5			00 10 17 00		reen.	DVM			
Seq Number: 3103878		Date Prep: 10							
		Prep seq: 76	587811						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
Gasoline Range Hydrocarbons (GRO)	PHC610	489	49.9	15.0	mg/kg	10.10.19 01:07		1	
Diesel Range Organics (DRO)	C10C28DRO	6030	49.9	15.0	mg/kg	10.10.19 01:07		1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	549	49.9	15.0	mg/kg	10.10.19 01:07		1	
Total TPH	PHC635	7070		15.0	mg/kg	10.10.19 01:07			

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1-Chlorooctane	121	70 - 135	%		
o-Terphenyl	108	70 - 135	%		

Certificate of Analytical Results 639137

Ensolum, Dallas, TX

Gramma Ridge

Devenuetor	CAS	Dogult	MOI SDI	An Inite	alysis Dil Fa
Subcontractor: SUB: T104704215-19-30		Prep seq: 768	37687		
Seq Number: 3103624		Date Prep: 10.	08.19 13.45		
Analyst: CRL		% Moist:		Tech:	CRL
Analytical Method: BTEX by SW 8260C				Prep Method:	5035A
Lab Sample Id: 639137-006		Date Collected	: 10.04.19 09.25	Date Received	d: 10.07.19 08.30
Sample Id: STP		Matrix:	Soil	Sample Depth	1:

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.0514	0.00100	0.000207	mg/kg	10.08.19 16:00		1
Toluene	108-88-3	0.863	0.125	0.0249	mg/kg	10.08.19 16:18	D	25
Ethylbenzene	100-41-4	0.759	0.0249	0.00836	mg/kg	10.08.19 16:18	D	25
m,p-Xylenes	179601-23-1	2.58	0.0498	0.0109	mg/kg	10.08.19 16:18	D	25
o-Xylene	95-47-6	1.20	0.0249	0.0245	mg/kg	10.08.19 16:18	D	25
Total Xylenes	1330-20-7	3.78		0.0109	mg/kg	10.08.19 16:18		
Total BTEX		5.45		0.000207	mg/kg	10.08.19 16:18		

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
Dibromofluoromethane	91	53 - 142	%		
1,2-Dichloroethane-D4	85	53 - 150	%		
Toluene-D8	123	70 - 130	%		

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: 7687628-1-BLK		Matrix:	Solid		Sample Depth:				
Lab Sample Id: 7687628-1-BLK		Date Collecte	ed:		Date R	eceived:			
Analytical Method: Chloride by EPA 300					Prep M	lethod: E300P			
Analyst: CHE		% Moist:			Tech:	CHE			
Seq Number: 3103554		Date Prep: 10	0.07.19 14.00						
		Prep seq: 76	687628						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
Chloride	16887-00-6	<0.858	5.00	0.858	mg/kg	10.07.19 17:07	U	1	
Sample Id: 7687687-1-BLK		Matrix:	Solid		Sample	e Depth:			
Lab Sample Id: 7687687-1-BLK		Date Collecte	ed:		Date Received:				
Analytical Method: BTEX by SW 8260C					Prep M	lethod: 5035A			
Analyst: CRL		% Moist:			Tech:	CRL			
Seq Number: 3103624		Date Prep: 10	0.08.19 09.30						
Subcontractor: SUB: T104704215-19-30		Prep seq: 76	687687						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
Benzene	71-43-2	< 0.000207	0.00100	0.000207	mg/kg	10.08.19 11:41	U	1	

Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag	
o-Xylene	95-47-6	<0.000985	0.00100	0.000985	mg/kg	10.08.19 11:41	U	1	
m,p-Xylenes	179601-23-1	< 0.000437	0.00200	0.000437	mg/kg	10.08.19 11:41	U	1	
Ethylbenzene	100-41-4	< 0.000336	0.00100	0.000336	mg/kg	10.08.19 11:41	U	1	
Toluene	108-88-3	< 0.00100	0.00500	0.00100	mg/kg	10.08.19 11:41	U	1	
Bendene	11 10 2	(0.00020)	0.00100	0.000207		10100119 11111	0	-	

% Recovery	Limits	Units	Analysis Date	Flag
95	53 - 142	%		
91	53 - 150	%		
91	70 - 130	%		
	95 91	95 53 - 142 91 53 - 150	95 53 - 142 % 91 53 - 150 %	95 53 - 142 % 91 53 - 150 %

Ensolum, Dallas, TX

Gramma Ridge

Parameter	CAS Number	Result	MQL	SDL	Unito	nalysis Date	l Flag	Dil Factor
		Prep seq: 76	87811					
Seq Number: 3103878		Date Prep: 10	.09.19 17.00					
Analyst: ARM		% Moist:			Tech:	DVM		
Analytical Method: TPH by SW8015 Mod					Prep Method	: 8015		
Lab Sample Id: 7687811-1-BLK		Date Collecte	d:		Date Receive	ed:		
Sample Id: 7687811-1-BLK		Matrix:	Solid		Sample Dept	h:		

	Number		C			Date			
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	50.0	15.0	mg/kg	10.09.19 21:39	U	1	
Diesel Range Organics (DRO)	C10C28DRO	<15.0	50.0	15.0	mg/kg	10.09.19 21:39	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	50.0	15.0	mg/kg	10.09.19 21:39	U	1	

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1-Chlorooctane	83	70 - 135	%		
o-Terphenyl	93	70 - 135	%		

Flagging Criteria

Page 47 of 109

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Form 2 - Surrogate Recoveries

Project Name: Gramma Ridge

ork Orders : 639137 Lab Batch #: 3103624	, Sample: 7687687-1-BKS / I	BKS Batc		D: 03B12060 c: Solid	~ /	
Units: mg/kg	Date Analyzed: 10/08/19 10:25	SU	RROGATE R	ECOVERYS	STUDY	
BTE	X by SW 8260C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane		0.0492	0.0500	98	53-142	
1,2-Dichloroethane-D4		0.0452	0.0500	94	53-142	
Toluene-D8		0.0471	0.0500	94	70-130	
Lab Batch #: 3103624	Sample: 7687687-1-BSD / 1	BSD Batc	h: 1 Matrix	solid	<u> </u>	
Units: mg/kg	Date Analyzed: 10/08/19 10:43	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by SW 8260C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
Dibromofluoromethane		0.0461	0.0500	92	53-142	
1,2-Dichloroethane-D4		0.0457	0.0500	91	53-150	
Toluene-D8		0.0440	0.0500	88	70-130	
Lab Batch #: 3103624	Sample: 7687687-1-BLK / 1	BLK Batc	h: 1 Matrix	x: Solid	<u>. </u>	
Units: mg/kg	Date Analyzed: 10/08/19 11:41	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by SW 8260C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
Dibromofluoromethane		0.0473	0.0500	95	53-142	
1,2-Dichloroethane-D4		0.0457	0.0500	91	53-150	
Toluene-D8		0.0456	0.0500	91	70-130	
Tolucile-Do						
	Sample: 638964-003 S / MS					
	Sample: 638964-003 S / MS Date Analyzed: 10/08/19 13:09		h: ¹ Matrix RROGATE R		STUDY	
Lab Batch #: 3103624 Units: mg/kg	-				STUDY Control Limits %R	Flags
Lab Batch #: 3103624 Units: mg/kg	Date Analyzed: 10/08/19 13:09 X by SW 8260C	Amount Found	RROGATE R True Amount	ECOVERY S Recovery %R	Control Limits	Flags
Lab Batch #: 3103624 Units: mg/kg BTE	Date Analyzed: 10/08/19 13:09 X by SW 8260C	Amount Found [A]	RROGATE R True Amount [B]	ECOVERY S Recovery %R [D]	Control Limits %R	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Gramma Ridge

Vork Orders : 639137, Lab Batch #: 3103624	Sample: 638964-003 SD / 1			D: 03B12060	09	
Lab Batch #: 5105024 Units: mg/kg	Date Analyzed: 10/08/19 13:27		h: ¹ Matrix: RROGATE RF		STUDY	
BTEX	X by SW 8260C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane		0.0514	0.0500	103	53-142	
1,2-Dichloroethane-D4		0.0461	0.0500	92	53-150	
Toluene-D8		0.0472	0.0500	94	70-130	
Lab Batch #: 3103878	Sample: 7687811-1-BLK /	BLK Batc	h: ¹ Matrix:	Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 10/09/19 21:39	SU	RROGATE RI	ECOVERY S	STUDY	
	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		83.2	100	83	70-135	
o-Terphenyl		46.5	50.0	93	70-135	
Lab Batch #: 3103878	Sample: 7687811-1-BKS /	BKS Batc	h: 1 Matrix:	Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 10/09/19 21:59	SU	RROGATE RI	ECOVERY S	STUDY	
	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		94.7	100	95	70-135	
o-Terphenyl		49.5	50.0	99	70-135	
Lab Batch #: 3103878	Sample: 7687811-1-BSD /	BSD Batcl	h: ¹ Matrix:	Solid		
Units: mg/kg	Date Analyzed: 10/09/19 22:20	SU	RROGATE RI	ECOVERY S	STUDY	
	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		93.0	100	93	70-135	
o-Terphenyl		46.9	50.0	94	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Gramma Ridge

Work Orders : 639137,			Project II	D:03B12060	09	
Lab Batch #: 3103878	Sample: 639137-001 S / MS	Batc	h: ¹ Matrix	Soil		
Units: mg/kg	Date Analyzed: 10/09/19 23:02	SU	RROGATE RI	ECOVERY S	STUDY	
TPH t	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		106	99.8	106	70-135	
o-Terphenyl		52.5	49.9	105	70-135	
Lab Batch #: 3103878	Sample: 639137-001 SD / M	ASD Bate	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 10/09/19 23:22	SU	RROGATE RI	ECOVERY S	STUDY	
	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		89.5	99.7	90	70-135	
o-Terphenyl		44.7	49.9	90	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

•

Project Name: Gramma Ridge

Work Order	#: 639137							Proj	ect ID: (03B120600	19	
Analyst:	CRL	D	ate Prepai	red: 10/08/20	19			Date A	nalyzed: 1	0/08/2019		
Lab Batch ID:	Sample: 7687687-	I-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
	BTEX by SW 8260C	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	tes											
Benzene		< 0.000207	0.0500	0.0455	91	0.0500	0.0429	86	6	62-132	25	
Toluene		< 0.00100	0.0500	0.0433	87	0.0500	0.0409	82	6	66-124	25	
Ethylbenze	ene	< 0.000336	0.0500	0.0430	86	0.0500	0.0408	82	5	71-134	25	
m,p-Xylen	es	< 0.000437	0.100	0.0829	83	0.100	0.0791	79	5	69-128	25	
o-Xylene		< 0.000985	0.0500	0.0466	93	0.0500	0.0405	81	14	72-131	25	
Analyst:	CHE	D	ate Prepai	red: 10/07/20	19	•		Date A	nalyzed: 1	0/07/2019	+	
Lab Batch ID:	Sample: 7687628-	I-BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
Analy	Chloride by EPA 300 tes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<0.858	250	241	96	250	240	96	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

.

Project Name: Gramma Ridge

Work Order #: 639137							Pro	ject ID:	03B120600	19	
Analyst: ARM	Da	ate Prepar	ed: 10/09/20	19			Date A	nalyzed:	10/09/2019		
Lab Batch ID: 3103878 Sample: 7687	811-1-BKS	Batch	n #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	1030	103	1000	1050	105	2	70-135	20	
Diesel Range Organics (DRO)	<15.0	1000	1040	104	1000	1040	104	0	70-135	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

.

Project Name: Gramma Ridge

Work Order # : 639137						Project II): 03B12	06009			
Lab Batch ID: 3103624	QC- Sample ID:	638964-0	03 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 10/08/2019	Date Prepared:	10/08/201	19	An	alyst: (CRL					
Reporting Units: mg/kg		MA	TRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by SW 8260C	Parent Sample Result	Spike Added	piked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	<0.00105	0.253	0.234	92	0.250	0.224	90	4	62-132	25	
Toluene	<0.00505	0.253	0.208	82	0.250	0.208	83	0	66-124	25	
Ethylbenzene	<0.00170	0.253	0.211	83	0.250	0.206	82	2	71-134	25	
m,p-Xylenes	<0.00221	0.505	0.402	80	0.500	0.381	76	5	69-128	25	
o-Xylene	0.00624	0.253	0.234	90	0.250	0.220	86	6	72-131	25	
Lab Batch ID: 3103554	QC- Sample ID:	639132-0	16 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 10/07/2019	Date Prepared:	10/07/201	19	An	alyst: (CHE					
Reporting Units: mg/kg		MA	TRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Chloride by EPA 300	Parent Sample	Spike	piked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	260	249	483	90	249	483	90	0	90-110	20	
Lab Batch ID: 3103554	QC- Sample ID:	639132-0	26 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 10/07/2019	Date Prepared:	10/07/201	19	An	alyst: (CHE					
Reporting Units: mg/kg		MA	TRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Chloride by EPA 300	Parent Sample Result	Spike Added	piked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Acount [1]	[G]				
						1					

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$

.

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Gramma Ridge

Work Order # :	639137						Project ID	: 03B12	06009			
Lab Batch ID:	3103878 Q	C- Sample ID:	639137-	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/09/2019	Date Prepared:	10/09/2	019	Ar	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	FE REC	OVERYS	STUDY		
Ĩ	TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range I	Hydrocarbons (GRO)	<15.0	998	1180	118	997	1030	103	14	70-135	20	
Diesel Range Org	ganics (DRO)	<15.0	998	1120	112	997	946	95	17	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Receive	ed by	00		0 20-2:	72:1	2 P)	1		Γ	<u> </u>	Г	<u> </u>				0	177		1	10		1	1			_		-		55 of 109
2	1 h	Relinquished by: (8	otice: Signature of this du f service. Xenco will be li f Xenco. A minimum char	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed		In olute	A.	STP	CS-5	C5-4	CS-3	CS-2	C2-1	Sample Identification	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name:	Phone:	ate ZIP:	Address:	Company Name:	Project Manager:		
	6	(Signature)	ocument and relinquisl able only for the cost c ge of \$75.00 will be ap	0 200.8 / 6020: and Metal(s) to be												Yes to	(red)	1350		Beaux Jer	0331206009	5	Grama X	210-219-1	Midland, 7	705 W. (Fusilian	Deamy So	3	
	ZIVE	Received b	nment of samples const of samples and shall no plied to each project ar	8RC				S Indulia	-			1 20 20 100	5 Muha	Matrix Date Sampled	N/A Total	VA	No	4	Temp Blank: Yes No	Sennings	oq.	Da	Ridae	8588	SOUTH X	Nedley Aver	in ,	vennings	Hobbs,	
		Received by: (Signature)	itutes a valid purchase ord t assume any responsibility id a charge of \$5 for each s	13PPM Texas .P / SPLP 6010:				0925 -	1010	222 21	0000 200		Dasm 1st	Time Depth		Correction Factor:	R	5	Wet Ice: Yes I	Due Date:\o		Routine X	Turn Around	Email: bjcu	City, State ZIP.	Address:	Company Name	Bill to: (if different)	Mildiand, IX (432-7) NM (575-392-7550) Pho	Houston, TX (281) 2
	10/7/19 083	Date/Time	er from client company to Xen / for any losses or expenses ir ample submitted to Xenco, bu	11 AI Sb As Ba Be E 8RCRA Sb As Ba Be				iXXX						Number BTT TP1	er of (EX	Con S	tain W-		No	-82	460	2		bjenning S@ ensolum	te ZIP:		y Name:	different)	04-5440) EL Paso,TX (915); enix,AZ (480-355-0900) Atla	Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,
4 0	2	Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	3 Cd Ca Cr Co Cd Cr Co Cu											lor	de	F	Ē	A		0,0		ANA	elum, con					Miluland, I X (432-704-5440) EL Paso, TX (915)585-3443 Lubbook, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)	Custody 2-0300 San Antonio, TX (210) 509-3334
		e) Received by: (Signature)		Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Pb Mn Mo Ni Se Ag Ti U 1631/;																			SL	Deliverables: EDD	Reporting:Level II Level III PST/UST TRRP Level IV	State of Project:	Program: UST/PST PRP Brownfields RRC Superfund	Work Order Comments	3-620-2000) www.xenco.com	
Revised Date 051418 Rev. 2018.1		Date/Time	ď	02 Na Sr TI Sn U V Zn 1631/245.1/7470 /7471 : Ha										Sample Comments	TAT starts the day recevied by the lab, if received by 4:30pm							MOLY CIDEL NOTES	Work Order Notes	Other:			ields RRC Superfund		Page of	Work Order No: 239137

Page 28 of 32

person Collecting Sample person Collecting Sample 1 Date Collected -PCOIL-POINTER CUSTODY SEAL -P cole-parmer " QUSTODY SEAL 1.1 _Time Collected -_Time Collected -Sample No. --_Sample No. -

Inter-Office Shipment

•

IOS Number : **49447**

Date/Time	: 10.07.2019	Created by:	Brianna Te	eel	Please send report to:	Jessica Kran	ner		
Lab# From	n: Midland	Delivery Pri	iority:		Address:	1211 W. Flo	rida Av	e	
Lab# To:	Houston	Air Bill No.	: 776572159	9733	E-Mail:	jessica.kram	er@xen	co.com	
Sample Id	Matrix Client Sam	ple Id Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
639137-001	S CS-1	10.04.2019 09:50	SW8260CBTEX	BTEX by SW 8260C	10.10.2019	10.18.2019	JKR	BZ BZME EBZ XYLENE	
639137-002	S CS-2	10.04.2019 09:52	SW8260CBTEX	BTEX by SW 8260C	10.10.2019	10.18.2019	JKR	BZ BZME EBZ XYLENE	
639137-003	S CS-3	10.04.2019 09:55	SW8260CBTEX	BTEX by SW 8260C	10.10.2019	10.18.2019	JKR	BZ BZME EBZ XYLENE	
639137-004	S CS-4	10.04.2019 10:00	SW8260CBTEX	BTEX by SW 8260C	10.10.2019	10.18.2019	JKR	BZ BZME EBZ XYLENE	
639137-005	S CS-5	10.04.2019 10:02	SW8260CBTEX	BTEX by SW 8260C	10.10.2019	10.18.2019	JKR	BZ BZME EBZ XYLENE	
639137-006	S STP	10.04.2019 09:25	SW8260CBTEX	BTEX by SW 8260C	10.10.2019	10.18.2019	JKR	BZ BZME EBZ XYLENE	

Inter Office Shipment or Sample Comments:

Relinquished By:

•

Brianna Teel

Date Relinquished: 10.07.2019

Received By:	Travis Simmons
Date Received:	10.08.2019
Cooler Temperature:	1.5

TORIES

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 49447

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : HOU-068

Sent By:	Brianna Teel	Date Sent:	10.07.2019 08.54 AM
Received By:	: Travis Simmons	Date Received:	10.08.2019 09.20 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	1.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperatur	re? Yes
#4 *Custody Seals intact on shipping container/ co	ooler? Yes
#5 *Custody Seals Signed and dated for Containe	rs/coolers Yes
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)	? Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

uaux

Travis Simmons

Date: 10.08.2019

Page 58 of 109

Received by OCD: 3/4/2020 2:22:12 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Ensolum	Acceptable Temperature Range: 0 - 6 degC					
Date/ Time Received: 10/07/2019 08:30:00 AM	Air and Metal samples Acceptable Range: Ambient					
Work Order #: 639137	Temperature Measuring device used : R8					
Sample Recei	pt Checklist Comments					
#1 *Temperature of cooler(s)?	.3					
#2 *Shipping container in good condition?	Yes					
#3 *Samples received on ice?	Yes					
#4 *Custody Seals intact on shipping container/ cooler?	Yes					
#5 Custody Seals intact on sample bottles?	N/A					
#6*Custody Seals Signed and dated?	Yes					
#7 *Chain of Custody present?	Yes					
#8 Any missing/extra samples?	No					
#9 Chain of Custody signed when relinquished/ received?	Yes					
#10 Chain of Custody agrees with sample labels/matrix?	Yes					
#11 Container label(s) legible and intact?	Yes					
#12 Samples in proper container/ bottle?	Yes					
#13 Samples properly preserved?	Yes					
#14 Sample container(s) intact?	Yes					
#15 Sufficient sample amount for indicated test(s)?	Yes					
#16 All samples received within hold time?	Yes					
#17 Subcontract of sample(s)?	Yes Xenco Stafford-BTEX8260					
#18 Water VOC samples have zero headspace?	N/A					

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 10/07/2019

Checklist reviewed by: fession Veamer

Jessica Kramer

Date: 10/07/2019

Project Id: 03B1206009 **Contact: Beaux Jennings**

Project Location:

Certificate of Analysis Summary 649972

Ensolum, Dallas, TX **Project Name: Grama Ridge**

Date Received in Lab: Thu Jan-23-20 08:35 am **Report Date:** 03-FEB-20 Project Manager: Jessica Kramer

	Lab Id:	649972-0	001	649972-0	002	649972-0	003	649972-	004	649972-	005	649972-006	
An alania De ana ata I	Field Id:	CS-6		CS-7		CS-8		CS-9		CS-10)	CS-11	
Analysis Requested	Depth:	0-2.5 1	ft	0-2.5 ft		0-2.5 ft		0-2.5 ft		0-2.5 ft		0-2.5 ft	
	Matrix:	SOIL		SOIL	SOIL SOIL		,	SOIL	,	SOIL	.	SOIL	
	Sampled:	Jan-22-20	Jan-22-20 10:20		10:37	Jan-22-20	10:50	Jan-22-20	11:03	Jan-22-20	11:18	Jan-22-20	11:30
BTEX by EPA 8021B	Extracted:	Jan-31-20	14:00	Jan-31-20	14:00	Jan-31-20	14:00	Jan-31-20	14:00	Jan-31-20	14:00	Jan-31-20	14:00
	Analyzed:	Feb-01-20	02:12	Feb-01-20	02:32	Feb-01-20	02:52	Feb-01-20	03:12	Feb-01-20	03:32	Feb-01-20	03:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199
Toluene		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199
Ethylbenzene		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199
m,p-Xylenes		< 0.00403	0.00403	< 0.00399	0.00399	< 0.00402	0.00402	< 0.00403	0.00403	< 0.00398	0.00398	< 0.00398	0.00398
o-Xylene		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199
Total Xylenes		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199
Total BTEX		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199
Chloride by EPA 300	Extracted:	Jan-24-20	09:45	Jan-24-20 09:45		Jan-24-20 09:45		Jan-24-20	09:45	Jan-24-20 09:45		Jan-24-20 09:45	
	Analyzed:	Jan-24-20	11:32	Jan-24-20	11:39	Jan-24-20 11:45		Jan-24-20 11:52		Jan-24-20 11:59		Jan-24-20 12:19	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		249	5.00	18.5	5.00	886	5.00	388	5.00	107	5.00	94.8	4.96
TPH by SW8015 Mod	Extracted:	Jan-25-20	12:00	Jan-25-20 (08:00	Jan-25-20	08:00	Jan-25-20	08:00	Jan-25-20 08:00		Jan-25-20	12:00
	Analyzed:	Jan-26-20	04:43	Jan-25-20	19:15	Jan-25-20	19:36	Jan-25-20	19:57	Jan-25-20	20:18	Jan-26-20	05:04
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<49.9	49.9	<50.0	50.0	<50.0	50.0	51.5	49.9	52.0	49.8
Diesel Range Organics (DRO)		<50.0	50.0	<49.9	49.9	110	50.0	<50.0	50.0	<49.9	49.9	<49.8	49.8
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<49.9	49.9	<50.0	50.0	<50.0	50.0	<49.9	49.9	<49.8	49.8
Total TPH		<50.0	50.0	<49.9	49.9	110	50.0	<50.0	50.0	51.5	49.9	52.0	49.8

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing,

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Project Id: 03B1206009 **Contact: Beaux Jennings**

Project Location:

Certificate of Analysis Summary 649972

Ensolum, Dallas, TX **Project Name: Grama Ridge**

Date Received in Lab: Thu Jan-23-20 08:35 am **Report Date:** 03-FEB-20 Project Manager: Jessica Kramer

	640072.0	07	C10070 0	00				
Field Id:	CS-12		CS-13					
Depth:	0-2.5 ft	:	0-2.5 f	t				
Matrix:	SOIL		SOIL					
Sampled:	Jan-22-20 1	1:44	Jan-22-20 1	1:58				
Extracted:	Jan-31-20 1	4:00	Jan-31-20 1	4:00				
Analyzed:	Feb-01-20 0	04:13	Feb-01-20 (04:33				
Units/RL:	mg/kg	RL	mg/kg	RL				
	< 0.00200	0.00200	< 0.00200	0.00200				
	< 0.00200	0.00200	< 0.00200	0.00200				
	< 0.00200	0.00200	< 0.00200	0.00200				
	< 0.00399	0.00399	< 0.00399	0.00399				
	< 0.00200	0.00200	< 0.00200	0.00200				
	< 0.00200	0.00200	< 0.00200	0.00200				
	< 0.00200	0.00200	< 0.00200	0.00200				
Extracted:	Jan-24-20 0	9:45	Jan-24-20 0	9:45				
Analyzed:	Jan-24-20 1	2:40	Jan-24-20 1	2:47				
Units/RL:	mg/kg	RL	mg/kg	RL				
	524	4.99	441	5.05				
Extracted:	Jan-25-20 1	2:00	Jan-25-20 1	6:00				
Analyzed:	Jan-26-20 0	5:25	Jan-26-20 2	20:25				
Units/RL:	mg/kg	RL	mg/kg	RL				
	<50.0	50.0	<49.9	49.9				
	58.4	50.0	<49.9	49.9				
	<50.0	50.0	<49.9	49.9				
	58.4	50.0	<49.9	49.9				
	Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: CS-12 Depth: 0-2.5 ft Matrix: SOIL Sampled: Jan-22-20 ft Extracted: Jan-31-20 ft Analyzed: Feb-01-20 ft Units/RL: mg/kg <0.00200 <0.00200	Field Id: CS-12 Depth: 0-2.5 ft Matrix: SOIL Sampled: Jan-22-20 11:44 Extracted: Jan-31-20 14:00 Analyzed: Feb-01-20 04:13 Units/RL: mg/kg RL SOID Units/RL: mg/kg RL Matrix: Malyzed:	Field Id: CS-12 CS-13 Depth: $0-2.5 \text{ ft}$ $0-2.5 \text{ ft}$ Matrix: SOIL SOIL Sampled: Jan-22-20 11:44 Jan-22-20 1 Extracted: Jan-31-20 14:00 Jan-31-20 1 Analyzed: Feb-01-20 04:13 Feb-01-20 0 Units/RL: mg/kg RL mg/kg < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 < 0.0020	Field Id: CS-12 CS-13 Depth: $0-2.5 \text{ ft}$ $0-2.5 \text{ ft}$ $0-2.5 \text{ ft}$ Matrix: SOIL SOIL SOIL Sampled: Jan-22-20 11:44 Jan-22-20 11:58 Extracted: Jan-31-20 14:00 Jan-31-20 14:00 Jan-31-20 14:00 Analyzed: Feb-01-20 04:13 Feb-01-20 04:33 Feb-01-20 04:33 Units/RL: mg/kg RL mg/kg RL 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 $< < 0.00200$ 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 $< < 0.00200$ 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 $< 0.$	Field Id: CS-12 CS-13 Depth: $0-2.5 \ ft$ $0-2.5 \ ft$ Matrix: SOIL SOIL Sampled: Jan-22-20 11:44 Jan-22-20 11:58 Extracted: Jan-31-20 14:00 Jan-31-20 04:13 Analyzed: Feb-01-20 04:13 Feb-01-20 04:33 Units/RL: mg/kg RL mg/kg RL < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 0.00200 Extracted: Jan-24-20 12:47 Jan-24-20 12:47 Jan-24-20 12:47 Jan-25	Field Id: CS-12 CS-13 Depth: $0-2.5 \text{ ft}$ $0-2.5 \text{ ft}$ Matrix: SOIL SOIL Sampled: Jan-22-20 11:44 Jan-22-20 11:58 Extracted: Jan-31-20 14:00 Jan-31-20 14:00 Analyzed: Feb-01-20 04:13 Feb-01-20 04:33 Units/RL: mg/kg RL mg/kg RL $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 0.00200 $< < 0.00200$ 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200	Field Id: CS-12 CS-13 Depth: $0-2.5$ ft $0-2.5$ ft Matrix: SOIL SOIL Samplet: Jan-22-20 11:44 Jan-22-20 11:58 Extracted: Jan-31-20 14:00 Jan-31-20 14:33 Feb-01-20 04:13 Feb-01-20 04:33 Feb-01-20 04:00 Matrix: mg/kg RL mg/kg RL $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ $< -0.00200 0.00200$ Imale

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing,

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Analytical Report 649972

for

Ensolum

Project Manager: Beaux Jennings

Grama Ridge

03B1206009

03-FEB-20

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483) Received by OCD: 3/4/2020 2:22:12 PM

03-FEB-20

Project Manager: **Beaux Jennings Ensolum** 2351 W Northwest Highway Suite 1203 Dallas, TX 75220

Reference: XENCO Report No(s): 649972 Grama Ridge Project Address:

Beaux Jennings:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 649972. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 649972 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Vramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CS-6	S	01-22-20 10:20	0 - 2.5 ft	649972-001
CS-7	S	01-22-20 10:37	0 - 2.5 ft	649972-002
CS-8	S	01-22-20 10:50	0 - 2.5 ft	649972-003
CS-9	S	01-22-20 11:03	0 - 2.5 ft	649972-004
CS-10	S	01-22-20 11:18	0 - 2.5 ft	649972-005
CS-11	S	01-22-20 11:30	0 - 2.5 ft	649972-006
CS-12	S	01-22-20 11:44	0 - 2.5 ft	649972-007
CS-13	S	01-22-20 11:58	0 - 2.5 ft	649972-008

CASE NARRATIVE

Client Name: Ensolum Project Name: Grama Ridge

Project ID: 03B1206009 Work Order Number(s): 649972 Report Date: 03-FEB-20 Date Received: 01/23/2020

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3114506 TPH by SW8015 Mod

Surrogate 1-Chlorooctane recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 649972-005.

Batch: LBA-3115205 BTEX by EPA 8021B

Lab Sample ID 649972-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 649972-001, -002, -003, -004, -005, -006, -007, -008.

The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: Lab Sample Id	CS-6 d: 649972-001		Matrix: Date Collect	Soil ed: 01.22.20 10.20		Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft		
Analytical Me Tech:	ethod: Chloride by EPA 3 CHE	00				Prep Method: % Moisture:	E300P	
Analyst:	CHE		Date Prep:	01.24.20 09.45		Basis:	Wet Weight	
Seq Number:	3114449							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	249	5.00	mg/kg	01.24.20 11.32		1

Analytical Method: TPH by SW801 Tech: DVM	5 Mod					Prep Method: SW	8015P	
Analyst: ARM		Date Pre	p: 01.25.	20 12.00	,		t Weight	
Seq Number: 3114508								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	01.26.20 04.43	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	01.26.20 04.43	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	01.26.20 04.43	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	01.26.20 04.43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	128	%	70-135	01.26.20 04.43		
o-Terphenyl		84-15-1	125	%	70-135	01.26.20 04.43		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: CS-6 Lab Sample Id: 649972-001	Matrix: Soil Date Collected: 01.22.20 10.20	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	02.01.20 02.12	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	02.01.20 02.12	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	02.01.20 02.12	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	02.01.20 02.12	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	02.01.20 02.12	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	02.01.20 02.12	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	02.01.20 02.12	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	74	%	70-130	02.01.20 02.12		
1,4-Difluorobenzene		540-36-3	114	%	70-130	02.01.20 02.12		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: CS-7 Lab Sample Id: 649972-002		Matrix: Date Collecte	Soil ed: 01.22.20 10.37		Received:01.2 e Depth:0 - 2		5
Analytical Method: Chloride by EP	A 300			1	Aethod: E30)0P	
Tech: CHE				% Mo	isture:		
Analyst: CHE		Date Prep:	01.24.20 09.45	Basis:	We	t Weight	
Seq Number: 3114449							
Parameter	Cas Number	Result F	RL	Units An	alvsis Date	Flag	Dil

rarameter	Cas Number	Result	KL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	18.5	5.00	mg/kg	01.24.20 11.39		1

Analytical Method: TPH by SW801	Analytical Method: TPH by SW8015 Mod						Prep Method: SW8015P			
Tech: DVM					%	6 Moisture:				
Analyst: ARM		Date Pre	p: 01.25	20 08.00	В	Basis: We	t Weight			
Seq Number: 3114506										
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil		
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	01.25.20 19.15	U	1		
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	01.25.20 19.15	U	1		
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	01.25.20 19.15	U	1		
Total TPH	PHC635	<49.9	49.9		mg/kg	01.25.20 19.15	U	1		
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag			
1-Chlorooctane		111-85-3	122	%	70-135	01.25.20 19.15				
o-Terphenyl		84-15-1	128	%	70-135	01.25.20 19.15				

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-7Lab Sample Id:649972-002	Matrix: Soil Date Collected: 01.22.20 10.37	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	02.01.20 02.32	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	02.01.20 02.32	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	02.01.20 02.32	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	02.01.20 02.32	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	02.01.20 02.32	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	02.01.20 02.32	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	02.01.20 02.32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	77	%	70-130	02.01.20 02.32		
1,4-Difluorobenzene		540-36-3	112	%	70-130	02.01.20 02.32		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-8Lab Sample Id:649972-003		Matrix: Date Collect	Soil ed: 01.22.20 10.50		ate Received:0 ample Depth:0		
Analytical Method: Chloride by EPA 3 Tech: CHE Analyst: CHE Seq Number: 3114449	300	Date Prep:	01.24.20 09.45	%	ep Method: E Moisture: asis: V	300P Vet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

rarameter	Cas Number	Kesuit	KL	Units	Analysis Date	Flag	Dii
Chloride	16887-00-6	886	5.00	mg/kg	01.24.20 11.45		1

Analytical Method: TPH by SW801		Prep Method: SW8015P						
Tech: DVM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 01.25.	20 08.00	E	Basis: We	t Weight	
Seq Number: 3114506								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	01.25.20 19.36	U	1
Diesel Range Organics (DRO)	C10C28DRO	110	50.0		mg/kg	01.25.20 19.36		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	01.25.20 19.36	U	1
Total TPH	PHC635	110	50.0		mg/kg	01.25.20 19.36		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	120	%	70-135	01.25.20 19.36		
o-Terphenyl		84-15-1	128	%	70-135	01.25.20 19.36		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-8Lab Sample Id:649972-003	Matrix: Soil Date Collected: 01.22.20 10.50	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	02.01.20 02.52	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	02.01.20 02.52	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	02.01.20 02.52	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	02.01.20 02.52	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	02.01.20 02.52	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	02.01.20 02.52	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	02.01.20 02.52	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	86	%	70-130	02.01.20 02.52		
1,4-Difluorobenzene		540-36-3	115	%	70-130	02.01.20 02.52		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: Lab Sample I	CS-9 d: 649972-004		Matrix: Date Collecte	Soil d: 01.22.20 11.03		Date Received: Sample Depth: (
Analytical Me	ethod: Chloride by EPA 3	800				Prep Method: H	E300P	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	01.24.20 09.45		Basis: V	Vet Weight	
Seq Number:	3114449							
Parameter		Cas Number	Result F	RL	Units	Analysis Dat	e Flag	Dil

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	388	5.00	mg/kg	01.24.20 11.52		1

Analytical Method: TPH by SW8015 Mod					Prep Method: SW8015P % Moisture:			
Tech: DVM					,			
Analyst: ARM		Date Pre	p: 01.25.	20 08.00	E	Basis: We	t Weight	
Seq Number: 3114506								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	01.25.20 19.57	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	01.25.20 19.57	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	01.25.20 19.57	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	01.25.20 19.57	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	130	%	70-135	01.25.20 19.57		
o-Terphenyl		84-15-1	129	%	70-135	01.25.20 19.57		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-9Lab Sample Id:649972-004	Matrix: Soil Date Collected: 01.22.20 11.03	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	02.01.20 03.12	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	02.01.20 03.12	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	02.01.20 03.12	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	02.01.20 03.12	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	02.01.20 03.12	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	02.01.20 03.12	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	02.01.20 03.12	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	79	%	70-130	02.01.20 03.12		
1,4-Difluorobenzene		540-36-3	113	%	70-130	02.01.20 03.12		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: Lab Sample Id	ple Id:CS-10Matrix:SoilSample Id:649972-005Date Collected:01.22				Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft			
2	ethod: Chloride by EPA 3	800				Prep Method:	E300P	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	01.24.20 09.45		Basis:	Wet Weight	
Seq Number:	3114449							
Parameter		Cas Number	Result F	RL .	Units	Analysis Da	te Flag	Dil

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	107	5.00	mg/kg	01.24.20 11.59		1

Analytical Method: TPH by SW8015	5 Mod		Prep Method: SW8015P					
Tech: DVM					% Moisture:			
Analyst: ARM		Date Pre	p: 01.25	.20 08.00	E	Basis: We	et Weight	
Seq Number: 3114506								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	51.5	49.9		mg/kg	01.25.20 20.18		1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	01.25.20 20.18	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	01.25.20 20.18	U	1
Total TPH	PHC635	51.5	49.9		mg/kg	01.25.20 20.18		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	148	%	70-135	01.25.20 20.18	**	
o-Terphenyl		84-15-1	126	%	70-135	01.25.20 20.18		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: CS-10 Lab Sample Id: 649972-005	Matrix: Soil Date Collected: 01.22.20 11.18	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method:BTEX by EPA 8021BTech:KTLAnalyst:KTLSeq Number:3115205	Date Prep: 01.31.20 14.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	02.01.20 03.32	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	02.01.20 03.32	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	02.01.20 03.32	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	02.01.20 03.32	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	02.01.20 03.32	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	02.01.20 03.32	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	02.01.20 03.32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	117	%	70-130	02.01.20 03.32		
4-Bromofluorobenzene		460-00-4	76	%	70-130	02.01.20 03.32		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: Lab Sample Id:	CS-11 649972-006		Matrix: Date Collee	Soil cted: 01.22.20 11.30	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft			
Analytical Meth	nod: Chloride by EPA	300				Prep Method: E		
100111	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	01.24.20 09.45		Basis: V	Wet Weight	
Seq Number:	3114449							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	94.8	4.96	mg/kg	01.24.20 12.19	Ð	1

Analytical Method: TPH by SW8015		Prep Method: SW8015P						
Tech: DVM					9	6 Moisture:		
Analyst: ARM		Date Prep: 01.25.20 12.00		Basis: Wet		et Weight	t Weight	
Seq Number: 3114508								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	52.0	49.8		mg/kg	01.26.20 05.04		1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	01.26.20 05.04	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	01.26.20 05.04	U	1
Total TPH	PHC635	52.0	49.8		mg/kg	01.26.20 05.04		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	123	%	70-135	01.26.20 05.04		
o-Terphenyl		84-15-1	118	%	70-135	01.26.20 05.04		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-11Lab Sample Id:649972-006	Matrix: Soil Date Collected: 01.22.20 11.30	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	r Result RL		Units	Analysis Date	Flag	Dil	
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	02.01.20 03.53	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	02.01.20 03.53	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	02.01.20 03.53	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	02.01.20 03.53	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	02.01.20 03.53	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	02.01.20 03.53	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	02.01.20 03.53	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	118	%	70-130	02.01.20 03.53		
4-Bromofluorobenzene		460-00-4	71	%	70-130	02.01.20 03.53		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-12Lab Sample Id:649972-007	Matrix: Soil Date Collected: 01.22.20 11.44			Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft				
Analytical Method:Chloride by EPATech:CHEAnalyst:CHESeq Number:3114449	300	Date Prep:	01.24.20 09.45	Prep Ma % Mois Basis:		0P Weight		
Parameter	Cas Number	Result I	RL	Units Anal	lysis Date	Flag	Dil	

r al ameter	Cas Number	Result	KL	Units	Analysis Date	Flag	DII
Chloride	16887-00-6	524	4.99	mg/kg	01.24.20 12.40		1

Analytical Method: TPH by SW801	5 Mod				F	Prep Method: SW	/8015P	
Tech: DVM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 01.25	20 12.00	E	Basis: We	t Weight	
Seq Number: 3114508								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	01.26.20 05.25	U	1
Diesel Range Organics (DRO)	C10C28DRO	58.4	50.0		mg/kg	01.26.20 05.25		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	01.26.20 05.25	U	1
Total TPH	PHC635	58.4	50.0		mg/kg	01.26.20 05.25		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	120	%	70-135	01.26.20 05.25		
o-Terphenyl		84-15-1	114	%	70-135	01.26.20 05.25		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id:CS-12Lab Sample Id:649972-007	Matrix: Soil Date Collected: 01.22.20 11.44	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	02.01.20 04.13	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	02.01.20 04.13	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	02.01.20 04.13	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	02.01.20 04.13	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	02.01.20 04.13	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	02.01.20 04.13	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	02.01.20 04.13	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	79	%	70-130	02.01.20 04.13		
1,4-Difluorobenzene		540-36-3	112	%	70-130	02.01.20 04.13		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

Sample Id: Lab Sample Id	Sample Id:CS-13Lab Sample Id:649972-008			Soil d: 01.22.20 11.58	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft				
Analytical Me Tech:	ethod: Chloride by EPA 3 CHE	300				rep Method: E3 Moisture:	00P		
Analyst:	CHE		Date Prep:	01.24.20 09.45	В	asis: We	et Weight		
Seq Number:	3114449								
Parameter		Cas Number	Result R	L	Units	Analysis Date	Flag	Dil	

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	441	5.05	mg/kg	01.24.20 12.47		1

Analytical Method: TPH by SW801	5 Mod				P	Prep Method: SV	/8015P	
Tech: DVM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 01.25	.20 16.00	E	Basis: We	et Weight	
Seq Number: 3114519		T.						
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	01.26.20 20.25	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	01.26.20 20.25	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	01.26.20 20.25	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	01.26.20 20.25	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	107	%	70-135	01.26.20 20.25		
o-Terphenyl		84-15-1	104	%	70-135	01.26.20 20.25		

Certificate of Analytical Results 649972

Ensolum, Dallas, TX

Grama Ridge

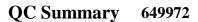
Sample Id: CS-13 Lab Sample Id: 649972-008	Matrix: Soil Date Collected: 01.22.20 11.58	Date Received:01.23.20 08.35 Sample Depth: 0 - 2.5 ft
Analytical Method: BTEX by EPA 8021B Tech: KTL		Prep Method: SW5030B % Moisture:
Analyst: KTL Seq Number: 3115205	Date Prep: 01.31.20 14.00	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	02.01.20 04.33	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	02.01.20 04.33	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	02.01.20 04.33	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	02.01.20 04.33	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	02.01.20 04.33	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	02.01.20 04.33	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	02.01.20 04.33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	113	%	70-130	02.01.20 04.33		
4-Bromofluorobenzene		460-00-4	78	%	70-130	02.01.20 04.33		

Flagging Criteria

Page 82 of 109

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable


SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

BORATORIES

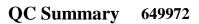
Ensolum

Grama Ridge

Analytical Method:	Chloride by EPA 30	0						Pre	ep Metho	d: E30	0P	
Seq Number:	3114449 Matrix:			Solid Date Prep:				p: 01.2	4.20			
MB Sample Id:	7695183-1-BLK LCS San				7695183-1	I-BKS		LCSI	O Sample	Id: 769	5183-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD I	RPD Limi	t Units	Analysis Date	Flag

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3114449			Matrix:	Soil				Date Pr	ep: 01.2	4.20	
Parent Sample Id:	649971-001 MS Sample I			nple Id:	649971-00	01 S		MSI	D Sample	d: 649	971-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	392	248	630	96	633	97	90-110	0	20	mg/kg	01.24.20 10:33	

Analytical Method:	Chloride by EPA 30)0						P	rep Meth	od: E30	OP 90	
Seq Number:	3114449			Matrix:	Soil				Date Pr	ep: 01.2	4.20	
Parent Sample Id:	649972-005		MS Sar	nple Id:	649972-00	MSD Sample Id: 64				972-005 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	107	250	362	102	360	101	90-110	1	20	mg/kg	01.24.20 12:05	


Analytical Method: TPH by SW8015 Mod									Prep Method: SW8015P						
Seq Number:	3114506				Matrix:	Solid				Date Prep	p: 01.2	5.20			
MB Sample Id:										5225-1-BSD					
Parameter	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag				
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	924	92	905	91	70-135	2	20	mg/kg	01.25.20 11:53			
Diesel Range Organics	(DRO)	<15.0	1000	986	99	975	98	70-135	1	20	mg/kg	01.25.20 11:53			
Surrogate MB MB %Rec Flag					CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date			
1-Chlorooctane		109		1	06		102		7	0-135	%	01.25.20 11:53			
o-Terphenyl 114 110 107 70-135 % 01.25.20 11:53															

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Received by OCD: 3/4/2020 2:22:12 PM

BORATORIES

Ensolum

Grama Ridge

Analytical Method Seq Number: MB Sample Id:	: TPH by S 3114508 7695229-		od	LCS Sar	Matrix: nple Id:		1-BKS			Prep Method Date Prep SD Sample I	o: 01.2	8015P 5.20 5229-1-BSD	
Parameter	Result Amour					LCSD Result	LCSD %Rec	Limits	%RPD	ORPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocar	bons (GRO)	< 50.0	1000	1060	106	1050	105	70-135	1	20	mg/kg	01.25.20 21:21	
Diesel Range Organics	s (DRO)	<15.0	1000	1180	118	1180	118	70-135	0	20	mg/kg	01.25.20 21:21	
Surrogate MB MB %Rec Flag					LCS Flag	1001		D I ç	Limits	Units	Analysis Date		
1-Chlorooctane		122		1	23		122		7	70-135	%	01.25.20 21:21	
o-Terphenyl 130			125 113			13 70-135 % 01.25.20 21:21							

Analytical Method: Seq Number: MB Sample Id:	TPH by S 3114519 7695243-1		od	LCS Sar	Matrix: nple Id:		1-BKS			Prep Method Date Prep SD Sample I	o: 01.2	8015P 25.20 5243-1-BSD	
Parameter	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag		
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	808	81	917	92	70-135	13	20	mg/kg	01.26.20 11:59	
Diesel Range Organics	(DRO)	<15.0	1000	814	81	926	93	70-135	13	20	mg/kg	01.26.20 11:59	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree		-	limits	Units	Analysis Date	
1-Chlorooctane		110		1	05		119		7	0-135	%	01.26.20 11:59	
o-Terphenyl 110			104 1			117	117 70-135 % 01.26.20 11:59						

Analytical Method:	TPH by SW8015 Mod			Prep Method:	SW8	015P	
Seq Number:	3114506	Matrix:	Solid	Date Prep:	01.25	5.20	
		MB Sample Id:	7695225-1-BLK				
Parameter		MB Result		ι	Inits	Analysis Date	Flag
Motor Oil Range Hydrocart	oons (MRO)	<50.0		m	ig/kg	01.25.20 11:32	

Analytical Method:	TPH by SW8015 Mod			Prep Method:	SW80)15P	
Seq Number:	3114508	Matrix:	Solid	Date Prep:	01.25	.20	
		MB Sample Id:	7695229-1-BLK				
Parameter		MB		U	nits	Analysis	E.
1 urumeter		Result		-		Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Received by OCD: 3/4/2020 2:22:12 PM

Flag

Ensolum

Grama Ridge

Analytical Method: Seq Number:	TPH by SW8015 Mod 3114519	Matrix: MB Sample Id:	Solid 7695243-1-BLK	Prep Method: Date Prep:		
Parameter		MB Result		ι	nits	Analysis Date
Motor Oil Range Hydrocarl	bons (MRO)	<50.0		m	g/kg	01.26.20 11:38

Analytical Method:	TPH by SV	W8015 M	lod						I	Prep Method	l: SW8	3015P	
Seq Number:	3114506				Matrix:	Soil				Date Prep	p: 01.2	5.20	
Parent Sample Id:	1					649821-00	01 S		M	SD Sample	Id: 6498	321-001 SD	
Parameter Parent Spike Gasoline Range Hydrocarbons (GRO) <15.0 99'				MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<15.0	997	830	83	909	90	70-135	9	20	mg/kg	01.25.20 12:56	
Diesel Range Organics (Diesel Range Organics (DRO) 1030 997				85	1920	89	70-135	2	20	mg/kg	01.25.20 12:56	
Surrogate				MS %Rec		MS MSI Flag %Re			-	Limits	Units	Analysis Date	
1-Chlorooctane				113			126		7	70-135	%	01.25.20 12:56	
o-Terphenyl		104 110			116		7	70-135	%	01.25.20 12:56			

Analytical Method: Seq Number: Parent Sample Id:	TPH by S 3114508 649846-00	lod	Matrix: Soil MS Sample Id: 649846-001 S e MS MS MSD MSD						Prep Method Date Prep SD Sample I	o: 01.2	8015P 5.20 846-001 SD		
Parameter	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag		
Gasoline Range Hydrocarb	ons (GRO)	23.8	997	1070	105	996	97	70-135	7	20	mg/kg	01.25.20 22:24	
Diesel Range Organics	(DRO)	<15.0	997	1140	114	1130	113	70-135	1	20	mg/kg	01.25.20 22:24	
Surrogate				MS %Rec		MS MSI Flag %Re			-	limits	Units	Analysis Date	
1-Chlorooctane				1	28		122		7	0-135	%	01.25.20 22:24	
o-Terphenyl				1	26	111			7	0-135	%	01.25.20 22:24	

TPH by SV	W8015 M	od						I	Prep Metho	od: SW	8015P	
3114519				Matrix:	Soil				Date Pre	ep: 01.2	5.20	
649839-00	1		MS Sar	nple Id:	649839-00	01 S		MS	SD Sample	e Id: 649	839-001 SD	
Parameter Result Amount				MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
ns (GRO)	<15.0	997	831	83	841	84	70-135	1	20	mg/kg	01.26.20 13:03	
DRO)	17.8	997	824	81	839	82	70-135	2	20	mg/kg	01.26.20 13:03	
Surrogate					MS Flag				Limits	Units	Analysis Date	
			1	13	102			7	0-135	%	01.26.20 13:03	
o-Terphenyl			93			97		7	0-135	%	01.26.20 13:03	
	3114519 649839-00 1s (GRO)	3114519 649839-001 Parent Result is (GRO) <15.0	649839-001 Parent Spike Result Amount as (GRO) <15.0 997	3114519 649839-001 MS Sar Parent Spike MS Result Amount Result as (GRO) <15.0 997 831 ORO) 17.8 997 824 M % 1	3114519 Matrix: 649839-001 MS Sample Id: Parent Spike MS Result Amount Result %Rec is (GRO) <15.0	3114519 Matrix: Soil 649839-001 MS Sample Id: 649839-00 Parent Result Amount MS MS MSD (GRO) <15.0	3114519 Matrix: Soil 649839-001 MS Sample Id: 649839-001 S Parent Result Amount MS MS MSD MSD (GRO) <15.0	3114519 Matrix: Soil 649839-001 MS Sample Id: 649839-001 S Parent Spike MS MS MSD MSD Limits Result Amount Result %Rec Result %Rec is (GRO) <15.0	3114519 Matrix: Soil 649839-001 MS Sample Id: 649839-001 S MS Parent Spike MS MS MSD MSD Limits %RPD Result Amount Result %Rec Result %Rec 1 s (GRO) <15.0	3114519 Matrix: Soil Date Pro 649839-001 MS Sample Id: 649839-001 S MSD Sample Parent Spike MS MS MSD MSD Sample Is (GRO) <15.0	3114519 Matrix: Soil Date Prep: 01.2 649839-001 MS Sample Id: 649839-001 S MSD Sample Id: 6498 Parent Spike MS MS MSD MSD Limits %RPD RPD Limit Units Result Amount Result %Rec Result %Rec mg/kg is (GRO) <15.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control SampleA = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

BORATORIES

Ensolum

Grama Ridge

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 8021 3115205 7695683-1-BLK	В	LCS Sar	Matrix: nple Id:		1-BKS			Prep Metho Date Pre SD Sample	p: 01.3	5030B 31.20 95683-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	t Units	Analysis Date	Flag
Benzene	< 0.000385	0.100	0.103	103	0.104	104	70-130	1	35	mg/kg	01.31.20 23:52	
Toluene	< 0.000456	0.100	0.101	101	0.102	102	70-130	1	35	mg/kg	01.31.20 23:52	
Ethylbenzene	< 0.000565	0.100	0.0967	97	0.0969	97	70-130	0	35	mg/kg	01.31.20 23:52	
m,p-Xylenes	< 0.00101	0.200	0.192	96	0.192	96	70-130	0	35	mg/kg	01.31.20 23:52	
o-Xylene	< 0.000344	0.100	0.0970	97	0.0973	97	70-130	0	35	mg/kg	01.31.20 23:52	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree		-	Limits	Units	Analysis Date	
1,4-Difluorobenzene	106		1	09		108		7	70-130	%	01.31.20 23:52	
4-Bromofluorobenzene	72		5	86		88		7	70-130	%	01.31.20 23:52	

Analytical Method:	BTEX by EPA 8021	lB						I	Prep Metho	d: SW:	5030B	
Seq Number:	3115205]	Matrix:	Soil				Date Pre	p: 01.3	1.20	
Parent Sample Id:	649972-001		MS San	nple Id:	649972-00	01 S		M	SD Sample	Id: 6499	972-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.000384	0.0998	0.0943	94	0.0761	76	70-130	21	35	mg/kg	02.01.20 00:33	
Toluene	0.000776	0.0998	0.0821	81	0.0658	65	70-130	22	35	mg/kg	02.01.20 00:33	Х
Ethylbenzene	< 0.000564	0.0998	0.0771	77	0.0603	60	70-130	24	35	mg/kg	02.01.20 00:33	Х
m,p-Xylenes	< 0.00101	0.200	0.158	79	0.124	62	70-130	24	35	mg/kg	02.01.20 00:33	Х
o-Xylene	0.000373	0.0998	0.0884	88	0.0696	69	70-130	24	35	mg/kg	02.01.20 00:33	Х
Surrogate				IS Rec	MS Flag	MSD %Ree		-	Limits	Units	Analysis Date	
1,4-Difluorobenzene			1	16		115		7	70-130	%	02.01.20 00:33	
4-Bromofluorobenzene			9	02		87		7	70-130	%	02.01.20 00:33	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

	5	2580 ON ISAN MANNA AS 20 2	Relinguished by: (Signature) / Received by: (Signature) Date/Time Relinquished	Averue - signature of this occument, and reimiquisiment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to get project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	an n	XXX 1 .5.2-3 8511 octal 5 85-33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C-9 10-2 10-2 10-2 10-2 10-2 10-2 10-2 10-2	222 1 122 2010 201 201 2 2 2 2 2 2 2 2 2	tification Matrix Sampled Sampled Depth	Sample Custody Seals: Yes No N/A	Cooler Custody Seals: Yes No N/A Correction Factor: C Conta A A A A A A A A A A A A A A A A A A A	The mp siank: Yes No I wet ice: Yes No The moder ID		Beenx Senn ings	Project Number: 055512060024 Routine X code	AN	Phone: 210-219-8858 Email: bjeuning@ensolum.com	MADS City	tos W. W. Der At. St. 210	Ensalium L(C)	Project Manager: Beaux School and Bill to: (If different)	Midland,TX (<i>i</i> Phoenix,AZ (480	ABURATORIES Housion,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334	
Revised Date 022619 Rev. 2019.1			Relinquished by: (Signature) Received by: (Signature) Date/Time	It assigns standard terms and conditions e due to circumstances beyond the control nforced unless previously negotiated.	Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn Mn Mo Ni Se Ag Ti U 16317245.1/7470 /7471 : Hg			4 (H4)		-NM Samples	Sample Comments	TAT starts the day received by the lab, if received by 4:00pm	Zn Acetate+ NaOH: Zn	NaOH: Na	H2S04: H2	HNO3: HN	MeOH: Me	ALYSIS REQUEST Preservative Codes	Deliverables: EDD ADaPT Other:	Reporting:Level II CLevel III PST/UST TRRP Level IV	State of Project:	Program: IIST/DST DBBD Brownfields DBC curve-und	Work Order Comments	id, NM (432) 704-5440	Work Order No: WUUUU	

1. THE AS A

E de la companya da company La companya da c

Final 1.000

Page 28 of 30

Page 87 of 109

CUSTODY SEAL Date 122126

Final 1.000

Received by OCD: 3/4/2020 2:22:12 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Ensolum	Acceptable Temperature Range: 0 - 6 degC					
Date/ Time Received: 01/23/2020 08:35:00 AM	Air and Metal samples Acceptable Range: Ambient					
Work Order #: 649972	Temperature Measuring device used : R8					
Sample Recei	pt Checklist Comments					
#1 *Temperature of cooler(s)?	.2					
#2 *Shipping container in good condition?	Yes					
#3 *Samples received on ice?	Yes					
#4 *Custody Seals intact on shipping container/ cooler?	N/A					
#5 Custody Seals intact on sample bottles?	N/A					
#6*Custody Seals Signed and dated?	N/A					
#7 *Chain of Custody present?	Yes					
#8 Any missing/extra samples?	Νο					
#9 Chain of Custody signed when relinquished/ received?	Yes					
#10 Chain of Custody agrees with sample labels/matrix?	Yes					
#11 Container label(s) legible and intact?	Yes					
#12 Samples in proper container/ bottle?	Yes					
#13 Samples properly preserved?	Yes					
#14 Sample container(s) intact?	Yes					
#15 Sufficient sample amount for indicated test(s)?	Yes					
#16 All samples received within hold time?	Yes					
#17 Subcontract of sample(s)?	N/A					
#18 Water VOC samples have zero headspace?	N/A					

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brianna Teel

Date: 01/23/2020

Checklist reviewed by: Jession Vramer

Jessica Kramer

Date: 01/23/2020

Project Id:03B1136009Contact:Beaux JenningsProject Location:Image: Contact Cont

Certificate of Analysis Summary 652509

Ensolum, Dallas, TX Project Name: Gramma Ridge

Date Received in Lab:Fri Feb-14-20 04:00 pmReport Date:18-FEB-20Project Manager:Jessica Kramer

	Lab Id:	652509-0	001	652509-0	02		
An alugia De su estad	Field Id:	CS-14		CS-15			
Analysis Requested	Depth:	2.5- ft		0-2.5 ft	:		
	Matrix:	SOIL		SOIL			
	Sampled:	Feb-14-20	11:35	Feb-14-20 1	1:38		
Chloride by EPA 300	Extracted:	Feb-17-20	13:05	Feb-17-20 1	3:05		
	Analyzed:	Feb-17-20	14:35	Feb-17-20 1	4:40		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		499	5.00	460	5.00		
TPH by SW8015 Mod	Extracted:	Feb-17-20	17:00	Feb-17-20 1	7:00		
	Analyzed:	Feb-17-20 2	20:57	Feb-17-20 2	21:54		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<49.8	49.8		
Diesel Range Organics (DRO)		<50.0	50.0	<49.8	49.8		
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<49.8	49.8		
Total TPH		<50.0	50.0	<49.8	49.8		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Analytical Report 652509

for

Ensolum

Project Manager: Beaux Jennings

Gramma Ridge

03B1136009

18-FEB-20

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

18-FEB-20

Project Manager: **Beaux Jennings Ensolum** 2351 W Northwest Highway Suite 1203 Dallas, TX 75220

Reference: XENCO Report No(s): 652509 Gramma Ridge Project Address:

Beaux Jennings:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 652509. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 652509 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Vramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 652509

Ensolum, Dallas, TX

Gramma Ridge

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CS-14	S	02-14-20 11:35	2.5 ft	652509-001
CS-15	S	02-14-20 11:38	0 - 2.5 ft	652509-002

CASE NARRATIVE

Client Name: Ensolum Project Name: Gramma Ridge

Project ID: 03B1136009 Work Order Number(s): 652509 Report Date:18-FEB-20Date Received:02/14/2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

o-Terphenyl

.

Certificate of Analytical Results 652509

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-14		Matrix:	Soil		Date Received:02.	14.20 16.0	0		
Lab Sample Id: 652509-	001	Date Collec	ted: 02.14.20 11.35	Sample Depth: 2.5 ft					
Analytical Method: Chl	oride by EPA 300				Prep Method: E3	00P			
Tech: CHE					% Moisture:				
Analyst: CHE		Date Prep:	02.17.20 13.05		Basis: We	et Weight			
Seq Number: 3116782									
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Chloride	16887-00-6	499	5.00	mg/kg	02.17.20 14.35		1		

Analytical Method: TPH by SW801 Tech: DVM Analyst: ARM Seq Number: 3116818	Date Pre	Date Prep: 02.17.20 17.00			Prep Method: SW8015P % Moisture: Basis: Wet Weight				
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	02.17.20 20.57	U	1	
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	02.17.20 20.57	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	02.17.20 20.57	U	1	
Total TPH	PHC635	<50.0	50.0		mg/kg	02.17.20 20.57	U	1	
Surrogate 1-Chlorooctane		Cas Number 111-85-3	% Recovery 81	Units %	Limits 70-135	Analysis Date 02.17.20 20.57	Flag		

80

%

70-135

 $02.17.20\ 20.57$

84-15-1

o-Terphenyl

.

Certificate of Analytical Results 652509

Ensolum, Dallas, TX

Gramma Ridge

Sample Id: CS-15 Lab Sample Id: 652509-002		Matrix: Date Collec	Soil cted: 02.14.20 11.38		Date Received:02. Sample Depth: 0 -		0
Analytical Method: Chloride by EPA	A 300				Prep Method: E3	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	02.17.20 13.05		Basis: We	t Weight	
Seq Number: 3116782							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	460	5.00	mg/kg	02.17.20 14.40		1

Analytical Method: TPH by SW801	5 Mod	Prep Method: SW8015P						
Tech: DVM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 02.17	.20 17.00	E	Basis: We	t Weight	
Seq Number: 3116818								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	02.17.20 21.54	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	02.17.20 21.54	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	02.17.20 21.54	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	02.17.20 21.54	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	80	%	70-135	02.17.20 21.54		

77

%

70-135

02.17.20 21.54

84-15-1

Flagging Criteria

Page 97 of 109

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

BORATORIES

QC Summary 652509

Ensolum

Gramma Ridge

Analytical Method:	Chloride by EPA 30	00						Pro	ep Metho	d: E30	0P			
Seq Number:	3116782		Matrix: Solid					Date Prep: 02.17.20						
MB Sample Id: 7696798-1-BLK			LCS Sample Id: 7696798-1-BKS				LCSD Sample Id: 7696798-1-BSD							
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD I	RPD Limi	t Units	Analysis Date	Flag		

Analytical Method:	Chloride by EPA 3	00						Prep M	Method:	E300	Р	
Seq Number:	3116782			Matrix:	Soil			Da	te Prep:	02.17	.20	
Parent Sample Id: 650826-051			MS San	nple Id:	650826-05	51 S		MSD Sa	ample Id:	650826-051 SD		
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD RPD	Limit I	Inite	Analysis	
Tarameter	Result	Amount	Result	%Rec	Result	%Rec	Linnts		Linit C	mis	Date	Flag

Analytical Method:	Chloride by EPA 30	00						P	rep Meth	od: E30	0P	
Seq Number:	3116782			Matrix:	Soil				Date Pr	ep: 02.1	7.20	
Parent Sample Id:	652504-008		MS Sar	nple Id:	652504-00)8 S		MS	D Sample	e Id: 652	504-008 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	115	249	363	100	363	100	90-110	0	20	mg/kg	02.17.20 13:53	

Analytical Method:	TPH by S	W8015 M	od]	Prep Method	l: SW	8015P	
Seq Number:	3116818				Matrix:	Solid				Date Prep	p: 02.1	7.20	
MB Sample Id:	7696850-1	-BLK		LCS San	nple Id:	7696850-	1-BKS		LC	SD Sample	Id: 769	6850-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPE) RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	1050	105	1060	106	70-135	1	20	mg/kg	02.18.20 08:36	
Diesel Range Organics	(DRO)	<15.0	1000	1130	113	1050	105	70-135	7	20	mg/kg	02.18.20 08:36	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re	-		Limits	Units	Analysis Date	
1-Chlorooctane		84		1	15		117		7	70-135	%	02.18.20 08:36	
o-Terphenyl		84		1	11		105		7	70-135	%	02.18.20 08:36	

Analytical Method: TPH by SW801	5 Mod	Prep Method:	SW8015P	
Seq Number: 3116818	Matrix: Solid	Date Prep:	02.17.20	
	MB Sample Id: 7696	850-1-BLK		
Parameter	MB Result	Ur	nits Analysis Date	Flag
Motor Oil Range Hydrocarbons (MRO)	<50.0	mg	g/kg 02.17.20 20:01	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 9 of 13

QC Summary 652509

Ensolum

Gramma Ridge

····1	TPH by S 3116818 652509-00		od		Matrix: nple Id:	Soil 652509-00	01 S			rep Method Date Prep D Sample I): 02.1	8015P 7.20 509-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbor	ns (GRO)	<15.0	998	983	98	851	85	70-135	14	20	mg/kg	02.17.20 21:16	
Diesel Range Organics (I	DRO)	<15.0	998	1060	106	932	93	70-135	13	20	mg/kg	02.17.20 21:16	
Surrogate					/IS Rec	MS Flag	MSD %Ree		_	imits	Units	Analysis Date	
1-Chlorooctane				1	07		96		7	0-135	%	02.17.20 21:16	
o-Terphenyl				1	00		85		7	0-135	%	02.17.20 21:16	

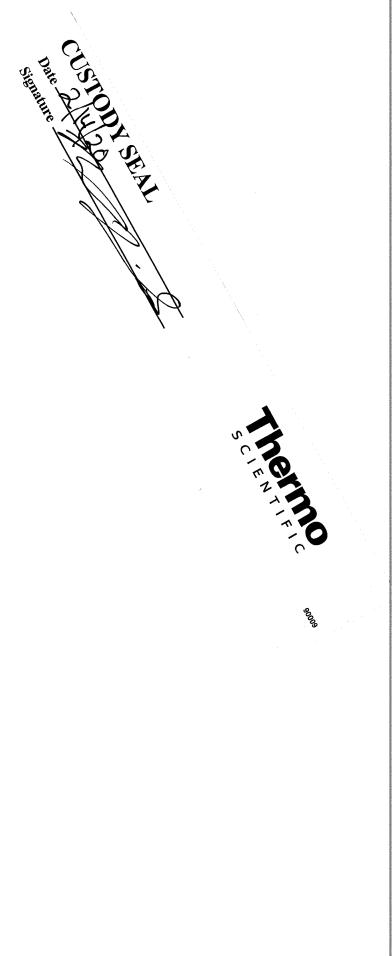
MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

	Chain of Custody	Work Order No:
LABORATORIES	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs NM (575-392-7550) Phoenix A7 (480-355-0000) Atlanta GA (770-440 8900) Tomor El (912 600 0000)	
Project Manager: Braux Tuninas	Bill to: (it different)	Work Order Comments
Company Name: Eusplusny, LLC	Company Name:	Program: UST/PST PRP Brownfields RRC Superfund
Address: FOS W. Walley Ave, St	2.210 Address:	State of Project:
10 ZIP: Milliand, TX 4		Reporting:Level II Level III PST/UST TRRP Level IV
8588 -	Email plenning@ensolum.com	Deliverables: EDD ADaPT Cother:
Project Name: Grams Ridge	100.03SS	UEST Work Order Notes
Project Number: 0301/36004	δ,	
P.O. Number: 336/36209		
Sampler's Name: Braux Sennings	Due Date:	
SAMPLE RECEIPT Temp Blank: Yes-No	Wet Ice: Ves No	
	Thermometer TP	
NO (N/A	Correction Factor: 0 5 8 2	
Sample Custody Seals: Yes No (UX) Total C		lab, if received by 4:30pm
Sample Identification Matrix Sampled S	Sampled Depth	Sample Comments
2/14/20	$\mathbb{X}_{2} \times \mathbb{X}_{2} $	-NM Samples
1 arghult 5 51-57	<u>138</u> 0 ⁽⁻ 2.5 ⁽ \ X X	1
A finite		
Total 200.7 / 6010 200.8 / 6020: 8RCRA Circle Method(s) and Metal(s) to be analyzed TCL	TCLP/SPLP 6010: 8RCRA Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni TCLP/SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn Mo Ni Se Ag Ti U 1631/245.1/7470/7471 : Hg
Notice: Signature of this document and relinquishment of samples consti of service. Xenco will be liable only for the cost of samples and shall not of Xenco. A minimum charge of \$75.00 will be applied to each project and	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	. It assigns standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated.
Relinquished by: (Signature)	r: (Signature) Date/Time Relinquished by: (Signature)	nature) Received by: (Signature) Date/Time

Page 11 of 13

2/14/20


8

Revised Date 051418 Rev. 2018.1

Page 100 of 109

Chain of Custody

Work Order No: WS ASUL

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Ensolum	Acceptable Temperature Range: 0 - 6 degC				
Date/ Time Received: 02.14.2020 04.00.00 PM	Air and Metal samples Acceptable Range: Ambient				
Work Order #: 652509	Temperature Measuring device used : R8				
Sample Rece	ipt Checklist Comments				
#1 *Temperature of cooler(s)?	5.6				
#2 *Shipping container in good condition?	Yes				
#3 *Samples received on ice?	Yes				
#4 *Custody Seals intact on shipping container/ cooler?	N/A				
#5 Custody Seals intact on sample bottles?	N/A				
#6*Custody Seals Signed and dated?	N/A				
#7 *Chain of Custody present?	Yes				
#8 Any missing/extra samples?	Νο				
#9 Chain of Custody signed when relinquished/ received?	Yes				
#10 Chain of Custody agrees with sample labels/matrix?	Yes				
#11 Container label(s) legible and intact?	Yes				
#12 Samples in proper container/ bottle?	Yes				
#13 Samples properly preserved?	Yes				
#14 Sample container(s) intact?	Yes				
#15 Sufficient sample amount for indicated test(s)?	Yes				
#16 All samples received within hold time?	Yes				
#17 Subcontract of sample(s)?	N/A				
#18 Water VOC samples have zero headspace?	N/A				

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 02.14.2020

Checklist reviewed by: Jession Vermer

Jessica Kramer

Date: 02.18.2020

ENSOLUM

APPENDIX F

C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	1RP-5547
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Marathon Oil Permian LLC	OGRID 372098
Contact Name Isaac Castro	Contact Telephone 575-988-0561
Contact email <u>icastro@marathonoil.com</u>	Incident # (assigned by OCD)
Contact mailing address 4111 S. Tidwell Rd., Carlsbad, NM 88220	

Location of Release Source

Latitude <u>32.399529</u>

Longitude <u>-103.489403</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name GRAMA RIDGE 8 STATE COM #002H	Site Type Oil and gas drilling facility
Date Release Discovered 9/5/19	API# (if applicable) 30-025-43607

Unit Letter	Section	Township	Range	County
0	05	22S	34E	Lea

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) <u>12.5 bbls</u>	Volume Recovered (bbls) <u>10 bbls</u>
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Operator reported a spill due to the lact air eliminator leaking. Approximately 12.5 bbls were spilled to the ground. A vac truck was immediately dispatched to recover fluids and recovered 10 bbls. All spillage is contained on location.

Page	2
1 uge	-

Oil Conservation Division

Incident ID	
District RP	1RP-5547
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?			
release as defined by				
19.15.29.7(A) NMAC?				
🗌 Yes 🖾 No				
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?				

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Isaac Castro</u>	Title:Environmental Professional
Signature: <u>Isaac Castro</u>	Date:9/19/19
email: <u>icastro@marathonoil.com</u>	Telephone: <u>575-988-0561</u>
OCD Only	
Received by:	Date:

Received by OCD: 3/4/2020 2:22:12 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

Incident ID	
District RP	1RP-5547
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?				
Did this release impact groundwater or surface water?				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No			
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No			
Are the lateral extents of the release within a 100-year floodplain?				
Did the release impact areas not on an exploration, development, production, or storage site?				

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

eived by OCD: 3/4/20	20 2:22:12 PM State of Ne	Maviaa			Page 107 o
				Incident ID	
e 4	Oil Conserva	tion Division		District RP	1RP-5547
				Facility ID	
				Application ID	
egulations all operators a ublic health or the enviro ailed to adequately inves ddition, OCD acceptance nd/or regulations.	formation given above is true a re required to report and/or file onment. The acceptance of a C- tigate and remediate contamina e of a C-141 report does not reli	certain release notifications a 141 report by the OCD does tion that pose a threat to grou eve the operator of responsib	and perform con not relieve the ndwater, surfac ility for compli	rrective actions for relea operator of liability show we water, human health o	ses which may endanger uld their operations have or the environment. In
rinted Name: <u>IS</u>	aac Castro	The:		mai Professional	·····
Signature:	saac Castro	Date:	11/13/19		
email: <u>icastro@mara</u>	thonoil.com	Telephone: <u>575</u>	-988-0561		

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	1RP-5715
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

 Printed Name:
 Melodie Sanjari
 Title:
 Environmental Professional

 Signature:
 Melodie Sanjari
 Date: 3/4/2020

email: <u>msanjari@marathonoil.com</u>

Telephone: 575-988-8753

Received by OCD: 3/4/2020 2:22:12 Form C-141	PM toto of Now Marias		Page 10		
			Incident ID		
Page 2	Oil Conservation Division		District RP	1RP-5715	
			Facility ID		
			Application ID		
OCD Only Received by:		Date:		to adequately investigate and	
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.					
Closure Approved by:		_ Date:			
Printed Name:		Title:			