	SITE INFORMATION								
	Report Type: Revised Closure 1RP-5480								
General Site Inf	ormation:								
Site:			State #001H						
Company:		COG Operati							
Section, Towns		Unit B	Sec. 04	T 24S	R 33E				
Lease Number:		API No.							
County:		Lea County			1				
GPS:			32.2532			-103	.5744		
Surface Owner:		State				1010777			
Directions:			section of HWY 7 go .27 miles and		i urn North oi	n HWY 128 a	nd go 2.97 miles and		
		lum west and g	jo .27 miles and	arrive.					
Release Data:									
Date Released:		4/23/2019							
Type Release:		Produced Water							
Source of Contain	mination:	Flowline							
Fluid Released:		25 bbls							
Fluids Recovere		20 bbls							
Official Commu	nication:								
Name:	Ike Tavarez				Clair Gonz	ales			
Company:	COG Operating, LI	_C			Tetra Tech				
Address:	One Concho Cente	er			901 West Wall Street				
	600 W. Illinois Ave			Suif		Suite 100			
City:	Midland Texas, 79	701			Midland, Te	exas			
Phone number:	(432) 686-3023				(432) 687-8	B110			
Fax:	(432) 684-7137								
Email:	itavarez@concho.com				Clair.Gon	zales@tetra	tech.com		

Site Characterization	
Depth to Groundwater:	81'

Recommended Remedial Action Levels (RRALs)						
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides		
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	10,000 mg/kg		

May 11, 2020

Oil Conservation Division, District 1 1625 North French Drive Hobbs. New Mexico 88240

Revised - Closure Report for the COG Operating, LLC, Cabo Blanco State #001H, Unit B, Section 04, Township 24 South, Range 33 East, Lea County, New Mexico. 1RP-5480

To Whom It May Concern:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to assess a release that occurred at the Cabo Blanco State #001H, Unit B, Section 04, Township 24 South, Range 33 East, occurred at the Lea County, New Mexico (Site). The spill site coordinates are 32.2532°, -103.5744°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Report, the release occurred on April 23, 2019, and released approximately 25 barrels of produced due to a 3rd party company striking a flowline. A vacuum truck was used to remove all freestanding fluids, recovering approximately 20 barrels of produced water. The release impacted an area along the north edge of the lease road and on the lease road measuring approximately 40' x 10' and migrated into the pasture impacting an area measuring 104' x 8'. The C-141 form is included in Appendix A.

Tetra Tech previously submitted a closure report, dated October 22, 2019, which was denied by the NMOCD due to the impact left on the lease road. The NMOCD requested the impact on the lease road be addressed.

Site Characterization

A site characterization was performed for the site, and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in a low karst potential area. Two wells are near the site and listed in the New Mexico Office of the State Engineers website. The nearest well is listed in Section 10, Township 24 South, Range 33 East, approximately 1.33 miles southeast of the site, and has a reported depth to groundwater of 20 feet below ground surface. However, it was completed in 1920. The other well is listed in Section 01, Township 24 South, Range 33 East, approximately 3.33 miles east of the site, and has a reported depth to groundwater of 81 feet below ground surface. The well was installed in February 2017. In addition, the surface elevation of this site is 3,641' and the surface elevation of the 20' well is approximately 3,590'. Based on the relative elevation the depth to groundwater is estimated to be around 70' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 1,000 mg/kg (GRO+DRO) and 2,500 mg/kg (GRO+DRO+MRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 10,000 mg/kg.

Soil Assessment and Analytical Results

Auger Holes-Lease Road

On July 16, 2019, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of two (2) auger holes (AH-1 and AH-2) were installed near the source area and on the lease road to total depths ranging from 0-6" and 3.5' below surface. Deeper samples were not collected due to a dense formation in the area. Selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, none of the samples (AH-1 and AH-2) showed benzene, total BTEX, or TPH concentrations above the RRALs. The chloride concentrations ranging from 758 mg/kg to 2,410 mg/kg.

Trenches – Pasture

On July 30, 2019, Tetra Tech personnel returned to the site and install four (4) backhoe sample trenches (T-1 through T-4) to assess the pasture area. Selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, none of the samples analyzed showed TPH, benzene, or total BTEX concentrations above the laboratory reporting limits. Additionally, no chloride concentrations above the RRAL were detected in the area. The impact in the pasture did not show any concentrations above the RRAL or reclamation standards, which appear to have been affected by the heavy rains in the area.

Remediation Activities

Lease Road - Data Summary

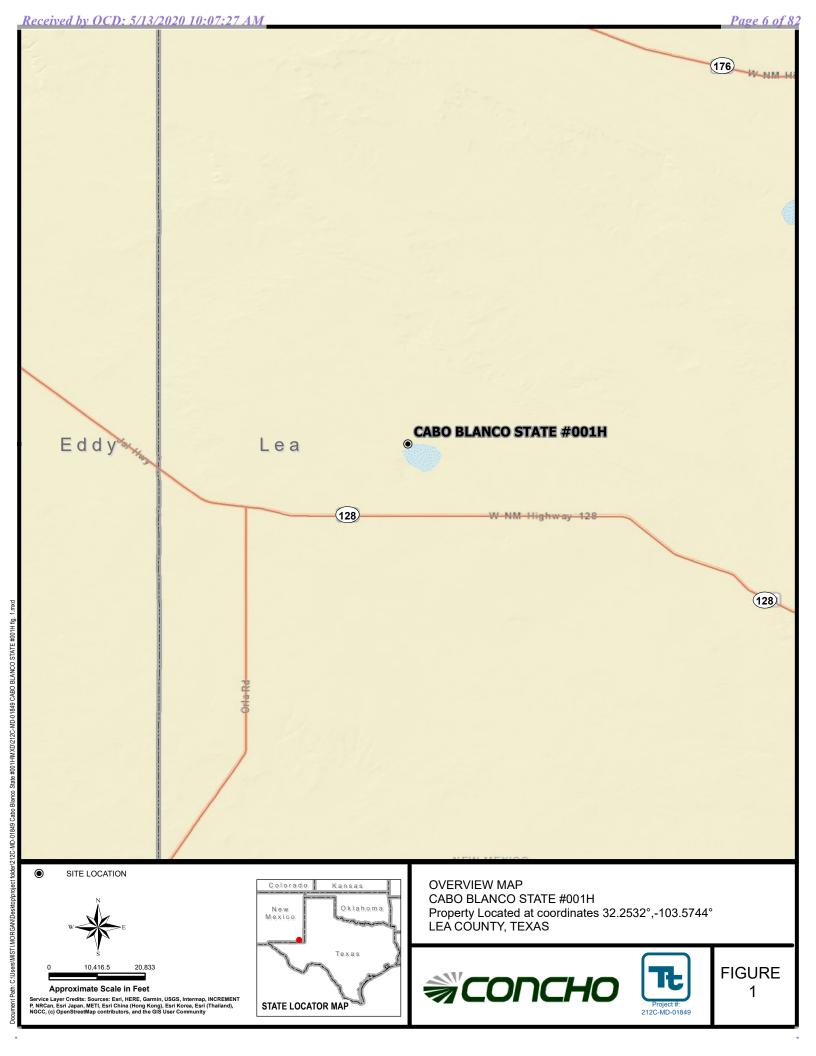
Tetra Tech personnel were onsite February 11, 2020, before remediation activities occurred to resample and re-evaulate the areas of auger holes (AH-1 and AH-2). The two (2) auger holes that were installed in the release range from surface to depth of 3.0'-3.5' below surface. Referring to Table 1, the area of auger hole (AH-1) did not show chloride concentrations above the RRALs. The area of auger hole (AH-2) showed chloride concentrations of 1,330 mg/kg at surface to 1.0', and 800 mg/kg at 1.0'-1.5' below surface.

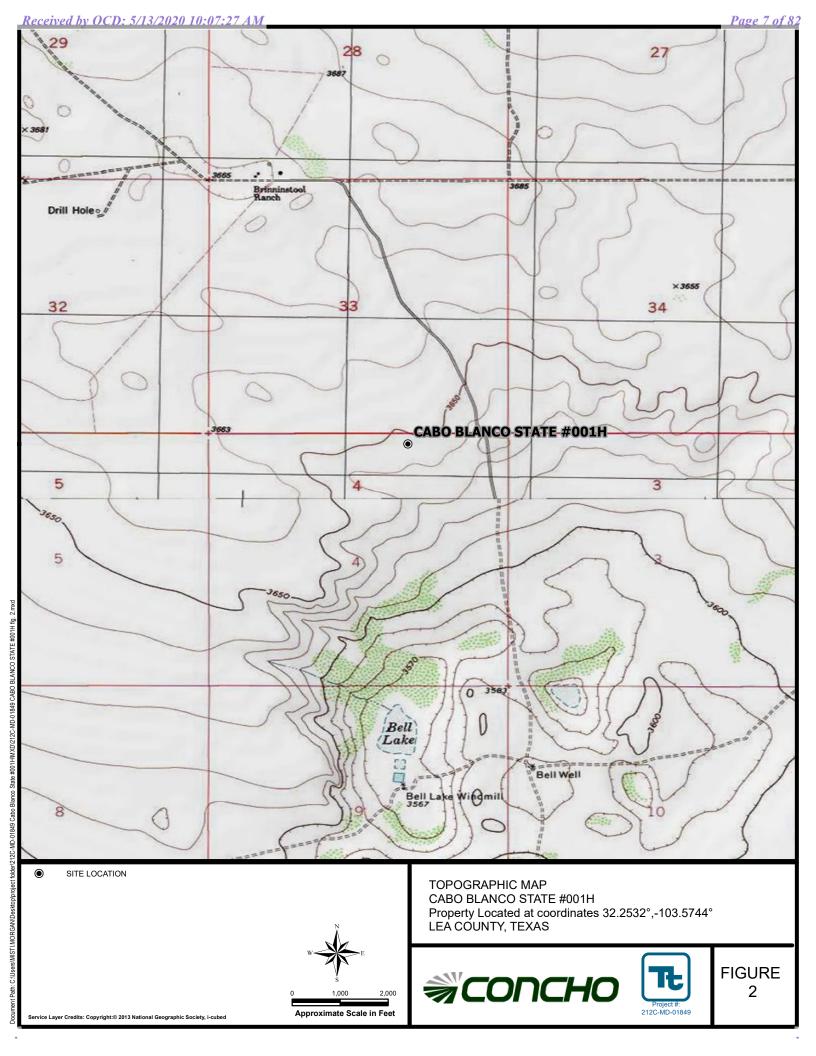
Lease Road Remediation

Tetra Tech personnel were onsite February 25, 2020, to supervise the remediation activities. The areas were excavated, as shown on Figure 4 and highlighted (green) on Table 1. The area of AH-2 was excavated to depth of 2.0' below surface. Once excavated, bottom and sidewall confirmation samples were collected every 200 square feet to ensure proper removal of the impacted soils. The samples were submitted to the laboratory to be analyzed for TPH method 8015 extended, BTEX method 8021B, and Chloride by method 300.0. The sampling results are summarized in Table 1. The excavation area and depths are shown on Figure 4.

Referring to Table 1, none of the confirmation samples showed benzene, total BTEX, or TPH concentrations above the RRALs. The area of Bottom Hole-1 showed a chloride concentration of 48.0 mg/kg at 2.0' below surface. The sidewall samples (NSW, SSW, ESW, and WSW) showed chloride concentrations ranging from 48.0 mg/kg to 112 mg/kg.

Approximately 15 cubic yards of material were excavated and transported offsite for proper disposal. The area was then backfilled with clean material to surface grade.


Conclusion and Recommendation


Based on the results, COG requests closure of this spill issue. The final C-141 is included in Appendix A. If you have any questions or comments concerning the assessment activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

Mike Carmona, Geologist

Figures

AUGER HOLE SAMPLE LOCATIONS

TRENCH SAMPLE LOCATION

----- FLOWLINE

AFFECTED SPILL AREA

0 20 40
Approximate Scale in Feet

SPILL ASSESSMENT MAP CABO BLANCO STATE #001H Property Located at coordinates 32.2532°,-103.5744° LEA COUNTY, TEXAS

FIGURE 3

Page 8 of 82

BH BOTTOM HOLE SAMPLE LOCATION

SIDEWALL SAMPLE LOCATIONS

FLOWLINE

2.0' bgs EXCAVATION DEPTH AREA

Approximate Scale in Feet

CONCHO

EXCAVATION AREA & DEPTH MAP CABO BLANCO STATE #001H

Property Located at coordinates 32.2532°,-103.5744° LEA COUNTY, TEXAS

FIGURE

Source: "New Mexico". 32°15'11.52"N, 103°34'27.84"W. **Google Earth**. February 2017. September 11, 2019.

Tables

Received by OCD: 5/13/2020 10:07:27 AM

Page 11 of 82

Table 1 COG Cabo Blanco State #1H Lea County, New Mexico

Sample ID	Sample Date	Sample	ample Excavation	Soil Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride		
Sample ID	Sample Date	Depth (ft)	Depth	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	7/16/2019	0-1	-	Χ		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	1,800
AH-1	II	1-1.5	-	Х		<14.9	<14.9	<14.9	<14.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	1,080
	"	2-2.5	-	Х		-	-	-	-	-	-	-	-	-	2,410
	"	3-3.5	-	Х		-	-	-	-	-	-	-	-	-	1,010
	2/11/2020	0-1	-	Х		-	-	-	-	-	-	-	-	-	144
AH-1	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	32.0
	"	2-2.5	-	Х		-	-	-	-	-	-	-	-	-	32.0
AH-2	7/16/2019	0-0.5	-		Χ	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	1,140
	II	0.5-1	-		Χ	<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	758
ALL 2	2/11/2020	0-1	-		Х	-	-	-	-	-	-	-	-	-	1,330
AH-2	11	1-1.5	-		Х	-	-	-	-	-	-	-	-	-	800
	7/30/2019	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	18.5
	"	1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	407
т.4	II.	2	-	Х		-	-	-	-	-	-	-	-	-	14.9
T-1	"	3	-	Х		-	-	-	-	-	-	-	-	-	13.3
	п	4	-	Х		1	-	-	-	-	-	-	-	-	40.6
	II .	5	-	Х		1	•	-	-	-	-	-	-	-	54.8
	7/30/2019	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	85.6
	п	1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	145
	"	2	-	Х		-	-	-	-	-	-	-	-	-	113
T-2	"	3	-	Х		-	-	-	-	-	-	-	-	-	22.5
	"	4	-	Х		-	-	-	-	-	-	-	-	-	20.2
	п	5	-	Х		-	-	-	-	-	-	-	-	-	19.0
	7/30/2019	0-1	-	Х		<14.9	<14.9	<14.9	<14.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	44.8
	п	1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	0.00229	<0.00199	0.00229	33.6
	"	2	-	Х		-	-	-	-	-	-	-	-	-	20.6
	"	3	-	Х		-	-	-	-	-	-	-	-	-	575
T-3	"	4	-	Х		-	-	-	-	-	-	-	-	-	384
	п	5	-	Х		-	-	-	-	-	-	-	-	-	507
	"	6	-	Х		-	-	-	-	-	-	-	-	-	52.9
	"	7	-	Х		-	-	-	-	-	-	-	-	-	19.4
	"	8	-	Х		-	-	-	-	-	-	-	-	-	52.4
	7/30/2019	0-1	С	Х		<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	262
	"	1		X		<15.0	<15.0	<15.0	<15.0	<0.00100	<0.00200	<0.00200	<0.00200	<0.00200	95.4
	"	2		X		-	-	-	-	-	-	-	-	-	22.2
T-4	"	3		X				_		_		_			24.0
	"	4		X				_		_	<u>-</u>	-			36.7
	n n	5		X		-	-	-	-	-	-	-	-	-	42.9
Pottom Hole 4	0/05/0555		2.2			-10 O	-10.0	<10.0	-10.0	-0.0E0	-0.050	-0.0E0	-0.4E0	~0 200	
Bottom Hole 1	2/25/2020	-	2.0	-		<10.0	<10.0		<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
NSW	"	-	-	-		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
SSW	11	-	-	-		<10.0	<10.0	<10.0 <10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
WSW	" "	-	-	-		<10.0	<10.0		<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
ESW		-	-	-		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
(-) Not Analyzed															

Not Analyzed Excavated

Photos

May 11, 2020

Oil Conservation Division, District 1 1625 North French Drive Hobbs. New Mexico 88240

Revised - Closure Report for the COG Operating, LLC, Cabo Blanco State #001H, Unit B, Section 04, Township 24 South, Range 33 East, Lea County, New Mexico. 1RP-5480

To Whom It May Concern:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to assess a release that occurred at the Cabo Blanco State #001H, Unit B, Section 04, Township 24 South, Range 33 East, occurred at the Lea County, New Mexico (Site). The spill site coordinates are 32.2532°, -103.5744°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Report, the release occurred on April 23, 2019, and released approximately 25 barrels of produced due to a 3rd party company striking a flowline. A vacuum truck was used to remove all freestanding fluids, recovering approximately 20 barrels of produced water. The release impacted an area along the north edge of the lease road and on the lease road measuring approximately 40' x 10' and migrated into the pasture impacting an area measuring 104' x 8'. The C-141 form is included in Appendix A.

Tetra Tech previously submitted a closure report, dated October 22, 2019, which was denied by the NMOCD due to the impact left on the lease road. The NMOCD requested the impact on the lease road be addressed.

Site Characterization

A site characterization was performed for the site, and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in a low karst potential area. Two wells are near the site and listed in the New Mexico Office of the State Engineers website. The nearest well is listed in Section 10, Township 24 South, Range 33 East, approximately 1.33 miles southeast of the site, and has a reported depth to groundwater of 20 feet below ground surface. However, it was completed in 1920. The other well is listed in Section 01, Township 24 South, Range 33 East, approximately 3.33 miles east of the site, and has a reported depth to groundwater of 81 feet below ground surface. The well was installed in February 2017. In addition, the surface elevation of this site is 3,641' and the surface elevation of the 20' well is approximately 3,590'. Based on the relative elevation the depth to groundwater is estimated to be around 70' below surface. The groundwater data is shown in Appendix B.

႕

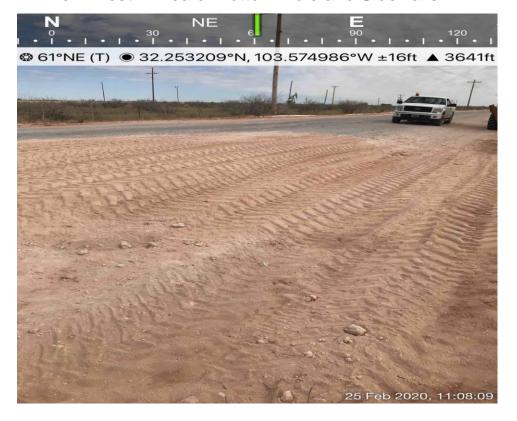
COG Operating LLC Cabo Blanco State #1H Lea County, New Mexico

View West - Area of AH-1

View South -Area of AH-2

COG Operating LLC Cabo Blanco State #1H Lea County, New Mexico

View West – Area of T-1, T,2,T3, and T4



View East- Area of T-1, T,2,T3, and T4

COG Operating LLC Cabo Blanco State #1H Lea County, New Mexico

View West - Area of Bottom Hole and Sidewalls

View Northeast- Area Backfilled

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party			OGRID	OGRID			
Contact Nam	ne			Contact '	Contact Telephone			
Contact emai	il			Incident	Incident # (assigned by OCD)			
Contact mail	ing address							
			Location	of Release S	Source			
Latitude				Longitude	;			
			(NAD 83 in dec	cimal degrees to 5 dec	cimal places)			
Site Name				Site Type	2			
Date Release	Discovered			API# (if a	pplicable)			
Unit Letter	Section	Township	Danga	Cox	unty			
Offit Letter	Section	Township	Range	Col	unty			
Surface Owner	r: State	☐ Federal ☐ Tr	ribal Private (/	Name:)		
			Nature and	d Volume of	Release			
				calculations or specif		volumes provided below)		
Crude Oil		Volume Release	d (bbls)		Volume Recovered (bbls)			
Produced	Water	Volume Release	d (bbls)		Volume Recovered (bbls)			
			tion of dissolved c	hloride in the	☐ Yes ☐ No			
Condensa	ite	produced water Volume Release			Volume Recov	vered (bbls)		
Natural G	as	Volume Release	d (Mcf)		Volume Recov	Volume Recovered (Mcf)		
Other (des	scribe)	Volume/Weight	Released (provide	e units)	Volume/Weight Recovered (provide units)			
				,		,		
Cause of Rele	ease							

Received by OCD: 5/13/2020 10:07:27 AM Form C-141 State of New Mexico Page 2 Oil Conservation Division

Th	40		000
Page	79	nt	X.
Page	1/	$\boldsymbol{\sigma}_{I}$	UA

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respon	nsible party consider this a major release?
19.15.29.7(A) NMAC?		
☐ Yes ☐ No		
If VEC was immediate a	ation aircon to the OCD? Dr. whom? To wi	nom? When and by what means (phone, email, etc)?
II 1ES, was immediate no	once given to the OCD? By whom? To wi	om? when and by what means (phone, eman, etc)?
	Initial R	esponse
The responsible p	party must undertake the following actions immediated	y unless they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.	
☐ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or o	likes, absorbent pads, or other containment devices.
	ecoverable materials have been removed an	
If all the actions described	d above have <u>not</u> been undertaken, explain	why:
D 1015200D (4) NIM	(A C d	The form that have a first transfer of the f
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the environmental failed to adequately investigated addition, OCD acceptance of	required to report and/or file certain release notinent. The acceptance of a C-141 report by the Cate and remediate contamination that pose a three	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
and/or regulations. Printed Name:		Title:
Signature:	Opeant	Date:
		Telephone:
OCD Only		
Received by: <u>Dylan</u>	Rose-Coss	Date:

Received by OCD: 5/13/2020 10:07:27 AM Form C-141 State of New Mexico
Page 3 Oil Conservation Division

	Page 20 of 82
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)			
Did this release impact groundwater or surface water?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No			
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No			
Are the lateral extents of the release overlying an unstable area such as karst geology?				
Are the lateral extents of the release within a 100-year floodplain?				
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.				
Characterization Report Checklist: Each of the following items must be included in the report.				
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.			

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/13/2020 10:07:27 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

Page 21 of 82

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	_ Title:
Printed Name: Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 5/13/2020 10:07:27 AM Form C-141 State of New Mexico Page 6 Oil Conservation Division

Page	<i>22</i>	of	82
			1

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

☐ A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
☐ Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
Printed Name:	
Signature: MB	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG Cabo Blanco State #001H Lea County, New Mexico

	23 S	outh	;	32 East	t		23 S	South	33	3 East			23 \$	South	3	4 East	
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
		400				400	400										
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
								400		225	225						
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	24 :	South		32 East	<u> </u>		24 S	South	33	3 East		-	24 \$	South	3	4 East	
6	5	4	3	2	1	6	5	4 Site	3	2	1 81	6	5	4	3	2	1
7	8	9	10	11	12	7	8	9	10 20	11	12	7	8	9	10	11	12
			20						24.6								
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
								415		575	390						
19	20	21	22	23	24	19	20	21	22	23 110		19	20	21	22	23	24
00			07		0.5	-	20	00	07	208	16.9	20			07	00	05
30	29	28	27	26	25	30	29	28	27	26	25 30	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33 70	34	35	36	31	32	33	34	35	36
		290						93.2									
						<u>-</u>					_						
	25 S	outh		32 East	<u> </u>		25 S	South		B East			25 \$	South		4 East	
6	5	4	3	2	1	6	5	4	3 172	2	1	6	5	4	3	2	1
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
										140	200						
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
19	20	21	22	23	24	19			22	23	24	19	20		22	23	24
30	29	28	27	26	25	30	200 29	120 28	27	26	25	30	29	28	27	26	25
30	23	20	- '	20	23	30	23	20		20	23	30	23	120	21	20	23
31	32	33	34	35	36	31	32	33	125 34	35	36	31	32	33	34	35	36
Ĭ	290					257	52]			ľ		ا	10 1		
	490					231					1						

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- **143** NMOCD Groundwater map well location

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

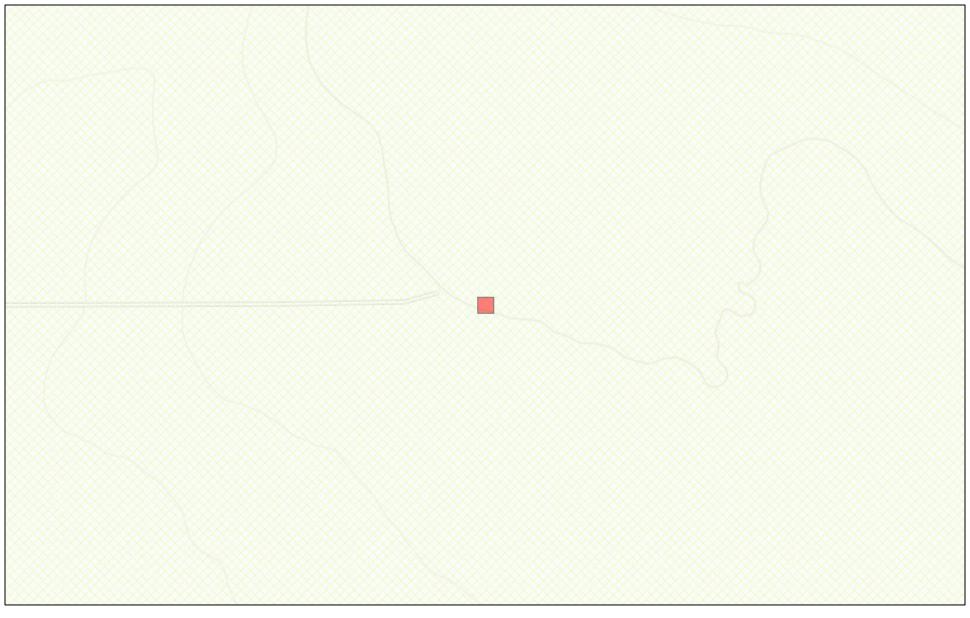
(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a

(R=POD has been replaced, O=orphaned,

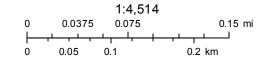
(quarters are 1=NW 2=NE 3=SW 4=SE)

& no longer serves a	C=the file is	(quarters are 1=NW 2=NE 3=SW 4=SE)							
water right file.)	closed)	(quarters are smallest to largest)	(NAD83 UTM in meters)	(In feet)					

water right file.)	closed)		(qı	uarte	ers a	re s	smalle	st to la	argest)	(NAD8	3 UTM in meter	s) (In	n feet)	
POD Number	Codo	POD Sub-	County	_	Q 16	_	Saa	Tue	Dna	X	Y	DepthWellDepth		Vater
C 02308	Code	CUB	County		3		10	24S	33E	634953	3567364*	40	20	20
C 02309		CUB	LE			2	25	24S	33E	639638	3562994*	60	30	30
C 02310		CUB	LE	2	3	2	33	24S	33E	634437	3560918*	120	70	50
C 02311		CUB	LE	2	3	2	33	24S	33E	634437	3560918*	120	70	50
C 02430		CUB	LE	3	3	3	16	24S	33E	633377	3564732*	643	415	228
<u>C 02431</u>		CUB	LE	4	4	4	17	24S	33E	633175	3564728*	525	415	110
<u>C 02432</u>		CUB	LE	4	4	4	17	24S	33E	633175	3564728*	640	415	225
<u>C 02563</u>		CUB	LE	1	4	2	33	24S	33E	634639	3560923*	120		
<u>C 02564</u>		CUB	LE	2	4	2	33	24S	33E	634839	3560923*	120		
<u>C 02890</u>		C	LE		2	4	29	24S	33E	633114	3562012*	500		
C 03565 POD3		CUB	LE		3	4	08	24S	33E	632763	3566546		1533	
C 03591 POD1		CUB	LE	2	1	4	05	24S	33E	632731	3568518			
C 03600 POD1		CUB	LE	2	2	1	26	24S	33E	637275	3563023			
C 03600 POD2		CUB	LE	4	4	1	25	24S	33E	638824	3562329			
C 03600 POD3		CUB	LE	3	4	2	26	24S	33E	637784	3562340			
C 03600 POD4		CUB	LE	3	3	1	26	24S	33E	636617	3562293			
C 03600 POD5		CUB	LE	3	2	4	26	24S	33E	637857	3562020			
C 03600 POD6		CUB	LE	3	1	4	26	24S	33E	637383	3562026			
C 03600 POD7		CUB	LE	3	1	3	26	24S	33E	636726	3561968			
C 03601 POD1		CUB	LE	4	4	2	23	24S	33E	638124	3563937			
C 03601 POD2		CUB	LE	3	2	4	23	24S	33E	637846	3563588			
C 03601 POD3		CUB	LE	1	3	3	24	24S	33E	638142	3563413			
C 03601 POD4		CUB	LE	3	3	3	24	24S	33E	638162	3561375			
C 03601 POD5		CUB	LE	2	4	4	23	24S	33E	637988	3563334			
C 03601 POD6		CUB	LE	1	4	4	23	24S	33E	637834	3563338			
C 03601 POD7		CUB	LE	4	4	4	23	24S	33E	637946	3563170			
C 03602 POD2		CUB	LE		4		25	24S	33E	638824	3562329			
C 03603 POD1		CUB	LE		2		35	24S	33E	637805	3561225			
C 03603 POD2		CUB	LE			2	35	24S	33E	637384	3561167]		
C 03603 POD3		CUB	LE		1		35	24S	33E	636890	3561092]		
C 03603 POD4		CUB	LE			4	35	24S	33E	637789	3560461]		
C 03603 POD5		CUB	LE		3		35	24S	33E	636745	3560767]		
C 03603 POD6		CUB C	LE LE		1		35	24S	33E	636749	3560447] 550	110	440
C 03662 POD1 C 03666 POD1		С	LE		3		23 13	24S 24S	33E 33E	637342 639132	3564428	550 650	110 390	260
C 03666 POD1		С	ED		3		13	24S	33E	603567	3581547	700	575	125
C 03917 POD1		С	LE		1		13	24S	33E	638374	3565212	600	420	180
C 04014 POD2		CUB	LE	4		2	01	24S	33E	639656	3568917	95	81	14
C 04014 POD3		CUB	LE	2			01	24S	33E	639497	3569007	95	87	8
C 04014 POD4		CUB	LE		4		01	24S	33E	639295	3568859	96	86	10
C 04014 POD5		CUB	LE				01	24S	33E	639284	3569086	95	85	10
		200		•		_					Average Depth to	1	300 fee	
										1		im Depth:	20 fee	
												m Depth:	1533 fee	
Record Count: 41														


PLSS Search:

Township: 24S Range: 33E


*UTM location was derived from PLSS - see Help

New Mexico NFHL Data

March 13, 2019

FEMA Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,

Appendix C

Analytical Report 631202

for Tetra Tech- Midland

Project Manager: Mike Carmona Cabo Blanco State #001H (4-23-19)

22-JUL-19

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Atlanta (LELAP Lab ID #04176)

Xenco-Tampa: Florida (E87429), North Carolina (483)

22-JUL-19

Project Manager: Mike Carmona Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 631202

Cabo Blanco State #001H (4-23-19)
Project Address: Lea County, New Mexico

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 631202. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 631202 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Vramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 631202

Tetra Tech- Midland, Midland, TX

Cabo Blanco State #001H (4-23-19)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH-1 (0-1')	S	07-16-19 00:00		631202-001
AH-1 (1-1.5')	S	07-16-19 00:00		631202-002
AH-1 (2-2.5')	S	07-16-19 00:00		631202-003
AH-1 (3-3.5')	S	07-16-19 00:00		631202-004
AH-2 (0-6")	S	07-16-19 00:00		631202-005
AH-2 (6"-12")	S	07-16-19 00:00		631202-006

Client Name: Tetra Tech- Midland

Project Name: Cabo Blanco State #001H (4-23-19)

22-JUL-19 Project ID: Report Date: Date Received: 07/17/2019 Work Order Number(s): 631202

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3095867 TPH by SW8015 Mod

Surrogate o-Terphenyl recovered above QC limits. Samples affected are: 7682339-1-BKS,7682339-1-

BSD,631202-006.

Batch: LBA-3095963 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 631202

Tetra Tech- Midland, Midland, TX

Project Name: Cabo Blanco State #001H (4-23-19)

Project Id: Contact:

Mike Carmona

Project Location: Lea C

Lea County, New Mexico

Date Received in Lab: Wed Jul-17-19 01:54 pm

Report Date: 22-JUL-19

Project Manager: Jessica Kramer

	Lab Id:	631202-0	001	631202-0	002	631202-0	03	631202-0	04	631202-0	005	631202-0	006
	Field Id:	AH-1 (0-	·1')	AH-1 (1-1	.5')	AH-1 (2-2	.5')	AH-1 (3-3	.5')	AH-2 (0-	-6")	AH-2 (6"-	12")
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-16-19 0	00:00	Jul-16-19 0	00:00	Jul-16-19 0	0:00	Jul-16-19 0	0:00	Jul-16-19 (00:00	Jul-16-19	00:00
BTEX by EPA 8021B	Extracted:	Jul-17-19 1			4:23					Jul-17-19 14:23		Jul-17-19 14:23	
	Analyzed:	Jul-20-19 0			9:58					Jul-20-19 ()3:22	Jul-20-19	10:38
	Units/RL:	mg/kg	RL	mg/kg	RL					mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00201	0.00201					< 0.00199	0.00199	< 0.00199	0.00199
Toluene		< 0.00200	0.00200	< 0.00201	0.00201					< 0.00199	0.00199	< 0.00199	0.00199
Ethylbenzene		< 0.00200	0.00200	< 0.00201	0.00201					< 0.00199	0.00199	< 0.00199	0.00199
m,p-Xylenes		< 0.00401	0.00401	< 0.00402	0.00402					< 0.00398	0.00398	< 0.00398	0.00398
o-Xylene		< 0.00200	0.00200	< 0.00201	0.00201					< 0.00199	0.00199	< 0.00199	0.00199
Total Xylenes		< 0.00200	0.00200	< 0.00201	0.00201					< 0.00199	0.00199	< 0.00199	0.00199
Total BTEX		< 0.00200	0.00200	< 0.00201	0.00201					< 0.00199	0.00199	< 0.00199	0.00199
Chloride by EPA 300	Extracted:	Jul-18-19 1	3:40	Jul-18-19 13:40		Jul-18-19 13:40 Jul-18-19 13:40		Jul-18-19 13:40		Jul-18-19 13:40			
	Analyzed:	Jul-18-19 1	5:59	Jul-18-19 1	6:40	Jul-18-19 1	6:47	Jul-18-19 1	9:07	Jul-18-19	19:13	Jul-18-19 19:20	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1800	25.0	1080	5.05	2410	25.0	1010	4.95	1140	5.01	758	4.98
TPH by SW8015 Mod	Extracted:	Jul-18-19 0	08:00	Jul-18-19 0	8:00					Jul-18-19 (08:00	Jul-18-19 (08:00
	Analyzed:	Jul-18-19 1	2:40	Jul-18-19 1	3:53					Jul-18-19	14:17	Jul-18-19	14:42
	Units/RL:	mg/kg	RL	mg/kg	RL					mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<14.9	14.9					<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		<15.0	15.0	<14.9	14.9					<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<14.9	14.9					<15.0	15.0	<15.0	15.0
Total TPH		<15.0	15.0	<14.9	14.9					<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jessica Vramer

Jessica Kramer Project Assistant

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Form 2 - Surrogate Recoveries

Project Name: Cabo Blanco State #001H (4-23-19)

Work Orders: 631202,

Sample: 631202-001 / SMP

Project ID:

Lab Batch #: 3095867

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 07/18/19 12:40	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1 Chl		1 mary tes	127	00.0	127	70.125					
1-Chlorooct	ane		127	99.9	127	70-135					
o-Terphenyl			67.0	50.0	134	70-135					

Lab Batch #: 3095867

Sample: 631202-002 / SMP

Batch: 1 Matrix: Soil

Units:

mg/kg

Date Analyzed: 07/18/19 13:53

SURROGATE RECOVERY STUDY **Amount** True Control

TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	114	99.6	114	70-135	
o-Terphenyl	59.9	49.8	120	70-135	

Lab Batch #: 3095867

Sample: 631202-005 / SMP

Batch:

Matrix: Soil

Units:

mg/kg

Date Analyzed: 07/18/19 14:17

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	119	99.9	119	70-135	
o-Terphenyl	61.5	50.0	123	70-135	

Lab Batch #: 3095867

Sample: 631202-006 / SMP

Batch:

Matrix: Soil

SURROGATE RECOVERY STUDY

Units:	mg/kg	Date Analyzed: 07/18/19 14:42	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		126	100	126	70-135	
o-Terphenyl			69.5	50.0	139	70-135	**

Lab Batch #: 3095963

4-Bromofluorobenzene

mg/kg

Units:

Sample: 631202-005 / SMP

Date Analyzed: 07/20/19 03:22

Batch:

Matrix: Soil

0.0300

SURROGATE RECOVERY STUDY

	501110 01112 11200 (2111 5102 1				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0289	0.0300	96	70-130	

0.0313

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

104

70-130

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cabo Blanco State #001H (4-23-19)

Work Orders: 631202,

Sample: 631202-001 / SMP

Project ID:

Lab Batch #: 3095963 Units: mø/kø

Date Analyzed: 07/20/19 09:37

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 07/20/19 09:37	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0292	0.0300	97	70-130	
4-Bromofluorobenzene			0.0325	0.0300	108	70-130	

Lab Batch #: 3095963

Sample: 631202-002 / SMP

Batch: 1

Matrix: Soil

Units:

mg/kg

Date Analyzed: 07/20/19 09:58

SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0310	0.0300	103	70-130	
4-Bromofluorobenzene	0.0323	0.0300	108	70-130	

Lab Batch #: 3095963

Sample: 631202-006 / SMP

Batch:

Matrix: Soil

Units:	mg/kg	Date Analyzed: 07/20/19 10:38	SURROGATE RECOVERY STUDY				
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobenzene			0.0303	0.0300	101	70-130	
4-Bromofluorobenzene			0.0326	0.0300	109	70-130	

Lab Batch #: 3095867

Sample: 7682339-1-BLK / BLK

Batch:

Matrix: Solid

Units:

mg/kg

Date Analyzed: 07/18/19 11:27

SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1-Chlorooctane 109 100 109 70-135 o-Terphenyl 50.0 127 70-135 63.6

Lab Batch #: 3095963

Sample: 7682226-1-BLK / BLK

Batch:

1

Matrix: Solid

SURROGATE RECOVERY STUDY

Units:

mg/kg

Date Analyzed: 07/19/19 04:59

·	SCRROGHIE RECOVERI STODI					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	[]	[-]	[D]	,,,,,		
1,4-Difluorobenzene	0.0291	0.0300	97	70-130		
4-Bromofluorobenzene	0.0282	0.0300	94	70-130		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Batch:

Project Name: Cabo Blanco State #001H (4-23-19)

Work Orders: 631202,

Sample: 7682339-1-BKS / BKS

Project ID:

Matrix: Solid

Lab Batch #: 3095867 Units:

mg/kg

Date Analyzed: 07/18/19 11:51

SURROGATE RECOVERY STUDY

	SURROGATE RECOVERT STUDI								
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	106	100	106	70-135					
o-Terphenyl	72.0	50.0	144	70-135	**				

Lab Batch #: 3095963

Sample: 7682226-1-BKS / BKS

Batch: Matrix: Solid

Units:

mg/kg

Date Analyzed: 07/19/19 02:58

SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0287	0.0300	96	70-130	
4-Bromofluorobenzene	0.0306	0.0300	102	70-130	

Lab Batch #: 3095867

Sample: 7682339-1-BSD / BSD

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 07/18/19 12:15 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	116	100	116	70-135	
o-Terphenyl	72.3	50.0	145	70-135	**

Lab Batch #: 3095963

Sample: 7682226-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: Date Analyzed: 07/19/19 03:19 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Recovery Found Amount Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0298 0.0300 99 70-130 4-Bromofluorobenzene 0.0335 0.0300 112 70-130

Lab Batch #: 3095867

o-Terphenyl

Sample: 631202-001 S / MS

1

49.9

Matrix: Soil

Units: mg/kg Date Analyzed: 07/18/19 13:04 SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 105 99.7 105 70-135

63.7

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

128

70-135

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Cabo Blanco State #001H (4-23-19)

Work Orders: 631202, **Lab Batch #:** 3095963

Sample: 630893-001 S / MS

Project ID:

Matrix: Soil Batch:

Units:	mg/kg Date Analyzed: 07/19/19 06:04	SU	SURROGATE RECOVERY STUDY									
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
	Analytes			[D]								
1,4-Difluor	robenzene	0.0296	0.0300	99	70-130							
4-Bromofl	uorobenzene	0.0265	0.0300	88	70-130							

Lab Batch #: 3095867

Sample: 631202-001 SD / MSD

Batch:

Matrix: Soil

Units:

mg/kg

Date Analyzed: 07/18/19 13:28

Date Analyzeu. 07/10/17 13.20	SU.	RROGATE RE	COVERY	STUDY		l
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			

99.8

49.9

o-Terphenyl Lab Batch #: 3095963

1-Chlorooctane

Sample: 630893-001 SD / MSD

Batch:

106

64.3

Matrix: Soil

106

129

70-135

70-135

Units: mg/kg Date	e Analyzed: 07/19/19 06:25	SURROGATE RECOVERY STUDY									
BTEX by EI	BTEX by EPA 8021B		BTEX by EPA 8021B		True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analy	es			[D]							
1,4-Difluorobenzene		0.0299	0.0300	100	70-130						
4-Bromofluorobenzene		0.0341	0.0300	114	70-130						

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Page 39 of 82

Project Name: Cabo Blanco State #001H (4-23-19)

Work Order #: 631202

Project ID:

Analyst:

FOV

Date Prepared: 07/17/2019

Date Analyzed: 07/19/2019

Lab Batch ID: 3095963

Sample: 7682226-1-BKS

Batch #: 1

Matrix: Solid

Units:

mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00200	0.100	0.107	107	0.100	0.110	110	3	70-130	35	
Toluene	< 0.00200	0.100	0.105	105	0.100	0.106	106	1	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.117	117	0.100	0.119	119	2	70-130	35	
m,p-Xylenes	< 0.00400	0.200	0.234	117	0.200	0.241	121	3	70-130	35	
o-Xylene	< 0.00200	0.100	0.112	112	0.100	0.117	117	4	70-130	35	

Analyst:

CHE

Date Prepared: 07/18/2019

Date Analyzed: 07/18/2019

Lab Batch ID: 3095818

Sample: 7682294-1-BKS

Batch #: 1

Matrix: Solid

Units:

mg/kg

Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	< 0.858	250	233	93	250	232	93	0	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Page 40 of 82

Project Name: Cabo Blanco State #001H (4-23-19)

Work Order #: 631202

Project ID:

Analyst: ARM

Date Prepared: 07/18/2019

Date Analyzed: 07/18/2019

Lab Batch ID: 3095867

Sample: 7682339-1-BKS

Batch #: 1

RI ANK /RI ANK SPIKE / RI ANK SPIKE DIDI ICATE DECOVEDY STIDY

Matrix: Solid

Units:

mg/kg

		DLAN	IK/DLANK	SI IKE / I	DLAME	or IKE DUI	LICATE	RECOV	EKI SIUI	<i>,</i> 1	
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[12]	[B]	[C]	[D]	[E]	Result [F]	[G]	70	/011	/VICE	
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	1150	115	1000	1150	115	0	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	1120	112	1000	1150	115	3	70-135	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 41 of 82

Project Name: Cabo Blanco State #001H (4-23-19)

Work Order #:

631202

Project ID:

Lab Batch ID:

3095963

QC- Sample ID: 630893-001 S

Batch #:

Matrix: Soil

Date Analyzed:

07/19/2019

Date Prepared: 07/17/2019

Analyst: FOV

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00198	0.0992	0.0835	84	0.0998	0.0893	89	7	70-130	35	
Toluene	< 0.00198	0.0992	0.0798	80	0.0998	0.0861	86	8	70-130	35	
Ethylbenzene	< 0.00198	0.0992	0.0840	85	0.0998	0.0915	92	9	70-130	35	
m,p-Xylenes	< 0.00397	0.198	0.167	84	0.200	0.185	93	10	70-130	35	
o-Xylene	< 0.00198	0.0992	0.0763	77	0.0998	0.0865	87	13	70-130	35	

Lab Batch ID:

3095818

QC- Sample ID: 631162-004 S

S Batch #:

Matrix: Soil

Date Analyzed:

07/18/2019

Date Prepared: 07/18/2019

Analyst: CHE

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	269	249	485	87	249	485	87	0	90-110	20	X

Lab Batch ID:

3095818

QC- Sample ID: 631307-007 S

Batch #:

Matrix: Soil

Date Analyzed:

07/18/2019

Date Prepared: 07/18/2019

Analyst: CHE

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]	Kesuit [F]	[G]	70	70K	/6KFD	
Chloride	273	250	485	85	250	486	85	0	90-110	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Page 42 of 82

Project Name: Cabo Blanco State #001H (4-23-19)

Work Order #:

631202

Project ID:

Lab Batch ID:

3095867

QC- Sample ID: 631202-001 S

001 S Batch #:

Matrix: Soil

Date Analyzed:

07/18/2019

Date Prepared: 07/18/2019

Analyst: ARM

Reporting Units:

mg/kg

Allalyst: ARIVI

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]	Kesuit [F]	[G]	70	70 K	/0KFD	
Gasoline Range Hydrocarbons (GRO)	8.18	997	1170	117	998	1150	114	2	70-135	20	
Diesel Range Organics (DRO)	14.7	997	1120	111	998	1180	117	5	70-135	20	

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is <math>> 4 times the amount spiked.

Tetra Tech. Inc.	nge 43 o nalysis Re		Client Name:	Project Name:	Project Location: state)	Invoice to:	Receiving Laboratory:	Comments:			LAB#	(LAB USE)								W.	(A		Relinquished b	Belinquished by	D: 5/1	by OC.	eceive
Core	43 analysis Request of Chain of Custody Record	Tetr	cog	Cabo Blanco S	(county,					,	SAMPLE		AH-1 (0-1')	AH-1 (1-1.5')	AH-1 (2'-2.5')	AH-1 (3'-3.5')	AH-2 (0-6")	AH-2 (6"-12")				la yun.) [×]				
## CONTAINERS Time: WATER WATER	dy Record	Tech.		state #001H (4-23-19)	ew Mexico	rez			- Indiana - Indi		DENTIFICATION	,										1e:	e.	-			
Mike Carmona Mike			Site Manager:		Project #:		Sampler Signature:			SAMPLING	YEAR: 2019		7/16/2019	7/16/2019	7/16/2019	7/16/2019	7/16/2019	7/16/2019				Received by:	Received by:	Received by:		ORIGINAL COP	
Time:		901 West Wall Midland,Texx Tel (432) 68 Fax (432) 6	Mike Carmona				Mike Carm	-			R	SOIL HCL	×	×	×	×	×	×				Date) Date:	Date:		Y	
Circle	W	, Suite 100 15. 79701 12. 4559 12. 4546	a				ona				AINE	ICE None	X 1	·								-	,	Time: 22			
TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	25120							60B	X 82						Z	Z							Sa	\downarrow	1 . :	(C)	
TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	7					/IRO)	RO - N				15M (TPH 801	×	×			×	×				AB USI	mple Tem	プラ	acó		
TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	9		<u>}</u>								tals A	Total Me										ONL	perature	(,0	88	AND DE	
			≱	— <u>0</u> — 0		Hg	Pb Se	Cr		s	olatile	TCLP Vo														LIVEREI	
# Chloride Sulfate TDS ## Chloride Sulfate TDS ## Chloride Sulfate TDS			, ALY	— წ								RCI										∐ARK!		∐ _{Ru}	Spr	M	
PCB's 8082 / 608 Wethod Wethod NORM PLM (Asbestos)			SIS R	— ecity				625										$oxed{\Box}$	+			STAN	SH:	sh Cha	ecial R		
acking # PLM (Asbestos) PLM (Asbestos) PLM (Asbestos) PLM (Asbestos) Chloride Chloride Sulfate TDS			EQU							6Ó8	082 /		_					Н	\bot	\perp	\Box	NDAF	ìame [rges A	eport L		
The state of the s	Page		EST	_ §						s)	besto	PLM (Ast		Ĵ	Ĵ	Ţ	Ĵ	U	1	#		ő		uthoriz	imits c	racking	
	. ₩			_ 2				s	TD	ulfate	s			<u> </u>	_		^		$oldsymbol{\perp}$	\pm			24 hr	zed	or TRF	#	
General Water Chemistry (see attached list) Anion/Cation Balance			·	_	st)	ched li	ee atta	(se											$oldsymbol{L}$		\Box		48 hr		₹P Rep		
	1 of												1	\exists						_	\dashv		AND DESCRIPTION OF THE PARTY OF		on		
	→ 												\dashv	\dashv	\dashv		\neg	H		+							

Page 15 of 16

Final 1.000

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 07/17/2019 01:54:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 631202

Temperature Measuring device used: R8

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		.1	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping conta	iner/ cooler?	N/A	
#5 Custody Seals intact on sample bottles	?	N/A	
#6*Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquis	hed/ received?	Yes	
#10 Chain of Custody agrees with sample	labels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		N/A	
#18 Water VOC samples have zero heads	pace?	N/A	
* Must be completed for after-hours deliv	very of samples prior to placing i	n the refrige	erator

Must be o	completed for after-hours de	elivery of samples prior to pla	acing in the refrigerator
Analyst:		PH Device/Lot#:	
	Checklist completed by:	190 - 0	Date: <u>07/17/2019</u>
	Checklist reviewed by:	Jessica Warner Jessica Kramer	Date: <u>07/17/2019</u>

Analytical Report 632659

for Tetra Tech- Midland

Project Manager: Mike Carmona
Cabo Blanco State 1H (4-29-19)
212C-MD-01849
05-AUG-19

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142), North Carolina (681)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Atlanta (LELAP Lab ID #04176)

Xenco-Tampa: Florida (E87429), North Carolina (483)

Page 1 of 25

05-AUG-19

Project Manager: Mike Carmona Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 632659

Cabo Blanco State 1H (4-29-19)

Project Address: Lea County, New Mexico

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 632659. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 632659 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Vramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 632659

Tetra Tech- Midland, Midland, TX

Cabo Blanco State 1H (4-29-19)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
T-1 (0-1')	S	07-30-19 00:00		632659-001
T-1 (1')	S	07-30-19 00:00		632659-002
T-1 (2')	S	07-30-19 00:00		632659-003
T-1 (3')	S	07-30-19 00:00		632659-004
T-1 (4')	S	07-30-19 00:00		632659-005
T-1 (5')	S	07-30-19 00:00		632659-006
T-2 (0-1')	S	07-30-19 00:00		632659-007
T-2 (1')	S	07-30-19 00:00		632659-008
T-2(2')	S	07-30-19 00:00		632659-009
T-2(3')	S	07-30-19 00:00		632659-010
T-2 (4')	S	07-30-19 00:00		632659-011
T-2 (5')	S	07-30-19 00:00		632659-012
T-3 (0-1')	S	07-30-19 00:00		632659-013
T-3 (1')	S	07-30-19 00:00		632659-014
T-3 (2')	S	07-30-19 00:00		632659-015
T-3(3')	S	07-30-19 00:00		632659-016
T-3 (4')	S	07-30-19 00:00		632659-017
T-3 (5')	S	07-30-19 00:00		632659-018
T-3(6')	S	07-30-19 00:00		632659-019
T-3 (7')	S	07-30-19 00:00		632659-020
T-3 (8')	S	07-30-19 00:00		632659-021
T-4 (0-1')	S	07-30-19 00:00		632659-022
T-4 (1')	S	07-30-19 00:00		632659-023
T-4 (2')	S	07-30-19 00:00		632659-024
T-4 (3')	S	07-30-19 00:00		632659-025
T-4 (4')	S	07-30-19 00:00		632659-026
T-4(5')	S	07-30-19 00:00		632659-027

Received by OCD: 5/13/2020 10:07:27 AM

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: Cabo Blanco State 1H (4-29-19)

Project ID: 212C-MD-01849

05-AUG-19 Report Date: Work Order Number(s): 632659 Date Received: 07/31/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3097186 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3097307 Chloride by EPA 300

Lab Sample ID 632659-026 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 632659-026, -027.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Tetra Tech- Midland, Midland, TX

Project Name: Cabo Blanco State 1H (4-29-19)

Project Id:

Contact:

212C-MD-01849 Mike Carmona

Project Location:

Lea County, New Mexico

Date Received in Lab: Wed Jul-31-19 04:22 pm

Report Date: 05-AUG-19

Project Manager: Jessica Kramer

	Lab Id:	632659-0	001	632659-0	002	632659-0	03	632659-0	04	632659-0	05	632659-0	06
A 7 : D 7	Field Id:	T-1 (0-1	1')	T-1 (1)	T-1 (2')		T-1 (3"))	T-1 (4")	,	T-1 (5'))
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-30-19 (00:00	Jul-30-19 (00:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00
BTEX by EPA 8021B	Extracted:	Jul-31-19 1	17:00	Jul-31-19	17:00								
	Analyzed:	Aug-01-19	08:55	Aug-01-19	09:15								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Benzene		< 0.00200	0.00200	< 0.00200	0.00200								
Toluene		< 0.00200	0.00200	< 0.00200	0.00200								
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200								
m,p-Xylenes		< 0.00399	0.00399	< 0.00400	0.00400								
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200								
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200								
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200								
Chloride by EPA 300	Extracted:	Aug-01-19	18:00	Aug-01-19	18:00	Aug-01-19 1	8:00	Aug-01-19	18:00	Aug-01-19	18:00	Aug-01-19 1	8:00
	Analyzed:	Aug-02-19	17:05	Aug-02-19	17:10	Aug-02-19 1	7:15	Aug-02-19	17:21	Aug-02-19	17:37	Aug-02-19 1	7:42
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		18.5	5.00	407	5.02	14.9	5.03	13.3	5.05	40.6	4.98	54.8	4.98
TPH by SW8015 Mod	Extracted:	Aug-02-19	09:00	Aug-02-19	09:00								
	Analyzed:	Aug-04-19	13:35	Aug-04-19	14:34								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0								
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0								
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0								
Total TPH		<15.0	15.0	<15.0	15.0	<u> </u>							

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Tetra Tech- Midland, Midland, TX

Project Name: Cabo Blanco State 1H (4-29-19)

Project Id: Contact: 212C-MD-01849 Mike Carmona

Project Location:

Lea County, New Mexico

Date Received in Lab: Wed Jul-31-19 04:22 pm

Report Date: 05-AUG-19

Project Manager: Jessica Kramer

	Lab Id:	632659-(007	632659-	008	632659-0	09	632659-0	10	632659-0	11	632659-0	12
	Field Id:	T-2 (0-1	1')	T-2 (1	,	T-2(2')		T-2(3')		T-2 (4')	T-2 (5'))
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-30-19 (00:00	Jul-30-19	00:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00
BTEX by EPA 8021B	Extracted:	Jul-31-19 1	17:00	Jul-31-19	17:00								
	Analyzed:	Aug-01-19	09:35	Aug-01-19	09:56								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Benzene	'	< 0.00200	0.00200	< 0.00200	0.00200								
Toluene		< 0.00200	0.00200	< 0.00200	0.00200								
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200								
m,p-Xylenes		< 0.00400	0.00400	< 0.00400	0.00400								
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200								
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200								
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200								
Chloride by EPA 300	Extracted:	Aug-01-19	18:00	Aug-01-19	18:00	Aug-01-19 1	8:00	Aug-01-19	18:00	Aug-01-19	18:00	Aug-01-19 1	18:00
	Analyzed:	Aug-02-19	17:59	Aug-02-19	18:04	Aug-02-19 1	8:10	Aug-02-19	18:15	Aug-02-19	18:20	Aug-02-19 1	18:26
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		85.6	4.97	145	5.00	113	5.02	22.5	5.05	20.2	5.03	19.0	4.98
TPH by SW8015 Mod	Extracted:	Aug-02-19	09:00	Aug-02-19	09:00								
	Analyzed:	Aug-04-19	14:54	Aug-04-19	15:14								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0								
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0								
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0							·	
Total TPH		<15.0	15.0	<15.0	15.0			· ·					

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Tetra Tech- Midland, Midland, TX

Project Name: Cabo Blanco State 1H (4-29-19)

Project Id: Contact: 212C-MD-01849 Mike Carmona

Project Location:

Lea County, New Mexico

Date Received in Lab: Wed Jul-31-19 04:22 pm

Report Date: 05-AUG-19

Project Manager: Jessica Kramer

	Lab Id:	632659-0	013	632659-0	014	632659-0	15	632659-0	16	632659-0	017	632659-0	018
	Field Id:	T-3 (0-1	-	T-3 (1'		T-3 (2')		T-3(3')		T-3 (4'		T-3 (5)	
Analysis Requested	Depth:	10(0)		10(1,	´	10(2)		1 3(0)		10(1,	´	100,	,
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Jul-30-19 (0.00	Jul-30-19 0		Jul-30-19 0	0.00	Jul-30-19 0	0.00	Jul-30-19 0		Jul-30-19 0	
	Sampled:	Jul-30-19 (00:00	Jul-30-19 0	0:00	Jui-30-19 0	0:00	Jui-30-19 0	0:00	Jui-30-19 (0:00	Jui-30-19 0	00:00
BTEX by EPA 8021B	Extracted:	Jul-31-19 1	7:00	Jul-31-19 1	7:00								
	Analyzed:	Aug-01-19	10:16	Aug-01-19	10:36								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Benzene	·	< 0.00200	0.00200	< 0.00199	0.00199								
Toluene		< 0.00200	0.00200	< 0.00199	0.00199								
Ethylbenzene		< 0.00200	0.00200	< 0.00199	0.00199								
m,p-Xylenes		< 0.00400	0.00400	< 0.00398	0.00398								
o-Xylene		< 0.00200	0.00200	< 0.00199	0.00199								
Total Xylenes		< 0.00200	0.00200	< 0.00199	0.00199								
Total BTEX		< 0.00200	0.00200	< 0.00199	0.00199								
Chloride by EPA 300	Extracted:	Aug-01-19	18:00	Aug-01-19	18:30	Aug-01-19 1	18:30	Aug-01-19	18:30	Aug-01-19	18:30	Aug-01-19	18:30
	Analyzed:	Aug-02-19	18:31	Aug-02-19 (01:03	Aug-02-19 (01:22	Aug-02-19 (01:28	Aug-02-19	01:35	Aug-02-19 (01:41
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride	·	44.8	4.96	33.6	5.04	20.6	5.01	575	5.01	384	5.00	507	4.96
TPH by SW8015 Mod	Extracted:	Aug-02-19	09:00	Aug-02-19 (09:00		ĺ				ĺ		
	Analyzed:	Aug-04-19	15:34	Aug-04-19	15:54								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Gasoline Range Hydrocarbons (GRO)	'	<14.9	14.9	<15.0	15.0								
Diesel Range Organics (DRO)		<14.9	14.9	<15.0	15.0								
Motor Oil Range Hydrocarbons (MRO)		<14.9	14.9	<15.0	15.0								
Total TPH		<14.9	14.9	<15.0	15.0								

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Tetra Tech- Midland, Midland, TX

Project Name: Cabo Blanco State 1H (4-29-19)

Project Id: Contact: 212C-MD-01849 Mike Carmona

Project Location:

Lea County, New Mexico

Date Received in Lab: Wed Jul-31-19 04:22 pm

Report Date: 05-AUG-19

Project Manager: Jessica Kramer

	Lab Id:	632659-0	019	632659-0	20	632659-0	21	632659-()22	632659-()23	632659-0)24
	Field Id:	T-3(6')	T-3 (7')	,	T-3 (8')		T-4 (0-1	1')	T-4 (1')	T-4 (2))
Analysis Requested	Depth:	,		,		,		`	,	`	,	,	,
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-30-19 0	00:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00	Jul-30-19 (00:00	Jul-30-19 (00:00	Jul-30-19 0	00:00
BTEX by EPA 8021B	Extracted:		1					Jul-31-19 1	7:00	Jul-31-19 1	7:00		
·	Analyzed:							Aug-01-19		Aug-01-19			
	Units/RL:							mg/kg	RL	mg/kg	RL		
Benzene	0 1111111111111111111111111111111111111							<0.00198	0.00198	<0.00200	0.00200		
Toluene								< 0.00198	0.00198	< 0.00200	0.00200		
Ethylbenzene								< 0.00198	0.00198	< 0.00200	0.00200		
m,p-Xylenes								< 0.00397	0.00397	< 0.00400	0.00400		
o-Xylene								< 0.00198	0.00198	< 0.00200	0.00200		
Total Xylenes								< 0.00198	0.00198	< 0.00200	0.00200		
Total BTEX								< 0.00198	0.00198	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	Aug-01-19	18:30	Aug-01-19 1	8:30	Aug-01-19 1	8:30	Aug-01-19	18:30	Aug-01-19	18:30	Aug-01-19	18:30
	Analyzed:	Aug-02-19	02:00	Aug-02-19 (02:06	Aug-02-19 ()2:13	Aug-02-19	02:19	Aug-02-19	02:25	Aug-02-19 (02:31
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		52.9	4.95	19.4	4.96	52.4	5.03	262	5.04	95.4	5.01	22.2	5.01
TPH by SW8015 Mod	Extracted:							Aug-02-19	09:00	Aug-02-19	09:00		
	Analyzed:							Aug-04-19	16:14	Aug-04-19	16:35		
	Units/RL:							mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)								<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)								<15.0	15.0	<15.0	15.0		
Motor Oil Range Hydrocarbons (MRO)								<15.0	15.0	<15.0	15.0		
Total TPH								<15.0	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Tetra Tech- Midland, Midland, TX

Project Name: Cabo Blanco State 1H (4-29-19)

Project Id: Contact: 212C-MD-01849 Mike Carmona

Project Location:

Lea County, New Mexico

Date Received in Lab: Wed Jul-31-19 04:22 pm

Report Date: 05-AUG-19

Project Manager: Jessica Kramer

	Lab Id:	632659-0	25	632659-0	26	632659-0	27		
Analysis Requested	Field Id:	T-4 (3')		T-4 (4')		T-4(5')			
Anaiysis Kequesiea	Depth:								
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Jul-30-19 0	0:00	Jul-30-19 0	0:00	Jul-30-19 0	0:00		
Chloride by EPA 300	Extracted:	Aug-01-19 1	18:30	Aug-01-19 1	7:00	Aug-01-19 1	7:00		
	Analyzed:	Aug-02-19 (02:50	Aug-01-19 2	21:34	Aug-01-19 2	1:53		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		24.0	4.95	36.7	4.98	42.9	4.95		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer
Project Assistant

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Project Name: Cabo Blanco State 1H (4-29-19)

Work Orders : 632659,

Sample: 632659-001 / SMP

Project ID: 212C-MD-01849

Lab Batch #: 3097186

mg/kg **Date Analyzed:** 08/01/19 08:55

Matrix: Soil Batch: 1

Units: mg/kg	Date Analyzed: 08/01/19 08:55	SU	RROGATE RE	ECOVERY S	STUDY	
ВТ	TEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes					
1,4-Difluorobenzene		0.0319	0.0300	106	70-130	
4-Bromofluorobenzene		0.0343	0.0300	114	70-130	

Lab Batch #: 3097186

Sample: 632659-002 / SMP

Batch: 1

Matrix: Soil

SURROGATE RECOVERY STUDY

Units:

mg/kg

Date Analyzed: 08/01/19 09:15

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0322	0.0300	107	70-130	
4-Bromofluorobenzene	0.0336	0.0300	112	70-130	

Lab Batch #: 3097186

Sample: 632659-007 / SMP

Batch:

Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/01/19 09:35	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes							
1,4-Difluor	robenzene		0.0315	0.0300	105	70-130			
4-Bromoflu	uorobenzene		0.0328	0.0300	109	70-130			

Lab Batch #: 3097186

ma/ka

Sample: 632659-008 / SMP

Batch:

Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/01/19 09:56	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluore	obenzene		0.0315	0.0300	105	70-130		
4-Bromofluorobenzene			0.0323	0.0300	108	70-130		

Lab Batch #: 3097186

Sample: 632659-013 / SMP

Batch:

Matrix: Soil

SURROGATE RECOVERY STUDY

Units:

mg/kg

Date Analyzed: 08/01/19 10:16

•	SCHROGITE RECOVERT STOET				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0327	0.0300	109	70-130	
4-Bromofluorobenzene	0.0344	0.0300	115	70-130	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Cabo Blanco State 1H (4-29-19)

Work Orders : 632659,

Sample: 632659-014 / SMP

Project ID: 212C-MD-01849

Lab Batch #: 3097186

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 08/01/19 10:36	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
		Allalytes							
1,4-Difluor	obenzene		0.0310	0.0300	103	70-130			
4-Bromofluorobenzene			0.0315	0.0300	105	70-130			

Lab Batch #: 3097186

Sample: 632659-022 / SMP

Batch:

Matrix: Soil

Units:

mg/kg

Date Analyzed: 08/01/19 10:56

SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags %R [A] [B] %R [D] **Analytes** 0.0314 0.0300 105 70-130

4-Bromofluorobenzene **Lab Batch #:** 3097186

1,4-Difluorobenzene

Sample: 632659-023 / SMP

Batch:

Matrix: Soil

110

70-130

0.0300

Units:	mg/kg	Date Analyzed: 08/01/19 11:16	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluor	robenzene		0.0325	0.0300	108	70-130			
4-Bromofli	uorobenzene		0.0309	0.0300	103	70-130			

0.0330

Lab Batch #: 3097503

Sample: 632659-001 / SMP

Batch:

Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/04/19 13:35	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		91.9	99.9	92	70-135			
o-Terpheny			45.6	50.0	91	70-135			

Lab Batch #: 3097503

Sample: 632659-002 / SMP

Batch:

Matrix: Soil

mg/kg

Units:	mg/kg	Date Analyzed: 08/04/19 14:34	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[12]				
1-Chlorood	ctane		91.4	99.9	91	70-135			
o-Terphen	yl		45.3	50.0	91	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Cabo Blanco State 1H (4-29-19)

Work Orders : 632659,

Sample: 632659-007 / SMP

Project ID: 212C-MD-01849

Lab Batch #: 3097503

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 08/04/19 14:54	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		89.3	99.8	89	70-135		
o-Terphenyl			44.4	49.9	89	70-135		

Lab Batch #: 3097503

Sample: 632659-008 / SMP

Batch:

Matrix: Soil

Units:

mg/kg

Date Analyzed: 08/04/19 15:14

SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	92.9	99.9	93	70-135	
o-Terphenyl	45.7	50.0	91	70-135	

Lab Batch #: 3097503

Sample: 632659-013 / SMP

Batch:

Matrix: Soil

Units:

mg/kg

Date Analyzed: 08/04/19 15:34

SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 95.0 99.6 95 70-135 47.1 49.8 95 70-135

Lab Batch #: 3097503

1-Chlorooctane

o-Terphenyl

Sample: 632659-014 / SMP

Batch:

Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/04/19 15:54	SURROGATE RECOVERY STUDY						
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	ctane	Analytes	94.1	100	94	70-135			
o-Terpheny	yl		46.5	50.0	93	70-135			

Lab Batch #: 3097503

Sample: 632659-022 / SMP

Batch:

Matrix: Soil

SURROGATE RECOVERY STUDY

Units:

mg/kg

Date Analyzed: 08/04/19 16:14

TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	91.4	99.7	92	70-135			
o-Terphenyl	45.3	49.9	91	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Cabo Blanco State 1H (4-29-19)

Work Orders : 632659,

Sample: 632659-023 / SMP

Project ID: 212C-MD-01849

Lab Batch #: 3097503

Batch: 1

Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/04/19 16:35	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]			
1-Chlorooct	ane		93.6	99.9	94	70-135		
o-Terphenyl			46.2	50.0	92	70-135		

Lab Batch #: 3097186

Sample: 7683198-1-BLK / BLK

Units:

mg/kg

Date Analyzed: 07/31/19 09:34

SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	Found Amount		Control Limits %R	Flags			
Analytes			[D]					
e	0.0306	0.0300	102	70-130				
	0.0200	0.0200	0.6	70 120				

4-Bromofluorobenzene **Lab Batch #:** 3097503

1,4-Difluorobenzene

Sample: 7683384-1-BLK / BLK

Batch:

Matrix: Solid

Units:	mg/kg	Date Analyzed: 08/04/19 12:36	SURROGATE RECOVERY STUDY							
	TPH by SW8015 Mod			True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooc	ctane		88.4	100	88	70-135				
o-Terpheny	yl		44.7	50.0	89	70-135				

Lab Batch #: 3097186

Sample: 7683198-1-BKS / BKS

Batch:

Matrix: Solid

Units:	mg/kg	Date Analyzed: 07/31/19 07:52	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]					
1,4-Difluor	robenzene		0.0307	0.0300	102	70-130				
4-Bromofli	uorobenzene		0.0331	0.0300	110	70-130				

Lab Batch #: 3097503

Sample: 7683384-1-BKS / BKS

Batch:

Matrix: Solid

I Inite

Date Applyzed: 08/04/19 12:55

Units:	mits: mg/kg Date Analyzed: 08/04/19 12:33 SURROGATE RECOVERY STUDY										
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chlorooct	ane		110	100	110	70-135					
o-Terphenyl	[48.0	50.0	96	70-135					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Cabo Blanco State 1H (4-29-19)

Work Orders : 632659,

Sample: 7683198-1-BSD / BSD

Project ID: 212C-MD-01849

Lab Batch #: 3097186

Matrix: Solid Batch: 1

Units:	mg/kg	Date Analyzed: 07/31/19 08:12	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
		Analytes								
1,4-Difluoro	benzene		0.0312	0.0300	104	70-130				
4-Bromofluo	orobenzene		0.0348	0.0300	116	70-130				

Lab Batch #: 3097503

Sample: 7683384-1-BSD / BSD

Batch: 1 Matrix: Solid

Units:

mg/kg

Date Analyzed: 08/04/19 13:15

SURROGATE RECOVERY STUDY

•		SCHROGHIE RECOVERI SICEI							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	123	100	123	70-135					
o-Terphenyl	52.3	50.0	105	70-135					

Lab Batch #: 3097186

Sample: 632524-001 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/01/19 07:14 SURROGATE RECOVERY STUDY										
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluoroben	zene		0.0313	0.0300	104	70-130				
4-Bromofluorob	enzene		0.0368	0.0300	123	70-130				

Lab Batch #: 3097503

Sample: 632659-001 S / MS

Batch:

Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/04/19 13:54	SURROGATE RECOVERY STUDY							
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	ane		124	99.7	124	70-135				
o-Terpheny	1		49.7	49.9	100	70-135				

Lab Batch #: 3097186

Sample: 632524-001 SD / MSD

Batch:

Matrix: Soil

CUDDOCATE DECOVEDY CTUDY

Units:	

mø/kø

Date Analyzed: 08/01/19 07:34

Omts: mg/kg Date Anai	SURROGATE RECOVERY STUDY										
BTEX by EPA 80	21B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
Analytes				[D]							
1,4-Difluorobenzene		0.0320	0.0300	107	70-130						
4-Bromofluorobenzene		0.0357	0.0300	119	70-130						

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Cabo Blanco State 1H (4-29-19)

Work Orders: 632659,

Project ID: 212C-MD-01849

Lab Batch #: 3097503

Sample: 632659-001 SD / MSD

Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 08/04/19 14:14	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chlorooct	ane		116	99.8	116	70-135					
o-Terphenyl			49.4	49.9	99	70-135					

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Page 61 of 82

Project Name: Cabo Blanco State 1H (4-29-19)

Work Order #: 632659

Project ID: 212C-MD-01849

Analyst: ALG

Date Prepared: 07/31/2019

Date Analyzed: 07/31/2019

Lab Batch ID: 3097186

Sample: 7683198-1-BKS

Batch #: 1 Matrix: Solid

Units:

mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00200	0.100	0.102	102	0.100	0.0987	99	3	70-130	35	
Toluene	< 0.00200	0.100	0.100	100	0.100	0.0947	95	5	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.114	114	0.100	0.108	108	5	70-130	35	
m,p-Xylenes	< 0.00400	0.200	0.230	115	0.200	0.220	110	4	70-130	35	
o-Xylene	< 0.00200	0.100	0.111	111	0.100	0.107	107	4	70-130	35	

Analyst:

SPC

Date Prepared: 08/01/2019

Date Analyzed: 08/01/2019

Lab Batch ID: 3097307

Sample: 7683354-1-BKS

Batch #: 1

Matrix: Solid

Units:

mg/kg

Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	< 5.00	250	267	107	250	266	106	0	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Page 62 of 82

Project Name: Cabo Blanco State 1H (4-29-19)

Work Order #: 632659

Project ID: 212C-MD-01849

Analyst:

SPC

Date Prepared: 08/01/2019

Date Analyzed: 08/02/2019

Lab Batch ID: 3097448

Lab Batch ID: 3097312

Sample: 7683356-1-BKS

Batch #: 1

Matrix: Solid

Units:

mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE REG	ECOVERY STUDY
--	---------------

Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[/*]	[B]	[C]	[D]	[E]	Result [F]	[G]	70	7011	/ora B	
Chloride	<5.00	250	271	108	250	271	108	0	90-110	20	

Analyst:

SPC

Sample: 7683357-1-BKS

Date Prepared: 08/01/2019 **Batch #:** 1

Date Analyzed: 08/02/2019

Matrix: Solid

Units:

mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

	-										
Chloride by EPA 300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	1.88	250	269	108	250	268	107	0	90-110	20	

Analyst:

ARM

Date Prepared: 08/02/2019

Date Analyzed: 08/04/2019

Lab Batch ID: 3097503

Sample: 7683384-1-BKS

Batch #: 1

Matrix: Solid

Units:

mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	1010	101	1000	1060	106	5	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	951	95	1000	998	100	5	70-135	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Page 63 of 82

Project Name: Cabo Blanco State 1H (4-29-19)

Work Order #:

632659

Project ID: 212C-MD-01849

Lab Batch ID:

3097186

QC- Sample ID: 632524-001 S

Batch #:

Matrix: Soil

Date Analyzed:

08/01/2019

Date Prepared: 07/31/2019

Analyst: ALG

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]		Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00199	0.0994	0.0885	89	0.100	0.0799	80	10	70-130	35	
Toluene	< 0.00199	0.0994	0.0807	81	0.100	0.0701	70	14	70-130	35	
Ethylbenzene	< 0.00199	0.0994	0.0878	88	0.100	0.0747	75	16	70-130	35	
m,p-Xylenes	< 0.00398	0.199	0.165	83	0.200	0.135	68	20	70-130	35	X
o-Xylene	< 0.00199	0.0994	0.0838	84	0.100	0.0699	70	18	70-130	35	

Lab Batch ID:

3097307

QC- Sample ID: 632560-006 S

Batch #:

Matrix: Soil

Date Analyzed:

08/01/2019

Date Prepared: 08/01/2019

Analyst: SPC

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	260	252	542	112	252	543	112	0	90-110	20	X

Lab Batch ID:

3097307

QC- Sample ID: 632659-026 S

Batch #:

Matrix: Soil

Date Analyzed:

08/01/2019

Date Prepared: 08/01/2019

Analyst: SPC

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[C]	[D]	[E]	Kesuit [F]	[G]	70	/0K	70KI D	
Chloride	36.7	249	311	110	249	313	111	1	90-110	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Page 64 of 82

Project Name: Cabo Blanco State 1H (4-29-19)

Work Order #:

632659 3097312

QC- Sample ID: 632659-014 S

Batch #:

Project ID: 212C-MD-01849 Matrix: Soil

Lab Batch ID: Date Analyzed:

08/02/2019

Date Prepared: 08/01/2019

Reporting Units:

mg/kg

Analyst: SPC

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	33.6	252	303	107	252	302	107	0	90-110	20	

Lab Batch ID:

3097312

QC- Sample ID: 632659-024 S

Batch #:

Matrix: Soil

Date Analyzed:

08/02/2019

Date Prepared: 08/01/2019

Analyst: SPC

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[C]	[D]	[E]	Kesuit [F]	[G]	76	/0K	/0KI D	
Chloride	22.2	251	294	108	251	294	108	0	90-110	20	

Lab Batch ID:

3097448

QC- Sample ID: 632623-006 S

Batch #:

Matrix: Soil

Date Analyzed:

08/02/2019

Date Prepared: 08/01/2019

Analyst: SPC

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

1

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	119	249	369	100	249	368	100	0	90-110	20	

Page 65 of 82

Project Name: Cabo Blanco State 1H (4-29-19)

Work Order #:

632659

QC- Sample ID: 632659-004 S

Batch #:

Project ID: 212C-MD-01849

Matrix: Soil

Lab Batch ID: Date Analyzed: 3097448 08/02/2019

Date Prepared: 08/01/2019

Analyst: SPC

Reporting Units:

mg/kg

Allalyst: SPC

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	13.3	253	282	106	253	291	110	3	90-110	20	

Lab Batch ID:

3097503

QC- Sample ID: 632659-001 S

Batch #:

Matrix: Soil

Date Analyzed:

08/04/2019

Date Prepared: 08/02/2019

Analyst: ARM

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<7.98	997	984	99	998	994	100	1	70-135	20	
Diesel Range Organics (DRO)	<8.10	997	919	92	998	939	94	2	70-135	20	

Hold

Received by OGD: 5/13/2020 elinquished by: of 82
of 82
aganalysis Request of Chain of Custody Record Relinquished by nvoice to: Client Name Receiving Laboratory: itate) oject Location: roject Name LAB USE LAB# exceeds 100 mg/kg. Run deeper sample if Benzene exceeds 10 mg/kg or total BTEX exceeds 50 mg/kg. Run deeper sample if TPH (county, Xenco COG lke Tavarez Lea County, New Mexico Cabo Blanco State 1H (4-29-19) Tetra Tech, Inc. SAMPLE IDENTIFICATION T-4 (3') T-4 (2') T-4 (5') T-4 (4') T-4 (1') T-4 (0-1') T-3 (8') Date: Time: ORIGINAL COPY Received by: Received by Sampler Signature: Site Manager Project #: 'EAR: 2019 7/30/2019 7/30/2019 7/30/2019 7/30/2019 7/30/2019 7/30/2019 7/30/2019 DATE SAMPLING TIME WATER Mike Carmona MATRIX 900 West Wall Street, Ste 1 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 × × SOIL × × \times \times Devin Dominguez 212C-MD-01849 Date: HCL PRESERVATIVE METHOD HNO₃ × \times \times × \times \times ICE Time: None # CONTAINERS Z z z z z z FILTERED (Y/N) z Sample Temperature BTEX 8260B LAB USE ONLY BTEX 8021B (Cirate) HAND DELIVEBED TPH TX1005 (Ext to C35) × TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C (Circle or Specify Method No.) Total Metals Ag As Ba Cd Cr Pb Se Hg 037659 Page TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles ANALYSIS REQUEST RUSH: Same Day 24 hr 48 hr 72 hr Special Report Limits or TRRP Report TCLP Semi Volatiles Rush Charges Authorized BEDEX UPS Tracking # RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Chloride TDS \times × × \times × Chloride Sulfate General Water Chemistry (see attached list) Anion/Cation Balance TPH 8015R ω 으 Hold

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 07/31/2019 04:22:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 632659

Temperature Measuring device used: R8

Sa	ample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	3.1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container	r/ cooler? N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished	/ received? Yes	
#10 Chain of Custody agrees with sample labe	els/matrix? Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated tes	t(s)? Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace	e? N/A	

Must be o	completed for after-hours de	PH Device/Lot#:	lacing in the refrigerator
	Checklist completed by:	Bridge Tuf Brianna Teel	Date: <u>07/31/2019</u>
	Checklist reviewed by:	Jessica Kramer Jessica Kramer	Date: <u>07/31/2019</u>

February 13, 2020

MIKE CARMONA
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: CABO BLANCO ST #001H

Enclosed are the results of analyses for samples received by the laboratory on 02/11/20 14:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Fax To:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

(432) 682-3946

Received:

02/11/2020

Sampling Date:

02/11/2020

Reported:

02/13/2020

Sampling Type:

Soil

Project Name:

CABO BLANCO ST #001H

Sampling Condition: Sample Received By:

Cool & Intact Tamara Oldaker

Project Number: Project Location:

4-23-19

COG - LEA CO NM

Sample ID: AH - 1 0-1' (H000409-01)

Chloride, SM4500Cl-B

Analyzed By: GM

Analyte

mg/kg Reporting Limit Result

16.0

Reporting Limit

Reporting Limit

Reporting Limit

16.0

Analyzed Method Blank

02/12/2020

Analyzed

Analyzed

Analyzed

02/12/2020

BS

432

% Recovery True Value OC

108

RPD

Oualifier

Chloride

Sample ID: AH - 1 1-1.5' (H000409-02)

Chloride, SM4500Cl-B

Analyzed By: GM

0.00

Analyte Result

True Value QC

Chloride

32.0

144

16.0 02/12/2020 Method Blank ND

ND

BS 432 % Recovery 108

400

400

400

RPD Qualifier 0.00

Sample ID: AH - 1 2-2.5' (H000409-03)

Chloride, SM4500Cl-B

Analyte

Analyte

Analyzed By: GM

% Recovery

108

108

RPD Qualifier

Chloride

Result 32.0

Result

1330

16.0 02/12/2020 Method Blank ND

BS 432

True Value QC 400

0.00

Chloride

Sample ID: AH - 2 0-1' (H000409-04)

Chloride, SM4500Cl-B

mg/kg

Analyzed By: GM

Method Blank

ND

BS

432

% Recovery

True Value QC RPD

0.00

Qualifier

Cardinal Laboratories

*=Accredited Analyte

Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and In no event shall Cardinal be liable for incidental or consequential damages, any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Kreene

Celey D. Keene, Lab Director/Quality Manager

Page 2 of 5

Analytical Results For:

TETRA TECH MIKE CARMONA

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received:

02/11/2020

Sampling Date:

02/11/2020

Reported:

02/13/2020

Sampling Type:

Soil

Project Name:

CABO BLANCO ST #001H

Sampling Condition:

Cool & Intact

Project Number: Project Location:

4-23-19

COG - LEA CO NM

Sample Received By: Tamara Oldaker

Sample ID: AH - 2 1-1.5' (H000409-05)

Chioride, SM4500CI-B	mg	/kg	Anaiyze	а ву: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	800	16.0	02/12/2020	ND	432	108	400	0.00	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Page 5 of 5

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

February 26, 2020

MIKE CARMONA
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: CABO BLANCO ST #001H

Enclosed are the results of analyses for samples received by the laboratory on 02/25/20 12:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:

02/25/2020

Sampling Date:

02/25/2020

Reported:

Sampling Type:

Soil

Project Name:

02/26/2020

Sampling Condition:

Cool & Intact

Project Number:

CABO BLANCO ST #001H

Sample Received By:

Tamara Oldaker

4-23-19

Project Location:

COG - LEA CO NM

Sample ID: BOTTOM HOLE - 1 COMP 2' (H000590-01)

BTEX 8021B	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2020	ND	1.86	93.0	2.00	4.46	
Toluene*	<0.050	0.050	02/25/2020	ND	1.88	94.1	2.00	4.78	
Ethylbenzene*	<0.050	0.050	02/25/2020	ND	1.89	94.4	2.00	4.79	
Total Xylenes*	<0.150	0.150	02/25/2020	ND	5.47	91.2	6.00	4.76	
Total BTEX	<0.300	0.300	02/25/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.4	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/26/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2020	ND	195	97.6	200	1.88	
DRO >C10-C28*	<10.0	10.0	02/26/2020	ND	214	107	200	3.72	
EXT DRO >C28-C36	<10.0	10.0	02/26/2020	ND					
Surrogate: 1-Chlorooctane	94.8	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	100 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:

02/25/2020

Sampling Date:

02/25/2020

Reported:

02/26/2020

Sampling Type:

Soil

Project Name:

CABO BLANCO ST #001H

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Project Number:

4-23-19

Project Location:

COG - LEA CO NM

Sample ID: NSW - 1 COMP 2' (H000590-02)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2020	ND	1.86	93.0	2.00	4.46	
Toluene*	<0.050	0.050	02/26/2020	ND	1.88	94.1	2.00	4.78	
Ethylbenzene*	< 0.050	0.050	02/26/2020	ND	1.89	94.4	2.00	4.79	
Total Xylenes*	<0.150	0.150	02/26/2020	ND	5.47	91.2	6.00	4.76	
Total BTEX	<0.300	0.300	02/26/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/26/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2020	ND	195	97.6	200	1.88	
DRO >C10-C28*	<10.0	10.0	02/26/2020	ND	214	107	200	3.72	
EXT DRO >C28-C36	<10.0	10.0	02/26/2020	ND					
Surrogate: 1-Chlorooctane	98.7 9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	105 %	6 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:

02/25/2020

Sampling Date:

02/25/2020

Reported:

02/26/2020

Project Name:

Sampling Type: Sampling Condition: Soil Cool & Intact

Project Number:

4-23-19

Sample Received By:

Tamara Oldaker

Project Location:

COG - LEA CO NM

CABO BLANCO ST #001H

Sample ID: WSW - 1 COMP 2' (H000590-03)

BTEX 8021B	mg	/kg	Analyze	ed By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2020	ND	1.86	93.0	2.00	4.46	
Toluene*	<0.050	0.050	02/26/2020	ND	1.88	94.1	2.00	4.78	
Ethylbenzene*	<0.050	0.050	02/26/2020	ND	1.89	94.4	2.00	4.79	
Total Xylenes*	<0.150	0.150	02/26/2020	ND	5.47	91.2	6.00	4.76	
Total BTEX	<0.300	0.300	02/26/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/26/2020	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2020	ND	195	97.6	200	1.88	
DRO >C10-C28*	<10.0	10.0	02/26/2020	ND	214	107	200	3.72	
EXT DRO >C28-C36	<10.0	10.0	02/26/2020	ND					
Surrogate: 1-Chlorooctane	91.4	% 44.3-14	14						
Surrogate: 1-Chlorooctadecane	96.8	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:

02/25/2020

Sampling Date:

02/25/2020

Reported:

02/26/2020

Sampling Type:

Soil

Project Name:

CABO BLANCO ST #001H

Sampling Condition:

Cool & Intact

Project Number:

4-23-19

Sample Received By: Tamara Oldaker

Project Location:

COG - LEA CO NM

Sample ID: SSW - 1 COMP 2' (H000590-04)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2020	ND	1.86	93.0	2.00	4.46	
Toluene*	<0.050	0.050	02/26/2020	ND	1.88	94.1	2.00	4.78	
Ethylbenzene*	<0.050	0.050	02/26/2020	ND	1.89	94.4	2.00	4.79	
Total Xylenes*	<0.150	0.150	02/26/2020	ND	5.47	91.2	6.00	4.76	
Total BTEX	<0.300	0.300	02/26/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/26/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2020	ND	195	97.6	200	1.88	
DRO >C10-C28*	<10.0	10.0	02/26/2020	ND	214	107	200	3.72	
EXT DRO >C28-C36	<10.0	10.0	02/26/2020	ND					
Surrogate: 1-Chlorooctane	98.6	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	103 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:

02/25/2020

Sampling Date:

02/25/2020

Reported:

02/26/2020

Sampling Type:

Soil

Project Name:

CABO BLANCO ST #001H

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Project Number:

4-23-19

Project Location:

COG - LEA CO NM

Sample ID: ESW - 1 COMP 2' (H000590-05)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2020	ND	1.86	93.0	2.00	4.46	
Toluene*	<0.050	0.050	02/26/2020	ND	1.88	94.1	2.00	4.78	
Ethylbenzene*	< 0.050	0.050	02/26/2020	ND	1.89	94.4	2.00	4.79	
Total Xylenes*	<0.150	0.150	02/26/2020	ND	5.47	91.2	6.00	4.76	
Total BTEX	<0.300	0.300	02/26/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.4	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/26/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2020	ND	195	97.6	200	1.88	
DRO >C10-C28*	<10.0	10.0	02/26/2020	ND	214	107	200	3.72	
EXT DRO >C28-C36	<10.0	10.0	02/26/2020	ND					
Surrogate: 1-Chlorooctane	96.79	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	104 %	6 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Concho	### Comp 2** Date: Time:	### Comp 2 22552020 X X X X X X X X X	### Project ### Project ### Mike Carmona Circle or 8	### Circle or Specify Circle or Specify Circle or Specify Polect R: Devin Dominguez	by OCD: Relinquished by:	Relinquished by:	Relinquished by:		5	4	(U)	2	7	(LABUSE)	AR#	doncar	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
PRESERVATIVE WATER WA	Devin Dominguez Devin Dominguez Devin Domin	TIME	TIME	TIME		ate:	3 ate		ESW-1 Comp 2'	SSW-1 Comp 2'	WSW-1 Comp 2'	NSW-1 Comp 2'	Bottomhole-1 Comp 2'		SAMPLE IDENTIFICATION			Cardinal Lab	Ike Tavarez	Lea County, New Mexico	Cabo Blanco ST #001H (4-23-19)	Concho	Tech,
Devin Dominguez Matrix Preservative Method Metho	Devin Dominguez MATRIX PRESERVATIVE METHOD	Date: Time: Date: Data: Date: Date: Date: Date: Date: Date: Date: Data	Date: Time: Date: Data: Date: Date: Date: Date: Date: Date: Date: Data	TIME	Received by:	Received by:	Received by:		2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	DATE	YEAR: 2020	SAMPLIN		Sampler Signature		Project #:		Site Manager:	
None of American None o	None O H M None O H M None O H M M None O H M M M M M M M M M M M M M M M M M M	None	None	None None			and Marie		×	×	×	×	×	WATER SOIL		250.00						Mike Can	900 West \ Midlan Tel (4 Fax (-
2 2 2 2 2 # CONTAINERS	ZZZZ FILTERED (Y/N)					Time:	Time:		×	×	×	×	×	HNO ₃ ICE		PRESERVATIVE METHOD		Dominguez				mona	Wall Street, Ste 100 nd,Texas 79701 432) 682-4559 432) 682-3946
	X X X X BTEX 8021B BTEX 8260B	TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles		6	1 20																

Page 8 of 8