District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 <u>Revised August 24, 2018</u> Submit to appropriate OCD District office

)

Incident ID	NRM2007254419
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Kyle Littrell	Contact Telephone 432-221-7331
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220	

Location of Release Source

Latitude	3	32.276894	(NAD 83 in da	Longitude	-103.931863
		1.05.0	(NAD 65 in dec		
Site Name	Remuda Sou	th 25 State 167H		Site Type Well Pad	
Date Release Discovered02/29/2020API# (if applicable)			API# (if applicable)		
		1			
Unit Letter	Section	Township	Range	County	
Н	25	238	29E	Eddy	

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)		
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 5	Volume Recovered (bbls) 4
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release:

A defective flange caused a release of produced water. Approximately 4 bbls of fluid sprayed into the containment and 1 bbl out of containment onto the well pad. Vacuum truck was dispatched and recovered 4 bbls. A third party contractor will be retained to complete remediation activities.

Received by OCD: 7/31/2020 4:00:57 PM ate of New Mexico Page 2 Oil Conservation Division

Incident ID	NRM2007254Rage 2 of 45
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? N/A	
Yes No		
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? N/A		

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 The source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. 		
If all the actions described above have <u>not</u> been undertaken, explain wh	ny:	
N/A		
Per 19.15.29.8 B. (4) NMAC the responsible party may commence rem has begun, please attach a narrative of actions to date. If remedial eff within a lined containment area (see $19.15.29.11(A)(5)(a)$ NMAC), ple	forts have been successfully completed or if the release occurred	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name: <u>Adrian Baker</u>	Title: SH&E Coordinator	
Signature: <u>Auk</u>	Date:3/11/20	
email:adrian_baker@xtoenergy.com	Telephone:	
OCD Only		
Received by: <u>Ramona Marcus</u>	Date: <u>3/12/2020</u>	

.

NRM2007254419

Location:	Remuda South 25 State 167H		
Spill Date:	2/29/2020		
	Area 1		
Approximate A	rea =	22.50	cu. ft.
	VOLUME OF LEAK		
Total Produced	Water =	4.00	bbls
	Area 2		
Approximate A	rea =	2235.00	sq. ft.
Average Saturation (or depth) of spill = 1.00		1.00	inches
Average Porosity Factor = 0.03			
VOLUME OF LEAK			
Total Produced Water = 1.00		bbls	
TOTAL VOLUME OF LEAK			
Total Produced	Water =	5.00	bbls
TOTAL VOLUME RECOVERED			
Total Produced	Water =	4.00	bbls

•

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u><50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 7/31/2020 4:00:57 PM Form C-141 State of New Mexico				Page 5 of 4	
Form C-141			Incident ID	NRM2007254419	
Page 4	Oil Conservation	Division	District RP		
			Facility ID		
			Application ID		
regulations all operators public health or the envi failed to adequately invo addition, OCD acceptan and/or regulations. Printed Name: Signature: email:Kyle_1	information given above is true and con a are required to report and/or file certain ironment. The acceptance of a C-141 re estigate and remediate contamination tha ce of a C-141 report does not relieve the <u>Kyle Littrell</u> <u>Marmathere</u> Littrell@xtoenergy.com	release notifications and performed port by the OCD does not relies to pose a threat to groundwater, soperator of responsibility for Title: Title: SH Date:7/3	orm corrective actions for re- eve the operator of liability s , surface water, human heal	eleases which may endanger should their operations have th or the environment. In federal, state, or local laws	
OCD Only Received by:		Date:		_	

Page 6

Oil Conservation Division

In	cident ID	NRM2007254419
D	istrict RP	
Fa	acility ID	
Α	pplication ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following	items must be included in the closure report.	
\square A scaled site and sampling diagram as described in 19.15.29.	11 NMAC	
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office	
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)	
Description of remediation activities		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		
Printed Name: Kyle Littrell	Title:SH&E Supervisor	
Printed Name: Kyle Littrell Signature: Signature:	Date: <u>07/31/2020</u>	
email:Kyle_Littrell@xtoenergy.com	Telephone: <u>432-221-7331</u>	
OCD Only		
Received by:	Date:	
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.		
Closure Approved by:	Date:	
Printed Name:	Title:	

A proud member of WSP

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

July 31, 2020

Mr. Mike Bratcher New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Remuda South 25 State 167H Incident Number NRM2007254419 Eddy County, New Mexico

Dear Mr. Bratcher:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request detailing site assessment and soil sampling activities at the Remuda South 25 State 167H (Site) in Unit H, Section 25, Township 23 South, Range 29 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment and soil sampling activities was to assess for the presence or absence of impacted to soil following the release of produced water at the Site. Based on field observations, field screening, and laboratory analytical results from soil sampling activities, XTO is submitting this Closure Request and requesting no further action (NFA) for Incident Number NRM2007254419.

RELEASE BACKGROUND

On February 29, 2020, a defective flange caused the release of 5 barrels (bbls) of produced water. Approximately 4 bbls of fluid were released within the containment and 1 bbl sprayed onto the surrounding caliche well pad. A vacuum truck was dispatched to the Site to recover the freestanding fluids; approximately 4 bbls of produced water were recovered from within the containment. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 (Form C-141) on March 11, 2020 and subsequently assigned Incident Number NRM2007254419.

SITE CHARACTERIZATION

LTE characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be between 50 and 100 feet below ground surface (bgs) based on the nearest groundwater well data. The nearest permitted groundwater well with depth to groundwater data is United States Geological Survey (USGS) well 321717103561001, located approximately 4,406 feet northwest of the Site. The groundwater well has a reported depth to groundwater of less than 50 feet bgs, and the total depth is

Bratcher, M. Page 2

undetermined. Ground surface elevation at the groundwater well location is 3,034 feet above mean sea level (amsl), which is approximately 60 feet lower in elevation than the Site. The closest continuously flowing water or significant watercourse to the Site is an unnamed dry wash, located approximately 630 feet west-northwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is potentially underlain by unstable geology (high potential karst designation area). The Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT AND DELINEATION SOIL SAMPLING ACTIVITIES

On May 12, 2020, LTE personnel inspected the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. LTE personnel collected two preliminary soil samples (SS01 and SS02) from within the release extent at a depth of approximately 0.5 feet bgs to assess for the presence or absence of impacted surface soil. Soil from the preliminary soil samples was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photoionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. The release extent and preliminary soil sample locations were mapped utilizing a handheld Global Positing System (GPS) unit and are depicted on Figure 2. Photo documentation of the release was conducted, and a photographic log of the Site is included as Attachment 1.

The preliminary soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Xenco Laboratories (Xenco) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Bratcher, M. Page 3

Laboratory analytical results for preliminary soil samples SS01 and SS02 indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Excavation activities did not appear to be warranted; however, further delineation activities were scheduled. Laboratory analytical results for the preliminary soil samples are presented on Figure 2 and summarized in Table 1. The laboratory analytical report is included in Attachment 2.

On May 18, 2020, LTE personnel returned to the Site to oversee additional soil assessment activities. Two potholes were advanced via track-mounted backhoe to a depth of approximately 3 feet bgs at the SS01 and SS02 preliminary soil sample locations. Soil from the potholes was field screened utilizing a PID and Hach® chloride QuanTab® test strips. Field screening results and observations for each pothole were logged on lithologic/soil sampling logs, which are included in Attachment 3. Delineation soil samples SS01A and SS02A were collected at a depth of 3 feet bgs from each pothole. The delineation soil samples were collected, handled, and analyzed as described above and submitted to Xenco. The pothole and delineation soil sample locations are depicted on Figure 2. Area 2, referenced in the Form C141, is the initial area documented as part of the release and not the "affected" area. Area 2 was based on visual inspection after the release and not based on sampling. LTE completed sampling near the source of the release in two locations to verify the presence or absence of contaminants. All delineation samples collected for site characterization met the most stringent Table 1 Closure Criteria. In the end, the spill required no remediation because the release did not have any chemicals of concern and therefore there was no "affected" area.

ANALYTICAL RESULTS

Laboratory analytical results indicated benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria in soil samples SS01/SS01A and SS02/SS02A collected within the release extent from depths of 0.5 feet and 3 feet bgs. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Attachment 2.

CONCLUSIONS

Initial and follow-up response efforts as a result of the produced water release included removal of freestanding fluid via vacuum truck, site assessment, and collection of soil samples. Preliminary soil samples SS01 and SS02 and delineation soil samples SS01A and SS02A were collected from within the release area from depths of 0.5 feet and 3 feet bgs to assess for the presence or absence of soil impacts as a result of the February 29, 2020, release. Laboratory analytical results for soil samples SS01/SS01A and SS02/SS02A indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Based on the analytical results, no impacted soil was identified, and excavation activities did not appear to be warranted. XTO respectfully requests NFA for Incident Number NRM2007254419.

Bratcher, M. Page 4

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

LT ENVIRONMENTAL, INC.

Mouissey

Ashley L. ager

Tacoma Morrissey Project Geologist

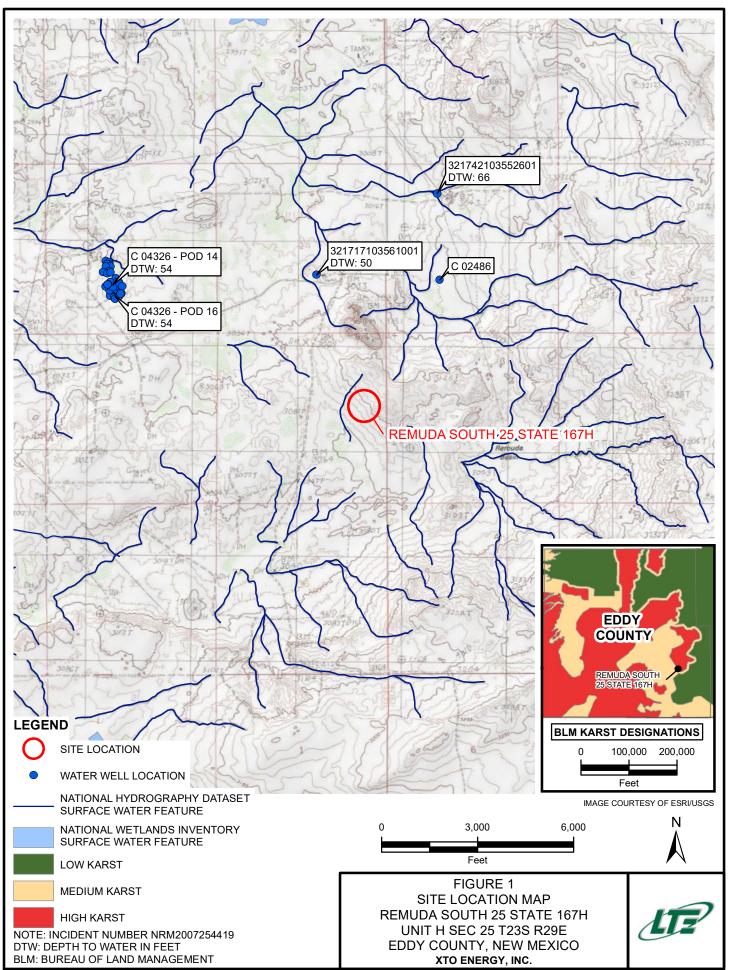
Ashley L. Ager, P.G. Senior Geologist

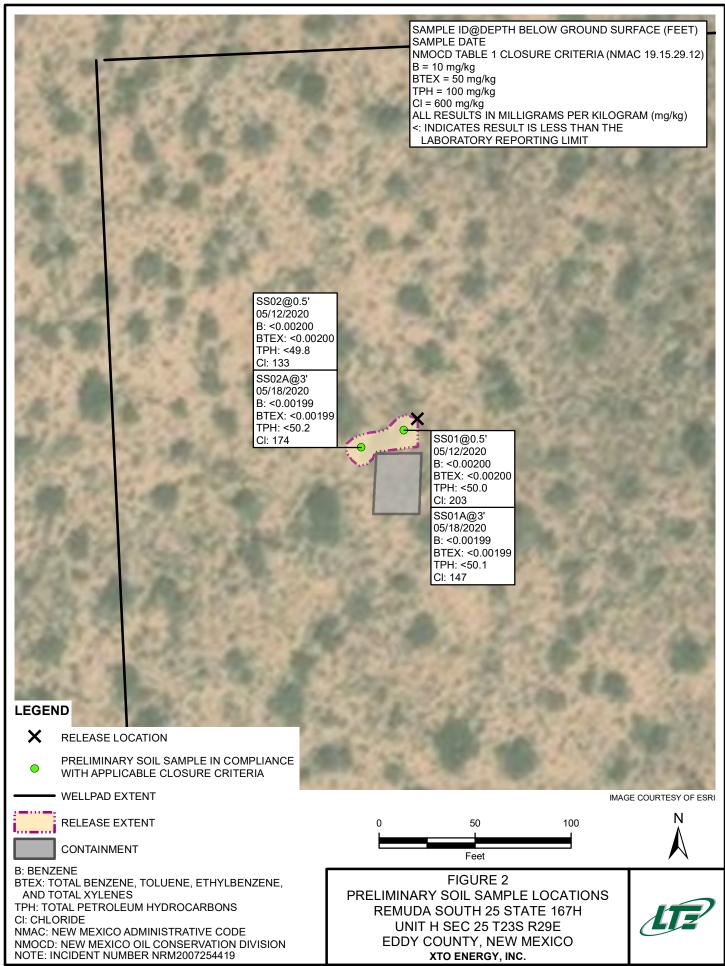
cc: Kyle Littrell, XTO Ryan Mann, State Land Office Robert Hamlet, NMOCD Victoria Venegas, NMOCD

Appendices:

- Figure 1 Site Location Map
- Figure 2 Soil Sample Locations
- Table 1Soil Analytical Results

Attachment 1 Photographic Logs


Attachment 2 Laboratory Analytical Reports


Attachment 3 Lithologic/Soil Sampling Logs

.

FIGURES

.

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS

REMUDA SOUTH 25 STATE 167H INCIDENT NUMBER NRM2007254419 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table	e 1 Closure Crit	eria	10	NE	NE	NE	50	NE	NE	NE	NE	100	600
SS01	0.5	05/12/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.0	<50.0	<50.0	<50.0	<50.0	203
SS01A	3	05/18/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<50.1	<50.1	<50.1	<50.1	<50.1	147
SS02	0.5	05/12/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	133
SS02A	3	05/18/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<50.2	<50.2	<50.2	<50.2	<50.2	174

Notes:

- bgs below ground surface
- BTEX benzene, toluene, ethylbenzene, and total xylenes
- DRO diesel range organics
- GRO gasoline range organics
- mg/kg milligrams per kilogram

MRO - motor oil range organics NMAC - New Mexico Administrative Code NMOCD - New Mexico Oil Conservation Division NE - not established TPH - total petroleum hydrocarbons Bold - indicates result exceeds the applicable regulatory standard

< - indicates result is below laboratory reporting limits

Table 1 - closure criteria for soils impacted by a release per NMAC 19.15.29 August 2018

•

ATTACHMENT 1: PHOTOGRAPHIC LOG

PHOTOGRAPHIC LOG

Northern view of release extent during site assessment activities.

Southern view of release extent during delineation soil sampling activities.

Remuda South 25 State 167H NRM2007254419 012920038 May 18, 2020

•

Project Id: 012920038

Contact: Dan Moir

Project Location:

Certificate of Analysis Summary 661298

LT Environmental, Inc., Arvada, CO

Project Name: Remuda South 25 State167H

 Date Received in Lab:
 Tue 05.12.2020 14:00

 Report Date:
 05.15.2020 08:46

Project Manager: Jessica Kramer

	Lab Id:	661298-0	01	661298-0	002		
Analysis Requested	Field Id:	SS01		SS02			
Anulysis Requested	Depth:	0.5- ft		0.5- ft			
	Matrix:	SOIL		SOIL			
	Sampled:	05.12.2020	09:10	05.12.2020	09:30		
BTEX by EPA 8021B	Extracted:	05.12.2020	14:21	05.12.2020	14:21		
	Analyzed:	05.13.2020	08:49	05.13.2020	09:09		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00200	0.00200	< 0.00200	0.00200		
Toluene		< 0.00200	0.00200	< 0.00200	0.00200		
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200		
m,p-Xylenes		< 0.00399	0.00399	< 0.00399	0.00399		
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200		
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200		
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	05.12.2020	17:00	05.12.2020	17:00		
	Analyzed:	05.13.2020	01:17	05.13.2020	01:23		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		203	49.9	133	50.1		
TPH by SW8015 Mod	Extracted:	05.13.2020	11:40	05.13.2020	11:40		
	Analyzed:	05.14.2020	11:01	05.14.2020	04:17		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<49.8	49.8		
Diesel Range Organics (DRO)		<50.0	50.0	<49.8	49.8		
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<49.8	49.8		
Total GRO-DRO		<50.0	50.0	<49.8	49.8		
Total TPH		<50.0	50.0	<49.8	49.8		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kramer

Jessica Kramer Project Manager

Final 1.000

Analytical Report 661298

for

LT Environmental, Inc.

Project Manager: Dan Moir

Remuda South 25 State167H

012920038

05.15.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-32), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-23), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

05.15.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 661298 Remuda South 25 State167H Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 661298. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 661298 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

.

Sample Cross Reference 661298

LT Environmental, Inc., Arvada, CO

Remuda South 25 State167H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS01	S	05.12.2020 09:10	0.5 ft	661298-001
SS02	S	05.12.2020 09:30	0.5 ft	661298-002

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: Remuda South 25 State167H

 Project ID:
 012920038

 Work Order Number(s):
 661298

Report Date:05.15.2020Date Received:05.12.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

o-Terphenyl

.

Certificate of Analytical Results 661298

LT Environmental, Inc., Arvada, CO

Remuda South 25 State167H

Sample Id: Lab Sample I	SS01 d: 661298-001		Matrix: Date Coll	Soil lected: 05.12.20	020 09:10	Date Received: Sample Depth:		:00
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA MAB MAB 3125748	. 300	Date Prep	o: 05.12.20)20 17:00	Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	203	49.9	mg/kg	05.13.2020 01:	:17	5

Analytical Method: TPH by SW801:	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date Pr	rep: 05	.13.2020 11:40		Basis: V	Vet Weight	
Seq Number: 3125908								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	05.14.2020 11:0	1 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	05.14.2020 11:0	1 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	05.14.2020 11:0	1 U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	05.14.2020 11:0	1 U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	05.14.2020 11:0	1 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	118	%	70-135	05.14.2020 11	:01	

121

%

70-135

05.14.2020 11:01

84-15-1

.

Certificate of Analytical Results 661298

LT Environmental, Inc., Arvada, CO

Remuda South 25 State167H

Sample Id:SS01Lab Sample Id:661298-001	Matrix: Date Collecte	Soil ed: 05.12.2020 09:10	Date Receive Sample Deptl	d:05.12.2020 14:00 h: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	SW5035A
Analyst:MABSeq Number:3125867	Date Prep:	05.12.2020 14:21	Basis:	Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.13.2020 08:49	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.13.2020 08:49	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.13.2020 08:49	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	05.13.2020 08:49	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.13.2020 08:49	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.13.2020 08:49	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.13.2020 08:49	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	100	%	70-130	05.13.2020 08:49		
1,4-Difluorobenzene		540-36-3	106	%	70-130	05.13.2020 08:49		

.

Certificate of Analytical Results 661298

LT Environmental, Inc., Arvada, CO

Remuda South 25 State167H

Sample Id: Lab Sample I	SS02 d: 661298-002		Matrix: Date Col		oil 5.12.2020 09:30		Date Received Sample Depth			00
Analytical Me Tech:	ethod: Chloride by EPA MAB	300					Prep Method: % Moisture:	E300)P	
Analyst:	MAB		Date Pre	p: 0	5.12.2020 17:00		Basis:	Wet	Weight	
Seq Number:	3125748									
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	133	50.1		mg/kg	05.13.2020 01	1:23		5

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 05.	13.2020 11:40		Basis: W	et Weight	
Seq Number: 3125908								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	05.14.2020 04:17	7 U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	05.14.2020 04:17	7 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	05.14.2020 04:17	7 U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	05.14.2020 04:17	7 U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	05.14.2020 04:17	7 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	113	%	70-135	05.14.2020 04	17	
o-Terphenyl		84-15-1	115	%	70-135	05.14.2020 04	17	

.

Certificate of Analytical Results 661298

LT Environmental, Inc., Arvada, CO

Remuda South 25 State167H

Sample Id:SS02Lab Sample Id:661298-002	Matrix: Soil Date Collected: 05.12.2020	Date Received:05.12.2020 14:00 09:30 Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3125867	Date Prep: 05.12.2020	Prep Method: SW5035A % Moisture: 14:21 Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.13.2020 09:09	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.13.2020 09:09	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.13.2020 09:09	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	05.13.2020 09:09	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.13.2020 09:09	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.13.2020 09:09	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.13.2020 09:09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	106	%	70-130	05.13.2020 09:09		
4-Bromofluorobenzene		460-00-4	99	%	70-130	05.13.2020 09:09		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected							
RL Reporting Limit								
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection					
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitatio	n				
DL Method Detection Limit								
NC Non-Calculable								
SMP Client Sample		BLK	Method Blank					
BKS/LCS Blank Spike/Laboratory	BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate							
MD/SD Method Duplicate/Samp	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate				
+ NELAC certification not offered for this compound.								

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

LT Environmental, Inc.

Remuda South 25 State167H

Analytical Method: Seq Number: MB Sample Id:	Chloride by 3125748 7703192-1-B		00		Matrix: nple Id:	Solid 7703192-2	I-BKS			ep Metho Date Pro D Sample	ep: 05.1	0P 2.2020 3192-1-BSD	
Parameter		MB Description	Spike	LCS Result		LCSD		Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		Result <10.0	Amount 250	251	%Rec 100	Result 250	%Rec 100	90-110	0	Limit 20	mg/kg	05.12.2020 22:33	
Analytical Method:	-	EPA 30	0						Pı	ep Metho			
Seq Number: Parent Sample Id:	3125748 661220-014				Matrix:	Soil 661220-0	14 S		MS	Date Pro D Sample	•	2.2020 220-014 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		55.9	200	251	98	253	98	90-110	1	20	mg/kg	05.12.2020 22:50	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by 3125748 661295-003	EPA 30	0		Matrix: nple Id:	Soil 661295-00)3 S			ep Metho Date Pro D Sample	ep: 05.1	0P 2.2020 295-003 SD	
Parameter		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Chloride		Result 1150	Amount 201	Result 1330	% Rec 90	Result 1350	%Rec 99	90-110	1	Limit 20	mg/kg	Date 05.13.2020 00:13	8
Chionae		1150	201	1550	90	1550	33	90-110	1	20	mg/kg	03.13.2020 00.13	
Analytical Method: Seq Number:	3125908		od		Matrix:					ep Metho Date Pro	ep: 05.1	8015P 3.2020	
MB Sample Id:	7703305-1-B				-	7703305-1				-		3305-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb		<50.0	1000	991	99	996	100	70-135	1	35	mg/kg	05.14.2020 09:59	
Diesel Range Organics	(DRO)	<50.0	1000	1110	111	1090	109	70-135	2	35	mg/kg	05.14.2020 09:59	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			mits	Units	Analysis Date	
1-Chlorooctane		135			23		122			-135	%	05.14.2020 09:59	
o-Terphenyl		135		1	24		121		70	-135	%	05.14.2020 09:59	
Analytical Method: Seq Number:	TPH by SW 3125908	8015 M	od		Matrix: nple Id:	Solid 7703305-	I-BLK		Pı	ep Metho Date Pro		8015P 3.2020	
Parameter				MB Result							Units	Analysis Date	Flag
Motor Oil Range Hydrocar	bons (MRO)			<50.0							mg/kg	05.13.2020 12:23	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 11 of 14

Final 1.000

QC Summary 661298

Prep Method: SW8015P

LT Environmental, Inc.

Remuda South 25 State167H

Seq Number:	3125908]	Matrix:	Soil				Date Pr	ep: 05.1	3.2020	
Parent Sample Id:	661180-00	1		MS San	nple Id:	661180-00	01 S		MS	D Sample	e Id: 661	180-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocart	oons (GRO)	< 50.1	1000	1010	101	1040	104	70-135	3	35	mg/kg	05.13.2020 23:07	
Diesel Range Organics	(DRO)	1090	1000	2130	104	2300	121	70-135	8	35	mg/kg	05.13.2020 23:07	
Surrogate					IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
1-Chlorooctane				12	23		122	!	70	-135	%	05.13.2020 23:07	
o-Terphenyl				10	07		110)	70	-135	%	05.13.2020 23:07	

Analytical Method:	BTEX by EPA 8021	В						P	rep Metho	od: SW	5035A	
Seq Number:	3125867]	Matrix:	Solid				Date Pr	ep: 05.1	2.2020	
MB Sample Id:	7703235-1-BLK		LCS San	nple Id:	7703235-1	I-BKS		LCS	D Sample	e Id: 770	3235-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.111	111	0.103	103	70-130	7	35	mg/kg	05.12.2020 23:25	
Toluene	< 0.00200	0.100	0.106	106	0.0977	98	70-130	8	35	mg/kg	05.12.2020 23:25	
Ethylbenzene	< 0.00200	0.100	0.0993	99	0.0915	92	71-129	8	35	mg/kg	05.12.2020 23:25	
m,p-Xylenes	< 0.00400	0.200	0.201	101	0.185	93	70-135	8	35	mg/kg	05.12.2020 23:25	
o-Xylene	< 0.00200	0.100	0.103	103	0.0947	95	71-133	8	35	mg/kg	05.12.2020 23:25	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	107		1	04		104		70	-130	%	05.12.2020 23:25	
4-Bromofluorobenzene	96		9	02		94		70	-130	%	05.12.2020 23:25	

Analytical Method:	BTEX by EPA 8021	B						Pı	rep Metho	d: SW	5035A	
Seq Number:	3125867			Matrix:	Soil				Date Pre	p: 05.	12.2020	
Parent Sample Id:	661298-001		MS Sar	nple Id:	661298-00	01 S		MS	D Sample	Id: 661	298-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.104	104	0.0971	97	70-130	7	35	mg/kg	05.13.2020 00:06	
Toluene	< 0.00200	0.0998	0.0970	97	0.0929	93	70-130	4	35	mg/kg	05.13.2020 00:06	
Ethylbenzene	< 0.00200	0.0998	0.0887	89	0.0850	85	71-129	4	35	mg/kg	05.13.2020 00:06	
m,p-Xylenes	< 0.00399	0.200	0.178	89	0.173	86	70-135	3	35	mg/kg	05.13.2020 00:06	
o-Xylene	< 0.00200	0.0998	0.0911	91	0.0879	88	71-133	4	35	mg/kg	05.13.2020 00:06	
Surrogate				1S Rec	MS Flag	MSD %Red			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	03		103		70	-130	%	05.13.2020 00:06	

1,4-Diffuorobenzene	
4-Bromofluorobenzene	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

100

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

05.13.2020 00:06

Page 12 of 14

94

Final 1.000

70-130

%

SS02 5 05/12/2020 09 30 0 2 1 X 1 1
Sample Comments

Page 13 of 14

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperat	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 05.12.2020 02.00.00 PM	Air and Metal sample	Air and Metal samples Acceptable Range: Ambient							
Work Order #: 661298	Temperature Measur	Temperature Measuring device used : T-NM-007							
Sample Re	ceipt Checklist	Comments							
#1 *Temperature of cooler(s)?	4								
#2 *Shipping container in good condition?	Ye	S							
#3 *Samples received on ice?	Ye	S							
#4 *Custody Seals intact on shipping container/ cooler?	Ye	S							
#5 Custody Seals intact on sample bottles?	Ye	S							
#6*Custody Seals Signed and dated?	Ye	S							
#7 *Chain of Custody present?	Ye	S							
#8 Any missing/extra samples?	No								
#9 Chain of Custody signed when relinquished/ received?	Ye Ye	S							
#10 Chain of Custody agrees with sample labels/matrix?	Ye	S							
#11 Container label(s) legible and intact?	Ye	S							
#12 Samples in proper container/ bottle?	Ye	s Samples received in bulk containers							
#13 Samples properly preserved?	Ye	S							
#14 Sample container(s) intact?	Ye	S							
#15 Sufficient sample amount for indicated test(s)?	Ye	S							
#16 All samples received within hold time?	Ye	S							
#17 Subcontract of sample(s)?	No								
#18 Water VOC samples have zero headspace?	N/.	A							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Date: 05.12.2020 Elizabeth McClellan

Checklist reviewed by: Jessica WRAMER Jessica Kramer

Date: 05.14.2020

Project Id: 012920038

Contact: Dan Moir

Project Location:

Certificate of Analysis Summary 661913

LT Environmental, Inc., Arvada, CO

Project Name: Remuda South 25 State 167H

 Date Received in Lab:
 Mon 05.18.2020 17:00

 Report Date:
 05.22.2020 15:02

Project Manager: Jessica Kramer

Lab Id:	661913-0	01	661913-0	02				
Field Id:	SS01A	·	SS02A	`				
Depth:	3- ft		3- ft					
Matrix:	SOIL		SOIL					
Sampled:	05.18.2020	09:52	05.18.2020	10:25				
Extracted:	05.18.2020	17:37	05.18.2020	17:37				
Analyzed:	05.19.2020	04:23	05.19.2020	04:43				
Units/RL:	mg/kg	RL	mg/kg	RL				
	< 0.00199	0.00199	< 0.00199	0.00199				
	< 0.00199	0.00199	< 0.00199	0.00199				
	< 0.00199	0.00199						
	< 0.00398	0.00398						
	< 0.00199	0.00199						
	< 0.00199	0.00199						
	< 0.00199	0.00199	< 0.00199	0.00199				
Extracted:	05.18.2020	17:31	05.18.2020	17:31				
Analyzed:	05.18.2020 20:38		05.18.2020 20:43					
Units/RL:	mg/kg	RL	mg/kg	RL				
	147	10.0	174	10.0				
Extracted:	05.18.2020	17:30	05.18.2020	17:30				
Analyzed:	05.18.2020	22:24	05.18.2020	22:44				
Units/RL:	mg/kg	RL	mg/kg	RL				
	<50.1	50.1	<50.2	50.2				
Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)		50.1	<50.2	50.2				
otor Oil Range Hydrocarbons (MRO) <50.1 50.1		<50.2	50.2					
	<50.1	50.1	<50.2	50.2				
	<50.1	50.1	<50.2	50.2				
	Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: SS01A Depth: 3- ft Matrix: SOIL Sampled: 05.18.2020 Extracted: 05.18.2020 Analyzed: 05.19.2020 Units/RL: mg/kg <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.0018 0.00199 <0.0018 0.00199 <0.0018 0.0018 <0.0018	Field Id: SS01A Depth: 3- ft Matrix: SOIL Sampled: 05.18.2020 0:52 Extracted: 05.18.2020 17:37 Analyzed: 05.19.2020 04:23 Units/RL: mg/kg RL Sonits/RL: mg/kg RL 000199 0.00199 Matrix: mg/kg RL	Field Id: SS01A SS02A Depth: 3- ft 3- ft Matrix: SOIL SOIL Sampled: 05.18.2020 09:52 05.18.2020 Extracted: 05.18.2020 04:23 05.19.2020 Matrix: mg/kg RL mg/kg Vinits/RL: mg/kg RL mg/kg <0.00199 0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199 <0.00199 0.00199 <0.00199 <0.00199	Field Id: SS01A SS02A Depth: 3- ft 3- ft SOIL Matrix: SOIL SOIL SOIL Sampled: 05.18.2020 09:52 05.18.2020 17:37 05.18.2020 17:37 Analyzed: 05.19.2020 04:23 05.19.2020 04:43 Mg/kg RL Units/RL: mg/kg RL mg/kg RL 001199 0.00199 0.00199 0.00199 0.00199 <0.00199	Field Id: SS01A SS02A Depth: 3- ft 3- ft Matrix: SOIL SOIL Sampled: 05.18.2020 09:52 05.18.2020 17:37 Manalyzed: 05.18.2020 17:37 05.18.2020 04:43 Units/RL: mg/kg RL mg/kg RL 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 State State	Field Id: SS01A SS02A Depth: 3- ft 3- ft Matrix: SOIL SOIL Sampled: 05.18.2020 09:52 05.18.2020 10:25 Extracted: 05.18.2020 17:37 05.18.2020 17:37 Analyzed: 05.19.2020 04:23 05.19.2020 04:43 Units/RL: mg/kg RL mg/kg RL 0.00199 0.00199 0.00199	Field Id: SS01A SS02A Depth: 3. ft 3. ft Matrix: SOIL Samplet: 05.18.2020 0:52 05.18.2020 1:25 Extracted: 05.18.2020 17:37 05.18.2020 17:37 Analyzet: 05.19.2020 04:23 05.19.2020 04:43 Units/RL: mg/kg RL mg/kg RL -000199 000199 -000199 -000199 -000199 00199 -000199 -000199 -000199 00199 -000199 -000199 -000199 000199 -000199 -000199 -000199 00199 -000199 -000199 -000199 00199 -000199 -00199 -000199 00199 -00199 -00199 -000199 00199 -00199 -00199 -00199 00199 -00199 -00199 -00199 00199 -00199 -00199 -00199 00199 -00199 -00199

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession Vermer

Jessica Kramer Project Manager

Final 1.001

Analytical Report 661913

for

LT Environmental, Inc.

Project Manager: Dan Moir

Remuda South 25 State 167H

012920038

05.22.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-32), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-23), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-6) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

05.22.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 661913 Remuda South 25 State 167H Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 661913. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 661913 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

.

Sample Cross Reference 661913

LT Environmental, Inc., Arvada, CO

Remuda South 25 State 167H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS01A	S	05.18.2020 09:52	3 ft	661913-001
SS02A	S	05.18.2020 10:25	3 ft	661913-002

Client Name: LT Environmental, Inc. Project Name: Remuda South 25 State 167H

 Project ID:
 012920038

 Work Order Number(s):
 661913

 Report Date:
 05.22.2020

 Date Received:
 05.18.2020

Sample receipt non conformances and comments:

V1.001 Revision (client email) Corrected sample date from 05/17/20 to 05/18/20 JK 05/22/20

Sample receipt non conformances and comments per sample:

None

.

Certificate of Analytical Results 661913

LT Environmental, Inc., Arvada, CO

Remuda South 25 State 167H

Sample Id: Lab Sample Id	SS01A d: 661913-001		Matrix: Date Col	Soil lected: 05.18.2020 09:5	2	Date Received Sample Depth:	17:00	
Analytical Me Tech:	ethod: Chloride by EPA MAB	300				Prep Method: % Moisture:	E300P	
Analyst: Seg Number:	MAB 3126324		Date Prep	p: 05.18.2020 17:3	1	Basis:	Wet Weight	
Parameter	5120524	Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	147	10.0	mg/kg	05.18.2020 20	:38	1

Analytical Method: TPH by SW80	15 Mod				Prep Method: S	W8015P	
Tech: DTH					% Moisture:		
Analyst: DTH	alyst: DTH		05.18.2020 17:30		Basis: W	Vet Weight	
Seq Number: 3126293							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1	mg/kg	05.18.2020 22:2	4 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.1	50.1	mg/kg	05.18.2020 22:2	4 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.1	50.1	mg/kg	05.18.2020 22:2	4 U	1
Total GRO-DRO	PHC628	<50.1	50.1	mg/kg	05.18.2020 22:2	4 U	1
Total TPH	PHC635	<50.1	50.1	mg/kg	05.18.2020 22:2	4 U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	109	%	70-135	05.18.2020 22:24	
o-Terphenyl	84-15-1	116	%	70-135	05.18.2020 22:24	

.

.

Certificate of Analytical Results 661913

LT Environmental, Inc., Arvada, CO

Remuda South 25 State 167H

Sample Id:SS01ALab Sample Id:661913-001	Matrix: Date Collect	Soil ed: 05.18.2020 09:52	Date Received:05.18.2020 17:00 Sample Depth: 3 ft		
Analytical Method: BTEX by EPA 8021B Tech: MAB Analyst: MAB	Date Prep:	05.18.2020 17:37	Prep Method: % Moisture: Basis:	SW5035A Wet Weight	
Seq Number: 3126321					

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	05.19.2020 04:23	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	05.19.2020 04:23	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	05.19.2020 04:23	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	05.19.2020 04:23	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	05.19.2020 04:23	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	05.19.2020 04:23	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	05.19.2020 04:23	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	99	%	70-130	05.19.2020 04:23		
1,4-Difluorobenzene		540-36-3	106	%	70-130	05.19.2020 04:23		

.

o-Terphenyl

.

Certificate of Analytical Results 661913

LT Environmental, Inc., Arvada, CO

Remuda South 25 State 167H

Sample Id: Lab Sample Id	SS02A d: 661913-002		Matrix: Date Coll	Soil lected: 05.18.2020 10:25		Date Received:05.18.2020 17: Sample Depth: 3 ft			00
Analytical Me Tech:	ethod: Chloride by EPA MAB	. 300				Prep Method: % Moisture:	E300	P	
Analyst:	MAB		Date Prep	b: 05.18.2020 17:31		Basis:	Wet	Weight	
Seq Number:	3126324								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	174	10.0	mg/kg	05.18.2020 20):43		1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH	Date Prep:		05.18.2020 17:30		Basis: W	Vet Weight		
Seq Number: 3126293								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2		mg/kg	05.18.2020 22:44	4 U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.2	50.2		mg/kg	05.18.2020 22:44	4 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.2	50.2		mg/kg	05.18.2020 22:44	4 U	1
Total GRO-DRO	PHC628	<50.2	50.2		mg/kg	05.18.2020 22:44	4 U	1
Total TPH	PHC635	<50.2	50.2		mg/kg	05.18.2020 22:44	4 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	113	%	70-135	05.18.2020 22	:44	

120

%

70-135

84-15-1

.

05.18.2020 22:44

.

Certificate of Analytical Results 661913

LT Environmental, Inc., Arvada, CO

Remuda South 25 State 167H

Sample Id:SS02ALab Sample Id:661913-002	Matrix: Soil Date Collected: 05.18.2020 10:25	Date Received:05.18.2020 17:00 Sample Depth: 3 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3126321	Date Prep: 05.18.2020 17:37	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	05.19.2020 04:43	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	05.19.2020 04:43	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	05.19.2020 04:43	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	05.19.2020 04:43	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	05.19.2020 04:43	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	05.19.2020 04:43	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	05.19.2020 04:43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	106	%	70-130	05.19.2020 04:43		
4-Bromofluorobenzene		460-00-4	99	%	70-130	05.19.2020 04:43		

.

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected						
RL Reporting Limit							
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection				
PQL Practical Quantitation Limit	antitation Limit	LOQ Limit of Quantitatio	n				
DL Method Detection Limit							
NC Non-Calculable							
SMP Client Sample		BLK	Method Blank				
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate			
MD/SD Method Duplicate/Samp	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate			
+ NELAC certification not offered for this compound.							

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 661913

LT Environmental, Inc.

Remuda South 25 State 167H

Analytical Method: Seq Number: MB Sample Id:	Chloride by 3126324 7703550-1-B		00		Matrix: nple Id:	Solid 7703550-1	I-BKS			ep Metho Date Pro D Sample	ep: 05.1	0P 8.2020 3550-1-BSD	
Parameter		MB	Spike	LCS Bogult	LCS	LCSD	LCSD	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		Result <10.0	Amount 250	Result 250	%Rec 100	Result 248	%Rec 99	90-110	1	20	mg/kg	05.18.2020 16:41	
									-		8'8		
Analytical Method:	-	EPA 30	00		Matrix:	C - 11			Pı	ep Metho			
Seq Number: Parent Sample Id:	3126324 661850-007					Soil 661850-00)7 S		MS	Date Pro D Sample	•	8.2020 850-007 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		139	200	348	105	348	105	90-110	0	20	mg/kg	05.18.2020 16:59	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by 3126324 661912-002	EPA 30	00		Matrix: nple Id:	Soil 661912-00	02 S			rep Metho Date Pro D Sample	ep: 05.1	0P 8.2020 912-002 SD	
Parameter		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Chloride		Result 342	Amount 201	Result 524	% Rec 91	Result 523	%Rec 90	90-110	0	Limit 20	mg/kg	Date 05.18.2020 20:14	0
Cinoriae		512	201	521		525	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 110	Ũ	20	iiig/ kg		
Analytical Method: Seq Number:	TPH by SW 3126293	8015 M	od		Matrix:	Solid			Pi	ep Metho Date Pro		8015P 8.2020	
MB Sample Id:	7703561-1-B	LK		LCS San	nple Id:	7703561-	I-BKS		LCS		-	3561-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb Diesel Range Organics		<50.0 <50.0	1000 1000	976 1130	98 113	920 1080	92 108	70-135 70-135	6 5	35 35	mg/kg	05.18.2020 14:48 05.18.2020 14:48	
Surrogate	(DKO)	<50.0 MB %Rec	MB Flag	\mathbf{L}	CS Rec	LCS Flag	LCSI %Re	D LCS	D Li	mits	mg/kg Units	Analysis Date	
1-Chlorooctane		98	0	1	22	U	115		70	-135	%	05.18.2020 14:48	
o-Terphenyl		109		1	29		123	1	70	-135	%	05.18.2020 14:48	
Analytical Method: Seq Number:	TPH by SW 3126293	8015 M	od		Matrix: nple Id:	Solid 7703561-	-BLK		Pı	rep Metho Date Pro		8015P 8.2020	
Parameter				MB Bosult							Units	Analysis	Flag
Motor Oil Range Hydrocar	bons (MRO)			Result <50.0							mg/kg	Date 05.18.2020 14:27	
				2000							88		

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 11 of 14

Final 1.001

QC Summary 661913

Prep Method: SW8015P

LT Environmental, Inc.

Remuda South 25 State 167H

Seq Number:	3126293]	Matrix:	Soil				Date Pr	ep: 05.1	8.2020	
Parent Sample Id:	661821-00	1		MS San	nple Id:	661821-00	01 S		MS	D Sample	e Id: 661	821-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocart	oons (GRO)	<50.0	999	921	92	945	95	70-135	3	35	mg/kg	05.18.2020 15:50	
Diesel Range Organics	(DRO)	<50.0	999	1070	107	1080	108	70-135	1	35	mg/kg	05.18.2020 15:50	
Surrogate					IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	23		126	5	70	-135	%	05.18.2020 15:50	
o-Terphenyl				1	29		127	,	70	-135	%	05.18.2020 15:50	

Analytical Method:	BTEX by EPA 8021	B						P	rep Metho	od: SW	5035A	
Seq Number:	3126321		I	Matrix:	Solid				Date Pr	ep: 05.1	18.2020	
MB Sample Id:	7703568-1-BLK		LCS San	ple Id:	7703568-1	I-BKS		LCS	D Sample	e Id: 770	3568-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.104	104	0.0966	97	70-130	7	35	mg/kg	05.19.2020 00:18	
Toluene	< 0.00200	0.100	0.100	100	0.0916	92	70-130	9	35	mg/kg	05.19.2020 00:18	
Ethylbenzene	< 0.00200	0.100	0.0930	93	0.0859	86	71-129	8	35	mg/kg	05.19.2020 00:18	
m,p-Xylenes	< 0.00400	0.200	0.191	96	0.176	88	70-135	8	35	mg/kg	05.19.2020 00:18	
o-Xylene	< 0.00200	0.100	0.0973	97	0.0894	89	71-133	8	35	mg/kg	05.19.2020 00:18	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	107		10	03		104		70	-130	%	05.19.2020 00:18	
4-Bromofluorobenzene	97		9	3		94		70	-130	%	05.19.2020 00:18	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 8021 3126321 661872-004	lB		Matrix: nple Id:	Soil 661872-00	04 S			rep Methe Date Pr D Sample	ep: 05.1	5035A 18.2020 872-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.110	110	0.0931	93	70-130	17	35	mg/kg	05.19.2020 00:59	
Toluene	< 0.00199	0.0996	0.103	103	0.0911	91	70-130	12	35	mg/kg	05.19.2020 00:59	
Ethylbenzene	< 0.00199	0.0996	0.0952	96	0.0857	86	71-129	11	35	mg/kg	05.19.2020 00:59	
m,p-Xylenes	< 0.00398	0.199	0.194	97	0.177	89	70-135	9	35	mg/kg	05.19.2020 00:59	
o-Xylene	< 0.00199	0.0996	0.0984	99	0.0879	88	71-133	11	35	mg/kg	05.19.2020 00:59	
Surrogate				IS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	04		102		70	-130	%	05.19.2020 00:59	

4-Brom	ofluorobenzene

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

95

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

05.19.2020 00:59

96

70-130

%

(ecei	wed by Tuylo Ingly		Relinquished by: (Signature)	Service. Signature of this document Service. Xenco will be liable only Xenco. A minimum charge of \$7	Circle Method(s) and		:57.					/	SS02A	AIOSS	Sample Identification	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name: Rober	P.O. Number:	Project Number: 0	Project Name: Rew	Phone: (432)	City, State ZIP: Midla	Address: 3300	Company Name: LT Er	Project Manager: Dan Moir			3
		0	ature) Received by: (Signature)	A service. Supreview of this document and reminquisiment or samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	otal 200.7 / 6010 200.8 / 6020: 8RC Circle Method(s) and Metal(s) to be analyzed T					/			02/t1/50 S	05/17/20	Matrix Date Sampled	Yes No N/A Total	CHE NIA	es) No		Temp Blank: (Pes) No	Robert McAfee		012920038	Remuda South 25 stole 1674	(432) 701-2610	Midland, TX 79705	3300 North A St. Bldg 1, Unit 222	LT Environmental, Inc., Permian office		Hobbs	BORATORIES	Ś
			: (Signature)	a valid purchase order from clier sume any responsibility for any los charge of \$5 for each sample subm	8RCRA 13PPM Texas 11 A TCLP / SPLP 6010: 8RCRA	-							1025 3' 1	0952 3' 1	Time Depth Depth	Total Containers:	Correction Factor: -0.7	LOG-Y	Thermometer ID	Wet Ice: YS No	Due Date:	Rush:	Routine	H Turn Around	Email: dmoir@ltenv.c	City, State ZIP:	Address:	company Name:	Bill to: (if different)	NM (575-392-7550) Phoenix,AZ	Houston,TX (281) 240-4200 Midland,TX (432-704-544	
0	100 -		Date/Time Reli	it company to Xenco, its affiliates and ses or expenses incurred by the clier litted to Xenco, but not analyzed. The	Al Sb As Ba Be B Cd Ca A Sb As Ba Be Cd Cr Co				T	11/11	1 Da		× × ×		TPH (EI BTEX (I Chlorid	PA 8	015) 802 ⁻	1)		5					Email: dmoir@ltenv.com rmcafee@ltenv.com	Carlsbad, NM		10.00	Kyle Littrell	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296	Chain of Custody
		iveninquistied by, (oignature)	incluiched by: (Signature)	Id subcontractors. It assigns stand nt if such losses are due to circum ase terms will be enforced unless p	2a Cr Co Cu Fe Pb Mg Mn Mo Ni K Co Cu Pb Mn Mo Ni Se Ag Ti U																			ANALYSIS REQUEST		R		P		-449-8800) Tampa,FL (813-620-	Antonio, TX (210) 509-3334 Jbbock, TX (806)794-1296	ody
		Received by: (Signature)	Dessived by: (Signatu	tractors. It assigns standard terms and conditions losses are due to circumstances beyond the control will be enforced unless previously negotiated.	SiO2																				Deliverables: EDD ADaF	Reporting:Level II evel III ST	MN	Program: UST/PST PRP Brow		2000) <u>www.xenco.com</u>		Work Order No:
		re) Date/Time			SiO2 Na Sr TI Sn U V Zn 1631/245.1/7470/7471:Hg			/	/			Conver-	Discrete	discrete	Sample Comments	lab, if received by 4:30pm	TAT starts the day received by the							Work Order Notes	ADaPT Other:	ST/UST RRP byel IV		Brownfields RC uperfund	Comments	n Page l of l	-	No: Lecel 913

Final 1.001

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC								
Date/ Time Received: 05.18.2020 05.00.00 PM	Air and Metal samples Acc								
Work Order #: 661913	Temperature Measuring device used : T-NM-007								
Sample Recei	ot Checklist	Comments							
#1 *Temperature of cooler(s)?	1.4								
#2 *Shipping container in good condition?	Yes								
#3 *Samples received on ice?	Yes								
#4 *Custody Seals intact on shipping container/ cooler?	Yes								
#5 Custody Seals intact on sample bottles?	Yes								
#6*Custody Seals Signed and dated?	Yes								
#7 *Chain of Custody present?	Yes								
#8 Any missing/extra samples?	No								
#9 Chain of Custody signed when relinquished/ received?	Yes								
#10 Chain of Custody agrees with sample labels/matrix?	Yes								
#11 Container label(s) legible and intact?	Yes								
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.							
#13 Samples properly preserved?	Yes								
#14 Sample container(s) intact?	Yes								
#15 Sufficient sample amount for indicated test(s)?	Yes								
#16 All samples received within hold time?	Yes								
#17 Subcontract of sample(s)?	No								
#18 Water VOC samples have zero headspace?	N/A								

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Date: 05.18.2020 Elizabeth McClellan

Checklist reviewed by: Jessica WRAMER Jessica Kramer

Date: 05.19.2020

•

1

	Ar	TZ proud me WSP		Com	LT Enviro 508 West arlsbad, Ne pliance · En IC / SOIL	Stevens w Mexico gineering	Street 5 88220 • Remedia		BH or PH Name: SSOL Site Name: Remuda South 25 State 167 H RP or Incident Number: NRM 2007254419 LTE Job Number: 7 Logged By: Robert M Method: Backhoe Pothole
	Lat/Lon			LUG		Field Scree	ning:		Hole Diameter: 2' Total Depth: 3'
	Comme	ents:				Chloride, P	ID		
	Moisture Content		Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithology/Remarks
						L .	0		
	M	580	1.9	Ν	SS01	-	0.5'	S	CCHE, moderately consolidated, tan-brown
0943	M	220	1.2	N		ı' -	1	S	SP-SM, Brown Small round grain
0948	M	220	1.3	N		z' -	2	S	
0952	M	220	۱,8	N	SS01A	3'-	3	s	↓ I
									RM

A	proud me WSP		Con	LT Enviro 508 West Carlsbad, Ne npliance · En	Stevens w Mexico gineering	Street o 88220 · Remedia		BH or PH Name: S SO 2 Site Name: Remude South 25 State 167 H RP or Incident Number: NRM 2007254419 LTE Job Number:
Lat/Lor	ng:	LITHO	DLOG		Field Scree	ning:	Hole Diameter: 2' Total Depth: 3'	
Comm		100	-		Chloride, P	ID	2 3	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithology/Remarks
K M	390 220	2.1 0.7	n N	SS02	1 - 1 - `1	0.5'	s S	CCHE, moderately consolidated, tan-brown SP-SM Brown Small round grain
M	260	0.3	N		2'-	2	S	
5 M	280	0.Z	N	SS02A	3' -	3	S	4
						5		
						6		\mathcal{D}
					-	8		HIM
					- - - -	- - - -		
					-	10 		
					-	- 12		