Rec'd 06/30/2020 - NMOCD

Form 3160-3 (June 2015)	_				APPROV o. 1004-0 nuary 31	137
UNITED STATES DEPARTMENT OF THE I BUREAU OF LAND MAN	NTERIOR	Г		5. Lease Serial No. NMNM086024		
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee or Tribe Name		
	EENTER			7. If Unit or CA Ag	reement, 1	Name and No.
	ther	Multiple Zone		8. Lease Name and Well No.		
re. Type of completion. If tryutautic Fracturing				CYPRESS 34 FEI	DERAL	
				231H		
2. Name of Operator TAP ROCK OPERATING LLC				9. API Well No. 30015	47265	
3a. Address 602 Park Point Drive Suite 200, Golden, CO 80401	3b. Phone N (720) 460-3	lo. <i>(include area coa</i> 3316	le)	10. Field and Pool, PURPLE SAGE W	or Explor	atory
4. Location of Well (Report location clearly and in accordance w	11. Sec., T. R. M. of		Survey or Area			
At surface NWNW / 298 FNL / 281 FWL / LAT 32.2677				SEC 34/T23S/R29	E/NMP	
At proposed prod. zone SWSW / 30 FSL / 855 FWL / LA)7 / LONG -103.97	82095			
14. Distance in miles and direction from nearest town or post off 7 miles	12. County or Parish	h	13. State NM			
15. Distance from proposed* 298 feet	16. No of a	cres in lease	17. Spaci	ng Unit dedicated to t	his well	
property or lease line, ft. (Also to nearest drig. unit line, if any)	1440		320.0			
18 Distance from proposed location*	19. Propose	d Depth	20. BLM	/BIA Bond No. in file		
to nearest well, drilling, completed, applied for, on this lease, ft. 25 feet	11015 feet	feet / 16067 feet FED: NMB001443				
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3048 feet	22. Approximate date work will start* 10/01/2020			23. Estimated durat 90 days	ion	
	24. Attac	hments		·		
The following, completed in accordance with the requirements of (as applicable)	f Onshore Oil	and Gas Order No.	1, and the H	Hydraulic Fracturing r	rule per 43	3 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 		Item 20 above).	1	as unless covered by an	n existing	bond on file (see
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office		5. Operator certifie6. Such other site sp BLM.		mation and/or plans as	s may be r	equested by the
25. Signature (Electronic Submission)		(Printed/Typed) N WOOD / Ph: (72	20) 460-33	16	Date 03/31/2	020
Title President						
Approved by (Signature) (Electronic Submission)		(Printed/Typed) Layton / Ph: (575)	234-5959		Date 06/23/2	020
Title Assistant Field Manager Lands & Minerals	Office Carls	e bad Field Office			ı	
Application approval does not warrant or certify that the applicar applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal	or equitable title to t	hose rights	in the subject lease w	hich wou	ld entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements					any depar	tment or agency

*(Instructions on page 2) Entered - KMS NMOCD
 District I

 I625 N. French Dr., Hobbs, NM 88240

 Phone: (575) 393-6161 Fax: (575) 393-0720

 District II

 811 S. First St., Artesia, NM 88210

 Phone: (575) 748-1283 Fax: (575) 748-9720

 District III

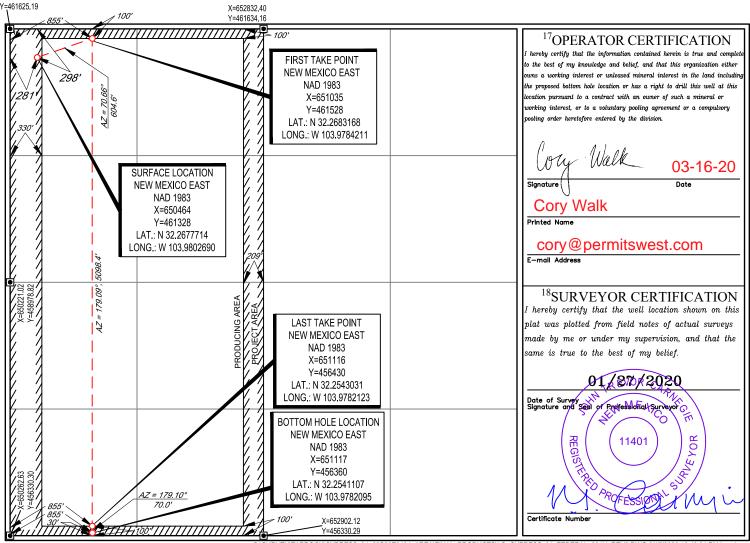
 1000 Rio Brazos Road, Aztec, NM 87410

 Phone: (505) 334-6178 Fax: (505) 334-6170

 District IV

 1220 S. St. Francis Dr., Santa Fe, NM 87505

 Phone: (505) 476-3460


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 FORM C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

1	API Number	r		² Pool Code			³ Pool Na	ame			
30-	015-			98220		PU	RPLE SAGE	E; WOLFC	CAMP		
⁴ Property C	ode				⁵ Property N	lame			⁶ Well Number		
				CY	YPRESS 34	FEDERAL			231H		
⁷ OGRID N	lo.				⁸ Operator N	lame			⁹ Elevation		
37204	3		TAP ROCK OPERATING, LLC.3048'								
					¹⁰ Surface Lo	ocation					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line County		
D	34	23–S	29-E	-	298'	NORTH	281'	WEST	EDDY		
			11	Bottom Ho	le Location If D	Different From Su	rface				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line County		
М	34	34 23-S 29-E - 30' SOUTH 855' WEST EDDY									
¹² Dedicated Acres	¹³ Joint or I	Infill ¹⁴ Co	nsolidation Co	de ¹⁵ Ord	er No.						
320											

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

S.ISURVEY\TAPROCK\CYPRESS_34_23S29E3434_AREA\FINAL_PRODUCTS\LO_CYPRESS_34_FEDERAL_231H_REV2.DWG 2/17/2020 12:49:34 PM kmathe

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Tap Rock Operating LLC
WELL NAME & NO.:	Cypress 34 Federal 231H
LOCATION:	Section 34, T.23 S., R.29 E., NMP
COUNTY:	Eddy County, New Mexico

COA

H2S	C Yes	💿 No	
Potash	C None	Secretary	C R-111-P
Cave/Karst Potential	C Low	Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	C Conventional	C Multibowl	OBoth
Other	4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	🗖 Water Disposal	COM	🗖 Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately 350 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:
 - Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Well Logs

Ensure GR and CNL logs or comparable logs are run to surface for future development. One per well pad with no more than 250' distance.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.

Page 3 of 7

- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

Page 4 of 7

- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.

- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 7 of 7

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: 3/2/2020

 \boxtimes Original

Operator & OGRID No.: 372043

□ Amended - Reason for Amendment:_

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Cypress 34 Federal 231H		Section 34, T23S, R29E	298' FNL and 281' FWL	+/- 3,750	21 days	Gas will be flared for ~21 days during flowback before being turned to the TB. Time est. depends on sales connect and well cleanup.

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to Salt Creek Midstream and will be connected to Salt Creek Midstream low/high pressure gathering system located in Eddy County, New Mexico. It will require 5000' of pipeline to connect the facility to low/high pressure gathering system. Tap Rock Operating, LLC provides (periodically) to Gas Transporter a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, Tap Rock Operating, LLC and Salt Creek Midstream have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at Salt Creek Midstream Processing Plant located in Pecos, Texas. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Gas Transporter</u> system at that time. Based on current information, it is . Tap Rock Operating, LLC's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared

- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Hydrogen Sulfide Drilling

Operations Plan

Tap Rock Resources

1 H2S safety instructions to the following:

- Characteristics of H2S
- Physical effects and hazards
- Principal and operation of H2S detectors, warning system and briefing areas
- Evacuation procedures, routes and first aid
- Proper use of safety equipment & life support systems
- Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30min pressure demand air packs

2 H2S Detection and Alarm Systems:

- H2S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure / cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may be placed as deemed necessary
- An audio alarm system will be installed on the derrick floor and in the doghouse

3 Windsocks and / Wind Streamers:

- Windsocks at mud pit area should be high enough to be visible
- Windsock on the rig floor and / top of doghouse should be high enough to be visible

4 Condition Flags and Signs:

- Warning sign on access road to location
- Flags to be displayed on sign at entrance to location
 - o Green Flag Normal Safe Operation Condition
 - Yellow Flag Potential Pressure and Danger
 - Red Flag Danger (H2S present in dangerous concentrations) Only H2S trained personnel admitted on location

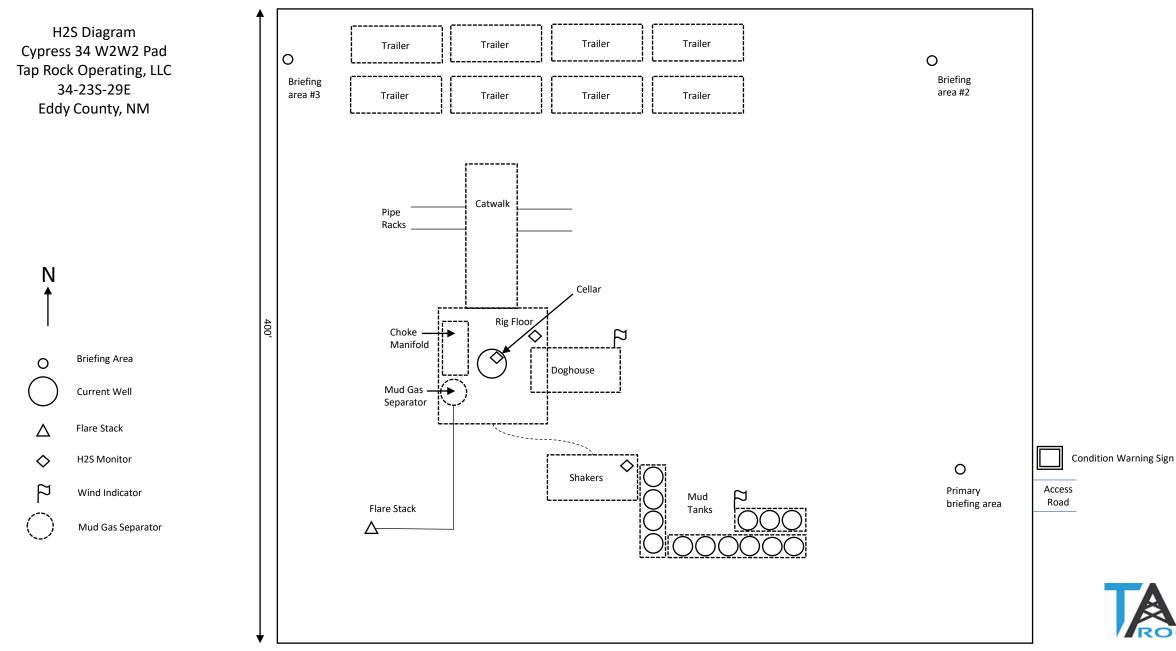
5 <u>Well Control Equipment:</u>

• See Drilling Operations Plan Schematics

6 Communication:

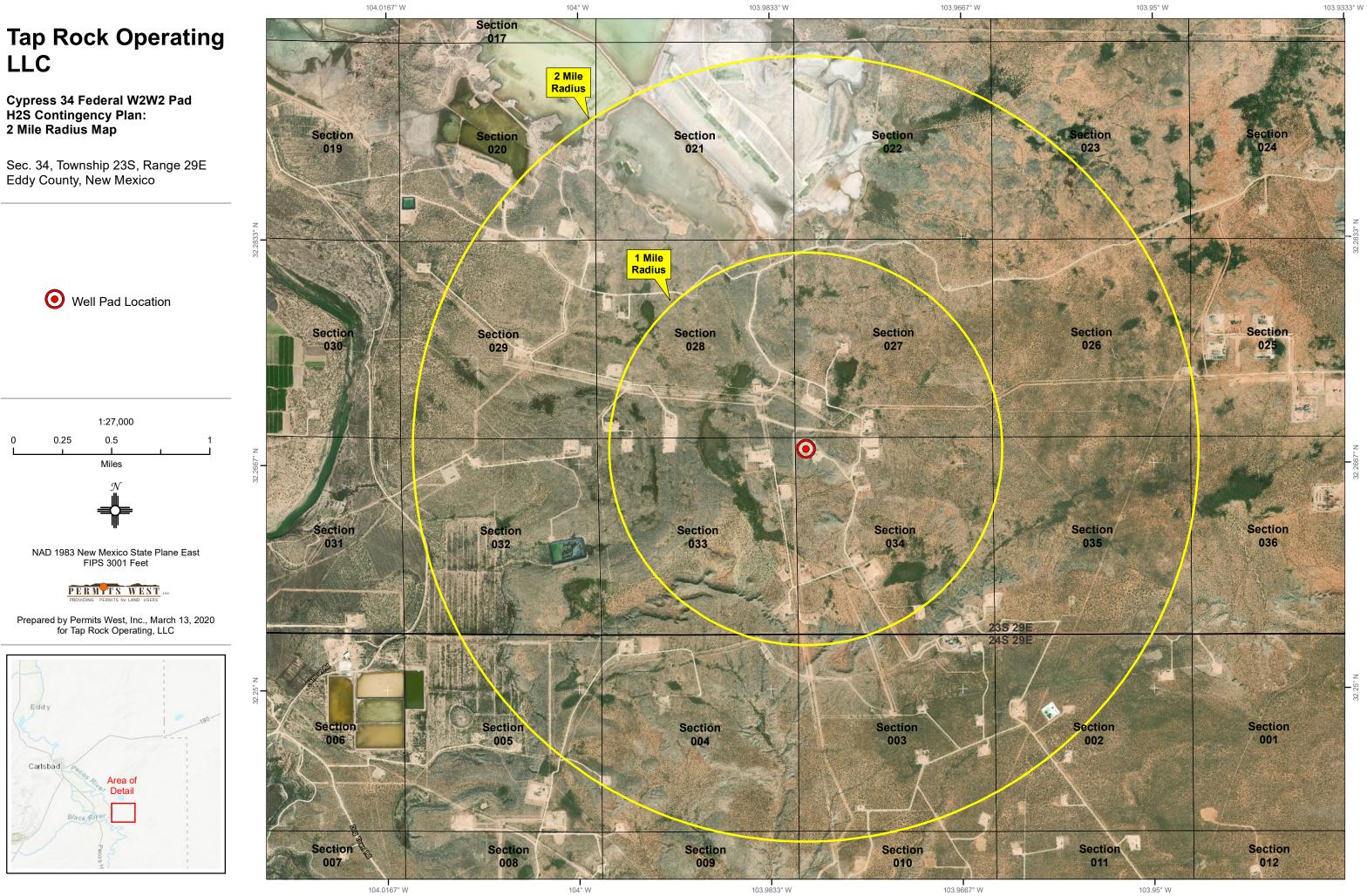
- While working under masks chalkboards will be used for communications
- Hand signals will be used where chalk board is inappropriate
- Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drilling Stem Testing:


• No DST cores are planned at this time

8 Drilling contractor supervisor will be required to be familiar with the effects H2S has on tubulars good and other mechanical equipment

9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary


11 Emergency Contacts

Emergency Contacts	6	
Carlsbad Police Department	575.887.7551	911
Carlsbad Medical Center	575.887.4100	911
Eddy County Fire Service	575.628.5450	911
Eddy County Sherriff	575.887.7551	911
Lea County Fire Service	575.391.2983	911
Lea County Sherriff	575.396.3611	911
Jal Police Department	575.395.2121	911
Jal Fire Department	575.395.2221	911
Tap Rock Resources	720.772.5090	

400'

__

Tap Rock Operating, LLC.

Eddy County, NM (NAD83) Cypress 34 Fed 231H

ОН

Plan: Plan #2

Standard Planning Report

25 February, 2020

Particular Eddy County NM (NADOO)			
Project Eddy County, NM (NAD83)			
Map System:US State Plane 1983System Datum:MeaGeo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone	n Sea Level		
Other Outprove 24 End			
Site Cypress 34 Fed			
Site Position: Northing: 461,087.97 usft Latitude:			32° 16' 1.523 N
From: Lat/Long Easting: 652,914.58 usft Longitude: Position Uncertainty: 2.0 usft Slot Radius: 13-3/16 " Grid Convergentian			103° 58' 20.439 W 0.19 °
	ice.		0.13
Well 231H			
Well Position +N/-S 239.8 usft Northing: 461,327.78 usft Latitu	ıde:		32° 16' 3.977 N
-	itude:		103° 58' 48.968 W
Position Uncertainty 2.0 usft Wellhead Elevation: Group	nd Level:		3,048.0 usft
Wellbore OH			
Magnetics Model Name Sample Date Declination Dip An	ale	Field	Strength
(°) (°)	gie		nT)
IGRF2015 11/24/2019 6.88	60.01	47,	673.12844779
Design Plan #2			
Audit Notes:			
Version: Phase: PLAN Tie On Depth:		0.0	
Vertical Section: Depth From (TVD) +N/-S +E/-W	Di	irection	
(usft) (usft) (usft) 0.0 0.0 0.0		(°) 179.09	
0.0 0.0 0.0		179.09	
Plan Survey Tool Program Date 2/25/2020			
Depth From Depth To			
(usft) (usft) Survey (Wellbore) Tool Name Remarks			
1 0.0 16,067.3 Plan #2 (OH) MWD			
MWD - Standard			
Plan Sections			
Measured Vertical Dogleg Build	Turn Rate	TEO	
Dauth Indiantian Animath Dauth (N/O) (E/M/ Data Data	Rate	TFO	Torret
Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate (usft) (°) (°) (usft) (usft) (°/100usft)	(°/100usft)	(°)	Target
(usft) (°) (°) (usft) (usft) (°/100usft) (°/100usft) ((°/100usft)	(°)	larget
(usft) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) 0.0 0.00 0.00 0.0 0.0 0.00 0.00	(°/ 100usft) 0.00	0.00	Target
(usft) (°) (usft) (usft) (usft) (°/100usft) (°/100usft)	(°/ 100usft) 0.00 0.00	0.00 0.00	rarget
(usft) (°) (usft) (usft) (usft) (°/100usft) (°/100usft)	(°/ 100usft) 0.00 0.00 0.00	0.00 0.00 64.00	Taryet
(usft) (°) (usft) (usft) (usft) (°/100usft) (°/100usft)	(° /100usft) 0.00 0.00 0.00 0.00	0.00 0.00 64.00 0.00	Target
(usft) (°) (usft) (usft) (usft) (°/100usft) (°/100usft)	(°/100usft) 0.00 0.00 0.00 0.00 0.00	0.00 0.00 64.00 0.00 180.00	Target
(usft) (°) (usft) (usft) (usft) (°/100usft) (°/100usft)	(° /100usft) 0.00 0.00 0.00 0.00	0.00 0.00 64.00 0.00 180.00 0.00	Target
(usft)(°)(°)(usft)(usft)(°/100usft)((*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 64.00 0.00 180.00 0.00 179.09	Target
(usft)(°)(°)(usft)(usft)(usft)(°/100	(*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 64.00 180.00 180.00 179.09 0.00	LTP_C34.231H

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build 1	.50								
1,600.0	1.50	64.00	1,600.0	0.6	1.2	-0.6	1.50	1.50	0.00
1,700.0	3.00	64.00	1,699.9	2.3	4.7	-2.2	1.50	1.50	0.00
1,800.0	4.50	64.00	1,799.7	5.2	10.6	-5.0	1.50	1.50	0.00
1,900.0	6.00	64.00	1,899.3	9.2	18.8	-8.9	1.50	1.50	0.00
2,000.0	7.50	64.00	1,998.6	14.3	29.4	-13.9	1.50	1.50	0.00
2,033.3	8.00	64.00	2,031.6	16.3	33.4	-15.8	1.50	1.50	0.00
Start 4018.0	hold at 2033.3 M	1D							
2,100.0	8.00	64.00	2,097.6	20.4	41.8	-19.7	0.00	0.00	0.00
2,200.0	8.00	64.00	2,196.6	26.5	54.3	-25.6	0.00	0.00	0.00
2,300.0	8.00	64.00	2,295.7	32.6	66.8	-31.5	0.00	0.00	0.00
2,400.0	8.00	64.00	2,394.7	38.7	79.3	-37.4	0.00	0.00	0.00
2,500.0	8.00	64.00	2,493.7	44.8	91.8	-43.3	0.00	0.00	0.00
2,600.0	8.00	64.00	2,592.8	50.9	104.3	-49.2	0.00	0.00	0.00
2,700.0	8.00	64.00	2,691.8	57.0	116.8	-55.1	0.00	0.00	0.00
2,800.0	8.00	64.00	2,790.8	63.1	129.3	-61.0	0.00	0.00	0.00
2,900.0	8.00	64.00	2,889.8	69.2	141.8	-66.9	0.00	0.00	0.00
3,000.0	8.00	64.00	2,988.9	75.3	154.3	-72.8	0.00	0.00	0.00
3,100.0	8.00	64.00	3,087.9	81.4	166.8	-78.7	0.00	0.00	0.00
3,200.0	8.00	64.00	3,186.9	87.5	179.3	-84.6	0.00	0.00	0.00
3,300.0	8.00	64.00	3,285.9	93.6	191.9	-90.5	0.00	0.00	0.00
3.400.0	8.00	64.00	3,385.0	99.7	204.4	-96.4	0.00	0.00	0.00
3,500.0	8.00	64.00	3,484.0	105.8	216.9	-102.3	0.00	0.00	0.00
3,600.0	8.00	64.00	3,583.0	111.9	229.4	-108.2	0.00	0.00	0.00
3,700.0	8.00	64.00	3,682.0	118.0	241.9	-114.1	0.00	0.00	0.00
3,800.0	8.00	64.00	3,781.1	124.1	254.4	-120.0	0.00	0.00	0.00
3,900.0	8.00	64.00	3,880.1	130.2	266.9	-125.9	0.00	0.00	0.00
4,000.0	8.00	64.00	3,979.1	136.3	279.4	-131.8	0.00	0.00	0.00
4,100.0	8.00	64.00	4,078.2	142.4	291.9	-137.7	0.00	0.00	0.00
4,200.0	8.00	64.00	4,177.2	148.5	304.4	-143.6	0.00	0.00	0.00
4,300.0	8.00	64.00	4,276.2	154.6	316.9	-149.5	0.00	0.00	0.00
4,400.0	8.00	64.00	4,375.2	160.7	329.5	-155.4	0.00	0.00	0.00
4,500.0	8.00	64.00	4,474.3	166.8	342.0	-161.3	0.00	0.00	0.00
4,600.0	8.00	64.00	4,573.3	172.9	354.5	-167.2	0.00	0.00	0.00
4,700.0	8.00	64.00	4,672.3	179.0	367.0	-173.1	0.00	0.00	0.00
4,800.0	8.00	64.00	4,771.3	185.1	379.5	-179.0	0.00	0.00	0.00
4,900.0	8.00	64.00	4,870.4	191.2	392.0	-184.9	0.00	0.00	0.00
5,000.0	8.00	64.00	4,969.4	197.3	404.5	-190.8	0.00	0.00	0.00
5,100.0	8.00	64.00	5,068.4	203.4	417.0	-196.7	0.00	0.00	0.00
5,200.0	8.00	64.00	5,167.5	209.5	429.5	-202.6	0.00	0.00	0.00
5,300.0	8.00	64.00	5,266.5	215.6	442.0	-208.5	0.00	0.00	0.00
5,400.0	8.00	64.00	5,365.5	221.7	454.5	-214.4	0.00	0.00	0.00
5,500.0	8.00	64.00	5,464.5	227.8	467.0	-220.3	0.00	0.00	0.00
5,600.0	8.00	64.00	5,563.6	233.9	479.6	-226.3	0.00	0.00	0.00
5,700.0	8.00	64.00	5,662.6	240.0	492.1	-232.2	0.00	0.00	0.00
5,800.0	8.00	64.00	5,761.6	246.1	504.6	-238.1	0.00	0.00	0.00
5,900.0	8.00	64.00	5,860.6	252.2	517.1	-244.0	0.00	0.00	0.00
6,000.0	8.00	64.00	5,959.7	258.3	529.6	-249.9	0.00	0.00	0.00
6,051.3	8.00	64.00	6,010.5	261.4	536.0	-252.9	0.00	0.00	0.00
Start Drop -1	1.50								
							-	-	

_.

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
6,100.0 6,200.0		64.00 64.00	6,058.7 6,158.1	264.3 269.2	541.8 552.0	-255.6 -260.4	1.50 1.50	-1.50 -1.50	0.00 0.00
6,300.0 6,400.0		64.00 64.00	6,257.7 6,357.5	273.1 275.8	559.9 565.4	-264.2 -266.8	1.50 1.50	-1.50 -1.50	0.00 0.00
6,500.0		64.00	6,457.4	275.8	568.6	-268.3	1.50	-1.50	0.00
6,584.7		0.00	6,542.1	277.7	569.4	-268.6	1.50	-1.50	0.00
	9 hold at 6584.7 M	٨D							
6,600.0	0.00	0.00	6,557.4	277.7	569.4	-268.6	0.00	0.00	0.00
6,700.0	0.00	0.00	6,657.4	277.7	569.4	-268.6	0.00	0.00	0.00
6,800.0	0.00	0.00	6,757.4	277.7	569.4	-268.6	0.00	0.00	0.00
6,900.0		0.00	6,857.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,000.0		0.00	6,957.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,100.0	0.00	0.00	7,057.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,200.0	0.00	0.00	7,157.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,300.0		0.00	7,257.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,400.0		0.00	7,357.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,500.0		0.00	7,457.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,600.0	0.00	0.00	7,557.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,700.0	0.00	0.00	7,657.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,800.0		0.00	7,757.4	277.7	569.4	-268.6	0.00	0.00	0.00
7,900.0		0.00	7,857.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,000.0		0.00	7,957.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,100.0		0.00	8,057.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,200.0		0.00	8,157.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,300.0		0.00	8,257.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,400.0		0.00	8,357.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,500.0		0.00	8,457.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,600.0		0.00	8,557.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,700.0		0.00	8,657.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,800.0		0.00	8,757.4	277.7	569.4	-268.6	0.00	0.00	0.00
8,900.0		0.00	8,857.4	277.7	569.4	-268.6	0.00	0.00	0.00
9,000.0 9,100.0		0.00 0.00	8,957.4 9,057.4	277.7 277.7	569.4 569.4	-268.6 -268.6	0.00 0.00	0.00 0.00	0.00 0.00
9,200.0		0.00	9,157.4	277.7	569.4	-268.6	0.00	0.00	0.00
9,300.0		0.00	9,257.4 9,357.4	277.7 277.7	569.4	-268.6	0.00	0.00	0.00 0.00
9,400.0 9,500.0		0.00 0.00	9,357.4	277.7	569.4 569.4	-268.6 -268.6	0.00 0.00	0.00 0.00	0.00
9,600.0		0.00	9,557.4	277.7	569.4	-268.6	0.00	0.00	0.00
9,700.0 9,800.0		0.00 0.00	9,657.4 9,757.4	277.7 277.7	569.4 569.4	-268.6 -268.6	0.00 0.00	0.00 0.00	0.00 0.00
9,800.0 9,900.0		0.00	9,757.4 9,857.4	277.7	569.4 569.4	-268.6	0.00	0.00	0.00
10,000.0		0.00	9,957.4	277.7	569.4	-268.6	0.00	0.00	0.00
10,100.0		0.00	10,057.4	277.7	569.4	-268.6	0.00	0.00	0.00
10,200.0		0.00	10,157.4	277.7	569.4	-268.6	0.00	0.00	0.00
10,200.0		0.00	10,157.4	277.7	569.4 569.4	-268.6	0.00	0.00	0.00
10,400.0		0.00	10,357.4	277.7	569.4	-268.6	0.00	0.00	0.00
10,494.6		0.00	10,452.0	277.7	569.4	-268.6	0.00	0.00	0.00
Start Build	10.00								
10,500.0	0.54	179.09	10,457.4	277.7	569.4	-268.6	10.00	10.00	0.00
10,550.0	5.54	179.09	10,507.3	275.0	569.5	-266.0	10.00	10.00	0.00
10,600.0		179.09	10,556.8	268.1	569.6	-259.0	10.00	10.00	0.00
10,650.0	15.54	179.09	10,605.5	256.8	569.8	-247.7	10.00	10.00	0.00
10,700.0		179.09	10,653.1	241.3	570.0	-232.2	10.00	10.00	0.00
10,750.0	25.54	179.09	10,699.1	221.7	570.3	-212.7	10.00	10.00	0.00
10,800.0	30.54	179.09	10,743.2	198.2	570.7	-189.2	10.00	10.00	0.00
10,850.0		179.09	10,785.1	171.0	571.1	-161.9	10.00	10.00	0.00
10,900.0		179.09	10,824.4	140.2	571.6	-131.1	10.00	10.00	0.00
10,950.0		179.09	10,861.0	106.1	572.2	-97.0	10.00	10.00	0.00
11,000.0	50.54	179.09	10,894.4	68.9	572.7	-59.8	10.00	10.00	0.00
11,050.0	55.54	179.09	10,924.4	29.0	573.4	-19.9	10.00	10.00	0.00
11,100.0		179.09	10,950.9	-13.4	574.1	22.5	10.00	10.00	0.00
11,150.0		179.09	10,973.6	-58.0	574.8	67.1	10.00	10.00	0.00
11,200.0		179.09	10,992.3	-104.3	575.5	113.4	10.00	10.00	0.00
11,250.0	75.54	179.09	11,006.8	-152.1	576.3	161.2	10.00	10.00	0.00
11,300.0	80.54	179.09	11,017.2	-201.0	577.0	210.1	10.00	10.00	0.00
11,350.0		179.09	11,023.3	-250.6	577.8	259.8	10.00	10.00	0.00

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
11,395.7	90.11	179.09	11.025.0	-296.3	578.5	305.5	10.00	10.00	0.00
,	old at 11395.7 MD		,						
11,400.0	90.11	179.09	11,025.0	-300.6	578.6	309.7	0.00	0.00	0.00
11,464.8	90.11	179.09	11,024.9	-365.3	579.6	374.5	0.00	0.00	0.00
Start 4532.7	hold at 11464.8 M	MD							
11,500.0	90.11	179.09	11,024.8	-400.6	580.2	409.7	0.00	0.00	0.00
11,600.0	90.11	179.09	11,024.6	-500.5	581.8	509.7	0.00	0.00	0.00
11,700.0	90.11	179.09	11,024.4	-600.5	583.4	609.7	0.00	0.00	0.00
11,800.0	90.11	179.09	11,024.2	-700.5	585.0	709.7	0.00	0.00	0.00
11,900.0	90.11	179.09	11,024.0	-800.5	586.6	809.7	0.00	0.00	0.00
12,000.0	90.11	179.09	11,023.8	-900.5	588.1	909.7	0.00	0.00	0.00
12,000.0	90.11	179.09	11,023.6	-1,000.5	589.7	1,009.7	0.00	0.00	0.00
12,100.0	90.11	179.09	11,023.5	-1,100.5	591.3	1,109.7	0.00	0.00	0.00
12,200.0	90.11	179.09	11,023.3	-1,200.5	592.9	1,209.7	0.00	0.00	0.00
12,400.0	90.11	179.09	11,023.1	-1,300.4	594.5	1,309.7	0.00	0.00	0.00
12,500.0 12,600.0	90.11 90.11	179.09 179.09	11,022.9 11,022.7	-1,400.4 -1,500.4	596.1 597.7	1,409.7 1,509.7	0.00 0.00	0.00 0.00	0.00 0.00
12,600.0	90.11 90.11	179.09	11,022.7	-1,500.4 -1,600.4	597.7 599.3	1,509.7	0.00	0.00	0.00
12,800.0	90.11	179.09	11,022.3	-1,700.4	600.8	1,709.7	0.00	0.00	0.00
12,900.0	90.11	179.09	11,022.1	-1,800.4	602.4	1,809.7	0.00	0.00	0.00
13,000.0	90.11	179.09	11,021.9	-1,900.4	604.0	1,909.7	0.00	0.00	0.00
13,100.0	90.11	179.09	11,021.7	-2,000.3	605.6	2,009.7	0.00	0.00	0.00
13,200.0 13,300.0	90.11 90.11	179.09 179.09	11,021.5 11,021.3	-2,100.3 -2,200.3	607.2 608.8	2,109.7 2,209.7	0.00 0.00	0.00 0.00	0.00 0.00
13,400.0	90.11	179.09	11,021.2	-2,200.3	610.4	2,209.7 2,309.7	0.00	0.00	0.00
13,500.0	90.11	179.09	11,021.0	-2,400.3	612.0	2,409.7	0.00	0.00	0.00
13,600.0	90.11	179.09	11,020.8	-2,500.3	613.6	2,509.7	0.00	0.00	0.00
13,700.0	90.11	179.09	11,020.6	-2,600.3	615.1	2,609.7	0.00	0.00	0.00
13,800.0 13,900.0	90.11 90.11	179.09 179.09	11,020.4 11,020.2	-2,700.3 -2,800.2	616.7	2,709.7 2,809.7	0.00 0.00	0.00 0.00	0.00 0.00
					618.3				
14,000.0	90.11	179.09	11,020.0	-2,900.2	619.9	2,909.7	0.00	0.00	0.00
14,100.0	90.11	179.09	11,019.8	-3,000.2	621.5	3,009.7	0.00	0.00	0.00
14,200.0	90.11	179.09	11,019.6	-3,100.2	623.1	3,109.7	0.00	0.00	0.00
14,300.0	90.11	179.09	11,019.4	-3,200.2	624.7	3,209.7	0.00	0.00	0.00
14,400.0	90.11	179.09	11,019.2	-3,300.2	626.3	3,309.7	0.00	0.00	0.00
14,500.0	90.11	179.09	11,019.0	-3,400.2	627.8	3,409.7	0.00	0.00	0.00
14,600.0	90.11	179.09	11,018.8	-3,500.2	629.4	3,509.7	0.00	0.00	0.00
14,700.0	90.11	179.09	11,018.7	-3,600.1	631.0	3,609.7	0.00	0.00	0.00
14,800.0	90.11	179.09	11,018.5	-3,700.1	632.6	3,709.7	0.00	0.00	0.00
14,900.0	90.11	179.09	11,018.3	-3,800.1	634.2	3,809.7	0.00	0.00	0.00
15,000.0	90.11	179.09	11,018.1	-3,900.1	635.8	3,909.7	0.00	0.00	0.00
15,100.0	90.11	179.09	11,017.9	-4,000.1	637.4	4,009.7	0.00	0.00	0.00
15,200.0	90.11	179.09	11,017.7	-4,100.1	639.0	4,109.7	0.00	0.00	0.00
15,300.0	90.11	179.09	11,017.5	-4,200.1	640.6	4,209.7	0.00	0.00	0.00
15,400.0	90.11	179.09	11,017.3	-4,300.1	642.1	4,309.7	0.00	0.00	0.00
15,500.0	90.11	179.09	11,017.1	-4,400.0	643.7	4,409.7	0.00	0.00	0.00
15,600.0	90.11	179.09	11,016.9	-4,500.0	645.3	4,509.7	0.00	0.00	0.00
15,700.0	90.11	179.09	11,016.7	-4,600.0	646.9	4,609.7	0.00	0.00	0.00
15,800.0	90.11	179.09	11,016.5	-4,700.0	648.5	4,709.7	0.00	0.00	0.00
15,900.0	90.11	179.09	11,016.4	-4,800.0	650.1	4,809.7	0.00	0.00	0.00
15,997.5	90.11	179.09	11,016.0	-4,897.5	651.9	4,907.2	0.00	0.00	0.00
	old at 15997.5 MD		,	,		,			
16,000.0	90.11	179.09	11,016.0	-4,900.0	651.9	4,909.7	0.00	0.00	0.00
16,067.5	90.11	179.09	11,015.9	-4,967.5	653.0	4,977.2	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL_C34.231H - plan hits target cent - Point	0.00 er	0.00	11,015.9	-4,967.5	653.0	456,360.31	651,117.27	32° 15' 14.799 N	103° 58' 41.554 W
LTP_C34.231H - plan hits target cent - Point	0.00 er	0.00	11,016.0	-4,897.5	651.9	456,430.30	651,116.17	32° 15' 15.491 N	103° 58' 41.564 W
FTP_C34.231H - plan misses target o - Point	0.00 center by 184	0.00 6usft at 109.	11,025.0 89.6usft MD	200.3 (10887.7 TVD	570.5), 76.9 N, 572.	461,528.08 6 E)	651,034.77	32° 16' 5.940 N	103° 58' 42.316 W

Measured Depth	Vertical Depth			Dip	Dip Direction
(usft)	(usft)	Name	Lithology	(°)	(°)
350.0	350.0	Rustler Anhydrite			
720.0	720.0	Top Salt			
2,849.7	2,840.0	Base Salt			
3,071.8	3,060.0	Delaware Mountain Gp			
3,087.0	3,075.0	Lamar			
3,102.1	3,090.0	Bell Canyon			
3,112.2	3,100.0	Ramsey Sand			
3,975.6	3,955.0	Cherry Canyon			
5,157.1	5,125.0	Brushy Canyon			
6,817.6	6,775.0	Bone Spring Lime			
6,877.6	6,835.0	Upper Avalon			
7,257.6	7,215.0	Middle Avalon			
7,632.6	7,590.0	Lower Avalon			
7,807.6	7,765.0	1st Bone Spring Sand			
8,082.6	8,040.0	2nd Bone Spring Carb			
8,407.6	8,365.0	2nd Bone Spring Sand			
8,927.6	8,885.0	3rd Bone Spring Carb			
9,747.6	9,705.0	3rd Bone Spring Sand			
10,012.6	9,970.0	3rd BS W Sand			
10,072.6	10,030.0	Wolfcamp A X Sand			
10,177.6	10,135.0	Wolfcamp A Y Sand			
10,292.6	10,250.0	Wolfcamp A Lower			
10,417.6	10,375.0	Wolfcamp B			
10,745.5	10,695.0	Wolfcamp B1			
11,017.0	10,905.0	Wolfcamp C			

Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
1,500.0	1,500.0	0.0	0.0	Start Build 1.50
2,033.3	2,031.6	16.3	33.4	Start 4018.0 hold at 2033.3 MD
6,051.3	6,010.5	261.4	536.0	Start Drop -1.50
6,584.7	6,542.1	277.7	569.4	Start 3909.9 hold at 6584.7 MD
10,494.6	10,452.0	277.7	569.4	Start Build 10.00
11,395.7	11,025.0	-296.3	578.5	Start 69.1 hold at 11395.7 MD
11,464.8	11,024.9	-365.3	579.6	Start 4532.7 hold at 11464.8 MD
15,997.5	11,016.0	-4,897.5	651.9	Start 70.0 hold at 15997.5 MD
16,067.5	11,015.9	-4,967.5	653.0	TD at 16067.5

Elevation above Sea Level: 3048'

DRILLING PROGRAM

1. Estimated Tops

Formation	TVD	MD	Lithologies	Bearing	
Quaternary Deposits	0	0	Surface	None	
Rustler Anhydrite	350	350		Salt	
Salado	720	720	Salt	Salt	
Base Salt	2840	2849		Salt	
Lamar	3075	3087	Limestone	None	
Bell Canyon	3090	3102	Sandstone	Hydrocarbons	
Cherry Canyon	3955	3976	Sandstone	Hydrocarbons	
Brushy Canyon	5125	5157	Sandstone	Hydrocarbons	
Bone Spring Lime	6775	6817	Limestone	Hydrocarbons	
1st Bone Spring	7765	7807	Sandstone	Hydrocarbons	
2nd Bone Spring	8040	8082	Sandstone	Hydrocarbons	
3rd Bone Spring	8885	8927	Sandstone	Hydrocarbons	
КОР	10452	10494	Sandstone	Hydrocarbons	
Wolfcamp A	10030	10072	Shale	Hydrocarbons	
TD	11015	16067	Shale	Hydrocarbons	

2. Notable Zones

Wolfcamp is the target formation.

3. Pressure Control

Pressure Control Equipment (See Schematics):

A 15,000', 5,000 psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A top drive check valve and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. The wellhead will be a multi-bowl speed head.

BOP Test procedure will be as follows:

After surface casing is set and the BOP is nippled up, the BOP pressure tests will be made with a third party tester to 250 psi low, 5000 psi high, and the annular preventer will be tested to 2,500 psi. The BOP will be tested in this manner after nipple-up if any break of the stack occurs.

Variance Requests:

Tap Rock requests a variance to run a multi-bowl speed head for setting the Intermediate 1, Intermediate 2, and Production Strings. Tap Rock requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Tap Rock requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, after drilling surface, 1st intermediate, and 2nd intermediate hole sections and cementing 2nd intermediate casing, a 10M dry hole cap with bleed off valve will be installed. The rig will then walk to another well on the pad. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test. Due to the Potash, Tap Rock will cement the 7-5/8" string to surface.

Tap Rock requests approval to possibly utilize a spudder rig to drill and set casing for the surface interval on this well. The spudder rig will be possibly utilized in order to reduce cost and save time. The wellhead will be installed and tested as soon as the surface casing is cut off per the existing COAs. A blind flange with the same pressure rating as the wellhead will be installed on the well. Once the spudder rig is removed, Tap Rock will secure the wellhead area by placing a guard rail around the cellar. Pressure will be monitored and a means for intervention will be maintained while the drilling rig is not over the well. Spudder rig operations are expected to take 2-3 days per well. Three wells on the pad will have surface casing set by the spudder rig as a part of this operation. The BLM will be notified 24 hours prior to commencing spudder rig operations. Within 90 days of the departure of the spudder rig, drilling operations will recommence on these wells. This rig will have a BOP stack equal or greater to the pressure rating required in the COAs. The BLM will be notified 24 hours before the larger rig moves on the pre-set wells. Tap Rock will have supervision on the spudder rig to ensure compliance with all BLM and NMOCD regulations.

4. Casing & Cement

All Casing will be new.

0														
Name	Hole Size	Casing Size	Standard	Tapered	Top MD	Bottom MD	Top TVD	BTM TVD	Grade	Weight	Thread	Collapse	Burst	Tension
Surface	17 1/2	13 3/8	API	No	0	420	0	420	J-55	54.5	BUTT	1.13	1.15	1.6
1st Intermediate	12 1/4	9 5/8	API	No	0	3137	0	3125	J-55	40	BUTT	1.13	1.15	1.6
2nd Intermediate	8 3/4	7 5/8	NON API	No	0	10394	0	10352	P-110	29.7	W-513	1.13	1.15	1.6
Production	6 3/4	5 1/2	NON API	No	0	9894	0	9852	P-110	20	TXP	1.13	1.15	1.6
Production	6 3/4	5	NON API	Yes	9894	16067	9852	11015	P-110	18	W-521	1.13	1.15	1.6

Name	Туре	Top MD	Sacks	Yield	Cu. Ft	Weight	Excess	Cement	Additives		
Surface	Tail	0	432	1.35	583	14.8	100%	С	5% NCI + LCM		
1st Intermediate	Lead	0	707	1.72	1216	13.5	65%	С	Bentonite + 1% CaCL2 + 8% NaCl + LCM		
1st internediate	Tail	2353	305	1.33	405	14.8	65%	С	5% NaCl + LCM		
2nd Intermediate	Lead	0	574	2.22	1274	11.5	35%	TXI	Fluid Loss + Dispersant + Retarder + LCM		
	Tail	9394	99	1.37	136	13.2	35%	Н	Fluid Loss + Dispersant + Retarder + LCM		
Production	Tail	9794	739	1.19	879	15.8	25%	Н	Fluid Loss + Dispersant + Retarder + LCM		

5. Mud Program

Electronic Pason mud monitor system complying with Onshore Order 1 will be used. All necessary mud products (e.g., barite, cedar bark) for weight addition and fluid loss control will always be on site. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Name	Тор	Bottom	Туре	Mud Weight	Visc	Fluid Loss
Surface	0	420	FW Spud Mud	8.30	28	NC
Intermediate	420	3137	Brine Water	10.00	30-32	NC
Intermediate 2	3137	10394	FW/Cut Brine	9.00	30-32	NC
Production	10394	16067	Oil Base Mud	13.00	55 - 70	<10

6. Cores, Tests, & Logs

- Electric Logging Program: No open-hole logs are planned at this time for the pilot hole.
- GR will be collected while drilling through the MWD tools from 9.625" casing shoe to TD.
- A 2-person mud logging program will be used from 9.625" casing shoe to TD.
- No DSTs or cores are planned at this time.
- CBL w/ CCL from as far as gravity will let it fall to TOC.

7. Down Hole Conditions

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 7,446 psi. Expected bottom hole temperature is \approx 170° F.

Tap Rock does not anticipate that there will be enough H2S from the surface to the Wolfcamp formations to meet the BLM's Onshore Order 6 requirements for the submission of an "H2S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Tap Rock has an H2S safety package on all wells and an "H2S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be safely flared. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. <u>Other</u>

Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 30 days. If production casing is run an additional 60 days will be required to complete and construct surface facilities.