Form 3160-3 (June 2015)

UNITED STATES DEPARTMENT OF THE INTERIOR RUBEALL OF LAND MANAGEMENT

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

5.	Lease	Serial	No.
NIN	ANIMO	മെറുമ	1

BUREAU OF LAND MANA	AGEMENI		1410114101099034	
APPLICATION FOR PERMIT TO D	RILL OR REENTER		6. If Indian, Allotee or Tr	ribe Name
1a. Type of work: PDRILL R	EENTER		7. If Unit or CA Agreeme	ent, Name and No.
1b. Type of Well: ✓ Oil Well ☐ Gas Well ☐ O	ther		8. Lease Name and Well	No.
1c. Type of Completion: Hydraulic Fracturing Si	ingle Zone Multiple Zone		HEADS CC 9-4 FEDEI	RAL COM
			24H	
2. Name of Operator OXY USA INCORPORATED			9. API Well No. 30 015 47337	
3a. Address	3b. Phone No. (include area code	e)	10. Field and Pool, or Ex	ploratory
5 Greenway Plaza, Suite 110, Houston, TX 77046	(713) 366-5716		CORRAL DRAW BONE	E SPRING/RED TA
 Location of Well (Report location clearly and in accordance of At surface SWSE / 910 FSL / 1365 FEL / LAT 32.2273 At proposed prod. zone LOT 2 / 20 FNL / 2110 FEL / LAT 	78 / LONG -103.985348	3	11. Sec., T. R. M. or Blk. SEC 9/T24S/R29E/NM	-
14. Distance in miles and direction from nearest town or post off 8 miles	ice*		12. County or Parish EDDY	13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of acres in lease 878.94	17. Spacin	ng Unit dedicated to this w	vell
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 35 feet	19. Proposed Depth 8504 feet / 19271 feet		BIA Bond No. in file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will	start*	23. Estimated duration	
2936 feet	03/06/2020		15 days	
	24. Attachments		•	
The following completed in accordance with the requirements of	f Onahara Oil and Cas Order No. 1	and tha I	Ivideoulia Eroaturina mila n	or 42 CED 2162.2.2

The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable)

- 1. Well plat certified by a registered surveyor.
- 2. A Drilling Plan.
- 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office).
- 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above).
- 5. Operator certification.
- 6. Such other site specific information and/or plans as may be requested by the

25. Signature (Electronic Submission)	Name (Printed/Typed) DAVID STEWART / Ph: (713) 366-5716	Date 08/27/2019
Title		
Sr. Regulatory Advisor		
Approved by (Signature)	Name (Printed/Typed)	Date
(Electronic Submission)	Cody Layton / Ph: (575) 234-5959	07/30/2020
Title	Office	
Assistant Field Manager Lands & Minerals	Carlsbad Field Office	

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

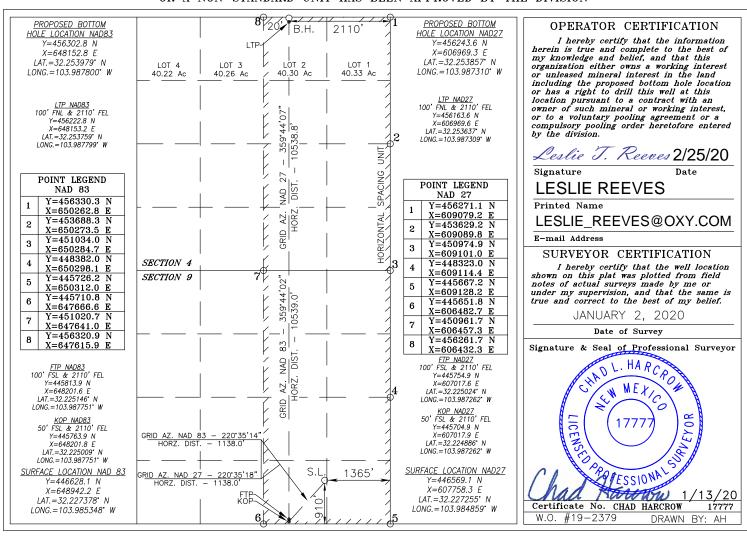
1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

□ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30-015- 47337	96473 Pool Code	PIERCE CROSSING; BONE	SPRING, EAST
Property Code 328290	-	erty Name .4 FEDERAL COM	Well Number 24H
16696 No.	•	ator Name USA INC.	Elevation 2935.5'


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
0	9	24-S	29-E		910	SOUTH	1365	EAST	EDDY

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township Range Lot		Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
2	4	24-S	29-E		20	NORTH	2110	EAST	EDDY
Dedicated Acres	3 Joint o	r Infill Cor 3 acres	nsolidation (Code Ord	der No.				

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

00/15/0010

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: <u>08/15/2019</u>	
☑ Original☐ Amended - Reason for Amendment:	Operator & OGRID No.: OXY USA INC 16696

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Heads CC 9-4 Fd Com 24H	Pending	O-9-24S-29E	910 FSL 1365 FEL	2,000	0	
Heads CC 9-4 Fd Com 25H	Pending	O-9-24S-29E	910 FSL 1330 FEL	2,000	0	
Heads CC 9-4 Fd Com 26H	Pending	P-9-24S-29E	910 FSL 1295 FEL	2,000	0	

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, where a gas transporter system is in place. The gas produced from production facility is dedicated to Enterprise ("Enterprise") and is connected to Enterprise low/high pressure gathering system located in Eddy County, New Mexico. <a href="OXY USA INC.("OXY") provides (periodically) to Enterprise a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, OXY and Enterprise have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at OXY USA WTP LP Processing Plant located in Sec. 23, Twn. 21S, Rng. 23E, Eddy County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Enterprise system at that time. Based on current information, it is OXY's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:
LEASE NO.:
NMNM099034
WELL NAME & NO.:
Heads CC 9-4 Federal Com 24H
SURFACE HOLE FOOTAGE:
487'/S & 1667'/E
20'/N & 2240'/E
LOCATION:
COUNTY:
Eddy County, New Mexico

COA

H2S	O Yes	⊙ No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	• Medium	C High
Cave/Karst Potential	Critical		
Variance	○ None	• Flex Hose	Other
Wellhead	Conventional	© Multibowl	O Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	▼ Fluid Filled	✓ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	▼ COM	□ Unit
Break Testing	O Yes	⊙ No	

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The **10-3/4** inch surface casing shall be set at approximately **605** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run

- to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The **7-5/8** inch intermediate casing shall be set at approximately **8230** feet. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 - Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- ❖ In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 10-3/4" X 7-5/8" annulus. Operator must run a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.

3. The minimum required fill of cement behind the 5-1/2 x 4-1/2 inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **3000 (3M)** psi.

Option 2:

1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the

blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Offline Cementing

• Contact the BLM prior to the commencement of any offline cementing procedure.

BOP Break Testing Variance

• BOP break testing is not permitted on this well.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

- lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

NMK04132020

Page 9 of 9

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

07/31/2020

APD ID: 10400046261

Submission Date: 08/27/2019

Highlighted data reflects the most recent changes

operator mamor

Operator Name: OXY USA INCORPORATED

Well Number: 24H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Well Name: HEADS CC 9-4 FEDERAL COM

BLM Office: CARLSBAD User: David Stewart Title: Sr. Regulatory Advisor

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM099034 Lease Acres: 878.94

Surface access agreement in place? Allotted? Reservation:

Agreement in place? NO Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? N

Permitting Agent? NO APD Operator: OXY USA INCORPORATED

Operator letter of designation:

Operator Info

Operator Organization Name: OXY USA INCORPORATED

Operator Address: 5 Greenway Plaza, Suite 110

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (713)366-5716

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: CORRAL DRAW Pool Name: RED TANK; BONE

BONE SPRING SPRING

Zip: 77046

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL,POTASH

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL,POTASH

New surface disturbance?

Type of Well Pad: MULTIPLE WELL **Multiple Well Pad Name:** Number: 24H, 25H, 26H, 53H,

HEADS CC 9-4 FEDERAL COM 54H Well Class: HORIZONTAL

Number of Legs: 1

Well Work Type: Drill Well Type: OIL WELL

Describe Well Type: Well sub-Type: INFILL

Describe sub-type:

Distance to nearest well: 35 FT Distance to lease line: 20 FT Distance to town: 8 Miles

Reservoir well spacing assigned acres Measurement: 640 Acres Well plat: HeadsCC9_4FdCom24H_C102_20200225150043.pdf

HeadsCC9_4FdCom24H_SitePlan_20200225150049.pdf

Well work start Date: 03/06/2020 **Duration: 15 DAYS**

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	910	FSL	136	FEL	24S	29E	9	Aliquot	32.22737		EDD			F	FEE	293	0	0	N
Leg			5					SWSE	8	103.9853	Υ	MEXI	1			6			
#1										48		CO	CO						
KOP	50	FSL	211	FEL	24S	29E	9	Aliquot	32.22500	-	EDD	NEW	NEW	F	FEE	-	800	781	N
Leg			0					SWSE	9	103.9877	Υ	MEXI	MEXI			487	3	2	
#1										51		СО	СО			6			

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP Leg #1-1	264 7	FNL	223 9	FEL	24S	29E	4	Aliquot SWNE	32.24675 7	- 103.9882 08	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 119754	- 557 3	170 67	850 9	Υ
PPP Leg #1-2	100	FSL	211 0	FEL	24S	29E	9	Aliquot SWSE	32.22514 6	- 103.9877 51	EDD Y	NEW MEXI CO	NEW MEXI CO		FEE	- 559 3	906 0	852 9	Υ
PPP Leg #1-3	132 8	FSL	223 9	FEL	24S	29E	9	Aliquot NWSE	32.22852	- 103.9881 77	EDD Y	1	NEW MEXI CO	F	NMNM 099034	- 558 9	104 33	852 5	Υ
PPP Leg #1-4	132 1	FNL	223 9	FEL	24S	29E	4	Aliquot NWNE	32.25040 3	- 103.9882 14	EDD Y	NEW MEXI CO	NEW MEXI CO	1	NMNM 099034	- 557 0	183 93	850 6	Υ
EXIT Leg #1	100	FNL	211 0	FEL	24S	29E	4	Lot 2	32.25375 9	- 103.9877 99	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 099034	- 556 8	191 91	850 4	Υ
BHL Leg #1	20	FNL	211 0	FEL	24S	29E	4	Lot 2	32.25397 9	- 103.9878	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 099034	- 556 8	192 71	850 4	Υ

OXY USA INC.

SITE PLAN CEDCAN 0912 SECTION 9, TOWNSHIP 24 SOUTH, RANGE 29 EAST FAA PERMIT: NO

NO.	WELL	FOOTAGE	LAT.	LONG.	ELEV.	ID#
1	HEADS CC 9_4 FED COM #53H	910' FSL & 1640' FEL	32.227376° N	103.986237° W	2935.3	IP-SMS-3682
2	HEADS CC 9_4 FED COM #54H	910' FSL & 1605' FEL	32.227377° N	103.986123° W	2935.5	IP-SMS-3683
3	HEADS CC 9_4 FED COM #24H	910' FSL & 1365' FEL	32.227378° N	103.985348° W	2935.5	IP-SMS-3670
4	HEADS CC 9_4 FED COM #25H	910' FSL & 1330' FEL	32.227378° N	103.985234° W	2935.7	IP-SMS-3671
5	HEADS CC 9_4 FED COM #26H	910' FSL & 1295' FEL	32.227378° N	103.985121° W	2935.8	IP-SMS-3672

NOTES:

- 1) LATS & LONGS SHOWN HEREON ARE MERCATOR GRID AND CONFORM TO THE NEW MEXICO COORDINATE SYSTEM "NEW MEXICO EAST ZONE" NORTH AMERICAN DATUM 1983.
- 2) DISTANCES ARE GRID VALUES.
- 3) ALL FEATURES ARE EXISTING UNLESS OTHERWISE NOTED

CERTIFICATION

HARCROW SURVEYING, LLC

2316 W. MAIN ST, ARTESIA, N.M. 88210 PH: (575) 746-2158

200

OX	Y USA	INC.	
SURVEY DATE: JAN.	2, 2020	SITE PLAN	
DRAFTING DATE: JAN	N. 10, 2020	PAGE: 1 OF 1	
APPROVED BY: CH	DRAWN BY: WN	FILE: 19-2394	

Scale:1"=200

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

07/31/2020

APD ID: 10400046261

Submission Date: 08/27/2019

Highlighted data reflects the most recent changes

Operator Name: OXY USA INCORPORATED

Well Name: HEADS CC 9-4 FEDERAL COM

Well Number: 24H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	11100100100			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
520448	RUSTLER	2936	148	148	ANHYDRITE, DOLOMITE, SHALE	USEABLE WATER	N
520449	SALADO	2265	671	671	ANHYDRITE, DOLOMITE, HALITE, SHALE	OTHER : Salt	N
520450	CASTILE	1590	1346	1346	ANHYDRITE	OTHER : Salt	N
520451	LAMAR	25	2911	2911	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : Brine	N
520452	BELL CANYON	-27	2963	2963	SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : Brine	N
520453	CHERRY CANYON	-868	3804	3804	SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : Brine	N
520454	BRUSHY CANYON	-2116	5052	5100	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL, OTHER : Brine	N
520455	BONE SPRING	-3713	6649	6780	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y
520456	BONE SPRING 1ST	-4711	7647	7830	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y
520457	BONE SPRING 2ND	-5524	8460	8775	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 8529

Equipment: 13-5/8" 3M Annular, Blind Ram, Double Ram

Requesting Variance? YES

Variance request: OXY requests a variance for the use of a flexible choke line from the BOP to Choke Manifold.

Testing Procedure: Oxy will utilize a 5M annular with a 10M BOPE stack. The BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. BOP Break Testing Request Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. A separate sundry will be sent prior to spud that reflects the pad based break testing plan. BOP break test under the following conditions: - After a full BOP test is conducted - When skidding to drill an intermediate section where ICP is set into the third Bone Spring or shallower. - When skidding to drill a production section that does not penetrate into the third Bone Spring or deeper. If the kill line is broken prior to skid, two tests will be performed. 1) Wellhead flange, co-flex hose, kill line connections and upper pipe rams 2) Wellhead flange, HCR valve, check valve, upper pipe rams If the kill line is not broken prior to skid, only one test will be performed. 1) Wellhead flange, co-flex hose, check valve, upper pipe rams

Choke Diagram Attachment:

HeadsCC9_4FdCom24H_ChkManifold_20190821124044.pdf

BOP Diagram Attachment:

HeadsCC9_4FdCom24H_BOP_20190821124118.pdf

HeadsCC9_4FdCom24H_FlexHoseCert_20190821124134.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	611	0	611	2936	2325	611	J-55	40.5	BUTT	1.12 5	1.2	BUOY	1.4	BUOY	1.4
- 1	l	9.87 5	7.625	NEW	API	N	0	7903	0	7717	3101	-4781	7903	HCL -80	26.4	BUTT	1.12 5	1.2	BUOY	1.4	BUOY	1.4
1 -	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	8453	0	8241	3101	-5305	8453	P- 110		OTHER - DQX/SFTO RQ/DQWTO RQ	1.12 5	1.2	BUOY	1.4	BUOY	1.4
	PRODUCTI ON	6.75	4.5	NEW	API	Y	8453	19271	8241	8504	-5305	-5568	10818	P- 110		l	1.12 5	1.2	BUOY	1.4	BUOY	1.4

Casing Attachments

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

HeadsCC9_4FdCom24H_CsgCriteria_20190826152940.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

HeadsCC9_4FdCom24H_CsgCriteria_20190826152917.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

 $\label{lem:headsCC9_4FdCom24H_5.500in_x_20.00_P110_CY_TMK_UP_TORQ_DQW_20200225151952.pdf $$ HeadsCC9_4FdCom24H_5.500in_x_20.00_P_110_TMK_UP_DQX_20200225151957.pdf $$ HeadsCC9_4FdCom24H_5.500in_x_20_P110_HCTMK_UP_SF_TORQ_20200225151948.pdf $$ $$ Absolute the context of the c$

Casing Design Assumptions and Worksheet(s):

HeadsCC9_4FdCom24H_CsgCriteria_20190826153024.pdf

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

Casing Attachments

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

 $Heads CC9_4Fd Com24H_4.5_x_13.5_P110_CY_TMK_UP__TORQ_DQW_20200225152102.pdf$

Casing Design Assumptions and Worksheet(s):

HeadsCC9_4FdCom24H_CsgCriteria_20200225152125.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	611	498	1.33	14.8	662	100	CIC	Accelerator
											<u>I</u>
INTERMEDIATE	Lead	2	0	5302	652	1.92	12.9	1252	10	CIC	Accelerator
									<u> </u>		
INTERMEDIATE	Lead	2	5302	7903	363	1.65	13.2	599	5	Class H	Retarder, Dispersant, Salt
	-	•	•	•	•	•					1
PRODUCTION	Lead		7403	1927 0	1380	1.38	13.2	1904	20	Class H	Retarder, Dispersant, SAlt
	•	•	•							•	
PRODUCTION	Lead		7403	1927 0	1380	1.38	13.2	1904	20	CIH	Retarder, Dispersant, Salt

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2.

Describe the mud monitoring system utilized: PVT/MD Totco/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	611	WATER-BASED MUD	8.6	8.8							
611	7903	OTHER: Saturated Brine Based Mud and/or Oil Based Mud	8	10							
7903	1927 0	OTHER : Water Based and/or oil Based Mud	8	9.6							

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR from TD to surface (horizontal well - vertical portion of hole). Mud log from intermediate casing shoe to TD.

List of open and cased hole logs run in the well:

GAMMA RAY LOG, MUD LOG/GEOLOGICAL LITHOLOGY LOG.

Coring operation description for the well:

No coring is planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4258 Anticipated Surface Pressure: 2381

Anticipated Bottom Hole Temperature(F): 149

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

HeadsCC9_4FdCom24H_H2S2_20190821124529.pdf HeadsCC9_4FdCom24H_H2S3ECL_20190821124529.pdf HeadsCC9_4FdCom24H_H2S1_20200225152514.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

HeadsCC9_4FdCom24H_DirectPlot_20200225152538.pdf HeadsCC9_4FdCom24H_DirectPlan_20200225152545.pdf

Other proposed operations facets description:

OXY requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage, we will drop a cancelation cone and not pump the second stage.

OXY requests the option to run production casing with DQX, SF TORQ, and/or DQW TORQ connections to accommodate hole conditions or drilling operations.

OXY requests to pump a two stage Intermediate casing cement job with the first stage being pumped conventionally with the calculated TOC @ the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the top of the Brushy Canyon to Surface.

OXY requests a variance to cement the 7-5/8" intermediate casing string offline, see attached for additional

Well Name: HEADS CC 9-4 FEDERAL COM Well Number: 24H

information.

Annular Clearance Variance Request

As per the agreement reached in the OXY/BLM meeting on Feb 22, 2018, OXY requests permission to allow deviation from the 0.422 annular clearance requirement from Onshore Order #2 under the following conditions:

- 1. Annular clearance to meet or exceed 0.422 between intermediate casing ID and production casing coupling only on the first 500 overlap between both casings.
- 2. Annular clearance less than 0.422 is acceptable for the curve and lateral portions of the production open hole section.

Well will be drilled with a walking/skidding operation. Plan to drill the multiple well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well.

OXY requests the option to contract a Surface Rig to drill, set surface casing, and cement for this well. If the timing between rigs is such that OXY would not be able to preset surface, the Primary Rig will MIRU and drill the well in its entirety per the APD. See attached for additional spudder rig information.

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8 intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

Three string wells:

CBL will be required on one well per pad

If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run

Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

Other proposed operations facets attachment:

HeadsCC9_4FdCom24H_SpudRigData_20190821125147.pdf

HeadsCC9_4FdCom24H_DrillPlan_20200225152628.pdf

Other Variance attachment:

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

Scope

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Discussion

Implementation: This plan with all details is to be fully implemented

before drilling to commence.

Emergency response

Procedure:

This section outlines the conditions and denotes steps

to be taken in the event of an emergency.

Emergency equipment

Procedure:

This section outlines the safety and emergency

equipment that will be required for the drilling of this

well.

Training provisions: This section outlines the training provisions that must

be adhered to prior to drilling.

Drilling emergency call lists: Included are the telephone numbers of all persons to

be contacted should an emergency exist.

Briefing: This section deals with the briefing of all people

involved in the drilling operation.

Public safety: Public safety personnel will be made aware of any

potential evacuation and any additional support

needed.

Check lists: Status check lists and procedural check lists have been

included to insure adherence to the plan.

General information: A general information section has been included to

supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Emergency Equipment Requirements

1. Well control equipment

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. Hydrogen sulfide sensors and alarms

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization *Wind sock – wind streamers:*

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

```
green – normal conditions
yellow – potential danger
red – danger, H2S present
```

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. Well Testing

No drill stem test will be performed on this well.

8. Evacuation plan

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. <u>Designated area</u>

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.

B. If uncontrollable conditions occur:

1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.

C. Responsibility:

- 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:

- 1. On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
- 2. Check status of personnel (buddy system).
- 3. Secure breathing equipment.
- 4. Await orders from supervisor.

Drill site manager:

- 1. Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
- 3. Determine H2S concentrations.
- 4. Assess situation and take control measures.

Tool pusher:

- 1. Don escape unit Report to up nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
- 3. Determine H2S concentration.
- 4. Assess situation and take control measures.

Driller:

1. Don escape unit, shut down pumps, continue

- rotating DP.
- 2. Check monitor for point of release.
- 3. Report to nearest upwind designated safe briefing / muster area.
- 4. Check status of personnel (in an attempt to rescue, use the buddy system).
- 5. Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence.
- 6. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.

Derrick man Floor man #1 Floor man #2 1. Will remain in briefing / muster area until instructed by supervisor.

Mud engineer:

- 1. Report to nearest upwind designated safe briefing / muster area.
- 2. When instructed, begin check of mud for ph and H2S level. (Garett gas train.)

Safety personnel:

1. Mask up and check status of all personnel and secure operations as instructed by drill site manager.

Taking a kick

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

<u>Instructions for igniting the well</u>

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

Remember: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **Do not assume the area is safe after the well is ignited.**

Status check list

Note:	All items or	this li	ist must l	he comp	leted b	efore d	drilling to	o pro	eduction of	casing	noint.
11010.	Till itellis of	1 (1115) 11	ist mast t	oc comp	icica o	CIOIC C		o pro	Judetion (Justing	pom.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1 100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by		D-4
neckea by	/*	Date:
circumous of	···•	But.

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity – 1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i Toxicity of various gases

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hen	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	C12	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Methane	Ch4	0.55	90,000 ppm	Combustibl	e above 5% in air

- 1) threshold limit concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.
- 2) hazardous limit concentration that will cause death with short-term exposure.
- 3) lethal concentration concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	<u>Ppm</u>	Grains	
		100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in 3 – 15 minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

^{*}at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper face-piece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

Rescue First aid for H2S poisoning

Do not panic!

Remain calm – think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012

OXY Permian Delaware NM Basin Drilling & Completions Incident Reporting OXY Permian Crisis Team Hotline Notification

Person	Location	Office Phone	Cell/Mobile Phone	
Duilling & Consulations Demonts				
Drilling & Completions Department	**	(712) 244 7774	(712) 270 1117	
Drilling & Completions Manager: John Willis	Houston	(713) 366-5556	(713) 259-1417	
Drilling Superintendent: Simon Benavides	Houston	(713) 215-7403	(832) 528-3547	
Completions Superintendent: Chris Winter	Houston	(713) 366-5212	(806) 239-8774	
Drilling Eng. Supervisor: Diego Tellez	Houston	(713) 350-4602	(713) 303-4932	
Drilling Eng. Supervisor: Randy Neel	Houston	(713) 215-7987	(713) 517-5544	
Completions Eng. Supervisor: Evan Hinkel	Houston	(713) 366-5436	(281) 236-6153	
Drilling & Completions HES Lead. Ryan Green	Houston	713-336-5753	281-520-5216	
Drilling & Completions HES Advisor:Kenny Williams	Carlsbad	(432) 686-1434	(337) 208-0911	
Drilling & Completions HES Advisor:Kyle Holden	Carlsbad	(432) 686-1435	(661) 369-5328	
Drilling & Completions HES Advisor Sr:Dave Schmidt	Carlsbad		(559) 310-8572	
Drilling & Completions HES Advisor. :Seth Doyle	Carlsbad		(337) 499-0756	
HES / Environmental & Regulatory Department	t Location	Office	Cell Phone	
Jon Hamil-HES Manager	Houston	(713) 497-2494	(832) 537-9885	
Mark Birk-HES Manager	Houston	(713) 350-4615	(949) 413-3127	
Austin Tramell	Midland	(432) 699-4208	(575) 499-4919	
Rico Munoz	Midland	(432) 699-8366	(432) 803-4116	
Amber DuckWorth	Midland		(832) 966-1879	
Kelley Montgomery- Regulatory Manager	Houston	(713) 366-5716	(832) 454-8137	
Sandra Musallam -Regulatory Lead	Houston	+1 (713) 366-5106	+1 (713) 504-8577	
Bishop, Steve-DOT Pipeline Coordinator	Midland	432-685-5614		
Wilson, Dusty-Safety Advisor	Midland	432-685-5771	(432) 254-2336	
John W Dittrich Eniromental Advisor	Midland		(575) 390-2828	
William (Jack) Calhoun-Environmental Lead	Houston	+713 (350) 4906	(281) 917-8571	
Robert Barrow-Risk Engineer Manager	Houston	(713) 366-5611	(832) 867-5336	
Sarah Holmes-HSE Cordinator	Midland	432-685-5758		
Administrative	Location	Office		
Sarah Holmes	Midland	432-685-5830		
Robertson, Debbie	Midland	432-685-5812		
Laci Hollaway	Midland	(432) 685-5716	(432) 631-6341	
Administrative	Location	Office		
Rosalinda Escajeda	Midland	432-685-5831		

Person	Location	Office Phone	Cell/Mobile Phone
Moreno, Leslie (contract)	Hobbs	575-397-8247	
Sehon, Angela (contractor)	Levelland	806-894-8347	
Vasquez, Claudia (contractor)	North Cowden	432-385-3120	
XstremeMD	Location	Office	
Medical Case Management	Orla, TX	(337) 205-9314	
Axiom Medical Consulting	Location	Office	
Medical Case Management		(877) 502-9466	
Regulatory Agencies			
Bureau of Land Management	Carlsbad, NM	(505) 887-6544	
Bureau of Land Management	Hobbs, NM	(505) 393-3612	
Bureau of Land Management	Roswell, NM	(505) 393-3612	
Bureau of Land Management	Santa Fe, NM	(505) 988-6030	
DOT Juisdictional Pipelines-Incident Reporting New		(505) 827-3549	
Mexico Public Regulaion Commission	Santa Fe, NM	(505) 490-2375	
DOT Juisdictional Pipelines-Incident Reporting Texas Railroad Commission	Anatia TV	(512) 162 6700	
EPA Hot Line	Austin, TX	(512) 463-6788	
Federal OSHA, Area Office	Dallas, Texas Lubbock, Texas	(214) 665-6444 (806) 472-7681	
	·	· · · · ·	
National Response Center National Infrastructure Coordinator Center	Washington, D. C.	(800) 424-8802 (202) 282-9201	
New Mexico Air Quality Bureau	Santa Fe, NM	(505) 827-1494	
New Mexico All Quality Buleau	Santa Pe, NWI	(303) 827-1494	After Hours (505) 370-
New Mexico Oil Conservation Division	Artesia, NM	(505) 748-1283	7545
New Mexico Oil Conservation Division	Hobbs, NM	(505) 393-6161	
New Mexico Oil Conservation Division	Santa Fe, NM	(505) 471-1068	
New Mexico OCD Environmental Bureau	Santa Fe, NM	(505) 476-3470	
New Mexico Environmental Department	Hobbs, NM	(505) 827-9329	
NM State Emergency Response Center	Santa Fe, NM	(505) 827-9222	
Railroad Commission of TX	District 1 San Antonio,	(210) 227-1313	
Railroad Commission of TX	District 7C San Angelo	(325) 657-7450	
Railroad Commission of TX	District 8, 8A Midland	(432) 684-5581	
Texas Emergency Response Center	Austin, TX	(512) 463-7727	
TCEQ Air	Region 2 Lubbock, TX	(806) 796-3494	
TCEQ Water/Waste/Air	Region 3 Abilene, TX	(325) 698-9674	
TCEQ Water/Waste/Air	Region 7 Midland, TX	(432) 570-1359	
TCEQ Water/Waste/Air	Region 9 San Antonio,	(512) 734-7981	
TCEQ Water/Waste/Air	Region 8 San Angelo	(325) 655-9479	
Medical Facilities			
	Abarnathy TV	(806) 200 2524	
Alliance Hospital	Abernathy, TX	(806) 298-2524	
Alliance Hospital	Odessa, TX	(432) 550-1000	
Artesia General Hospital Proventiald Regional Medical Contar	Artesia, NM	(505) 748-3333	
Brownfield Regional Medical Center	Brownfield, TX	(806) 637-3551	

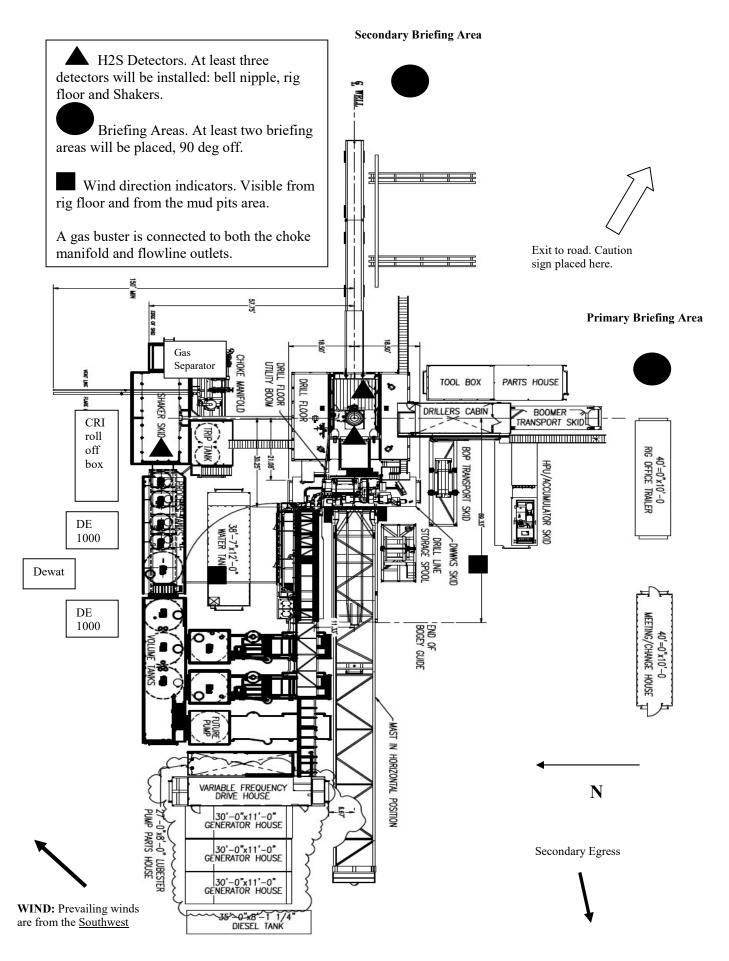
Person	Location	Office Phone	Cell/Mobile Phone
Cogdell Memorial Hospital	Snyder, TX	(325) 573-6374	
Covenant Hospital Levelland	Levelland, TX	(806) 894-4963	
Covenant Medical Center	Lubbock, TX	(806) 725-1011	
Covenant Medical Center Lakeside	Lubbock, TX	(806) 725-6000	
Covenant Family Health	Synder, TX	(325) 573-1300	
Crockett County Hospital	Ozona, TX	(325) 392-2671	
Guadalupe Medical Center	Carlsbad, NM	(505) 887-6633	
Lea Regional Hospital	Hobbs, NM	(505) 492-5000	
McCamey Hospital	McCamey, TX	(432) 652-8626	
Medical Arts Hospital	Lamesa, TX	(806) 872-2183	
Medical Center Hospital	Odessa, TX	(432) 640-4000	
Medi Center Hospital	San Angelo, TX	(325) 653-6741	
Memorial Hospital	Ft. Stockton	(432) 336-2241	
Memorial Hospital	Seminole, TX	(432) 758-5811	
Midland Memorial Hospital	Midland, TX	(432) 685-1111	
Nor-Lea General Hospital	Lovington, NM	(505) 396-6611	
Odessa Regional Hospital	Odessa, TX	(432) 334-8200	
Permian General Hospital	Andrews, TX	(432) 523-2200	
Reagan County Hospital	Big Lake, TX	(325) 884-2561	
Reeves County Hospital	Pecos, TX	(432) 447-3551	
Shannon Medical Center	San Angelo, TX	(325) 653-6741	
Union County General Hospital	Clayton, NM	(505) 374-2585	
University Medical Center	Lubbock, TX	(806) 725-8200	
Val Verde Regional Medical Center	Del Rio, TX	(830) 775-8566	
Ward Memorial Hospital	Monahans, TX	(432) 943-2511	
Yoakum County Hospital	Denver City, TX	(806) 592-5484	
Law Enforcement - Sheriff			
Andrews Cty Sheriff's Department	Andrews County(Andr	(432) 523-5545	
Crane Cty Sheriff's Department	Crane, County (Crane)	(432) 558-3571	
Crockett Cty Sheriff's Department	Crockett County (Ozor	(325) 392-2661	
Dawson Cty Sheriff's Department	Dawson County (Lame	(806) 872-7560	
Ector Cty Sheriff's Department	Ector County (Odessa)	(432) 335-3050	
Eddy Cty Sheriff's Department	Eddy County (Artesia)	(505) 746-2704	
Eddy Cty Sheriff's Department	Eddy County (Carlsbac	(505) 887-7551	
Gaines Cty Sheriff's Department	Gaines County (Semin	(432) 758-9871	
Hockley Cty Sheriff's Department	Hockley County(Level	(806) 894-3126	
Kent Cty (Jayton City Sheriff's Dept.)	Kent County(Jayton)	(806) 237-3801	
Lea Cty Sheriff's Department	Lea County (Eunice)	(505) 384-2020	
Lea Cty Sheriff's Department	Lea County (Hobbs)	(505) 393-2515	
Lea Cty Sheriff's Department	Lea County (Lovingtor	(505) 396-3611	
Lubbock Cty Sheriff's Department	Lubbock Cty (Abernatl	(806) 296-2724	
Midland Cty Sheriff's Department	Midland County (Midl	(432) 688-1277	

Person	Location	Office Phone	Cell/Mobile Phone	
Pecos Cty Sheriff's Department	Pecos County (Iraan)	(432) 639-2251		
Reeves Cty Sheriff's Department	Reeves County (Pecos)	(432) 445-4901		
Scurry Cty Sheriff's Department	Scurry County (Snyder	(325) 573-3551		
Terry Cty Sheriff's Department	Terry County (Brownfi	(806) 637-2212		
Union Cty Sheriff's Department	Union County (Claytor	(505) 374-2583		
Upton Cty Sheriff's Department	Upton County (Rankin	(432) 693-2422		
Ward Cty Sheriff's Department	Ward County (Monaha	(432) 943-3254		
Yoakum City Sheriff's Department	Yoakum Co. (Denever	(806) 456-2377		
Law Enforcement - Police				
Abernathy City Police	Abernathy, TX	(806) 298-2545		
Andrews City Police	Andrews, TX	(432) 523-5675		
Artesia City Police	Artesia, NM	(505) 746-2704		
Brownfield City Police	Brownfield, TX	(806) 637-2544		
Carlsbad City Police	Carlsbad, NM	(505) 885-2111		
Clayton City Police	Clayton, NM	(505) 374-2504		
Denver City Police	Denver City, TX	(806) 592-3516		
Eunice City Police	Eunice, NM	(505) 394-2112		
Hobbs City Police	Hobbs, NM	393-2677		
Jal City Police	Jal, NM	(505) 395-2501		
Jayton City Police	Jayton, TX	(806) 237-3801		
Lamesa City Police	Lamesa, TX	(806) 872-2121		
Levelland City Police	Levelland, TX	(806) 894-6164		
Lovington City Police	Lovington, NM	(505) 396-2811		
Midland City Police	Midland, TX	(432) 685-7113		
Monahans City Police	Monahans, TX	(432) 943-3254		
Odessa City Police	Odessa, TX	(432) 335-3378		
Seminole City Police	Seminole, TX	(432) 758-9871		
Snyder City Police	Snyder, TX	(325) 573-2611		
Sundown City Police	Sundown, TX	(806) 229-8241		
Law Enforcement - FBI				
FBI	Alburqueque, NM	(505) 224-2000		
FBI	Midland, TX	(432) 570-0255		
Law Enforcement - DPS				
NM State Police	Artesia, NM	(505) 746-2704		
NM State Police	Carlsbad, NM	(505) 885-3137		
NM State Police	Eunice, NM	(505) 392-5588		
NM State Police	Hobbs, NM	(505) 392-5588		
NM State Police	Clayton, NM	(505) 374-2473; 911		
TX Dept of Public Safety	Andrews, TX	(432) 524-1443		
TX Dept of Public Safety	Big Lake, TX	(325) 884-2301		

Person	Location	Office Phone	Cell/Mobile Phone
TX Dept of Public Safety	Brownfield, TX	(806) 637-2312	
TX Dept of Public Safety	Iraan, TX	(432) 639-3232	
TX Dept of Public Safety	Lamesa, TX	(806) 872-8675	
TX Dept of Public Safety	Levelland, TX	(806) 894-4385	
TX Dept of Public Safety	Lubbock, TX	(806) 747-4491	
TX Dept of Public Safety	Midland, TX	(432) 697-2211	
TX Dept of Public Safety	Monahans, TX	(432) 943-5857	
TX Dept of Public Safety	Odessa, TX	(432) 332-6100	
TX Dept of Public Safety	Ozona, TX	(325) 392-2621	
TX Dept of Public Safety	Pecos, TX	(432) 447-3533	
TX Dept of Public Safety	Seminole, TX	(432) 758-4041	
TX Dept of Public Safety	Snyder, TX	(325) 573-0113	
TX Dept of Public Safety	Terry County TX	(806) 637-8913	
TX Dept of Public Safety	Yoakum County TX	(806) 456-2377	
Firefighting & Rescue			
Abernathy	Abernathy, TX	(806) 298-2022	
Amistad/Rosebud	Amistad/Rosebud, NM	(505) 633-9113	
Andrews	Andrews, TX	523-3111	
Artesia	Artesia, NM	(505) 746-5051	
Big Lake	Big Lake, TX	(325) 884-3650	
Brownfield-Administrative & other calls	Brownfield, TX	(816) 637-4547	
Brownfield emergency only	Brownfield, TX	-911	
Carlsbad	Carlsbad, NM	(505) 885-3125	
Clayton	Clayton, NM	(505) 374-2435	
Cotton Center	Cotton Center, TX	(806) 879-2157	
Crane	Crane, TX	(432) 558-2361	
Del Rio	Del Rio, TX	(830) 774-8650	
Denver City	Denver City, TX	(806) 592-3516	
Eldorado	Eldorado, TX	(325) 853-2691	
Eunice	Eunice, NM	(505) 394-2111	
Garden City	Garden City, TX	(432) 354-2404	
Goldsmith	Goldsmith, TX	(432) 827-3445	
Hale Center	Hale Center, TX	(806) 839-2411	
Halfway	Halfway, TX		
Hobbs	Hobbs, NM	(505) 397-9308	
Jal	Jal, NM	(505) 395-2221	
Jayton	Jayton, TX	(806) 237-3801	
Kermit	Kermit, TX	(432) 586-3468	
Lamesa	Lamesa, TX	(806) 872-4352	
Levelland	Levelland, TX	(806) 894-3154	
Lovington	Lovington, NM	(505) 396-2359	
Maljamar	Maljamar, NM	(505) 676-4100	

Person Location		Office Phone Cell/Mobil		
McCamey	McCamey, TX	(432) 652-8232		
Midland	Midland, TX	(432) 685-7346		
Monahans	Monahans, TX	(432) 943-4343		
Nara Visa	Nara Visa, NM	(505) 461-3300		
Notrees	Notress, TX	(432) 827-3445		
Odessa	Odessa, TX	(432) 335-4659		
Ozona	Ozona, TX	(325) 392-2626		
Pecos	Pecos, TX	(432) 445-2421		
Petersburg	Petersburg, TX	(806) 667-3461		
Plains	Plains, TX	(806) 456-8067		
Plainview	Plainview, TX	(806) 296-1170		
Rankin	Rankin, TX	(432) 693-2252		
San Angelo	San Angelo, TX	(325) 657-4355		
Sanderson	Sanderson, TX	(432) 345-2525		
Seminole	Seminole, TX	758-9871		
Smyer	Smyer, TX	(806) 234-3861		
Snyder	Snyder, TX	(325) 573-6215		
Sundown	Sundown, TX	911		
Tucumcari	Tucumcari, NM	911		
West Odessa	Odessa, TX	(432) 381-3033		
Ambulance				
Abernathy Ambulance	Abernathy, TX	(806) 298-2241		
Amistad/Rosebud	Amistad/Rosebud, NM	(505) 633-9113		
Andrews Ambulance	Andrews, TX	(432) 523-5675		
Artesia Ambulance	Artesia, NM	(505) 746-2701		
Big Lake Ambulance	Big Lake, TX	(325) 884-2423		
Big Spring Ambulance	Big Spring, TX	(432) 264-2550		
Brownfield Ambulance	Brownfield, TX	(806) 637-2511		
Carlsbad Ambulance	Carlsbad, NM	(505) 885-2111; 911		
Clayton, NM	Clayton, NM	(505) 374-2501		
Denver City Ambulance	Denver City, TX	(806) 592-3516		
Eldorado Ambulance	Eldorado, TX	(325) 853-3456		
Eunice Ambulance	Eunice, NM	(505) 394-3258		
Goldsmith Ambulance	Goldsmith, TX	(432) 827-3445		
Hobbs, NM	Hobbs, NM	(505) 397-9308		
Jal, NM	Jal, NM	(505) 395-2501		
Jayton Ambulance	Jayton, TX	(806) 237-3801		
Lamesa Ambulance	Lamesa, TX	(806) 872-3464		
Levelland Ambulance	Levelland, TX	(806) 894-8855		
Lovington Ambulance	Lovington, NM	(505) 396-2811		
McCamey Hospital	McCamey, TX	(432) 652-8626		
Midland Ambulance	Midland, TX	(432) 685-7499		

Person	Location	Office Phone	Cell/Mobile Phone
Monahans Ambulance	Monahans, TX	3731	
Nara Visa, NM	Nara Visa, NM	(505) 461-3300	
Odessa Ambulance	Odessa, TX	(432) 335-3378	
Ozona Ambulance	Ozona, TX	(325) 392-2671	
Pecos Ambulance	Pecos, TX	(432) 445-4444	
Rankin Ambulance	Rankin, TX	(432) 693-2443	
San Angelo Ambulance	San Angelo, TX	(325) 657-4357	
Seminole Ambulance	Seminole, TX	758-9871	
Snyder Ambulance	Snyder, TX	(325) 573-1911	
Stanton Ambulance	Stanton, TX	(432) 756-2211	
Sundown Ambulance	Sundown, TX	911	
Tucumcari, NM	Tucumcari, NM	911	
Medical Air Ambulance Service			
AEROCARE - Methodist Hospital	Lubbock, TX	(800) 627-2376	
San Angelo Med-Vac Air Ambulance	San Angelo, TX	(800) 277-4354	
Southwest Air Ambulance Service	Stanford, TX	(800) 242-6199	
Southwest MediVac	Snyder, TX	(800) 242-6199	
Southwest MediVac	Hobbs, NM	(800) 242-6199	
Odessa Care Star	Odessa, TX	(888) 624-3571	
NWTH Medivac	Amarillo, TX	(800) 692-1331	



Permian Drilling Hydrogen Sulfide Drilling Operations Plan Heads CC 9_4 Federal Com 24H

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

+E/-W

0.00 0.00 18.00

18.00

90.14

90.14

0.00

0.00

0.00 209.77

209.77

359.73

359.73

8529.00

8504.00

+N/-S

0.00

0.00

3500.00 4400.00

8003.32

9059.87

19270.82

9000

10000

-2000

-1000

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Heads CC 9_4

Well: Heads CC 9_4 Federal Com 24H

Wellbore: Wellbore #1
Design: Permitting Plan

WELL DETAILS: Heads CC 9_4 Federal Com 24H

-622.49 -741.94 -789.46

-1088.24

-535.33

9675.47

Geodetic System: US State Plane 1983

Datum: North American Datum 1983

Ellipsoid: GRS 1980

Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

Northing 446628.10	Ground	Level: Easting 18942.20	2935.50 32° 13' 3	Latittude 8.560466 N	103°	Longitude 59' 7.250830 W
	SE	CTION DETA	AILS			
TVD 0.00	+N/-S 0.00	+E/-W 0.00	Dleg 0.00	TFace 0.00	VSect 0.00	Annotation
3500.00 4385.27	0.00 -121.71	0.00 -69.62	0.00 2.00	0.00 209.77	0.00 -115.64	Build 2°/100' Hold 18° Tangent

0.00

10.00

0.00

0.00

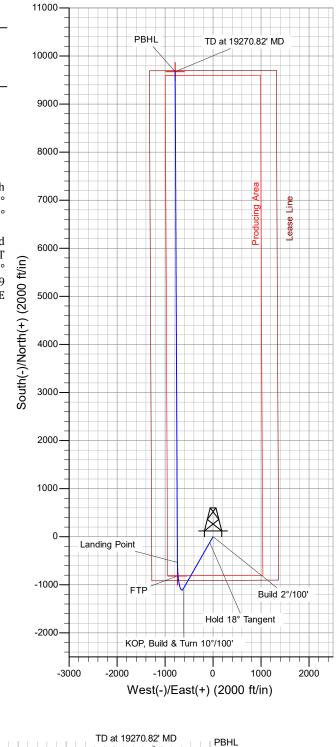
0.00

148.68

-1034.02

-473.23

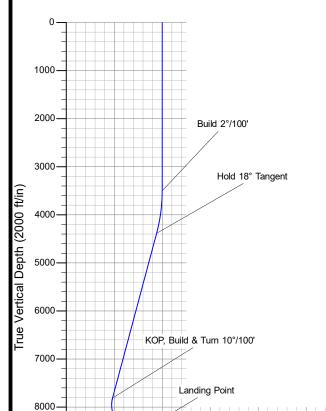
9707.63


Azimuths to Grid North True North: -0.19° Magnetic North: 6.71°

Landing Point

TD at 19270.82' MD

KOP, Build & Turn 10°/100'


Magnetic Field Strength: 47853.5nT Dip Angle: 59.92° Date: 12/31/2019 Model: HDGM_FILE

11000

12000

10000

1000

2000

3000

4000

5000

Vertical Section at 355.34° (2000 ft/in)

6000

7000

8000

9000

OXY

PRD NM DIRECTIONAL PLANS (NAD 1983) Heads CC 9_4 Heads CC 9_4 Federal Com 24H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

20 January, 2020

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site:

Heads CC 9_4

Well: Heads CC 9_4 Federal Com 24H

Wellbore: Design: Tieads CC 9_4 Tederal Colli 2

Wellbore #1
Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Heads CC 9_4 Federal Com 24H

RKB=26.5' @ 2962.00ft RKB=26.5' @ 2962.00ft

Grid

Minimum Curvature

Project PRD NM DIRECTIONAL PLANS (NAD 1983)

Map System: Geo Datum:

Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone System Datum:

Mean Sea Level

Using geodetic scale factor

0.00

Site Heads CC 9_4

Site Position: From:

Map Eas

Northing: 446,198.60 usft **Easting:** 648,677.50 usft

 32° 13' 34.318660 N 103° 59' 10.348611 W

Position Uncertainty: 2.00 ft Slot Radius: 13.200 in Grid Convergence: 0.19 °

Well Heads CC 9_4 Federal Com 24H

Well Position +N/-S +E/-W

429.53 ft 264.72 ft Northing: Easting: 446,628.10 usft 648,942.20 usft Latitude: Longitude: 32° 13' 38.560466 N 103° 59' 7.250830 W

Position Uncertainty 1.00 ft Wellhead Elevation: 0.00 ft Ground Level: 2,935.50 ft

Wellbore Wellbore #1

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 HDGM FILE
 12/31/2019
 6.90
 59.92
 47,853.50000000

Design Permitting Plan

Audit Notes:

Version: PROTOTYPE

PROTOTYPE Tie On Depth:

 Vertical Section:
 Depth From (TVD) (ft)
 +N/-S (ft)
 +E/-W (ft)
 Direction (°)

 0.00
 0.00
 0.00
 0.00
 355.34

Plan Survey Tool Program Date 1/20/2020

Depth From Depth To

(ft) (ft) Survey (Wellbore) Tool Name Remarks

1 0.00 19,270.82 Permitting Plan (Wellbore #1)

B001Mb_MWD+HRGM

OWSG MWD + HRGM

Plan Sections										
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
4,400.00	18.00	209.77	4,385.27	-121.71	-69.62	2.00	2.00	0.00	209.77	
8,003.32	18.00	209.77	7,812.23	-1,088.24	-622.49	0.00	0.00	0.00	0.00	
9,059.87	90.14	359.73	8,529.00	-535.33	-741.94	10.00	6.83	14.19	148.68	
19,270.82	90.14	359.73	8,504.00	9,675.47	-789.46	0.00	0.00	0.00	0.00 1	PBHL (Heads CC

Planning Report

Database: Company: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Project: Site:

Heads CC 9_4

Well:

Heads CC 9_4 Federal Com 24H

Wellbore: Design:

Permitting Plan

Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Heads CC 9_4 Federal Com 24H

RKB=26.5' @ 2962.00ft RKB=26.5' @ 2962.00ft

lanned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00
100.00 200.00	0.00	0.00 0.00	100.00 200.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00 1,900.00	0.00 0.00	0.00 0.00	1,800.00 1,900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
3,200.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.00
3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.00
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
3,600.00	2.00	209.77	3,599.98	-1.51	-0.87	-1.44 5.76	2.00	2.00	0.00
3,700.00 3,800.00	4.00 6.00	209.77 209.77	3,699.84 3,799.45	-6.06	-3.46 7.70	-5.76	2.00 2.00	2.00 2.00	0.00 0.00
3,900.00	8.00	209.77	3,898.70	-13.62 -24.20	-7.79 -13.84	-12.94 -22.99	2.00	2.00	0.00
4,000.00	10.00	209.77	3,997.47	-37.78	-21.61	-35.90	2.00	2.00	0.00
4,100.00	12.00	209.77	4,095.62	-54.34	-31.08	-51.63	2.00	2.00	0.00
4,200.00	14.00	209.77	4,193.06	-73.87	-42.25	-70.19	2.00	2.00	0.00
4,300.00	16.00	209.77	4,289.64	-96.33	-55.10	-91.53	2.00	2.00	0.00
4,400.00	18.00	209.77	4,385.27	-121.71	-69.62	-115.64	2.00	2.00	0.00
4,500.00	18.00	209.77	4,480.37	-148.53	-84.96	-141.13	0.00	0.00	0.00
4,600.00	18.00	209.77	4,575.48	-175.36	-100.30	-166.62	0.00	0.00	0.00
4,700.00	18.00	209.77	4,670.59	-202.18	-115.65	-192.10	0.00	0.00	0.00
4,800.00	18.00	209.77	4,765.69	-229.00	-130.99	-217.59	0.00	0.00	0.00
4,900.00	18.00	209.77	4,860.80	-255.83	-146.33	-243.08	0.00	0.00	0.00
5,000.00	18.00	209.77	4,955.90	-282.65	-161.68	-268.57	0.00	0.00	0.00
5,100.00	18.00	209.77	5,051.01	-309.47	-177.02	-294.05	0.00	0.00	0.00
5,200.00	18.00	209.77	5,146.11	-336.30	-192.36	-319.54	0.00	0.00	0.00
5,300.00	18.00	209.77	5,241.22	-363.12	-207.71	-345.03	0.00	0.00	0.00

Planning Report

Database: Company: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Project: PRD NM DIRECT Site: PRD NM DIRECT P

Well: Heads CC 9_4 Federal Com 24H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Heads CC 9_4 Federal Com 24H

RKB=26.5' @ 2962.00ft RKB=26.5' @ 2962.00ft

Grid

nned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
5,400.00	18.00	209.77	5,336.33	-389.94	-223.05	-370.51	0.00	0.00	0.00
5,500.00	18.00	209.77	5,431.43	-416.77	-238.39	-396.00	0.00	0.00	0.00
5,600.00		209.77	5,526.54	-443.59	-253.74	-421.49	0.00	0.00	0.00
5,700.00		209.77	5,621.64	-470.41	-269.08	-446.97	0.00	0.00	0.00
5,800.00		209.77	5,716.75	-497.24	-284.42	-472.46	0.00	0.00	0.00
5,900.00		209.77	5,811.85	-524.06	-299.77	-497.95	0.00	0.00	0.00
6,000.00	18.00	209.77	5,906.96	-550.88	-315.11	-523.44	0.00	0.00	0.00
6,100.00	18.00	209.77	6,002.06	-577.71	-330.45	-548.92	0.00	0.00	0.00
6,200.00	18.00	209.77	6,097.17	-604.53	-345.80	-574.41	0.00	0.00	0.00
6,300.00	18.00	209.77	6,192.28	-631.35	-361.14	-599.90	0.00	0.00	0.00
6,400.00		209.77	6,287.38	-658.18	-376.48	-625.38	0.00	0.00	0.00
6,500.00	18.00	209.77	6,382.49	-685.00	-391.83	-650.87	0.00	0.00	0.00
6,600.00	18.00	209.77	6,477.59	-711.82	-407.17	-676.36	0.00	0.00	0.00
6,700.00		209.77	6,572.70	-738.65	-422.51	-701.84	0.00	0.00	0.00
6,800.00		209.77	6,667.80	-765.47	-437.86	-727.33	0.00	0.00	0.00
6,900.00		209.77	6,762.91	-792.29	-453.20	-752.82	0.00	0.00	0.00
7,000.00	18.00	209.77	6,858.02	-819.12	-468.54	-778.30	0.00	0.00	0.00
7,100.00		209.77	6,953.12	-845.94	-483.89	-803.79	0.00	0.00	0.00
7,200.00		209.77	7,048.23	-872.77	-499.23	-829.28	0.00	0.00	0.00
7,300.00		209.77	7,143.33	-899.59	-514.57	-854.77	0.00	0.00	0.00
7,400.00		209.77	7,238.44	-926.41	-529.92	-880.25	0.00	0.00	0.00
7,500.00	18.00	209.77	7,333.54	-953.24	-545.26	-905.74	0.00	0.00	0.00
7,600.00		209.77	7,428.65	-980.06	-560.60	-931.23	0.00	0.00	0.00
7,700.00		209.77	7,523.76	-1,006.88	-575.95	-956.71	0.00	0.00	0.00
7,800.00		209.77	7,618.86	-1,033.71	-591.29	-982.20	0.00	0.00	0.00
7,900.00		209.77	7,713.97	-1,060.53	-606.63	-1,007.69	0.00	0.00	0.00
8,000.00	18.00	209.77	7,809.07	-1,087.35	-621.98	-1,033.17	0.00	0.00	0.00
8,003.32		209.77	7,812.23	-1,088.24	-622.49	-1,034.02	0.00	0.00	0.00
8,100.00		237.20	7,905.89	-1,106.21	-637.64	-1,050.70	10.00	-7.32	28.37
8,200.00		294.04	8,004.46	-1,107.77	-653.67	-1,050.94	10.00	-0.80	56.84
8,300.00		327.22	8,101.78	-1,091.96	-669.59	-1,033.89	10.00	6.73	33.17
8,400.00	25.76	340.00	8,194.89	-1,059.26	-684.91	-1,000.06	10.00	8.91	12.79
8,500.00		346.39	8,280.98	-1,010.68	-699.17	-950.48	10.00	9.47	6.39
8,600.00		350.32	8,357.42	-947.68	-711.93	-886.65	10.00	9.68	3.93
8,700.00		353.09	8,421.89	-872.18	-722.80	-810.52	10.00	9.77	2.77
8,800.00		355.26	8,472.43	-786.48	-731.46	-724.39	10.00	9.82	2.17
8.900.00		357.10	8,507.51	-693.17	-737.64	-630.89	10.00	9.85	1.84
9.000.00		358.77	8,526.06	-595.10	-741.16	-532.86	10.00	9.87	1.67
9,059.87		359.73	8,529.00	-535.33	-741.94	-473.23	10.00	9.87	1.61
9,100.00		359.73	8,528.90	-495.20	-742.12	-433.22	0.00	0.00	0.00
9,200.00		359.73	8,528.65	-395.21	-742.12	-333.51	0.00	0.00	0.00
9,300.00		359.73	8,528.41	-295.21	-743.05	-233.81	0.00	0.00	0.00
9,400.00		359.73	8,528.16	-195.21	-743.52	-134.10	0.00	0.00	0.00
9,500.00		359.73	8,527.92	-95.21	-743.99	-34.40	0.00	0.00	0.00
9,600.00		359.73	8,527.67	4.79	-744.45	65.31	0.00	0.00	0.00
9,700.00		359.73	8,527.43	104.79	-744.43 -744.92	165.01	0.00	0.00	0.00
9,800.00		359.73	8,527.18	204.79	-745.38	264.72	0.00	0.00	0.00
9,900.00		359.73	8.526.94	304.78	-745.85	364.42	0.00	0.00	0.00
10,000.00		359.73	8,526.69	404.78	-746.31	464.13	0.00	0.00	0.00
10,100.00		359.73	8,526.45	504.78	-746.78	563.84	0.00	0.00	0.00
10,100.00		359.73	8,526.20	604.78	-747.24	663.54	0.00	0.00	0.00
10,300.00		359.73	8,525.96	704.78	-747.71	763.25	0.00	0.00	0.00
10,400.00		359.73	8,525.72	804.78	-748.17	862.95	0.00	0.00	0.00
10,500.00		359.73	8,525.47	904.78	-748.64	962.66	0.00	0.00	0.00

Planning Report

Database: Company: HOPSPP

ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Heads CC 9_4

Well: Heads CC 9_4 Federal Com 24H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Heads CC 9_4 Federal Com 24H

RKB=26.5' @ 2962.00ft RKB=26.5' @ 2962.00ft

Grid

Jesigii.	remitting Fit	ali							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,600.00	90.14	359.73	8,525.23	1,004.77	-749.11	1,062.36	0.00	0.00	0.00
10,700.00	90.14	359.73	8,524.98	1,104.77	-749.57	1,162.07	0.00	0.00	0.00
10,800.00	90.14	359.73	8,524.74	1,204.77	-750.04	1,261.77	0.00	0.00	0.00
10,900.00	90.14	359.73	8,524.49	1,304.77	-750.50	1,361.48	0.00	0.00	0.00
11,000.00	90.14	359.73	8,524.25	1,404.77	-750.97	1,461.18	0.00	0.00	0.00
11,100.00	90.14	359.73	8,524.00	1,504.77	-751.43	1,560.89	0.00	0.00	0.00
11,200.00	90.14	359.73	8,523.76	1,604.77	-751.90	1,660.59	0.00	0.00	0.00
11,300.00	90.14	359.73	8,523.51	1,704.76	-752.36	1,760.30	0.00	0.00	0.00
11,400.00	90.14	359.73	8,523.27	1,804.76	-752.83	1,860.00	0.00	0.00	0.00
11,500.00	90.14	359.73	8,523.02	1,904.76	-753.29	1,959.71	0.00	0.00	0.00
11,600.00	90.14	359.73	8,522.78	2,004.76	-753.76	2,059.41	0.00	0.00	0.00
11,700.00	90.14	359.73	8,522.53	2,104.76	-754.23	2,159.12	0.00	0.00	0.00
11,800.00	90.14	359.73	8,522.29	2,204.76	-754.69	2,258.83	0.00	0.00	0.00
11,900.00	90.14	359.73	8,522.04	2,304.76	-755.16	2,358.53	0.00	0.00	0.00
12,000.00	90.14	359.73	8,521.80	2,404.75	-755.62	2,458.24	0.00	0.00	0.00
12,100.00	90.14	359.73	8,521.55	2,504.75	-756.09	2,557.94	0.00	0.00	0.00
12,200.00	90.14	359.73	8,521.31	2,604.75	-756.55	2,657.65	0.00	0.00	0.00
12,300.00	90.14	359.73	8,521.06	2,704.75	-757.02	2,757.35	0.00	0.00	0.00
12,400.00	90.14	359.73	8,520.82	2,804.75	-757.48	2,857.06	0.00	0.00	0.00
12,500.00	90.14	359.73	8,520.57	2,904.75	-757.95	2,956.76	0.00	0.00	0.00
12,600.00	90.14	359.73	8,520.33	3,004.75	-758.41	3,056.47	0.00	0.00	0.00
12,700.00	90.14	359.73	8,520.09	3,104.75	-758.88	3,156.17	0.00	0.00	0.00
12,800.00	90.14	359.73	8,519.84	3,204.74	-759.35	3,255.88	0.00	0.00	0.00
12,900.00	90.14	359.73	8,519.60	3,304.74	-759.81	3,355.58	0.00	0.00	0.00
13,000.00	90.14	359.73	8,519.35	3,404.74	-760.28	3,455.29	0.00	0.00	0.00
13,100.00	90.14	359.73	8,519.11	3,504.74	-760.74	3,554.99	0.00	0.00	0.00
13,200.00	90.14	359.73	8,518.86	3,604.74	-761.21	3,654.70	0.00	0.00	0.00
13,300.00	90.14	359.73	8,518.62	3,704.74	-761.67	3,754.41	0.00	0.00	0.00
13,400.00	90.14	359.73	8,518.37	3,804.74	-762.14	3,854.11	0.00	0.00	0.00
13,500.00	90.14	359.73	8,518.13	3,904.73	-762.60	3,953.82	0.00	0.00	0.00
13,600.00	90.14	359.73	8,517.88	4,004.73	-763.07	4,053.52	0.00	0.00	0.00
13,700.00	90.14	359.73	8,517.64	4,104.73	-763.53	4,153.23	0.00	0.00	0.00
13,800.00	90.14	359.73	8,517.39	4,204.73	-764.00	4,252.93	0.00	0.00	0.00
13,900.00	90.14	359.73	8,517.15	4,304.73	-764.46	4,352.64	0.00	0.00	0.00
14,000.00	90.14	359.73	8,516.90	4,404.73	-764.93	4,452.34	0.00	0.00	0.00
14,100.00	90.14	359.73	8,516.66	4,504.73	-765.40	4,552.05	0.00	0.00	0.00
14,200.00	90.14	359.73	8,516.41	4,604.72	-765.86	4,651.75	0.00	0.00	0.00
14,300.00	90.14	359.73	8,516.17	4,704.72	-766.33	4,751.46	0.00	0.00	0.00
14,400.00	90.14	359.73	8,515.92	4,804.72	-766.79	4,851.16	0.00	0.00	0.00
14,500.00	90.14	359.73	8,515.68	4,904.72	-767.26	4,950.87	0.00	0.00	0.00
14,600.00	90.14	359.73	8,515.43	5,004.72	-767.72	5,050.57	0.00	0.00	0.00
14,700.00	90.14	359.73	8,515.19	5,104.72	-768.19	5,150.28	0.00	0.00	0.00
14,800.00	90.14	359.73	8,514.94	5,204.72	-768.65	5,249.98	0.00	0.00	0.00
14,900.00	90.14	359.73	8,514.70	5,304.71	-769.12	5,349.69	0.00	0.00	0.00
15,000.00	90.14	359.73	8,514.45	5,404.71	-769.58	5,449.40	0.00	0.00	0.00
15,100.00	90.14	359.73	8,514.21	5,504.71	-770.05	5,549.10	0.00	0.00	0.00
15,200.00	90.14	359.73	8,513.97	5,604.71	-770.52	5,648.81	0.00	0.00	0.00
15,300.00	90.14	359.73	8,513.72	5,704.71	-770.98	5,748.51	0.00	0.00	0.00
15,400.00	90.14	359.73	8,513.48	5,804.71	-771.45	5,848.22	0.00	0.00	0.00
15,500.00	90.14	359.73	8,513.23	5,904.71	-771.91	5,947.92	0.00	0.00	0.00
15,600.00	90.14	359.73	8,512.99	6,004.71	-772.38	6,047.63	0.00	0.00	0.00
15,700.00	90.14	359.73	8,512.74	6,104.70	-772.84	6,147.33	0.00	0.00	0.00
15,800.00	90.14	359.73	8,512.50	6,204.70	-773.31	6,247.04	0.00	0.00	0.00
15,900.00	90.14	359.73	8,512.25	6,304.70	-773.77	6,346.74	0.00	0.00	0.00

Planning Report

Database: HOPSPP Company: ENGINEE

ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Heads CC 9_4

Well: Heads CC 9_4 Federal Com 24H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Heads CC 9_4 Federal Com 24H

RKB=26.5' @ 2962.00ft RKB=26.5' @ 2962.00ft

Grid

Design.	r emilling r i	ui i							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
16,000.00	90.14	359.73	8,512.01	6,404.70	-774.24	6,446.45	0.00	0.00	0.00
16,100.00	90.14	359.73	8,511.76	6,504.70	-774.70	6,546.15	0.00	0.00	0.00
16,200.00	90.14	359.73	8,511.52	6,604.70	-775.17	6,645.86	0.00	0.00	0.00
16,300.00	90.14	359.73	8,511.27	6,704.70	-775.64	6,745.56	0.00	0.00	0.00
16,400.00	90.14	359.73	8,511.03	6,804.69	-776.10	6,845.27	0.00	0.00	0.00
16,500.00	90.14	359.73	8,510.78	6,904.69	-776.57	6,944.97	0.00	0.00	0.00
16,600.00	90.14	359.73	8,510.54	7,004.69	-777.03	7,044.68	0.00	0.00	0.00
16,700.00	90.14	359.73	8,510.29	7,104.69	-777.50	7,144.39	0.00	0.00	0.00
16,800.00	90.14	359.73	8,510.05	7,204.69	-777.96	7,244.09	0.00	0.00	0.00
16,900.00	90.14	359.73	8,509.80	7,304.69	-778.43	7,343.80	0.00	0.00	0.00
17,000.00	90.14	359.73	8,509.56	7,404.69	-778.89	7,443.50	0.00	0.00	0.00
17,100.00	90.14	359.73	8,509.31	7,504.68	-779.36	7,543.21	0.00	0.00	0.00
17,200.00	90.14	359.73	8,509.07	7,604.68	-779.82	7,642.91	0.00	0.00	0.00
17,300.00	90.14	359.73	8,508.82	7,704.68	-780.29	7,742.62	0.00	0.00	0.00
17,400.00	90.14	359.73	8,508.58	7,804.68	-780.76	7,842.32	0.00	0.00	0.00
17,500.00	90.14	359.73	8,508.34	7,904.68	-781.22	7,942.03	0.00	0.00	0.00
17,600.00	90.14	359.73	8,508.09	8,004.68	-781.69	8,041.73	0.00	0.00	0.00
17,700.00	90.14	359.73	8,507.85	8,104.68	-782.15	8,141.44	0.00	0.00	0.00
17,800.00 17,900.00 18,000.00 18,100.00 18,200.00	90.14 90.14 90.14 90.14	359.73 359.73 359.73 359.73 359.73	8,507.60 8,507.36 8,507.11 8,506.87 8,506.62	8,204.67 8,304.67 8,404.67 8,504.67 8,604.67	-782.62 -783.08 -783.55 -784.01 -784.48	8,241.14 8,340.85 8,440.55 8,540.26 8,639.96	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
18,300.00	90.14	359.73	8,506.38	8,704.67	-784.94	8,739.67	0.00	0.00	0.00
18,400.00	90.14	359.73	8,506.13	8,804.67	-785.41	8,839.38	0.00	0.00	0.00
18,500.00	90.14	359.73	8,505.89	8,904.67	-785.88	8,939.08	0.00	0.00	0.00
18,600.00	90.14	359.73	8,505.64	9,004.66	-786.34	9,038.79	0.00	0.00	0.00
18,700.00	90.14	359.73	8,505.40	9,104.66	-786.81	9,138.49	0.00	0.00	0.00
18,800.00	90.14	359.73	8,505.15	9,204.66	-787.27	9,238.20	0.00	0.00	0.00
18,900.00	90.14	359.73	8,504.91	9,304.66	-787.74	9,337.90	0.00	0.00	0.00
19,000.00	90.14	359.73	8,504.66	9,404.66	-788.20	9,437.61	0.00	0.00	0.00
19,100.00	90.14	359.73	8,504.42	9,504.66	-788.67	9,537.31	0.00	0.00	0.00
19,200.00	90.14	359.73	8,504.17	9,604.66	-789.13	9,637.02	0.00	0.00	0.00
19,270.82	90.14	359.73	8,504.00	9,675.47	-789.46	9,707.63	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL (Heads CC 9_4 - plan hits target cer - Point	0.00 nter	0.00	8,504.00	9,675.47	-789.46	456,302.80	648,152.80	32° 15' 14.325137 N	103° 59' 16.078623
FTP (Heads CC 9_4 - plan misses target - Point	0.00 center by 63	0.00 .69ft at 880	8,529.00 0.00ft MD (8	-814.26 3472.43 TVD,	-740.66 -786.48 N, -7	445,813.90 731.46 E)	648,201.60	32° 13' 30.526896 N	103° 59' 15.903354

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Heads CC 9_4

Well: Heads CC 9_4 Federal Com 24H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Heads CC 9_4 Federal Com 24H

RKB=26.5' @ 2962.00ft RKB=26.5' @ 2962.00ft

Grid

Plan Annotation	ns				
r	Measured	Vertical	Local Coor	dinates	
	Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
	3,500.00	3,500.00	0.00	0.00	Build 2°/100'
	4,400.00	4,385.27	-121.71	-69.62	Hold 18° Tangent
	8,003.32	7,812.23	-1,088.24	-622.49	KOP, Build & Turn 10°/100'
	9,059.87	8,529.00	-535.33	-741.94	Landing Point
	19,270.82	8,504.00	9,675.47	-789.46	TD at 19270.82' MD

1. Geologic Formations

TVD of target	8529'	Pilot Hole Depth	N/A
MD at TD:	19270'	Deepest Expected fresh water:	130'

Delaware Basin

Formation	TVD - RKB	Expected Fluids		
Rustler	148			
Salado	671	Salt		
Castile	1,346	Salt		
Lamar/Delaware	2,911	Oil/Gas/Brine		
Bell Canyon	2,963	Oil/Gas/Brine		
Cherry Canyon	3,804	Oil/Gas/Brine		
Brushy Canyon	5,052	Losses		
Bone Spring	6,649	Oil/Gas		
1st Bone Spring	7,647	Oil/Gas		
2nd Bone Spring	8,460	Oil/Gas		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

									Buoyant	Buoyant
Hala Sina (in)	Casing	Interval	Csg. Size	Weight	Grade	Comm	SF	SF Burst	Body SF	Joint SF
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse		Tension	Tension
14.75	0	611	10.75	40.5	J-55	BTC	1.125	1.2	1.4	1.4
9.875	0	7903	7.625	26.4	L-80 HC	BTC	1.125	1.2	1.4	1.4
6.75	0	8453	5.5	20	P-110	DQX	1.125	1.2	1.4	1.4
6.75	8453	19270	4.5	13.5	P-110	DQX	1.125	1.2	1.4	1.4
								SF Values will	meet or Exceed	

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement from Onshore Order #2 under the following conditions:

- 1. Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casings.
- 2. Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide	V
justification (loading assumptions, casing design criteria).	1

^{*}Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage, we will drop a cancelation cone and not pump the second stage.

^{*}Oxy requests the option to run production casing with DQX, SF TORQ, and/or DQW TORQ connections to accommodate hole conditions or drilling operations.

Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Y 111 - 1 111 G 1 D 0	
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
In and 11 and 12	N
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing String	# Sks	Wt. (lb/gal)	Yld (ft3/sack)	H20 (gal/sk)	500# Comp. Strength (hours)	Slurry Description
Surface (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Surface (Tail)	498	14.8	1.33	6.365	5:26	Class C Cement, Accelerator
Intermediate 1st Stage (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Intermediate 1st Stage (Tail)	363	13.2	1.65	8.640	11:54	Class H Cement, Retarder, Dispersant, Salt
Intermediate 2nd Sta	ge (Tail Slurry) to be pumpe	d as Bradenhe	ead Squeeze f	rom surface, o	lown the Intermediate annulus
Intermediate 2nd Stage (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Intermediate 2nd Stage (Tail)	652	12.9	1.92	10.41	23:10	Class C Cement, Accelerator
Production (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Production (Tail)	1380	13.2	1.38	6.686	3:39	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top (ft)	Bottom (ft)	% Excess
Surface (Lead)	N/A	N/A	N/A
Surface (Tail)	0	611	100%
Intermediate 1st Stage (Lead)	N/A	N/A	N/A
Intermediate 1st Stage (Tail)	5302	7903	5%
Intermediate 2nd Stage (Lead)	N/A	N/A	N/A
Intermediate 2nd Stage (Tail)	0	5302	10%
Production (Lead)	N/A	N/A	N/A
Production (Tail)	7403	19270	20%

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365.

The summarized operational sequence will be as follows:

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe).
- 2. Land casing.

- 3. Fill pipe with kill weight fluid, and confirm well is static.
 - a. If well is not static notify BLM and kill well.
 - b. Once well is static notify BLM with intent to proceed with nipple down and offline cementing.
- 4. Set and pressure test annular packoff.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed.
- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange.
- 8. If well is not static notify BLM and kill well prior to cementing or nippling up for further remediation.
- 9. Install offline cement tool.
- 10. Rig up cement equipment.
 - a. Notify BLM prior to cement job.
- 11. Perform cement job.
- 12. Confirm well is static and floats are holding after cement job.
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

Three string wells:

- CBL will be required on one well per pad
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:
		3M	Annula	ır	✓	70% of working pressure
0.075" 11.1.	12 5/02		Blind Ra	am	✓	
9.875" Hole	13-5/8"	3M Pipe Ra Double R Other*	Pipe Ra	m		250: / 2000:
			Double Ram		✓	250 psi / 3000 psi
				Other*		
		3M	Annula	ır	✓	70% of working pressure
6.75" Hole	13-5/8"		Blind Ram		✓	
0.75 Hole		3M	Pipe Ra	m		250 psi / 3000 psi
			Double Ram		✓	230 psi / 3000 psi
			Other*			

^{*}Specify if additional ram is utilized.

Oxy will utilize a 5M annular with a 10M BOPE stack. The BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. A separate sundry will be sent prior to spud that reflects the pad based break testing plan.

BOP break test under the following conditions:

- After a full BOP test is conducted
- When skidding to drill an intermediate section where ICP is set into the third Bone Spring or shallower.
- When skidding to drill a production section that does not penetrate into the third Bone Spring or deeper. If the kill line is broken prior to skid, two tests will be performed.

- 1) Wellhead flange, co-flex hose, kill line connections and upper pipe rams
- 2) Wellhead flange, HCR valve, check valve, upper pipe rams

If the kill line is not broken prior to skid, only one test will be performed.

1) Wellhead flange, co-flex hose, check valve, upper pipe rams

5. Mud Program

Depth		Tymo	Weight	Visaasity	Water Loss
From (ft)	To (ft)	Туре	(ppg)	Viscosity	water Loss
0	611	Water-Based Mud	8.6-8.8	40-60	N/C
611	7903	Saturated Brine- Based or Oil-Based Mud	8.0-10.0	35-45	N/C
7903	19270	Water-Based or Oil- Based Mud	8.0-9.6	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite,

Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Ī	What will be used to monitor the loss or gain of fluid?	PVT/MD Totco/Visual Monitoring
	THE PART OF THE PA	1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.			
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs			
	run will be in the Completion Report and submitted to the BLM.			
No	Logs are planned based on well control or offset log information.			
No	Drill stem test? If yes, explain			
No	Coring? If yes, explain			

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	ICP - TD
No	PEX	

7. Drilling Conditions

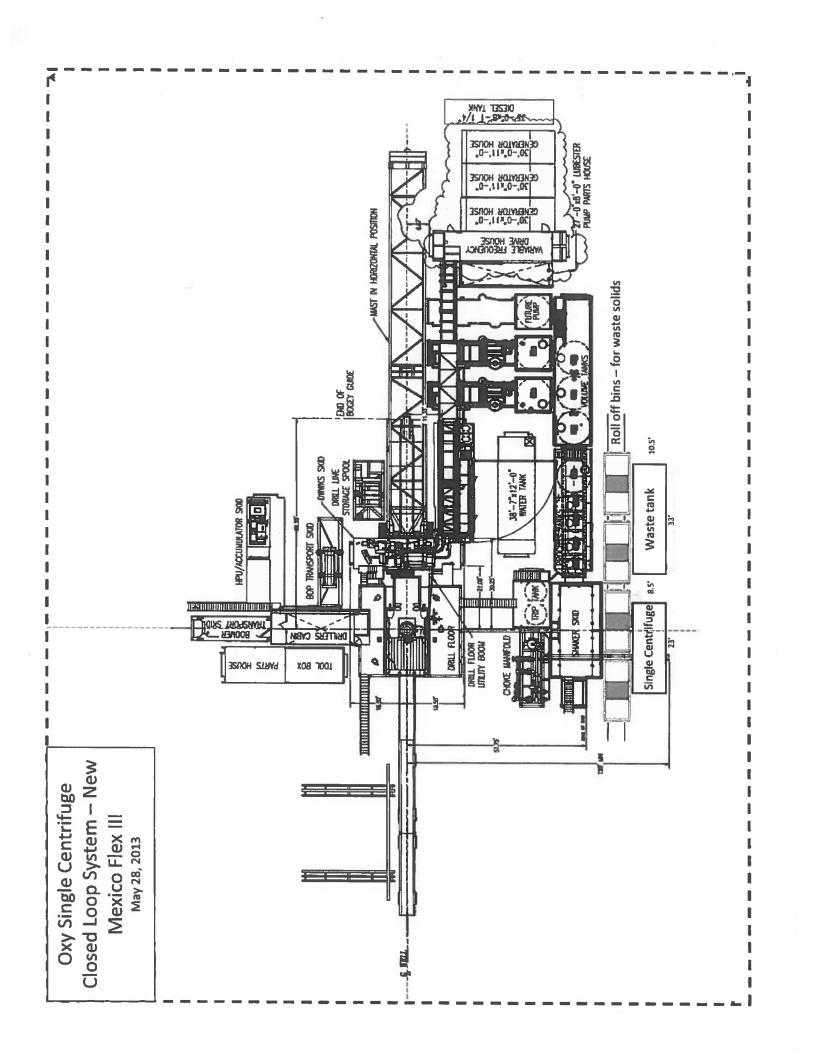
Condition	Specify what type and where?
BH Pressure at deepest TVD	4258 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	149°F

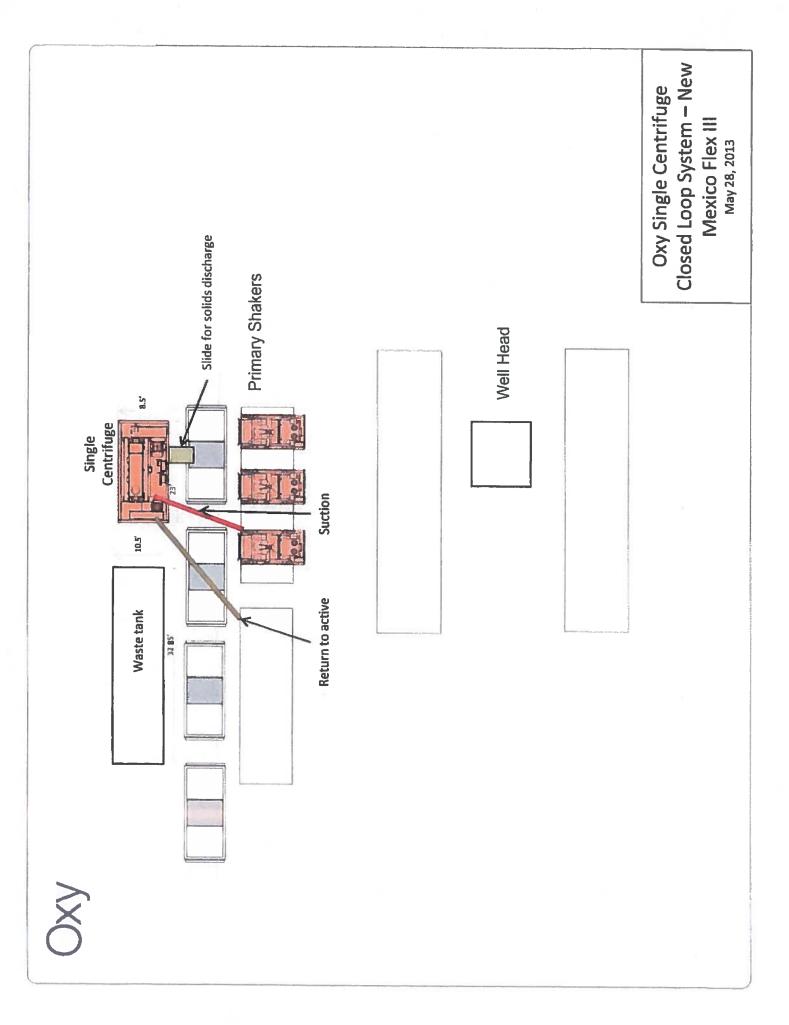
Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

v ara	es and formations will be provided to the BEW.
N	H2S is present
Y	H2S Plan attached


8. Other facets of operation	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the three well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be secured	
with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	Yes
 Oxy requests the option to contract a Surface Rig to drill, set surface casing, 	
and cement for this well. If the timing between rigs is such that Oxy would	
not be able to preset surface, the Primary Rig will MIRU and drill the well in	


its entirety per the APD.	Please see the attached document for information	
on the spudder rig.		

Total estimated cuttings volume: 1323 bbls.

9. Company Personnel

<u>Name</u>	<u>Title</u>	Office Phone	Mobile Phone
Garrett Granier	Drilling Engineer	713-513-6633	832-265-0581
William Turner	Drilling Engineer Supervisor	713-350-4951	661-817-4586
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
Diego Tellez	Drilling Manager	713-350-4602	713-303-4932

