

REPORTS

DATE:

921 Nõtth Brins Amatillo, Texas 79107 Phone 806.467:0607 Éax 806:467-0622

ARTESIA .408:West Texas Ave. Artesia: New Mexico 88210. Phone 575.746:8768 Fax 575.748:8905

HOBBS /318.East Taylor Street Hobbs; New Mexico 88241/ Phone:505:393;4264 Fax 505:393;4658/

MIDLAND 2901 State Highway/349 Midland, Texas 79706, Phone 432,522,2133 Fax 432/522,2180,

OKLAHOMA CITY '7700 Nofth Hudson Ave: Suite 10' Oklahoma:City: Oklahoma 73116: Phone 405:486:7030. Fax:806:467.0622

> SAN ANTONIO 11 Commercial Place Sulte 102 Scheriz: Texas: 78154 Phone 210/265.8025 Fax/210.568/2191

TÜLSA 525 South Main Suite/535 Tulša, Oklahõma 74 103 Phone 918:742:0871 Fax 918:382:0232;

ENVIRONMENTAL CONSULTING ENGINEERING DRILLING CONSTRUCTION SPILL MANAGEMENT GENERAL CONTRACTING

Toll Free: 866:742:0742

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET

SRS # TNM MONUMENT 18

MOBILE DUAL PHASE EXTRACTION REPORT

IR-124

RECEIVED OCI

3 FEB 26

A.II: 0-

TALONILPE

TNM MONUMENT 18 PIPELINE RELEASE

MONUMENT, LEA COUNTY, NEW MEXICO

SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

TALON/LPE 921 N. BIVINS Amarillo, Texas 79107

DISTRIBUTION:

COPY 1 - PLAINS MARKETING, L.P. - MIDLAND COPY 2 - PLAINS MARKETING, L.P. - HOUSTON COPY 3 – NMOCD – SANTA FE COPY 4 - NOVA COPY 5 - TALON/LPE

JANUARY 17, 2013

TABLE OF CONTENTS

Section	Page
I. MDPE SUMMARY REPORT AND WASTE DISPOSITION	1
B. Air QualityC. Waste Management and Disposition	2
II.SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS	2
Table 1	3

i

Attachments:

Attachment 1 - MDPE field logs Attachment 2 - Laboratory Analytical Results Attachment 3 – Oxidizer Charts Attachment 4 – Waste Ticket

I. MDPE SUMMARY REPORT AND WASTE DISPOSITION

A. MDPE Results

The following report summarizes data collected during the 12-hour High Vacuum Multi-Phase Extraction (MDPE) event conducted from November 13, 2012, to November 14, 2012, at the TNM Monument 18 Pipeline release site, located in Lea County, New Mexico. The objective of the MDPE treatment was to remove both vapor and liquid phase separated hydrocarbons (PSH) from onsite groundwater wells. Talon/LPE utilized an MDPE unit which consisted of an SVE extraction pump capable of generating vacuum up to 25" hg. Off gas vapors extracted from the extraction wells were destroyed using a propane-fired 1000-S_cCFM thermal oxidizer capable of processing 172.96 lbs/hr of gasoline.

A total of 12 hours (0.5 days) of PSH recovery was performed. (MW-1, MW-3, & MW-4 for 12 hours)

Prior to and immediately following the event, the groundwater wells were gauged for groundwater elevation and PSH. Depth to groundwater ranges were measured in feet below the top of casing. Refer to Attachment 1 for a summary of data collected during the MDPE event.

The volume of PSH removed during the MDPE event is shown to reflect the portions of PSH in the liquid phase and as off-gas vapor. Air removal rates were calculated from velocity measurements recorded at the influent manifold prior to entry into the MDPE unit. PSH recovery and air flow data has been detailed and is contained in Table 1. Two influent air samples were collected over the course of the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. Both influent samples were tested for Total-Gas Analysis (Hydrocarbon Composition) by ASTM method D 1945. Laboratory analytical results can be found in Attachment 2.

Based on a combination of field vapor screening and collected laboratory samples, a combined estimated total of 29.22 equivalent gallons of hydrocarbons (Total) were removed during the event. The combined volume of hydrocarbons were comprised of approximately 26 gallons of PSH (liquid phase) and approximately 3.22 gallons as off-gas vapor. The calculations used to estimate the off-gas vapor mass recovered reflect the mass of total hydrocarbons recovered and does not necessarily equate to an equal mass of the product released. The mass recovery calculations may be affected by variations in the specific gravity of product released, age of release, activity of aerobic and/or anaerobic processes, and site specific geochemical factors.

The cumulative air flow measurements for the MDPE event were calculated using a combination of field data measurements and Preso® B+ manufacturer provided formulas. Air flow rates extracted from the recovery wells averaged 61.61 SCFM during the event.

A portion of the extracted air flow rates measured is attributable to compressed air, which

was "injected" into the extraction wells. This "injected" air is introduced into the extraction wells for the purpose of enhancing liquid recovery rates.

B. Air Quality

Two influent air samples were collected during the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. The maximum influent concentration was recorded as 6,738 ppmv for Hydrocarbon Composition. Laboratory analytical results can be found in Attachment 2.

C. Waste Management and Disposition

A cumulative total of 3,300 gallons of fluid were generated during this event. The fluids were temporarily transferred to an on-site storage tank prior to being transferred to an authorized disposal facility. A copy of the waste ticket can be found in Attachment 4.

II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS

Formulae:

Concentration (C mg/l) =

<u>C_ppmv x Mol. wt. in mg(estimated) x 1000 x 0.000001</u> 0.0821 x Temp (K)

Recovery Rate (lbs/hr) =

(C_mg/l) x 2.2 x (Flowrate) x 60 x 28.32 1,000,000

Recovery (lbs) = (lbs/hr) x (hrs)

Correction Factor (CF) =

FID Reading (ppm) FID Reading at Time of Laboratory Analysis

 $\frac{8.34 \text{ lbs}}{\text{gallon water}} \times 0.845 \text{ measured specific gravity of light crude} = \frac{7.047 \text{ lbs light crude}}{\text{gallon}}$

		Tal	ble 1		
System Operation	Data	and	Mass	Recovery	Calculations

Time	Period (hours)	Influent Temp. (°1)	Vacuum (In. hg)	Vacuum (In. h20)	Differential pressure (In. h20)	Flow (SCFM)	FID Readings (ppm)	Lab Result (ppmv)	Assigned Lab Result (ppmv)	Correction Factor (CF)	Adjusted Lab Result (ppmv)	Adjusted Lab Result (mg/L)	Recovery (lbs/hr)	Recovery in Period (lbs)	Total Recovery (lbs)
18:00	0.5	68	16	217.74	6.1	59.04	12695	100 - 10 M	6046.00	0.38	2298	2.69	0.59	0.30	0.30
18:30	0.5	64	16	217.74	6.7	62.11	33403	6046.00	6046.00	1.00	6046	7.12	1.65	0.83	1.12
19:30	1	64	16	217.74	6.5	61.18	29864		6046.00	0.89	5405	6.37	1.46	1.46	2.58
20:30	1	60	16.5	224.55	6.9	62.13	30117	5-0-	6046.00	0.90	5451	6.47	1.50	1.50	4.08
21:30	1	58	16.5	224.55	7.1	63.15	25673		6046.00	0.77	4647	5.54	1.31	1.31	5.39
22:30	1	56	17	231.35	6.8	60.76	26199		6046.00	0.78	4742	5.67	1.29	1.29	6.68
23:30	1	52	17	231.35	7.3	63.20	19946	-	6046.00	0.60	3610	4.35	1.03	1.03	7.71
0:30	1	50	17	231.35	7.1	62.45	22725		6738.00	1.71	11523	14.16	3.31	3.31	11.01
1:30	1	48	17	231.35	7.2	63.01	17814		6738.00	1.34	9033	11.14	2.62	2.62	13.64
2:30	1	48	17	231.35	6.8	61.23	19632		6738.00	1.48	9955	12.28	2.81	2.81	16.45
3:30	1	48	17.5	238.16	6.5	58.70	15985	-	6738.00	1.20	8106	10.00	2.19	2.19	18.64
4:30	1	48	17.5	238.16	7.4	62.63	13288	6738.00	6738.00	1.00	6738	8.31	1.95	1.95	20.59
5:30	1	48	17.5	238.16	7.1	61.35	14563	-	6738.00	1.10	7385	9.11	2.09	2.09	22.68
Averages:		54.77	16.81	228.74	6.88	61.61	21684.92						Total	22.68	
										PSH Mass Re	covered in Vap	or Phase =		3.22	gallons

FID maximum Concentration = 50,000 PPM

x: Conversi	on from ppmy	to mg/L (inf	luent 1)			
Measured Conc.	Molecular Wt.	Pressure	Gas Constant	Temp.	Temp.	Conc.
(ppmv)	(Grams)	(atm)	(atm.liter/K.mole)	(F)	(K)	(C_mg/l)
2298	28,1254	1	0.0821	68	293	2.68660462

Inputs are the green values.

Calculated values are yellow. Constants are purple values.

Outpus are the blue values.

Liquid-phase Hydrocarbon Recovery

∏ * r2 * h = volume

1

	% Vol. Hydrocarbon to pp	Molecular Weight Calculations					
	, , , , , , , , , , , , , , , , , , , ,	component	Molecular Weight (g/mol)	mol%			
Compound	Molecular Weight (g/mol)	% Vol	=	ppmv	Nitrogen (N2)	28.016	99.7192
Methane (CH4)	16.04	0.0301		301.00	Methane (CH4)	16.0425	0.0196
Ethane (C2H6)	30.07	0.002		20.00	Carbon Dioxide (CO2)	44.011	0.0943
Propane (C3H8)	44.10	0.0053		53.00	Ethane (C2H6)	30.069	0.0008
Iso-Butane (C4H10)	58.12	0.0678		678.00	Propane (C3H8)	44.0956	0.0021
N-Butane (C4H10)	58.12	0.0302		302.00	Iso-Butane (C4H10)	58.1222	0.0229
Iso-Pentane (C4H12)	72.15	0.0253		253.00	N-Butane (C4H10)	58.1222	0.0106
N-Pentane (C5H12)	72.15	0.0296		296.00	Iso-Pentane (C4H12)	72.1488	0.0076
Hexane+ (C6H14)	97.40	0.4143		4143.00	N-Pentane (C5H12)	72.1488	0.0090
			Total	6046.00	Hexane+	97.3966	0.1138
	1 000/1 00.0/1	nos and 10 % or	tance ac eur	hite	is set and the set of	Total	99.9999
"Hexane+ is treat	ed as 50% hexanes. 30% heptar						
	ed as 60% hexanes, 30 % heptar *93,1887)+(0.3*100.2019)+(0.1*1				Melanula	Calculated MW	
(0.6	*93.1887)+(0.3*100.2019)+(0.1*1	114.2285) = 97.3	966			Calculated MW	28.1254
(0.6	*93.1887)+(0.3*100.2019)+(0.1* % Vol. Hydrocarbon to pp	114.2285) = 97.3 mv - Influent	966 2		component	Calculated MW r Weight Calculations Molecular Weight (g/mol)	28.1254 mol%
(0.6 Compound	*93.1887)+(0.3*100.2019)+(0.1*1 % Vol. Hydrocarbon to pp Molecular Weight (g/mol)	114.2285) = 97.3 mv - Influent % Vol	966	ppmv	component Nitrogen (N2)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016	28.1254 mol% 96.0672
(0.6 Compound Methane (CH4)	*93.1887)+(0.3*100.2019)+(0.1* % Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04	114.2285) = 97.3 mv - Influent % Vol 0.5729	966 2	ppmv 5729.00	component Nitrogen (N2) Methane (CH4)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425	28.1254 mol% 96.0672 0.3799
(0.6 Compound Methane (CH4) Ethane (C2H6)	*93.1887)+(0.3*100.2019)+(0.1** Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102	966 2	ppmv 5729.00 102.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011	28.1254 mol% 96.0672 0.3799 3.5218
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8)	*93.1887)+(0.3*100.2019)+(0.1** % Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07 44.10	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102 0.0054	966 2	ppmv 5729.00 102.00 54.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069	28.1254 mol% 96.0672 0.3799 3.5218 0.0043
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10)	*93.1887)+(0.3*100.2019)+(0.1** Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07 44.10 58.12	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102	966 2	ppmv 5729.00 102.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011	28.1254 mol% 96.0672 0.3799 3.5218
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8)	*93.1887)+(0.3*100.2019)+(0.1** % Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07 44.10	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102 0.0054	966 2	ppmv 5729.00 102.00 54.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069	28.1254 mol% 96.0672 0.3799 3.5218 0.0043
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10)	*93.1887)+(0.3*100.2019)+(0.1** Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07 44.10 58.12	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102 0.0054 0.0017	966 2	ppmv 5729.00 102.00 54.00 17.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069 44.0956	28.1254 mol% 96.0672 0.3799 3.5218 0.0043 0.0022
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10)	*93.1887)+(0.3*100.2019)+(0.1** % Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07 44.10 58.12 58.12	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102 0.0054 0.0017 0.0042	966 2	ppmv 5729.00 102.00 54.00 17.00 42.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069 44.0956 58.1222	28.1254 mol% 96.0672 0.3799 3.5218 0.0043 0.0022 0.0006
(0.6 Compound Methane (CH4) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10) So-Pentane (C4H12)	*93.1887)+(0.3*100.2019)+(0.1** Vol. Hydrocarbon to pp Molecular Weight (g/mol) 16.04 30.07 44.10 58.12 58.12 72.15	114.2285) = 97.3 mv - Influent 0.5729 0.0102 0.0054 0.0017 0.0042 0.0128	966 2	ppmv 5729.00 102.00 54.00 17.00 42.00 128.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10)	Calculated MW r Weight Calculations 28.016 16.0425 44.011 30.069 44.0956 58.1222 58.1222 58.1222 59.122 59.12 59.12	28.1254 mol% 96.0672 0.3799 3.5218 0.0043 0.0022 0.0006 0.0015
(0.6 Compound Methane (CH4) Ethane (CH4) Beo-Butane (C4H10) N-Butane (C4H10) N-Pentane (C4H12) N-Pentane (C4H12) Hexane+ (C6H14)	*93.1887)+(0.3*100.2019)+(0.1** % Vol. Hydrocarbon to ppr Molecular Weight (gmol) 16.04 30.07 44.10 58.12 72.15 72.15 72.15 97.40	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102 0.0054 0.0017 0.0042 0.0042 0.0034 0.0632	9966 2 = Total	ppmv 5729.00 102.00 54.00 17.00 42.00 128.00 34.00 632.00 6738.00	component Nitrogen (N2) Methane (CH4) Carbon Dioxide (CO2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C4H10) N-Butane (C4H10) Iso-Pentane (C4H12)	Calculated MW r Weight Calculations Molecular Weight (g/mol) 28.016 16.0425 44.011 30.069 44.0956 58.1222 78.1488	28.1254 mol% 96.0672 0.3799 3.5218 0.0043 0.0022 0.0006 0.0015 0.0039
(0.6 Compound Methane (CH4) Ethane (CH4) Beo-Butane (C4H10) N-Butane (C4H10) N-Pentane (C4H12) N-Pentane (C4H12) Hexane+ (C6H14)	*93.1887)+(0.3*100.2019)+(0.1** % Vol. Hydrocarbon to pp Molecular Weight (gmol) 16.04 30.07 44.10 58.12 58.12 72.15 72.15	114.2285) = 97.3 mv - Influent % Vol 0.5729 0.0102 0.0054 0.0017 0.0042 0.0042 0.0034 0.0632	9966 2 = Total	ppmv 5729.00 102.00 54.00 17.00 42.00 128.00 34.00 632.00 6738.00	component Nitrogen (N2) Methane (CH2) Ethane (C2H6) Propane (C3H8) Iso-Butane (C2H10) N-Butane (C4H10) Iso-Pentane (C4H12) N-Pentane (C5H12)	Calculated MW r Weight Calculations 28.016 16.0425 44.011 30.069 44.0956 58.1222 58.1222 58.1222 72.1488 72.1488 72.1488	28.1254 mol% 96.0672 0.3799 3.5218 0.0043 0.0022 0.0006 0.0015 0.0039 0.0010

Calculated MW= _____sum (individual component MW x their reported mol%)_____100

ppmv= % Vol x 10,000

 Total Hydrocarbon Recovery

 PSH Mass Recovered in Vapor Phase =

 PSH Mass Recovered in Liquid Phase =

 183.22

 Ubs

 gallons

 TOTAL =

 205.90

 Ibs

 gallons

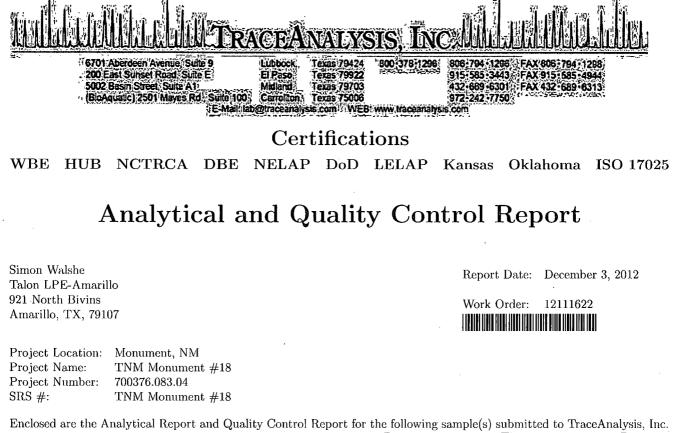
ATTACHMENT 1 MDPE Field Logs

	h				MDPE FIE	LD NOTES			
Site Name	e:	Monument 18						Event #:	4
Location:	1	S. of Monu	iment, NM					Arrive at site:	11/13/2012 17:00
Date:		11/13-14/2	012						
Job#:		700376.08	3.04		SRS:	TNM Mon	ument 18	Start Vac:	11/13/2012 17:30
Phase:		MDPE4			Unit:	1107		Stop Vac:	11/14/2012 5:30
Onsite Pe	rsonnel:	L. Bridges	& B. Huntin	igton			-	Leave Site:	11/14/2012 6:00
									<u> </u>
	1				GAUGIN	IG DATA	· · · · · · · · · · · · · · · · · · ·		
WELL#		BEFORE			AFTER		4	COMMEN	ITS
	PSH	GW	PSH-T	PSH	GW	PSH-T			
MW-1	32.99	33.12	0.13	-	33.03	-	Stinger set @) 32'	
MW-3	-	32.71	-	-	32.92	-	Stinger set @		
MW-4	32.25	32.49	0.24	-	32.31	-	Stinger set @	232'	
_MW-7	· -	32.71	-		Not Gaugeo				
MW-8		33.61	-		Not Gaugeo				
MW-5	-	34.52	-	1	Not Gaugeo	<u>1</u> t			
MW-6	•	31.80	-		Not Gaugeo				
MW-9	* <u>-</u>	34.37	-		Not Gaugeo		· .	·	
MW-10	-	32.32	-	1	Not Gaugeo	1			
	ę							•	
				·					
	•								
				•					
	<u></u>					L			
				•					1
WASTE:	: H2O:	3274		PSH:	26		TOTAL (GAL	.): 3300	
							· · · · · ·		
Sample	e Name	Anal	ysis	Date:	Ti	me:	Comments:		

Sample Name	Analysis	Date:	Time:	Comments:
INFLUENT	ASTM D1945	13-Nov-12	18:30	FID = 33403
INFLUENT	ASTM D1945	14-Nov-12	4:30	FID = 13288
_	-	. .	-	-
_ ·	-	-	-	-
-		-	-	· -

Notes:

ij


Instructed to include MW-3 in extraction after no PSH was observed.

											· ·	
Start Date:_	13-Nov-12							MDPE FIEI				_
			Well Flow						,	Well Data		
TIME	SAMPLE	Inflent temp.	Diff.	Vac	FID	Propane	EXHAUST			COMMENTS:		
	TAKEN	(°f)	Pressure	(In.Hg)	Composite	Tank	TEMP F	MW-1	MW-4	MW-3	\geq	\searrow
			(INH20) 2" Preso		(PPM)	(%-size) 500 Gal.		VAC (INH2O)				
18:00		68	6.1	16	12695	95	1423	27.6	30.8	19.9	\searrow	\square
18:30	*	64	6.7	16	33403	94	1415	28.4	31.7	21.7	\square	\square
19:30		64	. 6.5	16	29864	92	1410	29.5	33.8	20.4	\geq	\geq
20:30		60	6.9	16.5	30117	90	1408	30.3	32.1	25.3	\geq	
21:30		. 58	7.1	16.5	25673	88	1410	29.4	34.6	26.5	\geq	
22:30		56	6.8	17	26199	86	1412	28.7	33.8	23.9	\geq	\sim
23:30		52	7.3	17	19946	84	1413	30.1	35.2	27.4	\sim	
0:30	· · ·	50	7.1	17	22725	82	1411	29.6	34.9	24.8 ·	\sim	
1:30		48	7.2	17	17814	80	1410	27.3	36.1	25.1	\searrow	\searrow
2:30		48	6.8	17	19632	76	1411	25.9	33.6	23.7	\searrow	\searrow
3:30		48	6.5	17.5	15985	74	1408	23.6	31.7	21.6	\searrow	\geq
4:30	*	48	7.4	17.5	13288	72	1414	20.4	32.8	19.8	\searrow	\searrow
5:30		48	7.1	17.5	14563	70	1412	21.1	30.9	20.3	\geq	\geq

Soil Vacuum Influ	ence _
Observation Well	MW-8
Extraction Well (EW)	MW-3
Time:	In.H2O
18:30	0
23:30	0
4:30	0

TNM Monument 18 – 700376.083.04 - SRS# TNM Monument 18 – Event 4 – 12 Hour

ATTACHMENT 2 Laboratory Analytical Results

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
314425	Influent #1	air	2012-11-13	18:30	2012-11-16

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	3
Analytical Report	4
Analytical Report Sample 314425 (Influent #1)	4
Appendix	5
Report Definitions	5
Laboratory Certifications	5
Standard Flags	5
Attachments	5

Page 2 of 5

Case Narrative

Samples for project TNM Monument #18 were received by TraceAnalysis, Inc. on 2012-11-16 and assigned to work order 12111622. Samples for work order 12111622 were received intact at a temperature of 23.0 C.

Samples were analyzed for the following tests using their respective methods.

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 12111622 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Page 3 of 5

Report Date: December 3, 2012 700376.083.04 Work Order: 12111622 TNM Monument #18 Page Number: 4 of 5 Monument, NM

Analytical Report

Report Date: December 3, 2012 700376.083.04

Work Order: 12111622 TNM Monument #18

Page Number: 5 of 5 Monument, NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis

Standard Flags

F Description

B Analyte detected in the corresponding method blank above the method detection limit

- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

LAB Orde	er ID #_	121116	32					-								_														Pag	je_		/	_ of	f	<u> </u>		
			lab@tracea	analys	is.com	ı					L	Lubt Te Fa: 1	bock, I (806 x (806 (800)	Texa) 79- 5) 79 378	as 79 4-129 4-129 -1296	Suite 9 424 6 98	5002 Ba Midla Tel (Fax	(432)	Stree T exa : 2) 689 2) 689	-630	1			I Pa Tel I	Sun so, 1 (915) (915) 888)	(exa: 585	s 799 5-344	922	ε			2501 Carro	May	es Ri n, Tei	Testing d., Ste xas 75 12-775	100 5006		
Company Na	ame:	eet, City, Zip) 3. Jun - J							Pho *A	ne #	:	<u> </u>		ζ.				Γ												QUI						•		
Address:	(Str	eet, City, Zip)		1.1.1	-				Fax	#:					/							(C	irc	le	0	· S	pe	ci	fy	Me	eth	od	N	0.)			
Contact Per	<u> </u>	B. Jihl	- Manin	C/THE	<u>I</u> X	<u>.</u>	40	10	2 <u> </u>	ail:								$\left\{ \right.$				0.7										inity					ъ	
Sino	- h	alste																		35)		10/20	Se Hg									Alkal					anda	
Invoice to: (If different f	from ab	ove) Pla	ins (7	20-	Hen	~	\sim	SA	s≠	= 7	Nr	ι,	ma_		تعه	+±18	•			Xt(C		19 60	b Se									٩,					m st	
Project #:		.63 . (~			Pro	ect	Nam	ie:		<u>A</u> .	4,	0		1624	624	005	F	Ser	с Г					25				PO					It fro	
Project Loca	ation (in	$\frac{33.64}{7}$							San	ple:	<u>، درم</u> Sig	nati	ure:		#1	<u> </u>		8260 / 624	60 / 1	TXIC		2 6 7	8					0/0) ₂ -N	<u>ں</u>	$\langle \rangle$			fferer	
Min	Jr1 Co	t NM	<u> </u>	, 	<u></u>	<u> </u>				r -			ERVA					1	/ 82	05 /		ğ	s Ba	,	S		/ 624	827		808		z	S, E	1945			if dif	
	M	P=		RS	Volume / Amount		MA	TRD	(<u> </u>			THO			SAM	PLING	1 / 602	BTEX 8021 / 602 / 8260 / 624	TPH 418.1 / TX1005 / TX1005 Ext(C35)	25	Total Metals Ag As Ba Cd Cr Pb Se Hg 6010/200.7	TCLP Metals Ag As Ba Cd Cr Pb	SS Abril	TCLP Pesticides		GC/MS Vol. 8260 / 624	GC/MS Semi. Vol. 8270 / 625	608	Pesticides 8081 / 608	tent	CI, F, SO ₄ , NO ₃ -N, NO ₂ -N, PO ₄ -P, Alkalinity	Na, Ca, Mg, K, TDS, EC	2			Turn Around Time if different from standard	
LAB #	E	VONT# FIELD CO	} DE	# CONTAINERS	/ Am				ы									8021	021	.1/	PAH 8270 / 625	als Ag	etals	TCLP Volatiles	TCLP Pesticides		Vol. 8	Semi	082 /	es 80	Moisture Content	04, N	Mg,	4			pun	
LAB USE				INO	nme	WATER			SLUDGE		ő	H ₂ SO4	Ы		۳	ш	ш	12	8	1418	1 827	Meta	Ž :	≍ й А а	ה ה ה ם		NS/	MS:	3's 8(ficide 1	sture .	л, S	Ga	H			Aro	-
ONLY)				#	No1	M	8	AR S	7	Ę	HNO ₃	H ₂ S	NaOH		NONE	DATE	TIME	MTBE		t l	티호	Tota		티	리	RCI 5	0C/	GC/	B	Pes		ธ่	Na,	Ŷ			Tur	Hold
314925 926	Ĩ	affluent	*1	1	1			~		1.					7	17-13	1830					Π								-				ノ				
426		afflient"	#2		1										-	j)-i4	6430																	J				
		······································			1-1	Γ				T	·							1	\square		1				1	1												
				-						1								1-			_			+						_	1							
						1		-		1				1			<u> </u>	\uparrow					+	+											+			
			· · ·		1	<u> </u>		-		<u> </u>				\uparrow	-			+-						-	-					-+-	-				+			
i.						+	+		+	-								+	+						+-	+-	┼╌┥			-+-	+	+		÷		\vdash		
		·				┢			+	-	<u> </u>								┼╌┥	-+	+				+-			-			-		_	+		┝╌┿	-+	
·		<u> </u>				<u>-</u>		-+		+				+	_		+	+	+	\dashv		-		+	+	-				-+	-			_	_	┼╌╋		
		· · · · · · · · · · · · · · · · · · ·	· <u> </u>		-		$\left \right $	-+		-	-							+	+						+	+	+		$\left \cdot \right $		-	+-		+	_	┝┼┤		
				-+	+		$\left \right $	_+			-		$\left - \right $				–	+	+		+				+	+		$\left - \right $		-+-	_	$\left - \right $		_		$\left \right $		
Relinguish	ed by:	Company	: Date:		ime:	R	eceiv	ed h		C	omp	L	└ /:		ate:	Time	: INS		13	-				<u> </u>		EM	ARM											
	~	Talona			~	F	tT.	` /.))	<u>_</u>	n	j		,	,		OBS	s <u>.ġ</u>	34		LAI C	B U NI		=	-													
Relinguish	ed by:	Company			1245 c "ime:		(]Q eceiv	ul od b	<u>م/ا_</u> w:	/	0mp	anv	<u> </u>	1/4 Da	<u>d /2</u> ate:	<u>245) _</u> Time			30	<u>_</u> c	~	`																
				-				07	. -			.					OBS	s		_ ~	ntadi 1			\downarrow														
Relinquish	ed by:	Company	Date:		ime:	R	eceiv	ed b	y:	c	omp	Danv	<i>ı</i> :	Da	ate:	Time				<u> </u>	leadsp	ace <u>-</u>	r V							Requi	red							
		, ,							-					- •			OB	s_		°c	og-in-f	Review	"H	1	Πc	hecl	k If S	ipeci	ial R	uired eport	ing							
Submittel	feamold	es constitutes a	areemont to	Terme	nd Con		ns lie	ted	00.00	/ore/	- a eid						COI	R		<u>`</u> c		/	7		Ĺ	imits	Are	Nee	eded							<u>. </u>		
Submittal 0	r sample		agreement to		RIGI					1013	2 SIU		0.0	J. U	•			_	Carrie	r # _		(Ĵ	A	Ą	4	\mathcal{A}	k	/				·			_		

ORIGINAL COPY

• • •

0 flice: 806-665-07 90 Fax: 806-665-0745

į

The following analytical results were produced using the strictest quality control and most current methods:

COC #: N/A

Lab #: 16667-16668

Quality Control #: 2335

Approved by:

nil

Neil Ray

Date: 11/29/12

0 flice: 805-665-07-50 Fax: 806-665-0745

615 N. Price Rd. Pampa, TX 79065

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent Air #1 Trace: 314425-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 11/13/12 Time: N/A Sampled By: N/A Analysis Date: 11/26/12 Analysis By: Jessica Cabezudo

Lab #: 16667 Quality Control Report: 2335

Gas Composition					
	Mol %	GPM	Vol %	ppm vol.	Wt. %
Nitrogen (N2):	99.7192	10.9118	99.2498	992498	99.3791
Carbon Dioxide (CO2):	0.0943	0.0159	0.1456	1456	0.1473
·	·				
Hydrocarbon					
Composition	Mol %	GPM	Vol. %		Wt. %
Methane (CH4):	0.0196	0.0033	0.0301	301	0.0112
Ethane (C2H6):	0.0008	0.0002	0.0020	20	0.0009
Propane (C3H8):	0.0021	0.0006	0.0053	53	0.0033
Iso-Butane (C4H10):	0.0229	0.0075	0.0678	678	0.0472
N-Butane (C4H10):	0.0106	0.0033	0.0302	302	0.0218
Iso-Pentane (C5H12):	0.0076	0.0028	0.0253	253	0.0195
N-Pentane (C5H12):	0.0090	0.0033	0.0296	296	0.0231
Hexanes+ (C6H14):	0.1138	0.0491	0.4143	4143	0.3465
Totals	100.000	10.9978	100.000		100.000

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	7.8	Z-Comp. Factor-dry:	0.99970
BTU -water vapor sat.(BTU/ft ³):	8.6	Z-Comp. Factor-water vapor sat.:	0.99555
Specific Gravity -dry:	0.9708	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	0.9687	Molecular Weight	28.1255

0 flice: 806-665-07-50 Fax: 805-665-0745

615 N. Price Rd. Paunpa, TX 79065

Sample Matrix: Gas Sample Type: Spot Preservative: N/A Sample Container: Tedlar Bag

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent Air #2 Trace: 314426-1 Sample Temp.: N/A Atmospheric Temp.: N/A Pressure: N/A Field Data: N/A Sample Date: 11/14/12 Time: N/A Sampled By: N/A Analysis Date: 11/26/12 Analysis By: Jessica Cabezudo

Lab #: 16668 Quality Control Report: 2335

Gas Composition					
	Mol %	GPM	Vol %	ppm vol.	Wt. %
Nitrogen (N2):	96.0672	10.5129	93.9822	939822	94.2907
Carbon Dioxide (CO2):	3.5218	0.5939	5.3442	53442	5.4187
<u>Hydrocarbon</u> Composition	Mol %	GPM	Vol. %		Wt. %
Methane (CH4):	0.3799	0.0645	0.5729	5729	0.2130
Ethane (C2H6):	0.0043	0.0011	0.0102	102	0.0045
Propane (C3H8):	0.0022	0.0006	0.0054	54	0.0034
				1.7	
Iso-Butane (C4H10):	0.0006	0.0002	0.0017	17	0.0012
Iso-Butane (C4H10): N-Butane (C4H10):	0.0006	0.0002	0.0017	42	0.0012
	· · · · · · · · · · · · · · · · · · ·				
N-Butane (C4H10):	0.0015	0.0005	0.0042	42	0.0030
N-Butane (C4H10): Iso-Pentane (C5H12):	0.0015 0.0039	0.0005	0.0042 0.0128	42 128	0.0030 0.0099

Analytical Results

Comments - Additional Data

BTU -dry (BTU/ft ³):	5.1	Z-Comp. Factor-dry:	0.99963
BTU -water vapor sat.(BTU/ft ³):	5.9	Z-Comp. Factor-water vapor sat.:	0.99511
Specific Gravity -dry:	0.9856	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	0.9837	Molecular Weight	28.5493

Office: 806-665-07.90 Fac: 806-665-07.45

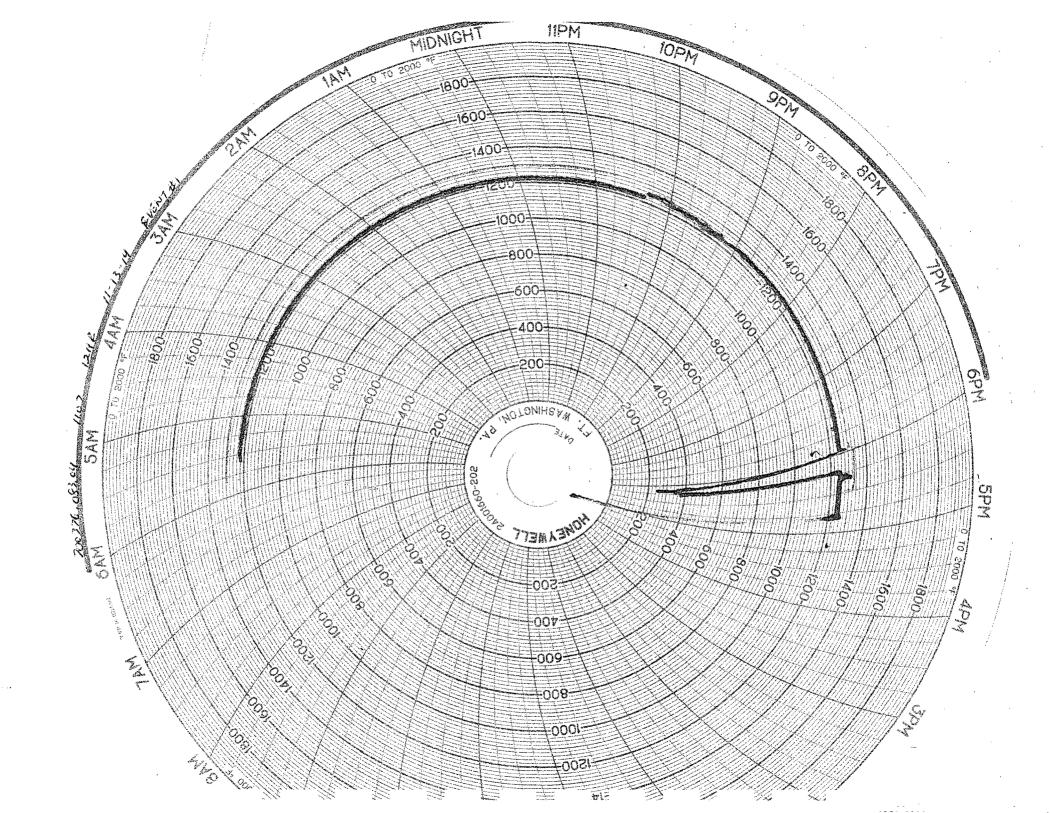
615 N. Price Rd. Pampa, TX 79065

Sample Type: Standard Preservative: N/A Sample Container: Industrial Cylinder Sample Id.: DCG Reference Std. 53619AW Sample Temp.: 120° F Analysis Date: 11/26/12 Analysis By: Jessica Cabezudo

Method(s): ASTM D 1945 Gas Analysis by Gas Chromatography

Quality Control Report#: 2335

Analytical Results


RESULTS	ACTUAL	ANALYSIS			
Gas Composition			MDL	RL	% Deviation
	<u>Mol %</u>	<u>Mol %</u>	<u>Mol %</u>	ppm mol	(90-100%)
Nitrogen (N2):	4.918	4.7667	0.0010	10	96.9
Carbon Dioxide (CO2):	1.499	1.4981	0.0010	10	99.9
· · · · · · · · · · · · · · · · · · ·					
			MDL	RL	% Deviation
Hydrocarbon Composition	<u>Mol %</u>	<u>Mol %</u>	<u>Mol %</u>	ppm mol	(90-100%)
Methane (CH4):	69.891	70.1327	0.0001	1	99.7
Ethane (C2H6):	9.111	9.1284	0.0001	1	99.8
Propane (C3H8):	5.984	5.8562	0.0001	1	97.9
Iso-Butane (C4H10):	3.024	2.9837	0.0001	1	98.7
N-Butane (C4H10):	3.040	3.0366	0.0001	1	99.9
Iso-Pentane (C5H12):	1.012	1.0151	0.0001	1	99.7
N-Pentane (C5H12):	1.018	1.0613	0.0001	1	95.7
Hexane+ (C6H14):	0.503	0.5211	0.0001	1	96.4
Totals	100.000	100.000			

Comments - Additional Data

ACTUAL .		ANALYSIS	
BTU -dry (BTU/ft3):	1324.0	BTU -dry (BTU/ft ³):	1324.9
BTU -water vapor sat. (BTU/ft3):	1318.4	BTU -water vapor sat. (BTU/ft ³):	1319.3
Specific Gravity -dry:	0.8349	Specific Gravity -dry:	0.8339
Specific Gravity -water vapor sat.:	0.8419	Specific Gravity -water vapor sat.:	0.8408
Z-Comp. Factor -dry:	0.99564	Z-Comp. Factor -dry:	0.99563
Z-Comp. Factor -water vapor sat.:	0.98306	Z-Comp. Factor -water vapor sat.:	0.98306

ATTACHMENT 3 Oxidizer Charts

. .

TNM Monument 18 – 700376.083.04 - SRS# TNM Monument 18 – Event 4 – 12 Hour

ATTACHMENT 4 Waste Ticket

Driver, Operator or Pusher Algen Denning 5 107.00 510 Helper 5	
From S.C. To Location To Lease	
To Lease Well No. Location A.M. A.M. TIME RATE AMO Time Out P.M. Time In P.M. P.M. Time In P.M. Diesel Brine Water Fresh Water Fresh Water P.M. I	
A.M. A.M. TIME RATE AMO Time Out P.M. Time In P.M. P.M. P.M. Diesel Brine Water Fresh Water P.M. P.M. IIII Diesel Brine Water Fresh Water P.M. IIII IIIII Diesel Brine Water Acid Bbls. Hauled 79 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Time Out P.M. Time In P.M. Diesel Brine Water Fresh Water Fresh Water P.M. Crude Oil Salt Water Acid Bbls. Hauled 77 110 80 Driver, Operator or Pusher Helper 107.00 510	
Diesel Brine Water Fresh Water Crude Oil Salt Water Acid Bbls. Hauled 77 bits 1 10 80 Driver, Operator or Pusher Hour Driver, Operator or Pusher Hour 1 10 80 Helper 5 107 00 510	
Crude Oil Salt Water Acid Bbls. Hauled 110 80 Driver, Operator or Pusher Helper 107.00 510	<u></u>
Helper 5 102.00 510	, 90
	. (0
Helper	
Helper	
Other Charges	
Description of Work: Hauled 79 libls of water soil to	<u> </u>
" "ykinikie SwD"	
	6.90
Spendele GWD Loved & GEZOO Sales Tax 32	n () 77
Authorized by: TOTAL CZS	2.83
Superior Printing Service, Inc 101).73

•