			ATJ-16-	532
Form 3160-3 (August 2007)		NM OIL CONSERVATION	FORM APPI OMB No. 10 Expires July	04-0136
×	UNITED ST DEPARTMENT OF BUREAU OF LAND	THE INTERIOR FEB 1 7 2016	5. Lease Serial No. NMNM81586	
AP		TO DRILL OR REENTRECEIVED	6. If Indian, Allottee or Trib	e Name
la. Type of Work: 🛛 🔀	DRILL CREENTER	······································	7. If Unit or CA Agreement,	Name and No.
lb. Type of Well: 🛛 🛛] Oil Well 🔲 Gas Well 🔲 Ot	her 🛛 🛛 Single Zone 🔲 Multiple Zone	8. Lease Name and Well No CEDAR CANYON 22 F	
2. Name of Operator OXY USA INCO	· Contact:	DAVID STEWART tewart@oxy.com	9. API Well No. 30-0/5-436	42 m
3a. Address 5 GREENWAY PL/ HOUSTON, TX 77		3b. Phone No. (include area code) Ph: 432.685.5717	10. Field and Pool, or Explo UNKNOWN Lierce Crossing	ratory
4. Location of Well (Report location clearly and in accord	nce with any State requirements.*)	11. Sec., T., R., M., or Bld. a	and Survey or Area
At surface At proposed prod. :		2.202504 N Lat, 103.964108 W Lon 32.205132 N Lat, 103.979806 W Lon	Sec 22 T24S R29E M SME: BLM	Mer NMP
	nd direction from nearest town or post IEAST FROM LOVING, NM	office*	12. County or Parish EDDY	13. State NM
	osed location to nearest property or to nearest drig. unit line, if any)	16. No. of Acres in Lease	17. Spacing Unit dedicated t 160.00	o this well
18. Distance from prop	osed location to nearest well, drilling, for, on this lease, ft.	19. Proposed Depth	20. BLM/BIA Bond No. on	file
30	for, on this lease, it.	13692 MD 8844 TVD	ESB000226	
21. Elevations (Show w 2958 GL	hether DF, KB, RT, GL, etc.	22. Approximate date work will start 03/01/2016	23. Estimated duration 35	
 Well plat certified by a A Drilling Plan. A Surface Use Plan (if 	-	tem Lands, the 5. Operator certification	o this form: ions unless covered by an existin nformation and/or plans as may b	
25. Signature (Electronic Subm	lission)	Name (Printed/Typed) DAVID STEWART Ph: 432.685.5717		Date ' 12/17/2015
Title REGULATORY	ADVISOR	,	- ···	-2016 ×
Approved by (Signature	ve Caffev	Name (Printed/Typed)		FEB - 9
Title	LD MANAGER	Office CARLSBAD FIELD OFF	ICE	
Application approval does operations thereon. Conditions of approval, if		olds legal or equitable title to those rights in the subject ς	lease which would entitle the app APPROVAL FOR T	, ,
Title 18 U.S.C. Section 10 States any false, fictitious	01 and Title 43 U.S.C. Section 1212, or fraudulent statements or representa	make it a crime for any person knowingly and willfully tions as to any matter within its jurisdiction.	to make to any department or ag	ency of the United
Additional Operator	For OX	ion #326724 verified by the BLM Well Info / USA INCORPORATED, sent to the Carls processing by JAMIE RHOADES on 12/18	bad 7	18/10
Carlsbad Controller	d Water Basin Appr	eval Subject to General Requirements 🥧 - & Special Stipulations Attached		
*	* BLM REVISED ** BLM RE	EVISED ** BLM REVISED ** BLM REVI	SED ** BLM REVISED	k# •
			EE ATTACHED	
		С	ONDITIONS OF	APPROVAL

Additional Operator Remarks:

Ţ

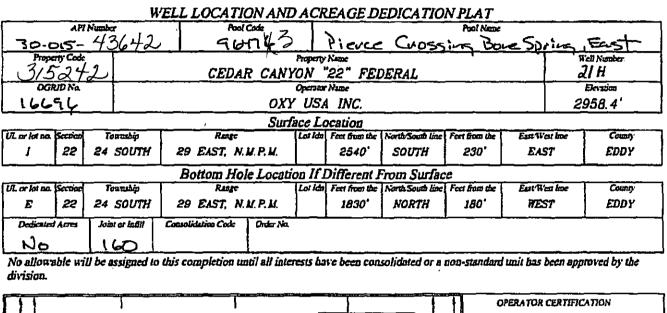
OXY USA Inc. respectfully requests approval for the following APD:

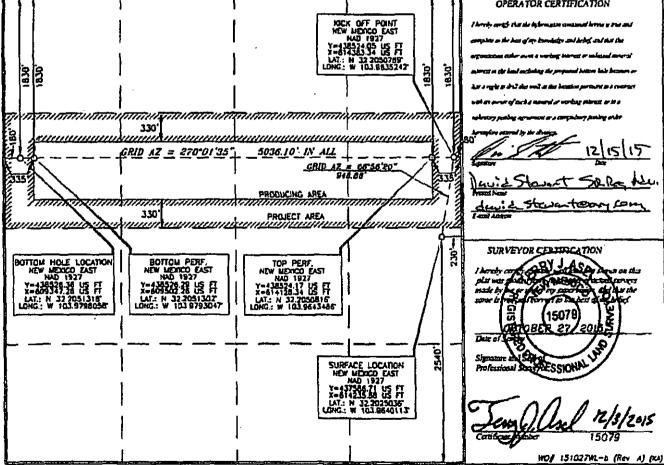
This well will be on a multi-well pad to accommodate batch drilling with skidding operations. An EA has already been done on the pad and one of the wells has an approved APD, the Cedar Canyon 23 Federal #3H, API No. 30-015-43290.

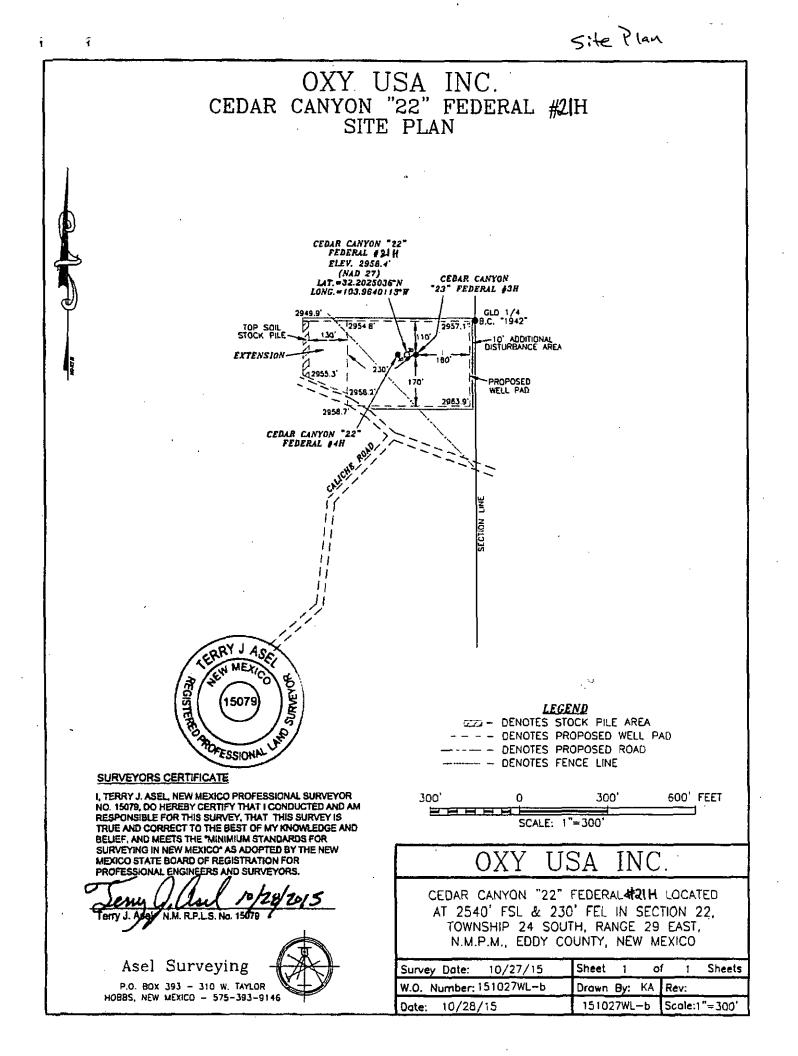
See attached for the following:

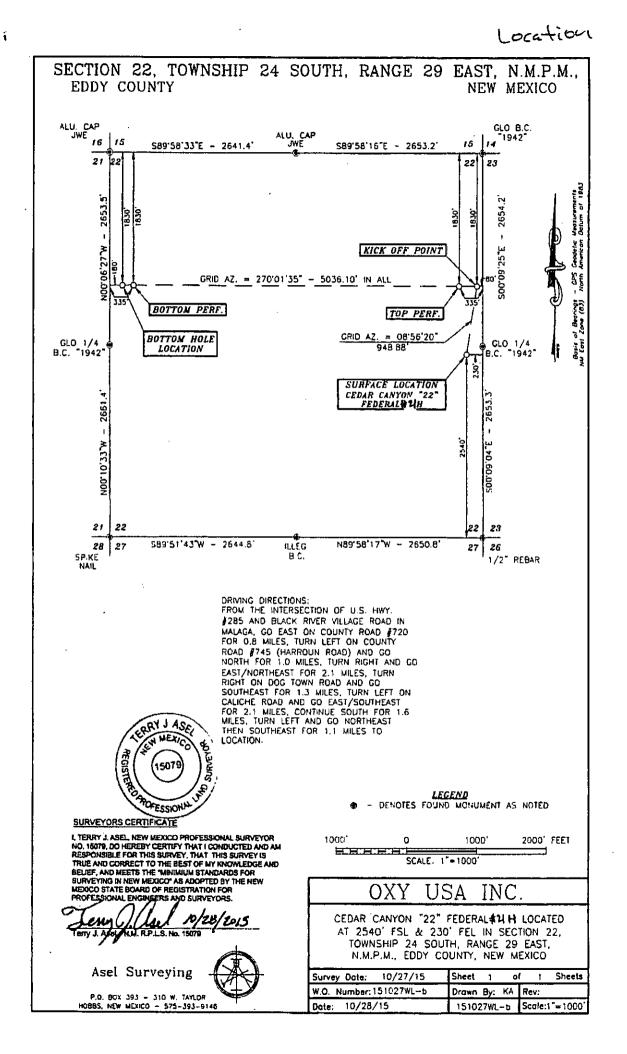
- APD Drilling Plan
 Surface Use Plan of Operations
 Plats/surveys/diagrams
 Directional Drilling Plan

- 5. BOP Diagrams
 6. Choke Manifold Diagrams
 7. Closed Loop Diagrams
- 8. Flex Hose Information
- 9. H2S Plan
- 10. Staking Notice
- 11. Operator Certification .

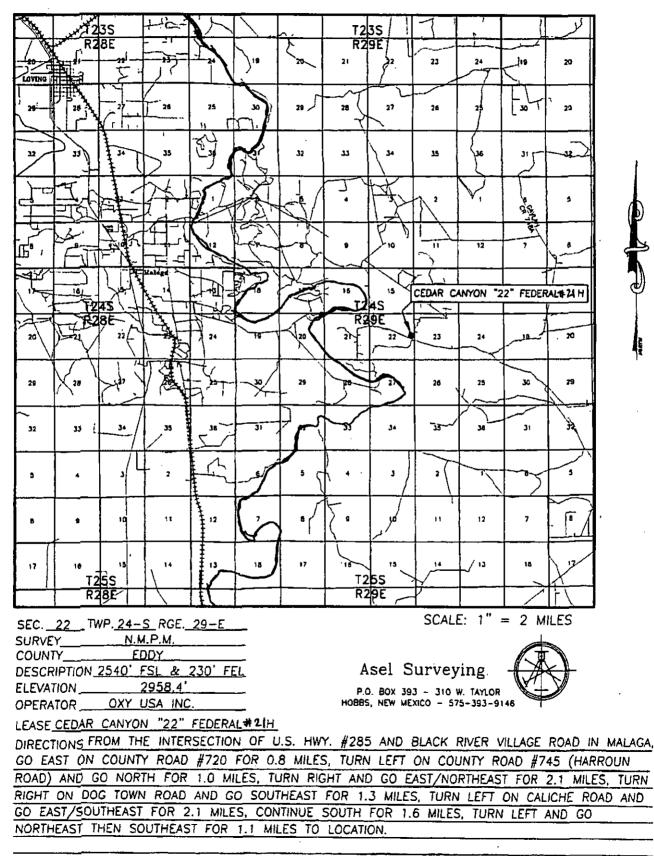

Diaries J (127 K. Jonach De, Holton, K.M. 82340 Protect, (171) NH-4(12 East, (172) NH-6730 Protect, 071) NH-1220 Past, (173) NH-6730 Protect, 0710 NH-1220 Past, (173) NH-6730 Protect, 070 NH-6740 Past, (170) NH-6730 Protect, 070 NH-6740 Past, (170) NH-6730 Protect, 020 NH-6740 Past, (170) NH-6730 Protect, 020 NH-6740 Past, (170) NH-6740 Protect, 020 NH-6740 Past, (170) NH-6740

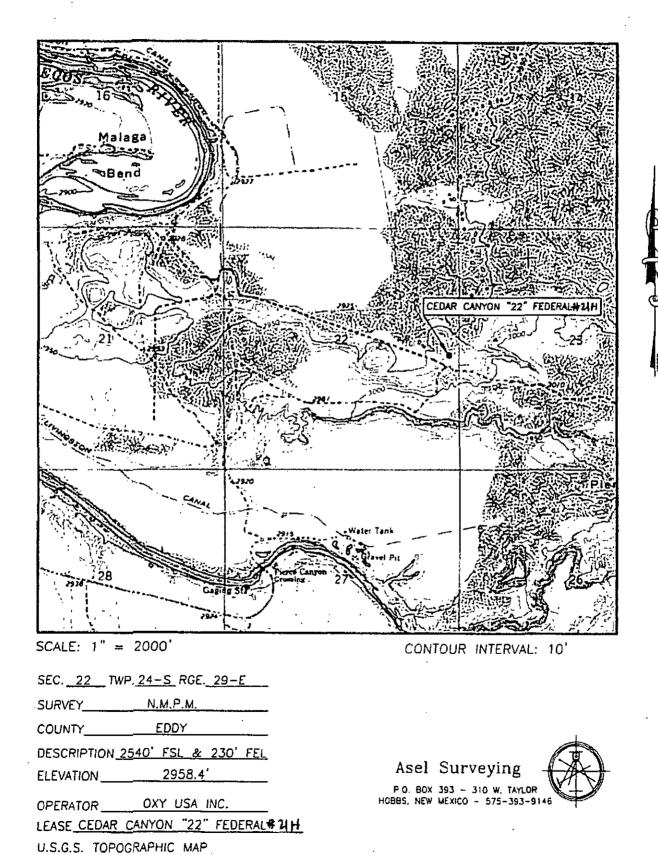

ŝ


Ŷ.


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

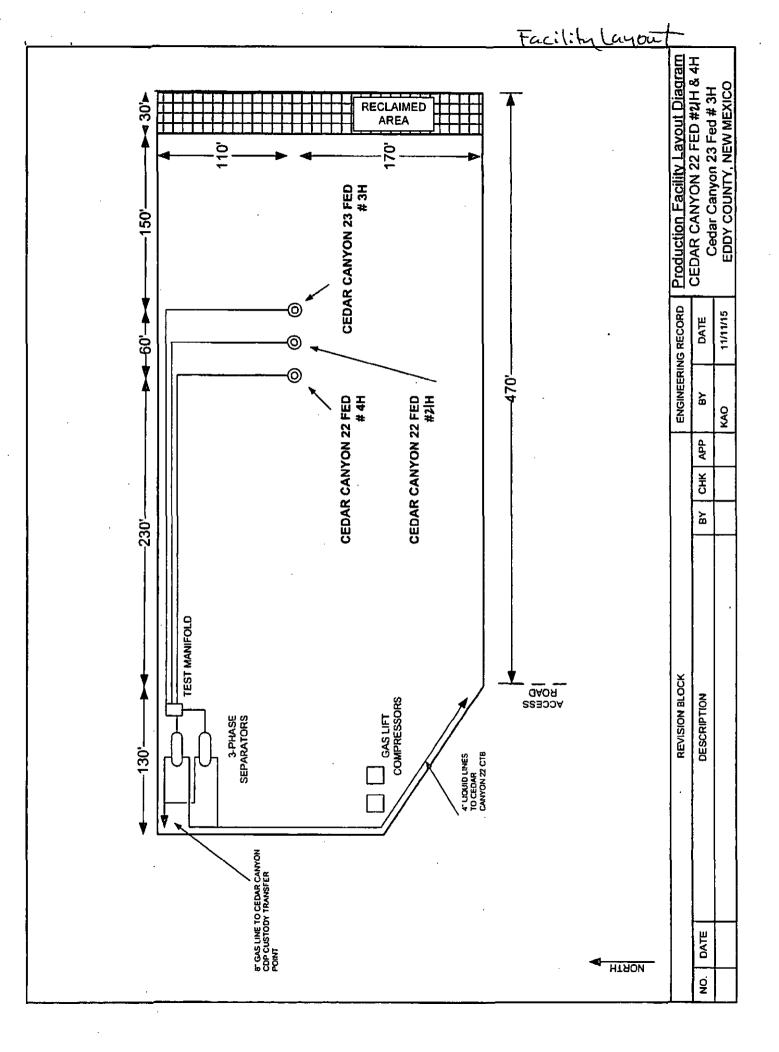
AMENDED REPORT

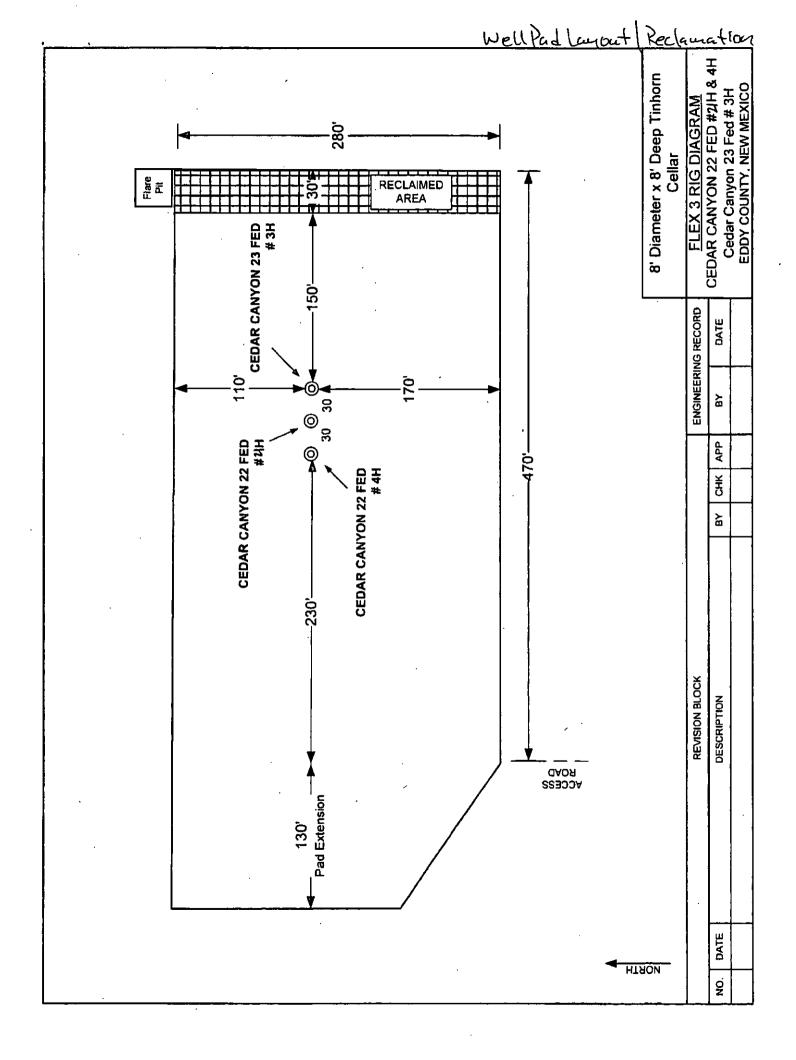



VICINITY MAP

۱

1




LOCATION VERIFICATION MAP

PIERCE CANYON, N.M.

LUM

1. Geologic Formations

TVD of target	8844	Pilot hole depth	N/A
MD at TD:	13692.	Deepest expected fresh water:	480

Delaware Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Top Rustler	480	Water	<u> </u>
Top Salado (salt)	782	Water	:
Top Castile (anhydrite)	1348	Water	
Top Lamar / Delaware	3075	Oil/Gas	· · · · · · · · · · · · · · · · · · ·
Top Bell Canyon	3100	Oil/Gas	Lost Circulation
Top Cherry Canyon	3639	Oil/Gas	Lost Circulation
Top Brushy Canyon	5047	Oil/Gas	Lost Circulation
Bone Spring	6586	Oil/Gas	
1st Bone Spring Sand	7571	Oil/Gas	
2nd Bone Spring	7791	Oil/Gas	
2nd Bone Spring Sand	8580	Target Zone	•
3rd Bone Spring (Approx.)	8780	Oil/Gas	
	· · · · · · · · · · · · · · · · · · ·		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

OXY USA Inc. - Cedar Canyon 22 Federal #21H

2. Casing Program

Holé	Casin	gInterval	Csg.	Weight	Grade	Conn.	SF	SF	SF
Size	From	То	Size	(lbs)			Collapse	Burst	Tension
14.75"	0	480	10.75"	45.5	J55	BTC	10.94	1.4	6.11
9.875"	0	8113	7.625"	29.7	L80	BTC	5	1.31	2.19
6.75"	0	9053	5.5" .	20	P-110	Ultra SF	2.69	1.22	2.05
6.75"	9053	13692	4.5"	13.5	P-110	DQX	2.42	1.23	2.15
•		•		BLM Mir	iimum Sat	fety Factor	1.125	1	1.6 Dry
			• *			-		1	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N				
Is casing new? If used, attach certification as required in Onshore Order #1	Y				
Does casing meet API specifications? If no, attach casing specification sheet.					
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y				
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y				
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y				
Is well located within Capitan Reef?	N				
If yes, does production casing cement tie back a minimum of 50' above the Reef?					
Is well within the designated 4 string boundary.					
Is well located in SOPA but not in R-111-P?	N				
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?					
Is well located in R-111-P and SOPA?	N				
If yes, are the first three strings cemented to surface?					
Is 2 nd string set 100' to 600' below the base of salt?					
Is well located in high Cave/Karst?	N				
If yes, are there two strings cemented to surface?	N				
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	N/A				
Is well located in critical Cave/Karst?	N N				
If yes, are there three strings cemented to surface?					

OXY USA Inc. - Cedar Canyon 22 Federal #21H

3. Cementing Program

Casing		Wt.	Yld	H20	500#	Slurry Description
		lb/ gal	ft3/ sack	gal/sk	Comp. Strength	
1.2. 1.	i shu		ب الم بير ¹ م		(hours)	and a second construction of the second s
Surf.	494	14.8	1.35	6.53	6:50	Premium Plus Cement 2% Calcium Chloride – Flake (Accelerator)
Inter.	1086	10.2	3.05	15.63	15:07	TUNED LIGHT (TM) SYSTEM 0.80% HR-601(Retarder), 3 lbm/sk Kol-Seal (Lost Circulation Additive), 0.125 lbm/sk Poly-E-Flake (Lost Circulation Additive)
,	150	13.2	1.65	8.45	12:57	Super H Cement, 0.1 % HR-800 (Retarder), 0.5 % Halad(R)-344 (Low Fluid Loss Control), 0.3 % CFR-3 (Dispersant), 2 lbm Kol- Seal (Lost Circulation Additive), 3 lbm Salt (Accelerator)
	DV/EC	CP Tool (@ 3,075'	(We requ	est the optior	to cancel the second stage if cement is circulated to
			5	urface di	uring the first	stage of cement operations)
4	486	12.9	1.85	9.86	12:44	Halliburton Light Premium Plus Cement with 5% Salt, 0.125 Ibs/sk Poly-E-Flake, 5 Ibs/sk Kol-Seal, 0.35% HR-800
	182	14.8	1.33	6.34	6:31	Premium Plus cement
Prod.	724	13.2	1.65	8.45	12:57	Tuned Light, 3 lbm/sk Kol-Seal (Lost Circulation Additive), 0.125 lbm/sk Poly-E-Flake (Lost Circulation Additive), 0.65 % SCR-100 (Retarder)
					DV/EC	CP Tool N/A
	N/A					
	N/A					

Casing String	TOC	% Excess (Tail/Lead)
Surface	0'	150%
Intermediate	0,	15% / 125%
Production	7113'	50%

Include Pilot Hole Cementing specs: Pilot hole depth <u>N/A</u> KOP <u>8163' TVD</u>

Plug top	Plug Bottom	No. Sacks	W.t. lb/gal	Yld - ft3/sack	Water gal/sk	Slurry Description and Cement Type
N/A						
N/A						

3 Drilling Plan

BOP installed	Size?	Min.	Ţyj	pe	1	Tested to:
and tested before drilling which hole?		Required WP				
			Annı	ular	✓	70% of working pressure
9.875"			Blind	Ram	\checkmark	
9.875 Intermediate	13-3/8"	5M	Pipe l	Ram		250/5000mai
Interneulate			Double	Ram	✓	250/5000psi
			Other*			
			Annı	ılar		
			Blind	Ram		
			Pipe l	Ram		
	*		Double	Ram		· · · · ·
			Other			
			Ann	ular		
			Blind Ram			
			Pipe Ram			
			Double	Ram]
			Other]

4. Pressure Control Equipment

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
1	A variance is requested for the use of a flexible choke line from the BOP to ChokeManifold. See attached for specs and hydrostatic test chart.YAre anchors required by manufacturer?				
V .	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. See attached schematic. We will run the wellhead through the rotary table with the surface casing string.				

OXY USA Inc. - Cedar Canyon 22 Federal #21H

5. Mud Program

z De	pth	Туре	Weight (ppg)	· Viscosity	Water Loss
From	То				
0	Surf. shoe	FW Gel	8.4-8.8	28-38	N/C
Surf csg	3075'	Saturated Brine	9.8-10	28-32	N/C
3075'	Int shoe	EnerSeal (MMH)	8.8-9.6	38-50	N/C
Int shoe	TD	OBM	8.8-9.4	28-100	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole).
	Stated logs run will be in the Completion Report and submitted to the BLM.
Yes	No Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Additional logs planned		Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	Int CSG - TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	4051 psi
Abnormal Temperature	No

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydr	ogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If
H2S	is detected in concentrations greater than 100 ppm, the operator will comply with the
provi	isions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured
value	es and formations will be provided to the BLM.
N	H2S is present

IN	1123 is present	
Y	H2S Plan attached	

8. Other facets of operation

	Yes/No
 Will the well be drilled with a walking/skidding operation? If yes, describe. We plan to drill the three well pad in batch by section: all surface sections, intermediate sections and production sections. 	Yes
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

Attachments

x Directional Plan

_x__H2S Contingency Plan

_x__ Flex III Attachments

PERFORMANCE DATA

TMK UP ULTRA[™] SF Technical Data Sheet

Tubular Parameters

Size	5.500	in
Nominal Weight	20.00	lbs/ft
Grade	P-110	
PE Weight	19.81	lbs/ft
Wall Thickness	0.361	in
Nominal ID	4.778	in
Drift Diameter	4.653	in
Nom. Pipe Body Area	5.828	in²

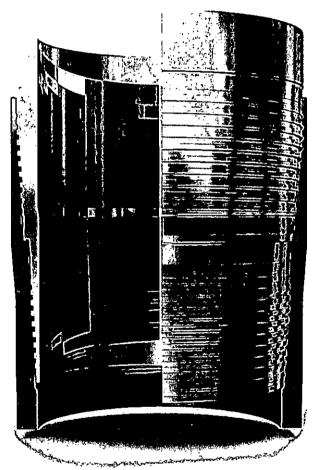
Connection Farameters	Connection Para	meters
-----------------------	-----------------	--------

Connection OD	5.646	in
Connection ID	4.734	in
Make-Up Loss	5.526	in
Critical Section Area	5.289	in²
Tension Efficiency	90.5	%
Compression Efficiency	90.5	%
Yield Load In Tension	580.000	lbs
Min. Internal Yield Pressure	12,600	psi
Collapse Pressure	11,100	psi
Uniaxial Bending	83	°/ 100 ft

Make-Up Torques

Min. Make-Up Torque	10,200	ft-lbs
Opt. Make-Up Torque	11,200	ft-lbs
Max. Make-Up Torque	12,300	ft-lbs
Yield Torque	15,400	ft-lbs

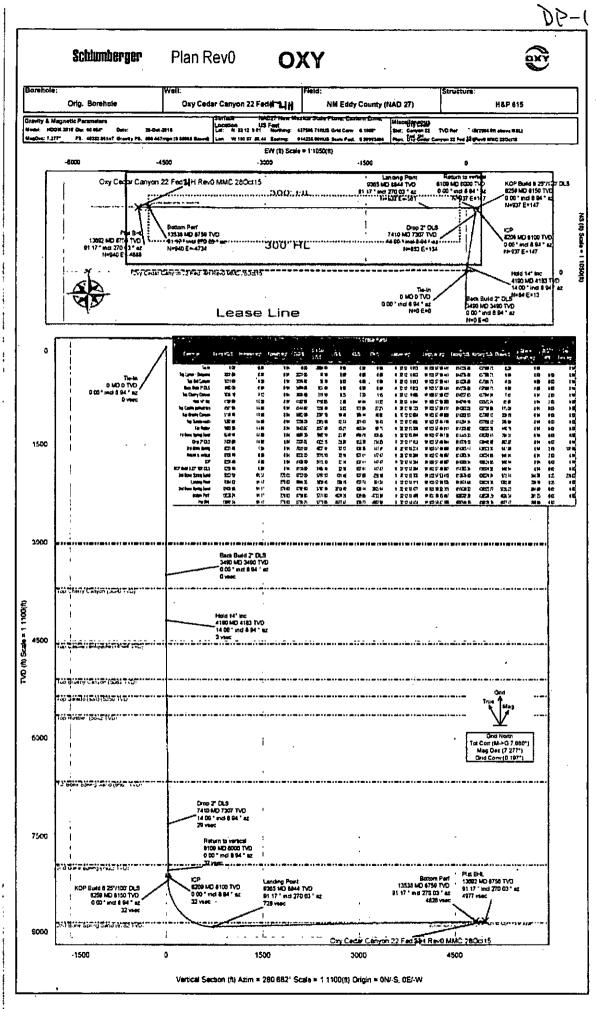
Printed on: December-10-2014


NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

in	Minimum Yield	

	110,000	psi
Minimum Tensile	125,000	psi
Yield Load	641,000	lbs
Tensile Load	728,000	lbs
Min, Internal Yield Pressure	12,600	psi
Collapse Pressure	11,100	psi



5.500 in

20.00 lbs/ft

110.000

nni

.

19-2

Schlonaherger

Oxy Cedar Canyon 22 Fed. 21H Rev0 MMC 28Oct15 Proposal Geodetic

Report

	(Non	-Def Plan)	
Report Date:	October 29, 2015 - 01 14 PM	Survey / DL3 Computation:	Minimum Curvature / Lutissai
Client: Field:	OXY NAL Eddy County (NAD 27)	Vertical Section Azimuth: Vertical Section Origin:	290 882 * (Gind North) D 000 ft, g 000 ft
Structure / Slat:	Day Cedar Canyon 22 Fed: 21H / Oxy Cedar Conyon 22 Fed: 21H	TVD Automace Datum;	RKB
Well:	Ony Cedar Canyon 22 Fed. 21H	TVD Reference Elevation:	2984 900 It shove MSL
Borehola:	Oxy Cedar Canyon 22 Fed. 21H - Org. Borehole	Sealed / Ground Elevation:	2956 400 it above MSL
UWI / APIe;	Unknown / Unknown	Magnetic Declination:	7.277 • ·
Survey Name:	Oxy Cedar Canyon 22 Fed. 21H RevO MMC 280c115	Total Qravity Field Birangth:	998 4673mgn (9 80665 원sae/7)
Survey Date:	October 26, 2015	Gravity Model:	GARM
Tert / AHD / ODI / ERD Battle:	119 169*/5994 171 R/6 043/0 677	Total Megnetic Field Strength:	48292 061 nT
, Goordicuste Reference System:	NAD27 New Maxico State Plane, Eastern Zone, US Fest	Magnetis Dip Angle:	60 054 *
Location Lat / Long.	N 32* 12' 9 01268', W 103* 57' 50 44068*	Declination Date:	October 28, 2915
Location Drid WE Y/X:	N 437586 710 MJS, E 014235 680 MUS	Magnetic Declination Model:	HDGM 2015
CRS Grid Convergence Angle:	0.1966 *	North Relevance:	Grid North
Grid Scale Factor:	0 99992404	Grid Convergence Used:	0.1968 *
Version / Phish:	5 9 225 0	Total Corr Mag North-»Grid Horth	a 7 9806 *
	•	Local Coord Referenced To:	Structure Reference Point

Comments	MD (11)	lact C)	Azim Grid (*)	TVD (#)	TVD38	VSEC (ft)	N3 (71)	EW (11)	DLS ("/1001t)	Northing (1119)	Easting (RUS)	Littude (N/S ***)	Longitude (E/W * * *)
lig-In	9.00	0.00	894	0 00	-2984 90	000	0.00	0.06	NA	437586.71		N 32 12 801	W 103 57 50 44
	100 00	0.00	8 04	100 00	-2884 90	0 00	0.00	0.00	0 00	437566 71		N 32 12 9 01	W 103 57 50 44
	200 DO 300 DO	000	894 894	200 D0 300 D0	-2784 90 -2684 90	0 0 0 0 0 0	0 00 0 00	0.00	00 0 0 0 0	437566 71 437586 71	614235 68	N 3212 901 N 3212 901	W 103 57 50 44
	400 00	0.00	8 94	430.00	-2584 90	600	0.00	0.00	000	43756671		N 3212 901 N 3212 901	W 103 57 50 44
	500 00	0.00	894	500 00	-2484 90	0.00	. 900	5 05	0.00	437585 71		N 3212 801	W 103 57 50 44
	609 00	0.00	8 94	600 003	-2384 90	0 00	0 00	0.00	0 00	437588 71		N 32 12 9 01	W 103 57 50 44
	700 00	0.00	894	700.00	-2284 90	00 0	0 00	9 06	0 00	437586 71	614235 88	N 3212 DOL	W 103 57 50 44
	800 00	0.00	894	800 005	-2184 90	0 00	D 00 G	0 00	0 00	437565 71		N 3212 901	W 103 57 50 44
	900.00	0.00	894	800.00	-2084 90	0 00	0 00	6.00	0 00	437586 71		N 1212 001	W 103 57 50 44
	1000.00	0.00	894 894	1009-00	-1984 90	0.00	0.00	0 00	0 00	437588 71	614235 80		W 103 57 50 44
	1200.00	0.00	894	1100.00	-1684.90 -1784.90	1 0 00	8 DO 6 DO	0 0 0 0 0 0	000	437588 71 437586 71	814235.88	N 3212 901 N 3212 901	W 103 57 50 44 W 103 57 50 44
	1300 00	0.00	894	1300 00	1684 90	0.00	6 00	DOG	0.00	43758871		N 3212 901	W 103 57 50 44
	1400 00	0.00	894 1	1400 00	1384 80	0.00	0 00	0.00	0.00	437588 71		N 3212 B01	W 103 57 50 44
	1500 00	0 00	8 94	1500 50	-1484 80	6.00	0 00	a oo	000	437586 71		N 32 12 PO1	W 103 57 50 44
	1600.00	0 00	8 94	1600 00	1384 80	0 00	6 00	6 00	0 90	437585 71		N 32 12 B 01	W 103 57 50 44
	1700 00	9.00	8 94	1700 00	1284 90	0 00	0.00	0 00	000	437586 71		N 3212 BO1	W 103 57 50 44
	1800.00	0 00	8 94	1600 00	+1164 90	0 00	6 00	0 00	0.00	43756671		N 3212 POI	W 103 57 50 44
	1900.00	0.00	894	1900-00	-1084 90	0 00	6 00	0 00	0.00	437588 71	814235 88		W 103 57 50 44
	2000 00 2100 00	000 000	894 854	2000 D0 2100 D0	-884 90 -854 90	8 00 8 00	6 00 6 00	8 00 6 00	D DQ D DQ	437588 71 437588 71	614235 88		W 103 57 50 44 W 103 57 50 44
	2200 00	000	6 94	2200 00	-764 90	0.00	0.00	6 00	0.00	437588 71	614235 88 614235 69		W 103 57 50 44 W 103 57 50 44
	2300 00	0 00	6 94	2300 00	-654 90	0.00	0 00	6 00	0 00	437588 71		N 3212 901	W 102 57 50 44
	2400 00	Ô D0	8 94	2400 00	-564 90	0 00	0 00	0 00	0.00	437586 71		N 3212 901	W 100 57 50 44
	2500 00	0.00	8 54	2500 00	-484 90	D 00	6.00	0 00	D 00	437585 71		N 3212 9 DL	W 103 57 50 44
	2600 00	0 00	8 94	2800 00	-364 90	0 00	ê 00	0 00	0 00	43758671	614235 68	N 3212 90:	W 103 57 50 44
	2700 00	0.00	8 94	2700 00	-264 80	D 00	00.0	0 00	0 00	437586 71		N 3212 901	W 103 57 50 44
	2800 00	0.00	894	2600 00	-184 9D	0.00	00.0	00 2	0 00	437566.71		N 32 12 9 81	W 103 57 50 44
	2900 00	0 00 0 00	8 94 8 94	2900 00 3000 00	-84 90 15 10	0 00 0 00	000	0 00	0.00	437586 71		N 3212 901	W 103 57 50 44
op Lamar/	3001.00	0.00	8 54	3001,00	16.10	0.00	0.00 0.00	0 00 0.00	0 00 0.00	437586.71 437586.71		N 3212 901 N 3212 9.01	W 103 57 50 44
bela narw													-
Top Bell Canyon	3024 00	0.00	894	3024 00	39,10	0.00	0.00	D.00	0.00	437588.71		N 3212 801	W 103 57 50.44
	3109 00	0.00	8.94	3190 00	115.10	0 00	0.00	6 60	0 00	437586 71		N 32 12 9 01	W 103 57 50 44
	3200-00 3300-00	0.00	194	3300 00	215 ID 315.10	00 G 0 00	0 00	0.00	0.00	437586 71		N 3212 901	W 103 57 50 44
	3400 00	0.00	194	3430 60	415 10	0.00	0.00	0.00	0.00	43758671 43756671		N 3212 905 N 3212 905	W 103 57 50 44 W 103 57 50 44
ack Bulki 2*													
XS	3490 00	0.00	894	3490 00	505.10	0.00	0.00	0.00	0.00	43758671		N 3212 901	W 103 57 50 44
	3500 00	0 29 2 20	894	3500 00 3599 97	515.10 615.07	000.	2 09	0 00 0 33	2 00	437566 73		N 32 12 9 01	W 103 57 50 44
Top Cherry	3696.18	4.12	794		115 ar 711.10		7,31		2 00	437568 80	614230 21		W 103 57 50 44
Сапуол	3700 00	4 20	8.94	3596.00 3699 81	714.91	0.25 0.26	7.60	1 45 1,20	2.00 2.00	437594.04 437594 31		N 3212 8.09	W 103 57 59 43
	3800 00	6 20	1 64	3789 40	814 50	0 57	16 55	2 60	200	437603 28		N 3212 909 N 3212 9.18	W 103 57 50 43 W 103 57 50 41
	3900.00	8 20	8 84	3898 60	813 70	0 89	28 93	4 55	2 00	437615 64		N 32 12 9 30	W 103 57 50 39
	4000 00	10 20	8 84	3997 31	1012 41	1.50	44 73	7.04	2 00	437631 43		N 32 12 8 44	W 103 57 50 36
'	4100 00	12 20	6.94	4095 40	1110 50	2.19	83 91	10 05	2 00	437650 62		N 32 12 8 64	W 103 57 50 32
loid 14° inc	4189 89	14 00	8 94	4182 95	1198-05	2 10	84 04	13 22	2 00	437670 74	614249.10	N 32 12 9 84	W 103 57 50 28
	4200 00	14 00	8 94	4192 78	1207.05	2 97	86 45	13 60	0.00	437673 18	614249 46	N 3212 987	W 103 57 50 28
	4300.00	14 00	8.94	4289 79	1304 89	378	110 35	17.36	0 00	437697 05		N 32 12 10.10	W 103 57 50 23
	4400 00	14 00	8.94	4386 62	1401 92	4 6 1	134.24	21 12	0 00	437720 94		N 32121034	W 103 57 50 19
op Castile	4500.00	14 00	8 94	4483 85	1495 95	5 4 3	158.14	24 88	0.00	437744 83		N 32 12 10 54	W 103 57 50 14
(h)yth(a)	4561.99	14.00	8.94	4544.00	1559.10	5.9J	172.95	27.21	0.00	437759 \$5		N 32 12 10.72	W 103 57 50.12
	4600 00	14 00	894	4580 66	1595 98	6 24	182 03	28 64	0.00	437768.73		N 32121081	W 103 57 50 10
	4700 00	14 00	894	4677 91	1693 01	7.08	205 93	32 40	0.00	437792 42		N 32 12 11 05	W 103 57 50 06
	4800.00	14 00	B 84	4774 94	1790.04	7.88	229 82	36 15	0.00	437816 51		N 321211.20	W 103 57 50 01
	4900 00 5000 00	14 00 14 00	8 94 8 94	4871 97 4969 00	1867 07 1984 10	6 70 6 52	253 71	39 91 43 67	000	437840 41		N 32 12 11 52	W 103 57 49 97
	5100 00	14 00	894	1060 00	1964 10 2051.13	0 52 10 34	277.61 301.50	43 67 47 43	0 00 0 00	437884 30 437888 19		N 32 12 11.76 N 32 12 11 99	W 103 57 49 92
op Brushy	5118 46	14.00	8,94	5082.00	2097.10	10.48	305.44						W 103 57 49 88
Lanyon								48.05	9.00	437892.12		N 32121203	W 103 57 49 87
	5200 00	14 00	8 94	5163 08	2178.18	11.18	325 40	51 10	0.00	437912 08		N 32 12 12 23	W 103 \$7 49 63
	5300 00	14 00	8 54	\$260.09	2275.10	11.98	349.29	54 95	8 62	437935 98	614200 81	AL 23 13 13 4T	W 103 57 49 79

Orilling Office 2.8.572.0

DP-3

Comments	uo	laci	Azim Grid	TVD	TVDSS	VEEC	HS	EW	OLS	Northing	Easting	Laikuda	Longitude
Top Salado	(#)	<u></u>		(ħ)	(竹)	())	<u>(ħ)</u>	<u>(h)</u>	('/1908)	(81/3)	(MUS)	(1018 ''')	<u>(6/11 ° ')</u>
(sait)	5392 68	14 00	8 94	\$350.00	2385.10	12.74	371,43	58.43	0 00	43/958.12		N 32 12 12 49	W 103 57 49 75
	5400 00 5500 00	14.00	8 94 8 94	5357 12 5454 15	2372 22 2443 25	12 80 13 82	373 19 397 08	58.71 62.47	0 00 0 00	437959 87 437953 75		N 32 12 12 70 N 32 12 12 94	W 103 57 49 74 W 103 57 49 70
	5600 00	14 00	8 94	5551 18	2566 28	14 44	420 98	66 23	0 00	438007.85		N 32 12 13 10	W 103 57 49 65
Fop Auster	549.1 58 5700 00	14 00 14 00	8.84 8.94	5642 00 5648 22	2657.10 2143 32	15.21 15.24	443,34 444 67	<i>69.75</i> 69.99	0.00	438030.02 438031 55		N 32 12 13 40	W 103 57 49.61
	5800 00	14 00	i M	5745 25	2760 35	18 08	468 77	73 75	0.00	438055 44		N 32 12 13 85	W 103 57 49 61 W 103 57 49 56
	5900 00 8000 00	14 00	8 94	5842 25	2857 38	18 80	492 68	77 50	0.00	434079 33		N 32 12 13 89	W 103 57 49 52
	\$100.00	14 00	8 94 8 94	5939 31 6035 34	2954 41 3151 44	17 72 18 54	516 58 540 45	61 26 85 02	0 00 0 00	438103 23 438127 12		N 32 12 14 12 N 32 12 14 35	W 103 57 49 47 W 103 57 49 43
	6200 00	\$4.00	8 94	6133 37	3146 47	19.34	564 35	88 78	0.00	438151.01	614324 65	N 32 12 14 59	W 103 57 49 38
	. 8300 00 6400 00	14 00	8 94 8 94	6230 40 6327 43	3245 50 3342 53	20.18	568.24 612 14	92 54 98 30	6 60 0 00	438174 90 438198 60		N 32 12 14 83 N 32 12 15 07	W 103 57 49 34 W 103 57 49 30
	6500 00	14.00	1.	8424 48	3439 58	21 62	636 63	100 06	0.00	434222 89		N 32 12 15 30	W 103 57 49 25
	8600 00 6700 00	14 00	8 94	6521 49	3534 59	22 64	659 92	103 82	0.00	434246 58		N 32 12 15 54	W 103 57 49 21
tst Sone Spring			894	6618 52	333 B2	23.46	663 82	107 58	6 00	438270 48		N 32 12 15 78	W 103 57 49 16
Send	6749.00	14 00	8.94	6667.00	3682 10	23 87	895.78	109 45	0.00	438282.41		N 32121589	W 103 57 49,14
	6800 00 6900 00	14.00	8 94 8 94	4715 55 5812 58	3730 65 3827 66	24.26 25.10	707 71 731 61	11124	0 00 0 00	438254 37 438316 26		N 32 12 16 01 N 32 12 16 25	W 103 57 49 12 W 103 57 49 07
	7000 00	14 00	8 94	6909 81	3924 71	25 92	755 50	138 85	0.00	438342 15		N 32121648	W 103 57 48 03
	7100 00	14 00 14 00	8 94 8 94	7008 64 7103 67	402174 411877	26.74 27.54	779-40 803,29	122 81	0.00	438368 05		N 32 12 16 72	W 103 57 48 98
	7300 00	14 00	8 94	7200 70	4215 80	28 38	827 19	128 37	0.00	436389 84 438413 83		N 32 12 16 96 N 32 12 17 19	W 103 57 48 94 W 103 57 48 89
D	7400 00	14 00	6 94	7297 73	4312 83	29 20	#51.08	123 89	0.00	436437 73	E14369 78	N 32 12 17 43	W 103 57 48 85
0	7409 60 7500 00	14 -20 12 19	6 94 6 94	7307 05 7395 DF	4322 15 4410 18	28 28 29 97	853 38 873 81	134 25 137 43	0 00 2 00	438440 02 438460 25		N 02 12 17 45 N 02 12 17 65	W 103 57 48 84 W 103 57 48 81
	7500 00	10 19	6 94	7493.19	4508.29	30 63	692 78	140 45	2 00	438479 42		N 32 12 17 M	W 103 57 48 77
	7700 00 7800 00	8 19 6 19	8 94 8 94	7591 90 7691 11	4607 00 4706 21	31 17 31.59	908 55 920 91	142 93 144 88	2.00	438495 18 438507 55		N 32 12 16 00 N 32 12 16 12	W 103 57 48 74
	7900 90	4 19	8 94	7790 69	4805 79	31.90	829 65	146 28	200	438515 49		N 32 12 18 21	W 103 57 48 72 W 103 57 48 70
	6000 00	2.19	8 94	7890 53	4905 63	12 09	935 35	147 15	5.00	434521 86		N 32 12 18 26	W 103 57 48 69
2nd Bone Spiing	8031 48	1.56	8 94	7822.00	4837 10	32 12	\$36.3f	147,31	2.00	438523.00	614383.17	N 32 12 18 27	W 103 57 48 89
	6100 00	0.16	8 94	7990 51	5003-81	32 16	837 43	147 47	2 00	438524 03	614383 34	N 32 12 18 28	W 103 57 48 69
Return to vertical	8109 49	0 00	6 94	8000 00	5015 16	32.10	937 41	147 47	2 00	438524 05	614383 34	N 32 12 18.24	W 103 57 49 69
	8200 00	0.00	8 94	8090 51	512541	32.16	#37 41	147.47	0.00	438524-05	614383 34	N 32 12 18 28	W 103 57 48 69
ICP	8209 49	0.00	8 94	8100.00	\$115 10	32 16	837 41	147 47	0.00	438524 05		N 32 12 18 28	W 103 57 48 88
KOP Build \$ 257107 DLS	8259 49	0.00	8 94	9150 00	5165.10	32 16	937 41	847 47	0 00	438524 05	814383 34	N 32 12 18.28	W 103 57 48 69
	8300 00	3 34	270 03	8190 48	5205 58	33 32	937 41	146 28	6 25	438524 05	614382.16	N 32 12 18 28	W 103 57 48 70
	8400 00	11 59 19 84	270 03	8289 55 8385 73	5304 65 5400 83	46 07 72 65	937 42 937 43	133 31	8 25	438524 08		N 32 12 18.28	W 103 57 48 85
	00 008	28 09	270 03	8477 03	5492 13	112 \$1	837 45	106 24 65 66	6 25 6 25	438524 07 438524 09		N 32 12 18 29 N 32 12 18 29	W 103 57 49 17 W 103 57 49 64
	8700 00 8800 00	36 34	270 03	8561 66	5378 68	164 82	837 46	12 38	6 25	438524 11		N 32 12 18 29	W 103 57 50.26
	8500 00	44 59 52 84	270 03	8637.57 8763 49	5652 47 57 18 59	226 51 302 25	937 50 937 54	-52 48 -127.54	6 25 6 25	438524 14 438524 18		N 32 12 18.29 N 32 12 18 29	W 103 57 51.01 W 103 57 51.89
	9000 00	61 09	270 03	8757.96	5773 08	384 51	937 55	-211.30	6 25	438524 21		N 32 12 18.30	W 103 57 52 66
End Bone Spring Sand	8053.52	85 51	270.03	8782 00	5797 10	431 48	937.60	-259,10	8 25	438524.24	613976 80	N 32 12 18.30	W 103 57 53 42
	9100 00	69 34	270 03	8799 84	5814 94	473 60	937 62	102 01	8 25	438524 28	613933 89	N 32 12 18 30	W 103 57 53 92
	9300 00 9300 00	77.59 85 84	270 03 270 03	8628 27 8642 67	5842 37 5857 77	567 87 664 77	937 68 237.71	397 79	8 25	438524 30		N 32 12 18 30	W 100 57 55 00
Lending Forth	9364 62	91 17	270 03	8844 35	5057 77 5059 45	728 19	837.74	-498 66 -561.24	8 25 8 25	438524 35 438524 38		N 32 12 18 31 N 32 12 18.31	W 103 57 56 18 W 103 57 56 93
	9400 00 9500 00	91 17	270 03	8843 62	5858 72	762 83	837 75	-596 81	0 QC	438524 39	412839 21	N 32 12 18 31	W 103 57 57 35
	9600 00	91 17 91 17	270 03 270 03	8841 58 8639 53	5856 68 5854 83	801 12 · 959 31	037 80 637 85	-696 59 -794 57	0.00	438524 48 438524 48		N 32 12 18 32 N 32 12 18 32	W 103 57 58 51 W 103 57 59 67
	9700 00	91 17	270 03	8837 48	5652 56	1057.50	937 89	-896 55	0.00	436524 53	613339 40	N 32 12 18 32	W 103 58 0 64
	9600 00 9900 00	91 17 91 17	270 03 270 03	8833 39	5850 54 5848 49	1155 89 1253 88	037 94 037.98	-996 \$3 -1096 \$1	000 000	438524 57 438524 82		N 12 12 18 33	W 103 58 2 00 W 103 58 3 16
	10000 00	91 17	270 03	8831 34	5845 44	1352 06	P38 03	-1196.49	0.00	436524 67		N 12 12 18 34	W 103 50 4 33
	10100 00 10200 00	91 17 91 17	270 03 270 03	6829 29	5844 39	1450 25	938 05	-1296 47	0.00	436524 71		N	W 103 58 5 49
	10300 00	91 17	270 03	6827.25 8825.20	5842 35 5840 32	1548 44 1648 83	938 12 938 17	-1396 44 -1496 42	00 D 00 D	43852478 43852460		N 32 12 18 34 N 32 12 18 35	W 103 54 6 85 W 103 54 7 82
	10400 00	91 17	270 03	8823.15	5838 25	1744 82	838 21	-1598 40	0 OD	438524 85	612639 60	N 32 12 18 35	W 103 58 8.98
	10500 90	91 17 91 17	270 CQ 270 CQ	8821 10 8819 26	5838 23 5834 18	1643 01 1941 20	938 26 938 31	-1696 38 -1796 38	000	438524 90 438524 94		N 32 12 18 35 N 32 12 18 36	W 103 54 12 15 W 103 54 11.01
	10700 00	91 17	270 00	8817 D1	5832 11	2039 39	938 35	-1896 34	0 00	438524 99		N 32 12 18 38	W 103 58 12 47
	10800 00 10900 00	91 17 91 17	270 CO 270 CO	6812 96 8812 91	5830 ur 5828 91	2137.58 2235 77	938 40 938 44	-1996 32 -2096 30	0 00 0 00	438525 03 438525 08		N 32 12 18 37 N 32 12 18 37	W 103 58 13 84 W 103 58 14 80
	11000.00	91 17	270 03	8810 57	5825 97	2333 96	938 48	-2198 28	300	436525 13		N 32 12 18 37	W 103 58 15 Ph
	11100 00	91 17	270 03	6808 62	5823 92	2432 15	938 53	-17 Ht 20	00 0	438525 17	611939 60	N 32 12 18 38	W 103 58 17 13
	11200-00	·91 17 91 17	270 03 270 03	8806 77 8804 72	5821 87 5819 82	2530 34 2828 53	938 58 938 63	-2398 23 -2496 21	00 C 8 00	438525.22 438525.26		N 32 12 18 38 N 32 12 18 38	W 103 58 18 29 W 103 58 19 45
	11400-06	P1 17	270 (2)	8802 68	561778	2726 72	938 67	-2598.18	3 00	436525 31	61 1639 89	N 32 12 18 39	W 103 58 2: 62
	11500-00	91 17 91 17	270 00 270 00	8800 63 8798 58	581573 581368	2824 91 2923 10	938 72 938 76	-2694.17 -2798 15	000	436525 35 438525 40		N 32 12 18 39	W 103 58 21 78
	11700 00	91 17	276 03	8796 54	5613 68 5611 64	3021.29	935 81	-2896 13	000	438525 40 438525 45		N 32 12 18 40 N 32 12 18 40	W 103 56 22 94 W 103 56 24 11
	11600.00 11900.00	. 91 17 91 17	270 00 270 00	6794 49 8792 44	5809 57	3119 48	938 66	2998.11	0 00	436525 49	611240 00	N 32 12 18 40	W 103 58 29 27
	12000 00	P1 17	270 03	8790 29	6807 54 5805 47	3217.67 3315.86	938 90 938 95	-3098 09 -3195 07	5 00 5 00	438525 54 438525 56		N 32 12 18 41 N 32 12 18 41	W 103 56 26 44 W 103 56 27 65
	12100 00	Ø1 17	270 03	8788 35	\$803 45	3414 05	938 99	-3295 05	0.00	438525 63	610943 09	N 32 12 18 42	W 103 58 28 78
	12200 00 12300 00	91 17 91 17	270 03	8786 30 8784.25	5601 40 5799 35	3512 24 3610 43	939 C4 939 C9	- 3396 Q2 - 3465 09	000	438525 68 438525 72		N 32 12 18 42 N 32 12 18 42	W 103 58 29 93 W 103 56 31 09
	12400 00	91 17	270 10	8742.20	5797 30	3708 62	939 13	-2595 98	0.00	438525 72		N 32 12 18 42 N 32 12 18 43	W 103 56 32 25
čná Bone Spring Send	12409.96	Ø1 17	270.03	\$782.00	5727 10	3718.40	839 14	-3605.94	0 00	438525 77			W 103 54 32 37
Jer Al	12500 00	B1 17	270 03	8780 18	5795 28	3896 81	939 18	-2695 96	0.00	438525 81		N 32 12 18 43	W 103 58 33 42
	12600.00	91 17	270 03	8778 11	5793 21	3905 00	939 22	-2795 94	6 00	438525 85	610440 24	N 32121843	W 103 58 34 58
	12700 00	91.17 91.17	270 63 270 63	8776 C8 8774 D1	5791 16 5789 11	4003 19 4101 38	939 27 939 31	-3895 92 -3995 90	0 CO	438525 P1 438525 P5		N 32 12 18 44	W 103 58 35 74
	12900 00	\$1.17	270 G3	8771 97	5787 07	4199 57	939 36	-2995 90	000	4 38525 95 4 38526 00		N 32 12 18 44 N 32 12 18 45	W 103 58 38 91 W 103 58 38 07
	13000 00	B1 17	270 03	6769 92	5785 92	4297 78	939 41	-4195 86	0 00	438526 64	610040 35	N 32 12 18 45	W 103 58 39 23
	13100.00	\$1 17 \$1 17	270 03 270 03	8767 87 4765 83	5782 97 5780 93	4395 95 . 4494 14	939 45 939 50	-4295 84 -4395 82	0 00 0 00	438526.09 438526.13		N 32 12 18 45 N 32 12 18 45	W 103 58 40 40 W 103 58 41 56
	13200.00		_, _ ww										
	13200.00	Ø1 17	270 03	8763 75	5778 68	4592 33	939 54	-4495 79	0 00	436528.18	609740 44	N 32 12 18 44	W 103 58 42 72
	13300 00 13400 00	01 (7 01 (7	270 03	8781.73	5776 #3	4890 52	979 59	-4595 77	0 00	438526 23	809640 47	N 32 12 18 46	W 103 58 43 89
Jottom Peri	13300 00 13400 00 13500 00	01 (7 01 (7 01 (7	270 03 270 03	8761.73 8759 68	5776 83 5774 78	4890 52 4768 70	939 59 939 64	-4595 77 -4695 75	0.00	438526 23 438526 27	809640 47 809540 49	N 32 12 18 46 N 32 12 16 47	W 103 58 43 89 W 103 58 45 05
Botton Peri Ptat BH4.	13300 00 13400 00	01 (7 01 (7	270 03	8781.73	5776 #3	4890 52	979 59	-4595 77	0 00	438526 23	809840 47 809540 49 809502 26 809440 82	N 32 12 18 45 N 32 12 16 47 N 32 12 18 47 N 32 12 18 47 N 32 12 18 47	W 103 58 43 89

Burney Type:

.

Non-Cel Plan

Drilling Office 2.8.572 0

.

D6 - 1

Comment [®]	(#) MD	inci C)	Azm Grid	TVD (11)	TVD55	VSEC	2N (ft)	EW Di (1) ['/100		Easting (DUS)	Laihude (N/S * ` *)	Longilude (E/W * * * *)
Survey Error Model: Survey Pregram:	ISCW5/	(Flev 0 *** 3-1	D 95 000% Contro	ence 27955 agina	1							
Description		Past	MD from (11)	MD Ta (11)	EOU Freq (#)	Holo Size Casi (in)	ing Diameter (In)	Survey Taol Type	Borshels / Su	•		
		1	0 000	26 500	1/100 009	30 000	30 000	SLB_MWD-STD_HDGM-Dept Only	Ong Borehole / Or Canyon 22 Fed 21H	ry Cedar Revô MMC		
		,	26 500	13682.245	1/100 000	30 000	30 000	SLB_NWD-STD_HOGM	Oxy Cedar Canyon 22 Org Borehole / Or			

ļ

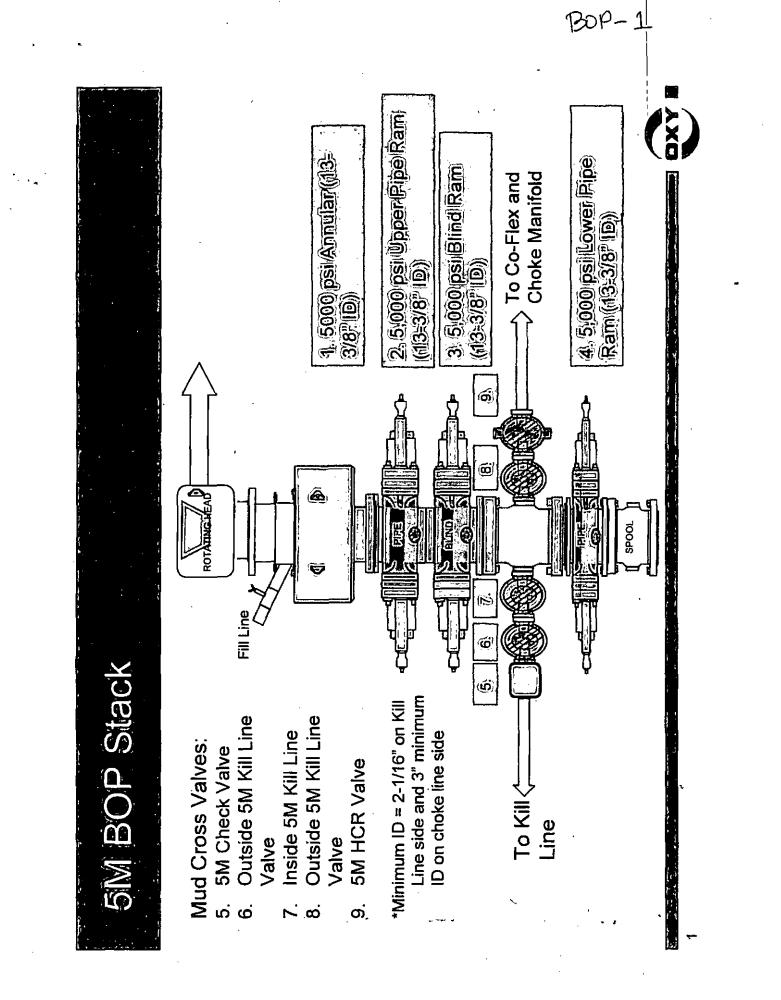
DP -5

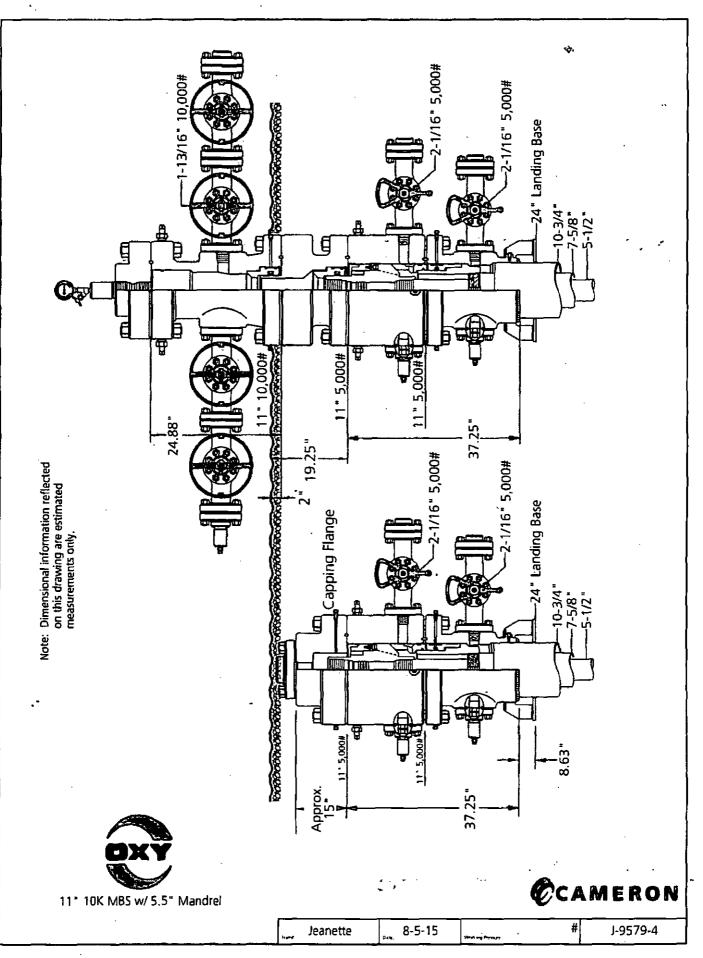
Schlunderger

Non-Def Plan

Survey Type:

Oxy Cedar Canyon 22 Fed. 21H Rev0 MMC 28Oct15 Proposal Geodetic Report


(Non-Del Plan)


	· ···		
Report Date:	October 29, 2515-01 13 PM	Survey / DLB Computation:	Menamum Curvature / Lubinshi
Client: Field;	DXY NM Eddy County (NAD 27)	Vertical Section Azimuth: Vertical Section Origin:	280 882 * (Gnd North) 0 000 ft, 9 000 lt
Structure / Slot:	Oxy Cedar Canyon 22 Fed. 21H / Oxy Cedar Canyon 22 Fed. 21H	TVD Reference Datum:	AKB
Well:	Ory Cedar Canyon 22 Fed. 21H	TVD Reference Elevation:	2984 900 ft above MSL
Barehole:	Oxy Cedar Canyon 22 Fed. 21H - Orig. Borehole	Seabed / Ground Elevation:	2958 400 ft above MSL
UWI/API#:	Unknown / Unknown	Magnetic Decimation:	1277 •
Survey Name:	Oxy Cedar Canyon 22 Fed. 21H RevO MMC 26Oct15	Total Gravity Field Strength:	998 4873mgn (9 80665 Based)
Survey Date:	October 28. 2015	Gravity blodel:	GARM
Tari / AHD / DOI / ERD Ratio.	119.169 * (5984 371 lt/ 6 043 / 0 677	Total Magnetic Field Strangth:	+8292 061 nT
Coordinate Asference System	NAD27 New Mexico State Plane, Eastern Zone, US Feel	Nagnetic Dip Angle:	\$0 054 °
Location Let / Long:	N 12' 12' 901286', W 103' 57' 50 44086'	Declination Date:	October 28, 2015
Location Orid N/E Y/X:	N 437588 710 HUS, E 614235 880 HUS	Magnetic Declination Model:	HDGM 2015
CR8 Grid Convergence Angle:	0.1928 *	North Reference:	Grid North
Grid Scale Factor:	0 PT992404	Grid Convergence Used:	0 1968 *
Version / Patch:	2 8 572 0	Total Corr Mag North->Orld North	: 7.0806 *
		Local Coord Referenced To:	Structure Reference Point

Comments	40 (n)	lnci (')	Azim Grid	TVD (71)	TVD35 (ft)	VSEC (R)	N8 (0)	EW (ft)	DLS (*riesti)	Northing (#U\$)	Easting (RUS)	Latitude (N/2 * * *)	Longitude (E/W * * *)
Tæ-in	0.00	0.00	8 94	0 00	-2984 90	0.00	0 00	0.00	N'A	437586 71	614235 66 1	32 12 9 01	W 103 57 50 44
Back B. 40 2" DLS	3490 00	0 00	8 94	3490 00	505.10	0 00	0.00	00 0	0 00	437586 71	614235 88	32 12 9 01	W 103 57 50 44
Hold 14" Inc.	4169 89	14 Q0	894	4182 85	1108 05	2 88	84 04	13 22	2 00	437670 74	614249.10 M	32 12 9 84	W 103 57 50 28
Drep 2" DLS	7409 60	14 00	8 94	7307 05	4322 15	29 28	853 38	134 25	0 00	438440.02	614370.12	02 12 17.45	W 103 57 48 84
Return to vertical	8109 49	0 00	8.94	9000 90	5015.10	32.18	837 41	147 47	2 00	438524 05	614383 34 P	32 12 18 28	W 103 57 48 69
KOP Build 8 257100' DLS	8259 49	0.00	8 94	6150 00	5165.10	32 16	837 41	147.47	0 00	438524 05	614383 34 1	32 12 18 28	W 103 57 48 69
Landing Point	9364 62	\$1 17	270 03	8844 35	5859 45	728 19	837 74	-581.24	8 25	438524 38	613674 68	32 12 18 31	W 103 57 56 83
Bottom Part.	13538 24	\$1.17	270 03	6758 90	5774 00	4826 28	939 65	-4733.99	0.00	438526.29	609502.26	32 12 18 47	W 103 58 45 50
Plat BH.	13692.24	91 17	270 03	8755 75	5770 85	4977 47	939 72	-4887.96	0 00	438526 36	609348 30 P	2 32 12 18 47	W 103 58 47 29

Survey Error Model: Survey Program:	ISCWSA Rev 0 *** 3-	D 95 090% Conix	dence 2 7955 ugit	14				
Description	Part	MD From (fi)	MED To (FT)	ECU Freq (II)	Hois Size Cas (in)	ing Olamater (in)	Survey Tool Type	Borehole / Survey
	1	0 000	28 500	1/100 000	30 000	30 000	SLB_MWD-STD_HDQM-Depth Only	Drig Boreholm / Ony Gedar Canyon 22 Fed 21H Rev0 MMC
	1	26 500	13692 245	1/100 000	30 000	30 000	SL8_MWD-STD_HDGM	Oxy Cedar Canyon 22 Fed 21H - Orig Borehole / Oxy Cedar

,

BOP-2

Fluid Technology

Quality Document

INSPECTION A	TY CONT		CATE	CERT. I	N°:	746	
PURCHASER: F	Phoenix Bea	ttie Co,		P.O. N*	00	2491	
CONTITECH ORDER Nº: 4	12638	HOSE TYPE:	3" (D	Ch	oke and Kill	Hose	
HOBE SERIAL Nº:	52777	NOMINAL / AC	TUAL LENGTH		10,67 m		
W.P. 68,96 MPa 10	000 psi	T.P. 103,4	MPa 1500	0 psi	Duration:	60 ~	ពារ៉ា.
ambient temperature ↑ 10 mm = 10 Min.	See	attachment.	. (1 page)		·		
→ 10 mm = 25 MPa			LINGS				
Туре		Serial Nº	<u> </u>	Quality		Heat Nº	
3" coupling with	917	913		il 4130	1	T7998A	
3" coupling with 4 1/16" Flange end	90	813		il 4130 il 4130		17998A 26984	
4 1/16" Flange and		913		•			"B"
4 1/16" Flange end INFOCHIP INSTALLE Ni metal parts are flawless we certify that the above	D HOSE HAS BE	EN MANUFACTU	AIS	ii 4130	Temp	26984 I Spec 16 C perature rate:	
4 1/16" Flange end INFOCHIP INSTALLE Al metal parts are flawless we certify that the ABOVE of PRESSURE TESTED AS ABOVE of	D HOSE HAS BE	EN MANUFACTU	AIS	ANCE WT	Temp	26984 I Spec 16 C perature rate:	

Coflex Hose Certification

Page: 1/1

		Confi Lindu	Cire edin Rubiter erriel Kft. Control Dept. 21)
			Control Dept. F1)
			•••
			•
	40	80	
			-
			.:
7227725-7321-73-7-7			

FH-3

- PHOENIX Beattie

Form No 100/12

Phoenix Beattie Corp LISS Brittzoore Part Oriva Houston, TX 77041 Tel: (832) 327-0143 Fax: (832) 327-0148 E-sail sailAphoenistenttie.com www.phoenistenttie.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Addre HELMERICH & PAYNE INT'L 1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RI 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	G 370	<u></u>	

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

ite N		Qty Ordered	Qty Sent	Qty To Follow
1	HP10CK3A-35-4F1 3° 10K 16C C&K HOSE x 35ft OAL CW 4.1/16° API SPEC FLANGE E/ End 1: 4.1/16° 10Kpsi API Spec 6A Type 68X Flange End 2: 4.1/16° 10Kpsi API Spec 6A Type 68X Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10,000psi	1	1	
	Test pressure: 15,000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Beg C to +100 Deg C			
. 2	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1		
3	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	. 1	D

Continued...

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

🗢 PHOENIX Beattie

•

Form No 100/12

Phoenix Beattle Corp 11536 Etitizcore Park Drive Houtton, TX 77043 Tel: (822) 327-0141 Fix: (832) 327-0148 Fix: (832) 327-0148 Fix: (832) 137-0148 Fi

Delivery Note

.

Customer Order Number 370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Address HELHERICH & PAYNE INT'L DRILLING CO 1437 SOUTH BOULDER TULSA, OK 74119	Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - RI 13609 Industrial Road Houston, TX 77015	G 370		

Customer Acc'No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Date
ROJ	JJL	006330	05/23/2008

	ltem No	Beattle Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow	
	4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0	
		ODCERT-HYDRO HYDROSTATIC PRESSURE TEST CENTIFICATE	1	1	0	
		OGCERT-LOAD LOAD TEST CERTIFICATES	1	1	0	
		00FREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	1	0	
		, T	PA	\cap		
L	<u>k</u>	Phoenix Beattie Inspection Signature :	IMAMAAA	WALCH		
		Received in Good Condition : Signature		51		
		Print Name		N		under at the large set of the
و العدم ال						

Date

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

PA No O06330 Client HE Fart Nol Description relaction Description relaction 1010000000000000000000000000000000000	Π	-								
	Intion 1	HELMERICH & PAY	& PAYNE INT'L DRILLING COunt Ref	C0ent R	Н	370-369-001			Page	-
	1000	Material Desc	Material Spec	otv 1	WO No	Batch No	Tast Cort No			
	HOSE X JEFE CM			T		52777 /HB84		INTER INC	on Bin	
n dada nama ummu damer danar constructor attain unaria dada da	-			1		02440		XIS/N		
••••• •••• •••<	Ţ	CARBON STEEL		1		11665		TTT TTT		
	1	CARBON STER				P139		3		
								¥		
					Ī					
vi uni p										
walke										
-										
					Ť					
				╋						
-				T	t	T				
3										
+1/2000										
-				T						
				┢						
R SPA						T				
J.J.						T				
-				╞		T				
-				1						
ف السائلي										
We hereby certify that these poods have been i	se goods ha	ve been inspecte	nspected by our Dirality Managament Svetam and to the bact of and to the back of a	o menene	nt Costar			-		

relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

1

Coflex Hose Certification

Fluid Technology

Quality Document

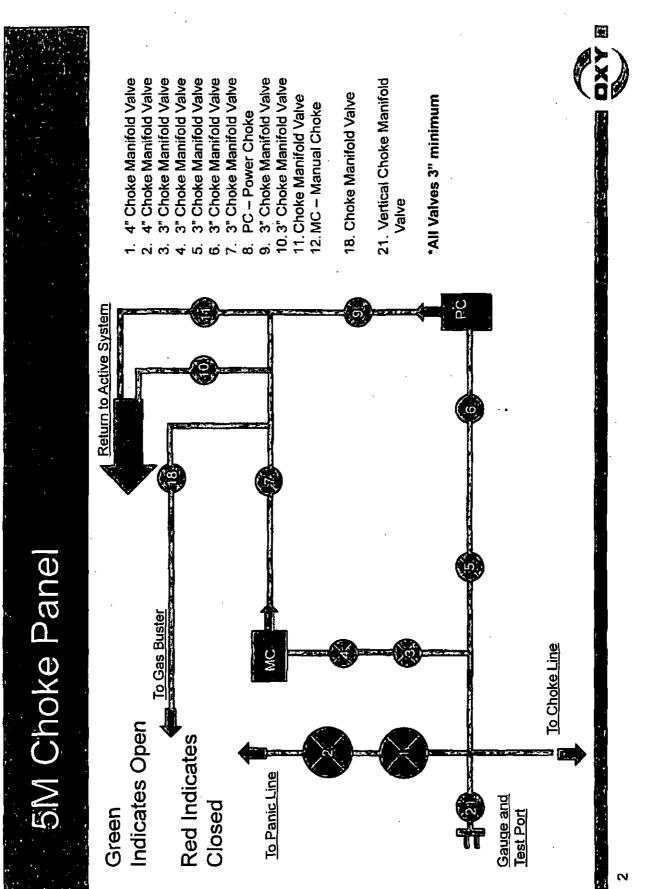
CERTIFICATE OF CONFORMITY

Supplier: CONTITECH RUBBER INDUSTRIAL KFT.Equipment :6 pcs. Choke and Kill Hose with installed couplingsType :3" x 10,67 m WP: 10000 psiSupplier File Number: 412638Date of Shipment: April. 2008Customer: Phoenix Beattle Co.Customer: 002491Referenced Standards/ Codes / Specifications :API Spec 16 C

Serial No.: 52754,52755,52776,52777,52778,52782

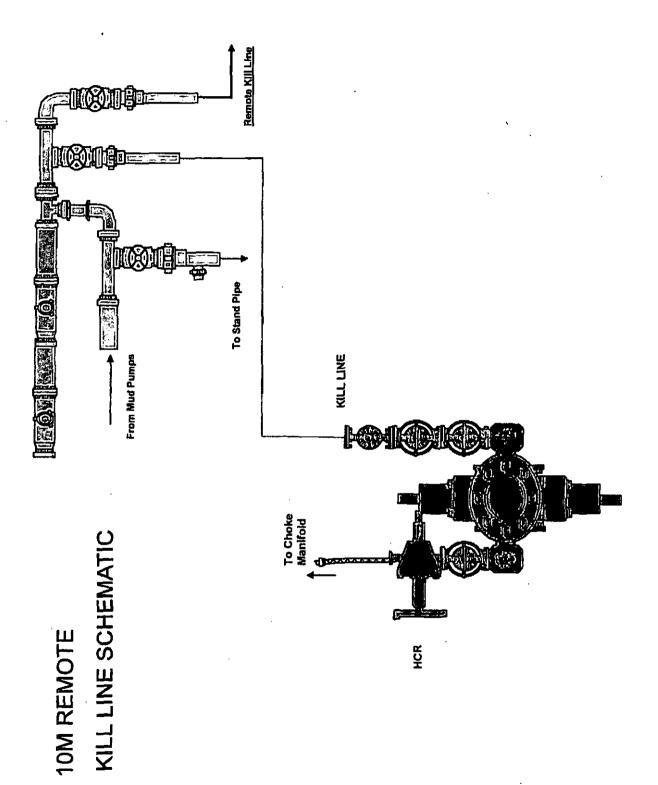
STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above. Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

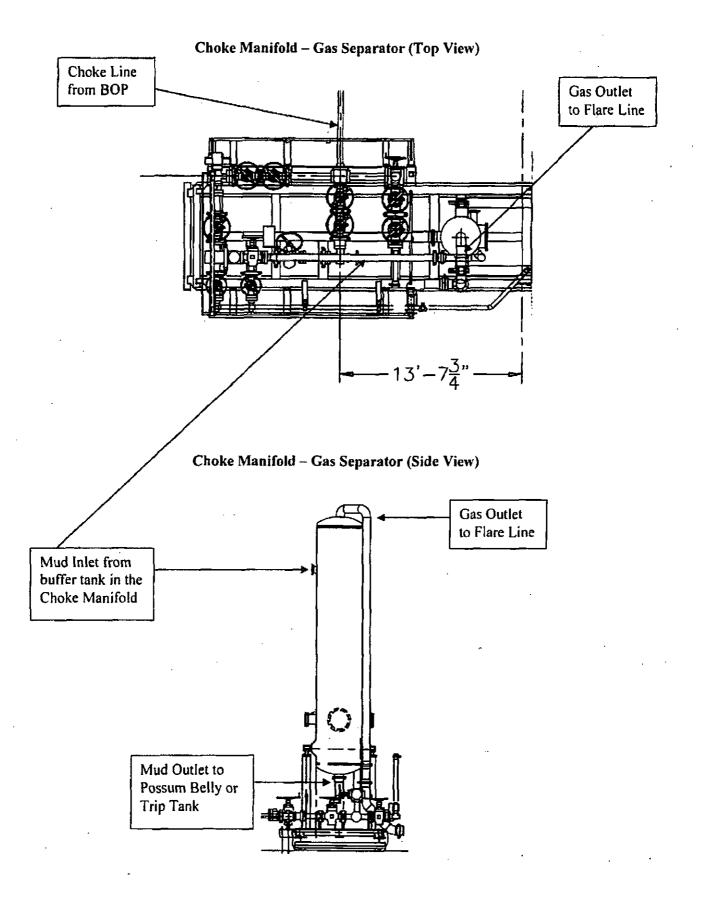

COUNTRY OF ORIGIN HUNGARY/EU

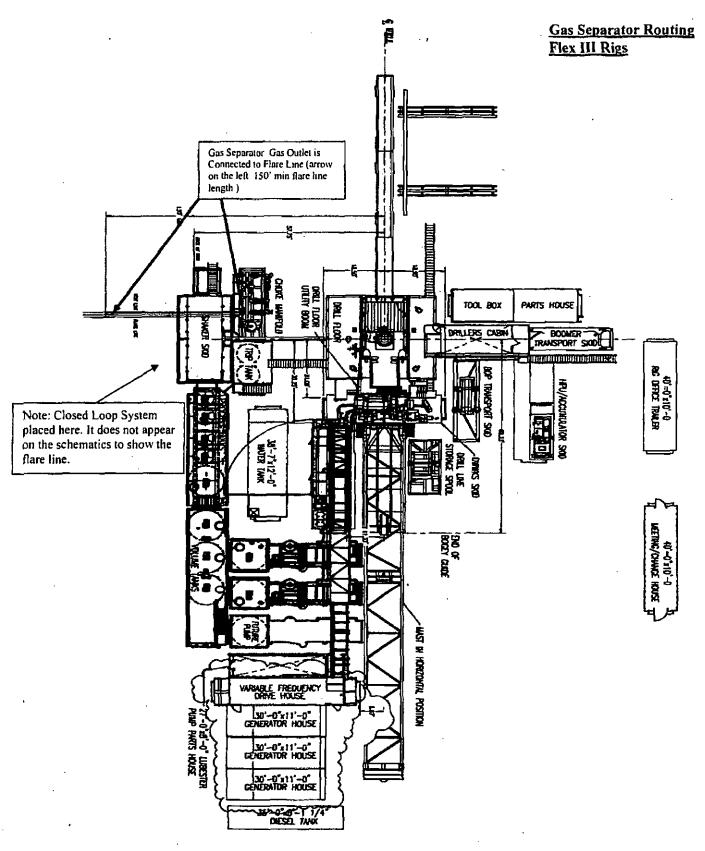
Signed

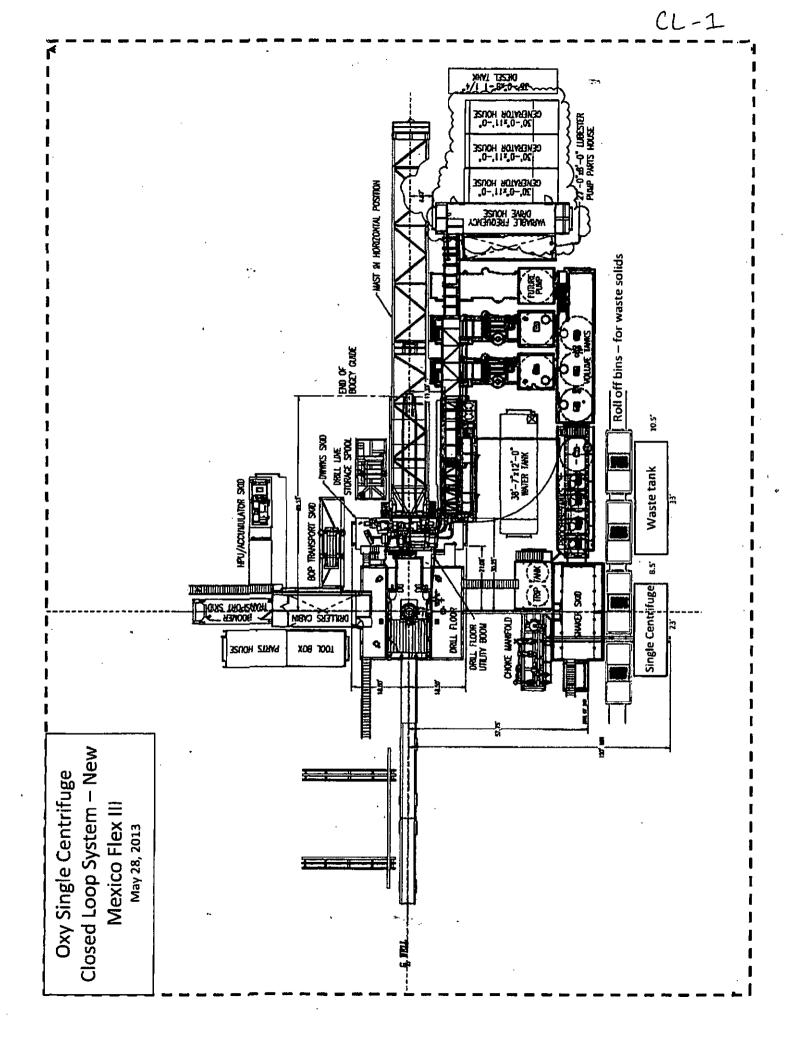
Position: Q.C. Manager

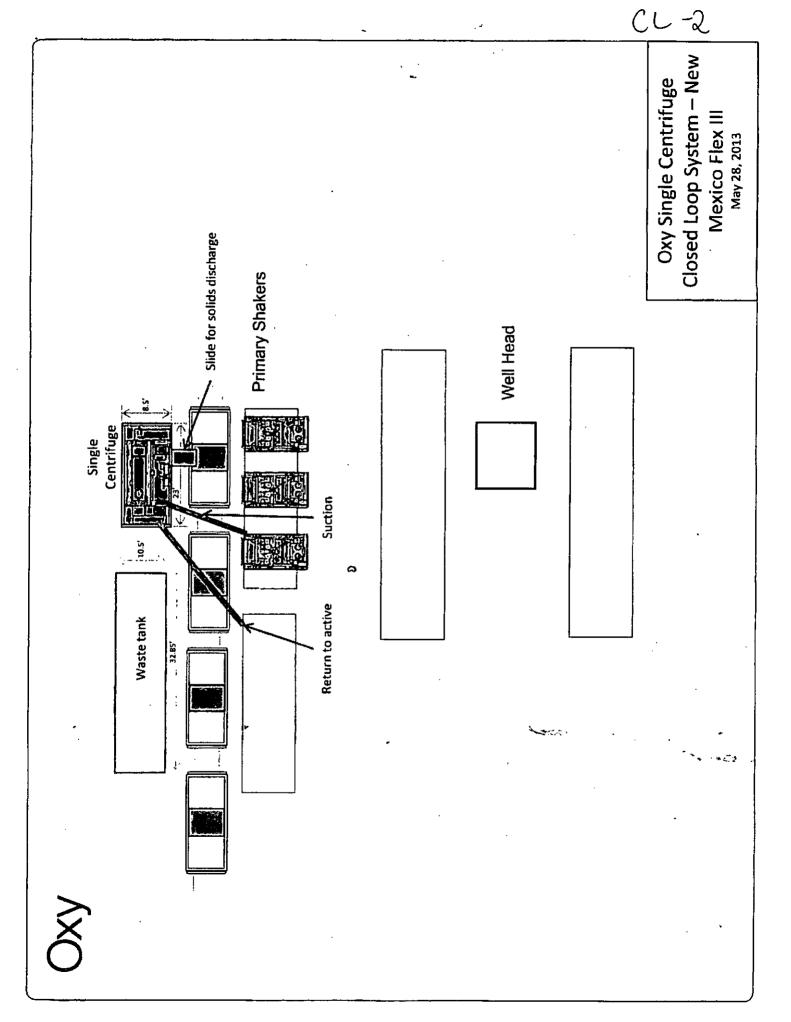

_ontiTech Rabber Industrial Kfr. Quality Control Dept. (1)

Date: 04. April. 2008

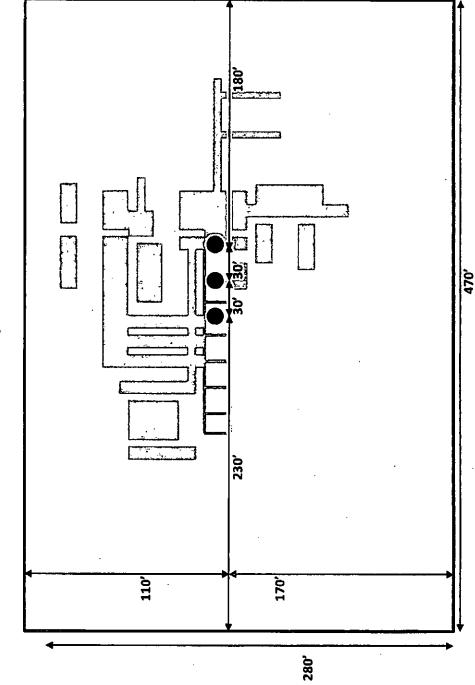


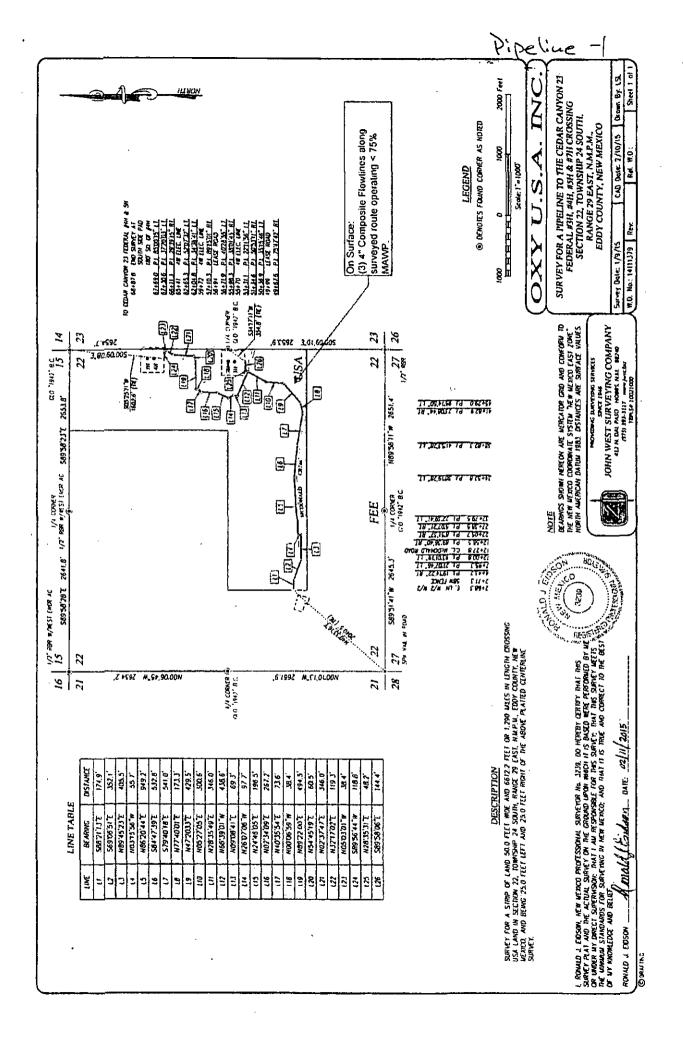

2

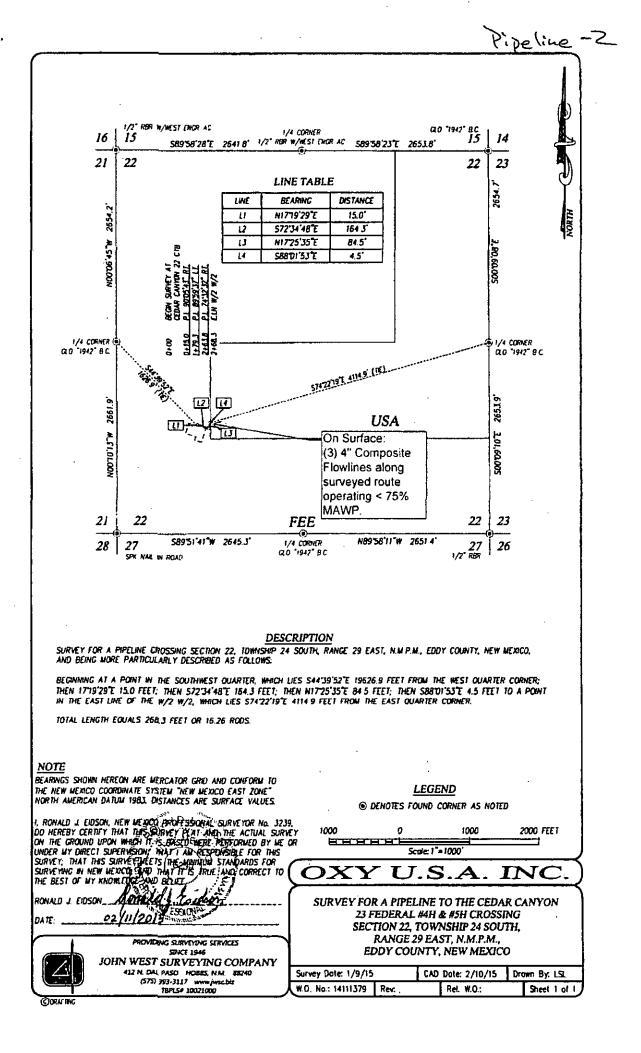

CM-1

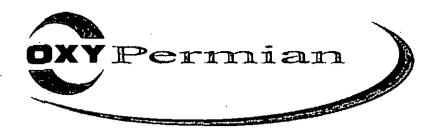


CM-2

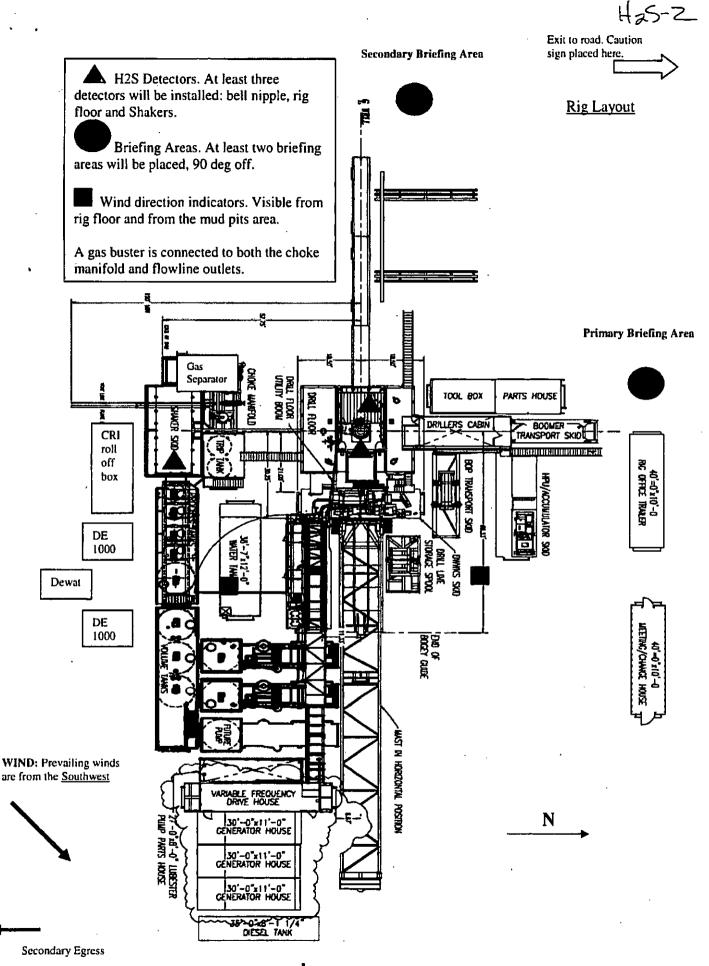



.


Riglayout

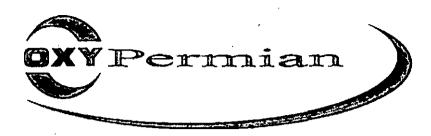

٠.

Pad Site Overall Rig Layout 3 Well Pad Site – Cedar Canyon 2² Fed #2/H Pad



Permian Drilling Hydrogen Sulfide Drilling Operations Plan Cedar Canyon 22 Federal 21H

Open drill site. No homes or buildings are near the proposed location.


1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Northwest side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

- 2 -

-

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

<u>Scope</u>

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Discussion

Implementation:	This plan with all details is to be fully implemented before drilling to commence.
Emergency response Procedure:	This section outlines the conditions and denotes steps to be taken in the event of an emergency.
Emergency equipment Procedure:	This section outlines the safety and emergency equipment that will be required for the drilling of this well.
Training provisions:	This section outlines the training provisions that must be adhered to prior to drilling.
Drilling emergency call lists:	Included are the telephone numbers of all persons to be contacted should an emergency exist.
Briefing:	This section deals with the briefing of all people involved in the drilling operation.
Public safety:	Public safety personnel will be made aware of any potential evacuation and any additional support needed.
Check lists:	Status check lists and procedural check lists have been included to insure adherence to the plan.
General information:	A general information section has been included to supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

H25-6

Emergency Equipment Requirements

1. <u>Well control equipment</u>

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. Protective equipment for personnel

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. <u>Hydrogen sulfide sensors and alarms</u>

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

8

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

- 4 -

Wind sock – wind streamers:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. <u>Evacuation plan</u>

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. Designated area

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
- B. If uncontrollable conditions occur:
 - 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.
- C. Responsibility:
 - 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:

- 1. On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
- 2. Check status of personnel (buddy system).
- 3. Secure breathing equipment.
- 4. Await orders from supervisor.

Drill site manager:

- 1. Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
- 3. Determine H2S concentrations.
- 4. Assess situation and take control measures.
- 1. Don escape unit Report to up nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
- 3. Determine H2S concentration.
- 4. Assess situation and take control measures.

Driller:

Tool pusher:

1. Don escape unit, shut down pumps, continue

rotating DP. 2. Check monitor for point of release. 3. Report to nearest upwind designated safe briefing / muster area. 4. Check status of personnel (in an attempt to rescue, use the buddy system). 5. Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence. б. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent. Derrick man 1. Will remain in briefing / muster area until instructed Floor man #1 by supervisor. Floor man #2 Mud engineer: 1. Report to nearest upwind designated safe briefing / muster area. 2. When instructed, begin check of mud for ph and H2S level. (Garett gas train.) Safety personnel: 1. Mask up and check status of all personnel and secure operations as instructed by drill site manager.

Taking a kick

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. <u>Do not assume the area is safe after the well is ignited.</u>

- 9 -

Status check list

Note: All items on this list must be completed before drilling to production casing point.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. I 100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by:	Detai	
Checked by.	Date:	

- 10 -

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
 - 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
 - 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

H25-14

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

ί

Emergency actions

Has-15

Well blowout - if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

H25-16,

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit + (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hcn	0.94	10 ppm	150 ppm/hr	300 ррт
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ррт
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	Cl2	2.45	l ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Метрале	Ch4_	0.55	90,000 ppm	Combustible above 5% in air	

Toxicity of various gases

1) threshold limit – concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

2) hazardous limit – concentration that will cause death with short-term exposure.

3) lethal concentration – concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	<u>Ppm</u>	Grains	
		<u>100 std. Ft3*</u>	
0.001	<10	00.65	Obvious and unpleasant odor.

H25-17

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in 3 – 15 minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

*at 15.00 psia and 60'f.

.

.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- 16 -

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

<u>Rescue</u> First aid for H2S poisoning

Do not panic!

Remain calm - think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012

Replacement Page

Operator Name/Number:OXY USA Inc. - 16696Lease Name/Number:Cedar Canyon 22 Federal #21HPool Name/Number:Pierce Crossing Bone Spring, East - 96473Surface Location:2540 FSL 230 FEL NESE (I) Sec 22 T24S R29EBottom Hole Location:1830 FNL 180 FWL SWNW (E) Sec 22 T24S R29E

1. Existing Roads

- a. A copy of the USGS "Pierce Canyon, NM" quadrangle map is attached showing the proposed location. The well location is spotted on the map, which shows the existing road system.
- b. The well was staked by Terry J. Asel, Certificate No. 15079 on 10/27/15, certified 10/28/15.
- c. Directions to Location: From the intersection of USH 285 and Black River Road in Malaga, go east on CR 720 for 0.8 miles. Turn left on CR 745 and go north for 1.0 miles. Turn right and go east/northeast for 2.1 miles. Turn right on Dog Town road and go southeast for 1.3 miles. Turn left on caliche road and go east/southeast for 2.1 miles, continue south for 1.6 miles. Turn left and go northeast then southeast for 1.1 miles to location.

2. New of Reconstructed Access Roads:

- a. No new access road will be built.
- b. Surfacing material: N/A
- c. Maximum Grade: N/A
- d. Turnouts: None needed
- e. Drainage Design: N/A
- f. Culverts: None needed
- g. Cut and fills: N/A
- h. Gates or cattleguards: none required
- i. Blade, water & repair existing caliche road as needed.

3. Location of Existing Wells:

Existing wells within a one mile radius of the proposed well are shown on attached plat.

4. Location of Existing and/or Proposed Facilities:

- a. In the event the well is found productive, the Cedar Canyon 22 Federal tank battery would be utilized and the necessary production equipment will be installed at the well site. See proposed Production Facilities Layout diagram.
- b. Electric line already exists on current well pad.
- c. All flow lines will adhere to API standards, see attached for detail and proposed route. 3-4" composite flowline along surveyed route operating <75% MAWP. Survey for a strip of land 50.0' wide and 4721.5' in length crossing USA land in Section 22 T24S R29E, N.M.P.M. Eddy County, NM and being 25' left and 25' right of the attached platted centerline surveys, see attached.</p>

6. Construction Materials:

Primary

All caliche utilized for the drilling pad and proposed access road will be obtained from an existing BLM/State/Fee approved pit or from prevailing deposits found on the location. Will use BLM recommended extra caliche from other locations close by for roads, if available.

Secondary

The secondary way of obtaining caliche to build locations and roads will be by "turning over" the location. This means, caliche will be obtained from the actual well site. A caliche permit will be obtained from BLM prior to pushing up any caliche. 2400 cubic yards is max amount of caliche needed for pad and roads. Amount will vary for each pad. The procedure below has been approved by BLM personnel:

- a. The top 6" of topsoil is pushed off and stockpiled along the side of the location.
- b. An approximate 120' X 120' area is used within the proposed well site to remove caliche.
- c. Subsoil is removed and piled alongside the 120' X 120' within the pad site.
- d. When caliche is found, material will be stockpiled within the pad site to build the location and road.
- e. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road.
- f. Once the well is drilled the stockpiled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced. Neither caliche nor subsoil will be stockpiled outside of the well pad. Topsoil will be stockpiled along the edge of the pad as depicted in the attached plat.

7. Methods of Handling Waste Material:

- a. A closed loop system will be utilized consisting of above ground steel tanks and haul-off bins. Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility. Solids-CRI, Liquids-Laguna
- b. All trash, junk and other waste material will be contained in trash cages or bins to prevent scattering. When the job is completed, all contents will be removed and disposed of in an approved sanitary landfill.
- c. The supplier, including broken sacks, will pickup slats remaining after completion of well.
- d. A Porto-john will be provided for the rig crews. This equipment will be properly maintained during the drilling and completion operations and will be removed when all operations are complete.
- e. Disposal of fluids to be transported will be by the following companies. TFH Ltd, Laguna SWD Facility

8. Ancillary Facilities: None needed.

9. Well Site Layout:

The proposed well site layout with dimensions of the pad layout and equipment location.

V-Door – <u>East</u> CL Tanks – <u>North</u> Pad – <u>280' X 470' (600')</u>

10. Plans for Surface Reclamation:

- a. After concluding the drilling and/or completion operations, if the well is found non-commercial, the caliche will be removed from the pad and transported to the original caliche pit or used for other drilling locations. The road will be reclaimed as directed by the BLM. The original topsoil will again be returned to the pad and contoured, as close as possible, to the original topography, and the area will be seeded with an approved BLM mixture to re-establish vegetation.
- b. If the well is deemed commercially productive, caliche from the areas of the pad site not required for operations will be reclaimed. The original topsoil will be returned to the area of the drill pad not necessary to operate the well.

These unused areas of the drill pad will be contoured, as close as possible, to match the original topography, and the area will be seeded with an approved BLM mixture to re-establish vegetation.

11. Surface Ownership:

The surface is owned by the U.S. Government and is administered by the BLM. The surface is multiple use with the primary uses of the region for the grazing of livestock and the production of oil and gas. The surface is leased to: Henry McDonald, P.O. Box 597, Loving, NM 88256 - John D. Brantley, 706 Riverside Dr., Carlsbad, NM 88220. They will be notified of our intention to drill prior to any activity.

12. Other Information:

- a. The vegetation cover is generally sparse consisting of mesquite, yucca, shinnery oak, sandsage and perennial native range grass. The topsoil is sandy in nature. Wildlife in the area is also sparse consisting of deer, coyotes, rabbits, rodents, reptiles, dove and quail.
- b. There is no permanent or live water in the general proximity of the location.
- c. There are no dwellings within one mile of the proposed well site.
- Cultural Resources Examination This well will be on a multi-well pad to accommodate batch drilling with skidding operations. An EA has already been done on the pad and one of the wells has an approved APD, the Cedar Canyon 23 Federal #3H, API No. 30-015-43290.

13. Bond Coverage:

Bond coverage is Individual-NMB000862, Nationwide-ESB00226.

14. Operators Representatives:

The OXY Permian representatives responsible for ensuring compliance of the surface use plan are listed below:

Don Kendrick Production Coordinator 1502 West Commerce Dr. Carlsbad, NM 88220 Office – 575-628-4132 Cellular – 575-602-1484

Calvin (Dusty) Weaver Operation Specialist P.O. Box 50250 Midland, TX 79710 Office – 432-685-5723 Cellular – 806-893-3067 Charles Wagner Manager Field Operations 1502 West Commerce Dr. Carlsbad, NM 88220 Office – 575-628-4151 Cellular – 575-725-8306

Omar Lisigurski RMT Leader P.O. Box 4294 Houston, TX 77210 Office – 713-215-7506 Cellular – 281-222-7248

		Station Potice
	Oxy U.S.A Inc.	•
B	Vew Mexico Staking Form	
Date Staked:	11-9-15	<u>. </u>
Lease/Well Name:	CedAR CHANYON 22 Fed #	<u>- 21</u> H
Legal Description:	2540 F5L 230 FEL Sec 22	T245R29E
Latitude:	32,2025036 And 2	7
Longitude:	-103.9640113	
Move Information:		
County:	Eddy	
Surface Owner/Tenant:	BLM	
Nearest Residence:	2 mil-e	
Nearest Water Well:		
V-Door:	EAST	<u> </u>
Road Description:	Road Into 5W corner from 50577	¥
New Road:	0	
Upgrade Existing Road		
Interim Reclamation:		
Source of Caliche:		
Top Soil:		
Onsite Date Performed	1:	·····
Onsite Attendees:		
Special Notes:		

.

.

OPERATOR NAME / NUMBER: OXY USA INC

<u>16696</u>

LEASE NAME / NUMBER: Cedar Canyon 22 Federal #21H Federal Lease No. NMNM81586

STATE: <u>NM</u> COUNTY: <u>Eddy</u>

POOL NAME/NUMBER: Pierce Crossing Bone Spring, East 96473

 SURFACE LOCATION:
 2540 FSL 230 FEL
 NESE (I)
 Sec 22
 T24S
 R29E

 SL: LAT: 32.2025036N
 LONG:103.9640113W
 X:614235.88
 Y:437586.71
 NAD: 27

 TOP PERFORATION:
 1830 FNL 335 FEL
 SENE (H)
 Sec 22
 T24S
 R29E

 TP: LAT: 32.2050816N
 LONG:103.9643486W
 X:614128.34
 Y:438524.17
 NAD: 27

 BOTTOM PERFORATION:
 1830 FNL 335 FWL SWNW (E) Sec 22 T24S R29E

 BP: LAT: 32.2051302N
 LONG:103.9793047W
 X:609502.26
 Y:438526.29
 NAD: 27

 BOTTOM HOLE LOCATION:
 1830 FNL 180 FWL SWNW (E) Sec 22 T24S R29E

 BHL: LAT: 32.2051318N
 LONG:103.9798058W
 X:609347.26
 Y:438526.36
 NAD: 27

APPROX GR ELEV: 2958.4'

EST KB ELEV: 2983.4' (25' KB-GL)

COMPANY PERSONNEL:

<u>Name</u>	Title	Office Phone	<u>Mobile Phone</u>
R. Chan Tysor	Drilling Engineer	713-513-6668	832-564-6454
Ryan Farrell	Drilling Engineer Supervisor	713-366-5058	832-291-4744
Roger Allen	Drilling Superintendent	713-215-7617	281-682-3919

OPERATOR CERTIFICATION

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal faws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed this

Signature: Qualified
Name:Omar Lisigurski
Position:Reservoir Management Team Leader
Address:5 Greenway Plaza, Suite 110, Houston, TX 77046
Telephone:713-215-7506
E-mail: (optional):omar_tisigurski@oxy.com
Company:Occidental Permian LP/OXY USA Inc /OXY USA WTP LP
Field Representative (if not above signatory):Dusty Weaver
Address (If different from above): _P.O. Box 50250 Midland, TX 79710
Telephone (if different from above):432-685-5723
E-mail (if different from above):calvin_weaver@oxy.com

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA Inc
LEASE NO.:	NM81586
WELL NAME & NO.:	21H-Cedar Canyon 22 Federal
SURFACE HOLE FOOTAGE:	2540'/S & 260'/E
BOTTOM HOLE FOOTAGE	1830'/N & 180'/W
LOCATION:	Section 22, T. 24 S., R. 29 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

 General Provisions Permit Expiration Archaeology, Paleontology, and Historical Sites Noxious Weeds
Special Requirements
Range
VRM
Karst
Watershed
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
🔀 Drilling
Medium Cave/Karst
Logging Requirements
Waste Material and Fluids
🔀 Production (Post Drilling)
Well Structures & Facilities
Pipelines
Interim Reclamation
Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Livestock Watering Requirement

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Above-ground structures including meter housing that are not subject to safety requirements are painted a flat non-reflective paint color, Shale Green from the BLM Standard Environmental Color Chart (CC-001: June 2008).

Low-profile tanks not greater than eight-feet-high shall be used.

Construction Mitigation

In order to mitigate the impacts from construction activities on cave and karst resources, the following Conditions of Approval will apply to this APD:

- In the event that any underground voids are encountered during construction activities, construction activities will be halted and the BLM will be notified immediately.
- No Blasting to prevent geologic structure instabilities.
- Pad Berming to minimize effects of any spilled contaminates.

Drilling Mitigation

Federal regulations and standard Conditions of Approval applied to all APDs require that adequate measures are taken to prevent contamination to the environment. Due to the extreme sensitivity of the cave and karst resources in this project area, the following additional Conditions of Approval will be added to this APD.

To prevent cave and karst resource contamination the following will be required.

- Closed Mud System Using Steel Tanks with All Fluids and Cuttings Hauled Off.
- Rotary drilling with fresh water where cave or karst features are expected to prevent contamination of freshwater aquifers.
- Directional Drilling allowed after at least 100 feet below the cave occurrence zone to prevent additional impacts resulting from directional drilling.
- Lost Circulation zones logged and reported in the drilling report so BLM can assess the situation and work with the operator on corrective actions.
- Additional drilling, casing, and cementing procedures to protect cave zones and fresh water aquifers. See Drilling COAs.

Production Mitigation

In order to mitigate the impacts from production activities and due to the nature of karst terrain, the following Conditions of Approval will apply to this APD:

• Tank battery liners and berms to minimize the impact resulting from leaks.

- Leak detection system to provide an early alert to operators when a leak has occurred.
- Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of line failures used in production or drilling.

Residual and Cumulative Mitigation

- Nontoxic fluorescent dyes will be added to the drilling fluid when the hole is spudded and will be circulated to the bottom of the karst layers. This provides data as part of a long-term monitoring study.
- Annual pressure monitoring will be performed by the operator. If the test results indicate a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Plugging and Abandonment Mitigation

<u>Abandonment Cementing</u>: Upon well abandonment in high cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

• The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed.

• Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

ι.

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

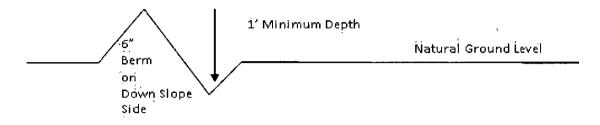
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

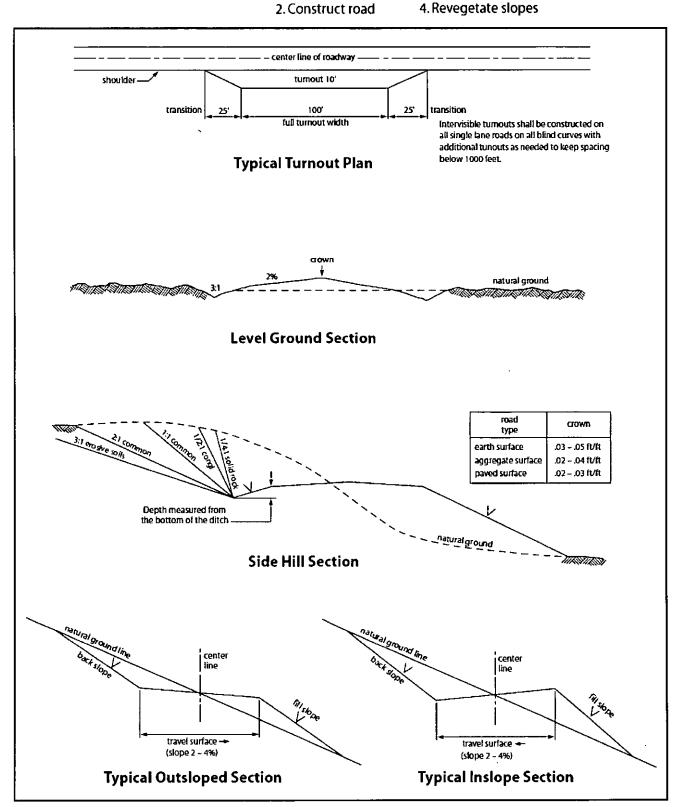
Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\underline{400'} + 100' = 200'$ lead-off ditch interval $\underline{4\%}$

Cattleguards

An appropriately sized cattleguard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattleguards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguards that are in place and are utilized during lease operations.

Fence Requirement


Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps 1. Salvage topsoil

bil3. Redistribute topsoilad4. Revegetate slopes

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - 🔀 Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. The operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.).

The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. (For surface casing the BOP can be nippled up after the cement has reached 500 psi compressive strength.)

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Medium cave/karst Possible water flows in Castile and Salado. Posible lost circulation in Rustler, Salado and Delaware.

- 1. The 10 3/4 inch surface casing shall be set at approximately 480 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, the operator shall set the casing 25' above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 10-3/4" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office. The 7-5/8 inch intermediate casing must be kept liquid filled while running into hole to meet minimum BLM requirements for collapse.

- 2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
 - a. First stage to DV tool:
 - Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.

Operator has proposed a contingency DV tool at 3075'. If operator circulates cement on the first stage, operator is approved to inflate the ACP and run the DV tool cancellation plug and cancel the second stage of the proposed cement plan. If cement does not circulate, operator will inflate ACP and proceed with the second stage.

- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Formation below the 7-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

3. The minimum required fill of cement behind the 5-1/2 x 4-1/2 inch production casing is:

Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored

according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).

- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

CRW 011116

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all

open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VRM Facility Requirement

Low-profile tanks not greater than eight-feet-high shall be used.

B. PIPELINES STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the application (Grant, Sundry Notice, APD) and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

تر

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. The holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. The holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

- a. Activities of the holder including, but not limited to construction, operation, maintenance, and termination of the facility.
- b. Activities of other parties including, but not limited to:

- (1) Land clearing.
- (2) Earth-disturbing and earth-moving work.
- (3) Blasting.
- (4) Vandalism and sabotage.
- c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of the holder, regardless of fault. Upon failure of the holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve the holder of any responsibility as provided herein.

6. All construction and maintenance activity will be confined to the authorized right-ofway width of <u>20</u> feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline must be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline must be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity will be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation will be allowed unless approved in writing by the Authorized Officer.

8. The holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline will be "snaked" around hummocks and dunes rather then suspended across these features.

9. The pipeline shall be buried with a minimum of <u>24</u> inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies. 17. Surface pipelines must be less than or equal to 4 inches and a working pressure below 125 psi.

IX. INTERIM RECLAMATION

J

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

X. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 2, for Sandy Sites

F.

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	lb/acre
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed: Pounds of seed x percent purity x percent germination = pounds pure live seed