Form 3160-3 UNITED STATES (August \$99) DEPARTMENT OF THE IN	NTER NR M. OII Cons. D	IV-Di	St. 2 FORM APPROVED OMB NO. 1004-0136		
BUREAU OF LAND MANA	GEMENT301 W. Grand	Aver	TUE Expires: November 30, 2000		
APPLICATION FOR PERMIT TO D	RILL OR RANGESIA. NM	882	hease Serial No.		
			<u>NMNM - 98122</u> If Indian, Allotee or Tribe Name		
la. Type of Work X DRILL RE	EENTER	0.	N/A		
1b. Type of Well Oil Well Gas Well Other	X Single Zone Multiple Zo	one 7.	Unit or CA Agreement Name and No		
2. Name of Operator		8.	Lease Name and Well No.		
Chevron U.S.A. Inc. 3a. Address	3b. Phone No. (include area of	ode)	SKELLY UNIT #952		
15 Smith Road, Midland Texas 79705	(432) 687-73	9.	30-015-328		
4. Location of Well (Report location clearly and in accordance with a		10.	Field and Pool, or Exploratory		
At surface 990' FNL, & 990' FWL, UNIT LETTER	D		CEDAR LAKE NORTH MORROW .Sec., T., R., M., or Blk. and Survey		
At proposed prod. zone SAME		1.1	SEC 21, T-17S, R-31E		
14. Distance in miles and direction from nearest town or post office*		12.	County or Parish 13. State		
5.6 MILES EAST OF L	OCO HILLS. NM		DDY NM		
15. Distance from proposed*	16.No. of Acres in lease		ng Unit dedicated to this well		
location to nearest property or lease line, ft. 990'					
(Also to nearest drg. unit line, if any)	1200	1	40		
18. Distance from proposed location*	19. Proposed Depth	20.BLM	/BIA Bond No. on file		
to nearest well, drilling, completed,					
applied for, on this lease, ft.	11,800'				
21. Elevations (Show whether DF, KDB, RT, GL, etc.	22. Approximate date work will st	tart*	23. Estimated duration		
3740' GL	9-01-03		4 WEEKS		
ROSWELL CONTROLLED WATER BASIN	24. Attachments				
The following, completed in accordance with the requirements of Onsh		ned to this fo	Drm:		
1. Well plat certified by a registered surveyor.	4 Bond to cover the opera	tions unless	covered by an existing bond on file (
2. A Drilling Plan	Item 20 above).		to the of an existing bond of the		
3. A Surface Use Plan (if the location is on National Forest System La					
SUPO shall be filed with the appropriate Forest Service Office).	6. Such other site specific authorized officer.	information	and/or plans as may be required by t		
25. Signuature	Name (Printed/Typed)		Date		
dense PinKerton	DENISE PINKERTON		5-07-03		
Title					
REGULATORY SPECIALIST					
Approved by (Signautre) /s/ Joe G. Lara	Name (Printed/Typed)/s/ Joe G.	Lara	Date 24 JUN 200		
Title FIELD MANAGER	Office	SBAD	FIELD OFFICE		
Application approval does not warrant or certify that the applicant hol	ds legal or equitable title to those rights in	the subject	lease which would entitle the applic		
conduct operations thereon.		-	••		
Conditions of approval, if any, are attached.		Arr	ROVAL FOR 1 YEA		

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowlingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

*(Instructions on Reverse)

APPROVAL SUBJECT TO GENERAL REQUIREMENTS AND SPECIAL STIPULATIONS ATTACHED

DISTRICT I

P.0. Bax 1980, Hobbs, NM 88241-1960

DISTRICT II P.O. Drawer DD, Artesia, NM 86211-0719

DISTRICT III

1000 Rio Brazos Rd., Aztec, NM 87410

State of New Mexico

Energy, Minerals and Natural Resources Department OIL CONSERVATION DIVISION

P.O. Box 2088 Santa Fe. New Mexico 87504-2088

DIRECTIONS

From Loco Hills, go 6 miles east on US Highway 82 to County Road 529. Turn South on CR 529 and drive south for +/-1/2 mile. Turn back to the west. Location is +/-0.5 miles west of intersection with 529.

PROPOSED WORK

SURFACE HOLE:

1

- 1. Call the 1-800 dig number and notify BLM (505-234-5972) 3 working days prior to building location. Build location and cellar prior to moving in rotary tools. Have reserve pits lined and filled with water. A fresh water well should be located and utilized for fresh water as opposed to trucking. Set a 20" cemented conductor at +40'.
- 2. Move in and rig up rotary tools. Rig up mud/gas separator which will be needed for the lower portion of the hole, if necessary. Conduct safety meeting with rig personnel. Post drilling permit and emergency response plan in the dog house. Notify the BLM and OCD of intent to spud.
- 3. Pick up a 17-1/2" rental re-tip bit, shock sub, on slick drill collars (minimum of 3-8" collars). Deviation is not expected to be a problem. Inclinations less than one degree are common.
- 4. Spud well utilizing fresh water as the drilling fluid. Circulate the reserve pit for solids control. It is imperative that brine, oil, or other contaminants not be introduced into the surface hole. The main purpose of this hole is to protect fresh water sands. Lost circulation was encountered on a well in the area at 62' and required drilling without returns to casing point.
- 5. Drill a 17-1/2" hole to 475' (or 25' into the Rustler, per BLM stips). Run 13-3/8" casing as follows:
- a) Guide shoe

WITNESS b) 1 joint 13-3/8", 48 ppf, H-40, STC casing c) Insert float d) ±435', 13-3/8", 48 ppf, H-40, STC casing

Centralize the bottom three joints and every fourth joint thereafter.

Threadlock the field and mill ends of the bottom three joints and all float equipment.

INSPECTION: None

- 6. Circulate casing capacity or annular volume, whichever is greater. Cement in accordance with attached cementing summary. Displace cement with fresh water utilizing wiper plug. Displace to within <u>+</u>40' of shoe. Check float. If float fails, shut in for a minimum of four hours. If cement does not circulate, will need to run temperature survey, notify BLM and 1" back to surface.
- 7. Cut off casing. Install casing (starting) head. Test starting head to <u>+</u>385 psi (50% of collapse rating).
- 8. Nipple up 5M BOP stack. Test BOPE to 250 psi low for 5 minutes, 1000 psi high for 30 minutes. Test casing to 1000 psi for 30 minutes. Test choke manifold to 250 psi low for 10 minutes, 3000 psi high for 10 minutes.
- 9. Install H₂S detection equipment prior to drilling out. This equipment will remain on location until the rig is released. Equipment to include warning signs, windsocks, and detectors at the cellar, at the rotating head, at the flow line and on the floor.

INTERMEDIATE HOLE:

- 1. Trip in hole with a 12-1/4" bit, with a packed hole BHA (bit, ss, 3-point, sdc, ibs, dc, ibs) and tag cement.
- 2. Drill a 12-1/4" hole to a TD depth of 4500'. Brine water will be utilized as the drilling fluid, circulating the reserve pit for solids removal to this depth. An offset experienced lost circulation out from under surface casing and had to drill blind to ICP.
- 3. Take TOTCO single shot surveys every 350' or adjust accordingly in an attempt to keep deviation below 3.0°.
- 4. Run casing as follows:
 - a) Guide shoe
 - b) <u>+</u>45' (1 joint) 8-5/8", 32 ppf, J-55, LTC
 - c) Float collar
 - d) <u>+</u>4455', 8-5/8", 32 ppf, J-55, LTC

Centralize the bottom three joints. Threadlock the field and mill ends of the bottom three joints and all float equipment.

INSPECTION: BCI and drift

- 5. Circulate casing capacity or annular volume, whichever is greater. Cement in accordance with attached cementing summary. Displace cement with fresh water utilizing wiper plug. Displace to within <u>+</u>40' of shoe. Check float. If float fails, shut in for a minimum of four hours. If cement fails to circulate, will need to run temperature survey, notify BLM and 1" back to surface.
- 6. Cut off casing. Install B-Section casing head. Test head to <u>+</u>1265 psi (50% of collapse rating).
- 7. Nipple up BOP stack. Test BOPE to 250 psi low for 10 minutes, 5000 psi high for 10 minutes. Test annular to 250 psi low for 10 minutes, 1500 psi high for 10 minutes. Test casing to 2000 psi for 30 minutes.

PRODUCTION HOLE:

- 1 Trip in hole with a bit, packed hole BHA (tri collar, IBS, drill collar, IBS) and and tag cement. Rig up mud logger to have ready when drilling out of shoe Suttles 915-687-3148 or 800-979-9096 (carry \$900/day on morning report).
- 2. Drill a 7-7/8" hole to 11,800'. Fresh water will be utilized as the drilling fluid until 10,650'. At 10,650', mud properties will be adjusted as discussed in the mud program. In this portion of the field, deviations of 6 degrees may be encountered from 6400' to 9500'. Past attempts to control deviation with a motor have had mixed results. Deviation will be monitored closely. If deviation is encountered, we will drill this section of the hole with a straight hole motor.
- 3. Condition hole and trip out and run open hole logs.
- 4. Trip in hole and condition for casing; trip out of hole laying down.
- 5. Run casing as follows:
 - a) Float shoe
 - b) <u>+90'</u> (2 joints) 5-1/2", 17 ppf, N-80, LTC
 - c) Float collar
 - d) <u>+</u>3210', 5-1/2", 17 ppf, N-80, LTC
 - e) DV tool at +8500' from surface
 - f) <u>+8500'</u>, 5-1/2", 17 ppf, N-80, LTC

Include short joint in the string at ± 11000 '. Centralize the bottom three joints and across any potential pay. Threadlock the field and mill ends of the bottom three joints and all float equipment.

INSPECTION: BCI and drift

- 15. Cement in accordance with attached cementing summary.
- 16. Set slips with weight as cemented. Cut off casing. Install permanent 11" 5000 psi X 7-1/16" 5000 psi tubing head. Test seal to 50% of collapse rating.
- 17. Release rig. Rig down and move out rotary tools.

POTENTIAL PROBLEMS

Surface Hole:

Lost circulation encountered on awell in the area.

Intermediate Hole:

Lost circulation was encountered on the Oxy Pistachio offset, not typical.

Water flows from waterflood are possible.

Rig up H2S safety equipment prior to drilling out the 13-3/8" shoe. Maintain pH at 10+ and treat with H2S scavenger.

Production Hole:

Possible lost circulation (less than 10 BPH from 6500' to 9500', 50 BPH from 9500' to 10000', 25 BPH from 10000' to TD).

Deviation to 6 degrees from 6400' to 9500'.

Deviation will be monitored closely.

MUD PROGRAM

Interval	<u>Type</u>	Weight (ppg)	Vis. (sec/qt)	Fluid Loss (cc)	Remarks
Surf to 475'	Fresh Wtr.	8.6	32	No control	Circulate reserve
475' to 4500'	Brine	10	29	No control	Circulate reserve

 4500' to 10650'
 Fresh Wtr.
 8.5
 28 -- 45
 No control
 Circulate reserve

 10650' to TD
 Cut Brine
 9 to 10.1
 29 -- 45
 LT 12 below 10650'
 chlorides above 90,000

 add XCD polymer
 0.5#/bbl PHPA at 10900'
 visc to 45 by 11650'

When circulating the reserve, it is a good practice to switch to the steel pits for one hour each tour to monitor gains/losses.

EVALUATION PROGRAM

Mud Logging:

A two man unit will be rigged up at 4500' and utilized to total depth.

Open Hole Logs:

NGT-CNL-LDT, DLL w/ MSFL, BHC Sonic, FMI from TD.

Sidewall cores are a possibility.

SURFACE CEMENTING PROGRAM

Cement with 490 sacks Class "C" with 2% S1.

Minimum waiting on cement time: 12 hours

Cement properties:

Slurry weight:14.8 ppg

Slurry yield: 1.34 ft³ per sack

Cement must circulate to surface. If cement does not circulate, run a temperature survey six to eight hours after cementing. Contact the BLM and OCD and the Midland office for proper procedure to bring cement to surface. Normal procedure is to run one inch tubing down the annulus to top of cement, therefore one inch tubing should be on location or readily available.

Cement volume is based on 17-1/2" by 13-3/8" annular volume plus 100% excess. If drilling without returns, add an additional 100% excess, for a total of 735 sx.

INTERMEDIATE CEMENTING PROGRAM

Cement with 2130 sacks 35/65 pozmix Class "H" with 6% D20, 5% D44, 1/4 lb. cellophane flakes followed by 440 sacks Class "H" neat.

Minimum waiting on cement time: 12 hours

Cement properties:

Slurry weight:	(lead)12.8 ppg (tail) 15.6 ppg
Slurry yield:	(lead)1.94 ft ³ per sack (tail) 1.18 ft ³ per sack

Cement must circulate to surface. If cement does not circulate, run a temperature survey six to eight hours after cementing. Contact the BLM and OCD and the Midland office for proper procedure to bring cement to surface. Normal procedure is to run one inch tubing down the annulus to top of cement, therefore one inch tubing should be on location or readily available.

Cement volume is based on 12-1/4" by 8-5/8" annular volume plus 150% excess.

PRODUCTION CEMENTING PROGRAM

Place bomb type DV tool at +8500'.

Cement first stage with 1000 sacks of 50/50 pozmix Class "H" with 2% D20, 5% D44 and 1/4 lb. cellophane flakes. Circulate four to six hours between stages unless it is determined that this would be non-productive time considering the lost circulation during drilling operations.

Cement second stage with 860 sacks of 35/65 pozmix Class "H" with 6% D20, 5% D44, 1/4 lb. cellophane flakes followed by 1210 sacks of 50/50 pozmix Class "H" with 2% D20, 5% D44, 1/4 lb. cellophane flakes.

Cement Properties:

First Stage		
Slurry Weight	14.2 ppg	
Slurry Yield	1.35 cu-ft/sx	
Second Stage	Lead	Tail
Slurry Weight	12.4 ppg	14.2 ppg

Slurry Yield

2.17 cu-ft/sx

1.35 cu-ft/sx

<u>1st Stage:</u> Cement volume based on 7-7/8" open hole by 5-1/2" annular volume plus 135% excess. Adjust cement volumes to yield caliper plus 35% excess.

<u>2nd Stage:</u> Cement volume based on 7-7/8" open hole by 5-1/2" annular volume plus 135% excess. Adjust lead cement volumes to yield caliper plus 35% excess in open hole and 15% in cased hole.

Cement is designed to circulate to surface. If cement does not circulate, run a temperature survey to determine top of cement.

CASING SUMMARY

SURFACE:

475', 13-3/8", 48 ppf, H-40, STC

INTERMEDIATE:

4500', 8-5/8", 32 ppf, J-55, LTC

PRODUCTION:

11800', 5-1/2", 17 ppf, N-80 DV @ 8500'

TUBING:

11500', 2-3/8", 4.6 ppf, L-80, EUE

CASING PROPERTIES

B <u>Rate</u> 13-3/8", 48 ppf, H-40, STC 1730	the second s	COLL <u>Rated</u> 770	APSE <u>(80%)</u> 610	Test <u>Pressure</u> 500
8-5/8", 32 ppf, J-55, LTC 3930	3140	2530	2020	1500
5-1/2", 17 ppf, N-80, LTC 7740	6190	6280	5020	2000

PARTNER INFORMATION

Mack Energy

,

•

CHEVRON U.S.A., Inc. Well Proposal Data Sheet

Well Name:	Skelly Unit #952	_Field/Area:	Cedar Lake North	Morrov Date:	3/12/2003	
Surf. Loc. :	990' FNL & 990' FWL, Section 2	21, T17S R31E	d .	County/Sta	te: Eddy C	<u></u> N.M.
Shot Pt. for S	urf. Loc.: na			Authorized	TD: 12,200' MD	
B.H. Target:	vertical well	0	TVD	Actual Est	. TD:11,800'M	D
Shot Pt. for B	.H. Target: <u>na</u>			Actual Est.	TD:	TVD

Estimated Formation Tops (based on 3740' GL est, 3757' KB est. elevations):

Formation	TVD	Subsea
Paddock	4800	-1043
Abo Shale	6900	-3143
Abo Carbonate	7000	-3243
Wolfcamp	8350	-4593
Cisco	10150	-6393
Strawn	10650	-6893

Formation	TVD	Subsea
Atoka	10900	-7143
Morrow	11150	-7393
Morrow Clastics	11400	-7643
Mississippian Lime	11650	-7893
TD (probable)	11800	-8043

Suggested Csg Depths:13 3/8" @ ~400', 9 5/8" @ ~4500', 5.5" at TD.Required Mud Parameters:sufficient for samples and well control

Sample, Drilling Time & ML Requirements:

2 man mudlogging unit from 4500' to TD

DST's (incl any special requirements): none anticipated

Cores (incl est. cost for analysis):

SWC's included in OH logs below

:	y Zones:	Other Potential Pay		Anticipated Completion Intervals:					
Pressures		Depths	Formation	Pressures	Depths	Formation			
normal	n	10,900-11,150'	Atoka	normal	11,400 - 11,650'	Morrow			
normal	n	7000-8000'	Abo						
normal	n	4800-5000'	Paddock						

Type of Logs (incl sidewall cores) and Est. Total Cost:

Run # 1 (logs & intervals): NGT-CNL-LDT, DLL w/ MSFL, BHC Sonic, SWC's, FMI - Cost est. ~ \$35M

Run # 2 (logs & intervals):

Run # 3 (logs & intervals):

Possible Drilling Hazards (High press, lost circ, H2S, deviation, etc.): <u>deviation problems not uncommon in area due to</u> Permian formations bed dip to south. Also, Oxy Pistachio well experienced severe shallow lost circulation @ 964'

Remarks (Special well, production csg size/OH completion or location requirements, etc):

Base Fresh Water:

_By: Water Board Letter/Other (Specify) ____

Rule 37/Unorthodox Location?: NO

Date Regulatory Approval Expected?:

Required height of tubing spool above GL: Required Xmas tree size & pressure rating: ___Offset Well Data Available? YES

Completion Type (Flwg/Type Art Lift): flwg gas

Prep by:

Primir

3/19/2003

ANTICIPATED DRILLING PROGRAM

ate	3/18/2003									WBS No.	Pending	
*		Field	Cedar Lake North Morro	w								
ease	Skelly Unit					_ ^	/eil N	o	952			_
Inface 1	Location	990' F	NL, 990' FWL, Section 21,	175, R31E								
ttom H	Iole Location											
		••••••								·		
Approv	ved Total Depth	· · · · · · · · · · · · · · · · · · ·	Estimated Cost						T		Dev.	
	11,800 TV	'D	1,102,200	Dry Hole Cost Completion	42.0	_Day	s Dril	l	[X Single	Res.	
	11,800MC	> _		Completion Cost	·	_Day	s Cor	npi.		Dual	OSWC	
	<u>3,740</u> GL		1,102,200	Total	42.0	_Day	s Tota	al		<u>?</u> % Tx. Int.	RWC	
				ANTICIPATED FOI	RMATION TO	OPS						
						1	1		I			
								G a				
				Pre	SS	в	Į	u				
			TVD	Gra	d.	н	Ρ.	g	F.	Equiv.		Antcpd.
	Sand Name		Expected	(psi/	ft)	Р	Ρ.	е	<u> </u>	Mud Wt.	Prod.	SITP
ustler			?								<u></u>	
ites			?					$\left - \right $		8.3	Oil	
addock			4800	Potentia	Pay #4		L	┞──┤		0.3	<u>UI</u>	

					а				
		Press	в		u				
	TVD	Grad.	н	Ρ.	g	F .	Equiv.	Antcpd.	Antcpd.
Sand Name	Expected	(psi/ft)	Р	Ρ.	е	L.	Mud Wt.	Prod.	SITP
Rustler	?								
Yates	?								
Paddock	4800	Potential Pay #4					8.3	Oil	
Abo Shale	6900								
Abo Carbonate	7000	Potential Pay #3					8.3	Oil	
Wolfcamp	8350								
Cisco	10150								. <u> </u>
Strawn	10650								
Atoka Sand Stone	10900	Potential Pay #2					8.3		
Morrow Lime Stone	11150	<u> </u>						<u></u>	
Morrow Sand Stone	11400	Primary Pay							
Mississippian Lime	11650								. <u> </u>
Barnett Shale	?							<u> </u>	
Total Depth	11800						<u> </u>		

CASING AND CEMENTING DATA

SIZE					Sa	cks		Wt. (PPG)	Instructions
Hole	Csg.	Depth							
					L	o	l	14.2	Class "C" with 2% gel, 2% CaCl2
17.5	13.375	475	FW	Surface	Т	490		14.8	Class "C" with 2% CaCl2
12.25	8.625	4500	Brine		L	2130		12.8	Class "H" 35/65 Poz with 6% gel, 5% salt, 1/4# cell.
				Intermediate	т	440		15.6	Class "H"
					1 A	1000	T	14.2	Class "H" 50/50 Poz with 2% gel, 5% salt, 1/4# cell.
7.875	5.5	11800	Brine		2 L	860		12.4	Class "H" 50/50 Poz with 6% gel, 5% salt, 1/4# cell.
				Production	2 T	1210		14.2	Class "H" 50/50 Poz with 2% gel, 5% salt, 1/4# cell.
							T		
							f		
	1	L		·					<u> </u>

Prepared by:

B. D. Schaneman Phone # 915-687-7402

Reviewed by:

Reviewed by:

Approved by:

Page 1

PRELIMINARY DRILLING PROGRAM

Lease and Well No.

Skelly Unit #952

LAND INFORMATION

Distance to Nearest Lease Line No. Acres in Lease No. Acres Assigned to Well Distance to Nearest Well

MUD PROGRAM

Depth	Туре	Weigł
0-475'	Fresh Water	8.
475-4500'	Brine	1
4500-11800'	Brine/Starch	8.4-10.
	Gel (if needed)	
·		

Remarks
ulate pits or reserve, visc. 30
ulate reserves, Lime pH 9, visc. 29
ch / LCM for seepage as needed.
29-40, increase Chlorides to 90,000 by 10,650',
XCD polymer by 10,650', add 0.5#/bbl PHPA starting at 10,900'.
below 12 from 10.900 to TD, Increase viscosity to 45 by 11650'

TUBULAR PROGRAM

String	Hole			Casing			Connection	ERW/	Critical
Туре	Size	Depth	Feet	Diameter	Weight	Grade	Туре	Seamless	Inspectn
Surface	<u>17-1/2"</u>	475	475	13-3/8"	48	<u>H-40</u>	<u>stc</u>	ERW	<u>NO</u>
Intermed.	11"	4500	4500	8-5/8"	32	 		ERW	<u></u>
Production	7-7/8"		11800	5-1/2"	17	<u>N-80</u>		ERW	<u>NO</u>
Tubing			11300	2-3/8"		<u>L-80</u>	EUE 8RD	ERW	<u>NO</u>
		<u> </u>				<u> </u>			
	——-								

Note: Pipe to end up in hole from top to bottom as shown.

CEMENT PROGRAM

String Type	D∨ Depth	Stage Lead/Tail	Cement Bottom	Cement Top	No Sacks	Cement Type	Cement Yield	Cement Weight
Surface		Lead Tail	0 475	Surface 0	0 490	<u>"C" w/ g</u> el "C"	<u> </u>	<u> 14.2</u> <u> 14.8</u>
Intermed.		Lead Tail	4000 4500	Surface 4000	2130 440	<u>35/65 Poz</u> "H"	<u> </u>	<u>12.8</u> 15.6
Production	8500	1 All 2 Lead 2 Tail	11800 4500 8500	8500 0 4500	1000 860 1210	50/50 Poz 35/65 Poz 50/50 Poz	1.35 2.14 1.35	<u>14.2</u> <u>12.4</u> <u>14.2</u>

BOP PROGRAM

Hole		Pressure
Size	Exhibit	Rating
	Exhibit C, Drilling Manual	<u>5M</u>

Remarks:	Lost Cir	culation	Potentia	I from 65	00' - 9500' (*	<10 BPH)	

B. D. Schaneman

 Lost Circulation Potential from 450' - 4500' (Total Losses - Oxy drilled blind)
Lost Circulation Potential from 9500' - 10,000' (>50 BPH)
Lost Circulation Potential from 10,000' - TD (<25 BPH)
 Anticipated Morrow Reservoir Pressure is 6000 psi
 Active Waterflood from 2000' - 4000'

Date: 3/18/2003

Prepared By:

CEMENT

	Surface Lead	Surface Tail	Int 1 Lead	Int 1 Tail	Prod. 1st Stage	Prod. 2nd Stage Lead	Prod. 2nd Stage Tail
System	C; 2% D20,	C; 2%S1	35/65H; 6%D20,	H Neat	50/50H;2%D20,	35/65H; 6%D20,	50/50H;2%D20,
Skelly Unit No. 905	2%S1		5%D44, 0.25#D29		5%D44,0.25#D29	5%D44, 0.25#D29	5%D44,0.25#D29
Density, ppg	14.2000	14.8000	12.8000	15.6000	14.2000	12.4000	14.2000
Yield, cf/s	1.5000	1.3400	1.9400	1.1800	1.3500	2.1400	1.3500
Water, g/s	7.4500	6.3100	10.5000	5.2000	6.3000	11.9500	6.3000
Class C \$/sx	3.0960	3.0960					
Class C # of sx	1.0000	1.0000					
Class H \$/sx			2.9600	2.9600	2.9600	2.9600	2.9600
Class H # of sx			0.6500	1.0000	0.5000	0.6500	0.5000
Poz \$/sx			1.6520		1.6520	1.6520	1.6520
Poz # of sx			0.3500		0.5000	0.3500	0.5000
S1 \$/#	0.1600	0.1600				· · · · · · · · · · · · · · · · · · ·	
S1 #/sx	1.8800	1.8800					A 10 10 10 10 10 10 10 10 10 10 10 10 10
D20 \$/#	0.0680		0.0680		0.0680	0.0680	0.0680
D20 #/sx	1.8800		5.3300		1.7300	5.3300	1.7300
D44 \$/#			0.0520		0.0520	0.0520	0.0520
D44 #/sx			4.3500		2.6200	4.3500	2.6200
D29 \$/#			0.7080		0.7080	0.7080	0.7080
D29 #/sx			0.2500		0.2500	0.2500	0.2500
D79 \$/#		THE REPORT OF THE PROPERTY AND ADDRESS AND ADD					
D79 #/sx							
D42 \$/#							
D42 #/sx			· · · · · · · · · · · · · · · · · · ·				
Cost \$/sx	3.5250	3.3970	3.2680	2.9600	2.7370	3.2680	2.7370
Cost \$/cft	2.3500	2.5350	1.6840	2.5080	2.0270	1.5270	2.0270
Feet of fill	0	475	4000	500	3300	4500	4000
Casing Size	13.3750	13.3750				5.5000	5.5000
Hole Size	17.5000	17.5000		12.2500			
Annular Factor	0.6946	0.6946	0.4127	0.4127	0.1732	0.1732	0.1732
Excess	2.0000	2.0000	2.5000	2.5000	2.3500	2.3500	2.3500
Sacks	0	490	2130	440	1000	860	
Cost	0	1665		1302	2737	2810	
Cement Bottom	ō	475	4000	4500		4500	
Cement Top		0	0	4000		C	A the second sec
Placement Time	ōl	17	105	13		47	
Flush Time		12	41	46		19	
Bottom Hole Temp	70	74	100				
	Surface Lead		Int 1 Lead			Prod. 2nd Stage Lead	

H2S DRILLING OPERATIONS PLAN

I. HYDROGEN SULFIDE TRAINING

All contractors and subcontractors employed by Chevron U.S.A. Inc. will receive or have received training from a qualified instructor within the last twelve months in the following areas prior to commencing drilling operations on this well.

- 1. The hazards and characteristics of hydrogen sulfide (H2S)
- 2. Safety precautions
- 3. Operations of safety equipment and life support systems

In addition, Chevron supervisory personnel will be trained or prepared in the following areas:

- 1. The effect of H2S on metal components in the system. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-down procedures when drilling or working a well, blowout prevention and well control procedures, if the nature of work performed involves these items.
- 3. The contents and requirements of the contingency plan when such plan is required.

All personnel will be required to carry documentation of the above training on their person.

- II. H2S EQUIPMENT AND SYSTEMS
 - 1. Safety Equipment

The following safety equipment will be on location.

- A. Wind direction indicators as seen in attached diagram.
- B. Automatic H2S detection alarm equipment (both audio and visual).
- C. Clearly visible warning signs as seen on the attached diagram. Signs will use the words "POISON GAS" and "CAUTION" with a strong color contrast.
- D. Protective creating equipment will be located in the dog house and at the briefing areas as seen in the attached diagram.

2. Well Control Systems

A. Blowout Prevention Equipment Equipment includes but is not limited to:

a. pipe rams to accommodate all pipe sizes

- b. blind rams
- c. choke manifold
- d. closing unit

Auxiliary equipment added as appropriate includes:

a.	annular preventor	NA
Ь.	rotating head	NA
C.	mud-gas separator	NA
d.	flare line and means of ignition	NA
e.	remote operated choke	<u>NA</u>

B. Communication

The rig contractor will be required to have a two-way communication capability. Chevron U.S.A. Inc. will have either land-line or mobile telephone capabilities.

C. Mud Program

The mud program has been designed to minimize the volume of H2S circulated to surface. Proper mud weight, safe drilling practices, and the use of H2S scavengers when appropriate will minimize hazards when penetrating H2S bearing formations.

D. No Drill Stem Tests are planned.

III. WELL SITE DIAGRAM

A complete well site diagram including the following information is attached.

- 1. Rig orientation
- 2. Briefing areas
- 3. Ingress and egress
- 4. Pits and flare lines
- 5. Caution and danger signs
- 6. Wind indicators and prevailing wind direction

2

••			H ₂ S Trim Required Yes No
	FILL LINE	- FLOW LINE	
	E BLIND RAMS	6 ⊮=;,,- ∑1	· · · · · · · · · · · · · · · · · · ·
k		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3
	PIPE RAMS B 1 1		
	MATERIALS LIST	•	
ltem	Description		Qty.
	exaco wellhead.		1
	00# W.P. single ram type preventer, hydraulic operated with		
OL	000# W.P. drilling spool with a 2" minimum flanged outlet for the for choke line.		
	000# W.P. dual ram type preventer, hydraulic operated with		ines. 1
	000# W.P. annular preventer, hydraulic operated with 1" stee	I, 3000# W.P. control lines.	1
	otating head with fill-up outlet and flow line.		alve. 8
	minimum 5000# W.P. flanged full opening steel gate valve,	or Halliburton Lo Torc plug v	
	minimum 5000# W.P. back pressure valve. minimum 5000# W.P. flanged full opening steel gate valve,	or Halliburton Lo Toro plug y	alve. 2
	minimum schedule 160, Grade "B", seamless line pipe.	or remounded to role plug v	<u> </u>
	minimum x 3" minimum 5000# W.P. flanged cross.		1
	minimum 5000# W.P. adjustable choke with carbide trim.		2
	ameron Mud Gauge or equivalent (location optional in choke	e line).	1
	minimum steel flow line.		
9 6"	minimum 1000# W.P. flanged hydraulic valve.		1
	minimum 5000# W.P. flanged hydraulic gate valve.		1
	minimum 3000# W.P. flanged or threaded full opening stee ug valve.	l gate valve, or Halliburton Lo	o Torc 1
		Exhibit F	
U	Drilling Control Condition IV - 5000# W.P. Rev. 11/16/98	Texaco Denver Region Denver, Colorado	

	MATERIALS LIST					
Item	Description	Qty.				
1	2" minimum 3000# W.P. flanged full opening steel gate valve, or Halliburton Lo Torc plug valve.	4				
2	8-5/8" minimum low pressure butterfly valve.	6				
3	3" minimum 3000# W.P. flanged full opening steel gate valve, or Halliburton Lo Torc plug valve.	1				
4	3" minimum schedule 80, Grade "B", seamless line pipe.					
5	2" minimum x 3" minimum 3000# W.P. flanged cross with 3000# W.P. needle valve.	1				
6	2" minimum 3000# W.P. flanged adjustable choke.	1				
7	Cameron Mud Gauge or equivalent (location optional in choke line).	1				
8	8-5/8" minimum steel flow line.					
9	2" minimum 1000# W.P. flanged tee.	2				
10	2" minimum 1000# W.P. flanged or threaded full opening steel mud valves.	4				
11	8-5/8" minimum flanged tee.	1				
12	8-5/8" minimum flanged cross.	1				
13	2" minimum 1000# W.P. tubing.					

Supplemental Manifold for Drilling Control Conditions IV & IV-B 5,000# W.P. Rev. 10/1/27 De

Scott Ingram

Carisbad Technical Team Loador

Office (432) 687-7212 Fax (432) 687-7905 scottingram@chevrontoxaco.com

ChevronTexaco

July 24, 2003

Mr. Bryan Arrant

New Mexico Oil Conservation Division District 2 – Artesia 1301 W. Grand Avenue Artesia, NM. 88210

Re: Skelly Unit #952 990' FNL & 990' FWL Section 21, T17S S31E Eddy County, NM

Dear Bryan,

I enjoyed our conversation today; it was nice talking with you again. Per our discussion regarding the proposed Skelly Unit #952 well, we have made the determination in compliance with 19.15.3.118 NMAC, that the drilling of this well will not subject the public to "Potentially Hazardous Volumes", therefore, the proposed well does not require a Hydrogen Sulfide Contingency Plan.

Our determination is based on the following calculations:

- > H2S concentration of the Paddock gas ~ 20,000 ppm (0.02 decimal equivalent volume fraction)
- > Q "escape rate" ~ 1,000,000 SCFPD
- > The calculated 100 ppm ROE for this well is 657'
- > There are no "public areas" within this 100 ppm ROE
- > The calculated 500 ppm ROE for this well is 300'
- > There are no public roads within the 500 ppm ROE (actual nearest public road is ~3500' away).

Thank you for your assistance in this matter and please let me know if you need any additional data.

Sincerely,

cott M. Ingram

Scott M. Ingram

cc: D. Pinkerton B. Schaneman