Chevron U.S.A. Inc. George F. Pritchard Geologist 15 Smith Road Midland, Texas 79705

ChevronTexaco

August 21, 2003 LENTINI FEDERAL 1 #15 CONVERSION TO INJECTION HERRADURA BEND, EAST - DELAWARE EDDY, NEW MEXICO

Gentlemen:

Chevron U.S.A. Inc., as operator of the Lentini Federal 1 #15, submits this renewed request with the New Mexico Oil Conservation Division to convert the Lentini Federal 1 #15 to water injection for field disposal. This conversion is designed as a Herradura Bend, East - Delaware produced water disposal well within a closed system.

Attached are the original and one copy of the OCD Form C-108 with information relative to the water injection conversion of the referenced well. If further information is required please contact George Pritchard at 432-687-7206 or Joe Williams at 432-687-7193.

Sincerely,

George F. Pritchard

Geologist

New Mexico Area

Attachments

Cc: State of New Mexico

c/o District 2 Office 1301 W. Grand Avenue Artesia, NM 88210

Jeon L. tritchend

APPLICATION FOR AUTHORIZATION TO INJECT

EN	ATE OF NEW MEXICO ERGY, MINERALS AND NATURAL 1220 South St. Francis Dr. SOURCES DEPARTMENT Santa Fe, New Mexico 87505 APPLICATION FOR AUTHORIZATION TO INJECT PURPOSE: Secondary Recovery Application qualifies for administrative approval? Yes No FORM C-108 Revised 4-1-98 Storage
	APPLICATION FOR AUTHORIZATION TO INJECT
I.	PURPOSE:Secondary Recovery Pressure Maintenance X DisposalStorage Application qualifies for administrative approval? X Yes No
П.	OPERATOR: CHEVRONTEXACO ADDRESS: 15 SMITH ROAD MIDLAND, TEXAS 79705
	CONTACT PARTY: George F. Pritchard PHONE: 432-687-7206
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	See Attached Maps: Exhibits #1, #2 Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail. See Attached Chart: Exhibit #3
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: George F. Pritchard SIGNATURE:
	SIGNATURE:
*	If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.

 Lentini Federal 1 #15 well located in the Herradura Bend, East Delaware field. The project is Delaware water disposal project injecting into the Delaware [Brushy Canyon] sands.
 - (2) The injection interval and whether it is perforated or open-hole.

 The Lentini Federal 1 #15 well is perforated through pipe over the intervals 5912' 5965', 6045' 6071', 6077' 6099'.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.

 Well was originally drilled and completed in January 1995 as a Delaware [Brushy Canyon] producer. A work over in May 2003 opened additional pay. This producer will be converted to a water injection well for field water disposal.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.

 The lower Brushy Canyon was originally perforated and produced from 6168' 6182'. A cast iron bridge plug was set at 6160' in May 2003 work over to isolate these lower perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

 Within the 2 mile radius, both the Atoka [11514'-12777'] and the Morrow [12244'-12700'] produce below the Delaware injection interval and no formation above the Delaware currently produces.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location. See attached Exhibit #8.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

See attached Exhibit #9

A section of the sect

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

PART III [Side 1]

INJECTION WELL DATA SHEET

OPERATOR:

CHEVRONTEXACO

WELL NAME & NUMBER:

LENTINI FEDERAL 1 #15

WELL LOCATION:

COTD: 6273

PBTD: 6160° TD: 6365° 1000 FNL, 1125 FWL, Section 1, T23S - R28E

FOOTAGE LOCATION

UNIT LETTER

SECTION

TOWNSHIP

Surface Casing

WELL CONSTRUCTION DATA

RANGE

WELLBORE SCHEMATIC

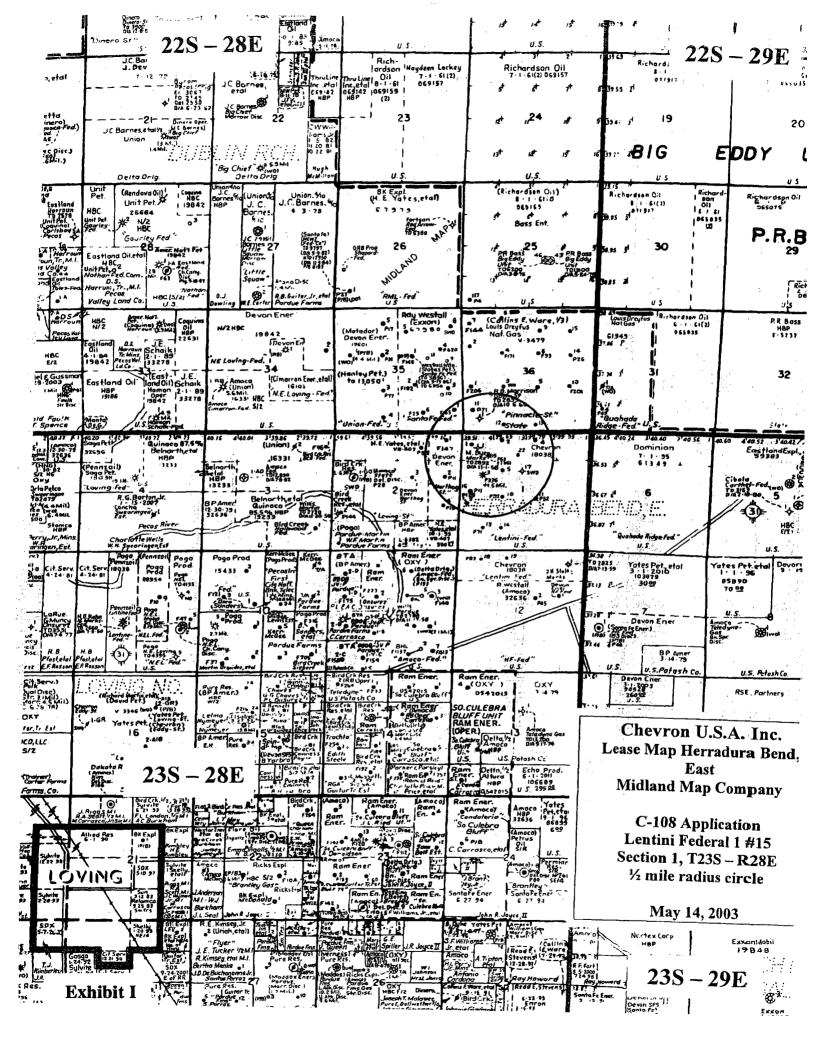
Proposed Wellbore Diagram Elevations: GL 3060' KB 3072' DF 3071' Hole Size: 12-1/4"

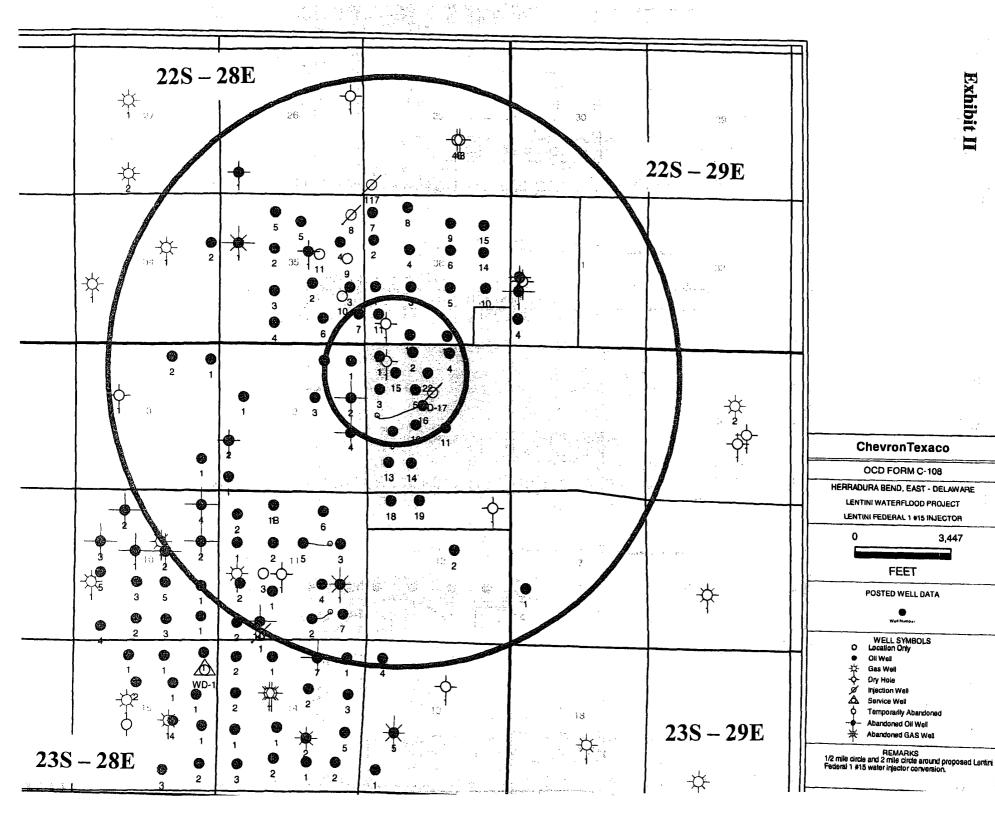
		77777777777	CONTROL CONTRO	f .
Elevations: GL: 3060°				
KB: 3072				Hole S
F 3071				
3071				
				Cemen
				Comen
og Formation T				70
amar 2	2746			Top of
herry Canyon 3	1592			-
rushy Canyon 4	778'			
one Spring 6	282			
				77 1 0
				Hole S
				Cemer
				Como
				T
	}			Top of
UBING DETAIL				
2-7/8" Duolined J-				
Baker Model M	Lacket			* .
Duo-Lined	ļ			
OT (mmd-4 @ 50				•
EOT landed @ 58	200			
	j		() ;	Hole S
	l			Liole 2
	j			
			EOT @ 5800°	~
			# FO ! 60 3000	Cemer
			(6) :	
			% :	
				Top of
			Perts	r ob o
		<i>∭</i> ##	5912-5922, 5922-5945 &	
		/// **	5945-5965	m
			(2045-2005	Total 1
			Perfs	
IBP set @ 6160	•	<i>998</i> 38	6045-6071 & 6077-6099	

6188-6182

Hole Size:	12-1/4"		Casing Size: <u>8 5/8" @ 270'</u>	
Cemented with: _	200	sx.	or	_ft³
Top of Cement: _	Surface		Method Determined: <u>Circulation</u>	<u>n</u> _
	<u>I1</u>	ntermediat	e Casing	
Hole Size:		·	Casing Size:	
Cemented with: _		sx.	or	_ ft³
Top of Cement: _			Method Determined:	
· .	·	Production	Casing	
Hole Size:	7-7/8"	i.	Casing Size: 5 1/2" @ 6365'	
Cemented with: _	1250	sx.	or	_ ft³
Top of Cement: _	Surface		Method Determined: Circulation	<u>n</u>
Total Depth:	6365'			

Injection Interval


Perforated from 5912 feet to


to_____6099 feet

(Perforated or Open Hole; indicate which)

INJECTION WELL DATA SHEET

Tu	ubing Size:2-7/8"	Lining Material:	Rice Duoline					
Гуг	pe of Packer: <u>Baker Model M</u>							
Pac	cker Setting Depth:5800'							
Oth	her Type of Tubing/Casing Seal (if application	ble):						
	Additional Data							
1.	Is this a new well drilled for injection?	Yes	X No					
	If no, for what purpose was the well originally drilled? Drilled and completed 3/15/1995 as a producing Delaware [Brushy Canyon] well. Currently producing 10 BO, 40MCF 4/03.							
2.	Name of the Injection Formation:	Delaware [Brushy Canyon						
3.	Name of Field or Pool (if applicable):	Herradura Bend, East - De	elaware					
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. All current perforations are Delaware. Open perforations include: 5912'- 5965', 6045' - 6071', 6077' - 6099'; and isolated by CIBP @ 6160' perforations 6168'- 6182'.							
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: Within the 2 mile radius, both the Atoka [11514'- 12777'] and the Morrow [12244'- 12700'] produce below the Delaware injection interval and no formation above the Delaware currently produces.							

Lentini Fedral 1 #15 C-108 Application

Project Area - Herradura Bend

Operator	Lease Name	Well#	API#	T-R-S	Location Footages	County	Size (in)	Casing Depth (ft)	Cmnt (sx)	Top of Cement	Spud Date	Comp Date	Recor Perfs	d of Completic	on A/C	Formation	Status	Total Depth
ChevronTexaco	Lentini Federal 1	1	3001527533	23S-28E-1	500 FNL 400 FWL	Eddy	8-5/8 5-1/2	514 6400	575 1300	surf surf	7/20/1993	9/17/1993		acidz, sd frac		Brushy Canyon	Prod	6400
ChevronTexaco	Lentini Federal 1	2	3001527534	23S-28E-1	330 FNL 1650 FWL	Eddy	8-5/8 5-1/2	517 6400	600 1350	surf surf	8/3/1993	10/21/1993	5220-6194	acidz, sd frac	A	Brushy Canyon	Prod	6400
ChevronTexaco	Lentini Federal 1	3	3001527535	23S-28E-1	1650 FNL 400 FWL	Eddy	8-5/8 5-1/2	320 6385	200 900	surf surf	2/8/1994	3/2/1994	5570-6164	acidz, sd frac	A	Brushy Canyon	Prod	6385
ChevronTexaco	Lentini Federal 1	4	3001527594	23S-28E-1	330 FNL 2310 FEL	Eddy	8-5/8 5-1/2	380 6450	350 2100	surf surf	10/1/1993	11/3/1993		acidz, sd frac		Brushy Canyon	Prod	6450
ChevronTexaco	Lentini Federal 1	5	3001527565	23S-28E-1	1850 FNL 1725 FWL	Eddy	8-5/8 5-1/2	417	375	surf	10/14/1993	11/29/1993	5229-6247 5645-6174	acidz, sd frac	, C ,A	Brushy Canyon Brushy Canyon	Prod	6400
ChevronTexaco	Lentini Federal 1	9	3001527569	23S-28E-1	2060 FSL 900 FWL	Eddy	8-5/8	6395 290	1700 200	surf surf	6/8/1994	7/13/1994	5897-6138	acidz, sd freç	Α.	Brushy Canyon	Prod	6340
ChevronTexaco	Lentini Federal 1	10	3001527570	23S-28E-1	2310 FSL 1750 FWL	Eddy	5-1/2 8-5/8	6340 255	1325	aurf surf	5/26/1994	7/7/1994		acidz, sd frac				
ChevronTexaco	Lentini Federal 1	11	3001527571	23S-28E-1	2310 FSL 2160 FEL	Eddy	5-1/2 8-5/8	6350 267	1600	surf surf	4/23/1995	4/23/1995		acidz, sd frac		Brushy Canyon	Prod	6350
ChevronTexaco	Lentini Federal 1	15	3001528230	23S-28E-1	1000 FNL 1125 FWL	Eddy	5-1/2 8-5/8	6390 270	1410	surf surf	12/20/1994	3/15/1995				Brushy Canyon	Prod	6390
ChevronTexaco	Lentini Federal 1	16	3001529614		2575 FNL 435 FWL	Eddy	5-1/2 8-5/8	6365	1250 225	surf				acidz, sd frac		Brushy Canyon	Prod	6365
ChevronTexaco	Lentini Federal 1	WD-17	3001529735		2314 FSL 2160 FEL	Eddy	5-1/2	5972	1317	surf surf	7/23/1997	5/14/1998		acidz, sd frac		Brushy Canyon	Prod	7470
ChevronTexaco	Lentini Federal 1	22	3001528475	23S-28E-1		Suite et a	8-5/8 5-1/2	312 3159	200 995	surf surf	7/16/1997	9/17/1997	2855-3159	acidz, sd frac	A	Bell Canyon	SDW	3200
Murphy-Dyer	Marks				and the second of the second o	Eddy	8-5/8 5-1/2	289 6429	450 1340	surf surf	5/16/1995	5/16/1995	5956-5976	acidz, sd frac	A	Brushy Canyon	Prod	6430
		1	3001502480	23S-28E-1	660 FNL 660 FWL	Eddy	8-5/8 5-1/2	268 2892	125 100	777 777	7/29/1958	11/1/1958	2798-2812	sd frac	С	Bell Canyon	D&A	2892
Devon Energy	Warthog 2 State	1	3001527169	23S-28E-2	660 FNL 660 FEL	Eddy	8-5/8 5-1/2	410 6390	250 1780	surf surf	11/23/1992	12/19/1992	5930-5980	acidz, sd frac	A	Brushy Canyon	Prod	6390
Devon Energy	Warthog 2 State		3001527180	23S-28E-2	1980 FNL 660 FEL	Eddy	8-5/8 5-1/2	400 6356	250 1850	surf surf	12/14/1992	3/3/1993	5910-5980 6126-6172	acidz, sd frac plugged	С	Brushy Canyon	P&A	6356
Osvon Energy	Warthog 2 State	4	3001527182	23S-28E-2	1980 FSL 660 FEL	Eddy	8-5/8 5-1/2	400 6392	500 1650	surf surf	1/11/1993	4/6/1993	5950-5980		С	Brushy Canyon	P&A	6392
Yates Harvey Co	Loving 2 State	1	3001527287	23S-28E-2	660 FNL 1650 FEL	Eddy	8-5/8 5-1/2	417 6400	300 1750	777 777	2/2/1993	3/23/1993	5907-5945	acidz, sd frac	A	Brushy Canyon	Prod	6400
Westall Ray	Santa Fe Federal	7	3001527118	22S-28E-35	990 FSL 330 FEL	Eddy	8-5/8 5-1/2	421 6380	300 1450	777 777	11/3/1992	11/29/1992	6099-6220	acidz, sd frac	. _A	Brushy Canyon	Prod	6380
Dominion TX/OK Exploration	Pinnacle State	11	3001527254	22S-28E-36	1225 FSL 2000 FWL	Eddy	8-5/8 5-1/2	555 6373	425 805	surf ???	10/22/1992	2/20/1993	5986-6214	acidz, sd frac	A	Brushy Canyon	Prod	6400
Dominion TX/OK Exploration	Pinnacle State	12	3001527762	225-28E-36	330 FSL 1650 FWL	Eddy	8-5/8 5-1/2	520	350	surf	10/4/1995	9/7/1996	5216-6198	acidz, sd frac	A	Brushy Canyon	Prod	6250
Dominion TX/OK Exploration	Pinnacle State	13	3001527763	22\$-28E-36	330 FSL 2310 FEL	Eddy	8-5/8	6250 503	1550 320	surf surf	9/18/1996	2/2/1996		acidz, gel frac				
Morrison RR	Gulf-State	1	3001502479	22S-28E-36	660 FSL 660 FWL	Eddy	5-1/2 8-5/8	6372 255	1600	surf ???	8/26/1960	10/6/1960		•		Brushy Canyon	Prod	6372
				**	in the constitution of the	15.54		: -	. "1"			.0/0/1900	N/A	N/A	С	Bell Canyon	D&A	2893

Chevron U.S.A. Inc. Lentini Federal 1 #15

ITEM VII

OPERATIONAL DATA

PROPOSED	OPERATION	<u>AVE</u>	MAX
(1).	Daily Injection Rate	800 BWPD	1000 BWPD
(2).	Daily Injection Volume	800 BW	1000 BW
(3).	Wellhead Injection Pressure	400 psi	500 psi

Injection system will be a closed system.

(4). Source of injection water: Lower Delaware zones (Brushy Canyon / Cherry Canyon) from Chevron U.S.A. Inc. Herradura Bend, East – Delaware wells.

Analysis of waters attached: Exhibits #4, #5, #6; Fluid compatibility testing is not necessary since the injection and receiving fluids are both in the Delaware formation.

- (5). Analysis of injection zone water attached.

 The injection interval is productive in this field and the injected fluids are from the injection zone.
- (6) ChevronTexaco as operator will make every reasonable effort to continue full production from the Delaware formation for the Lentini Federal 1 #1, Lentini Federal 1 #2 and the Lentini Federal 1 #4 wells for so long as ChevronTexaco injects water into the Delaware formation in the Lentini Federal 1 #15 well.

Exhibit IV

Company: Chevron USA Inc. Source: Swab Top Zone - HI, BRUSHY CANYON (DELAWARE) Attention:
Number: 41 5878'- 5896' Date Sam

Location:

Lentini 1 Federal #1

Salesman: Dennis Autry

Date Sampled: Date of Analysis: January 6, 1997

January 7, 1997

ANALYSIS	
----------	--

mg/L

EQ. WT.

MEQ/L

pH Specific Gravity 60/60 f.	6.79 1.187			
3. Hydrogen Sulfide	0	PPM		
4. Carbon Dioxide	Not Determined			17.
Dissolved Oxygen	Not Determined			• :
6. Hydroxyl (OH-)	0	/ 17.0	= 0.00	
7. Carbonate (CO3=)	0	/ 30.0	= 0.00	
8. Bicarbonate (HCO3-)	147	/ 61.1	= 2.41	
9. Chloride (Cl-)	161,963	/ 35.5	= 4,562.34	
10.Sulfate (SO4=)	1,025	/ 48.8	= 21.00	
11.Calcium (CA++)	16,433	/ 20.1	= 817.56	•
12.Magnesium (Mg++)	3,161	/ 12.2	= 259.10	
13.Sodium (Na+)	80,709	/ 23.0	= 3,509.09	h
14.Banum (Ba++)	Not Determined	* *	•	- 2. 3 In
15.Total Iron (Fe)	900.00	Two they		
16.Dissolved Solids	263,438	11111		
17.Filterable Solids	0.00	な対抗能力		: •
18. Total Solids	263,438	4 %		
19. Total Hardness As CaCO3	54,048	5-2-3-6		
20. Suspended Oil	0.0000			
21.Volume Filtered (ml)	0.1	नक्षर के हुए हो।		**
		4 1 1		
22. Resistivity @ 75 F. (calculated)	0.0300 /	om. 🐬 🦥 🤼		
		A CONTRACTOR OF THE CONTRACTOR		

NaCl

23. CAC03 Saturation Index

@80 F.	0.3356			
@100 F.	0.6456	PROBABL	E MINERAL	COMPOSITION
@120 F.	0.9056	COMPOUND		X MEQ/L =
@140 F.	1.2656			
@160 F.	1.6156	Ca(HCO3)2	81.04	2.41
		CaSO4	68.07	21.00
24.CASO4 Supersatt	ration Ratio	CaC12	55.50	794.15
@70F	1.6899	Mg(HCO3)2	73.17	0.00
@90F	1.8535	MgSO4	60.19	0.00

1.6481

1.6096

1.6084

COM COM	LG. WI.	MECVL	= mg/L
Ca(HCO3)2	81.04	2.41	195
CaSO4	68.07	21.00	1,429
CaC12	55.50	794.15	44,075
Mg(HCO3)2	73.17	0.00	0
MgSO4	60.19	0.00	Ō
MgCL2	47.62	259.10	12,338
NaHCO3	84.00	0.00	0
NaSO4	71.03	0.00	Ô

58.46

3,509.09

205,141

Ratio Greater than 1 indicates Scale

@110F

@130F

@150F

Exhibit V

Company: Chevron USA Inc.

Swab Middle Zone-UPPER Ha, BRUSHY CANYON Source:

6021'-28' (DELAWARE)

Location: Attention:

Lentini 1 Federal #1

Number: 42 Salesman: Dennis Autry

Date Sampled: Date of Analysis:

January 6, 1997 January 7, 1997

ANALYSIS

mg/L

EQ. WT.

68.07

55.50

73.17

60.19

47.62

84.00

71.03

58.46

31.25

0.00

0.00

0.00

0.00

4,659.66

179.34

286.61

0

0

0

0

2,127

15,907

8,540

272,404

MEQ/L

变用放力。

-2==	1. pH		======:
	2. Specific Gravity 60/60 f.	1.187	
	3. Hydrogen Sulfide	0 PPM	
i	4. Carbon Dioxide	Not Determined	
	5. Dissolved Oxygen	Not Determined	
	6. Hydroxyl (OH-)	0 / 17.0 = 0.00	
	7. Carbonate (CO3=)	0 / 30.0 = 0.00	e.
	8. Bicarbonate (HCO3-)	73 / 61.1 = 1.19	
	9. Chloride (Cl-)	181,959 / 35.5 = 5,125.61	j.
	10.Sulfate (SO4=)	1,525 / 48.8 = 31.25	
	11.Calcium (CA++)	6,413 / 20.1 = 319.05	
	12.Magnesium (Mg++)	2,188 / 12.2 = 179.34	
	13.Sodium (Na+)	107,172 / 23.0 = 4,659.66	2
1	14.Barium (Ba++)	Not Determined	
•	15. Total Iron (Fe)	525.00	
	16. Dissolved Solids	299,330	
**	17. Filterable Solids	0.00	1 .
	18. Total Solids	299,330	4
	19. Total Hardness As CaCO3	25,022	* 1 _*
7	20.Suspended Oil	0.0000	
.*	21.Volume Filtered (ml)	One with a	
	22. Resistivity @ 75 F. (calculated)	0.0260 /cm	
	23.CAC03 Saturation Index	1000年 2年2章 1100年	
	@80 F0.4170		
:	@100 F0.1070	PROBABLE MINERAL COMPOSITION	
	@120 F. 0.1530	COMPOUND EQ. WT. X MEQ/L = mg/L	
	@140 F. 0.5130		
	@160 F. 0.8630	Ca(HCO3)2 81.04 1.19	96

CaSO4

CaC12

MgSO4

MgCL2

NaSO4

NaCl

NaHCO3

Mg(HCO3)2

24.CASO4 Supersaturation Ratio

Ratio Greater than 1 indicates Scale

0.9915

1.1512

0.9688

0.9479

0.9473

@70F

@90F

@110F

@130F

@150F

Exhibit VI

Company: Chevron USA Inc.

Location:

Lentini 1 Federal #1

Source: Swab Bottom Zone - Lower Ha, BRUSHY CANYON (DELAWARE)

Attention:

Number: 43

Date Sampled:

January 6, 1997

Salesman: Dennis Autry

Date of Analysis:

January 7, 1997

ANALYSIS	mg/L	EQ. WT	MEQ/L	
1. pH	6.68			##########
2. Specific Gravity 60/60 f.	1.187	•		•
3. Hydrogen Sulfide	. 0	PPM		
4. Carbon Dioxide	Not Determined	t		
5. Dissolved Oxygen	Not Determined	1 .		*
6. Hydroxyl (OH-)	0	/ 17.0	= 0.00	
7. Carbonate (CO3=)	0	/ 30.0	= 0.00	
8. Bicarbonaté (HCO3-)	73	<i>i </i> 61.1	= 1.19	
9. Chloride (Cl-)	181,959	/ 35.5	= 5,125.61	
10.Sulfate (SO4=)	1,175	/ 48.8	= 24.08	
11.Calcium (CA++)	12,826	/ 20.1	= 638.11	
12.Magnesium (Mg++)	1,216	/ 12.2	= 99.67	
13.Sodium (Na+)	101,501	/ 23.0	= 4,413.10	
14.Barium (Ba++)	Not Determined	7		
15. Total Iron (Fe)	400.00			•
16.Dissolved Solids	298,750			
17. Filterable Solids	0.00		* .	
18.Total Solids	298,750	e 15		
19. Total Hardness As CaCO3	37,033	A PE		
20. Suspended Oil	0.0000			
21. Volume Filtered (ml)	0			
22. Resistivity @ 75 F. (calculate	ed) 0.0260 /	cm.		· · · · · · · · · · · · · · · · · · ·
23.CAC03 Saturation Index		S.		•
	1860		*	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MINERAL CO	MOCKTION	•
•	3840 COMPOUND			
_	7440 ———— —	EQ. WI. A	MEQ/L =	mg/L
-	0940 Ca(HCO3)2	91.04	4.40	
@1001.	CaSO4	81.04	1.19	96
24 CASOA Sunamaturation Bati		68.07	24.08	1,639
24.CASO4 Supersaturation Rati		55.50	612.84	34,013
	5087 Mg(HCO3)2	73.17	0.00	0
	3116 MgSO4	60.19	0.00	0

MgCL2

NaSO4

NaCl

NaHCO3

47.62

84.00

71.03

58.46

99.67

0.00

0.00

4,413.10

4,746

257,990

0

0

Ratio Greater than 1 indicates Scale

1.4718

1.4377

1.4367

@110F

@130F

@150F

ITEM VIII

GEOLOGICAL DATA

INJECTION ZONE

Lithological description: sandstone, gray, fine to very fine grained, poorly consolidated, friable, poor calcareous cement.

Geologic name: Delaware (Brushy Canyon member) Zone thickness: 104 feet; Depth: 5912-6099 feet

FRESH WATER SOURCES

Geologic name: Quaternary Alluvium Depth to bottom of zone: less than 250 feet

There are no known aquifers that underlie the Bell Canyon formation at the top of the Delaware.

ITEM IX

STIMULATION PROGRAM

ACIDIZE:

Volume: 16000 gal Type acid: 7 1/2% NEFE HCL

Rate: 6-10 BPM; Misc.: 8000 lbs rock salt

Flush with 2% KCL water; Acid job to be done in 2 stages

FRACTURE:

Fluid volume: 34000 gal; Type: YF130ST

Prop type: 16/30 Brady Sand; Volume: 100000 lbs

Rate: 30 BPM; Conductor: 27/8 in Misc.: Flush with 9174 gal WF110 Frac job to be done in 2 stages

FORM C-108

ITEM X

LOGGING PROGRAM

Logging program: Logs were filed with the Oil Conservation Division with initial completion filing. A neutron/density log copy of the perforated intervals in the Lentini Federal 1 #15 is attached. Exhibit #7.

ITEM XI

FRESH WATER ANALYSIS

Fresh water well within 1 mile radius: Yes X No Chemical analysis from well(s) located: It was documented in Chevron USA Inc's C108 administrative order SWD-659 that as of 2/21/1997 Craig Helper, State Engineers Office, Roswell, New Mexico confirmed that no fresh water wells are filed on record within one mile of the proposed disposal well location. ChevronTexaco's lease operator for this area agrees and to the best of his knowledge and belief, there are no fresh water wells existing within one mile of the proposed disposal well location.

ITEM XII

HYDROLOGY

Various geologic data including well logs, structure maps and modern seismic data reveal no evidence that there might exist an hydrologic connection between the intended injection zone (Brushy Canyon, Delaware) and the shallow surface aquifer, the Quaterary Alluvium, above 250 feet. The Castille formation composed of evaporates immediately overlies the Bell Canyon [upper most Delaware] and provides a seal between the Delaware and any shallow aquifer.

ITEM XIII ["Proof of Notice"]

See attachments Exhibits #8, #9.

API Multi-Well Banner

Report Description

This report is run for a group of Well's APIs in Barcode format for purposes of scanning. It is generated only through the pop-up 'API for Multiple Banner' form. The Barcode format is Code 39.

API Number:

3001501306

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON

Governor

Joanna Prukop

Cabinet Secretary

Lori Wrotenbery
Director
Oil Conservation Division

22 August 2003		
Kersey and Company P.O. Box 1248 Fredericksburg, Texas 78624		
Form C-103 Report of Plugging for your ASU "A" # 1 M Cannot be approved until an NMOCD representative has made an be cleared to comply with OCD rules and regulations. Please chec indicate that the work has been accomplished and the location is re-	inspection of the local	ace provided to
1. All pits have been filled and leveled.		
2. Rat hole and cellar have been filled and leveled.	. 1	: .
3. A steel marker 4" in diameter and approximately 4" above a concrete to mark the exact location of the plugged well. (Marker is well number and location including quarter/quarter section or unit well ID number permanently welded, stamped or otherwise engravers.	must have operator na letter, section, towns	me, lease name, hip, range and API
4. The location has been leveled as nearly as possible to original cleared of all junk and equipment.	nal top ground contou	r and has been
5. The dead men and tie downs have been cut and removed.		4. * #**
6. If a one well lease or last remaining well on lease, the batte leveled and cleared of all junk & equipment	ry and burn pit location	ons have been
7. All environmental concerns have been addressed as per OC	CD guidelines.	* * 1
The above are minimum requirements and no plugging bond will be plugged and abandoned wells have been inspected and Form C-10		ocations for
When all of the work outlined above has been done, please notify t returning this letter to us so that our representative will not have to	this office by completed make more than one	ing, signing and trip to the location.
I certify that the above work has been done and the above-mention approval.	ed lease is ready for	OCD inspection and
Name	Van Ba Field Ro	
	2 2724 434	-r
Title		