District J
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St Francis Dr., Santa Fe, NM 87505

Type of action:

State of New Mexico
Energy Minerals and Natural Resources
Department
Oil Conservation Division

1220 South St. Francis Dr. Santa Fe, NM 87505

SEP 2 5 2009 RECD OCD DISTE

Form C-144 July 21, 2008

For temporary pits, closed-loop systems, and below-grade tanks, submit to the appropriate NMOCD District Office.

For permanent pits and exceptions submit to

For permanent pits and exceptions submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.

Pit, Closed-Loop System, Below-Grade Tank, or Proposed Alternative Method Permit or Closure Plan Application

Permit of a pit, closed-loop system, below-grade tank, or proposed alternative method Closure of a pit, closed-loop system, below-grade tank, or proposed alternative method

☐ Closure plan only submitted for an existing permitted or non-permitted pit, closed-loop system,
below-grade tank, or proposed alternative method
Instructions: Please submit one application (Form C-144) per individual pit, closed-loop system, below-grade tank or alternative request
Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.
i. Operator: _Mewbourne Oil CompanyOGRID #:14744
Address: _PO Box 5270 Hobbs NM 88241_
Facility or well name: _Penlon Ranch 24 #2
API Number:30-015-36277OCD Permit Number:
U/L or Qtr/Qtr _ E Section _ 24 Township _ 20S Range _ 27E County: _ Eddy
Center of Proposed Design: LatitudeN 32°33'41" LongitudeW 104°14'26" NAD: ⊠1927 □ 1983
Surface Owner: Federal State Private Tribal Trust or Indian Allotment
Surface Owners Federal State Frivate Tribal Trust of Indian Anotherit
Z. Subsection F or G of 19.15.17.11 NMAC
Temporary: \(\sigma\) Drilling \(\sigma\) Workover
Permanent ☐ Emergency ☐ Cavitation ☐ P&A
☐ Lined ☐ Unlined Liner type: Thickness _20mil ☐ LLDPE ☐ HDPE ☐ PVC ☐ Other
String-Reinforced
Liner Seams: Welded Factory Other Volume: 14400 bbl Dimensions: L_120 x W_100_x D_8_
3. Closed-loop System: Subsection H of 19.15.17.11 NMAC
Type of Operation: Drilling a new well Workover or Drilling (Applies to activities which require prior approval of a permit or notice of
intent)
Drying Pad Above Ground Steel Tanks Haul-off Bins Other
Lined Unlined Liner type: Thickness mil LLDPE HDPE PVC Other
Liner Seams: Welded Factory Other
Below-grade tank: Subsection I of 19.15.17.11 NMAC
Volume:bbl Type of fluid:
Tank Construction material:
☐ Secondary containment with leak detection ☐ Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off
☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other
Liner type: Thickness mil HDPE PVC Other
5. Alternative Method:
Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.
Such and the state of the construction of approval.

Form C-144 final Closure Dil Ronsett Lung Jackson

Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks) Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, institution or church) Four foot height, four strands of barbed wire evenly spaced between one and four feet Alternate. Please specify	hospital,
Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks) Screen Netting Other	P. P. C.
Monthly inspections (If netting or screening is not physically feasible)	
8. Signs: Subsection C of 19.15.17.11 NMAC ☐ 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers ☑ Signed in compliance with 19.15.3.103 NMAC	
Administrative Approvals and Exceptions: Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance. Please check a box if one or more of the following is requested, if not leave blank: Administrative approval(s): Requests must be submitted to the appropriate division district or the Santa Fe Environmental Bureau consideration of approval. Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.	office for
Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptant material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the approoffice or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of a Applicant must attach justification for request. Please refer to 19.15.17.10 NMAC for guidance. Siting criteria does not apply to dry above-grade tanks associated with a closed-loop system.	ppriate district approval.
Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ⊠ No
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to temporary, emergency, or cavitation pits and below-grade tanks) - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ⊠ No ☐ NA
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to permanent pits) - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No ☑ NA
Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ⊠ No
Within 500 feet of a wetland US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ⊠ No
Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ⊠ No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	☐ Yes ☑ No
Within a 100-year floodplain FEMA map	☐ Yes ⊠ No

Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are
attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC
Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC
Previously Approved Design (attach copy of design) API Number: or Permit Number:
12. Closed-loop Systems Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are
attached. Geologic and Hydrogeologic Data (only for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B of 19.15.17.9 Siting Criteria Compliance Demonstrations (only for on-site closure) - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC
Previously Approved Design (attach copy of design) API Number:
Previously Approved Operating and Maintenance Plan API Number:(Applies only to closed-loop system that use
above ground steel tanks or haul-off bins and propose to implement waste removal for closure)
Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors, including H ₂ S, Prevention Plan Oil Field Waste Stream Characterization Monitoring and Inspection Plan Erosion Control Plan Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC
Proposed Closure: 19.15.17.13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.
Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Closed-loop System Alternative Proposed Closure Method: Waste Excavation and Removal Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems)
☐ In-place Burial ☒ On-site Trench Burial ☐ Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for consideration)
Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Instructions: Please indentify the facility or facilities for the disposal of liquids, facilities are required.		
•	Disposal Facility Permit Number:	
Disposal Facility Name:	Disposal Facility Permit Number:	
Will any of the proposed closed-loop system operations and associated activities of ☐ Yes (If yes, please provide the information below) ☐ No	ecur on or in areas that will not be used for future serv	vice and operations?
Required for impacted areas which will not be used for future service and operatio Soil Backfill and Cover Design Specifications based upon the appropriate Re-vegetation Plan - based upon the appropriate requirements of Subsection Site Reclamation Plan - based upon the appropriate requirements of Subsection	requirements of Subsection H of 19.15.17.13 NMAO I of 19.15.17.13 NMAC	2
Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the provided below. Requests regarding changes to certain siting criteria may requir considered an exception which must be submitted to the Santa Fe Environmenta demonstrations of equivalency are required. Please refer to 19.15.17.10 NMAC j	e administrative approval from the appropriate disti Bureau office for consideration of approval. Justi	rict office or may be
Ground water is less than 50 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data	a obtained from nearby wells	☐ Yes ☑ No ☐ NA
Ground water is between 50 and 100 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data	a obtained from nearby wells	⊠ Yes □ No □ NA
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data	a obtained from nearby wells	☐ Yes ☒ No ☐ NA
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other sig lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	nificant watercourse or lakebed, sinkhole, or playa	☐ Yes ☑ No
Within 300 feet from a permanent residence, school, hospital, institution, or church - Visual inspection (certification) of the proposed site; Aerial photo; Satellite		☐ Yes ☑ No
Within 500 horizontal feet of a private, domestic fresh water well or spring that les watering purposes, or within 1000 horizontal feet of any other fresh water well or s - NM Office of the State Engineer - iWATERS database; Visual inspection (pring, in existence at the time of initial application.	☐ Yes ☒ No
Within incorporated municipal boundaries or within a defined municipal fresh water adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approv		☐ Yes ☑ No
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visus	al inspection (certification) of the proposed site	☐ Yes ☒ No
Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Mining	g and Mineral Division	☐ Yes ☑ No
Within an unstable area. - Engineering measures incorporated into the design; NM Bureau of Geolog Society; Topographic map	y & Mineral Resources; USGS; NM Geological	☐ Yes ⊠ No
Within a 100-year floodplain FEMA map		☐ Yes 🖾 No
18. On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Construction/Design Plan of Temporary Pit (for in-place burial of a drying protocols and Procedures - based upon the appropriate requirements of 19.1: Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Disposal Facility Name and Permit Number (for liquids, drilling fluids and Construction Plan - based upon the appropriate requirements of Subsection Re-vegetation Plan - based upon the appropriate requirements of Subsection Site Reclamation Plan - based upon the appropriate requirements of Subsection	uirements of 19.15.17.10 NMAC f Subsection F of 19.15.17.13 NMAC propriate requirements of 19.15.17.11 NMAC pad) - based upon the appropriate requirements of 19. 5.17.13 NMAC uirements of Subsection F of 19.15.17.13 NMAC Subsection F of 19.15.17.13 NMAC drill cuttings or in case on-site closure standards cann H of 19.15.17.13 NMAC I of 19.15.17.13 NMAC	15.17.11 NMAC

Operator Application Certification:	
I hereby certify that the information submitted with this application is true, accura	ate and complete to the best of my knowledge and belief.
Name (Print):	Title:
Signature:	Date:
e-mail address:	Telephone:
20. OCD Approval: ☐ Permit Application (including closure plan) ☐ Closure Pl	an (only) OCD Conditions (see attachment)
OCD Representative Signature:	Approval Date:
Title:	OCD Permit Number:
Closure Report (required within 60 days of closure completion): Subsection Instructions: Operators are required to obtain an approved closure plan prior to The closure report is required to be submitted to the division within 60 days of the section of the form until an approved closure plan has been obtained and the closure	o implementing any closure activities and submitting the closure report. he completion of the closure activities. Please do not complete this osure activities have been completed.
	Closure Completion Date: 07/10/09 Earthwork Finished
22. Closure Method: Waste Excavation and Removal ☐ On-Site Closure Method ☐ Alterna ☐ If different from approved plan, please explain.	
Closure Report Regarding Waste Removal Closure For Closed-loop Systems Instructions: Please indentify the facility or facilities for where the liquids, drill two facilities were utilized.	ling fluids and drill cuttings were disposed. Use attachment if more than
Disposal Facility Name:	
Disposal Facility Name: Were the closed-loop system operations and associated activities performed on or	Disposal Facility Permit Number:
Yes (If yes, please demonstrate compliance to the items below) \(\subseteq \text{No} \)	in areas that will not be used for ruture service and operations.
Required for impacted areas which will not be used for future service and operation Site Reclamation (Photo Documentation) Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique	ons:
Closure Report Attachment Checklist: Instructions: Each of the following ite mark in the box, that the documents are attached. □ Proof of Closure Notice (surface owner and division) □ Proof of Deed Notice (required for on-site closure) □ Plot Plane(för on-site closures and temporary-pits) □ Confirmation Sampling Analytical Results (if applicable) □ Waste Material Sampling Analytical Results (required for on-site closure) □ Disposal Facility Name and Permit Number □ Soil Backfilling and Cover Installation □ Re-vegetation Application Rates and Seeding Technique □ Site Reclamation (Photo Documentation) □ On-site Closure Location: Latitude _ N 32.56155° Long	
25. Operator Closure Certification:	
I hereby certify that the information and attachments submitted with this closure requirements. I also certify that the closure complies with all applicable closure requirements.	
Name (Print): Charles Martin	Title: <u>engineer</u>
	Date: 9-18-09
e-mail address: CMartin @ Mewbourne.com	

Accepted for record SEP 2 5 2009

NMOCD

September 17, 2009

S=> 25 2009

AMARILLO 921 North Bivins Amarillo. Texas 79107 Phone 806 467.0607 Fax 806.467 0622

AUSTIN 911 West Anderson Lane Suite 202 Austin, Texas 78757 Phone 512.989 3428 Fax 512.989.3487

TYLER
719 West Front Street
Suite 255
Tyler, Texas 75702
Phone 903 531 9971
Fax 903.531.9979

MIDLAND 2901 State Highway 349 Midland, Texas 79706 Phone 432.522.2133 Fax 432.522.2180

> SAN ANTONIO 17170 Jordan Road Suite 102 Selma, Texas 78154 Phone 210 579.0235 Fax 210.568,2191

TULSA 525 South Main Street Suite 535 Tulsa, Oklahoma 74103 Phone 918 742 0871 Fax 918.382 0232

HOBBS 318 East Taylor Street Hobbs, New Mexico 88241 Phone 505.393.4261 Fax 505.393.4658

ARTESIA 104 West Hermosa Artesia, New Mexico 88210 Phone 575 746.8768 Fax 505.746 8905

ENVIRONMENTAL CONSULTING
ENGINEERING
DRILLING
CONSTRUCTION
EMERGENCY RESPONSE

Mr. Mike Bratcher NMOCD District 2 Office 1301 W. Grand Artesia, New Mexico 88210

RE: Penlon Ranch 24 State #2 Pit Closure, Mewbourne Oil Company API: 30-015-36277 Sec 24, T 20S, R 27E, Eddy County, NM

Surface Owner: State

Analytical: Groundwater Protective Human Health Parameters, TPH GRO DRO, BTEX,

Chlorides

Primary Land Use: Ranching/Oil and Gas.

Pursuant to Rule 19.15.17.10 NMAC of the New Mexico Oil Conservation District of the State of New Mexico regulatory requirement for temporary pit closure, please accept the following documentation for request of final closure of the temporary pit for the aforementioned location. The C-144 was approved for permit application and closure plan by Tim Gum on August 7, 2008.

Talon/LPE (Talon) was contracted by Mewbourne Oil Company (Mewbourne) to perform pit closure activities at the aforementioned location. During May 2009, Talon mixed all drill cuttings from the reserve pit with soil at a ratio of no more than 3 to 1 (soil to cuttings) to stabilize the soil in preparation for lined trench burial.

A five part composite sample was collected from the mixed pit contents on May 8, 2009 and submitted to Trace Analysis in Lubbock, Texas to be analyzed in compliance with 19.15.17.13 NAMC. Analyses indicate that these cuttings meet the NMOCD standards for trench burial. A five part composite pit bottom sample (C-1, attached) was collected on June 22, 2009 and indicate that the pit bottom soils are within acceptable NMOCD limits.

The north side of the reserve pit was over-excavated to create the burial trench which was lined with a 20 mil liner. The burial trench dimensions are 30 feet by 120 feet by 18 feet deep. Once the pit contents were placed onto the liner, a 20 mil cap liner was installed over the material to cover the burial cell. After final analytical review, the area was backfilled and covered with a minimum of three feet of native material and one foot of topsoil, and contoured to surrounding grade. The site was reseeded by broadcasting at a double seed ratio. The pit burial marker is placed at N 32.56155°, W 104.24145°. From the marker, the pit extends 20 feet north, 18 feet south, 53 feet west, and 57 feet east.

After review of the attached documents, it is requested that the NMOCD consider this pit properly closed.

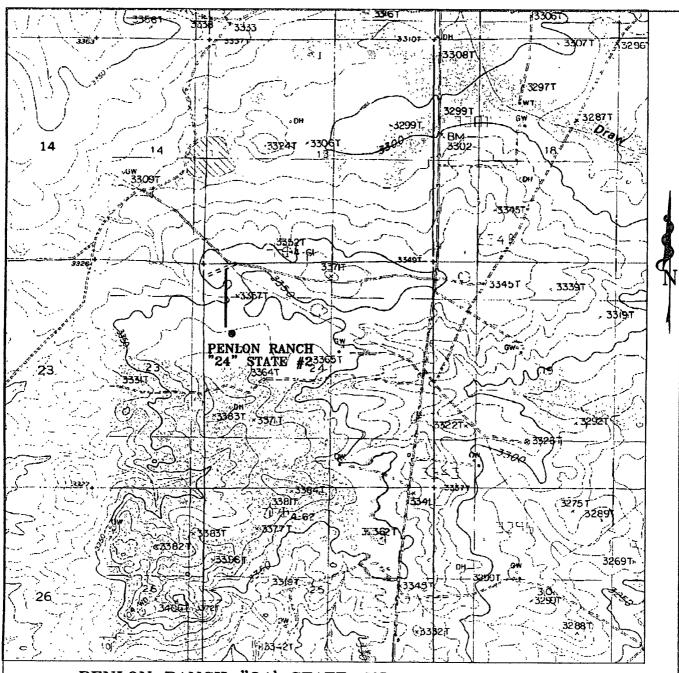
Respectfully Submitted;

Kyle Summers Senior Project Manager Talon/LPE – Midland/Artesia 432.522.2133

MEWBOURNE OIL COMPANY 701 S. CECIL PO BOX 5270 HOBBS, NM 88240 (575) 393-5905 (575) 397-6252 FAX

July 30, 2008

Commissioner Patrick H. Lyons 310 Old Santa Fe Trail Santa Fe, NM 87504

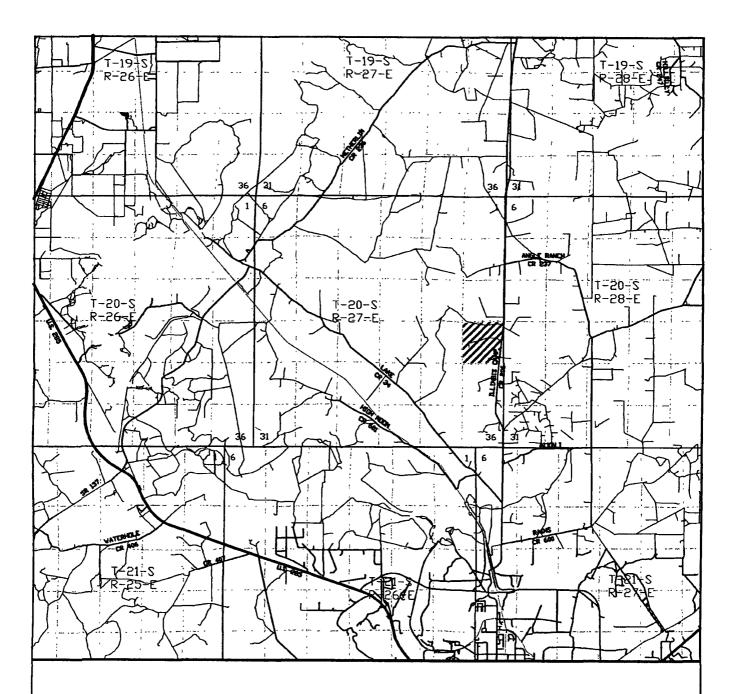

Dear Mr. Lyons:

This letter is to inform the surface owner that the wells listed below will require a temporary pit to be constructed & closed, as required by the NMOCD, adjacent to the well site location.

Penlon Ranch 24 State #2 Unit Letter E Sec 24, T20S, R27E Eddy Co., NM Paloma 28 State #2 Unit Letter M Sec 28, T20S, R36E Lea Co., NM

Thank you,

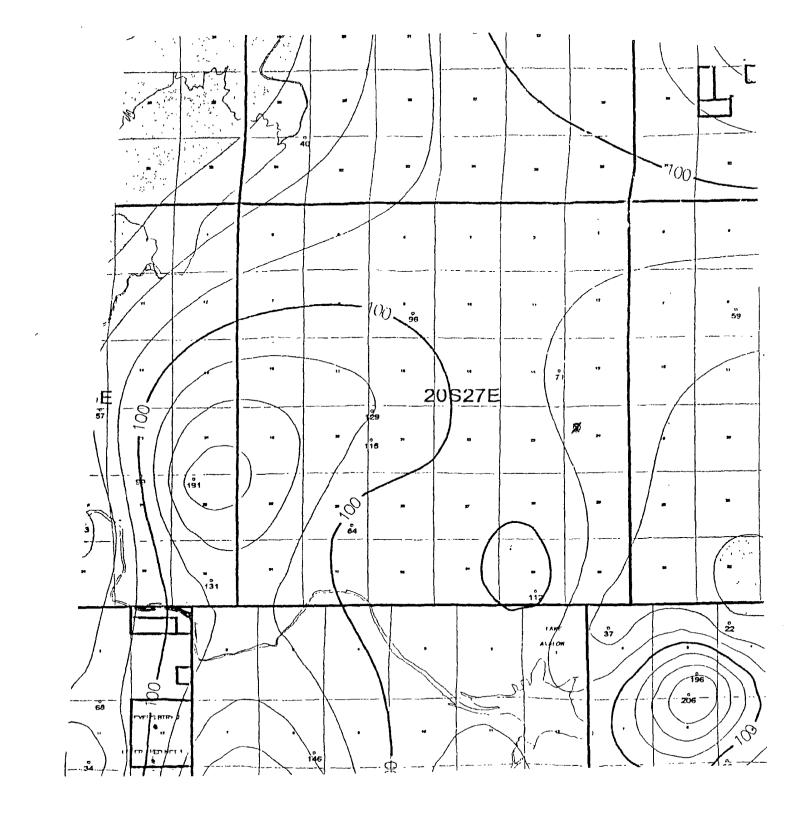
Charles Martin

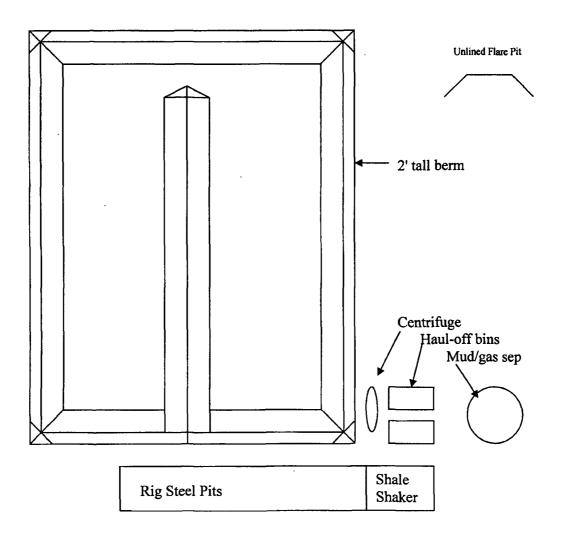

PENLON RANCH "24' STATE #2 Located 1650' FNL and 660' FWL Section 24, Township 20 South, Range 27 East, N.M.P.M., Eddy County, New Mexico.

P.O. Box 1786 1120 N. West County Rd. Hobbs, New Mexico 88241 (505) 393-7316 - Office (505) 392-3074 - Fax basinsurveys.com

W.Ç.	humb	er. ए 9	5307	JMS	
Surv	ey Dot	e /D4	- 14	2008	
Scal	e 1″ =	= 2CK(XX)*			
Date	. 04-	15-ZEC	8	**************************************	TO STATE OF THE PARTY OF

MEWBOURNE OIL CO.


PENLON RANCH "24" STATE #2 Located 1650' FNL and 660' FWL Section 24, Township 20 South, Range 27 East, N.M.P.M., Eddy County, New Mexico.


P.O. Box 1786 1120 N. West County Rd. Hobbs, New Mexico 88241 (505) 393-7316 - Office (505) 392-3074 - Fax basinsurveys.com

W.O. Number:	19530TR JMS
Survey Date:	04-14-2007
Scale: 1" = 2	MILES
Date: 04-15-	-2007

MEWBOURNE OIL CO.

Temporary Pit Design and Construction

Pit Dimensions:

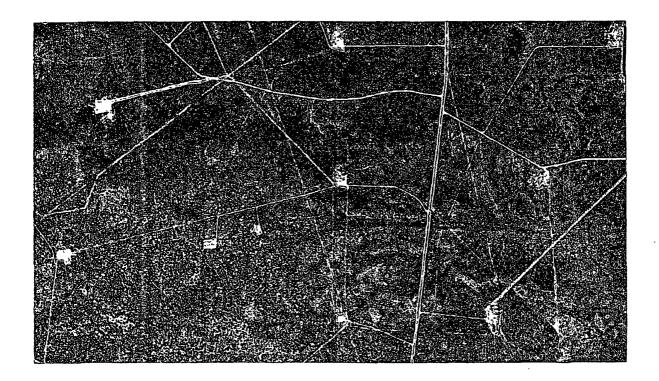
Peak Width: 100'. Floor Width: 76' Peak Length: 120' Floor Length: 96'

Floor is 6' below GL.

Perimeter berm is 2' above GL. All walls are built with 2:1 slope.

Pit is fenced on 3 sides with barbed wire before & during drilling operations. Fourth side will be installed after drilling operations are completed.

Pit is lined with 20 mil string reinforced LLDPE installed with 18" anchor trench.


Approximate volume including 2' freeboard: 14,400 bbl.

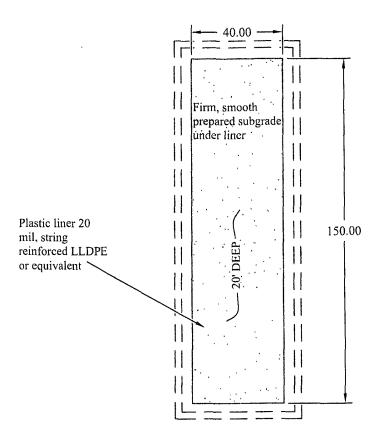
Temporary Pit Operating and Maintenance and Closure Plan

Temporary pit will be built in a single horse shoe as shown in the attached drawing. The pit will only be utilized for "fresh" water-based fluids. Brine water fluids will be hauled off location and disposed of in an approved facility. Drilling cuttings in the high chloride sections of the well will collect in haul-off bins and will be disposed at either Lea Land Farm or CRI. Drilling cuttings in the low chloride sections of the well will collect in the temporary pit. The temporary pit will be dewatered and solids will be buried in a deep trench on site.

Contingency-

If the temporary pit does not meet the required specifications to bury on site, material will be disposed of at Lea Land Farm or CRI.

On-Site Closure Plan


- Siting Criteria: See attachments.
- Proof of Surface Owner Notice: See attached letter that has been sent to land owner.
- Construction/Design Plan of Burial Trench: See attachment.
- Burial Trench: In compliance with 19.15.17.13 NMAC, material form temporary pit will be stiffened with a maximum 3:1 ratio and placed in a lined 20mil burial trench with approximate dimensions of 150x40x20. A 20mil lid will be placed on top of the burial cell to seal in the impacted material. Upon excavation all applicable soil testing will be performed pursuant to Pit Rule 17 to verify the limits set by the NMOCD have been obtained. A copy of the analytical data will be attached to the Final Report.
- Sampling Plan: In compliance with Subsection F of 19.15.17.13 NMAC a five point composite sample will be taken from the floor of the excavation and the burial contents.
- Soil Cover Design: In compliance with Subsection H of 19.15.17.13 NMAC three foot of native material will be placed over the burial trench and the excavated pit area with one foot of top soil to ensure re-vegetation.
- Re-vegetation Plan: In compliance with Subsection I of 19.15.17.13 NMAC the area will be re-seeded with native vegetation.
- Site Reclamation Plan: In compliance with Subsection I of 19.15.17.13 NMAC the impacted and disturbed area will be re-contoured to surrounding terrain.
 - Marker: Mewbourne Oil Company requests an exception to the placement of the permanent maker. It is of our opinion that the permanent marker will be better served if it is placed at the corner of the burial cell in native undisturbed soil rather than in the center of the burial area. In the area of the burial cell the material is not as compact and we feel could pose future problems with the stability of the permanent marker. The permanent marker will have all required information permanently listed on it.
- **Deed:** In compliance with 19.15.17.13 NMAC a deed will be filed with the county clerk and an approved copy will be attached to the final report.

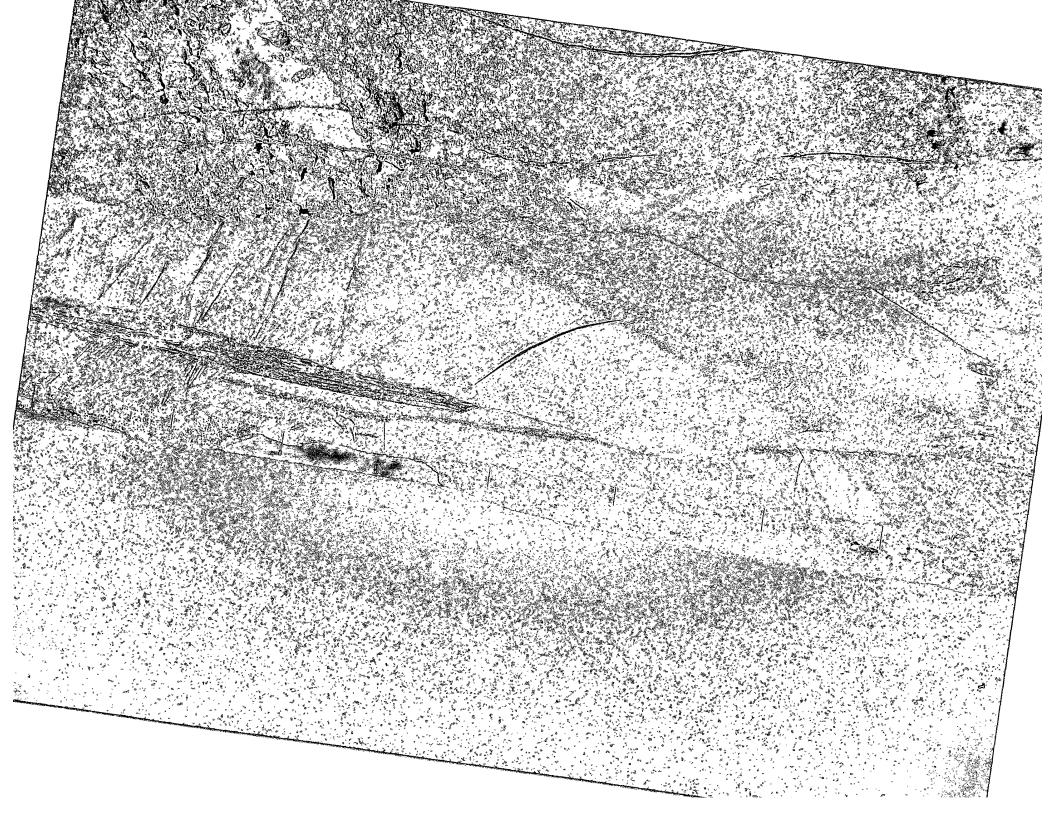
plot Approved On the 9th day of April , 2008 Mewbourne Oil Co. visually inspected the Penlon Ranch 24 = location in Unit Letter E of Sec 24, T20 S, R27E, of Eddy County, NM with the API # 30 -015 - 36277.

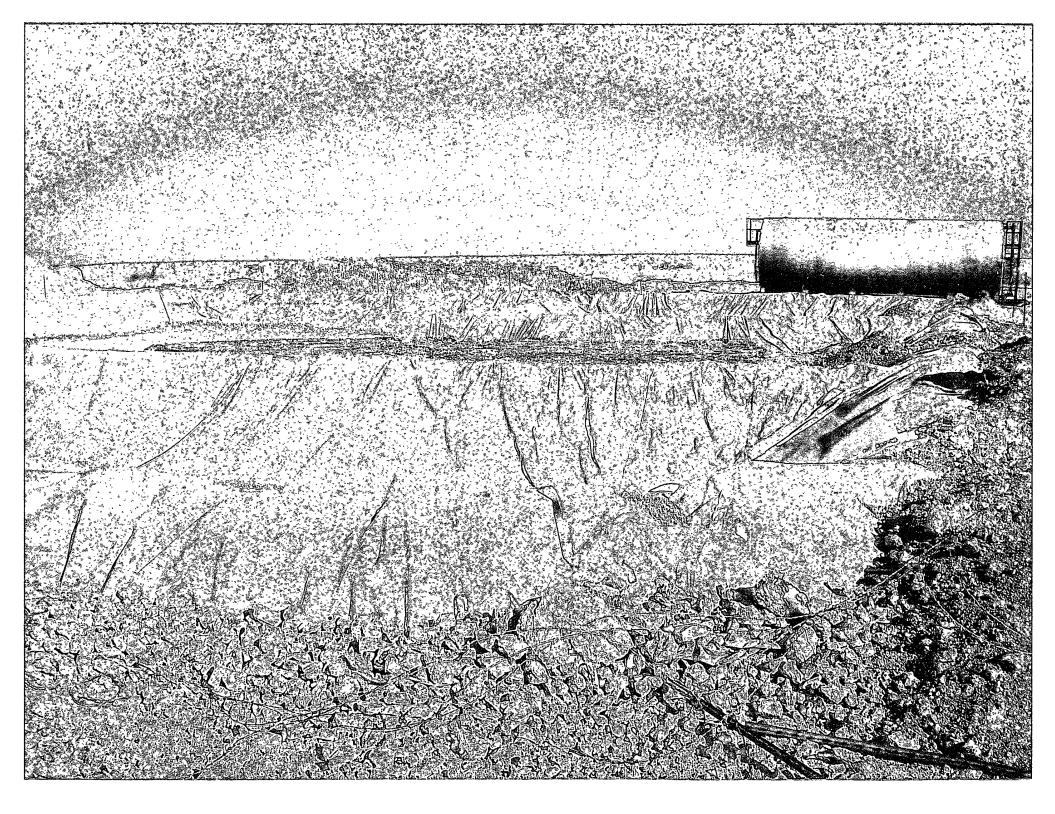
This is to certify that upon visual inspection of the above mentioned location there are no permanent residences, schools, hospitals, institutions or churches within 300 feet. The location is not within 500 feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, nor within 1000 horizontal feet of any other fresh water well or spring, nor within 500 feet of a wetland, nor within 300 feet of a continuously flowing water course, nor within 200 feet of any other significant watercourse or lakebed, sinkhole or playa lake (measured from the ordinary high-water mark).

Signature: Charles 1. martin

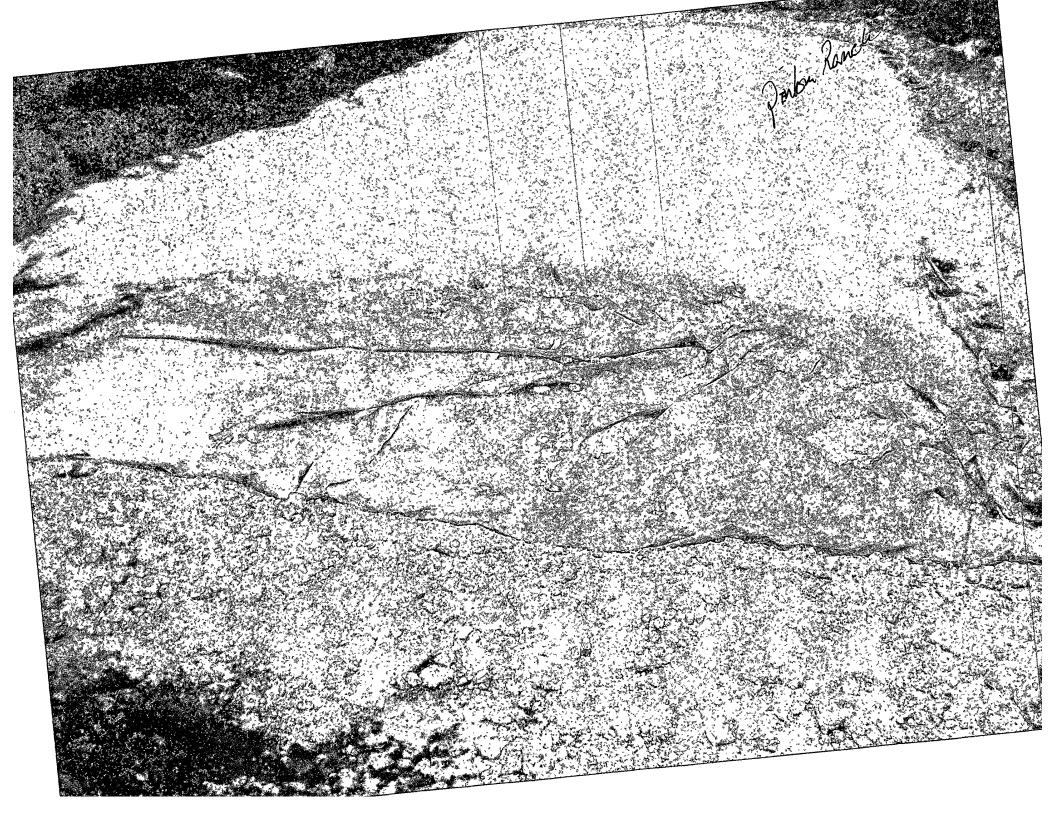
Date: 7-30-08

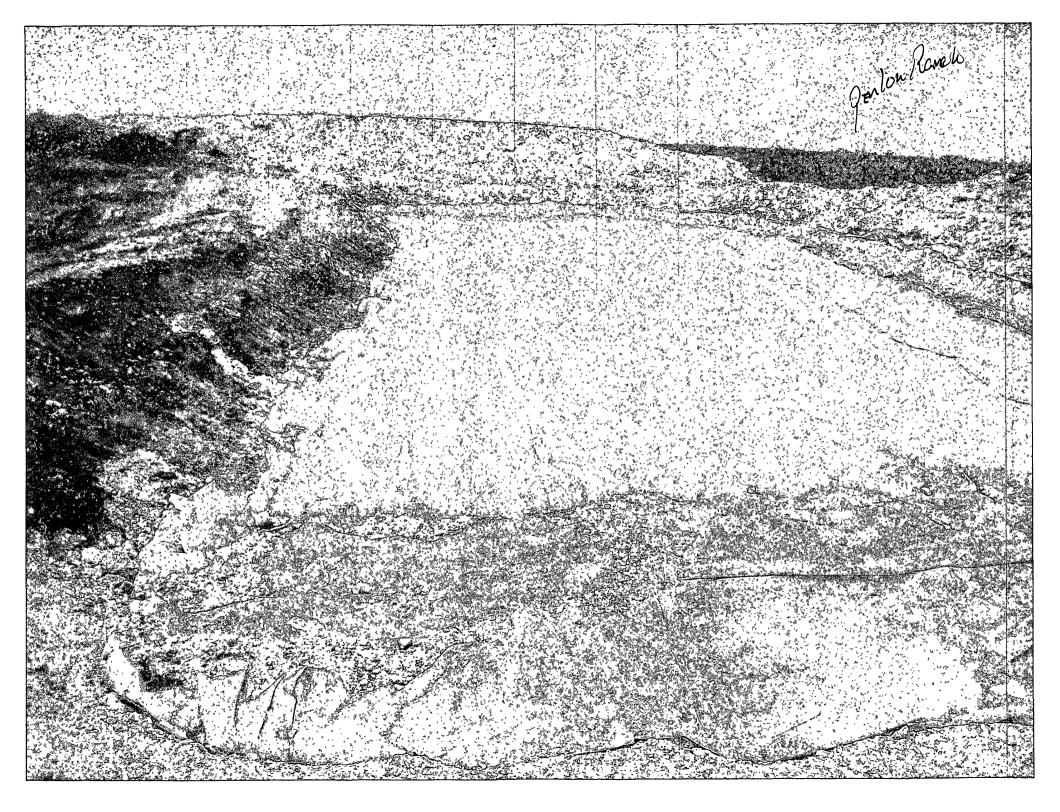
Anticipated Trench Dimensions

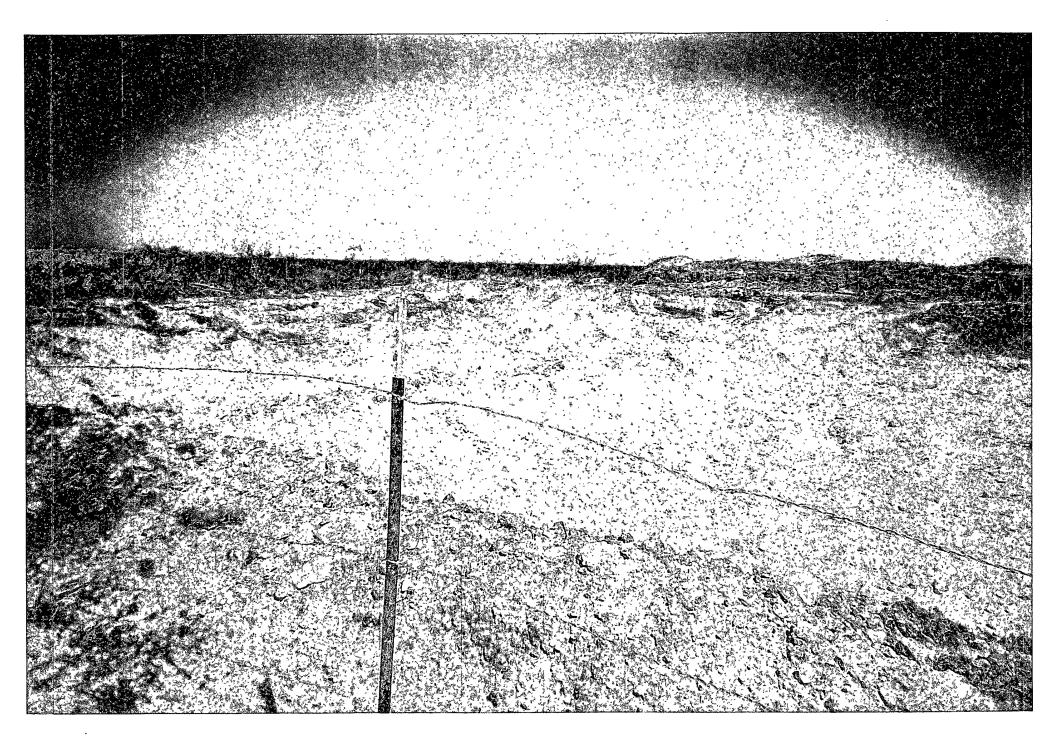

Date: 9/15/2009

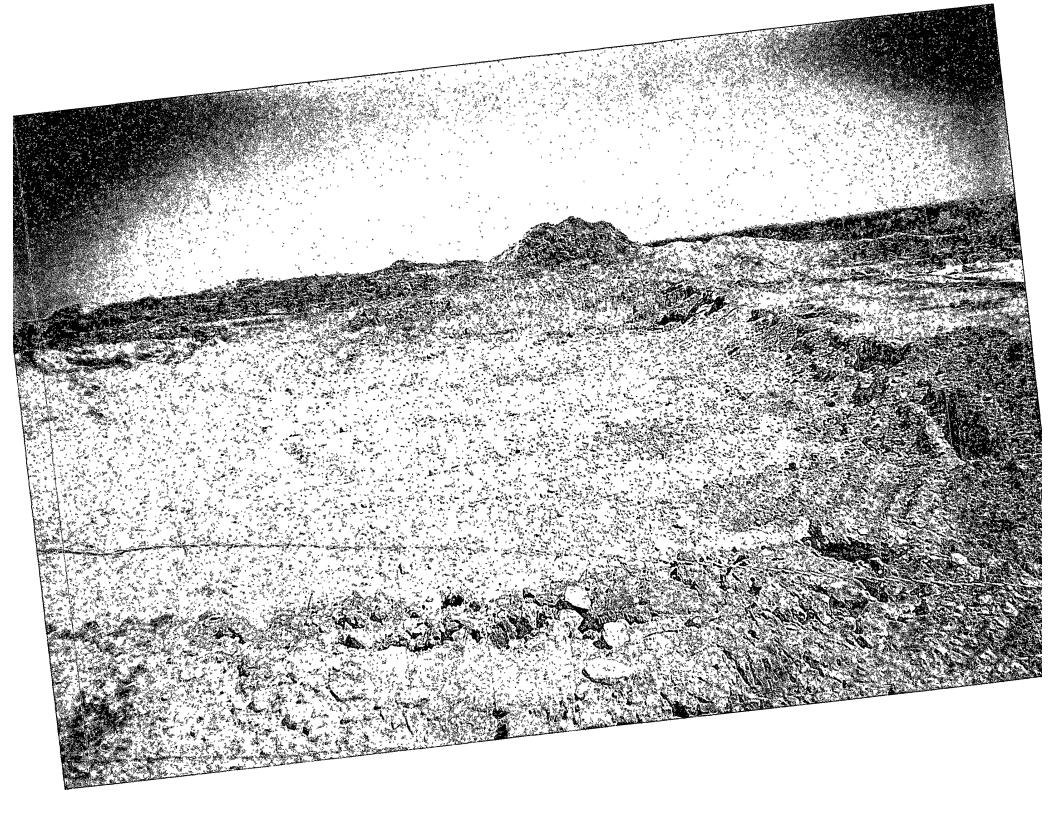

Scale: 1'' = 40'

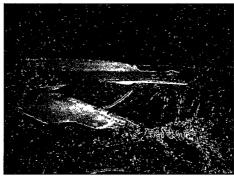
Drawn By: HDJ

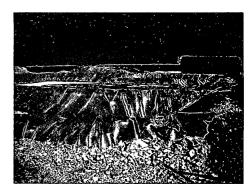

Mewbourne Oil Company Pit Liner Site Plan

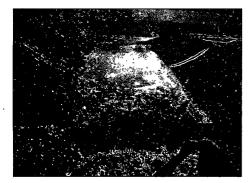


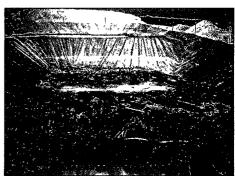


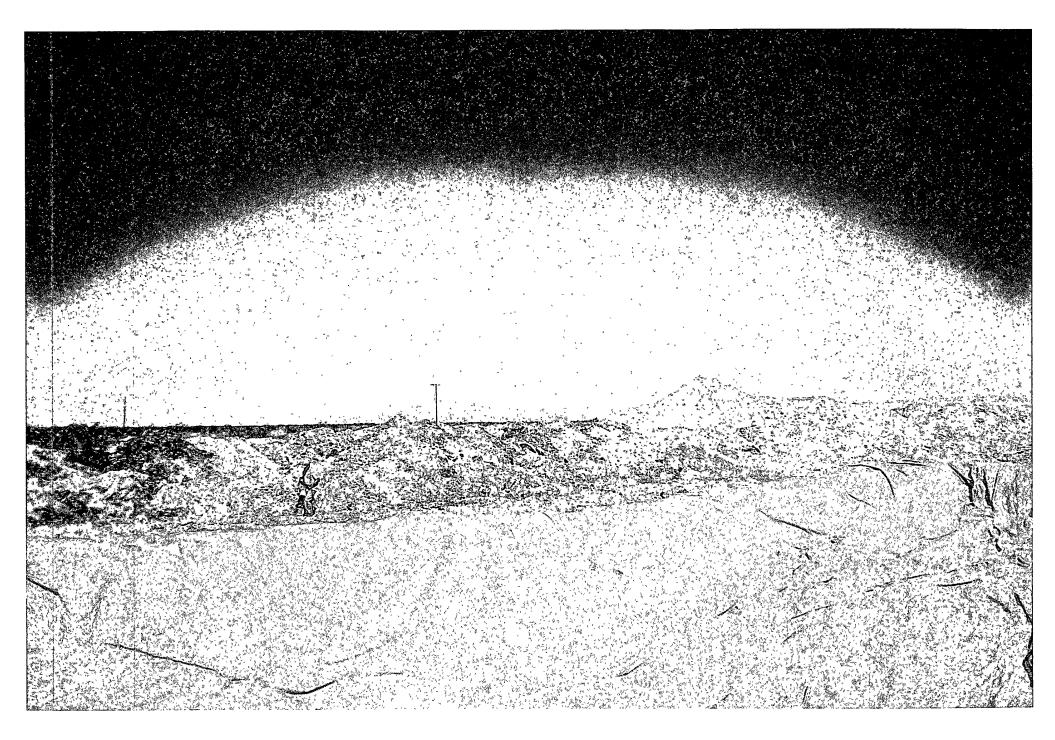

Jewon Rance

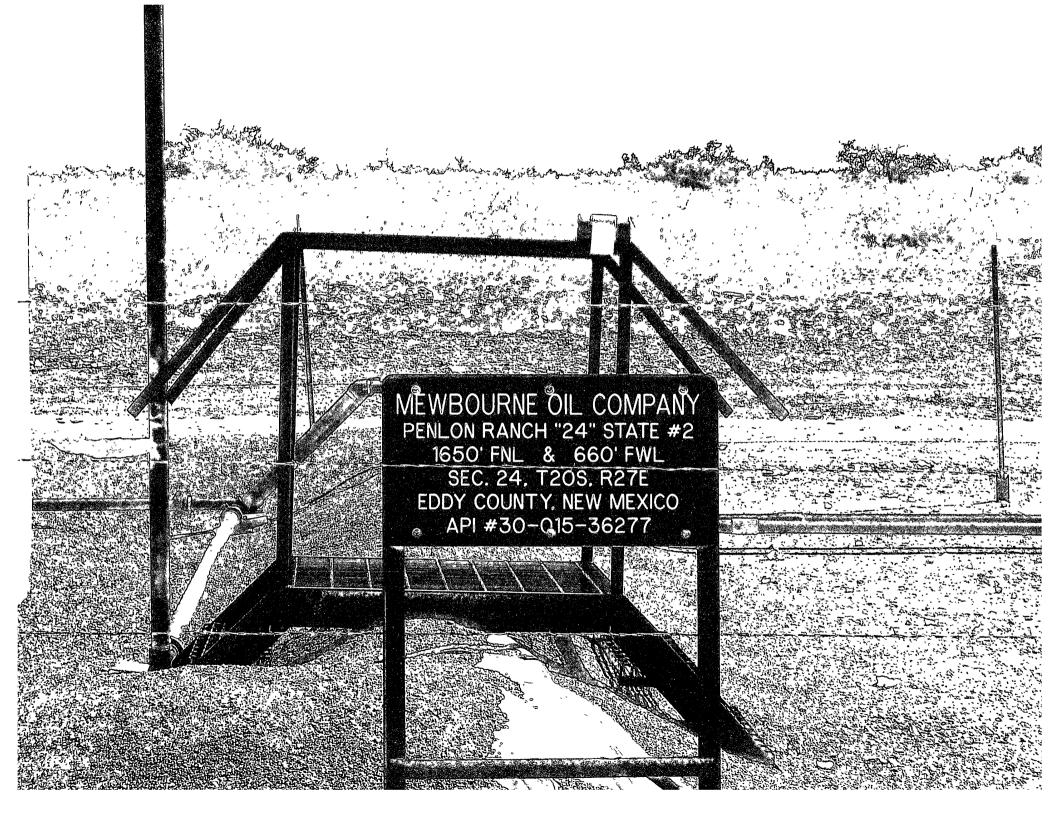

pale Corel











Two Copies	nate Distric	Office		State of New Mexico						Form C-105				
District I 1625 N French Dr	Hobbs Ni	M 88240		Energy, Minerals and Natural Resources						July 17, 2008				
District II										1. WELL API NO. 30-015-36277				
1301 W Grand Av District III	enue, Artesi	ia, NM 88210			Oi.	l Conservat	tion	Divis	on		2 Type of Le			
1000 Rio Brazos R District IV	d, Aztec, N	IM 87410	1		123	20 South St	t. Fr	ancis	Dr.		STATE ☐ FEE ☐ FED/INDIAN			
1220 S St Francis	Dr , Santa I	Fe, NM 87505				Santa Fe, N	IM	87505			3 State Oil &	c Gas Lease No	VB-1053	
WELL	COMPI	ETION	OR F	RECC	MPL	ETION RE	POF	RT AN	D LOG					
4 Reason for fil												e or Unit Agreei	ment Name	erandourings. Here was a same of a Service 1941
☐ COMPLET	ION DED	ODT (Edl.	howas	#1 thmos	ah-#21	for State and For	all	د داسه ه			Penlon Ran	och 24 State		
L COMPLET	ION KEF	OKI (FIII III	boxes	#1 unou	gn #31	ioi state and rec	wen	s only)			6 Well Numb	per #2		
C-144 CLOS #33, attach this a	nd the plat									l/or	_			
7 Type of Comp	pletion	I WORKOW	ED [1 DEEDE	NINIC	□PLUGBACE	,	Differen	ENIT DECEDA	/OID	ОТИТЕВ			
8 Name of Oper		J WORKOV	EK L	DEELL	DITING	LITLUGBACE	<u> </u>	DIFFER	ENT RESER	TION I	9 OGRID	14744		
Mewbourne Oil	Company 1	14744				·-·								<u> </u>
10 Address of O PO Box 5270	perator										11 Pool name	or Wildcat		
Hobbs, NM 8824	11													
12.Location	Unit Ltr	Section		Towns	hıp	Range	Lot		Feet from	the	N/S Line	Feet from the	E/W Line	County
Surface:														
вн:														
13 Date Spudde		te T D Read		15 E	Date Rig	Released	L	1	6 Date Comp	leted	(Ready to Prod			(DF and RKB,
2/12/0	9 3	11410	9	40.5	<u> 3/1:</u>	7/09							Γ, GR, etc)	
18 Total Measur	red Depth o	of Well		19 F	lug Bac	k Measured Der	oth	2) Was Direc	tiona	I Survey Made?	21 Typ	e Electric ar	nd Other Logs Run
22 Producing In	terval(s) o	f this comple	etion -	Lop Bot	tom Na	ime								
	_				,									
23					CAS	ING REC	OR	D (Re	ort all st	ring	gs set in w	ell)		
CASING SI	ZE	WEIGH	T LB/	FT		DEPTH SET		Н	OLE SIZE	`	CEMENTIN	G RECORD	AMOU	JNT PULLED
							_	· · · · · ·						
					-			_			 			
24.					LIN	ER RECORD				25	Т	UBING REC	ORD	
SIZE	TOP		BO	ГТОМ		SACKS CEMENT		SCREEN SI		SIZ		DEPTH SET		ACKER SET
								<u> </u>						
25.	_L							.		Ļ				
26 Perforation	i fecord (in	iterval, size,	and nui	mber)					CID, SHOT, I INTERVAL			MENT, SQUI		
ļ								DEFII	THILKVAL	·	AMOUNTA	IND KIND WA	IERIAL OS	, LD
·														
											1			
28	_						PR	ODUC	CTION		***************************************		-	
Date First Produc	ction	1	Product	ion Met	nod (Fla	owing, gas lift, p	итріг	ıg - Sıze d	nd type pump)	Well Status	(Prod or Shut-	·in)	
}		}												1
Date of Test	Hours	Tested	Cho	oke Sıze		Prod'n For		Oil - B	bl	Gas	s - MCF	Water - Bbl	Ga	as - Oil Ratio
			ļ			Test Period						1	-	
Flow Tubing	Casını	g Pressure	Cal	culated 2	24-	Oıl - Bbl		Ga	s - MCF	L	Water - Bbl	Oil Gra	vity - API -	(Corr)
Press			Ho	ur Rate				1					-	
29 Disposition of	of Gas (Sol	d, used for fi	iel, ven	ted, etc)		L						30 Test Witne	ssed By	
	,			,							}		-	
31 List Attachm	ents													•
32 If a temporar	y pit was u	sed at the w	ell, atta	ch a plat	with th	e location of the	temp	orary pit						
33 If an on-site	burial was	used at the v	vell, rer	ort the e	xact loc	ation of the on-s	ite bi	ırial						
			•			Latitude	32 50	6155° N		gitu		5° W_		NAD 1927_1983
,I hereby certi	fy that th	ne informa	tion s	hown c	n botl	sides of this	forn	n is true	and comp	lete	to the best o	f mv knowled	lge and be	elief
Signature	packi	e La	th	an	1	Name Tac	Kie	Lat	han Ti	le /	Nobbs .	Regular	bry D	oate 9-21-09
E-mail Addre	ess ila	than	@w	الماد	سەم	cne. Con	۸.				·		<u>.</u>	

INSTRUCTIONS

This form is to be filed with the appropriate District Office of the Division not later than 20 days after the completion of any newly-drilled or deepened well and not later than 60 days after completion of closure. When submitted as a completion report, this shall be accompanied by one copy of all electrical and radio-activity logs run on the well and a summary of all special tests conducted, including drill stem tests. All depths reported shall be measured depths. In the case of directionally drilled wells, true vertical depths shall also be reported. For multiple completions, items 11, 12 and 26-31 shall be reported for each zone.

INDICATE FORMATION TOPS IN CONFORMANCE WITH GEOGRAPHICAL SECTION OF STATE

Southe	astern New Mexico	Northy	western New Mexico
T. Anhy	T. Canyon_	T. Ojo Alamo	T. Penn A"
T. Salt	T. Strawn_	T. Kirtland	T. Penn. "B"
B. Salt_	T. Atoka	T. Fruitland	T. Penn. "C"
T. Yates	T. Miss	T. Pictured Cliffs	T. Penn. "D"
T. 7 Rivers	T. Devonian	T. Cliff House	T. Leadville
T. Queen	T. Silurian_	T. Menefee	T. Madison
T. Grayburg	T. Montoya	T. Point Lookout	T. Elbert
T. San Andres	T. Simpson_	T. Mancos	T. McCracken
T. Glorieta	T. McKee	T. Gallup	T. Ignacio Otzte
T. Paddock	T. Ellenburger	Base Greenhorn	T.Granite
T. Blinebry	T. Gr. Wash	T. Dakota	
T.Tubb_	T. Delaware Sand	T. Morrison	
T. Drinkard	T. Bone Springs	T.Todilto	
T. Abo	Т	T. Entrada	
T. Wolfcamp	Т.	T. Wingate	
T. Penn	T.	T. Chinle	
T. Cisco (Bough C)	T	T. Permian	

1. 01500 (Bough 0)	''	1.1 Clintall	
			OIL OR GAS SANDS OR ZONES
No. 1, 1rom	to		toto
No. 2, from	to		to
	IMP	ORTANT WATER SANDS	
include data on rate o	f water inflow and elevation to	which water rose in hole.	
No. 1, from	to	feet	
		feet	
No. 3, from	to	feet	
		ECORD (Attach additional sheet is	

From To Thickness In Feet Lithology From To Thickness In Feet Lithology

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 DISTRICT II 1301 W. Grand Avenue, Artesia, NM 88210

State of New Mexico
Energy, Minerals and Natural Resources Department

Form C-102 Revised October 12, 2005

Submit to Appropriate District Office

Pool Name

State Lease - 4 Copies Fee Lease - 3 Copies

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410

DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

API Number

OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, New Mexico 87505

D AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

Pool Code

30-0	15-	36277	73	3280		ton Flat;	Morrow (Pro Gas)
Property Code	e			PENI.0	Property Nat ON RANCH "	me ,		Well No	ımber
OGRID No.					Operator Na			Eleva	
14744	1		· · · · · · · · · · · · · · · · · · ·	MEWE	BOURNE OIL	COMPANY		336	6 '
					Surface Loc				
	ection O.4	Township	Range	Lot ldn	Feet from the	North/South line	Feet from the	East/West line	County
Ε [24	20 S	27 E	<u> </u>	1650	NORTH	660	WEST	EDD
1 1-1 No. 1 E		Township	Bottom Range			erent From Sur	face Feet from the	1 172 A (177 A) 12	T 64-
L or lot No. S	ection	townsurb	range	Lot Idn	Feet from the	North/South line	reet from the	East/West line	County
edicated Acres	Joint of	r Infill Cor	nsolida ti on (Code 0:	rder No.				<u> </u>
320									
	ABLE W	ILL BE AS	SIGNED '	ro this	COMPLETION	UNTIL ALL INTER	RESTS HAVE BI	EEN CONSOLIDA	ATED
		OR A N	ON-STAN	DARD U	NIT HAS BEEN	APPROVED BY	THE DIVISION		
-660,-0	ان ۱۱	_at.: N32*3; .ong.: W104 N.: 568014 E.: 528574 (NAD-2	4*14'26.11 .042 .655				I hereby co contained here the bast of my this organization interest or unditand including location pursua of such a more a voluntary poor compulsory poor the division. Supature Supature Supature Supature	or CERTIFICAT writing that the unform in is true and comp knowledge and belief in either owns a work the proposed bottom, in the to a contract unth rail or working interes then greenent or a king order heretofore Cathala OR CERTIFICAT y that the well locat y that the well locat	nation lete to ; and that img in the role an owner st, or to entered by 9/21 Date
							on this plat we actual surveys supervison, are correct to the Date Surveys Signature Professionals Certificate N	as plotted from field made by me or val that the same is is best of my being	trotes of under my true and

2609 North River Road, Port Allen, Louisiana 70767

1 (800) 401-4277 FAX (225) 381-2996

ARS Sample Delivery Group: ARS1-09-01545

Client Sample ID: 195729

Sample Collection Date: 05/08/09

Sample Matrix: Aqueous

Request or PO Number:

ARS Sample ID: ARS1-09-01545-001

Date Received: 05/21/09

Report Date: 06/24/09

Analysis Description	Anaiysis Results	Analysis Error +/- 2 s	MDC	DLC	Qual	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
RA-226	0 239	0.338	0.565	0 197		pCı/L	ARS-010/EPA 904.0	6/18/09 15·18	GJ	619
RA-228	0 352	1 217	2.148	0 992		pCi/L	ARS-010/EPA 904 0	6/18/09 17:35	G)	50%
									1	
NOTES: 9051320 ARS										

Project Manager Review

Notes American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the American Radiation Services, Inc.

LELAP Certificate# 01949

NELAP Certificate # E87558

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 1 of 2 Eddy Co., NM

Summary Report

Eb Taylor Talon LPE-Hobbs 318 E. Taylor Hobbs, NM 88240

Report Date: June 4, 2009

Work Order: 9051320

Project Location: Eddy Co., NM

Project Name: Penlon Ranch 24 State #2

Project Number: MEWBOU043PIT

			${f Date}$	\mathbf{Time}	Date
Sample	Description	Matrix	Taken	Taken	Received
195729	Drill Cuttings	soil	2009-05-08	09:30	2009-05-12

	BTEX			TPH 418.1	TPH DRO	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	TRPHC	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
195729 - Drill Cuttings	< 0.0200	< 0 0200	< 0.0200	< 0.0200	89.1	<250	17.8

Sample: 195729 - Drill Cuttings

Param	Flag	Result	Units	RL
SPLP Silver		< 0.00300	mg/L	0.00300
SPLP Arsenic		< 0.0100	mg/L	0.0100
SPLP Barium		0.419	mg/L	0.100
SPLP Cadmium		< 0.00500	mg/L	0.00500
SPLP Chloride		16.0	m mg/L	0.500
SPLP Chromium		< 0.00500	mg/L	0.00500
SPLP Cyanide	1	< 0.0150	mg/L	0.0150
SPLP Fluoride		<1.00	mg/L	0.200
SPLP Mercury		< 0.000200	mg/L	0.000200
Nitrate-N		2.39	mg/L	0.200
Naphthalene		< 0.000200	mg/L	0.000200
Acenaphthylene		< 0.000200	mg/L	0.000200
Acenaphthene		< 0.000200	$\overline{\mathrm{mg/L}}$	0.000200
Dibenzofuran		< 0.000200	mg/L	0.000200
Fluorene		< 0.000200	mg/L	0.000200
Anthracene		< 0.000200	mg/L	0.000200

continued ...

¹Not enough sample to run MS/MSD •

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296

This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: June 4, 2009 Work Order: 9051320 Page Number: 2 of 2 MEWBOU043PIT Penlon Ranch 24 State #2 Eddy Co., NM

sample 195729 continued ...

Param	Flag Result	Units	RL
Phenanthrene	< 0.000200	mg/L	0.000200
Fluoranthene	< 0.000200	mg/L	0.000200
Pyrene	< 0.000200	mg/L	0.000200
Benzo(a)anthracene	< 0.000200	mg/L	0.000200
Chrysene	< 0.000200	mg/L	0.000200
Benzo(h)fluoranthene	< 0.000200	mg/L	0.000200
Benzo(k)fluoranthene	< 0.000200	mg/L	0.000200
Benzo(a)pyrene	< 0.000200	mg/L	0.000200
Indeno(1,2,3-cd)pyrene	< 0.000200	m mg/L	0.000200
Dibenzo(a,h)anthracene	< 0.000200	mg/L	0.000200
Benzo(g,h,i)perylene	< 0.000200	mg/L	0.000200
SPLP Lead	< 0.0100	mg/L	0.0100
Total PCB	< 0.000500	mg/L	0.000500
Aroclor 1016 (PCB-1016)	< 0.000500	mg/L	0.000500
Aroclor 1221 (PCB-1221)	< 0.000500	mg/L	0.000500
Aroclor 1232 (PCB-1232)	< 0.000500	mg/L	0.000500
Aroclor 1242 (PCB-1242)	< 0.000500	mg/L	0.000500
Aroclor 1248 (PCB-1248)	< 0.000500	mg/L	0.000500
Aroclor 1254 (PCB-1254)	< 0.000500	mg/L	0.000500
Aroclor 1260 (PCB-1260)	< 0.000500	mg/L	0.000500
Aroclor 1268 (PCB-1268)	< 0.000500	mg/L	0.000500
SPLP Selenium	< 0.0500	mg/L	0.0500
SPLP U	< 0.0500	mg/L	0.0500
Vinyl Chloride	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
1,1-Dichloroethene	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
Methylene chloride	27.4	$\mu \mathrm{g}/\mathrm{L}$	5.00
1,1-Dichloroethane	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
1,2-Dichloroethane (EDC)	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
Chloroform	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
1,1,1-Trichloroethane	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
Benzene	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
Carbon Tetrachloride	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
Trichloroethene (TCE)	<1.00	$\mu { m g}/{ m L}$	1.00
Toluene	1.03	$\mu \mathrm{g}/\mathrm{L}$	1.00
1,1,2-Trichloroethane	<1.00	$\mu\mathrm{g}/\mathrm{L}$	1.00
1,2-Dibromoethane (EDB)	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
Tetrachloroethene (PCE)	<1.00	$\mu\mathrm{g}/\mathrm{L}$	1.00
Ethylbenzene	<1.00	$\mu { m g}/{ m L}$	1.00
m,p-Xylene	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00
o-Xylene	1.26	$\mu \mathrm{g}/\mathrm{L}$	1.00
1,1,2,2-Tetrachloroethane	<1.00	$\mu \mathrm{g}/\mathrm{L}$	1.00

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street Suite A1

Lubbock, Texas 79424 El Paso, Texas 79922 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

FAX 915 • 585 • 4944

6015 Harris Parkway, Suite 110 Ft. Worth. Texas 76132

Midland Texas 79703

432 • 689 • 6301

FAX 432 • 689 • 6313

817 • 201 • 5260

E-Mail lab@traceanalysis.com

Certifications

WBENC: 237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003

El Paso: T104704221-08-TX

LELAP-02002

Midland: T104704392-08-TX

Kansas E-10317

Analytical and Quality Control Report

Eb Taylor Talon LPE-Hobbs 318 E. Taylor Hobbs, NM, 88240

Report Date: June 4, 2009

Work Order:

Project Location: Eddy Co., NM

Project Name: Penlon Ranch 24 State #2

Project Number: MEWBOU043PIT

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
195729	Drill Cuttings	soil	2009-05-08	09:30	2009-05-12

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 40 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Standard Flags

 $\boldsymbol{B}\,$ - $\,$ The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Penlon Ranch 24 State #2 were received by TraceAnalysis, Inc. on 2009-05-12 and assigned to work order 9051320. Samples for work order 9051320 were received intact at a temperature of 12.1 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	50806	2009-05-15 at 15:35	59525	2009-05-15 at 15:35
SPLP Ag	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP As	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP Ba	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP Cd	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP Cl	E 300.0	51169	2009-05-27 at 15:55	59951	2009-05-28 at 14:30
SPLP Cr	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP Cyanide	SM 4500-CN C,E	51209	2009-06-01 at 15:15	60000	2009-06-01 at 17:30
SPLP Fluoride	$\to 300.0$	51169	2009-05-27 at 15:55	59951	2009-05-28 at 14:30
SPLP Hg	S 7470A	50958	2009-05-21 at 13:45	59740	2009-05-22 at 15:56
SPLP NO3 (IC)	E 300.0	51169	2009-05-27 at 15:55	59951	2009-05-28 at 14:30
SPLP PAH	S 8270C	51103	2009-05-26 at 15:00	59873	2009-05-28 at 09:34
SPLP Pb	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP PCB	S 8082	51052	2009-05-22 at 15:00	59811	2009-05-26 at 14:19
SPLP Se	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP U	S 6010B	51282	2009-06-04 at 09:07	60107	2009-06-04 at 15:41
SPLP Volatiles	S 8260B	51018	2009-05-22 at 12:00	59766	2009-05-22 at 12:00
TPH 418.1	E 418.1	50774	2009-05-15 at 08:17	59493	2009-05-15 at 10:18
TPH DRO	Mod. 8015B	50826	2009-05-15 at 15:00	59551	2009-05-16 at 20:00
TPH GRO	S 8015B	50844	2009-05-18 at 14:36	59567	2009-05-18 at 14:36

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9051320 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Work Order: 9051320 Penion Ranch 24 State #2 Page Number: 4 of 40 Eddy Co., NM

Analytical Report

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: **BTEX** QC Batch: 59525 Prep Batch: 50806

Analytical Method: Date Analyzed:

S 8021B 2009-05-15 Sample Preparation: 2009-05-15 Prep Method: S 5035

Analyzed By: ER Prepared By: $\mathbf{E}\mathbf{R}$

RL

		\mathbf{n}_{Γ}			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0200	mg/Kg	1	0.0200
Toluene		< 0.0200	mg/Kg	1	0.0200
Ethylbenzene		< 0.0200	mg/Kg	1	0.0200
Xylene		< 0.0200	mg/Kg	1	0.0200

					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.06	mg/Kg	1	2.00	103	72.9 - 113
4-Bromofluorobenzene (4-BFB)		2.21	mg/Kg	1	2.00	110	42.1 - 116

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP Ag QC Batch: 60107 Prep Batch: 51282

Analytical Method: Date Analyzed: SPLP Extraction:

S 6010B 2009-06-04 2009-06-03 Sample Preparation: 2009-06-04

Prep Method: SPLP 1312

Analyzed By: RRPrepared By: KVPrepared By: KV

RL

Parameter	Flag	Result	Units	Dilution	RL
SPLP Silver		< 0.00300	mg/L	1	0.00300

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP As QC Batch: 60107 Prep Batch: 51282

Analytical Method: Date Analyzed: SPLP Extraction:

S 6010B 2009-06-04 2009-06-03 Sample Preparation: 2009-06-04 Prep Method: SPLP 1312

Analyzed By: RR Prepared By: KV Prepared By: KV

RI

Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
SPLP Arsenic		< 0.0100	mg/L	1	0.0100

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 5 of 40 Eddy Co., NM

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock Analysis:

QC Batch:

Prep Batch:

SPLP Ba

51282

Analytical Method: 60107

Date Analyzed: **SPLP Extraction:**

S 6010B 2009-06-04 2009-06-03 Sample Preparation: 2009-06-04

Prep Method: SPLP 1312 Analyzed By: RR Prepared By: KV Prepared By: KV

RL

Parameter SPLP Barium Flag

Result 0.419

Units mg/L Dilution

RL0.100

Sample: 195729 - Drill Cuttings

Laboratory:

Lubbock SPLP Cd

Analysis: QC Batch: 60107 51282 Prep Batch:

Analytical Method: Date Analyzed:

S 6010B 2009-06-04 SPLP Extraction: 2009-06-03 2009-06-04 Sample Preparation:

Prep Method: SPLP 1312 Analyzed By: RR

Prepared By: KV Prepared By: KV

RL

Parameter SPLP Cadmium Flag

Result < 0.00500

Units mg/L Dilution

RL0.00500

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock Analysis:

QC Batch:

SPLP C1 59951 Prep Batch: 51169

Analytical Method: Date Analyzed:

SPLP Extraction:

E 300.0 2009-05-28 2009-05-26 Sample Preparation: 2009-05-27 Prep Method: **SPLP 1312**

Analyzed By: SSPrepared By: SS SS

RL

Parameter SPLP Chloride Flag

Result 16.0

Units

mg/L

Prepared By:

5

Dilution

RL0.500

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock Analysis:

QC Batch:

Prep Batch:

SPLP Cr 60107 51282

Analytical Method: Date Analyzed:

SPLP Extraction:

S 6010B 2009-06-04 2009-06-03 Sample Preparation: 2009-06-04

Prep Method: **SPLP 1312**

Analyzed By: RR Prepared By: KV Prepared By: KV

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 6 of 40 Eddy Co., NM

0.000200

1

		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RI
SPLP Chromium		< 0.00500	mg/L	1	0.00500
Sample: 195729	9 - Drill Cuttings				
••	obock				
	LP Cyanide		SM 4500-CN C,E	Prep Method:	SPLP 131:
QC Batch: 600		· ·, <i>j</i>	2009-06-01	Analyzed By:	AH
Prep Batch: 512	09	SPLP Extraction:		Prepared By:	AH
		Sample Preparation:		Prepared By:	AH
		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RI
SPLP Cyanide	1	< 0.0150	mg/L	1	0.015
Analysis: SPI QC Batch: 599 Prep Batch: 511		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation	2009-05-28 2009-05-26	Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 131 SS SS SS SS
		RL			
Parameter	Flag	Result	<u>Units</u>	Dilution	RI
SPLP Fluoride		<1.00	mg/L	5	0.20
Sample: 195729	9 - Drill Cuttings				
Laboratory: Lul	bock				
•	LP Hg	Analytical Method		Prep M	,
QC Batch: 597		Date Analyzed:	2009-05-22	Analyze	••
Prep Batch: 509	958	Sample Preparation	n: 2009-05-21	Prepare	ed By: TP
D (T-1	RL	T1 11.	D'1 4'	.
Parameter	Flag	Result	Units	Dilution	R

< 0.000200

mg/L

SPLP Mercury

¹Not enough sample to run MS/MSD •

Report Date: June 4, 2009 Work Order: 9051320 Page Number: 7 of 40 MEWBOU043PIT Penlon Ranch 24 State #2 Eddy Co., NM

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP NO3 (IC) Analytical Method: E 300.0 Prep Method: SPLP 1312

QC Batch: 59951 Date Analyzed: 2009-05-28 Analyzed By: SS
Prep Batch: 51169 SPLP Extraction: 2009-05-26 Prepared By: SS
Sample Preparation: 2009-05-27 Prepared By: SS

RL

 Parameter
 Flag
 Result
 Units
 Dilution
 RL

 Nitrate-N
 2.39
 mg/L
 5
 0.200

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Indeno(1,2.3-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h.i)perylene

Analysis: SPLP PAH Analytical Method: S 8270C Prep Method: SPLP 1312 QC Batch: 59873 Date Analyzed: 2009-05-28 Analyzed By: MN

Prep Batch: 51103 SPLP Extraction: 2009-05-25 Prepared By: MN
Sample Preparation: 2009-05-26 Prepared By: MN

RLFlag Parameter Result Units Dilution RLNaphthalene < 0.000200 mg/L 0.000200 Acenaphthylene < 0.000200 mg/L 1 0.000200 Acenaphthene < 0.000200 mg/L 1 0.000200 mg/L Dibenzofuran < 0.000200 1 0.000200mg/L 1 0.000200 Fluorene < 0.000200 Anthracene < 0.000200 mg/L 1 0.000200 < 0.000200 mg/L 0.000200 Phenanthrene < 0.000200 Fluoranthene mg/L 1 0.000200 0.000200 < 0.000200 mg/L 1 Pyrene Benzo(a)anthracene < 0.000200 mg/L 1 0.000200 Chrysene < 0.000200 mg/L 1 0.000200 Benzo(b)fluoranthene < 0.000200 mg/L 1 0.000200 Benzo(k)fluoranthene < 0.000200 mg/L 1 0.000200 0.000200 Benzo(a)pyrene < 0.000200 mg/L 1

					\mathbf{Spike}	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
2-Fluorobiphenyl		0.0396	mg/L	1	0.0800	50	37.4 - 123
Nitrobenzene-d5		0.0377	mg/L	1	0.0800	47	34.3 - 130
Terphenyl-d14		0.0544	${ m mg/L}$	1	0.0800	68	10 - 252

< 0.000200

< 0.000200

< 0.000200

mg/L

mg/L

mg/L

1

1

1

0.000200

0.000200

0.000200

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 8 of 40 Eddy Co., NM

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: QC Batch:

SPLP Pb 60107 Prep Batch: 51282

Analytical Method:

SPLP Extraction:

Date Analyzed:

S 6010B 2009-06-04

2009-06-03 Sample Preparation: 2009-06-04 Prep Method: SPLP 1312

Analyzed By: RRPrepared By: KV KV

RL

Parameter Flag SPLP Lead

Result < 0.0100

Units mg/L Prepared By:

Dilution

1

RL

0.0100

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: QC Batch:

SPLP PCB

59811 Prep Batch: 51052 Analytical Method:

Date Analyzed: SPLP Extraction:

Sample Preparation:

S 8082 2009-05-26

2009-05-21 2009-05-22 Prep Method: SPLP 1312

Analyzed By: DS Prepared By: DS Prepared By: DS

RL

Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
Total PCB		< 0.000500	mg/L	1	0.000500
Aroclor 1016 (PCB-1016)		< 0.000500	m mg/L	1	0.000500
Aroclor 1221 (PCB-1221)		< 0.000500	m mg/L	1	0.000500
Aroclor 1232 (PCB-1232)		< 0.000500	m mg/L	1	0.000500
Aroclor 1242 (PCB-1242)		< 0.000500	m mg/L	1	0.000500
Aroclor 1248 (PCB-1248)		< 0.000500	mg/L	1	0.000500
Aroclor 1254 (PCB-1254)		< 0.000500	${ m mg/L}$	1	0.000500
Aroclor 1260 (PCB-1260)		< 0.000500	${ m mg/L}$	1	0.000500
Aroclor 1268 (PCB-1268)		< 0.000500	mg/L	1	0.000500

					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Deca chlorobiphenyl		0.000498	mg/L	1	0.000500	100	10 - 128

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP Se QC Batch: 60107

Prep Batch: 51282

Analytical Method: Date Analyzed: SPLP Extraction:

S 6010B 2009-06-04 2009-06-03 Sample Preparation: 2009-06-04

Prep Method: SPLP 1312

Analyzed By: RRPrepared By: KV Prepared By: KV

Prep Batch: 51282

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 9 of 40 Eddy Co., NM

Prepared By:

Parameter Flag SPLP Selenium		RL Result <0.0500	Units mg/L	Dilution 1	RL 0.0500	
Sample: 19	5729 - Drill Cuttings					
Laboratory: Analysis: QC Batch:	Lubbock SPLP U 60107	Analytical Method: Date Analyzed	S 6010B 2009-06-04	Prep Method: Analyzed By:	SPLP 1312 RR	

2009-06-03

SPLP Extraction:

Sample: 195729 - Drill Cuttings

Laboratory:	Lubbock			-	
Analysis:	SPLP Volatiles	Analytical Method:	S 8260B	Prep Method:	SPLP 1312
QC Batch:	59766	Date Analyzed:	2009-05-22	Analyzed By:	KB (
Prep Batch:	51018	SPLP Extraction:	2009-05-22	Prepared By:	KB
		Sample Preparation:	2009-05-22	Prepared By:	KB

		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Vinyl Chloride	•	<1.00	$\mu { m g/L}$	1	1.00
1,1-Dichloroethene		<1.00	$\mu { m g}/{ m L}$	1	1.00
Methylene chloride		27.4	$\mu { m g}/{ m L}$	1	5.00
1,1-Dichloroethane		<1.00	$\mu { m g}/{ m L}$	1	1.00
1,2-Dichloroethane (EDC)		<1.00	$\mu { m g}/{ m L}$	1	1.00
Chloroform		<1.00	$\mu { m g}/{ m L}$	1	1.00
1,1,1-Trichloroethane		<1.00	$\mu { m g}/{ m L}$	1	1.00
Benzene		<1.00	$\mu { m g}/{ m L}$	1	1.00
Carbon Tetrachloride		<1.00	$\mu \mathrm{g}/\mathrm{L}$	1	1.00
Trichloroethene (TCE)		<1.00	$\mu { m g}/{ m L}$	1	1.00
Toluene		1.03	$\mu\mathrm{g}/\mathrm{L}$	1	1.00
1,1,2-Trichloroethane		<1.00	$\mu { m g}/{ m L}$	1	1.00
1,2-Dibromoethane (EDB)		<1.00	$\mu { m g}/{ m L}$	1	1.00
Tetrachloroethene (PCE)		<1.00	$\mu\mathrm{g}/\mathrm{L}$	1	1.00
Ethylbenzene		<1.00	$\mu { m g}/{ m L}$	1	1.00
m,p-Xylene		<1.00	$\mu \mathrm{g}/\mathrm{L}$	1	1.00
o-Xylene		1.26	$\mu { m g}/{ m L}$	1	1.00
1,1,2,2-Tetrachloroethane		<1.00	$\mu { m g}/{ m L}$	1	1.00

Work Order: 9051320 Penlon Ranch 24 State #2

Page	Number:	10 c	of 40
	Eddy	Co.,	NM

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Dibromofluoromethane		54.3	$\mu \mathrm{g/L}$	1	50.0	109	70 - 130
Toluene-d8		47.5	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	95	70 - 130
4-Bromofluorobenzene (4-BFB)		46.8	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	94	70 - 130

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: TPH 418.1 QC Batch: 59493 Prep Batch: 50774 Analytical Method: E 418.1 Date Analyzed: 2009-05-15 Sample Preparation: 2009-05-15

Prep Method: N/A
Analyzed By: CM
Prepared By: CM

		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	$\mathbf{R}\mathbf{L}$
TRPHC		89.1	mg/Kg	1	10.0

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: TPH DRO QC Batch: 59551 Prep Batch: 50826 Analytical Method: Mod. 8015B
Date Analyzed: 2009-05-16
Sample Preparation: 2009-05-15

Prep Method: N/A Analyzed By: RG Prepared By: RG

		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
DRO		<250	mg/Kg	5	50.0

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		131	mg/Kg	5	100	131	46.6 - 172

Sample: 195729 - Drill Cuttings

Laboratory: Lubbock

Analysis: TPH GRO QC Batch: 59567 Prep Batch: 50844 Analytical Method: S 8015B Date Analyzed: 2009-05-18 Sample Preparation: 2009-05-18

Prep Method: S 5035 Analyzed By: ER Prepared By: ER

		${f RL}$			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
GRO		17.8	mg/Kg	1	2.00

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 11 of 40 Eddy Co., NM

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	2	2.87	mg/Kg	1	2.00	144	86.3 - 112
4-Bromofluorobenzene (4-BFB)	3	2.92	mg/Kg	1	2.00	146	61.8 - 107

Method Blank (1)

QC Batch: 59493

QC Batch: 59493 Prep Batch: 50774 Date Analyzed: 2009-05-15 QC Preparation: 2009-05-15

Analyzed By: CM Prepared By: CM

MDL

Flag Parameter Result Units RL**TRPHC** <5.28 10 mg/Kg

Method Blank (1)

QC Batch: 59525

QC Batch: 59525 Date Analyzed:

2009-05-15

Analyzed By: ER

Prep Batch: 50806 QC Preparation: 2009-05-15

Prepared By: ER

MDL Parameter Flag Result Units RLBenzene < 0.00505 mg/Kg 0.02 Toluene 0.0132 mg/Kg 0.02 Ethylbenzene < 0.00630 mg/Kg 0.02 Xylene 0.0440 mg/Kg 0.02

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.86	mg/Kg	1	2.00	93	72.9 - 113
4-Bromofluorobenzene (4-BFB)		1.98	mg/Kg	1	2.00	99	42.1 - 116

Method Blank (1)

QC Batch: 59551

QC Batch: 59551 Prep Batch: 50826

DRO

Date Analyzed: QC Preparation:

2009-05-16 2009-05-15 Analyzed By: RG Prepared By:

RL

50

MDL Parameter Flag

Units Result < 5.66 mg/Kg

²High surrogate recovery due to peak interference.

³High surrogate recovery due to peak interference.

Work Order: 9051320 Penlon Ranch 24 State #2

Surrogate	Flag	Result	Units]	Dilution	Spike Amount	Percent Recovery	Recover Limits	
n-Triacontane		107	mg/Kg		1	100	107	46.6 - 1'	
	(1) 00	D. J. FORON	<i>o, c</i>						
Method Blank ((1) QC	Batch: 59567							
QC Batch: 5956			Date Ana		2009-05-18			zed By: El	
Prep Batch: 508 ⁴	44		QC Prepa	ration:	2009-05-18		Prepa	red By: El	K
_					DL			_	
Parameter		Flag		Res		Un			$\frac{1}{2}$
GRO				<0.	403	mg,	/Kg		2
Surrogate		Flag	Result	Unit	s Dilutio	Spike n Amount	Percent Recovery	Recover Limits	
Trifluorotoluene (TFT)		2.07	mg/k	Kg 1	2.00	104	86.3 - 1	12
4-Bromofluoroben	zene (4-BF1	3)	1.79	mg/k	Kg 1	2.00	90	61.8 - 10	07
Method Blank (QC Batch: 5974 Prep Batch: 5098	40	Batch: 59740	Date Ana QC Prepa	ration:	2009-05-22 2009-05-21 MDL		Prepa	zed By: Ti	P
Parameter		Flag			Result		nits	RI	
SPLP Mercury				<0.0	000329	mg	g/L	0.00	02
Method Blank (QC Batch: 5976 Prep Batch: 5100	66	Batch: 59766	Date Ana QC Prepa		2009-05-22 2009-05-22			zed By: Kl red By: Kl	
Parameter			Flag		MDL Result		Units		RL
Vinyl Chloride					< 0.135		μg/L		1
1,1-Dichloroethene					< 0.136		$\mu \mathrm{g}/\mathrm{L}$		1
Methylene chloride 1,1-Dichloroethane					<0.649 <0.0600		μg/L		5
1,1-Dichloroethane					< 0.0600		$ m \mu g/L \ \mu g/L$		1
Chloroform	(LLC)				<0.113		$\mu \mathrm{g/L}$ $\mu \mathrm{g/L}$		1
1,1,1-Trichloroetha	ane				< 0.141		$\mu \mathrm{g}/\mathrm{L}$ $\mu \mathrm{g}/\mathrm{L}$		1
Benzene					< 0.116		$\mu \mathrm{g}/\mathrm{L}$ $\mu \mathrm{g}/\mathrm{L}$		1
Carbon Tetrachlor	ride				< 0.0790		μg/L		1
							r-01 —		

continued ...

Page Number: 12 of 40 Eddy Co., NM

Work Order: 9051320 Penlon Ranch 24 State #2

MAT

Page Number: 13 of 40 Eddy Co., NM

method blank o	continued			
----------------	-----------	--	--	--

		MDL		
Parameter	Flag	Result	Units	RL
Trichloroethene (TCE)		< 0.117	$\mu_{ m g/L}$	1
Toluene		< 0.0600	$\mu\mathrm{g/L}$	1
1,1,2-Trichloroethane		< 0.135	$\mu\mathrm{g}/\mathrm{L}$	1
1,2-Dibromoethane (EDB)		< 0.0700	$\mu\mathrm{g}/\mathrm{L}$	1
Tetrachloroethene (PCE)		< 0.270	$\mu\mathrm{g}/\mathrm{L}$	1
Ethylbenzene		< 0.0360	$\mu\mathrm{g}/\mathrm{L}$	1
m,p-Xylene		< 0.0940	$\mu \mathrm{g}/\mathrm{L}$	1
o-Xylene		< 0.0960	$\mu\mathrm{g}/\mathrm{L}$	1
1,1,2,2-Tetrachloroethane		< 0.125	$\mu \mathrm{g}/\mathrm{L}$	1

					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		53.5	$\mu { m g/L}$	1	50.0	107	70 - 130
Toluene-d8		47.0	$\mu { m g}/{ m L}$	1	50.0	94	70 - 130
4-Bromofluorobenzene (4-BFB)		47.4	$\mu { m g}/{ m L}$	1	50.0	95	70 - 130

Method Blank (1)

QC Batch: 59811

QC Batch: 59811 Prep Batch: 51052 Date Analyzed: 2009-05-26 QC Preparation: 2009-05-22 Analyzed By: DS Prepared By: DS

MDL

Parameter	Flag	Result	Units	\mathtt{RL}
Total PCB		< 0.000125	mg/L	0.0005
Aroclor 1016 (PCB-1016)		< 0.000122	mg/L	0.0005
Aroclor 1221 (PCB-1221)		< 0.000118	${\sf mg/L}$	0.0005
Aroclor 1232 (PCB-1232)		< 0.0000459	m mg/L	0.0005
Aroclor 1242 (PCB-1242)		< 0.000125	${ m mg/L}$	0.0005
Aroclor 1248 (PCB-1248)		< 0.0000546	${\sf mg/L}$	0.0005
Aroclor 1254 (PCB-1254)		< 0.0000569	${\sf mg/L}$	0.0005
Aroclor 1260 (PCB-1260)		< 0.0000331	${ m mg/L}$	0.0005
Aroclor 1268 (PCB-1268)		< 0.0000282	${ m mg/L}$	

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Deca chlorobiphenyl		0.000480	mg/L	1	0.000500	96	10 - 128

Method Blank (1)

QC Batch: 59873

QC Batch: 59873 Prep Batch: 51103 Date Analyzed: 2009-05-28 QC Preparation: 2009-05-26

Analyzed By: MN Prepared By: MN Report Date: June 4, 2009 Work Order: 9051320 Page Number: 14 of 40 MEWBOU043PIT Penlon Ranch 24 State #2 Eddy Co., NM

				**			
				MDI			
Parameter		Ele	~	MDL Result		Units	RL
Naphthalene		Fla	<u> </u>	<0.0000853		mg/L	0.000
Naphthalene Acenaphthylene				<0.00000768		mg/L mg/L	0.00
Acenaphenyiene Acenaphthene				<0.000103		mg/L mg/L	0.00
Acenaphthene Dibenzofuran			•	<0.000103			0.00
Fluorene				<0.0000861		mg/L	0.00
Anthracene				<0.000170		mg/L	0.00
Anthracene Phenanthrene				<0.0000884		mg/L mg/L	0.00
Fluoranthene				<0.0 0 000069			0.00
Pyrene				<0.0 00 00855		mg/L mg/L	0.00
•						-·.	0.00
Benzo(a)anthracene Chrysene				<0.0000703 <0.000113		mg/L mg/L	0.00
Chrysene Benzo(b)fluoranthene						mg/L mg/L	0.00
Benzo(k)fluoranthene				<0. 0 00134 <0. 0 00227			0.00
Benzo(k)nuoranthene Benzo(a)pyrene				<0.000227		mg/L mg/L	0.00
	,			<0. Q 00253		mg/L mg/L	0.00
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene				<0.000180		mg/L mg/L	0.00
Benzo(g,h,i)perylene				<0.000150		mg/L mg/L	0.00
benzo(g,n,r)peryiene				<0. 6 00136		mg/L	0.00
					Spike	Percent	Recove
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limit
2-Fluorobiphenyl		0.0436	mg/L	ħ	0.0800	54	10 - 14
Nitrobenzene-d5		0.0411	mg/L	ī	0.0800	51	10 - 14
Terphenyl-d14		0.0566	mg/L	1	0.0800	71	10 - 26
Method Blank (1)	QC Bate	rh: 59951					
QC Batch: 59951			Date Analyzed:	20 09-0 5-28		Analy	zed By: S
Prep Batch: 51169			QC Preparation:	20 09- 05-27		Prepa	red By: S
			ī	MDL			
Parameter	F	lag	R	esult		Units	F
Nitrate-N			<0.	0700		mg/L	0
Method Blank (1)	QC Bate	rh: 59951					
QC Batch: 59951			Date Analyzed:	2009-05-28		Analy	zed By: S
Prep Batch: 51169			QC Preparation:	20 09- 05-27		•/	red By: S
				MDF		-	-
Parameter		Flag		MDL Result		Units	F
CDID Chlorida		riag		resurt		UIIIUS /T	1

< 0.137

mg/L

0.5

SPLP Chloride

Report Date: June 4, 2 MEWBOU043PIT	009	Work Orde Penlon Ranch		Page Number: 15 of 40 Eddy Co., NM			
Method Blank (1)	QC Batch: 59951						
QC Batch: 59951		Date Analyzed:	2009-05-28		Analyzed By	SS	
Prep Batch: 51169		QC Preparation:			Prepared By:		
			MDL				
Parameter	Flag		Result	Units		RL	
SPLP Fluoride		<	0.0889	mg/L		0.2	
Method Blank (1)	QC Batch: 60000						
QC Batch: 60000		Date Analyzed:	2009-06-01		Analyzed By:	ΑH	
Prep Batch: 51209		QC Preparation:	2009-06-01		Prepared By:	AH	
			MDL				
Parameter	Flag		Result	Units		RL	
SPLP Cyanide		<(0.0148	mg/L		0.015	
Method Blank (1) QC Batch: 60107 Prep Batch: 51282 Parameter	QC Batch: 60107	Date Analyzed: QC Preparation:	2009-06-04 2009-06-04 MDL	Unito	Analyzed By: Prepared By:	RR KV RL	
SPLP Cadmium	Flag		Result 0.00140	Units mg/L		0.005	
Method Blank (1) QC Batch: 60107 Prep Batch: 51282	QC Batch: 60107	Date Analyzed: QC Preparation:	2009-06-04 2009-06-04		Analyzed By: Prepared By:	RR KV	
Parameter	Elom		MDL	Timitan		Dī	
SPLP Lead	Flag		esult 00320	Units mg/L		$\frac{\text{RL}}{0.01}$	
Method Blank (1)	QC Batch: 60107						
QC Batch: 60107		Date Analyzed:	2009-06-04		Analyzed By:	RR	
Prep Batch: 51282		QC Preparation:	2009-06-04		Prepared By:	KV	

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 16 of 40 Eddy Co., NM

			MDL			
Parameter	Flag		Result	Units		
SPLP Selenium		<	0.0131	mg/L		0.05
Method Blank (1)	QC Batch: 60107					
QC Batch: 60107 Prep Batch: 51282		Date Analyzed: QC Preparation:	2009-06-04 2009-06-04		Analyzed By: Prepared By:	RR KV
Parameter	Flag	1	MDL Result	Units		RL
SPLP Arsenic		<0.	00430	mg/L		0.01
Method Blank (1)	QC Batch: 60107					
QC Batch: 60107 Prep Batch: 51282		Date Analyzed: QC Preparation:	2009-06-04 2009-06-04	,	Analyzed By: Prepared By:	RR KV
Parameter	Flag		MDL Result	Units		RL
SPLP Barium		<0	.00170	mg/L		0.1
Method Blank (1)	QC Batch: 60107					
QC Batch: 60107 Prep Batch: 51282		Date Analyzed: QC Preparation:	2009-06-04 2009-06-04		Analyzed By: Prepared By:	RR KV
Parameter	Flag		MDL Result	Units		RL
SPLP Chromium		<0	.000900	mg/L		0.005
Method Blank (1)	QC Batch: 60107					
QC Batch: 60107 Prep Batch: 51282		Date Analyzed: QC Preparation:	2009-06-04 2009-06-04		Analyzed By: Prepared By:	RR KV
Parameter	Flag		MDL esult	Units		RL

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 17 of 40 Eddy Co., NM

Method Blank (1)

QC Batch: 60107

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Analyzed By: RR Prepared By: KV

MDL

Parameter Flag Result Units RL< 0.0105 SPLP U mg/L 0.05

Laboratory Control Spike (LCS-1)

QC Batch:

59493

Date Analyzed:

2009-05-15

Analyzed By: CM

Prep Batch:

50774

QC Preparation: 2009-05-15 Prepared By:

	LCS			$\mathbf{S}_{\mathbf{pike}}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
TRPHC	268	mg/Kg	1	250	< 5.28	107	75.5 - 136

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	253	mg/Kg	1	250	< 5.28	101	75.5 - 136	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 50806

59525

Date Analyzed: 2009-05-15 QC Preparation: 2009-05-15

Analyzed By: ER Prepared By: ER

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit 2.02 mg/Kg Benzene 1 2.00 < 0.00505 101 79.1 - 109 1.96 Toluene mg/Kg 1 2.00 98 79.4 - 111 0.0132 1.98 2.00 99 Ethylbenzene mg/Kg 1 < 0.00630 77.7 - 112 Xylene 5.93 mg/Kg 6.00 0.044 99 78.4 - 112 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	2.03	mg/Kg	1	2.00	< 0.00505	102	79.1 - 109	0	20
Toluene	1.95	mg/Kg	1	2.00	0.0132	98	79.4 - 111	0	20
Ethylbenzene	1.98	mg/Kg	1	2.00	< 0.00630	99	77.7 - 112	0	20
Xylene	5.93	mg/Kg	1	6.00	0.044	99	78.4 - 112	0	20

Work Order: 9051320 Penlon Ranch 24 State #2

Page	Number:	18	of 40
	Eddy	Co.	, NM

Surrogate	LCS Result	LCSD Result	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	1.91	1.89	mg/Kg	1	2.00	96	94	72.9 - 111
4-Bromofluorobenzene (4-BFB)	1.96	1.91	mg/Kg	1	2.00	98	96	68.5 - 114

Laboratory Control Spike (LCS-1)

QC Batch: 59551 Prep Batch: 50826 Date Analyzed: 2009-05-16 QC Preparation: 2009-05-15 Analyzed By: RG Prepared By: RG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	334	mg/Kg	1	250	< 5.66	134	71.2 - 159

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		\mathbf{RPD}
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
DRO	337	mg/Kg	1	250	< 5.66	135	71.2 - 159	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	${ m Rec.}$
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	121	125	mg/Kg	1	100	121	125	46.6 - 172

Laboratory Control Spike (LCS-1)

QC Batch: 59567 Prep Batch: 50844 Date Analyzed: 2009-05-18 QC Preparation: 2009-05-18 Analyzed By: ER Prepared By: ER

	LCS			Spike	Matrix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit
GRO	18.8	mg/Kg	1	20.0	< 0.403	94	78.1 - 109

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	20.0	mg/Kg	1	20.0	< 0.403	100	78.1 - 109	6	20

_	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	\mathbf{Result}	Units	Dil.	Amount	Rec.	${ m Rec.}$	Limit
Trifluorotoluene (TFT)	1.81	1.97	mg/Kg	1	2.00	90	98	80.3 - 108
4-Bromofluorobenzene (4-BFB)	1.76	1.85	mg/Kg	1	2.00	88	92	82.6 - 109

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 19 of 40 Eddy Co., NM

Laboratory Control Spike (LCS-1)

QC Batch: 59740 Prep Batch: 50958 Date Analyzed 2009-05-22 QC Preparation: 2009-05-21 Analyzed By: TP Prepared By: TP

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Mercury	0.00103	mg/L	1	0.00100	< 0.0000329	103	90.1 - 112

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Mercury	0.00104	mg/L	1	0.00100	< 0.0000329	104	90.1 - 112	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 59766 Prep Batch: 51018 Date Analyzed: 2009-05-22 QC Preparation: 2009-05-22 Analyzed By: KB Prepared By: KB

	LCS			Spike	Matrix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec	Limit
1,1-Dichloroethene	52.6	$\mu \mathrm{g/L}$	1	50.0	< 0.136	105	70 - 130
Benzene	50.8	$\mu { m g}/{ m L}$	1	50.0	< 0.146	102	70 - 130
Trichloroethene (TCE)	49.9	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.117	100	70 - 130
Toluene	47.0	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.0600	94	70 - 130
Chlorobenzene	49.8	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.0540	100	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
1,1-Dichloroethene	53.5	$\mu \mathrm{g/L}$	1	50.0	< 0.136	107	70 - 130	2	
Benzene	52.6	$\mu { m g}/{ m L}$	1	50.0	< 0.146	105	70 - 130	4	
Trichloroethene (TCE)	51.4	$\mu { m g}/{ m L}$	1	50.0	< 0.117	103	70 - 130	3	
Toluene	49.6	$\mu { m g}/{ m L}$	1	50.0	< 0.0600	99	70 - 130	5	
Chlorobenzene	51.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0540	102	70 - 130	2	

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	50.5	49.7	$\mu \mathrm{g/L}$	1	50.0	101	99	70 - 130
Toluene-d8	47.4	48.1	$\mu \mathrm{g/L}$	1	50.0	95	96	70 - 130
4-Bromofluorobenzene (4-BFB)	50.6	49.5	$\mu { m g}/{ m L}$	1	50.0	101	99	70 - 130

Report Date: June 4, 2009 Work Order: 9051320 Page Number: 20 of 40 MEWBOU043PIT Penlon Ranch 24 State #2 Eddy Co., NM

Laboratory Control Spike (LCS-1)

QC Batch: 59811 Date Analyzed: 2009-05-26 Analyzed By: DS
Prep Batch: 51052 QC Preparation: 2009-05-22 Prepared By: DS

LCS Spike Matrix Rec. Param Result Units Dil. **Ámount** Result Rec. Limit Aroclor 1260 (PCB-1260) < 0.0000331 96 0.00191 mg/L 0.00200 10 - 128

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		${f Rec.}$		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Aroclor 1260 (PCB-1260)	0.00182	mg/L	1	0.00200	< 0.0000331	91	10 - 128	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Deca chlorobiphenyl	0.000480	0.000467	mg/L	1	0.000500	96	93	10 - 128

Laboratory Control Spike (LCS-1)

QC Batch: 59873 Date Analyzed: 2009-05-28 Analyzed By: MN
Prep Batch: 51103 QC Preparation: 2009-05-26 Prepared By: MN

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Naphthalene	0.0267	mg/L	1	0.0800	< 0.0000853	33	10 - 141
Acenaphthylene	0.0335	$_{ m mg/L}$	1	0.0800	< 0.0000768	42	10 - 152
Acenaphthene	0.0331	mg/L	1	0.0800	< 0.000103	41	10 - 151
Dibenzofuran	0.0313	mg/L	1	0.0800	< 0.000200	39	10 - 148
Fluorene	0.0365	${ m mg/L}$	1	0.0800	< 0.0000861	46	10 - 172
Anthracene	0.0341	${ m mg/L}$	1	0.0800	< 0.000170	43	19.6 - 172
Phenanthrene	0.0349	${ m mg/L}$	1	0.0800	< 0.0000884	44	22.5 - 172
Fluoranthene	0.0377	$_{ m mg/L}$	1	0.0800	< 0.0000969	47	17.3 - 187
Pyrene	0.0390	${ m mg/L}$	1	0.0800	< 0.0000855	49	14.9 - 199
Benzo(a)anthracene	0.0363	${ m mg/L}$	1	0.0800	< 0.0000703	45	19.4 - 185
Chrysene	0.0370	${ m mg/L}$	1	0.0800	< 0.000113	46	18.4 - 188
Benzo(b)fluoranthene	0.0307	$_{ m mg/L}$	1	0.0800	< 0.000134	38	10 - 193
Benzo(k)fluoranthene	0.0417	$\mathrm{mg/L}$	1	0.0800	< 0.000227	52	27.8 - 196
Benzo(a)pyrene	0.0390	${ m mg/L}$	1	0.0800	< 0.000200	49	12.4 - 205
Indeno(1,2,3-cd)pyrene	0.0368	${ m mg/L}$	1	0.0800	< 0.000253	46	10 - 198
Dibenzo(a,h)anthracene	0.0366	mg/L	1	0.0800	< 0.000180	46	10 - 172
Benzo(g,h,i)perylene	0.0368	mg/L	1	0.0800	< 0.000158	46	10 - 186

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 21 of 40

Analyzed By: SS

Prepared By: SS

Eddy Co., NM

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Naphthalene	0.0266	mg/L	1	0.0800	< 0.0000853	33	10 - 141	0	20
Acenaphthylene	0.0335	mg/L	1	0.0800	< 0.0000768	42	10 - 152	0	20
Acenaphthene	0.0316	mg/L	1	0.0800	< 0.000103	40	10 - 151	5	20
Dibenzofuran	0.0289	mg/L	1	0.0800	< 0.000200	36	10 - 148	8	20
Fluorene	0.0331	mg/L	1	0.0800	< 0.0000861	41	10 - 172	10	20
Anthracene	0.0340	mg/L	1	0.0800	< 0.000170	42	19.6 - 172	0	20
Phenanthrene	0.0348	mg/L	1	0.0800	< 0.0000884	44	22.5 - 172	0	20
Fluoranthene	0.0380	mg/L	1	0.0800	< 0.0000969	48	17.3 - 187	1	20
Pyrene	0.0398	mg/L	1	0.0800	< 0.0000855	50	14.9 - 199	2	20
Benzo(a)anthracene	0.0374	mg/L	1	0.0800	< 0.0000703	47	19.4 - 185	3	20
Chrysene	0.0360	${ m mg/L}$	1	0.0800	< 0.000113	45	18.4 - 188	3	20
Benzo(b)fluoranthene	0.0356	mg/L	1	0.0800	< 0.000134	44	10 - 193	15	20
Benzo(k)fluoranthene	0.0425	mg/L	1	0.0800	< 0.000227	53	27.8 - 196	2	20
Benzo(a)pyrene	0.0415	mg/L	1	0.0800	< 0.000200	52	12.4 - 205	6	20
Indeno(1,2,3-cd)pyrene	0.0378	mg/L	1	0.0800	< 0.000253	47	10 - 198	3	20
Dibenzo(a,h)anthracene	0.0365	mg/L	1	0.0800	< 0.000180	46	10 - 172	0	20
Benzo(g,h,i)perylene	0.0373	mg/L	1	0.0800	< 0.000158	47	10 - 186	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
2-Fluorobiphenyl	0.0286	0.0338	mg/L	1	0.0800	36	42	10 - 165
Nitrobenzene-d5	0.0364	0.0322	${ m mg/L}$	1	0.0800	46	40	10 - 157
Terphenyl-d14	0.0390	0.0396	${ m mg/L}$	1	0.0800	49	50	10 - 220

Laboratory Control Spike (LCS-1)

QC Batch: 59951 Prep Batch: 51169

Param

Nitrate-N

Date Analyzed: 2009-05-28 QC Preparation: 2009-05-27

LCS Spike Matrix Rec. Result Units Dil. Amount Result Rec. Limit 5.12 < 0.0700 102 mg/L 5.00 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Nitrate-N	4.76	mg/L	1	5.00	< 0.0700	95	90 - 110	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 59951 Date Analyzed: 2009-05-28 Analyzed By: SS Prep Batch: 51169 QC Preparation: 2009-05-27 Prepared By: SS

Page Number: 22 of 40 Work Order: 9051320 MEWBOU043PIT Penlon Ranch 24 State #2 Eddy Co., NM

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Chloride	23.1	mg/L	1	25.0	< 0.137	92	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
SPLP Chloride	23.1	mg/L	1	25.0	< 0.137	92	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 59951 Prep Batch: 51169 Date Analyzed: 2009-05-28 QC Preparation: 2009-05-27

Analyzed By: SS Prepared By: SS

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Fluoride	4.65	mø/T.	1	5.00	< 0.0889	93	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Fluoride	4.65	mg/L	1	5.00	< 0.0889	93	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Prep Batch: 51282

Analyzed By: RR Prepared By

	LCS			Spike	· · · Matrix	~	Rec.
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
SPLP Cadmium	0.244	mg/L	1	0.250	< 0.00140	98	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Cadmium	0.246	mg/L	1	0.250	< 0.00140	98	85 - 115	1	20

MEWBOU043PIT Penlon Ranch 24 State #2

Page Number: 23 of 40 Eddy Co., NM

Laboratory Control Spike (LCS-1)

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04

Work Order: 9051320

Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Lead	0.503	mg/L	1	0.500	< 0.00320	101	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Lead	0.510	mg/L	1	0.500	< 0.00320	102	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount .,	Result	Rec.	Limit
SPLP Selenium	0.445	mg/L	1	0.500	< 0.0131	. 89	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			\mathbf{Spike}	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Selenium	0.448	mg/L	1	0.500	< 0.0131	90	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
SPLP Arsenic	0.478	mg/L	1	0.500	< 0.00430	96	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Arsenic	0.483	mg/L	1	0.500	< 0.00430	97	85 - 115	1	20

Report Date: June 4, 2009 Work Order: 9051320 Page Number: 24 of 40 MEWBOU043PIT Penlon Ranch 24 State #2 Eddy Co., NM

TEWDO CO 451 11 Tellion Railen 24 Sta

Laboratory Control Spike (LCS-1)

QC Batch: 60107 Date Analyzed: 2009-06-04 Analyzed By: RR
Prep Batch: 51282 QC Preparation: 2009-06-04 Prepared By: KV

LCS Spike Matrix Rec. Param Result Dil. Result Limit Units Amount Rec. **SPLP Barium** 1.02 mg/L 1.00 < 0.00170 102 85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		${f Rec}.$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Barium	1.03	mg/L	1	1.00	< 0.00170	103	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

SPLP Chromium

QC Batch: 60107 Date Analyzed: 2009-06-04 Analyzed By: RR
Prep Batch: 51282 QC Preparation: 2009-06-04 Prepared By: KV

LCS Spike Matrix Rec.
Param Result .. Units Dil. Amount .. Result Rec. Limit

0.100

< 0.000900

mg/L

85 - 115

88

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

0.0880

	LCSD			\mathbf{Spike}	Matrix	Rec.			RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Chromium	0.0890	mg/L	1	0.100	< 0.000900	89	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 60107 Date Analyzed: 2009-06-04 Analyzed By: RR
Prep Batch: 51282 QC Preparation: 2009-06-04 Prepared By: KV

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit SPLP Silver 0.119 mg/L 0.125 < 0.00210 95 85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

LCSD Spike Matrix Rec. **RPD** Param Result Units Dil. Amount Result Rec. Limit **RPD** Limit SPLP Silver 0.120 0.125 < 0.00210 96 85 - 115 20 mg/L

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 25 of 40 Eddy Co., NM

Laboratory Control Spike (LCS-1)

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 200**9-06-**04 QC Preparation: 200**9-06-**04 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit
SPLP U	0.509	mg/L	1	0.500	< 0.0105	102	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP U	0.518	mg/L	1	0.500	< 0.0105	104	90 - 110	2	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 59493 Prep Batch: 50774 Date Analyzed: 2009-05-15 QC Preparation: 2009-05-15 Analyzed By: CM Prepared By: CM

Analyzed By: ER

Prepared By: ER

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
TRPHC	317	mg/Kg	1	250	89.06	91	10 - 354

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	326	mg/Kg	1	250	89.06	95	10 - 354	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 195729

 QC Batch:
 59525
 Date Analyzed:
 2009-05-15

 Prep Batch:
 50806
 QC Preparation:
 2009-05-15

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	1.99	mg/Kg	1	2.00	< 0.00505	100	55.2 - 162
Toluene	2.10	mg/Kg	1	2.00	0.0096	104	56.5 - 172
Ethylbenzene	2.26	mg/Kg	1	2.00	< 0.00630	113	62.3 - 180
Xylene	6.80	mg/Kg	1	6.00	0.0167	113	62.2 - 182

Work Order: 9051320 Penlon Ranch 24 State #2

RPD MSD Spike Rec. Matrix Limit **RPD** Result Dil. Amount Result Rec. Limit Param Units 55.2 - 162 20 < 0.00505 92 Benzene 1.85 mg/Kg 2.00 1 20 56.5 - 172 6 Toluene 1.98 mg/Kg 1 2.00 0.0096 98 Ethylbenzene 2.09 mg/Kg 2.00 < 0.00630 104 62.3 - 1808 20 1 62.2 - 182 20 6.26 6.00 0.0167 104 Xylene mg/Kg 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.02	2.05	mg/Kg	1	2	101	102	52.2 - 173
4-Bromofluorobenzene (4-BFB)	2.18	2.18	mg/Kg	1	2	109	109	63.5 - 171

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 59551 Date Analyzed:

2009-05-16

Analyzed By: RG

Prep Batch: 50826

QC Preparation: 2009-05-15

Prepared By: RG

Page Number: 26 of 40

Eddy Co., NM

	MS	·		Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	255	mg/Kg	5	250	<28.3	102	10 - 218

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	250	mg/Kg	5	250	<28.3	100	10 - 218	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	${f Rec}.$
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	121	120	mg/Kg	5	100	121	120	46.6 - 172

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 59567 Prep Batch: 50844 Date Analyzed: QC Preparation: 2009-05-18

2009-05-18

Analyzed By: ER Prepared By: ER

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	Amount	Result	$\mathbf{Rec.}$	Limit
GRO	40.1	mg/Kg	1	20.0	17.8	112	54.3 - 180

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 27 of 40 Eddy Co., NM

matrix spikes co	ontinued
------------------	----------

Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
GRO	36.5	mg/Kg	1	20.0	17.8	94	54.3 - 180	9	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	. Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.23	2.20	mg/Kg	1	2	112	110	65.8 - 165
4-Bromofluorobenzene (4-BFB)	2.68	2.62	mg/Kg	1	2	134	1 3 1	68.6 - 210

Spiked Sample: 195729 Matrix Spike (MS-1)

QC Batch: 59740 Date Analyzed: 2009-05-22 Analyzed By: TP

Prep Batch: 50958

QC Preparation: 2009-05-21

Prepared By:

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Mercury	0.00111	mg/L	1	0.00100	< 0.0000329	111	88 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Mercury	0.00108	mg/L	1	0.00100	< 0.0000329	108	88 - 117	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (xMS-1) Spiked Sample:

QC Batch: 59766 Prep Batch: 51018 Date Analyzed: 2009-05-22 QC Preparation: 2009-05-22 Analyzed By: KB Prepared By: KB

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
1,1-Dichloroethene	51.1	$\mu \mathrm{g/L}$	1	50.0	< 0.136	102	70 - 130
Benzene	48.8	$\mu { m g}/{ m L}$	1	50.0	< 0.146	98	70 - 130
Trichloroethene (TCE)	45.6	$\mu { m g}/{ m L}$	1	50.0	< 0.117	91	70 - 130
Toluene	45.1	$\mu { m g}/{ m L}$	1	50.0	< 0.0600	90	70 - 130
Chlorobenzene	46.5	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.0540	93	70 - 130

Work Order: 9051320 Penlon Ranch 24 State #2

Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
1,1-Dichloroethene	57.2	$\mu \mathrm{g/L}$	1	50.0	< 0.136	114	70 - 130	11	
Benzene	55.1	$\mu \mathrm{g/L}$	1	50.0	< 0.146	110	70 - 130	12	
Trichloroethene (TCE)	52.5	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.117	105	70 - 130	14	
Toluene	50.2	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.0600	100	70 - 130	11	
Chlorobenzene	52.3	$\mu \mathrm{g}/\mathrm{L}$	1	50.0	< 0.0540	105	70 - 130	12	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	52.2	51.2	$\mu g/L$	1	50	104	102	70 - 130
Toluene-d8	48.3	47.8	$\mu \mathrm{g}/\mathrm{L}$	1	50	97	96	70 - 130
4-Bromofluorobenzene (4-BFB)	50.8	51.3	$\mu { m g}/{ m L}$	1	50	102	103	70 - 130

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 59951 Prep Batch: 51169 Date Analyzed: 2009-05-28 QC Preparation: 2009-05-27

Analyzed By: SS Prepared By: SS

Page Number: 28 of 40

Eddy Co., NM

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Nitrate-N	27.6	mg/L	5	· 25.0	2.39	101	73.6 - 122

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Nitrate-N	28.9	mg/L	5	25.0	2.39	106	73.6 - 122	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 59951 Prep Batch: 51169 Date Analyzed: 2009-05-28 QC Preparation: 2009-05-27

Analyzed By: SS Prepared By: SS

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Chloride	138	mg/L	5	125	16	' 98	49.8 - 149

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Chloride	142	mg/L	5	125	16	101	49.8 - 149	3	20

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 29 of 40 Eddy Co., NM

Matrix Spike (MS-1)

Spiked Sample: 195729

QC Batch: 59951 Prep Batch: 51169 Date Analyzed: 2009-05-28 Analyzed By: SS

QC Preparation: 2009-05-27

Prepared By: SS

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Fluoride	24.8	mg/L	5	25.0	< 0.444	99	63.5 - 127

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Fluoride	26.8	mg/L	5	25.0	< 0.444	107	63.5 - 127	8	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282

Prep Batch: 51282

Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result	, Units	Dil.	Amount	. Result	Rec.	Limit
SPLP Cadmium	0.248	mg/L	1	0.250	< 0.00140	99	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		\mathbf{RPD}
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Cadmium	0.237	mg/L	1	0.250	< 0.00140	95	75 - 125	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 60107 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Lead	0.506	mg/L	1	0.500	< 0.00320	101	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Lead	0.483	mg/L	1	0.500	< 0.00320	97	75 - 125	5	20

Work Order: 9051320 Penlon Ranch 24 State #2

Page Number: 30 of 40 Eddy Co., NM

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Selenium	0.464	mg/L	1	0.500	< 0.0131	93	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Selenium	0.441	mg/L	1	0.500	< 0.0131	88	75 - 125	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	\mathbf{Result} .	Units	Dil.	Amount .	. Result	Rec.	Limit
SPLP Arsenic	0.509	mg/L	1	0.500	< 0.00430	102	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Arsenic	0.484	mg/L	1	0.500	< 0.00430	97	75 - 125	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result	Units	$\mathbf{Dil}.$	Amount	Result	Rec.	Limit
SPLP Barium	1.44	mg/L	1	1.00	0.419	102	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathbf{Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Barium	1.38	mg/L	1	1.00	0.419	96	75 - 125	4	20

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 31 of 40 Eddy Co., NM

Matrix Spike (MS-1) S

Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Chromium	0.0930	mg/L	1	0.100	< 0.000900	93	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Chromium	0.0880	mg/L	1	0.100	< 0.000900	88	75 - 125	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
SPLP Silver	0.125	mg/L	1	0.125	< 0.00210	100	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Silver	0.119	mg/L	1	0.125	< 0.00210	95	75 - 125	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 195729

QC Batch: 60107 Prep Batch: 51282 Date Analyzed: 2009-06-04 QC Preparation: 2009-06-04 Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec .
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP U	0.515	mg/L	1	0.500	< 0.0105	103	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP U	0.515	mg/L	1	0.500	< 0.0105	103	90 - 110	0	

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 32 of 40 Eddy Co., NM

Standard (ICV-1)

QC Batch: 59493

Date Analyzed: 2009-05-15

Analyzed By: CM

			ICVs	ICVs	ICVs	Percent	
			\mathbf{True}	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	113	113	80 - 120	2009-05-15

Standard (CCV-1)

QC Batch: 59493

Date Analyzed: 2009-05-15

Analyzed By: CM

			\mathbf{CCVs}	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	87.2	87	80 - 120	2009-05-15

Standard (CCV-1)

QC Batch: 59525

Date Analyzed: 2009-05-15

Analyzed By: ER

		, .	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	. Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0984	98	80 - 120	2009-05-15
Toluene		mg/Kg	0.100	0.0956	96	80 - 120	2009-05-15
Ethylbenzene		mg/Kg	0.100	0.0966	97	80 - 120	2009-05-15
Xylene		mg/Kg	0.300	0.289	96	80 - 120	2009-05-15

Standard (CCV-2)

QC Batch: 59525

Date Analyzed 2009-05-15

Analyzed By: ER

			\mathbf{CCVs}	\mathbf{CCVs}	\mathbf{CCVs}	Percent	
			\mathbf{True}	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.101	101	80 - 120	2009-05-15
Toluene		${ m mg/Kg}$	0.100	0.0993	99	80 - 120	2009-05-15
Ethylbenzene		mg/Kg	0.100	0.0996	100	80 - 120	2009-05-15
Xylene		mg/Kg	0.300	0.297	99	80 - 120	2009-05-15

Standard (CCV-1)

QC Batch: 59551

Date Analyzed: 2009-05-16

Analyzed By: RG

MEWBOU043PIT

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 33 of 40 Eddy Co., NM

2009-05-22

Analyzed By: TP

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	300	120	80 - 120	2009-05-16
Standard	(CCV-2)						
QC Batch:	59551		Date Ana	alyzed: 2009-08	5-16	Anal	yzed By: RG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	290	116	80 - 120	2009-05-16
Standard	(CCV-1))					
QC Batch:	59567		Date Ana	alyzed: 2009-0	5-18	Anal	yzed By: ER
						.	•
			CCVs True	CCVs Found	CCVs Percent	Percent	Data
Param	Flag	Units	Conc.	Conc <u>.</u>	Recovery	Recovery Limits	Date Analyzed
GRO	rıng	mg/Kg	1.00	0.948	95	80 - 120	2009-05-18
GIO		mg/ Ng	1.00	0.940	90	60 - 120	2009-00-10
Standard	(CCV-2))					
QC Batch:	59567		Date Ana	alyzed: 2009-0	5-18	· Anal	yzed By: ER
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.03	103	80 - 120	2009-05-18
Standard	(ICV-1)						
QC Batch:	59740		Date Ana	alyzed: 2009-0	5-22	Anal	yzed By: TP
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param		Flag Unit	s Conc.	Conc.	Recovery	Limits	Analyzed

Standard (CCV-1)

SPLP Mercury

QC Batch: 59740

Date Analyzed: 2009-05-22

0.000979

98

90 - 110

0.00100

mg/L

Work Order: 9051320

Penlon Ranch 24 State #2

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Mercury		mg/L	0.00100	0.000978	98	90 - 110	2009-05-22

Standard (CCV-1)

QC Batch: 59766

Date Analyzed: 2009-05-22

Analyzed By: KB

Page Number: 34 of 40

Eddy Co., NM

	T-1	T T •	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Vinyl Chloride		$\mu \mathrm{g/L}$	50.0	49.1	98	80 - 120	2009-05-22
1,1-Dichloroethene		$\mu { m g}/{ m L}$	50.0	49 .1	98	80 - 120	2009-05-22
Chloroform		$\mu { m g}/{ m L}$	50.0	49.6	99	80 - 120	2009-05-22
1,2-Dichloropropane		$\mu { m g}/{ m L}$	50.0	48.2	96	80 - 120	2009-05-22
Toluene		$\mu { m g}/{ m L}$	50.0	44.6	89	80 - 120	2009-05-22
Chlorobenzene		$\mu_{ m g}/{ m L}$	50.0	46.8	94	80 - 120	2009-05-22
Ethylbenzene		$\mu { m g}/{ m L}$	50.0	46.2	92	80 - 120	2009-05-22

Standard (ICV-1)

QC Batch: 59811

Date Analyzed: 2009-05-26

Analyzed By· DS

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Aroclor 1242 (PCB-1242)		m mg/L	0.400	0.357	89	85 - 115	2009-05-26
Aroclor 1254 (PCB-1254)		mg/L	0.400	0.456	114	85 - 115	2009-05-26
Aroclor 1260 (PCB-1260)		mg/L	0.400	0.407	102	85 - 115	2009-05-26

Standard (CCV-1)

QC Batch: 59811

Date Analyzed: 2009-05-26

Analyzed By: DS

Analyzed By: MN

			\mathbf{CCVs}	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Aroclor 1242 (PCB-1242)		mg/L	0.400	0.342	86	85 - 115	2009-05-26
Aroclor 1254 (PCB-1254)		${ m mg/L}$	0.400	0.459	115	85 - 115	2009-05-26
Aroclor 1260 (PCB-1260)		mg/L	0.400	0.434	108	85 - 115	2009-05-26

Standard (CCV-1)

QC Batch: 59873

Date Analyzed: 2009-05-28

Work Order: 9051320 Penlon Ranch 24 State #2

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Naphthalene		mg/L	60.0	57.4	96	80 - 120	2009-05-28
Acenaphthylene		${ m mg/L}$	60.0	58.2	97	80 - 120	2009-05-28
Acenaphthene		mg/L	60.0	58.2	97	80 - 120	2009-05-28
Dibenzofuran		${ m mg/L}$	60.0	60.2	100	80 - 120	2009-05-28
Fluorene		mg/L	60.0	63.3	106	80 - 120	2009-05-28
Anthracene		mg/L	60.0	58.5	98	80 - 120	2009-05-28
Phenanthrene		mg/L	60.0	57.2	95	80 - 120	2009-05-28
Fluoranthene		m mg/L	60.0	56.5	94	80 - 120	2009-05-28
Pyrene		${ m mg/L}$	60.0	60.6	101	80 - 120	2009-05-28
Benzo(a)anthracene		mg/L	60.0	58.2	97	80 - 120	2009-05-28
Chrysene		${ m mg/L}$	60.0	55.9	93	80 - 120	2009-05-28
Benzo(b)fluoranthene		${ m mg/L}$	60.0	57.1	95	80 - 120	2009-05-28
Benzo(k)fluoranthene		mg/L	60.0	65.8	110	80 - 120	2009-05-28
Benzo(a)pyrene		mg/L	60.0	63.2	105.	80 - 120	2009-05-28
Indeno(1,2,3-cd)pyrene		mg/L	60.0	58.4	97	80 - 120	2009-05-28
Dibenzo(a,h)anthracene		mg/L	60.0	58.5	98	80 - 120	2009-05-28
Benzo(g.h,i)perylene		mg/L	60.0	58.0	97	80 - 120	2009-05-28

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limit
2-Fluorobiphenyl		57.8	mg/L	1	60.0	96	80 - 120
Nitrobenzene-d5		63.8	mg/L	1	60.0	106	80 - 120
Terphenyl-d14		57.4	mg/L	1	60.0	96	80 - 120

Standard (CCV-1)

QC Batch: 59951

Date Analyzed: 2009-05-28

Analyzed By: SS

Page Number: 35 of 40

Eddy Co., NM

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	${f Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
Nitrate-N		mg/L	~ 5.00 ·	5 18	104	90 - 110	2009-05-28

Standard (CCV-1)

QC Batch: 59951

Date Analyzed: 2009-05-28

Analyzed By: SS

	- 25	J+	\mathbf{CCVs}	\mathbf{CCVs}	\mathbf{CCVs}	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chloride		mg/L	25.0	23.3	93	90 - 110	2009-05-28

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 36 of 40 Eddy Co., NM

Standard ((CCV-1)
Dealloan	

QC Batch: 59951

Date Analyzed: 2009-05-28

Analyzed By: SS

			\mathbf{CCVs}	CCVs	\mathbf{CCVs}	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Fluoride		mg/L	5.00	4.78	96	90 - 110	2009-05-28

Standard (CCV-2)

QC Batch: 59951

Date Analyzed: 2009-05-28

Analyzed By: SS

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Nitrate-N		mg/L	5.00	5.18	104	90 - 110	2009-05-28

Standard (CCV-2)

QC Batch: 59951

Date Analyzed: 2009-05-28

Analyzed By: SS

			\mathbf{CCVs}	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chloride		mg/L	25.0	23.1	92	90 - 110	2009-05-28

Standard (CCV-2)

QC Batch: 59951

Date Analyzed: 2009-05-28

Analyzed By: SS

			\mathbf{CCVs}	\mathbf{CCVs}	CCVs	Percent	
			, True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Fluoride		mg/L	5.00	4.71	94	90 - 110	2009-05-28

Standard (ICV-1)

QC Batch: 60000

Date Analyzed: 2009-06-01

Analyzed By: AH

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Cyanide		mg/L	0.120	0.127	106	80 - 120	2009-06-01

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 37 of 40 Eddy Co., NM

Standard ((CCV-1)

QC Batch: 60000

Date Analyzed: 2009-06-01

Analyzed By: AH

			CCVs	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Cyanide		mg/L	0.120	0.125	104	80 - 120	2009-06-01

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Cadmium		mg/L	1.00	0.986	99	90 - 110	2009-06-04

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Lead		mg/L	2.00	1.99	100	90 - 110	2009-06-04

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Selenium		mg/L	1.00	1.02	102	90 - 110	2009-06-04

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Arsenic		mg/L	2.00	1.97	98	90 - 110	2009-06-04

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 38 of 40 Eddy Co., NM

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Barium		m mg/L	1.00	1.03	103	90 - 110	2009-06-04

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			ICVs True	ICVs	ICVs	Percent	Doto
			rrue	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chromium		mg/L	1.00	1.02	102	90 - 110	2009-06-04

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: † RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	\mathbf{Date}
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Silver		mg/L	0.250	0.252	101	90 - 110	2009-06-04

Standard (ICV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP U		mg/L	1.00	1.02	102 .	90 110	2009-06-04

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

			CCVs	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Cadmium		mg/L	1.00	0.964	96	90 - 110	2009-06-04

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 39 of 40 Eddy Co., NM

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			CCVs	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Lead		mg/L	1.00	0.986	99	90 - 110	2009-06-04

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			CCVs	CCVs	\mathbf{CCVs}	Percent	
			${f True}$	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Selenium		mg/L	1.00	0.989	99	90 - 110	2009-06-04

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			\mathbf{CCVs}	\mathbf{CCVs}	Percent		
			True	Found	Percent	" Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Arsenic		mg/L	1.00	0.988	99	90 - 110	2009-06-04

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			\mathbf{CCVs}	\mathbf{CCVs}	CCVs	Percent	*
			\mathbf{True}	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Barium		mg/L	1.00	1.01	101	90 - 110	2009-06-04

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chromium		mg/L	1.00	0.972	97	90 - 110	2009-06-04

Work Order: 9051320 Penlon Ranch 24 State #2 Page Number: 40 of 40 Eddy Co., NM

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Silver		mg/L	0.125	0.122	98	90 - 110	2009-06-04

Standard (CCV-1)

QC Batch: 60107

Date Analyzed: 2009-06-04

			CCVs	CCVs	\mathbf{CCVs}	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
$\overline{\mathrm{SPLP}\;\mathrm{U}}$		mg/L	1.00	0.956	96	90 - 110	2009-06-04

LAB Order ID# 90513

7051320

Page____ of ____

TraceAnalysis, Inc.

email. lab@traceanalysis com

6701 Aberdeen Avenue Suite 9 **Lubbock, Texas 79424** Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 5002 Basın Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313 200 East Sunset Rd Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 6015 Harris Pkwy . Suite 110 Ft Worth, Texas 76132 Tel (817) 201-5260

email lab@tracea	illalys	is cui										1 (60	0) 3	78-1296	_										•	(000) 300)-J44	+0								
Company Name: TALON LPE		U	وع				ne #		,																				QU								
Address: (Street, City, Zip)						Fax	#:	-40						· · · · · · · · · · · · · · · · · · ·	······································	1					•			or	S	ре	CÍ	ry	W	etr	OC	1 N	Ο.)			. !
Address: (Street, City, Zip) 318 F TAY/8 HOSES Contact Person:	<u> </u>	Y M	<u></u>	<8:	40	F-m	ail:									-	•	•	*		C. C. C. Dh Se Ho					7			ĺ				1			5	
ER Taylor Invoice to:																		3		\mathcal{H}	28 4	20				533					,		1			standard	
Invoice to:		<i>-</i> .					~ -		•	_					,	7	,	<u>Ş</u>		4	6 6	3				1								1		sta	
(If different from above) MEW ROUNE Project #:	0	iL_		AT	アル	Pro	ار iect	VIIC Nam	4.4 e:		d	אר כינו	R	11/1	<u>, </u>	48	624	E	ان	7	B (E	2				BS	55	-					S			Tom	
(If different from above) MSW ROUNE Project #: MSW ROUND PIT Project Location (including state):		1	> Σ	١٧	-O.	1	en	NC	1+	J.	4	ST	47	E#	2	/ 8260B / 624	8260B / 624	TX1005 Ext(C35)	ΞÌ	إبرا		5				*	/ 625				_	1 1	7		61	ent	
Project Location (including state):				•	۲).	San	npler	Sig	natı	ıre.						1 83	826	Ě	à	X	ð,	5				324	202		ω		5		2 कि		2	ffer	
Eppy COUNTY NM	T	Γ	Τ				1	PR	ESE	RV	ATIN	/E	Т			- 6	602 /	305	(DRQ/ TVHC	*	יינט	2	les			8/6	82		9		7				9	- -	
	ERS	Volume / Amount	_	MA	TRIX	· · · · · · · · · · · · · · · · · · ·	ļ	,	ME	THO	D		\dashv	SAM	PLING	8021B / 602	9/2	X	GRO	625	Total Metals 43 63 69 Co	۾ اخ	TCLP Semi Volatiles	des		3260	GC/MS Semi Vol 8270C / 6	PCB's 8082 / 608	81A	Moisture Content	CPLS CHUNCIONS	_	1		برر	, E	PloH
LAB# FIELD CODE	CONTAINERS	/ Arr			l _u	اد						1	ı			500	27	E	111	ပ္ထု	S	Sate C	Ē	stic		Ş	Sem	282	S S	ع ادُ	7	Ś	2		FINDRIPE	pun	
/LAB USE\	TNC	am.	WATER			5		5	ō	ΞÌ		ᆈ	١	щ	ш	ļ,	ή ×	(a)	8	827	Met	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P S	P P		MS	MS	,s 8	Sicia	1 2	3	3	Œ	5	0	Aro	
(Chry	Ü #	§	×	SOIL	AIK	3	무	HNO3	H ₂ SO ₄	NaOH	빙	NONE		DATE	TIME	M	BTEX	TPK	TPH 8018	PAH 827	멸		티디	덛	2	000	GC/	PCE	Pes		C	WANIUM	7	S	á	Ţ	亨
195729 Drill CUTTINGE	2			x	1						X			578	9:2)	X	X	X	X	X	+		T		X		X	\top	T	X	 	4		X	X	
																T	1													T				1			
	1		1-		\top	1										T					\dagger	1	T	1				1	\dagger	1	\uparrow		\dagger				
		ļ	-		+	+-				\dashv		-	-		-	+	+-		1	7	+	+	+	\vdash	\vdash	\vdash		\dashv	+	+	\dagger		\dashv				\vdash
		-	 	\vdash		+-	╁			\dashv		\dashv	-		+	+	+	\vdash	-	\dashv	+	+	\dagger	\vdash	 	\vdash		\dashv	+	+	+-	\vdash	+				
		 	├	╂╼┼		+-	-			\dashv	\dashv	\dashv	\dashv	***************************************	 	+	+-	\vdash		+	+	+	+	-	-			-	+	+	+	\vdash	+	_	-		├
			-	-					_	+	-	+	_			+		\vdash	\dashv	-	+	+	-	-	-	╂		_	+	+	+-	-	+				
			<u> </u>							_	_	_	_		ļ	1	_	\sqcup	_	_		1	_	_	ļ_	_		_	_		_		\bot				
																								L							Ĺ.						
																T																					
Relinquished by: Date: Time		eived	•	_				••	Da	te:		Ti	me:			T		LA	۱B	U	ŠE		Ī	RI	M/	ARK	S:			40	- 40	_		- <u></u>		7	7
Thy 5/12 9 10	1/2	٦-٩	じし	Z				5	-12	1-0	P _i	C	†:1	10				(10	IL)	Y			*		58	Ę	JA N	71	MC	577 1	\(\)	نسر ۱۱۱)//	et k	,	
Relinquished by: Date: Time:		eived	by:						Da			Ti	me:			٦,	ntac	ŧ	K	<u>)</u> /	N				-								bk	> ** (: K		
Relinquished by: Date: Time:	Þ																-lead					NI	()	,				-	Bas		•	ed					
Relinquished by: Date: Time:		elved	at L	abor	atory	by:			Da	te:		Ti	ne:	:	,,	-1	ien;		_1	٦.	12.6		٥						ort R								
		wl F	_							0	}		9:	15 Ai	M	1	og-ı	,				134			L.i	Cł Lii	nits /	If Sp Are N	lecia Veed	Rep ed	ortin	g					
Submittal of samples constitutes agreement to Te					ed o	n rev	erse	side	e of	CC) C	:				T	Carne	er#			Co	.((<u>, </u>		`	4	5	4	31	J.	<u>る</u> -	74	4	\			
			(OBIC	iIN/	AL C	OF	V								L							/											/			

C. The standards are not intended as maximum ranges and concentrations for use, and nothing herein contained shall be construed as limiting the use of waters containing higher ranges and concentrations [2-18-77; 20.6 2.3101 NMAC - Rn, 20 NMAC 6.2 III.3101, 1-15-01]

20.6.2.3102: [RESERVED]

unfiltered equeentrations of the contaminants.

[12-1-95; 20.6.2.3102 NMAC - Rn, 20 NMAC 6 2.III.3102, 1-15-01]

STANDARDS FOR GROUND WATER OF 10,000 mg/I TDS CONCENTRATION OR LESS: The following standards are the allowable pH range and the maximum allowable concentration in ground water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided in Subsection D of Section 20 6 2 3109 NMAC. Regardless of whether there is one contaminant or more than one contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "methods for chemical analysis of water and waste of the U.S environmental protection agency," with the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total

A Human Health Standards-Ground water shall meet the standards of Subsection A and B of this section miless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria as set forth in the definition of toxic pollutant in Section 20.6.2.1101 NMAC for the combination of contaminants, or the Human Health Standard of Subsection A of Section 20.6.2.3103 NMAC for each contaminant shall apply, whichever is more stringent. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured.

(1)	Arsenic (As)	0.1 mg/l
(2)	Barium (Ba)	1.0 mg/l
. (3)	Cadmaum (Cd)	0.01 mg/l
(4)	Chromium (Cr)	0.05 mg/l
(5)	Cyanide (CN)	0.2 mg/l
(6)	Fluoride (F)	1.6 mg/l
(7)	Lead (Pb)	
(8)	Total Mercury (Hg)	0.002 mg/l
(9)	Nitrate (NO, as N)	10.0 mg/l
(10)	Selenium (Se)	0.05 mg/l
(H)	Silver (Ag)	0.05 mg/l
(12)	Uranium (U)	
(13)	Radioactivity: Combined Radium-226 & Radium-228	30 pCi/l
(14)	Benzene	
(15)°	Polychlorinated biphenyls (PCB's)	0.001 mg/l
(16)	Toluene	
(17)	Carbon Tetrachloride	0.01 mg/l
(18)	1,2-dichloroethane (EDC)	0.01 mg/l
(19)	1,1-dichloroethylene (1,1-DCE)	0.005 mg/l
(20)	1,1,2,2-tetrachloroethylene (PCE).	
(21)	1,1,2-trichloroethylene (TCE)	l mg/l
(22)	ethylbenzene	0.75 mg/l
(23)	total xylenes	0.62 mg/l
(24)	methylene chloride	0.1 mg/l
(25)	chloroform	
(26)	1,1-dichloroethane	0.025 mg/l
(27)	ethylene dibromide (EDB)	
(28)	1,1.1-trichloroethane	
(29)	1,1,2-trichloroethane	0.01 mg/l
(30)	1,1,2,2-tetrachloroethane	0.01 mg/l
(31)	vinyl chloride	0.001 mg/l

20.6.2 NMAC 12

(32	PAHs: total naphthalene plus monomethylnaphthalene	s0.03 mg/l
(33) benzo-a-pyrene	0.0007 mg/l
В.	Other Standards for Domestic Water Supply	
(1)	Chloride (Cl)	250.0 mg/i
(2)	Copper (Cu)	
(3)	Iron (Fe)	
(4)	Manganese (Mn)	
(6)	Phenols	
(7)	Sulfate (SO ₄)	
(8)	Total Dissolved Solids (TDS)	1000.0 mg/l
(9)	Zinc (Zn)	
(10)		
C.	Standards for Irrigation Use - Ground water shall me	
and C of this se	ction unless otherwise provided.	
(1)	Aluminum (Al)	5.0 mg/l
(2)	Boron (B)	
(3)	Cobalt (Co)	
(4)	Molybdenum (Mo)	
(5)	Nickel (N1)	
[2-18-77, 1-29-8	2, 11-17-83, 3-3-86, 12-1-95; 20.6.2.3103 NMAC - Rn, 20	
041		•

[Note: For purposes of application of the amended numeric uranium standard to past and current water discharges

[Note: For purposes of application of the amended numeric uranium standard to past and current water discharges (as of 9-26-04), the new standard will not become effective until June 1, 2007. For any new water discharges, the uranium standard is effective 9-26-04.]

20.6.2.3104 DISCHARGE PERMIT REQUIRED: Unless otherwise provided by this Part, no person shall cause or allow effluent or leachate to discharge so that it may move directly of indirectly into ground water unless he is discharging pursuant to a discharge permit issued by the secretary. When a permit has been issued, discharges must be consistent with the terms and conditions of the permit. In the event of a transfer of the ownership, control, or possession of a facility for which a discharge permit is in effect, the transferee shall have authority to discharge under such permit, provided that the transferee has complied with Section 20.6.2.3111 NMAC, regarding transfers. [2-18-77, 12-24-87, 12-1-95; Rn & A, 20.6.2.3104 NMAC - 20 NMAC 6.2.III.3104, 1-15-01; A, 12-1-01]

20.6.2.3105 EXEMPTIONS FROM DISCHARGE PERMIT REQUIREMENT: Sections 20.6.2.3104 and 20.6.2.3106 NMAC do not apply to the following:

- A. Effluent or leachate which conforms to all the listed numerical standards of Section 20.6.2.3103 NMAC and has a total nitrogen concentration of 10 mg/l or less, and does not contain any toxic pollutant. To determine conformance, samples may be taken by the agency before the effluent or leachate is discharged so that it may move directly or indirectly into ground water; provided that if the discharge is by seepage through non-natural or altered natural materials, the agency may take samples of the solution before or after seepage. If for any reason the agency does not have access to obtain the appropriate samples, this exemption shall not apply;
- **B.** Effluent which is discharged from a sewerage system used only for disposal of household and other domestic waste which is designed to receive and which receives 2,000 gallons or less of liquid waste per day;
- C. Water used for irrigated agriculture, for watering of lawns, trees, gardens or shrubs, or for irrigation for a period not to exceed five years for the revegetation of any disturbed land area, unless that water is received directly from any sewerage system;
- D. Discharges resulting from the transport or storage of water diverted, provided that the water diverted has not had added to it after the point of diversion any effluent received from a sewerage system, that the source of the water diverted was not mine workings, and that the secretary has not determined that a hazard to public health may result;
- E. Effluent which is discharged to a watercourse which is naturally perennial; discharges to dry arroyos and ephemeral streams are not exempt from the discharge permit requirement, except as otherwise provided in this section;
- F. Those constituents which are subject to effective and enforceable effluent limitations in a National Pollutant Discharge Elimination System (NPDES) permit, where discharge onto or below the surface of the ground so that water contaminants may move directly or indirectly into ground water occurs downstream from the outfall

20 6.2 NMAC

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 -

El Paso, Texas 79922 Midland, Texas 79703 888 • 588 • 3443

915 • 585 • 3443 432 • 689 • 6301

817 • 201 • 5260

FAX-915+585+4944 FAX 432 • 689 • 6313

6015 Harris Parkway -Suite 110 Ft Worth, Texas 76132

E-Mail lab@traceanalysis.com

Certifications

WBENC: 237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003

Kansas E-10317

El Paso: T104704221-08-TX

LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Kyle Summers Talon LPE-Midland 2901 State Highway 349 Midland, TX, 79706

Report Date: June 30, 2009

Work Order: 9062316

Project Location: Lea Co., NM Project Name. Project Number

Penlon Ranch MEWBOU043PIT

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
200003	C-1	soil	2009-06-22	15.45	2009-06-23

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 13 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Penlon Ranch were received by TraceAnalysis, Inc. on 2009-06-23 and assigned to work order 9062316. Samples for work order 9062316 were received intact at a temperature of 8.8 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$_{ m QC}$	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	51859	2009-06-24 at 10:09	60787	2009-06-24 at 10:09
Chloride (Titration)	SM 4500-Cl B	51904	2009-06-25 at 13:14	60859	2009-06-26 at 09:06
Total BTEX	S 8021B	51859	2009-06-24 at 10:09	60787	2009-06-24 at 10:09
TPH 418.1	E 418.1	52006	2009-06-30 at 08:00	60964	2009-06-30 at 10:33
TPH DRO	Mod. 8015B	51815	2009-06-23 at 11:30	60741	2009-06-23 at 21:25
TPH GRO	S 8015B	51859	2009-06-24 at 10:09	60788	2009-06-24 at 10:09

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9062316 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Work Order: 9062316 Penlon Ranch

Analytical Report

Sample: 200003 - C-1

Laboratory: Midland

Analysis: BTEX, Total BTEX

QC Batch. 60787 Prep Batch: 51859 Analytical Method: S 8021B Date Analyzed: 2009-06-

2009-06-24 2009-06-24 Prep Method: S 5035 Analyzed By: ME Prepared By: ME

Page Number: 4 of 13

Lea Co , NM

		RL			
Parameter	${f Flag}$	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		0.0965	mg/Kg	1	0.0100
Total BTEX		0.0965	mg/Kg	1	0.0600

Sample Preparation:

					\mathbf{Spike}	$\operatorname{Percent}$	Recovery
Surrogate	\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.99	mg/Kg	1	2.00	100	49 - 129.7
4-Bromofluorobenzene (4-BFB)		2.02	mg/Kg	1	2.00	101	45.2 - 144.3

Sample: 200003 - C-1

Laboratory: Midland

Analysis: Chloride (Titration)

QC Batch: 60859 Prep Batch: 51904 Analytical Method: SM 4500-Cl B Date Analyzed. 2009-06-26 Sample Preparation: 2009-06-25

Prep Method. N/A Analyzed By: AR Prepared By. AR

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride	-	< 200	mg/Kg	50	4.00

Sample: 200003 - C-1

Laboratory Lubbock

Analysis TPH 418.1 QC Batch. 60964 Prep Batch: 52006 Analytical Method: E 418.1 Date Analyzed. 2009-06-30 Sample Preparation: 2009-06-30

Prep Method. N/A Analyzed By: CM Prepared By: CM

RL

Parameter	Flag	Result	Units	Dilution	RL
TRPHC		24.4	mg/Kg	1	10.0

Report Date: June 30, 2009 Work Order: 9062316 Page Number: 5 of 13 MEWBOU043PIT Penlon Ranch Lea Co., NM

Sample: 200003 - C-1

Laboratory: Midland

Analysis: TPH DRO QC Batch: 60741 Prep Batch: 51815 Analytical Method. Mod. 8015B Date Analyzed: 2009-06-23 Sample Preparation: 2009-06-23 Prep Method: N/A Analyzed By: AG Prepared By: AG

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	mg/Kg	1	50.0

					\mathbf{Spike}	Percent	$\operatorname{Recovery}$
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		88.0	mg/Kg	1	100	88	13.2 - 219.3

Sample: 200003 - C-1

Laboratory: Midland

Analysis: TPH GRO QC Batch: 60788 Prep Batch: 51859 Analytical Method: S 8015B Date Analyzed: 2009-06-24 Sample Preparation: 2009-06-24

Prep Method. S 5035 Analyzed By: ME Prepared By: ME

RL Parameter Flag Result

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	$egin{array}{c} ext{Recovery} \ ext{Limits} \end{array}$
Trifluorotoluene (TFT)		2.04	mg/Kg	1	2.00	102	68.5 - 119.4
4-Bromofluorobenzene (4-BFB)		2.28	mg/Kg	1	2.00	114	52 - 117

Method Blank (1) QC Batch: 60741

QC Batch: 60741 Prep Batch: 51815 Date Analyzed. 2009-06-23 QC Preparation: 2009-06-23 Analyzed By: AG Prepared By. AG

MDL

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		68 9	${ m mg/Kg}$	1	100	69	13 - 178.5

Work Order: 9062316 Report Date: June 30, 2009 Page Number: 6 of 13 MEWBOU043PIT Penlon Ranch Lea Co., NM

QC Batch: 60787 Method Blank (1)

QC Batch: 60787 Date Analyzed: 2009-06-24 Analyzed By: ME

Prep Batch: 51859 QC Preparation: 2009-06-24 Prepared By:

MDL Parameter Flag Result Units RLBenzene < 0.00100 mg/Kg 0.01 Toluene < 0.00100 mg/Kg 0.01 Ethylbenzene < 0.00110 mg/Kg 0.01 Xylene < 0.00360 mg/Kg 0.01

Spike Percent Recovery Flag Surrogate Result Units Dilution Amount Recovery Limits Trifluorotoluene (TFT) 1.91 mg/Kg 1 2.00 96 65.6 - 130.6 4-Bromofluorobenzene (4-BFB) 2.01 mg/Kg 1 2.00 100 51.9 - 128.1

QC Batch: 60788 Method Blank (1)

QC Batch: 60788 Date Analyzed: 2009-06-24 Analyzed By: ME

Prep Batch: 51859 QC Preparation: 2009-06-24 Prepared By: ME

MDL Parameter Flag RLResult Units GRO < 0.482 mg/Kg 1

Spike Percent Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits Trifluorotoluene (TFT) 1.99 mg/Kg 1 2.00 100 71.9 - 115 4-Bromofluorobenzene (4-BFB) 2.28 mg/Kg 2.00 45.7 - 118.9 1 114

Method Blank (1) QC Batch: 60859

QC Batch: 60859 Date Analyzed: 2009-06-26 Analyzed By. AR Prep Batch: 51904 QC Preparation. 2009-06-25 Prepared By: AR

MDL Flag Parameter Result Units RLChloride < 2.18 mg/Kg 4

Method Blank (1) QC Batch: 60964

QC Batch: 60964 Date Analyzed: 2009-06-30 Analyzed By. CM Prep Batch: 52006 QC Preparation. 2009-06-30 Prepared By: CM Report Date: June 30, 2009

MEWBOU043PIT

Work Order: 9062316 Penlon Ranch

Page Number: 7 of 13 Lea Co., NM

		MDL		
Parameter	Flag	\mathbf{Result}	${f Units}$	RL
TRPHC		<5.28	mg/Kg	10

Laboratory Control Spike (LCS-1)

QC Batch:

60741

Date Analyzed:

2009-06-23

Analyzed By: AG

Prep Batch: 51815

QC Preparation: 2009-06-23

Prepared By: AG

	LCS			\mathbf{Spike}	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	207	mg/Kg	1	250	8.9	79	57.4 - 133.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	202	mg/Kg	1	250	8.9	77	57.4 - 133.4	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	93.2	92.9	mg/Kg	1	100	93	93	48.5 - 146.7

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 51859

60787

Date Analyzed: QC Preparation: 2009-06-24

2009-06-24

Analyzed By: ME Prepared By: ME

	LCS	•		$_{ m Spike}$	Matrix		${ m Rec.}$
Param	Result	${f Units}$	Dil.	${f Amount}$	Result	Rec.	Limit
Benzene	2.09	mg/Kg	1	2.00	< 0.00100	104	72.7 - 129.8
Toluene	2.12	mg/Kg	1	2.00	< 0.00100	106	71.6 - 129.6
Ethylbenzene	2.07	mg/Kg	1	2.00	< 0.00110	104	70 8 - 129.7
Xylene	6.33	mg/Kg	1	6.00	< 0.00360	106	70.9 - 129.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	\mathbf{Units}	D_{1} l.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Benzene	2.13	mg/Kg	1	2.00	< 0.00100	106	72.7 - 129.8	2	20
Toluene	2.19	mg/Kg	1	2.00	< 0.00100	110	71.6 - 129.6	3	20
Ethylbenzene	2.19	mg/Kg	1	2.00	< 0.00110	110	70.8 - 129.7	6	20
Xylene	6.74	mg/Kg	1	6.00	< 0.00360	112	70.9 - 129.4	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

Work Order: 9062316 Penlon Ranch Page Number: 8 of 13 Lea Co., NM

Surrogate	$egin{array}{c} ext{LCS} \ ext{Result} \end{array}$	LCSD Result	Units	Dil.	$\begin{array}{c} \textbf{Spike} \\ \textbf{Amount} \end{array}$	LCS Rec.	LCSD Rec.	$egin{array}{c} { m Rec.} \\ { m Limit} \end{array}$
Trifluorotoluene (TFT)	1.94	1.94	mg/Kg	1	2.00	97	97	65.9 - 132
4-Bromofluorobenzene (4-BFB)	2.03	2.02	mg/Kg	1	2.00	102	101	55.2 - 128.9

Laboratory Control Spike (LCS-1)

QC Batch: 60788 Prep Batch: 51859 Date Analyzed: 2009-06-24 QC Preparation: 2009-06-24 Analyzed By: ME Prepared By. ME

	LCS			$\mathbf{S}_{\mathbf{pike}}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	14.6	mg/Kg	1	20.0	< 0.482	73	60.5 - 100.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			\mathbf{Spike}	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	${ m Rec.}$	\mathbf{Limit}	RPD	Limit
GRO	13.6	mg/Kg	1	20.0	< 0.482	68	60.5 - 100.1	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	\mathbf{Result}	Result	\mathbf{Units}	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.91	1.91	mg/Kg	1	2.00	96	96	78.8 - 104.7
4-Bromofluorobenzene (4-BFB)	2.15	2.15	mg/Kg	1	2 00	108	108	66.1 - 108.3

Laboratory Control Spike (LCS-1)

QC Batch. 60859 Prep Batch. 51904 Date Analyzed: 2009-06-26 QC Preparation: 2009-06-25 Analyzed By: AR Prepared By. AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Chloride	100	mg/Kg	1	100	<2.18	100	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	$_{ m Limit}$
Chloride	99.7	mg/Kg	1	100	<2.18	100	85 - 115	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 60964 Prep Batch. 52006 Date Analyzed: 2009-06-30 QC Preparation: 2009-06-30

Analyzed By: CM Prepared By: CM Report Date: June 30, 2009

MEWBOU043PIT

Work Order: 9062316 Penlon Ranch Page Number: 9 of 13 Lea Co., NM

	LCS			Spike	Matrix		Rec.
Param	\mathbf{Result}	\mathbf{Units}	$\mathbf{Dil}.$	Amount	Result	Rec.	Limit
TRPHC	26 5	mg/Kg	1	250	< 5.28	106	75.5 - 136

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSID			\mathbf{Spike}	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	\mathbf{Limit}
TRPHC	241	mg/Kg	1	250	< 5.28	96	75.5 - 136	10	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 199965

QC Batch: 60741 Prep Batch: 51815 Date Analyzed: 2009-06-23 QC Preparation. 2009-06-23 Analyzed By: AG Prepared By: AG

	MS			$_{ m Spike}$	Matrix		Rec.		
Param	\mathbf{Result}	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit		
DRO	240	mg/Kg	1	250	84.8	62	35.2 - 167.1		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			\mathbf{Spike}	Matrix		Rec .		RPD
Param	Result	\mathbf{Units}	$\mathbf{Dil}.$	Amount	Result	Rec.	Limit	RPD	Limit
DRO	262	mg/Kg	1	250	84.8	71	35.2 - 167.1	9	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			$_{ m Spike}$	MS	MSD	${ m Rec.}$
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	114	106	mg/Kg	1	100	114	106	34 5 - 178.4

Matrix Spike (MS-1) Spiked Sample: 200003

QC Batch. 60787 Prep Batch: 51859 Date Analyzed: 2009-06-24 QC Preparation: 2009-06-24 Analyzed By: ME Prepared By: ME

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	$_{ m Limit}$
Benzene	2.04	mg/Kg	1	2.00	< 0.00100	102	58.6 - 165.2
Toluene	2.05	mg/Kg	1	2.00	< 0.00100	102	64.2 - 153.8
Ethylbenzene	2.06	mg/Kg	1	2.00	< 0.00110	103	61.6 - 159.4
Xylene	6.23	${ m mg/Kg}$	1	6.00	0.0965	102	64.4 - 155.3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

Work Order: 9062316 Penlon Ranch

matrix spikes continued									
	MSD			\mathbf{Spike}	Matrix		Rec.		RPD
Param	Result	${f Units}$	Dil.	Amount	Result	${ m Rec.}$	${f Limit}$	RPD	Limit
				~			_		
	MSD			\mathbf{Spike}	Matrix		${ m Rec.}$		RPD
Param	Result	${ m Units}$	$\mathbf{Dil}.$	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Benzene	2.24	mg/Kg	1	2.00	< 0.00100	112	58.6 - 165.2	9	20
Toluene	2.27	mg/Kg	1	2.00	< 0.00100	114	64.2 - 153.8	10	20
Ethylbenzene	2.34	mg/Kg	1	2.00	< 0.00110	117	61.6 - 159.4	13	20
Xylene	7.13	mg/Kg	1	6.00	0.0965	117	64.4 - 155.3	14	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			\mathbf{Spike}	MS	MSD	${ m Rec.}$
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	${f Limit}$
Trifluorotoluene (TFT)	1.99	1.98	mg/Kg	1	2	100	99	76 - 127.9
4-Bromofluorobenzene (4-BFB)	1.80	1.88	$_{ m mg/Kg}$	1	2	90	94	72 - 127.8

Matrix Spike (MS-1) Spiked Sample: 200003

QC Batch. 60788 Prep Batch: 51859 Date Analyzed: 2009-06-24 QC Preparation: 2009-06-24 Analyzed By: ME Prepared By: ME

Page Number: 10 of 13

Lea Co., NM

		MS			Spike	Matrix		Rec.
Param		Result	${f Units}$	Dil.	Amount	Result	Rec.	Limit
GRO	1	40.1	mg/Kg	1	20.0	1.4623	193	12.8 - 175.2

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		${ m Rec.}$		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	$\mathbf{L}_{\mathbf{lmit}}$
GRO	2	42.2	mg/Kg	1	20.0	1.4623	204	12.8 - 175.2	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

Surrogate	$rac{ ext{MS}}{ ext{Result}}$	$rac{ ext{MSD}}{ ext{Result}}$	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	MS Rec.	MSD Rec.	$egin{array}{c} { m Rec.} \\ { m Limit} \end{array}$
Bullogate	resure	rtesurt	Omos	DII.	Amount	nec.	nec.	Lillit
Trifluorotoluene (TFT)	2.16	2.20	mg/Kg	1	2	108	110	60.8 - 132.1
4-Bromofluorobenzene (4-BFB)	2.03	2.06	mg/Kg	1	2	102	103	31.3 - 161.7

Matrix Spike (MS-1) Spiked Sample. 200003

QC Batch. 60859 Prep Batch. 51904 Date Analyzed: 2009-06-26 QC Preparation: 2009-06-25 Analyzed By: AR Prepared By: AR

¹Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

²Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control

Report Date: June 30, 2009

MEWBOU043PIT

Work Order: 9062316 Penlon Ranch Page Number: 11 of 13 Lea Co., NM

	MS			\mathbf{Spike}	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Chloride	5100	mg/Kg	50	5000	<109	102	85 - 115
Percent recovery is based on	the spile result DDD	is based on t	ho eniko	and enike dupl	acata regult		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			\mathbf{Spike}	Matrix		${ m Rec.}$		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Chloride	5160	mg/Kg	50	5000	< 109	103	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 200003

QC Batch: 60964 Prep Batch: 52006 Date Analyzed: 2009-06-30 QC Preparation: 2009-06-30

Analyzed By. CM Prepared By: CM

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
TRPHC	398	mg/Kg	1	250	24.4	149	10 - 354

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	406	mg/Kg	1	250	24.4	153	10 - 354	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (CCV-1)

QC Batch: 60741

Date Analyzed: 2009-06-23

Analyzed By. AG

			CCVs True	${ m CCVs} \ { m Found}$	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	208	83	80 - 120	2009-06-23

Standard (CCV-2)

QC Batch: 60741

 $\textbf{Date Analyzed:} \quad 2009\text{-}06\text{-}23$

Analyzed By. AG

			CCVs	\mathbf{CCVs}	CCVs	$\operatorname{Percent}$	
			True	\mathbf{F} ound	Percent	Recovery	\mathbf{Date}
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	205	82	80 - 120	2009-06-23

Work Order 9062316 Penlon Rænch Page Number: 12 of 13 Lea Co., NM

Standard (CCV-1)

QC Batch: 60787

Date Analyzed: 20@9-06-24

Analyzed By: ME

			$rac{ ext{CCVs}}{ ext{True}}$	CCWs Found	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
\mathbf{Param}	\mathbf{Flag}	${ m Units}$	$\operatorname{Conc.}$	Comc.	$\operatorname{Recovery}$	Limits	$\mathbf{Analyzed}$
Benzene		mg/Kg	0.100	0.1607	107	80 - 120	2009-06-24
Toluene		mg/Kg	0.100	0.114	114	80 - 120	2009-06-24
Ethylbenzene		mg/Kg	0.100	0.110	110	80 - 120	2009-06-24
Xylene		mg/Kg	0.300	0.339	113	80 - 120	2009-06-24

Standard (CCV-2)

QC Batch: 60787

Date Analyzed 2009-06-24

Analyzed By: ME

			CCVs	CC Vs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Corac.	Recovery	Limits	$\mathbf{Analyzed}$
Benzene		mg/Kg	0.100	0.113	113	80 - 120	2009-06-24
Toluene		mg/Kg	0.100	0.143	113	80 - 120	2009-06-24
Ethylbenzene		mg/Kg	0.100	0.1.13	113	80 - 120	2009-06-24
Xylene		${ m mg/Kg}$	0.300	0.347	116	80 - 120	2009-06-24

Standard (CCV-1)

QC Batch: 60788

Date Analyzed: 2009-06-24

Analyzed By: ME

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.949	95	80 - 120	2009-06-24

Standard (CCV-2)

QC Batch: 60788

Date Analyzed 20@9-06-24

Analyzed By: ME

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.02	102	80 - 120	2009-06-24

Standard (ICV-1)

QC Batch. 60859

Date Analyzed: 2009-06-26

Work Order: 9062316 Penlon Ranch

Page Number. 13 of 13 Lea Co , NM $\,$

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	100	100	85 - 115	2009-06-26
Standard (CCV-1)						
QC Batch.	60859		Date Ana	lyzed: 2009-06	i-26	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
I aram		0 -1100	Conc.		20000,013	11111100	
Chloride Standard (mg/Kg	100	100	100	85 - 115	2009-06-26
Chloride Standard (ICV-1)		100		100	85 - 115	2009-06-26
Chloride	ICV-1)		Date Anal	yzed. 2009-06	-30	85 - 115 Analy	2009-06-26
Chloride Standard (ICV-1)		Date Anal	lyzed. 2009-06	-30 ICVs	85 - 115 Analy	2009-06-26 yzed By: CM
Chloride Standard (QC Batch:	ICV-1) 60964	mg/Kg	Date Anal ICVs True	lyzed. 2009-06 ICVs Found	-30 ICVs Percent	85 - 115 Analy Percent Recovery	2009-06-26 yzed By: CM
Chloride Standard (QC Batch:	ICV-1)	mg/Kg Units	Date Anal ICVs True Conc.	lyzed. 2009-06 ICVs Found Conc.	-30 ICVs Percent Recovery	85 - 115 Analy Percent Recovery Limits	2009-06-26 yzed By: CM Date Analyzed
Chloride Standard (QC Batch:	ICV-1) 60964	mg/Kg	Date Anal ICVs True	lyzed. 2009-06 ICVs Found	-30 ICVs Percent	85 - 115 Analy Percent Recovery	2009-06-26 yzed By: CM Date
Chloride Standard (QC Batch:	ICV-1) 60964 Flag	mg/Kg Units	Date Anal ICVs True Conc.	lyzed. 2009-06 ICVs Found Conc.	-30 ICVs Percent Recovery	85 - 115 Analy Percent Recovery Limits	2009-06-26 yzed By: CM Date Analyzed
Chloride Standard (QC Batch: Param TRPHC Standard (ICV-1) 60964 Flag	mg/Kg Units	Date Anal ICVs True Conc.	iyzed. 2009-06 ICVs Found Conc. 114	ICVs Percent Recovery	Analy Percent Recovery Limits 80 - 120	2009-06-26 yzed By: CM Date Analyzed
Chloride Standard (QC Batch: Param TRPHC Standard (ICV-1) 60964 Flag CCV-1)	mg/Kg Units	Date Anal ICVs True Conc. 100	iyzed. 2009-06 ICVs Found Conc. 114	ICVs Percent Recovery	Analy Percent Recovery Limits 80 - 120	2009-06-26 yzed By: CM Date Analyzed 2009-06-30
Chloride Standard (QC Batch: Param TRPHC Standard (ICV-1) 60964 Flag CCV-1)	mg/Kg Units	Date Anal ICVs True Conc. 100	Iyzed. 2009-06 ICVs Found Conc. 114	ICVs Percent Recovery 114	Analy Percent Recovery Limits 80 - 120	2009-06-26 yzed By: CM Date Analyzed 2009-06-30
Chloride Standard (QC Batch: Param TRPHC Standard (ICV-1) 60964 Flag CCV-1)	mg/Kg Units	Date Anal ICVs True Conc. 100 Date Anal	iyzed. 2009-06 ICVs Found Conc. 114 lyzed: 2009-06	ICVs Percent Recovery 114	Analy Percent Recovery Limits 80 - 120 Analy	2009-06-26 yzed By: CM Date Analyzed 2009-06-30

				<i>(</i>)	\wedge	! _
.AB	Order	ID	#	9	U	0

TraceAnalysis, Inc.

6701 Aberdéén Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298

5002 Basin Street, Sulte A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200 East Sunset Rd., Sulte E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 Fax (817) 560-4336

email: lab@traceanalysis.com	1 (800) 378-1296	1 (888) 588-3443
Company Names Talon	Phone #: 432 522 2/37	ANALYSIS REQUEST
Address 7 Street, City, Zip W 349 Mi	dland saya 706	(Circle or Specify Method No.)
Contact Person: Lyle Summers	E-mail Su no merste to lou les	2 / 8260B / 624
Invoice to:		stan
(If different from above)		7624 624 624 624 624 624 624 624 624 624
Project #: Mewbon 043 pit	Penion Ranch 24"	260B / 624 (1005 Extra TVHC TVHC G Cr Pb Se Hg 6 G Cr Pb Se Hg
Project Location fincluding state): LEALOUNTY, NAM	Sampler Signature:	2 / 8260B / 6 2 / 8260B / 6 05 / TX1005 DRO JTVHC B Cd Cr Pb Se 8 Ba Cd Cr F 8 Ba Cd Cr F 8 Ba Cd Cr F 608 (608
	MATRIX PRESERVATIVE SAMPLING	
A A A A A A A A A A A A A A A A A A A		80218 / 17X / 14 / 17X / 14 / 17X / 14 / 17X / 14 / 17X / 15 / 15 / 15 / 15 / 15 / 15 / 15 / 1
LAB FIELD CODE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# CONTAINERS # CONTAINERS **CONTAINERS	WALER SOIL AIR SLUDGE HCI HNO ₃ H ₂ SO ₄ NaOH ICE NONE TIME	MTBE 8021B / 66 BTEX 6021B / 602 TDH 448-1-17X400 TPH 8015 GRO / D PAH 8270C / 625 Total Metals Ag As TCLP Metals Ag As TCLP Voiatiles TCLP Semi Volatile TCLP Pesticides RCI GC/MS Semi Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol.
200003 C-1 2 40x	X X 6/22/09 1580	
THE COUNTY		
The second of th		
5 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		┞╎╍╏╎╎┍┩╏┩╎╏┈┼┪╇╃┩╏╇╇╇
#5.758(307)25	 	┞╎┩╏╎╏┾┩╏┥╎┧╞┡┩╏╏╇╇
	+	
ST Languagia and Communication		
		
Parameter (Parameter (┡ ┊┦╂┼╂╃┼╏┼╀╃┼╂╏╂╇╁┟┼╃┷╁┸╢
Relinguished by: Company: Date: Time:	Received by: Company: Date: Time: Ten	
		REMARKS: NEW MEXICOSITE
		880 ONLY NEW MEXICOSITE
Relinquished by: Company: Date: Time:	Received by: Company: Date: Time: Ten	np°c: Itage W/ Weight Basis Required
Relinguished by. Company: Date: Time:	Decembed by Company Detail	Headspace 1 K NA TRRP Report Required
Relinquished by. Company: Date: Time:	Received by: Company: Date: Time: Ten	np°c: Check If Special Reporting Limits Are Needed
Submittal of samples constitutes agreement to Terms and Condi	gons listed on reverse side of C. O. C.	Carrier #

Summary Report

Kyle Summers Talon LPE-Midland 2901 State Highway 349 Midland, TX 79706

Report Date: June 30, 2009

Work Order: 9062316

Project Location: Lea Co., NM
Project Name: Penlon Ranch
Project Number: MEWBOU043PIT

			\mathbf{Date}	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
200003	C-1	soil	2009-06-22	15:45	2009-06-23

	TPH 418.1	TPH DRO	TPH GRO
	TRPHC	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)
200003 - C-1	24.4	< 50 0	1.46

Sample: 200003 - C-1

Param	Flag	Result	${f Units}$	RL
Benzene		< 0.0100	mg/Kg	0.0100
Toluene		< 0.0100	mg/Kg	0 0100
Ethylbenzene		< 0.0100	${ m mg/Kg}$	0.0100
Xylene		0.0965	${ m mg/Kg}$	0.0100
Total BTEX		0.0965	${ m mg/Kg}$	0 0600
Chloride		<200	mg/Kg	4.00