DRILLING PROGRAM

Attached to Form 3160-3 Devon SFS Operating, Inc. STOCK TANK 22 FEDERAL #1 (E) 1650' FNL & 660' FWL, Section 22-T-15-S, R-28-E Chaves County, New Mexico

1. <u>Geologic Name of Surface Formation</u>

Alluvium

2. Estimated Tops of Important Geologic Markers

Queen	1,200'
Glorieta	3,300'
Tubb	4,600'
Abo	5,400'
Wolfcamp	6,600'
Atoka	8,900'
Morrow	9,000'
Mississippian	9,200'
TD	±9,400'

3. Estimated Depths of Anticipated Fresh Water, Oil or Gas

The estimated depths at which water, oil and gas will be encountered are as follows.

Water:None expected in areaGas:Morrow @ 9000' - 9,200'

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 8 5/8" casing at 2000' and circulating cement back to surface. The oil and gas intervals will be isolated by setting 5 1/2" casing at TD and bringing cement top to approximately 6400'.

STOCK TANK 15 FEDERAL COM #1 DRILLING PLAN PAGE 2

· · ~

4. Casing Program

			BURST	COLLAPSE	TENSION	TORQUE	
			PSI	PSI	LBS	FT-LBS	
INTERVALS	<u>LENGTH</u>	CASING	<u>(DF)</u>	<u>(DF)</u>	<u>(DF)</u>	<u>(DF)</u>	
<u>Surface</u>							
0 - 400'	400'	13 3/8" 48# H-40 STC	1730	740	322M	3220	
				(2.96)	(13.4)		
Intermediate							
0 - 2000'	2000'	8 5/8" 32# J-55 STC	3930	2530	372M	4020	
			(1.85)	(2.53)	(5.81)		
Production			(1.85)	(2.53)	(5.81)		
0 - 1000'	1000'	5 1/2" 17# L-80 LTC	7740	5673	338M	3410	
			(1.71)	(12)	(2.54)		
1000' - 6900'	5900'	5 1/2" 15.5# J-55 LTC	4810	3926	217M	2390	
			(1.18)	(1.2)	(1.87)		
6900' - 9400'	2600'	5 1/2" 17# L-80 LTC	7740	6290	338M	3410	
			(6.06)	(1.39)	(13.72)		
	Due creare						
Cementing	riogram			YIELD			WOC
			ENT		0/ EVCESS		
<u>HOLE SIZE</u>	DEP	<u>CEM</u>	<u>ENI</u>	<u>CF/SX</u>	<u>% EXCESS</u>	<u>5 TOC</u>	HRS

<u>DEPTH</u>	<u>CEMENT</u>	<u>CF/SX</u>	<u>% EXCESS</u>	TOC	<u>HRS</u>
400'	Lead: 250 sxs lite + 2% CACL2 +1/4#/sx celloflk (12.7#/gal)	1.88	100	Surf.	18
	Tail: 200 sxs Cl "C" + 2%	1.35			
	CaCl2 + 1/4#/sx celloflk				
	(14.8#/gal)				
2000'					
	(14.8#/gal)				
			• •	<i></i>	
9400'		1.6	30	6400'	24
	KCl + 1% FL-25 + .1% sodium metasillicate + 5#/sx gilsonite + ¼#/sx celloflake + .003 gal/sx FP-13L				
		1.2			
	400'	 400' Lead: 250 sxs lite + 2% CACL2 +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% CaCl2 + 1/4#/sx celloflk (14.8#/gal) 2000' Lead: 350 sxs lite + 5% +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% CaCl2 + 1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% CaCl2 + 1/4#/sx celloflk (14.8#/gal) 9400' Lead: 650 sx Class H w/3% KCl + 1% FL-25 + .1% sodium metasillicate + 5#/sx gilsonite + ¼#/sx celloflake + .003 gal/sx 	 400' Lead: 250 sxs lite + 2% CACL2 1.88 +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% 1.35 CaCl2 + 1/4#/sx celloflk (14.8#/gal) 2000' Lead: 350 sxs lite + 5% +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% CaCl2 + 1/4#/sx celloflk (14.8#/gal) 9400' Lead: 650 sx Class H w/3% 1.6 KCl + 1% FL-25 + .1% sodium metasillicate + 5#/sx gilsonite + ½#/sx celloflake + .003 gal/sx FP-13L 	400' Lead: 250 sxs lite + 2% CACL2 1.88 100 +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% 1.35 CaCl2 + 1/4#/sx celloflk (14.8#/gal) 2000' Lead: 350 sxs lite + 5% +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% CaCl2 + 1/4#/sx celloflk (14.8#/gal) 9400' Lead: 650 sx Class H w/3% 1.6 30 KCl + 1% FL-25 + .1% sodium metasillicate + 5#/sx gilsonite + $\frac{1}{4}$ #/sx celloflake + .003 gal/sx FP-13L	400' Lead: 250 sxs lite + 2% CACL2 1.88 100 Surf. +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% 1.35 CaCl2 + 1/4#/sx celloflk (14.8#/gal) 2000' Lead: 350 sxs lite + 5% +1/4#/sx celloflk (12.7#/gal) Tail: 200 sxs Cl "C" + 2% CaCl2 + 1/4#/sx celloflk (14.8#/gal) 9400' Lead: 650 sx Class H w/3% 1.6 30 6400' KCl + 1% FL-25 + .1% sodium metasillicate + 5#/sx gilsonite + $\frac{1}{2}$ #/sx celloflake + .003 gal/sx FP-13L

The cement volumes for the 5 1/2" casing will be revised pending the caliper measurement from the open hole logs.