ORM C-10	95 N.			N	EW MEX	ICO OIL	CONSERVA	TION COMM	ISSION
						Santa	Fe, New Mexic	D	
						**		n	
						v	ELL RECOR		
							·		
				Mai	l to Oil Con	servation Con	mission, Santa F	e, New Mexico, or	its proper
				in	the Bules and	l Regulations	ys after completio of the Commissio UBMIT IN TRIPI	n. Indicate questi	instructions onable data
	REA 640 A E WELL			. Dy	ionowing it	— —			
DUCAL			Colls	ler, Al	rtesia,	New Me	xico.	Collier-	State
			w	ell No.	Company o	r Operator in AWSE	of Sec	12	т. 17 8
27	E N	MP	M., D						County
				· · · · · · · · · · · · · · · · · · ·					12-179-278
State la	and the o	il and g	as lease is	No. E	3060	Assignem	ent No		
								· · · · · · · · · · · · · · · · · · ·	
									New Mexico
illing o	commence	d Me	rch 30).	195	L. Drilling	was completed	April 18,	19 51
									, New Mexic
					,,				
le mior	mutici a					DS OR ZON			
0. 1, fra	41	9	t	423		No. 4, fr	om	to	
							om		
,						r water s			
nclude d	lata on r	ate of .	water infl	ow and el	evation to	which water	rose in hole.		
o. 1, f i	rom	601			to 651-	4 Baile	rs an hou	R	
o. 2, fi	rom				to		fe	et	
o. 3, f:	rom				tò		fe	et	
o. 4, f	ro m				to		fe	et	
					CASIN	IG RECORE	•		
	WEIGH PER FO		THREADS PER INCH	MAKE	AMOUNT	KIND OF SHOE	CUT & FILLED FROM	PERFORAT FROM	ED PURPOSE TO
SIZE									
<u>7</u> # 7#	20#		DV rd. R	anlar	4171 Patter	n Casin	g Shoe		
			<u> </u>						
					~	<u> </u>			
		1				1	1	1	1
				MUDI	DING AND	CEMENTIN	G RECORD		

 SIZE OF HOLE
 SIZE OF CASING
 WHERE SET
 NO. SACKS OF CEMENT
 METHOD USED
 MUD GRAVITY
 AMOUNT OF MUD USE

 81°
 7*
 417'
 25 sacks
 Denton O11
 Well Cementing Co.

PLUGS AND ADAPTERS

							h Set_		
daptersMateria	al		Size				<u></u>		
		RECORD OF	SHOOTING	OR CH	EMICAL T	REATMENT			
SIZE SHEL	L USED	EXPLOSIVE O CHEMICAL USE	R ED QUANTI	ITY	. DATE	DEPTH SH OR TREAT	OT SD	DEPTH C	LEANED OUT
		loid	1,000			la Chem	loel	Co.,	Artesia,
				4	-16-51				
		emical treatment.							
		RECORD	OF DRILL-S	TEM AN	ID SPECIAI	L TESTS			
drill-stem or o	ther spec	cial tests or devia	tion surveys	were ma	ide, submit	report on sep	arate s	sheet and	attach hereto.
			TOO	LS USE	D				
		m	feet to		feet, and				
		m	feet to		feet, and				
			feet to4		feet, and				
able tools were tut to producing.	used from	m 0	feet to4 feet to4 PRO ,19_ _5	24 DUCTIO	feet, and feet, and PN	l from		feet to	feet
able tools were tut to producing.	used from	mC,	feet to4 feet to4 PRO ,19_ _5	24 DUCTIO	feet, and feet, and PN	l from		feet to	feet
able tools were Put to producing. The production o	used from Apr of the fir	m 0	feet to4 feet to4 ,19_5 15	24 DUCTIO	feet, and feet, and N ls of fluid of	f which	0	feet to % was oil	feet
able tools were Put to producing The production o mulsion;	used from Apr of the fir ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m 0	feet to4 feet to4 PRO ,19_5 5 % sec	24 DUCTIO 1barre diment.	feet, and feet, and N ls of fluid of Gravity, Be	f which	q	feet to	feet
Cable tools were Put to producing. The production o mulsion; f gas well, cu. ft	Apr Apr of the fir % per 24	m 0 41 18, st 24 hours was_ water; and	feet to4 feet to4 PRO ,19_5 % sec	24 DUCTIO Lbarre liment. Gallo	feet, and feet, and N ls of fluid of Gravity, Be	f which	q	feet to	feet
Cable tools were Put to producing. The production o mulsion; f gas well, cu. ft	Apr Apr of the fir % per 24	m 0 41 18, st 24 hours was_ water; and hours	_feet to4 _feet to4 PRO ,19_5 % sec	24 DUCTIO Lbarre liment. Gallo	feet, and feet, and PN Is of fluid of Gravity, Bo ns gasoline	f which	q	feet to	feet
Cable tools were Put to producing. The production o mulsion; f gas well, cu. ft Rock pressure, lb	used from Apr of the fir 	m 0 41 18, st 24 hours was_ water; and hours	_feet to4 _feet to4 ,19_5 % sec	24 DUCTIO Lbarre diment. Gallo PLOYEE	feet, and feet, and N ls of fluid of Gravity, Be ns gasoline	f from f which per 1,000 cu.	. ft. of	feet to % was oil gas	feet ;%
Cable tools were Put to producing. The production o emulsion; If gas well, cu. ft Rock pressure, lb	Apr of the fir 	m 0 11 18, st 24 hours was water; and hours . in.	feet to4 feet to4 ,19_5 % sec 	24 DUCTIO Lbarre diment. Gallo PLOYEE er	feet, and feet, and N Is of fluid of Gravity, Be ns gasoline S Fred	f from f which per 1,000 cu. Getter	. ft. of	feet to % was oil gas	feet ;%

day of	Kay	19_51
		> 1
- Jupi	al A. A	Notary Public .
Bylvia		
My Commissio	on expires Decen	ber 13, 1953.

Artesia.	New Mexico-	May 18.	1951
Pla	ce	Date	
Name In) A Tar	int nur	n

Position Authorized Agent-Abe F. Rosenbaum Representing R. D. Collier Company or Operator.

٠

Address Box 798, Artesia, New Maxico.

FORMATION RECORD

0 4 4 4 10 6 Snale 30 50 20 Gyp 50 60 10 Anhydrite 60 65 5 Sand and Gravel-Water 4 ballers per how 65 85 20 Anhydrite 85 100 15 Snale-Bad 100 105 5 Snale-Bad 100 105 5 Snale-Bad 100 105 6 Snale-Bad 100 105 7 Snale-Bad 100 105 7 Snale-Bad 100 105 8 Snale-Bad 100 105 8 Snale-Bad 100 105 9 Snale-Bad 100 105 9 Snale-Bad 100 105 9 Snale-Bad 100 200 220 20 Anhydrite-Broken 200 220 20 Anhydrite-Broken 201 20 10 Anhydrite-Broken 201 20 10 Anhydrite-Broken 202 205 45 Anhydrite-Broken 203 205 10 Lase 203 205 20 10 Lase 204 205 20 10 Lase 205 205 10 Lase 205 205 10 Lase 205 205 20 20 Anhydrite-Broken 206 305 20 Anhydrite-Broken 206 305 20 Anhydrite 207 30 20 Anhydrite 208 20 20 20 Anhydrite-Broken 209 200 20 20 20 Anhydrite-Broken 200 200 20 20 20 20 Anhydrite-Broken 200 200 20 20 20 20 Anhydrite-Broken 200 200 20 20 20 20 Anhydrite-Broken 200 20 20 20 20 20 20 20 20 20 20 20 20	FROM	то	THICKNESS IN FEET	FORMATION
10 30 20 400 30 50 20 400 40 400 10 10 10 10 10 10 10 10 10 10 10 10 1				
30 50 20 Gyr 50 65 10 Anhydrite 65 85 20 Anhydrite 100 105 15 Shale-Bitue 101 105 5 Shale-Bitue 102 10 Shale-Bitue 103 100 15 Shale-Bitue 104 105 5 Shale-Bitue 105 100 10 Shale-Bad 106 105 Shale-Bad 107 10 Anhydrite-Brokes 108 Sandy Shile and Anhydrite 109 10 Anhydrite-Brokes 100 105 Shale-Bad 101 200 220 20 200 220 20 201 20 20 202 205 10 203 200 20 204 200 20 205 20 10 206 20 Anhydrite-Brokes 207 30 Anhydrite-Brokes 208 20 10 209 30 Anhydrite-Brokes 310 340 36 317 400 20 <t< td=""><td></td><td></td><td></td><td></td></t<>				
60 65 5 Send and Gravel-Vator 4 ballers per how 85 100 15 Ahhydrite-Brokes 100 105 5 Shale-Blue 100 105 5 Shale-Red 110 120 16 Ahhydrite-Broken 165 200 220 26 45 200 220 265 45 Ahhydrite-Broken 201 220 265 45 Ahhydrite-Broken 202 265 275 10 Lime 203 10 20 Ahhydrite-Broken 310 340 36 36 36 310 340 36 36 36 310 340 36 36 36 316 376 376 3 36 3175 376 30		30		
60 65 5 20 Anhydrite 85 100 15 Anhydrite-Brokes 100 105 5 Bhals-Blue 100 105 5 Bhals-Blue 100 105 5 Bhals-Blue 100 100 5 Bhals-Blue 100 100 5 Bhals-Blue 100 100 5 Shals-Red 100 105 5 Shals-Sheet 100 105 10 Anhydrite-Brokes 200 220 265 45 Julystite-Brokes 210 10 20 Anhydrite-Brokes 210 10 Anhydrite Bols-Foots 310 340 30 Anhydrite 310 340 30 Shals-Foots 376 400 22 </td <td>50</td> <td>20</td> <td></td> <td></td>	50	20		
65 85 100 15 Anhydrite-Broken 100 105 15 Shale-Blue 100 10 5 Shale-Blue 100 120 10 Shale-Blue 100 120 10 Shale-Blue 101 120 160 46 120 160 46 Fed Sandy Shale and Anhydrite 160 165 5 Shale-Red 160 165 Shale-Red 160 165 Shale-Red 160 165 Shale-Red 161 160 Anhydrite and Shale-Red 162 200 220 20 265 275 10 Lime 275 290 15 Anhydrite and Shale-Red 310 360 360 20 Anhydrite 310 360 360 20 Anhydrite 310 360 20 Anhydrite 36 3175 10 Lime Shale-Red 41 400 410 2	<u> </u>	00		
85 100 15 Ahtpirite-Blue 100 100 5 Shale-Red 110 120 10 Antygirite 120 160 40 Red Sandy Shale and Anhydrite 160 165 5 Shale-Red 160 165 200 220 20 220 220 20 Antygirite-Broken 240 220 26 45 257 10 Lime 265 275 10 Lime 266 35 Anhydrite-Broken 270 310 340 30 310 340 30 Anhydrite-Broken 310 340 36 26 310 340 30 Shale-Red 310 340 30 Shale-Red 310 340 30 Shalydrite-Broken 310 340 30 Shalydrite 316 35 3 Shalydrite 316 378 3 Shalydrite 400 <t< td=""><td>00</td><td>05</td><td>5</td><td>Sand and Gravel-Water 4 bailers per how</td></t<>	00	05	5	Sand and Gravel-Water 4 bailers per how
100 105 3 Shala-Slue 100 120 10 Anhydrite 120 160 165 Shala-Slue and Anhydrite 120 160 165 Shala-Slue and Anhydrite 160 165 35 Shala-Slue and Anhydrite 160 165 35 Anhydrite anhydrite 200 220 20 20 Anhydrite anhydrite 201 265 275 10 Lime 202 265 45 Anhydrite Shala-Slue 203 10 20 Anhydrite Shala-Slue 204 265 275 10 Lime 205 10 Anhydrite Shala-Slue Shala-Slue 310 340 360 22 Anhydrite Shala-Slue 310 340 360 22 Anhydrite Shala-Slue Shala-Slue 375 375 10 Lime Shala-Slue Shala-Slue Shala-Slue 406 410 21 <t< td=""><td>02</td><td>05</td><td>20</td><td></td></t<>	02	05	20	
110 120 160 40 Red Sandy Shale and Anhydrite 160 165 5 Shale-Red 165 200 220 20 Anhydrite-Broken 200 220 20 Anhydrite-Broken 200 220 255 45 Anhydrite-Broken 200 310 20 Anhydrite-Broken 200 310 20 Anhydrite-Broken 340 360 20 Anhydrite 360 365 5 Balt 375 376 3 Shale-Red 400 400 8 Lime-Broken 400 400 8 Jule-Red 413 415 2 Anhydrite and Shale-Blue 413 415 2 Anhydrite Mini-Stet 7" at 417' - Gegented 418 419 1 Lime- Gray - TOTAL DEPTH	07	100	15	
110 120 160 40 Red Sandy Shale and Anhydrite 160 165 5 Shale-Red 165 200 220 20 Anhydrite-Broken 200 220 20 Anhydrite-Broken 200 220 255 45 Anhydrite-Broken 200 310 20 Anhydrite-Broken 200 310 20 Anhydrite-Broken 340 360 20 Anhydrite 360 365 5 Balt 375 376 3 Shale-Red 400 400 8 Lime-Broken 400 400 8 Jule-Red 413 415 2 Anhydrite and Shale-Blue 413 415 2 Anhydrite Mini-Stet 7" at 417' - Gegented 418 419 1 Lime- Gray - TOTAL DEPTH		105	5	
120 160 160 163 Shale-Red 165 200 220 220 220 200 220 220 220 220 265 275 10 Lime Bankydrite and Shale-Red 265 275 10 Lime Bankydrite-Brokem 275 290 15 Anhydrite-Brokem 276 275 10 Lime 276 275 10 Lime 276 310 20 Anhydrite-Brokem 310 340 360 20 Anhydrite-Brokem 310 340 360 20 Anhydrite-Brokem 365 375 10 Lime 375 376 376 3 Bhale-Red 3 377 10 Lime 200 20 20 400 400 2 Anhydrite 3 3 1 413 413 3 Lime-Store 3 4 1 413 413 3 Lime-Gray 1	105	110	-5	
160 165 200 220 225 225 225 225 225 22	120	140	10	Annyerite
165 200 25 35 Anhydrite-Broken 200 265 45 Anhydrite-Broken 265 275 10 Lime 266 275 10 Lime 275 290 13 Anhydrite-Broken 275 290 310 20 Anhydrite-Broken 310 340 30 Anhydrite-Broken 340 366 20 Anhydrite-Broken 340 366 20 Anhydrite-Broken 346 365 5 Selt 366 365 3 Bhale-Red 376 400 2 Anhydrite 377 376 400 2 400 400 2 Anhydrite 410 413 3 Anhydrite 411 413 2 Anhydrite 413 413 1 Lime-Set 7" at 417" - Cegented 418 419 1 Lime-Gray TOTAL DEPTH 423 424 1 Lime - Gray - TOTAL DEPTH <td></td> <td>160</td> <td>40</td> <td>ned Sandy Shale and Anhydrite</td>		160	40	ned Sandy Shale and Anhydrite
220 265 45 Anhydrite=Brokem 265 275 10 Lime 275 290 15 Anhydrite=Brokem 310 340 30 Anhydrite=Brokem 340 360 20 Anhydrite=Brokem 340 360 20 Anhydrite=Brokem 340 360 20 Anhydrite 366 375 10 Lime 376 378 3 Shale=Red 377 378 3 Shale=Bad 400 408 11me=Brokem 400 408 11me=Brokem 400 408 11me=Gray 413 415 Anhydrite and Shale=Blue 414 413 1 415 418 1 418 419 1 423 424 1 423 424 1 423 424 1 423 424 1 423 424 1	164	200		
220 265 45 Anhydrite=Brokem 265 275 10 Lime 275 290 15 Anhydrite=Brokem 310 340 30 Anhydrite=Brokem 340 360 20 Anhydrite=Brokem 340 360 20 Anhydrite=Brokem 340 360 20 Anhydrite 366 375 10 Lime 376 378 3 Shale=Red 377 378 3 Shale=Bad 400 408 11me=Brokem 400 408 11me=Brokem 400 408 11me=Gray 413 415 Anhydrite and Shale=Blue 414 413 1 415 418 1 418 419 1 423 424 1 423 424 1 423 424 1 423 424 1 423 424 1	200		22	Antry fritembrosen
265 275 10 Lime 270 310 20 Anhydrite=Brokes 310 340 30 Anhydrite 310 340 30 Anhydrite 360 366 20 Anhydrite 360 366 20 Anhydrite 360 365 5 Shale-Red 375 3 Shale-Red 406 400 2 Anhydrite 408 410 2 Shale-Red 410 413 3 Anhydrite 413 415 2 Anhydrite 414 419 1 Lime-Brokes 415 418 3 Anhydrite 418 419 1 Lime-Gray Olisher 423 424 1 Lime-Gray - TOTAL DEPTH	220	264	20	ARAYGPITS and Shalo-Rod
275 290 15 Anhydrite=Broken 310 340 30 Anhydrite=Broken 340 360 20 Anhydrite=Broken 340 360 20 Anhydrite=Broken 360 366 20 Anhydrite 366 366 20 Anhydrite 366 366 20 Anhydrite 366 373 378 3 Bhale=Red 377 378 3 Bhale=Red 4 408 410 2 Shale=Bed 4 410 413 3 Anhydrite and Shale=Blue 413 415 Anhydrite and Shale=Blue 4 413 415 Anhydrite and Shale=Blue 4 418 419 1 Lime=Stet 7" at 412" - Cemented 1 419 423 424 1 Lime - Gray - TOTAL DEPTH 423 424 1 Lime - Gray - TOTAL DEPTH	265	203	77	Addy GF1 Compoker
290 310 20 Anhydrite 340 360 30 Anhydrite 360 365 5 Salt 366 365 5 Salt 375 375 10 Lime 377 378 400 22 Anhydrite 400 400 22 Anhydrite Anhydrite 400 400 23 Anhydrite Anhydrite 400 413 415 2 Anhydrite Anhydrite 413 415 2 Anhydrite Anhydrite Anhydrite 413 415 2 Anhydrite Anhydrite Anhydrite 413 415 2 Anhydrite Anhydrite Anhydrite 414 419 1 Lime- Set 7" at 417" - Oegented Lime 419 423 424 1 Lime - Gray - TOTAL DEPTH 423 424 1 Lime - Gray - TOTAL DEPTH	275	200		
310 340 30 Anhydrite-Broken 360 365 365 381 365 375 10 Lime 378 400 22 Anhydrite 400 400 22 Anhydrite 400 400 22 Anhydrite 400 400 23 Shale-Red 400 400 23 Anhydrite 413 415 2 Anhydrite 413 415 2 Anhydrite 414 419 1 Lime-Stroken 418 419 1 Lime-Gray Ath?' - Comparted 418 419 1 Lime-Gray Oil Show 423 424 1 Lime - Gray - TOTAL DEPTH	200	230	73	
365 375 375 3 376 400 22 Anhydrite 400 408 8 Lime-Broken 400 403 3 Anhydrite 410 413 3 Anhydrite and Shale-Blue 413 415 2 Anhydrite and Shale-Blue 414 413 3 Lime-Gray 415 418 3 Lime-Gray 419 423 424 Lime-Gray = TOTAL DEPTH 423 424 Lime - Gray = TOTAL DEPTH	310	340	20	
365 375 375 3 376 400 22 Anhydrite 400 408 8 Lime-Broken 400 403 3 Anhydrite 410 413 3 Anhydrite and Shale-Blue 413 415 2 Anhydrite and Shale-Blue 414 413 3 Lime-Gray 415 418 3 Lime-Gray 419 423 424 Lime-Gray = TOTAL DEPTH 423 424 Lime - Gray = TOTAL DEPTH	340	240	VC 20	
365 375 375 3 376 400 22 Anhydrite 400 408 8 Lime-Broken 400 403 3 Shale-Red 410 413 3 Anhydrite 413 415 2 Anhydrite 413 415 2 Anhydrite 413 415 2 Anhydrite 413 418 3 Lime-Gray 419 413 418 1 419 423 424 1 423 424 1 1me-Gray - TOTAL DEPTH	360	365	<u> </u>	Annyarite Solt
400 408 8 Lime-Broken 400 413 3 Anhydrite anhydrite 413 415 2 Anhydrite anhydrite 413 415 2 Anhydrite and Shale-Blue 415 418 3 Lime-Set 7* at 417* - Gemented 418 419 1 Lime-Gray 419 423 424 1 423 424 1 Lime-Gray - TOTAL DEPTH	365	375	10	I.tma
400 408 8 Lime-Broken 400 413 3 Anhydrite anhydrite 413 415 2 Anhydrite anhydrite 413 415 2 Anhydrite and Shale-Blue 415 418 3 Lime-Set 7* at 417* - Gemented 418 419 1 Lime-Gray 419 423 424 1 423 424 1 Lime-Gray - TOTAL DEPTH	375	378		
400 408 8 Lime-Broken 400 410 413 3 Anhydrite 413 415 2 Anhydrite and Shale-Blue 415 418 3 Lime-Set 7* at 417* - Cemented 418 419 1 Lime-Gray 419 423 424 1 423 424 1 Lime-Gray - Oil Show 423 424 1 Lime-Gray - TOTAL DEPTH	378	400	22	
408 410 2 Shale-Red 413 413 3 Ahlydrite 413 415 2 Anhydrite 413 415 2 Anhydrite 415 418 3 Lime- Set 7" at 417" - Comparted 418 419 1 Lime- Gray 423 424 1 Lime - Gray - TOTAL DEPTH	400	408		
415 418 3 Lime-Set 7" at 417' - Campanied 418 419 1 Lime-Gray 423 424 1 Lime-Brown - Oil Show 423 424 1 Lime-Gray - TOTAL DEPTH	408	410	2	
415 418 3 Lime-Set 7" at 417' - Campanied 418 419 1 Lime-Gray 423 424 1 Lime-Brown - Oil Show 423 424 1 Lime-Gray - TOTAL DEPTH	410	413	3	
415 418 419 1 Lime-Gray 419 423 424 1 Lime-Gray 423 424 1 Lime-Gray - TOTAL DEPTH	413	415	2	
418 419 423 424 1 Lime- Gray - Oil Show 423 424 1 Lime- Gray - TOTAL DEPTH	415	418	3	Lines Set 7# at h171 _ Cadental
419 423 424 1 Lime - Gray - TOTAL DEPTH	418		í	Line Ger
423 424 1 Line - Gray - TOTAL DEPTH				Line Brown - 047 Sherr
	423			L the Grew TOTAL DEDWE
				a such a start a solution and the
	-			
				¹
				1
				¹
				¹
				1
				}
				\
				¹
				¹