District I
P. Box 1980, Hobbs, NM 88241-1980
District II
811 S. 1st Street Artesia, NM 88210-1404
District III
1000 Rio Brazos Rd, Aztec, NM 87410
District IV

PO Box 2088, Santa Fe, NM 87504-2088

1/11/00

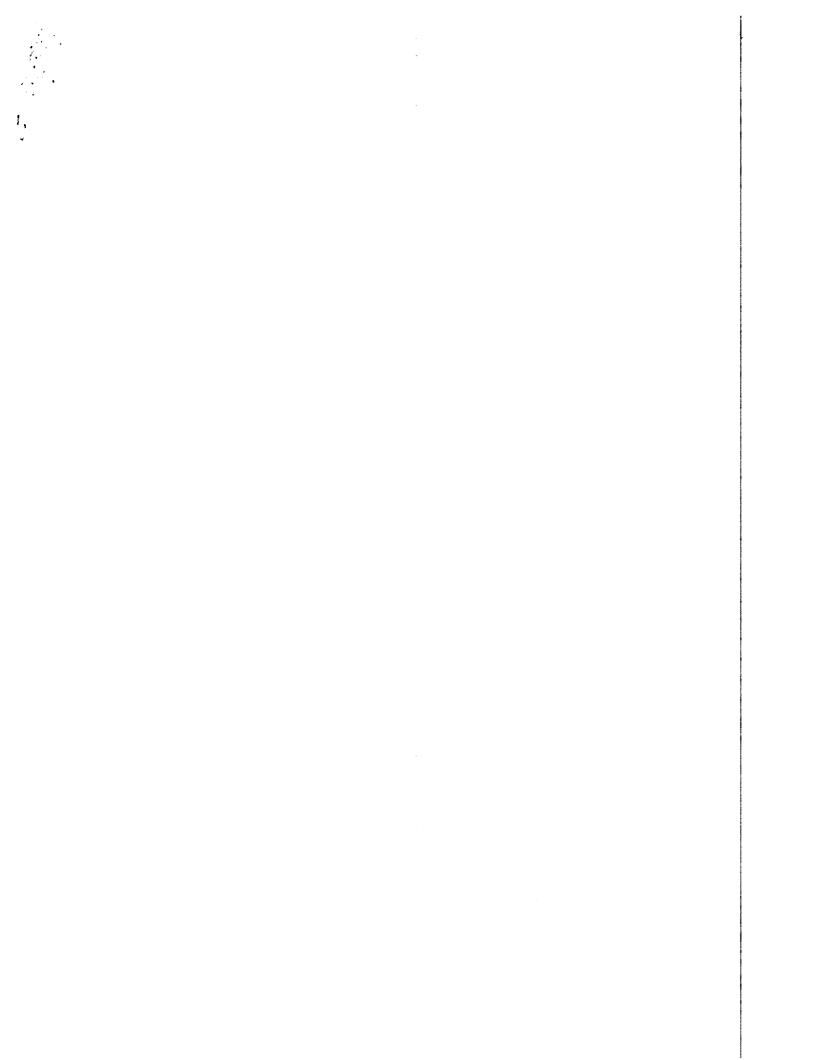
State of New Mexico Energy, Minerals & Natural Resourses Department

DIL CONSERVATION DIVISION PO Box 2088 Santa Fe. NM 87504-2088

Revised February 10(1)
Instructions on ba

Submit to Appropriate District O

State Lease - 6 Copie


Santa Fe, NM 87504-2088 Fee Lease - 5 Copies

AMENDED REPORT

APPLICA	TION	FOR PF	RMIT	TO DR'	ILL, RE-EN	ITER, DE	EPEN	۱, PLUGB	ACK	- , OR A'	DD A ZONE
			-	Operato	or Name and Addi	dress		7			GRID Number
			M	Mack Energ	gy Corporation				,		013837
			,		Box 960 M 88211-0960				,		API Number
			-		1 00211-0200				1		30-015-309/Z
Proper	erty Code				Pr	roperty Name					Well No.
02	23810				Mr	esquite State					2
		-			Surface I					<u></u>	<u> </u>
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South I	line	Feet from the	East/V	West line	County
L	20	178	29E		2310	South		990	ľ	West	Eddy
		Pro	posed J	Bottom '	Hole Locati					VCSC	Luuj
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South I		Feet from the		West line	County
		Propos	sed Pool 1					Proposi	1 Pool		
	East	t Empire Ye		96610				Fiopee	ed Pool 2	2	
Work Ty	ype Code		Well Type	e Code	T Cable/	/Rotary	т —	Lease Type Coo	1_	Group	1 El-votion
N				,		_			de	Ground	d Level Elevation
	ltiple		O Proposed D	Depth	Forma			S			3639 Spud Date
No	_		4200'	_					}		Spud Date
)			1	Padde	_ <u></u>	77700	LaRue		1/	/17/2000
Hole Siz	78	Casir	ng Size		d Casing and	od Cement Setting De					
17 1/2		13.3			54.5		35c	27B V	of Cement		Estimated TOC
12 1/4		8 5		+	24#	800'		Cir Sufficien			intare/
7 7/8		5 1		+	17#	4200'		Sufficient			12
		·	12	+	1/#	7200		Summeren	t to Cir	<u>c</u>	
								+			
Describe the pro	oposed prog	gram. If this ?	application	is to DEEPF	EN or PLUG BACK	K give the data	on the pr	resent productive	e zone ar	nd proposed	d new productive
Zone. Describe t	the blowout	it prevention p	program, it a	any. Use add	ditional sheets if ne ', run 13 3/8" cas	necessary.					
Drill to 42	ond to	Poddoc!	· Zana n	350	run 13 3/8" cas A/A/S asing and cemer	sing and com.	ent. L	fill to 800, rui	n 8 3/0	' casing ai	.nd cement.
Dilli to 720)0" anu ic	st Pauuouk	. Zone, ru	.n 5 1/2" ca	ising and cemer	nt. Put well o	n prod	uction.			
Note: On	Productic	on string, a	fluid cali'	ber will be	e run, will figure	e cement, witl	h 25%	excess, attem	pt to ci	rculate.	
* 1shy certify t	- she info	-i-n giver	- ie tr	1 mn							
I hereby certify the of my knowledge a		•	above is uu	e and comple //	ete to the best	OII	L CO	NSERVAT	LION	DIVISI	ION
Signature		1ima,	5 (atte	- Aj	pproval by:	4.	. 1.1	0.	```	axn
Printed name:		Crissa D. (Carter		Titl	ıle:	Pier	rict Sey	Eug Uw	sov_	1) OX
Title:	F	Production A	Analyst		Ap	pproval Date: /	-1/-	· c o E	Expintion	Dstc /-	11-01
					Cr	onditions of Appro	<u>. </u>				// /

Attached 🔲

(505)748-1288

DISTRICT I P.O. Box 1880, Hobbs, RM 88841-1880

DISTRICT III

State of New Mexico Energy, Minerals and Natural Resources Department

Form C-102 Revised February 10, 1994 Submit to Appropriate District Office State Lease - 4 Copies

DISTRICT II P.O. Drawer BD, Artonia, ROE 88811-0719

OIL CONSERVATION DIVISION

P.O. Box 2088

DISTRICT IV P.G. BOX 2006, MANTA FR, N.M. 87604-2066

1000 Rie Brasos Rd., Astoc, NM 87410

Santa Fe, New Mexico 87504-2088

☐ AMENDED REPORT

Fee Lease - 3 Copies

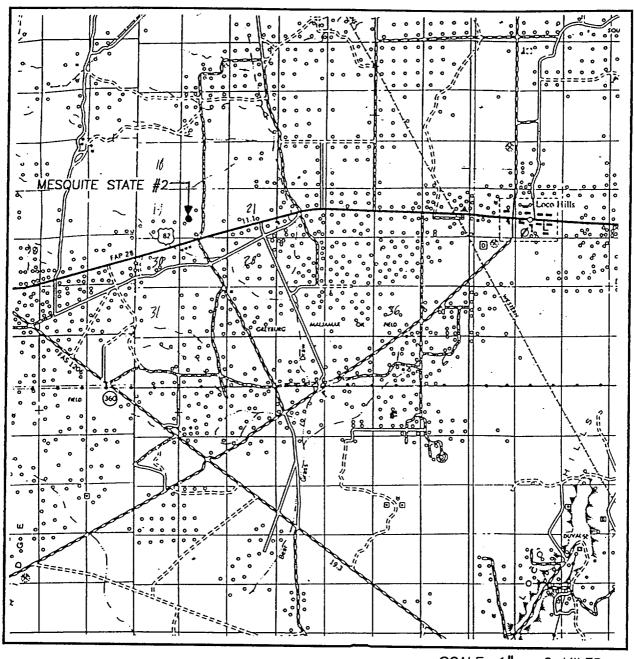
WELL LOCATION AND ACREAGE DEDICATION PLAT

API Number	Poel Code	Pool Name	
	96610	East Empire Yeso	
Property Code	Property Na		,
23810	MESQUITE :	STATE 2	
OGRID No.	Operator Na	me Elevation	
13837	MACK ENERGY CO	RPORATION 3639	

Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
L	20	17 S	29 E		2310	SOUTH	990	WEST	EDDY

Bottom Hole Location If Different From Surface


UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Dedicated Acres	Joint o	r Infill Co	onsolidation (Code Or	der No.			L	
40									

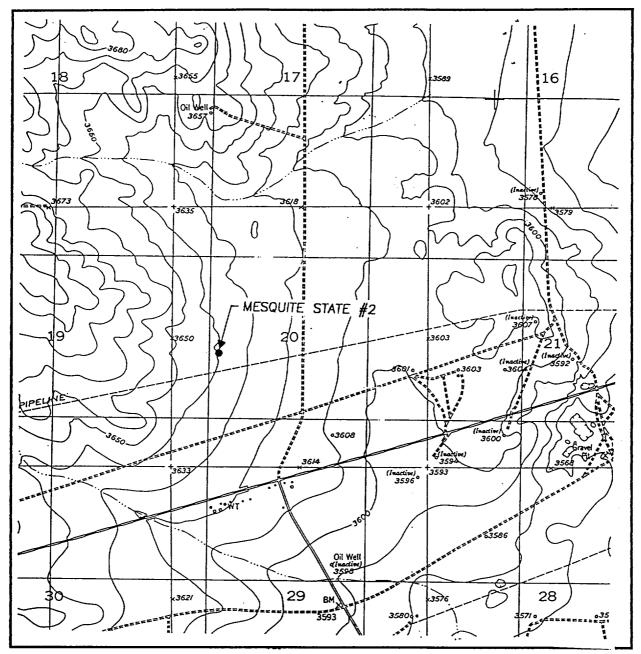
NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

	OPERATOR CERTIFICATION
	I hereby certify the the information contained herein is true and complete to the best of my knowledge and belief.
	Signature Cat
	Crissa D. Carter Printed Name
	Production Analyst Title ////00 Date
	SURVEYOR CERTIFICATION
990,	I haveby certify that the well location shown on this plat was plotted from field notes of solvel surveys made by me or under my supervison, and that the same is true and correct to the best of my belief.
2310,	JANUARY 6, 2000 Date Sugreyed Signature & Seal of Professional Sugreyer
	Certificate No. BONALD J. KIDSON 3239 GARY KIDSON 12841 MACON McDONALD 12185

		-
		000 OCC

VICINITY MAP

SCALE: 1" = 2 MILES


SEC	WP. 17-5 RGE. 29-E
SURVEY	N.M.P.M.
COUNTY	EDDY
DESCRIPTION	2310' FSL & 990' FWL
ELEVATION	3639
OPERATOR MA	CK ENERGY CORPORATIO
LEASE	MESQUITE STATE

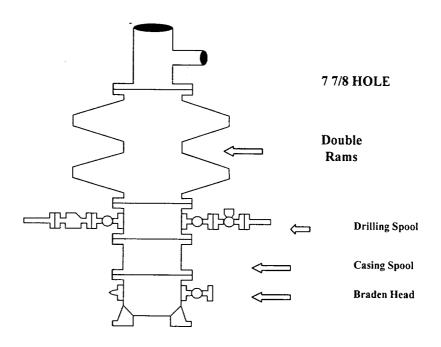
JOHN WEST SURVEYING HOBBS, NEW MEXICO (505 393-3117

		I
	-	
		1

LOCATION VERFICATION MAP

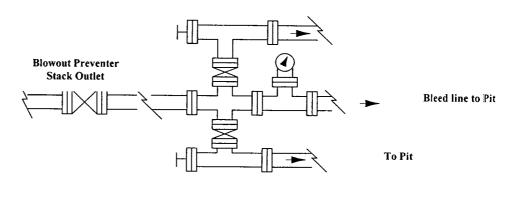
SCALE: 1" = 2000'

CONTOUR INTERVAL: RED LAKE SE, N.M. - 10'


SEC. 20 IW	P. <u>17-S_RGE29-E</u>
SURVEY	N.M.P.M.
COUNTY	EDDY
DESCRIPTION_2	2310' FSL & 990' FWL
ELEVATION	3639
OPERATOR MAC	CK ENERGY CORPORATION
LEASE	MESQUITE STATE
U.S.G.S. TOPO RED LAKE SE	

JOHN WEST SURVEYING HOBBS, NEW MEXICO (505 393-3117

Mack Energy Corporation


Exhibit #1 BOPE Schematic

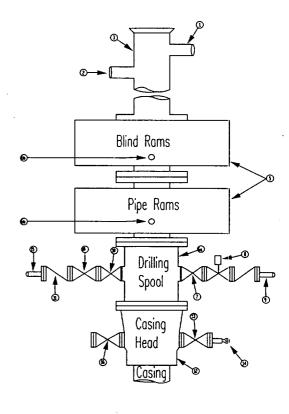
Choke Manifold Requirement (2000 psi WP) No Annular Required

Adjustable Choke To Pit

Minimum 4" Nominal choke and kill lines

Adjustable Choke (or Positive)

			un extensive de la constant de la co
-		~~	
	•		


Mack Energy Corporation

Ainimum Blowout Preventer Requirements

2000 psi Working Pressure 2 MWP EXHIBIT #2

Stack Requirements

NO. Items Min. Nominal		Stack Requirement	ILLO	
1 Flowline 2" 2 Fill up line 2" 3 Drilling nipple 4 Annular preventer 5 Two single or one dual hydraulically operated rams 6a Drilling spool with 2" min. kill line and 3" min choke line outlets	NO.	Items	Min.	Min.
2 Fill up line 3 Drilling nipple 4 Annular preventer 5 Two single or one dual hydraulically operated rams 6a Drilling spool with 2" min. kill line and 3" Choke 6b 2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above) 7 Valve Gate Plug 8 Gate valve-power operated 3 1/8 9 Line to choke manifold 3" 10 Valve Gate Plug 11 Check valve 2 1/16 12 Casing head 13 Valve Gate Plug 14 Pressure gauge with needle valve			I.D.	Nominal
3 Drilling nipple 4 Annular preventer 5 Two single or one dual hydraulically operated rams 6a Drilling spool with 2" min. kill line and 3" min choke line outlets 6b 2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above) 7 Valve Gate Plug 8 Gate valve-power operated 9 Line to choke manifold 10 Valve Gate Plug 11 Check valve Gate 2 1/16 Plug 11 Check valve 2 1/16 12 Casing head 13 Valve Gate 1 1 13/16 14 Pressure gauge with needle valve	1	Flowline		2"
4 Annular preventer 5 Two single or one dual hydraulically operated rams 6a Drilling spool with 2" min. kill line and 3" Choke 6b 2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above) 7 Valve Gate Plug 8 Gate valve-power operated 3 1/8 9 Line to choke manifold 3" 10 Valve Gate Plug 11 Check valve Gate 2 1/16 Plug 11 Check valve Gate 2 1/16 12 Casing head 13 Valve Gate 1 1 13/16 Plug 14 Pressure gauge with needle valve	2	Fill up line		2"
5 Two single or one dual hydraulically operated rams 6a Drilling spool with 2" min. kill line and 3" min. choke line outlets 6b 2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above) 7 Valve Gate Plug 8 Gate valve-power operated 3 1/8 9 Line to choke manifold 3" 10 Valve Gate Plug 11 Check valve Gate 2 1/16 Plug 11 Check valve Gate 2 1/16 12 Casing head 13 Valve Gate 1 1 13/16 Plug 14 Pressure gauge with needle valve	3	Drilling nipple		
operated rams 6a Drilling spool with 2" min. kill line and 3" 2" Choke 6b 2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above) 7 Valve Gate Plug 8 Gate valve-power operated 3 1/8 9 Line to choke manifold 3" 10 Valve Gate 2 1/16 Plug 11 Check valve Gate 2 1/16 12 Casing head 13 Valve Gate 1 1 13/16 Plug 14 Pressure gauge with needle valve	4	Annular preventer		
min choke line outlets Choke 2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above) 7 Valve Gate Plug 8 Gate valve-power operated 9 Line to choke manifold 10 Valve Gate Plug 11 Check valve 12 Casing head 13 Valve Gate Plug 14 Pressure gauge with needle valve	5			
outlets in ram. (Alternate to 6a above) 3 1/8 7 Valve Gate Plug 3 1/8 8 Gate valve-power operated 3 1/8 9 Line to choke manifold 3" 10 Valve Gate Plug 2 1/16 11 Check valve 2 1/16 12 Casing head 1 13/16 13 Valve Gate Plug 1 13/16 14 Pressure gauge with needle valve 1 13/16	6a			. –
Plug	6b			
9 Line to choke manifold 3" 10 Valve Gate 2 1/16 Plug 11 Check valve 2 1/16 12 Casing head 13 Valve Gate 1 13/16 Plug 14 Pressure gauge with needle valve	7		3 1/8	
10	8	Gate valve-power operated	3 1/8	
Plug	9	Line to choke manifold		3"
12 Casing head 13 Valve Gate 1 13/16 Plug 14 Pressure gauge with needle valve	10		2 1/16	
13 Valve Gate 1 13/16 Plug 14 Pressure gauge with needle valve	11	Check valve	2 1/16	
Plug 14 Pressure gauge with needle valve	12	Casing head		
	13		1 13/16	
15 Kill line to rig mud pump manifold 2"	14			
	15	Kill line to rig mud pump manifold		2"

OPTIONAL

16	Flanged Valve	1 12/16
110	Flanged Valve	1 13/10
1	_	l l

CONTRACTOR'S OPTION TO FURNISH:

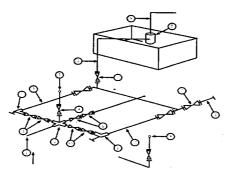
- All equipment and connections above bradenhead or casinghead. Working pressure of preventers to be 2000 psi minimum.
- Automatic accumulator (80 gallon, minimum) capable of closing BOP in 30 seconds or less and, holding them closed against full rated working pressure.
- 3. BOP controls, to be located near drillers' position.
- 4. Kelly equipped with Kelly cock.
- Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used.
- Kelly saver-sub equipped with rubber casing protector at all times.
- 7. Plug type blowout preventer tester.
- 8. Extra set pipe rams to fit drill pipe in use on location at all times.
- Type RX ring gaskets in place of Type R.

MEC TO FURNISH:

- 1. Bradenhead or casing head and side valves.
- 2. Wear bushing. If required.

GENERAL NOTES:

- Deviations from this drawing may be made only with the express permission of MEC's Drilling Manager.
- All connections, valves, fittings, piping, etc., subject to well or pump pressure must be flanged (suitable clamp connections acceptable) and have minimum working pressure equal to rated working pressure of preventers up through choke valves must be full opening and suitable for high pressure mud service.
- Controls to be of standard design and each marked, showing opening and closing position
- 4. Chokes will be positioned so as not to hamper or delay changing of choke beans.


 Replaceable parts for adjustable choke, or bean

- sizes, retainers, and choke wrenches to be conveniently located for immediate use.
- All valves to be equipped with hand-wheels or handles ready for immediate use.
- Choke lines must be suitably anchored.
- Handwheels and extensions to be connected and ready for use.
- Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency.
- All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted.
- Casinghead connections shall not be used except in case of emergency.
- 11. Do not use kill line for routine fill up operations.

	i i	~~	

Mack Energy Corporat

Exhibit #3 MIMIMUM CHOKE MANIFOLD 3,000, 5,000, and 10,000 PSI Working Pressure 2 M will be used or greater 3 MWP - 5 MWP - 10 MWP

Mud Pit

Reserve Pit

* Location of separator optional

Below Substructure

Mimimum requirements										
No.	3,000 MWP			···	5,000 MWP			10,000 MWP		
NO.	1	I.D.	NOMINAL	Rating	I.D.	Nominal	Rating	I.D.	Nominal	Rating
1	Line from drilling Spool	ļ	3"	3,000		3*	5.000		3"	10,000
2	Cross 3" x 3" x 3" x 2"			3,000			5,000		<u> </u>	
2	Cross 3" x 3" x 3" x 2"								 	10,000
3	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000
4	Valve Gate Plug	1 13/16		3,000	1 13/16		5,000	1 13/16		10,000
4a	Valves (1)	2 1/16		3,000	2 1/16		5.000	2 1/16		10,000
5	Pressure Gauge			3,000		†	5,000	2 17 10	 	10,000
6	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000
7	Adjustable Choke (3)	2"		3,000	2"	+	5.000	2"	 	10.000
8	Adjustable Choke	1"		3,000	1"		5,000	2"		10,000
9	Line	-	3"	3,000		3"	5,000	-	3"	10,000
10	Line		2"	3,000		2"	5.000		2"	10,000
11	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8	2	10,000
12	Line		3"	1,000		3"	1.000		3"	2000
13	Line		3"	1,000		3"	1.000		3"	2,000
14	Remote reading compound Standpipe pressure quage		-	3,000	<u> </u>		5,000		3"	2,000 10,000
15	Gas Separator		2' x5'			2' x5'			2151	
16	Line	_	4"	1,000		4"	1.000		2' x5'	2.000
17	Valve Gate Plug	3 1/8		3,000	3 1/8	7	5,000	3 1/8	4	2,000 10,000

- (1) Only one required in Class 3M
- (2) Gate valves only shall be used for Class 10 M
- (3) Remote operated hydraulic choke required on 5,000 psi and 10,000 psi for drilling.

EQUIPMENT SPECIFICATIONS AND INSTALLATION INSTRUCTION

- All connections in choke manifold shall be welded, studded, flanged or Cameron clamp of comparable rating. 1.
- All flanges shall be API 6B or 6BX and ring gaskets shall be API RX or BX. Use only BX for 10 MWP. 2.
- 3. All lines shall be securely anchored.
- Chokes shall be equipped with tungsten carbide seats and needles, and replacements shall be available.
- Choke manifold pressure and standpipe pressure gauges shall be available at the choke manifold to assist in regulating chokes. As an alternate with automatic chokes, a choke manifold pressure gauge shall be located on the rig floor in conjunction with the standpipe pressure gauge.
- Line from drilling spool to choke manifold should bee as straight as possible. Lines downstream from chokes shall make turns by large bends or 90 degree bends using bull plugged tees.