| SANTA FE | ISTRIBUTION | | | | | | , | | | ا الله الله الله الله الله الله الله ال | |--|---|--|---|---|--|--|--|--|--|---| | U.S.G.S. | | | NE | W MEXIC | O OIL C | ONSERV | NOITA' | COMMIS | SION | EORMVC-103
C (Rev 3-55) | | TRANSPORTER PROPATION OFF | | | (Submit) | AISCELL | ANEOU. | \$ REPO | ORTS O | N WEL | LS K | 1 5 1961
15 1961 | | Name of Comp | eany | | (Submit 1 | to approprie | ale Disilic | . O III CE C | is per Con | imission | Kule 1100 | | | | | rporation | Q. | | Dra
Unit Letter | Section | Township | sie, 1 | lew Mex | CI PETESIA, OFFICE | | Resl | er Yate | | | 30 | I | 21 | 1 | 38 | 1,,,,, | 28E | | Date Work Per | below | Pool | | esie | | | County | Edd | y | | | D-simin | D-!!!!- a One | | | REPORT O | | | | 7 - 1 1 | | | | | | | | Casing Test and Cement Job
Cemedial Work | | | Sand Frac | | | | | | | one, nature and | quantity of | materials us | sed, and res | ults obtain | ned. | | | | | | 6,00
agen
pres
and
well
psci | 00 gallor
nt. Bree
ssure vas
the inje | as salt
akdown
s 2000
sction
a for 5
reverse | water, pressur psi. Mare water water water water water water water sours. | 12,00
re was
ilnumum
is 18.5
Ren | 00# 10-
2000 p
treat
bbls,
2" EU | 20 mar
si. A
ting pr
per 1
5 cemer | id, er
laximu
ressui
kan mi
et lir | id a ge
in trea
'e was
nute.
ied tub | ting
1700 psi.
Left
oing with | | | Witnessed by Paul Darmell | | | | | 16 | | | | | | | | | | | ntende | ent | | | Corpor | etion | | | | | | Sup eri
W FOR RE | MEDIAL V | ORK RE | Graz | | Corpor | etion | | D F Elev. | | | | Sup eri
W FOR RE | ······ | ORK RE | Graz | NLY | | etion ompletion Date | | D F Elev. Tubing Diamet | er | FILL | L IN BELO | Buperi
W FOR RE
ORIGIN | MEDIAL V | ORK RE | Grain Producing | NLY
Interval | | ompletion Date | | | | TD | L IN BELO | Buperi
W FOR RE
ORIGIN | MEDIAL V | YORK RE | Grain Producing | NLY
Interval | Co | ompletion Date | | Tubing Diame | erval(s) | TD | L IN BELO | Buperi
W FOR RE
ORIGIN | MEDIAL V
AL WELL I
Oil Stri | YORK RE | Graz
PORTS ON
Producing | NLY
Interval | Co | ompletion Date | | Tubing Diamer | erval(s) | TD | L IN BELO | Buperi
W FOR RE
ORIGIN | Oil Stri | YORK REDATA ng Diameter ing Format | Graz
PORTS ON
Producing | NLY
Interval | Co | ompletion Date | | Tubing Diameter Perforated Into Open Hole Into Test | erval(s) | Tubing I | L IN BELO | Superi
W FOR RE
ORIGINA
PBTD | Oil Stri Produci | YORK REDATA ng Diameter ing Format | Producing Producing er ion(s) | Interval Oil | Co | ompletion Date | | Tubing Diameter Perforated Into Open Hole Into | erval(s) Date of | Tubing I | Depth | W FOR RE ORIGIN PBTD RESULTS Gas Pro | Oil Stri Produci | YORK REDATA Ing Diametor OVER Water Pr | Producing Producing er ion(s) | Interval Oil | Co
String Dep | ompletion Date th Gas Well Potential | | Tubing Diameter Perforated Into Open Hole Into Test Before | erval(s) Date of | Tubing I | Depth | W FOR RE ORIGIN PBTD RESULTS Gas Pro | Oil Stri Produci | YORK REDATA Ing Diametor OVER Water Pr | Producing Producing er ion(s) | Interval Oil | Co
String Dep | ompletion Date th Gas Well Potential | | Tubing Diamet Perforated Into Open Hole Into Test Before Workover After | erval(s) erval Date of Test | Tubing I | Depth Production | W FOR RE ORIGIN PBTD RESULTS Gas Pro | Oil Stri Production FPD | ORK REDATA Ing Diameter OVER Water Pr BF | Producing Producing er ion(s) | Interval Oil G Cubic f | Co
String Dep | ompletion Date th Gas Well Potential | | Tubing Diamet Perforated Into Open Hole Into Test Before Workover After | erval(s) erval Date of Test | Tubing I Oil P ERVATION CO | Depth Production B P D | W FOR RE ORIGIN PBTD RESULTS Gas Pro | Oil Stri Production FPD | ORK REDATA Ing Diameter OVER Water Pr BF | Producing Producing er ion(s) oduction D that the interpretation with the interpretation of interpreta | Oil Oil Grupic formation age. | OR Reet/Bbl | Gas Well Potential | | Tubing Diameter Perforated Into Open Hole Into Test Before Workover After Workover Approved by Title | erval(s) erval Date of Test | Tubing I Oil P E ERVATION CO | Depth Production B P D | W FOR RE ORIGIN PBTD RESULTS Gas Pro | Production FPD | ONTA Ing Diameter OVER Water Pr BF On Diameter Output Ou | Producing Producing er ion(s) that the inty knowledge | Interval Oil GCubic f formation ge. | OR Geet/Bbl | Gas Well Potential |