Mobil Oil Corporation

P.O. BOX 633 MIDLAND, TEXAS 79701

January 17, 1967

REDEIVED

JAN 1 9 1967

D. C. C.

Mr. Elvis A. Utz, Gas Engineer

New Mexico Oil Conservation Commission
P. G. Box 2088
Santa Fe, New Mexico

GAS WELL DELIVERABILITY TEST BROWN-HUMBLE PEDERAL NO. 1 SECTION 17, T20S, R25E, CEMETERY MERROW POOL EDDY COUNTY, NEW MEXICO

Dear Sir:

Mobil Oil Corporation respectfully requests that the New Mexico Oil Conservation Commission amend the letter order of November 22, 1966, to approve the flaring of 8.08 MMCF of gas from the subject well.

A forty-eight hour deliverability test was completed on the subject well January 5, 1965. This test was conducted as described in Hobil's letter of Hovember 17, 1966, in which authority to flare 6 MMCF of gas was requested.

During the deliverability test, the well produced at considerably higher pressures them enticipated with a corresponding increase in gas volume produced. The volume of gas calculated to have been flared from this well is 8.08 MMCF, exceeding the authorized volume of 6.0 MMCF by 2.08 MMCF.

Attached are the results of the test including a plat of flowing well-head pressure versus time and the gas volume calculation sheet.

Yours very truly,

N. E. Bourland for Ira B. Stitt. Jr.

Division Operations Engineer

RED/neb Attachment

cc: United States Geological Survey
Attn: Mr. James A. Knauf

New Mexico Oil Conservation Comm. Artesia, New Mexico

mailtonique de l'élocé

Marie (Selection) Production of the selection

The state of the state of the state of

កាយ មុខ ស្រែង ប្រាស់ ខេត្ត ស្រែង ប្រាស់ ខេត្ត ស ប្រាស់ក្រុមស៊ី ខេត្ត នគេសាធាតុសង្សា ស្រុក គេស ប្រាស់ក្រុ ប្រាស់ក្រុម ប្រាស់ ស ស ស ស ស ស ស ស ស

ന്റെ വാള്ത്തുന്നും പ്രധാനമായ വാളവും തന്നെക്കാരുന്നു. വിക്ക് വാളവും ആവിവും വിവര് വിവര് വിവര് വിവര് വിവര് വിവര് പൂത്ത് ഒരു പ്രവ്യവത്തിലും അവിവരുടെ വിക്കാത്തിലോ വിക്കാന് നിന്നു വിവര്ഷ്ട്ര വിവര്ശ് വിവര്ശ് വിവര്ശ് വിവര്ദ്ദേശ് പ്രവര്ത്തിലും അതിച്ച് വിവര്ത്തില് വിവര്ശ് വിശ്യാസ് വിവര്ശ് വിവര്ശ് വിവര്ശ് വിവര്ശ് വിവര്ശ് വിവര്ശ് വിവര്ശ് വിവ

මට විදුල්ම මෙයින් වන සියිම දීමෙනුවා ගැනීමෙන්නේ සුව විවේදීම් වෙන්නේ වියද දීම වැනිවා වැනි පැවතිවෙන්නේ මෙයි පැමතිනියා වන්නේ මෙය විදුල් පමණක සමාප විශාල් වෙන්නේ වෙන්නේ දීම දුරු පැවතිව විය පැහැද විය වෙන්නීම මෙයි සහ පරිසුල් පිරිසිට පින්වේ මෙන්නේ මෙන්නේ මෙන්නේ දීම් දුර්ම දුර්ම වෙන්නේ වෙන්නේ වෙන්නේ ව මෙන්නේ සිටි

na di madali minda (1867). Na di madali minda (1867). Na diserenta na di Managari mada (1868).

A CAMPA CAMPAGE AND A SECOND CONTRACTORS OF THE SECOND CONTRACTORS OF

, and entry where it is the entry of a second of the seco

Ĺ

\$ S										ti]
	のと																					+	
Q p	000	967																					
CQ	1 0 0	, _																					
B.L.E.	200	J 1																					-
7 70 4	уш≥	(n)																					
- Hα»	N 用 3	; Z 									1:1												3
COWING BROWN	WELL), R-25	ן לי												- A									۱
9 8	ኝ ሊ ጠ ,												=======================================	\int	1						1	:	-
														1	\								
														1.55	\				1			: :	1
																							100
																							-
								I E															
D K	3																						6
245					1::::			1												ļ:::::	ļ	-	<i>-</i>
				1	1.1.1															1			
	C)	-112						 								ò							
T T	3	Ž.																					
NO	122	3	- +									<u> </u>				0				 		1	
	Š	し												<u> </u>									
	ען																						· ŧ .
	ΔT	\mathcal{I}_{-}		+	11:11																		. `
		£ =					Ш												1				
и b	9	<u> </u>																					-
							1						1						rt: ::		1		
																							: †î
							1.55											1			1		:1
									ļ	1::										-	-		
						1				ļ								Ž					1
							ļ:::::	<u>-1</u>			1:		+.9-		0		\	ω		E			
o i	90				9		<u> </u>		5				8				8_	#1		1	<u> </u>		

VOLUME CALCULATIONS FOR FLOW THROUGH
POSITIVE CHOKES.

REFERENCES:

- () MANUAL FOR BACK PRESSURE TEST FOR
 NATURAL GAS WELLS STATE OF
 NEW MEXICO, COMPILED BY ELVIS A UTE,
 GAS ENGINEER, NMOCC, FEBRUARY 1, 1956
- (2) "SIMPLIFIED SUPERCOMPRESSIBILITY TABLES"

 COMPILED FROM C.N.G.A. BULLETING TS-402

 AND TS-461. APPROVED BY NMOCC.

FOR MULA:

 $Q = C \times P_{t} \times F_{t} \times F_{d} \times F_{PV}$ Where:

Q = FLOW RATE IN MCFD@ 15,025 PSIA & 60°F,

C = POSITIVE CHOKE COEFFICIENT,

PL = PRESSURE ACTING ON CHOKE,

Ft = FLOWING GAS TEMPERATURE FACTOR,

FG = FLOWING GAS GRAVITY FACTOR,

FPV = FLOWING GAS SUPERCOMPRESSIBILITY

FACTOR.

DATA:

POSITIVE CHOKE SIZE = 18/64 INCH,
FLOWING GAS TEMPERATURE = 60°F (ASSUMED),
GAS GRAVITY = 0.5873 = 0.59,
PLAVG, = 1985 PSIGHIS.025 PSIA = 2000 PSIA FROM
t = 0 min To t = 390 Min (SEE DRAWDOWN GRAPH),
PLAVGZ = 2055 PSIGHIS.025 PSIA = 2000 PSIA FROM
t = 390 MIN To t = 2880 MIN (SEE DRAWDOWN
GRAPH).

FACTORS FOR FORMULA:

FLOW RATES:

$$Q_{i} = C \times P_{EAVG}$$
, $X F_{E} \times F_{G} \times F_{PV}$
 $Q_{i} = (1.6907)(2000)(1.000)(1.0084)(1.147)$
 $Q_{i} = 3.91 \text{ MMC FD}$

TIME _
$$t = 390 \text{HIW}$$
 To $t = 2880 \text{HIW}$
 $Q_z = C \times P_{EAVGZ} \times F_L \times F_G \times F_{PV}$
 $Q_z = (1.6907)(2070)(1.000)(1.0084)(1.150)$
 $Q_z = 4.06 \text{ MMCFD}$

VOLUME GAS PRODUCED: