Well name: Operator: String type:	Devon Energy Corporati Production	Arco 7"으ઽ૬ on Energy Corporation (Nevada) #३०-२ luction							
Location: Section 20, T21S, R26E									
Design parameters: Collapse		Minimum design factors: Collapse:		Environment: H2S considered?	No				
Mud weig	ht: 6.600 ppg based on evacuated pipe.	Design factor	1.125	Surface temperature: Bottom hole temperature: Temperature gradient: Minimum section length:	90 °F				
Burst		Burst: Design factor	1.00						

Durse						
Max anticipated surface	;					
pressure:	3,874 psi					
Internal gradient:	0.000 psi/ft	Tension:		Directional Info - Build & Drop		
Calculated BHP	3.874 psi	8 Round STC:	1.80 (J)	Kick-off point	5700 ft	
	, 1	8 Round LTC:	1.80 (J)	Departure at shoe:	494 ft	
Annular backup:	9.60 ppg	Buttress:	1.60 (J)	Maximum dogleg:	2 °/100ft	
•	110	Premium:	1.50 (J)	Inclination at shoe:	0 °	
		Body yield:	1.50 (B)			
		Tension is based	on buoyed weight.			
Packer fluid details: Fluid density: Packer depth:	8.400 ppg 11,000 ft	Neutral point:	10,248 ft			

Run	Segment		Nominal		End	True Vert	Measured	Drift	Internal
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Capacity
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(ft³)
4	3400	7	26.00	L-80	LT&C	3400	3400	6.151	178.2
3	1700	7	23.00	J-55	LT&C	5100	5100	6.25	78.6
2	3700	7	26.00	J-55	LT&C	8747	8800	6.151	194
1	2553	7	26.00	L-80	LT&C	11300	11353	6.151	133.8
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design
	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(Kips)	(Kips)	Factor
4	1166	4658	4.00	3874	7240	1.87	260	511	1.97 J
3	174 9	2587	1.48	3663	4360	1.19	172	313	1.82 J
2	2999	4089	1.36	3557	4980	1.40	132	367	2.77 J
1	3874	5410	1.40	3329	7240	2.17	38	511	13.57 J

Prepared W.M. Frank by: Devon Energy Phone: (405) 552-4595 FAX: (405) 552-4621

Date: June 14,1999 Oklahoma City, Oklahoma

Remarks:

Collapse is based on a vertical depth of 11300 ft, a mud weight of 6.6 ppg The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

Engineering responsibility for use of this design will be that of the purchaser.