Form 3160-3 (August 1999)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

APPLICATION FOR PERMIT TO DRILL OR REENTER

1015 16 17 1015 8 FORM APPROVED OMB No. 1004-0136 Expires November 30, 2000

Acase Serial No. MM 033775

If Indian, Allottee or Tribe Name

la. Type of Work: 🛛 DRILL	REENTER	7. If Unit or CA Agreement, Name and No. North Benson Queen Unit
lb. Type of Well: A Oil Well Gas Well Oth	er Single Zone	8. Lease Name and Well No. #78 Multiple Zone North Benson Queen Unit
2. Name of Operator United Oil & Minerals, Inc.	182561	9. API Well No. 30 - 0/5 \ 315 15
3a. Address	3b. Phone No. (include area co	de) 10. Field and Pool, or Exploratory
1001 Westbank Dr., Austin, Tx	78746 (512) 328-8184	
4. Location of Well (Report location clearly and in accorde		1 Sec., T., R., M., or Blk. and Survey or Area
At surface 1111' FSL x 879' FEL At proposed prod. zone Same		Sec 28, T18S, R30E
14. Distance in miles and direction from nearest town or post	office*	12. County or Parish 13. State
7 miles South of Loco Hills		Eddy NM
15. Distance from proposed*	16. No. of Acres in lease	17. pacing Unit dedicated to this well
property or lease line, ft. (Also to nearest drig, unit line, if any)	1800	40
18. Distance from proposed location*	19. Proposed Depth	20. BLM/BIA Bond No. on file
to nearest well, drilling, completed, applied for, on this lease, ft. 6501	3600'	NM2732

The following, completed in accordance with the requirements of Onshore Oil and Gas Order No.1 hall be attached to this form:

1. Well plat certified by a registered surveyor.

21. Elevations (Show whether DF, KDB, RT, GL, etc.)

2. A Drilling Plan.

3506 GR

- 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO shall be filed with the appropriate Forest Service Office).
- d to cover the operations unless covered by an existing bond on file (see m 20 above).

23. Estimated duration

25 days

- perator certification.
- such other site specific information and/or plans as may be required by the authorized officer.

25-Signaturo /	Name Printed/Typed)	Date
P.E.	Jery Ilseng, P.E.	9/11/00
Title		
Petroleum Engineer		1
Approved by (Signature)	ame (Printed/Typed)	' Date
Stackard A. () hitley	Richard D. Whi	7/44 1/2-5-00
Title ASSOC STATE DIV	Office	ign well folds and
Application approval does not warrant or certify the the applicant holds le	al or equitable title to those rights in the subject lease w	hich would entitle the applicant to condu-

22. Approximate date work w

24. Attachments

10/15/00

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, mage it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

Conditions of approval, if any, are attached.

Benson; Queen- Grayburg, No ATh

PROVAL SUBJECT TO BENERAL REQUIREMENTS AND SPECIAL STIPULATIONS

DISTRICT I P.O. Box 1980, Hobbs, NM 88241-1980 State of New Mexico

Energy, Minerals and Natural Resources Department

Form C-102 Revised February 10, 1994 Submit to Appropriate District Office

Pool Name

State Lease - 4 Copies
Fee Lease - 3 Copies

DISTRICT II P.O. Drawer BD, Artesia, NM 88211-0719

DISTRICT IV

Dedicated Acres

Joint or Infill

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410

P.O. BOX 2088, SANTA FE, N.M. 87504-2088

API Number

OIL CONSERVATION DIVISION

Pool Code

Consolidation Code

P.O. Box 2088

Santa Fe, New Mexico 87504-2088

□ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

Property	Code			NORTH	Property Nam BENSON Q			Well Num	noer
OGRID N	о.		τ	JNITED	Operator Nam OIL & MIN	ERALS, INC.		Elevation 3506	
		<u> </u>			Surface Loca	ation			
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Р	28	18 S	30 E		1111	SOUTH	879	EAST	EDDY
			Bottom	Hole Loc	eation If Diffe	erent From Sur	face		
					Feet from the	North/South line	Feet from the	East/West line	County

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

Order No.

	OPERATOR CERTIFICATION I hereby certify the the information contained herein is true and complete to the best of my knowledge and belief.
	Bignature Jenry Ilseng P.E. Printed Name Petroleum Engineer Title
	9/25/00) Date SURVEYOR CERTIFICATION
	I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervison, and that the same is true and correct to the best of my belief.
87	AUGUST 24, 2000 Date Surveyed DC Signature & Seal of Professional Surveyor
	Sun 5 2 m 8/30/00 00-11-1015 Certificate No. RONALD J. EIDSON 3239 GARY EIDSON 12641

LOCATION VERIFICATION MAP

SCALE: 1" = 2000'

CONTOUR INTERVAL: HACKBERRY LAKE - 10'

SEC. 28 TWP. 18—S RGE. 30—E

SURVEY N.M.P.M.

COUNTY EDDY

DESCRIPTION 1111' FSL & 879' FEL

ELEVATION 3506

OPERATOR UNITED OIL & MINERALS, INC.

LEASE NORTH BENSON QUEEN UNIT

U.S.G.S. TOPOGRAPHIC MAP

HACKBERRY LAKE, N.M.

JOHN WEST SURVEYING HOBBS, NEW MEXICO (505 393-3117

UNITED OIL AND MINERALS, INC. WELL PROGRAM

			WELL NAME				
			COUNTY, STATE	EddyCo., I	4.IVI.		
Location:	1111' FSL x 879'	FEL, Sec 28	, T18S, R30E				
Directions:							
GEOLOGIC	AL PROGNOSIS						
Elevation:	3506'						
Formations		Depth	Subsea	Formations	D	epth	Subsea
Fresh Water	•	0-355'		Top Grayb		340'	166
Top Anhydri	te	355'	3151				
Top Salt	·····	560'	2946	-			
Base Salt		1380'	2126				
Top Yates Top Queen		1565' 2745'	1941 761	-			····
Top Penrose	3	2970'	536				
				 			
Logs:	At TD: GR/DLL/M	ISFL Densit	y/Dual Spaced Ne	utron/ Cal from Td to Surfac	ce		
Demodes							
Remarks:							
CASING PR	OGRAM						
				Burst	Coll		Ten
Intervals	·	Length	Casing	<u>PSI</u>	<u>PSI</u>		LBS
Intervals 0-550 358	o' <u>350'</u>	Length 530	<u>Casing</u> 8-5/8,24#,K-55	<u>PSI</u>			
0-550 351	o' <i>3</i> 50'	530	8-5/8,24#,K-55	<u>PSI</u> 2950	<u>PSI</u> 1370		LBS 263M
	350'			<u>PSI</u> 2950	<u>PSI</u>		LBS
0-550 351	350'	530	8-5/8,24#,K-55	<u>PSI</u> 2950	<u>PSI</u> 1370		LBS 263M
0-550 351	o' <i>3</i> 50'	530	8-5/8,24#,K-55	<u>PSI</u> 2950	<u>PSI</u> 1370		LBS 263M
0-550 351	o' <i>3</i> 50'	530	8-5/8,24#,K-55	<u>PSI</u> 2950	<u>PSI</u> 1370		LBS 263M
0-550 351	350'	530	8-5/8,24#,K-55	<u>PSI</u> 2950	<u>PSI</u> 1370		LBS 263M
0-550 351	350'	530	8-5/8,24#,K-55	<u>PSI</u> 2950	<u>PSI</u> 1370		LBS 263M
0-3600'		3600'	8-5/8,24#,K-55 5-1/2,14#,K-55	<u>PSI</u> 2950 4270	PSI 1370 3120		LBS 263M
0-3600'		3600'	8-5/8,24#,K-55 5-1/2,14#,K-55	<u>PSI</u> 2950	PSI 1370 3120		LBS 263M
0-3600' Wellheads:	Larkin 8-5/8", 2000	3600'	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 ** 2000# w/ a Top Flange Th	PSI 1370 3120		LBS 263M 189M
0-3600' Wellheads:	Larkin 8-5/8", 2000 BOP Tests: Test B	3600' #, WP Thre	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w	PSI 1370 3120 areaded	ken. Test 8-5/8	LBS 263M 189M
0-3600' Wellheads:	Larkin 8-5/8", 2000 BOP Tests: Test B	3600' #, WP Thre	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 ** 2000# w/ a Top Flange Th	PSI 1370 3120 areaded	sken. Test 8-5/8	LBS 263M 189M
0-3600' Wellheads:	Larkin 8-5/8", 2000 BOP Tests: Test B	3600' #, WP Thre	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w	PSI 1370 3120 areaded	iken. Test 8-5/8	LBS 263M 189M
0-3600' Wellheads:	Larkin 8-5/8", 2000 BOP Tests: Test B	3600' #, WP Thre	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w	PSI 1370 3120 areaded	ıken. Test 8-5/8	LBS 263M 189M
0-3600' Wellheads:	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for	3600' #, WP Thre	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w	PSI 1370 3120 areaded	oken. Test 8-5/8	LBS 263M 189M
0-3600' Wellheads:	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for	3600' #, WP Thre	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w	PSI 1370 3120 areaded	iken. Test 8-5/8	LBS 263M 189M
0-3600' Wellheads: Remarks: CEMENT PR	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for OGRAM	3600' 3600' #, WP Thre OP's and su 30 minutes	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2 reface equipment to Repair if more that	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w/ an 10% of the pressure is lo	PSI 1370 3120 areaded then seals are bross in 30 mimutes	Excess	LBS 263M 189M
0-3600' Wellheads: Remarks:	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for	3600' 3600' #, WP Thre OP's and su 30 minutes	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2 reface equipment to	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and wan 10% of the pressure is to Cement 269 Sxs Class "C" w/	PSI 1370 3120 areaded then seals are bross in 30 mimutes	5.	LBS 263M 189M
0-3600' Wellheads: Remarks: CEMENT PR	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for OGRAM	3600' 3600' #, WP Thre OP's and su 30 minutes	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2 reface equipment to Repair if more that	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w/ an 10% of the pressure is lo	PSI 1370 3120 areaded then seals are bross in 30 mimutes	Excess	LBS 263M 189M
0-3600' Wellheads: Remarks: CEMENT PR Hole Size 12-1/4"	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for OGRAM	3600' 3600' #, WP Thre OP's and su 30 minutes	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2 rface equipment to Repair if more that Casing Size 8-5/8"	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w an 10% of the pressure is lo Cement 269 Sxs Class "C" w/ 4% Gel + 2% CaCl	PSI 1370 3120 3120 areaded hen seals are bross in 30 mimutes Yield(CF/SX) 1.74	<u>Excess</u> 100%	LBS 263M 189M
0-3600' Wellheads: Remarks: CEMENT PR	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for OGRAM	3600' 3600' #, WP Thre OP's and su 30 minutes	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2 reface equipment to Repair if more that	PSI 2950 4270 " 2000# w/ a Top Flange The D 2000# on nipple up and with an 10% of the pressure is for an 10% of the pressure is for a 10% of the pressure is for	PSI 1370 3120 areaded then seals are bross in 30 mimutes	Excess	LBS 263M 189M
0-3600' Wellheads: Remarks: CEMENT PR Hole Size 12-1/4"	Larkin 8-5/8", 2000 BOP Tests: Test B 5-1/2" to 1000# for OGRAM	3600' 3600' #, WP Thre OP's and su 30 minutes	8-5/8,24#,K-55 5-1/2,14#,K-55 aded Larkin 4-1/2 rface equipment to Repair if more that Casing Size 8-5/8"	PSI 2950 4270 " 2000# w/ a Top Flange The 2000# on nipple up and w an 10% of the pressure is lo Cement 269 Sxs Class "C" w/ 4% Gel + 2% CaCl	PSI 1370 3120 3120 areaded hen seals are bross in 30 mimutes Yield(CF/SX) 1.74	<u>Excess</u> 100%	LBS 263M 189M

UNITED OIL AND MINERALS, INC. WELL PROGRAM

Surf Csg:	Run a centrailizer on jts 1,2 and every fourth jt to surface. Run FS, 1 jt, FC, and csg. Thread lock bottom 2 jts.
Prod Csg:	Remove varnish from bottom 800'(sandblast). Run FS, 2 jts, FC, and csg. Thread Lock the bottom 2 jts. Centralize 2 per
ite to 2500'	Displace w/ upday after dropping plug

MUD PROGRAM

350

<u>Interval</u> 0-559' 350'	<u>Wt(lb/gal)</u> 8.4-8.6	<u>Vis(sec)</u> 30-35	WL(cc)	Type Mud & Additives FW Gel/Paper/LCM
-550' -2700'	9.3+	40		
2700'-3600'	9.5-10.0	40	6-8 cc	

Remarks: Lost circulation is possible during the drilling of the 12-1/4" hole. Have paper and LCM available. Dry drill only if circulation cannot be regained.

NOTIFICATION:

Name Jerry Ilseng	<u>Title</u> Pet. Eng	<u>Phone</u> (512)632-2133
Jack Coker	VP- Drlg	(512)633-6543
Stan Bible	Consultant	(361)920-7826
Francis Gavin	Prod Supt	(806)891-5990

Surface Use and Operation Plan United Oil & Minerals, Inc. North Benson Queen Unit Well No. 48 #48-1111 FSL & 879 FEL, Sec 28, T18S-R30E Eddy County, New Mexico (Development Well)

This plan is submitted with Form 3160-3, Application for Permit to Drill, covering the above described well. The purpose of this plan is to describe the location of the proposed well, the proposed construction activities and operations plan, the magnitude of necessary surface disturbance involved, and the procedures to be followed in rehabilitating the surface after completion of the operations, so that a complete appraisal can be made of the environmental effects associated with the operation.

1. EXISTING ROADS

A. Exhibit A is a map of the North Benson Queen Unit Area on a scale of approximately 1 inch to 2000 feet showing the location of the proposed wellsite, roads in the vicinity, and road to the location. The road into the location is colored in red and begins on the map with the asterisk next to Section 33.

Exhibit B is a lease map prepared by Midland Map Company showing the location of the proposed wellsite roads in the vicinity. The proposed location is situated approximately 11 miles Southeast of Artesia, New Mexico, via the access route shown in red.

DIRECTIONS

From Artesia go approximately 11 miles in a southeast direction on Highway 360 to the intersection of County roads 360 and 251, go NE on 251 2.5 miles to the location (NBQ48) on the right.

2. PLANNED ACCESS ROAD

- A. The proposed new access will be approximately 20 feet in length from point of origin to the edge of the drilling pad. The road will lie in a north to south direction.
- B. The new road will be approximately 12 feet in width.
- C. The new road will be covered with caliche. No turnouts will be necessary.
- D. The center line of the new road has been staked and flagged and the route of the road is clearly visible.

3. LOCATION OF EXISTING WELLS

A. The well locations in the vicinity of the proposed well are shown in Exhibit A. There are several wells within a one mile radius because this is a producing field.

4. LOCATION OF EXISTING AND/OR PROPOSED FACILITIES

A. In the event that the well is productive, a two inch steel flowline will be connected to existing facilities.

LOCATION AND TYPE OF WATER SUPPLY

A. Water for drilling will come from a line laid from the fresh water injection plant in the SE/4 of Section 28.

6. SOURCES OF CONSTRUCTION MATERIALS

A. Any caliche required will come from the deep bury pit on the proposed location.

METHODS OF HANDLING WASTE DISPOSAL

- A. Drill cuttings will be disposed of in the reserve pits.
- B. Drilling fluids will be allowed to evaporate in the reserve pits until the pits are dry.
- C. Water produced during the operations will be collected in tanks until hauled to an approved disposal system or a separate disposal application will be submitted to the USGS for appropriate approval.
- D. Oil produced during operations will be stored in tanks until sold.
- E. Current laws and regulations pertaining to the disposal of human wastes will be complied with.
- F. Trash, waste paper, garbage and junk will be buried in a separate trash pit and covered with a minimum of 24 inches of dirt. All waste material will be contained to prevent scattering by the wind.

Surface Use and Operation Plan North Benson Queen Unit Well No. 48

G. All trash and debris will be buried or removed from the wellsite within 30 days after finishing drilling and/or completion operations.

8. ANCILLARY FACILITIES

A. None required

9. WELLSITE LAYOUT

- A. Exhibit C shows the dimensions of the well pad and reserve pits, and the location of major rig components.
- B. The reserve pits will be plastic lined.

10. PLANS FOR RESTORATION OF THE SURFACE

A. After finishing drilling and/or completion operations, all equipment and other material not needed for further operations will be removed. The location will be cleared of all trash and junk, to leave the wellsite in as good a condition as possible. All pits will be filled and leveled within 90 days after abandonment.

11. TOPOGRAPHY

- A. The wellsite and access route are located in sand hills near Loco Hills.
- B. The top soil at the wellsite is sandy.
- C. The vegetation cover at the wellsite is moderately sparse, with prairie grasses, some yucca, and miscellaneous weeds.
- D. No wildlife was observed but it is likely that rabbits, lizards, insects, and rodents travese the area. The area is used for cattle grazing.
- E. There are no ponds, lakes, streams, or rivers within several miles of the wellsite
- F. There are no residences in the area.
- G. The wellsite is located on federal surface.

Surface Use and Operation Plan North Benson Queen Unit Well No. 48

H. There is no evidence of any archaeological, historical, or cultural sites in the vicinity of the location.

12. OPERATOR'S REPRESENTATIVES

A. The field representatives responsible for assuring compliance with the approved surface use plan are:

Jerry Ilseng
Petroleum Engineer
1001 Westbank Drive
Austin, Texas 78746

Francis Gavin Production Superintendent

Levelland, Texas

13. CERTIFICATION

I hereby certify that I, or persons under my direct supervision, have inspected the proposed drillsite and access route; that I am familiar with the conditions which presently exist; that the statements made in this plan are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed by United Oil and Minerals, Inc. and its contractors and subcontractos in conformity with this plan and the terms and conditions under which it is approved.

J.R. Ilseng

Patterson Drilling Company

Rig #65

8,000'

DRAWWORKS

Weiss W-45

ENGINES

Two 8V71 Detroit diesels, 318 HP each with Allison 955 Torque Converter

DERRICK

Lee C. Moore 100', 280,000# Rated Capacity

SUBSTRUCTURE

12' high, 17' wide, 40' long, 380,000# Setback Capacity, Rotary Clearance – 9.4', KB – 13'

MUD PUMPS

Pump #1: Emsco D-550 w/Cat 379

Pump #2: Gardner Denver PZ-8 w/Cat 3508

DRILL STRING

8,000' 4-1/2" with X-hole
20 Drill Collars 6-1/4" with 4-1/4" X-hole
8 Drill Collars 8" with 6-5/8" reg
Other sizes of drill pipe and drill collars are
available

BLOWOUT PREVENTERS

One Shaffer, Type E with closing unit, Choke Manifold 3" x 3000#

MUD SYSTEM

One 75 BBL Premix Pit (if needed), and 2 – 200 BBI Steel Pits (if needed)

MUD HOUSE

None

COMMUNICATIONS

Cellular Phone

OTHER EQUIPMENT

Blocks. Emsco 150 Ton Hook. BJ 460 150 Ton

Swivel. Oilwell PC 150, 150 Ton

Rotary Table. BDW 17-1/2" x 44" 150 Ton

Shale Shaker. Single Screen

Electrical Power. One Cat 3304 w/234 kW Generator & One Cat 3306 w/100 kW Generator

Fresh Water Storage. 500 bbl tank

Housing.

"Hole Requirements will dictate actual Reserve Pit size (TOOLPUSHER SHOULD BE CONSULTED)"

DESIGNATION OF SUCCESSOR UNIT OPERATOR

(North Benson Queen Unit, Eddy County, New Mexico)

This Designation of Successor Unit Operator, dated as of the 1st day of June 1999. by and among UNITED OIL & MINERALS, INC. a Texas corporation, whose address is 1001 WESTBANK DRIVE AUSTIN, TX hereinafter designated as "First Party" and the owners of unitized working interests, hereinafter designated as "Second Parties".

WHEREAS, under the provisions of the Act of February 15, 1920, 41 Stat. 437. 30 U.S.C., Secs. 181, et seq., as amended by the Act of August 8, 1946, 60 Stat. 950, the Department of the Interior approved a Unit Agreement (No. 8910124100) for the North Benson Queen Unit (the "Unit") wherein United Oil & Minerals was appointed Unit Operator;

WHEREAS. MARIAH ENERGY CORP. has been appointed Successor Operator of the Unit:

WHEREAS, MARIAH ENERGY CORP has resigned as Unit Operator; and

WHEREAS, the First Party has been and hereby is designated by Second Parties as Operator of the unitized area and said First Party desires to assume all rights, duties and obligations of Operator under said Unit Agreement.

NOW, THEREFORE, in consideration of the premises hereinbefore set forth, First Party hereby covenants and agrees to fulfill the duties and assume the obligations of Operator under and pursuant to all the terms of said Unit Agreement, and the Second Parties agree that, effective upon approval of this Designation of Successor Operator by an authorized officer of the Bureau of Land Management, First Party shall be granted the exclusive right and privilege of exercising any and all rights and privileges as Unit Operator pursuant to the terms and conditions of said Unit Agreement, said Unit Agreement being hereby incorporated herein by reference and made a part hereof as fully and effectively as though said Unit Agreement were expressly set forth in this instrument.

IN WITNESS WHEREOF, the parties hereto have executed this instrument as of the date hereinabove set forth.

FIRST PARTY:

UNITED OIL & MINERALS, INC.

Name: Mike Peays
Title: PRESIDENT

BOP STACK

Rig 65 3000#

CHOKE MANIFOLD

lig 65 3000#

