

Hilcorp Energy Company

Federal 18 #1T Remediation System RP# (3RP-1034) 2020 1st Quarter Report

RCVD VIA Email 4/21/2020

<u>Submitted By:</u> Jennifer Deal Environmental Specialist Hilcorp Energy Company 505-324-5128

Cong his

<u>Submitted to:</u> Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 87410 505-334-6178 Ext 116

April 2020

Table of Contents

Introduction	3
History	
1st Quarter Activities	4-5
Recommendations	5
Tables Federal 18 #1T Gas Vented Well SJ 1737 Casing Pressure	6 7

Attachments

Federal 18 #1T Water Results Water Analysis Lab Report

Introduction

The purpose of this report is to summarize the current on-site activities involving venting gas and producing water from a former coal bed methane gas well at the Federal 18 #1T. The casing of this well has been modified to vent gas and purge water from the Ojo Alamo Formation. The setup and initial installation of this system is detailed in a report submitted to Brandon Powell, New Mexico Oil Conservation Division (OCD), in November 2010. This quarterly report details operations for the quarter.

History

The vacuum system at the Federal 18 #1T is being operated as part of an on going effort between the OCD and Hilcorp Energy Company (formerly XTO Energy, Inc.) to vent gas from the Nacimiento formation just above the Ojo Alamo Formation. Gas was found in the Nacimiento formation, which could have come from several contributing sources. The Federal 1 #18 (30-045-09466), located in Section 10 of Township 30N, Range 13W and approximately 2,600' to the south-west of water well SJ-01737, was plugged in 1988 by Southern Union Oil Company. This well only had an initial surface casing of 200' when it was drilled in 1959. Section 18 also has one (1) additional well plugged by XTO Energy, Inc. (XTO) in 2010. Section 19 of Township 30N, Range 12W has two (2) historically plugged wells. Approximately 4,400' to the south of water well SJ-01737, the Dansby #2 (30-045-09402) was plugged by Don Trader, Inc. in 1954 with a total depth of 1980' and a surface casing of only 100', and the second was a well plugged by Amoco Production in 1988. There are also three (3) additional wells plugged by Texacoma in 1997 in Section 19. There are additionally numerous oil and gas wells being operated by local exploration and production companies in the area. In Section 18, there are five (5) wells being operated by Hilcorp Energy Company (Hilcorp). In Section 19, there are nine (9) wells being operated by Hilcorp. In Section 7, there are seven (7) wells being operated by Hilcorp, and four (4) wells being operated by Robert L Bayless Producers, LLC. Furthermore, there is naturally occurring gas in the formation according to statements from local water well drillers, and a casing leak was discovered at the New Mexico Federal N #3E well site, (located in Unit D, Section 18, Township 30N, Range 12W, and San Juan County, New Mexico). This leak was identified as a result of discovery of gas in a local water well (SJ 1737) in April 2010. Bradenhead pressures were observed at several Hilcorp wells in the area. The New Mexico Federal N #3E, the New Mexico Federal N #3F and the New Mexico Federal N #3 all had bradenhead pressure tests performed. The bradenhead pressure from the New Mexico Federal N #3E was 17 psi, indicating a leak in the casing. The casing leak was repaired, and the New Mexico Federal N #3E was put back into operation. In agreement with the OCD, a nearby gas well scheduled to be plugged, Federal 18 #1T, was modified to act as a venting well by setting a plug at approximately 513 feet. Perforations were made in the casing at 437 feet and 457 feet in order to assess the groundwater and vent gas from the Nacimiento.

On September 24, 2010, a swab rig was used to determine if the well would produce water using the perforations. The swab rig recovered approximately 2 barrels of water, indicating that the perforations would produce water. A sample collected during the swab returned results above Water Quality Control Commission (WQCC) standards for benzene, total xylenes, and total chlorides; see attached *Federal 18 #1T Water Results Table*. Due to the low pH and high chlorides, it was inferred that the acid used to dissolve cement during perforation activities may have infiltrated the aquifer, causing the increased levels shown in the sampling results. XTO

recommended pumping the aquifer until sampling results were below the WQCC standards for BTEX and chlorides.

A pump was installed in the Federal 18 #1T on November 9, 2010 at approximately 485 feet. During the pump installation, the water level was checked using a Keck ET Long water level indicator. The static water level was found to be approximately 402.20 feet. The pump was initially set to operate four (4) times a day for 15 minutes, purging approximately 260 gallons per day. During swab and pump installation activities, no gas was found flowing from the well.

On November 11, 2010, a small vacuum pump was installed at the Federal 18 #1T to determine if gas could be vented. The discharge from the vacuum was checked using a MSA 4-Gas Monitor, which confirmed that methane, was being vented from the vacuum pump discharge. The vacuum pump operates at a discharge rate of three (3) standard cubic feet per minute (scfm), which is equivalent to approximately six (6) actual cubic feet per minute (acfm) based on elevation. This volume was calculated using the conversion factors provided by the vacuum pump manufacturer, Becker. The vacuum pump initially held a vacuum of approximately -12 inches of mercury on the casing of the Federal 18 #1T during operation. A portable generator placed on-site powered both the vacuum pump and the water pump.

The water pump was plumbed into the existing water lines on site, so that all water would pump into the 210-barrel water tank left on-site from production activities. Water piping above ground was wrapped with heat trace and insulation to prevent freezing.

The system was electrified on February 3, 2011 to prevent down time due to generator maintenance issues.

Currently the Federal 18-1T system visually checked on a weekly basis. The site check includes verifying pump operation, vacuum operation, recording volume changes based on week prior, and verifying that no other site conditions need adjustment. The 1737 well is evaluated on a weekly basis to open the valve for a week and then closing the valve the following week, before the valve is opened the next week a record of the pressure is taken before opening the valve.

1st Quarter Activities

Hilcorp Operations sampled on February 27, 2020. A total of 1,128,506 gallons of water has been removed from the Federal 18 1T as of February 27, 2020. The attached *Federal 18 #1T Water Results Table* shows that the benzene concentrations have increased since last month and results are above the WQCC standard at 20.7 ppb. Chloride levels have increased slightly from last month with a result of 14.4 ppm. pH values decreased from last month to 7.06. TDS continues to be above WQCC standards at 2280 ppm, but background levels (1,400 ppm) in water well SJ 1737 are historically above WQCC standards as well.

The pressure at well SJ 1737 was checked over the course of the quarter. The pressure was checked by shutting in the casing for a minimum of one (1) week prior to reading the pressure gauge. The pressure readings are outlined in the attached *Well SJ 1737 Casing Pressures Table*. The pressure remained fairly constant over the course of the quarter.

Recommendations

Groundwater samples will continue to be collected quarterly to monitor the benzene concentration in this well. Hilcorp proposes the continued operation of the vacuum pump and water pump at the Federal 18 #1T. Groundwater samples will continue to be collected on a quarterly basis until benzene levels remain below the WQCC standards for four (4) consecutive quarters. An alternative sampling schedule may be recommended at that time.

Jennifer Deal Environmental Specialist Hilcorp Energy Company

Federal 18 #1T Gas Vented									
Date	SCFM	ACFM	Gas Vented Total (MCF)						
8/22/2018	3	6	23536.0						
8/30/2018	3	6	23596.4						
9/7/2018	3	6	23656.8						
9/14/2018	3	6	23717.2						
9/20/2018	3	6	23777.6						
9/28/2018	3	6	23838.0						
10/15/2018	3	6	23958.8						
10/23/2018	3	6	24019.2						
11/2/2018	3	6	24140.0						
11/9/2018	3	6	24200.4						
11/15/2018	3	6	24260.8						
11/29/2018	3	6	24381.6						
12/6/2018	3	6	24442.0						
1/3/2019	3	6	24683.6						
1/17/2019	3	6	24804.4						
2/8/2019	3	6	24985.6						
2/13/2019	3	6	25046.0						
2/20/2019	3	6	25106.4						
2/27/2019	3	6	25166.8						
3/4/2019	3	6	25227.2						
4/1/2019	3	6	25468.8						
4/11/2019	3	6	25589.6						
4/17/2019	3	6	25650.0						
4/25/2019	3	6	25710.4						
5/9/2019	3	6	25831.2						
5/20/2019	3	6	25952.0						
6/10/2019	3	6	26133.2						
6/26/2019	3	6	26314.4						
7/1/2019	3	6	26374.8						
7/8/2019	3	6	26435.2						
8/2/2019	3	6	26676.8						
8/20/2019		Vacu	uum Pump not running						
8/29/2019		Vacu	uum Pump not running						
9/10/2019		Vac	cuum Pump removed						
9/17/2019	4		26676.8						
10/7/2019	4		26848.8						
10/21/2019	4		26969.2						
10/28/2019	4		27029.6						
12/5/2019	4		27356.4						
12/19/2019	4		27477.2						
1/7/2020	4	6	27954.1						
1/17/2020	4	6	28040.4						
1/30/2020	4	6	28152.6						
2/12/2020	4	6	28264.8						
2/25/2020	4	6	28377.0						

Date	Cooling Processing (173)	Average
	Casing Pressure (oz)	Average
8/9/2018	bad gauge	
8/22/2018	bad gauge	
8/30/2018	6.0?	0.000
9/7/2018	0	0.000
9/14/2018	0	0.000
9/20/2018	0	0.000
9/28/2018	0.75	0.094
10/15/2018	0.25	0.015
10/23/2018	0	0.000
11/2/2018	1	0.100
11/9/2018	0	0.000
11/15/2018	0	0.000
11/29/2018	0	0.000
12/6/2018	1.25	0.179
1/3/2019	0	0.000
1/17/2019	1	0.071
2/8/2019	0	0.000
2/13/2019	1.5	0.300
2/20/2019	0	0.000
2/27/2019	0.75	0.107
3/4/2019	0	0.000
4/1/2019	1	0.036
4/11/2017	0	0.000
4/17/2019	2.25	0.003
5/9/2019	2	0.091
5/20/2019	0	0.000
6/10/2019	0	0.000
6/26/2019	0	0.000
7/1/2019	0.5	0.100
7/8/2019	0	0.000
8/2/2019	0	0.000
8/20/2019	0	0.000
8/29/2019	0.5	0.056
9/10/2019	0	0.000
9/17/2019	1	0.143
10/7/2019	0	0.000
10/21/2019	1.75	0.125
10/28/2019	0	0.000
12/5/2019	0	0.000
12/19/2019	3	0.000
1/7/2020	0	0.214
1/17/2020	1.25	0.000
1/30/2020	0	0.125
2/12/2020		0.000
	2.25	
2/25/2020	0	0.000

Well SJ 1737 Casing Pressures

Federal 18 #1T Water Results

D. t.		Benzene	T - h (h -)		Madama (multi)			FO (During Western Malanna
	Lab	(ppb)		Ethylbenzene (ppb)				EC (umhos/cm)	pН	Purge Water Volume
	NA	10	750	750	620	250	1000		6 thru 9	NA
9/24/2010	ESC	150	BDL	76	670	NS	NS	NS	NS	NA
9/24/2010	ESC	190	170	24	210	6800	13000	18000	6.1	NA
9/24/2010	Etech	143	221	63.6	950	NS	NS	NS	NS	NA
9/24/2010	Etech	320	377	31.8	568	7150	11100	16000	5.84	NA
12/10/2011	Hall	NS	NS	NS	NS	2800	7610	8900	6.36	3032.5
1/5/2011	Hall	67	93	7.9	25	NS	NS	NS	NS	7,798
1/5/2011	ESC	73	99	10	39	1600	4800	6000	6.6	7,798
1/29/2011	ESC	60	93	10	33	930	NS	4900	6.4	10791.0
2/28/2011	ESC	42	60	6.1	20	550	3400	4000	6.7	14795.0
4/1/2011	ESC	23	27	1.8	6.8	260	2700	3100	6.8	31237.5
4/29/2011	ESC	29	28	2.4	7.3	140	2600	2900	6.9	50217.0
5/31/2011	ESC	14	19	1.4	4.9	89	2500	2800	6.7	76513.0
6/14/2011	ESC	55	81	2.8	15	73	2500	2700	6.7	88120.0
6/30/2011	ESC	52	67	2.6	12	61	2500	2700	6.9	101208.5
8/15/2011	ESC	21	25	1.2	5.8	44	2500	2600	6.8	140267.0
9/2/2011	ESC	10	12	0.64	3.2	41	2500	2600	7.2	155801.0
9/16/2011	ESC	9.6	11	0.64	3.2	38	2300	2500	7.2	168040.0
9/30/2011	ESC	7.2	8.7	0.64	2.5	35	2400	2500	7.2	180392.5
		5.1	8.7 BDL		2.5	30	2300			
10/28/2011	ESC			1.8				2600	6.9	205,220
11/30/2011	ESC	4	BDL	3.9	2	27	2500	2600	7.1	233,487.5
12/30/2011	ESC	3.4	BDL	BDL	2.9	27	2500	2500	7.5	261,390.5
4/3/2012	ESC	6	BDL	BDL	1.6	NS	NS	NS	NS	351,300
4/9/2012	ESC	NS	NS	NS	NS	19	2400	2400	7.4	NA
7/3/2012	ESC	5.3	BDL	BDL	BDL	16	2300	2400	7.4	NA
7/6/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	441,053
9/19/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	521,271
9/27/2012	ESC	6.2	BDL	BDL	BDL	15	2300	2500	7.1	NA
12/14/2012	NA	NS	NS	NS	NS	NS	NS	NS	NS	598,540
12/31/2012	Etech	13.9	1.1	ND	3.3	15.5	2690	2440	7.05	604,689
1/23/2013	ESC	160	190	BDL	26	15	2400	2500	8	PUMP SHUT OFF
2/22/2013	ESC	7.1	77	BDL	1.8	15	2100	2500	7.1	605,860
5/2/2013	ESC	9	6.9	BDL	BDL	15	2400	2600	7.5	612,601
8/19/2013	ESC	20	11	BDL	2.3	16	2200	2600	7.2	NA
9/23/2013	ESC	13	11	BDL	2.2	16	2300	2500	7.1	621,744
11/25/2013	ESC	4.6	5.2	BDL	BDL	15	2200	2700	7.7	631,430
2/4/2014	ESC	15	17	0.72	3.1	16	2200	2500	7.3	636,120
10/1/2015	ESC	54.2	57	1.37	9.77	21.3	2260	2640	6.98	639,410
10/20/2015	ESC	42.3	39.9	0.964	7.06	18.1	2330	1460	7.09	642,650
3/28/2016	ESC	38	34.1	0.835	4.82	21.6	2230	2570	6.86	
6/14/2016	ESC	78.3	58.4	1.16	7.22	13.7	2890	2600	6.89	704,371
8/29/2016	ESC	19		BDL	2.18	14.8	2410	2590	7.02	763,261
11/18/2016	ESC	13.2	5.61	BDL	2.33	13.9	2470	2580	7.03	842,610
3/31/2017	ESC	9.61	7.87	BDL	BDL	14.4	2300	2570	7.28	858,190
6/16/2017	ESC	64.6	29.2	0.781	5.4	14.2	2360	2570	7.05	927,854
9/7/2017	ESC	4.61	1.73	BDL	BDL	13.7	2030	2450	7.14	997,330
12/5/2017	ESC	138	51.5	1.65	9.378	14.4	2030	2590	7.14	1,080,550
3/6/2018	ESC	130	14.8	0.543	2.71	14.4	2230	2590	7.13	1,080,840
8/7/2018	ESC	7.9	8.06	<0.5	<1.5	14.4	2290	2620	7.13	
1/3/2019	ESC	7.07	3.29	0.177	1.08	15.8	2080	6750	6.35	1,120,220
2/22/2019 5/24/2019	ECS ECS	19.8 11.9	11.1 10.8	<0.5 ND	3.97 ND	14.1 13.4	2270 2380	2710 2760	7.46 7.15	1,120,366 1,123,853
9/10/2019	ECS	23.2	10.8	ND ND	ND ND	13.4	2380	2780	7.15	1,125,478
10/29/2019	ECS	5.41	5.68	ND	ND	14.0	2300	2530	7.09	1,127,076
2/27/2020	ECS	20.7	19.3	ND	ND	14.4	2280	2580	7.06	1,128,506
	_	ND	5.2	ND	ND	15	1400	2600	7.2	NA

BDL = Below Detection Limits NS = Not Sampled Values in **BOLD** exceed WQCC Standards Baseline Sample (Well SJ 1737) WQCC Standards

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group:	L1193766
Samples Received:	02/27/2020
Project Number:	
Description:	FEDERAL 18#1T
Site:	FEDERAL 18# 1T
Report To:	Jennifer Deal
	382 Road 3100
	Aztec, NM 87401

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Entire Report Reviewed By:

Unio S

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

PROJECT:

SDG: L1193766

TABLE OF CONTENTS

1

₩
¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
FEDERAL 18 # 1T TUBING L1193766-01	5
Qc: Quality Control Summary	6
Gravimetric Analysis by Method 2540 C-2011	6
Wet Chemistry by Method 9040C	7
Wet Chemistry by Method 9050A	8
Wet Chemistry by Method 9056A	9
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SDG: L1193766

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	te/time
FEDERAL 18 # 1T TUBING L1193766-01 GW			K Heokstra	02/25/20 12:00	02/27/20 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1435699	1	03/01/20 09:29	03/01/20 10:35	TH	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG1435248	1	02/29/20 14:00	02/29/20 14:00	MSP	Mt. Juliet, TN
Wet Chemistry by Method 9050A	WG1435537	1	02/28/20 13:09	02/28/20 13:09	LRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1435212	1	03/01/20 13:43	03/01/20 13:43	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1435311	1	02/28/20 01:00	02/28/20 01:00	JCP	Mt. Juliet, TN

*

Ср

SDG: L1193766

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SAMPLE RESULTS - 01 L1193766

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	2280		20.0	1	03/01/2020 10:35	WG1435699
Wet Chemistry by Method	d 9040C					
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	su			date / time		
рН	7.06	<u>T8</u>	1	02/29/2020 14:0	0 <u>WG1435248</u>	
Sample Narrative: L1193766-01 WG1435248: 7.06 at 19.40	2					
Wet Chemistry by Method						

	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	umhos/cm		umhos/cm		date / time		G
Specific Conductance	2580		10.0	1	02/28/2020 13:09	WG1435537	8
							ĬAĬ

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Sc
Analyte	mg/l		mg/l		date / time		
Chloride	14.4		1.00	1	03/01/2020 13:43	WG1435212	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.0207		0.00100	1	02/28/2020 01:00	WG1435311
Toluene	0.0193		0.00100	1	02/28/2020 01:00	WG1435311
Ethylbenzene	ND		0.00100	1	02/28/2020 01:00	WG1435311
Total Xylenes	ND		0.00300	1	02/28/2020 01:00	WG1435311
(S) Toluene-d8	111		80.0-120		02/28/2020 01:00	WG1435311
(S) 4-Bromofluorobenzene	102		77.0-126		02/28/2020 01:00	WG1435311
(S) 1,2-Dichloroethane-d4	109		70.0-130		02/28/2020 01:00	WG1435311

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3504533-1 03	3/01/20 10:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		2.82	10.0

L1193940-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1193940-01 03/0	1/20 10:35 • (DUP)	R3504533-3	03/01/20	10:35		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1090	1160	1	6.25	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3504533-2 0	3/01/20 10:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8410	95.6	85.0-115	

SDG: L1193766 DATE/TIME: 03/03/20 13:38 PAGE: 6 of 14

Wet Chemistry by Method 9040C

QUALITY CONTROL SUMMARY

Ср

⁺Cn

Sr

ິQc

GI

ΆI

Sc

L1193583-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1193583-01 02/29/20 14:00 • (DUP) R3504193-2 02/29/20 14:00

. ,	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	7.79	7.81	1	0.256		1
Sample Narrative:						

Sample Narrative:

OS: 7.79 at 18.9C

DUP: 7.81 at 18.7C

L1193793-06 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits
Analyte su su % %
pH 5.97 5.96 1 0.168 1
Sample Narrative:

DUP: 5.96 at 19.1C

Laboratory Control Sample (LCS)

(LCS) R3504193-1 02/29/	20 14:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	su	SU	%	%	
рЦ	10.0	9.96	99.6	99.0-101	

Sample Narrative:

LCS: 9.96 at 18C

Wet Chemistry by Method 9050A

QUALITY CONTROL SUMMARY L1193766-01

Тс

Ss

Cn

Sr

ິQc

Method Blank (MB)

(MB) R3503926-1 02/2	28/20 13:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	umhos/cm		umhos/cm	umhos/cm
Specific Conductance	U		10.0	10.0

L1192965-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1192965-01 02/28/2	20 13:09 • (DUP)) R3503926-3	02/28/20) 13:09		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	umhos/cm	umhos/cm		%		%
Specific Conductance	2120	2090	1	1.38		20

L1193021-01 Original Sample (OS) • Duplicate (DUP)

L1193021-01 Origin	nal Sample (C	JS) • Dupl	licate (D	JUP)			⁷ Gl
(OS) L1193021-01 02/28	/20 13:09 • (DUP)	, R3503926-4	02/28/20	J 13:09			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	umhos/cm	umhos/cm		%		%	
Specific Conductance	685	684	1	0.146		20	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3503926-2 02/	/28/20 13:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	umhos/cm	umhos/cm	%	%	
Specific Conductance	475	447	94.1	85.0-115	

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1193766-01

Τс

Ss

Cn

Sr

ິQc

Method Blank (MB)

(MB) R3504557-1 03	3/01/20 05:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.0519	1.00

L1193073-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1193073-01 03/01/20 09:20 • (DUP) R3504557-3 03/01/20 09:36										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/l	mg/l		%		%				
Chloride	1150	1150	1	0.0532	E	15				

L1193073-01 Original Sample (OS) • Duplicate (DUP)

L1193073-01 Original Sample (OS) • Duplicate (DUP)								⁷ Gl		
(OS) L1193073-01	(OS) L1193073-01 03/01/20 10:09 • (DUP) R3504557-5 03/01/20 10:26									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ A		
Analyte	mg/l	mg/l		%		%				
Chloride	914	1010	100	10.1		15		°S(

L1193766-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1193766-01 03/01/20	OS) L1193766-01 03/01/20 13:43 • (DUP) R3504557-6 03/01/20 13:59										
	Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits										
Analyte	mg/l	mg/l		%		%					
Chloride	14.4	14.2	1	1.18		15					

Laboratory Control Sample (LCS)

(LCS) R3504557-2 03/01/20 05:27										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
Chloride	40.0	40.6	102	80.0-120						

ACCOUNT:
HilCorp-Farmington, NM

PROJECT:

DATE/TIME: 03/03/20 13:38

PAGE: 9 of 14 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1193766-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1193766-01 03/01/20 13:43 • (MS) R3504557-7 03/01/20 14:15 • (MSD) R3504557-8 03/01/20 14:32												
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits												
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	14.4	59.6	58.7	90.6	88.7	1	80.0-120			1.60	15

SDG: L1193766 DATE/TIME: 03/03/20 13:38 PAGE: 10 of 14 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3504571-3 02/27/2	B) R3504571-3 02/27/20 19:47								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/l		mg/l	mg/l					
Benzene	U		0.000331	0.00100					
Ethylbenzene	U		0.000384	0.00100					
Toluene	U		0.000412	0.00100					
Xylenes, Total	U		0.00106	0.00300					
(S) Toluene-d8	110			80.0-120					
(S) 4-Bromofluorobenzene	105			77.0-126					
(S) 1,2-Dichloroethane-d4	105			70.0-130					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3504571-1 02/27/20 18:34 • (LCSD) R3504571-2 02/27/20 18:58											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	L
Benzene	0.00500	0.00498	0.00466	99.6	93.2	70.0-123			6.64	20	Ì
Ethylbenzene	0.00500	0.00445	0.00445	89.0	89.0	79.0-123			0.000	20	
Toluene	0.00500	0.00491	0.00487	98.2	97.4	79.0-120			0.818	20	Г
Xylenes, Total	0.0150	0.0130	0.0131	86.7	87.3	79.0-123			0.766	20	
(S) Toluene-d8				109	107	80.0-120					L
(S) 4-Bromofluorobenzene				105	104	77.0-126					
(S) 1,2-Dichloroethane-d4				104	102	70.0-130					

L1193815-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1193815-04 02/28/20 02:38 • (MS) R3504571-4 02/28/20 04:41 • (MSD) R3504571-5 02/28/20 05:05												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.00500	0.000820	0.00682	0.00705	120	125	1	17.0-158			3.32	27
Ethylbenzene	0.00500	U	0.00607	0.00608	121	122	1	30.0-155			0.165	27
Toluene	0.00500	U	0.00595	0.00640	119	128	1	26.0-154			7.29	28
Xylenes, Total	0.0150	U	0.0165	0.0175	110	117	1	29.0-154			5.88	28
(S) Toluene-d8					100	108		80.0-120				
(S) 4-Bromofluorobenzene					104	101		77.0-126				
(S) 1,2-Dichloroethane-d4					111	104		70.0-130				

SDG: L1193766

GLOSSARY OF TERMS

₩

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J3	The associated batch QC was outside the established quality control range for precision.
Т8	Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Nevad
Arizona	AZ0612	New I
Arkansas	88-0469	New .
California	2932	New
Colorado	TN00003	New
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
ldaho	TN00003	Ohio-
Illinois	200008	Oklah
Indiana	C-TN-01	Orego
lowa	364	Penns
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virgin
Minnesota	047-999-395	Washi
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wyom

Vebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

L1193766

PAGE: 13 of 14

03/03/20 13:38

		Billing Information:						Analysis / Container / Preservative Chain of Cust									
		ATTN: Jennifer Deal			r Deal					ILTERED						Pace	Analytical [®] enter for Testing & Innov
Report to: Jennifer Deal Project Description: Federal 18 # 1T			: hilcorp.com; khoekstra@hilcorp City/State Collected: Aztec, NM			No Pres			יוכו						12055 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859		
									H N								
Phone: 505-324-5128 Fax:	Client Project #			Lab Project #		250mIHDPE-	250ml HDPE- h	mb-HC	FIEL						L# 119 3766 G232 Acctnum: HILCORANM		
Collected by (print): K Hoekstra	Site/Facility ID # Federal 18 # 1T			P.O. #				250m	Dml A			res					
Collected by signature. Kurt Hurkette Immediately Packed on Ice N Y X	Same Di	Rush? (Lab MUST Be Notified) Q Same Day X Five Day Next Day S Day (Rad Only) Two Day 10 Day (Rad Only) Three Day			Quote # Date Results Needed No. of		- H4 ,	- SOI	V8260BTEX - 40	1	4.4					Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Chloride	SPCC	1826	NO						Shipped Via: Remarks	Sample # (lab
Federal 18 # 1T Tubing		Gw		2-25	12:00	5	×	×	×	X					1		- 10
			and the second second		1. Albertania	24				and and and	in the second		an a				
and the second sec	A ST. St.	a later is	tin Zara	Care and sound	w warmen to the								e le la				
										C.A.						1.20	
	2 m 2 m				1 Mars										1.12	1	
		đan.						1.3							1.200	Sector P 20	
			1.1	Sec. 2	6			1			Edite and an				and and a second		-
		1				1.0		153					<u></u>				7
	The state	and Der			1			175									
				C. AND M.		1.4							internet.		al series		
Matrix: S - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH	Temp			COC S Bott	Seal P Signed les ar	ple Receipt C resent/Intac /Accurate: rive intact:	t:NPY
DW - Drinking Water	Samples retur	ned via: dExCour	rier	T	Гracking #]]Ц	5	11	133	3	Flow_	Othe	<u>الا</u>		Suff:	icient	ttles used: volume sent <u>If Applica</u> eadspace:	ble
		ime: F 7:15						Trip Blank Received: Yes No HCL / MeoH TBR				VOA Zero Headspace: Zy Preservation Correct/Checked: Y RAD SCREEN: <0.5 mR/hr					
Relinquished by : (Signature)		Date:	I	ime: F	Received by: (Signat	ture)				TeHR: 13	°C Bott		ved:	If pre	servatio	on required by L	ogin: Date/Tim
Relinquished by : (Signature) Date: Time:		ime: F	Received for lab by: (Signature)					Date: Time: 1/1,7/10 8:30				Hold:			Conditio NCF /		
