LT Environmental, Inc.

848 East Second Avenue Durango, Colorado 81301 970.385.1096

April 28, 2019

Mr. Cory Smith New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

RCVD DIII 5/23/19

long his

RE: Soil Delineation Report and Remediation Update Hilcorp Energy Company Bell Federal GC B #1, API # 30-045-09772 NCS1729355513 San Juan County, New Mexico

Dear Mr. Smith:

LT Environmental, Inc. (LTE), on behalf of Hilcorp Energy Company (Hilcorp), presents the following summary report, to the New Mexico Oil Conservation Division (NMOCD) to document delineation soil sampling activities at the Bell Federal GC B #1 natural gas production well (Site). The Site is located west of the Farmington Glade near Farmington, New Mexico, in Unit A of Section 11 of Township 30 North and Range 13 West (Figure 1). The release response and subsequent fieldwork were completed while the Site was operated by XTO Energy, Inc. (XTO). Hilcorp acquired the asset in April 2018. This report and future remediation activities will occur under Hilcorp's direction.

BACKGROUND

On September 15, 2017, XTO discovered a bullet hole in the side of a condensate tank. The vandalized tank resulted in approximately 58 barrels (bbls) of condensate draining onto the ground and infiltrating into the subsurface. The release was contained within the bermed area; however no liquids were recovered. The release was reported to the NMOCD by XTO on a Form C-141 *Release Notification and Corrective Action Form* dated October 1, 2017.

The Site was previously ranked a zero pursuant to the NMOCD 1993 *Guidelines for Remediation of Leaks, Spills and Releases,* as the release occurred prior to August 14, 2018. However, subsequent conditions of approval set by the NMOCD required complete lateral and vertical delineation as described in New Mexico Administrative Code (NMAC) Title 19, Chapter 15, Part 29, Section 11 (19.15.29.12). Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest water well data. The nearest permitted water well with depth to water is SJ 02647, located 4,110 feet to the south-southwest. Ground surface elevation at the water well location is approximately 5,759 feet, which is 121 feet lower in elevation than the Site. The water well has a depth to groundwater of 58 feet and a total depth

Smith, Cory, EMNRD

From:	Smith, Cory, EMNRD
Sent:	Wednesday, July 3, 2019 3:02 PM
То:	'Devin Hencmann'
Cc:	Jennifer Deal
Subject:	RE: Bell Federal GC B#1 Q1 Remediation Report

All,

OCD approves the Quarterly report, with no additional conditions at this time.

As previously requested back in the 3rd Quarter of 18 these reports need to be submitted on a C-141 using the remediation page. ANY future reports not on a C-141 will be rejected.

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

From: Devin Hencmann <dhencmann@ltenv.com> Sent: Wednesday, May 22, 2019 3:41 PM To: Smith, Cory, EMNRD <Cory.Smith@state.nm.us> Cc: Jennifer Deal <jdeal@hilcorp.com> Subject: [EXT] Bell Federal GC B#1 Q1 Remediation Report

Cory,

Please see the attached 2019 Quarter 1 Remediation report for the Bell Federal GC B#1 (NCS1729355513). Per your request this report includes a summary of additional delineation work conducted at the site.

Let me know if you have any questions.

Thank you, Devin

Devin Hencmann Project Geologist (970) 385-1096 office (970) 403-6023 cell 848 East 2nd Avenue, Durango CO 81301 www.ltenv.com in f 💕

Think before you print. Click for our email disclosure.

of 76 feet. The closest continuously flowing water or significant watercourse to the Site is the Farmington Glade located approximately 2,420 feet southeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet from a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. Based on these criteria, in accordance with NMAC 19.15.29.12, Table 1, the following Closure Criteria for soils impacted by a release apply: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg benzene, toluene, ethylbenzene, and total xylenes (BTEX); 2,500 mg/kg total petroleum hydrocarbons (TPH); and 1,000 mg/kg TPH-gasoline range organics (GRO) and TPH-diesel range organics (DRO).

XTO responded to the release by conducting an initial delineation investigation. Soil samples were collected from soil borings (BH-1 through BH-4) on September 18 and November 15 and 16, 2017. A solar soil vapor extraction (SVE) system was installed at the Site to address petroleum hydrocarbons in the subsurface. The solar SVE system was installed and started on January 16, 2018. The SVE system layout and soil boring locations are provided on Figure 2. The initial delineation and SVE system installation were reported to the NMOCD in a report, *Soil Delineation and Solar SVE System Installation*, dated February 28, 2018.

On March 26 and 27, 2018, LTE conducted an additional subsurface investigation. A hollow-stem auger drill rig was used to advance seven additional boreholes (BH-5 through BH-8A) outside of the bermed area. The additional delineation was reported to the NMOCD in a report, *Soil Delineation Report*, dated May 3, 2018.

ADDITIONAL DELINEATION ACTIVITIES

As reported in the, *Soil Delineation Report,* submitted to the NMOCD on May 3, 2018, the previous subsurface investigation and delineation activities, soil impacts were encountered in soil borings SVE-1, SVE-2, BH-1, BH-5. Soil impacts ranged from a depth of 5 feet below ground surface (bgs) to 40 feet bgs. Due to the unidentified vertical extent in soil boring SVE-1 additional delineation was required.

On January 10 and 11, 2019, LTE used a hollow-stem auger drill rig to advance three additional boreholes (BH-9 through BH-11) to delineate impacts to soil vertically and laterally to the north and the east. Continuous soil samples were logged by an LTE geologist and described using the Unified Soil Classification System (USCS). The intervals from immediately beneath the ground surface to 5 feet bgs were composited and then discrete samples for every 5-foot interval thereafter were screened for volatile aromatic hydrocarbons with a photo-ionizing detector (PID). Soil with the highest field screening results and soil from the bottom of the borings were collected for laboratory analysis. All samples were analyzed for BTEX by United States Environmental Protection Agency (EPA) Method 8021 and TPH-GRO, TPH-DRO, and TPH-motor oil range organics (MRO) by EPA Method 8015. All samples collected were placed on ice and

sealed in a cooler for delivery to Hall Environmental Analysis Laboratory (Hall) of Albuquerque, New Mexico, for analysis. Soil samples were labeled with the date and time of collection, sample name, sampler's name, and parameters to be analyzed. Strict chain-of-custody procedures were documented including the date and time sampled, sample number, type of sample, sampler's name and signature, preservative used, and analyses required. The locations of the boreholes are presented on Figure 2, and the laboratory results are summarized on Table 1. The soil boring logs are presented as Attachment 1 and the laboratory analytical reports are attached as Attachment 2.

SOIL SAMPLING RESULTS

Soil samples collected during advancement of the soil borings were predominantly composed of silty sand to sandy silt lithologies with occasional gravel and sand layers. Auger refusal occurred when sandstone of the Nacimiento Formation was encountered at approximately 35 feet to 40 feet bgs in borings BH-8, BH-8A, and BH-11. LTE attempted to bore through the sandstone; however, the auger was unable to penetrate through the sandstone. The attempts to auger into the sandstone did result in cuttings that LTE was able to describe as a light brown, medium grained, moderately cemented sandstone with no hydrocarbon staining or odor. Soil samples collected from the bottom of these borings reflect unconsolidated material above the sandstone.

Field-identified soil impacts consisting of visual staining, hydrocarbon odors, and/or elevated field screening results were observed in BH-1 (2 feet to 17 feet bgs), SVE-1 (0 feet to 40 feet bgs), SVE-2 (0 feet to 35 feet bgs), BH-5 (30 feet to 40 feet bgs), BH-7 (35 feet to 40 feet bgs), BH-8 (20 feet to 35 feet bgs), BH-8A (18 feet to 20 feet bgs), BH-9 (10 feet to 55 feet bgs), and BH-10 (30 feet to 50 feet bgs). Soil boring logs are included as Attachment 1.

Laboratory analytical results indicated that soil samples exceeded the NMOCD remediation action levels of 50 mg/kg for total BTEX and of 5,000 mg/kg for TPH at the following intervals.

- Borehole BH-1 at 5 feet bgs and at 17 feet bgs;
- Borehole SVE-1 at 5 feet bgs and at 40 feet bgs;
- Borehole SVE-2 at 5 feet bgs and at 35 feet bgs;
- Borehole BH-5 at 35 feet bgs; and
- Borehole BH-9 at 20 feet bgs

Samples collected from soil borings BH-2, BH-3, BH-7A, and BH-11 did not contain detectable concentrations of BTEX or TPH; although, BH-2 and BH-3 were limited in depth. Samples collected from other boreholes that did extend to the sandstone bedrock included BH-6, BH-7, BH-8, BH-8A, and BH-10, which contained detectable concentrations of BTEX and/or TPH that were compliant with the NMOCD closure criteria for the Site. The soil analytical results as compared

to the NMOCD remediation action levels are presented on Figure 2 and summarized in Table 1. The laboratory analytical reports are included as Attachment 2.

SOIL VAPOR EXTRACTION

The solar SVE system was installed on January 16, 2018, to remediate subsurface soil petroleum hydrocarbons following an act of vandalism, resulting in the release of approximately 58 bbls of condensate. The solar SVE system consists of a 1/3 horsepower blower capable of producing 22 cubic feet per minute (cfm) at 29 inches of water column vacuum. The blower is powered by four 12-volt deep cycle batteries that are charged throughout the day via three solar panels with a nominal maximum power output of 915 watts. The blower runs on a timer that is scheduled to maximize runtime that coincides with the seasonally available solar recharge, typically 10 hours in the winter and 12 hours in the summer for Farmington, New Mexico. After startup on January 16, 2018, the solar SVE system was set to run for 8 hours per day and was gradually increased to 10 and 12 hours of runtime throughout the spring and summer. Between startup and the last site visit on March 22, 2019, there have been 430 days of operations, with an estimated 4,843 total hours of available nominal daylight in which the solar SVE system should be in operation. Of the available runtime of 4,843 hours since installation, the system has an actual runtime of 4,682 hours, for an overall 96.9 percent (%) runtime efficiency. Below is a table of SVE runtime in comparison with nominal available daylight hours, per month, according to the National Oceanic and Atmospheric Administration's National Weather Service.

Month	January 12 to September 30, 2018	October 2018	November 2018	December 2018	January 2019	February 2019	March 1 to March 22, 2019
Days	251	31	30	31	31	28	22
Avg. Nominal Daylight Hrs	12	11	10	9	10	10	11
Available Runtime Hrs.	3,082	341	300	279	310	280	242
				Total Availabl	e Daylight R	untime Hours	4,834
					Actual R	untime Hours	4,682
						% Runtime	96.9%

An initial air sample was collected on January 24, 2018, from the solar SVE system discharge exhaust stack. A subsequent air sample was collected on August 17, 2018. No air sample was collected during the fourth quarter of 2018, due to the planned additional delineation in January 2019. Samples were collected in 1-liter Tedlar[®] bags and submitted to Hall for analysis of BTEX by EPA Method 8021, and total volatile petroleum hydrocarbons (TVPH) via EPA Method 8015. The annual sample collected March 22, 2019 was analyzed for volatile organic compounds by EPA method 8260 in accordance with the conditions of approval set forth by the NMOCD on March 12, 2018. The air sample analytical results are presented in Table 2.

Borehole BH-9 was left open and then completed as an additional SVE remediation well (SVE-4) to address the impact observed at depth in that boring. The SVE well was set at a depth of 50 feet bgs with a screened interval to 40 feet bgs. The SVE well was completed as previous wells, with 2 feet of sand above the screened interval, followed by 2 feet of hydrated bentonite seal, with bentonite cement grout to the surface. An air sample was collected in the first quarter of 2019 and was submitted to Hall for analysis of volatile organic compounds (VOCs) by EPA Method 8260.

Since the solar SVE system installation, a total of approximately 27 gallons of liquid-phase separated hydrocarbons (PSH) have been recovered from the SVE wells and liquid-vapor separator tank. Based on the air sample data collected to date, the estimated mass air emissions were calculated using an average of the air samples. The impacted mass source removal via the solar SVE system to date is an estimated 67.7 pounds (lbs.) of benzene and 1,190 lbs. of TVPH. Including the PSH and vapor phase hydrocarbons, an estimated total of 229.7 gallons or 5.4 bbls of condensate has been recovered. Soil vapor recovery and emissions are summarized on Table 3.

During the upcoming 2019 second quarter of operations, site visits will resume on a bi-weekly basis by Hilcorp and LTE personnel to ensure 90% runtime efficiency continues and that any maintenances issues are addressed. The average nominal daylight hours will increase throughout the spring and into summer, so the blower operation hours will be adjusted accordingly. An updated quarterly report with sample results, runtime, and mass source removal will be submitted under separate cover within 30 days of the end of the quarter.

CONCLUSIONS

Impact to soil at the Site is characterized by elevated BTEX and TPH concentrations in sandy lithology. The area containing BTEX and TPH concentrations exceeding NMOCD closure criteria extends from the surface to approximately 50 feet bgs at the source (BH-01, SVE-1, SVE-2 and BH-9) and appears to extend southeast to BH-5 at a depth of 35 feet bgs. While there is some impact to the northwest near BH-8 and BH-8A, concentrations detected in samples from those borings do not exceed NMOCD closure criteria. Lithologic observations, field screening results, and laboratory analytical results suggest liquids from the release were contained on the surface within the berm around the condensate tank and migrated vertically through the porous sandy lithology to a depth of 50 feet bgs. Additional vertical migration was likely restricted by the sandstone bedrock from the Nacimiento Formation. Thickness of the Nacimiento Formation in this area ranges from 418 feet to 2,232 feet and aquifers occur within the coarser and continuous sandstone bodies (Stone el al., 1983). Water wells drilled in the area do not encounter groundwater until approximately 150 feet in depth, suggesting the bedrock encountered during this investigation is not likely water-bearing or extremely porous. The bottom hole sample from borehole BH-9, within the source area, contained detectable concentrations of BTEX and TPH that are complaint with NMOCD Table 1 closure criteria, which indicate that vertical migration of

petroleum hydrocarbon impact is limited to the upper 60 feet of soil. Boreholes that were sampled for subsurface soil outward from the source area indicated vertical and lateral migration was limited to the sandy lithology and did not extend into the sandstone. SVE wells 1-4 are screened across 20-foot intervals in the subsurface, ranging from 3 feet to 46 feet bgs. The radius of influence is estimated to be 20 feet and the wells will allow Hilcorp to address the lateral extent of the identified impact as illustrated on Figure 2.

RECOMMENDATIONS

LTE recommends continuing operating the system with four total SVE wells, alternating between two active SVE wells at a time. Continued operations will comply with NMOCD conditions of approval dated March 12, 2018, including, maintaining a runtime greater than or equal to 90% per quarter for the maximum available hours, conducting annual gas sampling for a full list of analytes for EPA Method 8260, and submitting quarterly reports of remediation activities. Once a decline in VOC emissions from the SVE system exhaust are observed indicating that petroleum hydrocarbon impacts have been reduced, Hilcorp will submit a closure plan to the NMOCD for approval before commencing with closure activities.

LTE appreciates the opportunity to provide this report to the NMOCD. If you have any questions or comments regarding this work plan, do not hesitate to contact me at (970) 385-1096 or via email at <u>dhencmann@ltenv.com</u> or Jenifer Deal at (505) 324-5128 or at <u>jdeal@hilcorp.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

Surgen

1 en /a

Ashley L. Ager

Ashley L. Ager, P.G. Senior Geologist

Devin Hencmann Project Geologist

References:

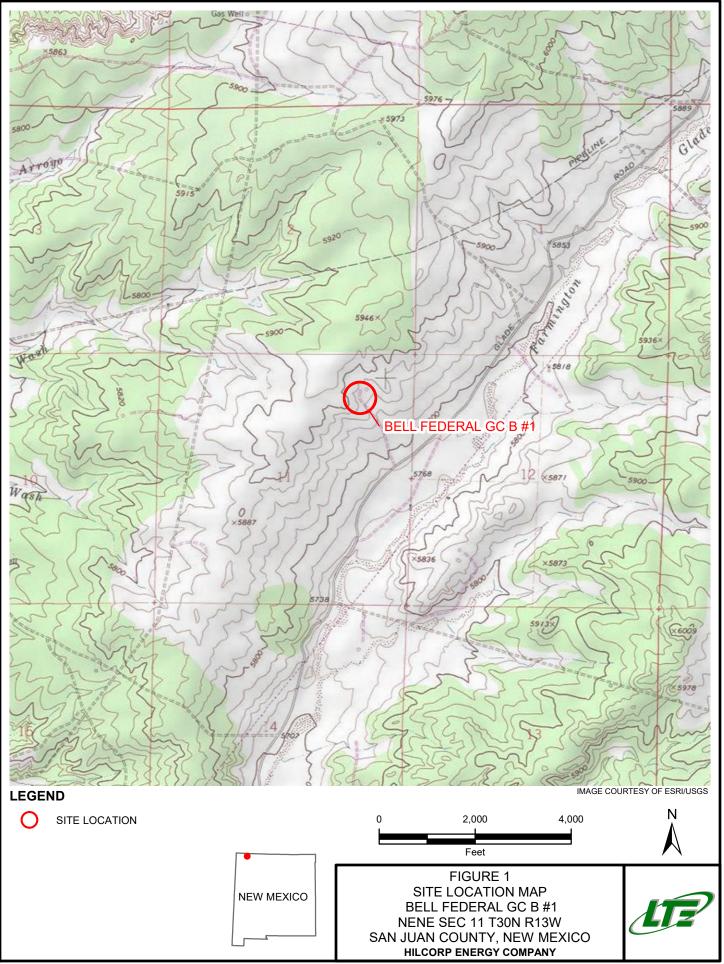
Stone, W.J., F.P. Lyford, P.F. Frenzel, N.H. Mizell, and E.T. Padgett, 1983, *Hydrogeology and Water Resources of the San Juan Basin, New Mexico*: HR-6 New Mexico Bureau of Geology and Mineral Resources Hydrology Report 6.

Attachments:

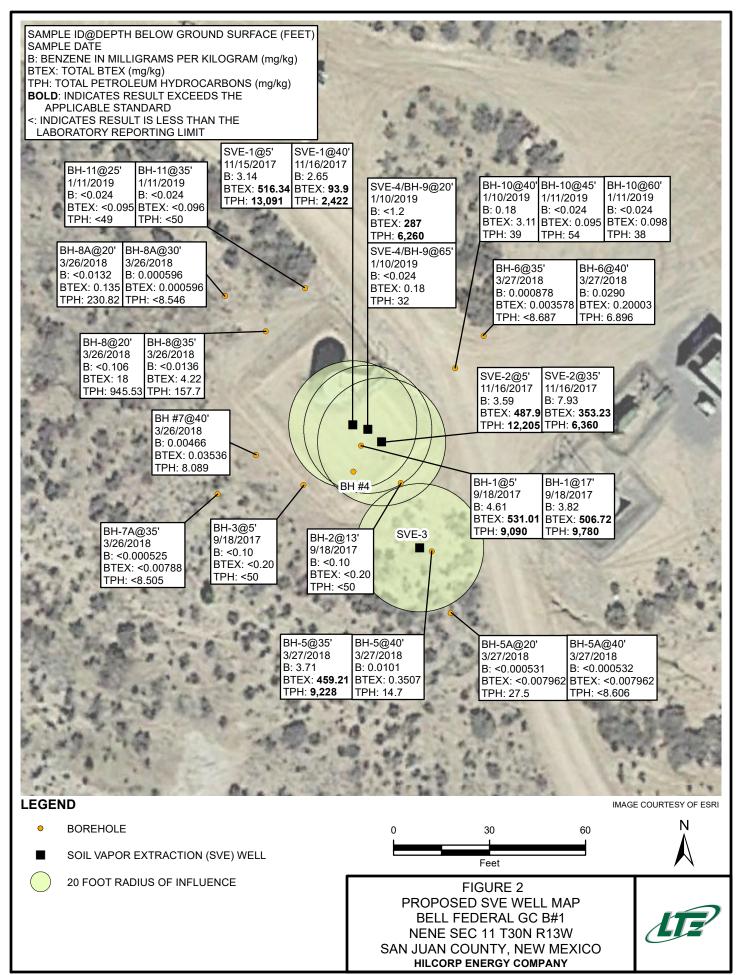
Figure 1	Site Location Map
Figure 2	Soil Analytical Results
Table 1	Soil Analytical Results

Smith, C. Page 7

- Table 2Air Sample Analytical Results
- Table 3Soil Vapor Extraction System Recovery and Emissions Summary


Attachment 1 Soil Boring Logs

Attachment 2 Laboratory Analytical Reports



FIGURES

P:\Hilcorp\GIS\MXD\017818007_BELL FEDERAL\012917025_FIG01_SL_2018.mxd

P:\Hilcorp\GIS\MXD\017818007_BELL FEDERAL\017818007_FIG03_SOIL_ANALY_JAN_2019.mx

TABLE 1 SOIL ANALYTICAL RESULTS

BELL FEDERAL GC B #1 HILCORP ENERGY COMPANY SAN JUAN COUNTY, NEW MEXICO

Soil Boring	Sample Date	Depth (feet)	Vapor (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	Combined GRO, DRO (mg/kg)	MRO (mg/kg)	TPH (mg/kg)
SVE-1	11/15/2017	5	4,195	3.14	52.9	26.3	434	516.34	7,280	4,880	12,160	931	13,091
SVE-1	11/16/2017	40	2,782	2.65	18.1	6.25	66.9	93.9	1,210	999	2,209	213	2,422
SVE-2	11/16/2017	5	3,224	3.59	84.8	24.1	379	487.9	6,740	4,590	11,330	875	12,205
JVL-2	11/16/2017	35	2,880	7.93	85.7	21.6	238	353.23	4,280	1,820	6,100	260	6,360
* BH-1	9/18/2017	5	2,259	4.61	97.4	37	392	531.01	3,660	4,420	8,080	1,010	9,090
DU-1	9/18/2017	17	4,187	3.82	87.8	35.1	380	506.72	3,070	5,420	8,490	1,290	9,780
* BH-2	9/18/2017	13	64	<0.10	<0.10	<0.10	<0.20	<0.20	<25	<25	<25	<50	<50
* BH-3	9/18/2017	5	43	<0.10	<0.10	<0.10	<0.20	<0.20	<25	<25	<25	<50	<50
BH-5	3/27/2018	35	2,124	3.71	74.7	35.8	345	459.21	4,870	3,940	8,810	418	9,228
BH-2	3/2//2018	40	1,333	0.0101	0.0782	0.0214	0.241	0.3507	2.50	12.2	14.7	<4.28	14.7
BH-5A	3/27/2018	20	48.5	<0.000531	<0.00531	<0.000531	<0.00159	<0.007962	<0.106	21.7	21.7	5.80	27.5
	3/2//2018	40	7.7	<0.000532	<0.00532	<0.000532	<0.00159	<0.007962	<0.106	<4.25	<4.25	<4.25	<8.606
BH-6	3/27/2018	35	450.8	0.000878	<0.00536	<0.000536	0.00270	0.003578	<0.107	<4.29	<4.29	<4.29	<8.687
BH-0	5/27/2018	40	205.8	0.0290	0.140	0.00403	0.0270	0.20003	0.456	6.44	6.90	<4.31	6.896
BH-7	3/26/2018	40	2,628	0.00466	0.0143	0.00200	0.0144	0.03536	0.219	7.87	8.09	<4.32	8.089
BH-7A	3/26/2018	35	9.4	<0.000525	<0.00525	<0.000525	<0.00158	<0.00788	<0.105	<4.20	<4.20	<4.20	<8.505
	2/20/2018	20	1,932	<0.106	<1.06	<0.106	18.0	18.0	543	395	938	7.53	945.53
BH-8	3/26/2018	35	1,484	<0.0136	0.259	0.391	3.57	4.220	94.2	63.5	157.7	<4.34	157.7
	3/26/2018	20	1,215	<0.0132	<0.132	<0.0132	0.135	0.135	32.6	191	224	7.22	230.82
BH-8A	3/20/2018	30	25.0	0.000596	<0.00528	<0.000528	<0.00158	0.000596	<0.106	<4.22	<4.22	<4.22	<8.546
BH-9	1/10/2019	20	4,877	<1.2	29	18	240	287	3,000	2,600	5,600	660	6,260
סרו-פ	1/10/2019	65	41.4	<0.024	0.070	<0.048	0.11	0.18	<4.8	32	32	<48	32
	1/10/2019	40	1,592	0.18	1.3	0.13	1.50	3.11	24	15	39	<49	39
BH-10	1/11/2019	45	317	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	54	54	<47	54
	1/11/2019		4.8	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	38	38	<49	38
BH-11	1/11/2019	25	64.2	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	<9.9	<9.9	<49	<49
DII-TT	BH-11 1/11/2019 35 12.6		12.6	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<9.9	<9.9	<50	<50
1	NMOCD Remedia	tion Action Lev	el	10	NE	NE	NE	50	NE	NE	1,000	NE	2,500

NOTES:

* - Borehole advanced by XTO Energy, Inc.

Bold - indicates value exceeds stated NMOCD standard

BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes

DRO - diesel range organics

GRO - gasoline range organics

mg/kg - milligrams per kilogram

MRO - motor oil range organics

NE - Not Established

NMOCD - New Mexico Oil Conservation Division

ppm - parts per million

TPH- total petroleum hydrocarbons

TABLE 2AIR SAMPLE ANALYTICAL RESULTS

BELL FEDERAL GC B#1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample ID	Sample Date	Vapor (ppm)	Benzene (µg/L)	Toluene (μ/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TVPH (µg/L)
Bell Fed GC B#1 SVE	1/24/2018	1,435	280	200	5.0	38	30,000
Stack Exhaust 01	8/17/2018	1,873	160	380	21	320	18,000
SVE Effluent	3/22/2019	1,607	490	920	24	480	NA
	Percent change	12%	75%	360%	380%	1163%	-40%

NOTES:

μg/L - micrograms per liter

ppm - parts per million

NA - Not Analyzed

TVPH- total volatile petroleum hydrocarbons

Italics denote that the laboratory method detection limit was used for calculations for a non-detected result

TABLE 3SOIL VAPOR EXTRACTION SYSTEM RECOVERY AND EMISSIONS SUMMARY

BELL FEDERAL GC B#1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Date	Total Flow (cf)	Delta Flow (cf)	PID (ppm)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	TVPH (µg/L)
1/24/2018	164,400	164,400	1,435	280	200	5.0	38	30,000
8/17/2018	2,059,584	1,895,184	1,873	160	380	21.0	320	18,000
3/22/2019	7,116,144	5,056,560	1,670	490	920	24.0	480	NA
		Average	1,654	220	290	13	179	24,000

Sample Information and Lab Analysis

Vapor Extraction Calculations

Date	Flow Rate (cfm)	Benzene (lb/hr)	Toluene (lb/hr)	Ethyl- benzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
1/24/2018	40	0.0419	0.0299	0.0007	0.0057	4.4921
8/17/2018	12	0.0072	0.0171	0.0009	0.0144	0.8086
3/22/2018	18	0.0330	0.0620	0.0016	0.0323	NA
Average	26	0.0274	0.0363	0.0011	0.0175	2.6503

Pounds Extracted Over Total Operating Time

Date	Total Operational Hours	Delta Hours	Benzene (lbs)	Toluene (lbs)	Ethyl- benzene (lbs)	Total Xylenes (lbs)	TVPH (lbs)	TVPH (tons)
1/24/2018	68.5	68.5	2.9	2.1	0.1	0.4	307.7	0.2
8/17/2018	2,632.2	2,563.7	18.4	43.8	2.4	36.9	2,072.9	1.0
3/22/2019	4,682.0	2,049.8	67.7	127.1	3.3	66.3	NA	NA
A	vg. Mass Extra	acted To Date	29.7	57.6	1.9	34.5	1,190.3	0.6
Total Extra	cted to Date (Linear Decay)	89.0	172.9	5.8	103.5	2,380.6	1.2

NOTES

cf - cubic feet

cfm - cubic feet per minute

lbs - pounds

lb/hr - pounds per hour

 μ g/L - microgram per liter

PID - photoionization detector

ppm - parts per million

TVPH - total volatile petroleum hydrocarbons

Italics denote that the laboratory method detection limit was used for calculations for a non-detected result

Casing Ty	20 Silica	a Sand	Detector		PID		N.	Advancing Opportunity 848 E. 2nd Ave Durango, Colorado 81301 BORING LOG/MONITORING WELL COMPLETION DIAGRAM Boring/Well Number: Project: Bit Project: Bell Federal GC B #1 Date: O17818007 Logged By: Drilled By: Eric Carroll Geomat Drilling Method: Sampling Method: Hollow Stem Auger Grout: Diameter: Length: Holc Diameter: Depth to Liquid:				
Screen Typ	edule 40 pe: edule 40			Slot:	10"			Diameter:	2" Length:	8.25' Total Depth:	Depth to Water:	
Penetration Resistance	Moisture	Vapor (ppm)	HC Staining?	Sample #		Sample Run	Recovery		2" Lithology/Re	marks	Well Completion	
	moist	404	No	e 0-10'	0 1 2 3 4 5	1	60%	512	moist, loose, dar k Sand, ±race siir <5:	reddish brown 9o -		
	Moise		No	Composite	6	2	60%	SP	moist, loose, 1t redd Sand, trace silt Slight odor	ish brown, C 5 Te, No stain,		
	moise	4570		BH -9 13-15'	11 12 13 14 15	3	60%	58	moist, ioose, it reddis Sand, trace Clay C, Strang Odar	n brown, 59 _{0,} NO Seain		

	/	-	>						Boring/Well #	BH-9	
	1	-	Adv	vanci	na Or	porti	ini	itv	Project:	Bell Federal GC B #	1
	L	-	2 0000	0.11011		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-y	Project # Date	017818007	
Penetration Resistance Moisture	Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Recovery	Soil/Rock Type	Litho	Well Completion	
	oi <i>se</i>	4877	Ne	Вн-9 15-20 4	15 16 17 18 19				moist, loose, l Sand, no St	t. reddi5h brown, ain, strong odor -	-
		37(1	Ye5		20 21 22 23	5	30% 50%	CL 5P	SWitch to SPI	orte green, Clay and Sand by odar. Clay Yy "thick - t <u>Spoon</u> dense, Coarse Sand, i, HC Staining Siight -	
100 mc	NISE	3648	Yes		24 25		30	51	· ·	red @ ~ 24'	-
100 m	ÐĨ ŠĿ	3384	NO F		26 27 28 29 30	6	50%	SP	moist, Dense, fine gravel 3 odor	coarse Sand, With 0%, NO Stain, Slight -	-
	rt	<i>ì444</i>	No		31 32 33 34 35	7	4070		SAA, no	0 Stain, Slignt abr	
					36 37	-				_	-

		-									
	745		7						Boring/Well # Project:	BH-9 Rall Extends	0.0.4
1	L/	-	Ad	vanci	ing O	oporti	un	ity	Project #	Bell Federal GC 017818007	B#I
									Date	1/10/19	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #		Sample Run	Recovery	Soil/Rock Type	Lithology/Remarks		Well Completion
					37		-				
100	moise	660	NO		38 39 40	в	50°10	SP	moist, very It reddish bi NG Sta	dense, White and rown, coarse sand in/odor	-
100	DRY	3149	NO		41 42 43 44	9	80%	GP	SAA, no	Stain, Slight ador	
					45	-					
100	Dry	1747	No		46 _	. 10	60%	SP	SAA no	stain, no odor	
100	DRY	465	NO		51 52 53 54 55	. (1		GP	coarse grav	ionse, dark brown, el, with Coarse Sand in/Odor	
	DRy	રુશ	NP		56 57 58 59	12			gravel and	dense, Yellow brown coarse Sand, Coal No stain/odar	

		-						Boring/Well #	Вн - 9		
	M		A		-			_	Project:	Bell Federal GC	B #1
		2	Aava	ancin	g upp	portun	lIŢ		Project #	017818007	
				S 0		, a			Date	VIIOlis	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #		Sample Run	Recovery	Soil/Rock Type	Lithe	ology/Remarks	Well Completion
					59	Щ					
	Dry	ધા.ધ	No	63-65	60 61 62	-13		GP	Diy, very de coarse sand	nse, gravel with ^d , no stain/odar	
				BH-91	63 64 65	-			TD=0	65'	
					63 66 67 68 69 70 71 72 73 74 75 76 77 78 79						
					80 81	•					+

10-2 Casing Typ Sche Screen Typ	Elevation: 5,880 PID Gravel Pack: 10-20 Silica Sand PID Casing Type: Schedule 40 PVC Slot: Schedule 40 PVC 0.010"								Advancing Opport 848 E. 2nd Ave Durango, Colo NG LOG/MONITORING W NI Number: BH - 10 1/10/18 Eric Carroll ethod: Hollow Stem Auger Length: 2" Length:	Project: Project: Project Bell Feder Project Number: 0178 Drilled By:	al GC B #1 18007 omat
Penetration Resistance	Moisture Content	Vapor (ppm)	HC Staining?	Sample #		Sample Run	Recovery		2" Lithology/Rer		Well Completion
	MOISE	0.0	NO	0-10'	0 1 2 - 3 4	1	100 %	SP	moist, 100se, It redo Sand coarse, < 5% fine gravel	tish brown, 6 fines,	
				COMPOSIZE C	5 6 7 8 9	2	100 %	SP	SAA NO Stain	/odor	
	Noise	0.0	NC		11 12 13 14 15	3	10090		moist, dense, It reda Sand, Some gravel no stain rodor Switch to split	< 15 %,	

			2						Boring/Well #	BH-10	
	KT	2	Adu	anci	ng Op	norti	m	ity	Project:	Bell Federal GC B #:	1
		3	ΠUV	anoi	ng op	poitt	<i></i>	Ly	Project #	017818007	
									Date	1/10/18	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
			Yes And		16	-			mare de es	-	-
100	moise	38.4	A F e		17	4	0%0	SP	and fine grav	dark brown, Sand rel, HE stain, Slizho	
					18 - 19	-	120		gdor	8 <u>-</u>	-
				_	20	-				-	-
	-				21	-				-	
100	moist	47.9	NP		22	5	0100	SP	SAA, no s	tain/odar	
	•				24		7.			:	-
					25	-					-
		0.0			26 27	6			moist, dense, coarse sand,	It reddish brown, 25% Fines	- - -
	moist	9,9	NO		28 29				no stain	1alor -	
					30						
	moise	188	Ne		31 32 33	7			SAA, no	Stain/odor -	- - -
	•				34	+ + +					+ + -
					35 36	+					
	-		1		37						-

Ir							-				
	-			-					Boring/Well # Project:	BH-10	
			Ad	vanci	ing O	oporti	JN	ity 👘	Project #	Bell Federal G	C B #1
					<u> </u>			-	Date	017818007	
le on	e ti	1	0	#	E - 1	I I				1/10/15	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth	Sample Run	ver	Soil/Rock Type		1	Well
esis	Cor Cor	Va (pr	Stai	aml	(ft. bgs.)	Run	ec	Lyic T	Litho	ology/Remarks	Completion
L A M	PCI -	<u> </u>		S			R	Ň			1
	_				37	Щ					
					38	ł					
		1000		DUJO	- 50	H				-	-
	noisz	1597	Ne	BH-10	39	18		00	moist, dense,	, Very 16 Vellow brown . O Stain, Slight Odor –	-
				38-40		[]		51	coarse, sand, n	o stain, Slight Odor –	-
					40						
					41	-					
						Η Ι				-	-
				8н-10 43-45'	42			51	SAA, NOSt	ain/oder -	-
r n	noise	3/7	NO	112-115		9		51		-	-
				43-45	43						
						-				1	.
					44 _	-				-	
					45	-				+	e
										-	-
					46					1	
					477				DEN dence 1	It brown coarse	
	nal	95,4	NP		47 -			10	Cand Do C	it brown, coarse in, no odor	-
	17	' J ₂ '			48	10		77	Juna, no sta	in, ne cave	Q
					1	1				-	-
					49	4			Coal (organ	nic) layer @ 49'	
					50	.				1	
			_		50						e
					51					1	
					1]			Distance	1 11 1101.12	•
	20.1	33.1	000		52	11 1		cp	Ury, very ser	ise, It; Yell OW brown w fine gave 1	.
-	ן ץיי	<u>, , , , , , , , , , , , , , , , , , , </u>	106		53) (د	Loarse Sand	w fine glave 1	I
	'					1			no stain,		.
					54				•	+	
					1	1				-	
					55					†	
					, +					1	
				B14-10	56					 	
		110		58-Cd	57	12			SAA no	stain/odor	
		4.8			I	12				+	
					58				~!-	. İ	
					59				TD=6	70' Ţ	
				I	57						

Tages a	1. 4	14					2				
12								L	Advancing Oppol	rtunity	
1. 7	0		A Part						848 E. 2nd Ave		
		51	100			1	6 ⁻ .	BODI	Durango, Colo		
	1	10	The second	S	A ST			BORI Boring/We	NG LOG/MONITORING W ^{II Number:} BH - 1/	Project:	
****			C inte	C'an	and the second		1	Date:	A Land	Project Number:	ral GC B #1
C. contr	S. A.		Whe !		Not			Logged By	1/11/18	0178 Drilled By:	318007
Elevation:		the second	Detector:	and the			1	Drilling M	Eric Carroll	Ge Sampling Method:	omat
Gravel Paci					PID			Seal:	Hollow Stem Auger		/Split Spoon
Casing Typ				_				Diameter:	Length:	Hole Diameter:	Depth to Liquid:
Sche Screen Typ	dule 40	PVC		Slot:				Diameter:	2" Length:	8.25'	
Sche	dule 40		~·)10"			Significit:	2"	Total Depth:	Depth to Water:
Penetration Resistance	Moisture Content	Vapor (ppm)	HC Staining?	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Lithology/Rer	marks	Well Completion
	Maise	0.0	No		0 1 2 3 4 5 6 7 8 9 10	7			moist, loose, reddish l Gand, Some fin gra < 5% fines No Stain/odor	brown, coarse vei < 1599	
	Maist	0-C	NO		11 12 13 14 15	3			SAA, no Stain/6 Switch to st		

							-		Boring/Well #	BH-10	
_	-		المر ا	inna	n~ 0-	an a sile	المحرين	ida e	Project:	Bell Federal GC B #	1
		2	Aal	anci	ng Op	ροπι	INI	ty	Project #	017818007	
									Date	1/11/18	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Lithe	ology/Remarks	Well Completion
	Acces				15	1					
7	naise	17.6	NO		16	4			moist, dense, course Sand	reddish brown, - w finegravei	
					18	-			no Stain		Ĺ
					19	-					-
					20						
					21	-				-	-
		<i>C</i> .11 D	4.60	Вн-11 23-25'	22				SAA, no so	tain/olar	-
n	2015	64.2	No	23-25'	23	-				-	-
					24 25	-				(= 	-
					26	-					-
		400.1			27	-			(AA ma the		-
^m	noist	47.6	NO		28	-			SHA NO SEA	in, slight odor	-
					29 30					-	•
					30						-
		10.1		B4-11	32					mse, It reddish brown	
	10i5t	12.6	NP	33-35	33	-			Course Sand NO Stain /	W/ fine gravel	-
					34					-	-
					35					1	
					36	-				-	-
					37					-	

and the second s

ANALYTICAL REPORT

December 05, 2017

XTO Energy - San Juan Division

Sample Delivery Group:

Samples Received:

Project Number:

Description:

Bell Federal B1

L952384

11/20/2017

Report To:

James McDaniel 382 County Road 3100 Aztec, NM 87410

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

₩	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	

Qc

GI

ΆI

Sc

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SVE-1 5' L952384-01	5
SVE-1 40' L952384-02	6
SVE-2 5' L952384-03	7
SVE-2 35' L952384-04	8
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Volatile Organic Compounds (GC) by Method 8015/8021	10
Semi-Volatile Organic Compounds (GC) by Method 8015	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Cp: Cover Page

SDG: L952384

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

鞅

	SAMFLE SU	JIVIIVIAI			
			Collected by JA	Collected date/time 11/15/17 14:30	Received date/time 11/20/17 08:45
SVE-1 5' L952384-01 Solid			JA	11/13/17 14.30	11/20/17 06.45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Fotal Solids by Method 2540 G-2011	WG1045104	1	11/21/17 06:29	11/21/17 06:30	JD
olatile Organic Compounds (GC) by Method 8015/8021	WG1045148	5000	11/21/17 08:03	11/21/17 15:16	JHH
/olatile Organic Compounds (GC) by Method 8021	WG1045148	250	11/21/17 08:03	11/21/17 13:41	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1045553	20	11/21/17 21:21	11/22/17 11:55	ACM
			Collected by	Collected date/time	Received date/time
SVE-1 40' L952384-02 Solid			JA	11/16/17 11:30	11/20/17 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1045104	1	11/21/17 06:29	11/21/17 06:30	JD
olatile Organic Compounds (GC) by Method 8015/8021	WG1045148	250	11/21/17 08:03	11/21/17 14:05	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1045553	20	11/21/17 21:21	11/22/17 11:30	ACM
			Collected by	Collected date/time	Received date/time
SVE-2 5' L952384-03 Solid			AL	11/16/17 15:15	11/20/17 08:45
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1045104	1	11/21/17 06:29	11/21/17 06:30	JD
olatile Organic Compounds (GC) by Method 8015/8021	WG1045148	5000	11/21/17 08:03	11/21/17 15:39	JHH
olatile Organic Compounds (GC) by Method 8021	WG1045148	250	11/21/17 08:03	11/21/17 14:28	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1045553	20	11/21/17 21:21	11/22/17 12:07	ACM
			Collected by	Collected date/time	Received date/time
SVE-2 35' L952384-04 Solid			AL	11/16/17 16:30	11/20/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Tatal Calida by Mathad 2E40 C 2011	WC104E104	1	11/21/17 00.20	11/21/17 00:20	ID

				,	,
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1045104	1	11/21/17 06:29	11/21/17 06:30	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1045148	5000	11/21/17 08:03	11/21/17 16:03	JHH
Volatile Organic Compounds (GC) by Method 8021	WG1045148	250	11/21/17 08:03	11/21/17 14:52	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1045553	20	11/21/17 21:21	11/22/17 11:42	ACM

SDG: L952384

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SDG: L952384 DATE/TIME: 12/05/17 11:30

PAGE: 4 of 17

SAMPLE RESULTS - 01

*

้วร

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.7		1	11/21/2017 06:30	WG1045104	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
nalyte	mg/kg		mg/kg		date / time		4
enzene	3.14		0.135	250	11/21/2017 13:41	WG1045148	
oluene	52.9		1.35	250	11/21/2017 13:41	WG1045148	5
thylbenzene	26.3		0.135	250	11/21/2017 13:41	WG1045148	55
otal Xylene	434		8.09	5000	11/21/2017 15:16	WG1045148	
PH (GC/FID) Low Fraction	7280		539	5000	11/21/2017 15:16	WG1045148	⁶
(S) a,a,a-Trifluorotoluene(FID)	101		77.0-120		11/21/2017 15:16	WG1045148	
(S) a,a,a-Trifluorotoluene(FID)	93.4		77.0-120		11/21/2017 13:41	WG1045148	7
(S) a,a,a-Trifluorotoluene(PID)	106		75.0-128		11/21/2017 15:16	WG1045148	ľ (
(S) a.a.a-Trifluorotoluene(PID)	103		75.0-128		11/21/2017 13:41	WG1045148	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	9 6
Analyte	mg/kg		mg/kg		date / time		Sc
C10-C28 Diesel Range	4880		86.3	20	11/22/2017 11:55	WG1045553	
C28-C40 Oil Range	931		86.3	20	11/22/2017 11:55	WG1045553	
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		11/22/2017 11:55	WG1045553	

SAMPLE RESULTS - 02 L952384

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		1	2
Total Solids	90.1		1	11/21/2017 06:30	WG1045104		Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	2.65		0.139	250	11/21/2017 14:05	WG1045148	
oluene	18.1		1.39	250	11/21/2017 14:05	WG1045148	
thylbenzene	6.25		0.139	250	11/21/2017 14:05	WG1045148	
otal Xylene	66.9		0.416	250	11/21/2017 14:05	WG1045148	
PH (GC/FID) Low Fraction	1210		27.7	250	11/21/2017 14:05	WG1045148	
(S) a,a,a-Trifluorotoluene(FID)	95.8		77.0-120		11/21/2017 14:05	WG1045148	
(S) a.a.a-Trifluorotoluene(PID)	104		75.0-128		11/21/2017 14:05	WG1045148	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Å
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	999		88.7	20	11/22/2017 11:30	WG1045553	9
C28-C40 Oil Range	213		88.7	20	11/22/2017 11:30	WG1045553	SC
(S) o-Terphenyl	119	<u>J7</u>	18.0-148		11/22/2017 11:30	WG1045553	

SAMPLE RESULTS - 03

*

้วร

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.0		1	11/21/2017 06:30	WG1045104	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
mg/kg		mg/kg		date / time		4
3.59		0.133	250	11/21/2017 14:28	WG1045148	
84.8		26.6	5000	11/21/2017 15:39	WG1045148	5
24.1		0.133	250	11/21/2017 14:28	WG1045148	55
379		7.98	5000	11/21/2017 15:39	WG1045148	
6740		532	5000	11/21/2017 15:39	WG1045148	6
94.6		77.0-120		11/21/2017 14:28	WG1045148	
101		77.0-120		11/21/2017 15:39	WG1045148	7
104		75.0-128		11/21/2017 14:28	WG1045148	Í C
105		75.0-128		11/21/2017 15:39	WG1045148	
	mg/kg 3.59 84.8 24.1 379 6740 <i>94.6</i> 101 104	mg/kg 3.59 84.8 24.1 379 6740 94.6 101 104	mg/kg mg/kg 3.59 0.133 84.8 26.6 24.1 0.133 379 7.98 6740 532 94.6 77.0-120 101 77.0-128	mg/kg mg/kg 3.59 0.133 250 84.8 26.6 5000 24.1 0.133 250 379 7.98 5000 6740 532 5000 94.6 77.0-120	mg/kg mg/kg date / time 3.59 0.133 250 11/21/2017 14:28 84.8 26.6 5000 11/21/2017 14:28 24.1 0.133 250 11/21/2017 14:28 379 7.98 5000 11/21/2017 15:39 6740 532 5000 11/21/2017 15:39 94.6 77.0-120 11/21/2017 14:28 101 77.0-120 11/21/2017 14:28 104 75.0-128 11/21/2017 14:28	mg/kg mg/kg date / time 3.59 0.133 250 11/21/2017 14:28 WG1045148 84.8 26.6 5000 11/21/2017 15:39 WG1045148 24.1 0.133 250 11/21/2017 14:28 WG1045148 379 7.98 5000 11/21/2017 15:39 WG1045148 6740 532 5000 11/21/2017 15:39 WG1045148 94.6 77.0-120 11/21/2017 14:28 WG1045148 101 77.0-120 11/21/2017 14:28 WG1045148 104 75.0-128 11/21/2017 14:28 WG1045148

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	⁹ Sc
Analyte	mg/kg		mg/kg		date / time		JSC
C10-C28 Diesel Range	4590		85.1	20	11/22/2017 12:07	WG1045553	
C28-C40 Oil Range	875		85.1	20	11/22/2017 12:07	WG1045553	
(S) o-Terphenyl	0.000	J7	18.0-148		11/22/2017 12:07	WG1045553	

SAMPLE RESULTS - 04 L952384

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.3		1	11/21/2017 06:30	WG1045104	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
analyte	mg/kg		mg/kg		date / time		
Benzene	7.93		0.134	250	11/21/2017 14:52	WG1045148	
oluene	85.7		26.8	5000	11/21/2017 16:03	WG1045148	
thylbenzene	21.6		0.134	250	11/21/2017 14:52	WG1045148	
otal Xylene	238		8.04	5000	11/21/2017 16:03	WG1045148	
PH (GC/FID) Low Fraction	4280		536	5000	11/21/2017 16:03	WG1045148	
(S) a,a,a-Trifluorotoluene(FID)	91.0		77.0-120		11/21/2017 14:52	WG1045148	
(S) a,a,a-Trifluorotoluene(FID)	99.8		77.0-120		11/21/2017 16:03	WG1045148	
(S) a,a,a-Trifluorotoluene(PID)	101		75.0-128		11/21/2017 14:52	WG1045148	
(S) a,a,a-Trifluorotoluene(PID)	105		75.0-128		11/21/2017 16:03	WG1045148	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	⁹ Cc
Analyte	mg/kg		mg/kg		date / time		Sc
C10-C28 Diesel Range	1820		85.8	20	11/22/2017 11:42	WG1045553	
C28-C40 Oil Range	260		85.8	20	11/22/2017 11:42	WG1045553	
(S) o-Terphenyl	75.8	<u>J7</u>	18.0-148		11/22/2017 11:42	WG1045553	

WG1045104

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L952384-01,02,03,04

⁺Cn

Sr

Qc

Gl

Â

Sc

Method Blank (MB)

(IVIB)				
21/17 06:30				
MB Result	MB Qualifier	MB MDL	/B RDL	
%		%	, 0	
0.001				
	21/17 06:30 MB Result %	21/17 O6:30 MB Result <u>MB Qualifier</u> %	21/17 O6:30 MB Result <u>MB Qualifier</u> MB MDL N % %	21/17 O6:30 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %

L952057-12 Original Sample (OS) • Duplicate (DUP)

(OS) L952057-12 11/21/17	06:30 • (DUP) F	3267326-3 1	1/21/17 06:3	30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	86.2	84.4	1	2		5

Laboratory Control Sample (LCS)

(LCS) R3267326-2 11/	/21/17 06:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

SDG: L952384

DATE/TIME: 12/05/17 11:30

PAGE: 9 of 17 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3267387-5 11/21/17	7 12:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000170	J	0.000120	0.000500
Toluene	0.000272	J	0.000150	0.00500
Ethylbenzene	0.000287	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	105			75.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3267387-1 11/21/17 09:53 • (LCSD) R3267387-2 11/21/17 10:17										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0545	0.0546	109	109	71.0-121			0.290	20
Toluene	0.0500	0.0563	0.0558	113	112	72.0-120			0.930	20
Ethylbenzene	0.0500	0.0559	0.0550	112	110	76.0-121			1.57	20
Total Xylene	0.150	0.173	0.170	115	113	75.0-124			1.98	20
(S) a,a,a-Trifluorotoluene(FID)				102	102	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				103	104	75.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3267387-3 11/21/17 10:41 • (LCSD) R3267387-4 11/21/17 11:05											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.55	5.33	101	96.8	70.0-136			4.13	20	
(S) a,a,a-Trifluorotoluene(FID)				107	107	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				122	120	75.0-128					

ACCOUNT:								
XTO Energy - San Juan Division								

SDG: L952384 DATE/TIME: 12/05/17 11:30

PAGE: 10 of 17 QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Śr

ິQc

GI

ΆI

Sc

L951532-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0630	ND	0.0526	0.0584	83.4	92.7	1	10.0-146			10.5	29
Toluene	0.0630	ND	0.0525	0.0584	83.0	92.4	1	10.0-143			10.7	30
Ethylbenzene	0.0630	ND	0.0536	0.0584	84.7	92.3	1	10.0-147			8.56	31
Total Xylene	0.189	ND	0.167	0.181	87.9	95.2	1	10.0-149			7.90	30
(S) a,a,a-Trifluorotoluene(FID)					101	101		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					103	103		75.0-128				

L951532-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L951532-22 11/21/17 1	(OS) L951532-22 11/21/17 16:37 • (MS) R3267387-8 11/21/17 19:47 • (MSD) R3267387-9 11/21/17 20:11											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.93	ND	5.25	5.67	75.8	81.9	1	10.0-147			7.71	30
(S) a,a,a-Trifluorotoluene(FID)					99.6	100		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					109	109		75.0-128				

DATE/TIME: 12/05/17 11:30

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3267672-1 11/22/	(MB) R3267672-1 11/22/17 10:03							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
C10-C28 Diesel Range	U		1.61	4.00				
C28-C40 Oil Range	U		0.274	4.00				
(S) o-Terphenyl	73.9			18.0-148				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3267672-2 11/22	2/17 10:16 • (LCSD)) R3267672-3	11/22/17 10:28							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
C10-C28 Diesel Range	60.0	46.0	53.4	76.7	89.0	50.0-150			14.9	20
(S) o-Terphenyl				69.5	69.3	18.0-148				

Sc

Ср

DATE/TIME: 12/05/17 11:30

PAGE: 12 of 17

GLOSSARY OF TERMS

₩

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L952384

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	
XTO Energy - San Juan Division	

PROJECT:

SDG: L952384 DATE/TIME: 12/05/17 11:30 L952229

H132

	T	0	te Number	1950 1951	1	4	1	T	-	Analysis		1	ab Information
	1 - 1					Page of				TI		— `	as mornation
XTO	-11) ames Medaniels			XTO Contact Phone #			1 Per				1	1.1.1
ENERGY		THE REAL PROPERTY AND	1	Email	Results to:				12				fice Abbreviations
Western Division		james_medanid				toenon.	com						ington = FAR
						Test Reason	Reading .		100			Dura	ngo = DUR
Bell Federal B*	210	Lar	ples on Ice	1916-1	-	Turnaround			S				en = BAK n = RAT
Collected By			(Y / N)			andard		0	õ			Piceo	ince = PC
Çompany	1220-1		C Requeste	d		ext Day		8	8	1-1000	4		evelt = RSV arge = LB
, LIE	100					vo Day nree Day					E.		geville = OV
Signature ala		Gray Areas for Lab Use Only!			Std. 5 Bus. Days (by contract) Date Needed			1EX	the				
U	12.2.5		The second				No. of	0	9	1			
Sample ID	Sams	ole Name	Media	Date	Time	Preservative	Conts.			1.00	-	S	ample Number
SUE-1@5'	1.1	-	50.1	and the second se	1430	(00)	2)402	1×		-			1952381-01
SVE-1@40'				11-0-11	1130				X	1. 100			04
SVE-2035	1000	A CONTRACTOR	11	11	1630	L	1	X	X	100			04
SVE-2 C S	apresent.	The second second		1	1000	Carterine 12	1	T					01
11111	1911		1	192	12	19 M.	and the			201 30			
a design of a		8.000	12	1201		The File		-		10-1		1	
interes in		1	12	1	dia 1		1 1 22	-			-	100	martin .
	199.1.2.1	100 100	1		100		1	-			-		
the second second	-			1.2	13		1000	-		+++	-		
	-		12249.4				10 10 10 10 10 10 10 10 10 10 10 10 10 1	-		12 -	-	1	
		1000			1		1						
Media : Filter = F Soll = S Waște	water = WV	V Groundwa	ter = GW E	Prinking V	Vaster = D	OW Sludge = SG	Surface Wat	er = SW	/ Air = A	Drill Muc	I = DM	Other = 01	1
Relingaished By: (Signature)	2	/	Date:	Carl and	Time:	Received By: (5		ŝŕ.	100			of Bottles	Sample Condition
Relipquished By: (Signature)			Date:		Time:	Received By: (\$	Ignature)		5.0	Ten	npero	iturei	Other Information
Relinquished By: (Signature)		Date:	1	Time:	Received for La	ib by: (Signa	oture)	l 836	Pat	s-17	Timerys		
Comments	1		- And		1	0	11.0		-1993-	1		1000	
* Sample ID will be the office	and samp	ler-date-mil	itary time	FARJM-N	MDDYY	-1200	11	1		1.11			0176
Fed Ex: 5435 550 Sample Count:	4 657	3						LI	C	m		NCF	and the second
Sc. Ola Canat.	8							l	1.5	00			
sumple count.	Des					a				Shoe	1922		

CIENCES pint Form		
SDG#	19523	8V
Temperature:	4.5	10
NP	Yes	No
	1	1.000
	1000	197 V-120
	1	4. 19
		PRO-
a straight and a	1.3	he she i
11 million Barry State	199	1000
TENT REPERT	-	1.1
	eipt Form SDG# Temperature:	eipt Form SDG# <u>L95 23</u> Temperature: <u>9,75</u>

Andy Vann

Non-Conformance Form **ESC Lab Sciences**

Evaluated by: Matthew Lockhart

Date:11/18/17

Login #: L952384	Client:XI UKNIM	OKNIM	nate int lot /TT'alph	
Non-Conformance (check applicable items)	ck appl	licable items)		
Sample Integrity	-	Chain of Custody Clarification	tion	
Parameter(s) past holding time	×	Login Clarification Needed		If Broken Container:
Improper temperature	1	Chain of custody is incomplete	ete	Insufficient packing material around container
Improper container type		Please specify Metals requested.	sted.	Insumcient packing material material material cooler
Improper preservation		Please specify TCLP requested.	ted.	Improper handling by carrier (FedEx / UPS / Couri
tranffedant cample volume	100	Received additional samples not listed on coc.	s not listed on coc.	Sample was frozen
Sample is biphasic.		Sample ids on containers do not match ids on coc	o not match ids on	Container lid not intact
Vials received with headspace.	ace.	Trip Blank not received.	1000	If no Chain of Custody:
Broken container		Client did not "X" analysis.		Received by:
Broken container:		Chain of Custody is missing		Date/Time:
Sufficient sample remains			a a hand	Temp./Cont. Rec./pH:
A CALLER AND A CALL	1	a state of a	1	Carrier:
				Tracking#

Login Comments:Client did not specify what TPH analysis to run.

Cliant informed hv.	Call	Email	Voice Mail	Date:11/20/17	Time:1004
CIICILC III OTIMA A A					
TSR Initials:DR	Client Cont	act:			
Login Instructions:				2	

GRO, DRO

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT

L981473

03/29/2018

XTO Energy - San Juan Division

Sample Delivery Group:

Samples Received:

Project Number:

Description:

Bell Federal GC B#1

Report To:

Logan Hixon 382 County Road 3100 Aztec, NM 87410

Entire Report Reviewed By:

Daptime R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Cp: Cover Page	
Tc: Table of Contents	2
Ss: Sample Summary	з
Cn: Case Narrative	5
Sr: Sample Results	e
BH-7@33'-35' L981473-01	e
BH-7A@38'-40' L981473-02	7
BH-8@18'-20' L981473-03	٤
BH-8@33'-35' L981473-04	ç
BH-8A@18'-20' L981473-05	10
BH-8A@28'-30' L981473-06	1'
BH-5@33'-35' L981473-07	12
BH-5@38'-40' L981473-08	13
BH-5A@18'-20' L981473-09	14
BH-5A@38'-40' L981473-10	15
BH-6@33'-35' L981473-11	16
BH-6@38'-40' L981473-12	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Volatile Organic Compounds (GC) by Method 8015/8021	20
Semi-Volatile Organic Compounds (GC) by Method 8015	2'
GI: Glossary of Terms	22
Al: Accreditations & Locations	23
Sc: Sample Chain of Custody	24

*

SDG: L981473

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SU				
BH-7@33'-35' L981473-01 Solid			Collected by Eric Carroll	Collected date/time 03/26/18 10:00	Received date/tim 03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1092620	1	04/03/18 16:04	04/03/18 16:14	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1	03/30/18 09:11	04/02/18 13:19	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	1	04/02/18 09:00	04/03/18 00:56	DMW
			Collected by	Collected date/time	Received date/tim
BH-7A@38'-40' L981473-02 Solid			Eric Carroll	03/26/18 11:15	03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1092620	1	04/03/18 16:04	04/03/18 16:14	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1	03/30/18 09:11	04/02/18 13:41	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	1	04/02/18 09:00	04/03/18 01:13	DMW
			Collected by	Collected date/time	Received date/tim
BH-8@18'-20' L981473-03 Solid			Eric Carroll	03/26/18 12:00	03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1092620	1	04/03/18 16:04	04/03/18 16:14	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307	200	03/30/18 09:11	04/03/18 16:23	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	1	04/02/18 09:00	04/03/18 01:30	MTJ
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	5	04/02/18 09:00	04/03/18 11:39	MTJ
			Collected by	Collected date/time	Received date/tim
BH-8@33'-35' L981473-04 Solid			Eric Carroll	03/26/18 13:00	03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
T			04/03/18 16:04	04/03/18 16:14	JD
Lotal Solids by Mothod 25/0 (=2011	WG1092620	1			
	WG1092620 WG1092307	1 25			
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092620 WG1092307 WG1092261	1 25 1	03/30/18 09:11 04/02/18 09:00	04/03/18 16:45 04/03/18 01:47	JHH DMW
Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307	25	03/30/18 09:11 04/02/18 09:00 Collected by	04/03/18 16:45 04/03/18 01:47 Collected date/time	JHH DMW Received date/tim
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092307	25	03/30/18 09:11 04/02/18 09:00	04/03/18 16:45 04/03/18 01:47	JHH DMW
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid	WG1092307	25	03/30/18 09:11 04/02/18 09:00 Collected by	04/03/18 16:45 04/03/18 01:47 Collected date/time	JHH DMW Received date/tim
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method	WG1092307 WG1092261	25 1	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis	JHH DMW Received date/tim 03/29/18 08:45
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method Total Solids by Method 2540 G-2011	WG1092307 WG1092261 Batch	25 1 Dilution	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time	JHH DMW Received date/tim 03/29/18 08:45 Analyst
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307 WG1092261 Batch WG1092620	25 1 Dilution	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time 04/03/18 16:04	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time 04/03/18 16:14	JHH DMW Received date/tim 03/29/18 08:45 Analyst JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307 WG1092261 Batch WG1092620 WG1092307	25 1 Dilution 1 25	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time 04/03/18 16:04 03/30/18 09:11 04/02/18 09:00 Collected by	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time 04/03/18 16:14 04/03/18 17:52 04/03/18 02:03 Collected date/time	JHH DMW Received date/tim 03/29/18 08:45 Analyst JD JHH DMW Received date/tim
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021	WG1092307 WG1092261 Batch WG1092620 WG1092307	25 1 Dilution 1 25	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time 04/03/18 16:04 03/30/18 09:11 04/02/18 09:00	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time 04/03/18 16:14 04/03/18 17:52 04/03/18 02:03	JHH DMW Received date/tim 03/29/18 08:45 Analyst JD JHH DMW
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092307 WG1092261 Batch WG1092620 WG1092307	25 1 Dilution 1 25	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time 04/03/18 16:04 03/30/18 09:11 04/02/18 09:00 Collected by	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time 04/03/18 16:14 04/03/18 17:52 04/03/18 02:03 Collected date/time	JHH DMW Received date/tim 03/29/18 08:45 Analyst JD JHH DMW Received date/tim
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@28'-30' L981473-06 Solid	WG1092307 WG1092261 Batch WG1092620 WG1092307 WG1092261	25 1 Dilution 1 25 1	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time 04/03/18 16:04 03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time 04/03/18 16:14 04/03/18 17:52 04/03/18 02:03 Collected date/time 03/26/18 14:15 Analysis	JHH DMW Received date/tim 03/29/18 08:45 Analyst JD JHH DMW Received date/tim 03/29/18 08:45
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@18'-20' L981473-05 Solid Method Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8A@28'-30' L981473-06 Solid Method	WG1092307 WG1092261 Batch WG1092620 WG1092307 WG1092261 Batch	25 1 Dilution 1 25 1 Dilution	03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time 04/03/18 16:04 03/30/18 09:11 04/02/18 09:00 Collected by Eric Carroll Preparation date/time	04/03/18 16:45 04/03/18 01:47 Collected date/time 03/26/18 14:00 Analysis date/time 04/03/18 16:14 04/03/18 17:52 04/03/18 02:03 Collected date/time 03/26/18 14:15 Analysis date/time	JHH DMW Received date/tim 03/29/18 08:45 Analyst JD JHH DMW Received date/tim 03/29/18 08:45 Analyst

PROJECT:

SDG: L981473 DATE/TIME: 04/05/18 14:11 PAGE: 3 of 25

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SU	JMMA	ΥY	ON	E LAB. NATIONWI
BH-5@33'-35' L981473-07 Solid			Collected by Eric Carroll	Collected date/time 03/27/18 12:00	Received date/time 03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1092621	1	04/03/18 15:48	04/03/18 15:58	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1000	03/30/18 09:11	04/02/18 15:32	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	50	04/02/18 09:00	04/03/18 11:55	DMW
			Collected by	Collected date/time	Received date/time
BH-5@38'-40' L981473-08 Solid			Eric Carroll	03/27/18 12:30	03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1092621	1	04/03/18 15:48	04/03/18 15:58	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1	03/30/18 09:11	04/04/18 21:57	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	1	04/02/18 09:00	04/03/18 11:22	MTJ
			Collected by	Collected date/time	Received date/time
BH-5A@18'-20' L981473-09 Solid			Eric Carroll	03/27/18 14:00	03/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Fotal Solids by Method 2540 G-2011	WG1092621	1	04/03/18 15:48	04/03/18 15:58	JD
/olatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092307 WG1092261	1	03/30/18 09:11 04/02/18 09:00	04/02/18 16:16 04/03/18 03:11	JAH DMW
senievolatile organic compounds (oc) by method bors	W01032201	I	04/02/18 03:00	04/03/18 03.11	Diviw
			Collected by	Collected date/time	Received date/time
BH-5A@38'-40' L981473-10 Solid			Eric Carroll	03/27/18 14:30	03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1092621	1	04/03/18 15:48	04/03/18 15:58	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1	03/30/18 09:11	04/02/18 16:38	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	1	04/02/18 09:00	04/03/18 03:27	DMW
			Callostad by	Callested deta/time	Descined data /time
			Collected by Eric Carroll	Collected date/time 03/27/18 10:00	Received date/time 03/29/18 08:45
BH-6@33'-35' L981473-11 Solid					
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1092621	1	04/03/18 15:48	04/03/18 15:58	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1	03/30/18 09:11	04/02/18 17:01	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1092261	1	04/02/18 09:00	04/03/18 03:44	DMW
			Collected by	Collected date/time	Received date/time
BH-6@38'-40' L981473-12 Solid			Eric Carroll	03/27/18 11:00	03/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1092621	1	04/03/18 15:48	04/03/18 15:58	JD
		4	02/20/40 00.44	04/02/10 17:22	JAH
/olatile Organic Compounds (GC) by Method 8015/8021	WG1092307	1	03/30/18 09:11	04/02/18 17:23	JAH

PROJECT:

SDG: L981473

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SAMPLE RESULTS - 01 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.7		1	04/03/2018 16:14	WG1092620	Tc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.00466		0.000539	1	04/02/2018 13:19	WG1092307
Toluene	0.0143		0.00539	1	04/02/2018 13:19	WG1092307
Ethylbenzene	0.00200		0.000539	1	04/02/2018 13:19	WG1092307
Total Xylene	0.0144		0.00162	1	04/02/2018 13:19	WG1092307
TPH (GC/FID) Low Fraction	0.219		0.108	1	04/02/2018 13:19	WG1092307
(S) a,a,a-Trifluorotoluene(FID)	94.1		77.0-120		04/02/2018 13:19	WG1092307
(S) a,a,a-Trifluorotoluene(PID)	95.7		75.0-128		04/02/2018 13:19	WG1092307
Semi-Volatile Organic	Compounds	(GC) by N	lethod 801	15		
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch

	Kesuit (ury)	Quaimer	KDL (ury)	Dilution	Analysis	Daten	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	7.87		4.32	1	04/03/2018 00:56	WG1092261	9 SC
C28-C40 Oil Range	ND		4.32	1	04/03/2018 00:56	WG1092261	50
(S) o-Terphenyl	99.0		18.0-148		04/03/2018 00:56	WG1092261	

SAMPLE RESULTS - 02 L981473

.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.2		1	04/03/2018 16:14	WG1092620	Tc

Analyte mg/kg mg/kg date / time Benzene ND 0.000525 1 04/02/2018 13:41 WG1092307 Toluene ND 0.00525 1 04/02/2018 13:41 WG1092307 Ethylbenzene ND 0.00525 1 04/02/2018 13:41 WG1092307 Total Xylene ND 0.00158 1 04/02/2018 13:41 WG1092307 TPH (GC/FID) Low Fraction ND 0.105 1 04/02/2018 13:41 WG1092307
ND 0.00525 1 04/02/2018 13:41 WG1092307 Ethylbenzene ND 0.00525 1 04/02/2018 13:41 WG1092307 Total Xylene ND 0.00158 1 04/02/2018 13:41 WG1092307
Kethylbenzene ND 0.000525 1 04/02/2018 13:41 WG1092307 Total Xylene ND 0.00158 1 04/02/2018 13:41 WG1092307
ND 0.00158 1 04/02/2018 13:41 WG1092307
TPH (GC/EID) Low Fraction ND 0.105 1 04/02/2018 13:41 WG1092307
(S) a,a,a-Trifluorotoluene(FID) 94.1 77.0-120 04/02/2018 13:41 WG1092307
(S) a,a,a-Trifluorotoluene(PID) 95.0 75.0-128 04/02/2018 13:41 WG1092307

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
C10-C28 Diesel Range	ND		4.20	1	04/03/2018 01:13	WG1092261	9
C28-C40 Oil Range	ND		4.20	1	04/03/2018 01:13	WG1092261	
(S) o-Terphenyl	114		18.0-148		04/03/2018 01:13	WG1092261	

SAMPLE RESULTS - 03 L981473

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		р
Analyte	%			date / time		2	_
Total Solids	94.7		1	04/03/2018 16:14	WG1092620	T	С

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Comp	ounds (GC) b	by Method	8015/802	21			³ S
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4
Benzene	ND		0.106	200	04/03/2018 16:23	WG1092307	
Toluene	ND		1.06	200	04/03/2018 16:23	WG1092307	5
Ethylbenzene	ND		0.106	200	04/03/2018 16:23	WG1092307	٦s
Total Xylene	18.0		0.317	200	04/03/2018 16:23	WG1092307	
TPH (GC/FID) Low Fraction	543		21.1	200	04/03/2018 16:23	WG1092307	⁶ G
(S) a,a,a-Trifluorotoluene(FID)	90.6		77.0-120		04/03/2018 16:23	WG1092307	
(S) a,a,a-Trifluorotoluene(PID)	100		75.0-128		04/03/2018 16:23	WG1092307	7

Sample Narrative:

L981473-03 WG1092307: Non-target and target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		-
C10-C28 Diesel Range	395		21.1	5	04/03/2018 11:39	<u>WG1092261</u>	
C28-C40 Oil Range	7.53		4.23	1	04/03/2018 01:30	<u>WG1092261</u>	
(S) o-Terphenyl	106		18.0-148		04/03/2018 11:39	WG1092261	
(S) o-Terphenyl	97.9		18.0-148		04/03/2018 01:30	WG1092261	

SAMPLE RESULTS - 04 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		2	_
Total Solids	92.1		1	04/03/2018 16:14	WG1092620	Tc	2

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.0136	25	04/03/2018 16:45	<u>WG1092307</u>	
oluene	0.259		0.136	25	04/03/2018 16:45	<u>WG1092307</u>	
Ethylbenzene	0.391		0.0136	25	04/03/2018 16:45	<u>WG1092307</u>	
otal Xylene	3.57		0.0407	25	04/03/2018 16:45	<u>WG1092307</u>	
PH (GC/FID) Low Fraction	94.2		2.71	25	04/03/2018 16:45	<u>WG1092307</u>	
(S) a,a,a-Trifluorotoluene(FID)	89.0		77.0-120		04/03/2018 16:45	<u>WG1092307</u>	
(S) a.a.a-Trifluorotoluene(PID)	100		75.0-128		04/03/2018 16:45	WG1092307	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Å
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	63.5		4.34	1	04/03/2018 01:47	<u>WG1092261</u>	°S
C28-C40 Oil Range	ND		4.34	1	04/03/2018 01:47	<u>WG1092261</u>	5
(S) o-Terphenyl	88.7		18.0-148		04/03/2018 01:47	WG1092261	

SAMPLE RESULTS - 05 L981473

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.5		1	04/03/2018 16:14	WG1092620	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.0132	25	04/03/2018 17:52	WG1092307
Toluene	ND		0.132	25	04/03/2018 17:52	WG1092307
Ethylbenzene	ND		0.0132	25	04/03/2018 17:52	WG1092307
Total Xylene	0.135		0.0397	25	04/03/2018 17:52	WG1092307
TPH (GC/FID) Low Fraction	32.6		2.65	25	04/03/2018 17:52	WG1092307
(S) a,a,a-Trifluorotoluene(FID)	92.7		77.0-120		04/03/2018 17:52	WG1092307
(S) a,a,a-Trifluorotoluene(PID)	102		75.0-128		04/03/2018 17:52	WG1092307

Result (dry) Qualifier RDL (dry) Dilution Analysis Batch Analyte mg/kg mg/kg date / time C10-C28 Diesel Range 191 4.23 1 04/03/2018 02:03 WG1092261 WG1092261 C28-C40 Oil Range 7.22 04/03/2018 02:03 4.23 1 (S) o-Terphenyl 92.5 18.0-148 04/03/2018 02:03 WG1092261

SAMPLE RESULTS - 06 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.7		1	04/03/2018 16:14	WG1092620	Tc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.000596		0.000528	1	04/02/2018 15:10	WG1092307	
Toluene	ND		0.00528	1	04/02/2018 15:10	WG1092307	
Ethylbenzene	ND		0.000528	1	04/02/2018 15:10	WG1092307	
Total Xylene	ND		0.00158	1	04/02/2018 15:10	WG1092307	
TPH (GC/FID) Low Fraction	ND		0.106	1	04/02/2018 15:10	WG1092307	
(S) a,a,a-Trifluorotoluene(FID)	93.4		77.0-120		04/02/2018 15:10	<u>WG1092307</u>	
(S) a,a,a-Trifluorotoluene(PID)	93.6		75.0-128		04/02/2018 15:10	<u>WG1092307</u>	
Semi-Volatile Organic	Compounds	(GC) by N	lethod 801	5			
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	

	Result (dry)	Qualifier	RDL (ary)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.22	1	04/03/2018 02:20	WG1092261	9 50
C28-C40 Oil Range	ND		4.22	1	04/03/2018 02:20	WG1092261	50
(S) o-Terphenyl	100		18.0-148		04/03/2018 02:20	WG1092261	

SAMPLE RESULTS - 07 L981473

0

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.3		1	04/03/2018 15:58	WG1092621	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	3.71		0.536	1000	04/02/2018 15:32	WG1092307
Foluene	74.7		5.36	1000	04/02/2018 15:32	WG1092307
Ethylbenzene	35.8		0.536	1000	04/02/2018 15:32	WG1092307
Total Xylene	345		1.61	1000	04/02/2018 15:32	WG1092307
FPH (GC/FID) Low Fraction	4870		107	1000	04/02/2018 15:32	WG1092307
(S) a,a,a-Trifluorotoluene(FID)	88.8		77.0-120		04/02/2018 15:32	WG1092307
(S) a,a,a-Trifluorotoluene(PID)	97.4		75.0-128		04/02/2018 15:32	WG1092307

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	ĬAĬ
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	3940		214	50	04/03/2018 11:55	WG1092261	9 SC
C28-C40 Oil Range	418		214	50	04/03/2018 11:55	WG1092261	50
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		04/03/2018 11:55	WG1092261	

SAMPLE RESULTS - 08 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		 2
Total Solids	93.4		1	04/03/2018 15:58	<u>WG1092621</u>	Tc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.0101		0.000535	1	04/04/2018 21:57	WG1092307	
Toluene	0.0782		0.00535	1	04/04/2018 21:57	WG1092307	
Ethylbenzene	0.0214		0.000535	1	04/04/2018 21:57	WG1092307	
Total Xylene	0.241		0.00161	1	04/04/2018 21:57	<u>WG1092307</u>	
TPH (GC/FID) Low Fraction	2.50		0.107	1	04/04/2018 21:57	WG1092307	
(S) a,a,a-Trifluorotoluene(FID)	102		77.0-120		04/04/2018 21:57	WG1092307	
(S) a,a,a-Trifluorotoluene(PID)	107		75.0-128		04/04/2018 21:57	<u>WG1092307</u>	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	AI
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	12.2		4.28	1	04/03/2018 11:22	WG1092261	9 50
C28-C40 Oil Range	ND		4.28	1	04/03/2018 11:22	WG1092261	50
(S) o-Terphenyl	114		18.0-148		04/03/2018 11:22	WG1092261	

SAMPLE RESULTS - 09 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.2		1	04/03/2018 15:58	WG1092621	Tc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000531	1	04/02/2018 16:16	WG1092307	
Toluene	ND		0.00531	1	04/02/2018 16:16	WG1092307	
Ethylbenzene	ND		0.000531	1	04/02/2018 16:16	WG1092307	
Total Xylene	ND		0.00159	1	04/02/2018 16:16	<u>WG1092307</u>	
TPH (GC/FID) Low Fraction	ND		0.106	1	04/02/2018 16:16	WG1092307	
(S) a,a,a-Trifluorotoluene(FID)	93.9		77.0-120		04/02/2018 16:16	<u>WG1092307</u>	
(S) a,a,a-Trifluorotoluene(PID)	94.0		75.0-128		04/02/2018 16:16	<u>WG1092307</u>	
Semi-Volatile Organic	Compounds	(GC) by N	lethod 801	15			
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	AI
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	21.7		4.24	1	04/03/2018 03:11	WG1092261	⁹ Sc
C28-C40 Oil Range	5.80		4.24	1	04/03/2018 03:11	WG1092261	
(S) o-Terphenyl	94.6		18.0-148		04/03/2018 03:11	WG1092261	

SAMPLE RESULTS - 10 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.0		1	04/03/2018 15:58	WG1092621	Tc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000532	1	04/02/2018 16:38	WG1092307	
Toluene	ND		0.00532	1	04/02/2018 16:38	<u>WG1092307</u>	
Ethylbenzene	ND		0.000532	1	04/02/2018 16:38	WG1092307	
Total Xylene	ND		0.00159	1	04/02/2018 16:38	<u>WG1092307</u>	
TPH (GC/FID) Low Fraction	ND		0.106	1	04/02/2018 16:38	WG1092307	
(S) a,a,a-Trifluorotoluene(FID)	93.8		77.0-120		04/02/2018 16:38	<u>WG1092307</u>	
(S) a,a,a-Trifluorotoluene(PID)	94.3		75.0-128		04/02/2018 16:38	WG1092307	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	ĬAĬ
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.25	1	04/03/2018 03:27	<u>WG1092261</u>	°Sc
C28-C40 Oil Range	ND		4.25	1	04/03/2018 03:27	<u>WG1092261</u>	50
(S) o-Terphenyl	107		18.0-148		04/03/2018 03:27	WG1092261	

SAMPLE RESULTS - 11 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.3		1	04/03/2018 15:58	WG1092621	Tc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.000878		0.000536	1	04/02/2018 17:01	WG1092307	
Toluene	ND		0.00536	1	04/02/2018 17:01	WG1092307	
Ethylbenzene	ND		0.000536	1	04/02/2018 17:01	<u>WG1092307</u>	
Total Xylene	0.00270		0.00161	1	04/02/2018 17:01	WG1092307	
TPH (GC/FID) Low Fraction	ND		0.107	1	04/02/2018 17:01	WG1092307	
(S) a,a,a-Trifluorotoluene(FID)	94.8		77.0-120		04/02/2018 17:01	WG1092307	
(S) a,a,a-Trifluorotoluene(PID)	94.5		75.0-128		04/02/2018 17:01	WG1092307	
Semi-Volatile Organic	Compounds	(GC) by N	lethod 80 [°]	15			
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	

		()/		,		
Analyte	mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	ND	4.29	1	04/03/2018 03:44	<u>WG1092261</u>	°SC
C28-C40 Oil Range	ND	4.29	1	04/03/2018 03:44	WG1092261	50
(S) o-Terphenyl	112	18.0-148		04/03/2018 03:44	WG1092261	

SAMPLE RESULTS - 12 L981473

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	p
Analyte	%			date / time		2	
Total Solids	92.8		1	04/03/2018 15:58	WG1092621	T T	С

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.0290		0.000539	1	04/02/2018 17:23	WG1092307	
Toluene	0.140		0.00539	1	04/02/2018 17:23	WG1092307	
Ethylbenzene	0.00403		0.000539	1	04/02/2018 17:23	WG1092307	
Fotal Xylene	0.0270		0.00162	1	04/02/2018 17:23	WG1092307	
TPH (GC/FID) Low Fraction	0.456		0.108	1	04/02/2018 17:23	WG1092307	
(S) a,a,a-Trifluorotoluene(FID)	90.7		77.0-120		04/02/2018 17:23	WG1092307	
(S) a,a,a-Trifluorotoluene(PID)	93.0		75.0-128		04/02/2018 17:23	<u>WG1092307</u>	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	A
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	6.44		4.31	1	04/03/2018 04:01	WG1092261	9 SC
C28-C40 Oil Range	ND		4.31	1	04/03/2018 04:01	WG1092261	50
(S) o-Terphenyl	78.8		18.0-148		04/03/2018 04:01	WG1092261	

WG1092620

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L981473-01,02,03,04,05,06

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank (MB)									
(MB) R3298885-1 04/03/18 16:14									
	MB Result	MB Qualifier	MB MDL	MB RDL	2				
Analyte	%		%	%	Τ				
Total Solids	0.00100								
					^³ Ss				

L981458-06 Original Sample (OS) • Duplicate (DUP)

(OS) L981458-06 04/03/	/18 16:14 • (DUP) F	R3298885-3	04/03/18 1	6:14		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.7	92.9	1	1.94		5

Laboratory Control Sample (LCS)

(LCS) R3298885-2 0	CS) R3298885-2 04/03/18 16:14											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	%	%	%	%								
Total Solids	50.0	50.0	100	85.0-115								

WG1092621

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3298883-1 04/03	/18 15:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
	NID Result	MD Qualifier		
Analyte	%		%	%
Total Solids	0.00100			

L981487-01 Original Sample (OS) • Duplicate (DUP)

(OS) L981487-01 04/03/18	S) L981487-01 04/03/18 15:58 • (DUP) R3298883-3 04/03/18 15:58								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	77.1	78.0	1	1.15		5			

Laboratory Control Sample (LCS)

(LCS) R3298883-2 04	.CS) R3298883-2 04/03/18 15:58										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

SDG: L981473

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY 1981473-01.02.03.04.05.06.07.08.09.10.11.12

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3298681-5 04/02/	(MB) R3298681-5 04/02/18 11:25									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Benzene	U		0.000120	0.000500						
Toluene	U		0.000150	0.00500						
Ethylbenzene	U		0.000110	0.000500						
Total Xylene	U		0.000460	0.00150						
TPH (GC/FID) Low Fraction	U		0.0217	0.100						
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120						
(S) a,a,a-Trifluorotoluene(PID)	97.3			75.0-128						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

CS) R3298681-1 04/02/18 09:33 • (LCSD) R3298681-2 04/02/18 09:55											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0500	0.0506	99.9	101	71.0-121			1.19	20	
Toluene	0.0500	0.0522	0.0522	104	104	72.0-120			0.0860	20	
Ethylbenzene	0.0500	0.0521	0.0522	104	104	76.0-121			0.247	20	
Total Xylene	0.150	0.159	0.159	106	106	75.0-124			0.000	20	
(S) a,a,a-Trifluorotoluene(FID)				96.2	96.3	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				95.5	96.0	75.0-128					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3298681-3 04/02/18 10:18 • (LCSD) R3298681-4 04/02/18 10:40											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.28	5.43	96.1	98.8	70.0-136			2.78	20	
(S) a,a,a-Trifluorotoluene(FID)				102	104	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				109	109	75.0-128					

SDG: L981473

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY 1981473-01.02.03.04.05.06.07.08.09.10.11.12

Τс

Ss

Cn

Sr

Qc

GI

A

Method Blank (MB)

(MB) R3298571-1 04/02	VIB) R3298571-1 04/02/18 22:10								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
C10-C28 Diesel Range	U		1.61	4.00					
C28-C40 Oil Range	U		0.274	4.00					
(S) o-Terphenyl	113			18.0-148					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3298571-2 04/02/18 22:26 • (LCSD) R3298571-3 04/02/18 22:43											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	48.7	50.8	97.4	102	50.0-150			4.20	20	
(S) o-Terphenyl				111	122	18.0-148					

L981871-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L981871-01 04/02/18 23:00 • (MS) R3298571-4 04/02/18 23:17 • (MSD) R3298571-5 04/02/18 23:33													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	 Sc
C10-C28 Diesel Range	50.0	ND	44.2	42.3	88.5	84.7	1	50.0-150			4.39	20	
(S) o-Terphenyl					89.4	84.0		18.0-148					

SDG: L981473

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J7

Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L981473

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELA
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming
		, , ,

Intervention 2975 lew Hampshire 2975 lew Jersey–NELAP TN002 lew Mexico 1 n/a lew York 11742 lorth Carolina Env375 lorth Carolina 1 DW21704 lorth Carolina 3 41 lorth Carolina 3 41 lorth Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 tennsylvania 68-02979 thode Island LA000356 couth Carolina 84004 couth Dakota n/a cennessee 1 4 2006 cexas T 104704245-17-14 cexas 5 LAB0152 Itah TN00003 fermont VT2006 firginia 460132 Vashington C847 Vest Virginia 233 Visconsin 9980939910	lebraska	NE-OS-15-05
New Jersey–NELAPTN002New Mexico 1n/aNew York11742North CarolinaEnv375North Carolina 1DW21704North Carolina 341North Carolina 341North DakotaR-140Ohio–VAPCL0069Oklahoma9915OregonTN200002Pennsylvania68-02979Rhode IslandLA000356South Carolina84004South Dakotan/aTennessee 142006TexasT 104704245-17-14Texas 5LAB0152UtahTN00003VermontVT2006Virginia460132WashingtonC847West Virginia233Wisconsin9980939910	Nevada	TN-03-2002-34
New Mexico 1 n/a New York 11742 North Carolina Env375 North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee 1 4 2006 Texas T 104704245-17-14 Texas 5 LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Hampshire	2975
New York 11742 North Carolina Env375 North Carolina ¹ DW21704 North Carolina ³ 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 <td>New Jersey-NELAP</td> <td>TN002</td>	New Jersey-NELAP	TN002
North Carolina In Ya North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Ohio-VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee 1 4 2006 Texas T 104704245-17-14 Texas 5 LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Mexico ¹	n/a
North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 Verass T 104704245-17-14 Texas T N00003	New York	11742
North Carolina ³ 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina	Env375
North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ¹	DW21704
CL0069 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ³	41
Oklahoma 9915 Okahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Dakota	R-140
Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Ohio-VAP	CL0069
Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oklahoma	9915
Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oregon	TN200002
South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Pennsylvania	68-02979
South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Rhode Island	LAO00356
Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Carolina	84004
Texas T 104704245-17-14 Texas T 104704245-17-14 Texas LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Dakota	n/a
Texas LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Tennessee ¹⁴	2006
Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas	T 104704245-17-14
Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas⁵	LAB0152
Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Utah	TN00003
Washington C847 West Virginia 233 Wisconsin 9980939910	Vermont	VT2006
West Virginia 233 Wisconsin 9980939910	Virginia	460132
Wisconsin 9980939910	Washington	C847
	West Virginia	233
Wyoming A2LA	Wisconsin	9980939910
	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

XTO Energy - San Juan Division

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

L981473

PAGE: 23 of 25

04/05/18 14:11

Τс Ss Cn Sr Qc Gl AI Sc

			1.2	1.1.2		13			17	-	No. of Lot		054	-
1	5	Quote	Numbe	r		Page 1	of 1	-		01	Analy	-		ap Information
ХТО	100	Logan Hi	Contact	1	50	TO Contac 5-386-	t Phone	e #	BES	, GRO			1	981473
ENERGY Western Divisio			11-1-1		dbuspseltenv.com; Iterv.c					DRO	1		Farm	fice Abbreviations ington = FAR
Bell Federal GC B#1		API	API Number			Test Reason						6	Bakk	ngo = DUR en = BAK n = RAT
Collected By Eric Carroll		Samples on Ice (Y / N)				Turnar	ound		EX	H MEO		1	Piceo	nce = PC rvelt = RSV
Company LTE	20	QA/QC	Next Day Two Day Three Day				BT	HUT	-	, de	La Ba	arge = LB geville = OV		
Ing Carl		Gray Areas for Lab Use Only!			\$td. 5 Bus. Days (by contract) Date Needed				8015	soal,		120 Martine		Ship Ship
Sample ID	San	nple Name	Media	Date	Time	Preservo	ative	No. of Conts.	8	8(-	Sel 1	5	ample Number
	And the second sec	1@ 33 -35'	soil	3-26-18	1000	600	1 200	1	X	×	1			-01
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AC38'-40'	Seal.	1.1.1	1115	and the second	and a	1	X	×	-	-		-02
	stated in case of the second state of the seco	8@ 18-201		S	1200	1.122			X	X	100			-03
		8C 33-35'			1300				X	X				-04
and the second		BAC 18'-20'	12.12		1400	1.00		1	X	X	1			-05
Contraction of the second		34 C 28-30'		V	1415	125	in a	100	X	X	100	1	1.1	-06
		5@ 33'-35'	1.1.2	3-27-18	1200	1.1		549 C	X	X			-	-07
and the second sec		5e 38'-40'			1230			1	X	X		1		-08
Contraction of the second		5AC 18'-20'	2 1		1400	20	E	1	X	X	100		- Ph	-09
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5A@ 38'-40'		11	1430	1. 1. 1964		1. 1.1	X	X			-	-10
		@ 33'-35'			1000	1 19 A			X	\times	1	14 1		-11
100 10 10 10 10 10 10 10 10 10 10 10 10		6@ 33'-40'	1		1100	1		V	X	$ \times $	1	10.00	12.7	-12
	DOR	The Block	1200		12.	1000	S	122	1XX	1	1	1000	375	
Media : Filter = F (oil = 5) Was	tewater = W	/W Groundwate	er = GW	Drinking	Waster = D	W, Sludge	= SG S	urface Wat	er = \$1	N Air:	A Dri	I Mud = D	M Other = O	F. C. State and State and State
Relinquished By: (Signature)			Date:	3-2018	Time:	Received	Phil (Sig	mature	1 1	19/18/		Numbe	OZC	Sample Condition
Relinquished By: (Signature)			Date:		Time:	Received					1	1	in	Other Information
Relinquished By: (Signature) Date:					Time: Received for Lab by: (Signature)						Date:	Time:		
Comments		25.00	1			1.1					(der		
* Sample ID will be the offic	ce and san	npler-date-milit	ary time	FARJM-I	MMDDYY	-1200	2	1	Carl	inte	.771	8616	12782	0163

ESC LAB S	SCIENCES		
Cooler Red	eipt Form		
Client:	SDG#	19814	173
Cooler Received/Opened On: 03/9/18	Temperature:	0.6	1
Received By: Kelly Mercer		122	
Signature			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?		/	
COC Signed / Accurate?		/	and and all
Bottles arrive intact?		1	
Correct bottles used?	A SALAN AND A SALANA	/	To and the
Sufficient volume sent?			211-1
If Applicable			
VOA Zero headspace?		336.7	1.1.24
Preservation Correct / Checked?			

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

January 17, 2019

Jennifer Deal HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX

OrderNo.: 1901480

RE: Bell Federal GC B1

Dear Jennifer Deal:

Hall Environmental Analysis Laboratory received 7 sample(s) on 1/12/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Bell Federal GC B1

Client Sample ID: BH-9 15-20' Collection Date: 1/10/2019 12:00:00 PM Received Date: 1/12/2019 12:00:00 PM

Lab ID: 1901480-001	Matrix: SOIL	R	Received Date: 1/12/2019 12:00:00 PM							
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed				
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst: Irm				
Diesel Range Organics (DRO)	2600	98		mg/Kg	10	1/16/2019 1:04:05 PM				
Motor Oil Range Organics (MRO)	660	490		mg/Kg	10	1/16/2019 1:04:05 PM				
Surr: DNOP	0	50.6-138	S	%Rec	10	1/16/2019 1:04:05 PM				
EPA METHOD 8015D: GASOLINE RANG	GE					Analyst: NSB				
Gasoline Range Organics (GRO)	3000	240		mg/Kg	50	1/15/2019 9:45:27 AM				
Surr: BFB	397	73.8-119	S	%Rec	50	1/15/2019 9:45:27 AM				
EPA METHOD 8021B: VOLATILES						Analyst: NSB				
Benzene	ND	1.2		mg/Kg	50	1/15/2019 9:45:27 AM				
Toluene	29	2.4		mg/Kg	50	1/15/2019 9:45:27 AM				
Ethylbenzene	18	2.4		mg/Kg	50	1/15/2019 9:45:27 AM				
Xylenes, Total	240	4.8		mg/Kg	50	1/15/2019 9:45:27 AM				
Surr: 4-Bromofluorobenzene	124	80-120	S	%Rec	50	1/15/2019 9:45:27 AM				

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY **Project:** Bell Federal GC B1

1901480-002

Lab ID:

Client Sample ID: BH-9 63-65' Collection Date: 1/10/2019 2:00:00 PM Received Date: 1/12/2019 12:00:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE OF	GANICS				Analyst: Irm	
Diesel Range Organics (DRO)	32	9.5	mg/Kg	1	1/16/2019 1:28:09 PM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	1/16/2019 1:28:09 PM	
Surr: DNOP	101	50.6-138	%Rec	1	1/16/2019 1:28:09 PM	
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/15/2019 11:19:47 AM	
Surr: BFB	106	73.8-119	%Rec	1	1/15/2019 11:19:47 AM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.024	mg/Kg	1	1/15/2019 11:19:47 AM	
Toluene	0.070	0.048	mg/Kg	1	1/15/2019 11:19:47 AM	
Ethylbenzene	ND	0.048	mg/Kg	1	1/15/2019 11:19:47 AM	
Xylenes, Total	0.11	0.096	mg/Kg	1	1/15/2019 11:19:47 AM	
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	1/15/2019 11:19:47 AM	

Matrix: SOIL

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Matrix: SOIL

Project: Bell Federal GC B1

Lab ID:

1901480-003

Client Sample ID: BH-10 38-40' Collection Date: 1/10/2019 4:00:00 PM Received Date: 1/12/2019 12:00:00 PM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	GANICS					Analyst: Irm
Diesel Range Organics (DRO)	15	9.8		mg/Kg	1	1/16/2019 11:51:21 AM
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	1/16/2019 11:51:21 AM
Surr: DNOP	112	50.6-138		%Rec	1	1/16/2019 11:51:21 AM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	24	4.7		mg/Kg	1	1/15/2019 11:43:16 AM
Surr: BFB	165	73.8-119	S	%Rec	1	1/15/2019 11:43:16 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	0.18	0.024		mg/Kg	1	1/15/2019 11:43:16 AM
Toluene	1.3	0.047		mg/Kg	1	1/15/2019 11:43:16 AM
Ethylbenzene	0.13	0.047		mg/Kg	1	1/15/2019 11:43:16 AM
Xylenes, Total	1.5	0.094		mg/Kg	1	1/15/2019 11:43:16 AM
Surr: 4-Bromofluorobenzene	105	80-120		%Rec	1	1/15/2019 11:43:16 AM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Bell Federal GC B1

Client Sample ID: BH-10 43-45' Collection Date: 1/11/2019 9:15:00 AM Received Date: 1/12/2019 12:00:00 PM

Lab ID: 1901480-004	Matrix: SOIL	Received Date: 1/12/2019 12:00:00 PM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: Irm	
Diesel Range Organics (DRO)	54	9.4	mg/Kg	1	1/16/2019 12:15:36 PM	
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/16/2019 12:15:36 PM	
Surr: DNOP	118	50.6-138	%Rec	1	1/16/2019 12:15:36 PM	
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	1/15/2019 12:06:40 PM	
Surr: BFB	105	73.8-119	%Rec	1	1/15/2019 12:06:40 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.024	mg/Kg	1	1/15/2019 12:06:40 PM	
Toluene	ND	0.047	mg/Kg	1	1/15/2019 12:06:40 PM	
Ethylbenzene	ND	0.047	mg/Kg	1	1/15/2019 12:06:40 PM	
Xylenes, Total	ND	0.095	mg/Kg	1	1/15/2019 12:06:40 PM	
Surr: 4-Bromofluorobenzene	100	80-120	%Rec	1	1/15/2019 12:06:40 PM	

Qualifiers: * D H ND PQL	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit Practical Quanitative Limit	B E J P RL	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits Page 4 of 10 Sample pH Not In Range Reporting Detection Limit
PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Bell Federal GC B1

Client Sample ID: BH-10 58-60' Collection Date: 1/11/2019 10:45:00 AM Received Date: 1/12/2019 12:00:00 PM

Lab ID: 1901480-005	Matrix: SOIL	Received Date: 1/12/2019 12:00:00 PM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: Irm	
Diesel Range Organics (DRO)	38	9.7	mg/Kg	1	1/16/2019 1:52:32 PM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/16/2019 1:52:32 PM	
Surr: DNOP	97.6	50.6-138	%Rec	1	1/16/2019 1:52:32 PM	
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/15/2019 12:30:13 PM	
Surr: BFB	102	73.8-119	%Rec	1	1/15/2019 12:30:13 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.024	mg/Kg	1	1/15/2019 12:30:13 PM	
Toluene	ND	0.049	mg/Kg	1	1/15/2019 12:30:13 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	1/15/2019 12:30:13 PM	
Xylenes, Total	ND	0.098	mg/Kg	1	1/15/2019 12:30:13 PM	
Surr: 4-Bromofluorobenzene	103	80-120	%Rec	1	1/15/2019 12:30:13 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Bell Federal GC B1

Client Sample ID: BH-11 23-25' Collection Date: 1/11/2019 12:30:00 PM Received Date: 1/12/2019 12:00:00 PM

Lab ID: 1901480-006	Matrix: SOIL	Received Date: 1/12/2019 12:00:00 PM				
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: Irm	
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	1/16/2019 2:16:43 PM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/16/2019 2:16:43 PM	
Surr: DNOP	107	50.6-138	%Rec	1	1/16/2019 2:16:43 PM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	1/15/2019 12:53:48 PM	
Surr: BFB	102	73.8-119	%Rec	1	1/15/2019 12:53:48 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.024	mg/Kg	1	1/15/2019 12:53:48 PM	
Toluene	ND	0.047	mg/Kg	1	1/15/2019 12:53:48 PM	
Ethylbenzene	ND	0.047	mg/Kg	1	1/15/2019 12:53:48 PM	
Xylenes, Total	ND	0.095	mg/Kg	1	1/15/2019 12:53:48 PM	
Surr: 4-Bromofluorobenzene	103	80-120	%Rec	1	1/15/2019 12:53:48 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Bell Federal GC B1

Client Sample ID: BH-11 33-35' Collection Date: 1/11/2019 2:00:00 PM Received Date: 1/12/2019 12:00:00 PM

Lab ID: 1901480-007	Matrix: SOIL	Received Date: 1/12/2019 12:00:00 PM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: Irm	
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	1/16/2019 2:41:05 PM	
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	1/16/2019 2:41:05 PM	
Surr: DNOP	111	50.6-138	%Rec	1	1/16/2019 2:41:05 PM	
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/15/2019 1:17:20 PM	
Surr: BFB	99.3	73.8-119	%Rec	1	1/15/2019 1:17:20 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.024	mg/Kg	1	1/15/2019 1:17:20 PM	
Toluene	ND	0.048	mg/Kg	1	1/15/2019 1:17:20 PM	
Ethylbenzene	ND	0.048	mg/Kg	1	1/15/2019 1:17:20 PM	
Xylenes, Total	ND	0.096	mg/Kg	1	1/15/2019 1:17:20 PM	
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	1/15/2019 1:17:20 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1901480
WO#:	1901480

17-Jan-19

	RP ENERG leral GC B1	-								
Sample ID LCS-42581	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	n ID: 42	581	F	RunNo: 5	7004				
Prep Date: 1/14/2019	Analysis D	Date: 1/	15/2019	S	SeqNo: 1	907015	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	43	10	50.00	0	85.2	63.9	124			
Surr: DNOP	4.2		5.000		83.9	50.6	138			
Sample ID MB-42581	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	n ID: 42	581	F	RunNo: 5	7004				
Prep Date: 1/14/2019	Analysis D	0ate: 1/	15/2019	S	SeqNo: 1	907016	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.3		10.00		92.7	50.6	138			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 8 of 10

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1901480
	17-Jan-19

Client: Project:		RP ENERG leral GC B1	Y								
Sample ID	MB-42579	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: F	PBS	Batch	ID: 42	579	F	RunNo: 57015					
Prep Date:	1/14/2019	Analysis D	ate: 1/	/15/2019	5	eqNo: 1	907269	Units: mg/Kg	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	ND	5.0								
Surr: BFB		1000		1000		100	73.8	119			
Sample ID	_CS-42579	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: L	LCSS	Batch	ID: 42	579	F	unNo: 5	7015				
Prep Date:	1/14/2019	Analysis D	ate: 1/	/15/2019	S	eqNo: 1	907270	Units: mg/Kg	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	25	5.0	25.00	0	98.7	80.1	123			
Surr: BFB		1100		1000		115	73.8	119			
Sample ID	MB-42555	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: F	PBS	Batch	ID: 42	555	F	unNo: 5	7016				
Prep Date:	1/11/2019	Analysis D	ate: 1/	15/2019	S	eqNo: 1	907340	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		910		1000		90.6	73.8	119			
Sample ID	_CS-42555	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID:	CSS	Batch	ID: 42	555	F	unNo: 5	7016				
Prep Date:	1/11/2019	Analysis D	ate: 1/	/15/2019	S	eqNo: 1	907341	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1100		1000		115	73.8	119			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 9 of 10

Hall Environmen	tal Anal	ysis I	Laborat	ory, Inc.					WOII.	17-Jan-19
	ORP ENERC									
Sample ID MB-42579	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: PBS	Batc	h ID: 42	579	F	RunNo: 5	7015				
Prep Date: 1/14/2019	Analysis I	Date: 1/	15/2019	S	SeqNo: 1	907310	Units: mg/h	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.0		1.000		101	80	120			
Sample ID LCS-42579	Samp	Type: LC	S	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Batc	h ID: 42	579	F	RunNo: 5	7015				
Prep Date: 1/14/2019	Analysis I	Date: 1/	15/2019	S	SeqNo: 1	907311	Units: mg/H	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.025	1.000	0	88.8	80	120			
Toluene	0.94	0.050	1.000	0	94.4	80	120			
Ethylbenzene	0.95	0.050	1.000	0	95.0	80	120			
Xylenes, Total	2.8	0.10	3.000	0	94.8	80	120			

106

80

120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

QC SUMMARY REPORT

D Sample Diluted Due to Matrix

Surr: 4-Bromofluorobenzene

1.1

1.000

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 10 of 10

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental . Albu TEL: 505-343-3975 Website: www.hoi	190 querq: FAX: ,	I Hawkins NE ue, NM 87109 595-345-4107	Sample Log-In Check List				
Client Name: HILCORP ENERGY FAR	Work Order Number	1901	480		RcptNo: 1			
Received By: Isalah Ortiz	1/12/2019 12:00:00 PM	1		I_0	¥			
Completed By: Isaiah Ortiz	1/14/2019 7:38:01 AM			I-0	LX			
Reviewed By. VVZ N4/19								
LB. DAD 1/14/19		_						
Chain of Custody			9x					
1. Is Chain of Custody complete?		Yes		No 🗌	Not Present			
2. How was the sample delivered?		Cour	ier					
Log In								
 Was an attempt made to cool the samples? 		Yes	\checkmark	No 🗌				
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes		No 🗌	NA 🗌			
5. Sample(s) in proper container(s)?		Yes		No 🗌				
 Sample(s) in proper comainer(s)? 		Yes		NO				
6. Sufficient sample volume for indicated test(s)?		Yes	v	No 🗌				
7. Are samples (except VOA and ONG) properly	preserved?	Yes	~	No 🗌				
8. Was preservative added to bottles?		Yes		No 🔽	NA 🗌			
0.000			_					
9. VOA vials have zero headspace?		100		No 🗌	No VOA Vials 🗹			
Were any sample containers received broken		Yes		No 🗹	# of preserved			
1. Does paperwork match bottle labels?		Yes	~	No 🗆	bottles checked for pH:			
(Note discrepancies on chain of custody)		100			(<2 or 12 unless noted)			
2. Are matrices correctly identified on Chain of G	ustody?	Yes	~	No 🗌	Adjusted2			
3. Is it clear what analyses were requested?		Yes		No 🗌	/			
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes	~	No 🗌	Checked by: DAD 1/14/19			
pecial Handling (if applicable)								
Was client notified of all discrepancies with th	is order?	Yes		No 🗌	NA 🗹			
Person Notified:	Date:							
By Whom:	Via:	eMa	ail 🗌 Phon	e 🗌 Fax	In Person			
Regarding:								
Client Instructions:								
16. Additional remarks:								
17. Cooler Information								
CONTRACTOR CONTRACTOR AND A	Intact Seal No S	eal Da	ate Sig	ned By				
1 2.0 Good Yes	and the second s			and the second				