District I
1625 M. French Dr., Hobbs, NM 88240
District II
1301 W Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

1:

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

1220 S St. Fran	220 S St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 side of form								
Release Notification and Corrective Action									
20-1	345-	2596			ERATOR		_	eport 🛛 Final Rep	nort
	Name of Company Burlington Resources, a Wholly Contact Kelsi Harrington Kelsi Harrington					Joil			
		of Conocc							
Address									
) 		Facility Type	Gas Well	API #300		
Surface Ow	ner Priv	ate		Mineral Owner	r Federal		Leas	No. NMSF-077922	
				LOCATIO	ON OF REL	EASE			
Unit Letter B	Section 34	Township 30N	Range 12W	Feet from the No	orth/South Line North	Feet from the 1730'	East/West Li	ne County San Juan	
	34	3014	·	·	-		Lasi	San Juan	
			Latitu	de <u>36.77417° N</u>	Longitude <u>-1</u>	108.08192° W		•	
·····					E OF RELE				
Type of Rele	ase – Pro	duced Wat	er (PW) 8	& Slop Oil		lease – 90 BBL	(50 BBL	Volume Recovered – 85 BBL (47 BBL Slop	o Oil
					Siop Oil &	40 BBL PW)		& 38 BBL PW)	
Source of Re	lease: AP	'I Separato	7		Date and Hour 2/4/2011	r of Occurrence		Date and Hour of Discover 2/5/2011 6:30 a.m.	У
Was Immedi	ate Notice	Given?	es 🔲 No	Not Required	If YES, To W Brandon P	hom? owell (NMOCI	D): Verbal &	email	
By Whom?	Kelsi Ha	rrington				r – 2/8/2011 1			
Was a Water		ched?				ne Impacting the			
TC W			Yes 🛛	No				RCUDOCT 11:11	
If a Watercoi	irse was in	npacted, Descr	ibe Fully.*					ul (M5. biv.	
								ween the three SWD	
								e API Separator tanks nd a vacuum truck w	
causing the		to overnov	v. Opon	discovery, all val	ves on the s	urge taliks we	re cioseu a	nu a vacuum nuck w	as
Describe Are	a Affected							imately 85 BBL of flu	
								w path samples retu	ırned
								composite sample OCD approved backfi	ll due
								ificant risk to the	
environme	ent; ther	efore no fu	rther act	ion required.	.1.1			W (OCD I	
I hereby certi	ity that the	information g are required t	iven above to report an	is true and complete to d/or file certain release	the best of my less notifications an	knowledge and un	iderstand that p	ursuant to NMOCD rules ar eleases which may endange	nd er
public health	or the env	ironment. The	acceptance	e of a C-141 report by	the NMOCD ma	irked as "Final Re	port" does not	elieve the operator of liabil	lity
	should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health								
or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.									
Signature:		Harrington				OIL CONS	SERVATIO	N DIVISION	
					1				
Printed Name	e: K	(elsi Harrin	gton		Approved by	District Superviso	r: A	Soll	
Title:	En	vironmenta	ıl Consul	tant	Approval Date	e: 10/25/11	Expirati	on Date:	
E mail Adda	age kalai	a harringto	n@coro	conhilling com	Conditions of	Approval:			
E-mail Addre	E-mail Address: kelsi.g.harrington@conocophillips.com Conditions of Approval:								

* Attach Additional Sheets If Necessary

Phone: 505-599-3403

Date: 9/14/2011

nJK1129853009

SPILL ASSESSMENT AND CONFIRMATION SAMPLING REPORT

LOCATION:
CONOCOPHILLIPS
MCGRATH #4 SWD (HBR)
SECTION 34, TOWNSHIP 30 NORTH, RANGE 12 WEST
SAN JUAN COUNTY, NEW MEXICO

CONTRACTED BY:
CONOCOPHILLIPS
MS. KELSI HARRINGTON
3401 EAST 30TH STREET
FARMINGTON, NEW MEXICO 87401

PROJECT NUMBER 92115-1598 FEBRUARY 2011

April 7, 2011

Project Number 92115-1598

Phone: (505) 599-3403

Ms. Kelsi Harrington ConocoPhillips 3401 East 30th Street Farmington, New Mexico 87401

RE: SPILL ASSESSMENT AND CONFIRMATION SAMPLING REPORT FOR THE McGrath #4 SWD (HBR), San Juan County, New Mexico

Dear Ms. Harrington,

Enclosed please find the Spill Assessment and Confirmation Sampling Report detailing activities conducted at the McGrath #4 SWD (hBr) located in Section 34, Township 30 North, Range 12 West, San Juan County, New Mexico.

We appreciate the opportunity to be of service. If you have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully submitted,

Envirotech, Inc.

Robyn Jones, EIT

Staff Engineer

rjone@envirotech-inc.com

Enclosures: Spill Assessment and Confirmation Sampling Report

Cc: Client File 92115

CONOCOPHILLIPS SPILL ASSESSMENT AND CONFIRMATION SAMPLING REPORT MCGRATH #4 SWD (HBR) SECTION 34, TOWNSHIP 30 NORTH, RANGE 12 WEST SAN JUAN COUNTY, NEW MEXICO

TABLE OF CONTENTS

Introductio		1
ACTIVITIES P	ERFORMED	1
SUMMARY AN	D CONCLUSIONS	2
STATEMENT (DF LIMITATIONS	3
Figures:	Figure 1, Vicinity Map Figure 2, Site Map – Confirmation Sampling	
Tables:	Table 1, Summary of Analytical Results	

Appendices: Appendix A, Analytical Results

ConocoPhillips
Confirmation Sampling Report
McGrath #4 SWD
Project Number 92115-1598
February 2011
Page 1

Introduction

Envirotech, Inc. of Farmington, New Mexico, was contracted by ConocoPhillips to provide spill assessment and confirmation sampling activities for a release of produced water and oil from the McGrath #4 SWD located in Section 34, Township 30 North, Range 12 West, San Juan County, New Mexico; see enclosed *Figure 1, Vicinity Map*. An unknown amount of oil and water was reported to have been released from an overflow at the API separator. Activities included sample collection and analysis, documentation and reporting.

ACTIVITIES PERFORMED

Envirotech, Inc. was contacted on February 18, 2011, with a request to respond to a release that occurred at the above-referenced location. Upon arrival, a brief site assessment was conducted. Because distance to surface water is between 200 and 1000 feet from the well site and depth to ground water was less than 100 feet, the regulatory standards for the site were determined to be 100 parts per million (ppm) total petroleum hydrocarbons (TPH) and 100 ppm organic vapors, pursuant to New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases.

Prior to Envirotech personnel's arrival on February 18, 2011, the CF&M crew had excavated the area of release southwest of the separator to the extents of 15 feet by 15 feet by 6-7 feet deep. Five (5) composite samples were collected from the area and flow path of the spill. One (1) sample was collected from the surface on the northwest side of the API separator. One (1) sample was collected from the surface on the northeast side of the separator. One (1) sample was collected from the surface southeast of the separator. One (1) sample was collected from the surface south of the separator. One (1) sample was collected from the surface southwest of the separator. Two (2) samples were collected from the excavation pit southwest of the separator. One (1) composite sample was taken from the walls and bottom of the excavated pit. One (1) grab sample was taken from one (1) foot BGS of the bottom of the pit. All samples were screened in the field for TPH using USEPA Method 418.1 and for organic vapors using a photoionization detector (PID). All samples returned results above the regulatory standards for TPH and organic vapors. The northeast, south, and excavation composite samples were placed into four (4)-ounce glass jars, capped head space free, and transported on ice, under chain of custody, to Envirotech's Analytical Laboratory to be analyzed for TPH using USEPA Method 8015 and for benzene and BTEX using USEPA Method 8021; see enclosed Table 1, Summary of Analytical Results. The south sample returned results below regulatory standards for all constituents analyzed. The excavation sample returned results below the regulatory standards for benzene and BTEX, but above the regulatory standard for TPH. The northeast sample returned results below the regulatory standard for benzene, but above the regulatory standards for TPH and BTEX.

Envirotech personnel returned to the site on February 24, 2011. Prior to arrival, the flow path had been excavated by the CF&M crew approximately one (1) to two (2) feet deep and 20 feet wide. Five (5) composite samples were collected from the excavated flow path. One (1) sample was

ConocoPhillips
Confirmation Sampling Report
McGrath #4 SWD
Project Number 92115-1598
February 2011
Page 2

collected from the northwest side of the separator at one (1) foot BGS. One (1) sample was collected from the northeast side of the separator at two (2) feet BGS. One (1) sample was collected from southeast of the separator at two (2) feet BGS. One (1) sample was collected from south of the separator at two (2) feet BGS. One (1) sample was collected from southwest of the separator at two (2) feet BGS. All samples were screened in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. All samples returned results above the regulatory standard for TPH. The northwest and the southeast samples returned results below the regulatory standard for organic vapors. The northeast, south, and southwest samples returned results above the regulatory standard for organic vapors. Additionally, all five (5) samples were each placed into a four (4)-ounce glass jar, capped head space free, and transported on ice, under chain of custody, to Envirotech's Analytical Laboratory to be analyzed for TPH using USEPA Method 8015. The northeast, south, and southwest samples were also analyzed for benzene and BTEX using USEPA Method 8021; see enclosed *Table 1, Summary of Analytical Results*. All samples, except the south sample, returned results below the regulatory standard for TPH. All samples returned results below the regulatory standards for benzene and BTEX.

Upon Envirotech's return on March 4, 2011, the CF&M crew had excavated the southern extent of the flow path to a final depth of approximately three (3) to four (4) feet in depth. One (1) composite sample was collected from this newly excavated area. The sample was screened in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The sample returned results above the regulatory standards for all constituents analyzed. Additionally, the sample was placed into a four (4)-ounce glass jar, capped head space free, and transported on ice, under chain of custody, to Envirotech's Analytical Laboratory to be analyzed for TPH using USEPA Method 8015 and for benzene and BTEX using USEPA Method 8021; see enclosed *Table 1, Summary of Analytical Results*. The sample returned results below the regulatory standards for TPH and benzene and BTEX.

All excavated soil was transported to IEI's New Mexico Oil Conservation Division (NMOCD) permitted soil remediation facility.

SUMMARY AND CONCLUSIONS

Spill assessment and confirmation sampling activities were performed for a release of oil and water from a separator on site at the McGrath #4 SWD located in Section 34, Township 30 North, Range 12 West, San Juan County, New Mexico. Contaminated soil was transported to IEI's NMOCD permitted soil remediation facility. The excavation pit composite sample collected on February 18, 2011, returned results above the regulatory standard for TPH, however Brandon Powell with the NMOCD gave permission to backfill due to the excavation's close proximity to a power pole and the remaining contamination posing no significant threat to life or human health. Envirotech, Inc. recommends no further action in regards to this incident.

ConocoPhillips
Confirmation Sampling Report
McGrath #4 SWD
Project Number 92115-1598
February 2011
Page 3

STATEMENT OF LIMITATIONS

Envirotech, Inc. has completed spill assessment and confirmation sampling activities for a release of oil and water from a separator on site at the McGrath #4 SWD located in Section 34, Township 30 North, Range 12 West, San Juan County, New Mexico. The work and services provided by Envirotech, Inc. were in accordance with NMOCD standards. All observations and conclusions provided here are based on the information and current site conditions found at the site of the incident.

The undersigned has conducted this service at the above referenced site. This work has been conducted and reported in accordance with generally accepted professional practices in geology, engineering, environmental chemistry, and hydrogeology.

We appreciate the opportunity to be of service. If you have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully Submitted,

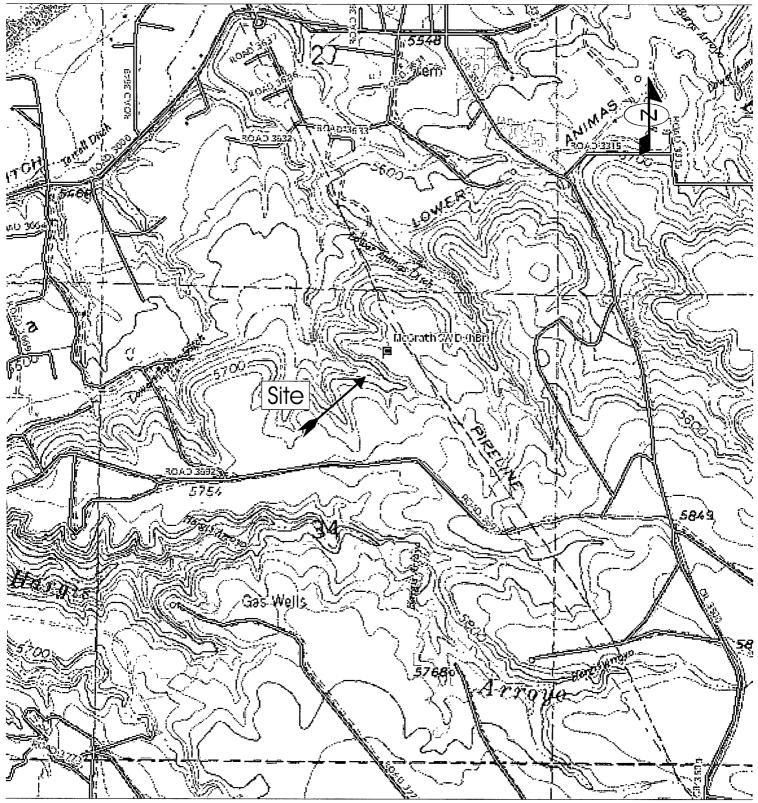
ENVIROTECH, INC.

Robyn S. Jones, EIT Staff Engineer

rjones@envirotech-inc.com

Reviewed by:

Greg Crabtree, PE


Environmental Manager

gcrabtree@envirotech-inc.d

FIGURES

Figure 1, Vicinity Map

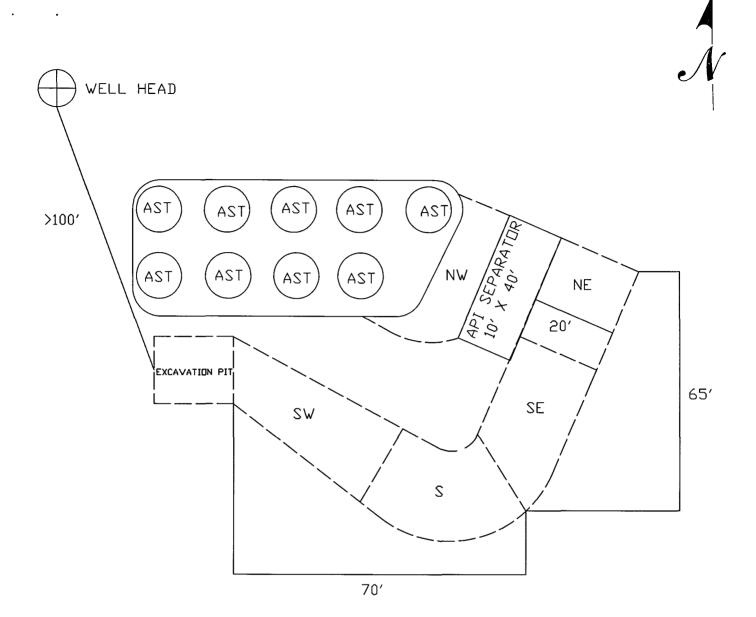
Figure 2, Site Map – Confirmation Sampling

Source: Aztec, New Mexico 7.5 Minute U.S.G.S. Topographic Quadrangle Map

Scale: 1:24,000 1" = 2000'

ConocoPhillips McGrath #4 SWD (hBr) Section 34, Township 30N, Range 12W San Juan County, NM

PROJECT No 92115-1598 D


Date Drawn: 03/31/11

envirotech 5796 U.S. HIGHWAY 64 Farmington, New Mexico 87401 505.632.0615 Vicinity Map

Figure 1

DRAWN BY: Evan Crawford PROJECT MANAGER: Greg Crabtree

SITE MAP MCGRATH #4 SWD (HBR) CONOCOPHILLIPS CONFIRMATION SAMPLING REV SCALE: NTS FIGURE NO. 2 PROJECT NO92115-1598 **REVISIONS** NO. DATE BY DESCRIPTION MAP DRWN EHC 4/4/11 BASE DRWN EHC 4/4/11

TABLES

Table 1, Summary of Analytical Results

Table 1, Summary of Analytical Results

ConocoPhillips
McGrath SWD #4
Spill Assessment and Confirmation Sampling Report
Project Number 92115-1598

						USEPA Method 8021	
		Sample	PID	USEPA Method 418.1	USEPA Method 8015	Benzene	BTEX
Date	Sample Description	Number	OV (ppm)	TPH (ppm)	TPH (ppm)	(ppm)	(ppm)
	New Mexico Oil Conservation		******			3	
· NA	Division Standards	·NA	100	100	100	10.0	50.0
2/18/2011	Excavation Pit Composite	1	2,270	4,740	1,540	0.016	31.8
2/18/2011	NW Sep. Composite	2	2,140	5,812	NS	NS	NS
2/18/2011	NE Sep. Composite	3	2,150	7,020	3,710	NS	NS
2/18/2011	SE Sep. Composite	4	1,440	4,940	NS	NS	NS
2/18/2011	S Sep. Composite	5	1,940	3,310	631	0.013	14.4
2/18/2011	SW Sep. Composite	6	2,150	6,380	NS	NS	NS
2/18/2011	Bottom 8' BGS	7	1,150	NS	NS	NS	NS
2/24/2011	NW 1' BGS	1	72.9	5,490	575	NS	NS
2/24/2011	NE 2' BGS	2	209	2,640	323	ND	1.59
2/24/2011	SE 2' BGS	3	75.4	3,200	203	NS	NS
2/24/2011	S 2' BGS	4	484	5,504	1,500	0.003	10.8
2/24/2011	SW 2' BGS	5	158	3,780	460	ND	1.66
3/4/2011	S 5 Point Composite	1	270	14,800	591	ND	1.61

^{*}Values in **BOLD** above regulatory limits

^{*}NS - Parameter not sampled

^{*}ND - Parameter not detected

APPENDIX A

Analytical Results

Client:

ConocoPhillips

92115-1598

Sample No.:

Date Reported:

Project #:

4/6/2011

Sample ID:

Excavation Pit Composite

Date Sampled:

2/18/2011

Sample Matrix:

Soil

Preservative:

Cool

Date Analyzed: Analysis Needed: 2/18/2011 TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

4.740

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Rene Garcia Reves

Printed

Robyn Jones, EIT

Client:

ConocoPhillips

Project #:

92115-1598

Sample No.:

2

Date Reported:

4/6/2011

Sample ID:

NW Sep. Composite

Date Sampled: 2/18

2/18/2011

Sample Matrix: Preservative:

Soil Cool Date Analyzed: Analysis Needed:

2/18/2011 TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

5,810

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Robyn Jones, EIT

Printed

Rene Garcia Reyes

Client:

ConocoPhillips

TPH-418.1

Sample No.:

3

92115-1598

Sample ID:

NE Sep. Composite

4/6/2011

Sample Matrix:

Soil

Date Sampled: 2/18/2011

Project #:

Date Reported:

Analysis Needed:

Preservative:

Cool

Date Analyzed: 2/18/2011

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

7,020

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Robyn Jones, EIT

Rene Garcia Reyes

Printed

Client:

ConocoPhillips

92115-1598

Sample No.:

Project #: Date Reported:

4/6/2011

Sample ID:

2/18/2011

Sample Matrix:

Soil

Date Sampled: Date Analyzed:

2/18/2011

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

SE Sep. Composite

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

4.940

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Rene Garcia Reyes

Printed

Robyn Jones, EIT

Client:

ConocoPhillips

Project #:

92115-1598

Sample No.:

Date Reported:

4/6/2011

Sample ID:

S Sep. Composite

Date Sampled:

2/18/2011

Sample Matrix:

Soil Cool Date Analyzed: Analysis Needed: 2/18/2011 TPH-418.1

Preservative: Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

3,310

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Rene Garcia Reyes

Printed

Robyn Jones, EIT

Client:

ConocoPhillips

92115-1598

Sample No.:

6

Date Reported:

Project #:

4/6/2011

Sample ID:

SW Sep. Composite

2/18/2011

Sample Matrix:

Soil

Date Sampled: Date Analyzed:

2/18/2011

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

6,380

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Revidu

Robyn Jones, EIT

Printed

Rene Garcia Reyes

500 1000

TOTAL PETROLEUM HYDROCARBONS

Cal. Date:	18-Feb-11	·	
Parameter	Standard Concentration mg/L	Concentration Reading mg/L	
TPH	100 200	197	

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

Park.	4/6/2011
Analyst	Date
Rene Garcia Reyes	
Print Name	
From 1	4/6/2011
Review	Date
Robyn Jones, EIT	

Print Name

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	Excavation	Date Reported:	02-21-11
Laboratory Number:	57263	Date Sampled:	02-18-11
Chain of Custody No:	11168	Date Received:	02-18-11
Sample Matrix:	Soil	Date Extracted:	02-18-11
Preservative:	Cool	Date Analyzed:	02-21-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	1,100	0.2
Diesel Range (C10 - C28)	439	0.1
Total Petroleum Hydrocarbons	1,540	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath #4 SWD

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	NE SEP	Date Reported:	02-21-11
Laboratory Number:	57264	Date Sampled:	02-18-11
Chain of Custody No:	11168	Date Received:	02-18-11
Sample Matrix:	Soil	Date Extracted:	02-18-11
Preservative:	Cool	Date Analyzed:	02-21-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	2,540	0.2
Diesel Range (C10 - C28)	1,170	0.1
Total Petroleum Hydrocarbons	3,710	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath #4 SWD

Analyst

Review

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	S SEP	Date Reported:	02-21-11
Laboratory Number:	57265	Date Sampled:	02-18-11
Chain of Custody No:	11168	Date Received:	02-18-11
Sample Matrix:	Soil	Date Extracted:	02-18-11
Preservative:	Cool	Date Analyzed:	02-21-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	379	0.2
Diesel Range (C10 - C28)	252	0.1
Total Petroleum Hydrocarbons	631	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

McGrath #4 SWD

Analyst

Review

Quality Assurance Report

Client	QA/QC		Project #:		N/A
Sample ID:	02-21-11 QA/C	C	Date Reported:		02-21-11
Laboratory Number:	57263		Date Sampled:		N/A
Sample Matrix:	Methylene Chlori	de	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		02-21-11
Condition:	N/A		Analysis Reques	sted:	TPH
	Î-Cal Date	I-Cal RF	C-Cal RF:	% Difference	Accept Range
Gasoline Range C5 - C10	02-21-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	02-21-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Blank Conc. (mg/L = mg/Kg)	Concentration		Detection Limit	
Gasoline Range C5 - C10		ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept Range	7
Gasoline Range C5 - C10	1,100	1,120	1.9%	0 - 30%	_
Diesel Range C10 - C28	439	431	2.0%	0 - 30%	
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	1,100	250	1,340	99%	75 - 125%
Diesel Range C10 - C28	439	250	691	100%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 57263-57265

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	Excavation	Date Reported:	02-21-11
Laboratory Number:	57263	Date Sampled:	02-18-11
Chain of Custody:	11168	Date Received:	02-18-11
Sample Matrix:	Soil	Date Analyzed:	02-21-11
Preservative:	Cool	Date Extracted:	02-18-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

	Det.	
Concentration	Limit	
(ug/Kg)	(ug/Kg)	
(-3:-3/		
	Concentration (ug/Kg)	Concentration Limit

Benzene	16.0	0.9
Toluene	2,160	1.0
Ethylbenzene	1,130	1.0
p,m-Xylene	24,200	1.2
o-Xylene	4,260	0.9
Total BTEX	31,800	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	101 %
	1,4-difluorobenzene	90.3 %
	Bromochlorobenzene	97.5 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

McGrath #4 SWD

Analyst

Review

			Det.
		Dilution:	10
Condition:	Intact	Analysis Requested:	BTEX
Preservative:	Cool	Date Extracted:	02-18-11
Sample Matrix:	Soil	Date Analyzed:	02-21-11
Chain of Custody:	11168	Date Received:	02-18-11
Laboratory Number:	57264	Date Sampled:	02-18-11
Sample ID:	NE SEP	Date Reported:	02-21-11
Client:	ConocoPhillips	Project #:	92115-1598

		Det.	
	Concentration	Limit	
Parameter	(ug/Kg)	(ug/Kg)	
Parameter	(ug/Kg)	(ug/Kg)	

Benzene	169	0.9
Toluene	5,580	1.0
Ethylbenzene	2,640	1.0
p,m-Xylene	39,200	1.2
o-Xylene	7,580	0.9
Total BTEX	55,100	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	98.6 %
	1,4-difluorobenzene	82.7 %
	Bromochlorobenzene	98.1 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

McGrath #4 SWD

Analyst

Review

0.9

		Concentration		Det.
			Dilution:	10
Condition:	Intact		Analysis Requested:	BTEX
Preservative:	Cool		Date Extracted:	02-18-11
Sample Matrix:	Soil		Date Analyzed:	02-21-11
Chain of Custody:	11168		02-18-11	
Laboratory Number:	57265		02-18-11	
Sample ID:	S SEP		Date Reported:	02-21-11
Client:	ConocoPhillips		Project #:	92115-1598

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
Benzene	12.9	0.9	
Toluene	794	1.0	
Ethylbenzene	599	1.0	
p,m-Xylene	10,800	1.2	

Total BTEX 14,400

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	92.3 %
	1,4-difluorobenzene	88.3 %
	Bromochlorobenzene	104 %

References:

o-Xylene

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

2,170

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

McGrath #4 SWD

Client:	N/A		Project#:		N/A		
Sample ID:	0221BBLK QA/QC	;	Date Reported:		02-21-11		
Laboratory Number:	57263		Date Sampled:		N/A		
Sample Matrix:	Soil		Date Received:		N/A		
Preservative:	N/A		Date Analyzed:		02-21-11		
Condition:	N/A		Analysis:		BTEX		
			Dilution:		10		
Calibration and	I-Cal RF:	C-Cal RF:	%Diff:	Blank	Detect.		
Detection Limits (ug/L)		Accept Rang		Conc	Limit		
Dommana	1.3494E+005	1.3521E+005	0.2%	ND	0.1		
Benzene					ND 0.1		
Toluene	1.3995E+005	1.4023E+005	0.2%	ND	0.1		
	1.3995E+005 1.2620E+005	1.4023E+005 1.2645E+005	0.2% 0.2%	ND ND	0.1 0.1		
Toluene					- ·		

Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range	Detect: Limit
Benzene	16.0	15.2	5.0%	0 - 30%	0.9
Toluene	2,160	2,230	3.3%	0 - 30%	1.0
Ethylbenzene	1,130	955	15.4%	0 - 30%	1.0
p,m-Xylene	24,200	23,900	1.2%	0 - 30%	1.2
o-Xylene	4,260	4,790	12.4%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample	Amount Spiked	Spiked Sample	% Recovery	Accept Range
Benzene	16.0	500	538	104%	39 - 150
Toluene	2,160	500	2,650	99.6%	46 - 148
Ethylbenzene	1,130	500	1,650	101%	32 - 160
p,m-Xylene	24,200	1000	24,800	98.4%	46 - 148
o-Xylene	4,260	500	4,770	100%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 57263-57265

Review

Client:			Project Name /	Location): - :						_				ANAL	YSIS	/ PAR	AME	rers			_ ,		
COPC			Mc Gro	TLA	f4 Su	JD_				x —	X_	т	·							ι			T	
Client Address:			Sampler Name:			7				15)	021	(09												
	· · · · · · · · · · · · · · · · · · ·		lane	60	ccia	10ex	<u> 225</u>			80	8 8	88	als			<u>e</u>		_						<u>+</u>
Client Phone No.:			Sampler Name: Record Client No.:	15 -	15:98					TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
Sample No./	Sample	Sample	Lab No.	8	sample	No./Volu	me Pr	eserva) H	Ä	၁	Ä	tion	5	그	PAH	Hc.	일			Ì	du	dur
Identification	Date	Time	1		Matrix	Of Containe	ers Hg	A, HCI	(S)	۴	<u>B</u>	>	E	Ö	泛		7	上	C				ő	Š
Excavation	2-18-11	11:39	57263	Solid	Sludge Aqueous	40				X	X												X	X
NE SEP		11:45	57264	Solid Solid	Sludge Aqueous				X	X	×												5	X
Excavation NE SEP S SEP		11:53	57265	Soil Solid	Sludge Aqueous				X	x	X												入	X
				Soil Solid	Sludge Aqueous), ,																		
				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous						_						_							
				Soil Solid	Sludge Aqueous																			
Relinquished by: (Signa	ture) '		3		Date 13/18/11	Time		Rece	ivec	by:	(Signa	ature) ature)	2 / 4				_				Da 2/1	te 9///	Tin	18 3.1
Relinquished by: (Signa	ture) /	/- (21011	12.1	ا ح	Rece	ivec	by:	(Signa	ature)	we.	<u>1æ</u>							//	2///		
Relinquished by: (Signa	ture)						1	Recei	ivec	i by: ((Signa	ature)				-	·· ··· · · · · · · · · · · · · · · · ·							
$\overline{\mathcal{D}}$,) (5/	<u></u>	A-		en	V	r	0	t	- e	3h	1						•	— <u>———</u>			-	
	<u> </u>	ン/	1	63		A	nal	ytic	al	Lak	ora	tory	7											

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Client:

ConocoPhillips

Project #:

92115-1598

Sample No.:

1

Date Reported:

4/6/2011

Sample ID:

NW 1' BGS

2/24/2011

Sample Matrix:

Soil

Date Sampled:
Date Analyzed:

2/24/2011

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

5,490

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Rene Garcia Reyes

Printed

Robyn Jones, EIT

Client:

ConocoPhillips

Project #:

92115-1598

Sample No.:

2

Date Reported:

4/6/2011

Sample ID:

NE 2' BGS

Date Sampled:

2/24/2011

Sample Matrix:

Soil Cool Date Analyzed:
Analysis Needed:

2/24/2011 TPH-418.1

Preservative: Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

2,640

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Rene Garcia Reyes

Robyn Jones, EIT

Printed

Client:

ConocoPhillips

92115-1598

Sample No.:

Sample ID:

SE 2' BGS

4/6/2011

Sample Matrix:

Soil

2/24/2011

Preservative:

Cool

Date Analyzed: 2/24/2011 Analysis Needed: TPH-418.1

Project #:

Date Reported:

Date Sampled:

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

3,200

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Robyn Jones, EIT

Printed

Rene Garcia Reyes

Client:

ConocoPhillips

92115-1598

Sample No.:

4

4/6/2011

Sample ID:

S 2' BGS

1/0/2011

Sample Matrix:

Soil

Date Sampled: 2/24/2011

Date Analyzed: 2/24/2011

Preservative:

Cool

Analysis Needed: TPH-418.1

Project #:

Date Reported:

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

5,500

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Rene Garcia Reyes

Printed

Robyn Jones, EIT

Client:

ConocoPhillips

92115-1598

Sample No.:

5

92115-15

Sample ID:

SW 2' BGS

4/6/2011

Sample Matrix:

Soil

2/24/2011

Preservative:

Cool

Date Analyzed: 2/24/ Analysis Needed: TPH-

Project #:

Date Reported:

Date Sampled:

2/24/2011 TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

3,780

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Rene Garcia Reyes

Printed

Robyn Jones, EIT

TOTAL PETROLEUM HYDROCARBONS

Cal. Date:

24-Feb-11

Parameter	Standard Concentration mg/L	Concentration Reading mg/L	
TPH	100		
	200	206	
	500		
	1000		

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

Alone	4/6/2011		
Analyst	Date		
Rene Garcia Reyes			
Print Name			
Troube Alexander	4/6/2011		
Review (V	Date		

Robyn Jones, EIT

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	N W 1'	Date Reported:	02-25-11
Laboratory Number:	57316	Date Sampled:	02-24-11
Chain of Custody No:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	169	0.2
Diesel Range (C10 - C28)	406	0.1
Total Petroleum Hydrocarbons	575	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath #4 SWD (hBr)

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	ConocoPhillips	Project#:	92115-1598
Sample ID:	N E 2'	Date Reported:	02-25-11
Laboratory Number:	57317	Date Sampled:	02-24-11
Chain of Custody No:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	107	0.2
Diesel Range (C10 - C28)	216	0.1
Total Petroleum Hydrocarbons	323	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath #4 SWD (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	S E 2'	Date Reported:	02-25-11
Laboratory Number:	57318	Date Sampled:	02-24-11
Chain of Custody No:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	31.3	0.2
Diesel Range (C10 - C28)	172	0.1
Total Petroleum Hydrocarbons	203	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath #4 SWD (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	S 2'	Date Reported:	02-25-11
Laboratory Number:	57319	Date Sampled:	02-24-11
Chain of Custody No:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	505	0.2
Diesel Range (C10 - C28)	996	0.1
Total Petroleum Hydrocarbons	1,500	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath #4 SWD (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	S W 2'	Date Reported:	02-25-11
Laboratory Number:	57320	Date Sampled:	02-24-11
Chain of Custody No:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Extracted:	02-25-11
Preservative:	Cool	Date Analyzed:	02-25-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	53.3	0.2
Diesel Range (C10 - C28)	407	0.1
Total Petroleum Hydrocarbons	460	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

McGrath #4 SWD (hBr)

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

% Recovery

102%

102%

Accept. Range

75 - 125%

75 - 125%

Client:	QA/QC		Project #:		N/A
Sample ID:	02-25-11 Q	A/QC	Date Reported:		02-25-11
Laboratory Number:	57315		Date Sampled:		N/A
Sample Matrix	Methylene Ch	loride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		02-25-11
Condition:	N/A		Analysis Reque	sted:	TPH
The Sale Tail Sale To Sale Sale Sale	I-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept Range
Gasoline Range C5 - C10	02-25-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	02-25-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Blank Conc. (mg/L - mg/Kg)	7.4	Concentration		Detection Limit	
Gasoline Range C5 - C10		ND		0.2	•
Diesel Range C10 - C28		ND		0.1	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept Range	
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	_
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%	

ND -	Dommotor no	t detected of	t the etated	detection	limit

References:

Spike Conc. (mg/Kg)

Gasoline Range C5 - C10

Diesel Range C10 - C28

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

Spike Added

250

250

Spike Result

254

255

SW-846, USEPA, December 1996.

Sample

ND

ND

Comments:

QA/QC for Samples 57315-57328, 57291-57293

Analyst

Client:	ConocoPhillips	Project#:	92115-1598
Sample ID:	N E 2'	Date Reported:	02-25-11
Laboratory Number:	57317	Date Sampled:	02-24-11
Chain of Custody:	11234	Date Received:	02-24-11
Sample Matrix	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

		.0	
Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
_			
Benzene	ND	0.9	
Toluene	161	1.0	
Ethylbenzene	14.9	1.0	
p,m-Xylene	1,300	1.2	
o-Xylene	111	0.9	
Total BTEX	1.590		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	114 %
	1,4-difluorobenzene	102 %
	Bromochlorobenzene	84.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

McGrath #4 SWD (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	S 2'	Date Reported:	02-25-11
Laboratory Number:	57319	Date Sampled:	02-24-11
Chain of Custody:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
	•	Dilution:	10

	Dilution:	10
Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	3.0	0.9
Toluene	360	1.0
Ethylbenzene	153	1.0
p,m-Xylene	8,810	1.2
o-Xylene	1,520	0.9
Total BTEX	10.800	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	109 %
	1,4-difluorobenzene	110 %
	Bromochlorobenzene	114 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

McGrath #4 SWD (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	S W 2'	Date Reported:	02-25-11
Laboratory Number:	57320	Date Sampled:	02-24-11
Chain of Custody:	11234	Date Received:	02-24-11
Sample Matrix:	Soil	Date Analyzed:	02-25-11
Preservative:	Cool	Date Extracted:	02-25-11
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	

Benzene	ND	0.9
Toluene	56.9	1.0
Ethylbenzene	56.7	1.0
p,m-Xylene	1,430	1.2
o-Xylene	114	0.9

Total BTEX 1,660

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	114 %
	1,4-difluorobenzene	113 %
	Bromochlorobenzene	118 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: McGrath #4 SWD (hBr)

alyst

Client	N/A		Project #:		N/A		
Sample ID:	0225BBLK QA/QC	;	Date Reported:		02-25-11		
Laboratory Number:	57317		Date Sampled:		N/A		
Sample Matrix:	Soil		Date Received:		N/A		
Preservative:	N/A		Date Analyzed:		02-25-11		
Condition:	N/A		Analysis:		BTEX		
			Dilution:		10		
Calibration and	Ecal RF:	C-Cal RF:	%Diff	Blank	Detect:		
Detection Limits (ug/L)		Accept Ran		Conc	Limit		
Benzene	4.2789E+006	4.2875E+006	0.2%	ND	0.1		
Toluene	1.2882E+006	1.2908E+006	0.2%	ND	0.1		
Ethylbenzene	9.8101E+005	9.8298E+005	0.2%	ND	0.1		
30.4	2.1486E+006	2.1529E+006	0.2%	ND	0.1		
p,m-Xylene							

Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range	Detect Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	161	168	4.3%	0 - 30%	1.0
Ethylbenzene	14.9	14.4	3.4%	0 - 30%	1.0
p,m-Xylene	1,300	1,380	6.2%	0 - 30%	1.2
o-Xylenø	111	116	4.2%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	unt Spiked Spil	ked Sample . %	Recovery	Accept Range
Benzenø	ND	500	528	106%	39 - 150
Toluene	161	500	682	103%	46 - 148
Ethylbenzene	14.9	500	512	99.5%	32 - 160
p,m-Xylene	1,300	1000	2,380	103%	46 - 148
o-Xylene	111	500	658	108%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 57317, 57319-57320, 57327-57328, 57275, 57277

Analyst

Client: COPC McGrath #4 Sw D (hBr) Client Address: Sampler Name: Reperiment Client Phone No.: Client No.:						1					ANAL	YSIS	/ PAR	AME.	TERS					-				
COPC				McGrat	44	of Sw	D(h	<u>Br</u>	/(Ni		-T			····		,	,		·,	,		
Client Address:			8	Sampler Name:		_	_		/	X (2)	BTEX (Method 8021)	<u>(</u>)												
				Kene /	~ ~~	ia K	عوم	25,		TPH (Method 8015)	188	VOC (Method 8260)	<u>s</u>			_								
Client Phone No.:			Ć	Client No.:			7			D D) Š	pou	leta	į		H/F		-	ш				00	tact
				92/15						Meth	(Me	Met	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
Sample No./	Sar	nple	Sample	Lab No.	s	ample	No./Volu of				E	ő	A.	tion	75	Ä	PAH	Ĕ	일				d L	du
Identification	D:	ate	Time	<u> </u>		/latrix	of Contain	ers Hg(д на	<u> </u>	<u>B</u>	>	E E	ပိ	RC!	1	8	브	Ö				Š	S
2W 1'	4/2	411		57316	86il Solid	Sludge Aqueous	40,2			X													×	X
NES1				57317	Solid	Sludge Aqueous				X	X												X	X
SEZ'				57318	Solid	Sludge Aqueous				1													X	X
S 2'				57319	Solid	Sludge Aqueous				X	X												<u> </u>	X
Sw Z	<u></u>			57320	Solid	Sludge Aqueous	2			X	X												X	X
•					Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous											-							
					Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous																		
Relinquished by: (Signa	ature))		Siza		Date 2/24/1	Time		Receiv	ed by:	(Sign	ature)				~	>				Da	te -///	Tir	
Relinquished by: (Signa	ature))		1 / 24		927711	13,0	3	Receiv	ed by:	(Si gn	ature)				,	(5	<u>-</u>	42	-7/ //		2
Relinquished by: (Signa	ature)				***				Receiv	ed by:	(Sign	ature)						<u> </u>	·····	,				
12	, C)	SH		S Highway	64 • Farming		nal	ytico	l Lal	borc	itory	•	n-inc.co	om									

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:

ConocoPhillips

S 5 Pt. Composite

Project #:

92115-1598

Sample No.:

1

Date Reported:

4/6/2011

Sample ID:

Soil

Date Sampled:

3/4/2011

Sample Matrix:

Soil

Date Analyzed:

3/4/2011

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

14,800

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

McGrath #4 SWD (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Robyn Jones, EIT

Printed

Greg Crabtree, PE

Printed

TOTAL PETROLEUM HYDROCARBONS

Cal. Date:	4-Mar-11		
	Standard Concentration	Concentration Reading	
Parameter	mg/L	mg/L	
TPH	100		
	200	205	
	500		
	1000		

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

Roops Som	4/6/2011
Analyst ()	Date
Robyn Jones, EIT	
Print Name	
My Cot	4/6/2011
Review	Date
Greg Crabtree PF	

Print Name

Client:	ConocoPhillips	Project #:	92115-1598
Sample ID:	5 Point Comp	Date Reported:	03-07-11
Laboratory Number:	57473	Date Sampled:	03-04-11
Chain of Custody No:	11300	Date Received:	03-04-11
Sample Matrix:	Soil	Date Extracted:	03-05-11
Preservative:	Cool	Date Analyzed:	03-07-11
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	202	0.2
Diesel Range (C10 - C28)	389	0.1
Total Petroleum Hydrocarbons	591	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: McGrath SWD (South Section)

Analyst

Review

Ph (505)632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

Client:	QA/QC		Project #:	N/A					
Sample ID:	03-07-11 QA/0	QC	Date Reported:	03-07-11					
Laboratory Number:	57473		Date Sampled:	N/A					
Sample Matrix:	Methylene Chlo	ride	Date Received:		N/A				
Preservative:	N/A		Date Analyzed:		03-07-11				
Condition:	N/A		Analysis Reque	TPH					
	I-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept. Range				
Gasoline Range C5 - C10	03-07-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%				
Diesel Range C10 - C28	03-07-11	9.9960E+002	1.0000E+003	0.04%	0 - 15%				
Blank Conc. (mg/L - mg/Kg)	and a supplement of the state o	Concentration		Detection Limit	ì				
Gasoline Range C5 - C10		ND		0.2					
Diesel Range C10 - C28		ND		0.1					
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept. Range	i				
Gasoline Range C5 - C10	. 202	191	5.5%	0 - 30%	J				
Diesel Range C10 - C28	389	396	1.9%	0 - 30%					
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept. Range				
Gasoline Range C5 - C10	202	250	456	101%	75 - 125%				
Diesel Range C10 - C28	389	250	651	102%	75 - 125%				

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 57473-57475, 57479, 57482-57491

atust Community of the Community of the

	Coi		3	Det. Limit
			Dilution:	10
Condition:	Intact		Analysis Requested:	BTEX
Preservative:	Cooi		Date Extracted:	03-06-11
Sample Matrix:	Soil		Date Analyzed:	03-07-11
Chain of Custody:	11300		Date Received:	03-04-11
Laboratory Number:	57473		Date Sampled:	03-04-11
Sample ID:	5 Point Comp		Date Reported:	03-07-11
Client:	ConocoPhillips		Project #:	92115-1598

Parameter	(ug/Kg)	(ug/Kg)
Benzene	ND	0.9
Toluene	15.7	1.0
Ethylbenzene	78.5	1.0

- my benzene	10.0	1.0
p,m-Xylene	1,340	1.2
o-Xylene	179	0.9

Total BTEX 1,610

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	105 %
	1,4-difluorobenzene	100 %
	Bromochlorobenzene	109 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

McGrath SWD (South Section)

Analyst

	N/A		Project #:	N/A					
Sample ID:	0307BBLK QA/QC		Date Reported:	03-07-11					
Laboratory Number:	57473		Date Sampled:	• •	I/A				
Sample Matrix:	Soil		Date Received:		/A				
Preservative:	N/A		Date Analyzed:		3-07-11				
Condition:	N/A		Analysis: Dilution:	10	TEX				
Calibration and	, J-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect.				
Detection Limits (ug/L)		Accept. Ran	3.00	Conc	Limit				
Benzene	1.2234E+005	1.2259E+005	0.2%	ND	0.1				
Toluene	1.3226E+005	1.3253E+005	0.2%	ND	0.1				
Ethylbenzene	1.1476E+005	1.1499E+005	0.2%	ND	0.1				
p,m-Xylene	2.6387E+005	2.6440E+005	0.2%	ND	0.1				
o-Xylene	1.0809E+005	1.0831E+005	0.2%	ND	0.1				
Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range :	Detect. Limit				
Duplicate Conc. (ug/Kg) Benzene	Sample ND	Duplicate ND	%Diff.	Accept Range :	Detect: Limit				
STATE OF THE PARTY	a formation addressed to the found of the following disputed, the first of the graph		Santana and All Colombia and an array	a comment in Thirty of American Towns (1999)	A CONTRACTOR OF THE PARTY OF TH				
Benzene Toluene	ND	ND	0.0%	0 - 30%	0.9				
Benzene	ND 15.7	ND 15.8	0.0% 0.6%	0 - 30% 0 - 30%	0.9 1.0				
Toluene Ethylbenzene	ND 15.7 78.5	ND 15.8 82.3	0.0% 0.6% 4.8%	0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0				
Benzene Toluene Ethylbenzene p,m-Xylene	ND 15.7 78.5 1,340 179	ND 15.8 82.3 1,320 177	0.0% 0.6% 4.8% 1.5%	0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2				
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	ND 15.7 78.5 1,340 179	ND 15.8 82.3 1,320 177	0.0% 0.6% 4.8% 1.5% 1.1%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9				
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg)	ND 15.7 78.5 1,340 179	ND 15.8 82.3 1,320 177	0.0% 0.6% 4.8% 1.5% 1.1%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9				
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg)	ND 15.7 78.5 1,340 179 Sample	ND 15.8 82.3 1,320 177 Amount Spiked	0.0% 0.6% 4.8% 1.5% 1.1%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9				
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg) Benzene Toluene	ND 15.7 78.5 1,340 179 Sample ND 15.7	ND 15.8 82.3 1,320 177 Amount Spiked 500	0.0% 0.6% 4.8% 1.5% 1.1% Spiked Sample 534 517	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% % Recovery	0.9 1.0 1.0 1.2 0.9 Accept Range 39 - 150 46 - 148				

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

o-Xylene

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

500

666

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

179

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments

QA/QC for Samples 57473-57475, 57479

Review

98.0%

46 - 148

										13	пń													
Client: (DMW)77	Project Name / Location: MCGYALL SWD (South Section) Sampler Name: EXTURES						d i t	2	ANALYSIS / PARAMETERS +						U	\overline{S}	H							
Client Address:	1000		ampler Name:						,,,,	7. (G	X	6				Γ						<u> </u>		•
		-	KIN	w						TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	S	_		0								
Client Phone No.:		С	lient No.:							pou	etho	thod	RCRA 8 Metals	Cation / Anion		TCLP with H/P		3.1	w				00	Sample Intact
			9215-	159	8	() ()	7	_		(Mei	8	(Me	A 8 I	n/A		wit		(418	불				Se C]
Sample No./ Identification	Sample Date	Sample Time	Lab No.	1	Sample Matrix	No./Volume of Containers	$\overline{}$	$\overline{}$	7	PH	3TE))OC	3CR	Satio	泛	길	PAH	TPH (418.1)	CHLORIDE				Sample Cool	Sam
	 		H71177	Soil Solid	Sludge		, ,						ш.										7	Ÿ
Spoint Comp	3/4/11	10:43	5 1413	 	Aqueous	1-400			p	Q	P												1	
•				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous					_	_					i ,	_							
				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous												_							
				Soil Solid	Sludge Aqueous																			
			·	Soil Solid	Sludge Aqueous												_							
**************************************				Soil Solid	Sludge Aqueous																			
				Soil Solid	Sludge Aqueous																7			
				Soil	Sludge																		$\neg \uparrow$	\neg
Relipquished by: (Signa	dron			Solid	Aqueous Date	Time		Seco	ivec	d by:	(Signa	itura)		l							 Da	to	Tim	
AND A	XZ	A	7		34/11	11:10	''	٠٠٠٠	1000	1)						•		:	3/4/	<u> </u>	11:	. í
Relinquished by (Signa	ture)		/		79/11	11.10	R	Rece	ivec	by: (Signa	ture)										•••		
Relinquished by: (Signa	ture)						R	lece	ivec	d by: (Signa	ture)				<u></u>							<u>.</u>	
TV	5/	4	5796 US	Highwa	64 • Farming		aly	tic	al	Lab	ora	tory	•	-inc.co	om.					<u></u>				