# State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin Cabinet Secretary

Brett F. Woods, Ph.D. Deputy Cabinet Secretary David R. Catanach Division Director Oil Conservation Division



New Mexico Oil Conservation Division approval and conditions listed below are made in accordance with OCD Rule 19.15.7.11 and are in addition to the actions approved by BLM on the following 3160-3 APD form.

Operator Signature Date: <u>3-17-15</u> Well information; Operator <u>Logos Operating</u>, Well Name and Number <u>Dragon Ply #111 H</u> API#<u>30-045-35672</u>, Section <u>12</u>, Township <u>24</u> N/S, Range <u>8</u> E/W

#### Conditions of Approval:

(See the below checked and handwritten conditions)

- Notify Aztec OCD 24hrs prior to casing & cement.
- Hold C-104 for directional survey & "As Drilled" Plat
- Hold C-104 for NSL, NSP, DHC
- Spacing rule violation. Operator must follow up with change of status notification on other well to be shut in or abandoned
- Regarding the use of a pit, closed loop system or below grade tank, the operator must comply with the following as applicable:
  - A pit requires a complete C-144 be submitted and approved prior to the construction or use of the pit, pursuant to 19.15.17.8.A
  - A closed loop system requires notification prior to use, pursuant to 19.15.17.9.A
  - A below grade tank requires a registration be filed prior to the construction or use of the below grade tank, pursuant to 19.15.17.8.C
- Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string

Regarding Hydraulic Fracturing, review EPA Underground Injection Control Guidance 84

Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

Well-bore communication is regulated under 19.15.29 NMAC. This requires well-bore Communication to be reported in accordance with 19.15.29.8.

NMOCD Approved by Signature

1-27-20/5

1220 South St. Francis Drive • Santa Fe, New Mexico 87505 Phone (505) 476-3460 • Fax (505) 476-3462 • www.emnrd.state.nm.us/ocd

| a de la companya de la compan | Set .                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                                          |                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Form 3160-3<br>(March 2012)<br>UNITED STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FS                                       | RECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | OMBN                                                     | APPROVED<br>lo. 1004-0137<br>loctober 31, 2014                                                |
| DEPARTMENT OF THE<br>BUREAU OF LAND MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E INTERIOR                               | MAR 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 2015                 | 5. Lease Serial No.<br>NM014580, NM47                    |                                                                                               |
| APPLICATION FOR PERMIT TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o drill or                               | REENTIEBton F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Field Offic<br>Manager | 6. If Indian, Allotee                                    | or Tribe Name                                                                                 |
| la. Type of work: 🔽 DRILL 🗌 REEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TER                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 7. If Unit or CA Agree                                   | ement, Name and No.                                                                           |
| lb. Type of Well: 🖌 Oil Well 🚺 Gas Well 🛄 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓ Sir                                    | gle Zone 🔲 Multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ple Zone               | 8. Lease Name and Dragonfly 111H                         | Well No.                                                                                      |
| 2. Name of Operator Logos Operating, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 9. API Well No.                                          | 5-35678                                                                                       |
| 3a. Address 4001 North Butler Ave, Building 7101<br>Farmington, NM 87401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3b. Phone No.<br>505-330-93              | (include area code)<br>333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 10. Field and Pool, or I<br>Dufers Point - Gallu         | Exploratory                                                                                   |
| 4. Location of Well (Report location clearly and in accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 11. Sec., T. R. M. or B                                  | lk. and Survey or Area                                                                        |
| At surface 915' FNL 823' FWL, NW/NW<br>At proposed prod. zone 330' FNL 250' FWL, NW/NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OILC                                     | ons. Div dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T. 3                   | SHL Sec 12, T24N<br>BHL Sec 11, T24N                     | R08W, UL D                                                                                    |
| <ol> <li>Distance in miles and direction from nearest town or post office*</li> <li>7.2 miles northeast of Nageezi</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                        | CT 27 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 12. County or Parish<br>San Juan                         | 13. State<br>NM                                                                               |
| <ul> <li>15. Distance from proposed* n/a location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16. No. of a<br>NM014580<br>NM47167      | - 929.49 acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                      | g Unit dedicated to this v<br>11 = 320 acres             | vell                                                                                          |
| <ol> <li>Distance from proposed location*<br/>to nearest well, drilling, completed,<br/>applied for, on this lease, ft.</li> <li>50' from applied for<br/>Dragonfly 112H</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19. Proposed<br>11,787' ME               | Depth<br>0 / 6,191' TVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | BIA Bond No. on file<br>1B000917 (1062415)               | )                                                                                             |
| 21. Elevations (Show whether DF, KDB, RT, GL, etc.)<br>7279' GL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22. Approxim<br>06/15/201                | nate date work will sta<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rt*                    | <ul><li>23. Estimated duration</li><li>45 days</li></ul> | 1                                                                                             |
| 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24. Attac                                | hments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                          |                                                                                               |
| <ol> <li>The following, completed in accordance with the requirements of Ons</li> <li>Well plat certified by a registered surveyor.</li> <li>A Drilling Plan.</li> <li>A Surface Use Plan (if the location is on National Forest Syste<br/>SUPO must be filed with the appropriate Forest Service Office).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | <ol> <li>Bond to cover the state of the</li></ol> | he operatio<br>cation  | ns unless covered by an<br>ormation and/or plans as      |                                                                                               |
| 25. Signature Tandenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | (Printed/Typed)<br>a Sessions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                          | Date<br>03/17/2015                                                                            |
| Title Operations Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                          |                                                                                               |
| Approved by (Signature) Approved by (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\cap$                                   | (Printed/Typed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                          | Date 10/26/1                                                                                  |
| Title AFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Office                                   | FEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                      |                                                          |                                                                                               |
| Application approval does not warrant or certify that the applicant h<br>conduct operations thereon.<br>Conditions of approval, if any, are attached.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | olds legal or equit                      | able title to those righ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ts in the sub          | ject lease which would e                                 | ntitle the applicant to                                                                       |
| Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a crime for any pe<br>as to any matter w | rson knowingly and v<br>ithin its jurisdiction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | villfully to n         | nake to any department o                                 | r agency of the United                                                                        |
| (Continued on page 2)<br>I'S APPROVAL OR ACCEPTANCE OF THIS<br>TON DOES NOT RELIEVE THE LESSEE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                      | *(Instr                                                  | ructions on page 2                                                                            |
| RATOR FROM OBTAINING ANY OTHER<br>THORIZATION REQUIRED FOR OPERATIONS<br>FEDERAL AND INDIAN LANDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | technica<br>pursuan                                      | tion is subject to<br>al and procedural revi<br>tt to 43 CFR 3165.3 a<br>pursuant to 43 CFR 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | NMOCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                          | ERATIONS AUTHORI                                                                              |

\*

22

NMOCD r∕

CONFIDENTIAL

| District 1<br>1625 N. French Dr.,<br>Phone: (575) 393-61<br>District II<br>811 S. First St., Arte<br>Phone: (575) 748-12<br>District III<br>1000 Rio Brazos Ros<br>Phone: (505) 334-61<br>District IV<br>1220 S. St. Francis D<br>Phone: (505) 476-34 | 61 Fax: (575)<br>sia, NM 88210<br>83 Fax: (575) 7<br>id, Aztec, NM 8<br>78 Fax: (505) 3<br>fr., Santa Fe, N | 393-0720<br>748-9720<br>87410<br>134-6170<br>M 87505<br>176-3462 |               | OIL                       | erals & Na<br>CONSER<br>1220 Sout<br>Santa F | atural<br>VATI<br>h St.<br>e, NN |                  | IMAR 18 2                            | Submit                   | one co | ed Aug<br>opy to a<br>Dist | orm C-102<br>ust 1, 2011<br>appropriate<br>trict Office<br>D REPORT |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|---------------------------|----------------------------------------------|----------------------------------|------------------|--------------------------------------|--------------------------|--------|----------------------------|---------------------------------------------------------------------|
|                                                                                                                                                                                                                                                       |                                                                                                             |                                                                  | ELL LO        |                           |                                              | ACRE                             | EAGE DEDIC       |                                      |                          |        |                            |                                                                     |
|                                                                                                                                                                                                                                                       | API Number<br>5-35                                                                                          |                                                                  |               | <sup>2</sup> Pool C<br>19 | <sup>Code</sup><br>859                       |                                  | Dufers           | <sup>3</sup> Pool Nam<br>5 Point – G | The second second second | akota  |                            | 811                                                                 |
| 3150                                                                                                                                                                                                                                                  | Code                                                                                                        |                                                                  |               |                           |                                              | GONFI                            |                  |                                      |                          | ° W    | ell Numl<br>111H           | ber                                                                 |
| <sup>7</sup> OGRID<br>28940                                                                                                                                                                                                                           |                                                                                                             |                                                                  |               |                           | <sup>8</sup> Ope<br>Logos Op                 | erator Na<br>eratin              |                  |                                      |                          |        | Elevatio                   |                                                                     |
|                                                                                                                                                                                                                                                       |                                                                                                             |                                                                  |               |                           | " Surf                                       | ace L                            | ocation          |                                      |                          |        |                            |                                                                     |
| UL or lot no.<br>D                                                                                                                                                                                                                                    | Section<br>12                                                                                               | Township<br>T24N                                                 | Range<br>R8W  | Lot                       | Idn Feet fro<br>915                          |                                  | North/South line | Feet from the 823'                   | East/W<br>WES7           |        | SAN                        | County<br>JUAN                                                      |
|                                                                                                                                                                                                                                                       |                                                                                                             |                                                                  | "Bot          | tom H                     | Iole Locat                                   | ion It                           | f Different Fr   | om Surface                           | 1. P                     |        | 51                         |                                                                     |
| UL or lot no.<br>D                                                                                                                                                                                                                                    | Section<br>11                                                                                               | Township<br>T24N                                                 | Range<br>R8W  | Lot                       | ldn Feet fro<br>330                          |                                  | North/South line | Feet from the 250'                   | East/W<br>WES7           |        | SAN                        | County<br>JUAN                                                      |
| <sup>12</sup> Dedicated Acre<br>320 acres<br>N2 Sec 11                                                                                                                                                                                                | s <sup>13</sup> Joint o                                                                                     | r Infill                                                         | Consolidation | Code 15                   | Order No.                                    |                                  |                  |                                      |                          |        |                            |                                                                     |

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

٩

)

| E.1947 | 2 1/2" B.C.<br>7 GLO.<br>9 N 8954'24" E 2<br>9 B.H.L<br>LAT: N36.<br>LONG: W107.<br>GPS: PDC | N 8201'00" W<br>40 83<br>33456<br>66013<br>0P 1.4 | S 89'55'40" W<br>NE - NM014<br>4703,60'<br>LAND<br>L.P NAD 83<br>LAT: N36,33274 | 823'<br>N 87709'31" W<br>1153.39'<br>S 01'51'30" E<br>2587.31' | OPERATOR CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. |
|--------|----------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F      | 70. 2 1/2" B.C.<br>1947 G.L.O.                                                               | 0                                                 | IL CONS. DIV 1<br>OCT 27 21                                                     | 12                                                             | I hereby certify that the well location shown on this plat<br>was plotted from field notes of actual surveys made by me<br>or under my supervision, and that the same is true and<br>correct to the the best of my belief.<br>11/17/2014 REV. 12/02/2014<br>Date of Survey<br>Signature and Seal of Professional Surveyor.                                                                                                                                                                                                     |
|        |                                                                                              | SCA                                               | LE: 1" = 1250'                                                                  |                                                                | Certificate Number N.M. PLS #9673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### 03/17/2015

#### Attachment To Application For Permit To Drill Drilling Program

LOGOS OPERATING, LLC 4001 N. Butler, Bldg. 7101 Farmington, NM 87401 U.S.A

Dragonfly 111H Horizontal Gallup Oil and Gas Well Surface Location: 915' FNL – 823' FWL Section 12, T24N, R8W Ungraded GL Elev = 7979' Estimate KB Elev = 7294' (15'KB) Lat. = 36.332890 deg N Long. = 107.640420 deg W NAD83 San Juan County, New Mexico

Proposed Bottom Hole Location: 330' FNL – 250' FWL Section 11, T24N, R8W San Juan County, New Mexico

Drilling program written in compliance with Onshore Oil and Gas Order No. 1 (III.D.3, effective May 2007) and Onshore Order No. 2 Dated November 18, 1988

#### 1. ESTIMATED TOPS FOR IMPORTANT GEOLOGICAL FORMATIONS

| Formation Tops   | Surface (TVD) |
|------------------|---------------|
| Ojo Alamo        | 1860          |
| Kirtland         | 2046          |
| Fruitland        | 2214          |
| Pictured Cliff's | 2590          |
| Chacra           | 2674          |
| Cliff House      | 4144          |
| Menefee          | 4154          |
| Point Lookout    | 4931          |
| Mancos           | 5152          |
| Gallup           | 5828          |
| Top Target Zone  | 6121          |
| Landing Point    | 6201          |
| Total Depth      | 6191          |

#### **Drilling Plan**

Drill 12 ¼" hole to 320' then set 9 5/8" casing. Drill 8 3/4" hole with fresh water mud from 320' MD to kick off point 5566' MD.

Trip out of hole and pick up 8 ¾" kick off assembly at 5566' MD. Build angle at 9 deg/100' to 85 degrees inclination and 264.71 degrees azimuth in the Gallup formation at 5836' MD/ 5828' TVD where 7" intermediate casing will be set at 6511' MD / 6201' TVD.

7" casing will be set in a legal position 979' FNL & 242' FWL in Section 12.

The 7" casing will be drilled out with a 6 1/8" drilling assembly building angle at 9 deg/100' to 90.13 degrees inclination and 264.71 degree azimuth to 6568' MD/ 6203.2' TVD. Hold 90.13 degrees, 264.71 degrees azimuth and drill to a total depth at 10728' MD/ 5545' TVD. Adjustments may be made to the directional program based on geology. Total depth will be 11787' MD/ 6191' TVD - 90.13 degrees, 278.11 degrees Azimuth. The Bottom hole location will be in a legal location at 11787' MD at 330' FNL & 250' FWL of section 11. A total of 5277' of horizontal hole will be drilled.

#### 2. ANTICIPATED DEPTHS OF PROSPECTIVE OIL GAS AND OTHER HYDROCARBONS

Primary objective is the Gallup formation encountered first at 5828' TVD See formation listings in #1 above for additional zones of interest.

#### 3. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL EQUIPMENT

BOP equipment and accessories will meet or exceed BLM requirements outlined in 43 CFR Part 3160.

A 2000 psig double ram hydraulic BOP will be used (see attached diagram). Since maximum anticipated formation pressure is 2254 psig (0.364 psi/ft @ 6191' TVD), accessories to the BOP will meet BLM requirements for a 2000 psig system. In accordance with Onshore Order #2 (111.A well requirements) the anticipated surface pressure assuming a partially evacuated hole with normal pressure gradient of 0.22 psi/ft will be 1362 psi (6191' TVD x 0.22 psi/ft).

The accumulator system capacity will be sufficient to close all BOPE with a 50% safety factor. Fill line, kill line and line to the choke manifold will be 2".

BOPs will be function tested every 24 hours and will be recorded on an IADC log. Accessories to the BOPE will include upper and lower Kelly cocks with handles with a stabbing valve to fit drill pipe on the floor at all times, string float at bit, 2000 psig choke manifold with 2" adjustable and 2"positive chokes, and pressure gauge.

All BOP equipment will be hydraulically operated with controls accessible both on the rig floor.

The wellhead BOP equipment will be nippled-up on the 9-5/8" x 11" 2000 psi WP casing head prior to drilling out from under surface casing. All ram preventers and related equipment will be tested to 2000 psi for 10 minutes. Annular preventers will be tested to 50% of rated working pressure for 10 minutes. Surface casing will be tested to 70% of internal yield pressure. All preventers and surface casing will be tested before drilling out of surface casing. BOP equipment will be tested every 14 days, after any repairs are made to the BOP equipment, and after the BOP equipment is subjected to pressure. Annular preventers will be functionally operated at least once per week. Pipe rams will be activated daily and blind rams shall be activated each trip or at least weekly. The New Mexico Oil & Gas Conservation Commission and the BLM will be notified 24 hours in advance of testing of BOPE.

#### 4. PROPOSED BIT AND CASING PROGRAM

A. <u>Bit Program</u> 12-1/4" Surface Hole = Surface to 320' 8-3/4" = 320' to 6600' = 7" Casing point @ 85 degrees 8-3/4" Landing point = 6568' @ 90.13 degrees 6-1/8" Lateral = 6511' MD to 11787' MD = Gallup Pay Zone Horizontal

| Casing & Hole<br>Size | Weight   | Grade     | Coupling | Setting Depth (MD) | Comments                                                                                      |
|-----------------------|----------|-----------|----------|--------------------|-----------------------------------------------------------------------------------------------|
| 9-5/8" (12-1/4")      | 36 ppf   | J or K-55 | LT&C     | 0' - 320'          | New casing.<br>Cement to surface.                                                             |
| 7" (8-3/4")           | 23 ppf   | J or K-55 | LT&C     | 0' – 6511' MD      | New Casing.<br>Cement to surface with one stage                                               |
| 4-1/2" (6-1/8")       | 11.6 ppf | P-110     | LT&C     | 6240' – 11787' MD  | New Casing - Horizontal Hole<br>Cemented full length with foam<br>cement - TOL at 60 degrees. |

#### B. Casing Program – all casing stings are new casing

Casing strings below the conductor casing will be tested to .22 psi per foot of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield.

| Minimum casing | design | factors | used |
|----------------|--------|---------|------|
|----------------|--------|---------|------|

| Collapse -     | 1.125 |
|----------------|-------|
| Burst -        | 1.0   |
| Jt. Strength - | 1.60  |

Surface casing shall have a minimum of 1 centralizer per joint on the bottom three (3) joints, starting with the shoe joint for a total of (4) minimum centralizers. Centralizers will be placed 10' above the shoe on the shoe joint, on the 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> casing collars.

The intermediate casing will be centralized using 1 centralizer the first 6 jts and spaced appropriately through the curve section of the well-bore and then spaced +/- 1 centralizer / 4 jts through the remainder of the cement column, using approximately 40 centralizers.

#### 5. PROPOSED CEMENTING PROGRAM

The proposed cementing program has been designed to protect and/or isolate all usable water zones, potentially productive zones, lost circulation zones, abnormally pressured zones, and any prospectively valuable deposits of minerals. Any isolating medium other than cement shall receive approval prior to use. The casing setting depth shall be calculated to position the casing seat opposite a competent formation which will contain the maximum pressure to which it will be exposed during normal drilling operations. All indications of useable water shall be reported.

• The proposed cementing program is as follows:

Top plugs shall be used to reduce contamination of cement by displacement fluid. A bottom plug or other acceptable technique, such as a pre-flush fluid, inner string cement method, etc. shall be utilized to help isolate the cement from contamination by the mud fluid being displaced ahead of the cement slurry.

<u>Surface Casing Single Stage Job – (0-320'):</u> Excess – 100% over gauge hole – 12-1/4" hole and 9-5/8" casing (0.3132ft3/ft) Top of Cement – Surface

Stage 1 Fluid 1: Water Spacer Fresh Water

Fluid 2: Lead Slurry HALCEM (TM) SYSTEM 94 lbm Premium Cement 0.1250 lbm Poly-E-Flake 5.13 Gal FRESH WATER

| Fluid Density: | 8.33 lbm/gal |
|----------------|--------------|
| Liquid Volume: | 10 ьы        |

| Fluid Weight:       | 15.8 lbm/gal   |
|---------------------|----------------|
| Slurry Yield:       | 1.174 ft3/sack |
| Total Mixing Fluid: | 5.13 Gal/sack  |
| Top Of Fluid:       | 0 ft           |
| Calculated Fill:    | 320 ft         |
| Liquid Volume:      | 35.7 ъы        |
| Calculated sack:    | 170.73 sack    |
| Proposed sack:      | 175 sack       |
|                     |                |

Fluid 3: Water Based Spacer Displacement

| Fluid Density: | 8.33 lbm/gal |
|----------------|--------------|
| Liquid Volume: | 24.7 bbl     |

| Fluid # | Fluid Type | Fluid Name     | Surface<br>Density<br>Ibm/gal | Estimated<br>Avg Rate<br>bbl/min | Downhole Volume |
|---------|------------|----------------|-------------------------------|----------------------------------|-----------------|
| 1       | SPACER     | Fresh Water    | 8.33                          |                                  | 10 661          |
| 2       | CEMENT     | HalCem Primary | 15.8                          | 5                                | 175 sack        |
| 3       | SPACER     | Displacement   | 8.33                          |                                  | 24.7 ыы         |

Intermediate Casing – One Stage Job (0- 6,511' MD): Excess – 50% over gauge hole – 8-3/4" hole and 7" casing (0.1503 ft3/ft) Top of Cement – Surface Stage 1 Fluid 1: Water Spacer

> Fluid Density: Liquid Volume:

8.33 lbm/gal 10 bbl

8.4 lbm/gal

40 661

Fluid 2: Reactive Spacer Chemical Wash 1000 gal/Mgal FRESH WATER

Fresh Water

Fluid 3: Lead Slurry HALCEM (TM) SYSTEM 11.80 Gal FRESH WATER Fluid Density: Liquid Volume:

Fluid Weight:11.5 lbm/galSlurry Yield:2.15 ft3/sackTotal Mixing Fluid:11.8 Gal/sackTop Of Fluid:4539 ftCalculated Fill:831 ftLiquid Volume:32.5 bblCalculated sack:81.33 sackProposed sack:85 sack

Fluid 4: Foamed ELASTISEAL (TM) SYSTEM 1.50 % CHEM - FOAMER 760, TOTETANK 6.73 Gal FRESH WATER

Fluid Weight:13 lbm/galSlurry Yield:1.46 ft3/sackTotal Mixing Fluid:6.83 Gal/sackTop Of Fluid:5370 ftCalculated Fill:293 ftLiquid Volume:152.1 bblCalculated sack:42.26 sackProposed sack:585 sack

Fluid 5: Tail Slurry HALCEM (TM) SYSTEM 5.70 Gal FRESH WATER

Fluid Weight:13.5 lbm/galSlurry Yield:1.32 ft3/sackTotal Mixing Fluid:5.7 Gal/sackTop Of Fluid:5663 ftCalculated Fill:510 ftLiquid Volume:25.9 bblCalculated sack:81.33 sackProposed sack:110 sack

Fluid 6: Water Based Spacer

Displacement

1

Fluid Density: Liquid Volume: 8.4 lbm/gal 230 bbl

Stage 1

| Fluid # | Fluid Type | Fluid Name            | Surface<br>Density<br>Ibm/gal | Estimated<br>Avg Rate | Downhole Volume |
|---------|------------|-----------------------|-------------------------------|-----------------------|-----------------|
| 1       | SPACER     | Fresh Water           | 8.33                          |                       | 10 661          |
| 2       | SPACER     | Chemical Wash         | 8.4                           |                       | 40 661          |
| 3       | CEMENT     | Scavenger Cement      | 11.5                          |                       | 85 sack         |
| 4       | CEMENT     | Foamed Lead<br>Cement | 13                            |                       | 585 sack        |
| 5       | CEMENT     | Unfoamed Tail         | 13.5                          |                       | 110 sack        |
| 6       | SPACER     | Displacement          | 8.4                           |                       | 230 bbl         |

<u>Production Casing – Single Stage Job (6240' – 11787' MD):</u> Excess – 50% over gauge hole – 6-1/8" hole and 4-1/2" casing (0.0942 ft3/ft) Top of Cement – Top of Liner.

Stage 1

DRAGONFLY 111H

Stage 1 Fluid 1: Water Spacer Fresh Water

|                                        | Liquid Volume:  | 10 ъы        |  |
|----------------------------------------|-----------------|--------------|--|
| Fluid 2: Rheologically Enhanced Spacer |                 |              |  |
| 10 lb/gal Tuned Spacer III             | Fluid Density:  | 10 lbm/gal   |  |
| 38.32 gal/bbl FRESH WATER              | Liquid Volume:  | 40 ыы        |  |
| 1 gal/bbl SEM-7                        |                 |              |  |
| l gal/bbl Musol(R) A                   |                 |              |  |
| 45 gal/bbl BAROID 41 - 50 LB BAG       |                 |              |  |
| Fluid 3: Water Spacer                  |                 |              |  |
| Fresh Water                            | Fluid Density:  | 8.33 lbm/gal |  |
|                                        | Liquid Volume:  | 10 bbl       |  |
|                                        | Liquits Volume. | 10 001       |  |

Fluid Density:

8.33 lbm/gal

Fluid 4: Lead Slurry ELASTISEAL (TM) SYSTEM 6.84 Gal FRESH WATER

Fluid 5: Foamed ELASTISEAL (TM) SYSTEM 2.50 % CHEM - FOAMER 760, TOTETANK 6.68 Gal FRESH WATER Fluid Weight:13 lbm/galSlurry Yield:1.46 ft3/sackTotal Mixing Fluid:6.84 Gal/sackTop Of Fluid:6364 ftCalculated Fill:598 ftLiquid Volume:13 bblCalculated sack:44.32 sackProposed sack:50 sack

Fluid Weight: 13 lbm/gal 1.46 ft3/sack Slurry Yield: Total Mixing Fluid: 6.85 Gal/sack Top Of Fluid: 6962 ft Calculated Fill: 3031 ft Liquid Volume: 62.4 bbl Avg Foamed Yield: ft3/sack Foamed Volume: 58.5 bbl Calculated sack: 224.82 sack Proposed sack: 240 sack

Fluid 6: Tail Slurry ELASTISEAL (TM) SYSTEM

Fluid Weight:

13.5 lbm/gal

## 5.72 Gal FRESH WATER

Shurry Yield:1.3 ft3/sackTotal Mixing Fluid:5.72 Gal/sackTop Of Fluid:9993 ftCalculated Fill:1164 ftLiquid Volume:25.5 bblCalculated sack:97 sackProposed sack:110 sack

Fluid 7: Water Based Spacer MMCR Displacement 0.25 gal/bbl Micro Matrix Retarder

Fluid 8: Water Spacer Fresh Water Displacement

| Fluid Density: | 8.4 lbm/gal |
|----------------|-------------|
| Liquid Volume: | 20 bbl      |

Fluid Density: 8.4 lbm/gal Liquid Volume: 130 bbl

| Fluid # | Fluid Type                         | Fluid Name                           | Surface<br>Density<br>Ibm/gal | Estimated<br>Avg Rate | Downhole Volume |
|---------|------------------------------------|--------------------------------------|-------------------------------|-----------------------|-----------------|
| 1       | SPACER                             | Fresh Water                          | 8.33                          |                       | 10 bbl          |
| 2       | SPACER                             | SPACER 10 Ib/gal Tuned<br>Spacer III |                               |                       | 40 bbl          |
| 3       | SPACER                             | Fresh Water                          | 8.33                          |                       | 10 ы            |
| 4       | CEMENT                             | Unfoamed Lead                        | 13                            |                       | 50 sack         |
| 5       | CEMENT                             | Foamed Cement                        | 13                            |                       | 240 sack        |
| 6       | CEMENT                             | Unfoamed Tail                        | 13.5                          |                       | 110 sack        |
| 7       | SPACER                             | MMCR<br>Displacement                 | 8.4                           |                       | 20 bbl          |
| 8       | SPACER Fresh Water<br>Displacement |                                      | 8.4                           |                       | 130 Ы           |

# Foam Output Parameter Summary:

Stage 1

Foam Calculation Method :Constant DensityAnnulus Back Pressure :20 psigBottom Hole Circulating Temp :145degFMud Outlet Temperature :100degF

Calculated Gas: 21317.7 scf Additional Gas: 50000 scf Total Gas: 71317.7 scf

| Fluid # | Fluid<br>Name                   | Unfoamed<br>Liquid<br>Volume<br>(bbl) | Beginning<br>Density<br>(lbm/gal) | Ending<br>Density<br>(Ibm/gal) | Beginning<br>Rate<br>(scf/bbl) | Ending<br>Rate<br>(scf/bbl) |
|---------|---------------------------------|---------------------------------------|-----------------------------------|--------------------------------|--------------------------------|-----------------------------|
| 2       | 10<br>lb/gal<br>Tuned<br>Spacer | 45                                    | 10                                |                                | -42.58                         | -43.5                       |

|   | ш                        |     |    |        |        |
|---|--------------------------|-----|----|--------|--------|
| 5 | Foame<br>d<br>Cemen<br>t | 1.2 | 10 | 321.57 | 325.53 |

Production liner clarification: Utilizing foam cement for zonal isolation in the production liner.

Actual volumes will be calculated and determined by conditions onsite. All cement slurries will meet or exceed minimum BLM and New Mexico Oil Conservation Division requirements. Slurries used will be the slurries listed above or equivalent slurries depending on service provider selected. Cement yields may change depending on slurries selected.

All waiting on cement times shall be a minimum of 8 hours or adequate to achieve a minimum of 500 psi compressive strength at the casing shoe prior to drilling out.

#### 6. PROPOSED DRILLING FLUIDS PROGRAM

| 12-1/4" | 0-320'     | FreshWater         | 8.4-8.6 | 60-70 | NC   |  |
|---------|------------|--------------------|---------|-------|------|--|
| 8-3/4"  | 320'-5566' | FreshWater<br>LSND |         |       | 8-10 |  |

A. Vertical Portion:

#### B. Kick off to Horizontal Lateral:

| Hole Size<br>(in) | TVD/MD (ft)                         | Mud Type                | Density<br>(lb/gal) | Viscosity<br>(sec/qt) | Fluid Loss<br>(CC) |
|-------------------|-------------------------------------|-------------------------|---------------------|-----------------------|--------------------|
| 8-3/4"            | 5566' (KOP) -<br>6203' TVD/6600' MD | Fresh Water LSND        | 8.5-8.8             | 40-50                 | 8-10               |
| 6-1/8"            | 6600' MD – 11787'<br>MD             | Synthetic Oil Based Mud | 7.0-9.0             | 15-25                 | <1                 |

- There will be sufficient mud on location to control a blowout should one occur. Mud flow and volume will be monitored both visually and with electronic pit volume totalizers. Mud tests shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.
- A closed-loop system will be used to recover drilling fluid and dry cuttings in both phases of the well and on all hole intervals, including fresh water and oil-based operations. Above-ground tanks will be utilized to hold cuttings and fluids for rig operations. A frac tank will be on location to store fresh water. Waste will be disposed of properly at an EPA-approved hazardous waste facility. Fresh water cuttings will be disposed of at Basin Disposal, Inc. and/or Industrial Ecosystems, Inc. The location will be lined in accordance with the Surface Use Plan of Operations.

#### 7. TESTING, CORING and LOGGING

- Drill Stem Testing None anticipated
- · Coring-None anticipated.
- Mud Logging -Mud loggers will be on location from intermediate casing point to TD.
- Logging See Below
- Gamma Ray from surface casing point to TD

Cased Hole:

CBL/CCL/GRNDL will be run as needed for perforating control

#### 8. ABNORMAL PRESSURES & HYDROGEN SULFIDE

The anticipated bottom hole pressure is +/- 2897 psi based on a 9.0 ppg at 6191' TVD of the landing point of the horizontal. No abnormal pressure or temperatures are anticipated.

No hydrogen sulfide gas is anticipated, however, if  $H_2S$  is encountered, the guidelines in Onshore Order No. 6 will be followed.

#### 9. ANTICIPATED START DATE AND DURATION OF OPERATIONS

Drilling is estimated to commence on June 15, 2015. It is anticipated that completion operations will begin within 30 days after the well has been drilled depending on fracture treatment schedules with various pumping service companies. It is anticipated that the drilling of this well will take approximately 25 days.

#### CLOSED-LOOP SYSTEM DESIGN PLAN

The closed-loop system will consist of a series of temporary above-ground storage tanks and/or haul-off bins suitable for holding the cuttings and fluids from drilling operations. The closed- loop system will not entail temporary pits, below-grade storage tanks, below-grade sumps, or drying pads.

Design considerations include:

- The closed-loop system will be signed in accordance with 19.15.17.11 NMAC.
- The closed-loop system storage tanks will be of adequate volume to ensure confinement of all fluids and
  provide sufficient freeboard to prevent uncontrolled releases.
- · Topsoil will be salvaged and stored for use in reclamation activities.
- The closed-loop system storage tanks will be placed in bermed secondary containment sized to contain a minimum of 110 percent of the volume of the largest storage tank.

#### CLOSED-LOOP SYSTEM OPERATING & MAINTENANCE PLAN

The closed-loop system will be operated and maintained to contain liquids and solids; minimize the amount of drilling fluids and cuttings that require disposal; maximize the amount of drilling fluid recycled and reused in the drilling process; isolate drilling wastes from the environment; prevent contamination of fresh water; and protect public health and the environment.

Operation and maintenance considerations include:

- Fluid levels will be maintained to provide sufficient freeboard to prevent over-topping.
- Visual inspections will be conducted on a daily basis to identify any potential leaks and to ensure that the closed-loop system storage tanks have sufficient freeboard to prevent over-topping.
- Only drilling fluids or cuttings intrinsic to, used by, or generated from, drilling operations will be stored in the closed-loop system storage tanks. Hazardous waste, miscellaneous solid waste, and/or debris will not be stored in the storage tanks.
- The OCD District Office will be notified within 48 hours of discovery of a leak in the closed-loop drilling system. If a leak is discovered, all liquid will be removed within 48 hours and the damage repaired.

#### CLOSED-LOOP SYSTEM CLOSURE PLAN

The closed-loop system will be closed in accordance with 19.15.17.13 NMAC. Closure

considerations include:

- Drilling fluids will be recycled and transferred to other permitted closed-loop systems or returned to the vendor for reuse, as practical.
- Residual fluids will be pulled from the storage tanks, mixed with saw dust or similar absorbent material, and disposed of at Industrial Ecosystem, Inc. waste disposal facilities.
- Remaining cuttings or sludges will be vacuumed from the storage tanks and disposed of at the Envirotech, Inc. and/or Industrial Ecosystem, Inc. waste disposal facilities.
- Storage tanks will be removed from the well location during the rig move.
- The well pad will be reclaimed and seeded in accordance with subsections G, Hand I of 19.15.17.13 NMAC.



# OIL CONS. DIV DIST. 3

Planning Report

# OCT 27 2015

| Geo Datum:<br>Map Zone:       North American Datum 1983<br>New Mexico Western Zone         Site       S12-T24N-R8W         Site Position:<br>From:       S12-T24N-R8W         Position Uncertainty:       0.0 ft       Northing:<br>Easting:       1,940,533.13 ft<br>2,779,917.81 ft<br>32.200 in       Latitude:<br>Grid Converge         Well       DRAGONFLY 111H       Well       DRAGONFLY 111H       Latitude:         Well       DRAGONFLY 111H       Verial       2,779,917.81 ft<br>2,779,917.81 ft       Latitude:         Position Uncertainty       0.0 ft       Northing:<br>Basting:       1,940,533.13 ft<br>2,779,917.81 ft       Latitude:         Position Uncertainty       0.0 ft       Basting:       2,779,917.81 ft       Long         Wellbore       HZ       Position       0.0 ft       Grou       Dip An<br>(°)       Oit Grou         Wellbore       HZ       Phase:       PLAN       Tie On Depth:       Position         Version:       Phase:       PLAN       Tie On Depth:       Position       Position       Position       Quit (ft)       Material (ft)       Quit (ft)       Position       Position       Position       Quit (ft)       Position       Position       Position       Position       Position       Position       Position       Position       Position       Pos                                                                                       | Well DRAGONFLY 111H<br>15' KB @ 7294.0ft<br>15' KB @ 7294.0ft<br>True<br>Minimum Curvature |                                                   |                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|--|
| Geo Datum:<br>Map Zone:       North American Datum 1983<br>New Mexico Westerr Zone         Site       S12-T24N-R8W         Site       S12-T24N-R8W         Site Position:<br>From:       Lat/Long       Easting:       2,779,917.81 ft<br>13.200 in       Latitude:<br>Grid Converge         Weil       DRAGONFLY 111H       Weil       DRAGONFLY 111H       Latitude:       Longitude:         Weil       DRAGONFLY 111H       Weilsexting:       2,779,917.81 ft       Longitude:         Position Uncertainty       0.0 ft       Northing:       1,940,533.13 ft       Latitude:         Position Uncertainty       0.0 ft       Northing:       2,779,917.81 ft       Long         Position Uncertainty       0.0 ft       Sample Date       Declination       Dip An<br>(*)         Weilbore       HZ         Magnetics       Model Name       Sample Date       Declination<br>(*)       Dip An<br>(*)         Vertical Section:       Plan #1       Audit Notes:       Phase:       PLAN       Tie On Depth:         Vertical Sections:       Depth From (TVD)<br>(ft)       +N/-S       +E/-W<br>(ft)       Dogleg<br>(rti 0rti)       Build<br>Rate<br>(*/100ft)         0.0       0.00       0.0       0.0       0.0       0.0       0.00                                                                                                                                                               |                                                                                            |                                                   |                                    |  |
| Site Position:<br>From:         Lat/Long         Northing:<br>Easting:<br>Stot Radius:         1,940,533.13 ft<br>2,779,917.81 ft<br>13.200 n         Latitude:<br>Longitude:<br>Grid Converge           Well         DRAGONFLY 111H         Image: Converge         Grid Converge           Well Position         +N/-S         0.0 ft         Northing:         1,940,533.13 ft         Latitude:           Position Uncertainty         0.0 ft         Northing:         1,940,533.13 ft         Latitude:           Position Uncertainty         0.0 ft         Northing:         1,940,533.13 ft         Latitude:           Position Uncertainty         0.0 ft         Easting:         2,779,917.81 ft         Long           Position Uncertainty         0.0 ft         Sample Date         Declination<br>(*)         0.0 ft         Grou           Wellbore         HZ         HDGM         2/24/2015         9.12         Design         Plan #1           Audit Notes:         Version:         Phase:         PLAN         Tie On Depth:           Vertical Section:         Depth From (TVD)<br>(ft)         +N/-S         +E/-W<br>(ft)         Mate           Plan Sections         Azimuth<br>(*)         Vertical<br>Depth         +N/-S         +E/-W<br>(ft)         Dogleg<br>Rate         Build<br>Rate           0.0         0.00         0.00 <th>an Sea Level</th> <th></th> <th></th> | an Sea Level                                                                               |                                                   |                                    |  |
| From:<br>Position Uncertainty:         Lat/Long<br>0.0 ft         Easting:<br>Slot Radius:         2,779.917.81 ft<br>13.200 in         Longitude:<br>Grid Converge<br>Grid Converge           Well         DRAGONFLY 111H              Grid Converge           1.940,533.13 ft         Lat/Long         Long          Converge          2,779.917.81 ft         Long         Long         Grid Converge         Grid Converge         Converge          2,779.917.81 ft         Long         Long         Grid Converge                                            |                                                                                            |                                                   |                                    |  |
| Well Position         +N/-S<br>+E/-W         0.0 ft<br>0.0 ft         Northing:<br>Easting:         1,940,533.13 ft<br>2,779,917.81 ft         Lating<br>Long           Position Uncertainty         0.0 ft         Wellhead Elevation:         0.0 ft         Easting:         2,779,917.81 ft         Long           Wellbore         HZ         0.0 ft         Wellhead Elevation:         0.0 ft         Easting:         0.0 ft         Easting:         0.0 ft         Long           Magnetics         Model Name         Sample Date         Declination<br>(°)         Dip An         Dip An           HDGM         2/24/2015         9.12         9.12         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ance:                                                                                      |                                                   | 36.332890<br>-107.640420<br>0.11 ° |  |
| +E/-W       0.0 ft       Easting:       2,779,917.81 ft       Long         Position Uncertainty       0.0 ft       Wellhead Elevation:       0.0 ft       Grou         Wellbore       HZ       Model Name       Sample Date       Declination (°)       Dip An (°)         Magnetics       Model Name       Sample Date       Declination (°)       Dip An (°)         HDGM       2/24/2015       9.12         Design       Plan #1       Phase:       PLAN       Tie On Depth:         Version:       Phase:       PLAN       Tie On Depth:       Cols (ft)       Mild (ft) <t< td=""><td></td><td></td><td></td></t<>                                                                                                           |                                                                                            |                                                   |                                    |  |
| Wellbore         HZ           Magnetics         Model Name         Sample Date         Declination (°)         Dip An (°)           HDGM         2/24/2015         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12         9.12 <td>ude:<br/>gitude:</td> <td></td> <td>36.332890<br/>-107.640420</td>                                                                                                 | ude:<br>gitude:                                                                            |                                                   | 36.332890<br>-107.640420           |  |
| Magnetics       Model Name       Sample Date       Declination (°)       Dip An (°)         HDGM $2/24/2015$ $9.12$ 9.12         Design       Plan #1       The On Depth (°)         Audit Notes:       Phase:       PLAN       The On Depth:         Version:       Phase:       PLAN       The On Depth:         Vertical Section:       Depth From (TVD) (ft)       +N/-S       +E/-W       Rate (°)         Plan Sections:       Vertical       0.0       0.0       0.0       0.0         Plan Sections:       Vertical Depth From (TVD) (ft)       +N/-S       +E/-W(ft)       Dogleg Rate (°)       Build Rate (°)         Plan Sections:       Oogleg (°)       0.00       0.00       0.00       0.00       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | und Level:                                                                                 | 4.20                                              | 7,279.0 ft                         |  |
| HDGM         2/24/2015         9.12           Design         Plan #1            Audit Notes:         Phase:         PLAN         Tie On Depth:           Version:         Phase:         PLAN         Tie On Depth:           Vertical Section:         Depth From (TVD)         +N/-S         +E/-W           Inclination         Azimuth         Vertical Depth         Measured (ft)         Dogleg Rate (''100ft)         Build Rate (''100ft)           0.0         0.00         0.0         0.0         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            |                                                   |                                    |  |
| Design         Plan #1           Audit Notes:         Phase:         PLAN         Tie On Depth:           Version:         Depth From (TVD)         +N/-S         +E/-W           (ft)         (ft)         (ft)         (ft)           0.0         0.0         0.0         0.0           Plan Sections:           Measured Depth         Inclination (°)         Azimuth (°)         Vertical Depth (ft)         (ft)         Dogleg Rate (°/100ft)         Build Rate (°/100ft)           0.0         0.00         0.0         0.0         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                   | Strength<br>1T)                    |  |
| Audit Notes:         Phase:         PLAN         Tie On Depth:           Version:         Depth From (TVD)         +N/-S         +E/-W           (ft)         (ft)         (ft)         (ft)           0.0         0.0         0.0         0.0           Plan Sections           Measured (ft)         Vertical (ft)         +N/-S         +E/-W         Build Rate (''100ft)           0.0         0.00         0.0         0.0         0.00         0.00           0.0         0.00         0.0         0.0         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.03                                                                                      |                                                   | 49,938                             |  |
| Version:         Phase:         PLAN         Tie On Depth:           Vertical Section:         Depth From (TVD) (ft) (ft) (ft) (ft) (ft) (ft)         +N/-S (ft) (ft) (ft) (ft)           0.0         0.0         0.0           Plan Sections:           Measured Depth (ft) (ft) (ft)         Vertical Depth (ft) (ft) (ft)         Dogleg Rate ('/100ft) ('/100ft)         Build Rate ('/100ft) ('/100ft)           0.0         0.00         0.00         0.0         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            | e provinsi se |                                    |  |
| (ft)         (ft)         (ft)           0.0         0.0         0.0           Plan Sections         Vertical         Dogleg         Build           Depth         Inclination         Azimuth         Depth         +N/-S         +E/-W         Rate         Rate         Rate           (ft)         (°)         (°)         (ft)         (ft)         0.0         0.0         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                                                                                          | 0.0                                               |                                    |  |
| Measured         Vertical         Dogleg         Build           Depth         Inclination         Azimuth         Depth         +N/-S         +E/-W         Rate         Rate           (ft)         (°)         (°)         (ft)         (ft)         (ft)         (°/100ft)           0.0         0.00         0.0         0.0         0.0         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                                                          | ection<br>(°)                                     |                                    |  |
| Measured<br>Depth<br>(ft)Inclination<br>Azimuth<br>(°)Vertical<br>Depth<br>(ft)+N/-S<br>(ft)bogleg<br>+E/-W<br>(ft)Build<br>Rate<br>(°/100ft)0.00.000.000.00.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 278                                                                                        | '8.11                                             |                                    |  |
| Depth<br>(ft)         Inclination<br>(°)         Azimuth<br>(°)         Depth<br>(ft)         +N/-S<br>(ft)         +E/-W<br>(ft)         Rate<br>(°/100ft)         Rate<br>(°/100ft)           0.0         0.00         0.00         0.0         0.0         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                                   |                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn<br>Rate<br>(°/100ft)                                                                  | TFO<br>(°)                                        | Target                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                       | 0.00                                              |                                    |  |
| 5,566.6 0.00 0.00 5,566.6 0.0 0.0 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                       | 0.00                                              |                                    |  |
| 6,568.0         90.13         264.71         6,203.2         -58.8         -635.3         9.00         9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                       | 264.71                                            |                                    |  |
| 6,740.5         90.13         264.71         6,202.8         -74.7         -807.1         0.00         0.00           0.00         0.01         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02                                                                                                                                                                              | 0.00                                                                                       | 0.00                                              |                                    |  |
| 6,986.8         90.13         278.11         6,202.2         -68.7         -1,052.7         5.44         0.00           11,787.4         90.13         278.11         6,191.0         608.5         -5,805.3         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.44<br>0.00                                                                               | 89.97                                             | DRAGONFLY 111H P                   |  |

| Database: | USA EDM 5000 Multi Users DB | Local Co-ordinate Reference: | Well DRAGONFLY 111H          |
|-----------|-----------------------------|------------------------------|------------------------------|
| Company:  | LOGOS Operating LLC         | TVD Reference:               | 15' KB @ 7294.0ft            |
| Project:  | San Juan County, NM         | MD Reference:                | 15' KB @ 7294.0ft            |
| Site:     | S12-T24N-R8W                | North Reference:             | True                         |
| Well:     | DRAGONFLY 111H              | Survey Calculation Method:   | Minimum Curvature            |
| Wellbore: | HZ                          |                              |                              |
| Design:   | Plan #1                     |                              | and the second states of the |

#### Planned Survey

.

| Measured<br>Depth<br>(ft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(ft) | +N/-S<br>(ft) | +E/-W<br>(ft) | Vertical<br>Section<br>(ft) | Dogleg<br>Rate<br>(°/100ft) | Build<br>Rate<br>(°/100ft) | Comments /<br>Formations |
|---------------------------|--------------------|----------------|---------------------------|---------------|---------------|-----------------------------|-----------------------------|----------------------------|--------------------------|
| 0.0                       | 0.00               | 0.00           | 0.0                       | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 5.0                       | 0.00               | 0.00           | 5.0                       | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       | SHL 915' FNL, 823' FWL   |
| 100.0                     | 0.00               | 0.00           | 100.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 200.0                     | 0.00               | 0.00           | 200.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 300.0                     | 0.00               | 0.00           | 300.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 320.0                     | 0.00               | 0.00           | 320.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        |                            | 9 5/8" Casing (Surface)  |
| 400.0                     | 0.00               | 0.00           | 400.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 500.0                     | 0.00               | 0.00           | 500.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 600.0                     | 0.00               | 0.00           | 600.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 700.0                     | 0.00               | 0.00           | 700.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 800.0                     | 0.00               | 0.00           | 800.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 900.0                     | 0.00               | 0.00           | 900.0                     | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,000.0                   | 0.00               | 0.00           | 1,000.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,100.0                   | 0.00               | 0.00           | 1,100.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,200.0                   | 0.00               | 0.00           | 1,200.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,300.0                   | 0.00               | 0.00           | 1,300.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,400.0                   | 0.00               | 0.00           | 1,400.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,500.0                   | 0.00               | 0.00           | 1,500.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,600.0                   | 0.00               | 0.00           | 1,600.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,700.0                   | 0.00               | 0.00           | 1,700.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,800.0                   | 0.00               | 0.00           | 1,800.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 1,860.0                   | 0.00               | 0.00           | 1,860.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       | Ojo Alamo                |
| 1,900.0                   | 0.00               | 0.00           | 1,900.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,000.0                   | 0.00               | 0.00           | 2,000.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,046.0                   | 0.00               | 0.00           | 2,046.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       | Kirtland                 |
| 2,100.0                   | 0.00               | 0.00           | 2,100.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,200.0                   | 0.00               | 0.00           | 2,200.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,214.0                   | 0.00               | 0.00           | 2,214.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        |                            | Fruitland                |
| 2,300.0                   | 0.00               | 0.00           | 2,300.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,400.0                   | 0.00               | 0.00           | 2,400.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,500.0                   | 0.00               | 0.00           | 2,500.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 2,590.0                   | 0.00               | 0.00           | 2,590.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       | Pictured Cliffs          |
| 2,600.0                   | 0.00               | 0.00           | 2,600.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       | Observe                  |
| 2,674.0<br>2,700.0        | 0.00               | 0.00           | 2,674.0<br>2,700.0        | 0.0<br>0.0    | 0.0<br>0.0    | 0.0<br>0.0                  | 0.00                        | 0.00                       | Chacra                   |
| 2,800.0                   | 0.00               | 0.00           | 2,800.0                   | 0.0           | 0.0           | 0.0                         |                             | 0.00                       |                          |
| 2,800.0                   | 0.00               | 0.00           | 2,800.0                   | 0.0           | 0.0           | 0.0                         | 0.00<br>0.00                | 0.00                       |                          |
| 3,000.0                   | 0.00               | 0.00           | 3,000.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,100.0                   | 0.00               | 0.00           | 3,100.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,200.0                   | 0.00               | 0.00           | 3,200.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,300.0                   | 0.00               | 0.00           | 3,300.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,400.0                   | 0.00               | 0.00           | 3,400.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,500.0                   | 0.00               | 0.00           | 3,500.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,600.0                   | 0.00               | 0.00           | 3,600.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,700.0                   | 0.00               | 0.00           | 3,700.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,800.0                   | 0.00               | 0.00           | 3,800.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 3,900.0                   | 0.00               | 0.00           | 3,900.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 4,000.0                   | 0.00               | 0.00           | 4,000.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 4,100.0                   | 0.00               | 0.00           | 4,100.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |
| 4,144.0                   | 0.00               | 0.00           | 4,144.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        |                            | Cliff House              |
| 4,154.0                   | 0.00               | 0.00           | 4,154.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       | Meneffee                 |
| 4,200.0                   | 0.00               | 0.00           | 4,200.0                   | 0.0           | 0.0           | 0.0                         | 0.00                        | 0.00                       |                          |

COMPASS 5000.1 Build 74

| Database: | USA EDM 5000 Multi Users DB | Local Co-ordinate Reference: | Well DRAGONFLY 111H |  |
|-----------|-----------------------------|------------------------------|---------------------|--|
| Company:  | LOGOS Operating LLC         | TVD Reference:               | 15' KB @ 7294.0ft   |  |
| Project:  | San Juan County, NM         | MD Reference:                | 15' KB @ 7294.0ft   |  |
| Site:     | S12-T24N-R8W                | North Reference:             | True                |  |
| Well:     | DRAGONFLY 111H              | Survey Calculation Method:   | Minimum Curvature   |  |
| Wellbore: | HZ                          |                              |                     |  |
| Design:   | Plan #1                     |                              |                     |  |

#### Planned Survey

4

.

| Measured<br>Depth<br>(ft) | Inclination<br>(°) | Azimuth<br>(°)   | Vertical<br>Depth<br>(ft) | +N/-S<br>(ft)  | +E/-W<br>(ft)        | Vertical<br>Section<br>(ft) | Dogleg<br>Rate<br>(°/100ft) | Build<br>Rate<br>(°/100ft) | Comments /<br>Formations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|--------------------|------------------|---------------------------|----------------|----------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4,300.0                   | 0.00               | 0.00             | 4,300.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,400.0                   | 0.00               | 0.00             | 4,400.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,500.0                   | 0.00               | 0.00             | 4,500.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,600.0                   | 0.00               | 0.00             | 4,600.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,700.0                   | 0.00               | 0.00             | 4,700.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,800.0                   | 0.00               | 0.00             | 4,800.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,900.0                   | 0.00               | 0.00             | 4,900.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,931.0                   | 0.00               | 0.00             | 4,931.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       | Point Lookout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5,000.0                   | 0.00               | 0.00             | 5,000.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,100.0                   | 0.00               | 0.00             | 5,100.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,152.0                   | 0.00               | 0.00             | 5,152.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        |                            | Mancos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5,200.0                   | 0.00               | 0.00             | 5,200.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,300.0                   | 0.00               | 0.00             | 5,300.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       | <ul> <li>A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 - A 1 -</li></ul> |
| 5,400.0                   | 0.00               | 0.00             | 5,400.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,500.0                   | 0.00               | 0.00             | 5,500.0                   | 0.0            | 0.0                  | 0.0                         | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,566.6                   | 0.00               | 0.00             | 5,566.6                   | 0.0            | 0.0                  | 0.0                         | 0.00                        |                            | KOP @ 5566'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5,600.0                   | 3.01               | 264.71           | 5,600.0                   | -0.1           | -0.9                 | 0.9                         | 9.00                        | 9.00                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5,700.0                   | 12.01              | 264.71           | 5,699.0                   | -1.3           | -13.9                | 13.5                        | 9.00                        | 9.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,800.0                   | 21.01              | 264.71           | 5,794.8                   | -3.9           | -42.1                | 41.2                        | 9.00                        | 9.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5,835.8                   | 24.23              | 264.71           | 5,827.9                   | -5.9           | -55.8                | 54.6                        | 9.00                        | 9.00                       | Gallup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5,900.0                   | 30.01              | 264.71           | 5,885.0                   | -7.9           | -85.0                | 83.0                        | 9.00                        | 9.00                       | Galidp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6,000.0                   | 39.01              | 264.71           | 5,967.3                   | -13.1          | -141.3               | 138.1                       | 9.00                        | 9.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,100.0                   | 48.01              | 264.71           | 6,039.7                   | -19.4          | -209.8               | 205.0                       | 9.00                        | 9.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                         |                    |                  |                           |                |                      |                             |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,200.0                   | 57.01              | 264.71           | 6,100.6                   | -26.7          | -288.7               | 282.1                       | 9.00                        | 9.00                       | Ten Terret Zene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,240.0                   | 60.61              | 264.71           | 6,121.3                   | -29.9          | -322.8               | 315.4                       | 9.00                        | 9.00                       | Top Target Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,300.0<br>6,400.0        | 66.01<br>75.01     | 264.71<br>264.71 | 6,148.2<br>6,181.5        | -34.8<br>-43.5 | -376.1<br>-469.9     | 367.5<br>459.1              | 9.00<br>9.00                | 9.00<br>9.00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,500.0                   | 84.01              | 264.71           | 6,199.7                   | -52.6          | -567.7               | 554.6                       | 9.00                        | 9.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                    |                  |                           |                |                      |                             |                             |                            | Long to the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6,510.2                   | 84.92              | 264.71           | 6,200.7                   | -53.5          | -577.8               | 564.5                       | 9.00                        |                            | Landing Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6,511.0                   | 85.00              | 264.71           | 6,200.8                   | -53.6          | -578.6               | 565.3                       | 9.00                        |                            | 7" Casing (Intermediate) 242' FWL, 979' FNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6,568.0                   | 90.13              | 264.71<br>264.71 | 6,203.2                   | -58.8<br>-61.8 | -635.3<br>-667.2     | 620.7<br>651.8              | 9.00<br>0.00                | 0.00                       | LP @ 6203' TVD; 90.13° (989' FNL, 186' FWL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6,600.0<br>6,700.0        | 90.13<br>90.13     | 264.71           | 6,203.1<br>6,202.9        | -71.0          | -766.7               | 749.1                       | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                    |                  |                           |                |                      |                             |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,740.5                   | 90.13              | 264.71           | 6,202.8                   | -74.7          | -807.1               | 788.5                       | 0.00                        |                            | START TURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6,800.0                   | 90.13<br>90.13     | 267.95<br>273.39 | 6,202.7<br>6,202.4        | -78.5<br>-77.4 | -866.4<br>-966.4     | 846.7<br>945.8              | 5.44<br>5.44                | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6,900.0<br>6,986.8        | 90.13              | 273.39           | 6,202.4                   | -68.7          | -1,052.7             | 1,032.5                     | 5.44                        |                            | END OF TURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7,000.0                   | 90.13              | 278.11           | 6,202.2                   | -66.8          | -1,065.8             | 1,045.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                    |                  |                           |                |                      |                             |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,086.7                   | 90.13              | 278.11           | 6,202.0                   | -54.6          | -1,151.7             | 1,132.4                     | 0.00                        | 0.00                       | DRAGONFLY 111H LP (990' FNL, 330' FEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7,100.0 7,200.0           | 90.13<br>90.13     | 278.11<br>278.11 | 6,202.0<br>6,201.7        | -52.7<br>-38.6 | -1,164.8<br>-1,263.8 | 1,145.7<br>1,245.7          | 0.00<br>0.00                | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,300.0                   | 90.13              | 278.11           | 6.201.5                   | -24.5          | -1,362.8             | 1,345.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,400.0                   | 90.13              | 278.11           | 6,201.3                   | -10.4          | -1,461.8             | 1,445.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.1.1.1.1.1.1.1           |                    |                  |                           |                |                      |                             |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,500.0                   | 90.13              | 278.11           | 6,201.0                   | 3.7            | -1,560.8             | 1,545.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,600.0                   | 90.13              | 278.11           | 6,200.8                   | 17.8           | -1,659.8             | 1,645.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,700.0 7,800.0           | 90.13<br>90.13     | 278.11<br>278.11 | 6,200.6<br>6,200.3        | 31.9<br>46.0   | -1,758.8<br>-1,857.8 | 1,745.7<br>1,845.7          | 0.00<br>0.00                | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,800.0                   | 90.13              | 278.11           | 6,200.3                   | 60.1           | -1,956.8             | 1,845.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                    |                  |                           |                |                      |                             |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8,000.0                   | 90.13              | 278.11           | 6,199.9                   | 74.3           | -2,055.8             | 2,045.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8,100.0                   | 90.13              | 278.11           | 6,199.6                   | 88.4           | -2,154.8             | 2,145.7                     | 0.00                        | 0.00                       | <ul> <li>A state of the sta</li></ul> |
| 8,200.0                   | 90.13              | 278.11           | 6,199.4                   | 102.5          | -2,253.8             | 2,245.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8,300.0                   | 90.13              | 278.11           | 6,199.2                   | 116.6          | -2,352.8             | 2,345.7                     | 0.00                        | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

COMPASS 5000.1 Build 74

| Database: | USA EDM 5000 Multi Users DB | Local Co-ordinate Reference: | Well DRAGONFLY 111H |
|-----------|-----------------------------|------------------------------|---------------------|
| Company:  | LOGOS Operating LLC         | TVD Reference:               | 15' KB @ 7294.0ft   |
| Project:  | San Juan County, NM         | MD Reference:                | 15' KB @ 7294.0ft   |
| Site:     | S12-T24N-R8W                | North Reference:             | True                |
| Well:     | DRAGONFLY 111H              | Survey Calculation Method:   | Minimum Curvature   |
| Wellbore: | HZ                          |                              |                     |
| Design:   | Plan #1                     |                              |                     |

#### Planned Survey

1

| Measured<br>Depth<br>(ft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(ft) | +N/-S<br>(ft) | +E/-W<br>(ft) | Vertical<br>Section<br>(ft) | Dogleg<br>Rate<br>(°/100ft) | Build<br>Rate<br>(°/100ft) | Comments /<br>Formations                |
|---------------------------|--------------------|----------------|---------------------------|---------------|---------------|-----------------------------|-----------------------------|----------------------------|-----------------------------------------|
| 8,400.0                   | 90.13              | 278.11         | 6,198.9                   | 130.7         | -2,451.8      | 2,445.7                     | 0.00                        | 0.00                       |                                         |
| 8,500.0                   | 90.13              | 278.11         | 6,198.7                   | 144.8         | -2,550.8      | 2,545.7                     | 0.00                        | 0.00                       |                                         |
| 8,600.0                   | 90.13              | 278.11         | 6,198.5                   | 158.9         | -2,649.8      | 2,645.7                     | 0.00                        | 0.00                       |                                         |
| 8,700.0                   | 90.13              | 278.11         | 6,198.2                   | 173.0         | -2,748.8      | 2,745.7                     | 0.00                        | 0.00                       |                                         |
| 8,800.0                   | 90.13              | 278.11         | 6,198.0                   | 187.1         | -2,847.8      | 2,845.7                     | 0.00                        | 0.00                       |                                         |
| 8,900.0                   | 90.13              | 278.11         | 6,197.8                   | 201.2         | -2,946.8      | 2,945.7                     | 0.00                        | 0.00                       |                                         |
| 9,000.0                   | 90.13              | 278.11         | 6,197.5                   | 215.3         | -3,045.8      | 3,045.7                     | 0.00                        | 0.00                       |                                         |
| 9,100.0                   | 90.13              | 278.11         | 6,197.3                   | 229.4         | -3,144.8      | 3,145.7                     | 0.00                        | 0.00                       |                                         |
| 9,200.0                   | 90.13              | 278.11         | 6,197.1                   | 243.5         | -3,243.8      | 3,245.7                     | 0.00                        | 0.00                       |                                         |
| 9,300.0                   | 90.13              | 278.11         | 6,196.8                   | 257.6         | -3,342.8      | 3,345.7                     | 0.00                        | 0.00                       |                                         |
| 9,400.0                   | 90.13              | 278.11         | 6,196.6                   | 271.7         | -3,441.8      | 3,445.7                     | 0.00                        | 0.00                       |                                         |
| 9,500.0                   | 90.13              | 278.11         | 6,196.4                   | 285.9         | -3,540.8      | 3,545.7                     | 0.00                        | 0.00                       |                                         |
| 9,600.0                   | 90.13              | 278.11         | 6,196.1                   | 300.0         | -3,639.8      | 3,645.7                     | 0.00                        | 0.00                       |                                         |
| 9,700.0                   | 90.13              | 278.11         | 6,195.9                   | 314.1         | -3,738.8      | 3,745.7                     | 0.00                        | 0.00                       |                                         |
| 9,800.0                   | 90.13              | 278.11         | 6,195.7                   | 328.2         | -3,837.8      | 3,845.7                     | 0.00                        | 0.00                       |                                         |
| 9,900.0                   | 90.13              | 278.11         | 6,195.4                   | 342.3         | -3,936.8      | 3,945.7                     | 0.00                        | 0.00                       |                                         |
| 10,000.0                  | 90.13              | 278.11         | 6,195.2                   | 356.4         | -4,035.8      | 4,045.7                     | 0.00                        | 0.00                       |                                         |
| 10,100.0                  | 90.13              | 278.11         | 6,194.9                   | 370.5         | -4,134.8      | 4,145.7                     | 0.00                        | 0.00                       |                                         |
| 10,200.0                  | 90.13              | 278.11         | 6,194.7                   | 384.6         | -4,233.8      | 4,245.7                     | 0.00                        | 0.00                       |                                         |
| 10,300.0                  | 90.13              | 278.11         | 6,194.5                   | 398.7         | -4,332.8      | 4,345.7                     | 0.00                        | 0.00                       |                                         |
| 10,400.0                  | 90.13              | 278.11         | 6,194.2                   | 412.8         | -4,431.8      | 4,445.7                     | 0.00                        | 0.00                       |                                         |
| 10,500.0                  | 90.13              | 278.11         | 6,194.0                   | 426.9         | -4,530.8      | 4,545.7                     | 0.00                        | 0.00                       |                                         |
| 10,600.0                  | 90.13              | 278.11         | 6,193.8                   | 441.0         | -4,629.8      | 4,645.7                     | 0.00                        | 0.00                       |                                         |
| 10,700.0                  | 90.13              | 278.11         | 6,193.5                   | 455.1         | -4,728.8      | 4,745.7                     | 0.00                        | 0.00                       |                                         |
| 10,800.0                  | 90.13              | 278.11         | 6,193.3                   | 469.2         | -4,827.8      | 4,845.7                     | 0.00                        | 0.00                       |                                         |
| 10,900.0                  | 90.13              | 278.11         | 6,193.1                   | 483.3         | -4,926.8      | 4,945.7                     | 0.00                        | 0.00                       |                                         |
| 11,000.0                  | 90.13              | 278.11         | 6,192.8                   | 497.5         | -5,025.8      | 5,045.7                     | 0.00                        | 0.00                       |                                         |
| 11,100.0                  | 90.13              | 278.11         | 6,192.6                   | 511.6         | -5,124.8      | 5,145.7                     | 0.00                        | 0.00                       |                                         |
| 11,200.0                  | 90.13              | 278.11         | 6,192.4                   | 525.7         | -5,223.8      | 5,245.7                     | 0.00                        | 0.00                       |                                         |
| 11,300.0                  | 90.13              | 278.11         | 6,192.1                   | 539.8         | -5,322.8      | 5,345.7                     | 0.00                        | 0.00                       |                                         |
| 11,400.0                  | 90.13              | 278.11         | 6,191.9                   | 553.9         | -5,421.8      | 5,445.7                     | 0.00                        | 0.00                       |                                         |
| 11,500.0                  | 90.13              | 278.11         | 6,191.7                   | 568.0         | -5,520.8      | 5,545.7                     | 0.00                        | 0.00                       |                                         |
| 11,600.0                  | 90.13              | 278.11         | 6,191.4                   | 582.1         | -5,619.8      | 5,645.7                     | 0.00                        | 0.00                       |                                         |
| 11,700.0                  | 90.13              | 278.11         | 6,191.2                   | 596.2         | -5,718.8      | 5,745.7                     | 0.00                        | 0.00                       |                                         |
| 11,787.4                  | 90.13              | 278.11         | 6,191.0                   | 608.5         | -5,805.3      | 5,833.1                     | 0.00                        | 0.00                       | TD at 11787.4 - DRAGONFLY 111H PBHL (33 |

| Targets                                                  |                  |                 |             |               |               | e le la facture de la facture de la facture |                 |           |             |
|----------------------------------------------------------|------------------|-----------------|-------------|---------------|---------------|---------------------------------------------|-----------------|-----------|-------------|
| Target Name<br>- hit/miss target<br>- Shape              | Dip Angle<br>(°) | Dip Dir.<br>(°) | TVD<br>(ft) | +N/-S<br>(ft) | +E/-W<br>(ft) | Northing<br>(ft)                            | Easting<br>(ft) | Latitude  | Longitude   |
| DRAGONFLY 111H LP (<br>- plan hits target cen<br>- Point | 0.00<br>ter      | 0.00            | 6,202.0     | -54.6         | -1,151.7      | 1,940,476.26                                | 2,778,766.27    | 36.332740 | -107.644330 |
| DRAGONFLY 111H PBF<br>- plan hits target cen<br>- Point  | 0.00<br>ter      | 0.00            | 6,191.0     | 608.5         | -5,805.3      | 1,941,130.07                                | 2,774,111.33    | 36.334560 | -107.660130 |

| Database: | USA EDM 5000 Multi Users DB | Local Co-ordinate Reference: | Well DRAGONFLY 111H |
|-----------|-----------------------------|------------------------------|---------------------|
| Company:  | LOGOS Operating LLC         | TVD Reference:               | 15' KB @ 7294.0ft   |
| Project:  | San Juan County, NM         | MD Reference:                | 15' KB @ 7294.0ft   |
| Site:     | S12-T24N-R8W                | North Reference:             | True                |
| Well:     | DRAGONFLY 111H              | Survey Calculation Method:   | Minimum Curvature   |
| Vellbore: | HZ                          |                              |                     |
| Design:   | Plan #1                     |                              |                     |

## Casing Points

ź

ŧ

| Measured<br>Depth<br>(ft) | Vertical<br>Depth<br>(ft) | Name                                        | Casing<br>Diameter<br>(in) | Hole<br>Diameter<br>(in) |
|---------------------------|---------------------------|---------------------------------------------|----------------------------|--------------------------|
| 11,787.4                  | 6,191.0                   | 4 1/2" Casing (Production)                  | 4.500                      | 4.500                    |
| 6,511.0                   | 6,200.8                   | 7" Casing (Intermediate) 242' FWL, 979' FNL | 7.000                      | 7.000                    |
| 320.0                     | 320.0                     | 9 5/8" Casing (Surface)                     | 9.625                      | 12.250                   |

## Formations

| Measured<br>Depth<br>(ft) | Vertical<br>Depth<br>(ft) | Name            | Lithology | Dip<br>(°) | Dip<br>Direction<br>(°) |  |
|---------------------------|---------------------------|-----------------|-----------|------------|-------------------------|--|
| 1,860.0                   | 1,860.0                   | Ojo Alamo       |           | -0.13      | 278.11                  |  |
| 2,046.0                   | 2,046.0                   | Kirtland        |           | -0.13      | 278.11                  |  |
| 2,214.0                   | 2,214.0                   | Fruitland       |           | -0.13      | 278.11                  |  |
| 2,590.0                   | 2,590.0                   | Pictured Cliffs |           | -0.13      | 278.11                  |  |
| 2,674.0                   | 2,674.0                   | Chacra          |           | -0.13      | 278.11                  |  |
| 4,144.0                   | 4,144.0                   | Cliff House     |           | -0.13      | 278.11                  |  |
| 4,154.0                   | 4,154.0                   | Meneffee        |           | -0.13      | 278.11                  |  |
| 4,931.0                   | 4,931.0                   | Point Lookout   |           | -0.13      | 278.11                  |  |
| 5,152.0                   | 5,152.0                   | Mancos          |           | -0.13      | 278.11                  |  |
| 5,835.8                   | 5,828.0                   | Gallup          |           | -0.13      | 278.11                  |  |
| 6,240.0                   | 6,122.0                   | Top Target Zone |           | -0.13      | 278.11                  |  |
| 6,510.2                   | 6,202.0                   | Landing Point   |           | -0.13      | 278.11                  |  |

#### Plan Annotations

| Measured      | Vertical      | Local Coor    | dinates       |                                             |
|---------------|---------------|---------------|---------------|---------------------------------------------|
| Depth<br>(ft) | Depth<br>(ft) | +N/-S<br>(ft) | +E/-W<br>(ft) | Comment                                     |
| 5.0           | 5.0           | 0.0           | 0.0           | SHL 915' FNL, 823' FWL                      |
| 5,566.6       | 5,566.6       | 0.0           | 0.0           | KOP @ 5566'                                 |
| 6,568.0       | 6,203.2       | -58.8         | -635.3        | LP @ 6203' TVD; 90.13° (989' FNL, 186' FWL) |
| 6,740.5       | 6,202.8       | -74.7         | -807.1        | START TURN                                  |
| 6,986.8       | 6,202.2       | -68.7         | -1,052.7      | END OF TURN                                 |
| 11,787.4      | 6,191.0       | 608.5         | -5,805.3      | TD at 11787.4                               |

# LOGOS Operating LLC

San Juan County, NM S12-T24N-R8W DRAGONFLY 111H HZ Plan #1

# **Anticollision Report**

24 February, 2015

| Company:                                    | LOGOS Operating LLC                                                | Local Co-ordinate Reference:    | Well DRAGONFLY 111H                    |
|---------------------------------------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------|
| Project:<br>Reference Site:                 | San Juan County, NM<br>S12-T24N-R8W                                | TVD Reference:<br>MD Reference: | 15' KB @ 7294.0ft<br>15' KB @ 7294.0ft |
| Site Error:                                 | 0.0ft                                                              | North Reference:                |                                        |
| Reference Well:                             | DRAGONFLY 111H                                                     | Survey Calculation Method:      | Minimum Curvature                      |
| Well Error:                                 | 0.0ft                                                              | Output errors are at            | 2.00 sigma                             |
| Reference Wellbore                          | HZ                                                                 | Database:                       | USA EDM 5000 Multi Users DB            |
| Reference Design:                           | Plan #1                                                            | Offset TVD Reference:           | Offset Datum                           |
| Reference                                   | Plan #1                                                            |                                 |                                        |
| Filter type:                                | NO GLOBAL FILTER: Using user defined select                        | ion & filtering criteria        |                                        |
| Interpolation Method:                       | MD Interval 100.0ft                                                | Error Model:                    | ISCWSA                                 |
| Depth Range:                                | Unlimited                                                          | Scan Method:                    | Closest Approach 3D                    |
| Results Limited by:<br>Warning Levels Evalu | Maximum center-center distance of 1,470.5ft<br>ated at: 2.00 Sigma | Error Surface:                  | Elliptical Conic                       |

| Survey Tool Program |            | Date 2/24/2015    |            |                |  |
|---------------------|------------|-------------------|------------|----------------|--|
| From<br>(ft)        | To<br>(ft) | Survey (Wellbore) | Tool Name  | Description    |  |
| 0.0                 | 11,787     | 7.3 Plan #1 (HZ)  | ISCWSA MWD | MWD - Standard |  |

| ummary                                        |                           |                           |                            |                             |                      |            |
|-----------------------------------------------|---------------------------|---------------------------|----------------------------|-----------------------------|----------------------|------------|
|                                               | Reference                 | Offset                    | Dista                      | nce                         |                      |            |
| Site Name<br>Offset Well - Wellbore - Design  | Measured<br>Depth<br>(ft) | Measured<br>Depth<br>(ft) | Between<br>Centres<br>(ft) | Between<br>Ellipses<br>(ft) | Separation<br>Factor | Warning    |
| S12-T24N-R8W<br>DRAGONFLY 112H - HZ - Plan #1 | 3,900.0                   | 3,900.0                   | 52.3                       | 35.0                        | 3.028                | CC, ES, SF |

| Company:           | LOGOS Operating LLC | Local Co-ordinate Reference: | Well DRAGONFLY 111H         |  |
|--------------------|---------------------|------------------------------|-----------------------------|--|
| Project:           | San Juan County, NM | TVD Reference:               | 15' KB @ 7294.0ft           |  |
| Reference Site:    | S12-T24N-R8W        | MD Reference:                | 15' KB @ 7294.0ft           |  |
| Site Error:        | 0.0ft               | North Reference:             | True                        |  |
| Reference Well:    | DRAGONFLY 111H      | Survey Calculation Method:   | Minimum Curvature           |  |
| Well Error:        | 0.0ft               | Output errors are at         | 2.00 sigma                  |  |
| Reference Wellbore | HZ                  | Database:                    | USA EDM 5000 Multi Users DB |  |
| Reference Design:  | Plan #1             | Offset TVD Reference:        | Offset Datum                |  |

| vey Prog | ram: 0-IS         | CWSA MWD          |                   |            |        |                      |                          |        |                    |                     |                      |                      | Offset Well Error: | 0 |
|----------|-------------------|-------------------|-------------------|------------|--------|----------------------|--------------------------|--------|--------------------|---------------------|----------------------|----------------------|--------------------|---|
| Refer    | rence             | Offse             | et 🥂              | Semi Major | Axis   |                      |                          |        | Dista              | ince                |                      |                      |                    |   |
| epth     | Vertical<br>Depth | Measured<br>Depth | Vertical<br>Depth | Reference  | Offset | Highside<br>Toolface | Offset Wellbore<br>+N/-S | +E/-W  | Between<br>Centres | Between<br>Ellipses | Total<br>Uncertainty | Separation<br>Factor | Warning            |   |
| (ft)     | (ft)              | (ft)              | (ft)              | (ft)       | (ft)   | (°)                  | (ft)                     | (ft)   | (ft)               | (ft)                | Axis                 |                      |                    |   |
| 0.0      | 0.0               | 0.0               | 0.0               | 0.0        | 0.0    | -166.98              | -51.0                    | -11.8  | 52.3               |                     |                      |                      |                    |   |
| 100.0    | 100.0             | 100.0             | 100.0             | 0.1        | 0.1    | -166.98              | -51.0                    | -11.8  | 52.3               | 52.1                | 0.19                 | 273.792              |                    |   |
| 200.0    | 200.0             | 200.0             | 200.0             | 0.3        | 0.3    | -166.98              | -51.0                    | -11.8  | 52.3               | 51.7                | 0.64                 | 81.657               |                    |   |
| 300.0    | 300.0             | 300.0             | 300.0             | 0.5        | 0.5    | -166.98              | -51.0                    | -11.8  | 52.3               | 51.2                | 1.09                 | 47.984               |                    |   |
| 400.0    | 400.0             | 400.0             | 400.0             | 0.8        | 0.8    | -166.98              | -51.0                    | -11.8  | 52.3               | 50.8                | 1.54                 | 33.974               |                    |   |
| 500.0    | 500.0             | 500.0             | 500.0             | 1.0        | 1.0    | -166.98              | -51.0                    | -11.8  | 52.3               | 50.3                | 1.99                 | 26.296               |                    |   |
|          |                   | 000.0             | 000 0             |            |        | 100.00               | 54.0                     |        |                    | 10.0                |                      |                      |                    |   |
| 600.0    | 600.0             | 600.0             | 600.0             | 1.2        | 1.2    | -166.98              | -51.0                    | -11.8  | 52.3               | 49.9                | 2.44                 | 21.449               |                    |   |
| 700.0    | 700.0             | 700.0             | 700.0             | 1.4        | 1.4    | -166.98              | -51.0                    | -11.8  | 52.3               | 49.4                | 2.89                 | 18.111               |                    |   |
| 800.0    | 800.0             | 800.0             | 800.0             | 1.7        | 1.7    | -166.98              | -51.0                    | -11.8  | 52.3               | 49.0                | 3.34                 | 15.672               |                    |   |
| 900.0    | 900.0             | 900.0             | 900.0             | 1.9        | 1.9    | -166.98              | -51.0                    | -11.8  | 52.3               | 48.5                | 3.79                 | 13.811               |                    |   |
| 1,000.0  | 1,000.0           | 1,000.0           | 1,000.0           | 2.1        | 2.1    | -166.98              | -51.0                    | -11.8  | 52.3               | 48.1                | 4.24                 | 12.346               |                    |   |
| 1,100.0  | 1,100.0           | 1,100.0           | 1,100.0           | 2.3        | 2.3    | -166.98              | -51.0                    | -11.8  | 52.3               | 47.6                | 4.69                 | 11.162               |                    |   |
| 1,200.0  | 1,200.0           | 1,200.0           | 1,200.0           | 2.6        | 2.6    | -166.98              | -51.0                    | -11.8  | 52.3               | 47.2                | 5.14                 | 10.185               |                    |   |
| 1,300.0  | 1,300.0           | 1,300.0           | 1,300.0           | 2.8        | 2.8    | -166.98              | -51.0                    | -11.8  | 52.3               | 46.7                | 5.59                 | 9.365                |                    |   |
| 1,400.0  | 1,400.0           | 1,400.0           | 1,400.0           | 3.0        | 3.0    | -166.98              | -51.0                    | -11.8  | 52.3               | 46.3                | 6.03                 | 8.668                |                    |   |
| 1,500.0  | 1,500.0           | 1,500.0           | 1,500.0           | 3.2        | 3.2    | -166.98              | -51.0                    | -11.8  | 52.3               | 45.8                | 6.48                 | 8.067                |                    |   |
|          |                   |                   |                   |            |        |                      |                          |        |                    |                     |                      |                      |                    |   |
| 1,600.0  | 1,600.0           | 1,600.0           | 1,600.0           | 3.5        | 3.5    | -166.98              | -51.0                    | -11.8  | 52.3               | 45.4                | 6.93                 | 7.544                |                    |   |
| 1,700.0  | 1,700.0           | 1,700.0           | 1,700.0           | 3.7        | 3.7    | -166.98              | -51.0                    | -11.8  | 52.3               | 44.9                | 7.38                 | 7.084                |                    |   |
| 1,800.0  | 1,800.0           | 1,800.0           | 1,800.0           | 3.9        | 3.9    | -166.98              | -51.0                    | -11.8  | 52.3               | 44.5                | 7.83                 | 6.678                |                    |   |
| 1,900.0  | 1,900.0           | 1,900.0           | 1,900.0           | 4.1        | 4.1    | -166.98              | -51.0                    | -11.8  | 52.3               | 44.0                | 8.28                 | 6.315                |                    |   |
| 2,000.0  | 2,000.0           | 2,000.0           | 2,000.0           | 4.4        | 4.4    | -166.98              | -51.0                    | -11.8  | 52.3               | 43.6                | 8.73                 | 5.990                |                    |   |
| 2,100.0  | 2,100.0           | 2,100.0           | 2,100.0           | 4.6        | 4.6    | -166.98              | -51.0                    | -11.8  | 52.3               | 43.1                | 9.18                 | 5.697                |                    |   |
|          |                   |                   |                   | 4.8        | 4.8    |                      | -51.0                    | -11.8  | 52.3               | 43.1                | 9.18                 | 5.431                |                    |   |
| 2,200.0  | 2,200.0           | 2,200.0           | 2,200.0           |            |        | -166.98              |                          |        |                    |                     |                      |                      |                    |   |
| 2,300.0  | 2,300.0           | 2,300.0           | 2,300.0           | 5.0        | 5.0    | -166.98              | -51.0                    | -11.8  | 52.3               | 42.2                | 10.08                | 5.189                |                    |   |
| 2,400.0  | 2,400.0           | 2,400.0           | 2,400.0           | 5.3        | 5.3    | -166.98              | -51.0                    | -11.8  | 52.3               | 41.8                | 10.53                | 4.967                |                    |   |
| 2,500.0  | 2,500.0           | 2,500.0           | 2,500.0           | 5.5        | 5.5    | -166.98              | -51.0                    | -11.8  | 52.3               | 41.3                | 10.98                | 4.764                |                    |   |
| 2,600.0  | 2,600.0           | 2,600.0           | 2,600.0           | 5.7        | 5.7    | -166.98              | -51.0                    | -11.8  | 52.3               | 40.9                | 11.43                | 4.577                |                    |   |
| 2,700.0  | 2,700.0           | 2,700.0           | 2,700.0           | 5.9        | 5.9    | -166.98              | -51.0                    | -11.8  | 52.3               | 40.4                | 11.88                | 4.403                |                    |   |
| 2,800.0  | 2,800.0           | 2,800.0           | 2,800.0           | 6.2        | 6.2    | -166.98              | -51.0                    | -11.8  | 52.3               | 40.0                | 12.33                | 4.243                |                    |   |
| 2,900.0  | 2,900.0           | 2,900.0           | 2,900.0           | 6.4        | 6.4    | -166.98              | -51.0                    | -11.8  | 52.3               | 39.5                | 12.78                | 4.094                |                    |   |
| 3,000.0  | 3,000.0           | 3,000.0           | 3,000.0           | 6.6        | 6.6    | -166.98              | -51.0                    | -11.8  | 52.3               | 39.1                | 13.23                | 3.955                |                    |   |
|          |                   |                   |                   |            |        |                      |                          |        |                    |                     |                      |                      |                    |   |
| 3,100.0  | 3,100.0           | 3,100.0           | 3,100.0           | 6.8        | 6.8    | -166.98              | -51.0                    | -11.8  | 52.3               | 38.6                | 13.68                | 3.825                |                    |   |
| 3,200.0  | 3,200.0           | 3,200.0           | 3,200.0           | 7.1        | 7.1    | -166.98              | -51.0                    | -11.8  | 52.3               | 38.2                | 14.13                | 3.703                |                    |   |
| 3,300.0  | 3,300.0           | 3,300.0           | 3,300.0           | 7.3        | 7.3    | -166.98              | -51.0                    | -11.8  | 52.3               | 37.7                | 14.58                | 3.589                |                    |   |
| 3,400.0  | 3,400.0           | 3,400.0           | 3,400.0           | 7.5        | 7.5    | -166.98              | -51.0                    | -11.8  | 52.3               | 37.3                | 15.03                | 3.481                |                    |   |
| 3,500.0  | 3,500.0           | 3,500.0           | 3,500.0           | 7.7        | 7.7    | -166.98              | -51.0                    | -11.8  | 52.3               | 36.8                | 15.48                | 3.380                |                    |   |
| 3,600.0  | 3,600.0           | 3,600.0           | 3,600.0           | 8.0        | 8.0    | -166.98              | -51.0                    | -11.8  | 52.3               | 36.4                | 15.92                | 3.285                |                    |   |
| 3,700.0  | 3,700.0           | 3,700.0           | 3,700.0           | 8.2        | 8.2    | -166.98              | -51.0                    | -11.8  | 52.3               | 35.9                | 16.37                | 3.195                |                    |   |
| 3,800.0  | 3,800.0           | 3,800.0           | 3,800.0           | 8.4        | 8.4    | -166.98              | -51.0                    | -11.8  | 52.3               | 35.5                | 16.82                | 3.109                |                    |   |
| 3,900.0  | 3,900.0           | 3,900.0           | 3,900.0           | 8.6        | 8.6    | -166.98              | -51.0                    | -11.8  | 52.3               | 35.0                | 17.27                | 3.028 CC             | ES SE              |   |
| 4,000.0  | 4,000.0           | 3,997.5           | 3,997.5           | 8.9        | 8.8    | -166.59              | -53.1                    | -12.7  | 54.6               | 36.9                | 17.69                | 3.088                |                    |   |
|          | .,                | -,                | -,                | 0.0        | 0.0    |                      |                          |        | 04.0               | 00.0                |                      | 0.000                |                    |   |
| \$,100.0 | 4,100.0           | 4,094.6           | 4,094.3           | 9.1        | 9.0    | -165.61              | -59.4                    | -15.2  | 61.6               | 43.5                | 18.08                | 3.407                |                    |   |
| 4,200.0  | 4,200.0           | 4,190.8           | 4,189.8           | 9.3        | 9.2    | -164.38              | -69.8                    | -19.5  | 73.2               | 54.7                | 18.47                | 3.961                |                    |   |
| 4,300.0  | 4,300.0           | 4,285.8           | 4,283.6           | 9.5        | 9.3    | -163.21              | -84.1                    | -25.4  | 89.3               | 70.4                | 18.87                | 4.733                |                    |   |
| 400.0    | 4,400.0           | 4,379.2           | 4,374.9           | 9.8        | 9.5    | -162.22              | -101.9                   | -32.7  | 109.9              | 90.7                | 19.29                | 5.700                |                    |   |
| ,500.0   | 4,500.0           | 4,470.6           | 4,463.4           | 10.0       | 9.7    | -161.42              | -123.1                   | -41.4  | 134.9              | 115.2               | 19.73                | 6.839                |                    |   |
|          |                   |                   |                   |            |        |                      |                          |        |                    |                     |                      |                      |                    |   |
| 4,600.0  | 4,600.0           | 4,559.8           | 4,548.8           | 10.2       | 10.0   | -160.80              | -147.2                   | -51.3  | 164.1              | 143.9               | 20.19                | 8.128                |                    |   |
| 4,700.0  | 4,700.0           | 4,646.6           | 4,630.6           | 10.4       | 10.2   | -160.31              | -173.9                   | -62.2  | 197.3              | 176.6               | 20.68                | 9.540                |                    |   |
| 4,800.0  | 4,800.0           | 4,730.7           | 4,708.7           | 10.7       | 10.5   | -159.93              | -202.8                   | -74.1  | 234.4              | 213.2               | 21.21                | 11.053               |                    |   |
| 4,900.0  | 4,900.0           | 4,812.0           | 4,782.9           | 10.9       | 10.8   | -159.63              | -233.5                   | -86.7  | 275.2              | 253.4               | 21.76                | 12.644               |                    |   |
| 5,000.0  | 5,000.0           | 4,890.5           | 4,853.3           | 11.1       | 11.1   | -159.40              | -265.6                   | -99.9  | 319.4              | 297.1               | 22.35                | 14.289               |                    |   |
|          |                   |                   |                   |            |        | 480.00               |                          |        |                    |                     |                      |                      |                    |   |
| 5,100.0  | 5,100.0           | 4,966.0           | 4,919.7           | 11.3       | 11.5   | -159.20              | -298.8                   | -113.5 | 367.0              | 344.0               | 22.99                | 15.966               |                    |   |

2/24/2015 3:12:36PM

۲

Page 3 of 6

COMPASS 5000.1 Build 74

| Company:           | LOGOS Operating LLC | Local Co-ordinate Reference: | Well DRAGONFLY 111H         |
|--------------------|---------------------|------------------------------|-----------------------------|
| Project:           | San Juan County, NM | TVD Reference:               | 15' KB @ 7294.0ft           |
| Reference Site:    | S12-T24N-R8W        | MD Reference:                | 15' KB @ 7294.0ft           |
| Site Error:        | 0.0ft               | North Reference:             | True                        |
| Reference Well:    | DRAGONFLY 111H      | Survey Calculation Method:   | Minimum Curvature           |
| Well Error:        | 0.0ft               | Output errors are at         | 2.00 sigma                  |
| Reference Wellbore | HZ                  | Database:                    | USA EDM 5000 Multi Users DB |
| Reference Design:  | Plan #1             | Offset TVD Reference:        | Offset Datum                |

| fset De<br>vey Prog<br>Refer | ram: 0-IS          | CWSA MWD<br>Offse  |                    | - DRAGONFLY 112H - HZ - Plan #1 Semi Major Axis Distance |              |                      |                         |                      |                    |                     |                              | Offset Well Error:   | 0.      |  |
|------------------------------|--------------------|--------------------|--------------------|----------------------------------------------------------|--------------|----------------------|-------------------------|----------------------|--------------------|---------------------|------------------------------|----------------------|---------|--|
| asured<br>Depth              | Vertical<br>Depth  | Measured<br>Depth  | Vertical<br>Depth  | Reference                                                | Offset       | Highside<br>Toolface | Offset Wellbor<br>+N/-S | +E/-W                | Between<br>Centres | Between<br>Ellipses | Total<br>Uncertainty<br>Axis | Separation<br>Factor | Warning |  |
| (ft)                         | (ft)               | (ft)               | (ft)               | (ft)                                                     | (ft)         | (°)                  | (ft)                    | (ft)                 | (ft)               | (ft)                |                              | 17.000               |         |  |
| 5,200.0                      | 5,200.0            | 5,038.5            | 4,982.2            | 11.6                                                     | 11.9         | -159.05              | -332.8                  | -127.4               | 417.6<br>471.3     | 394.0<br>447.0      | 23.64<br>24.26               | 17.666<br>19.428     |         |  |
| 5,300.0                      | 5,300.0            | 5,100.0            | 5,034.2            | 11.8                                                     | 12.3         | -158.93              | -363.2                  | -139.9               |                    | 502.5               | 24.20                        | 21.079               |         |  |
| 5,400.0                      | 5,400.0            | 5,174.6            | 5,095.9            | 12.0                                                     | 12.8         | -158.81              | -402.0                  | -155.8               | 527.6              |                     |                              |                      |         |  |
| 5,500.0                      | 5,500.0            | 5,238.3            | 5,147.4            | 12.2                                                     | 13.3         | -158.72              | -436.7                  | -170.1               | 586.4              | 560.7               | 25.75                        | 22.773               |         |  |
| 5,600.0                      | 5,600.0            | 5,300.0            | 5,196.1            | 12.5                                                     | 13.8         | -61.37               | -471.6                  | -184.4               | 647.4              | 623.6               | 23.80                        | 27.204               |         |  |
| 5,700.0                      | 5,699.0            | 5,360.0            | 5,242.4            | 12.7                                                     | 14.3         | -56.60               | -506.9                  | -198.9               | 706.0              | 681.9               | 24.10                        | 29.294               |         |  |
| 5,800.0                      | 5,794.8            | 5,419.7            | 5,287.4            | 12.9                                                     | 14.8         | -53.34               | -543.3                  | -213.8               | 760.2              | 736.0               | 24.21                        | 31.401               |         |  |
| 5,900.0                      | 5,885.0            | 5,477.6            | 5,329.9            | 13.2                                                     | 15.4         | -51.19               | -579.6                  | -228.7               | 809.8              | 785.7               | 24.10                        | 33.600               |         |  |
| 6,000.0                      | 5,967.3            | 5,532.8            | 5,369.4            | 13.5                                                     | 15.9         | -49.82               | -615.4                  | -243.4               | 854.8              | 830.9               | 23.85                        | 35.846               |         |  |
| 6,100.0                      | 6,039.7            | 5,584.7            | 5,405.5            | 14.1                                                     | 16.5         | -48.99               | -649.8                  | -257.5               | 895.5              | 871.7               | 23.71                        | 37.774               |         |  |
| 6,200.0                      | 6,100.6            | 5,632.5            | 5,438.1            | 14.9                                                     | 17.0         | -48.50               | -682.3                  | -270.8               | 932.2              | 908.4               | 23.78                        | 39.203               |         |  |
| 6,300.0                      | 6,148.2            | 5,689.6            | 5,476.1            | 16.0                                                     | 17.6         | -48.90               | -721.6                  | -287.0               | 965.0              | 940.5               | 24.46                        | 39.448               |         |  |
| 6,400.0                      | 6,181.5            | 5,744.4            | 5,512.7            | 17.3                                                     | 18.3         | -49.59               | -759.3                  | -302.5               | 993.9              | 968.1               | 25.83                        | 38.481               |         |  |
| 6,500.0                      | 6,199.7            | 5,790.4            | 5,543.4            | 18.9                                                     | 18.8         | -50.13               | -791.1                  | -315.5               | 1,019.7            | 992.0               | 27.77                        | 36.726               |         |  |
| 6,600.0                      | 6,203.1            | 5,827.1            | 5,567.9            | 20.6                                                     | 19.2         | -50.91               | -816.4                  | -325.9               | 1,043.8            | 1,013.6             | 30.20                        | 34.564               |         |  |
| 6,700.0                      | 6,202.9            | 5,861.5            | 5,590.8            | 22.5                                                     | 19.6         | -52.73               | -840.1                  | -335.6               | 1,073.3            | 1,040.3             | 33.02                        | 32.503               |         |  |
| 6,800.0                      | 6,202.7            | 5,894.8            | 5,613.0            | 24.5                                                     | 20.0         | -53.64               | -863.0                  | -345.0               | 1,111.3            | 1,075.9             | 35.46                        | 31.344               |         |  |
| 6,900.0                      | 6,202.4            | 5,922.1            | 5,631.2            | 26.6                                                     | 20.4         | -53.24               | -881.8                  | -352.7               | 1,161.9            | 1,124.7             | 37.22                        | 31.215               |         |  |
| 7,000.0                      | 6,202.2            | 5,942.8            | 5,645.0            | 28.7                                                     | 20.6         | -52.21               | -896.1                  | -358.6               | 1,224.1            | 1,185.4             | 38.70                        | 31.632               |         |  |
| 7,100.0                      | 6,202.0            | 5,960.9            | 5,657.1            | 30.9                                                     | 20.8         | -53.31               | -908.6                  | -363.7               | 1,292.7            | 1,251.2             | 41.53                        | 31.130               |         |  |
| 7,200.0                      | 6,201.7            | 7,441.8            | 6,180.6            | 33.1                                                     | 39.9         | -89.07               | -1,327.9                | -1,447.6             | 1,302.5            | 1,238.5             | 64.08                        | 20.327               |         |  |
| 7,300.0                      | 6,201.5            | 7,541.8            | 6,180.5            | 35.4                                                     | 41.5         | -89.08               | -1,313.8                | -1,546.6             | 1,302.5            | 1,234.0             | 68.58-                       | 18.992               |         |  |
| 7,400.0                      | 6,201.3            | 7,641.8            | 6,180.4            | 37.7                                                     | 43.2         | -89.08               | -1,299.7                | -1,645.6             | 1,302.5            | 1,229.4             | 73.16                        | 17.803               |         |  |
| 7,500.0                      | 6,201.0            | 7,741.8            | 6,180.3            | 40.0                                                     | 45.0         | -89.09               | -1,285.6                | -1,744.6             | 1,302.5            | 1,224.7             | 77.81                        | 16.741               |         |  |
| 7,600.0                      | 6,200.8            | 7,841.8            | 6,180.2            | 42.4                                                     | 46.9         | -89.09               | -1,271.5                | -1,843.6             | 1,302.5            | 1,220.0             | 82.50                        | 15.788               |         |  |
| 7,700.0                      | 6,200.6            | 7,941.8            | 6,180.1            | 44.8                                                     | 48.8         | -89.10               | -1,257.4                | -1,942.6             | 1,302.5            | 1,215.3             | 87.24                        | 14.931               |         |  |
| 7,800.0                      | 6,200.3            | 8,041.8            | 6,180.0            | 47.2                                                     | 50.8         | -89.11               | -1,243.3                | -2,041.6             | 1,302.5            | 1,210.5             | 92.01                        | 14.156               |         |  |
| 7,900.0                      | 6,200.1            | 8,141.8            | 6,179.9            | 49.6                                                     | 52.8         | -89.11               | -1,229.1                | -2,140.6             | 1,302.5            | 1,205.7             | 96.81                        | 13.454               |         |  |
| 8,000.0                      | 6,199.9            | 8,241.8            | 6,179.8            | 52.0                                                     | 54.9         | -89.12               | -1,215.0                | -2,239.6             | 1,302.5            | 1,200.8             | 101.64                       | 12.815               |         |  |
|                              | 6,199.6            | 8,341.8            | 6,179.7            | 54.4                                                     | 57.1         | -89.12               | -1,200.9                | -2,338.6             | 1,302.5            | 1,196.0             | 106.49                       | 12.231               |         |  |
| 8,100.0<br>8,200.0           | 6,199.4            | 8,441.8            | 6,179.6            | 56.9                                                     | 59.2         | -89.13               | -1,186.8                | -2,437.6             | 1,302.4            | 1,191.1             | 111.36                       | 11.696               |         |  |
|                              | 6,199.2            | 8,541.8            | 6,179.5            | 59.3                                                     | 61.4         | -89.13               | -1,172.7                | -2,536.6             | 1,302.4            | 1,186.2             | 116.25                       | 11.204               |         |  |
| 8,300.0                      |                    |                    |                    | 61.8                                                     | 63.6         | -89.14               | -1,172.7                | -2,635.6             | 1,302.4            | 1,181.3             | 121.16                       | 10.750               |         |  |
| 8,400.0                      | 6,198.9            | 8,641.8            | 6,179.4            |                                                          |              |                      |                         |                      |                    |                     |                              | 10.331               |         |  |
| 8,500.0                      | 6,198.7            | 8,741.8            | 6,179.3            | 64.2                                                     | 65.9         | -89.14               | -1,144.5                | -2,734.6             | 1,302.4            | 1,176.3             | 126.07                       |                      |         |  |
| 8,600.0<br>8,700.0           | 6,198.5<br>6,198.2 | 8,841.8<br>8,941.8 | 6,179.1<br>6,179.0 | 66.7<br>69.2                                             | 68.2<br>70.5 | -89.15<br>-89.16     | -1,130.3<br>-1,116.2    | -2,833.6             | 1,302.4<br>1,302.4 | 1,171.4<br>1,166.5  | 131.00<br>135.94             | 9.942<br>9.581       |         |  |
|                              |                    |                    |                    |                                                          |              |                      |                         |                      |                    |                     |                              |                      |         |  |
| 8,800.0                      | 6,198.0            | 9,041.8            | 6,178.9            | 71.7                                                     | 72.8         | -89.16               | -1,102.1                | -3,031.6             | 1,302.4            | 1,161.5             | 140.89                       | 9.244                |         |  |
| 8,900.0                      | 6,197.8            | 9,141.8            | 6,178.8            | 74.1                                                     | 75.1         | -89.17               | -1,088.0                | -3,130.6             | 1,302.4            | 1,156.5             | 145.85                       | 8.930                |         |  |
| 9,000.0                      | 6,197.5            | 9,241.8            | 6,178.7            | 76.6                                                     | 77.4         | -89.17               | -1,073.9                | -3,229.6             | 1,302.4            | 1,151.6             | 150.81                       | 8.636                |         |  |
| 9,100.0<br>9,200.0           | 6,197.3<br>6,197.1 | 9,341.8<br>9,441.8 | 6,178.6<br>6,178.5 | 79.1<br>81.6                                             | 79.8<br>82.1 | -89.18<br>-89.18     | -1,059.8<br>-1,045.7    | -3,328.6<br>-3,427.6 | 1,302.4<br>1,302.3 | 1,146.6<br>1,141.6  | 155.79<br>160.77             | 8.360<br>8.101       |         |  |
|                              |                    |                    |                    |                                                          |              |                      |                         |                      |                    |                     |                              |                      |         |  |
| 9,300.0                      | 6,196.8            | 9,541.8            | 6,178.4            | 84.1                                                     | 84.5         | -89.19               | -1,031.5                | -3,526.6             | 1,302.3            | 1,136.6             | 165.75                       | 7.857                |         |  |
| 9,400.0                      | 6,196.6            | 9,641.8            | 6,178.3            | 86.6                                                     | 86.9         | -89.20               | -1,017.4                | -3,625.6             | 1,302.3            | 1,131.6             | 170.74                       | 7.628                |         |  |
| 9,500.0                      | 6,196.4            | 9,741.8            | 6,178.2            | 89.1                                                     | 89.3         | -89.20               | -1,003.3                | -3,724.6             | 1,302.3            | 1,126.6             | 175.73                       | 7.411                |         |  |
| 9,600.0                      | 6,196.1            | 9,841.8            | 6,178.1            | 91.6                                                     | 91.7         | -89.21               | -989.2                  | -3,823.6             | 1,302.3            | 1,121.6             | 180.73                       | 7.206                |         |  |
| 9,700.0                      | 6,195.9            | 9,941.8            | 6,178.0            | 94.1                                                     | 94.1         | -89.21               | -975.1                  | -3,922.6             | 1,302.3            | 1,116.6             | 185.73                       | 7.012                |         |  |
| 9,800.0                      | 6,195.7            | 10,041.8           | 6,177.9            | 96.6                                                     | 96.5         | -89.22               | -961.0                  | -4,021.6             | 1,302.3            | 1,111.6             | 190.74                       | 6.828                |         |  |
| 9,900.0                      | 6,195.4            | 10,141.8           | 6,177.8            | 99.1                                                     | 98.9         | -89.22               | -946.8                  | -4,120.6             | 1,302.3            | 1,106.5             | 195.75                       | 6.653                |         |  |
| 0,000.0                      | 6,195.2            | 10,241.8           | 6,177.7            | 101.6                                                    | 101.4        | -89.23               | -932.7                  | -4,219.6             | 1,302.3            | 1,101.5             | 200.76                       | 6.487                |         |  |
| 0,100.0                      | 6,194.9            | 10,341.8           | 6,177.6            | 104.1                                                    | 103.8        | -89.23               | -918.6                  | -4,318.6             | 1,302.3            | 1,096.5             | 205.78                       | 6.328                |         |  |
| 0,200.0                      | 6,194.7            | 10,441.8           | 6,177.4            | 106.6                                                    | 106.2        | -89.24               | -904.5                  | -4,417.6             | 1,302.3            | 1,091.5             | 210.80                       | 6.178                |         |  |
| 0,300.0                      | 6,194.5            | 10,541.8           | 6,177.3            | 109.1                                                    | 108.7        | -89.25               | -890.4                  | -4,516.6             | 1,302.2            | 1,086.4             | 215.82                       | 6.034                |         |  |

2/24/2015 3:12:36PM

.

۲

Page 4 of 6

COMPASS 5000.1 Build 74

| Company:           | LOGOS Operating LLC | Local Co-ordinate Reference: | Well DRAGONFLY 111H         |          |
|--------------------|---------------------|------------------------------|-----------------------------|----------|
| Project:           | San Juan County, NM | TVD Reference:               | 15' KB @ 7294.0ft           |          |
| Reference Site:    | S12-T24N-R8W        | MD Reference:                | 15' KB @ 7294.0ft           |          |
| Site Error:        | 0.0ft               | North Reference:             | True                        |          |
| Reference Well:    | DRAGONFLY 111H      | Survey Calculation Method:   | Minimum Curvature           |          |
| Well Error:        | 0.0ft               | Output errors are at         | 2.00 sigma                  |          |
| Reference Wellbore | HZ                  | Database:                    | USA EDM 5000 Multi Users DB | 1.1.1.1  |
| Reference Design:  | Plan #1             | Offset TVD Reference:        | Offset Datum                | 5 4 A.M. |

| Offset De                          |                           |                           | 4N-R8W -                  | DRAGON            | FLY 112H       | - HZ - Plan #               | <b>#1</b>                       |                           |                            |                             |                              |                      | Offset Site Error:    | 0.0 f |
|------------------------------------|---------------------------|---------------------------|---------------------------|-------------------|----------------|-----------------------------|---------------------------------|---------------------------|----------------------------|-----------------------------|------------------------------|----------------------|-----------------------|-------|
| Survey Program: 0-ISC<br>Reference |                           | CWSA MWD<br>Offset        |                           | Semi Major Axis   |                |                             |                                 |                           |                            |                             | Offset Well Error:           | 0.0 ft               |                       |       |
| leasured<br>Depth<br>(ft)          | Vertical<br>Depth<br>(ft) | Measured<br>Depth<br>(ft) | Vertical<br>Depth<br>(ft) | Reference<br>(ft) | Offset<br>(ft) | Highside<br>Toolface<br>(°) | Offset Wellbor<br>+N/-S<br>(ft) | e Centre<br>+E/-W<br>(ft) | Between<br>Centres<br>(ft) | Between<br>Ellipses<br>(ft) | Total<br>Uncertainty<br>Axis | Separation<br>Factor | Warning               |       |
| 10,400.0                           | 6,194.2                   | 10,641.8                  | 6,177.2                   | 111.6             | 111.1          | -89.25                      | -876.3                          | -4,615.6                  | 1,302.2                    | 1,081.4                     | 220.84                       | 5.897                | and the second second | -     |
| 10,500.0                           | 6,194.0                   | 10,741.8                  | 6,177.1                   | 114.2             | 113.6          | -89.26                      | -862.2                          | -4,714.6                  | 1,302.2                    | 1,076.4                     | 225.87                       | 5.765                |                       |       |
| 10,600.0                           | 6,193.8                   | 10,841.8                  | 6,177.0                   | 116.7             | 116.0          | -89.26                      | -848.0                          | -4,813.6                  | 1,302.2                    | 1,071.3                     | 230.89                       | 5.640                |                       |       |
| 10,700.0                           | 6,193.5                   | 10,941.8                  | 6,176.9                   | 119.2             | 118.5          | -89.27                      | -833.9                          | -4,912.6                  | 1,302.2                    | 1,066.3                     | 235.92                       | 5.520                |                       |       |
| 10,800.0                           | 6,193.3                   | 11,041.8                  | 6,176.8                   | 121.7             | 121.0          | -89.27                      | -819.8                          | -5,011.6                  | 1,302.2                    | 1,061.2                     | 240.95                       | 5.404                |                       |       |
| 10,900.0                           | 6,193.1                   | 11,141.8                  | 6,176.7                   | 124.2             | 123.4          | -89.28                      | -805.7                          | -5,110.6                  | 1,302.2                    | 1,056.2                     | 245.99                       | 5.294                |                       |       |
| 11,000.0                           | 6,192.8                   | 11,241.8                  | 6,176.6                   | 126.7             | 125.9          | -89.29                      | -791.6                          | -5,209.6                  | 1,302.2                    | 1,051.2                     | 251.02                       | 5.188                |                       |       |
| 11,100.0                           | 6,192.6                   | 11,341.8                  | 6,176.5                   | 129.3             | 128.4          | -89.29                      | -777.5                          | -5,308.6                  | 1,302.2                    | 1,046.1                     | 256.06                       | 5.085                |                       |       |
| 11,200.0                           | 6,192.4                   | 11,441.8                  | 6,176.4                   | 131.8             | 130.9          | -89.30                      | -763.4                          | -5,407.6                  | 1,302.2                    | 1,041.1                     | 261.09                       | 4.987                |                       |       |
| 11,300.0                           | 6,192.1                   | 11,541.8                  | 6,176.3                   | 134.3             | 133.3          | -89.30                      | -749.2                          | -5,506.6                  | 1,302.1                    | 1,036.0                     | 266.13                       | 4.893                |                       |       |
| 11,400.0                           | 6,191.9                   | 11,641.8                  | 6,176.2                   | 136.8             | 135.8          | -89.31                      | -735.1                          | -5,605.5                  | 1,302.1                    | 1,031.0                     | 271.17                       | 4.802                |                       |       |
| 11,500.0                           | 6,191.7                   | 11,741.8                  | 6,176.1                   | 139.3             | 138.3          | -89.31                      | -721.0                          | -5,704.5                  | 1,302.1                    | 1,025.9                     | 276.21                       | 4.714                |                       |       |
| 11,547.4                           | 6,191.6                   | 11,789.2                  | 6,176.0                   | 140.5             | 139.5          | -89.32                      | -714.3                          | -5,751.4                  | 1,302.1                    | 1,023.2                     | 278.90                       | 4.669                |                       |       |
| 11,600.0                           | 6,191.4                   | 11,799.2                  | 6,176.0                   | 141.9             | 139.7          | -89.32                      | -712.9                          | -5,761.4                  | 1,302.8                    | 1,022.4                     | 280.43                       | 4.646                |                       |       |
| 11,700.0                           | 6,191.2                   | 11,799.2                  | 6,176.0                   | 144.4             | 139.7          | -89.32                      | -712.9                          | -5,761.4                  | 1,309.9                    | 1,026.4                     | 283.53                       | 4.620                |                       |       |
| 11,787.4                           | 6,191.0                   | 11,799.2                  | 6,176.0                   | 146.6             | 139.7          | -89.32                      | -712.9                          | -5,761.4                  | 1,322.3                    | 1,036.0                     | 286.23                       | 4.619                |                       |       |

r

| Company:           | LOGOS Operating LLC | Local Co-ordinate Reference: | Well DRAGONFLY 111H         |
|--------------------|---------------------|------------------------------|-----------------------------|
| Project:           | San Juan County, NM | TVD Reference:               | 15' KB @ 7294.0ft           |
| Reference Site:    | S12-T24N-R8W        | MD Reference:                | 15' KB @ 7294.0ft           |
| Site Error:        | 0.0ft               | North Reference:             | True                        |
| Reference Well:    | DRAGONFLY 111H      | Survey Calculation Method:   | Minimum Curvature           |
| Well Error:        | 0.0ft               | Output errors are at         | 2.00 sigma                  |
| Reference Wellbore | HZ                  | Database:                    | USA EDM 5000 Multi Users DB |
| Reference Design:  | Plan #1             | Offset TVD Reference:        | Offset Datum                |

Reference Depths are relative to 15' KB @ 7294.0ft Offset Depths are relative to Offset Datum Central Meridian is -107.833333 °

4

#### Coordinates are relative to: DRAGONFLY 111H Coordinate System is US State Plane 1983, New Mexico Western Zone Grid Convergence at Surface is: 0.11°



- 6. Pipeline location warning signs will be installed within 90 days after construction is completed.
- 7. Construction of the pipeline will take approximately 5-10 days.
- 8. The pipeline ROW corridor will be conditioned in a manner to preclude vehicular travel upon said ROW, except for access to above-ground pipeline appurtenances.
- c. Well Pad (See Plates 4a & 4b)
  - 1. The construction phase of the project will commence upon receipt of the approved APD.
  - 2. Vegetation removed during construction, including trees that measure less than 3 inches in diameter (at ground level) and slash/brush, will be chipped or mulched and incorporated into the topsoil as additional organic matter. If trees are present, all trees 3 inches in diameter or greater (at ground level) will be cut to ground level and delimbed. Tree trunks (left whole) and cut limbs will be stacked and brought up to the main resource road.
  - 3. The upper 6 inches of topsoil (if available) will be stripped following vegetation and site clearing. Topsoil will not be mixed with the underlying subsoil horizons and will be stockpiled as a berm along the perimeter of the well pad and/or as dirt mound within the construction zone, separate from subsoil or other excavated material. Topsoil and sub-surface soils will be replaced in the proper order, prior to final seedbed preparation. Spreading shall not be done when the ground or topsoil is wet. Vehicle/equipment traffic will not be allowed to cross topsoil stockpiles.
  - 4. Erosion control and stormwater management design features will be installed upon reclamation. The operator will utilize straw wattles around stockpiled soils, and at the base of fill slopes as necessary, to prevent sediment from leaving the construction site. Diversion channels will be constructed above the cut slope to divert storm water around the well pad. Silt traps will be installed within the permitted project area to reduce sediment transport off location.
  - 5. The well pad will be leveled to provide space and a level surface for vehicles and equipment. Excavated materials from cuts will be used on fill portions of the well pad to level the pad. The well pad would require between 1.1 and 5.9 feet of cut on the west and east side of the well pad, and between 2.7 and 5.8 feet of fill on the southeast (corner six) and northwest (corner three) side of the location. No additional surfacing materials will be required for construction.
  - 6. Well pad construction will involve preparing a level area for the equipment that will drill and complete the well. A 400-foot by 400-foot level well pad area would be constructed, resulting in approximately 3.56 acres of new surface disturbance. Construction of the well pad would include a 50-foot construction buffer zone around the perimeter of the pad, resulting in an additional 1.89 acres of new surface disturbance. The total permitted area for the construction of the well pad is 5.45 acres.
  - 7. The well pad would be constructed from the earthen materials present on-site or imported from a predetermined borrow pit. Imported fill material will be weed-free and authorized. The additional fill will be brought in from off-site. No concrete or other foreign materials would be brought in for use in construction of the well pad.
  - 8. The operator has proposed a closed-loop system. No pits will be used for the proposed project.
  - 9. Construction of the well pad will take approximately 7-10 days.

#### G. Methods for Handling Waste

1. Cuttings - Drilling operations will utilize a closed-loop system with water based mud. All cuttings will be placed in roll-off bins and hauled to a commercial disposal facility or land farm. The operator will follow Onshore Oil and Gas Order No. 1 regarding the placement, operation and

# LOGOS OPERATING, LLC DRAGONFLY #111H 915' FNL, 823' FWL SEC. 12, T-24-N, R-8-W, N.M.P.M. SAN JUAN COUNTY, NEW MEXICO NAD 83 LATITUDE: N36.33289° LONGITUDE: W107.64042° ELEVATION: 7279'

Directions from the intersection of U.S. Highway 550 South and U.S. Highway 64 Bloomfield, NM

## To Dragonfly #111H

- Beginning at the intersection of Hwy. 550 South & Hwy. 64
- Head south on Hwy. 550 for 43.1 miles, turn left onto San Juan County Road 7997; reset odometer;
- At 3 miles along County Road 7997 come to an intersection with two dirt roads and turn right; reset odometer;
- At 1.3 miles along said dirt road, pass through a gate;
- At 1.5 miles along said dirt road bear left;
- At 2 miles along said dirt road bear left;
- · At 3 miles along said dirt road bear right;
- At 3.3 miles along said dirt road bear right;
- · At 3.6 miles along said dirt road bear right;
- At 4.1 miles along said dirt road bear right;
- At 4.3 miles along said dirt road turn right onto another dirt road; reset odometer;
- At 1.7 mile along this new dirt road turn right onto the access road for the Dragonfly #111 H, being a previously abandoned road.

Plate 1b



**DRAGONFLY 111H**